

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/144056

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/341795812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/144056
mailto:wrap@warwick.ac.uk

Dynamic Set Cover: Improved Amortized and Worst-Case Update Time∗

Sayan Bhattacharya† Monika Henzinger‡ Danupon Nanongkai§ Xiaowei Wu¶

Abstract
In the dynamic minimum set cover problem, a challenge is
to minimize the update time while guaranteeing close to the
optimal min(O(logn), f) approximation factor. (Through-
out, m, n, f , and C are parameters denoting the maximum
number of sets, number of elements, frequency, and the cost
range.) In the high-frequency range, when f = Ω(logn), this
was achieved by a deterministic O(logn)-approximation al-
gorithm with O(f logn) amortized update time [Gupta et al.
STOC’17]. In the low-frequency range, the line of work
by Gupta et al. [STOC’17], Abboud et al. [STOC’19], and
Bhattacharya et al. [ICALP’15, IPCO’17, FOCS’19] led
to a deterministic (1 + ε)f -approximation algorithm with
O(f log(Cn)/ε2) amortized update time. In this paper
we improve the latter update time and provide the first
bounds that subsume (and sometimes improve) the state-
of-the-art dynamic vertex cover algorithms. We obtain:
(1) (1 + ε)f-approximation ratio in O(f log2(Cn)/ε3)
worst-case update time: No non-trivial worst-case up-
date time was previously known for dynamic set cover. Our
bound subsumes and improves by a logarithmic factor the
O(log3 n/poly(ε)) worst-case update time for unweighted dy-
namic vertex cover (i.e., when f = 2 and C = 1) by Bhat-
tacharya et al. [SODA’17]. (2) (1 + ε)f-approximation
ratio in O

(
(f2/ε3) + (f/ε2) logC

)
amortized update

time: This result improves the previous O(f log(Cn)/ε2)
update time bound for most values of f in the low-frequency
range, i.e. whenever f = o(logn). It is the first that is
independent of m and n. It subsumes the constant amor-
tized update time of Bhattacharya and Kulkarni [SODA’19]
for unweighted dynamic vertex cover (i.e., when f = 2 and
C = 1). These results are achieved by leveraging the ap-
proximate complementary slackness and background sched-
ulers techniques. These techniques were used in the local
update scheme for dynamic vertex cover. Our main tech-
nical contribution is to adapt these techniques within the
global update scheme of Bhattacharya et al. [FOCS’19] for
the dynamic set cover problem.

1 Introduction

In the minimum set cover problem, we get a universe
of elements U and a collection of sets S ⊆ 2U as
input, where

⋃
s∈S s = U and each set s ∈ S has a

cost cs > 0 associated with it. A collection of sets

∗The full version of the paper can be found at

https://arxiv.org/abs/2002.11171.
†Department of Computer Science, University of Warwick,

UK. Email: S.Bhattacharya@warwick.ac.uk
‡Faculty of Computer Science, University of Vienna, Austria.

Email: monika.henzinger@univie.ac.at
§KTH, Stockholm, Sweden. Email: danupon@kth.se
¶IOTSC, University of Macau, China. Part of the work was

done while the author was a postdoc in the University of Vienna.
Email: xiaoweiwu@um.edu.mo

S ′ ⊆ S forms a set-cover of U iff
⋃
s∈S′ s = U . The

goal is to compute a set cover S ′ of U with minimum
total cost c(S ′) =

∑
s∈S′ cs. This is one of the most

fundamental problems in approximation algorithms. In
recent years, this problem has also received significant
attention in the dynamic setting, where the input keeps
changing over time. Specifically, here we want to design
a dynamic algorithm for minimum set cover that can
handle the following operations:

Preprocessing: Initially, the algorithm receives as input
a universe of elements U , a collection of sets S ⊆ 2U

with
⋃
s∈S s = U , and a cost cs ≥ 0 for each set s ∈ S.

Updates: Subsequently, the input keeps changing via
a sequence of updates, where each update either (1)
deletes an element e from the universe U and from every
set s ∈ S that contains e, or (2) inserts an element e
into the universe U and specifies the sets in S that the
element e belongs to.

After each update, we would like to maintain an ap-
proximate cost of the optimal set cover of the updated
set system. (Some algorithms also allow accessing a
solution with such cost. See the remark after Theo-
rem 1.1.) A dynamic algorithm has an amortized up-
date time of O(t) iff it takes O((α + β) · t) total time
(including the time spent on preprocessing) to handle
any sequence of β ≥ 1 updates, where α is the number
of elements being preprocessed. We want to design a
dynamic algorithm with small approximation ratio and
update time. We get two main results:

Theorem 1.1. There are deterministic dynamic algo-
rithms for the minimum set cover problem with (1+ε)f -
approximation ratio and

1. a worst-case update time of O(f log2(Cn)/ε3), and

2. an amortized update time of O(f
2

ε3 + f
ε2 logC).

Here, the symbol f denotes an upper bound on the max-
imum frequency of any element across all the updates1,
C ≥ 1 is a parameter such that 1/C ≤ cs ≤ 1 for all
sets s ∈ S, m is the number of sets in S, and n is the
maximum number of elements in the universe U across
all the updates.

1Frequency of an element e ∈ U is defined as the number of
sets in S that contain e.

Remark: Both our algorithms maintain an (1 + ε)f -
approximation to the cost of the minimum set cover
after every update and can return this value in constant
time. In addition, the algorithm for amortized update
time maintains a solution of such value throughout the
updates (i.e. it outputs the change of the maintained
solution after every update), while the algorithm for
worst-case update time does not and instead outputs
the whole solution in time linear to the solution size
whenever the solution is asked for (similar to the
dynamic matching algorithm in [4]).

Perspective: The minimum set cover problem is very
well understood in the static setting. There is a simple
primal-dual algorithm that gives an f -approximation in
Θ(fn) time, whereas a simple greedy algorithm gives
a Θ(log n)-approximation in Θ(fn) time. Furthermore,
there are strong inapproximability results which imply
that the approximation guarantees achieved by these
simple primal-dual and greedy algorithms are essentially
the best possible [18, 17, 21].

Reference Approximation Update Time

[19] O(logn) O(f logn)

[19, 6] O(f3) O(f2)

[7] O(f2) O(f log(m+ n))

[1] (1 + ε)f O
(
f2

ε
logn

)
[11] (1 + ε)f O

(
f
ε2

log(Cn)
)

Amortized (1 + ε)f O
(
f2

ε3
+ f

ε2
logC

)
Worst case (1 + ε)f O(f log2(Cn)/ε3)

Table 1: Summary of previous results (first five rows)
and our results (last two rows) on dynamic set cover. All
the previous update times are amortized. Except for the
result of [1] (which is randomized and unweighted), all
other results are deterministic and weighted (different
sets have different costs).

In the dynamic setting, an important challenge is to
match the approximation ratio of the (static) greedy and
primal-dual algorithms, while minimizing the update
time. In recent years, a series of papers on dynamic
algorithms have been devoted to this topic. See Table 1
for a concise description of the results obtained in these
papers. To summarize, we currently know how to get a
Θ(log n)-approximation in O(f log n) update time, and
a (1 + ε)f -approximation in O(f log(Cn)/ε2) update
time. In addition, there is a strong conditional lower
bound [1] which states that any dynamic set cover
algorithm with nontrivial approximation ratio must
have an update time of Ω(f1−δ), for any constant δ > 0.
This explains the O(poly(f)) factor inherent in all the
update time bounds of Table 1, but leaves open the
following question.

(Question 1) Must we necessarily incur a polylog(m,n)
factor in the update time if we want to aim for near-optimal
approximation ratio?

The above question falls within the study of con-
stant update time (see below). Besides helping us un-
derstand the best possible update time for a dynamic
problem to its limit, this study is useful in ruling out
non-trivial cell-probe lower bounds [28, 22, 23]. Another
important line of work in dynamic graph algorithms is
achieving worst-case update time. All previous dynamic
set cover algorithms can guarantee only amortized up-
date time, leaving it widely open the following.

(Question 2): Is there a dynamic algorithm with non-trivial
worst-case update time?

When f = 2 and C = 1, the above questions are
equivalent to asking whether there are 2-approximation
algorithms for dynamic (unweighted) vertex cover with
(i) constant update time and (ii) non-trivial worst-case
update time. There exists a long line of work on this
dynamic (unweighted) vertex cover problem [27, 3, 20,
26, 8, 29, 30, 9, 13]. Currently, the state of the art
results on this problem are as follows.

• The deterministic algorithm of [13] achieves (2+ε)-
approximation in O(1/ε2) amortized update time
for unweighted vertex cover, and the randomized
algorithm of [30] achieves 2-approximation in O(1)
amortized update time for unweighted vertex cover.

