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Abstract

The mutation responsible for Duffy negativity, which impedes Plasmodium vivax infection,

has reached high frequencies in certain human populations. Conversely, mutations capable

of blocking the more lethal P. falciparum have not succeeded in malarious zones. Here we

present an evolutionary-epidemiological model of malaria which demonstrates that if adap-

tive immunity against the most virulent effects of malaria is gained rapidly by the host, muta-

tions which prevent infection per se are unlikely to succeed. Our results (i) explain the rarity

of strain-transcending P. falciparum infection blocking adaptations in humans; (ii) make the

surprising prediction that mutations which block P. falciparum infection are most likely to be

found in populations experiencing low or infrequent malaria transmission, and (iii) predict

that immunity against some of the virulent effects of P. vivax malaria may be built up over

the course of many infections.

Author summary

Malaria has profoundly influenced human evolution. However, humans have adapted to

two major malaria parasites, Plasmodium falciparum and Plasmodium vivax, by strikingly

different strategies. The Duffy negative blood group impairs P. vivax entry to red blood

cells and reduces the chance of becoming infected. No equivalent blocking adaption

against P. falciparum has evolved to become widespread, despite the existence of candi-

date mutations. We show that rapidly gained adaptive immunity to malaria virulence lim-

its the success of infection blocking mutations. This could account for humans’

contrasting adaptations to P. falciparum and P. vivax. Our results highlight the critical

role of adaptive immunity in determining how vertebrate hosts evolve in response to path-

ogen selection, and provide a new framework within which to understand this process.

Introduction

Rapidly evolving parasites exert strong selective pressures on their hosts. Malaria parasites (red

blood cell infecting apicomplexan parasites of the genus Plasmodium) have had a profound

effect on human genetics [1] (Table 1). Of human-infecting malaria parasites, Plasmodium fal-
ciparum and Plasmodium vivax present the greatest public health concern. P. falciparum is
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Table 1. Known human adaptations to malaria.

Protein Locus Evidence for malaria selection Malaria infection

impeding potential

Notes on infection blocking properties

Haemoglobin HBA and

HBB
Mutations in HBB and HBA including sickle cell,

alpha thalassaemia and haemoglobin C protect

against severe P. falciparum disease [55]. Mutations

in HBB and HBA reach elevated frequencies in old

world malarious regions [56].

Low Gong et al found that sickle cell trait offers no

inherent protection against acquiring blood stage P.

falciparum infection per se without concurrent

adaptive immunity [57]. Mangano et al
demonstrated that sickle cell heterozygosity and

haemoglobin C homozygosity offer some protection

against P. falciparum parasitaemia [58], which did

not appear to be entirely due to adaptive immunity,

but the effect they observed could be caused by

enhanced clearance of parasitaemia rather than

reduced probability of initial infection. Rosanas-

Urgell et al observed no difference in P. falciparum
infection rates associated with alpha thalassaemia in

children aged 3–21 months [59]. Lin et al observed

a protective effect of alpha thalassaemia against P.

falciparum infection in children aged 5–14 years

[60], but taken together with Rosasnas-Urgell’s

result this could also be an example of a protective

effect due to adaptive immunity rather than an

inherent property of alpha thalassaemia. Alpha

thalassaemia may even increase the probability of

blood stage malaria infection in young children, for

both P. vivax and P. falciparum, with the effect

more pronounced for P. vivax [61]. This may be

because alpha thalassaemia is associated with

reticulocytosis. P. vivax only infects reticulocytes,

and P. falciparum prefers to infect younger red

blood cells.

In vitro studies show only small reductions in P.

falciparum invasion for sickle cell heterozygous and

haemoglobin C homozygous red blood cells [62,63],

and no effect of alpha thalassaemia on P. falciparum
red blood cell invasion [64]. However,

heterozygosity (but not homozygosity) for the HBB

mutation haemoglobin E is associated with a much

smaller pool of P. falciparum “invadable” red blood

cells than normal in vitro [65], as measured by an

invasion selectivity index.

Glucose-

6-phosphate

dehydrogenase

G6PD Point mutations in the G6PD gene on the X

chromosome result in lower activity forms of the

glucose-6-phosphate dehydrogenase (G6PD)

enzyme. The haplotypic diversity of these mutations

suggests they have a recent origin in human

populations, in keeping with malaria selection [66],

and there is an average frequency of 8% G6PD

deficiency across malaria endemic countries [67].

Some studies have suggested that hemizygous males

[68] and perhaps both female heterozyogtes and

male hemizygotes for a G6PD deficiency mutation

are protected against severe falciparum malaria

[69]. However, a recent meta-analysis of the

protective effect of G6PD deficiency found only a

protective effect of heterozygosity against

uncomplicated falciparum malaria, limited to

African populations [70].

Low In vitro experiments using four different P.

falciparum strains found no differences in

erythrocyte invasion between normal and glucose-

6-phosphate dehydrogenase deficient blood [71].

(Continued)
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more strongly associated with coma[2] and death [3,4] than P. vivax, and historically P. vivax
was believed to be relatively benign [5]. Nevertheless, P. vivax is now recognised as a poten-

tially lethal infection [5–9].

Table 1. (Continued)

Protein Locus Evidence for malaria selection Malaria infection

impeding potential

Notes on infection blocking properties

Complement

receptor 1

CR1 Complement receptor 1 is used by P. falciparum to

enter red blood cells. It has recently been shown

that the Sl2 exon 29 variant of CR1 (which is

frequent in sub Saharan Africa) protects against

uncomplicated and cerebral malaria, but only in the

absence of alpha thalassaemia [72]

Low (but not all

polymorphisms

investigated)

The nucleotide 3650 G/A SNP in exon 22 of CR1,

which has been associated with lower CR1

expression, does not affect the probability of PCR-

detectable P. falciparum infection[60].

Band 3 SLC4A1 Southeast Asian ovalocytosis (SAO), also known as

Melanasian ovalocytosis, results from

heterozygosity for a deletion of 27 nucleotides from

SLC4A1 (and hence a deletion of 9 amino acids in

band 3 protein) [73]. This deletion is lethal in the

homozygous state. Heterozygotes seem to be

protected against cerebral malaria caused by P.

falciparum [74] and the distribution of the deletion

in Papua New Guinea is broadly consistent with

malaria selection [75].

Strain specific In vitro studies suggest SAO may impede the

invasion of certain P. falciparum strains, possibly

those requiring an as yet un identified chymotrypsin

sensitive receptor [76], but the same study shows

SAO does not block red blood cell invasion by all P.

falciparum strains.

Glycophorins A, B

and C

GYPA,

GYPB,

GYPC

The Dantu blood group is caused by a duplicated

hybrid GYPA/GYPB gene, is associated with a

reduction in the risk of severe P. falciparum
malaria, and reaches frequencies of >10% in Kenya

[77]. GYPB polymorphism is associated with the

risk of P. falciparum infection in the Brazilian

Amazon [78]. A GYPC exon 3 deletion known to

reduce invasion by P. falciparum parasites which

use EBA140 to enter red blood cells is observed at a

high frequency in coastal Papua New Guinea [79].

Partial (Dantu blood

group)

The glycophorin invasion pathway is not essential

for P. falciparum blood stage infection: certain

strains can readily adapt to employ non

glycophorin-dependent pathways [80,81].

Spontaneous switching between using glycophorins

for red blood cell entry and not using glycophorins

for entry has recently been observed in P.

falciparum grown in suspended rather than static

cultures [82].

In vitro experiments show that Dantu red blood

cells are invaded to a lower extent by all strains of P.

falciparum tested, regardless of their reliance on

binding glycophorins for cell entry [83]. Higher

membrane tension was shown to reduce invasion in

non-Dantu red blood cells as well as Dantu cells,

and Dantu red blood cells had a higher membrane

tension on average [83].

