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Exact NMR simulation of protein-size spin systems using tensor train formalism

D. V. Savostyanov,1,* S. V. Dolgov,2 J. M. Werner,3 and Ilya Kuprov1

1School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
2Max-Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig 04103, Germany

3Centre for Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
(Received 18 February 2014; revised manuscript received 27 May 2014; published 25 August 2014)

We introduce a new method, based on alternating optimization, for compact representation of spin Hamiltonians
and solution of linear systems of algebraic equations in the tensor train format. We demonstrate the method’s
utility by simulating, without approximations, a 15N NMR spectrum of ubiquitin—a protein containing several
hundred interacting nuclear spins. Existing simulation algorithms for the spin system and the NMR experiment
in question either require significant approximations or scale exponentially with the spin system size. We
compare the proposed method to the SPINACH package that uses heuristic restricted state space techniques to
achieve polynomial complexity scaling. When the spin system topology is close to a linear chain (e.g., for
the backbone of a protein), the tensor train representation is more compact and can be computed faster than the
sparse representation using restricted state spaces.
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I. INTRODUCTION

The amount of patience required to simulate exactly a
nuclear magnetic resonance (NMR) spectrum of an N -spin
system scales approximately as O(2N ). That much is rarely
available, and considerable thought has consequently been
given over the last decade to more efficient methods [1–5],
particularly those that promise to achieve that objective in
polynomial time. Such algorithms do exist [2,6], but they
make significant a priori assumptions about the spin system
evolution—it is usually assumed that the system stays weakly
correlated for the duration of the experiment [6,7].

Outside the NMR community, significant progress was
recently made with the development of tensor structured
methods [8–12], all of which descend broadly from the
density matrix renormalization group (DMRG) [13,14] as well
as matrix product state (MPS) [15,16] and matrix product
operator (MPO) [17] formalisms. Typical applications of
DMRG in condensed matter theory are (one-dimensional) 1D
spin chains [8,18–20] with recent extensions to 2D lattices
[21–24]. DMRG has also been put to good use in electronic
[25–31] and nuclear [32,33] structure theory, but magnetic
resonance spectroscopy has so far received little attention; the
spin systems encountered in the daily practice of NMR and
EPR (proteins, radicals, polynucleotides, polysaccharides) are
irregular three-dimensional room-temperature networks with
multiple interlocking loops in the spin coupling graph and
no identical couplings [34]. When the strict requirement for
correct wave function phase during the very long (milliseconds
to seconds) dissipative spin system trajectories is added to the
list, time-domain DMRG methods are currently struggling.

There are some biologically relevant cases, however, that
may still be treated as linear chains; for the purposes of
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simulating simple backbone NMR experiments, protein side
chains may often be ignored. This makes the corresponding
spin system a weakly branched linear chain that is amenable
to DMRG-type treatment. Simple NMR experiments can also
be reformulated as a matrix-inverse-times-vector problem in
the frequency domain, for which efficient algorithms in tensor
product formats have recently emerged [35–37]. We report
in this paper the behavior of the alternating minimal energy
(AMEn) algorithm [37,38], applied to the solution of the NMR
simulation problem in the frequency domain, as well as to the
technical task of adding together, without loss of accuracy,
tensor train representations of thousands of spin Hamiltonian
terms for a protein.

Having integrated the algorithms described below into
SPINACH (a large-scale magnetic resonance simulation library
[4]), we are reporting here the exact quantum mechanical
simulation of a liquid-state 1D NMR spectrum for a protein
backbone spin system with several hundred coupled spins.
Beyond the physical assumptions made by chemists at the
problem formulation stage and the controllable numerical
rounding error of the tensor train format itself [39], there are
no approximations.

II. TENSOR PRODUCT FORMATS

Tensor product expressions appear naturally in spin dynam-
ics because the state space of a multi-spin system is a direct
product of state spaces of individual spins [40]. A simple
example is the nuclear Zeeman interaction Hamiltonian

ĤZ =
N∑

n=1

�B0 · A(n) · �̂S(n), (1)

where N is the number of spins, �B0 is the applied magnetic
field, A(n) are nuclear chemical shielding tensors, and the sum
runs over all nuclei. Cartesian components of nuclear spin

operators �̂S(n) = [Ŝ(n)
x Ŝ(n)

y Ŝ(n)
z ] have the following tensor

product form

Ŝ
(n)
{x,y,z} = 1 ⊗ · · · ⊗ 1 ⊗ σ̂{x,y,z} ⊗ 1 ⊗ · · · ⊗ 1, (2)
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where 1 denotes an identity matrix of appropriate dimension
and Pauli matrices σ̂x,σ̂y,σ̂z occur at the nth position in the
tensor product sequence. This representation is known in
numerical linear algebra as the canonical polyadic (CP) format
[9]. Although CP representations have been known in magnetic
resonance spectroscopy for a long time [41], they suffer in
practice from rapid inflation—spin Hamiltonians encountered
in NMR and ESR (electron spin resonance) systems can be
complicated [40] and, even for simple initial conditions, the
number of terms in the canonical decomposition increases
rapidly during system evolution. More ominously, the number
of CP terms can change dramatically after small perturbations
of the Hamiltonian or the system state. A simple example is

Ŝz =
N∑

n=1

Ŝ(n)
z = lim

ε→0

(1 + εσ̂z)⊗N − 1⊗N

ε
, (3)

where â⊗N = â ⊗ · · · ⊗ â. The left-hand side of this equation
contains N direct product terms, given by Eq. (2), but the
expression approximating it on the right-hand side has only
two direct product terms, and one could be tempted to use it
to reduce storage and CPU time. However, both terms of the
approximation grow to infinity when ε → 0, and the accuracy
is lost due to rounding errors. Such instabilities in the CP
format make it difficult to use—in finite precision arithmetic
the number of terms in the decomposition quickly becomes
equal to the dimension of the full state space and any efficiency
savings disappear.