• The deterministic algorithm of [10] achieves (2 +
ε)-approximation in O(log3 n/poly(ε)) worst-case
update time for unweighted vertex cover (also see
[15, 2, 5]).

Our O(f log2(Cn)) worst-case bound in Theo-
rem 1.1, when restricted to unweighted vertex cover,
improves the O(log3 n) bound of [10] by a logarithmic
factor. Moreover, ours is the first non-trivial worst-
case update time that holds for f > 2. On the other
hand, our amortized bound in Theorem 1.1 is the first
generalization of the vertex cover results from [30, 13]:
When f > 2 and C > 1, a possible generalization of the
constant amortized update time obtained in [13, 30] is
the one guaranteeing (1 + ε)f -approximation ratio and
O(poly(f, C)) update time. The only previous result of
this kind is the O(f2) update time achieved by [19, 6];
however this comes with a higher approximation ratio
of O(f3). Our amortized update time is the first to
achieve the target O(poly(f, C)) bound simultaneously
with a (1 + ε)f -approximation ratio.

Finally, note that our amortized update time im-
proves the previous one in [11] in almost the whole range
of parameters that we should be interested in: For a
fixed ε > 0, we get an update time of O(f2 + f logC),
whereas [11] obtained an update time of O(f log(Cn)).

Note that in the high-frequency range, when f =
ω(log n), the Θ(log n)-approximation ratio obtained by
[19] is already better than a (1 + ε)f -approximation. In
other words, we are typically interested in getting an
(1 + ε)f -approximation only in the low-frequency range,
when f = O(log n). In this regime, our O(f2 + f logC)
update time strictly improves upon the update time of
[11] for most values of f , i.e. whenever f = o(log n).

1.1 Techniques Both our results build on the
recent algorithm of Bhattacharya, Henzinger and
Nanongkai [11]. This algorithm and most previous de-
terministic algorithms for dynamic set cover and vertex
cover (e.g. [13, 8, 9, 10]) are based on the following
static primal-dual algorithm. (For ease of exposition, in
this section we assume that C = 1; i.e., every set has
the same cost.)

The static primal-dual algorithm assigns a frac-
tional weight we ≥ 0 to every element e ∈ U , as fol-
lows. Initially, we set we ← 0 for all elements e ∈ U
and F ← U . Subsequently, the algorithm proceeds
in rounds. In each round, we continuously raise the
weights of all the elements in F until some set s ∈ S be-
comes tight (a set s becomes tight when its total weight
ws =

∑
e∈s we becomes equal to 1). At this point, we

delete the elements contained in the newly tight sets
from F , and after that we proceed to the next round.
The process stops when F becomes empty. At that
point, we return the collection of tight sets as a valid
set cover and the weights {we} as the dual certificate.
Specifically, it turns out that the weights {we} returned
at the end of the algorithm form a valid solution to the
dual fractional packing problem, which asks us to assign
a weight we ≥ 0 to each element in U so as to maximize
the objective

∑
e∈U we, subject to the constraint that∑

e∈s we ≤ 1 for all sets s ∈ S. We can also show that
the collection of tight sets returned at the end of the
static algorithm forms a valid set cover, whose cost is
at most f times the cost of the dual objective

∑
e∈U we.

This leads to an approximation guarantee of f . In the
dynamic setting, the main challenge now is to main-
tain the (approximate) output of the static algorithm
described above in small update time. This is where
[11] and previous deterministic algorithms use radically
different approaches.

More specifically, previous deterministic algorithms
(e.g. [13, 8, 9, 10]) follow some local update rules
and maintain the approximate complementary slackness
conditions. Thus, whenever the weight ws of a tight set
s ∈ S becomes too large (resp. too small) compared to
1, these algorithm decrease (resp. increase) the weights
of some of the elements contained in s. This step affects
the weights of some other sets that share these elements

with s, and hence it might lead to a chain of cascading
effects. Using very carefully chosen potential functions,
these algorithms are able to bound these cascading
effects over any sufficiently long sequence of updates.
For technical reasons, however, this approach seems
to work only when f = 2. Thus, although previous
works could get constant and worst-case update time for
maintaining a (2+ε)-approximate vertex cover, it seems
very difficult to extend their potential function analysis
to the more general minimum set cover problem (or,
equivalently, to minimum vertex cover on hypergraphs).

In contrast, [11] makes no attempt at maintaining
the approximate complementary slackness conditions.
It simply waits until the overall cost of the dual solution
changes by a significant amount (compared to the cost
of the set cover maintained by the algorithm). (This ap-
proach shares some similarities with the earlier random-
ized algorithm by [1], although [1] is not based on the
static algorithm described above.) At that point, the
algorithm identifies a critical collection of affected ele-
ments and recomputes their weights from scratch using
a global rebuilding subroutine. The time taken for this
recomputation step is, roughly speaking, proportional
to the number of critically affected elements, which leads
to a bound on the amortized update time. The strength
of this framework is that this global rebuilding strat-
egy extends seamlessly to the general set cover problem
(where f > 2). Unfortunately this strategy incurs an
additional Θ(log n) factor in the update time that seems
impossible to overcome.

Our algorithm with amortized update time results
from carefully combining the these two sharply different
approaches, namely the algorithm of [13] that uses
some local update rules to obtain an O(1/ε2) amortized
update time, and the new approach of [11]. In our
hybrid approach, whenever the weight ws of a tight set
s becomes too large compared to 1, we decrease the
weights of some of the elements contained in s using
the same local rule as in [13]. In contrast, whenever the
weight ws of a tight set s becomes too small compared
to 1, we follow a lazy strategy and try to wait it out.
After some period of time, when the total cost of the
dual solution becomes significantly small compared to
the size of the set cover maintained by the algorithm, we
apply a global rebuilding subroutine as in [11] to fix the
weights of some critical elements. This hybrid approach
allows us to combine the best of both worlds, leading to
a dynamic algorithm with (1 + ε)f -approximation ratio
and an amortized O(f2/ε3) update time for any f ≥ 2.

Our algorithm with worst-case update time extends
the approach of [11] by having many schedulers work-
ing in parallel. This general idea has been used in many
dynamic algorithms with worst-case update time (e.g.

[14, 20, 16, 25, 24, 31]). The main challenge is typ-
ically how to make the schedulers consistent in what
they maintain, especially if they maintain an overlap-
ping part of the solution. More specifically, we have
k = O(log n) schedulers, where the ith scheduler is as-
sociated with an integer ri such that r1 ≥ r2 ≥ . . . ≥ rk.
The ith scheduler is responsible for running the global
rebuilding subroutine of [11] on sets that get tight at and
after round ri in the static algorithm described above.
Thus, the sets that the ith scheduler is responsible for
are also under the responsibilities of the jth schedulers
for all j > i. A complication arises when these sched-
ulers want to rebuild these sets at the same time, since it
is not clear which solution of which scheduler we should
use as a final solution. Typically, this can be resolved by
forcing all schedulers to be consistent; i.e. the ith and
jth schedulers agree on what happens to each set that
they are both responsible for. This seems very hard to
achieve in our case. At a high level, we get around this
issue by requiring the schedulers to be only loosely con-
sistent: Schedulers may maintain drastically different
local views on the sets they are responsible for, except
that there are some mild consistency conditions that tie
their behaviors together. This way, each scheduler can
work independently while our conditions guarantee that
we can still combine results from the schedulers when
needed. More specifically, we use the solution that the
ith scheduler maintains for level ri. Due to the consis-
tency conditions this results in an approximately mini-
mum set cover.

2 A Static Primal-Dual Algorithm

Uniform-cost case: Recall the notations defined in the
beginning of Section 1. In order to highlight the main
ideas behind our algorithms, in this extended abstract
we only consider the special case where every set has
the same cost (cs = cs′ for all s, s′ ∈ S) and our goal is
to compute a set cover in (U ,S) of minimum size. For
the full version of the paper, please refer to [12].

The dual: In the maximum fractional packing problem,
we get a set system (U ,S) as input. We have to assign a
weight we ∈ [0, 1] to every element e ∈ U , subject to the
constraint that

∑
e∈s we ≤ 1 for all sets s ∈ S. The goal

is to maximize
∑
e∈U we. We let ws =

∑
e∈s we denote

the total weight received by a set s ∈ S. LP-duality
implies the following lemma.

Lemma 2.1. Consider any instance (U ,S) of the set
cover problem. Let OPT denote the size of the minimum
set cover on this instance, and let {we}e∈U denote any
feasible fractional packing solution on the same input
instance. Then we have

∑
e∈U we ≤ OPT.