Duffy antigen FY
(DARC)

Sub Saharan African populations display extremely

high frequencies of a mutation (FY�O) which

eliminates erythrocytic expression of the Duffy

antigen [84]. The population genetics of variation at

the FY locus is consistent with a FY�O mutation

sweeping to fixation in sub Saharan African

populations within the last 42 thousand years, from

a standing variation frequency of 0.1% [20].

High Human challenge studies during the mid 20th

century showed that Duffy negative individuals

(homozygous for FY�O) are highly resistant to

infection with P. vivax [11]. Vivax infection in

Duffy negative individuals has subsequently been

detected [13–16]. However, infection occurs at a

lower rate than in Duffy positive individuals in the

same populations. Duffy negativity offers 49–69%

protection when infection is measured by PCR

positivity in an asymptomatic population, or 96–

98% protection when infection is measured by PCR

positivity in symptomatic patients in a clinical

setting [16]. Other studies have shown that the A

variant of the Duffy antigen (Fya) is associated with

weaker binding of Duffy Binding Protein than the B

variant of the Duffy antigen (Fyb)[85], and a lower

probability of experiencing clinical infection [86].

Heterozygosity for FY�O and FY�A is associated

with a reduced probability of PCR detectable vivax
infection[24] but it is less clear that heterozygosity

for FY�O and FY�B is associated with a reduced

probability of vivax infection [85,86].

https://doi.org/10.1371/journal.pcbi.1008181.t001
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Known human adaptations to P. falciparum or P. vivax are summarised in Table 1. Multiple

adaptations to P. falciparum exist, but few affect the probability of becoming infected per se.
Instead, P. falciparum adaptations mainly reduce the probability of dying from the infections

that occur. By contrast, Duffy negativity, an adaptation to P. vivax, substantially impairs infec-

tion [10–16]. The lack of an infection blocking adaptation to P. falciparum is not simply due to

an absence of candidate human loci. Basigin, Complement Decay Accelerating Factor (CD55)

and the Langereis blood group antigen (ABCB6) are red blood cell invasion receptors required

by all P. falciparum strains [17–19]. Red blood cells with naturally occurring genetic variants

of these loci (the OK- blood group; the Inab phenotype and Lan null red blood cells) are resis-

tant to P. falciparum invasion in vitro [17–19]. However, there is no evidence that mutations at

any of these loci have reached high frequencies in any population under strong malaria

selection.

Selection, presumably involving P. vivax, elevated the frequency of the mutation responsi-

ble for Duffy negativity (FY�O) to near fixation throughout much of sub Saharan Africa within

the last 49000 years [20]. Mutations in basigin, CD55 or ABCB6 could block the more lethal P.

falciparum, but this evolutionary opportunity does not appear to have been exploited in

human populations. Why should this be the case? We present and analyse a new evolutionary-

epidemiological model of malaria to explore this question.

Model summary

The epidemiological process in our model takes the form S-V-R-I-R. Fig 1 illustrates the com-

partmental structure of the model. Equations describing the model, and a full description of

model parameters, are given in the Methods. The parameters of the model are summarised in

Table 2. Hosts are born susceptible (state S). When susceptible hosts become infected they suf-

fer virulent infections (state V). The host fecundity cost of a virulent infection is measured by

parameter ψ, and the additional host mortality rate induced by a virulent infection is measured

Fig 1. The compartmental model. Hosts of genotype i are compartmentalised into immature and mature susceptible

hosts (S1 and S2); immature and mature virulently infected hosts (V1 and V2); immature and mature hosts resistant to

virulence (R1 and R2), and finally immature and mature hosts who are infectious but not at risk of virulence (I1 and I2).

The compartmental model is fully described by Eqs 1–8 in the Methods. A host transitions between compartments at

the rates indicated on each arrow. The force of infection (λ) is given in Eq 9, and the birth rate (bi) is given by Eq 10.

All parameters of the model, which include the other rates in this diagram, are defined in Table 2. All hosts die from a

background death rate (μ) which has not been visualised here.

https://doi.org/10.1371/journal.pcbi.1008181.g001
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by parameter α. Upon recovery from a virulent infection, individuals have a probability, θ,

of gaining adaptive immunity (state R) which protects them from future infection costs. We

shall refer to this as virulence immunity, to distinguish it from clinical immunity (used in the

literature to refer to adaptive immunity to both severe and non-severe clinical malaria), or

Table 2. The parameters of the model.

Parameter Definition Value used Notes

μ Death rate of hosts from causes other

than malaria

1/30 mean lifespan of a host = 30 years

σ Recovery rate from malaria infection 2 mean duration of infection = 6 months (mean durations

of infection assumed for P. falciparum malaria in

epidemiological models range from 20 to 200 days [87];

6 months is in keeping with that assumed by [88], based

on 20th century malariatherapy studies.

β Transmission parameter, related to the

basic reproduction number (R0) in this

model as follows: R0 = b

sþmþa

2.03–502 β values were chosen such that R0 takes values between 1

and 50.

α Mortality rate due to malaria Values between 0 and 10 tested. The case fatality rate of malaria in this model is equal to
a

sþmþa
. However, a more evolutionarily-relevant measure

is the effect of α on the population overall, which

depends on θ, σ, R0 and r. In the age structured model,

when R0, as defined above = 5, r = 0.6 and σ = 2, if there

is no virulence immunity (θ = 0) then a malaria

mortality rate of α = 0.0075 means that each year the

malaria deaths are equal to 15% of the births. However,

if θ = 0.05, α = 0.0075 means that each year the malaria

deaths are equal to 5% of the births, and if θ = 0.1, α =

0.0075 means malaria deaths each year are equal to 3%

of the births.

ψ Reproductive cost to the host of

virulent infection with malaria

Values between 0 and 1 tested.

g Rate at which hosts become

reproductively mature

1 or 1/15 In the model without age structure, g is infinitely large.

In the model including age structure, g = 1/15 and the

mean time to reach reproductive maturity = 15 years.

K Carrying capacity of population 10000

r Fecundity parameter, related to the

birth rate as defined in Eq 10.

0.4 for the model without age structure or 0.6 for the

model with age structure.

In the model including age structure, hosts are, on

average, reproductively active for 2/3 of their lifespan.

For better comparisons between Figs 2 and 3 we

adjusted host fecundity to compensate for this, hence

the two different values.

ci Inherent fecundity cost of genotype i For the wild type, cW is always = 0; for the mutant

genotype cM may = 0.01 in Figs 2 and 3. We did not

impose any inherent fecundity costs in the extended

(three genotype) model, so c = 0.

θ Probability of a host gaining immunity

to the virulent effects of malaria upon

recovery from infection.

Values between 0 and 1 tested.

pi Proportion of infections blocked for

genotype i
pW (proportion of infections blocked for the wild

type) = 0. In Figs 2–4, for the mutant genotype, pM =

0.5. In Fig 5, the proportion of infections blocked by

the FY�O homozygote (phom) and the proportion of

infections blocked by the FY�O heterozygote (phet) are

varied. phet is varied between 0 and 0.5, and phom is

assumed to be 1.9 x phet.
qi Protection against malaria virulence

enjoyed by genotype i.
For the wild type, qW always = 0. In Figs 2–4, for the

mutant genotype, qM = 0. In Fig 5 qhom and qhet are

varied. qhet is varied between 0 and 0.5, and qhom is

assumed to be 1.9 x qhet.

https://doi.org/10.1371/journal.pcbi.1008181.t002
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sterilising immunity (full immunity against infection itself, which does not occur for malaria

[21]). Individuals who have gained virulence immunity can become infected and transmit the

pathogen (state I) but these individuals do not suffer the deleterious effects of the infection. At

this stage, individuals cycle between states R and I as they experience repeated infections and

recoveries.

