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Abstract

Federated Learning is a framework that jointly trains a model with complete knowledge on a remotely placed

centralized server, but without the requirement of accessing the data stored in distributed machines. Some

work assumes that the data generated from edge devices are identically and independently sampled from a

common population distribution. However, such ideal sampling may not be realistic in many contexts. Also,

models based on intrinsic agency, such as active sampling schemes, may lead to highly biased sampling. So an

imminent question is how robust Federated Learning is to biased sampling? In this work1, we experimentally

investigate two such scenarios. First, we study a centralized classifier aggregated from a collection of local

classifiers trained with data having categorical heterogeneity. Second, we study a classifier aggregated from a

collection of local classifiers trained by data through active sampling at the edge. We present evidence in

both scenarios that Federated Learning is robust to data heterogeneity when local training iterations and

communication frequency are appropriately chosen.

Keywords: Intelligent Edge Computing, Fog Computing, Active Learning, Federated Learning, Distributed

Machine Learning, User Data Privacy

1. Introduction

Federated Learning [1] is a promising method to enable edge Intelligence and data protection at the same

time. FL is of significant theoretical and practical interest. From a theoretical point of view, Federated

Learning poses challenges in terms of, e.g., consistency (do distributed learning lead to the same result

as centralized learning) and complexity (how much of the potential parallelism gain is realized). From a5

practical point of view, Federated Learning offers unique opportunities for data protection. In particular,

Federated Learning can be realized without “touching” the training data, but rather the data remains in its

generation location, which provides the opportunity to secure user privacy. It is very intrinsic to bring it to IoT
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application, in particular, when 5G is arriving. For instance, FL is exerted in industrial IoT (IIoT) to predict

electric drivers’ maintenance in the fog computing platform [2]. The medical data collected from distributed10

individuals can be processed locally and share the metadata with the central server at some point to protect

personal privacy [3]. Extending FL to other machine learning paradigms, including reinforcement learning,

semi-supervised and unsupervised learning, active learning, and online learning [4, 5] all present interesting

and open challenges. Some works assume that data is Independent and Identically Distributed (IID)

on the edge devices, which is evidently a strong assumption, say in a privacy-focused application. Users are15

not identical; hence, we expect locally generated dataset to be the result of idiosyncratic sampling, namely,

biased. We believe that data diversity is not necessarily harmful in terms of performance, which mainly

attributes to the aggregation step of FL, with the condition that local training iterations and batch size are

appropriately opting. A high-level depiction of this scenario is presented in Figure 1.

To investigate the robustness of FL, we consider two types of Non-IID cases: Type i we will simulate a highly20

biased data-generation environment, edge devices have access only to a subset of the classification classes (no

overlap between them); Type ii on the edge devices, we employ AL as an active sampler to sample the most

representative instances, rather than uniform sampling.

1.1. Contribution25

Our contribution can be summarized as:

• In general, we aim to investigate the relationship between distributed data diversity and centralized

server performance in the edge computing environment.

• More specifically, we simulate two types of biased data generation to study the robustness of FL to

different unbalanced data generation level.30

• Our experiments show that centralized server performance is highly correlated to the local training time

and communication frequency. The divergent aggregation might happen if they are not appropriately

chosen.

• Finally, we investigate the effects of parameter (gradient) aggregation by comparing local neural

networks activation patterns and aggregated neural networks, which shows the evidence that the server’s35

classification capability is “inherited” from distributed devices through aggregation.

1.2. Organization

The remainder of this paper is organized as follows: Section 2 we will explain the preliminary concepts

and introduce the related work, in Section 3, we will give the specific introduction of our scheme. In Section 4

the details of our experimental results will be recovered. Section 5 we will conclude the paper.40
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Figure 1: Federated Learning Scheme.

For the convenience of readers, we list all the abbreviations and annotations.