We now describe an f -approximation algorithm for

minimum set cover in the static setting. The algorithm
works as follows. There is a time-variable t that is
initially set to −∞, and it keeps increasing continuously
throughout the duration of the algorithm. At every time
t, the algorithm maintains a partition of the universe
of elements U into two subsets: A(t) ⊆ U and F(t) =
U \A(t). The elements in A(t) and F(t) are respectively
called alive and frozen at time t. In the beginning, we
have A(−∞) = U and F(−∞) = ∅. As t increases
starting from −∞, alive elements become frozen one
after the other. Specifically, we have A(t) ⊇ A(t′) and
F(t) ⊆ F(t′) for all t ≤ t′. Let te be the time at
which an element e ∈ U becomes frozen (i.e., moves
from A to F). We refer to te as the freezing time of e.
Note that te ≤ t for all e ∈ F(t). At any time t, the
weight of an element e ∈ U is determined as follows:
If e ∈ A(t), then we(t) = (1 + ε)t. Otherwise, e ∈
F(t) and we(t) = (1 + ε)te .

Let ws(t) =
∑
e∈s we(t) denote the weight of a set

s ∈ S at time t. We say that the set s is tight (resp.
slack) at time t if ws(t) = 1 (resp. ws(t) < 1). Let
T (t) ⊆ S denote the collection of tight sets at time
t. When t = −∞, we have we(t) = (1 + ε)t = 0 for
all elements e ∈ A(t) = U , and hence ws(t) = 0 for
all sets s ∈ S. This implies that T (−∞) = ∅. Now,
the following invariant completes the description of the
algorithm: At any time t, we have F(t) =

⋃
s∈T (t) s.

To summarize, the algorithm starts at time t =
−∞. At that point every element is alive and has
weight 0, and all the sets are slack with weight 0.
As t starts increasing continuously, the weights of the
alive elements keep increasing according to the equation
we(t) = (1+ε)t. Whenever a set s becomes tight during
this process, every alive element e ∈ s becomes frozen at
the same time-instant, which ensures that the weights
of all the elements e ∈ s (and that of the set s) do not
increase any further as the value of t keeps increasing.
The process stops at time t = 0. Note that at time
t = 0, if an element e is alive, then all sets containing
e must be tight. This means that any element e has
freezing time te ≤ 0, which leads to the following claim.

Claim 2.1. We have A(0) = ∅ and F(0) = U .

Levels of elements and sets: Claim 2.1 implies that
the continuous process describing the static algorithm
ends at time t = 0. At that point, every element
e ∈ U = F(0) has a well-defined freezing time te ≤ 0.
We define the level of an element e ∈ U to be `(e) = −te.
The level of a set s ∈ T (0) is defined as `(s) = −ts,
where ts is the time at which the set s became tight.
The levels of the remaining sets s ∈ S \T (0) are defined
to be `(s) = 0.

Henceforth, we use the symbol we to denote the

weight of an element e at time t = 0 (i.e., we = we(0)).
Similarly, we use the symbol ws to denote ws(0), and
the symbol T to denote T (0). Finally, when we say that
a set s is tight, we mean that it is tight at time t = 0.

Property 2.1. We have `(e) = maxs∈S:e∈s `(s) and
we = (1 + ε)−`(e) for all elements e ∈ U .

Property 2.2. We have ws ≤ 1 for all s ∈ S. Further,
every set s ∈ S at level `(s) > 0 is tight.

Lemma 2.2. The weights {we}e∈U form a fractional
packing and the collection of sets T forms an f -
approximate minimum set cover in (U ,S).

Proof. Since ws ≤ 1 for all s ∈ S, the weights {we}e∈U
form a fractional packing. Consider any element e ∈ U .
If at least one set s ∈ S containing e lies at level
`(s) > 0, then s ∈ T and hence the element e is covered
by T . Otherwise, every set s ∈ S containing the element
e lies at level `(s) = 0. So Property 2.1 implies that
`(e) = 0, and hence we = (1+ ε)−0 = 1. Thus, every set
s containing e has weight ws ≥ we = 1. In other words,
every set s containing e is tight, and so the element e is
again covered by T . This implies that T forms a valid
set cover. Since each element e contributes to the weight
ws of only the (at most f) sets that contain it, we have∑
e∈U f · we ≥

∑
s∈S ws ≥

∑
s∈T ws = |T |. The last

equality holds since ws = 1 for all sets s ∈ T . Now,
Lemma 2.1 implies f ·OPT ≥ f ·

∑
e∈U we ≥ |T |.

3 Overview for the Amortized Update time

Preprocessing: We start by computing the solution
returned by the static algorithm from Section 2. Let
`(s) be the level of a set s ∈ S in the output of this
static algorithm. The level `(e) and the weight we of
every element e ∈ U are determined by the levels of
the sets containing it, in accordance with Property 2.1.
The weight of a set s ∈ S is defined as ws =

∑
e∈s we.

In addition, we associate a variable φs with every set
s ∈ S. The value of φs is called the dead-weight of s.
In contrast, the value of ws denotes the real-weight of s.
The total-weight of a set s ∈ S is given by w∗s = ws+φs.
Just after preprocessing, we have φs = 0 for all s ∈ S,
so that the total-weight of every set is equal to its dead-
weight. Throughout Section 3, we will say that a set
s ∈ S is tight if w∗s = 1 and slack if w∗s < 1. Accordingly,
the total-weights {w∗s}s∈S satisfy Property 2.2 just after
preprocessing. The significance of the notion of dead-
weights will become clear shortly.

3.1 Handling deletions of elements When an el-
ement e gets deleted, the real-weight ws of every set s
containing e decreases by we. To compensate for this

loss, we set φs ← φs + we for all sets s ∈ S that con-
tained e. Thus, the total-weight of every set remains
unchanged due to an element-deletion. It should now
be apparent that our algorithm satisfies Property 2.2 if
we replace the real-weights ws by the total-weights w∗s .

Invariant 3.1. We have w∗s ≤ 1 for all s ∈ S.
Further, every set s ∈ S at level `(s) > 0 is tight.

As the elements keep getting deleted the size of
minimum set cover keeps decreasing. But the set cover
maintained by the algorithm we have described so far
remains unchanged. Hence, after sufficiently many
deletions, the approximation ratio of our algorithm
will degrade by a significant amount. To address this
concern, our algorithm rebuilds part of the solution once
the sum of the dead-weights of the sets becomes too
large. Specifically, we maintain the following invariant.

Invariant 3.2. We have
∑
s∈S φs ≤ ε · f ·

∑
e∈U we.

After preprocessing, the above invariant holds since
φs = 0 for all s ∈ S. Subsequently, after handling
each element-deletion in the manner described above,
we perform the following operations.

• While Invariant 3.2 is violated:

– Identify the smallest level k ≥ 0 such that∑
s∈S:`(s)≤k φs > ε · f ·

∑
e∈U :`(e)≤k we.

– Call Rebuild(≤ k) as described below.

The subroutine Rebuild(≤ k): Let S ′k (resp. U ′k) be the
collection of sets s ∈ S at levels `(s) ≤ k (resp. the
collection of elements e ∈ U at levels `(e) ≤ k) just
before the call to Rebuild(≤ k). The subroutine works
in two steps: Step I (clean-up) and Step II (rebuild).
To simplify the analysis, we make the following crucial
assumption in this extended abstract.

Assumption 3.1. Every set s ∈ S ′k contains at least
one element from U ′k.

Step I (clean-up): We set φs ← 0, `(s) ← k for all
s ∈ S ′k. This resets `(e)← k and we ← (1 + ε)−k for all
e ∈ U ′k, as per Property 2.1. The real-weights {ws}s∈S′k
get updated accordingly.

The clean-up step as described above can only
decrease the weight we of an element e ∈ U ′k, since
it moves up from its earlier level (which was ≤ k) to
level k. Hence, the real-weights ws of the sets s ∈ S ′k
can also only decrease due to this step. Furthermore,
since `(e) = maxs∈S:e∈s `(s) for every element e (see
Property 2.1), all the sets containing an element e ∈ U ′k
belong to S ′k. Accordingly, we do not change the real-
weight ws of any set s ∈ S at level `(s) > k during the

clean-up step. Neither do we change the dead-weight
φs of any set s or the level/weight of any element e at
level > k. Since Invariant 3.1 was satisfied just before
the clean-up step, we get:

Observation 3.1. Just after the clean-up step, every
set s ∈ S at level `(s) > k is tight. All the remaining
sets s ∈ S ′k are at level `(s) = k with real-weights ws ≤ 1
and dead-weights φs = 0.

