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ABSTRACT
Adults with type 1 diabetes mellitus (T1DM) are at risk of premature osteoporosis and fractures. The onset of T1DM typically starts during

childhood and adolescence. Thus, the effects of DM on the skeleton may be established during this period. Studies in children with T1DM

primarily use DXAwith conflicting results. We present the first study in adolescents assessing the impact of T1DMon skeletalmicrostructure

and strength using HRpQCT. We recruited 22 patients aged 12 to 16 years with T1DM who were matched by age, gender, and pubertal

stagewith healthy controls. Paired t testswere applied to assess differences in cortical and trabecularmicroarchitecturemeasurements from

HRpQCT, and skeletal strength from HRpQCT-derived microfinite element analysis. Subtotal body, lumbar, and pelvic parameters were

assessed using DXA. There was no significant difference in subtotal body, lumbar spine, and pelvic BMD between T1DM and control pairs.

However, tibial trabecular thickness was lower (−0.005 mm; 95% CI, −0.01 to −0.001; p = 0.029) and trabecular loading was lower at the

distal radius (ratio of the load taken by the trabecular bone in relation to the total load at the distal end (Tb.F/TF) distal: −6.2; 95% CI,

−12.4 to −0.03; p = 0.049), and distal and proximal tibia (Tb.F/TF distal: −5.2, 95% CI, −9.2 to −1.2; p = 0.013; and Tb.F/TF proximal: −5.0,

95% CI, −9.8 to −0.1; p = 0.047) in T1DM patients. A subanalysis of radial data of participants with duration of T1DM of at least 2 years

and their matched controls demonstrated a reduced trabecular bone number (−0.15, 95% CI, −0.26 to −0.04; p = 0.012), increased trabec-

ular separation (0.041 mm, 95% CI, 0.009–0.072; p = 0.015), an increased trabecular inhomogeneity (0.018, 95% CI, 0.003–0.034; p = 0.021).

Regression models demonstrated a reduction in tibial stiffness (−0.877 kN/mm; p = 0.03) and tibial failure load (−0.044 kN; p = 0.03) with

higher HbA1C. Thus, in adolescents with T1DM, detrimental changes are seen in tibial and radial microarchitecture and tibial and radial

strength before changes in DXA occur and may result from poor diabetic control. © 2020 The Authors. JBMR Plus published by Wiley Peri-

odicals LLC on behalf of American Society for Bone and Mineral Research.
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Introduction

A dults with type 1 diabetes mellitus (T1DM) have an

increased risk of osteoporosis and fractures.(1–3) The pooled

relative risk for any fracture is 3.16;(4) the risk of hip fractures is

between 3.78 to 6.94 times higher than the normal adult popula-

tion.(1,5) Previous studies have shown that adults with T1DM

have reduced BMD,(1–3,6) and fracture risk is compounded by

poor diabetic control or coexistent diabetic complications.(3,7,8)

Theonset of T1DM is typically in childhood, with the peak age of

onset between 10 to 14 years,(1) leading to a long exposure to the

effects of hyperglycemia and hypoinsulinism. Significant bone

growth and remodeling occurs in childhood and adolescence with

25% of peak bone mass attained in adolescence.(9,10) Optimizing

peak bone mass in childhood and adolescence reduces fracture

risk.(10) It is thus plausible that the impact of T1DM on skeletal

health begins from diagnosis in childhood and adolescence, lead-

ing to skeletal changes and inadequate bone mass accrual. This

may subsequently lead to an increased risk of osteoporosis and

fractures in adults with T1DM.(7)

One of the earliest studies looking at the impact of T1DM on

skeletal health in children dates back to 1948 where a loss of

bone “content” was demonstrated through evaluation of con-

ventional X-rays.(11) Since then, there have been multiple studies

looking at DXA-derived BMD in children with T1DMwith conflict-

ing results; some showing reduced BMD,(4,6,10,11) and others

showing no difference in BMD compared with controls.(12–14)

The inconsistencies in BMD seen between studies of children
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with T1DM may be related to the age of the patient, time from

diagnosis, and diabetic control. Despite this, studies showing

no reduction in BMD have shown changes in the bone markers

such as osteocalcin, PINP, and urinary pyridinoline and deoxypyr-

idinoline, reflecting lower bone formation and an increased bone

turnover.(14,15) Changes in bone markers can be seen within a

year of onset of T1DM, suggesting that skeletal alterations may

be taking place at a microarchitectural level.(9) BMD may also

be considered an inadequate predictor of fracture risk in DM. In

a previous meta-analysis,(1) lower BMD was demonstrated in

adults with T1DM, but higher BMD in adults with T2DM. Yet an

increased fracture risk was observed in both conditions. More-

over, the fracture risk in T1DM is also higher than the calculated

risk if it is solely based on BMD. Patients with T1DM can also still

develop fractures even with a normal BMD, suggesting that frac-

ture risk may also be driven by more subtle detrimental micro-

structural skeletal alterations.(15)

Changes in bone microarchitecture that influence bone qual-

ity and strength may precede observable changes in DXA-

derived bone mass in children. Comparable studies using pQCT

in children have demonstrated detrimental changes in the corti-

cal compartment in children and adolescents with T1DM.(16, 17) In

participants with T1DM, Bechtold and colleagues demonstrated

a reduction in total and cortical cross-sectional area in prepuber-

tal participants and reduction in total cross-sectional area in par-

ticipants in early puberty at the radius comparedwith the normal

reference.(16) Saha and colleagues showed reduced bone cross-

sectional size, and reduced cortical BMD and cross-sectional area

in adolescents with T1DM compared with healthy controls.(17)

However, pQCT provides limited information about the cortical

and trabecular microarchitecture, and does not provide proxies

of bone strength calculated using finite element analysis.

