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Multiple Wavelet Convolutional Neural Network
for Short-term Load Forecasting

Zhifang Liao, Member, IEEE, Haihui Pan, Xiaoping Fan, Member, IEEE, Yan Zhang, and

Li Kuang, Member, IEEE,

Abstract—Although the accuracy of load forecasting has been
studied by many works, the actual deployability of a model
is rarely considered. In this work, we consider the actual
deployability of a model from four aspects: the prediction
performance of the model, the robustness of the model, the
dependence of the model on external data and the storage size of
the model. From these four aspects, we propose a multiple wavelet
convolutional neural network (MWCNN) for load prediction. On
two public datasets, we verified the performance performance
and robustness of the MWCNN. The MWCNN only uses load
data, and the storage size of the model is only 497 KB, which
shows that MWCNN has good deployability. In addition, our
MWCNN prediction results are interpretable. The experimental
results show that the MWCNN can effectively capture the
periodic characteristics of load data.

Index Terms—Short-term load forecasting, convolutional neu-
ral network, wavelet reconstruction, deployability, interpretabil-
ity.

I. INTRODUCTION

SMART grid (SG), which is the intelligence of the power

grid, is also an important part of the Internet of Things

(IoT) [1]. Load forecasting is of great significance to the

management and dispatching of SG. Generally, the amount

of power generated should be as consistent as possible with

the actual load demand. Therefore, accurate forecasting results

will have a significant impact on power dispatching operations

and management. However, the actual load demand is often

affected by many factors, such as social, economic, and

environmental factors, so accurate load prediction is difficult

[2].

Many methods have been proposed and applied to short-

term load forecasting. Early load forecasting models include

linear or nonparametric regression [3], [4] and autoregressive

models [5]. However, these statistical method-based model

structures are usually simple and have a low load forecasting

accuracy. With the maturity of expert system technology, some

researchers have built expert systems to carry out load fore-

casting [6]. In recent years, support vector machines have been

widely used in load forecasting. Researchers have improved

load prediction performance by improving support vector re-

gression (SVR) optimization techniques or SVR loss functions
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[7], [8]. However, as the number of training samples increases,

support vector machines (SVMs) do not work well. Neural

networks have attracted the attention of many researchers due

to their excellent fitting capabilities. At present, many neural

network-based load prediction methods have been extracted

and obtained excellent results [9], [10], [11]. Benefiting from

the success of deep learning [12], [13], some researchers have

achieved better prediction performance by adopting advanced

network structures and deep networks [14], [15], [16].
In previous studies, researchers often focused on improving

the accuracy of load forecasting, but the actual deployability

of the model was rarely considered. In this work, we mainly

consider the deployability of the model from four aspects: the

prediction performance of the model, the robustness of the

model, the dependence of the model on external data and

the storage size of the model. The prediction performance

of the model is the main premise for the deployability of

the model; that is, the more accurate the model’s prediction

accuracy is, the better the value that the model can create. The

robustness of the model is the premise for the stable use of the

model. Due to objective and uncontrollable factors such as data

measurement or data recording deviations, there is usually a

certain deviation between the obtained data and the actual data.

This phenomenon requires that the proposed model have good

robustness. That is, the slight disturbance of the model to the

input should not cause too much difference in the prediction;

the more external datasets the model needs to use, the more

critical the model is to the deployed scenario. For example, in

some closed scenarios or when the power system does not have

an interface to obtain external data, these methods that require

external data will not be adaptable; the less storage space the

model has, the better it will be for actual deployment.
In view of the above four aspects, we first propose a

feature engineering method based on wavelet reconstruction

and then propose a multiple wavelet convolutional neural

network (MWCNN) for load forecasting. Next, to further

increase the prediction performance of the model, we propose

an ensemble scheme based on multiple wavelets. Then, we

verify the robustness of the model by perturbing the input to

varying degrees. Finally, we present the interpretability of the

prediction results of the MWCNN. The contribution of this

work can be summarized into the following four parts:

• We propose a feature engineering method based on

wavelet reconstruction, and based on this method, we

propose the MWCNN for load prediction. The MWCNN

uses only raw load series data and the storage space

required for the model is only 497 KB which indicates
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that the MWCNN has good actual deploability. On two

public datasets, we validate the prediction performance

of the MWCNN.

• To further improve the prediction performance of the

model, we propose an ensemble scheme based on mul-

tiple wavelets. The experimental results show that the

ensemble model has a better prediction performance than

the single model. At the same time, we find that the

ensemble model can also significantly reduce the range

and standard deviation of the model’s prediction bias.