Step II (rebuild): Recall that the static algorithm from
Section 2 starts at time t = −∞ and stops when t
becomes equal to 0. Observation 3.1 implies that after
the clean-up step, we are in exactly the same state as
the static algorithm from Section 2 at time t = −k
(provided we replace the real-weights ws by the total-
weights w∗s for all sets s at level `(s) > k). At this
point, we perform the remaining steps prescribed by
the static algorithm from Section 2 as its time-variable
moves from t = −k to t = 0. We emphasize that
while executing these remaining steps, we do not change
the dead-weights of the sets in S ′k (these dead-weights
were reset to zero during the clean-up step, and they
continue to remain zero). This leads us to the following
observation.

Observation 3.2. At the end of the call to the subrou-
tine Rebuild(≤ k), Invariant 3.1 is satisfied. Further-
more, we have φs = 0 for all s ∈ S at levels `(s) ≤ k.

We note that using appropriate data structures this
subroutine can be implemented efficiently.

Lemma 3.1. Under Assumption 3.1, the subroutine
Rebuild(≤ k) runs in O(f · |U ′k|) time.

3.2 Handling insertions of elements We handle
the insertion of an element e′ by calling the procedure
in Figure 1, where Se′ = {s ∈ S : e′ ∈ s} denotes
the collection of sets containing e′. From the outset,
we often do not explicitly specify how the real-weight
and dead-weight of a set s changes due to the execution
of the procedure in Figure 1. Instead, they will be
implicitly determined as: ws =

∑
e∈s we and w∗s =

ws + φs. Step (01) assigns the element e′ a level
and a weight in accordance with Property 2.1. This
increases the real-weight and the total-weight of every
set s ∈ Se′ by we′ . So the sets in Se′ can now potentially
violate Invariant 3.1. We say that a set s is dirty if it
violates Invariant 3.1, and clean otherwise. Note that
Observation 3.3 is satisfied at this juncture. The For
loop in Step (02) takes care of these dirty sets. Before
proceeding further, we need to define a few important
notations.

01. Assign element e′ a level `(e′)← maxs∈Se′ `(s)

and weight we′ ← (1 + ε)−`(e
′).

02. For every s ∈ Se′ : Call the subroutine FIX(s).
03. While Invariant 3.2 is violated:
04. Identify the smallest level k ≥ 0 such that∑

s∈S:`(s)≤k φs > ε · f ·
∑
e∈U :`(e)≤k we.

05. Call the subroutine Rebuild(≤ k) as
described in Section 3.1.

Figure 1: Handling the insertion of an element e′.

Notations: For any set s ∈ S, we let N (s) = {s′ ∈
S \ {s} : s ∩ s′ 6= ∅} denote the neighbors of s. Next,
fix any set s ∈ S and consider the following thought
experiment. Suppose that we move the set s from its
current level to some other level j, while keeping the
levels of all the remaining sets s′ ∈ S \ {s} unchanged.
This potentially changes the levels and weights of some
of the elements e ∈ s in accordance with Property 2.1,
and hence the real-weights ws′ of some of the sets
s′ ∈ N (s) also get changed. Let ws′(s → j) denote
the resulting real-weight of a set s′ after s has moved
to level j. It is easy to check that ws′(s → j) is a
continuous non-increasing function of j for all s′, s ∈ S,
and that ws(s → ∞) = 0 for all s ∈ S. This leads us
to the concept of the target level `∗(s) of a set s ∈ S
with real-weight ws > 1: If a set s ∈ S has real-weight
ws > 1, then `∗(s) = min{j : ws(s → j) = 1}. Note
that `∗(s) > `(s).

Observation 3.3. A set s′ is dirty only if s′ ∈ Se′ and
w∗s′ > 1.

The subroutine Fix(s): By induction, suppose that
Observation 3.3 holds at the start of a given call to
Fix(s). The subroutine first checks if w∗s > 1. If not,
then Observation 3.3 implies that the set s is already
clean and hence the subroutine finishes execution and
returns the call. From now onward, we assume that
w∗s = 1 + µs for some µs > 0 at the beginning of the
call. If φs ≥ µs, then we set φs ← φs − µs. This
makes the set s clean, and again the subroutine finishes
execution. Hence, from now onward, we assume that
µs > φs at the beginning of the call. We first set
φs ← 0, in order to reduce the total-weight of s as much
as possible. At this stage, we have w∗s = ws > 1 and
φs = 0. The subroutine now moves the set s up to its
target-level `∗(s) = j (say). This upward movement is
achieved via a continuous process. Informally, as the
set s keeps moving up, some of its neighbors s′ ∈ N (s)
keep losing their real-weights (because the weights of
the some of the elements e ∈ s′ ∩ s keep decreasing). In
order to compensate for this loss, the affected neighbors

s′ ∈ N (s) keep increasing their dead-weights φs′ in a
continuous manner, whenever possible.

To be more specific, consider an infinitesimal time-
interval during this continuous process when the set s
moves up from level λ to λ + dλ. As a result, some
of the elements e ∈ s have their weights decreased.
This in turn change the real-weights ws′ of some of
the neighbors s′ ∈ N (s) by dws′(s → λ). Note that
dws′(s → λ) ≤ 0. If ws′(s → λ) ≤ 1, then we set
φs′ ← φs′−dws′(s→ λ), in order to compensate for the
loss of real-weight of s′ during this infinitesimally small
time-interval.

Thus, from the perspective of a neighbor s′ ∈ N (s),
the process looks like this: As the set s keeps moving
up, the real-weight of s′ keep decreasing in a continuous
manner, until ws′ becomes≤ 1. From this point onward,
the dead-weight φs′ keeps increasing at the same rate at
which the real-weight ws′ decreases (thereby keeping the
total-weight w∗s′ constant).

Observation 3.4. A call to Fix(s) never leads to an
already clean set becoming dirty. Furthermore, if Ob-
servation 3.3 holds in the beginning of the call, then it
continues to hold at the end of the call.

At the end of the For loop in Figure 1, every set
is clean and hence Invariant 3.1 is satisfied. However,
the dead-weights of some of the sets are increased due
to the calls to Fix(s). This might lead to a violation of
Invariant 3.2. This is addressed by the While loop in
steps (03)-(05). Observation 3.2 implies that both the
invariants hold at the end of procedure in Figure 1.

3.3 Bounding the approximation ratio and
amortized update time The following theorem up-
per bounds the approximation ratio of our dynamic al-
gorithm.

Theorem 3.1. The collection of tight sets T ∗ = {s ∈
S : w∗s = 1} forms a (1 + ε)f -approximate minimum set
cover in (U ,S).

Proof. Following the argument in the proof of
Lemma 2.2, Invariant 3.1 implies that the collection
of tight sets T ∗ forms a set cover in (U ,S), and the
element-weights {we}e∈U form a fractional packing in
(U ,S). Next, as in the proof of Lemma 2.2, we first
derive that

∑
e∈U f · we ≥

∑
s∈T ∗ ws. Adding the

term
∑
s∈T ∗ φs to both sides of this inequality, we

get:
∑
e∈U f · we +

∑
s∈T ∗ φs ≥

∑
s∈T ∗(ws + φs) =∑

s∈T ∗ w
∗
s = |T ∗|. Next, from Invariant 3.2 we derive

that: (1 + ε)f ·
∑
e∈U we ≥

∑
e∈U f · we +

∑
s∈T ∗ φs ≥

|T ∗|. In other words, there is a fractional packing
{we}e∈U whose value is within a multiplicative (1 + ε)f

factor of the size of a valid set cover T ∗. Hence, T ∗
is a (1 + ε)f -approximate minimum set cover in (U ,S)
according to Lemma 2.1.

We spend the rest of this section explaining the
main ideas behind the analysis of the amortized update
time of our algorithm. We start with an assumption
that helps simplify this analysis.

Assumption 3.2. Suppose that an element e′ getting
inserted is assigned to a level `(e′) = j′ in step (01)
of Figure 1. After that, the level of e′ does not change
during the For loop in step (02).

The update time of our algorithm is dominated
by two main types of operations: (1) an iteration of
the For loop in Figure 1 where a set s potentially
moves up to its target-level, and (2) a call to the
subroutine Rebuild(≤ k). For an operation of type (1),
in this section we bound the fractional work done by our
algorithm instead of the actual time taken to implement
it. We give an intuitive justification as to why fractional
work is a useful proxy for the actual running time that
is analyzed in the full version. In order to bound the
time spent on operations of type (2), we introduce the
notion of down-tokens. We now explain each of these
concepts in more details.

Fractional work: Consider an event where a set s ∈ S
moves up from level j0 to level j1, and the level of every
other set remains unchanged. This event can change
the level of an element e ∈ U only if e ∈ s. For all e ∈ s,
let `0(e) and `1(e) respectively denote the level of e just
before and just after the event. Then the total fractional
work done during this event =

∑
e∈s f · (`1(e)− `0(e)).

