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Abstract

Ongoing discussions on the nature of storage in visual working memory have mostly

focused on two theoretical accounts: On one hand we have a discrete-state account

postulating that information in working memory is supported with high fidelity for a

limited number of discrete items by a given number of “slots”, with no information being

retained beyond these. In contrast with this all-or-nothing view, we have a continuous

account arguing that information can be degraded in a continuous manner, reflecting

the amount of resources dedicated to each item. It turns out that the core tenets of this

discrete-state account constrain the way individuals can express confidence in their

judgments, excluding the possibility of biased confidence judgments. Importantly, these

biased judgments are expected when assuming a continuous degradation of information.

We report two studies showing that biased confidence judgments can be reliably

observed, a behavioral signature that rejects a large number of discrete-state models.

Finally, complementary modeling analyses support the notion of a mixture account,

according to which memory-based confidence judgments (in contrast with guesses) are

based on a comparison between graded, fallible representations, and response criteria.

Keywords: Visual Working Memory, Change Detection, Critical Test,

Discrete-State Models, Confidence
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Research in working memory is concerned with our ability to hold and maintain

representations of information over a short amount of time. This ability is closely

associated with key human faculties such as reasoning (Süß, Oberauer, Wittmann,

Wilhelm, Schulze, 2002) and text comprehension (Daneman & Merikle, 1996), and has

predictive value in important domains such as academic achievement (e.g., Bayliss,

Jarrold, Gunn & Baddeley, 2003). In recent years, considerable efforts have been made

in the study of working memory in the visual domain, with particular focus on its

capacity and storage mode. At this point, it is well established that visual working

memory (VWM) has limited capacity, in the sense that there is an upper limit in the

amount of information that one can maintain in working memory at a given time (e.g.,

Cowan, 2001). There is, however, an ongoing discussion concerning the way information

can be stored. This discussion has focused mostly on two theoretical accounts: On one

hand we have discrete-state or slot models, which assume that items are either stored in

memory with high precision (each is stored in a slot) or not at all (e.g., Luck & Vogel,

1997; Rouder et al., 2008; Zhang & Luck, 2008). On the other hand, we have

continuous resource models postulating that information can be degraded in a more

graceful manner, with the quality of each representation in VWM being determined by

the amount of resources dedicated to it (e.g., Bays & Husain, 2008, van den Berg, Shin,

Chou, George, & Ma, 2012; Wilken & Ma, 2004).

Like in many other research domains, the comparison of models of VWM is often

predicated on a quantification of their ability to fit the entire data coming from some

experimental design. These fits are made possible through a number of auxiliary

assumptions, some parametric (e.g., latent distributions are Gaussian), others more

substantive (e.g., processes are selectively influenced by certain experimental

manipulations). Despite its successful track record, this approach to model comparison

raises a number of concerns (Birnbaum, 2011; Kellen, 2019): For instance, a violation of

any of the auxiliary assumptions made is likely to compromise the conclusions of a

model-comparison exercise. This possibility is nothing more than the famous

Duhem-Quine thesis (Duhem, 1954; Quine, 1963): Consider a theory T , that along with
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auxiliary assumptions A, makes the observable prediction O. The failure to observe O

(i.e., Ō is observed instead) does not imply a rejection of T , given that A might be at

fault. For example, in the context of response-time modeling, Jones and Dzhafarov

(2014) showed that the ability of diffusion and ballistic accumulator models to

successfully describe people’s responses is entirely dependent on a number of auxiliary

distributional assumptions. The critical role of A is also reflected in the (necessary)

tinkering that takes place during model development (for a discussion and examples, see

Shiffrin & Nobel, 1997).

Also challenging is the fact that goodness-of-fit measures, even when corrected for

model flexibility, do not necessarily privilege the portions of the data that are most

informative from a theoretical standpoint. This issue has been discussed at length by

prominent theoreticians such as Rozeboom, who argued for the importance of

determining the empirical support for each of the different formal propositions that

constitute a theory, rather than looking at omnibus support measures (e.g., Rozeboom,

1970, 2008).1 To illustrate the point being made here, let us consider a couple of

notable observations coming from physics and biology: 1) clocks on satellites orbiting

the Earth run differently from clocks on Earth (e.g., Burns, 2017), 2) there are humans

with two blood types (i.e., blood-group chimeras; Dunsford et al., 1953). Both

observations have important theoretical implications. But because they are very specific

or rare, they are likely to be downplayed in any model-comparison exercise that

considers the fit to the “entire” data on time measurement or human genetics, along

with a premium on model parsimony. There is a real possibility that cruder models that

cannot accommodate these specific observations might end up striking a better overall

compromise between parsimony and fit. For instance, imagine a scenario in which one

would make the case for ‘first-generation’ globalist models of memory, despite their

inability to account for null list-strength effects (Ratcliff, Clark, & Shiffrin, 1990), on

the grounds that they can account for a number of other effects in the literature at the