Unlike the CP format, which is an open tensor network,
closed tensor network formats are stable to small perturbations.
The most popular closed tensor network format was repeatedly
rediscovered and is currently known under three different
names: DMRG in condensed-matter physics [13,14], MPS
[15,16,42,43] and MPO [17,44] in computational physics, and
tensor train (TT) in numerical linear algebra [39]. A tensor
train is defined, using the standard notation of numerical linear
algebra [45], as follows:

x̂ = τ (x̂(1), . . . , x̂(N))

=
∑

α1,...,αN−1

x̂(1)
α1

⊗ x̂(2)
α1,α2

⊗ · · · ⊗ x̂(N)
αN−1

.
(4)

The TT representation of the total Ŝz operator in Eq. (3) is
similar to the high-dimensional Laplacian [46]:

Ŝz =
2∑

α1=1

. . .

2∑
αN−1=1

Ĥ (1)
α1

⊗ Ĥ (2)
α1,α2

⊗ · · · ⊗ Ĥ (N)
αN−1

, (5)

with Ĥ (1) = [σ̂z 1],Ĥ (2) = . . . = Ĥ (N−1) = [ 1 0
σ̂z 1], and

Ĥ (N) = [1 σ̂z]
�
. The number of terms in each summation

(known as bond dimension, or TT rank) is two, and the
number of entries of the decomposition is now bounded. The
TT representation of Ŝz in Eq. (5) has 4N − 4 single-spin
operators, each of which is either zero, or identity 1, or the
Pauli matrix σ̂z. The CP representation of Ŝz in Eq. (3) has N2

such operators—the tensor train representation is clearly more
memory efficient.

Another notable example is the ZZ coupling Hamiltonian
that often makes an appearance in models of simple linear spin

chains:

Ĵ =
∑
m>n

Ŝ(n)
z Ŝ(m)

z . (6)

As written, this is a CP format with N (N − 1)/2 terms and
N2(N − 1)/2 single-spin operators entering direct products.
The corresponding TT representation is

Ĵ =
3∑

α1=1

. . .

3∑
αN−1=1

Ĵ (1)
α1

⊗ Ĵ (2)
α1,α2

⊗ · · · ⊗ Ĵ (N)
αN−1

, (7)

with Ĵ (1) = [0 σ̂z 1], and

Ĵ (2) = . . . = Ĵ (N−1) =
⎡
⎣

1 0 0
σ̂z 1 0
0 σ̂z 1

⎤
⎦, Ĵ (N) =

⎡
⎣

1
σ̂z

0

⎤
⎦.

Here each summation runs over three terms only, and the total
number of single-spin operator matrices appearing in Ĵ (n)

αn−1,αn

is 9N − 12, much fewer than the one of the CP format in
Eq. (6).

Storage requirements of tensor structured representations
(both CP and TT) stand in sharp contrast with the classical
approach to magnetic resonance simulations [1,5], where the
Hamiltonian is represented as a 2N × 2N sparse matrix with
all nonzero entries stored in memory. As soon as the matrix
is assembled, CPU and memory resources grow exponen-
tially with the number of spins N, making the simulation
prohibitively difficult for large systems. Tensor structured
methods avoid this problem (it is known colloquially as the
curse of dimensionality) by keeping all data in compressed
formats of the form given in Eqs. (1) and (4) and manipulating
it without ever opening up the Kronecker products.

A very considerable body of literature exists on manipulat-
ing expressions directly in tensor product formats [9,11,12].
In particular, a given matrix may be converted into the
TT format using sequential singular value decompositions
[8,39,43]. Given tensors in the TT format, one can perform
linear or bilinear operations (addition, elementwise multiplica-
tion, matrix-vector multiplication) [10,39], Fourier transform
[47,48], and convolution [49] directly in the TT format,
avoiding exponentially large arrays and computational costs.

These developments would have permitted large-scale
magnetic resonance simulations entirely in the TT format,
were it not for a significant obstacle: the summation operation
in tensor train representations is an expensive procedure that
carries a significant accuracy penalty due to the need to
recompress the representation to keep the bond dimensions
low. Spin Hamiltonians of practically interesting biological
systems contain many thousands of one- and two-spin terms
of the kind shown in Eq. (2). Intermediate expressions in spin
dynamics simulations also frequently involve large sums. We
demonstrate below that in those circumstances the standard
bundle-and-recompress tensor network summation procedure
leads either to the bond dimension expansion beyond the limits
of modern computing hardware, or to a catastrophic accuracy
loss. This problem also occurs with three-dimensional poten-
tials encountered in electronic structure theory [50–52]. Here
we propose an alternative algorithm for computing large sums,
based on alternating tensor train optimization, and use it to
enable NMR simulations on protein-size spin systems.
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III. SIMULATION SETTING AND
EXPERIMENTAL CONTEXT

Fully 13C- and 15N-labeled protein human ubiquitin (PDB
code 1D3Z, Fig. 1) containing over a thousand magnetic nuclei
in 76 amino acid residues was chosen for testing purposes with
two types of spin subsystem selection: backbone (H, N, C, CA,
HA) and extended backbone (H, N, C, CA, CB, HA, HB). Both
cases involve a weakly branched continuous chain of spin-spin
couplings and are encountered in the simulation of a large class
of protein backbone NMR experiments that map out the protein
bonding network and thereby assist in molecular structure
determination: HNCO [53], HNCOCA [54], HNCA [53], and
HSQC [55]. The isotropic NMR Hamiltonian was assembled
using chemical shift values from the BMRB database [56]
and J couplings from the literature data [57–61]. In the cases
where an experimental value of a particular J coupling was
not available in the literature, it was estimated based on the
known values for structurally similar substances [62–64]; for
most NMR simulation purposes and certainly for the purpose
of the demonstration of the performance of the tensor train
algorithm the accuracy of such coupling estimates (about 20%)
is sufficient. The raw data for the magnetic couplings used in
this work is available in the example set supplied with the
current public version of the SPINACH library [4].