Justification for fractional work: In the full version our
starting point will be a discretized variant of the static
algorithm from Section 2, where in each round the
weights of of the alive elements increase by a multiplica-
tive factor of (1 + ε) and the level of every set and ele-
ment is an integer in the range {0, 1, . . . , dlog(1+ε) ne}.
Using appropriate data structures, we can ensure that
our algorithm spends O(f) time for each element in-
creasing its level by one unit. This precisely corresponds
to the notion of fractional work defined above (when the
levels are integers).

Down-tokens: We associate (1 + ε)`(s) · φs amount of
down-tokens with each set s ∈ S. The total volume of
down-tokens is given by

∑
s∈S(1 + ε)`(s) · φs.

The parameter γε: In the rest of this section, to ease
notations we define γε = (ln(1 + ε))−1 = O(1

ε).

Overview of our analysis: By Lemma 3.3, the total
fractional work done per update due to operations of
type (1) is at most O(f2γε) = O(f2/ε). It now remains

to bound the total time spent on operations of type
(2). Towards this end, we make the following important
observations: (a) Excluding the calls to Rebuild(≤ k),
the procedure for handling the insertion of an element
increases the total volume of down-tokens by at most
O(f2) (see Corollary 3.1). (b) Excluding the calls to
Rebuild(≤ k), the procedure for handling the deletion
of an element increases the total-volume of down-tokens
by at most O(f). This holds because when an element
e gets deleted, the dead-weight φs associated with each
set s containing it increases by we = (1+ε)−`(e) (see the
first paragraph in Section 3.1). Hence, the total volume
of down-tokens increases by

∑
s∈S:e∈s(1 + ε)`(s) · (1 +

ε)−`(e) ≤
∑
s∈S:e∈s(1 + ε)`(e) · (1 + ε)−`(e) ≤ f . (c)

The total time spent on all the calls to Rebuild(≤
k) is at most O(1/ε) times the decrease in the total
volume of down-tokens (see Lemma 3.4). Since the total
volume of down-tokens is always nonnegative, all these
observations taken together imply an amortized update
time of O(f2/ε). This is slightly better than the bound
in Theorem 1.1, because in the full version we do not
have the luxury of analyzing fractional work.

Lemma 3.2. Consider a call to the subroutine Fix(s)
in Figure 1, which moves the set s up to its target-level.
Consider an infinitesimally small time-interval during
this iteration when the set s moves up from level λ to
level λ + dλ. During this infinitesimally small time-
interval, (a) the fractional work done = −fγε(1 + ε)λ ·
dws(s → λ), and (b) the total volume of down-tokens
increases by ≤ −f(1 + ε)λ · dws(s→ λ). Here, we have
dws(s→ λ) = ws(s→ λ+ dλ)− ws(s→ λ).

Proof. (Sketch) Consider the collection of elements
Xs(λ) = {e ∈ U : e ∈ s, and `(s′) ≤ λ for all s′ ∈
S \{s} with e ∈ s′}. As the set s moves up from level λ
to level λ+dλ, each element e ∈ Xs(λ) changes its level
by dλ and no other element changes its level.2 Hence the
fractional work done during this interval = f |Xs(λ)|·dλ.

When the set s is at level λ, each element e ∈ Xs(λ)
has weight (1 + ε)−λ. Starting from λ, if we increase
the level of s by an infinitesimal amount, then only
the elements e ∈ Xs(λ) change their weights, while the
weights of every other element in s remains unchanged.
Hence, we derive that:

dws(s→λ)
dλ = d

dλ

(
|Xs(λ)| · (1 + ε)−λ

)
=− γ−1ε · (1 + ε)−λ · |Xs(λ)|.

Thus, we get: |Xs(λ)| · dλ = −γε · (1 + ε)λ · dws(s→ λ).

2Since we consider an infinitesimally small interval and the
collection {`(e) : e ∈ U} is finite, Xs(λ) = Xs(λ+ dλ).

Let dw be the change in the weight of an element
e ∈ Xs(λ) as the set s moves up from level λ to level
λ + dλ. Note that dw < 0. From the preceding
discussion, it follows that:

(3.1) dws(s→ λ) = |Xs(λ)| · dw.

Consider the collection of sets S∗(λ) = {s′ ∈ S \ {s} :
s′ ∩ Xs(λ) 6= ∅ and `(s′) ≤ λ}. As the set s moves
up from level λ to level λ + dλ, each set s′ ∈ S∗(λ)
decreases its real-weight ws′ by |s′∩Xs(λ)| · (−dw) ≥ 0,
and the real-weight of every other set s′ /∈ S∗(λ) ∪ {s}
remains unchanged. For each of these sets s′ ∈ S∗(λ),
the increase in its dead-weight φs′ is upper bounded by
the decrease in its real-weight (see the description of
Fix(s) in Section 3.2). Hence, for each set s′ ∈ S∗(λ),
we get 0 ≤ dφs′ ≤ |s′∩Xs(λ)|·(−dw). None of the other
sets change their dead-weights as s moves up from level
λ to level λ+dλ. Thus, total volume of the down-tokens
increases by:∑

s′∈S∗(λ)(1 + ε)`(s
′) · dφs′ ≤ (1 + ε)λ ·

∑
s′∈S∗(λ) dφs′

≤(1 + ε)λ · (−dw) ·
∑
s′∈S∗(λ) |s′ ∩Xs(λ)|

≤(1 + ε)λ · (−dw) · f · |Xs(λ)|.

The last inequality holds since each element in Xs(λ)
is contained in at most f sets from S∗(λ). By (3.1),
the increase in the total volume of down-tokens is ≤
−f(1 + ε)λ · dws(s→ λ).

Lemma 3.3. During steps (01)-(02) in Figure 1, the
total fractional work done is O(f2γε).

Proof. Suppose that the For loop in step (02) runs for
r iterations, where in each iteration i ∈ {1, . . . , r} it
deals with a distinct set si ∈ Se′ . We will show that the
fractional work done during each iteration is O(fγε).
Since r = |Se′ | ≤ f , this will imply the lemma.

For the rest of the proof, focus on any iteration
i ∈ {1, . . . , r}, and the call to Fix(si). At the start of
this call, we have w∗s = ws = 1+δi, for some δi > 0, even
after resetting the dead-weight φsi ← 0. (Otherwise,
the set si does not change its level and the fractional
work done = 0). At the end of this iteration, the set
si has moved up to its target-level `∗(s) ≤ `(e′) (this
inequality follows from Assumption 3.2), and it is clean
with weights w∗s = ws = 1. Part (a) of Lemma 3.2
now implies that the fractional work done during this
iteration is: ∫ 1

1+δi
−fγε(1 + ε)λdwsi(si → λ)

≤fγε(1 + ε)`
∗(s)

∫ 1

1+δi
−dwsi(si → λ)

=δifγε(1 + ε)`
∗(s) ≤ δifγε(1 + ε)`(e

′).(3.2)

Let w
′

si , w
′′

si , w
′′′

si , w
′′′′

si respectively denote the real-
weight of the set si just before the insertion of the
element e′, just after step (01), just before it starts
moving up towards its target-level during the call to
Fix(si), and just after the call to Fix(si). Thus, we
have w

′′′

si = 1 + δi and w
′′′′

si = 1. Since a call to Fix(.)
never increases the real-weight of any set, it follows that
w
′′′

si ≤ w
′′

si . Since the set si was clean just before the in-

sertion of the element e′, we get w
′

si ≤ 1. Finally, step

(01) in Figure 1 implies that w
′′

si = w
′

si + (1 + ε)−`(e
′).

To summarize, we have:

w
′

si ≤ 1 = w
′′′′

si < w
′′′

si = 1+δi ≤ w
′′

si = w
′

si+(1+ε)−`(e
′).

Then we derive that 1 + δi ≤ w
′

si + (1 + ε)−`(e
′) ≤

1 + (1 + ε)−`(e
′), which gives us: δi ≤ (1 + ε)−`(e

′). This
observation, along with (3.2), concludes the proof of the
lemma.

Corollary 3.1. Steps (01)-(02) in Figure 1 increase
the total volume of down-tokens by O(f2).

Proof. By Lemma 3.2, the increase in the total volume
of down-tokens during steps (01)-(02) is at most γ−1ε
times the total fractional work done. The corollary now
follows from Lemma 3.3.