• We add different degrees of disturbance to the original

load data to verify the robustness of the model. We use

various Gaussian distributions with different means and

variances to generate 56 groups of noise and add these

disturbances to the original load data. Compared to the

model without added noise, the maximum increase in

the MAE of the model with noise is only 4.72 and the

maximum increase in the MAPE is only 0.03%, which

shows that the MWCNN has good robustness.

• We use the attribution method to explain the prediction

results of the MWCNN. On two public datasets, we find

that the data point closest to the prediction has the largest

impact on the final prediction result. The data closer to

the prediction time point tend to have a greater impact on

the final prediction result. Interestingly, we find that some

time points with large data for prediction have periodic

intervals, which shows that the MWCNN can capture the

periodic characteristics in the load data.

II. RELATED WORK

In [6], a computational intelligence method (ACO-GA)

combining ant colony optimization, the genetic algorithm and

fuzzy logic is proposed to build the expert system of load

forecasting. The core of the expert system method lies in the

construction of a related knowledge base, but the construction

of a knowledge base is a time-consuming process; when

new data is needed to update related rules, maintenance will

become difficult, which leads to the lack of adaptability of

the expert system. SVMs use the information provided by

a limited sample to find an optimal compromise between

model complexity and learning ability. The map the input

data into a high-dimensional space, making classification and

regression problems easier to solve. In [7], the feature selection

algorithm was proposed for automatic model input selection,

and particle swarm global optimization technology was used

to optimize SVR hyperparameters to reduce the interaction be-

tween operators. In [8], an improved support vector regression

method was proposed for the load-forecasting problem, and the

loss function of the SVR was modified using local weighted

regression. A weighted distance algorithm based on Markov

distances was proposed to optimize the bandwidth of the

weighting function. Although support vector machines have

achieved good results in small-sample problems, as the number

of training samples increases, the complexity of the model

training time increases dramatically, which makes support

vector machines difficult to implement in many cases. Load

forecasting data usually contain both a global smooth trend

and a sharp local change, that is, low-frequency and high-

frequency components. A wavelet transform can effectively

decompose a time series into its components, so it is an

effective method to deal with nonstationary load behaviors.

At present, many load prediction methods based on wavelet

transforms have been proposed. In [9], a wavelet transform

is used to decompose the original load sequence, and then

multiple multilayer perceptrons (MLPs) are used to train

and predict each decomposed component. Finally, the various

subcomponents are combined to obtain the final prediction. In

[10], the wavelet transform effectively decomposes the time

series into its constituent parts. Each component is predicted

by a combination of neural networks (NNs) and evolutionary

algorithms (EAs), and then hourly load prediction is obtained

by an inverse wavelet transform. In [11], a wavelet transform

was used to decompose the load sequence to capture the

complex features at different frequencies. Then, a combination

model composed of a extreme learning machine (ELM) and

the modified artificial bee colony (MABC) algorithm is used

to predict each component of the load sequence. In [17],

a similar daily load is selected as the input load, and it

is decomposed into low-frequency components and high-

frequency components by a wavelet transform. Then, the

independent network is used to predict the two components

of the future load. Benefiting from the development of deep

learning, many researchers have improved load prediction

performance by adopting more advanced network structures

and building deeper networks. In [14], a deep neural network is

used for load prediction. In [15], a short-term load forecasting

method based on a deep residual network was proposed, and

the generalization ability of the model was improved through

a two-stage integration strategy. In [16], a WaveNet based on

a dilated causal residual convolutional neural network (CNN)

and long short-term memory (LSTM) layers was proposed for

load prediction. In [18], a multilayer LSTM network was used

for load prediction.

III. METHOD

A. Feature Engineering Based on Wavelet Reconstruction
The power load series usually contains both a global smooth

trend and a sharp local change, that is, low-frequency and high-

frequency components. Therefore, a wavelet transform can ef-

fectively decompose the power load series into its components.

Let L(t) be a load sequence, which can be decomposed into

L(t) =
∑
k

φj0(k)2
j0
2 ϕ(2j0t−k)+

∑
k

∞∑
j=j0

Φj(k)2
j
2ψ(2jt−k)

(1)

where ψ(t) is the parent wave function, ϕ(t) is the corre-

sponding scale function, t is the time index, j0 is a predefined

scale, j and k are integer variables used for scaling and transla-

tion, respectively, and φj0(k) and Φj(k) are approximate and

detailed coefficients, respectively.
At present, many wavelet-based methods have been pro-

posed and applied to load prediction. The core idea is to

decompose the load sequence into several components and

then send the components into one or more models for pre-

diction [10], [11], [17]. Different from these existing methods,
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Fig. 1. Four different types of wavelets are used to reconstruct the load data,
and the original load data are concatenated with four reconstructed data to
obtain the final data. WR represents wavelet reconstruction, and the type of
wavelet used is in brackets.

