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Abstract 
On March 11th 2020, the World Health Organization characterised 
COVID-19 as a pandemic. Responses to containing the spread of the 
virus have relied heavily on policies involving restricting contact 
between people. Evolving policies regarding shielding and individual 
choices about restricting social contact will rely heavily on perceived 
risk of poor outcomes from COVID-19. In order to make informed 
decisions, both individual and collective, good predictive models are 
required.   
  
For outcomes related to an infectious disease, the performance of any 
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risk prediction model will depend heavily on the underlying 
prevalence of infection in the population of interest. Incorporating 
measures of how this changes over time may result in important 
improvements in prediction model performance.  
  
This protocol reports details of a planned study to explore the extent 
to which incorporating time-varying measures of infection burden 
over time improves the quality of risk prediction models for COVID-19 
death in a large population of adult patients in England. To achieve 
this aim, we will compare the performance of different modelling 
approaches to risk prediction, including static cohort approaches 
typically used in chronic disease settings and landmarking approaches 
incorporating time-varying measures of infection prevalence and 
policy change, using COVID-19 related deaths data linked to 
longitudinal primary care electronic health records data within the 
OpenSAFELY secure analytics platform.

Keywords 
COVID-19, risk prediction, mortality, infectious disease, statistical 
methodology

Any reports and responses or comments on the 

article can be found at the end of the article.

 
Page 2 of 17

Wellcome Open Research 2020, 5:243 Last updated: 30 OCT 2020



Corresponding author: Ben Goldacre (ben.goldacre@phc.ox.ac.uk)
Author roles: Williamson EJ: Conceptualization, Formal Analysis, Methodology, Supervision, Writing – Original Draft Preparation, 
Writing – Review & Editing; Tazare J: Formal Analysis, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing; 
Bhaskaran K: Conceptualization, Formal Analysis, Methodology, Supervision, Writing – Original Draft Preparation, Writing – Review & 
Editing; Walker AJ: Data Curation, Methodology, Resources, Software, Writing – Review & Editing; McDonald HI: Data Curation, 
Methodology, Resources, Writing – Review & Editing; Tomlinson L: Data Curation, Methodology, Resources; Bacon S: Data Curation, 
Resources, Software, Writing – Review & Editing; Bates C: Data Curation, Methodology, Project Administration, Resources, Supervision, 
Writing – Review & Editing; Curtis HJ: Data Curation, Resources, Software, Writing – Review & Editing; Forbes H: Resources, Writing – 
Review & Editing; Minassian C: Resources, Writing – Review & Editing; Morton CE: Methodology, Resources, Software, Writing – Review 
& Editing; Nightingale E: Formal Analysis, Methodology, Writing – Review & Editing; Mehrkar A: Resources, Supervision, Writing – 
Review & Editing; Evans D: Data Curation, Resources, Software, Writing – Review & Editing; Nicholson BD: Resources, Writing – Review & 
Editing; Leon D: Methodology, Writing – Review & Editing; Inglesby P: Data Curation, Resources, Software, Writing – Review & Editing; 
MacKenna B: Methodology, Resources, Software, Writing – Review & Editing; Cockburn J: Data Curation, Resources, Software, Writing – 
Review & Editing; Davies NG: Formal Analysis, Methodology, Writing – Review & Editing; Hulme W: Methodology, Resources, Software, 
Writing – Review & Editing; Morley J: Methodology, Writing – Review & Editing; Douglas IJ: Methodology, Resources, Software, Writing – 
Review & Editing; Rentsch CT: Methodology, Resources, Software, Writing – Review & Editing; Mathur R: Methodology, Resources, 
Writing – Review & Editing; Wong A: Methodology, Resources, Writing – Review & Editing; Schultze A: Methodology, Resources, Writing – 
Review & Editing; Croker R: Data Curation, Resources, Software, Writing – Review & Editing; Parry J: Data Curation, Resources, Software, 
Writing – Review & Editing; Hester F: Data Curation, Resources, Software, Writing – Review & Editing; Harper S: Data Curation, 
Resources, Software, Writing – Review & Editing; Perera R: Methodology, Writing – Review & Editing; Grieve R: Methodology, Writing – 
Review & Editing; Harrison D: Methodology, Writing – Review & Editing; Steyerberg E: Methodology, Writing – Review & Editing; Eggo 
RM: Formal Analysis, Methodology, Writing – Review & Editing; Diaz-Ordaz K: Methodology, Writing – Review & Editing; Keogh R: 
Methodology, Writing – Review & Editing; Evans SJW: Conceptualization, Methodology, Supervision, Writing – Review & Editing; Smeeth 
L: Conceptualization, Funding Acquisition, Methodology, Supervision, Writing – Review & Editing; Goldacre B: Conceptualization, 
Funding Acquisition, Methodology, Supervision, Writing – Review & Editing
Competing interests: C.B., J.P., F.H., J.C. and S.H. are employees of TPP. A.M. was interim Chief Medical Officer of NHS Digital April–Sept 
2019 (left NHS Digital at the end of January 2020) and Digital Clinical Champion NHS England 2014–2015. L.S. is a Trustee of the British 
Heart Foundation. All other authors have no competing interests.
Grant information: The OpenSAFELY collaborative has received funding from the National Institute for Health Research (NIHR). The 
work of B.G. on better use of data in healthcare is funded in part by: the NIHR Oxford Biomedical Research Centre, and the MRC 
[MR/V015737/1]. L.S. reports grants from Wellcome [202912], MRC [COV0076], NIHR [16/137/99], UKRI, British Council, GSK, British Heart 
Foundation (BHF) [PG/19/71/34632] and Diabetes UK and the Newton Fund [527418645] outside this work; K.B. holds a Sir Henry Dale 
fellowship jointly funded by Wellcome and the Royal Society [107731]; H.I.M. is funded by the NIHR Health Protection Research Unit in 
Immunisation (a partnership between Public Health England and LSHTM); A.Y.S.W. holds a fellowship from BHF [EPNCZQ52]; R.M. holds a 
Sir Henry Wellcome fellowship funded by the Wellcome Trust [201375]; E.J.W. holds grants from MRC [MR/S01442X/1, MR/R013489/1]; 
R.G. holds grants from NIHR [SRF-2013-06-016]; I.J.D. holds grants from NIHR [15/80/28] and GSK; H.F. holds a UKRI fellowship; B.D.N. 
holds an NIHR clinical lectureship. The views expressed are those of the authors and not necessarily those of the NIHR, NHS England, 
Public Health England or the Department of Health and Social Care.  
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2020 The OpenSAFELY Collaborative et al. This is an open access article distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work 
is properly cited.
How to cite this article: The OpenSAFELY Collaborative, Williamson EJ, Tazare J et al. Study protocol: Comparison of different risk 
prediction modelling approaches for COVID-19 related death using the OpenSAFELY platform [version 1; peer review: 1 
approved] Wellcome Open Research 2020, 5:243 https://doi.org/10.12688/wellcomeopenres.16353.1
First published: 15 Oct 2020, 5:243 https://doi.org/10.12688/wellcomeopenres.16353.1 