NMR experiments were performed at 25◦ C on a Varian
Inova 600 MHz (14.1 Tesla) spectrometer equipped with a
Z-gradient triple-resonance cryogenic probe using a 0.5 mM
sample of uniformly 13C- and 15N-labeled human ubiquitin in
10% D2O. 15N spectra were collected as 2D 1H-15N HSQC [65]
spectra incorporating gradient-enhanced coherence selection
[66] and water flip back. The spectra were recorded with
acquisition times of 150 ms (t1, 15N) and 500 ms (t2, 1H).
During the 15N evolution period,1JHN and1,2JNC couplings
were either allowed to evolve, or decoupled by insertion of
a rectangular 15N or a shaped 200μs 13C inversion pulse using
the central lobe of the sinc function. During 1H acquisition
15N nuclei were either evolved or decoupled using 40 ppm
broadband WURST sequence [67].

FIG. 1. (Color online) Human ubiquitin protein (PDB code
1D3Z): 76 amino acids, 563 magnetic nuclei in the extended backbone
(H, N, C, CA, CB, HA, HB)

The liquid state NMR Hamiltonian of 13C-,15N-labeled
ubiquitin is:

Ĥ (t) =
∑

k

ωkŜ
(k)
z + 2π

∑
l>m

J
(l,m)
strong

�̂S(l) · �̂S(m)

+2π
∑
p>q

J
(p,q)
weak Ŝ(p)

z Ŝ(q)
z

+ωx(t)
∑

r

Ŝ(r)
x + ωy(t)

∑
s

Ŝ(s)
y , (8)

where canonical NMR spectroscopy notation is used [40],
k index runs over all nuclei, l and m indices run over
pairs of nuclei that belong to the same isotope, p and q

run over pairs of nuclei that belong to different isotopes,
r and s run over the nuclei influenced by radio frequency
pulses, ωx(t) and ωy(t) are time profiles of those pulses, ωk

are offset frequencies arising from the chemical shielding
of the corresponding nuclei [68], J

(l,m)
strong are strong NMR

J couplings [69], J
(p,q)
weak are weak NMR J couplings [40],

and spin operators Ŝ(n)
x ,Ŝ(n)

y ,Ŝ(n)
z are defined by Eq. (2). In

the case of extended ubiquitin backbone, the Hamiltonian in
Eq. (8) contains 563 shielding terms, 1840 coupling terms, and
1126 radio frequency terms. All calculations reported below
were performed by extending the functionality of SPINACH

library [4] to the tensor train formalism and interfacing it to
TT-Toolbox [70] where appropriate.

Due to the abundance of complicated multipulse NMR
experiments with time-dependent Hamiltonians [40], magnetic
resonance simulations are generally carried out in the time
domain. They always require long-term evolution trajectories
with accurate phases (at least 100 ms, much longer than the
reciprocal Hamiltonian norm) for the density operator ρ̂(t)
under the Liouville–von-Neumann equation:

d

dt
ρ̂(t) = −i[Ĥ (t),ρ̂(t)] + ˆ̂R(ρ̂(t) − ρ̂eq),

O(t) = 〈Ô | ρ̂(t)〉 = Tr[Ô†ρ̂(t)],

ρ̂eq = exp(−Ĥ /kBT )

Tr exp(−Ĥ /kBT )
, (9)

where ˆ̂R is the relaxation superoperator (T1,2 model with
literature values for relaxation times [34] was used in the
present work), ρ̂eq is the thermal equilibrium state, and Ô

is the observable operator, usually a sum of Ŝx or Ŝy operators
on the spins of interest. In very simple cases where the
Hamiltonian is not time dependent, the general solution to
Eq. (9) can be written as:

O(t) = 〈Ô | exp[−i( ˆ̂H + i ˆ̂R)t] | ρ̂0〉, (10)

where ˆ̂H is the Hamiltonian commutation superoperator.
Direct time-domain evaluation of this equation in tensor

train format, either using explicit operator exponentiation
or Krylov-type propagation techniques, does not appear to
be possible—in all cases described by Eq. (8) the ranks in
the tensor train expansion quickly grow beyond the capacity
of modern computers. Increasing the singular value cutoff
threshold at the representation compression stage leads to
catastrophic loss of accuracy. Fortunately, there are simple
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cases (most notably pulse-acquire 1D NMR spectroscopy)
where amplitudes at only a few specific frequencies are ac-
tually required for the Fourier transform of Eq. (10), meaning
that the problem can be reformulated in the frequency domain:

O(ω) = −i〈Ô|( ˆ̂H + i ˆ̂R + ω1)−1|ρ̂0〉. (11)

That is, to compute the observable at the point ω in
the frequency domain, we need to solve a linear system

( ˆ̂H + i ˆ̂R + ω1)|x̂〉 = |ρ̂0〉. The problem formulation in
Eq. (11) sacrifices a great deal of generality compared to
Eq. (9) (simulation of arbitrary NMR pulse sequences is no
longer possible), but it does serve as a stepping stone and
enables the demonstration calculation presented below.

