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1. Introduction: Philosophical Preliminaries 

“Degrees of freedom should be weighted, not counted.”  With this witty paraphrase of 1

Schiller, who was in turn paraphrasing an old Yiddish saying,  Arnold Sommerfeld 2

summarized a fundamental conceptual tension of statistical mechanics. Sommerfeld was 

discussing the problem of specific heats in gases, one of the “clouds of nineteenth-century 

physics,” as William Thomson famously dubbed it. In his quip, he was putting his finger on 

the fact that not always what one counts statistically makes automatically sense from a 

dynamical point of view. 

This tension traverses the entire history of quantum statistics, and this article tries to 

unfold the main fracture lines. It is often stated that quantum statistics deals with 

indistinguishable particles or, alternatively, it abandons the notion of an individual 

particle. It is important for our story to keep these concepts separate. The complex 

relation between distinguishability and individual identity goes back to Leibniz’s principle 

of indiscernibles  and depends essentially on which properties must be considered 3

intrinsic. In general, objects are distinguished by virtue of properties such as mass, color, 

shape, and so on. However, even if two objects have exactly the same intrinsic properties 

(say, for example, two identical coins), they still are two distinct individuals. Hence, the 

1 (Sommerfeld 1911 p. 1061). 
2 In his play Demetrius, Schiller referred to votes, while the Yiddish saying referred to words. 
3 For a discussion of this point see (French 1989; French & Krause 2006 pp. 15–17). For an 
overview on the problem of individuality in science see (Dorato & Morganti 2013). 
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central ontological question is: What confers identity to physical objects? For brevity’s 

sake, let’s call the criteria to determine the individual identity an ontology. Thus, an 

ontology is a way to single out the furniture of the universe. 

Classical statistical mechanics rests on the delicate equilibrium between two different 

ontologies. First, there is the ontology of dynamics or D-ontology for short. According to 

D-ontology, identity is the unifying element of a continuous dynamical story. Two 

particles, albeit similar in their intrinsic properties, are two different individuals because 

they belong to two uninterrupted spatio-temporal trajectories.  Hence, each particle is 4

labeled by a dynamical story whose uniqueness is sanctioned by the Hamiltonian 

equations of motion. Moreover, the continuity of this story is a necessary condition to 

ensure individual identity. 

In statistics, however, individuals are entities whose permutation generates a new 

countable event. In other words, individuals are difference-makers: if one swaps them, the 

ensuing state is statistically different from the original one and must be accordingly 

counted. While D-ontology rests on the continuity of trajectories, the ontology of statistics 

or S-ontology rests on the equiprobability of elementary states: states generated by 

permuting individuals have the same probability. Thus, while the dynamic identity is 

conferred by persistence over a continuous spatio-temporal trajectory, the statistical 

identity is ensured by countability under equiprobable events. 

This article discusses how this tension panned out in the history of quantum statistics. It 

is organized as follows. In section 2, I summarize the basics of Boltzmann’s statistics and 

in section 3, I discuss Planck’s peculiar use of combinatorics in his radiation theory. I 

argue that Planck’s reluctance to take an ontological commitment toward microscopic 

particles combined with his opportunistic use of statistics contributed to make the 

conceptual tension between D-ontology and S-ontology even more problematic. In 

sections 4 and 5, I analyze how the tension developed in radiation theory and in gas 

theory in the 1910s. During these developments, it became increasingly clear that 

Planck’s statistics introduced a form of interdependence, but opinions were split whether 

it had to be interpreted dynamically or statistically. In the epilogue, I briefly discuss the 

transition to Bose-Einstein statistics. 

4 (French & Krause 2006 pp. 40–51). 
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2. Prologue: Boltzmann’s Statistics 

The name of Ludwig Boltzmann is inextricably linked to the birth of modern statistical 

mechanics. Although he was not the first one to apply statistics to thermodynamics, he 

was certainly the first to use combinatorial arguments most notably in his famous 1877 

article. To be sure, he had briefly touched upon similar issues at the end of another paper, 

back in 1868.  On that occasion, Boltzmann calculates the marginal probability for a gas 5

particle to have a certain energy. He assumes that the total energy of a n-particle system 

can be divided into p elements of magnitude ε. The probability that the energy of an 

arbitrary particle lies in the interval between iε and (1 + i)ε depends on the number of 

ways in which the remaining energy can be distributed among the remaining particles or, 

which is the same, the number of ways in which the particles can be distributed over the 

corresponding energy intervals. In this model, both the particles and the energy intervals 

are individuals, i.e.,  a permutation of particles is a countable event. In the general case, 

the number of ways in which one can distribute n individual particles over p individual 

boxes amounts to: 

(1) (n, )J p = (n+p−1)!
(n−1)!(p−1)!  

Bear in mind this number because it will play a key role in our story.  6

From an early stage Boltzmann was convinced that statistics and mechanics were tightly 

interwoven and must play an equal role in the explanation of thermal equilibrium. In the 

1870s, he explored multiple strategies and, even when he was not using statistics 

explicitly, one could see it lurking behind purely mechanical analyses.  But it is in the 7

1877 paper that combinatorics feature prominently.  While conceived to investigate the 8

relations between the second principle of thermodynamics and probability calculus, this 

article is historically important because of the role it would play in Planck’s blackbody 

5 (Boltzmann 1868, 1909 p. I, 92–96); for a discussion of this argument see (Badino 2011 pp. 
359–360). 
6 (Boltzmann 1909 p. I, 85). For the details of Boltzmann’s combinatorial calculation see (Badino 
2009 pp. 83–85; Costantini et al. 1996 pp. 284–288; Uffink 2007 pp. 955–956). 
7 See (Badino 2011). It should be noted that this reading is at odds with the common wisdom 
according to which Boltzmann followed a purely kinetic approach to thermal equilibrium until he 
was convinced by his colleague Josep Loschmidt that statistics was inevitable. For the classical 
interpretation see (Klein 1973; Brown et al. 2009). For a general analysis of Boltzmann’s works in 
statistical mechanics see (Darrigol 2018a). 
8 (Boltzmann 1877, 1909 p. II, 164–223). 
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theory of December 1900. To fully appreciate this role, it is necessary to dive into the 

intricacies of Boltzmann’s combinatorial models. 