2. Preliminaries and Related Work

2.1. Federated Learning

FL uses a coordinated fashion to train a global model by dynamically collecting models from distributed

devices for some rounds. It was first proposed by [1] for the user privacy consideration in mobile networks,45

and it is a very practical framework in edge computing. [6] employs FL to detect attacks in a distributed

system, [7] predicts model uncertainty by a deep aggregated model, and [8] aims to optimize the structure of

neural network in FL. Some FL-based applications assume the data is IID on edge devices. [9] considers

Non-IID data, but it focuses on the observation that accuracy reduction caused by Non-IID is correlated to

weight diversity. Our work extends it, studying two types of Non-IID data: (i) Type i we will simulate a50

highly biased data-generation environment, whereby edge devices can only generate their categories without
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Table 1: Abbreviations & Annotations

Abbreviations Full Name

FL Federated learning

Al Active Learning

IID Independent Identical Distributed

AveFL Average Federated Learning

OptFL Optimal Federated Learning

MixFL Mixed Federated Learning

Mc-drop Monte carlo dropout

Non-IID Type i Active Learning sampler

Non-IID Type ii Non overlap between categories

any overlap between devices, (ii) Type ii whereby we employ AL on the edge devices as an active sampler to

simulate a slightly biased data generation.

2.2. Active Learning of Neural Networks

Labeling is challenging and expensive when data generation increases exponentially. Thus, when intelligence55

sits close to edge users, it is therefore natural to utilize the interaction between machines and users/humans.

We combine Federated Learning (FL) and Active Learning (AL) as Non-IID Type ii, and we reported the

prototype in [10]. Theoretically, AL may achieve one of the following situations: higher accuracy with the

same amount of data or with a given performance using fewer data. According to the formula of incoming

data, it can be grouped as pool-based and stream-based. The stream-based AL approach is used when the60

data arrives in a stream way, and the model must decide whether to query from the “Oracle” or discard it.

The pool-based approach (Figure 2) is composed of an initially trained model, an “Oracle”, an unlabeled

data pool, and a small labeled dataset. More specifically, the initially trained model elaborately opts for some

representative samples out from the unlabeled pool based on the acquisition function. After that, it asks

the oracle to label them and includes the labeled ones to the training set for future training. We can repeat65

such operations for several times. In the previous work [10, 11], we train our model whenever lately-labeled

data is added, along with the old (labeled) data. In this paper, we consider Online Active Learning, which

means we immediately discard the data after training (more details in Section 3.3), but with a negligible

small subset shared across the devices. To apply AL on a neural network, we firstly build a Bayesian Neural

Network (BNN), which can be considered as a model that outputs different values for the same input fed70

in the model several times. There is no analytical form of the posterior distribution in the neural network;
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Figure 2: Pool-based Active Learning Scheme.

typically a surrogate distribution q is introduced to approximate it by minimizing the distance between them.

We implement it through a free ride Dropout [12], feeding the same input multiple times to approximate

a distribution with certain mean and variance. It can be proved that running dropout is approximated to

apply Bernoulli prior on the model parameters. More details can be found in [10].75

2.3. Boosting Approach

Boosting is designed to improve any machine learning method, e.g., tree-like classifiers, by aggregating

many weak learners through bias and variance reduction [13] [14]. The approach of the present work can

be related to boosting by viewing the aggregation as a combination of ’weak’ (specialized) edge models in

repeated steps of the federation. In [15], the authors proposed the Boosting Gradient Classifier, which has a80

set of weak learners and sets off by creating a weak learner, and it keeps increasing after every iteration. The

set of learners is built by randomly combining features. It seeks an appropriate combination F̂ of fi such

that approximates the true F , expressed as F̂ (x) =
∑

i=1 βifi(x). Apart from computing gradients during

training, it also computes the second-order derivative to decide the learning rate. Instead, our method keeps

the number of weak learners constant, which is the number of edge devices. Analogously, we can also make it85

dynamic, like boosting gradient classifiers. Another difference is that we do not compute the second-order

derivatives to decide the learning rate; instead, we empirically choose one as the Neural Network has a large

amount of parameters. The Boosting Gradient classifier typically has a good performance in conventional

machine learning application [16, 17, 18]. The main steps of Boosting Gradient are as follows:

