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Summary. To obtain operational insights regarding the crime of burglary in London, we consider
the estimation of the effects of covariates on the intensity of spatial point patterns. Inspired
by localized properties of criminal behaviour, we propose a spatial extension to mixtures of
generalized linear models from the mixture modelling literature. The Bayesian model proposed
is a finite mixture of Poisson generalized linear models such that each location is probabilistically
assigned to one of the groups. Each group is characterized by the regression coefficients,
which we subsequently use to interpret the localized effects of the covariates. By using a blocks
structure of the study region, our approach enables specifying spatial dependence between
nearby locations.We estimate the proposed model by using Markov chain Monte Carlo methods
and we provide a Python implementation.
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1. Introduction

Use of statistical models for understanding and predicting criminal behaviour has become
increasingly relevant for police forces, and policy makers (Felson and Clarke, 1998; Bowers and
Hirschfield, 1999; PredPol, 2019). Whereas short-term forecasting of criminal activity has been
used to allocate policing resources better (Taddy, 2010; Mohler et al., 2011; Aldor-Noiman
et al., 2016; Flaxman et al., 2019; PredPol, 2019), understanding the criminal behaviour and
target selection process through statistical models has potential to be used for designing policy
changes and development programmes (Felson and Clarke, 1998). In this work, we consider the
problem of burglary crime in London. In the UK, burglary is a well-reported crime, but the rate
of detection remains at the 10–15% level (Smith et al., 2013). Rather than being concerned with
short-term forecasting, we focus on understanding the effects of spatially varying explanatory
variables on the target selection through descriptive regression models. Inferences that are made
by using these models help us to understand the underlying mechanisms of burglary. The main
contribution of this work is the integration of statistical methods in spatial modelling with
findings from the criminological literature.

Instances of burglary can be represented as a spatial point pattern—a finite or countably
infinite set of points in the study region. Understanding the intensity of the occurrences through
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spatially varying covariates is the main objective of this work. The task of estimating the effects
of the covariates on the intensity can be classified as multivariate regression modelling, in which
systematic effects of the explanatory variables are of interest while taking into account other
random effects such as measurement errors and spatial correlation (McCullagh and Nelder,
1998). In the context of spatial data, it has been widely recognized that multivariate regression
modelling techniques which do not account for spatial dependence and spatial heterogeneity
can lead to biased results and faulty inferences (Anselin et al., 2000). Spatial dependence refers
to Tobler’s first law of geography: ‘everything is related to everything else, but near things are
more related than distant things’ (Tobler, 1970). Spatial dependence manifests mostly in the
spatial correlation of the residuals of a model. In non-spatial settings, the residuals are often
assumed to be independent and identically distributed (McCullagh and Nelder, 1989). Spatial
heterogeneity is exhibited when the object of interest, in our case, the intensity of a point pattern,
shows location-specific behaviour. For example, properties of the burglary point pattern in a city
centre will be different from the properties in a residential area. Formalizing these two concepts
and incorporating them into modelling methodology results in more accurate spatial models
(Anselin et al., 2000).

Log-Gaussian Cox processes (LGCPs) (Møller et al., 1998; Møller and Waagepetersen, 2007)
have been a common approach for modelling intensity of spatial point patterns (Diggle et al.,
2013; Serra et al., 2014; Flaxman et al., 2015). The flexibility of the model is due to the Gaus-
sian process part through which complex covariance structures, including spatial dependence
and heterogeneity, can be accounted for. In practice, stationary covariance functions are used
for computational reasons (Diggle et al., 2013). As a result, LGCP models with stationary
covariance functions handle spatial dependence but do not account for spatial heterogeneity.

Mixture-based approaches have been adopted as a way of enriching the collection of probabil-
ity distributions to account for spatial heterogeneity that is often observed in practice (Green,
2010; Fernández and Green, 2002). Notably, Knorr-Held and Raßer (2000), Fernández and
Green (2002) and Green and Richardson (2002) used mixtures for modelling the elevations
of disease prevalence. Although these methods improve the model fit by accounting for spatial
heterogeneity as well as spatial dependence, they provide little interpretation about why the level
is elevated in certain areas. Also, these three methods have been tested only at a modest scale.
Following this line of work, Hildeman et al. (2018) proposed a method in which each mixture
component can take a rich representation that may include covariates. Although this model is
very rich in representation, the empirical study in Hildeman et al. (2018) was limited to the case
of two mixtures, with one of the components being held constant. Their study of a tree point
pattern and its dependence on soil type was carried out on a region that was discretized into a
grid with 2461 cells.

A very different approach to controlling for spatial heterogeneity was taken by Gelfand et al.
(2003) who allowed regression coefficients to vary across the spatial region. The method treats
the coefficients of the covariates as a multivariate spatial process. The process is, however, very
challenging to fit and is often limited to two or three covariates (Banerjee et al. (2015), page
288). A simpler version of the same idea is geographically weighted regression (Brunsdon et al.,
1996), where the regression coefficients are weighted by a latent component whose properties
must be specified a priori or learned through cross-validation.

Motivated by the computational challenges and limited interpretability of the aforementioned
approaches, we propose a mixture-based method that takes into account spatial dependence and
can discover latent groups of locations and characterize each group by group-specific effects
of spatially varying covariates. To estimate the model parameters from the limited data and to
quantify the uncertainty of the estimates, we follow the Bayesian framework.
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More specifically, our approach builds on the mixtures of generalized linear models (Grün and
Leisch, 2008), in which observations are modelled as a mixture of different models. We cater for
spatial dependence by using an approach that was inspired by Fernández and Green (2002) and
Knorr-Held and Raßer (2000). Our model probabilistically assigns each location to a particular
mixture component, while imposing spatial dependence through prior information. The prior
information will suggest that locations that are close to each other are likely to belong to the same
component. We define a pair of locations to be close if both of them are in the same block. We
use the blocking structure predefined by census tracts, but our method allows defining custom
tracts. We further model spatial dependence of the blocks by using latent Gaussian processes,
following Fernández and Green (2002). The posterior inferences for the individual components
consisting of regression coefficients and the assignments of locations to clusters are used to draw
conclusions and to provide insights about the heterogeneity of the spatial point pattern across
the study region.

In contrast with Fernández and Green (2002) and Green and Richardson (2002), this work
considers including the covariates in each mixture component, rather than having intercept-
only components. Compared with the approach of Hildeman et al. (2018) who modelled the
log-intensity of a point pattern as a mixture of Gaussian random fields, our model is more
constrained but provides better scalability.

We show that the proposed methodology effectively models burglary crime in London. By
comparing our approach with an LGCP, which is a standard model for spatial point patterns
(Diggle et al., 2013), we show that our method outperforms the LGCP and is more computa-
tionally tractable. Lastly, the interpretation of inferred quantities provides useful criminological
insights.