In 1877 Boltzmann developed not less than three different combinatorial models whose 

relations are very revealing of the connections between statistics and ontology. The first 

and by far most famous model is described through an analogy with tickets drawing from 

an urn.  Let us assume the total energy of a system of n particles be divided up into p 9

elements of fixed magnitude ε. Let us also assume to have an urn with countless tickets 

each of which carries a number between 0 and p. Imagine now to make n drawings and at 

each drawing the corresponding number of elements is attributed to a certain particle and 

then reintroduced in the urn. After n drawings, one obtains an allocation of energy 

elements over the particles, which Boltzmann calls a complexion. Likely, the sum total of 

the energies will be larger or smaller than the total energy of the system. In that case, we 

repeat the entire procedure until we have a large number of acceptable complexions. 

Now, Boltzmann notices that, while a permutation of energies between two particles 

gives a different complexion, it leaves untouched the distribution of energy, thus, 

assuming that all complexions are equiprobable, the probability of a distribution is 

proportional to the number of complexions corresponding to it, that is the number of 

permutations of a complexion. As for the normalization factor, this is the total number of 

ways of distributing p + 1 individual tickets  over n individual particles or, which is the 10

same, n individual particles into p + 1 individual boxes. This is precisely number (1) above, 

hence the probability of a distribution is: 

(2) P = 1
J(n,p+1)

n!
n !...n !0 p

 

where ni is the i-th occupation number, that is the number of particles with i elements of 

energy. By maximizing the probability and letting ε go to zero, Boltzmann finds 

Maxwell’s distribution. 

But Boltzmann isn’t through with combinatorics. First he toys shortly with a provisional 

model, which must be rejected because it does not satisfy exchangeability.  Much later in 11

9 (Boltzmann 1909 p. II, 167–186). 
10 Differently from the 1868 model, here 0 energy is a possible value. 
11 (Boltzmann 1909 p. II, 171–172); for a discussion of this model see (Costantini et al. 1996 pp. 
288–292). 
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the paper, however, he introduces a third and more interesting urn model.  Contrary to 12

the first procedure, he now supposes to make p drawings (with reintroduction) from an 

urn containing the n particles suitable labelled. At the end of the p drawings, each particle 

is assigned a number of energy elements equal to the number of times it was drawn. This 

urn model automatically satisfies the energy constraint, but this is perhaps the least 

interesting of its features. Although the final result is again a complexion this urn model 

is statistically very different. At each step, one allocates a single energy element over a 

certain particle, but the energy elements are statistically non-individual because 

swapping two drawings does not change the final result. As one makes p drawings, the 

model consists in distributing p non-individual energy elements over n individual 

particles. Boltzmann calculates the total number of complexions generated by this model, 

which turns out to be: 

(3) (n, ) (n, )J ′ p = (n−1)!p!
(n+p−1)! = J p + 1  

In other words, the total number of ways of distributing n individual particles over p+1 

individual energy levels is equal to the total number of ways of distributing p 

non-individual energy elements over n individual particles. 

Boltzmann wasn’t too moved by what he probably considered a formal coincidence. In 

hindsight, an argument can be made that Boltzmann is here switching between two 

different statistics. In the first urn model, individual particles are allocated over individual 

energy levels and each such configuration is equiprobable: the model is ruled by a classical 

Maxwell-Boltzmann statistics. The third model behaves differently. An elementary 

configuration is the number of energy elements go over individual particles. Hence, a 

countable event is the permutation of groups of energy elements, which means that they 

follow a Bose-Einstein statistics. This difference might appear purely formal (after all, the 

energy levels in the first model are defined by the number of energy elements) and 

certainly Boltzmann never invites to consider energy elements as distinguishable. 

However, some writers discussed the possibility that Boltzmann was in fact anticipating 

the Bose-Einstein statistics.  For Boltzmann, the abundance of formal models was not a 13

philosophical problem, because his statistical mechanics was firmly rooted in the classical 

D-ontology. There is no doubt that he thought of particles as identifiable by their 

12 (Boltzmann 1909 p. II, 211–214). 
13 See, for example, (Bach 1987, 1990; Costantini & Garibaldi 1997). 
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continuous spatio-temporal history. At times he compares molecules to macroscopic 

individuals,  and in the introduction to his Lectures on the Principles of Mechanics he 14

states explicitly the continuity principle and declares that “it only allows us to recognize 

the same material point at different times.”  A robust D-ontology constrains the 15

S-ontology and allows Boltzmann to tell apart genuine combinatorial models from formal 

artifacts. In the next sections we shall see how this natural coupling between the two 

ontologies was disrupted in Planck’s radiation theory and how physicists at the beginning 

of the 20th century laboriously searched to restore it in a new form.  

3. Enter the Quantum 

3.1. Planck’s Program 

With few exceptions, Boltzmann himself never made use of his complicated combinatorial 

model after 1877. He probably regarded it more as an ingenious illustration of the 

statistical nature of irreversibility than a physically workable instrument. One of the 

reasons why this model is so famous is that it made a surprising comeback in a 

completely unrelated ambit: Max Planck’s theory of blackbody radiation.  16

When Planck entered the problem of blackbody, in the late 1890s, it seemed to be a 

muribund, if not dead, horse. Introduced by Gustav Kirchhoff in 1860 as a formal tool to 

investigate thermal radiation, a blackbody was conceived as a physical system able to 

absorb all the radiation impinging on it.  As Kirchhoff proved by means of the second law 17

of thermodynamics, the energy distribution of a blackbody is particularly simple because 

it is a universal function of temperature only. This theorem led not only to construct 

experimental approximations of a blackbody, but also to find theoretical constraints on 

the energy distribution such as the Stefan-Boltzmann law and Wien’s displacement law. 