• if m = 0, we output the prediction by average the outcomes from the weak learners F̂ (x) = 1
n

∑n
i=1 yi.90

• For iteration m from 1 to M (the case m 6= 0):
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– model in iteration m defines as

Wm = Wm−1 + γmgm(x)

– γm and gm(.) are computed separately by the first and second order of loss function L.

gm(x) = −[
∂L(yi, F̂ (x,Wm))

∂Wm
]W=Wm−1

γm = [
∂2L(yi, F̂ (xi,Wm))

∂W 2
m

]W=Wm−1

Fm−1: the collection of learners up to stage m-1.

γm: the learning rate in iteration m.

gm(x): gradient in stage m.

95

In summary, both Boosting Gradient classifier and FL attempt to improve the performance by assembling a

set of weak models. The Boosting Gradient classifier works on a dataset with extracted features, specifically,

optimize the learning rate and keeps the number of weak learners increasing; whereas we design federated

learning for neural network, the learning rate is empirically decided due to the computation problem and the

size of models is constant, we can make it dynamic though.100

2.4. Other works

Data non-IID was introduced in [9], and they tackle it by introducing a relatively small global subset

that may somehow capture the whole distribution, shared across all devices. Similarly, [19] suggests using

data distillation to extract a low-dimension (or sparse) representation of the original data. However, it

is computationally expensive; in particular, it is typically carried out at the edge side where only little105

computation resources can be offered. [20] converts non-IID data distribution as an advantage by considering

it as a multi-task optimization, which conforms to our conclusion. Furthermore, [21] utilizes distributionally

robust optimization to minimize the worst-case risk over all the distributions close to the empirical distribution.

3. Proposed scheme

3.1. Federated Learning Aggregation Strategies110

More specifically, let’s assume the server shares the model (at round t) Wt with n devices for their local

updating, and the updated models are denoted as W 1
t ,W

2
t ,W

3
t , ...W

n
t . Then, the devices upload the improved

models to the server, and the server outputs the aggregated model according to the following criterion:

Wt+1 :=

n∑
i

αi ∗W i
t (1)
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Algorithm 1 AveFL

1: Input: W t
j : local models at round t

2: Output: aggregated model W t

3: W t = 1
n

∑n
j=1W

t
j

Algorithm 2 OptFL

1: Input: W t
j : local models at round t, A(.): measure accuracy

2: X: test dataset

3: Output: aggregated model W t

4: W t = argmaxA(BNN(X,W t
j )) for j = 1, 2, .., n

The combination weights αis can be uniformly distributed or determined to reflect network performance.

The former is referred to as AveFL (Algorithm 1). The learning process is iterative. We also consider the

second scheme, where we opt for the highest-accuracy model, namely, set α∗ of the best model equal to

one, and the rest to zero, labeled as OptFL (Algorithm 2). In Section 4, we evaluate the schemes and a

combination of AveFL and OptFL, named as MixFL. The latter selects the best model of the former two115

(Algorithm 3).

Rather than aggregating the weights of models in Equation (1), we can also work on the gradients. We

conclude that one-batch weight average is equal to gradient average. Suppose we have n devices, and training

data D (|D| = N) is sectioned into n parts as D1, D2, ...Dn, |D1| = N1, |D2| = N2, ...|Dn| = Nn. The

corresponding weights inferred from Di is Wi. Then we define a cost function G(D) =
∑N

i=1 g(ỹi, yi, w) and120

the initial model is W0, β is the learning rate. We first define average one-batch weights of models as shown

in Equation (3), notably, the local update of edge devices is after one batch (no iteration of the batch),

otherwise it is not W0 in cost function g(.). The gradient aggregation is defined in Equation (4).

n∑
i=1

αi = 1 (2)

Aggregation Weights:
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Algorithm 3 MixFL

1: Input: local models at round t W t
j

2: Output: aggregated model W t

3: W t
ave = AveFL(W t

j )