IV. TENSOR TRAIN ALGORITHM FOR THE SUMMATION
AND SOLUTION OF LINEAR SYSTEMS

The DMRG algorithm was initially proposed [13,14] to find
the ground state of a Hermitian matrix A by the minimization
of the Rayleigh quotient Q(x) = x∗Ax/x∗x. The dynamical
DMRG algorithm [35] was then developed to find the solution
of a linear system Ax = b with a Hermitian positive definite
matrix A by the minimization of the energy function J (x) =
x∗Ax − 2
(x∗b). Apart from the change of the minimization
target function, the two algorithms are similar.

In DMRG formalism the solution is sought in the form of a
tensor train introduced in Eq. (4), but the minimization over all
cores x(n) simultaneously is a complicated nonlinear problem.
To make the procedure feasible, it is replaced by a sequence
of optimizations carried over one core at a time:

x(n)
	 = arg min

x(n)
J [τ (x(1), . . . ,x(n), . . . ,x(N))]. (12)

The TT format is linear in all cores x(n). This fact may
be expressed as x = X�=nx

(n), where the frame matrix X�=n

maps the parameters of the TT core x(n) to the vector x. The
linearity allows to rewrite Eq. (12) as x

(n)
	 = arg min Jn(x(n)) =

A−1
n bn, where Jn is the energy function for the local problem

Anx
(n) = bn with An = X∗

�=nAX�=n and bn = X∗
�=nb. Using the

nonuniqueness of the tensor train representation (4), one can
always construct the representation with the unitary frame
matrix X�=n, that guarantees the stability of the local problem.
Such a choice is known as gauge condition in the MPS
literature, and canonical form in the DMRG literature. After
the solution x

(n)
	 is computed, we substitute x(n) := x

(n)
	 in the

tensor train, and continue for n = 1, . . . ,N, and then back and
forth along the chain.

The convergence of the above described one-site DMRG
procedure depends on the initial guess and in particular on the
initial choice of the TT ranks because they remain the same
during the sequence of updates defined by Eq. (12). This is a
severe restriction and additional measures are therefore taken
to adapt the TT ranks during the computations. One way to
do that is to replace the optimization over single cores by the
optimization over pairs of neighboring cores, and then to adapt
the TT rank between them. Another possibility is to expand the
search space by adding auxiliary directions. The first method
of the latter type is the corrected one-site DMRG algorithm
[71], which targets in addition to x a surrogate of the next
Krylov vector Ax.

For the solution of linear systems, the alternating minimal
energy (AMEn) algorithm was recently proposed [37], which
also uses an additional direction to adapt tensor train ranks.
The local optimization step in AMEn is carried over one site
only. To adapt TT ranks and improve convergence, TT blocks
are expanded by auxiliary information, x(n) := [x(n)

	 r (n)].
The enrichment r (n) introduces new directions in the subspace
spanned by X�=n+1. A good choice of the enrichment is the
component r (n) of the TT representation (exact or approxi-
mate) r̃ = τ (r (1), . . . ,r (N)) of the residual r = b − Ax. AMEn
algorithm is as fast as one-site methods, but as rank adaptive as
the two-site DMRG algorithm, and demonstrates comparable
or better convergence rates. For the solution of a linear system
Ax = b with a Hermitian positive definite matrix, it has a
proven global bound on the geometrical convergence rate.
Unlike the corrected one-site DMRG method [71], the AMEn
algorithm is stable to perturbations and free from tuning
parameters and heuristics [38]. The rank adaptation strategy
in the enrichment phase of AMEn is determined by a single
relative accuracy parameter.

In this work we use the AMEn algorithm for two purposes.
First, we apply it to a system with a trivial matrix A = 1,

but a complicated right-hand side b, which is a sum of many
elementary tensors like the one in Eq. (2). This allows us to
compress a Hamiltonian returned by the SPINACH package from
the CP format given by Eq. (8) into the TT format Eq. (4). The
Hamiltonian is stretched into a vector, and the target functional
J (x) = ‖x − b‖2 is a Frobenius-norm distance between a
given Hamiltonian b and Hamiltonian x sought in the tensor
train format. The one-site optimization in Eq. (12) is effectively
the solution of the overdetermined linear system X�=nx

(n) = b

using the least squares method. For the unitary frame matrix
we have x

(n)
	 = X∗

�=nb, and therefore the local optimization
step is obtained by contracting the frame matrix with the
given Hamiltonian b. The enrichment step uses a low-rank
approximation of the error r = b − x, which is obtained by
one-site DMRG optimization.

After the Hamiltonian is compressed into the tensor train
format, we compute 1D NMR spectra by solving the linear

system in Eq. (11). Since the matrix ˆ̂A = ˆ̂H + i ˆ̂R + ω1 is not
expected to be Hermitian positive definite, we consider instead

an equivalent symmetrized problem ( ˆ̂A∗ ˆ̂A)ρ̂(ω) = ˆ̂A∗ρ̂0.