1“... astute evidence appraisal focuses on select features of the hypothesis at issue with only sec-
ondary confidence adjustments, if any, in its remainder. Holistic acceptance/rejection is for amateurs.”
(Rozeboom, 2008, p. 1123).
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time (ca. the 1990s) and are simpler than its competitors.2

In light of these concerns, it is important for researchers to also consider some of

the alternatives available in their toolboxes. The goal of the present work is to do so by

comparing models of VWM using a critical-test approach (e.g., Birnbaum, 2008, 2011;

Kellen & Klauer, 2014, 2015; Stephens, Dunn, & Hayes, 2018). The idea behind it is

very simple: Identify a specific prediction that contrasts different families of models,

and restrict all testing efforts to it. The end result is a strong inference that speaks

directly to the theoretical commitments of each model (Platt, 1964). In some cases, the

sets of permissible outcomes associated with different families of models, let us say OM1

and OM2 , are mutually exclusive (e.g., Birnbaum, 2008). What this means is that the

set of permissible outcomes for one family of models corresponds to the set of forbidden

outcomes of a competing family and vice-versa. In other cases, the permitted outcomes

of one family are a subset of the permitted outcomes of another; e.g., OM1 ⊂ OM2 .

These differences have important implications in the way researchers engage in critical

testing: In the first case, the only concern is to ensure that our experimental design will

not yield observations at the boundary of the different mutually-exclusive predictions

(e.g., Birnbaum, 2008). In the second case, researchers need to place their efforts

towards reliably observing outcomes that are outside the subset OM1 (for an excellent

example, see Stephens et al., 2018). In either case, it is possible to dismiss a broad

families of models and shift our focus towards more promising options.

The remainder of this paper is organized as follows: First, we will discuss

discrete-state and continuous models of VWM in the context of one of the main

experimental paradigms used to compare them, the change-detection task (e.g., Luck &

Vogel, 1997; Rouder et al., 2008; Wilken & Ma, 2004). We will then discuss the

auxiliary assumptions that are typically made in this context, and propose a new

critical test that does not require them. At the locus of this test is the specific way

these models handle confidence judgments and the possibility of biased confidence,

which we will define later on. We will then report two experiments studies (one of them

2For purely rhetorical purposes, let us assume without further discussion that more recent models
such as REM (Shiffrin & Steyvers, 1997) are more complex or flexible.



BIAS IN CONFIDENCE 6

pre-registered) that show the presence of biased confidence judgments, which are

forbidden by discrete-state models. For the sake of readability, we will first discuss

somewhat simplified versions of the discrete-state and continuous model, and later on

show that the results of the critical test also hold across a number of more complex

model variants. Finally, we will report complementary model fits showing that, among

the remaining candidate accounts, there is support for a mixture account in which

memory slots provide graded, fallible representations.

Continuous and Discrete-State Models of the Change-Detection Task

In each trial of the change-detection task, illustrated in Figure 1, participants

study a distributed array of items (e.g., squares) that vary on a single dimension such as

color. After a brief presentation and some delay, one item location is probed with a test

item and participants have to judge whether the color of that item has changed relative

to the previous presentation, responding either “same” or “change”. Thus, in any

change-detection task there are at least two trial types, Change trials (with correct

response “change”) and Same trials (with correct response “same”). In addition,

researchers typically manipulate the number of squares presented in a given trial (e.g.,

Luck & Vogel, 1997). It is also common to manipulate the proportion of Same and

Change trials across different test blocks (e.g., Donkin, Nosofsky, Gold, & Shiffrin, 2013;

Donkin, Tran, & Nosofsky, 2014; Rouder et al., 2008). In a few cases, participants are

Fixation MaskStudy Array Retention Test 

change same 

+ ++ ++ +

+

Figure 1 . Illustration of the procedure of the change-detection task in visual working memory.
Depicted is a change trial. Note that an eight-point confidence rating scale was used in the experiments
reported here (the German verbal labels were unterschiedlich (change), and gleich (same).
Snapshots of one of the test trials can be found in the Supplemental Materials.
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Figure 2 . Top row: Discrete-state model for Change and Same trials, and the mixture components
associated with each confidence level. In both trees, parameter m denotes the probability of an item
being stored in working memory (in a slot), whereas parameter g denotes the probability of guessing
“same”. The confidence levels are described by one of two components, with ‘M +G’ indicating that a
given response confidence level in a given type of trial can be reached via both memory and guessing
processes, and G indicating that it can only be reached via guessing. For clarity, the state-response
mapping parameters ξ and γ (associated with memory and guessing states, respectively) are omitted.
Bottom row: Illustration of the continuous resource model under unbiased and biased response criteria
(criteria correspond to the vertical solid lines). The likelihood ratio associated with a given response
corresponds to the average relative height of the two distributions within the region associated with
that response. It is shown how the model can predict biased confidence judgments (e.g.,“3: Unsure
Change” is more likely under Same trials), something that the discrete-state model cannot do. Note
that the Gaussian distributions and the equally-spaced criteria are merely illustrative; they are not
required for the discussed predictions to hold. For clarity, models for a six-point confidence rating scale
are shown in the figure, whereas an eight-point confidence rating scale was used in the experiment
reported here.