We compartmentalised the host population into two genotypes: the wild type (W) and a

mutant genotype which has evolved to fully or partially block infection (M). An infection

being “blocked” means that a host who could have become infected is prevented from entering

the V or I compartments—thus that host does not become infectious to others, and does not

experience virulence. The blocking mutant therefore represents any adaptation which can

reduce the chance of a malaria parasite establishing a blood stage infection (be it a mutation

that blocks a parasite from entering a red blood cell, or a mutation that stops the entire infec-

tion process even earlier by blocking entry into a liver cell). We first focus on the outcome of

competition between M and W genotypes, and hence for simplicity model a haploid popula-

tion containing just these two genotypes. We later extend the model to simulate an evolving

diploid human population. The bulk of P. falciparum virulence is borne by children. To allow

for the possibility that immunity to malaria virulence may be gained before reproductive

maturity, we further compartmentalised the host population into two reproductive states.

Parameter g determines the transition rate between immature and mature states (represented

by subscripts 1 and 2), where only mature hosts are able to reproduce.

We used the Next Generation approach [22,23] to analyse the invasion fitness of the mutant

genotype under different conditions (see Methods). We also explored the speed of evolution

(i.e. the rate at which we predict an infection blocking mutation would spread) using a model

that tracks the joint epidemiological and evolutionary dynamics of a diploid host population.

Results

Adaptive immunity disadvantages infection blocking genotypes

First we consider a model without age structure. When the maturation rate g is infinite the

hosts spend no time in the reproductively immature class. We introduce into this population a

mutant genotype which halves the probability of a host becoming infected (pM = 0.5). The per-

generation invasion fitness of the mutant genotype (RM) decreases as the per-infection-proba-

bility of gaining virulence immunity (θ) increases (Fig 2A). If the infection blocking genotype

is also associated with a small inherent fitness cost (c = 0.01), then above a threshold level of

virulence immunity, RM dips below 1 and the mutant genotype will not invade the population

at all.

In the model without age structure, increasing either the mortality associated with pathogen

virulence (α) or the host reproductive costs associated with pathogen virulence (ψ) increases

RM (Fig 2B–2D). This is the pattern we intuitively expect: the greater the costs of virulence, the

greater the success of infection blocking genotypes. Virulence immunity reduces these costs,

and hence reduces selection in favour of the infection blocking genotype.

In an age structured model with adaptive immunity, increasing virulence

can decrease the success of infection blocking mutations

We now consider a more realistic model in which hosts must age into a mature class in order

to reproduce. We similarly introduce into this population a mutant genotype which halves the

probability of a host becoming infected. The relationship between θ and RM has the same

shape as for the model without host aging (compare Fig 3A with Fig 2A). However, now that
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delayed reproduction is included, RM dips below 1 as θ is increased even if the mutant geno-

type carries no inherent fitness cost (c = 0). Thus, in the age structured model, virulence

immunity can prevent the invasion of a cost-free infection blocking mutant.

Counter-intuitively, as soon as virulence immunity is included in the age structured model,

the relationship between RM and the host reproductive cost of infection (ψ) is reversed. RM

now gets smaller as ψ gets larger (Fig 3C and 3D). A negative relationship between ψ and RM

arises because in the age structured model it is possible to gain virulence immunity prior to

reaching reproductive maturity. Mutant genotype individuals experience fewer infections than

wild type individuals, so have fewer opportunities to gain immunity whilst immature–leaving

them more vulnerable to virulent infections whilst reproductively active. S1 Fig illustrates the

expected times spent in different states for mutant and wild type genotypes. For the age struc-

tured model, above a threshold value of θ, the mutant genotype spends longer virulently

infected whilst reproductively active (i.e. in class V2) than the wild type. This cannot occur in

the model without age structure. If hosts experience a reproductive cost when virulently

Fig 2. The success of infection blocking genotypes in the model without age structure. Panel (a) illustrates how RM

changes with varying values of θ (the probability of becoming immune to virulence upon recovery from infection) in the

model without age structure. RM must be> 1 if the infection blocking mutation is to spread. Values> 1 are indicated with a

solid line and values�1 are indicated with a dashed line and a grey background. Models with and without an inherent cost

to the infection blocking mutation (c6¼0 and c = 0, respectively) are shown as indicated in the legend. The mutant genotype

blocks 50% of infections (pM = 0.5) and offers no other protection against virulence (qM = 0). β = 10.2; α = 0.0075; ψ = 0.5

and other parameter values are as given in Table 2. Panels (b-d) illustrate the value of RM for different combinations of the

reproductive cost to the host of virulent infection (ψ) and the additional host mortality rate whilst virulently infected (α).

The strength of virulence immunity (θ) increases with each panel (see panel titles). Black regions indicate that the

equilibrium size of the resident wild type population is<1 and hence the host population is not viable. c = 0, β was varied

between 10.1 and 60.1 so that R0 was kept at a value of 5, and all parameter values other than ψ, α and θ are as described for

panel (a).

https://doi.org/10.1371/journal.pcbi.1008181.g002
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infected (ψ>0), spending longer virulently infected whilst reproductively active puts the

mutant genotype at a disadvantage relative to the wild type host. The greater the reproductive

cost of virulence, the greater this disadvantage, hence the negative relationship between ψ and

RM.

If virulent infections carry mortality costs (α>0), the infection blocking mutant always has

a longer average lifespan than the wild type. The higher the infection mortality rate, the bigger

the discrepancy in life expectancy, and the greater the advantage to the mutant. There is, there-

fore, a largely positive relationship between α and RM in the age structured model (Fig 3C and

3D). However, Fig 3C and 3D reveal a negative relationship between RM and very high values

of α in the presence of virulence immunity. Despite the infection blocking genotype always

spending a longer total time in the reproductively mature class than the wild type, that gain in

time as a proportion of the time spent reproductively mature by the wild type gets smaller at

the highest values of α, if virulence immunity is present (S2 Fig). For a given probability of

gaining virulence immunity (θ), the higher the value of α, the greater the proportion of

Fig 3. The success of infection blocking genotypes in the model including age structure. Panel (a) illustrates how RM

changes with varying values of θ (the probability of becoming immune to virulence upon recovery from infection) in the

model including age structure. RM must be> 1 if the infection blocking mutation is to spread. Values> 1 are indicated with

a solid line and values�1 are indicated with a dashed line and a grey background. Models with and without an inherent cost

to the infection blocking mutation (c6¼0 and c = 0, respectively) are shown as indicated in the legend. The mutant genotype

blocks 50% of infections (pM = 0.5) and offers no other protection against virulence (qM = 0). β = 10.2; α = 0.0075; ψ = 0.5

and other parameter values are as given in Table 2. Panels (b-d) illustrate the value of RM for different combinations of the

reproductive cost to the host of virulent infection (ψ) and the additional host mortality rate whilst virulently infected (α). The

strength of virulence immunity (θ) increases with each panel (see panel titles). Grey regions indicate that RM� 1 (see colour

bar). Black regions indicate that the equilibrium size of the resident wild type population is<1 and hence the host population

is not viable. c = 0, β was varied between 10.1 and 60.1 so that R0 was kept at a value of 5, and all parameter values other than

ψ, α and θ are as described for panel (a).

https://doi.org/10.1371/journal.pcbi.1008181.g003
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individuals entering the mature class with virulence immunity. This is because higher values

of α are more likely to quickly kill off individuals who have not yet gained virulence immunity.

The greater the proportion of individuals entering the mature class with virulence immunity,

the smaller the advantage to being an infection blocking mutant in the mature class. This

means that above a certain level of α, increasing α starts to decrease the success of an infection

blocking mutant, albeit never reducing the fitness of the infection blocking mutant to less than

that of the wild type.

The combined effects of the two types of virulence (host reproductive costs, ψ and mortality

costs, α) are essentially additive (Fig 3C and 3D). This means that as ψ is increased in the age

structured model including virulence immunity, greater and greater values of α are necessary

in order to allow an infection blocking mutation to spread at all.