The rest of the paper is structured as follows. Section 2 defines the model and details the
inference method, Section 3 elaborates on our application and gives a discussion of model
choices that are specific to our application. The results obtained are discussed in Section 4.
Section 5 concludes the paper.

2. Modelling methodology

It is widely recognized that burglary crime is spatially concentrated (Brantingham and Brant-
ingham, 1981; Clare et al., 2009; Johnson and Bowers, 2010). It is also apparent that some
areas in the study region will exhibit extreme behaviour. For example, areas with no buildings
such as parks will have no burglaries for structural reasons. To model burglary effectively, these
phenomena need to be accounted for by using spatial effects. The two important spatial effects
are spatial dependence and spatial heterogeneity (Anselin et al., 2000).

For our modelling framework, we choose the Bayesian paradigm because it enables us to
formalize prior knowledge, and to quantify uncertainty in the unknown quantities of our model.
In our application, burglary data are given as a point pattern over a fixed period of time.
We discretize the point pattern onto a grid of N cells by counting the points in each cell.
Although any form of discretization is allowed, throughout this paper, we work with a regular
grid.

We model the count of points in a cell n, yn, conditioned on the mixture component k as a
Poisson-distributed random variable, with the logarithm of the intensity driven by a linear term,
which is specific for each mixture component, indexed by k=1, : : : , K. The linear term is a linear
combination of J covariates for cell n, Xn, and the corresponding coefficients, βk. The covariates
need to be specified for the application of interest and usually include the intercept. To specify
the prior distribution for the regression coefficients, we use a prior that shrinks the estimate
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Fig. 1. Summary of SAM-GLM and its graphical representation

towards 0. For each coefficient, we set βk,j ∼N .0, σ2
k,j/, where σ2

k,j ∼ InvGamma.1, 0:01/. We
put the uniform prior on the intercepts, if present.

Each cell n is probabilistically allocated to one of the K components through an allocation
variable zn, which is a categorical random variable with event probabilities given by the mixture
weights prior, πb[n]. The value of πb[n] is shared for all locations within cell n’s block, b[n]. The
blocks for the study region are defined as non-overlapping spatial areas spanning the whole study
region. In many practical applications, the block structure is already defined by administrative
units or census tracts. Block b[n] is the block that contains the centroid point of cell n. The
block-specific event probabilities will express the belief that the effect of the covariates is the
same within the block unless evidence from the observed data outweighs this information.

To model the mixture weights prior for block b, πb = .π1,b, : : : , πK,b/, we allow for different
choices provided that πk,b �0 and ΣK

k=1πk,b =1, i.e. it is a valid probability measure. One possible
choice which also takes into account the spatial dependence between the blocks is to model the
mixture weights prior for block b and mixture component k as

πk,b = exp.fk,b/∑K
l=1 exp.fl,b/

,

where fk,b is the evaluation of fk at the centroid of block b and fk is an independent zero-
mean Gaussian process with hyperparameters θk. The prior for θk is specified depending on the
kernel function that is used. We shall use the squared exponential kernel throughout this work
(Rasmussen and Williams, 2006).

We refer to the model proposed as SAM-GLM: a spatially aware mixture of Poisson general-
ized linear models (GLMs). The formulation is summarized in the equation and the graphical
representation that is shown in Fig. 1. In the model proposed, we handle spatial heterogeneity
by using the mixture components, each of which specifies a set of J regression coefficients βk.
Spatial dependence is considered first within each block and also through interblock dependence
imposed by K Gaussian processes. Modelling the spatial dependence by using Gaussian pro-
cesses at the block level instead of cell level enables more efficient estimation procedures as we
discuss later.

2.1. Excess of 0s; overdispersion
Two common challenges that are encountered when modelling count data by using standard
Poisson GLMs are excess of 0s and overdispersion (McCullagh and Nelder, 1998; Breslow,
1984). The former refers to the presence of 0s that are structural, rather than due to chance. In
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the context of burglary, structural 0s occur in locations with no buildings, e.g. parks. The latter
issue refers to the situation when the variability of the observed data is higher than what would
be expected on the basis of a particular statistical model. The standard Poisson GLM for the
burglary point pattern, which is a special case of our model (K =1), suffers from overdispersion
for different specifications of the covariates term—see section A in the on-line supplementary
material. The flexibility of our proposed model can account for the excess of 0s by identifying
a low count component to which areas of low intensity will be assigned. Similarly, introducing
mixtures can reduce overdispersion. Two cells with similar values for the covariates, but with
very different observed counts, are likely to have a similar expected count under the standard
Poisson GLM. Under the mixture model, each cell would be allowed to follow a different
model.

2.2. Inference
Statistical inference in the Bayesian setting involves inferring the posterior probability distri-
bution for the quantities of interest. In this work, we choose the Markov chain Monte Carlo
(MCMC) method to sample from the posterior distributions (Gelman et al., 2013).

Firstly, the scale parameter for the regression coefficients, σ2
kj, is analytically integrated out to

simplify the inference (see equation (14) in the on-line supplementary material). The quantities
of interest are the allocation vector z, regression coefficient vector for each mixture component,
βk, unnormalized mixture weights priors at the centroids of the blocks, fk,b, and its hyperparam-
eters. For brevity, let β be a K ×J matrix of regression coefficients for all mixture components
and each covariate, X be an N ×J matrix of all covariates for each location, F be a B×K matrix
such that Fb,k =fk,b and θ the vector of kernel hyperparameters for all fks. The unnormalized
joint posterior probability distribution is given as

p.β, z, F, θ|y, X/∝p.y|β, X, z/p.z|F/p.F|θ/p.θ/p.β/: .1/

We employ the Metropolis-within-Gibbs scheme (Geman and Geman, 1984; Metropolis et al.,
1953) and sample from the posterior in three steps.

(a) We sample the regression coefficients βk,j jointly for all k =1, : : : , K and j =1, : : : , J . The
unnormalized density of the conditional distribution is given as

p.β|X, y, z/∝p.y|β, X, z/p.β/: .2/

Equation (2) is sampled by using the Hamiltonian Monte Carlo method (Duane et al.,
1987), for which efficient sampling schemes are available, e.g. Girolami and Calderhead
(2011).