HRpQCT was therefore used in this study as it provides high-

resolution images of the cortical and trabecular microarchitec-

ture to a resolution of 82 micrometers and estimated bone

strength parameters.(18,19)

We hypothesized that detrimental changes in bone mass and

the cortical and trabecular bone microarchitecture, and proxies

in bone strength will be seen in adolescents with T1DM com-

pared with healthy controls. Thus our objectives were to deter-

mine: (i) whether T1DM causes changes in cortical and

trabecular bone microarchitecture and proxies of bone strength

in adolescents; (ii) if T1DM causes changes in subtotal body, lum-

bar spine, and pelvic bone mass; and (iii) if glycemic control

and/or duration of diabetes has an impact on cortical and trabec-

ular bonemicroarchitecture and proxies of bone strength in ado-

lescents with T1DM.

Participants and Methods

This study was approved by the South Yorkshire Research Ethics

Committee. All investigations were carried out in accordance

with the ethical standards laid down in the 1964 Declaration of

Helsinki and its later amendments and in accordance with the

International Conference on Harmonization Good Clinical Prac-

tice guidelines. All participants gave fully informed written con-

sent prior to their participation.

Adolescents from a white population aged 12 to 16 years with

T1DM were recruited from pediatric outpatient diabetes clinic at

Sheffield Children’s Hospital, UK. Control participants were

recruited via advertisements through emails, social media, and

as siblings of participants with T1DM. Recruitment took place

between October 2016 and April 2018. Adolescents with an

active malabsorption condition, metabolic bone disease, renal

disease, immobilization of greater than 3 months, a known skel-

etal disorder, a fracture history within 12 months of consent, an

active eating disorder, or who were on medications that can

affect bone metabolism were excluded from the study. Fracture

history was assessed in both groups. The medical notes of

patients with T1DM were reviewed to determine age of diagno-

sis, duration of T1DM, and to obtain average HbA1C over the

1 year prior to the study. As the study involved exposure to radi-

ation, female participants underwent a urine pregnancy test.

Anthropometry was undertaken with subjects wearing light

clothing. Height was measured using a portable stadiometer

(SECA 214 portable stadiometer, Birmingham, UK) to the nearest

1 mm and weight to the nearest 0.1 kg using electronic balance

scales (SECA 770 digital weighing scales). BMI was calculated as

weight (kg)/height2 (m2). Pubertal assessment was conducted

using Tanner stage self-assessment cards. Total body less head,

lumbar spine, and pelvis BMD (BMD – g/cm2); bone mineral con-

tent (BMC – g); bone area (BA – cm2); and fat and leanmass (total

and percentage) were measured using the Discover A densitom-

eter (Hologic Inc., Bedford, MA, USA). Device stability was moni-

tored using an anthropomorphic spine phantom, and weekly

scans of the standard quality control (European Spine Phantom;

QRM—Quality Assurance in Radiology and Medicine, Moehren-

dorf, Germany) were also performed using the manufacturer’s

software.

HRpQCT was performed on the nondominant, nonfractured

limb (Fig. 1). The image acquisition and analysis of a 9-mm–

defined section of the ultradistal radius and tibia scanned was

performed using the standard built-in software (XtremeCT, ver-

sion 6.0, Scanco Medical AG, Brüttisellen, Switzerland). The scan-

ning methodology has previously been described.(18,19) In all

postpubertal participants with fused tibial and radial growth

plates, a reference line was placed on the scan image at the end-

plate of the distal tibia and on the notch on the articular surface

of the distal radius to indicate the position of the first measure-

ment slice (22.5 and 9.5 mm proximal from the reference line

for the tibia and radius, respectively). In prepubertal participants

and in those participants with open tibial and radial growth

plates, the reference line was placed on the scan image at the

proximal end of the growth plate to indicate the position of

the first measurement slice (1 mm proximal from the reference

line). A single stack of parallel CT slices (110 slices = 9.02 mm)

for each site was acquired in the high-resolution mode (image

matrix = 1536 × 1536). Daily measurements of the manufacturer

device-specific phantom (Scanco Medical AG) were performed

to monitor the stability of the XtremeCT. Assessment of bone

strength was determined using microfinite element analysis

(mFEA), inbuilt software on HRpQCT.

HRpQCT densitometric measurements included total density

(mg/cm3), trabecular density (mg/cm3), and cortical density

(mg/cm3). Measures of microarchitectural properties included

trabecular number (1/mm), trabecular thickness (mm), trabecu-

lar separation (mm), bone volume fraction (%), endosteal and

periosteal perimeter (mm) and cortical thickness (mm). Extended

cortical analysis techniques were applied to the segmented

scans using specialist software provided by Scanco Medical AG

(version 6) and following the approaches described by Burghardt

and colleagues(20), Engelke and colleagues,(21) and Nishiyama

and colleagues(22) to assess cortical porosity (%) and mean corti-

cal pore diameter (μm). Measures of bone strength were deter-

mined by mFEA using software developed by Scanco Medical

JBMR Plus (WOA)n 2 of 10 DEVARAJA ET AL.



Fig 1. Tibial and radial imagesobtained fromHRpQCT foraparticipantwith type1diabetesmellitus (A) andanage-, pubertal stage-, andgender-matchedcontrol (B).
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AG (version 1.13; FE-solver included in the image processing lan-

guage). Analysis variables included bone stiffness (kN/mm), esti-

mated ultimate failure load (kN), the ratio of the load taken by

the trabecular bone in relation to the total load at the distal

end (%) and proximal end (%), and average von Mises stresses

in the trabecular (MPa) and the cortical (MPa) bone.