 
Page 3 of 17

Wellcome Open Research 2020, 5:243 Last updated: 30 OCT 2020

mailto:ben.goldacre@phc.ox.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/wellcomeopenres.16353.1
https://doi.org/10.12688/wellcomeopenres.16353.1


Background and aims
On March 11th 2020, the World Health Organization character-
ised COVID-19 as a pandemic after 118,000 cases and 4,291 
deaths were reported in 114 countries1. As of 2 June, towards the 
end of the time period considered in this study, cases were over 
6 million globally, with more than 300,000 deaths attributed  
to the virus2. In the UK, confirmed cases had reached  
279,856 with 39,728 deaths3.

A range of demographic factors and health conditions have 
been shown to be associated with poor outcomes from  
COVID-19, including COVID-19 related death. In the UK, 
the report released by Public Health England in June 2020  
identified age as the strongest disparity in COVID-19 death, 
additionally noting disparities between males and females, and 
higher risks among black and minority ethnic (BME) groups4.  
Various pre-existing conditions correlate with increased risk  
of poor outcomes including diabetes, respiratory disease and  
cancer5.

On the 16th March 2020, the UK government released advice 
recommending clinically vulnerable individuals to follow strict 
measures for reducing their social contact (social distanc-
ing). This group was broadly based on the flu at-risk group. 
Subsequently, on the 22nd March 2020, a smaller ‘extremely  
vulnerable’ group was identified and recommended to shield.

Evolving policies regarding shielding and individual choices 
about restricting social contact will rely heavily on per-
ceived risk of poor outcomes from COVID-19. In order to 
make informed decisions, both individual and collective, good  
predictive models are required. 

Clinical prediction models are widely used in many fields of 
medicine, including chronic disease, such as cardiovascular 
mortality risk, and outcomes following surgery. These mod-
els assume that the underlying context in which risk is being 
predicted remains relatively stable. Performance of predic-
tion models typically deteriorates over time due to “calibration 
drift”6. To avoid this deterioration risk models can be up-dated7,  
either periodically or in a continuous manner (‘dynamic mod-
elling’). Reasons for calibration drift include changes in 
the underlying population, improvements in general health-
care and setting-specific changes. In cases where the out-
come, as here, is an infectious disease, there is an additional 
important component of change over time: the performance  
of any risk prediction model will depend heavily on the  
underlying burden of infection in the population of interest. 
While this may not affect discrimination – the ability to dis-
tinguish between cases and non-cases – it is likely to result in 
poor calibration, i.e. poor agreement between predicted risks 
and observed outcomes. One solution to this problem would  
be the explicit incorporation of time-varying measures of infec-
tion prevalence into the risk prediction model, which could be  
achieved via landmarking models8.

The aim of this study is to explore the extent to which  
incorporating time-varying measures of infection burden and 

big policy changes over time improves the quality of risk  
prediction models for COVID-19 death in a large population 
of adult patients in England. The population is the general com-
munity, rather than infected people, thus the risk being predicted  
combines the risk of infection and the risk of dying once  
infected.

To achieve the study aim, we will compare the performance 
of different modelling approaches to risk prediction, including  
static cohort approaches typically used in chronic disease settings  
and landmarking approaches incorporating time-varying  
measures of infection prevalence and policy change, using 
COVID-19 deaths data linked to longitudinal primary care 
electronic health records data within the OpenSAFELY  
secure analytics platform.

Objectives
To achieve the overarching aim of exploring the extent to  
which adding time-varying measures of infection burden 
improves the quality of risk prediction models for COVID-19  
death, the following specific objectives will be addressed:

1.    To develop risk prediction models for 28-day COVID-19 
death within a static case-cohort design, using the following 
statistical approaches:

a.  Cox proportional hazards model,

b.  Weibull model,

c.  Generalised gamma model,

d.  Royston-Parmar model.

2.   To develop risk prediction models for 28-day COVID-19 
death within a landmarking framework:

a.    Incorporating objective proxies of infection 
prevalence,

b.    Incorporating outputs from dynamic mathematical 
models of COVID-19 to estimate infection 
prevalence.

3.   To evaluate model performance of each risk prediction  
model in predicting 28-day risk, including measures of 
discrimination and calibration, using internal, internal-
external validation (geographical and temporal). In a 
subsequent study, models will be evaluated by external 
validation.

Purpose of models
The overarching aim of this study is to evaluate the utility of 
incorporating time-varying measures of infection burden into 
risk prediction models for COVID-19 related death. Other 
risk models for COVID-19 outcomes exist, although many 
early models have been found to be poorly reported and at  
high risk of bias and over-optimism9. A risk calculator has 
been developed to predict mortality among patients with  
confirmed COVID-19 in the US10. Another risk calculator 
attempts to identify people with a heightened risk of severe  
complications should they become infected11. The COVID-
age risk score predicts risk of COVID-19 death in the general  
population by combining evidence from published studies12. 
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A recent model used routinely collected primary care data in 
the UK to predict COVID-19 mortality13. Other groups, both 
in the UK and elsewhere, are likely to develop additional risk 
scores. However, to our knowledge, none of these risk scores 
update the person’s risk over time in reaction to changes in the  
underlying burden of infection.

A risk score that takes changes in the burden of infection over 
time into account could have a number of potential applica-
tions. Some patient groups, such as the very elderly with  
comorbidities, are likely to fall into the “high risk” group no  
matter what the prevalence of infection is. Other groups may 
be at higher risk, but only fall into a “high risk” categorisa-
tion when the infection prevalence is high. A risk score that pro-
vided updated risk predictions as the underlying prevalence 
of infection changes could allow for tailoring of GP advice,  
personal decisions regarding anti-COVID-19 measures and policy 
making. Some potential user stories are as follows:

•    I am a GP and I want to know which patients are at 
high risk of dying from COVID-19 and when so I 
can advise them to reduce social contact or shield, as  
appropriate, during periods of particularly high risk.

•    I am a patient in England and I want to know my risk of 
dying from COVID-19 in the near future so I can make 
informed decisions about whether to go in to work and  
whether to reduce social contact over the new few weeks.

•    I am a policymaker and I want to know how risk 
varies so I can think about informed and transparent 
mechanisms for updating advice to the general public  
regarding social distancing, shielding and returning to work.