Increasingly accurate measurements in the mid-1880s showed that the energy 

distribution was characteristically bell-shaped, which suggested that the radiation law 

contained an exponential function of the energy and temperature. By cunningly 

14 This analogy, which was customary for Maxwell too, is stated at the beginning of his famous 
1872 paper on the Boltzmann equation (Boltzmann 1872, 1909 p. I, 316–402). 
15 (Boltzmann 1897 p. 9). 
16 On the connection between Boltzmann’s combinatorics and Planck’s theory see (Hoyer 1980; 
Darrigol 1988). 
17 The standard reference on the experimental background of Planck’s theory is (Kangro 1970). 
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combining thermodynamic, kinetic, and electromagnetic arguments, Wilhelm Wien 

reached in 1896 an expression for the energy distribution that, apparently, fitted well the 

existing observations. 

Thus, when Planck started to work on the theory of the blackbody, the problem in itself 

did not offer a theoretical challenge. Planck, however, was aiming at a much larger target. 

A fierce opponent of Boltzmann’s statistical view of irreversibility, he was determined to 

show that, under certain conditions, a conservative system behaves in a strictly 

irreversible way. The blackbody was ruled by the reversible Maxwell equations, but, at the 

same time, it had the traits of an irreversible thermodynamic process. In addition, it was a 

perfect case for three reasons. First, it was theoretically simple and fairly well-known. 

Second, the thermal features of the blackbody radiation were independent of the kind of 

matter-radiation interaction occurring within the cavity. Third, being a purely 

electromagnetic phenomenon, Planck could eschew all the quandaries related to 

molecular collisions. 

Planck supposed a spherical cavity filled up with radiation and a Hertzian resonator at its 

center.  It is important to notice that the resonator interacts only with the field 18

component nearly at the same characteristic frequency, therefore is not able to change 

the energy distribution of the cavity. What it does, however, is to make the radiation more 

spatially uniform by absorbing a plane wave and re-emitting a spherical wave. Hence, at 

this stage Planck is interested only in the isotropy of the blackbody radiation. By using 

Maxwell’s equations, the resonator equations and reasonable boundary conditions, Planck 

calculates the field-resonator interaction and its time-reversal to show that the latter 

does not fulfil the boundary conditions. As the time-reversal is not a physically acceptable 

solution of the electromagnetic problem, Planck concludes that the field-resonator 

interaction is a strictly irreversible process.    19

Unsurprisingly, Boltzmann opposed this conclusion. He realized that Planck’s argument 

was embarrassingly flawed, as he summarized in a letter to Felix Klein: 

Herr Planck has reversed the exciting wave for a specific case, but he has 

completely forgotten that the wave prior emitted by the resonator must be reversed 

18 On the details of Planck’s theory of radiation see (Kuhn 1978 pp. 72–91; Darrigol 1992 pp. 
29–50; Badino 2015 pp. 41–80; Duncan & Janssen 2019 pp. 51–64). 
19 (Planck 1898a, 1958 p. I, 508–531). 
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as well. From the circumstances that he has obtained a totally counterintuitive 

formula, he has not concluded that he was wrong, but rather that he had found out 

a process whose reversal is not possible. I have sent him directly my considerations, 

a move that will not necessarily shorten the dispute; I’m curious to hear his 

response.  20

Boltzmann also proved that if the time-reversal is calculated correctly, then it is 

necessarily a physically acceptable solution of Planck’s electromagnetic problem. Planck 

had no choice but to abandon his original project and try to find an alternative route to 

irreversibility. His new argument, which he developed in 1898 and 1899, hinged on two 

main pillars. 

3.2 Natural Radiation and Entropy 

Although badly hit by Boltzmann’s criticism, Planck did not give up his 

thermodynamics-inspired approach to radiation theory. This approach rested on a sharp 

distinction between physically meaningful macroscopic quantities and the mysterious 

microscopic world. The former are empirically measurable, slow-varying quantities such 

as the field intensity and the resonator energy, while the latter is a physically inaccessible 

and ontologically suspicious realm. More precisely, Planck regarded macroscopic 

quantities as the time averages of innumerable fast-changing monochromatic field 

vibrations, which have no independent physical meaning on their own. The statement that 

the microscopic field vibrations change so rapidly and disorderly that, for the purpose of 

radiation theory, they can be safely ignored and replaced by their averages is the 

hypothesis of natural radiation, Planck’s first pillar.   21

To appreciate the ontological role played by natural radiation is instructive to contrast it 

with kinetic theory. Microscopic field quantities correspond to individual molecular 

quantities such as position and velocity, while macroscopic quantities are averages such 

as total energy. Natural radiation is tantamount to stating that molecular dynamics is so 

complicated and uncontrollable that one might as well black-box much of what is 

20 Boltzmann to Felix Klein, 12 February 1898, (Höflechner 1994 sec. 462). 
21 The hypothesis of natural radiation is first introduced in (Planck 1898b, 1958 p. I, 532–559). For 
a discussion see (Kuhn 1978 pp. 80–82; Badino 2015 pp. 60–71). 
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happening at that microscopic level and confine the calculations to macroscopic, 

measurable quantities. 