Participants with T1DM were matched to controls according

to gender, age, and pubertal status. Comparisons between

groups for age, anthropometry, and bone parameters (DXA,

HRpQCT, and mFEA) were made using paired t-tests. Paired dif-

ferences in bone parameters are presented as unadjusted data

and data adjusted for height and weight using mixed effects lin-

ear model with pair as random intercept. Linear regression anal-

ysis was used to determine impact of glycemic control

(as assessed by average HbA1c) and duration of T1DMDM on

the skeletal parameters as assessed by HRpQCT with age and

gender included in the model as independent variables. Signifi-

cance was determined at a p value of ≤0.05. The analysis was

done using the R Project for Statistical Computing.(23)

Results

From the adolescents contacted through the pediatric outpa-

tient diabetic clinics, 29 adolescents with T1DM were eligible

and consented to be part of the study. From these, 22 adoles-

cents participated in the study. Thirty healthy controls were con-

tacted and 25 adolescents participated in the study. Data from

three healthy controls were excluded from the study because

they could not be matched to the existing participants with

T1DM (three male participants).

Twenty-two participants with T1DM were age-, pubertal stage-,

and gender-matched with healthy controls. At the time of analysis,

HRpQCT data could not be obtained from two participants with

T1DM (because of movement artifacts); hence, analyses of these

data were from 40 participants (20 matched pairs). DXA data were

obtained from all participants (22matched pairs). Demographics of

the cohort are presented in Table 1. Therewere 13 femalematched

pairs (n = 26) in this study. Participants with T1DM were signifi-

cantly heavier (8.3 kg = paired difference and 95% CI is 2.9–13.8,

p = 0.005) and had a higher BMI (3.0 is the paired difference with

95% CI 1.0–5.1, p = 0.006) than controls.

Eight participants with T1DM previously had fractures; six par-

ticipants sustained one fracture, and two participants had two

previous fractures. Ten healthy controls previously had fractures;

seven participants had sustained one fracture and three partici-

pants had two fractures.

Among the participants with T1DM, the average age of onset

of diagnosis was 9.25 � 1.62 years. The duration of DM among

participants ranged from 2 months (participant was 13.1 years

at time of study) to 14.5 years (participant was 15.5 years at time

of study). The average HbA1C was 62.4 � 5.38 mmol (excluding

one participant who did not have a HbA1C measurement as the

duration of DM was <3 months).

There were no significant differences in BA, BMC, and BMD for

total body less head, lumbar spine, and pelvic sites between par-

ticipants with T1DM andmatched controls (Table 2). After adjust-

ing for differences in height and weight, there were no

significant differences in fat and lean mass between both

groups. A further subanalysis was done by excluding participants

with a short T1DM duration (<2 years) and their paired healthy

controls (Table 3), and there remained no difference in bone

densitometry parameters.

HRpQCT comparisons of the radius are presented in Table 4.

Participants with T1DM carried on average 6.2% less load at the

distal surface of the trabecular bone (95% CI, −12.4 to −0.03;

p = 0.049) compared with controls. However, when T1DM partic-

ipants of <2 years DM duration and their paired controls were

excluded in a further subanalysis (Table 5), further significant

changes in the trabecular bone were found. At the radius, partic-

ipants with T1DM had a reduced trabecular bone number by

0.15 (95% CI,−0.26 to−0.04; p = 0.012), increased trabecular sep-

aration by 0.041 mm (95% CI, 0.009–0.072; p = 0.015), an

increased trabecular inhomogeneity by 0.018 (95% CI,

0.003–0.034; p = 0.021) and carried 9.7% less load at the distal

surface of the trabecular bone (95% CI, −17.3 to −2.1;

p = 0.017) compared with controls.

HRpQCT analyses of the tibia are presented in Table 6. Partic-

ipants with T1DM had a lower mean trabecular thickness

(−0.005 mm; 95% CI, −0.01 to −0.001; p = 0.029) and had a

5.2% mean reduction in load (95% CI, −9.2 to −1.2; p = 0.013)

on the distal surface and 5.0% decreased load (95% CI, −9.8 to

−0.1; p = 0.047) on the proximal surface of the tibial trabecular

bone compared with controls. When T1DM participants of

<2 years DM duration and their paired controls were excluded

in a further subanalysis (Table 7), lower trabecular thickness

remained a consistent finding in children with T1DM

(−0.007 mm; 95%CI,−0.013 to−0.001; p = 0.029) comparedwith

controls; however, changes in load carried by the trabecular

bone were no longer significant.

Linear regression analysis was used to determine the relationship

betweenHbA1C anddurationof T1DMDMon skeletal parameters as

assessed by HRpQCT. The regression models were adjusted for age

and gender because this analysis was only performed for the group

of T1DMpatients. Therewas no correlation betweenHbA1Cor dura-

tion of T1DMDM and radial skeletal parameters once adjusted for

age and gender. In contrast, an increase in one unit of HbA1C was

associated with a reduction in the estimated failure load by 0.044

Table 1. Comparison of Anthropometry in T1DM and Control Groups andMean Difference (95% CI) Matched by Age, Gender, and Puber-

tal Stage

T1DM Control Paired difference (T1DM – control)

Mean SD Mean SD Mean (95% CI) p Value

Age (years) 13.8 1.2 13.6 1.2 0.1 (−0.03 to 0.24) 0.130

Tanner stage 3.4 0.9 2.9 1.2 0.5 (−0.1 to 1.0) 0.091

Height (cm) 160.6 9.4 159.7 10.2 0.9 (−3.9 to 5.8) 0.693

Weight (kg) 58.1 14.6 49.8 10.2 8.3 (2.9 to 13.8) 0.005

BMI 22.4 4.4 19.3 2.5 3.0 (1.0 to 5.1) 0.006

Significance is reached at p ≤ 0.05. T1DM = type 1 diabetes mellitus.