For demonstration purposes, we chose a simple nonselective

damping relaxation model ˆ̂R = −μ1, and the same Ŝ+ =
Ŝx + iŜy operator for the initial and the detection state, where
Ŝ{x,y} = ∑

n Ŝ
(n)
{x,y} are the total spin operators of all 15N nuclei

in the system. This avoids explicit radio frequency pulses and
makes the Hamiltonian in Eq. (8) time independent and real
valued, Ĥ (t) = Ĥ = Ĥ ∗ = Ĥ T , those properties are also

inherited by the commutation superoperator ˆ̂H. Since the de-
tection state Ô is also real valued, the NMR spectrum O(ω) in
Eq. (11) can be computed from ρ̂(ω), that we obtain as
follows:

ρ̂(ω) = μ( ˆ̂H ∗ ˆ̂H + 2ω ˆ̂H + (ω2 + μ2)1)−1ρ̂0. (13)

This equation is solved by the AMEn algorithm at each point
ω in the user-specified frequency interval.
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V. RESULTS

As discussed above, a major problem in the application
of tensor train methods to magnetic resonance simulation of
large systems is the calculation of lengthy sums involved in
the construction of spin Hamiltonians and density matrices,
and their compression into the TT format. Figure 2 illustrates
the performance of our proposed solution to this problem in
the case of minimal (H, N, C, CA, HA) and extended (H, N, C,
CA, HA, CB, HB) ubiquitin backbone spin systems. Storage
requirements for the TT format in Eq. (4) depend on all TT
ranks (bond dimensions) k1, . . . ,kN−1, and are characterized
by the effective TT rank k, defined by Nk2 = ∑N

n=1 kn−1kn. It
is clear from the left panels of Fig. 2 that the primary obstacle
—rapid growth in the tensor train rank—has been removed by
the AMEn method: the effective ranks stay below 50 for the
extended backbone and below 40 for the minimal backbone,
well within the capability of modern desktop workstations.
Since k2 is smaller than the number of terms in the CP
representation, the TT format with Nk2 operators provides
more compact storage than the CP format.

The alternative to AMEn is binary summation, which
adds up Hamiltonian terms pairwise and recompresses the
representation after each addition. As demonstrated in Fig. 2,
binary summation drives tensor train ranks up to several
hundred and thereby makes the solution of the linear system
in Eq. (13) exceedingly difficult. It is clear from the right
panels of Fig. 2 that the CPU time requirements of AMEn
summation compared to binary summation are essentially
the same, making AMEn procedure clearly superior for
all practical purposes. The resulting representation of the
ubiquitin backbone spin Hamiltonian matrix is, up to the
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FIG. 2. (Color online) Performance comparison for binary and
AMEn tensor train summation with relative accuracy parameter
ε = 10−12 during the construction of the NMR spin Hamiltonian.
Top: human ubiquitin backbone (H, N, C, CA, HA); bottom: human
ubiquitin extended backbone (H, N, C, CA, HA, CB, HB). Here
H0 refers to the isotropic part of the Hamiltonian and Qk,n to the
irreducible spherical components of the anisotropic part.

100110120130140
0.0

0.2

0.4

0.6

0.8

12

10

8

6

4

2

0

10
log

difference

N
M

R
 s

pe
ct

ra
l i

nt
en

si
ty

 (
a.

u.
)

131.5132.5 132.0

AMEn

difference to RSS
IK-1(5,1) solution

difference to RSS
IK-1(6,1) solution

100110120130140
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

15N chemical shift (ppm)

N
M

R
 s

pe
ct

ra
l i

nt
en

si
ty

 (
a.

u.
)

131.5132.5 132.0

RSS IK-1(6,1)

DMRG

AMEn

0 3 6 9 12 15
6

4

2

0

iteration / sweep

( 10 )

( 10 )

lo
g

/
1

O
O

DMRG, peak
DMRG, off-peak

AMEn, peak

AMEn, off-peak

FIG. 3. (Color online) Amino group region of the pulse-acquire
15N NMR spectrum of human ubiquitin. Top: spectrum computed
by AMEn algorithm [37] with accuracy parameter ε = 10−6 is
compared to the results obtained by the restricted state space (RSS)
approximation [4] with basis containing local spin correlations of
orders up to 5 and 6. Bottom: accurate RSS computation is used as
a reference O	(ω) and compared to the spectra O(ω) computed by
AMEn and DMRG [35,36], both using the accuracy parameter ε =
10−3. Right subgraph: convergence of AMEn and DMRG methods at
two points of the frequency domain (dashed lines: an off-peak point
at 100 ppm, solid lines: a peak at 122 ppm).

rounding error of the complex double precision arithmetic,
exact. In magnetic resonance spectroscopy this is an unprece-
dented development—ubiquitin NMR simulation is currently
just about feasible [72], with significant approximations and
colossal computational resources. Tensor train representation
is therefore a large step forward, even though Eq. (11) is not
in general applicable to arbitrary NMR experiments.

After the Hamiltonian is compressed, we compute 15N
pulse-acquire NMR spectra using Eq. (13) with the AMEn
algorithm and compare it to the simulation produced by
the restricted state space (RSS) approximation [4], which is
currently the only other method that is capable of handling
NMR systems of this size. As demonstrated in Fig. 3 (top),
When the basis set used by RSS is increased, its result
converges to the one produced by AMEn, and the relative
deviation between two methods falls below 10−6 across the
frequency interval.

It is instructive to compare the results of AMEn simulations
with those produced by the dynamical DMRG [35] technique.
As shown in Fig. 3 (bottom), the NMR spectrum computed
by AMEn matches the reference spectrum returned by RSS
with only minor deviations, while the accuracy of the result
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computed by the dynamical DMRG algorithm at the same
relative accuracy parameter is unacceptable. DMRG does of
course produce the right answer if a much tighter accuracy
parameter is specified, but the simulation time goes up by
several orders of magnitude. AMEn does therefore appear to
have a better accuracy-to-effort ratio. This is also confirmed
by the convergence graph of AMEn and DMRG, given in
the same figure, where the relative deviation between the
computed and the reference values O(ω) is shown during the
iterations (sweeps) for both DMRG and AMEn. Note also that
the inexact values of the spectrum, computed by AMEn and
DMRG are always below the reference values; this was first
noted by Jeckelmann [35]. The comparison in Fig. 3 is made
using ε = 10−3 to visually emphasize the observed difference
between the two methods; the same conclusion also holds for
more accurate calculations using ε = 10−8.

