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Abstract 

Marginal structural models (MSMs) are commonly used to estimate causal intervention effects in 

longitudinal non-randomised studies. A common challenge when using MSMs to analyse observational 

studies is incomplete confounder data, where a poorly informed analysis method will lead to biased 

intervention effect estimates. Despite a number of approaches described in the literature to handle 

missing data in MSMs, there is little guidance on what works in practice and why. We reviewed existing 

missing data methods for MSMs and discussed the plausibility of their underlying assumptions. We also 

performed realistic simulations to quantify the bias of five methods used in practice: complete case 

analysis, the last observation carried forward, the missingness pattern approach, multiple imputation 

and inverse-probability-of-missingness weighting. We considered three mechanisms for non-monotone 

missing data encountered in electronic health record data research. Further illustration of the strengths 

and limitations of these analysis methods are provided through an application using a cohort of 

individuals with sleep apnoea, the research database of the French “Observatoire Sommeil de la 

Fédération de Pneumologie” (OSFP). We recommend a careful consideration of (i) the reasons for 

missingness, (ii) whether missingness modifies the existing relationships among observed data and (iii) 

the scientific context and data source, to inform the choice of the appropriate method(s) to handle 

partially observed confounders in MSMs.  

Keywords: time-varying confounding; propensity score; multiple imputation; inverse probability 

weighting; missingness pattern approach; last observation carried forward; complete cases. 
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List of abbreviations: CC: Complete Case; CPAP: Continuous Positive Airway Pressure; IPMW: Inverse 

Probability of Missingness Weighting; LOCF: Last Observation Carried Forward; MAR: Missing At 

Random; MCAR: Missing Completely At Random; MNAR: Missing Not At Random; MSM: Marginal 

Structural Model; MI: Multiple Imputation; MPA: Missingness Pattern Approach;  

BACKGROUND 

Although randomised trials are the gold standard to establish causal effects of treatments and non-

pharmacological interventions on health outcomes, observational data are increasingly used for causal 

inference (1). The enormous potential offered by the wealth of routinely collected medical data 

available and the need for real-world evidence to assess the efficacy and safety of treatments have 

contributed to this phenomenon.  

These routinely collected data typically have a longitudinal structure, following individuals over time, 

allowing the measurement of dynamic treatment patterns, including treatment switching or delay to 

treatment initiation. Patients with chronic conditions often have a non-linear treatment history: 

treatment prescription might be updated based on the occurrence of new health events, changes in 

individual factors or side-effects induced by previous treatments. The newly prescribed treatment 

might, in turn, affect future health events and individual factors, themselves potentially associated with 

the outcome of interest (2). In such settings, specific statistical methods are required to account for 

confounding bias induced by time-varying variables (3). Indeed, adjusting for the confounders and 

treatment history is not sufficient, and often leads to biased estimates of the causal treatment effects 

(4). This is because the effect of a treatment received at a specific time on the outcome is mediated by 

subsequent treatments. Propensity scores - the individual probabilities of receiving the treatment of 

interest conditionally on individual characteristics - have been extended to situations with time-varying 

treatment and confounders (5), with scores estimated at each time point (6).  The cumulative product of 

the inverse of these scores over time can be used as a weight to account for confounding in the 
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estimation of the treatment effect in a marginal structural model (MSM) (7). This method of adjusting 

for time-varying confounders is by far the most common in practice (8). 

A challenge when analysing observational data is incomplete confounder information. In routinely 

collected data, missingness is particularly prevalent on covariates. This can happen if some information 

is not recorded at a given time point or the frequency of the measurement varies from one patient to 

another (e.g. asynchronous medical visits (9)). This might jeopardize the validity of the results if the issue 

is ignored in the analysis, depending on the underlying missingness mechanisms. In practice, despite the 

STROBE recommendations to report the amount of missing data and the way they are handled (10) in 

observational studies, reporting is often suboptimal. A review of reporting of missing exposure data in a 

longitudinal cohort showed that 43% of identified publications adhered to these guidelines (11). 