4: W t
opt = OptFL(W t

j )

5: accave = A(BNN(X,W t
ave))

6: accopt = A(BNN(X,W t
opt))

7: if accave >= accopt then

8: Return W t
ave

9: else

10: Return W t
opt

W :=

n∑
i=1

αi(W0 + βG(Di))

=

n∑
i=1

αi(W0 + β
1

Ni

Ni∑
j=1

g(ỹj , yj ,W0)︸ ︷︷ ︸
updated W from device i

)

= W0

n∑
i=1

αi + β

n∑
i=1

αi
1

Ni

Ni∑
j=1

g(ỹj , yj ,W0)

= W0 + β

n∑
i=1

αi
1

Ni

Ni∑
j=1

g(ỹj , yj ,W0)

(3)

Aggregation Gradients:

W := W0 + β ∗ (

n∑
i=1

αiG(Di))

= W0 + β(

n∑
i=1

αi
1

Ni

Ni∑
j=1

g(ỹj , yj ,W0)︸ ︷︷ ︸
gradient of device i

)
(4)

In each iteration, keeping W0 the same for all edge devices is a mandatory step; otherwise, weight

divergence can occur. If initial models are different, they might be placed in a different low-cost region of the125

cost landscape. Thus, after the average aggregation step, it might be sub-optimal. In this paper, we also aim

to investigate how the number of local training influences the result, and we decide to work on the weights

aggregation for the sake of convenience.
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Figure 3: Biased Data Acquisition by Active Learning: we demonstrate the distribution of data acquired by AL for 10 acquisitions.

They are unbalanced in different ways for every acquisition.

3.2. Method for Non-IID Type i

Our approach can be divided into two stages: local learning and aggregation. The two stages will be130

iterated in one round.

1. Initialization: At initialization, the centralized server trains an initial model W 0 with m data samples.

More general, we define the model as W t, where t indicates the current round number.

2. Sharing: Server shares the model W t with n activated edge devices d1, d2, ..., dn.

3. Local Training: All edge devices implement local training and update their models W t
1 ,W

t
2 , ...,W

t
n.135

This step incorporates one or multiple cycles of data acquisition.

4. Aggregation: Edge devices transmit their corresponding models to server and the server aggregates

W t
i , i = 1, 2.., n to get W t+1. The aggregation could be AveFL, OptFL or MixFL.

5. Repeat steps 2-4 if necessary.

Algorithmically, it is described in Algorithm 4.140

3.3. Method for Non-IID Type ii

We consider FL with AL as Non-IID Type ii since AL samples a subset of data with higher uncertainty,

which leads to biased samples. First, we divide the whole training set into four parts, one part for one

edge device. Then we build a pool with 4000 images randomly sampled from one part for the computation
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Algorithm 4 Non-IID Type i

1: Input: X1 ∪X2 ∪X3, .. ∪Xn, Xini,W
0

2: Return: model f(W )

3: if t==0 then

4: W 1 ←W 0 − α∇f(Xini;W
0)

5: else

6: for t=1,2,..T do

7: =>Devices:

8: for j=1,2,..,n do n devices (in Parallel)

9: random sample from Xj : D
t
j ∼ Xj

10: Wt+1
j = W t

j − α×∇f(Dt
j ;W

t
j )

11: end

12: =>Server:

13: Aggregation: W t+1 = AveFL(Wt+1
j ) for j=1,2,...,n

end

14: end

consideration since we need to measure the uncertainty of every data point in the pool. The pool is almost

balanced; however, the batches generated by the active sampler is unbalanced, one example of 10 acquisitions

shown in Figure 3. For scalability, in this paper, we perform an online AL. Namely, the model is further

trained only by the new batch, without the access of the old data (except small subset with 50 images), which

is different from the previous work that we train all the data from scratch whenever new data is coming. We

try to alleviate the forgetting problem of online learning by a cheap trick, storing 50 images, a balanced set (5

images per class) and will be combined with a new batch to train the model. After completing current-round

training, we dump the new batch and only keep 50 images in the labeled set. Moreover, we also use weight

decay [22] as a regularizer that prevents the model from changing too much. We define it in Equation 5, E(.)

is the cost function, wt is the model parameter at round t and λ is a parameter governing how strongly large

weights are penalized.