(b) Mixture allocation is sampled cell by cell directly by using the equation

p.zn =k|zn̄, α, Xn, β, y, F/∝p.yn|zn =k, Xn, βk/
exp.fk,b[n]/∑K
l=1 exp.fl,b[n]/

: .3/

(c) We sample all K functions with the Gaussian process prior and their hyperparameters
jointly by using the Hamiltonian Monte Carlo method. The joint posterior density is
proportional to the expression

p.F, θ|y, z/∝
N∏

n=1

K∏
k=1

(
exp.fk,b[n]/∑K
l=1 exp.fl,b[n]/

)I.zn=k/
K∏

k=1
p.fk|θk/p.θk/, .4/

where I.·/ is the indicator function.
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For the full expansion of the conditional distributions in equations (2)–(4), see section C in the
on-line supplementary material.

In terms of computational tractability, equation (2) takes O.N +J/ steps, equation (3) requires
O.N ×K/ steps and equation (4) requires O.B3 ×K/ steps because of matrix inversions of size
B × B for each of the K components. To contrast it with a standard model for spatial point
patterns, one sample from an LGCP involves matrix inversions that require O.N3/ steps (Diggle
et al., 2013). Thanks to blocking, the inference requires inversions of smaller matrices.

2.3. Special case: independent blocks
The model and the associated inference that were introduced above provide a very flexible frame-
work for modelling the spatial dependence of cells via blocks that are also spatially dependent.
However, this comes at a high cost—inferring posterior distributions over K Gaussian processes
that are combined by using the logistic function is challenging at scale as each sample requires
O.B3 ×K/ operations.

If we assume that the mixture weights priorsπb for all blocks are independent and, conditioned
on α, distributed as

πb|α∼Dirichlet.α, : : : , α/, .5/

the inference becomes more tractable. Specifically, equation (4) is not needed anymore, equation
(2) stays the same and equation (3) is replaced by

p.zn =k|zn̄, α, Xnβ, y/∝p.yn|zn =k, Xnβk/
cn̄

b[n]k +α

Kα+∑K
i=1 cn̄

b[n]k

: .6/

As a result, the time complexity to take one sample from the unknown quantities is dominated
by resampling zns in equation (6), which can be computed in O.N × K/ steps. For the full
derivation of equation (6), see section C.2.4 in the on-line supplementary material.

In the literature, α= 1=K is a recommended choice; see, for example, Alvares et al. (2018).
This prior formulation induces sparsity and can cancel out components in an overfitted mix-
ture (Rousseau and Mengersen, 2011). In the experiments we compare the trade-off between
computational complexity and modelling flexibility.

2.4. Identifiability
Specifying a mixture model means that the model likelihood is invariant under the relabelling
of the mixture components (Celeux et al., 2000). This issue is commonly referred to as lack of
identifiability. In the context of SAM-GLM, p.y|z, X, β/ is invariant under the relabelling of βk

and fks, which are the component-specific model parameters.
Exploration in high dimensional spaces is in general difficult for an MCMC sampler. As

the dimension of the parameter space for the mixture model increases, the sampler is likely to
explore only one of the K! possible modes. For the sampler to switch to a different mode, it
would have to pass the area of low probability mass surrounding the chosen mode. However,
note that, as the number of mixture components increases, the chance of the sampler switching
to a different mode increases as the shortest distance between a pair of component-specific
parameters is likely to decrease.

Since the identifiability issue poses a problem only for the interpretation of the parameters,
we inspect the trace plot of the Markov chain for each identifiable parameter to assert that
relabelling is not present when interpreting the mixtures.
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3. Application: London burglary crime

3.1. Data description
The methodology above has been developed to enable the analysis of our application—burglary
in London. The data, published on line by the UK police forces (Police.uk, 2019), are provided
monthly as a spatial point pattern over the area of 1572 km2 of both residential and non-
residential burglaries. Non-residential burglary refers to instances where the target is not a
dwelling, e.g. commercial or community properties. We discretize our study area into a regular
grid by counting the number of burglaries within each cell. We choose a grid for computational
reasons when comparing with competing methods (see section B in the on-line supplementary
material). Given our focus on spatial modelling, we temporally aggregate the point pattern into
two data sets: the 1-year data set, starting January 2015 and ending December 2015, with 70234
burglaries, and the 3-year data set, starting January 2013 and ending December 2015, with
224747 burglaries.

Our analysis uses land use data, socio-economic census data from 2011 and points-of-interest
(POIs) data from 2018 to estimate their effect on the intensity of the burglary point pattern.
Land use data are available as exact geometrical shapes. The census variables are measured
with respect to census tracts, called output areas (OAs). The OAs have been designed to have
similar population sizes and to be as socially homogeneous as possible, based on the tenure
of households and dwelling types. Each of the 25053 OAs in London has between 100 people
or 40 households and 625 people or 250 households. The OAs are aggregated into 4835 lower
super-output areas (LSOAs), which in turn are aggregated into 983 middle super-output areas
(MSOAs). An LSOA has at least 1000 people or 400 households and at most 3000 people or
1200 households. For an MSOA, the minimum is 5000 people or 2000 households, and the
maximum is 15000 people or 6000 households. The POIs data are given as a point pattern. To
project the data measured at non-grid geometries (the census and land use data) onto the grid we
use weighted interpolation. The method assumes that the data are uniformly distributed across
the OA. For cells that have an overlap with more than one OA, we compute the value for each
such cell by combining the overlapping OAs and adjusting for the size of the overlap.

3.2. Criminology background
We use existing criminology studies to identify explanatory variables and to formulate hypothe-
ses about burglary target selection. The target choice is a decision-making process of maximizing
reward with minimum effort, and managing the risk of being caught (a process that is analo-
gous to optimal foragers in wildlife (Johnson and Bowers, 2004)). Therefore, we categorize the
explanatory variables into these three categories: reward, effort and risk.

3.2.1. Reward; opportunities; attractiveness
Theoretically supported by rational choice theory (Clarke and Cornish, 1985), offenders seek to
maximize their reward by choosing areas of many opportunities and attractive targets. Firstly,
the number of dwellings is used in the literature as a measure of the abundance of residential
targets (Bernasco and Nieuwbeerta, 2005; Clare et al., 2009; Townsley et al., 2015, 2016). Real
estate prices and household income have been used in previous work as a proxy for the attrac-
tiveness of targets. The significance of their positive effect on residential burglary victimization
rate has been mixed and varied depending on the study region and the statistical method that
was used (Bernasco and Luykx, 2003; Bernasco and Nieuwbeerta, 2005; Clare et al., 2009;
Townsley et al., 2015, 2016). The finding that the effect of affluence was weak in some studies
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can be explained by the fact that most burglars do not live in affluent areas and hence are not
in their awareness spaces, i.e. operating in an affluent neighbourhood is for them an unfamiliar
terrain and the risk of being caught is higher (Evans, 1989; Rengert and Wasilchick, 2010).
Other measures of affluence that have been used include house ownership rates (Bernasco and
Luykx, 2003).