Claim 3.1. Let α1 . . . αj and β1 . . . βj be nonnegative
real numbers satisfying the following property: j is the

smallest index j′ ∈ {1, . . . , j} such that
∑j′

i=1 αi >∑j′

i=1 βi. Then for all 0 ≤ λ1 ≤ · · · ≤ λj, we have∑j
i=1(1 + ε)λi · αi ≥

∑j
i=1(1 + ε)λi · βi.

Lemma 3.4. The time spent to implement a call to the
subroutine Rebuild(≤ k) is at most O(1/ε) times the
decrease in the total volume of down-tokens during the
same call.

Proof. Unless specified otherwise, throughout this proof
we focus on the time-instant just before the call to
Rebuild(≤ k). At that time, from Section 3.1 and
Figure 1 we infer that k is the smallest level such
that

∑
s∈S:`(s)≤k φs >

∑
e∈U :`(e)≤k εf · we. Define

Lk = {λ : λ ≤ k and λ = `(s) for some set s ∈
S}. Since each set gets assigned to exactly one level,
we have |Lk| ≤ |S|. In particular, the collection
Lk is finite. Let Lk = {λ1, . . . , λj} where λ1 <
λ2 < · · · < λj = k. For any λi ∈ Lk, let φi =∑
s∈S:`(s)=λi

φs and wi =
∑
e∈U :`(e)=λi

we respectively
denote the total dead-weight and element-weight stored
at level λi. Note that

∑
s∈S:`(s)≤k φs =

∑j
i=1 φi and∑

e∈U :`(e)≤k we =
∑j
i=1 wi. Since k is the smallest level

such that
∑
s∈S:`(s)≤k φs >

∑
e∈U :`(e)≤k εf · we, we get

j is the smallest index j′ ∈ {1, . . . , j} s.t.
∑j′

i=1 φi >∑j′

i=1 εf · wi. Now, Claim 3.1 gives us:

(3.3)
∑j
i=1(1 + ε)λi · φi ≥

∑j′

i=1(1 + ε)λi · εf · wi

Each element e ∈ U at level `(e) = λi has weight
we = (1 + ε)−λi . Hence, the quantity (1 + ε)λiwi
equals the number of elements at levels λi. Summing
over all the levels in Lk, we infer that the right hand
side (RHS) of (3.3) equals εf · U ′≤k, where U ′≤k is the
collection of elements at levels ≤ k just before the call
to Rebuild(≤ k). In contrast, the left hand side (LHS)
of (3.3) equals the total volume of down-tokens at level
≤ k just before the call to Rebuild(≤ k). The call
to Rebuild(≤ k) does not change the dead-weight of
any set s ∈ S at level `(s) > k, and Observation 3.2
states that at the end of the call to this subroutine every
set at level ≤ k has zero dead-weight. To summarize,
the LHS of (3.3) equals the amount by which the total
volume of down-tokens decreases during the call to
Rebuild(≤ k), whereas the RHS of (3.3) equals ε times
the total time spent by our algorithm to implement this
call (see Lemma 3.1). This completes the proof of the
lemma.

4 Overview for the Worst Case Update Time

Our complete algorithm needs to deal with a lot of
subtle issues, and is presented in the full version. Here,
to highlight the main ideas, we only focus on the
decremental (deletions only) setting.

Observation 4.1. The static algorithm in Section 2
never assigns a set s ∈ S to a level `(s) ≥ L =
1+dlog(1+ε) ne, where n is the total number of elements.

Proof. Recall the continuous process from Section 2
that starts at time t = −∞. When t = L, every element
e ∈ s has weight we ≤ (1 + ε)−L < 1/n, and hence
ws =

∑
e∈s we < |s| · (1/n) ≤ 1. Since s is not yet tight

at time t = L, it gets assigned to a level < L at the end
of the algorithm.

Schedulers: Our dynamic algorithm uses L subrou-
tines called schedulers – one for each level in [L] =
{1, . . . , L}. Informally, for each k ∈ [L] the subroutine
Scheduler(k) is responsible for all the sets and ele-
ments at levels ≤ k. Each scheduler works on its own
local memory that is disjoint from the memory locations
used by the other schedulers. Another key feature of our
algorithm is that we allow different schedulers to hold
mutually inconsistent views regarding the level of an in-
dividual set or element. Before proceeding any further,
we introduce some important concepts and notations.

Most of the concepts defined below – such as the no-
tions of real-weights, dead-weights and total-weights –
closely mirror their counterparts from Section 3.

Let S(k) ⊆ S and U (k) ⊆ U respectively denote
the collection of sets and elements Scheduler(k) is
responsible for. Let `(k)(e) and `(k)(s) respectively
denote the level of an element e ∈ U (k) and a set
s ∈ S(k) from the perspective of Scheduler(k). As
usual, the level of an element e ∈ U (k) according
to Scheduler(k) is completely determined by the
levels of the sets in S(k) that contain it: We have
`(k)(e) = maxs∈S(k):e∈s `

(k)(s) ≤ k for all e ∈ U (k).

Let w
(k)
e = (1 + ε)−`

(k)(e) be the weight of an element
e ∈ U (k) according to Scheduler(k). The real-weight
of a set s ∈ S(k) according to Scheduler(k) equals

w
(k)
s =

∑
e∈s∩U(k) w

(k)
e + δ

(k)
s , where δ

(k)
s is the extra-

weight of s. We will shortly see that the concept of
extra-weight has a natural explanation. Intuitively, the

quantity δ
(k)
s measures the weight received by a set

s ∈ S(k) from elements that are at level > k. Each
set s ∈ S(k) has a dead-weight φ

(k)
s , and its total-weight

is given by w
∗(k)
s = w

(k)
s +φ

(k)
s . Finally, Scheduler(k)

maintains a collection D(k) of some elements that got
deleted from U (k) in the past due to an external update
operation. The elements in D =

⋃L
k=1D

(k) are called
dead elements.

Preprocessing: We first run the static algorithm from
Section 2. Let `(s), `(e), ws, we denote the levels and
weights of elements and sets returned by this static
algorithm. At this stage, all the different schedulers
completely agree with each other regarding the level of
each element and set. Specifically, consider any level
k ∈ [L]. At this point in time, we have S(k) = {s ∈ S :
`(s) ≤ k}, U (k) = {e ∈ U : `(e) ≤ k} and D(k) = ∅.
For all elements e ∈ U (k) and sets s ∈ S(k), we have

`(k)(e) = `(e), w
(k)
e = we and `(k)(s) = `(s). For all

s ∈ S(k), we set δ
(k)
s =

∑
e∈s:`(e)>k we and φ

(k)
s = 0.

Hence, we have w
∗(k)
s = w

(k)
s = ws for all s ∈ S(k) just

after the end of preprocessing.

Invariants: We now describe three important invariants
that are satisfied by our dynamic algorithm. Invari-
ant 4.1 closely mirrors Invariant 3.1 from Section 3.1,
and it clearly holds at the end of preprocessing. Invari-
ant 4.2 dictates that the number of dead elements in the
control of a Scheduler(k) is really small compared to
the number of elements in U (k). At the end of prepro-
cessing, this invariant trivially holds because D(k) = ∅.
Invariant 4.3 says that the sets S(k),U (k) and D(k) form
a very nice laminar structure as k ranges from L to 1.
Specifically, the sets/elements a Scheduler(k − 1) is
responsible for are precisely the ones that lie at level

≤ k− 1 according to the next Scheduler(k). Further-
more, Scheduler(L) is responsible for all the elements
and sets. Again, it is easy to check that this invariant
holds at the end of preprocessing.

Invariant 4.1. Consider any k ∈ [L]. Every set s ∈
S(k) at level `(k)(s) > 0 has total-weight w∗(k) = 1.
Furthermore, every set s ∈ S(k) at level `(k)(s) = 0 has
total-weight w∗(k) ≤ 1.

Invariant 4.2. For all k ∈ [L],
∣∣D(k)

∣∣ ≤ 2ε ·
∣∣U (k)

∣∣.
Invariant 4.3. For every k ∈ [2, L], we have S(k−1) =
{s ∈ S(k) : `(k)(s) ≤ k − 1}, U (k−1) = {e ∈ U (k) :
`(k)(e) ≤ k − 1} and D(k−1) = {e ∈ D(k) : `(k)(e) ≤
k − 1}. Furthermore, we have S(L) = S and U (L) = U .

Ownerships: We say that an element e ∈ U (resp. e ∈ D)
is owned by a level k ∈ [L] iff e ∈ U (k) (resp. e ∈ D(k))
and e /∈ U (j) (resp. e ∈ D(j)) for all j ∈ [k − 1]. A set
s ∈ S is owned by a level k ∈ [L] iff s ∈ S(k) and s /∈ S(j)
for all j ∈ [k − 1]. Note that each element/set is owned
by a unique level. We now describe how to handle a
sequence of element deletions after preprocessing.