The second pillar of Planck’s theory is the definition of entropy.  After Boltzmann’s 22

radical rebuttal of his first argument, Planck resorted to his opponent’s favorite strategy: 

to show that a certain state function existed, which increases monotonically over time. In 

order to define electromagnetic entropy, Planck proceeded backwards. He knew that the 

maximum of that entropy must give Wien’s law, which holds at equilibrium. He then 

worked out an entropy formula that fitted such a requirement and showed that, given 

natural radiation, the entropy calculated for the combination of the free field and the 

field-resonator interaction was a monotonically increasing function.  23

3.3 Resorting to Combinatorics 

 As we have seen, Planck’s general argument for irreversibility was tightly related with the 

fate of Wien’s law. At the beginning of 1900, however, Wien’s law was being challenged 

from several quarters. Already in March Otto Lummer and Ernst Pringsheim argued that, at 

temperature as high as 1800 K and in the region of wavelengths between 12 and 18 µ 

“the Wien-Planck spectral equation does not represent the black radiation measured by 

us.”  The situation deteriorated further in October when Heinrich Rubens and Ferdinand 24

Kurlbaum found a marked failure of Wien’s law at wavelengths equal to 51.2 µ. Planck 

was informed in advance and could work out a new energy distribution formula by 

interpolation,  but the new law was incompatible with his previous entropy formula. It 25

was at this point that Planck resorted to Boltzmann’s 1877 model.  Much ink has been 26

spilled over Planck’s combinatorial argument in December 1900. Here I want merely to 

recapitulate the key differences with Boltzmann’s original procedure. 

To find the equilibrium distribution between resonators and free field, Planck assumes the 

energy divided into quanta of fixed magnitude hν, so that the total energy to be 

allocated over the resonators with natural frequency νi can be written as Ei = Pihνi = 

22 (Planck 1899, 1958 p. I, 560–600). 
23 Because of the formal similarity between Planck’s electromagnetic entropy and Boltzmann’s 
H-function, several authors speak of an electromagnetic H-theorem (Kuhn 1978 pp. 72–91; 
Darrigol 1992 pp. 45–50). 
24 (Lummer & Pringsheim 1900 p. 171). 
25 (Planck 1900b, 1958 p. I, 687–689). 
26 (Planck 1900c, 1958 p. I, 698–706). 
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Pεi. If there are Ni resonators with that frequency, the number of ways of distributing the 

energy quanta is: 

(4) (N , )J ′ i P i = (N −1)!P !i i

(N +P −1)!i i  

By using (4) as the equilibrium probability and plunging it into the so-called Boltzmann’s 

principle that entropy is proportional to the logarithm of the state probability, Planck 

arrives at the correct energy distribution law.  27

There are two important points to notice about Planck’s combinatorial procedure. First, 

historians have been discussing for years the status that Planck ascribed to the quantum 

in 1900. While Martin Klein argued that Planck considered the energy elements as 

discrete indistinguishable units to be allocated individually on resonators, Thomas Kuhn 

countered that the energy elements can play the same role as continuous and 

distinguishable energy intervals.  To be sure, statistics, with some cautions, supports 28

both claims. Remembering equation (3), Planck’s equations (4) can be interpreted as the 

total number of ways of distributing Ni individual resonators over Pi + 1 individual energy 

intervals or Pi non-individual energy elements over Ni individual resonators. The formal 

ambiguity that worked for Boltzmann’s 1877 model, works here as well. Planck was aware 

of this ambiguity  and, after all, it fitted perfectly with his thermodynamic approach. As 29

we have seen, Planck’s general strategy was to black-box the microscopic part of his 

theory, so it was just a fortunate coincidence that statistics allowed him to maintain a 

noncommittal position about the ontology of resonators and quanta. 

However, one could argue that, where statistics fails, physics comes to the rescue. In 

Planck’s combinatorial model, the resonators play the role of molecules, so they might be 

granted individuality: the D-ontology can be applied to them. By contrast, energy 

elements are not localized, so they cannot be labelled. This brings me to my second point. 

There is a fundamental ontological fracture between the two parts of Planck’s theory and 

the statistical underdetermination only makes it worse. Clearly, the combinatorial part 

relies on the analogy between resonators and molecules: it is this analogy that enables 

Planck to deploy Boltzmann’s procedure. But in the radiation part, the elementary entities 

are the field monochromatic components. In a paper written in March 1900, Planck 

27 For the details of Planck’s combinatorial calculations see (Badino 2015 pp. 94–98). 
28 (Klein 1962; Kuhn 1978, 1984). For a survey of the debate see (Badino 2009; Gearhart 2002). 
29 Much later, in a passage of his Lectures on the Heat Radiation, Planck makes an explicit reference 
to the twofold models underlying his combinatorial calculations (Planck 1906 pp. 151–152). 
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himself warns the reader against a quick analogy between resonators and molecules, for 

the same reasons above.  Hence, both the S-ontology and the D-ontology of Planck’s 30

theory are ultimately confused and unstable. This instability, as we shall see, is the 

original sin of Planck’s theory. 

4. Ehrenfest, Einstein, and the Riddle of Radiation Theory 

It is difficult to tell the story of the emergence of quantum statistics. It consists of several 

seemingly unrelated research lines, exotic ideas, and obscure arguments. It comes as no 

surprise that, in describing this episode, some writers used the term ‘serendipity’ to signal 

the absence of a coherent development.  If we focus on the tension between D-ontology 31

and S-ontology, we can, with a good measure of approximation, single out three reactions 

to it. First, Ehrenfest and his disciples insisted that Planck’s combinatorics called for a 

radical change in the classical S-ontology. Second, Einstein, albeit in agreement with 

Ehrenfest’s diagnosis, thought that a way out of the impasse was to modify the 

D-ontology by means of the wave-particle duality. Lastly, Planck shifted his attention 

from radiation theory back to thermodynamics and tried to justify the new S-ontology as 

the result of the application of the quantum hypothesis to the ideal gas. 