Importantly, when the method for handling missing data was reported, it was often done using 

inadequate methods. Although several methods to handle missing data on covariates have been used in 

the context of time-varying exposures (11), the most common approaches – complete case (CC) analysis 

and last observation carried forward (LOCF) – have been criticized. Use of more complex approaches 

such as multiple imputation (MI) or inverse-probability of-missingness-weighting (IPMW) have been 

suggested, but their performance is yet to be fully explored. Another promising approach, which has not 

been extended to the context of MSMs, is the missingness pattern approach (MPA). 

To our knowledge, there are no published guidelines for the choice of methods to handle missing 

confounder data in MSMs. Published studies on missing data in MSMs focused on missing data in the 

exposure (11,12) or compared the performances of a few methods only (13,14). Moodie et al. (14) 

compared the use of IPMW and MI, finding that MI outperformed IPMW, but they did not investigate 

the performance of MPA and LOCF. Moreover, only one covariate and two time points were considered, 

limiting the generalisability of the results. Vourli and Touloumi (15) investigated the performance of MI, 

IPMW and LOCF but found opposite conclusions in their setting, finding that IPMW usually performed 

better than MI. This might be explained by the omission of the outcome from the imputation model. A 
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recent plasmode simulation (13) suggested superiority of MI over IPMW, but surprisingly, CC analysis 

was the least biased. A limitation of these published studies is their focus on missingness mechanisms 

described under Rubin’s taxonomy of missing data (16); this taxonomy may be too restrictive to describe 

complex missingness scenarios encountered in routinely collected data (17).  

The aims of this paper are, first, to provide an overview of existing methods to handle missing data on 

confounders in MSMs and, second, to recommend practical guidelines. These guidelines will rely on the 

understanding of the assumptions and missingness mechanisms under which these methods are valid. 

We focus on situations where some variables are not recorded during the visit, rather than missing data 

introduced because of sparse follow-up. These two scenarios differ both in terms of underlying 

missingness mechanisms and required statistical methods. The challenges of sparse follow-up has been 

discussed by Mojaverian et al. (9) and Kreif et al. (18). We present a simulation study comparing the 

performance of CC analysis, LOCF, MI, IPMW and MPA to handle partially observed confounders under 

common missingness mechanisms encountered in observational studies. Finally, we illustrate the 

implementation of these methods by investigating the impact of observance to treatment on sleepiness 

in patients with sleep apnoea. 

 

CAUSAL INFERENCE IN THE PRESENCE OF TIME-VARYING TREATMENT AND CONFOUNDERS 

When time-varying confounding occurs, standard regression approaches fail because of treatment-

confounder feedback (19), even when past treatment and confounders values are adjusted for (3). 

MSMs were developed (7) to estimate causal effects in this setting. MSMs rely on an extension of 

inverse-probability-of-treatment weighting, a propensity score approach, for multiple time points. 

Details about this framework and underlying assumptions for a single time point are in Web Appendix 1. 

Similar to propensity score approaches, MSMs are a two-stage process. In the first stage, (19), weights – 

based on the inverse of the probability of a patient receiving the treatment they actually received – are 
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estimated to create a pseudo-population in which treatment and confounders are independent. In the 

second stage, a weighted regression (using the weights derived in the first stage) including only the 

treatment history can be used to obtain estimate the causal effect of the treatment regimens of 

interest. Under the assumptions of no interference, consistency, exchangeability and positivity extended 

to time-varying settings, and assuming the model used to obtain the weights is correctly specified, 

MSMs lead to unbiased estimates of the marginal causal effect of the treatment regimen.  

In practice, the weights can be estimated using pooled logistic regression (6), in which each person-time 

interval is considered as an observation. This pooled logistic regression model must include the 

confounders and their relevant interactions to ensure the distributions of confounders are balanced 

between treatment groups in the weighted pseudo-population at each time point. Further details about 

the implementation of MSMs can be found in Web Appendix 2. 