Patient involvement
An important aspect of this work is to explore how patients 
understand the information resulting from a time-updated risk 
prediction and whether they find it helpful or not. In order 
to explore how useful and understandable patients find time-
updated risk predictions we will engage with patient groups 
across the “risk spectrum”, recruited from existing patient 
participation groups from a number of different studies.  
We will use one-to-one interviews lasting approximately 30 
minutes to discuss patients’ understanding of the risk pre-
diction, particularly in regard to the time-updating aspect. 
We will develop user stories based on these interviews. We 
will ascertain how well patients understand the risk calcula-
tion, how accurate the prediction is and how it should be inter-
preted, how their prediction might change over time, and what  
action they should take in response to the prediction. We 
will explore a number of ways of presenting the information 
from the risk prediction and how each presentation affects the  
answers to the previous questions.

Methods
Study population, outcome and timeframe
Population. The target population of interest is adults (male  
and female) in England between 18 and 105 years of age.

Outcome. The outcome for this study is 28-day COVID-19 related 
death. Data are drawn from the 100-day period beginning 1st March 
2020 and ending 8th June 2020 (inclusive).

Model development: Data
Database. Primary care records retrieved from the TPP SystmOne 
electronic health record system. These data include diagnoses  
(Read 3 CTV3), prescriptions (dm+d), basic sociodemograph-
ics and vital signs for 22 million individuals – approximately  
40% of the English population.

Primary care data were linked to mortality data from the 
Office for National Statistics (ONS) mortality data, including  
COVID-19 deaths (deaths with an ICD-10 code of U071/
U072 anywhere on the death certificate), and all-cause deaths 
(used to determine sub-study inclusion and to ascertain vital  
status at study entry).

The data described above will be used to develop risk  
prediction models and perform internal-external validation. 
External validation will be subsequently undertaken; details of  
the external data will be provided in a subsequent protocol.

Eligibility criteria. The base cohort comprises adult patients 
(males and females, aged between 18 and 105 years) regis-
tered as of 1st March 2020 in a general practice which employs 
the TPP system. Patients with missing age or a recorded age 
over 105 years, missing gender, or missing postcode (from 
which much of the household and geographic information is  
calculated) will be excluded. Households of greater than 10 
people will be excluded, since risks experienced in institu-
tions such as care homes are likely to be very different to  
those in smaller households.

Model development: Study design
A number of different risk prediction models, predicting  
28-day COVID-19 related death, will be developed. In order 
to do this, three different designs will be explored. (A) A case-
cohort approach will be used as a computationally efficient way 
of exploring the traditional static cohort approach to risk predic-
tion. (B) Landmarking will be used to explore whether addi-
tional predictive power is gained by incorporating time-varying  
measures of the burden of infection8. In this approach, measures 
of infection at the beginning of a 28-day period will be used to 
predict 28 day risk. (C) Finally, rather than rely on informa-
tion about the infection rate at the beginning of each 28-day 
period, the last approach fits models which update the meas-
ures of the burden of infection throughout the 28-day period, to 
try to better estimate the relationship between current infection  
prevalence and risk.

Our a priori expectations of how the three approaches will  
compare are as follows. The static case-cohort approaches 
will not incorporate any measures of the burden of infection 
because at the start of the cohort, infection was very low, thus 
including baseline measures at this point is uninformative and  
unlikely to increase predictive ability. We expect these static 
approaches to produce models which have good discrimi-
nation (can distinguish high from low risk patients well) 
but less good calibration (agreement between predicted and 
observed risks) when applied to predict absolute risk during 
a period of time when the prevalence of infection is very dif-
ferent to that used in model fitting. We expect the landmark  
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approaches, including time-varying measures of the burden of 
infection, to have better calibration without losing discrimina-
tion. However, the extent of improvement in calibration will 
depend on how well the proxy measures of burden of infec-
tion used are able to capture the true burden of infection. The 
more complex landmarking approaches, in which time-varying 
measures of infection within the 28-day risk-prediction period 
are additionally accounted for, may provide better estimates  
of the relationship between infection prevalence and risk, but 
may be unstable under future predictions, due to the require-
ment for forecasts of infection prevalence during the period  
over which risks are desired for.

Model development design A: Case-cohort study. The first 
study design will be a static case-cohort study. Follow-up will 
begin 1st March 2020 and end at the first of: COVID-19 death 
or study end date, 8th June 2020 (including 1st March 2020 
and 8th June in the at-risk period). The outcome is COVID-19  
related death. Note that censoring will not occur at death 
due to non-COVID causes, because the sub-distribution  
hazard is the target. The only censoring event in our cohort 
study is the competing event of death due to other causes, thus 
the sub-distribution hazard can be estimated by simply not  
censoring participants at the competing event14.

Due to large numbers of eligible patients (~17 million), a sam-
pling approach will be adopted, using weights to account 

for the sampling in analysis as described in the analy-
sis section. The analysis sample will include all cases of  
COVID-19-related death and a random sample of the eligible  
patient population (the ‘subcohort’, largely comprising  
non-cases but likely to contain some cases by chance)15,16. The 
strongest predictor of COVID-19 related death is age5, so sam-
pling will be stratified by age-group. Sampling fractions will 
be: 0.01 in the age-group 18-<40, 0.02 in 40-<50, 0.02 in  
50-<60, 0.025 in 60-<70, 0.05 in 70-<80, 0.13 in 80+ years.  
The sampling fractions have been chosen to result in a  
subcohort of at least 40:1 of non-cases to cases overall.

Model development design B: Landmark case-cohort sub-
studies. This approach comprises a series of 73 overlapping 
sequential sub-studies. From 1st March 2020, 73 sub-studies 
will be defined, starting on 0, 1, 2, 3, 4…, 72 days after March 
1st. Each sub-study will have a duration of exactly 28 days. The 
last sub-study begins 12th May and ends 8th June 2020. Figure 1  
shows a schematic of the sub-studies.

All patients from the base cohort who remain alive at the end  
of the day prior to the sub-study entry date will be eligible  
to participate in that sub-study. Follow-up will start at sub-study 
entry date and end at the first of COVID-19 related death or  
sub-study end date (28 days after sub-study entry date). As for 
design A, participants will not be censored at deaths due to  
other causes.

Figure 1. Schematic of landmarking sub-studies.
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Each sub-study will have a case-cohort design. All eligible  
patients who experience a COVID-19 related death during  
the 28-day sub-study period will be included as cases. An 
age-stratified random sample of sub-study eligible patients 
(the sub-study sub-cohort) will additionally be selected, with 
age-group specific sampling fractions equal to 1/70 of the  
sampling fractions for approach A (e.g. 0.01/70 = 0.00014 in 
the age-group 18-<40) to give approximately the same number 
of cases and non-cases overall in the model development  
samples for approach A and B. Each resulting sub-study sub-
cohort will largely comprise non-cases but will include some 
cases by chance. The 73 sub-studies will be combined for analysis,  
as described below.