From the very beginning, it was clear that the problem of Planck’s theory lied in the mix 

of combinatorics and quanta. As for the resonator, it seemed to play only a marginal role. 

Lord Rayleigh, James Jeans, and Hendrick Antoon Lorentz showed that they could be 

effectively replaced by normal modes of vibration in the free field. Paul Ehrenfest even 

reinforced this conclusion by showing that Planck’s mechanism of resonator-field 

interaction could not ensure an entropy increase.  To muddle the situation even more, in 32

1905 Einstein published a landmark article where he proposed a daring analogy between 

gas and radiation. By comparing the entropy variations of an ideal gas and a cavity 

radiation in the Wien regime, Einstein concluded that radiation behaved as if it consisted 

of corpuscles of energy E = nhν.  Although the idea that the quanta existed in empty 33

30 (Planck 1900a, 1958 p. I, 668–686); see especially 673-674. 
31 See, for instance (Delbruck 1980; Bergia 1987). Some writers have described this story as the 
thermodynamic route to quantum mechanics as opposed to the traditional atomic route (Darrigol 
1991, 2002; Desalvo 1992). 
32 (Ehrenfest 1905). Ehrenfest’s criticism was in fact a bit unfair. Planck’s mechanism was not meant 
as a way to redistribute energy among frequencies, but rather as a spatial equilibrator, a point 
Ehrenfest would later acknowledge. 
33 (Einstein 1905). 
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space was too unorthodox to be accepted, Einstein’s theory had the merit to give a 

statistical backdrop to Wien’s law and thus rapidly became a useful term of comparison. In 

particular, understanding the statistical difference between Einstein’s and Planck’s quanta, 

became Paul Ehrenfest’s main research theme. A loyal follower of Boltzmann and the 

guardian of the sacred fire of the Boltzmannian statistical mechanics, Ehrenfest pursued 

this goal with his characteristically obsessive devotion. In 1906, he set out to clarify once 

and for all what made it possible to obtain the correct radiation law.  He considered a 34

cavity full of radiation (without resonators) and defined a tridimensional distribution 

function for the normal modes in terms of their frequency, amplitude, and momentum. He 

then calculated the maximum entropy for the cavity radiation under the constraints of 

normalization and total energy. Unsurprisingly, the calculation yielded the Rayleigh-Jeans 

law, whose validity is limited to the low-frequency regime. Ehrenfest then investigated 

how the argument could be modified in order to get Planck’s law in its stead and 

concluded that the fixed magnitude of the energy quanta was the key additional 

constraint. This general analysis convinced Ehrenfest that the quantization was a purely 

formal device, which somehow had to play a role in the statistical part of the theory. In 

other words, while quantization of energy was a sufficient condition for Planck’s law, 

Einstein’s corpuscularization was not. For Ehrenfest, it was a matter of finding the correct 

S-ontology implicit in Planck’s combinatorics, while the D-ontology was secondary.  

In the meantime, Einstein was working in a different direction. He also realized that 

quantization was a sufficient condition, but insisted that the solution of the mystery lied 

in the physics. These thoughts led him to formulate a hypothesis possibly even more 

destabilizing than the light quantum. In 1909, Einstein argued that if we calculate the 

fluctuation of the cavity radiation using Planck’s law, the resulting formula is made of two 

parts: a classical expression for the interference of waves and the fluctuation generated 

by a system of independent particles.  To Einstein, this weird cohabitation meant that 35

classical D-ontology underlying statistical mechanics had to be supplemented with some 

interaction mechanism between the particles whose deep nature was hidden in their 

undulatory features. Convinced of the corpuscular structure of radiation, Einstein argued 

34 (Ehrenfest 1906); for a discussion see (Navarro & Pérez 2004 pp. 101–102). 
35 (Einstein 1909). On Einstein’s work in radiation theory see (Duncan & Janssen 2019 pp. 94–107). 
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that quanta were physical individuals, but their individuality had to be negotiated with a 

wave aspect.  36

Ehrenfest thought differently. During the late 1900s, he worked intensely on the problem 

of radiation trying to understand why Planck got the right answer although his 

combinatorics was incompatible with Boltzmann’s.  The breakthrough happened in 1911, 37

when he proved that quantization was not only sufficient for Planck’s law, but it was in 

fact necessary.  Near the end of the article and almost in passing, Ehrenfest finally hit the 38

nail on the head. The key difference between Einstein’s and Planck’s quanta was that the 

former were independent, while the latter manifested an non-classical statistical 

interdependence. Planck’s peculiar twofold derivation of the radiation law (see section 

3.3) had masked the fact that quanta are statistically very different from gas molecules. To 

clarify this point, Ehrenfest argues, it suffices the following consideration. In Einstein’s 

combinatorics, if a particle has, say, n quanta of energy, this is the result of receiving one 

quantum in n independent attributions. By contrast, if a resonator has n quanta, they have 

been allocated together so that the individual quanta making up the total energy are 

interdependent. This is of course reminiscent of Boltzmann’s third model, but the fact that 

the quanta do not vanish makes the key difference. Ehrenfest realizes that this simple fact 

changes the S-ontology radically because it introduces a new countable event: a 

permutation of an entire bunch of quanta changes the state. This point is best formulated 

in an article authored with Kamerlingh-Onnes: “The real object which is counted remains 

the number of all the different distributions of N resonators over the energy grades 0, ε, 

2ε,... with a given total P.”  39

Thus, the discussion on Planck’s radiation theory generated two research paths, which, 

albeit closely related, were often seen as competing. Some scholars such as Ehrenfest and 