A low basic reproduction number for the parasite increases the success of

infection blocking genotypes

The basic reproduction number of the parasite (R0) also affects the success of infection block-

ing mutations. Fig 4 illustrates this for a mutant which blocks 50% of infections. RM increases

Fig 4. The impact of the basic reproduction number (R0) of the pathogen on the success of infection blocking

genotypes. Panels (a) and (c) illustrates how RM changes with varying values of R0 (here achieved by varying β –see

Methods and Table 2). Panel (a) illustrates the model without age structure and panel (c) the model including age

structure. Values of RM > 1 are indicated with a solid line and RM�1 is indicated with a dashed line. The mutant

genotype blocks 50% of infections (pM = 0.5) and offers no other protection against virulence (qM = 0). θ = 0.05, α =

0.0075, ψ = 0.5 c = 0, and other parameter values are as given in Table 2. Panels (b) and (d) display RM for different

combinations of θ and R0. Panel (b) illustrates the model without age structure and panel (d) the model with age structure.

Grey regions indicate that RM� 1 (see colour bar). All parameter values for panels (b) and (d) other than R0 and θ are as

described for panels (a) and (c).

https://doi.org/10.1371/journal.pcbi.1008181.g004
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as R0 descends towards 1, reaching a peak at a low value of R0, before declining again to equal

1 when R0 equals 1. This behaviour occurs regardless of whether host age structure is included

in the model (compare Fig 4A and 4C). Thus, at lower values of R0, infection blocking muta-

tions can succeed in the age structured model even in the presence of strong virulence immu-

nity (Fig 4D).

The overall difference in time spent virulently infected by the mutant genotype and the wild

type genotype is maximised when R0 is low (S3 Fig). If infections are relatively rare, hosts of

any genotype who recover from infection do not quickly become reinfected. Furthermore,

when infections are infrequent, hosts of any genotype spend most of their lives without any

adaptive immune protection against virulence immunity. Under these circumstances, being

less likely to become infected in the first place creates a great advantage, hence RM increases as

R0 approaches 1. However, this advantage must be traded off against the fact that lower values

of R0 reduce the total number of infections any host experiences in a lifetime. This means that

RM does not increase asymptotically as R0 approaches 1, and instead peaks at a value close to 1.

So far we have assumed that transmission is just as likely to occur from a non-virulent

infection as a virulent infection, and that the background mortality rate of the immature class

is the same as that of the mature class. Altering either of these assumptions does not change

our overall conclusion that increasing the rate at which virulence immunity is gained (θ)

decreases the success of infection blocking mutations (RM). The small changes to RM which do

occur when these assumptions are changed can be understood in terms of time spent viru-

lently infected when reproductively mature. These results are explored in S1 Appendix and S4

and S5 Figs.

A FY�O-like mutation can reach high frequencies in a human population

within a realistic timeframe, provided virulence immunity is gained slowly

or not at all

As noted in the introduction, we have one clear example of a malaria infection impeding

mutation reaching high frequencies in human populations. Homozygosity for the Duffy nega-

tive (FY�O) mutation offers 49–69% protection against asymptomatic P. vivax infections in

humans, and 96–98% protection against symptomatic infection [16]. FY�O rose to high fre-

quencies in sub Saharan Africa within the last 34–49 thousand years [20]. To determine if our

model can capture this behaviour, we extended the model to incorporate both heterozygotes

and homozygotes for an infection blocking mutation (see Methods).

Fig 5 illustrates the time FY�O takes to reach an allele frequency > 0.9 from a starting fre-

quency of 0.1% [20] under different assumptions about the properties of FY�O; the level of

selection from P. vivax, and the rate of gaining virulence immunity. Homozygosity for FY�O

offers 96–98% protection against symptomatic infection, thus in all panels we assumed phom =

0.96. Changing this assumption so that phom = 49% (based on the level of protection Duffy neg-

ative individuals experience against asymptomatic infection) has little effect on the patterns

seen (S6 Fig). Heterozygosity for FY�O may be protective against P. vivax infections [24], but

the exact level of protection provided is unclear (Table 1). We therefore illustrate three differ-

ent possible values of phet, increasing from left to right across Fig 5. It is possible that FY�O not

only impedes P. vivax infection but also provides protection against virulence in any infection

which does occur. For simplicity we assumed the same protection is provided to both hetero-

zygotes and homozygotes (qhom = qhet). This means that protection against virulence is

assumed to be a dominant trait. We varied this protection from top to bottom of Fig 5.

The faster the rate at which virulence immunity is gained (the higher the value of θ), the

slower the spread of the FY�O mutation. If FY�O offers little or no protection against virulence
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(top two rows of Fig 5), we see a nonlinear relationship between θ and the time FY�O takes to

spread, such that above a certain value of θ we essentially never expect FY�O to succeed. If

FY�O offers strong protection against virulence (bottom row of Fig 5), then the relationship

between θ and the time FY�O takes to spread becomes more linear, and allows for the possibil-

ity that FY�O could have spread within the last 49000 years at higher values of θ.

Fig 5 illustrates three different potential malaria infection costs scenarios (low, medium and

high). Each has their own reproductive cost (ψ = 0.025, 0.1 or 0.5), which defines the probabil-

ity of reproduction failing in a virulently infected host. If ψ = 0.5, virulently infected hosts

reproduce at 50% of the rate of non virulently infected hosts. Each scenario also has its own

malaria mortality rate (α = 0.0001, 0.0005 or 0.0075). These correspond to case fatality rates

per individual malaria infection in those without virulence immunity of: 0.00005, 0.0002 and

0.0037 (see Table 2). The case fatality rate for P. vivax infection has been estimated at between

0.00012 and 0.00063 [25] in Papua New Guinea. If θ is low for P. vivax then the case fatality

rate estimated by [25] directly corresponds to the case fatality rates for those without virulence

immunity in our model, and the low and medium (blue and yellow) scenarios are the most

Fig 5. Time taken for FY�O to reach frequencies� 90%. Panels (a-i) indicate the time taken for FY�O to reach a frequency

�90% from a starting frequency of 0.1%, using the extended model (see Methods). We investigate different rates of gaining

virulence immunity (θ, x axes), and each panel illustrates different possible properties of FY�O. The FY�O homozygote always

blocks 96% of infections (phom = 0.96). From left to right across the figure, the infection blocking ability of the FY�O

heterozygote increases (phet), and from the top to the bottom row of the figure the protection against virulence afforded by any

genotype containing FY�O increases (qhet and qhom). Three different virulence scenarios have been included (see legend). In

the low infection costs scenario, α = 0.0001 and ψ = 0.025; in the moderate infection costs scenario, α = 0.0005 and ψ = 0.1, and

in the high infection costs scenario, α = 0.0075 and ψ = 0.5. The grey shaded region of each graph indicates unrealistic times

(>49000 years). Other parameters were as listed in Table 2, or else were as follows: g = 1/15, r = 0.6, c = 0, β took values

between 24.4 and 24.5 so as to keep R0 = 12.

https://doi.org/10.1371/journal.pcbi.1008181.g005
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plausible. However, if θ is high for P. vivax then many hosts in a population will have virulence

immunity, so the case fatality rate for those without virulence immunity will be higher than

the range reported in [25]. Under these circumstances, the high cost (red) scenario may be the

most plausible. Under the low and medium cost scenarios, FY�O only reaches frequencies

>0.9 within a realistic time frame if the rate of gaining virulence immunity is low (θ is close to

zero). Under the high cost scenario, FY�O reaches frequencies >0.9 more quickly at values of

θ close to zero, and FY�O must provide substantial additional protection against virulence in

order to reach a frequency >0.9 at values of θ>0.05 (Fig 5I).

If it is possible to gain virulence immunity against P. vivax rapidly (e.g. θ>0.1), then we

still observe that a higher R0 hinders the spread of a blocking mutation (S7 Fig). Higher values

of R0 increase the time it takes for FY�O to reach frequencies >0.9.