also requested to indicate how confident they are in their responses (e.g., Wilken & Ma,

2004; Ricker, Thiele, Swagman, & Rouder, 2017; see also Rademaker, Tredway, & Tong,

2012; van den Berg, Yoo, & Ma, 2017).

According to the discrete-state model illustrated in the top row of Figure 2, the

tested item is stored in memory with probability m. Because the item is stored with

high precision, a correct response is always expected.3 With probability 1−m, no
3Please note that this assumption of high precision is only plausible when applying the model to

experimental designs where the stimuli are highly discriminable (e.g. distinct color changes in Change
trials, such as blue −→ red). As discussed later on, our experiments were designed in order to make
this assumption plausible. Later on, we will discuss the implications of relaxing this high-precision
assumption (despite the experimental design) in different ways.
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information about the item is stored and a guess has to be made, with response “same”

being made with probability g, and response “change” being made with probability

1− g. The discrete-state model can be extended to the case of confidence ratings by

introducing confidence-mapping parameters for memory-based (ξ) and guessing-based

responses (γ). These mapping parameters are traditionally assumed to be conditionally

independent, such that their values do not depend on the value of m — all that matters

is the discrete state one is in, not the probability of entering such state (for discussions,

see Kellen & Klauer, 2015; Klauer & Kellen, 2010).

In the case of the continuous resource model, illustrated in the bottom row of

Figure 2, the information available for a tested item can be represented as a sample

from a latent-strength distribution, one for cases in which the item has changed, and

another one for when it is the same. Both distributions are established on a latent

‘memory-strength’ scale. Individuals judge the tested item by comparing its value with

a response criterion τ , responding “same” when the value is larger than it, otherwise

responding “change”. The continuous models can also be easily extended to

accommodate confidence ratings. Specifically, one can introduce additional criteria τ ,

such that the intervals defined by them are mapped onto different levels of the

confidence-rating scale (see Figure 2).

Response-Bias Manipulations and ROCs

The motivation behind the manipulating of the proportion of Same and Change

trials is the belief that it selectively influences participants’ response biases, which are

captured in each model by either the guessing probability g or the response criterion τ .

Under this selective-influence assumption, we can derive clear predictions from both

models about the way that the probability of “same” responses in Same and Change

trials covaries across values of g or τ . These predictions are commonly referred to as the

models’ Receiver Operating Characteristic (ROC) functions (Green & Swets, 1966;

Kellen & Klauer, 2018). We illustrate these ROCs in Figure 3. Binary-response ROCs

have been used in a number of VWM studies (e.g., Donkin et al., 2013; 2014; Rouder et
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Figure 3 . Illustration of different Receiver Operating Characteristic (ROC) functions predicted by the
discrete-state and continuous models for binary response data (i.e., no confidence rating responses).

al., 2008). Of course, it is entirely possible that response-bias manipulations also affect

memory processes; i.e., there is no selective influence (e.g., Balakrishnan, 1999; Van

Zandt, 2000; see also Ashby, 1983; Diederich & Busemeyer, 2006; Ratcliff, 1981). If that

is the case, then it is no longer possible to distinguish between both models based on

the shape of the binary-response ROCs.

Confidence Ratings and ROCs

ROCs can also be constructed using confidence-ratings. Instead of being based on

binary response proportion across different response biases, the ROC is constructed

from the cumulative distributions across the confidence scale, from maximum-confidence

“change” to maximum-confidence “same”. Wilken and Ma (2004) compared continuous

and discrete-state models under the assumption that memory-based responses in the

latter are deterministically mapped onto maximum-confidence judgments, which

enforces the prediction of linear confidence-rating ROCs. The reliance on this

assumption turns out to be fatal, given that it has been thoroughly dismissed by a

number of theorists (Bröder & Schütz, 2009; Erdfelder & Buchner, 1998; Falmagne,

1985; Krantz, 1969; Luce, 1963; Malmberg, 2002; Kellen & Klauer, 2014, 2015; Klauer &

Kellen, 2010; Province & Rouder, 2012). Allowing memory-based responses to include

the range of the confidence scale that is consistent with the binary judgment enables the
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model to accommodate the curved confidence-rating ROCs that are typically observed.4

More recently, Ricker et al. (2017) proposed a new comparison relying on the

notion of conditional independence, using a modified change-detection task. Instead of

judging whether the color at test was the same presented before in that specific location

(see Figure 1), participants were asked to choose between two colors. Also, they

manipulated choice difficulty, such that the two colors presented were more or less

distinct. Ricker et al. found that the confidence ratings obtained across choice difficulty

levels did not conform with the assumption of conditional independence, therefore

speaking against a discrete-state account. The problem with Ricker et al.’s conclusion is

that it is questionable whether one could even begin to assume that

conditional-independence holds in their experimental paradigm. As discussed by Kellen

and Klauer (2015, p. 547), it is only reasonable to assume that conditional

independence holds when dealing with experimental paradigms in which there are no

‘external features’ informing the participant of the difficulty level of any given test trial.