Władysław Natanson  focused primarily on unearthing the S-ontology hidden in the 40

ambiguities of Planck’s combinatorial procedure. By contrast, for other physicists like 

36 The commitment toward an enlarged D-ontology marked Einstein’s work in radiation theory, see 
for example his 1916-17 theory of emission and absorption in which he attributes a momentum to 
light quanta (Einstein 1917). 
37 Ehrenfest’s research notebooks registered his strenuous efforts to cope with the statistical 
puzzle. Particularly in note 843, written on 21 March 1911 (of the Russian Calendar), he expresses 
all his frustration that Planck’s procedure “must be wrong”, and still leads to the correct result (“but 
how”, double underscore). See (Navarro & Pérez 2004 p. 119).  
38 (Ehrenfest 1911). For a detailed analysis see (Klein 1970 pp. 245–251; Navarro & Pérez 2004 pp. 
110–118). 
39 (Ehrenfest & Kamerlingh Onnes 1915 p. 873). 
40 (Natanson 1911); on Natanson’s very interesting analysis see (Kokowski 2019). 
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Einstein understanding the D-ontology was much more illuminating. An illustration of 

how detached these two paths could become is given by the short dispute between 

Mieczyslaw Wolfke and Georg Krutkow. A follower of Einstein, Wolfke published two short 

communications in which he proposed to treat Einstein’s light quanta as “light atoms” that 

can be dynamically labelled and combinatorially treated in order to obtain Planck’s law. 

Krutkow, who was a student of Ehrenfest, replied that Einstein’s light quanta were 

independent and, as such, could not be correctly treated by Planck’s combinatorics. Taken 

by surprise, Wolfke argued that Einstein’s quanta were existentially independent, but 

spatially interdependent, that is, they, presumably, were individuals connected by some 

sort of physical interaction.  Krutkow did not pursue the discussion further, because it 41

was obvious that they saw the ontological problem from two very different perspectives. 

5. The Issue of Entropy Extensivity 

5.1 Early Attempts at Gas Quantization 

During the 1910s, the quantum was applied to atoms in two circumstances. One was, 

famously, the construction of atomic models by Bohr and Sommerfled. The other was the 

much less famous, but not less important attempt at formulating a quantum theory of the 

ideal gas. To understand the contest of this attempt, a little detour into physical chemistry 

is necessary. 

The most important quantity for calculating equilibrium in chemical reactions is the 

so-called equilibrium constant, which is the ratio between forward and backward rates. At 

the end of 19th century, by applying thermodynamics to chemistry, Jacobus Henricus van 

’t Hoff and Josiah Willard Gibbs managed to find connections between the equilibrium 

constant, temperature, and maximum work, but failed to give a direct method to measure 

it from calorimetric data.  The problem was that classical thermodynamics provided no 42

tools to determine integration constants. A breakthrough happened in 1906 with Walther 

Nernst’s heat theorem which entailed a zero value for the integration constant of entropy. 

Unfortunately, Nernst’s arguments cannot be applied to gases, thus a workaround had to 

be found. Nernst noticed that the van ’t Hoft equation for a gas could be solved by 

41 (Krutkow 1914; Wolfke 1913a, 1913b). 
42 For a survey on the problem of chemical equilibrium and its relation with thermodynamics see 
(Badino & Friedrich 2013 pp. 299–302). 
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exploiting a relation between its integration constant and the Clausius-Clapeyron 

equation, which gives the pressure of a gas in equilibrium with a condensate. The 

integration constant of the van ’t Hoft equation was dubbed by Nernst the chemical 

constant. 

While this further change of constant set a different experimental problem, it did not 

necessarily ease the experimenter’s task because it was difficult to measure chemical 

constants at temperatures low enough to have an equilibrium with a condensate. 

Somewhat unexpectedly, help came from quantum theory. In the third edition of his 

Lectures on Thermodynamics, Planck stressed that, in combination with Nernst’s heat 

theorem, quantum theory entailed that it was possible to express the entropy constant in 

terms of universal quantities.  This hint was picked up by Otto Sackur, who spotted a 43

theoretical relation between the chemical constant of a gas and its entropy constant.  44

The problem was thus reduced to find a quantum expression of the entropy of a gas. From 

a theoretical standpoint, however, the application of the quantum hypothesis to the ideal 

gas is far from trivial, the reason being that quantization requires a natural frequency, 

while there is no such thing for gas molecules. Sackur circumvented the obstacle 

exploiting another of Planck’s hints. In the Heat Radiation, Planck had noticed that the 

fixed magnitude of the energy element entailed a partition of the phase space of a 

resonator into ‘elementary regions’. Sackur’s simple but brilliant idea was to transfer this 

procedure to the phase space of a gas and then apply Boltzmann’s combinatorial 

approach to arrive at an entropy formula.  It worked surprisingly well and Sackur 45

managed to find an expression for the entropy constant of a monatomic ideal gas, but 

there was a small problem with extensivity. The nature of this problem is deeply 

entrenched with the tension between D-ontology and S-ontology. 

It is well known from thermodynamics that entropy is additive (i.e., the entropy of a 

system is equal to the sum of the entropies of its subsystems) and extensive (i.e., it 

depends on the quantity of the system, for instance the number of gas molecules). 

Occasionally, these two properties lead to a phenomenon called the Gibbs paradox.  Let’s 46

assume a container divided by a partition into two equal volumes filled up with a gas. 