With regard to non-residential burglary, the literature is more sparse. An analysis of non-
residential burglary in Merseyside in the UK by Bowers and Hirschfield (1999) showed that
non-residential facilities have a higher risk of both victimization and repeat victimization. In
particular, sport and educational facilities have a disproportionately higher risk of being targeted
compared with other types of facilities. In the crime survey of business owners in the UK, the
retail sector is the most vulnerable to burglaries (GOV.UK, 2017). For our application, we
shall use the POIs database from the Ordnance Survey which includes retail outlets, eating
and drinking venues, accommodation units, sport and entertainment facilities, and health and
education institutions (Ordnance Survey (GB), 2018).

3.2.2. Effort; convenience
Using the framework of crime pattern theory (Brantingham and Brantingham, 1993) and routine
activity theory (Cohen and Felson, 1979), offenders will prefer locations that are part of their
routine activities or are convenient to them, i.e. they are in their activity or awareness spaces.
The studies that were performed using the data on detected residential burglaries unanimously
agree that areas that are close to the offender’s home are more likely to be targeted (Bernasco
and Nieuwbeerta, 2005; Townsley et al., 2015; Menting et al., 2019; Clare et al., 2009). In the
study based on a survey of offenders, Menting et al. (2019) argued that other awareness spaces
than their residence play a significant role in target selection. These include previous addresses
and neighbourhoods of their family and friends, as well as places where they work and go about
their recreation and leisure.

As confirmed by numerous studies, the spatial topology of the environment plays a significant
role in the choice of a target. Brantingham and Brantingham (1975) have shown that houses in
the interior of a block are less likely to be burgled. Similarly, Townsley et al. (2015) and Bernasco
and Nieuwbeerta (2005) showed that single-family dwellings are more vulnerable to burglaries
than multifamily dwellings such as blocks of flats. Beavon et al. (1994) studied the effects of
the street network and traffic flow on residential burglary and found that crime was higher in
more accessible and more frequented areas. Similarly, Johnson and Bowers (2010) showed that
main street segments are more likely to become a target for burglary. Clare et al. (2009) and
Bernasco et al. (2015) showed that the presence of connectors such as train stations increases the
likelihood of being targeted, whereas the so-called barriers such as rivers or highways decrease
it.

3.2.3. Risk; likelihood of completion
In the social disorganization theory of crime (Shaw and McKay, 1942; Sampson and Groves,
1989), it is argued that social cohesion induces collective efficacy. The effect of collective efficacy
on crime is twofold. First, strong social control deters those who are thinking of committing a
crime. Second, it decreases the chance of a successful completion once an offender has chosen
to do so. This theory focuses on the effect that social deprivation, economic deprivation, family
disruption, ethnic heterogeneity and residential turnover have on the crime rates within an area.
Most offenders live in disadvantaged areas and often commit a crime in their awareness spaces
(to minimize effort). The attraction to ‘prosperous targets’ applies mostly to the local context
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(to maximize gain). In contrast, when a neighbourhood has high social cohesion (also known
as ‘collective efficacy’), there is mutual trust between neighbours and residents are more likely
to intervene on behalf of the common good (Sampson et al., 1997).

In the context of residential burglary, ethnic diversity has been shown to be positively related to
rates of burglary (Sampson and Groves, 1989; Bernasco and Nieuwbeerta, 2005; Bernasco and
Luykx, 2003; Clare et al., 2009). Residential turnover is another measure of collective efficacy.
Although Bernasco and Luykx (2003) documented a positive relationship between residential
turnover and rates of burglary, results in Bernasco and Nieuwbeerta (2005) and Townsley et al.
(2015) do not confirm that hypothesis. Socio-economic variation among residents has been shown
to be positively related to general crime rates (e.g. Sampson et al. (1997) and Johnson and
Summers (2015)), but it was either not considered or shown to be insignificant in the studies on
burglary that we have reviewed. Other indicators of social disorganization and their effect on
general crime rates (not only burglary) are the high rate of single-parent households and one-
person households as well as households with younger members; Bernasco (2014), Sampson
et al. (1997) and Andresen (2010).

3.3. Covariate selection
On the basis of the criminological overview above and the availability of covariates, we form
four model specifications, from very rich to sparse representations. Table 1 shows the covariates
that were used in each of the specifications.

Variables that represent density, i.e. given by the count per cell, are log-transformed to improve
the fit. For the same reason, mean household income and mean house price are in log-form.
Indicators of heterogeneity are computed by using the index of variation that was introduced in

Table 1. Model specifications that are used throughout the evaluation of the model proposed

Covariate Specification Specification Specification Specification
1 2 3 4

log households (count per cell) • • • •
log retail POIs (count per cell) • • •
log eating/drinking POIs (count per cell) • • •
log edu/health POIs (count per cell) • • •
log accommodation POIs (count per cell) • •
log sport/entertainment POIs (count per cell) • • •
log POIs (all categories count per cell) •
houses (fraction of dwellings) •
(semi-)detached houses (fraction of dwellings) • • • •
social housing (fraction of dwellings) • •
owner-occupied dwelling (fraction of dwellings) •
single-parent households (fraction of households) •
one-person households (fraction of households) • •
unemployment rate • • •
ethnic heterogeneity measure (index of variation) • • • •
occupation variation measure (index of variation) • • • •
accessibility (estimated by Transport for London) • • • •
residential turnover (ratio of residents who moved • • • •

in or out) • • • •
median age • •
log mean household income • •
log mean house price • • • •
urbanization index (proportion of urban area) •
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Agresti and Agresti (1978). These include ethnic heterogeneity and occupation variation within
an area. Both are indicators of the lack of social cohesion. Subsequently, all variables were
standardized to have zero mean and a standard deviation of 1.

The first specification, specification 1, is the richest representation and includes variables that
are a proxy for the same phenomenon. For example, both household income and house price
are a measure of affluence. This choice is deliberate as we use a shrinkage prior for the regression
coefficients to choose the most relevant variables.

The second specification, specification 2, removes covariates that are strongly correlated
with others or lack strong evidence in the criminological literature. We remove owner-occupied
dwellings for its strong correlations with the house dwellings and the fraction of houses that
are detached or semidetached. We remove house dwellings because of high correlation with
(semi)detached houses and stronger theoretical backing for the latter (e.g. Bernasco and Nieuw-
beerta (2005)). We remove the urbanization level because little empirical evidence was found in
the literature. Naturally, it acts as a proxy for where buildings are, which is accounted for to a
large extent by households and POIs variables. We remove single-parent households because of
a high correlation with social housing and unemployment rate, which are preferable indicators
of social disorganization.