E(wt+1) = E(wt) +
1

2
λ
∑
i

(wt
i)

2 (5)

[23] learns the weights that can mostly approximate the distribution of the data from the pool by solving

an optimization problem. It is highly computation-demanding and not suitable for edge devices. Another

work [24] attempts to avoid forgetting by dividing the NN architecture into parts and assigning them to

different edge devices, but it requires restricting synchronization during aggregation. Our Non-IID Type ii145

method is sketched as:
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Algorithm 5 Non-IID Type ii

1: Input: X1 ∪X2 ∪X3, .. ∪Xn, Xini,W
0, k

2: Return: model f(W )

3: if t==0 then

4: W 1 ←W 0 − α∇f(Xini;W
0)

5: else

6: for t=1,2,..T do

7: =>Devices:

8: for j=1,2,...,n do n devices (in Parallel)

9: log pj , pj = BNN(fj(W
t), xj)

10: compute entropy: Sj = −pj × log pj

11: sort in descending order and pick top k: Dt
j = sort(Sj)[k]

12: W t+1
j = W t

j − α×∇f(Dt
j ;W

t
j )

13: end

14: =>Server:

15: Aggregation: W t+1 = AveFL(Wt+1
j ) for j=1,2,...,n

16: end

17: end

1. Initialization: In the beginning, a centralized server trains an initial model W 0 using m data samples.

Without the loss of generality, we denote the model by W t, where t is the current round.

2. Sharing: The central server shares the model W t to n activated edge devices d1, d2, ..., dn.

3. Local Training: All edge devices implement AL on a Bayesian Neural Network approximated by150

Dropout [12], locally train and update their models W t
1 ,W

t
2 , ...,W

t
n. This step incorporates one or

multiple cycles of data acquisition.

4. Aggregation: Edge devices transmit their corresponding models to server and the server aggregates

W t
i , i = 1, 2.., n to get W t+1. The aggregation step could entail the average, performance-based or

mixed mechanisms.155

5. Repeat steps 2-4 if necessary.

The specific algorithm is described in Algorithm 5.

3.4. Architecture

Our model consists of four convolutional layers, one fully-connected layer and a softmax layer shown

in Table 2. Note that we did not use batch normalization [25] in the architecture since the biased batch
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Algorithm 6 Bayesian Neural network (BNN)

1: Input: fi(W
t), xi

2: Return: log p, p

3: s = 0

4: for g = 1,2,..r do

5: p = fi(xi;W
t)

6: s+ = p

7: end

8: p = 1
r × s

normalization has a deleterious effect on the aggregation performance. Mathematically, it defines as shown in

Equation 6 and Equation 7. Suppose we have a batch B = {xj}j=1,2..,m, then it is normalized by its mean

µB and variance σB (computed in Equation (6)), and then we infer a new mean (β) and variance (γ) during

training process. It may reduce the internal covariate shift and speed up the training procedure to form new

representation of data (Equation (7)).

In the Non-IID case, the means (β) and variances (γ) optimized in the local training stage are decided by

their biased data, and it is not beneficial during the aggregation stage in our experiments. It is very critical

to enable aggregation effect in highly biased data generation; otherwise, the aggregated model performs very

poorly (e.g., 20% accuracy with batch normalization and 47% otherwise).

µB =
1

m

m∑
i=1

xi, σ
2
B =

1

m

m∑
i=1

(xi − µB)2 (6)

x̂i =
xi − µB√
σ2
B + η

, yi = γx̂i + β (7)

4. Experimental Results

4.1. Real Dataset160

Fashion-MNIST (shown in Figure 4) is one benchmark image dataset published by Zalando, as the

alternative of MNIST dataset. It is formed by a training set with 60,000 examples and a test set with 10,000

examples and 10 classes. One image has 28× 28 pixels for width and height and one channel. Each pixel

value ranges between 0 and 255, indicating the shades of grey.