Model development design C: Daily landmark case-cohort  
sub-studies. The third approach differs from the second by incor-
porating information about changes in the infection prevalence 
during the 28-day sub-study duration. Two slightly different  
designs will be used within approach C.

The first (approach Ci) will use the landmark case-cohort sub-
studies described for design B, but analysed in a way that addi-
tionally accounts for changes in infection prevalence during the  
28-day sub-study period.

The second (approach Cii) will also be a series of stacked sub-
studies. In this case, 100 sub-studies will be formed, the first 
starting on 1st March 2020 and the last starting on 8th June 
2020. In contrast to approaches B and Ci, the duration of these 
sub-studies will be a single day. Each sub-study will include 
all cases (COVID-19 related deaths) that occur on that day  
and a random sample of non-cases who remained alive by the 
previous day. As above, sampling will be stratified by age- 
group, with sampling fractions equal to 1/1000 of the sam-
pling fractions for approach A (e.g. 0.01/100 = 0.0001 in the 
age-group 18-<40). The outcome will be the binary outcome 
of whether or not the sub-study participant experienced a  
COVID-19 related death on that day.

Approach Cii also requires information about the daily rate 
of death due to other causes. This will be estimated in a  
second case-cohort sample, comprising a sampling fraction 
of 0.3 of all non-COVID-19-related deaths on each day, to 
provide approximately 8,000 deaths due to other causes.  
Age-stratified sampling will be used to sample patients who 
do not die of non-COVID-19-related causes on that day, with 
sampling fractions equal to 1/100 of the sampling fractions for 
approach A (e.g. 0.01/100 = 0.0001 in the age-group 18-<40). 
For both COVID-19 related death and other death, the sam-
pling fractions have been chosen to give a ratio of approximately  
40 non-cases to cases.

Model development: Candidate predictors
Individual characteristics. The outcome, COVID-19 related 
mortality, is the result of a number of processes: expo-
sure, infection and then death following infection. Because 
of this, there are a range of mechanisms driving associations 
between patient characteristics and the outcome. We selected  

candidate predictors based on known or plausible associa-
tions with exposure to COVID-19 infection, risk of respira-
tory tract infection or severity of illness, and factors associated  
with healthcare access or level of care, as shown in Table 1.

Candidate predictor variables are described below. The  
codelists used to define these variables are listed in the Extended 
data17.

Demographic measures included as candidate predictors are: 
age (continuous); sex (male or female); ethnicity (eight cat-
egories: White, Indian, Pakistani, Bangladeshi/Other Asian, 
African/Other black, Carribean, Chinese, Mixed/Other); dep-
rivation (quintile of the index of multiple deprivation (IMD) 
derived from the patient’s postcode at lower super output area 
level). Two household measures will be included: the number  
of adults living in the household (continuous) and whether 
or not children aged up to 12 years are living in the house-
hold (yes/no). The region (seven regions of England: South 
West; South East; London; East; Midlands; North West; North 
East, Yorkshire and the Humber) and whether the individual  
lives in a rural or urban area will be included.

Lifestyle characteristics to be included as candidate predictors 
are: obesity category and smoking status. Obesity was grouped 
using categories derived from the World Health Organisa-
tion classification of Body Mass Index (BMI; kg/m2): under-
weight <18.5 kg/m2; obese I 30-34.9; obese II 35-39.9; obese 
III 40+; or no evidence of obesity or being underweight,  
with BMI ascertained from weight measurements within 
the last 10 years, restricted to those taken when the patient 
was over 16 years old. Smoking status was grouped into  
evidence of current smoking in the last 18 months, former and  
never smokers.

A number of comorbidities will also be included as candi-
date predictors. These are defined through combinations of 
clinical measurements, prescriptions, and recorded diag-
noses. Blood pressure (in a measurement taken in the last 18 
months) was grouped into: high II (systolic blood pressure  
(SBP) >= 140 mmHg or diastolic blood pressure (DBP) >= 90 

Table 1. Rationale for selection of candidate predictors.

Category Example predictors

Factors associated with 
exposure to infection

Age, sex, ethnicity, household size, 
deprivation, region

Risk factors for infection 
(given exposure) or 
severity of COVID-19 
infection

Smoking, obesity, underlying 
health conditions known to be 
risk factors for severe respiratory 
tract infection, risk factors for 
thrombosis

Barriers to healthcare 
access or level of care

Markers of frailty, terminal illness, 
ethnicity, age, mental health status
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mmHg), high I (SBP 130-<140 or DBP 80-<90), elevated (SPB  
120-<130 and DBP <80) or normal (SBP<120 and DBP < 80).  
Where the two measures (SBP and DBP) differed, the higher 
(worse) class was taken. Other comorbidities included: diag-
nosed hypertension; chronic cardiac disease including chronic  
heart failure, ischaemic heart disease, and severe valve or con-
genital heart disease likely to require lifelong follow up; atrial 
fibrillation; surgery for peripheral arterial disease or lower limb 
amputation; prior deep vein thrombosis or pulmonary embolism; 
diabetes (additionally using HbA1c within last 15 months to 
determine level of HbA1c control, grouped into <58 mmol/mol  
(good control), >=58 mmol/mol (poor control) and no recent  
measure); stroke; dementia; and other neurological conditions 
(motor neurone disease, myasthenia gravis, multiple sclerosis, 
Parkinson’s disease, cerebral palsy, quadriplegia or hemiple-
gia, malignant primary brain tumour, and progressive cerebellar  
disease).

Candidate predictors related to respiratory disease are: 
asthma (grouped by use of oral corticosteroids as an indica-
tion of severity, with two or more prescriptions in the last year 
taken to indicate severe asthma); cystic fibrosis and associated  
diseases such as primary ciliary dyskinesia; and other respira-
tory disease. Candidate predictors related to malignancy are:  
haematological malignancies (considered separately from 
other cancers to reflect the immunosuppression associated 
with haematological malignancies and their treatment) and  
non-haematological malignancy, each grouped according to time 
since diagnosis (<1 year, 2-<5 years, 5+years). Candidate pre-
dictors related to liver and kidney function are: liver disease; 
solid organ transplant (any); dialysis, for patients who have not  
since had a kidney transplant; and kidney function (ascer-
tained from the most recent serum creatinine measurement 
taken in the last 5 years excluding the most recent fortnight, 
where available, converted into estimated glomerular filtration 
rate (eGFR) using the Chronic Kidney Disease Epidemiology  
Collaboration (CKD-EPI) equation), with reduced kidney func-
tion grouped into no evidence of kidney impairment (no creatinine  
measurement or eGFR>=60 mL/min/1.73m2), stage 3 (eGFR 
in range 30-<60 mL/min/1.73m2) and stage 4-5 (<30 mL/min/
1.73m2). Patients with a history of kidney dialysis or kidney  
transplant will be included in the category representing stage 4-5.