we mainly deal with the load sequence from the perspective

of reconstruction, as the high-frequency components in the

sequence are usually regarded as noise in the data, and

more realistic and smooth data can be obtained by using the

denoising reconstruction method. The whole process is shown

in Figure 1. We first obtain the load data of 7 weeks before

the forecast time point, i.e., 168 data points. Then, we use four

different types of wavelets (db2, db3, db4, and db5) to decom-

pose, denoise and reconstruct the load sequence to obtain four

different groups of reconstruction data. Then, we concatenate

the four groups of reconstruction data with the original data

to obtain the final data, so the final processed data shape is

5× 168. Since the level of decomposition and the method of

denoising have a great influence on the reconstruction results,

in the experiment, we explore the influence of the 1-3-level

decomposition and soft threshold reconstruction method [19],

hard threshold reconstruction method [19] and high-frequency

zero reconstruction method on the load forecasting results. The

specific experimental results are presented in Experiment B.

In the experiment, we find that 2-level and high-frequency

zero reconstruction can achieve the best results. The process-

ing process of this method is shown in Figure 2. First, the

load sequence is decomposed into two components A1 and D1,

where A1 is the low-frequency component and D1 is the high-

frequency component. Next, the A1 component is decomposed

to obtain A2 and D2, and the high-frequency component D2

of A1 is set to 0 to obtain D′
2. Finally, D′

2, A2, and D1 are

reconstructed to obtain Load′. The difference between this

method and the existing methods is that the component of

the load sequence is not used as the input of the model,

and we use many different types of wavelets to reconstruct

the load sequence. We finally stitched together the 4 sets of

reconstructed data with the original data to obtain the final

data, which facilitated the introduction of the CNN.

B. Architecture of the MWCNN

Due to its good feature extraction capabilities, CNN has

achieved success in many fields [20], [21]. In this paper, after

reconstructing the original load sequence, we introduce a CNN

to extract potential features from the reconstructed data. The

design idea of the model structure mainly focuses on two

points. On the one hand, the total number of parameters in

the model should be as small as possible; that is, the storage

space occupied by the model is small, which will be beneficial

Fig. 2. Two-level wavelet decomposition and the reconstruction process. The
solid line represents the wavelet decomposition process, and the dotted line
represents the process of wavelet reconstruction. Mask means that the values
of D2 are all set to 0. By using different types of wavelets, we can obtain
different reconstruction data.

TABLE I
ARCHITECTURE OF MWCNN

Type Filters Kernel size Stride Output size Depth Params
Convolution 30 1× 8 1, 3 (5, 56, 30) 1 270
Convolution 30 2× 2 1, 1 (5, 56, 30) 1 3630
Convolution 30 3× 3 1, 2 (5, 28, 30) 1 8130
Convolution 30 3× 3 1, 2 (5, 14, 30) 1 8130
Convolution 30 3× 3 1, 2 (5, 7, 30) 1 8130
Convolution 16 2× 2 1, 1 (5, 7, 16) 3 4016
Convolution 8 2× 2 1, 1 (5, 7, 8) 3 1048
Convolution 4 2× 2 1, 1 (5, 7, 4) 3 268
Convolution 1 2× 2 1, 1 (5, 7, 1) 1 17
Avg pool 0 0 - 1 1 0

to the actual deployment of the model. On the other hand, the

prediction accuracy of the model should be as high as possible,

which is the premise that the model can be deployed. Research

shows that the depth of the model and the structure of the

model have a great impact on the final model performance

[20], [22]. However, an increase in the model depth means an

increase in the total number of model parameters, so we need

to weigh the model’s depth, that is, the total number of model

parameters and the performance of the model when designing

the model.

Due to the large difference between the length and width

of the model input (the width is only 5, and the length is

168), the padding of all the convolution layers is set to the

same value, and the height strip is set to 1 to ensure that the

height of the input before and after the convolution remains

the same, which makes the model deeper. The details of the

architecture of the MWCNN model are shown in Table 1.

Except for the final layer, which is a global pooling operation,

all the other layers are convolution layers to better extract the

features in the input. In the CNN model, setting the output

layer to a global pooling layer rather than a fully connected

layer usually achieves better generalization capabilities [23].

Another advantage of using global pooling is that it does not

increase the number of training parameters. The number of

model layers of the MWCNN is 16 (excluding the input layer),

which ensures that the model has enough fitting ability. The

total number of parameters in the final model are only 33,639,

occupying only 497 KB of storage space. At the same time,

the MWCNN only uses load data as input, which shows that

the model is deployable in almost any scenario. The general

procedures of the MWCNN is shown in Figure 3.
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Fig. 3. The general procedures of the MWCNN. Four different types of
wavelets (db2, db3, db4 and db5) are used to reconstruct the original load
data. The original load data are concatenated with four reconstructed data as
the input of MWCNN.