In the third specification, specification 3, we exclude the following variables on top of those
excluded in specification 2: median age, as a proxy for collective efficacy, is removed because
of weak evidence in previous studies and other measures of collective efficacy already present;
ethnic and socio-economic heterogeneity. The covariates one-person households and accommo-
dation POIs are removed because of weak empirical evidence from previous studies. The variable
mean household income is removed because of insufficient evidence from previous studies and
an already present and more preferable measure of affluence—house price. The covariate social
housing is removed because of weak empirical evidence and a high correlation with unemploy-
ment.

In the last specification, specification 4, we additionally remove unemployment rate because of
weak empirical support from previous studies. This specification aggregates all POIs into a single
variable (including accommodation POIs). This is to remove the strong correlations between
them. As a single variable, it signifies the level of social activity: retail, education, entertainment,
etc.

4. Results

After discussing the modelling choices and experimental settings, we compare SAM-GLM with
an LGCP, based on the out-of-sample generalization and crime hot spot prediction. For the
LGCP, we use the standard formulation with a Matérn covariance function (see section B in
the on-line supplementary material for full details). Lastly, we interpret the results that were
obtained by using the method proposed and show the relevance for obtaining criminological
insights.

4.1. Evaluation and interpretation
4.1.1. Out-of-sample performance
Firstly, we evaluate the performance of the proposed and competing models by using the Pois-
son likelihood of one-period-ahead data given the model parameters that were obtained from
training data. The likelihood denotes how likely the observed data are for given parameters.
For a given sample from the posterior distribution of the model parameters, φ.s/, the average
pointwise held-out log-likelihood is defined as
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held-out log-likelihood= 1
N

N∑
n=1

log{p.ỹn|φ.s//}, .7/

where p.·/ is the Poisson density function and ỹn is the realized next-period value. The log-
likelihood is a relative measure used for model comparison and can only be used to compare
models within the same family of models: in our case, Poisson-based models. A higher value
indicates superior predictive power.

Next, we use the root-mean-square error (RMSE) metric. It is independent of the model and
is measured on the same scale as the target variable. Given a sample from the posterior distri-
bution of the model parameters, φ.s/, we obtain a sample from the joint predictive probability
distribution for the counts at all N locations, y.s/, using the sampling distribution of the data,
p.y|φ.s//. Then, using the realized next-period value ỹ = .ỹ1, : : : , ỹN/, the RMSE is defined as

RMSE=
√{

1
N

N∑
n=1

.y.s/
n − ỹn/2

}
: .8/

A lower value of the RMSE indicates a better predictive performance.

4.1.2. Hot spot prediction
Given that burglary is our object of interest, we also evaluate models with respect to their
ability to model areas of high intensity effectively: so-called hot spots. The predictive accuracy
index PAI and predictive efficiency index PEI are two standard approaches in criminology for
assessing the ability to predict crime hot spots.

PAI, introduced by Chainey et al. (2008), assesses the ability to capture as many instances of
crime as possible with as little area as possible. For a given size of the area to be marked as hot
spots, a, it is defined as

PAI= ca=C

a=A
,

where A is the total area of the study region, ca is the number of crimes in the flagged hot spots
with the total area a and C is the total number of crimes in the study region.

However, for certain types of crime that are more serious and less frequent, it is important
that each instance of crime is captured. PEI measures how effective the model forecasts are
compared with what a perfect model would predict for a given size of the area to be marked as
hot spots, a (Hunt, 2016). It is defined as

PEI= ca=cÅ
a ,

where ca is the number of crimes in the hot spots of size a flagged by the model, and cÅ
a is the

maximum number of crimes that could have been captured by using an area of size a.
In our context of a regular grid, we use both measures to compare competing models when

up to n cells have been flagged as hot spots. For a given n, a higher value indicates better hot
spot prediction ability.

4.1.3. Interpretation of results
Estimating the effects of different spatial covariates helps us to understand the underlying mech-
anisms of the point pattern. In the mixtures-of-regressions literature, the interpretation of the
individual regression coefficients is of no interest, or the focus is on reporting the regression
coefficients βk for each component and quantifying their uncertainty so that their significance
can be assessed (Frühwirth-Schnatter et al. (2019), chapter 8). To interpret the coefficients
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further, one could look at each mixture component specifically and interpret the coefficients
in a classical way, conditionally on the partitioning of observations. For example, for a GLM
with the exponential link function, increasing a covariate by 1 unit multiplies the mean value
of the observed variable by the exponential of the regression coefficient for that covariate, pro-
vided that other covariates are held constant. However, this approach allows only component-
specific conclusions as it depends on the distribution of the covariate for the associated
component. For example, one mixture component may be active in areas with very small val-
ues for a specific covariate, whereas some other component is active in areas with high values.
Comparing regression coefficients for that covariate across different components would not be
appropriate.

Instead, to be able to compare the covariates across mixture components, we derive a covariate
importance measure IMP that is motivated by the coefficient of determination, R2. The objective
of this measure is to assess the magnitude and the sign (positive or negative) of the effect of a
covariate for a specific mixture component on the data fit. We measure the magnitude of the
effect for a covariate j of the mixture component k as the ratio of the sum of squared residuals
for the full model and the sum of squared residuals for the same model without covariate j,
which is then subtracted from 1. For a component k and a covariate j,

IMPkj =1−
∑
n

I.zn =k/.yn − ŷ
nβ̃/2

∑
n

I.zn =k/.yn − ŷ
nβ̄

j /2 , .9/

where I.zn = k/ is the indicator function of whether cell n is allocated to component k, ŷ
nβ̃

is the predicted count by using the full vector of inferred regression coefficients and ŷ
nβ̄

j is
the predicted count by using the regression coefficients with the jth coefficient set to 0. The
magnitude of IMP is interpreted as a measure of the relative importance of the corresponding
covariate for the model fit. A value of IMP closer to 1 represents that removing the corresponding
covariate is more detrimental to model fit.

We determine the sign of IMP for a given covariate and a mixture component by inspecting
the distribution of the covariate for the given component. We need to be careful with negative
values as our covariates are centred on zero and standardized. To obtain the sign, we take the
mean of the covariate across the cells that are allocated to the given component and, if that is
positive, we take the sign of the corresponding βkj-estimate. Otherwise, we take the negative of
the sign of the βkj-estimate.

4.2. Simulation study details
For the methodology that was developed in Section 2, we need to choose the grid size, blocking
structure, number of mixture components, K, and model specification.

4.2.1. Model choices
To choose the grid size, we take into account the precision of the burglary point pattern. The
published data have been anonymized by mapping exact locations to predefined (snap) points
(Police.uk, 2018). We follow the recommendations in Tompson et al. (2015) who assessed the
accuracy of the anonymization method by aggregating both the original and the obfuscated
data to areal counts at different resolutions and looking at the difference. They showed that the
aggregation at LSOA level does not suffer from the bias that is introduced by the anonymization
process. Therefore, for our cell size, we approximately match an average-size LSOA to avoid the
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loss of precision that is caused by the anonymization process. As a result, our grid has N =9824
cells, each of which corresponds to an area of 400×400 m2.