JBMR Plus (WOA)n 4 of 10 DEVARAJA ET AL.



Table 2. Comparison of DXA Data for Total Body Less Head, Lumbar Spine, and Pelvis in T1DM and Control Groups and Mean Difference (95% CI) Matched by Age, Gender, and Pubertal

Stage

N

T1DM Control Paired differencea (T1DM – control) Paired differenceb (T1DM – control)

Mean SD Mean SD Mean (95% CI) p Value Mean (95% CI) p Value

Subtotal body area (cm2) 22 1570.1 203.3 1533.5 213.8 36.6 (−64.4 to 137.6) 0.459 −53.6 (−119.0 to 11.8) 0.103

Subtotal body BMC (g) 22 1328.5 235.7 1308.4 298.3 20.1 (−124.6 to 164.7) 0.776 −89.0 (−186.9 to 8.8) 0.072

Subtotal body BMD (g/cm2) 22 0.841 0.049 0.844 0.089 −0.002 (−0.048 to 0.043) 0.913 −0.024 (−0.062 to 0.014) 0.209

Lumbar spine area (cm2) 22 45.9 6.9 45.6 8.6 0.3 (−4.9 to 5.4) 0.918 −1.3 (−5.9 to 3.4) 0.579

Lumbar spine BMC (g) 22 40.7 9.8 40.7 12.2 −0.1 (−6.4 to 6.3) 0.980 −2.4 (−8.8 to 3.9) 0.438

Lumbar spine BMD (g/cm2) 22 0.879 0.125 0.880 0.144 −0.001 (−0.064 to 0.063) 0.983 −0.027 (−0.098 to 0.043) 0.425

Pelvic area (cm2) 22 189.6 28.6 192.5 39.4 −2.9 (−23.0 to 17.1) 0.763 −11.5 (−29.7 to 6.6) 0.200

Pelvic BMC (g) 22 208.6 47.1 207.4 62.4 1.2 (−29.3 to 31.8) 0.934 −17.9 (−43.7 to 8.0) 0.164

Pelvic BMD (g/cm2) 22 1.094 0.140 1.059 0.140 0.034 (−0.048 to 0.116) 0.393 −0.017 (−0.090 to 0.057) 0.637

Whole-body fat (g) 22 16842.0 7360.9 12552.5 4378.8 4289.6 (1221.7–7357.5) 0.008 350.6 (−1734.1 to 2435.3) 0.729

Whole-body lean (g) 22 41513.3 8325.9 37276.4 7729.6 4236.9 (419.2–8054.7) 0.031 −178.0 (−2279.5 to 1923.5) 0.861

Whole-body percentage fat (%) 22 27.7 7.1 25.0 6.2 2.8 (−1.3 to 6.9) 0.175 −0.2 (−4.1 to 3.8) 0.932

Significance is reached at p ≤ 0.05. T1DM = type 1 diabetes mellitus.
aUnadjusted analysis using paired samples t test.
bAdjusted for height and weight using mixed effects linear model with pair as random intercept.

Table 3. Comparison of DXA Data for Total Body Less Head, Lumbar Spine, and Pelvis in T1DM and Control Groups and Mean Difference (95% CI) Matched by Age, Gender, and Pubertal

Stage After Participants With T1DM <2 years and the Paired Controls Were Excluded

N

T1DM Control Paired differencea (T1DM – control) Paired differenceb (T1DM – control)

Mean SD Mean SD Mean (95% CI) p Value Mean (95% CI) p Value

Subtotal body Area (cm2) 14 1607.1 193.9 1521.9 233.5 85.2 (−58.0 to 228.4) 0.221 −57.4 (−153.5 to 38.7) 0.215

Subtotal body BMC (g) 14 1367.9 240.2 1300.9 334.5 67.0 (−151.8 to 285.8) 0.520 −112.5 (−266.3 to 41.3) 0.136

Subtotal body BMD (g/cm2) 14 0.846 0053 0.843 0.104 0.003 (−0.068 to 0.075) 0.919 −0.033 (−0.094 to 0.027) 0.253

Lumbar spine Area (cm2) 14 45.8 6.7 46.5 8.5 −0.6 (−7.1 to 5.9) 0.842 −3.9 (−9.9 to 2.2) 0.191

Lumbar spine BMC (g) 14 41.9 10.0 41.5 12.6 0.3 (−8.4 to 9.1) 0.932 −3.9 (−13.1 to 5.2) 0.365

Lumbar spine BMD (g/cm2) 14 0.907 0.139 0.881 0.161 0.025 (−0.073 to 0.123) 0.586 −0.017 (−0.134 to 0.099) 0.752

Pelvic area (cm2) 14 196.9 22.8 191.6 44.9 5.3 (−21.9 to 32.5) 0.679 −10.8 (−37.3 to 15.7) 0.390

Pelvic BMC (g) 14 220.3 47.0 207.6 70.6 12.7 (−31.5 to 57.0) 0.545 −20.7 (−60.5 to 19.2) 0.279

Pelvic BMD (g/cm2) 14 1.112 0.160 1.062 0.159 0.051 (−0.075 to 0.176) 0.399 −0.034 (−0.150 to 0.083) 0.538