4.2. Non-IID Type i165

We first evaluate the case of Non-IID Type i: we have a ten-classes dataset and four edge devices (D1, D2,

D3, and D4), randomly assign two classes to two devices and three classes to another two devices without

12



Table 2: Neural Network Architecture

layer layer name
output channels or

number of nodes
kernel size

1 Conv2d 64 4x4

2 ReLu - -

3 Conv2d 16 5x5

4 ReLu - -

5 Max Pooling - 2x2

6 Dropout - 0.25

7 conv2d 32 4x4

8 ReLu - -

9 conv2d 16 4x4

10 ReLu - -

11 Max Pooling - 2x2

12 Dropout - 0.25

13 Linear 128 -

14 ReLu - -

15 Dropout - 0.5

16 Output 10 -

overlap. More specifically, class 0 and 1 were assigned to D1, class 2 and 3 to D2, class 4, 5, and 6 to D3,

and 7, 8, 9 to D4. Note, if we train a single neural network sequentially: first on the subset of classes 0

and 1, then on classes 2, 3, next 4, 5, 6, and finally 7, 8, 9, the model would suffer catastrophic forgetting. It170

will forget most of the patterns learned before, and capable of classifying the class corresponding to the last

subset (around 28%).

4.2.1. Epochs

One of the most critical hyper-parameters is the amount of local training before aggregation on the

centralized server. In this work, we redefine the concept of ‘epoch’ since it usually refers to the number of175

times the learning algorithm will work through the whole training dataset. Here we consider mini-batch

gradient descent; thus, ‘epoch’ refers to the number of times the algorithm goes through the mini-batch.

As shown in the Algorithm 4, at the beginning of every round, all the devices have the same model W t,

13



Figure 4: Fashion MNIST dataset: 10 classes, every image has 28 × 28 pixels.

the number of epochs will decide how much variance between updated models W t
1 ,W

t
2 , ..,W

t
i , produced by

one batch (or multiple batches, determined by aggregation frequency that we will discuss later). If the epoch180

number is not big enough, the performance after aggregation will not be improved significantly or even be

worse. In Figure 5, we plot the accuracy of four distributed models and the aggregated model. Among them,

the leftmost four bars represent the accuracy of local models, and the rightmost one is the accuracy of the

aggregated model. Note the initial accuracy is 15%. Figure 5a to Figure 5f correspond to different epoch

numbers, the accuracy almost monotonically increases with the increment of epoch number, not only for185

aggregation performance but also for local models. In figure 5f, after enough training, three local models

reach the highest accuracy they can, 20%, 20%, 30% as they own two, two, and three classes correspondingly.

4.2.2. Aggregation Frequency

In [10], we only consider one-shot FL (aggregate only once), here we also study the aggregation frequency,

which defines the number of acquisitions to train during local training. For instance, assume that we have 10190

acquisitions (fixed budget, 400 data for every acquisition), if aggregation frequency is 5, it means that every

10/5 = 2 acquisitions we aggregate. Note that aggregation frequency is different from epoch: epoch defines

the number of repetitions given the acquisition number (training data size), whereas aggregation frequency

decides the number of acquisitions, though, both of them are critical factors to enable the performance. If

the aggregation frequency is low, we aggregate after a relatively large number of training data, it reduces the195

communication cost and takes the risk of severe divergence. Instead, if the aggregation frequency is high, we

aggregate after a small amount of data, we can avoid the divergence problem, but with increasing the cost

of communication. For a given epoch number 45, in Figure 6 we demonstrate the results corresponding to

different aggregation frequencies. Correspondingly, we plot the performance concerning different aggregation

frequencies (10, 5, 2, and 1). From Figure 6a to Figure 6d, the aggregated accuracy decreases with the200

decrements of aggregation frequency. We will look at this problem from analyzing the weight divergence
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(e) Epoch: 40
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Figure 5: Epoch Analysis: The various cases are labeled using the format ‘ExFyDz’, where ‘E’ is the epoch, ‘F’ is the

aggregation frequency, and ‘D’ is the device identifier or the aggregated model respectively. For a given batch, the number

of epochs during local training highly influences the aggregation performance. The experimental results show that we should

ensure sufficient difference between local models to enable the aggregation effect, which is also related to divergence study in the

following experiment.
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(a) Frequency: 10 (b) Frequency: 5