Due to the intrinsically low sensitivity of liquid-state 15N
protein NMR spectroscopy, it is not possible to record the
experimental equivalent of Fig. 3 directly with a sufficient
signal-to-noise ratio; we have therefore taken a somewhat
longer route to the experimental validation of the tensor train
simulation. Figure 4 shows experimental proton-detected 1H-
15N HSQC spectra of ubiquitin, compared to the simulations
obtained at the basis set limit of the RSS formalism [6].
Perfect agreement is apparent in both cases. This provides
experimental evidence to the accuracy of the restricted state
space method. The tensor train results in Fig. 3 can now be
justified by comparison to the RSS results—it is clear that the
TT formalism performs as intended.

VI. DISCUSSION

The successful 1D NMR simulation notwithstanding, very
significant obstacles remain on the path to practical applica-
tions of the tensor train formalism to NMR spectroscopy. The
following issues should be addressed in future work to fully
uncover the potential of the DMRG/MPS/TT formalism for
spin dynamics simulations:

(i) The requirement for the spin system to be a chain or
a tree should be lifted. Biological magnetic resonance spin
systems are irregular polycyclic interaction networks with
multiple interlocking loops in the coupling graph, particularly
in solid-state NMR, where internuclear dipolar couplings form
very dense meshes. A generalization of tensor train algorithms
to general contraction networks that fully mimic the molecular
structure is therefore required.

(ii) Rank explosion problem for time-domain simulations
should be solved. It is clear from the success of the restricted
state space approximation [4,7] that the order of spin correla-
tion in many evolving magnetic resonance spin systems either
is or may safely be assumed to be quite low. This suggests
data sparsity and separability, and indicates that some kind
of low-rank decomposition is possible. One likely direction is
through the enforcement of symmetries and conservation laws
within the tensor train format itself during time evolution.

(iii) Our experience indicates that tensor train objects are
very far from being drop-in replacements for their matrix
counterparts in standard simulation algorithms and software—
it does actually appear that nearly everything in the very
considerable body of magnetic resonance simulation methods
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FIG. 4. Theoretical (left) and experimental (right) 1H-15N HSQC
spectra of 15N-,13C-labeled human ubiquitin. Top: proton decoupling
switched off in the indirect dimension and nitrogen decoupling
switched off in the direct dimension to demonstrate accurate quantum
mechanical treatment of spin-spin coupling by the simulation.
Bottom: additionally, carbon decoupling is switched off in the indirect
dimension. Signal groups marked A–F in the theoretical spectrum are
not visible in the experimental data due to partial deuteration and slow
conformational exchange of the corresponding amino acid residues.

needs to be adapted to the realities of DMRG. Current
implementation of tensor product methods still requires a
number of tuning parameters (approximation accuracies, TT
ranks of the enrichment, etc.). Broad adoption of tensor net-
work algorithms would require basic linear algebra operations
to be handled transparently and seamlessly by the existing
simulation software packages, in the same way as sparse
matrices currently are.

(iv) Transparent and clear tensor train approximation
accuracy criteria, rank control and a priori error bounds
should be developed in order to estimate the influence of
the representation compression errors on the accuracy of
the final result. This problem is particularly acute for the
state vector phase in time-domain simulations: magnetic
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resonance experiments rely critically on the phase being
correctly predicted.

All of that having been said, we are very optimistic about
the future of DMRG/MPS/TT methods, having also found
them useful in Fokker-Planck type formalisms related to NMR
and EPR spectroscopy [73]. Their primary strength is the
lack of heuristic assumptions and the controllable nature of
the representation accuracy. An experimental implementation
of tensor train magnetic resonance simulation paths, via an
interface to the TT-Toolbox [70], is available in version
1.3.1980 of our SPINACH library [4].

VII. CONCLUSIONS AND FUTURE WORK

Even with their well-documented limitations (the require-
ment for the spin system to be close to a chain, difficulty with
long-range time-domain simulations, code implementation
challenges, etc.), the ability of tensor network formalisms to
simulate simple liquid state NMR spectra of large spin systems
essentially without approximations is impressive. They cannot
yet match the highly optimized dedicated methods developed
by the magnetic resonance community [72], but if some of
the limitations are lifted by the subsequent research, DMRG
methods would have the potential to become a very useful
formalism in NMR research.

Having solved in this paper the last purely technical
problem on the way to the broad adoption of tensor train
formalism in magnetic resonance spectroscopy, we are quite
optimistic about its potential. In particular, the following
avenues appear promising:

(1) Generalizing AMEn method to arbitrary tensor net-
works, e.g., tree tensor networks [74–77], that closely match
the coupling topology of the spin system.

(2) Development of reliable tensor train methods for
solving linear systems of algebraic equations with indefinite
matrices, and time evolution problems.

(3) Development of tensor product methods that reduce
memory requirements and accelerate convergence by enforc-
ing conservation laws [8,78,79] and matrix symmetries [80].