Whole-body fat (g) 14 18053.5 7892.9 11701.98 4528.6 6351.5 (2285.8–10417.2) 0.005 1178.3 (−2124.0 to 4480.6) 0.449

Whole-body lean (g) 14 42833.6 9367.3 36803.3 9159.2 6030.3 (438.6– 11,622.0) 0.037 −984.0 (−4313.4 to 2345.4) 0.529

Whole-body percentage fat (%) 14 28.6 7.2 24.0 6.9 4.6 (−1.0 to 10.2) 0.101 1.5 (−4.6 to 7.7) 0.595

Significance is reached at p ≤ 0.05. N = Number of matched pairs; T1DM = type 1 diabetes mellitus.
aUnadjusted analysis using paired samples t test.
bAdjusted for height and weight using mixed effects linear model with pair as random intercept.
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kN (95%CI,−0.083 to−0.006; p= 0.035) at the distal tibia. This differ-

ence remained significant after adjusting for age and gender

(−0.045 kN; 95% CI, −0.086 to −0.003; p = 0.039). A reduction of

0.877 kN/mm of tibial stiffness was also associated with each unit

increase in HbA1C (95% CI, −1.684 to −0.07; p = 0.035) and again

remained significant after adjusting for age and gender

(−0.923 kN/mm; 95% CI, −1.783 to −0.062; p = 0.037). There was

no correlation between duration of DM and tibial skeletal parame-

ters once adjusted for age and gender.

Discussion

We hypothesized that changes in bone microarchitecture and

strength occur in adolescents with T1DM, and these changes

precede changes in DXA-derived bone parameters.

In our study, we compared adolescents with T1DM with age-,

sex-, and pubertal stage-matched controls, thus accounting for

differences in physiological maturity at the same age. We did

not observe differences in BA, BMC, and BMD at the total body

(less head), lumbar spine, and pelvic sites. Our results thus sup-

port other studies that have shown no differences in total body

and regional BMD in patients with T1DM compared with healthy

controls.(12–14) However, in contrast, some studies have shown a

reduction in BMD.(4,8–10) Inconsistencies between studies using

DXA are related to the age of the population and the challenges

with using areal bone density to assess bone mass and fracture

risk, which inherently under- and overestimate bone mass in

smaller and taller children, respectively.

To our knowledge, this is the first study using HRpQCT to look

at skeletal microarchitecture in adolescents with T1DM. HRpQCT

provides high-resolution in vivo bone biopsy, giving insight into

the microarchitectural parameters and integrity of cortical and

trabecular compartments.(18,19) Moreover, HRpQCT provides rel-

evant information about skeletal integrity and strength, albeit

at the distal appendicular skeleton. We provide evidence for

reduced bone strength at the distal radius and tibia of adoles-

cents with T1DM, demonstrating a 6.2% mean reduction in

load-bearing at the distal surface of trabecular bone in the radius

and 5.2% and 5.0% mean reduction in load-bearing on the distal

and proximal surface of tibial trabecular bone respectively, com-

pared with healthy controls. Following subanalysis in children

who had T1DM for >2 years, the reduction in load-bearing at

the distal surface of tibial trabecular load in the T1DM group

was no longer present. Conversely, in the same subanalysis, a

reduced trabecular bone number, increased trabecular separa-

tion, and increased trabecular inhomogeneity was observed at

the radius with a 9.7% reduction in the trabecular load at the dis-

tal radius. Thus, those with a duration of T1DM >2 years demon-

strated an alteration in trabecular microarchitecture that could

translate into a reduction in radial strength. However, given the

lack of normative data on individual HRpQCT mFe parameters,

it is difficult to determine whether the identified 9.7% reduction

in trabecular load at the distal radius in our T1DM cohort is

Table 4. Comparison of HRpQCT Cortical, Trabecular, and mFEA Radial Parameters and Mean Difference Between T1DM and Control

Groups Matched for Age, Pubertal Stage, and Gender Calculated by Paired t Tests (95% CI)

Radial HRpQCT parameters N

T1DM Control

Paired difference (T1DM –

control)

Mean SD Mean SD Mean (95% CI)

p

Value

Total bone area (cm3) 20 251.7 45.6 267.3 55.9 −15.6 (−46.3 to 15.2) 0.303

Volumetric bone density (mg/cm3) 20 248.5 41.4 252.0 50.8 −3.6 (−37.8 to 30.7) 0.830

Cortical bone area (cm3) 20 27.0 12.0 24.3 12.9 2.7 (−5.7 to 11.2) 0.504

Cortical bone density (mg/cm3) 20 669.9 83.2 643.3 65.1 26.6 (−15.4 to 68.5) 0.201

Cortical bone thickness (mm) 20 0.424 0.196 0.396 0.241 0.029 (−0.121 to 0.178) 0.695

Cortical bone perimeter (mm) 20 64.7 6.6 66.4 7.6 −1.7 (−5.7 to 2.3) 0.394

Cortical porosity 20 0.036 0.018 0.043 0.019 −0.007 (−0.018 to 0.005) 0.248

Periosteal perimeter (mm) 20 67.1 7.6 69.1 8.7 −2.0 (−6.6 to 2.6) 0.379

Endosteal perimeter (mm) 20 60.3 7.2 63.3 8.5 −3.0 (−7.6 to 1.5) 0.182

Trabecular bone area (cm3) 20 213.3 45.1 230.0 52.5 −16.6 (−46.9 to 13.6) 0.265

Trabecular bone density (mg/cm3) 20 167.0 32.6 186.2 38.2 −19.2 (−44.4 to 6.0) 0.127