Fig. 4. Structure diagram of the integrated method based on multiple wavelet
reconstruction. For each CNN, we will use different types of wavelet clusters
to reconstruct the original load sequence. After all the CNNs are trained, the
prediction results of the CNNs are averaged to obtain the final prediction
results.

C. Ensemble Method Based on Multiple Wavelet Reconstruc-
tion

To improve the prediction performance of the model, mul-

tiple models are usually integrated to improve the prediction

effect. However, using the integrated method requires two

premises: the prediction performance of a single model should

be as high as possible, and the differences between the models

should be as large as possible. A common method is to ensure

the diversity of the model as much as possible by randomly

selecting the training dataset. However, this method reduces

the number of training samples, so the performance of a single

model will be reduced. To ensure the prediction accuracy of a

single model and the differences between models, this paper

proposes an integrated method based on multiple wavelets.

This method uses different types of wavelets to reconstruct

the original load data to obtain different model inputs. The

overall structure of the method is shown in Figure 4. For each

CNN, we will use multiple types of wavelets to reconstruct

the original data. The load sequence is reconstructed to obtain

different inputs. After training all the CNNs, we average the

prediction results of each CNN to obtain the final integrated

prediction result. There are two obvious benefits to using this

method: first, the dataset does not need to be randomly divided,

and all the datasets can be used to train the model, which

can ensure that the prediction accuracy of a single model

is as high as possible. Second, different wavelet clusters are

used to reconstruct the original data to obtain different inputs,

which can ensure the diversity of the model. In Experiment

C, we find that when the integration scale is 6, the integration

performance is the best. The wavelet clusters used by these 6

models are (db2, db3, db4, and db5), (db6, db7, db8, and db9),

(db10, db11, db12, and db13), (db14, db15, db16, and db17),

(sym2, sym3, sym4, and sym5), and (sym6, sym7, sym8, and

sym9).

D. Interpretability of Load Forecasting

Although deep neural networks (DNNs) have made great

achievements, they have always been regarded as a black-box

method, which has caused some people to worry about the

application of neural networks, and it also shows that we

are not clear about the working mechanism behind neural

networks. To explain the decision results of neural networks,

many studies have attributed the prediction results of deep

networks to the problem of their input characteristics [23],

[24]. Assuming that F (x) is a deep neural network and

x ∈ Rn is the input, the prediction attribution of input x to

benchmark input x′ is a vector AF (x, x
′) = (a1, ..., an), where

ai is the contribution of xi to prediction F (x). In general, the

prediction at the baseline should be close to zero F (x′) ≈ 0.

In [25], an attribution method of integral gradient is pro-

posed. The integral gradient is defined as the path integral

from the baseline x′ to the gradient of the input x along a

straight path. Specifically, the integral gradients of input x and

baseline x′ along the i-th dimension are defined as follows:

IGi(x) = (xi − x′i)×
∫ 1

α=0

∂F (x′ + α(x− x′))
∂xi

dα (2)

where
∂F (x)
∂xi

is the gradient of F (x) along the i-th dimension.

Integral gradients have two good properties: sensitivity and

implementation invariance. Sensitivity means that if a change

in a feature changes the final prediction results, then the feature

needs to be assigned an attribution attribute; achieving nonde-

formation means that if two models have the same function

(all the same inputs have the same output) but have different

model structures, the interpretable method’s interpretation of

the two models should be consistent.

In this work, we use integral gradients to explain the

prediction results of the MWCNN. Specifically, we first use

the integral gradient to calculate the contribution A ∈ R5×168

of each dimension of the input to the final prediction, and

then we average each column of A to obtain the effect of

each historical time point of the input on the final prediction.

In Experiment F, we explain the prediction of the model on

two public datasets.

E. Implementation Details

In all experiments, ReLU [26] is selected as the activation

function of the model and the loss function of the model is

the mean absolute error. The selection of the optimizer plays

an important role in the final convergence performance and

convergence time of the model[27], [28]. Since Adam[29] can
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promote the convergence of deep neural network, we choose

Adam as the optimizer. To make the training of the model

more stable, we set the learning rate plan for the optimizer.