Other candidate predictors include: common autoimmune dis-
eases including rheumatoid arthritis (RA), systemic lupus  
erythematosus (SLE) or psoriasis; asplenia (splenectomy or a 
spleen dysfunction, including sickle cell disease); other immu-
nosuppressive conditions including a condition inducing perma-
nent immunodeficiency ever diagnosed, or aplastic anaemia or  
temporary immunodeficiency recorded within the last year; 
inflammatory bowel disease; and HIV. The final candidate pre-
dictors are: learning disability, including Down’s syndrome;  
serious mental illness; and fragility fracture in the last two  
years for patients aged 65 or above.

Time-varying measures of disease burden. Three different  
sources of measures of burden of disease will be considered. In 
each case, measures will be obtained daily.

•      Estimates of the force of infection from dynamic disease 
modelling. These will be obtained by region and by  
5-year age-group. These estimates take into account the 
infection prevalence, the way in which different age-
groups interact with each other and the proportion of  
the population who are susceptible.

•     COVID-19 related A&E attendances among our database 
within each Sustainability and Transformation Partnership 
(STP, used as a measure of local geographic area). 
STPs in which insufficient data is available within our 
database to obtain reliable rates will be combined with 
a geographically adjacent STP. We will smooth this 
measure by taking the mean daily rate over the last 7 
days, on each day for which a measure is required. A&E  
attendances is likely to be an imperfect proxy for 
infection prevalence since it is likely to lag behind true  
prevalence of infection.

•      Suspected COVID-19 cases as recorded in GP records by 
STP, with smaller STPs combined with a geographically 
adjacent STP. CTV3 Codes XaaNq, Y20cf, Y211b, 
Y22b7 and Y22b8 will be taken to indicate a suspected 
case (see Extended data)17. We will take the mean rate 
over the last 7 days. Suspected cases may also lag behind 
the true infection prevalence. Moreover, there may be  
differences over time in how and when people visit their 
GP, so changes over time may be less likely to reflect 
true changes in infection prevalence than measures  
of more severe COVID-19, such as A&E attendances.

Omitted predictors. We have chosen not to include a measure 
of geographical region in our models, despite clear differences 
in COVID-19 outcomes by region. The rationale for this is that 
regional differences in COVID-19 related death are expected 
to be explained largely by differences in the burden of infection  
and geographical differences in comorbidities. By explicitly  
including these factors, remaining differences in region  
should be minimised. The omission of region would also  
facilitate the application of resulting models to regions other 
than those used in the model development process, although 
validation in those regions would be required to ascertain the  
performance of the models.

We considered attempting to tease out the effect of key gov-
ernment policies, such as the shielding policy, on COVID-19 
related death through their effects on the burden of infection.  
However, the timing of such policies is inextricably  
linked to periods in which infection rates are highest, thus statisti-
cal models such as those described in this document are not able 
to separate reductions due to shielding from the overall higher  
level of infection present when shielding was imposed.

Model development: Statistical analysis
Variable selection A: Case-cohort study. Variable selec-
tion will be performed, for approach A, within a 4% random  
sample of the whole eligible cohort. We anticipate this result-
ing in a variable selection sample of around 500,000 individuals,  
with at least 250 COVID-19 related deaths.

Page 8 of 17

Wellcome Open Research 2020, 5:243 Last updated: 30 OCT 2020



A Poisson model will be used for variable selection, using 
the whole 100-day period, with follow-up time accounted for 
via an offset term. Predictor variables will be selected from 
the pool of candidates, as listed above, by a lasso, with a pen-
alty parameter chosen by 3-fold cross-validation. Continu-
ous variables (age and number of people in the household) will 
be standardised. Restricted cubic splines of the standardised  
variables will be included. Standardised age and sex will be 
forced into all models. The following variables will be con-
sidered (by the lasso) for inclusion: rural/urban classification; 
deprivation; ethnicity; obesity; smoking status; blood pres-
sure category; diagnosed hypertension; diabetes; chronic car-
diac disease; atrial fibrillation; surgery for peripheral arterial  
disease or lower limb amputation; deep vein thrombosis or  
pulmonary embolism; stroke, dementia, other neurological con-
ditions; asthma; cystic fibrosis; other respiratory disease; hae-
matological malignancies; non-haematological malignancies; 
liver disease; dialysis; solid organ transplant; kidney function; 
common autoimmune diseases; asplenia; other immunosup-
pressive conditions; inflammatory bowel disease; HIV; learning  
disability; serious mental illness; fragility fracture; the pres-
ence of children in the household; household size (spline 
terms); and age (spline terms). Interactions between age (lin-
ear effect) and sex and each other candidate variable will 
also be included for consideration. Variables with non-zero  
coefficients will be included in the subsequent models.

Variable selection B and C: Landmarking study. Vari-
able selection will be undertaken separately for each measure 
of burden of infection. For each measure, we will first select the  
functional form of the time-varying measure of the burden of 
infection. This will be done in a logistic model within the stacked 
case-cohort sub-studies, unadjusted for any other variables  
comparing different forms of the time-varying measures using 
the Akaike information criterion (AIC). For each time-varying 
measure of the burden of infection (estimated force of infection,  
A&E attendance rate or suspected case rate), models consid-
ered will consider for inclusion: the current measure (evalu-
ated as of day 0 of the relevant sub-study); the log of the  
current measure; the coefficients from a quadratic model of the 
measure fitted to the previous three weeks of data, expressed 
in relation to the current measure; and polynomial terms of the 
current measure. Considering these non-linear and quadratic  
coefficients for inclusion attempts to capture the direction  
of change in the burden of infection.

Once the functional form of the time-varying measure of the 
burden of infection has been selected, variable selection will 
be performed using a random sample from the whole cohort. 
Three non-overlapping 3% random samples of individuals 
from the whole eligible cohort will be selected. Data from the  
28-day period 1st March – 28th March (inclusive) will be used for  
individuals in the first random sample; data from 6th April –  
3rd May (inclusive) for individuals in the second; and data from 
12th May – 8th June for the third. Taking 28-day blocks from  
three non-overlapping periods, rather than all 73 landmark  
sub-studies for this step minimises effects of repeatedly includ-
ing the same individuals on the variable selection process. 

We anticipate this resulting in more than 500,000 individuals  
and at least 300 COVID-19 related deaths.