(c) Frequency: 2 (d) Frequency: 1

Figure 6: Aggregation Frequency Analysis: The various cases are labeled using the format ‘ExFyDz’, where ‘E’ is the

epoch, ‘F’ is the aggregation frequency, and ‘D’ is the device or the aggregated model respectively. For a given Epoch 45 and 10

acquisitions of data, we plot the performance with respect to different aggregation frequenciesHigh aggregation frequency has

higher accuracy, increasing the cost of communication, and vice versa.
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Figure 7: Aggregation strategies: We compare accuracy with different aggregation strategies, namely AveFL, OptFL and

MixFL (top: 10 acquisitions, bottom: 20 acquisitions). The various cases are labeled using the format ‘ExFyDz’, where ‘E’ is

the epoch, ‘F’ is the aggregation frequency, and ‘D’ is the device or the aggregation model respectively. ACC 0 is the initial

accuracy. The rightmost four bars are the performance by the independent local models without considering aggregation.
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Figure 8: Given the same number of data, AL outperforms random choice in terms of accuracy.

in Section 4.5. Both the epoch and the aggregation frequency cause divergence, but aggregation has more

significant impact than the epoch number.

4.3. Aggregation Strategies

We consider three aggregation strategies in this paper: AveFL, OptFL and MixFL. As we discussed in the205

previous section, AveFL averages the parameters of models during aggregation; OptFL opts for the model

with optimal performance; and MixFL is the mixture of AveFL and OptFL, in each iteration it chooses the

better one between them. The result (shown in Figure 7) demonstrates that there is no big difference between

OptFL and MixFL for both cases of 10 and 20 acquisitions. However, the whole distribution they learned is

different, as we discuss in Section 4.6.210

4.4. Non-IID Data Type ii (FL with AL)

For Non-IID Type ii, we simulate it by applying AL on the four edge devices. AL can be considered

an effective way of choosing data than random sampling, and this behavior causes a slightly biased data

generation. For instance, in [10], we select the data with maximal entropy (uncertainty) to train our model.

The method is shown in Algorithm 5. In Figure 8, we firstly show that AL outperforms random choice in215

terms of prediction accuracy. Also, in Figure 9 shows how aggregation affects the performance when FL

combines AL.

4.5. Weights Divergence and Aggregation Performance

In this subsection, we quantitatively investigate the correlation between weight divergence and aggregation

performance. Firstly, let us define the divergence of layer l of device i as follows:

divergenceli =
|W tl

i −W tl
aggregated|

|W tl
i |
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(a) Random (b) Entropy

Figure 9: From left to right we plot initial accuracy, aggregation accuracy and four model accuracy without aggregation step.

First of all, no matter random or AL, the result of aggregated model has higher accuracy compared with no aggregation. Overall,

AL has better performance with respect to random choice (from the second bar to the last bar).

Where W tl
i is the layer l of model (device) i at iteration t and W tl

aggregated is the the layer l of aggregated

model at iteration t.220

In Figure 10, we plot the divergence of all layers in the network (above) and the corresponding aggregated

result (below). The first coordinate represents the network layers, and the four colored bars represent the

different devices. From Figure 10a to Figure 10d, the divergence decreases for all the layers; however, the

aggregation increases in the beginning and stops increasing at some point. It could indicate that if the

divergence value is too large (Figure 10a), the aggregation effect is not fully enabled, and on the other hand,225

if it is too small (Figure 10d), it may disable the aggregation effect. Our result is consistent with [9], where

they also showed the accuracy reduction is significantly correlated with weight divergence.