The Adam optimizer’s initial learning rate is 0.001, and the

learning rate is divided into 10 after every 600 iterations. The

total training time of the model is 1200, and the training batch

size is 256. He normal initialization [30] is used to initialize

the parameters of all the models. To reduce the impact of

random initialization, all the random initialization seeds are

set to 0. The deep learning framework we use is Keras 2.1.0

with TensorFlow-GPU 1.15.0 as the backend [31], [32]. All the

experiments are implemented in the Python 3.6 environment.

We use the mean absolute percentage error (MAPE), mean

absolute error (MAE) and root mean squared error (RMSE)

to evaluate the performance of the model.

ReLU(x) = max {0, x} (3)

MAPE =
1

M

M∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣× 100% (4)

MAE =
1

M

M∑
i=1

|yi − ŷi| (5)

RMSE =

√√√√ 1

M

M∑
i=1

(yi − ŷi)2 (6)

where M is the number of samples, yi is the actual load value,

and ŷi is the predicted load value.

IV. EXPERIMENT

A. Datasets

We use two public datasets, the Independent System Oper-

ator New England (ISO-NE) dataset and the North American

Utility (NAU) dataset, to verify the validity of the model. Both

the ISO-NE dataset and the NAU dataset contain one-hour

resolution load data. The time range of the ISO-NE dataset

is from March 2003 to December 2014, and that of the NAU

dataset is from January 1985 to October 1992.

B. Effectiveness of Feature Engineering and the Model Archi-
tecture

1) Effectiveness of Wavelet-based Feature Engineering:
The quality of feature engineering has a great influence on

the model performance[33], [34]. In this case, we mainly

verify the validity of the proposed wavelet-based feature

engineering and the validity of the MWCNN structure design.

We perform experiments on the ISO-NE dataset, where the

training set ranges from 2010 to 2011, and the last month

of the training set is used as the validation set; the range

of the test set is 2012. We compare the proposed feature

engineering method based on wavelet reconstruction with

the soft-threshold-based wavelet reconstruction method, the

hard-threshold-based wavelet reconstruction method, and the

unprocessed raw load dataset. The model structure of all the

feature engineering methods are shown in Table 2. Since

the original load data are one-dimensional, the ANN model

structure is adopted. For the sake of fairness, the total number

TABLE II
LOAD PREDICTION RESULTS OF THE DIFFERENT DECOMPOSITION LEVELS

AND DIFFERENT WAVELET RECONSTRUCTIONS

MAPE(%) MAE

ANN 0.76 112.73
MWCNN-1-level 0.39 57.72
MWCNN-2-level 0.34 50.49
MWCNN-3-level 0.36 52.98
MWCNN-hard-1-level 0.36 53.47
MWCNN-hard-2-level 0.36 52.69
MWCNN-hard-3-level 0.36 52.89
MWCNN-soft-1-level 16.32 2248
MWCNN-soft-2-level 16.29 2246
MWCNN-soft-3-level 16.25 2240

of parameters of the ANN model are as close as possible to

those of the MWCNN. Since the level of wavelet decompo-

sition has a great influence on the final prediction results, we

decompose all the feature engineering methods from the 1-

3 level. The experimental results are shown in Table 2. The

best results are obtained by using the wavelet reconstruction

method with 2-level high-frequency zeroing. Compared with

the ANN, the MAPE is improved by 55.26% and the MAE is

improved by 55.21%, which shows that compared with using

only the original load data, the potential features in the load

sequence can be extracted better by combining a CNN and

the high-frequency zeroing wavelet reconstruction method. In

the following experiments, we use the wavelet reconstruction

method with 2-level high-frequency zeroing. Then, we find

that the level of wavelet decomposition has a certain influence

on the method of high-frequency zeroing but has a minimal

influence on the method of hard threshold. Finally, we notice

that the reconstruction method based on soft thresholding will

lead to a bad result.

2) Effectiveness of Architecture of the MWCNN: To verify

the validity of the MWCNN model structure, in addition

to comparing the proposed model with the ANN, we also

add one layer or remove one layer to the structure of the

MWCNN to show that our proposed model structure is locally

optimal. In addition, research shows that adding different

attention mechanisms to the channel of the convolution layer

can improve the performance of CNN [35], so we also add an

SE operation to each convolution layer of the MWCNN. The

experimental results are shown in Figure 5. We find that all

the CNN-based models are significantly better than the ANN.

At the same time, the effect of the MWCNN is slightly better

than that of MWCNN1 (one layer is removed on the basis of

the MWCNN) and MWCNN2 (one layer is added on the basis

of the MWCNN), which indicates that the model result of the

MWCNN is locally optimal. Interestingly, increasing the SE

does not increase the final prediction performance. We think

that this finding is because the model introduces additional

training parameters and leads to overfitting.