For the blocking structure, we take advantage of the existing census output areas, that are
designed to group homogeneous groups of households and people together (Office for National
Statistics, 2019). Given that our grid is approximately at the LSOA level, we choose MSOAs as
the blocking structure. We assess the sensitivity of this choice in Section 4.4.

The number of components, K, is a crucial parameter of our model. We run our model
for varying K and use the performance measures that were introduced above to decide on the
optimal number of components. From our experience, after a certain number of components,
interpretation becomes more difficult whereas performance does not significantly improve.

We choose the model specification on the basis of the four options that were mentioned in
Section 3.3.

4.2.2. Dependence of blocks
In Section 2 we proposed two possible formulations for the prior on the mixture weights: the
multinomial logit transformation of K Gaussian random fields and independent Dirichlet ran-
dom variables. To assess whether assuming block dependence has a major effect on the quality
of the model, we compare the out-of-sample performance for both variants of the model. For
this comparison, we set the blocking scheme to MSOAs, use model specification 4 and estimate
the model on the burglary 2015 data set. To fit the model with dependent blocks, we use the
squared exponential kernel (Rasmussen and Williams, 2006) where we choose the length scale
parameter by optimizing out-of-sample RMSE by using grid search. Table 2 shows the mean
and the standard deviation of the samples of held-out log-likelihood and RMSE for both vari-
ants of the model, and for various values of K. The italics signify which method performed
better for the given K and for the given metric. The ‘double-dagger’ symbol indicates statistical
significance with p-value less than 10−3 obtained from a two-sample t-test of samples of each
metric for each variant of the model.

The results in Table 2 show that the model with dependent blocks does not consistently lead
to improved performance. This indicates that block dependence structure in the burglary point
pattern data that we consider is not a major effect. These findings highlight some aspects of the
data structure in terms of capturing these effects and suggest that the point pattern data at a
higher precision would be needed to uncover these effects, if they are present. For this reason,

Table 2. Model performance comparison of two variants of the model—
dependent blocks using the logistic transform of K Gaussian processes,
and independent blocks with Dirichlet prior†

K Held-out log-likelihood RMSE

Independent Dependent Independent Dependent

2 −2:607±0:010 −2.605±0.010‡ 4.999±0.028‡ 5:010±0:028
3 −2:598±0:012 −2.593±0.011‡ 4:973±0:036 4.950±0.031‡
4 −2.588±0.011‡ −2:606±0:012 4.964±0.034‡ 4:988±0:031

†Reported values are a mean and standard deviation obtained from MCMC
samples. Blocking, MSOAs; training data, burglary 2015; test data, 2016; model
specification 4.
‡p< 10−3.
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in the rest of the paper we consider only independent blocks with Dirichlet prior weights as
described in Section 2.3.

4.2.3. Identifiability
As mentioned in Section 2, the trace plot of the log-likelihood can be inspected for label switch-
ing. From our experience, the sampler would choose one of the K! modes, that are a consequence
of the likelihood invariance, and is unlikely to switch to another mode because of the high di-
mensionality of the parameter space.

4.3. Performance of SAM-GLM
Figs 2 and 3 report the performance for the 2015 and 2013–2015 data sets respectively. In
Figs 2(a) and 3(a), we report the boxplots of the posterior distribution of the average held-out
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Fig. 2. Evaluation of the performance of SAM-GLM ( ), compared with the LGCP model ( ) for
the 1-year data set: (a) log-likelihood and (b) RMSE for the held-out data for model specifications 1 ( ),
2 ( ), 3 ( ) and 4 ( ) (blocking, MSOAs; training data, burglary 2015; test data, burglary 2016;
note that the axis with the value of K does not apply to the LGCP results)

(a)

R
M

S
E

(b)

H
el

d-
ou

t l
og

-li
ke

lih
oo

d

Fig. 3. Evaluation of the performance of SAM-GLM ( ), compared with the LGCP model ( ) for
the 3-year data set: (a) log-likelihood and (b) RMSE for the held-out data for model specifications 1 ( ),
2 ( ), 3 ( ) and 4 ( ) (blocking, MSOAs; training data, burglary 2013–2015; test data, burglary
2016–2018; note that the axis with the value of K does not apply to the LGCP results)
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log-likelihood. We show boxplots for different model specifications for both SAM-GLM with
an increasing number of components, K, and the LGCP model. In Figs 2(b) and 3(b), we report
analogous plots for the RMSE metric.

For the 1-year data set, SAM-GLM matches the predictive performance of the LGCP model
for K =2 components on both metrics. For the 3-year data set, K =3 components are enough
to match the LGCP model using the held-out log-likelihood, but at least K =4 components are
required for the RMSE. The extra components that are required to match the performance of
the LGCP could be explained by the fact that the 3-year point pattern will naturally be smoother
and thus easier to interpolate non-parametrically by using the Gaussian random-field part of the
LGCP. The probability distribution for both metrics and for all models are more concentrated
for the 3-year data set. For the 1-year data set, it is clear that K=2 or K=3 is the optimal number
of components. For the 3-year counterpart, the range between three and five components would

(a) (b)

P
E

I

P
A

I

Fig. 4. (a) PAI- and (b) PEI-performance of SAM-GLM ( ) and the LGCP model ( ), using
specification 4: for the SAM-GLM results, the colour of the line represents the number of components, K D1
( ), K D 2 ( ), K D 3 ( ), K D 4 ( ), K D 5 ( ), K D 6 ( ) and K D 7 ( )
(blocking, MSOAs; training data, burglary 2015; test data, burglary 2016)
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Fig. 5. (a) PAI- and (b) PEI-performance of SAM-GLM ( ) and the LGCP models ( ), using
specification 4: for the SAM-GLM results, the colour of the line represents the number of components, K D1
( ), K D 2 ( ), K D 3 ( ), K D 4 ( ), K D 5 ( ), K D 6 ( ) and K D 7 ( )
(blocking, MSOAs; training data, burglary 2013–2015; test data, burglary 2016–2018)
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be an appropriate choice. For both data sets, the performance does not vary significantly for
different model specifications. Consequently, in the following sections, we limit our attention
to specification 4 because of its parsimony.