Trabecular BV/TV 19 0.140 0.027 0.157 0.032 −0.017 (−0.039 to 0.005) 0.131

Trabecular bone number (1/mm) 20 2.14 0.23 2.21 0.17 −0.07 (−0.18 to 0.04) 0.196

Trabecular thickness (mm) 20 0.065 0.009 0.070 0.012 −0.005 (−0.014 to 0.003) 0.203

Trabecular separation (mm) 20 0.409 0.057 0.387 0.041 0.022 (−0.004 to 0.048) 0.090

Trabecular inhomogeneity 20 0.159 0.029 0.151 0.023 0.009 (−0.006 to 0.023) 0.222

Stiffness (kN/mm) 20 71.3 44.5 67.2 19.9 4.2 (−20.4 to 28.7) 0.728

Estimated failure load (kN) 20 3.58 1.85 3.46 0.95 0.12 (−0.94 to 1.18) 0.815

(Tb.F/TF) distal (percentage of load carried by

trabecular bone at distal surface

20 59.2 12.6 65.4 6.3 −6.2 (−12.4 to −0.03) 0.049

(Tb.F/TF) proximal (percentage of load carried by

trabecular bone at proximal surface)

20 30.3 13.5 34.3 7.2 −4.0 (−10.8 to 2.7) 0.229

Trabecular Von Mises stress (MPa) 20 5.22 1.04 5.43 0.74 −0.22 (−0.92 to 0.49) 0.534

Cortical Von Mises stress (MPa) 20 8.24 0.36 8.17 0.34 0.07 (−0.14 to 0.28) 0.510

Significance is reached at p ≤ 0.05.

BV/TV = bone volume fraction; N = number of matched pairs; mFEA = microfinite element analysis; T1DM = type 1 diabetes mellitus; Tb.F/TF = _______.
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physiologically significant.(24,25) T1DM may have a more pro-

found impact on the radius and thus, nonload-bearing bone

and this finding may in part explain the increased fracture risk

observed in adults with T1DM. Moreover, radial and tibial trabec-

ular and bone area were lower in children with T1DM, although

these differences were not significant in the analysis.

Alterations in the bone microarchitecture and loading proper-

ties of the bone were thus identified in adolescents with T1DM

despite no observable change in total body or regional BMD.

We speculate that the consistently observed reduction in bone

mass and increased fracture risk observed in adults with T1DM

may be preceded and explained by more subtle skeletal micro-

architectural changes in childhood. Previously observed alter-

ations in bone turnover markers in children with T1DM, despite

no significant differences in bone density, appear to support this

finding, and with our data collectively suggest that the decline in

skeletal quality in children with T1DM may begin in

childhood.(14,15,26)

To ensure that the significant changes in bone parameters

identified between the two groups were not caused by changes

in body composition, we assessed the impact of whole-body fat

mass and leanmass on HRpQCT andmFEA parameters that were

significantly different between the two groups to determine the

effect of body composition on these differences (data not

included). We analyzed the effect of an increase per 100 grams

of fat and lean mass and an increase in 1% fat mass and lean

mass on each of the parameters for the diabetic group, and then

adjusted the data for age and sex. Moreover, we performed a

sensitivity analysis to ensure outliers did not skew the results.

We found that in children with T1DM, whole-body fat mass, per-

centage fat mass, and percentage lean mass were positively cor-

related with trabecular thickness at the radius following

adjustment for age and sex. Further, an increase in percentage

fat mass was also correlated with an increase in trabecular load

at the distal radius. Body composition was not correlated with

the relevant bone parameters at the tibia. In addition, as there

was no difference in fat and lean mass observed between our

cohorts, we surmise that the differences in bone parameters

observed between the two groups are unlikely to be caused by

changes in body composition in patients with T1DM.

In our study, at least at the tibia, a reduction in bone strength

may be related to glycemic control. This concurs with other stud-

ies showing the negative impact of poor glycemic control on

bone.(8,12,27–29) Our initial logistic regression analysis suggested

that the duration of DM may be related to changes in tibial

microarchitectural properties; however, this relationship disap-

peared after adjusting for age and gender. This is in agreement

with other studies.(12,29)

In adult patients with T1DM,(27) no differences in HRpQCT

parameters were identified between T1DM patients without

the presence of microvascular disease and healthy controls.

However, T1DM patients with established microvascular

changes showed lower total, trabecular, and cortical volumetric

BMD, thinner radial cortex, and lower total and trabecular vBMD

Table 5. Comparison of HRpQCT Cortical, Trabecular, and mFEA Radial Parameters and Mean Difference Between T1DM and Control

Groups (With T1DM Participants of DM Duration < 2 years and Paired Controls Excluded) Matched for Age, Pubertal Stage, and Gender

Calculated by Paired t Tests (95% CI)

Radial HRpQCT parameters N

T1DM Control Paired difference (T1DM – control)

Mean SD Mean SD Mean (95% CI) pValue

Total bone area (cm3) 13 250.8 42.8 272.1 61.7 −21.4 (−59.9 to 17.1) 0.250

Total bone density (mg/cm3) 13 242.9 46.6 256.3 59.0 −13.3 (−64.0 to 37.3) 0.577

Cortical bone area (cm3) 13 29.0 12.3 26.7 15.1 2.3 (−10.7 to 15.3) 0.711

Cortical bone density (mg/cm3) 13 679.8 76.9 650.2 72.8 29.6 (−26.8 to 86.1) 0.275