Elsewhere in magnetic resonance, benefits to electron spin
resonance spectroscopy, with its star-shaped spin interactions
graphs, are likely to be harder to achieve, but may still be
obtained by exploiting the direct product structure of combined
spin and spatial dynamics appearing in Fokker-Planck-type
problems [73].
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[67] Ē. Kupce and R. Freeman, J Magn. Reson. A 117, 246 (1995).
[68] N. F. Ramsey, Phys. Rev. 78, 699 (1950).
[69] N. F. Ramsey, Phys. Rev. 91, 303 (1953).
[70] I. Oseledets et al., https://github.com/oseledets/TT-Toolbox.
[71] S. R. White, Phys. Rev. B 72, 180403 (2005).
[72] L. J. Edwards, D. Savostyanov, Z. Welderufael, D. Lee, and

I. Kuprov, J. Magn. Reson. 243, 107 (2014).
[73] L. E. Edwards, D. V. Savostyanov, A. A. Nevzorov,

M. Concistrè, G. Pileo, and I. Kuprov, J. Magn. Reson. 235,
121 (2013).

[74] Y.-Y. Shi, L.-M. Duan, and G. Vidal, Phys. Rev. A 74, 022320
(2006).

[75] V. Murg, F. Verstraete, O. Legeza, and R. M. Noack, Phys. Rev.
B 82, 205105 (2010).
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and Multilinear Algebra 61, 91 (2013).