Discussion

We have demonstrated that the rate at which virulence immunity is gained has profound con-

sequences for the evolution of mutations which block malaria infection. If virulent infection

hinders the reproduction of the host, and if adaptive immunity protecting against such viru-

lence is gained rapidly, a mutation whose major effect against malaria is to partially block

infection will not succeed unless the force of infection is low. We noted in the introduction

that the OK- blood group; the Inab phenotype and the Lan null phenotype all have the poten-

tial to be P. falciparum blocking adaptations. However, none of these phenotypes have ever

been reported at a high frequency in a malarious region. By contrast, a P. vivax blocking adap-

tation (FY�O) is present in malarious regions worldwide and has reached extremely high fre-

quencies in sub Saharan Africa. The lack of success of the OK- Inab and Lan null phenotypes

in highly malarious regions can be explained by our model if the mutations responsible partly

block P. falciparum infection in the heterozygous state, and immunity to P. falciparum viru-

lence is gained rapidly (θ is high). The success of FY�O within a realistic timeframe is more

likely if immunity to P. vivax virulence is gained slowly (θ is low). We propose that differences

in the rate of gaining adaptive immunity to virulence caused by P. falciparum and P. vivax
could account for the contrasting human adaptations to these two parasites.

The most compelling case for differences in the accumulation of immune responses to P.

falciparum and P. vivax comes from a migration study [26]. Migrant workers and their fami-

lies, who had not previously been exposed to malaria, moved to a malaria hyperendemic

region of Indonesia. After just two years of the migrants living in the region, their susceptibility

to malaria relative to the local residents was assessed. If immunity to malaria is built up cumu-

latively throughout life then the oldest local residents should display the greatest advantage

against malaria relative to migrants of similar age, and the youngest local residents should

have the least advantage against malaria relative to migrants of similar age. Exactly this pattern

was observed for P. vivax parasitaemia, suggesting that immunity is indeed accumulated

throughout life. However, local residents of any age group had a similar advantage against fal-
ciparum parasitaemia relative to the migrants. This indicated that >50 years of exposure to P.

falciparum (as experienced by the oldest local residents) gave no additional advantage against

P. falciparum than the ~3 years of exposure of the youngest local residents. Our model con-

cerns virulence immunity, rather than immunity to parasitaemia per se, but [26] certainly indi-

cates that some forms of P. vivax immunity are gained cumulatively over the course of many

infections, whilst P. falciparum immunity is gained more rapidly.

Further evidence supporting a rapid gain of P. falciparum virulence immunity is the fact

that in high transmission regions, severe P. falciparum malaria syndromes (other than preg-

nancy associated malaria) are concentrated in children below five years of age [27]. It is
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possible that immunity to non-cerebral severe malaria disease is gained after just one or two

infections [28]. Parameter θ in our model may therefore be>0.1 for P. falciparum—i.e. fewer

than 10 infections may be required to elicit P. falciparum virulence immunity. Our results

show that such a value of θ could drastically slow, or stop the spread of P. falciparum infection

blocking mutations in a range of settings (Figs 3 and 4).

Understanding virulence immunity in P. vivax is challenging, because there is no part of

the world where P. vivax circulates alone, meaning co-infection with falciparum is always a

potential confounding factor. Children in regions where vivax and falciparum co-circulate

seem to become immune to fevers caused by vivax more rapidly than they become immune to

fevers caused by falciparum [29]. This observation contradicts our proposal that immunity to

vivax virulence may be gained slowly. However, it is not clear that immunity to fever corre-

sponds to immunity to all the costs of infection. Two studies in Indonesia and West Papua

have found severe malaria cases associated with either P. vivax or P. falciparum to be concen-

trated in younger age groups [7,8], suggesting little difference in the rate at which virulence

immunity is gained for the two parasites. However, a separate study in Indonesia [6] showed

that older individuals remain at risk from serious disease caused by P. vivax, whereas the risk

for serious disease caused by P. falciparum was concentrated in younger age groups. This

observation suggests slower or less reliable acquisition of virulence immunity in P. vivax.

A crucial assumption of our model is that malaria generates a reproductive cost for the

host. Allowing immunity gained in childhood to protect against a later reproductive cost is the

main mechanism by which adaptive immunity can prevent the spread of infection blocking

mutations. Reproductive costs exist for both P. falciparum and P. vivax infection in humans

[30,31]. Pregnant women seem to be especially susceptible to infection with either P. falcipa-
rum or P. vivax, in particular during their first pregnancies [30]. Infection during pregnancy

can lead to low birth weights, miscarriage, stillbirth, and maternal mortality. It is also clear that

immunity gained prior to becoming pregnant can mitigate the reproductive costs of P. falcipa-
rum (outlined in the next paragraph), but relevant studies are lacking for P. vivax.

White [32] points out a critical difference in P. falciparum infection outcomes during preg-

nancy according to the prior immune experience of the mother. In regions of high transmis-

sion, where mothers will have gained immunity prior to becoming pregnant, the main cost of

malaria in pregnancy is low birth weight, caused by placental malaria. In low transmission

regions, where mothers have little or no malaria immunity, pregnant women additionally

experience severe malaria syndromes, with maternal death, premature labour and stillbirth all

potential outcomes [32]. The association between P. falciparum and stillbirth is greater in

lower transmission (i.e. less immune) regions [33]. Temporary infertility following episodes of

P. falciparum malaria has been observed in a non-immune adult man [34], thus P. falciparum
infection in the absence of virulence immunity may have reproductive costs for men also.

Overall, the assumption in our model that exposure to malaria in childhood can protect

against particularly bad reproductive outcomes in adulthood is reasonable for P. falciparum.

Is there any evidence that immunity to bad reproductive outcomes is gained more quickly

for P. falciparum as opposed to P. vivax? If immune responses can mitigate the reproductive

costs of malaria, we expect costs to be on average highest in first pregnancies, and smaller in

subsequent pregnancies (assuming that time approximates exposure to malaria). In a generally

low-immune setting (Thailand), P. falciparum infection during pregnancy was associated with

a greater decrease in birth weight during first pregnancies than in later pregnancies [35]–in

keeping with protective immunity to P. falciparum building up over time. However, P. vivax
infection during pregnancy was associated with a greater decrease in birthweight in later preg-

nancies than in first pregnancies [35], which supports the possibility that immunity to that par-

ticular form of reproductive virulence caused by P. vivax is not gained rapidly.

PLOS COMPUTATIONAL BIOLOGY Incorporating adaptive immunity into models of malaria selection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008181 October 8, 2020 13 / 26

https://doi.org/10.1371/journal.pcbi.1008181


What sort of biological mechanism could explain a fundamental difference in virulence

immunity between P. falciparum and P. vivax? Antigens eliciting virulence immunity of the

type we have modelled would have to (i) be variable (so that more than one exposure is

required in order to build up immunity against different types), and (ii) encode proteins

involved in disease severity (so that immunity against this particular antigen directly protects

against virulence). The most well-studied such antigen for P. falciparum is P. falciparum eryth-

rocyte protein 1 (Pfemp1), a highly variable antigen encoded by the multigene var family.

Pfemp1 mediates the cytoadherence of infected red blood cells to other red blood cells (roset-

ting) or to endothelial surfaces, both of which are strongly implicated in disease severity. A

somewhat similar multigene family in P. vivax is vir [36]. Individuals immune to P. vivax have

differing profiles of reactivity to vir variants (presumably reflecting their history of infection).

Evidence is growing that P. vivax can cytoadhere (albeit to a lower extent than P. falciparum)

and vir gene products may be involved [37,38]. The different biological properties of var and

vir could account for differing rates of gaining virulence immunity to P. falciparum and P.

vivax respectively. var genes are expressed clonally: only one variant of pfemp1 is expressed on

the erythrocyte surface at any one time. By contrast, multiple different vir genes are expressed

simultaneously in cells infected by P. vivax [39]. Clonal expression of Pfemp1 means that theo-

retically a single antibody response against a specific variant of Pfemp1 protects against viru-

lence mediated by that Pfemp1. Thus, if certain Pfemp1 variants are associated with the worst

outcomes in severe P. falciparum malaria, virulence immunity can be gained quickly because

only a few different antibody responses against those specific Pfemp1 variants are required. It

is indeed the case that only a subset of Pfemp1 variants are associated with severe malaria

[40,41], and the variants associated with severe disease are more likely to be expressed in

immunologically naïve hosts [41]. For non clonally expressed vir genes, an antibody response

against just one vir is unlikely to provide substantial protection against damaging cytoadher-

ence, because cytoadherence could be mediated by so many different vir proteins simulta-

neously. Thus, immunity to a virulence effect mediated by the vir gene family is likely to be

gained much more slowly. We are still far from a full understanding of virulence in either P.

falciparum or P. vivax, so a direct comparison between var and vir may prove inappropriate,

but the contrast between the two does illustrate one reason why virulence immunity to P. fal-
ciparum and P. vivax might not be gained at the same rate.