Whereas the out-of-sample performance, measured by the held-out log-likelihood or RMSE,
takes into account all locations, practitioners might be interested only in predicting crime hot
spots. For this, we evaluate PAI and PEI (see Section 4.1) as measures of hot spot prediction.
Figs 4 and 5 show the plots of the PAI- and PEI-measures for both models with specification
4, using the 2015 and 2013–2015 data sets respectively. The plots show the score for when up to
500 cells (around 5% of the study region) are flagged as hot spots. Hot spots are chosen as the
n cells with the highest expected value of burglaries. For the 1-year data set, SAM-GLM with
K = 2 components is enough to outperform the LGCP on the PEI-measure when between 50
and 500 cells are flagged as hot spots. For the PAI-measure, no significant difference can be seen
for K > 2. The results based on the 3-year data favour the LGCP model when up to 150 cells
are flagged as hot spots and K< 5. After adding more components, SAM-GLM’s performance
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Fig. 6. (a) Log-likelihood and (b) RMSE for the held-out data for various block sizes: MSOAs ( ); LADs
( ); single blocks ( ) (the error bars represent the standard deviation obtained from the MCMC
samples; training data, 2015; test data, 2016; model specification 4)
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Fig. 7. (a) Log-likelihood and (b) RMSE for the held-out data for various block sizes: MSOAs ( ); LADs
( ); single blocks ( ) (the error bars represent the standard deviation obtained from the MCMC
samples; training data, 2013–2015; test data, 2016–2018; model specification 4)
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matches that of the LGCP. When between 150 and 500 cells are flagged, K �3 components are
enough to outperform the LGCP. These results are consistent with the previous finding that to
outperform the LGCP on the 3-year data set requires more components.

4.4. Block size sensitivity
The model proposed requires a specification of the blocking structure for the mixture weights
prior. To assess the sensitivity of this choice, we compare with local authority districts (LADs),
as well as a single block for the whole study region. In the latter case, the model reduces to a
non-spatial mixture of Poisson GLMs. There are 946 MSOAs, and 33 LADs in the study region.
The structure is hierarchical—multiple non-overlapping contiguous MSOAs constitute a single
LAD region.

Figs 6 and 7 show the boxplots of the held-out log-likelihood and RMSE for the 1-year
and the 3-year data sets respectively. The results for both metrics indicate that imposing spatial
information using a more localized prior results in better out-of-sample performance for the 1-
year data set. To confirm that the difference is statistically significant, we performed an unpaired
two-sample t-test comparing RMSE samples obtained by using the MSOA blocking structure
with those obtained by using LADs and single blocks. Table 3 summarizes the t-statistics and p-
values. For the 3-year data set, there is no evident difference, and a spatial prior does not improve
the predictive performance of the model. This is not surprising as the 3-year observation window
will provide more information and thus the model is less likely to be overfitted even if we do not
impose spatial dependence within the blocks.

4.5. Interpretation
For this analysis, we choose the 3-year data set because more data will lead to more robust
inferences of the parameters. We choose specification 4 with K = 3 components because of its
parsimony and the excellent performance that was shown above—for the 3-year data set and
specification 4, there does not seem to be a significant improvement after K > 3 components.
Fig. 8 shows the component allocation maps and the IMP-measure with the effect sign (posi-
tive or negative) for each covariate for all the three components. The allocation map for each
component shows the proportion of the MCMC samples that a cell is allocated to that

Table 3. Sensitivity analysis of block sizes: p-values comparing
whether the difference in RMSE performance is significant†

K Results for MSOA versus Results for MSOA versus
LAD single

t-statistic p-value t-statistic p-value

2 −68:732 < 10−3 −115:042 < 10−3

3 −76:260 < 10−3 −87:534 < 10−3

4 −39:016 < 10−3 −35:207 < 10−3

5 −26:858 < 10−3 −52:991 < 10−3

6 −41:913 < 10−3 −76:152 < 10−3

7 −12:173 < 10−3 −56:847 < 10−3

8 −31:547 < 10−3 −66:688 < 10−3

†Training data, burglary 2015; test data, burglary 2016; specification 4.
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component. The alphanumeric labels on the allocation plots are used in the discussion be-
low when referring to specific locations. IMP is computed for each sample and component
separately and then averaged over the MCMC samples. We also report the standard deviation
of the IMP-estimate in parentheses.

The first component is active throughout the study region, with large clusters around resi-
dential areas (Fig. 8(a)). These include areas around Kensington, Fulham and Shepherd’s Bush
(A), Hounslow, Kingston, Richmond and Twickenham (B), Hayes and Southall (C), Harrow
and Edgware (D), East Barnet, Enfield, Walthamstow and Wood Green (E), Barking and Da-
genham (F), Bexley (G), Orpington (H), Bromley (I), Croydon and Purley (J) and New Malden
and Morden (K). In this component, the number of households and POIs have the strongest
effect (excluding the intercept)—burglaries happen where targets are. Accessibility has also
been inferred as an important covariate, which is consistent with past criminological studies. In
this component, house price is inferred as having a positive effect on the intensity of burglary,
suggesting that offenders choose attractive targets. The positive effect of ethnic heterogene-
ity confirms the hypothesis from social disorganization theory. The other indicators of social
disorganization—occupation variation and residential turnover—are weaker but are consistent
with the existing criminology literature. House price as a measure of reward and the proportion
of houses that are detached and semidetached have low IMP-values.

Component 2 is active in the city centre and in the High Streets of neighbourhoods
(Fig. 8(b)): Soho, Mayfair, Covent Garden, Marylebone and Fitzrovia (L), Shoreditch and Strat-
ford (M), Streatham and Tooting Bec (N), Wembley and Brent (O), Enfield and Hampstead (P),
Romford (Q), Orpington (R) and Wembley and Harrow (S). Burglary rates in these locations
are largely driven by POIs and households. Compared with the first component (residential),
the magnitudes of IMP-values for these covariates are different—POIs are more important for
this component, and the number of households is more important for the first component. The
accessibility measure is inferred to have high importance in this component. This measure is
high in the city centre and around the High Streets, which are usually well connected to the
public transport system. This confirms findings from crime pattern theory and routine activity
theory which suggest that offenders choose locations that are part of their usual routine and
in their awareness spaces. Ethnic heterogeneity and occupation variation have a strong posi-
tive effect and signify the lack of social cohesion. Unexpectedly, our model infers a negative
relationship between residential turnover and burglary intensity. Association of high residential
turnover with the reduced risk of burglary apprehension has been shown as significant in only
a few studies and was limited to residential burglary (Bernasco and Luykx, 2003; Bernasco and
Nieuwbeerta, 2005; Townsley et al., 2015). Areas that are less residential such as High Streets
have a higher proportion of flats. Dwellings with shared premises such as flats have been shown
to be less likely to become a target than one-household buildings (Beavon et al., 1994). Another
possible reason could be the staleness of the data for the covariates which are taken from the
2011 census. Also, house price has been inferred to have a negative effect, i.e. more affluent
locations are less likely to be targeted. This is contrary to the first component. A possible expla-
nation that has been mentioned in previous studies is that offenders often live in disadvantaged
areas and choose targets within their awareness spaces, which are less likely to be affluent areas
(Evans, 1989; Rengert and Wasilchick, 2010).