43 (Planck 1911 pp. 268–269). 
44 On Sackur’s life and work see (Badino & Friedrich 2013). 
45 (Sackur 1911, 1912). 
46 On the physical definition and the philosophical consequences of the Gibbs paradox see (Pešić 
1991; Dieks 2018; Saunders 2018); on its history see (Darrigol 2018b). 
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Let’s now remove the partition and let the two amounts of gas mix. Two things can 

happen. If the gases in both volumes are chemically indistinguishable, the removal of the 

partition can be performed reversibly and the final entropy is the sum of the initial 

entropies. By contrast, if the gases in the volumes are different, the mixing process is 

irreversible, and leads to an additional entropy term, called mixing entropy. The 

paradoxical aspect of the entire process lies in the fact that the mixing entropy is nonzero 

even for infinitesimally different gases, but disappears suddenly when they become 

indistinguishable, a behavior that apparently contradicts the fact that entropy is a state 

function. In fact, this discontinuous behavior is a consequence of the clear-cut distinction 

between reversible and irreversible processes. Gas molecules on either side of the 

partition are D-ontologically, and therefore S-ontologically, distinguishable regardless of 

their chemical similarity and their swap counts as a different microstate. This means that 

some statistical adjustment is necessary to safeguard entropy extensivity in those cases in 

which, from a thermodynamic standpoint, no mixing entropy is produced. Gibbs solved 

the issue by introducing a distinction between two notions of statistical description or, in 

his parlance, phase.  Although a permutation of molecules makes a difference in specific 47

(microscopic) phases, it does not change the generic (macroscopic) phase.  Sackur’s 48

method to save extensivity was more cumbersome, but consequential nonetheless. He 

supposed to divide the volume V of the gas into N/n independent sub-volumes v, N being 

the total number of molecules and n the molecules contained in each sub-volume. As the 

sub-volumes are arbitrary, Sackur is in fact introducing an interdependence between the 

size of the elementary regions and the number of molecules.  

In one of those odd coincidences that occasionally occur in history of science, the 

seventeen-year old Hugo Tetrode published, almost at the same time, an alternative 

approach to the same problem.  Tetrode’s solution was much more in the spirit of Gibbs’ 49

statistical mechanics, although his language was still largely Boltzmannian. Contrary to 

Sackur, Tetrode works directly with probability and notices that, if the particles are similar 

and “exchangeable”, the definition of probability must be accordingly modified by 

cancelling out the permutations originated by exchanging similar particles. This entails 

that the Boltzmannian probability must be corrected by a division by N!, where N is the 

47 (Willard Gibbs 1902 p. 187). 
48 On the importance of the concept of generic phase for indistinguishability see (Saunders 2020). 
49 (Tetrode 1912b); see also(Tetrode 1912a)}. On Tetrode’s life and work see (Dieks & Slooten 
1986). 
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number of particles. This ‘corrected Boltzmann counting’ as we call it today, is introduced 

by Tetrode as a straightforward consequence of Gibbs’ distinction between specific and 

generic phases. 

The duality in gas theory reminds the duality we already observed in radiation theory. 

Once again, physicists were split between focusing on the S-ontological side of the 

problem or rather looking for a D-ontological solution in terms of definition of physical 

identity. 

5.3 Planck’s Quantum Theory of the Ideal Gas 

In the second edition of the Heat Radiation, Planck had stressed that the fixed size of the 

phase space cell and the absolute meaning of entropy were the distinctive features of 

quantum theory.  Thus, when Sackur’s published his idea of an interdependence between 50

elementary regions and number of molecules, Planck received it sympathetically. In 

particular, he saw Sackur’s idea hinging upon a point which was very important for him: 

the disanalogy between resonators and gas molecules. He first elaborated on this idea in 

a lecture delivered at the Wolfskehl conference in April 1913. Resonators, Planck argued, 

occupy a fixed place and they only interact with the free field. Thus, each resonator can 

be easily identified in space and time. This is not the case for gas molecules, which move 

and interact with each other by elastic collisions. According to Planck, this entails a 

difference in the structure of the elementary regions of the corresponding phase spaces. 

While regions representing the state of resonators are individual ellipses, the elementary 

regions of each molecule should somewhat depend on the state of the other molecules. 

This holistic interdependence was the physical reason for Sackur's correction to attain 

extensivity.  51

Planck’s argument was indeed sketchy and, unsurprisingly, did not pass the test of 

Hendrik Antoon Lorentz: it seemed to invoke a mutual determination in position and 

momenta of the molecules, which was inconsistent both with usual statistical 

assumptions and with the physical nature of an ideal gas.  These points were well 52

received and Planck refined his approach. He accepted that extensivity could be reached 

50 See (Planck 1912 sec. 125). 
51 (Planck 1914 pp. 7–8, 1958 p. II, 320–321); on Planck’s quantum theory of monatomic ideal gas 
see (Badino 2010). 
52 See (Lorentz 1915). 
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by dividing the number of complexions by N!, but could not force himself to regard this as 

a mere formal trick. On the contrary, he was convinced that a modification in the 

S-ontology called for some change in the D-ontology of the gas molecules. In the ensuing 

years, he concentrated his efforts on the study of the structure of the phase space, a 

research that brought him very close to the program pursued by Arnold Sommerfeld in 

atomic theory. 

By introducing the partition function, Planck was able to show that the calculation of the 

most important thermodynamic functions boils down to the computation of the accessible 

states, which, in turns, depends on how one partitionates the phase spaces into 

elementary regions.  In classical statistical mechanics, the elementary regions are 53

infinitesimal in size and are defined by the integrals of motion, but in quantum physics 

the constant h determines a finite size of the regions. So far, Planck’s procedure simply 

generalized to an arbitrary mechanical system the argument developed for resonator in 

1906. But now comes a new step. We need to distinguish, Planck argued, between two 

formal spaces: one describing the individual state of the system and one describing the 

physically meaningful states. This difference is introduced to account for a combinatorial 

fact: 