C. Multiple Wavelet Reconstruction Ensemble Scheme

The number of integrated models has a large impact on

the final prediction result, so we first determine the optimal

number of integrated models through experiments. Later, we
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Fig. 5. Test loss values of the MWCNN and other model structures on the
ISO-NE dataset. MWCNN1 means that one layer is removed from the model
structure of the MWCNN, MWCNN2 means that one layer is added from
the model structure of the MWCNN, and MW-SE-CNN is meas that one SE
block is added to each convolution kernel in the structure of the MWCNN.

also explore the differences between the integrated model and

the single model in predicting the range and standard error of

prediction errors. The reason we are concerned about the fore-

cast range and forecast standard deviation is that the energy

management efficiency of smart grids will be strongly affected

by the forecast range, which is because underestimating the

load demand will cause a power shortage, and overestimating

the load demand will cause overproduction. In both cases, the

larger the forecast range is, the higher the management cost of

the smart grid. Therefore, in some cases, managers will choose

a predictor with low prediction variance but high average error

instead of a predictor with high prediction variance and low

average error.

We use the ISO-NE dataset to explore the effectiveness of

the multiwavelet-based integration method. The training set

ranges from 2007 to June 2008, and the last month is used as

the validation set. The test set ranges from July 2008. From 1

to July 31, 2008. We specifically explore the MAPE, the MAE,

the maximum deviation of the prediction, and the standard

deviation of the prediction deviation from a single model to

the integration of 16 models. The experimental results are

shown in Table 3. When 6 models are integrated, the prediction

performance is the best, and the predicted range and standard

deviation of the prediction deviation are much lower than those

of the single model. We find that the performance of model

prediction does not increase with increasing integration scale,

but all the results of the integration model are better than

those of the single model, which indicates that the integration

method does improve the performance of the model. Although

the model predicts the MAX and SD when the integration size

is either 10 of 12, they are not too different from the MAX

and SD when the integration size is 6. At the same time, from

the perspective of actual deployment, it is relatively simple

to deploy 6 models, so in the subsequent experiments, the

integration size is set to 6.

TABLE III
THE EFFECT OF THE ENSEMBLE SIZE

Ensemble Size MAPE MAE MAX SD

1 0.3578 61.9005 491.1133 57.3087
2 0.3416 59.0441 461.0059 54.5438
3 0.3400 58.6264 430.6973 52.8673
4 0.3365 58.0773 423.5898 52.5574
5 0.3300 56.9975 421.1367 52.3546
6 0.3275 56.6630 414.0840 52.0145
7 0.3296 57.0019 419.1855 51.6429
8 0.3300 57.0421 400.1797 51.5771
9 0.3303 57.0216 401.0078 51.5537
10 0.3304 57.0651 391.5430 51.5339
11 0.3301 56.9951 393.9629 51.5792
12 0.3313 57.2475 393.4883 51.4599
13 0.3336 57.6321 399.2305 51.7851
14 0.3335 57.6187 403.1914 51.6984
15 0.3335 57.6000 403.5293 51.7416
16 0.3335 57.6652 402.4609 51.9615

D. Performance of the Proposed Model on the Public Datasets

To verify the predictive performance of the model, we

compared the proposed model with existing methods on the

two public datasets. In addition to comparisons with existing

methods, we also add an ANN as the baseline. In all the com-

parisons, the predictive performance of single and integrated

models is reported. In the ISO-NE dataset, we performed two

performance comparisons due to the different test set ranges

selected by the existing methods. We compare the proposed

model with the three methods [36], [37], [11], where the

training set ranges from January 1, 2007, to June 30, 2008,

and the last month of the dataset is used as the validation

set. The test set range is from July 1, 2008, to July 31, 2008.

The experimental results are shown in Table 4. Our single

model and integrated model are better than the other methods.

Specifically, compared to WT-ELM-MABC, our single model

improves the MAPE by 20% the MAE by 16.81%, and our

integrated model improves the MAPE by 26.7% and the MAE

by 24.5%. We will also compare the proposed method with

the methods of [38], [39], [16], where the training set ranges

from January 1, 2004, to December 31, 2005, and the last

month of the dataset is used as the validation set and the

test set. The range is from May 1, 2006, to May 31, 2006.

The experimental results are shown in Table 5. Our single

model and integrated model are better than the other methods.

Specifically, compared to the method proposed by Pramono

et al.[16], our single model improves the MAPE by 21.74%,

the MAE by 21.84%, and the RMSE by 24.2%; our ensemble

model improves the MAPE by 30.4%, the MAE by 29%, and

the RMSE by 29.5%.