Cortical bone thickness (mm) 13 0.452 0.198 0.445 0.280 0.008 (−0.221 to 0.236) 0.943

Cortical bone perimeter (mm) 13 65.0 6.6 66.9 8.3 −1.9 (−6.9 to 3.2) 0.432

Cortical porosity 13 0.038 0.017 0.044 0.020 −0.006 (−0.020 to 0.008) 0.353

Trabecular bone area (cm3) 13 211.0 42.5 232.7 57.7 −21.7 (−59.5 to 16.1) 0.236

Trabecular bone density (mg/cm3) 13 155.7 26.3 187.1 45.2 −31.3 (−67.3 to 4.6) 0.082

Meta trabecular density (mg/cm3) 13 221.7 30.0 248.4 47.2 −26.8 (−64.0 to 10.4) 0.143

Inner trabecular density (mg/cm3) 13 110.1 27.3 144.7 45.7 −34.6 (−71.4 to 2.2) 0.063

Meta TB/inner TB 13 2.08 0.35 1.79 0.32 0.28 (−0.04 to 0.61) 0.081

Trabecular BV/TV 12 0.131 0.023 0.159 0.038 −0.028 (−0.061 to 0.005) 0.084

Trabecular bone number (1/mm) 13 2.06 0.20 2.21 0.20 −0.15 (−0.26 to −0.04) 0.012

Trabecular thickness (mm) 13 0.063 0.008 0.070 0.014 −0.007 (−0.020 to 0.005) 0.224

Trabecular separation (mm) 13 0.427 0.055 0.386 0.049 0.041 (0.009 to 0.072) 0.015

Trabecular inhomogeneity 13 0.170 0.026 0.151 0.026 0.018 (0.003 to 0.034) 0.021

Stiffness (kN/mm) 13 60.8 13.0 69.2 24.5 −8.5 (−28.8 to 11.9) 0.383

Estimated failure load (kN) 13 3.12 0.63 3.56 1.17 −0.43 (−1.40 to 0.54) 0.353

(Tb.F/TF)dist 13 54.6 9.7 64.3 7.0 −9.7 (−17.3 to −2.1) 0.017

(Tb.F/TF)prox 13 25.5 8.6 32.9 7.8 −7.4 (−15.1 to 0.3) 0.057

Trabecular Von Mises stress (MPa) 13 4.93 0.67 5.35 0.85 −0.43 (−1.29 to 0.44) 0.302

Cortical Von Mises stress (MPa) 13 8.22 0.36 8.14 0.36 0.08 (−0.19 to 0.36) 0.533

Periosteal perimeter (mm) 13 67.0 7.3 69.8 9.6 −2.8 (−8.4 to 2.7) 0.289

Endosteal perimeter (mm) 13 60.4 7.4 64.4 9.4 −3.9 (−10.1 to 2.2) 0.186

Significance is reached at p ≤ 0.05. BV/TV = bone volume fraction; N = number of matched pairs; mFEA = microfinite element analysis; T1DM = type 1 dia-

betes mellitus; TB = Meta TB/inner TB = meta-to-inner trabecular density; Tb.F/TF = ratio of the load taken by the trabecular bone in relation to the total load.
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at the tibia.(27) Despite this, no differences were observed in

bone strength. Differences in the microarchitectural findings

between adolescents and adults with T1DM, may in part relate

to the impact of T1DM during skeletal development. Adoles-

cence is a period of significant bone mass accrual and increased

bone strength.(30) Thus, the impact of T1DM may differ during

phases of skeletal development and maturity.

Multiple mechanisms by which T1DM may cause impaired

bone turnover and mineralization have been proposed.(31) Our

study showed that T1DM had a negative impact on the trabecu-

lar compartment at the radius and tibia, with others showing

deterioration in the cortical bone compartment.(16,17,27) Insulin

has an anabolic effect on bone by stimulating osteoblast differ-

entiation in the bone marrow; thus, reduction in insulin may

impair bone formation at a critical time of peak bone mass

accrual.(32,33) Adolescents with T1DM have lower osteocalcin

and insulin-like growth factor 1 levels, factors that are important

in skeletal development.(34) Production of advanced end glyco-

sylation products secondary to chronic hyperglycemia have also

been implicated in causing impaired bone formation.(35,36) T1DM

also may also impair osteocyte function through its impact on

sclerostin expression.(32,36,37)

Adolescents with T1DM were heavier and had a higher BMI

compared with the healthy controls in our study. This corre-

sponds with data from the National Pediatrics Diabetes Audit(38)

showing a trend for higher BMI in children with T1DM. It could be

postulated that the higher weight and BMI has led to skeletal

microarchitectural deterioration rather than T1DM, as obesity

has been associated with an increased risk of fractures and

change in skeletal microarchitecture in children.(39,40) However,

the mean BMI in our T1DM cohort was within the normal range

for age. Although obesity has been recognized as a risk factor

for fractures, increased fat mass that is not excessive could have

a positive impact on skeletal development.(40) There was also no

significant difference in fat and leanmass or percentage body fat

between T1DM participants and paired controls in our group

after adjustment for height and weight, and we further showed

that the differences in trabecular parameters between our

groups could not be explained by differences in fat or lean mass.

Therefore, the deterioration in bone microarchitecture seen in

our adolescents with T1DM cannot be explained by the higher

BMI alone.

There were several limitations to our study. This was a small

pilot study; thus, our ability to detect other differences in skeletal

microarchitecture and integrity between the groups was limited.