Handling the deletion of an element: Suppose that an
element e, which was owned by level j, gets deleted.
Accordingly, we feed this deletion to Scheduler(j),
. . . , Scheduler(L). Note that these are precisely the
schedulers that are responsible for this element and
are affected by the concerned deletion. Each of these
affected schedulers works within its own local memory,
independently of others. We describe the actions taken
by Scheduler(k), for any k ∈ {j, . . . , L}.

Suppose that the element e was at level `(k)(e) = i
just before its deletion. Scheduler(k) moves the
element e from U (k) to D(k), without changing the its

level `(k)(e) = i or weight w
(k)
e = (1 + ε)−i. For each set

s ∈ S(k) containing the element e, this reduces its real-

weight w
(k)
s by (1 + ε)−i. To compensate for this loss,

we increase its dead-weight φ
(k)
s by the same amount

(1 + ε)−i. We do not change the extra-weights of the
sets. Thus, the total-weight of every set also remains
unchanged.

Triggering a rebuild: It is easy to check that the above
actions do not violate Invariant 4.1 and Invariant 4.3.
However, if we keep acting in this lazy manner, then
the number of dead elements keep growing with time,
and so after some number of updates Invariant 4.2
will get violated. Furthermore, unlike in Section 3
here we cannot even afford to wait until the moment
Invariant 4.2 is violated before triggering a rebuild,
because we are shooting for worst-case update time and
the rebuild needs to occur in the background – a few

steps at a time. Accordingly, for each k ∈ [L], whenever
Scheduler(k) finds that |D(k)| ≥ ε · |U (k)| (note that
this is still ε-far from violating Invariant 4.2), it starts
rebuilding its part of the input (U (k),S(k), D(k)) in the
background in a separate memory location that is not
affected by the happenings elsewhere. We now explain
this rebuilding procedure in a bit more details.

Rebuilding done by Scheduler(k): Suppose that
Scheduler(k) has triggered a rebuild at the present
moment because |D(k)| = ε · |U (k)|. In order to see
the high level idea, for now assume that Scheduler(k)
does not need to handle an element deletion due to any
external update operation while it is performing the re-
build.3 Then the rebuild subroutine will clean-up all
the dead elements in D(k), by resetting D(k) = ∅ and

φ
(k)
s = 0 for all s ∈ S(k), and then run the static algo-

rithm (see Section 3) on input (S(k),U (k)) starting from
time t = −k onward. During this run of the static algo-

rithm, the extra-weights δ
(k)
s of the sets s ∈ S(k) will not

change, because these extra-weights are coming from el-
ements that are at levels > k. Note that this is exactly
the same principle that underpins the rebuild subrou-
tine described in Section 3.1. At the end of this static
algorithm, we will get the following guarantees: Invari-
ant 4.1 is satisfied by Scheduler(k), and D(k) = ∅. At
this point, Scheduler(k) will order all the schedulers
corresponding to levels j ∈ [k − 1] = {1, . . . , k − 1} to
abort whatever they are doing and synchronize their
perspectives with the perspective of Scheduler(k).
We refer to this as the synchronization event. At the
end of this, each Scheduler(j), j ∈ [k − 1], will sat-
isfy: S(j) = {s ∈ S(k) : `(k)(s) ≤ j}, U (j) = {e ∈
U (k) : `(k)(s) ≤ j}, D(j) = ∅, `(j)(e) = `(k)(e) for all

e ∈ U (j), and w
∗(j)
s = w

∗(k)
s for all s ∈ S(j). Our algo-

rithm ensures that this synchronization is achieved in
O(k) time on the fly, as follows. The rebuild subrou-
tine of Scheduler(k) will run k different threads – one
for each level j ∈ {1, . . . , k}. Each of these threads will
run in a designated separate region of memory, inde-
pendent of others. It will be the responsibility of thread
j to prepare everything in its allocated memory region,
which can then be handed over to Scheduler(j) at the
time of synchronization by simply passing a pointer to
the beginning of the concerned memory region. Thus,
synchronization involves the passing of k pointers, and
hence takes O(k) = O(L) = O(log n/ε) time. It is easy
to check that Invariants 4.1 and 4.3 continue to remain
satisfied at the end of synchronization. Furthermore,

3According to this assumption, during the same time-
interval when Scheduler(k) is performing a rebuild, some other

Scheduler(j) with j > k might still have to handle element dele-
tions due to external updates.

the remaining Invariant 4.2 is trivially satisfied under
our working assumption that no element deletion oc-
curs in U (k) as Scheduler(k) is rebuilding in the back-
ground. Next, we analyze the worst-case update time
of this algorithm, and outline what happens when this
working assumption does not hold.

Worst-case update time: We measure the time taken
to implement a procedure in terms of units of work.
The update time of our algorithm is dominated by the
time spent on the rebuild subroutines of the individual
schedulers. There are L schedulers running in the
background, and we ensure that each of these individual
schedulers perform O(fL/ε) units of work after every
external update (element deletion). This implies a
worst-case update time of O(L ·fL/ε) = O(f log2 n/ε3).

We now explain why each Scheduler(k) needs to
perform O(fL/ε) units of work per update. The factor
O(L) comes from the fact that the rebuild subroutine
of Scheduler(k) needs to run k = O(L) threads in
the background so as to ensure that it can synchronize
on the fly when it finishes execution. It now remains
to explain the rationale behind the remaining O(f/ε)
factor. Suppose that d = |D(k)| and u = |U (k)|
when the rebuild subroutine of Scheduler(k) gets
triggered. We have d = εu, and hence the subroutine
needs to perform O(f(u + d)) = O(fu) units of work
overall (see Lemma 3.1). According to our scheme,
the subroutine splits this work across a sequence of
external updates (element deletions), performing cf/ε
units of work per update for some large constant c > 1.
This ensures that in the general setting (when the
working assumption in the previous paragraph does not
hold), at most fu/(cf/ε) = εu/c many elements get
deleted from U (k) when the rebuild subroutine is in
progress. In the full version, we show that there is
a way to handle these incoming deletions on the fly
during the rebuild subroutine. However, this comes
at a cost: When an element e gets deleted that has
already been processed by the rebuild subroutine, it gets
classified as a dead element. But since the subroutine
is working at a sufficient fast rate, at most εu/c many
new dead elements might get created in this manner
at the time of synchronization, whereas the old dead
elements that were present at the time the rebuild
subroutine was triggered are removed anyway. Taking
everything together, just after synchronization we end
up having |D(j)| ≤ (ε/c) · |U (j)| for all j ∈ [k] and hence
Invariant 4.2 continues to remain satisfied.

Approximation ratio: The main challenge here is to show
that all the same element/set might get assigned to
different levels by different schedulers, there is a way to
come up with a consistent assignment of levels to all the
elements in U∪D and all the sets in S. Furthermore, the

sets with weight = 1 in this consistent assignment form
a (1 + ε)f -approximate minimum set cover in (U ,S).

The consistent assignment is as follows: Each set
s ∈ S gets assigned to the level that owns it. Let
`(s) denote the level of a set s ∈ S in the consistent
assignment. This automatically defines the level `(e)
and weight we of every element e ∈ U ∪D, since `(e) =
maxs∈S:e∈s `(s) and we = (1 + ε)−`(s). For all s ∈ S, we

define its weight to be w
(U∪D)
s =

∑
e∈U∪D:e∈s we.

For each k ∈ [L], define S(≤ k) = {s ∈ S : `(s) ≤
k}, D(≤ k) = {e ∈ D : `(e) ≤ k} and U(≤ k) =
{e ∈ U : `(e) ≤ k}. The lemma below shows that the
levels of elements/sets in the consistent assignment are
nicely aligned with the levels of the same elements/sets
according to the individual schedulers. Lemma 4.1 and
Invariant 4.2 together imply Corollary 4.1.

Lemma 4.1. For each k ∈ [L], we have S(≤ k) = S(k),
U(≤ k) = U (k), and D(≤ k) = D(k).

Proof. (Sketch) The lemma follows from induction: It
is easy to check that the lemma holds just after pre-
processing. When an element e gets deleted, each
Scheduler(k) responsible for e simply moves it from
U (k) toD(k) without changing its weight or level. Hence,
the lemma continues to remain satisfied. Finally, a mo-
ment’s thought reveals that the lemma continues to hold
after a rebuild subroutine of some Scheduler(k) exe-
cutes its synchronization step.

Corollary 4.1. ∀k ∈ [L], |D(≤ k)| ≤ 2ε · |U(≤ k)|.

Corollary 4.2.
∑
e∈D we ≤ 2ε(1 + ε) ·

∑
e∈U we.