085139-8

http://dx.doi.org/10.1103/PhysRevC.73.014301
http://dx.doi.org/10.1103/PhysRevC.73.014301
http://dx.doi.org/10.1103/PhysRevC.73.014301
http://dx.doi.org/10.1103/PhysRevC.73.014301
http://dx.doi.org/10.1103/PhysRevLett.97.110603
http://dx.doi.org/10.1103/PhysRevLett.97.110603
http://dx.doi.org/10.1103/PhysRevLett.97.110603
http://dx.doi.org/10.1103/PhysRevLett.97.110603
http://dx.doi.org/10.1103/PhysRevB.66.045114
http://dx.doi.org/10.1103/PhysRevB.66.045114
http://dx.doi.org/10.1103/PhysRevB.66.045114
http://dx.doi.org/10.1103/PhysRevB.66.045114
http://dx.doi.org/10.1137/110833142
http://dx.doi.org/10.1137/110833142
http://dx.doi.org/10.1137/110833142
http://dx.doi.org/10.1137/110833142
http://arxiv.org/abs/arXiv:1301.6068
http://arxiv.org/abs/arXiv:1304.1222
http://arxiv.org/abs/arXiv:1312.6542
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1006/jmre.1996.1002
http://dx.doi.org/10.1006/jmre.1996.1002
http://dx.doi.org/10.1006/jmre.1996.1002
http://dx.doi.org/10.1006/jmre.1996.1002
http://dx.doi.org/10.1103/PhysRevB.73.094423
http://dx.doi.org/10.1103/PhysRevB.73.094423
http://dx.doi.org/10.1103/PhysRevB.73.094423
http://dx.doi.org/10.1103/PhysRevB.73.094423
http://dx.doi.org/10.1103/PhysRevB.78.035116
http://dx.doi.org/10.1103/PhysRevB.78.035116
http://dx.doi.org/10.1103/PhysRevB.78.035116
http://dx.doi.org/10.1103/PhysRevB.78.035116
http://dx.doi.org/10.1016/j.cpc.2013.12.017
http://dx.doi.org/10.1016/j.cpc.2013.12.017
http://dx.doi.org/10.1016/j.cpc.2013.12.017
http://dx.doi.org/10.1016/j.cpc.2013.12.017
http://dx.doi.org/10.1137/100820479
http://dx.doi.org/10.1137/100820479
http://dx.doi.org/10.1137/100820479
http://dx.doi.org/10.1137/100820479
http://dx.doi.org/10.1088/1367-2630/9/5/146
http://dx.doi.org/10.1088/1367-2630/9/5/146
http://dx.doi.org/10.1088/1367-2630/9/5/146
http://dx.doi.org/10.1088/1367-2630/9/5/146
http://dx.doi.org/10.1007/s00041-012-9227-4
http://dx.doi.org/10.1007/s00041-012-9227-4
http://dx.doi.org/10.1007/s00041-012-9227-4
http://dx.doi.org/10.1007/s00041-012-9227-4
http://dx.doi.org/10.1137/110844830
http://dx.doi.org/10.1137/110844830
http://dx.doi.org/10.1137/110844830
http://dx.doi.org/10.1137/110844830
http://dx.doi.org/10.1137/080730408
http://dx.doi.org/10.1137/080730408
http://dx.doi.org/10.1137/080730408
http://dx.doi.org/10.1137/080730408
http://dx.doi.org/10.1137/100792056
http://dx.doi.org/10.1137/100792056
http://dx.doi.org/10.1137/100792056
http://dx.doi.org/10.1137/100792056
http://dx.doi.org/10.1016/0022-2364(90)90333-5
http://dx.doi.org/10.1016/0022-2364(90)90333-5
http://dx.doi.org/10.1016/0022-2364(90)90333-5
http://dx.doi.org/10.1016/0022-2364(90)90333-5
http://dx.doi.org/10.1007/BF01874573
http://dx.doi.org/10.1007/BF01874573
http://dx.doi.org/10.1007/BF01874573
http://dx.doi.org/10.1007/BF01874573
http://dx.doi.org/10.1007/BF00175254
http://dx.doi.org/10.1007/BF00175254
http://dx.doi.org/10.1007/BF00175254
http://dx.doi.org/10.1007/BF00175254
http://dx.doi.org/10.1093/nar/gkm957
http://dx.doi.org/10.1093/nar/gkm957
http://dx.doi.org/10.1093/nar/gkm957
http://dx.doi.org/10.1093/nar/gkm957
http://dx.doi.org/10.1021/ja001798p
http://dx.doi.org/10.1021/ja001798p
http://dx.doi.org/10.1021/ja001798p
http://dx.doi.org/10.1021/ja001798p
http://dx.doi.org/10.1021/ja991356h
http://dx.doi.org/10.1021/ja991356h
http://dx.doi.org/10.1021/ja991356h
http://dx.doi.org/10.1021/ja991356h
http://dx.doi.org/10.1021/ja003724j
http://dx.doi.org/10.1021/ja003724j
http://dx.doi.org/10.1021/ja003724j
http://dx.doi.org/10.1021/ja003724j
http://dx.doi.org/10.1021/ja070324o
http://dx.doi.org/10.1021/ja070324o
http://dx.doi.org/10.1021/ja070324o
http://dx.doi.org/10.1021/ja070324o
http://dx.doi.org/10.1021/ja9535524
http://dx.doi.org/10.1021/ja9535524
http://dx.doi.org/10.1021/ja9535524
http://dx.doi.org/10.1021/ja9535524
http://dx.doi.org/10.1021/cr60303a003
http://dx.doi.org/10.1021/cr60303a003
http://dx.doi.org/10.1021/cr60303a003
http://dx.doi.org/10.1021/cr60303a003
http://dx.doi.org/10.1016/0079-6565(81)80001-5
http://dx.doi.org/10.1016/0079-6565(81)80001-5
http://dx.doi.org/10.1016/0079-6565(81)80001-5
http://dx.doi.org/10.1016/0079-6565(81)80001-5
http://dx.doi.org/10.1016/0079-6565(91)80004-L
http://dx.doi.org/10.1016/0079-6565(91)80004-L
http://dx.doi.org/10.1016/0079-6565(91)80004-L
http://dx.doi.org/10.1016/0079-6565(91)80004-L
http://dx.doi.org/10.1016/0009-2614(80)80041-8
http://dx.doi.org/10.1016/0009-2614(80)80041-8
http://dx.doi.org/10.1016/0009-2614(80)80041-8
http://dx.doi.org/10.1016/0009-2614(80)80041-8
http://dx.doi.org/10.1021/ja00052a088
http://dx.doi.org/10.1021/ja00052a088
http://dx.doi.org/10.1021/ja00052a088
http://dx.doi.org/10.1021/ja00052a088
http://dx.doi.org/10.1006/jmra.1995.0750
http://dx.doi.org/10.1006/jmra.1995.0750
http://dx.doi.org/10.1006/jmra.1995.0750
http://dx.doi.org/10.1006/jmra.1995.0750
http://dx.doi.org/10.1103/PhysRev.78.699
http://dx.doi.org/10.1103/PhysRev.78.699
http://dx.doi.org/10.1103/PhysRev.78.699
http://dx.doi.org/10.1103/PhysRev.78.699
http://dx.doi.org/10.1103/PhysRev.91.303
http://dx.doi.org/10.1103/PhysRev.91.303
http://dx.doi.org/10.1103/PhysRev.91.303
http://dx.doi.org/10.1103/PhysRev.91.303
https://github.com/oseledets/TT-Toolbox
http://dx.doi.org/10.1103/PhysRevB.72.180403
http://dx.doi.org/10.1103/PhysRevB.72.180403
http://dx.doi.org/10.1103/PhysRevB.72.180403
http://dx.doi.org/10.1103/PhysRevB.72.180403
http://dx.doi.org/10.1016/j.jmr.2014.04.002
http://dx.doi.org/10.1016/j.jmr.2014.04.002
http://dx.doi.org/10.1016/j.jmr.2014.04.002
http://dx.doi.org/10.1016/j.jmr.2014.04.002
http://dx.doi.org/10.1016/j.jmr.2013.07.011
http://dx.doi.org/10.1016/j.jmr.2013.07.011
http://dx.doi.org/10.1016/j.jmr.2013.07.011
http://dx.doi.org/10.1016/j.jmr.2013.07.011
http://dx.doi.org/10.1103/PhysRevA.74.022320
http://dx.doi.org/10.1103/PhysRevA.74.022320
http://dx.doi.org/10.1103/PhysRevA.74.022320
http://dx.doi.org/10.1103/PhysRevA.74.022320
http://dx.doi.org/10.1103/PhysRevB.82.205105
http://dx.doi.org/10.1103/PhysRevB.82.205105
http://dx.doi.org/10.1103/PhysRevB.82.205105
http://dx.doi.org/10.1103/PhysRevB.82.205105
http://dx.doi.org/10.1103/PhysRevB.88.195102
http://dx.doi.org/10.1103/PhysRevB.88.195102
http://dx.doi.org/10.1103/PhysRevB.88.195102
http://dx.doi.org/10.1103/PhysRevB.88.195102
http://dx.doi.org/10.1007/s00041-009-9094-9
http://dx.doi.org/10.1007/s00041-009-9094-9
http://dx.doi.org/10.1007/s00041-009-9094-9
http://dx.doi.org/10.1007/s00041-009-9094-9
http://dx.doi.org/10.1103/PhysRevB.54.7598
http://dx.doi.org/10.1103/PhysRevB.54.7598
http://dx.doi.org/10.1103/PhysRevB.54.7598
http://dx.doi.org/10.1103/PhysRevB.54.7598
http://dx.doi.org/10.1209/epl/i2002-00393-0
http://dx.doi.org/10.1209/epl/i2002-00393-0
http://dx.doi.org/10.1209/epl/i2002-00393-0
http://dx.doi.org/10.1209/epl/i2002-00393-0
http://dx.doi.org/10.1080/03081087.2012.663371
http://dx.doi.org/10.1080/03081087.2012.663371
http://dx.doi.org/10.1080/03081087.2012.663371
http://dx.doi.org/10.1080/03081087.2012.663371