[I]f groups of similar atoms are present in the body (...) a more or less large number 

of physically equivalent points of the phase space will be ascribed to a certain 

physical state of the body, because a given point of the phase space of a single 

individual atom depends on determined coordinates and velocity. As many 

permutations of the similar atoms are possible, so many phase points will 

correspond to a given physical state. Therefore, to clarify the expression, I will 

distinguish between “phase point” [Phasenpunkt] and “state point” [Zustandpunkt].  54

Sackur’s idea of dividing up the formal space into two different ways makes here a second 

and more sophisticated appearance. Planck states that while the phase space accounts for 

the individuality of atoms in terms of their Hamiltonian properties of position and 

momenta, we still need to account for their physical indistinguishability. As this is 

combinatorially dealt with by cancelling out a corresponding number of complexions, 

Planck introduces a new formal space, whose elementary regions—or state-regions as he 

calls them—correspond to an N-dependent cluster of phase regions. Planck’s move sounds 

53 See (Planck 1916b, 1958 p. II, 420–434) see also (Planck 1916a, 1958 p. II, 386–419). 
54 (Planck 1916b p. 661, 1958 p. II, 428). 
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familiar. In his 1899 radiation theory he had affirmed that individual oscillations in the 

electromagnetic field had no independent physical meaning as opposed to macroscopic 

quantities. Here, again, Planck expresses a physical difference in terms of individuality 

and physical meaning. 

The conceptual similarities between Planck’s radiation theory and his quantum theory of 

gas did not escape the attention of Ehrenfest. In an article written with Viktor Trkal, 

Ehrenfest insisted that Planck’s absolute entropy approach was wrongheaded. Using 

Boltzmann’s theory of dissociation, they showed that extensivity could be easily recovered 

as a property of entropy differences rather than entropy itself.  Hence, Planck’s abstract 55

distinction between phase- and state-space was unwarranted. One needs to stay with old 

good thermodynamics and refer entropy to corresponding reversible processes. 

Extensivity would then come out as a natural output of Boltzmann’s theory. 

Planck replied almost immediately with an article and, very tellingly, with a brand new 

section of the fourth edition of his Heat Radiation.  As in the Wolfskehl lecture, he moved 56

from statistics back to dynamics and, once again, he exploited the disanalogy between 

resonators and gas molecules. The former are fixed in space and cannot interact, while 

the latter are in continuous interaction. This generates an Austauschmöglichkeit (exchange 

possibility), i.e., molecules can be exchanged without altering the macroscopic state. It is 

important to stress that the physical reason of the Austauschmöglichkeit is the series of 

correlations and symmetries originated by the molecular interaction: “[in the case of gas] 

we have no system of separate molecules, but a single structure arranged by symmetries 

and these symmetries consist in the fact that there is no physical mark that allows to 

single out a certain atom if one considers the gas first in one state and then in the other.”

 Despite the obscure language, it is not difficult to grasp what Planck is after. The 57

correction of the traditional Boltzmann counting entails a sort of D-ontological 

interdependence between particles that Planck interpreted, much like 1899, as a feature 

of the mysterious microdynamics of the system. Although he is not explicit about this 

point, Planck arguably regarded the N! division and the Austauschmöglichkeit on a par with 

the hypothesis of natural radiation: a simplifying assumption to account for the complex 

microscopic interactions. 

55 (Ehrenfest & Trkal 1921). 
56 (Planck 1921a, 1958 p. II, 527–534, 1921b sec. V). 
57 (Planck 1921b p. 209). 
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6. Epilogue 

Famously, the breakthrough eventually happened in radiation theory. In 1924, Satyendra 

Nath Bose, an obscure Indian physicist, sent to Einstein a short article in which he 

proposed a new derivation of Planck’s law. Bose’s simple yet effective idea was to start 

with a new definition of countable event, i.e., a distribution of quanta (treated as particle) 

over cells, and then recast this event in an apparently classical formula:  58

(5) W = ∏
 

s

A !s
P !P !...s

0
s
1

 

where W is the number of ways of distributing Ai cells over Nj quanta and Psi is the 

occupancy number, i.e., the number of cells containing i quanta. In this way, Bose scaled 

up the statistical description to a new definition of countable event and a new analogue 

of the distribution in Boltzmann’s statistics. In Bose’s S-ontology the cells and not the 

quanta were statistically independent. Einstein, who arranged the publication, 

immediately realized the potential of Bose’s derivation and applied it to gas theory. He 

found the Sackur-Tetrode entropy as well as the behavior predicted by Nernst’s theorem 

at low temperature and even a new condensation phenomenon.  59

Ehrenfest reacted immediately pointing out that the statistical interdependence displayed 

by the quanta was not new: one could see it at work in Planck’s radiation and gas theory 

all along. Einstein agreed and acknowledged that his new gas theory “expresses indirectly 

an implicit hypothesis about the mutual influence of the molecules of a totally new and 

mysterious kind.” Now that the S-ontology was more or less clear, it remained to 

understand the D-ontology, and this was no easy task. Einstein came back to his idea that 

the mysterious influence could be due to the wave features of the particles. The 

wave-particle duality had recently found a new support with de Broglie’s theory of matter 

waves. Eventually, the man who put all these strands together was Erwin Schrödinger. An 

expert of thermodynamics and statistical mechanics, in 1926 Schrödinger treated 

quantized matter waves like Debye’s normal modes thus inaugurating a new undulatory 

version of quantum mechanics. After the developments in 1924-1926, classical statistics 

was definitely overcome. Quantum mechanics brought in a new conceptual arsenal made 

58 (Bose 1924). 
59 (Einstein 1924, 1925). On Bose’s statistics and Einstein’s application to the gas see (Monaldi 
2009; Pérez & Sauer 2010). 
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of wave function, eigenvalues, degeneracy, and even a third type of statistics. The search 

for a new alignment between S-ontology and D-ontology lasted for some more years, but 

this is another story. 
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