MISSING DATA IN MSMs: mechanisms and methods 

The choice of an appropriate missing data method relies on the characterization of the missingness 

patterns and the missingness mechanisms. The missingness patterns simply define which values of the 

covariates are observed and which are missing. For example, if the dataset contains only two time-fixed 

covariates L1 and L2, there are four missing data patterns: L1 and L2 can be both observed, both 

missing, L1 can be observed and L2 missing, or L1 can be missing and L2 observed. Similarly, if L1 and L2 

are measured at two time-points, there are 16 patterns. Some methods for handling missing data, such 

as multiple imputation, apply to any pattern of missing data; other methods apply only to specific 

structures of missing data, the most common being the monotone missing data pattern. In longitudinal 

data, monotone missingness patterns occur when, once a patient has a missing observation at one time 

point, values for all subsequent time points are also missing. This is typically what happens when 

patients are lost to follow-up. Whereas methods based on inverse weighting have been proposed to 

address this type of missing data in MSMs, there is no guidance on how to handle arbitrary patterns (not 

monotone) in MSMs. This is however the most common pattern found in routinely collected data where 
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data are not collected for research purposes, and the quality of recording may vary from one visit to 

another. 

Little and Rubin’s classification is often used to classify the missing data as being (i) missing completely 

at random (MCAR) when the probability of data being missing does not depend on the observed or 

unobserved data, (ii) missing at random (MAR) if the probability of data being missing does not depend 

on the unobserved data, conditional on the observed data or (iii) missing not at random (MNAR) if the 

probability of data being missing depends on the unobserved data, even after conditioning on the 

observed data (20).  

A variety of methods to handle missing data on covariates have been used in the context of time-varying 

exposures (11). The most common approach is complete case (CC) analysis, in which only patients with a 

complete record for all the covariates are included in the analysis. Another simple and popular approach 

is the last observation carried forward (LOCF): when a measurement is missing, the most recent past 

value observed for this patient is used to impute the missing value. Multiple imputation (MI) uses 

relationships existing among the observed variables to draw multiple times plausible values for the 

missing data; the standard error of the treatment effect estimates accounts for the uncertainty in these 

predictions. In MSMs, Robins and Hernán proposed to use censoring weights to account for patients lost 

to follow-up. Complete cases are re-weighted by the inverse of their probability of remaining in the 

study. Loss to follow-up can be viewed as a missing data problem, and therefore, these weights can be 

accommodated to account for missing data. This method is called inverse-probability of-missingness-

weighting (IPMW). Another promising approach to handle partially observed confounders that should 

be extended to MSMs is the missingness pattern approach (MPA). The MPA has been proposed for the 

estimation of propensity score weights in studies with a single time point (17). The sample is split into 

subgroups of patients having missing information on the same set of covariates and the weights are 

derived in each subgroup from the covariates available in that pattern. More details of these methods 

are in Web Appendix 3. The approaches rely on different assumptions; their validity depends on the 
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missingness mechanisms in the data at hand. These assumptions along with the strengths and 

limitations of each method are summarised in Table 1. 

METHODS 

We performed a simulation study to (i) illustrate the impact on bias of violations of the assumptions 

required for each method to be valid, and the relative precision of these methods when assumptions 

hold and (ii) highlight existing challenges in their implementation in practice. Data were simulated to 

mimic an observational study looking at the effect of a time-varying binary treatment on a continuous 

outcome, in the presence of time-varying confounding. We focused on four plausible types of 

missingness mechanisms (Figure 1): 

- MCAR mechanism: missingness is not dependent on either observed or unobserved variables 

- MAR mechanism: we consider 3 situations in which missing data depends on observed past 

treatment and confounder values (MAR|A,L), past treatment and confounder values and 

outcome (MAR|A,L,Y) or considering an association between missingness and the outcome 

introduced through the independent risk factor (MAR|A,L,V). 

- “Constant” mechanism: confounder values are missing if they have remained constant since the 

last visit (a mechanism under which LOCF is expected to perform well).  

- “Differential” mechanism: the missingness mechanism itself is MAR, but missingness affects the 

subsequent association between the true value of the confounder, and the treatment (the 

mechanism implicitly assumed by the MPA). In other words, the past observed values of the 

confounders and treatment predict missingness, but among individuals with a missing covariate 

value at a given time point, there is no association between the true (but unmeasured) value 

and the subsequent treatment received.  

We compared the performance of CC analysis, LOCF, MPA, MI and IPMW to estimate the causal effect of 

the intervention at each time point. The analysis model was the additive model proposed in (3,7): 
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                     , 

Where Y is a continuous outcome, ak are the binary treatment indicators at time k (k=0,1,2) and the β 

coefficients are the parameters of the marginal structural MSM. This model allows the estimation of the 

contrast between any treatment strategy of interest. The data-generating mechanisms, methods, 

estimands and performance measures for our simulations are presented in Web Appendix 4 and the R 

code to generate the data is available in Web Appendix 5. In the main scenario, the proportion of 

missing data was around 40%, and the sample size was n=10,000. We also investigated the impact of a 

smaller proportion of missing data (5%) and smaller sample size (n=500).  