Variable selection will be performed within the three random 
samples, stacked to form one dataset, using a logistic regres-
sion lasso. The candidate pool will be as above, with continuous 
variables and interactions treated as above. The chosen func-
tional form of the relevant time-varying measure of the bur-
den of infection will be forced into the models. Approach B will  
use the resulting selected set of variables. Approach C will 
use the same covariates as for approach B but the functional 
form of the time-varying measure of the burden of infec-
tion will be investigated separately within the one-day stacked  
sub-studies.

Sample size considerations. To explore how many param-
eters can reasonably be included in the prediction models, 
we undertook a range of sample size calculations following 
Riley et al.18 The sample size calculations are undertaken for a 
binary outcome and assume a logistic regression model is being  
fitted. 

We assume that the overall prevalence of COVID-19-related 
death in the whole cohort is 0.000471. The maximum value 
the Cox-Snell R-squared value can take is bounded above by 
a function of the outcome prevalence, here 0.00812. We set 
the maximum acceptable difference in apparent and adjusted 
R-squared to 0.05 and the margin of error in the intercept  
estimation to 0.05. The number of candidate predictor param-
eters is set at 60 and 120. We assume the model will explain 
10%, 20%, 50% and 70% of the variability in the outcome, to  
obtain a range of required sample sizes.

Table 2 shows the estimated sample sizes required. The antici-
pated sample sizes should provide sufficient power to estimate  

Table 2. Estimated sample sizes required for models 
with 60 and 120 parameters.

Proportion 
of variability 

explained

Required 
sample size

Total 
events 

required

Events 
required 

per 
predictor

To estimate 60 parameters

10% 664,834 313 5.21

20% 332,267 157 2.61

50% 132,727 63 1.04

70% 119,414 57 0.94

To estimate 120 parameters

10% 1,329,668 626 5.21

20% 664,534 313 2.61

50% 265,454 125 1.04

70% 238,827 113 0.94
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up to around 60 parameters, assuming we will be able to 
explain at least 10% of the variability. For 120 parameters, 
we would need to be able to explain 20% of the variability  
in order to have sufficient power with our proposed random  
sample.

Missing data. A large number of the candidate predictors will 
be fully observed, in the sense that an absence of a diagno-
sis is taken to indicate the absence of disease, as is typically 
assumed in electronic health record research. While this may 
lead to issues with misclassification and subsequent interpre-
tation, this does not manifest itself in a missing data prob-
lem. Missing data will arise in some demographic variables  
and clinical measurements, with the later predominantly used 
to determine severity of certain conditions. The predictors 
that are expected to have missing data (with anticipated miss-
ing rates in brackets) are: ethnicity (~25%), BMI (~20%), 
Smoking (~5%), hba1c (~20% of patients with diabetes), and  
kidney function (missingness likely in serum creatinine meas-
urement). Our previous analyses in these data suggested that 
the missingness mechanism for ethnicity may be somewhat  
missing not at random in one region, but little evidence  
against missing at random in the other regions.

For the main comparisons between risk prediction modelling 
strategies, a complete case approach will be used for ethnicity, 
restricting the analysis and validation steps to the sub-population  
in which ethnicity is measured. Patients with missing BMI 
will be assumed non-obese and patients with no smoking 
information will be assumed non-smokers, on the assump-
tion that smoking and obesity, if present, are likely to be  
recorded. Patients with no serum creatinine measurement will 
similarly be included in the “no evidence of poor kidney func-
tion”. Patients with diabetes but no Hba1c measurement will 
be included in a separate “diabetes, no Hba1c” category. Pre-
specified exploratory analyses (described below) will explore  
the application of multiple imputation for missing data.

Model estimation A: Case-cohort study. The following  
statistical models will be fitted, with time since 1st March 2020 
as the timescale: Cox proportional hazards model, Weibull, 
Royston-Parmar, Generalised gamma. The Royston-Parmar 
model is a survival model that flexibly models the baseline 
log cumulative hazard function using restricted cubic splines. 
We will fit this model with 5 degrees of freedom, resulting in  
4 knots spread evenly across the quintiles of the uncensored 
log survival times (at 20, 40, 60 and 80). If the Royston-Parmar 
and Generalised gamma models fail to converge, we will omit  
these models.

Barlow weights will be used to account for the case-cohort 
design15,16. Subcohort participants will be weighted by the 
inverse of the sampling fraction. Cases (COVID-19-related 
deaths) enter the risk set on the day of death with a weight of 
1. Prior to that: cases not in the subcohort receive a weight of 

zero; cases in the subcohort receive a weight of the inverse  
of the sampling fraction. Robust standard errors will be used.

The variables selected via the lasso procedure above will be 
included in the models. Note that these models do not include 
any time-varying covariates or time-varying measures of burden  
of infection.

Model estimation B: Landmarking sub-studies. Data from 
all 73 sub-studies will be stacked to form one analysis dataset,  
with a variable indicating the sub-study (k=1,2,…,73).  
Barlow weights with robust standard errors will be used. A  
Poisson, Weibull, and logistic model will be fitted.

The variables selected via the lasso procedure above will be 
included in the models. Covariates (e.g. patient comorbidi-
ties) and time-varying measures of the burden of infection will 
be evaluated at day 0 of the relevant landmarking sub-study  
(the day before follow-up begins). 

Model estimation C: Daily landmarking sub-studies. Two 
approaches will be used. In the first (approach Ci), landmark-
ing will be used as above. Within each 28-day sub-study,  
time will be split into the four weeks. A Poisson model will be 
fitted, similar to those described for approach B, additionally 
allowing the measures of infection prevalence and the shield-
ing indicators to change each week. Patients dying due to  
non-Covid-19 related causes will not be censored in this approach.

In the second approach (Cii), a series of 1-day studies will be 
stacked to form a single analysis dataset. A Poisson model, 
incorporating measures of prevalence of infection (as selected 
by the lasso process for approach B), will be fitted to esti-
mate the daily rate of the outcome, COVID-19 related death. 
Non-cases will be weighted by the inverse of the sampling  
fraction and cases by 1, with robust standard errors. In a simi-
lar way, a Poisson model will be fitted to estimate the daily 
rate of mortality due to non-COVID-19-related causes condi-
tional on the same set of predictor variables, but without the 
measures of the burden of infection, weighted according to the  
inverse of the sampling fractions. Risk of 28-day COVID-19 
related death will be estimated using a sum of the daily esti-
mated risk of COVID-19 death multiplied by the estimated  
daily probability of surviving from other causes.