Slowly acquired virulence immunity to P. vivax is not the only possible explanation for the

success of FY�O offered by our model. The red scenario in Fig 5 corresponds to a case fatality

rate of 0.0037 for P. vivax infection in a person without virulence immunity, alongside a 50%

reduction in reproductive success for hosts whilst they are virulently infected. If these costs are

plausible for P. vivax, and if FY�O offers some inherent protection against those costs, as well

as blocking infections, then the FY�O mutation can spread even if virulence immunity is

gained relatively quickly (Fig 5I). P. vivax has both reproductive and mortality costs, but quan-

tifying them is challenging. The odds ratio for P. vivax infection as a risk factor for miscarriage,

for example, ranges between 0.65 and 4.64 in different studies [30]. One study estimated the

case fatality rate for P. vivax in Papua New Guinea at between 0.00012 and 0.00063 by combin-

ing hospital surveillance with community surveillance and questionnaires about treatment

seeking behaviour[25], but this is likely to underestimate the historical case fatality rate. Fur-

thermore, the case fatality rate which can be calculated for our model applies only to infections

in those who have not gained virulence immunity, whereas the case fatality rate calculated by

[25] averages across their estimate of the total number of P. vivax infections. Without knowing

the rate of gaining P. vivax virulence immunity, it is impossible to fully determine the correct

mortality rate to apply to virulent P. vivax infection within our framework.
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Roche et al [42] recently argued that the observed costs of P. vivax to humans are not suffi-

cient to account for the success of FY�O. Instead, co-infection between P. vivax and P. falcipa-
rum, which has especially poor outcomes [8], might have made it advantageous for a P. vivax
blocking mutation to spread. This hypothesis is also able to account for the fact that FY�O only

reaches near-fixation in sub Saharan Africa, despite the presence of P. vivax elsewhere in the

world: a lower transmission potential of P. falciparum outside of sub Saharan Africa reduces

selection in favour of FY�O. Our model does not contradict the Roche hypothesis. The impor-

tant point is not the exact mechanism by which the cost arises–rather, how easy it is to gain

immunity against the cost. If vivax and falciparum co-infection does cause humans a heavy

cost, and it is hard to gain immunity against that cost, our model shows this will promote the

success of FY�O. When it comes to the question of why FY�O has succeeded in sub Saharan

Africa rather than in Asia, the most obvious explanation offered by our model is that the R0 of

P. vivax might have been lower in sub Saharan Africa than in Asia (since within our model,

the advantage to a blocking mutation increases at lower values of R0). We cannot rule this out,

but present-day temperature evidence suggests that conditions for P. vivax transmission are

similar in both regions[43]. A deeper understanding of the history of P. vivax adaptation at the

FY locus will require the expansion of our model to allow for (i) P. falciparum and P. vivax co-

infection, and (ii) the existence of alleles encoding different Duffy proteins as well as the null

allele at the Duffy locus (see Table 1). Competition between other FY variants, as well as FY�O,

will have contributed to the pattern we see today.

Far greater genetic sampling of populations in sub Saharan Africa is required before we can

be confident that there is not a widespread human P. falciparum blocking adaptation. How-

ever, we can be relatively sure that no P. falciparum blocking mutation has reached the fre-

quencies observed for FY�O in sub Saharan Africa, since no population displays the resistance

to P. falciparum that FY�O affords against P. vivax. Some data are available regarding the three

candidate loci we previously described, where P. falciparum blocking adaptations might be

expected to be driven to high frequencies by natural selection (Basigin, CD55 and ABCB6).

Some CD55 amino acid substitutions occur at elevated frequencies in malarious regions, the

highest of which is A227P in 14.43% of the Luhya in Webuye population in Kenya [18]. How-

ever, this mutation would not lead to the Inab phenotype, which is caused by missense or

splice site altering mutations, and its blocking effect is unknown. Some Lan null causing muta-

tions in ABCB6 occur at significantly higher frequencies in malaria exposed populations than

in non-malaria exposed populations, but the reverse is also true for different Lan null causing

mutations [19]. The highest allele frequency of a Lan null causing mutation reported in [19] is

0.0154 in African populations. This is an aggregated African population, since finer scale sur-

veys of different global populations are not available. Attempts to find a link between severe

malaria outcomes and CD55 [44] or basigin [45] associated SNPs have so far failed [44,45].

We predict that mutations whose only effect is to partially block malaria infection should

be most successful in regions where the R0 of malaria is closely above 1 (Fig 4). It would there-

fore be particularly interesting to conduct population genetic surveys in regions where P. fal-
ciparum transmission was historically low or intermittent, and determine whether OK-, Lan

null, or Inab phenotype mutations occur at elevated frequencies.

We can rule out two alternative hypotheses as to why FY�O succeeded where P. falciparum
blocking mutations failed. Fitness costs of P. falciparum blocking mutations are unlikely to be

responsible since one OK- woman is noted to have had 5 children [46], and the Inab pheno-

type has been reported in a 91 year old Japanese woman [47] and an 86 year old Italian Ameri-

can woman and her 70 year old brother [48]. Some Inab phenotype individuals suffer

gastrointestinal problems but others do not [49]. The Lan null phenotype is only clinically rele-

vant for blood transfusions or rare instances of foetal-maternal incompatibility of blood type
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[50]. It is also unlikely that the FY�O mutation arises more frequently than mutations which

could block P. falciparum infection. FY�O always involves exactly the same promoter region

mutation (T>C at position -33). By contrast, the Inab phenotype has been shown to be caused

by at least three different mutations [49], and the Lan null phenotype by at least ten [50].

There are, however, other potential explanations for humanity’s differing adaptations to P.

falciparum and P. vivax, which do not necessarily require the mechanisms we propose here.

There is an inherent stochasticity in the success or failure of individual mutations, so it does

remain possible that the lack of a P. falciparum blocking adaptation is due to chance alone. It is

also likely that humans have co-evolved with P. vivax for longer than P. falciparum [51], so we

cannot rule out the possibility that there has not yet been long enough for one of the P. falcipa-
rum blocking adaptations spread successfully in a highly malarious zone.

P. vivax can enter a dormant liver state and give rise to recrudescent infections. A single

infection with P. vivax can thus cause several risky episodes of parasitaemia. Does this mean

that there is a greater selective pressure to block an initial infection with P. vivax, as opposed to

blocking “singular” P. falciparum infections? We have not explicitly included a dormant stage

in our model. However, we varied the costs of virulent infection over a wide range. When it

comes to the fitness of the host overall, there is little difference between three separate episodes

of parasitaemia, or one episode with three times the cost. Furthermore, so long as there is a

chance of building up virulence immunity over the course of repeated episodes of parasitae-

mia, then regardless of whether those episodes come from new infections or recrudescence, we

still predict that the higher the rate of gaining virulence immunity, the slower the spread of

infection blocking mutations. Nevertheless, there may be additional implications of a dormant

stage which we need to fully address in a future version of the model.

A final alternative explanation for different adaptations to P. falciparum and P. vivax is epis-

tasis between malaria protective mutations. We have previously shown that epistasis amongst

globin gene mutations can explain the relative absence of the highly malaria protective sickle

cell mutation from certain malarious regions [52,53]. The existence of certain adaptations to P.

falciparum in a population may preclude the evolution of infection blocking adaptations.

Future modelling, with a greater focus on the ability of mutations to prevent virulence (param-

eter q in our model) will shed more light on this possibility.