For example, in the domain of recognition memory, Kellen and Klauer (2015) focused

their testing of conditional-independence on study-strength manipulations that were not

identifiable during the test phase. In each test trial, participants were shown a word,

without any indication of whether it might have been studied once or thrice (see also

Province & Rouder, 2012). In the case of Ricker et al.’s paradigm, these external

features are obviously present, as they correspond to difference between the two color

alternatives.

A New Critical Test: Biased Confidence

The issues found with previous work using either binary-response or

confidence-rating ROCs indicate the need for an alternative comparison approach that:

1. does not assume selective influence in response-bias manipulations,

2. does not impose deterministic mappings on confidence judgments, and
4More specifically, the discrete-state model can predict piecewise linear ROCs that can capture the

finite ROC data points collected in a given experiment.



BIAS IN CONFIDENCE 11

3. does not compromise the assumption of conditional independence.

These requirements are achieved by the critical test proposed here, which is based

on the notion of biased confidence judgments (Balakrishnan, 1999). In order to

understand what this bias is, let us first consider the continuous resource model: As

illustrated in Figure 2, confidence judgments result from the comparison between the

latent-strength of a test item and a set of ordered confidence criteria τ . The position of

each criterion relative to the latent distributions determines the likelihood of each item

type given a certain response and confidence level. The introduction of a response bias,

for example towards responding “change”, introduces the possibility of biased

confidence judgments, especially when confidence is at a minimum, and minimum

confidence covers a narrow range of strength values (Balakrishnan, 1999).5 This

possibility follows from the continuous model’s core notion that confidence judgments

are based on the segmentation of a latent-strength scale by confidence criteria. In the

specific example given in Figure 2 (lower row, right panel), a minimum-confidence

“change” response is more likely to occur in a Same trial. This confidence level can be

said to be biased as the respondent would improve their accuracy if they simply

reassigned all their minimum-confidence “change” responses to minimum-confidence

“same” instead (i.e., bundled all their minimum-confidence responses on the “same”-side

of the scale; see Balakrishnan, 1999).

In contrast, the discrete-state account precludes the possibility of biased

confidence judgments. Confidence judgments result from the mapping of the different

discrete-states onto a confidence scale, with the mapping of memory- and

guessing-based responses being established by parameters ξ and γ respectively (for a

discussion, see Klauer & Kellen, 2010). For instance, consider the probability of

5In other words, the observation of a response bias is necessary but not sufficient for the observation
of biased confidence judgments.
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response “change” made with minimum confidence:

P (“changemin” | Change trial) = m · ξmin + (1−m) · (1− g) · γmin,

P (“changemin” | Same trial) = (1−m) · (1− g) · γmin.

Because the former probability cannot be smaller than the latter, confidence judgments

cannot be biased (see Figure 2, top row, right panel). This inability to predict biased

confidence judgments stems from the core notion within the discrete-state theory that,

in the absence of stored information on the target stimulus, responses are invariably

based on the same guessing process (i.e., conditional independence).

Continuous and discrete-state models can be compared by testing for the presence

of biased confidence judgments. The discrete-state model only permits the inequalities

P (“change”, conf = i | Change trial) ≥ P (“change”, conf = i | Same trial),

P (“same”, conf = i | Same trial) ≥ P (“same”, conf = i | Change trial),

for all i among possible confidence levels, whereas the continuous model imposes no

such constraint. What this means is that the set of permissible outcomes of the

discrete-state model is a subset of the permissible outcomes of the continuous model.