Model validation
The outcome being predicted is 28-day COVID-19-related mor-
tality, so validation will be undertaken in 28-day periods. Three 
validation periods will be considered: validation period 1 will 
run from 1st March – 28th March, validation period 2 will run 
from 6th April – 3rd May, validation period 3 will run from 
12th May – 8th June. For all date ranges, the start and end date  
will be included in the follow-up time to give periods of 28 
full days. These validation periods have been chosen to cover 
periods of higher and lower infection prevalence, within 
the period of time used for model development. Figure 2 
shows a schematic of the different data sources to be used to  
develop and validate the models.
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For each model, measures of model performance will be  
obtained using:

•   Internal validation (validation periods 1, 2 and 3)

•    Geographical internal-external validation (validation  
periods 1, 2 and 3)

•   Temporal internal-external validation (validation period 3)

Models to be evaluated are shown in Table 3.

In addition, for the static models (approach A), model perform-
ance will be evaluated over the whole 100-day period used to  
fit the models.

For the geographical internal-external validation, a leave-one-out  
approach will be used, omitting all patients from one  
geographical region in turn, performing the model selection 
and fitting the model in the sub-sample excluding that region, 
and then using the fitted model to make predictions for the 
patients in the omitted region. This will be repeated for each of  
seven regions. Model performance measures will be averaged 
over the seven sub-analyses. For the temporal internal-external  
validation, the data will be split into two time-periods:  
1 March 2020 until 11 May and 12 May until 8 June 2020.

Risk prediction. When predicting 28-day risk in a particular  
validation period, all patients who remain alive by the end 
of the day prior to the start of the validation period will  
be included. Characteristics will be assessed on the day prior 
to the start of the validation period. For validation periods 2  
and 3, therefore, new comorbidities not present at baseline  
may have occurred. 

Risks of 28-day COVID-19-related death will be predicted 
using each model. Model performance will be assessed by com-
paring observed outcomes, 28-day COVID-19-related death, 
to the predicted risk. Note that since there is no censoring,  
we observe the outcome for all patients. 

Measures of model performance. Discrimination – the ability  
to distinguish between cases and non-cases – will be assessed 
by Harrell’s C-statistic. The Brier Score will be used as a meas-
ure of overall model performance15. Calibration – the agree-
ment between observed outcomes and predictions will be  
assessed in three ways. First, mean calibration will be assessed 
by comparing mean predicted risk with mean observed risk.  
Second, the calibration intercept and slope will be used 
to assess whether models over- or under-estimate risk or  
provide overly extreme or modest risk estimates. Third, the 
Hosmer-Lemeshow goodness-of-fit p-value will be calculated,  
comparing observed and expected numbers of events within 
deciles.

Figure 2. Schematic of the different datasets to be used to develop and validate the models.
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While case-cohort samples will be used for model fitting to 
reduce computational burden, measures of model perform-
ance will be calculated on the full cohort validation samples. 
For approach A, when evaluating model performance for the 
whole 100-day period, the whole cohort will be used if pos-
sible. If computational problems are encountered, the 100-day  
case-cohort sample will be used, with the calibration meas-
ures modified to account for the case-cohort design. In all 
cases, the outcome will be treated as a binary outcome for the  
purposes of model evaluation.

Model comparison. Comparison will be made between models  
in terms of model performance - calibration, discrimination 
and overall accuracy – in the internal validation and in the  
geographical and temporal internal-external validations.

External validation. This protocol focuses on the model 
development, internal and internal-external validation of the  

models. Subsequently, external validation will be undertaken 
using a UK data source external to the one used for the model  
development.

Covariates will be defined in an analogous way as for the TPP 
data, insofar as is possible, allowing for differences in coding  
schemes used in primary care systems across the UK. 

The same validation periods will be used, as shown in  
Figure 2. Models developed in the current work will be used 
to predict risk in the external data within each validation 
period. Measures of model performance, as described for the  
internal validation, will be obtained. 

Pre-specified exploratory analyses
A number of pre-specified exploratory analyses will be con-
ducted. These will be used to explore the impact of modelling 
decisions made about and to contextualise interpretation of the  
models developed above.

Table 3. Models proposed for evaluation.

Model Approach Model for COVID-19-related death Proxy for burden of 
infection
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1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X X X

7 X X X

8 X X X

9 X X X

10 X X X

11 X X X

12 X X X

13 X X X

14 X X X

15 X X X

16 X X X

17 X X X

18 X X X

19 X X X
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First, a “parsimonious” model will be proposed, informed 
by the selected predictor set and clinical judgement. Vari-
ables thought to act on the risk of COVID-19 related death 
via similar mechanisms will be grouped into coarser catego-
ries. This may involve re-introducing subcategories that were  
removed in the lasso above, by virtue of belonging to a 
coarser clinical grouping. The performance of this parsimo-
nious model will be compared to an analogous model using 
the lasso-selected set of variables. Conversely, we will assess 
a “richer” model, which includes additional parameters  
to those selected by the lasso. Specifically, if one or more dummy 
variables in a multi-category variable is selected for inclusion, 
the whole variable will be included in the final model. Simi-
larly, interactions with the whole categorical variable will be 
included if any dummy variable is selected within an interac-
tion term. We will take the best performing model(s) from 
the main evaluation and compare model performance of the  
selected model with the analogous parsimonious and richer  
models.

Second, if our results suggest that adding the time-varying 
measures of infection burden do enhance predictive accuracy, 
we will directly assess the extent of this by comparing meas-
ures of model performance of the landmarking approach B, 
including the best performing time-varying measures of bur-
den of infection, with the same approach but omitting all  
such time-varying measures (and re-doing variable selection  
without these variables).

Third, we will explore the extent to which region adds to model 
performance of the best fitting models in approach A and B, to 
explore whether adding the time-varying measures of burden  
of infection remove or reduce apparent regional differences.

Fourth, it is possible that covariate information is more complete 
or more up-to-date for patients hospitalised with COVID-19, 
which could bias the estimates from the time-updated models. 
Therefore, we will repeat one of the models without updating 
covariates (i.e. using covariates as defined at day 0 of the base  
cohort), in order to assess the impact of this decision.

Fifth, we have arbitrarily decided to use the previous three 
weeks of data to model patterns of change in time-varying  
measures of the burden of infection, summarised through a 
quadratic model. We will explore other modelling approaches, 
comparing models using the Akaike information criterion.  
Specifically, we will take one model from approach B and 
explore the effect of changing the three-week look-back period 
to two or four weeks. We will compare the quadratic model  
with other models, such as a cubic or fractional polynomial.

Finally, the best fitting model will be refitted following mul-
tiple imputation, imputing all covariates above with missing 
data, with the subsequent model re-validated in the same way 
as the previous models. The multiple imputation process will 
be via chained equations, including the binary outcome, the 
Nelson-Aalen estimate of the cumulative hazard, all predic-
tors and interaction terms in the model19,20. 10 imputed datasets  
will be created within the model development dataset with  
models fitted in each dataset and combined using Rubin’s rules. 