In the NAU dataset, we compare the proposed model with

five existing methods [40], [41], [10], [7], [11]. The training

set range is from January 1, 1988, to October 11, 1990, and the

last month of the dataset is used as the validation set. The test

set range was from October 12, 1990, to October 12, 1992. To

verify that the model has good robustness to temperature noise,

Gaussian disturbances are added to the original temperature

data, and the model’s robustness is verified by calculating

the model performance changes before and after the distur-
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Fig. 6. The MAPE and MAE after adding noise disturbance to the model input. We use Gaussian distributions with a mean in (-3, -2, -1, 0, 1, 2 and 3) and
a variance in (0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 and 2.1) to generate 56 sets of noise perturbations and add them to the training set. After training, the MAE and
MAPE of the undisturbed test set are calculated.

TABLE IV
THE MAPE (%) AND MAE OF ONE-HOUR-AHEAD LOAD FORECASTING

ON THE ISO-NE DATASET. + REPRESENTS THE RESULTS OF THE

ENSEMBLE METHOD

MAPE MAE

ANN 0.79 138.30
ISO-NE[36] 0.81 138
WNN[37] 0.49 84
WT-ELM-MABC[11] 0.45 74.41
MWCNN 0.36 61.90
MWCNN+ 0.33 56.19

TABLE V
THE MAPE (%), MAE AND RMSE OF ONE-HOUR-AHEAD LOAD

FORECASTING ON THE ISO-NE DATASET. + REPRESENTS THE RESULTS OF

THE ENSEMBLE METHOD

MAPE MAE RMSE

ANN 0.62 86.55 120.34
Tian et al[38] 0.66 88.07 141.97
Kong et al[39] 0.48 65.12 100.50
Wavenet[16] 0.57 78.02 125.11
Pramono et al[16] 0.46 62.23 88.31
MWCNN 0.36 48.64 66.94
MWCNN+ 0.32 44.22 62.27

bance addition. Since our proposed method does not require

the use of a temperature dataset, increasing the temperature

noise perturbation will not cause changes in the prediction

results. The experimental results are shown in Table 6. Our

single model has the same prediction performance as WT-

ELM-MABC. However, because our method does not require

temperature data, our model predicts performance when noise

is added to the temperature data. Our model is lightly better

than WT-ELM-MABC. The prediction performance of our

integrated model is better than that of WT-ELM-MABC. At

actual temperatures, the MAPE is improved by 4.5%, and

at noisy temperatures,the MAPE is improved by 7.2%. The

experimental results show that our proposed model has good

prediction performance on both public datasets.

TABLE VI
THE MAPE (%) OF ONE-HOUR-AHEAD LOAD FORECASTING ON THE NAU

DATASET. + REPRESENTS THE RESULTS OF THE ENSEMBLE METHOD

Actual temperature Noisy temperature

ANN 0.85 0.85
ESN[40] 1.14 1.21
M2[41] 1.10 1.11
WT-NN-EA[10] 0.99 -
SSA-SVR[7] 0.72 0.73
WT-ELM-MABC[11] 0.67 0.69
MWCNN 0.67 0.67
MWCNN+ 0.64 0.64

E. Robustness Analysis of the Proposed Model

In the actual deployment environment of load forecasting,

due to objective and uncontrollable factors such as data

measurement errors or data record deviations, there is usually

a certain deviation between the data we finally obtain and

the actual data. This phenomenon requires that our proposed

model have good robustness; that is, the slight disturbance of

the model to the input should not cause excessive prediction

differences. Let f(x) be the load prediction model and Δδ
be a slight disturbance; then, the robustness of the model can

be expressed as f(x + Δδ) ≈ f(x). In this experiment, we

verify the robustness of the model by adding different degrees

of perturbations to the input of the model. Specifically, we use

Gaussian distributions with a mean in (-3, -2, -1, 0, 1, 2 and

3) and variance in (0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 and 2.1) to

generate 56 groups of disturbance noise, and the range of the

generated disturbance noise is [-11.45, 11.74]. We only add

noise to the training set and evaluate the test set after training

the model. We use ISO-NE as the dataset, where the range of

the training set is 2006-2007, and the last month is used as the

test set. The range of the test set is 2008. The experimental

results are shown in Figure 6. We find that adding noise to

the data does not have a large impact on the prediction results

of the model. In fact, compared to the model without added

noise, the maximum increase in the MAE of the model with

only noise is only 4.72, and the maximum increase in the
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Fig. 7. The figure above uses the integral gradient to calculate the importance of each dimension of certain ISO-NE data, where (a1) is the contribution
value of each dimension to the final prediction and (a2) is the average of each column of a1 to obtain each historical time contribution of points to the final
prediction. The following figure shows the calculation results for the NAU data.