RESULTS 

The results of the main simulation study (n=10,000 and 40% of missing data) are presented as boxplots 

(Figures 2-3), showing the distribution of the absolute bias for each method, and summarised in Table 1. 

Full results are presented in Web Tables 1- 5 and Web Figures 1-4.  

MCAR 

Whereas CC, MI and IPMW lead to unbiased estimates at the three time points, the MPA estimates are 

biased at each time point and LOCF estimates are biased at times 1 and 2 (Figure 2). The bias for the 

MPA arises from the direct associations existing between the confounders and the treatment allocation 

at subsequent time points even among participants with missing covariate values. For LOCF, the bias 

arises because the missing values were generally different from the observed previous value because 

confounder values were affected by prior treatment.  

MAR 

Except MI, which led to unbiased estimates at each time point for the three MAR scenarios, the 

performance of the other analysis strategies relied on the variables that were predictive of missingness 

(Figure 3). When missingness depended on the values of past treatment assignment and confounders, 
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IPMW estimates were unbiased at the three time points. A small bias was observed for complete case 

analysis and larger biases were obtained when using LOCF and MPA, for similar reasons as in MCAR 

scenarios. When the outcome was directly related to missingness, the only unbiased approached was 

MI. However, when an indirect association between the outcome and missingness existed, the IPMW 

led to unbiased estimates, but with a lower precision than MI.  

Missingness on constant values 

Only LOCF was unbiased (Figure 3) and the bias was worse with MI and IPMW than with CC. This is 

because they both use the existing relationships between the confounders, treatment and outcome in 

the observed data, but in this scenario, these relationships do not reflect the associations existing 

between the true (missing) confounder values and the other variables.  

Missingness affecting the subsequent covariate-treatment associations 

MPA was the only appropriate method to obtain unbiased treatment effect estimates, although the bias 

of the other approaches was quite small. As in the previous scenario, the associations between 

confounders and treatment among the complete cases cannot be used to make inferences about the 

relationship among participants with missing confounder values. Therefore, CC, MI and IPMW are 

biased. LOCF estimates are unbiased when missingness on a variable depends only on the previous 

measurement for that variable. However, in the current scenario, missingness depends on past values of 

the treatment and confounders.  

When the sample size was small (n=500), the magnitude of bias was similar to that observed for 

n=10,000, but the standard errors of the treatment effect estimates were very large, illustrating the lack 

of efficiency of MSMs in small samples (Web Figures 3-4).  

When only 5% of the data were missing, biases were smaller in magnitude and were, in our setting, 

negligible for non-MAR situations. However, we would not recommend the implementation of a method 

known to be biased when unbiased alternatives exist. 
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ILLUSTRATIVE EXAMPLE 

We used the data from a prospective national cohort, using the research database of the “Observatoire 

Sommeil de la Fédération de Pneumologie” (OSFP). The OSFP registry is a standardized web-based 

report, containing anonymized longitudinal data from patients with sleep disorders (21). We aimed to 

estimate the causal effect of compliance in the use of continuous positive airway pressure (CPAP) device 

on sleepiness symptoms among patients diagnosed with obstructive sleep apnoea. In the OSFP registry, 

the number of recorded visits per patient varies, so for simplicity, we focused on patients who had a visit 

within 3 months, 6 months and 1 year following the initiation of CPAP treatment in order to focus on the 

problem of missing records rather than sparse follow-up. Compliance was determined as an average use 

of CPAP >4hours per night within each time interval. The outcome was a continuous sleepiness score 

measured during the last visit using the Epworth Sleepiness Scale. Age, sex, body mass index, nocturia 

and presence of depression were considered as potential confounders in this study. The investigators 

intended to record updated values of body mass index, nocturia and depression at each visit; however, 

measurement was not always undertaken as planned. Patients could have one (or more) missing 

measurement(s) on at least one of these variables. Patients’ characteristics are described in appendix 

(Web Table 6). 