Conclusions

The absence of P. falciparum infection blocking adaptations from humans could lead us to

assume that mutations which limit the entry of P. falciparum to human cells carry high costs.

By including adaptive immunity in an evolutionary-epidemiological model, we have shown

this does not have to be the case. Instead, adaptive immunity itself can make infection blocking

a disadvantageous strategy. Human mutations which partially block malaria infection in the

heterozygous state, but do not offer any additional protection against malaria virulence, will

only succeed under very limited circumstances. Either (i) anti-virulence immunity must take

very many repeated infections to arise, or (ii) the basic reproductive number of malaria must

be not far above 1, so that transmission can take place, but hosts only become infected at a rela-

tively low rate.

Within our framework, the global rarity of blood types such as OK-, Lan null and the Inab

phenotype is an inevitable consequence of the rapid acquisition of P. falciparum virulence

immunity. We predict that mutations with the potential to fully block P. falciparum in the

homozygous state are most likely to be found in populations living at the very limits of malaria

transmission. The success of the Duffy null mutation implies the existence of virulent effects of

P. vivax to which immunity is gained only slowly or not at all. The impact of P. vivax on birth
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weight is a key candidate for such an effect. Overall, the markedly different evolutionary strate-

gies by which humans have adapted to P. falciparum and P. vivax seem likely to reflect funda-

mental differences in our immunological responses to each parasite. Our observations

underscore the need for further studies to unpick the interplay between immunity and viru-

lence for both parasite species.

Methods

The model

Eqs 1–8 describe the rates of change of numbers of immature and mature susceptible (S1 and

S2), virulently infected (V1 and V2), resistant to virulence (R1 and R2) and infectious but not at

risk of excess mortality (I1 and I2) individuals of genotype i.

dS1i

dt
¼ bi þ 1 � yð ÞsV1i � ðð1 � piÞlþ mþ gÞS1i Eq 1

dV1i

dt
¼ 1 � pið ÞlS1i � sþ mþ ð1 � qiÞaþ gð ÞV1i Eq 2

dR1i

dt
¼ ysV1i þ sI1i � ðð1 � piÞlþ mþ gÞR1i Eq 3

dI1i

dt
¼ 1 � pið ÞlR1i � sþ mþ gð ÞI1i Eq 4

dS2i

dt
¼ gS1i þ 1 � yð ÞsV2i � 1 � pið Þlþ mð ÞS2i Eq 5

dV2i

dt
¼ gV1i þ 1 � pið ÞlS2i � sþ mþ 1 � qið Það ÞV2i Eq 6

dR2i

dt
¼ gR1i þ ysV2i þ sI2i � 1 � pið Þlþ mð ÞR2i Eq 7

dI2i

dt
¼ gI1i þ 1 � pið ÞlR2i � sþ mð ÞI2i Eq 8

The force of infection, λ, is given by Eq 9 where N = the total population size. The birth

rate, bi is given by Eq 10, where K = the carrying capacity of the population; r = a fecundity

parameter ci captures any inherent fecundity cost of genotype i, and ψ determines the host

reproductive cost of virulent infection. Values used for these parameters are given in Table 2.

l ¼
b
P2

i¼0
ðV1i þ I1iþV2i þ I2iÞ

N
Eq 9

bi ¼ r: 1 � cið ÞðS2i þ R2i þ I2i þ ð1 � ð1 � qiÞcÞV2iÞ 1 �
N
K

� �

Eq 10

Parameter θ controls the proportion of hosts recovering out of compartment V who gain

adaptive immunity protecting them against death from infection. θ therefore represents the

probability of gaining protective immunity when a host recovers from infection, which means
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that the average number of infections experienced before protective immunity is achieved is

equal to 1/θ. Parameter pi controls the protection against infection afforded to genotype i. If

pi = 1, genotype i is fully protected against infection; if pi = 0, genotype i becomes infected at

the maximum possible rate within the system. Parameter qi controls the protection against the

virulent effects of malaria afforded to genotype i. If qi = 1, genotype i is fully protected against

all virulence; if qi = 0, genotype i dies whilst infected at the maximum possible rate within the

system and suffers the maximum reproductive cost of virulence. Other parameters of the

model and the values used in our analyses are described in Table 2.

Analysing the model

We wished to determine the circumstances under which a mutant host genotype can success-

fully invade a population consisting entirely of a wild type (resident) host genotype. The Next

Generation Theorem [22,54]offers an elegant method to solve evolutionary invasion problems

of this sort (e.g. [23]). To apply this method, we represented the different states of our mutant

population as a vector, HM.

HM = (S1M V1M I1M R1M S2M V2M I2M R2M)T. The matrix AM contains the growth rates of

the mutant genotype in each of those states, such that
dHM
dt ¼ AMHM . The matrix AM can be

decomposed into two further matrices, VM and FM, related to AM as follows: AM = FM−VM.

FM contains all the terms which capture the processes by which new mutant genotype indi-

viduals are introduced into the system, and thus captures fecundity. VM describes the transi-

tions between different host states. AM, FM and VM for our model are given in the

supplementary material (S1 Appendix).

According to the Next Generation Theorem, if all elements of FM and V � 1
M are greater than

or equal to zero (true for our system), then the mutant genotype will spread in the population

if the dominant eigenvalue of FMV � 1
M is greater than 1. Henceforth BM ¼ FMV � 1

M . The dominant

eigenvalue of BM can be conceptualised as the average lifetime reproductive output of an indi-

vidual of the mutant genotype. We shall represent this quantity as RM. RM must be greater than

1 in order for a single mutant genotype individual to spread in the resident population.

The main model we present is not a fully accurate representation of human reproduction

(reproduction in the main model occurs clonally), but RM can still be interpreted as represent-

ing the reproductive success of a single new mutant genotype individual entering a population

of the resident host. In an extended model (see next section) we include both heterozygotes

and homozygotes for the novel mutation, to explore how the introduced mutation increases in

frequency in the population over time.

We wished to determine whether a mutant genotype can invade a resident wild type host

population where the parasite is already at its endemic equilibrium. For any given set of

parameters we first solved the system numerically in the absence of the mutant genotype to

obtain values for N (the equilibrium population size of the resident host population), and λ
(the force of infection with the parasite at equilibrium). To obtain these numerical solutions

we used solver ode15s in Matlab with the following options: relative error tolerance of 1x10-10,

absolute error tolerance of 1x10-12, and the ‘nonnegative’ option included. We then used those

numerically-derived values of N and λ, together with the other parameters, to calculate RM for

any given set of parameter values. Matlab was used to perform these calculations.

The extended model

The model described above is designed to determine whether the mutant can spread upon ini-

tially arriving in a wild type population, but does not address how a mutant allele changes in

frequency in a human population over time. In order to explore this, we split the host

PLOS COMPUTATIONAL BIOLOGY Incorporating adaptive immunity into models of malaria selection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008181 October 8, 2020 18 / 26

https://doi.org/10.1371/journal.pcbi.1008181


population into three genotypes: the wild type (subscript 1), heterozygotes for the infection

blocking mutation (subscript 2), and homozygotes for the infection blocking mutation (sub-

script 3). Each of these genotypes is associated with an infection blocking property (p1, p2 and

p3, where p1 always = 0), and with a certain degree of protection against malaria virulence (q1,
q2 and q3, where q1 always = 0). Eqs 11–13 capture how these effects were introduced in the

birth terms of the model (replacing Eq 10), and Eq 14 calculates the allele frequency of the

mutation, which feeds into Eqs 11–13. Eqs 1–9 still apply, apart from the fact that the number

of host genotypes in this extended model is 3, not 2.

b1 ¼ rð
P3

i¼1
ðS2iþI2i þ R2i þ ð1 � ð1 � qiÞcÞV2iÞÞð1 � aÞ2 1 �

N
K

� �

Eq 11

b2 ¼ rð
P3

i¼1
ðS2iþI2i þ R2i þ ð1 � ð1 � qiÞcÞV2iÞÞ2 1 � að Þa 1 �

N
K

� �

Eq 12

b3 ¼ rð
P3

i¼1
ðS2iþI2i þ R2i þ ð1 � ð1 � qiÞcÞV2iÞÞa

2 1 �
N
K

� �

Eq 13

a ¼
S2;3þI2;3 þ R2;3 þ ð1 � ð1 � q3ÞcÞV2;3 þ 0:5ðS2;2þI2;2 þ R2;2 þ ð1 � ð1 � q2ÞcÞV2;2Þ

P3

i¼1
ðS2iþI2i þ R2i þ ð1 � ð1 � qiÞcÞV2iÞ

Eq 14

Supporting information

S1 Appendix. Methodological details and supplementary results. This appendix consists of

3 parts: 1. The FM and VM matrices for the models used in the main text (pages 2–3); 2. Mecha-

nisms underlying the patterns observed in the main text (pages 4–5), and 3. Investigating vari-

able transmission rates and variable background mortality (pages 6–8).