Studying a larger population of adolescents and children with

T1DM using HRpQCT could further define the relationship

between skeletal microarchitecture and duration of DM, age of

onset, and glycemic control. Although we detected no signifi-

cant differences in fat and lean mass between both groups and

we also corrected for height and weight to remove these mea-

sures as confounding factors, matching for BMI in addition to

age, gender, and pubertal stage would potentially preclude the

impact of body composition skeletal microarchitecture. We rec-

ognize that the measures of bone strength using finite element

analysis represent proxies of bone strength and cannot replace

Table 6. Comparison of HRpQCT Cortical, Trabecular, andmFEA Tibial Parameters Between T1DM and Control ChildrenMatched for Age,

Pubertal Stage, and Gender Calculated by Paired t Tests – Mean Difference (95% CI)

Tibial HRpQCT parameters N

T1DM Control Paired difference (T1DM – control)

Mean SD Mean SD Mean (95% CI)

p

Value

Total bone area (cm3) 20 838.5 175.3 906.0 147.9 −67.5 (−149.0 to 14.1) 0.100

Total bone density (mg/cm3) 20 240.5 45.7 237.3 33.1 3.2 (−20.1 to 26.6) 0.777

Cortical bone area (cm3) 20 58.2 43.9 47.1 29.3 11.1 (−4.8 to 27.1) 0.160

Cortical bone density (mg/cm3) 20 680.2 123.2 650.5 105.7 29.7 (−9.9 to 69.4) 0.133

Cortical bone thickness (mm) 20 0.550 0.451 0.413 0.292 0.137 (−0.022 to 0.295) 0.088

Cortical bone perimeter (mm) 20 114.3 13.8 119.3 11.3 −4.9 (−10.9 to 1.1) 0.101

Cortical porosity 20 0.045 0.021 0.048 0.019 −0.003 (−0.014 to 0.007) 0.473

Periosteal perimeter (mm) 20 120.6 19.2 125.8 16.0 −5.2 (−12.5 to 2.0) 0.146

Endosteal perimeter (mm) 20 108.7 14.1 114.0 12.0 −5.4 (−11.4 to 0.6) 0.077

Trabecular bone area (cm3) 20 761.1 195.1 836.4 155.6 −75.3 (−161.5 to 10.8) 0.083

Trabecular bone density (mg/cm3) 20 184.3 24.0 197.6 24.4 −13.3 (−28.9 to 2.2) 0.089

Trabecular BV/TV 20 0.154 0.020 0.165 0.020 −0.011 (−0.024 to 0.002) 0.088

Trabecular bone number (1/mm) 20 2.21 0.30 2.18 0.39 0.04 (−0.13 to 0.20) 0.649

Trabecular thickness (mm) 20 0.070 0.009 0.075 0.009 −0.005 (−0.010 to −0.001) 0.029

Trabecular separation (mm) 20 0.391 0.062 0.386 0.060 0.005 (−0.025 to 0.035) 0.732

Trabecular inhomogeneity 20 0.157 0.03 0.164 0.037 −0.007 (−0.025 to 0.011) 0.440

Stiffness (kN/mm) 20 195.3 27.9 207.5 37.1 −12.2 (−31.2 to 6.8) 0.194

Estimated failure load (kN) 20 10.04 1.35 10.66 1.83 −0.62 (−1.55 to 0.32) 0.185

(Tb.F/TF) distal (percentage of load carried by

trabecular bone at distal surface

20 72.4 12.3 77.6 8.1 −5.2 (−9.2 to −1.2) 0.013

(Tb.F/TF) proximal (percentage of load carried

by trabecular bone at proximal surface)

20 54.7 14.1 59.7 9.6 −5.0 (−9.8 to −0.1) 0.047

Trabecular Von Mises stress (MPa) 20 5.60 0.58 5.73 0.57 −0.13 (−0.41 to 0.15) 0.355

Cortical Von Mises stress (MPa) 20 8.09 0.68 8.02 0.55 0.07 (−0.17 to 0.31) 0.530

Significance is reached at p ≤ 0.05. BV/TV = bone volume fraction; N = number of matched pairs; mFEA = microfinite element analysis; T1DM = type 1

diabetes mellitus; Tb.F/TF = ratio of the load taken by the trabecular bone in relation to the total load.
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ex-vivo bone strength analysis. However, FEA is a well-

recognized process in engineering to assess material properties;

our results thus provide insight into the potential impact of

T1DMon skeletal strength. The rate of fractures in our population

is higher than reported in previous studies(41); this may have

resulted from an unconscious bias in families of participants

who volunteered to be part of the study. Finally, as HRpQCTmea-

sures bone strength and microstructure of the ultradistal radius

and tibia, we are unable to confirm whether the alterations

observed in adolescents with T1DM reflect changes in other

parts of the appendicular and axial skeleton. However, account-

ing for the limitations, we have found significant detrimental

changes in the trabecular microarchitecture and bone strength

proxies in adolescents with T1DM. Thus, we affirm our hypothe-

sis that detrimental changes in bonemicroarchitecture and prox-

ies in bone strength are seen in adolescents with T1DM, despite

no significant changes in DXA-derived bone mass.

Conclusion

T1DM is associated with a reduction in the trabecular thickness

in the tibia, and alterations in the loading properties at the ultra-

distal radius and tibia in adolescents with T1DM, despite there

being no significant reduction in BMD. Alterations in radial tra-

becular microarchitecture were seen in participants who have

had T1DM for at least 2 years, with no corresponding changes

in BMD. Poor glycemic control was associated with a reduction

in bone strength. Thus, in earlier life, bone microarchitecture

and strength, rather than bone density, may better explain the

increased risk of fracture observed in adults with T1DM.
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