Out of 1,169 included patients, only 263 (22.8%) patients had a complete record (Web Table 7). Data is 

not MCAR since associations were observed between all potential confounders and the probability of 

having a complete record. However, a MAR mechanism is plausible in this setting. The MPA is not a 

suitable method for this analysis because of missing data on the CPAP exposure.  

Results are presented in Figure 4 and Web Table 8. Overall, we found no causal effect of CPAP 

compliance on sleepiness. Due to the relatively small sample size, IPMW led to very wide 95% 

confidence intervals. The 95% CI for LOCF is narrower, but does not account for the uncertainty around 

the imputed values. Furthermore, the assumption underlying the validity of LOCF is unlikely to hold 

here. As expected, all approaches gave similar results because confounding was not very strong (Web 
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Table 7). However, it illustrates the inefficiency of IPMW and the limitations of the MPA approach when 

exposure data are missing.  

DISCUSSION 

In this paper, we presented five methods to handle missing values in partially observed time-varying 

covariates in MSMs, identified situations in which they are appropriate to estimate unbiased causal 

effects, and illustrated how to implement these approaches in practice. We showed that, for the 

estimation of causal effects, CC analysis is often biased, unless data are MCAR. The validity of this 

assumption cannot be tested from the data (22), but violations of these assumptions can be detected by 

looking at associations between the probability of being a complete case and the variables available in 

the dataset. While the MCAR assumption is rarely plausible, we also showed that when missing values 

are MAR given treatment history and confounders, the bias of the CC estimates is usually small.  

LOCF leads to biased estimations of the treatment effects, unless missing values are in truth missing 

because they remained constant over time or when the previous measurement is used to adapt 

treatment (rather than the true - but missing - measurement). This assumption may hold in routinely 

collected data. For instance, GPs might not record a patient’s weight during a visit if it has not changed 

since the previous consultation. This assumption cannot be tested from the data but the plausibility of 

the assumption can be assessed using expert opinion, building on what has been proposed in 

randomised trials (23). Moreover, when using LOCF, the uncertainty around the single imputation of 

missing values is not accounted for (24). Although this is not an issue for categorical variables, it is 

problematic for continuous confounders where imputing exactly the previous measurement may lead to 

inappropriate certainty. 

As expected, MI led to unbiased estimates of the treatment effect when data were MCAR or MAR. 

When implementing MI, the outcome must be included in the imputation model and the treatment 

effect estimated in each imputed dataset and combined using Rubin’s rules, as recommended in settings 
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with a single time point (25). In our simulations and example, treatment and covariate values at all time 

points were included in the imputation model. With an increasing number of time points, issues of 

overfitting may arise. Two-fold multiple imputation has been proposed to circumvent this problem (26). 

Instead of using all the time-blocks in the imputation model, only the current and adjacent times are 

used, and therefore fewer parameters are to be estimated in the imputation model.  

MPA and IPMW have never been investigated in the context of MSMs. The MPA is unbiased when either 

the association between the partially observed confounder and the outcome or between the partially 

observed confounder and the subsequent treatment disappears among patients with a missing value for 

that confounder. Hence, the validity of this approach does not depend on the missingness mechanism 

but instead the relationship between covariates, treatment and outcome among patients with missing 

data. In routinely collected primary care data, this assumption is plausible when, for instance, the results 

of a blood test are used by the general practitioner to adapt treatment prescription. If these results are 

missing (i.e. not available to the general practitioner), they will not be used in the treatment decision: 

among patients with missing blood test results, the true (but unmeasured) value of the biological 

parameter is not directly associated with the treatment, and therefore the test result is no longer a 

confounder. The MPA is straightforward to implement but issues may arise when there are many 

missingness patterns. The MPA’s inability to accommodate missing data on the treatment and the 

outcome might limit its applicability, unlike IPMW, which includes only the complete records in the 

analysis, regardless of which variables have missing values. IPMW generally leads to unbiased estimates 

when data are MCAR and MAR. The exception is when missingness is directly affected by the outcome, 

because the outcome might be associated with treatment and confounder values at later time points, 

which are not accounted for in the missingness model to compute the weights. IPMW is also unbiased in 

scenarios where the MPA is unbiased because patients are censored at the first missing data, and 

therefore, no use is made of the information measured at later time points. However, IPMW is 

somewhat inefficient. This is explained by a loss in sample and by the multiplication of two weights (the 
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treatment weight and the missingness weight) that are both estimated with uncertainty, leading to 

highly variable treatment effect estimates. We recommend the use of IPMW in very large datasets, a 

situation in which MI would be highly computationally intensive. Furthermore, a limitation in the current 

implementation of IPMW is that missing data were considered as being monotone, that is, patients were 

excluded from the analysis even when the outcome was available at the end of follow-up. Recent 

developments on inverse weighting have included an extension to non-monotone missingness patterns 