(PDF)

S1 Fig. The impact of adaptive immunity (θ) on the time hosts spend in reproductively

active classes. Solid lines indicate the time spent in each class by the mutant genotype and

dashed lines indicate the time spent in each class by the resident (wild type) genotype. For details

of how the time spent in each class is calculated, please see S1 Appendix, section 2. Panel (a)

illustrates the model without age structure and panel (b) the model including age structure.

Parameters were as follows: μ = 1/30; g = 1/15; σ = 10; α = 0.05; λ = 5; qM = 0; pM = 0.5; c = 0.

(PDF)

S2 Fig. The impact of infection mortality (α) on the time spent immature and mature in

the age structured model. A logarithmic scale has been used for α in order to facilitate com-

parison with Fig 3 of the main text. The upper panels show the expected times in each class.

For details of how the time spent in each class is calculated, please see S1 Appendix, section 2.

Solid lines indicate the mutant genotype and dashed lines indicate the resident (wild type)

genotype. The lower panels show the difference between the time the mutant spends in a class

and the time the wild type spends in a class, as a proportion of the time the wild type spends.

Column (a) illustrates the age structured model in the absence of adaptive immunity (θ = 0)

and column (b) includes adaptive immunity (θ = 0.01). Other parameters were as follows: μ =

1/30; g = 1/15; σ = 10; λ = 5; qM = 0; pM = 0.5; c = 0.

(PDF)

S3 Fig. The relationship between R0, RM and time spent virulently infected (V) whilst

reproductively active. At low values of R0, the mutant tends to spend less time virulently
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infected than the wild type, regardless of whether or not age structure is included in the model

(top panels of S3 Fig). For details of how the time spent in each class is calculated, please see S1

Appendix, section 2. There is a value of R0 close to 1 which maximises the difference in time

spent. These differences in times spent virulently infected whilst reproductively active account

for the behaviour of RM at values close to 1 (compare top and bottom panels of S3 Fig). Param-

eters used were as follows: = 1/30; g = 1/15; σ = 10; qM = 0; pM = 0.5 θ = 0.05; α = 0; ψ = 1; c = 0.

To aid comparison with Fig 4, the x axis displays values of R0 (but note that in order to empha-

sise the effect of time spent virulently infected whilst reproductively mature we have used ψ =

1 and α = 0, whilst Fig 4 uses ψ = 0.1 and α = 0.01). The transition matrix (from which we

obtained the times spent in each class) requires the force of infection (λ). For each value of R0

we used numerical simulations to identify the equilibrium proportion of infected individuals

in the absence of the mutation, and from this obtained an appropriate value of λ for each R0

value.

(PDF)

S4 Fig. Altering our assumption of uniform background mortality does not affect the over-

all relationship between the rate of gaining virulence immunity (θ) and the success of

blocking mutations (RM). Panel (a) illustrates the effect of varying θ on RM under three differ-

ent background mortality scenarios, using the supplementary model (S1 text section 3). The

black line is equivalent to the scenario shown in Fig 4A of the main text, where immature and

mature hosts both experience the same background mortality (μ1 = μ2 = 1/30). The blue line

shows the case where the immature class experiences a higher background mortality than the

mature (μ1 = 1/15; μ2 = 1/30). The red shows the case where the immature class experiences a

lower background mortality than the mature (μ1 = 0; μ2 = 1/30). Other parameters were as fol-

lows: βV = βN = 10.2; g = 1/15; σ = 2; qM = 0; pM = 0.5; α = 0.0075; ψ = 0.5; c = 0. Panel (b) illus-

trates the difference in average time spent reproductively mature between the mutant and the

wild type (time spent by mutant minus time spent by wild type) for the different scenarios

illustrated in panel (a). For details of how the time spent in each class is calculated, please see

S1 Appendix, section 2. Panel (c) illustrates the difference in the time spent virulently infected

whilst reproductively mature (class V2) between the mutant and the wild type (time spent by

mutant minus time spent by wild type) for the different scenarios illustrated in panel (a). The

colours of the lines in panels (b) and (c) have the same meanings as those in panel (a).

(PDF)

S5 Fig. Altering our assumption of uniform transmission from virulence and mild infec-

tion does not affect the overall relationship between the rate of gaining virulence immu-

nity (θ) and the success of blocking mutations (RM). We illustrate the effect of varying θ on

RM under three different infection transmission scenarios, using the supplementary model

(see S1 text section 3). The black line is equivalent to the scenario shown in Fig 4A of the main

text, where both virulent infections and non-virulent infections transmit at the same rate (βV

and βN = 10.20). The blue line shows the case where virulent infections transmit more than

non-virulent infections (βV = 30.6 and βN = 10.20). The red line illustrates a scenario where

non-virulent infections transmit more than virulent infections (βV = 10.20 and βN = 30.6).

Other parameters were as follows: μ1 = 1/30; μ2 = 1/30; g = 1/15; σ = 2; qM = 0; pM = 0.5; α =

0.0075; ψ = 0.5; c = 0.

(PDF)

S6 Fig. Time taken for FY�O to reach frequencies� 90%, assuming a lower blocking ability

of the FY�O homozygote. Panels (a-i) indicate the time taken for FY�O to reach a frequency

�90% from a starting frequency of 0.1%, using the extended model (see Methods). We
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investigate different rates of gaining virulence immunity (θ, x axes), and different properties of

FY�O. We assume the FY�O homozygote blocks 59% of infections (phom = 0.59). From left to

right across the figure, the infection blocking ability of the FY�O heterozygote increases (phet),

and from the top to the bottom row of the figure the protection against virulence afforded by

any genotype containing FY�O increases (qhet and qhom). Three different virulence scenarios

have been included (see legend). In the low infection costs scenario, α = 0.0001 and ψ = 0.025;

in the moderate infection costs scenario, α = 0.0005 and ψ = 0.1, and in the high infection

costs scenario, α = 0.0075 and ψ = 0.5. The grey shaded region of each graph indicates unrealis-

tic times (>49000 years). Other parameters were as listed in Table 2, or else were as follows:

g = 1/15, r = 0.6, c = 0, β took values between 24.4 and 24.5 so as to keep R0 = 12.

(PDF)

S7 Fig. Time taken for FY�O to reach frequencies� 90%, for different values of R0. Panels

(a-c) indicate the time taken for FY�O to reach a frequency�90% from a starting frequency of

0.1%, using the extended model (see Methods). We investigate different rates of gaining viru-

lence immunity (θ, x axes), and different virulence protection properties of FY�O. From the

top to the bottom row of the figure the protection against virulence afforded by any genotype

containing FY�O increases (qhet and qhom). In all panels, the FY�O heterozygote blocks 40% of

infections (phet = 0.4), and the FY�O homozygote blocks 96% of infections (phom = 0.96).

Results are shown for three different values of R0 for malaria (see legend). The grey shaded

region of each graph indicates unrealistic times (>49000 years). Other parameters were as

listed in Table 2, or were as follows: α = 0.0075, ψ = 0.5, g = 1/15, r = 0.6, c = 0, β took values

between 24.4 and 24.5 so as to generate the necessary values of R0.

(PDF)
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