Our task then is to attempt to reliably observe cases in which these inequalities are

violated; i.e., try to obtain data belonging to the discrete-state model’s set of forbidden

outcomes. Given our understanding of the continuous model, we expect the occurrence

of forbidden outcomes to be most likely when (a) individuals show a clear bias towards

one binary response, and when (b) individuals seldom make minimum-confidence

judgments (see also Balakrishnan, 1999). These expectations are illustrated in Figure 2,

which shows the occurrence of biased confidence judgments for minimum-confidence

“change” judgments when there is a bias towards responding “change”. In light of these

expectations, we will focus our analyses on minimum-confidence judgments.
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Experiment 1

We conducted a change-detection task experiment in which we attempted to

observe biased confidence judgments. To ensure that the test was applied in conditions

where items are expected to be stored with high fidelity (in line with the discrete-state

model assumptions), we relied on highly dissimilar colors. Similar to previous studies

(e.g., Rouder et al., 2008), biases in binary responses were encouraged by manipulating

the proportion of Change trials across blocks (75% vs. 25%). All data, scripts, and

materials are available on the Open Science Framework: https://osf.io/es2rw

Participants

A total of 44 participants took part in the experiment. Our plan was to collect at

least 40 participants, in order to roughly match the sample sizes used in previous

critical tests comparing continuous and discrete-state models (e.g., 45 participants in

Kellen & Klauer, 2014). We slightly overshot our intended target number as data

collection was performed by a research assistant in a day-wise manner with as many

participants as possible per day (i.e., on the second to last day of data collection we had

not reached 40 participants, so we decided to continue for one more day).

The average age of our participants was 23.8 years, ranging from 18 to 29 (SD =

3.7). In exchange for their participation, participants received CHF 15 or course credit.

Each session took about 50 minutes. All participants reported having normal or

corrected-to-normal vision and normal color vision.

Stimuli and Apparatus

Our stimuli and presentation generally followed Donkin et al. (2013). We used a

set of ten highly dissimilar colors (white, black, red, blue, green, yellow, orange, cyan,

purple, and dark-blue-green). These colors were taken from Table 5 of Donkin et al.

(colors with suffix “−1”). Importantly, note that these colors are expected to yield

“large” Change trials (see Donkin et al., p. 891). The discrete-state model’s assumption

that memory-based judgments are always accurate is assumed to be reasonable here

https://osf.io/es2rw
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(see Footnote 2; see also Nosofsky & Donkin, 2016). Stimuli were presented within a

light gray rectangle of approximately 9.8× 7.3 degree visual angle. Stimuli were

0.75× 0.75 degrees in size. Participants were seated approximately 60 cm away from

the screen and no chin rest was used. The position of each stimulus was chosen

randomly with the constraint of a minimal distance of 2 degrees from other stimuli and

the screen center (measured from the center of the stimuli).

Procedure

The experiment was comprised of a practice block with 20 trials using a

confidence-rating scale, followed by eight blocks with 52 trials each also using a

confidence-rating scale, and one last block of binary-response trials. In the practice

block and the final binary-response block, half of the trials were Change trials, whereas

in the remaining blocks using confidence ratings they were either 75% or 25% (4 blocks

with each proportion). The biased blocks were randomized, with the constraint that the

same proportion of Change trials did not occur more than twice in a row. Before each

block, participants were informed about the percentages of Change and Same trials. In

each trial, the percentages of Change trials as well as the percentage of Same trials were

displayed in the labels shown above the confidence-rating scale (see figure in the

Supplemental Materials).

Each trial followed the structure outlined in Figure 1: Each trial started with a

fixation cross that was presented for 1,000 ms. An array of five square stimuli was then

presented for 500 ms, followed by a blank screen for 500 ms. After the blank screen, a

multicolored checkerboard-like mask was presented at each stimulus location for 500 ms.

The test phase of each trial was self-paced: A test item was presented at a random

stimulus location. Its color was either the same that was presented at the beginning of

the trial at this location (Same trial), or a color that was shown at the beginning of the

trial, but at a different location (Change trial). Participants were then asked to decide

whether they are in a Change trial or a Same trial, while simultaneously stating their

confidence by clicking on a response button on an eight-point confidence rating scale.
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For each half of the scale, confidence was represented by a plus sign (+) increasing in

size from low to high confidence. A verbal label above each half of the scale clearly

indicated the binary choice (i.e., “change” versus “same”; the actual German words

used were “unterschiedlich” versus “gleich”). Participants did not receive feedback

on their performance.

Results

Manipulating the proportion of Change trials succeeded in affecting individuals’

binary-response bias, although they were generally biased towards responding “change”

across blocks. In blocks with 75% and 25% Change trials, the average proportion of

“change” responses was .78 and .40, respectively. In the last block with 50% Change

trials and binary judgments, the average proportion of “change” responses was .62.

Overall, these proportions indicate a general bias toward “change” responses

irrespective of experimental condition, although the base-rate manipulation appears to

have produced an effect in the expected direction. This impression was corroborated

using signal-detection bias measure c, which turned out to be more strict in 75% change

condition (mean = 0.58, SD=0.33) than in the 25% Change condition (mean = 0.17, SD

= 0.39; Wilcox’s W = 941, p < .0001). The left panel of Figure 4 shows the

confidence-rating ROC functions obtained with the grouped confidence ratings, for each

of the bias conditions. Note that the point obtained in the binary-response condition

falls very close to the ROCs. The ROCs take on concave and symmetrical shapes, as

typically found in this type of data.6 Given these results, our hope to observe biased

confidence judgments is limited to the 75% Change condition. After all, this is the only

condition in which we observe a strong response-bias effect, with minimum-confidence

“change” responses being seldom made (see also Balakrishnan, 1999). For the sake of

completeness, Figure 5 (first and second column) illustrates the results obtained in the

25% Change condition, but we will refrain any further discussion (for further details, see

the Supplemental Materials).