(27), but it remains unclear how it could be transposed to MSMs. 

It is clear that no single missing data method can simultaneously handle different types of missingness 

mechanisms. However, in practice, missing values can occur on several variables according to different 

mechanisms. In such situations, it is crucial to understand the reasons for missingness to identify groups 

of variables with similar missingness mechanisms that could be handled altogether. For instance, in 

routinely collected data, some variables might not have been updated because their values remained 

unchanged, and some variables might be missing at random. A pragmatic approach would be to first use 

the LOCF on the first group of variables, and then multiply impute the variables from the second group. 

A more principled combination of methods has been proposed in simpler settings. Qu and Lipkovich (28) 

combined the MPA and MI for propensity score analysis with a single time point. Seaman and White 

proposed to combine MI and IPMW (29) but further investigation is needed before implementing these 

methods in MSMs. 

Although the role of the simulation was not to investigate the statistical properties of the five 

approaches in a broad range of settings, but to empirically illustrate the theoretical findings, the design 

of the simulations has several limitations. First, we focussed on a relatively simple setting with three 

time points and a few covariates. A plasmode simulation approach based on the sleep apnoea study 

would have been more realistic but would have not allowed us to investigate the “constant” and 

“differential” mechanisms of missing data. Second, we generated data with a continuous outcome only. 

While this was chosen because bias is more easily observed with continuous outcomes, our conclusions 
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will apply to binary and time-to-event outcomes; the validity of the methods relies on the missingness 

mechanism which is independent of the nature of the outcome. Similar conclusions would also hold had 

the outcome been measured repeatedly. With a larger number of partially observed confounders, 

sparse data in some missingness patterns may preclude use of the MPA approach. Moreover, in the 

presence of numerous confounders with interactions and non-linear effects, the functional form of the 

weight model might be harder to specify parametrically, and the obtained weights could be unstable. 

These problems may be alleviated by using more robust approaches (30) or statistical learning methods 

(31). Finally, the standard error of treatment effect estimates in our simulation study did not account for 

the uncertainty in the weight estimation, resulting in overly wide 95% confidence intervals. Non-

parametric bootstrap was used in our illustrative example but was too computationally demanding for 

use in simulations.  

In conclusion, the choice of the appropriate method(s) to handle partially observed confounders in 

MSMs must rely on a careful consideration of the reasons for missingness and whether missingness 

modifies the existing relationships among observed data. Causal diagrams may help in understanding 

the structure of the data and the relationships between variables when data are missing, and when data 

are observed. Although MI outperforms the other approaches when data are MAR, we presented two 

scenarios, encountered in routinely collected data, where MI leads to biased estimates of the treatment 

effect estimates but LOCF and the MPA might be suitable alternatives. Any analysis with missing data 

inevitably relies on assumptions about the missingness mechanisms or missingness patterns, which are 

often not made explicit. We therefore encourage researchers to clearly describe the assumptions under 

which their primary analysis is valid, and to perform sensitivity analyses to assess robustness of their 

results to departures from these postulated missingness mechanisms. 
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Table 1. Characteristics of the 5 missing data methods for partially observed time-varying confounders 
 

Method 
Missing data 

on … 
Assumptions 

Unbiased in 
MSMs when… 

Advantages Limitations 

Complete 
case  

Covariates 
Treatment 
Outcome 

Missing data are MCAR MCAR Straightforward 
May be inefficient 
because of the loss 
in sample size 