Fig. 8. (a) is the contribution value of historical data points to the final prediction on the ISO-NE dataset, and (b) is the contribution value of historical data
points to the final prediction on the NAU dataset. We select 100 data points from the two datasets, calculate the contribution value of the historical data points
of a single data point to the final prediction, and average the contribution values at the same time point to obtain the final result.

MAPE is only 0.03%. When a Gaussian disturbance with a

mean of -2 and a variance of 1.8 is added to the model, the

model’s MAE is reduced by 1.24. This finding shows that our

proposed model has very good robustness.

F. Interpretability of Load Forecasting

Although many neural network-based methods are currently

used for load prediction [11], [15], [16], these methods do

not provide any explanation for the results of load prediction.

In this use case, we use the integral gradient [25] to explain

that our model relies on that input to make the final predic-

tions. We provide attributional explanations for the prediction

results of the MWCNN model in Experiment D on the two

public datasets. Specifically, we randomly select one dataset

from ISO-NE and NAU and provide the prediction basis of

the model. The experimental results are shown in Figure 7.

The figure above uses the integral gradient to calculate the

importance of each dimension of certain ISO-NE data, where

(a1) is the contribution value of each specific dimension to the

final prediction and (a2) is the (a1). Each column is averaged

to obtain the contribution value of each historical time point to

the final prediction. The following figure shows the calculation

results of the NAU data. From (a2) and (b2), we can clearly

find that the data closer to the prediction time point have a

greater impact on the final prediction, but this impact has both

positive and negative effects. At the same time, both the ISO-
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NE and NAU datasets show that the first data point near the

prediction time has the largest impact on the final prediction

and is positive.

Considering that the interpretation given for the prediction

of singleton data may have randomness, we make predic-

tions for more data to obtain more general interpretation

conclusions. We first select 100 data points on the ISO-NE

and NAU datasets and calculate the historical time point of

each data point to the final prediction value. The calculation

results are shown in Figure 7 (a2). Then, we averaged the

contribution values of the final predictions at the 100 same

historical time points to obtain the contribution value of the

final predictions at each historical time point of the many

datasets. The experimental results are shown in Figure 8,

where Figure 8 (a) is the result calculated on the ISO-NE

dataset, and Figure 8 (b) is the result calculated on the NAU

dataset. From the figure, we can obtain the same predictions as

the singleton prediction interpretation. The data closer to the

prediction time point have a greater impact on the final result,

and the first data point near the prediction time has the largest

impact on the final prediction and is positive. In addition, we

also find that although the data points that are farther away

from the prediction time point have a weaker contribution to

the prediction, some local areas have some data points that

contribute far more than other points in the area, as shown in

Figure 8. The right-most value in the red interval region, and

the maximum value in the interval decreases with time, which

also indicates that the data with a longer isolation prediction

time have less contribution to the prediction. Interestingly,

the interval from the maximum value of one region to the

maximum value of another region is exactly 24 h, which shows

that the MWCNN model can well capture the local periodicity

in historical prediction data. We hypothesize that the reason

why the MWCNN model has better prediction performance

than the other models is because the MWCNN model can

better capture the potential periodic features in the load data.

V. CONCLUSION AND DISCUSSION

In this work, we propose a feature engineering method based

on wavelet reconstruction, and based on this, we propose an

MWCNN for short-term load prediction. To further improve

the prediction performance, we propose an integrated scheme

based on multiple wavelets. The MWCNN does not use

external datasets, and the storage size of the model is only

497 KB. The MWCNN has superior prediction performance

and good robustness, which we have verified on two public

datasets. In terms of the predictive performance of the model,

the robustness of the model, the dependence of the model on

external data, and the size of the model storage, the MWCNN

has good practical deployability.

We believe that the effectiveness of MWCNN mainly comes

from the following three aspects. Firstly, we propose a feature

engineering method based on wavelet reconstruction. In this

method, different types of wavelet are used to decompose the

original load series, and then the high frequency component is

set to 0 for reconstruction. The results of Experiment B show

the effectiveness of our feature engineering. Secondly, we use

CNN to extract the potential features of the reconstructed

load data. The results of experiment F show that MWCNN

can well extract the potential periodic characteristics of load

data. We think this is the main reason why WMCNN can

achieve superior performance. Finally, we adopt the wavelet-

based ensemble scheme to further improve the prediction

performance. There are two obvious benefits to using this

method: first, the dataset does not need to be randomly divided,

and all the datasets can be used to train the model, which can

ensure that the prediction accuracy of a single model is as

high as possible. Second, different wavelet clusters are used

to reconstruct the original data to obtain different inputs,which

can ensure the diversity of the model. The results of the

Experiment D show the effectiveness of our ensemble method.
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