As shown in Figure 5 (top row, third panel), the observed proportions of
6As a reminder, the discrete-state model can accommodate curved confidence-rating ROC data.
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Figure 4 . Circles show the Receiver Operating Characteristic (ROC) functions obtained with the
grouped data from both bias conditions. The square shows the results from the binary condition. The
95% confidence intervals associated with each point were obtained via non-parametric bootstrap.

Experiment 2

Experiment 1

25% Change 

Permissible Region

Forbidden Region

Permissible Forbidden PermissibleForbidden

Permissible Region

Forbidden Region

Permissible Region

Forbidden Region Permissible Region

Forbidden RegionForbidden PermissibleForbidden

25% Change 75% Change 

75% Change 

Permissible

Figure 5 . The scatterplots show the observed individual proportions of minimum confidence “same”
responses (in the 25% Change condition) or “change” responses (in the 75% Change condition) in
Change and Same trials. The density plots show the group-level posterior distribution of the difference
parameter µδ. In all plots, the shaded areas correspond to the forbidden regions of the discrete-state
model.
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minimum-confidence “change” responses in the 75% Change condition were generally

greater in Same trials, indicating the presence of a bias in confidence that is forbidden

under the discrete-state model. Specifically, P (“changemin” | Same trial) was

greater/equal/smaller than P (“changemin” | Change trial) in 68%, 11%, and 20% of the

individual cases, respectively. At the group level, P (“changemin” | Same trial) and

P (“changemin” | Change trial) were .12 and .07, respectively.

The individual minimum-confidence responses were fitted with a joint-binomial

hierarchical-Bayesian model. In a Bayesian framework, the uncertainty regarding model

parameters is represented via probability distributions, with prior distributions being

updated into posterior distributions (via Bayes’ theorem) in light of the data. The key

component of the joint binomial model adopted were the probabilities

P (“changemin” | Same trial) and P (“changemin” | Change trial), whose difference was

captured by an effect-size parameter δ with mean µδ (for details, see the Supplemental

Materials on Open Science Framework). The range of predictions permitted under the

discrete-state model correspond to a µδ that is greater or equal to zero, indicating that

the minimum-confidence “change” responses are more likely in Change trials than in

Same trials. The discrete-state model’s ‘forbidden region’, which is expected under the

continuous resource model, corresponds to a negative µδ, indicating that such responses

are more likely in Same trials than in Change trials. The visual inspection of the

confidence-rating proportions in Figure 5 was corroborated by the joint binomial

model’s posterior parameter estimates, which yielded a posterior mean of µδ of -0.19,

with a 95% credibility interval of [-0.26, -0.13] (see Figure 5, top row, right-most panel).

The evidence for the discrete-state model’s forbidden predictions relative to its

permitted predictions can be quantified by means of a Bayes Factor (BF), which in the

present case can be computed via the following ratio of posterior probabilities

(Klugkist, Kato, & Hoijtink, 2005):

BF = Ppost(µδ < 0)
Ppost(µδ > 0) .

Values larger than 1 support the presence of biased confidence judgments, which are not
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permitted under the discrete-state model, whereas values between 0 and 1 indicate

support for the absence of such bias. For the 75% change trials condition, we obtained a

Bayes Factor of roughly 60,000 (as none of the 60,000 samples was µδ > 0), indicating

strong support for the presence of biased confidence ratings.

One potential objection to the analysis reported so far is that, whereas many of

the minimum confidence responses fall into the ‘forbidden region’ of the discrete-state

model, the magnitude of these violations might be comparatively small and still

compatible with a discrete-state model when taking sampling variability into account.

In order to corroborate the obtained Bayes factor, we conducted a posterior-predictive

test (see Gelman & Shalizi, 2013; Klauer, 2010). Specifically, we generated one set of

synthetic data, xsynth, per posterior parameter sample θ̂post from a joint-binomial model

constrained to follow the predictions of the discrete-state model (i.e., µδ was constrained

to be non-negative). We then computed the misfit of the true data, L(xobs, θ̂post), as

well as the misfit of the synthetic data, L(xsynth, θ̂post), according to the expectations

derived from the posterior parameter sample. The latter can be understood as the

expected amount of misfit if the only source of noise is sampling variability (and the

true data generating process respects the constraints of the discrete-state model). We

used these quantities to compute Bayesian p-values by estimating the probability of the

misfit of the real data being larger than of the synthetic data; i.e.,

P (L(xobs, θ̂post) > L(xsynth, θ̂post)). Small p-values indicate a poor fit of the model to the

data. We obtained a Bayesian p-value of .003, which indicates that the observed data is

very much at odds with the discrete-state model’s range of predictions, even when

taking sampling variability into account. Importantly, when applying the same

procedure to a joint-binomial model constrained to produce biased confidence

judgments, the obtained Bayesian p-value was .52, consistent with the fact that a

confidence bias is generally present in the data.
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Discussion