4.6. Correlation between Local Models and Aggregated Model

We can also consider the aggregated model as the Gaussian Mixture Model (GMM) [26]. Suppose we

have C classes, which correspond to C models M1,M2, ..,MC . We define GMM as MGMM =
∑C

i=1 αiMi230

and
∑C

i=1 αi = 1. In our case, we consider α uniformly distributed since we do not have prior knowledge

and do not want to solve the optimization problem to compute αi. It implies an assumption that the ten

classes share some common features. Averaging weights is like partially ‘copying’ the classification capability

of different classes from their related edge devices. We call it ‘partially’ because models from other categories

will dilute the effect. The experimental evidence is shown in Figure 11. For AveFL (Figure 11a), we plot the235

histogram of correctly classified classes for four edge devices (corresponds to four colors) in the left figure and

the histogram of correctly classified classes for the average model in the right figure. As we can see, without
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(a) Divergence Level i (b) Divergence Level ii

(c) Divergence Level iii (d) Divergence Level iv

Figure 10: Plot above represent the divergence and plot below is the corresponding accuracy of local models and aggregated

model. X coordinator of plot (above) indicates the layers of model and bars with different colors represent the different devices.

Aggregation Effect has high correlation with divergence grade. Here we compared four level of divergence, From Fig 10a to

Figure 10d the divergence decreases, Figure 10c corresponds to best aggregation performance. Note that y coordinators are

not aligned due to the different magnitudes.

aggregation the local model can only predict their corresponding categories. For instance, d1 generates class

0 and 1, the trained model on d1 can only predict 0 and 1. However, the prediction by aggregated model

can cover most of the classes, except with difficulty in classifying 4 and 6. In Figure 4, we can see class 4 is240

‘coat’ and class 6 corresponds to ‘shirt’(label starts from 0). These two classes are very similar, and it is not

easy to distinguish. While, MixFL (Figure 11b) has different behavior: it learns different distributions from

aggregation, though, their overall accuracy is similar (shown in Figure 7).

To further study how local models benefit the aggregated model, we analyze the neuron activation patterns.245

We choose 10 test images from class 1 and feed them into local model trained by d1 in Figure 12a, aggregated

model in Figure 12b and local model from d3 in Figure 12c. The x coordinator indicates that the nodes of

the fully connected layer right before the softmax layer, and the heatmap values are the output of the nodes.
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(a) AveFL (b) MixFL

Figure 11: Figure 11a is the correctly classified histogram of Average aggregation case, in the left plot the four different color

bars correspond to four models of edge devices without aggregation. They can only correctly classify their own categories. While

the right plot in Figure 11a has a better comprehensive capability of classification, it has the difficulty of distinguishing classes 4

and 6. In Figure 11b we plot the same results for the mix aggregated method.

(a) Activation of Model from d1 (b) Activation of Ensem. Model (c) Activation of Model from d3

Figure 12: We choose 10 test images from class one and feed into local model from d1 in Figure 12a, aggregated model in Figure

12b and local model from d3 in 12c. The x coordinator indicates the nodes of the fully connected layer right before the softmax

layer, and the heatmap values are the output of the nodes. The activation of pattern of d1 is similar to the aggregated model,

fairly different from d3 where class 1 is not generated.

The activation of the pattern of d1 is similar to the aggregated model, fairly different from d3 that does not

have any information about class 1.250

5. Conclusion and Future Work

Distributed machine learning has several virtues, including the potential to reduce data aggregation and

thus improved privacy. However, this virtue poses a potential challenge, namely that the edge devices are set

to learn from Non-IID data. Hence, to investigate the robustness of Federated Learning to Non-IID data, we

simulate two scenarios. Furthermore we analyze and compare different aggregation strategies: AveFL, OptFL255

and MixFL. We presented evidence that federated learning is robust to sampling bias, and also we found that

the epoch (amount of local learning) and the aggregation frequency are important parameters for Federated

Learning. In the end, we also post-process the prediction performance to understand the correlation between
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local models and the aggregated model.
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