The last component is active in the areas of low intensity (Fig. 8(c)). These include Hyde
Park, Regent’s Park and Hampstead Heath (1), Richmond Park and Bushy Park (2),
Osterley Park and Kew botanic gardens (3), Heathrow airport (4), RAF Northolt and parks
near Harrow (5), Edgware fields (6), Lee Valley (7), the industrial zone in Barking and Rain-
ham Marshes (8), parks around Bromley and Biggin Hill airport (9), and other non-urban
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(a)

(b)

(c)

Fig. 8. Mixture model, allocations and IMP-table for each mixture component (training data, 2013–2015;
specification 4): (a) component 1 .Pposterior.zn D 1//; (b) component 2 .Pposterior.zn D 2//; (c) component 3
.Pposterior.zn D3//
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areas at the edges of the map. This component explains locations with little criminal activity,
signified by negative IMP for the number of households and POIs. Occupation variation, as a
measure of socio-economic heterogeneity, is strongly positive, which would support the hypoth-
esis from social disorganization theory. However, this is more likely to be due to the very low
population in those areas which results in a high occupation variation measure. The accessibil-
ity measure also has a positive effect on rates of burglary in these locations. This is expected
and in line with the hypotheses from crime pattern theory. Other covariates have very small
IMP-values.

The allocation of cells partitions the map into three clusters. By aggregating the number of
observed crimes that occurred in each cluster we obtain that components 1, 2 and 3 cover 46%,
42% and 12% of all burglaries during the 2013–2015 period respectively. Official aggregated
police data for this period make the split of 64% and 36% for residential and non-residential
burglary (Police.uk, 2019). Our inference agrees that there is more residential burglary than
non-residential burglary and that approximately 35–45% of burglaries are non-residential. It is
unclear whether the crime in low count areas, which according to our model accounts for 12%,
is residential or non-residential.

Support for spatial heterogeneity is further given by inspecting the inferences that were made
by the LGCP model (for LGCP details see section B in the on-line supplementary material).
Fig. 9(a) shows the standard deviation of the marginal posterior distribution of the Gaussian
random-field component f . It is clear that the variance of the field component is clustered,
where the regions with higher values are easily identifiable as those less urbanized. In contrast,
SAM-GLM has picked up this heterogeneity by allowing a separate component for it (see
Fig. 8(c)). Fig. 9(b) shows IMP computed for all components of the LGCP model. The IMP-
measure for the field component of the model is computed by treating it as a covariate with
coefficient equal to 1. The IMP-value for the latent field component is the third highest, after
the intercept and the number of households. A large contribution from the latent component
indicates that the linear term in the Poisson regression model cannot on its own sufficiently
explain the variation in the intensity of burglary.

(a) (b)

Fig. 9. (a) Standard deviation of the posterior distribution of the latent field f of the LGCP model (it is clear
that it is clustered and the elevated levels correspond to non-urban locations, airports and parks (see the
discussion above)) and (b) IMP-measure for the component of the LGCP model; for both panels, training
data, 2013–2015, and model specification 4
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4.6. Overdispersion; excess of 0s
The discussion of the inferences above shows that our model effectively handles an excess of 0s
by allocating low count cells (non-urban areas) their own cluster, which has its own regression
coefficients. Similarly, the mixture model proposed can reduce the overdispersion problem that
is present in the standard Poisson GLM model (the special case of SAM-GLM, with K=1). The
mixture model may allocate each cell to a cluster that better describes the burglary count in that
location. Inspecting the Pearson χ2-statistic (χ2 = ΣN

i=1.Observedi − Expectedi/
2=Expectedi)

provides supporting evidence for this. The introduction of two extra components has resulted
in the 81% decrease, from 106942.43 to 20028.99, showing a better model fit. This is further
confirmed by a scatter plot of expected versus observed counts for the Poisson GLM model and
the proposed model with K =3 as shown in Fig. 2 in the on-line supplementary material.

5. Conclusions

Spatial point patterns on large spatial regions, such as metropolitan areas, often exhibit lo-
calized behaviour. Motivated by this, we propose a mixture model that accounts for spatial
heterogeneity as well as incorporates spatial dependence. Each component of the mixture is a
model in itself and thus allows different locations to follow a different model; for example, in
the urban context, less urbanized locations can assume a different model from that of the city
centre. Each component is an instance of the GLM which includes covariates. We account for
spatial dependence through the mixture allocation part. The allocation of each location to one
of the components is informed by both the data and the prior information. By utilizing existing
blocks structure, or defining a custom structure, the prior supports locations within the same
block to come from the same component. This formulation attempts to find the right balance
between the ability to model sharp spatial variations and borrowing statistical strength for loca-
tions within the same block. Additionally, the model allows for spatial dependence between the
blocks. Following the Bayesian framework, we present an MCMC sampler to infer the posterior
distributions. Inspection of the posterior distributions of the model parameters enables us to
learn new insights about the underlying mechanisms of the point pattern.

Our results show that the London burglary data are effectively modelled by the method
proposed. Using out-of-sample and crime hot spot prediction evaluation measures, we showed
that our model outperforms the LGCP model (with Matérn covariance function), which is the
default model for point processes and is more computationally tractable.

The focus of this work on burglary crime does not limit the potential uses of the model
proposed. We believe that the model can be applied in a wider setting of analysing spatial point
patterns that may show localized behaviour and heterogeneity.

Future analysis could consider several directions that were not explored in this work. Firstly,
our inference scheme for the model with block dependence produces an O.B3 ×K/ algorithm.
To reduce this complexity, one could consider K level sets of a single Gaussian random field for
mixture weights, instead of K Gaussian fields, thus reducing the dimensionality (Hildeman et al.,
2018; Fernández and Green, 2002). Another approach is to assume a Markovian structure for
the Gaussian random fields, resulting in sparse computational methods (Rue and Held, 2005).
A different approach is to consider inference schemes that are less computationally demanding
than MCMC sampling such as variational methods (Jordan et al., 1999). Secondly, different
options for specifying the term that involves covariates could be explored. One could consider
forcing certain covariates to share the coefficients across all components if there is a strong prior
belief for doing so. Another possible area of investigation is the spatially varying-coefficient
processes method, which was proposed by Gelfand et al. (2003).
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6. Implementation

The source code that implements the methodology and reproduces the experiments is available
from https://github.com/jp2011/spatial-poisson-mixtures.
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