Although our results provide clear evidence against the discrete-state account, a

number of concerns can be raised. First, our focus on minimum-confidence judgments

might appear somewhat post-hoc and even self-serving. After all, we focused our

analyses on the minimum-confidence judgments coming from the 75% Change

condition, based on the fact that it was the only condition in which we observed a clear

response-bias effect in the expected direction. Instead, shouldn’t one engage in joint

evaluation of the evidence for biased confidence judgments across all condition? No, not

at all. The first thing one should keep in mind is the nested (and thus asymmetric)

relationship between the two theoretical accounts in the present experimental setup:

One account includes the possibility of biased confidence ratings, whereas the other one

does not. The failure to observe response biases or biased confidence ratings only

indicates that both accounts are sufficient (i.e., the data are not diagnostic).7 In

contrast, the observation of biased confidence judgments is highly diagnostic, as it

cannot be accounted by a variety of discrete-state models (as will be shown later on).

Given this state of affairs, our focus should be directed towards the experimental

conditions that seem most promising, namely the minimum-confidence judgments in a

condition showing strong response biases (see Balakrishnan, 1999). The same strategy

is found in other critical tests, where the focus is placed on individuals or groups

showing specific preferences or successful study-strength effects (see Birnbaum, 2008;

Kellen & Klauer, 2015; Kellen, Steiner, Davis-Stober, & Pappas, 2020). A joint analysis

including non-diagnostic data would be a counter-productive move, akin to tempering

one’s inferences coming from the observation of black swans by keeping tabs on all the

white ones encountered along the way.

Another concern is that participants might not have fully understood the large

differences between colors, which might have compromised their performance. This

7Note that sufficiency results are relevant when dealing with two theoretical accounts that differ in
terms of their “ontological” complexity, such as single-process versus two-process accounts. Specifically,
one can use them to make the case that there is no need to assume two-process accounts given that their
single-process counterparts survived every attempt to reject them (for a discussion, see Stephens et al.,
2018). However, this is not the case here.



BIAS IN CONFIDENCE 20

possibility is not implausible, especially given our failure to observe a bias towards

“same” responses in the 25% Change condition. In light of these concerns, it is

advisable to conduct a follow-up (pre-registered) experiment in which we explicitly try

to minimize potential misunderstandings and are more likely to observe a response bias

in the 25% Change condition.8

Experiment 2

We implemented two major changes in our experimental design: First, we

manipulated the proportion of Change and Same trials between subjects. The goal was

to increase the possibility of observing a bias towards “same” responses in the 25%

Change condition. Second, to avoid any misunderstanding regarding the large color

differences in our study, participants first engaged in a training block in which they

received feedback after every response. Participants also received feedback at the end of

every block.

Participants

A total of 73 participants took part in the experiment. We aimed for a total of 80

participants but did not reach that goal by a predefined date deadline. This resulted in

36 participants in the 75% change trial condition and 37 participants in the 25% change

trial condition. The average age of our participants was 24.5 years, ranging from 18 to

35 (SD = 3.90). In exchange for their participation, they received CHF 15 or course

credit. Experimental sessions took about 50 minutes. All participants reported having

normal or corrected-to-normal vision and normal color vision.

Procedure

The experiment started with a practice block of 40 trials in which only binary

responses were requested, followed by ten test blocks, also with 40 trials, in which

responses were given using a confidence-rating scale. In the practice block, half of the
8The pre-registration can be viewed at https://osf.io/4gh9e. The pre-registered data collection and

analysis plan can be found in the Supplemental Materials.

https://osf.io/4gh9e
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trials were Change trials; Also, participants received feedback after each trial in the

form of a green checkmark ‘X’ (correct response) or a red ‘×’ (incorrect), presented at

the center of the screen. In the remaining blocks, the proportion of Change trials were

either 75% or 25%, depending on the participant’s condition. In contrast with

Experiment 1, this proportion stayed the same throughout the experiment (i.e., the

proportion of Change trials was manipulated between subjects). Participants did not

receive feedback after each trial anymore. However, after each block, they were

reminded of the actual proportion of Change trials in the experiment together with

their proportion of “change” responses in that block (see Dube & Rotello, 2012).