Proof. (Sketch) The proof is almost the same as the
proof of Lemma 4.8 in the Arxiv version of [11]. Basi-
cally, consider any dead-element e′ ∈ D and any actual
element e ∈ U such that both their levels lie within the
interval [k − 1, k], i.e., k − 1 ≤ `(e), `(e′) ≤ k. Then
it follows that their weights we′ and we are within a
(1 + ε) multiplicative factor of each other. This obser-
vation, along with Corollary 4.1, is sufficient to ensure
that

∑
e∈D we ≤ 2ε(1 + ε) ·

∑
e∈U we.

Lemma 4.2. For every set s ∈ S at level `(s) > 0, we

have w
(U∪D)
s = 1. Furthermore, for every set s ∈ S at

level `(s) = 0, we have w
(U∪D)
s ≤ 1.

Lemma 4.2 (whose proof follows from induction)
closely mirrors Lemma 2.2 from Section 2. Consider

the collection of sets T = {s ∈ S : w
(U∪D)
s = 1}.

Lemma 4.2 implies that (see the proof of Lemma 2.2) the
element-weights {we} form a valid fractional packing in
(U ∪D,S) and T forms a valid set cover in (U ∪D,S).

Furthermore, following the proof of Lemma 2.2, we get:
f ·
∑
e∈U∪D we ≥ |T |. Applying Corollary 4.2, we now

derive that:

f ·
∑
e∈U we ≥(1 + 2ε(1 + ε))−1 · f ·

∑
e∈U∪D we

≥(1 + 2ε(1 + ε))−1 · |T |.(4.4)

Since T is a set cover in (U ∪ D,S), it also forms a
set cover in (U ,S). Similarly, since the element-weights
{we}e∈U∪D form a fractional packing in (U ∪D,S), the
weights {we}e∈U form a fractional packing in (U ,S).
Thus, we have a set cover T and a fractional packing
{we} in (U ,S) whose sizes are within a (1 + 2ε(1 + ε))f
multiplicative factor of each other, according to (4.4).
Hence, Lemma 2.1 implies that T forms a (1 + 2ε(1 +
ε))f -approximate minimum set cover in (U ,S).

Acknowledgments

The project has received funding from the Engineering
and Physical Sciences Research Council, UK (EPSRC)
under Grant Ref: EP/S03353X/1.

The research leading to these results has received
funding from the European Research Council under
the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement no. 340506.
Henzinger was also supported by the Vienna Science
and Technology Fund (ICT 15-003).

This project has received funding from the Eu-
ropean Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 715672. Nanongkai
was also supported by the Swedish Research Council
(Reg. No. 2015-04659).

Xiaowei Wu is funded by the Science and Technol-
ogy Development Fund, Macau SAR (File no. SKL-
IOTSC-2018-2020), the Start-up Research Grant of Uni-
versity of Macau (File no. SRG2020-00020-IOTSC)

References

[1] Amir Abboud, Raghavendra Addanki, Fabrizio
Grandoni, Debmalya Panigrahi, and Barna Saha. Dy-
namic set cover: improved algorithms and lower
bounds. In STOC, 2019.

[2] Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein,
and David Wajc. Dynamic matching: Reducing in-
tegral algorithms to approximately-maximal fractional
algorithms. In ICALP, volume 107 of LIPIcs, pages
7:1–7:16. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2018.

[3] Surender Baswana, Manoj Gupta, and Sandeep Sen.
Fully dynamic maximal matching in o(logn) update
time. In FOCS, 2011.

[4] Aaron Bernstein, Sebastian Forster, and Monika Hen-
zinger. A deamortization approach for dynamic span-
ner and dynamic maximal matching. In SODA, pages
1899–1918. SIAM, 2019.

[5] Aaron Bernstein, Sebastian Forster, and Monika Hen-
zinger. A deamortization approach for dynamic span-
ner and dynamic maximal matching. In SODA, pages
1899–1918. SIAM, 2019.

[6] Sayan Bhattacharya, Deeparnab Chakrabarty, and
Monika Henzinger. Deterministic fully dynamic ap-
proximate vertex cover and fractional matching in O(1)
amortized update time. In IPCO, 2017.

[7] Sayan Bhattacharya, Monika Henzinger, and
Giuseppe F. Italiano. Design of dynamic algorithms
via primal-dual method. In ICALP, 2015.

[8] Sayan Bhattacharya, Monika Henzinger, and
Giuseppe F. Italiano. Deterministic fully dynamic
data structures for vertex cover and matching. In
SODA, 2015.

[9] Sayan Bhattacharya, Monika Henzinger, and Danupon
Nanongkai. New deterministic approximation algo-
rithms for fully dynamic matching. In STOC, pages
398–411. ACM, 2016.

[10] Sayan Bhattacharya, Monika Henzinger, and Danupon
Nanongkai. Fully dynamic approximate maximum

matching and minimum vertex cover in O(log3 n)
worst case update time. In SODA, pages 470–489.
SIAM, 2017.

[11] Sayan Bhattacharya, Monika Henzinger, and Danupon
Nanongkai. A new deterministic algorithm for dynamic
set cover. In FOCS, 2019.

[12] Sayan Bhattacharya, Monika Henzinger, Danupon
Nanongkai, and Xiaowei Wu. Dynamic set cover: Im-
proved amortized and worst-case update time. CoRR,
abs/2002.11171, 2020.

[13] Sayan Bhattacharya and Janardhan Kulkarni. Deter-
ministically maintaining a (2 + ε)-approximate mini-
mum vertex cover in o(1/ε2) amortized update time.
In SODA, 2019.

[14] Timothy M. Chan, Mihai Patrascu, and Liam Roditty.
Dynamic connectivity: Connecting to networks and
geometry. SIAM J. Comput., 40(2):333–349, 2011.
Announced at FOCS’08.

[15] Moses Charikar and Shay Solomon. Fully dynamic
almost-maximal matching: Breaking the polynomial
worst-case time barrier. In ICALP, volume 107 of
LIPIcs, pages 33:1–33:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018.

[16] Moses Charikar and Shay Solomon. Fully dynamic
almost-maximal matching: Breaking the polynomial
worst-case time barrier. In ICALP, volume 107 of
LIPIcs, pages 33:1–33:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018.

[17] Irit Dinur, Venkatesan Guruswami, Subhash Khot,
and Oded Regev. A new multilayered PCP and
the hardness of hypergraph vertex cover. SIAM J.
Comput., 34(5):1129–1146, 2005.

[18] Irit Dinur and David Steurer. Analytical approach to

parallel repetition. In STOC, 2014.
[19] Anupam Gupta, Ravishankar Krishnaswamy, Amit

Kumar, and Debmalya Panigrahi. Online and dynamic
algorithms for set cover. In STOC, 2017.

[20] Manoj Gupta and Richard Peng. Fully dynamic (1+ε)-
approximate matchings. In FOCS, 2013.

[21] Subhash Khot and Oded Regev. Vertex cover might be
hard to approximate to within 2-\varepsilon. In CCC,
2003.

[22] Kasper Green Larsen. The cell probe complexity of
dynamic range counting. In STOC, pages 85–94. ACM,
2012.

[23] Kasper Green Larsen, Omri Weinstein, and Huacheng
Yu. Crossing the logarithmic barrier for dynamic
boolean data structure lower bounds. In STOC, pages
978–989. ACM, 2018.

[24] Danupon Nanongkai and Thatchaphol Saranurak. Dy-
namic spanning forest with worst-case update time:

adaptive, las vegas, and o(n1/2 - ε)-time. In STOC,
pages 1122–1129. ACM, 2017.

[25] Danupon Nanongkai, Thatchaphol Saranurak, and
Christian Wulff-Nilsen. Dynamic minimum spanning
forest with subpolynomial worst-case update time. In
FOCS, pages 950–961. IEEE Computer Society, 2017.

[26] Ofer Neiman and Shay Solomon. Simple deterministic
algorithms for fully dynamic maximal matching. In
STOC, 2013.

[27] Krzysztof Onak and Ronitt Rubinfeld. Maintaining a
large matching and a small vertex cover. In STOC,
2010.

[28] Mihai Patrascu and Erik D. Demaine. Logarithmic
lower bounds in the cell-probe model. SIAM J. Com-
put., 35(4):932–963, 2006.

[29] David Peleg and Shay Solomon. Dynamic (1 + ε)-
approximate matchings: A density-sensitive approach.
In SODA, 2016.

[30] Shay Solomon. Fully dynamic maximal matching in
constant update time. In FOCS, 2016.

[31] Christian Wulff-Nilsen. Fully-dynamic minimum span-
ning forest with improved worst-case update time. In
STOC, pages 1130–1143. ACM, 2017.