To validate the models, multiple imputation will be sepa-
rately undertaken in each validation dataset, including the out-
come as above, with validation measures calculated in each  
imputed dataset and combined using Rubin’s rules. Five 
imputed datasets will be created in each validation dataset, 
due to computational considerations. This imputation attempts 
to quantify model accuracy that would be achieved when  
implementing in data that has no missingness.

Ethics and information governance
NHS England is the data controller; TPP is the data proces-
sor; and the key researchers on OpenSAFELY are acting on 
behalf of NHS England. This implementation of OpenSAFELY 
is hosted within the TPP environment which is accredited to 
the ISO 27001 information security standard and is NHS IG 
Toolkit compliant; patient data has been pseudonymised for  
analysis and linkage using industry standard cryptographic hash-
ing techniques; all pseudonymised datasets transmitted for  
linkage onto OpenSAFELY are encrypted; access to the plat-
form is via a virtual private network (VPN) connection, 
restricted to a small group of researchers, their specific machine 
and IP address; the researchers hold contracts with NHS  
England and only access the platform to initiate database que-
ries and statistical models; all database activity is logged;  
only aggregate statistical outputs leave the platform environ-
ment following best practice for anonymisation of results 
such as statistical disclosure control for low cell counts. The 
OpenSAFELY research platform adheres to the data protec-
tion principles of the UK Data Protection Act 2018 and the 
EU General Data Protection Regulation (GDPR) 2016. In  
March 2020, the Secretary of State for Health and Social Care 
used powers under the UK Health Service (Control of Patient 
Information) Regulations 2002 (COPI) to require organisations 
to process confidential patient information for the purposes 
of protecting public health, providing healthcare services 
to the public and monitoring and managing the COVID-19 
outbreak and incidents of exposure. Taken together, these 
provide the legal bases to link patient datasets on the  
OpenSAFELY platform. This study was approved by the Health 
Research Authority (REC reference 20/LO/0651) and by the 
LSHTM Ethics Board (reference 21863).

Dissemination
All data were linked, stored and analysed securely within the 
OpenSAFELY platform (https://opensafely.org/). Detailed 
pseudonymized patient data are potentially reidentifiable and 
therefore not shared. We rapidly delivered the OpenSAFELY 
data analysis platform without prior funding to deliver timely 
analyses on urgent research questions in the context of the  
global COVID-19 health emergency: now that the platform is 
established we are developing a formal process for external  
users to request access in collaboration with NHS England. 
Details of this process will be published shortly on the  
OpenSAFELY website.

Data management was performed using Python 3.8 and SQL, 
with analysis carried out using Stata 16.1 and Python. All 
code is shared openly for review and reuse under an MIT 
open license. All code for data management and analysis 
will be archived online, once the analyses described in this  
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document have been undertaken, at https://github.com/opensafely/
risk-prediction-research. All clinical and medicines codelists  
are openly available for inspection and reuse at https://codelists.
opensafely.org/.

Study status
We are currently finalising the data management and wran-
gling for this study. We have defined the required study pop-
ulation and created the variables needed. Data checks are 
currently underway. We will begin the analysis described  
herein this week (12 October 2020).

Discussion
This protocol has detailed the methods to be used for our  
study which aims to explore the extent to which incorporat-
ing time-varying measures of infection burden over time 
improves the quality of risk prediction models for COVID-19 
death. The study will use COVID-19 deaths data linked to lon-
gitudinal primary care electronic health records data within the  
OpenSAFELY secure analytics platform. Importantly, this 
study will be the first to explore how to optimally incorporate 
time-varying measures of the burden of infection. If the incor-
poration of these data substantially improves the predictive 
ability of risk prediction models in COVID-19, this will have  
important implications for best practice in risk prediction in  
this area.

This protocol has been written in the light of relevant guide-
lines, including the TRIPOD reporting guidelines and the  
PROBAST risk of bias guidelines for prediction models21,22.

The planned study has a number of limitations. Impor-
tantly, the outcome is COVID-19-related death among the 
general population, thus the outcome reflects the combined  
processes of becoming infected and dying. It is not possible 
to separate the risk prediction into those two component parts.  
Second, the outcome relates to short-term mortality and does 
not account for quality of life or life years lost. Third, the use  
of primary care data allows a very large cohort to be used to 
address this question, but these data are not perfect. Some 
data are missing, other information is misclassified or imper-
fectly measured. The interpretation of variables, as measured 
in routinely collected primary care electronic health records, 
may not be the same as the answer you might get from the  
same patient if using a questionnaire, for example. Fourth, 
we are using candidate predictors only from primary care 
data, thus the information available on some conditions, such 
as cystic fibrosis or HIV control, is incomplete or not avail-
able. This may slightly dilute estimates, in comparison to 
those we would see if we had more detailed data on these con-
ditions. Fifth, if we find that adding time-varying measures of  
burden of infection enhances predictive ability, model  
performance could change over time if the way our prox-
ies for the burden of disease are measured change. For exam-
ple, if we found A&E attendances for COVID-19 added to the  
predictive power of our modes, this may change if people  
started visiting A&E for much less severe cases of COVID-19.

Machine learning models are increasingly being used to derive 
risk predictions in heath context. Common approaches include  
classification trees, random forests, artificial neural networks  
and support vector machines. In this protocol, the con-
tribution of machine learning techniques is restricted to  
variable selection procedures, via the lasso. For model estima-
tion, we chose to use a more statistical approach, relying on 
maximum likelihood regression modelling. This is because,  
despite much enthusiasm for machine learning approaches 
to risk prediction, there is little evidence to suggest that they 
perform better than traditional statistical models in clinical  
contexts23.

In conclusion, we have outlined a protocol to explore whether 
the addition of time-varying measures of the burden of infec-
tion substantially improves performance of models predicting 
short-term COVID-19-related death. The resulting models may 
allow general practitioners, policy makers and individuals to 
make informed decisions regarding social contact and shielding  
behaviours accounting for the changing nature of the epidemic.

Data availability
Underlying data
No underlying data are associated with this article.

Extended data
Zenodo: Extended data: Codelist details for risk prediction  
protocol for COVID-19 related death

https://doi.org/10.5281/zenodo.407334017.

This project contains the following extended data:

-     Extended_data_Risk_prediction_protocol_8102020.docx 
(Codelist details for risk prediction protocol for COVID-19 
related death)

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).
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(PROBAST) to ensure appropriate components of the planned study have been included in the 
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article is well written, the planned study poses an interesting and original question, and I look 
forward to reading the study findings once completed. 
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1. 

Within the Objectives, the authors state the use of Cox proportional hazards model. 
However, in the Model development design, they discuss competing risks and the aim to 
attain subdistribution hazards. So the model fitted will be a Fine and Gray proportional 
subdistribution hazard model: 
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