Last 
Observation 
Carried 
Forward  

Covariates 
Treatment 
Outcome 
except at 
baseline 

The true, but missing, 
value is the same as 
the last available 
measurement 

Constant 

Straightforward 
It can lead to too 
narrow confidence 
intervals 

OR 

Discards fewer 
patients from the 
analysis than CC 

Patients are 
discarded if 

baseline 
measurements are 

missing 

The treatment decision 
depends on the 
previous available 
measurement rather 
than the true 
(unobserved) one 

Multiple 
imputation  

Covariates 
Treatment 
Outcome 

Missing data are MAR
a
 MCAR 

MAR|A,L 
MAR|A,L,Y 
MAR|A,L,V 

Maintains the 
original sample size 

May be 
computationally 
intensive 

The imputation model 
is correctly specified 

Challenging for a 
large number of 
time points 

Inverse-
probability-
of-
missingness 
weighting  

Covariates 
Treatment 
Outcome 

Missing data are MAR 
given the treatment 
and the covariates, but 
not the outcome MCAR 

MAR|A,L 
MAR|A,L,V 
Constant 

Faster than MI for 
large datasets 

May be inefficient 
for small and 
moderate sample 
size The weight model is 

correctly specified 

Weights 
simultaneously 
address 
confounding and 
missing data 

Missingness 
Pattern 
Approach  

Covariates 

The partially observed 
covariate is no longer a 
confounder once 
missing 

Differential 

Relatively simple to 
implement 

Does not handle 
missing data on the 
exposure or 
outcome 

e.g. the treatment 
decision depends on 
the confounder value 
only when a 
measurement is 
available 

Assumptions do not 
relate to Rubin’s 
taxonomy so may 
work when 
standard methods 
do not 

Challenging when 
the number of 
missingness 
patterns is large 

CC: complete cases; MI: multiple imputation; MCAR: missing completely at random; MAR: missing at random; 
MNAR: missing not at random. 

 

a Extensions to accommodate MNAR exist but are challenging to apply in practice. 
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Figure 1. Causal graphs representing several possible scenarios for missing values. At each time, L1, L2 

are the two time-varying confounders, A is the time-varying treatment, Y is the outcome, V is an 

independent risk factor, and R is the missingness indicator. Diagrams represent scenarios in which 

missingness: A) occurs completely at random (MCAR); B) occurs when there has been no change since 

the previous measurement (Constant); C) occurs at random given the confounders and treatment 

(MAR|A,L); D) occurs at random given the confounders, treatment, and outcome (MAR|A,L,Y); E) occurs 

at random given the confounders, treatment, and independent risk factor F) depends on the treatment 

and confounders, but the association between the missing value and the subsequent treatment 

allocation no longer exists (Differential). Under F), the confounder only contributes to the treatment 

allocation decision when observed. 

 

Figure 2. Absolute bias of the treatment effect estimate at k=0 (A,D,G), k=1 (B,E,H) and k=2 (C, F,I) on full 

data and following the use of different missing data approach under the missing completely at random 

(A-C), Constant (D-F) and C Differential (G-I) missingness mechanisms. N=10000. 40% of missing data. 

CC: complete cases; LOCF: last observation carried forward; MPA: missing pattern approach; MI: multiple 

imputation; IPMW: inverse probability of missingness weighting. For multiple imputation, 10 imputed datasets 

were generated. 

 

Figure 3. Absolute bias of the treatment effect estimate at k=0 (A,D,G), k=1 (B,E,H) and k=2 (C, F,I)  on 

full data and following the use of different missing data approach under 3 scenarios of data missing at 

random: A-C) missing at random given the covariates and the treatment (MAR|A,L), D-F) given the 

covariates, the treatment and the outcome (MAR|A,L,Y) and G-I) given the covariates, the treatment 

and the independent risk factor (MAR|A,L,V). N=10000. 40% of missing data. 

CC: complete cases; LOCF: last observation carried forward; MPA: missing pattern approach; MI: multiple 

imputation; IPMW: inverse probability of missingness weighting. For multiple imputation, 10 imputed datasets 

were generated. 

 

Figure 4: Results of the illustrative example. Each point represents the difference in sleepiness scores at 

the end of the study (12 months) between compliers (CPAP use>=4 hours per night) and non-compliers 

(CPAP use<4 hours per night) at each of 3 time-points (3 months (squares), 6 months (circle) and 12 

months (triangles)). The vertical bars are the 95% confidence intervals. 
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