Results

In conditions with 75% and 25% Change trials, the average proportion of

“change” responses was .77 and .34, respectively. In terms of response-bias measure c,

we found a (weak) bias towards “same” responses in the 25% change condition (mean =

−0.08, SD = 0.34, W = 482, p = .05)9 and a (stronger) bias towards “change” responses

in the 75% change condition (mean = 0.47, SD = 0.36, W = 3, p < .0001). Figure 4

shows the ROC functions obtained with the grouped confidence ratings from both bias

conditions. Once again, they show the expected curvilinear, symmetrical shape.

As shown in Figure 5 (lower row, right panels) we again find evidence for biased

confidence judgments in the 75% condition. The observed proportions of

minimum-confidence “change” responses were generally greater in Same trials,

indicating the presence of a bias that is not permitted under a discrete-state model.

Specifically, P (“changemin” | Same trial) was greater/equal/smaller than P (“changemin”

| Change trial) in 75%, 5%, and 20% of the individual cases, respectively. At the group

level, P (“changemin” | Same trial) and P (“changemin” | Change trial) were .12 and .09,

respectively.

The individual minimum-confidence responses in the 75% condition were fitted
9Given that the bias towards “same” responses in the 25% Change condition is relatively weak, making

the observation of biased confidence judgments unlikely (see also Footnote 6). And indeed, no bias was
found. We decided to omit these analyses from the main text, and report them in the Supplemental
Materials. In any case, we report the relevant data in Figure 5.
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with the same joint-binomial hierarchical-Bayesian model used in Experiment 1. As a

reminder, the discrete-state account expects the difference parameter µδ to be greater or

equal to zero. Parameter estimates yielded a posterior mean of µδ of -0.14, with a 95%

credibility interval of [-0.20, -0.08] (see Figure 5). We obtained a Bayes Factor of roughly

30,000 (only two of the 60,000 samples were µδ > 0), indicating again strong support for

the presence of biased confidence ratings. This result was again corroborated by means

of posterior predictive tests. For the model that is constrained to follow the predictions

of the discrete-state account, we obtained a Bayesian p-value of .002. For the model

that can produce biased confidence judgments, we obtained a Bayesian p-value of .40.

Establishing the Scope of the Critical Test

At this point, it is not clear whether the implications of our test results are

circumscribed to an overly simplistic set of models, especially in the case of the

discrete-state model. This discussion is especially relevant given that both of our

studies only used five-item arrays, a number that does not surpass many people’s

working-memory capacity (Cowan, 2001). This means that processes other than

guessing are playing a major role. The purpose of this section is to provide some

clarification on this matter, and show that the model predictions discussed above hold

across a number of possible extensions and/or modifications. We will also discuss one

discrete-state model variant that can account for biased confidence judgments and show

that it outperforms a “pure” continuous counterpart.

Adopting Non-Gaussian Distributions in the Continuous Model

The illustration of the continuous model given in Figure 2 assumes that

memory-strength distributions are Gaussian with equal variance. It is reasonable to ask

whether the ability to predict biased confidence ratings requires specific distributional

assumptions. It does not. The possibility of biased confidence only requires the ability

to establish a pair of confidence criteria along an interval of latent values in which one

stimulus type is more likely than the other. Note that differences in likelihood are

implied by the mere observation of above-chance performance, as it implies that values
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larger than the binary criterion τ are more likely under Same trials, and values below τ

are more likely under Change trials.10

Relaxing the Discrete-State Model’s Confidence Mapping

The discrete-state model can account for the observed biased confidence

judgments if we relax the way in which each discrete state is mapped onto the

confidence scale (e.g., Malmberg, 2002). So far, we have assumed that the memory state

reached with probability m is always mapped onto the levels of the confidence-rating

scale associated with one of two binary responses (see also Klauer & Kellen, 2010, 2015;

Kellen, Singmann, Vogt, & Klauer, 2015; Province & Rouder, 2012). Note that by

doing so we are not introducing any additional constraints to the model – we are merely

retaining the assumption made in the case of binary choices.

We do not see this extension as a convincing way to salvage discrete-state models.

Specifically, we do not find any justification for not imposing the constraints already in

place when dealing with binary choices. Also, such a relaxation implies that individuals

are willing to go against their memories in order to respond in conformity with the

biases promoted by the experimental manipulation (e.g., responding ’same’ in a block

with 25% Change trials despite detecting a change), while simultaneously being willing

to respond counter to the same biases when guessing (e.g. guessing ’change’ in a block

with 25% Same trials). Such an account is directly at odds with the idea that response

biases affect first and foremost guesses (see Erdfelder, Küpper-Tetzel, & Mattern, 2011;

Krantz, 1969; Luce, 1963). Moreover, we note that by assuming a relaxed mapping,

proponents of discrete-state models can no longer resort to ROC shapes as a source of

10Note that the assumption that ROC functions are concave (which includes linearity as a boundary
case) implies that the likelihood ratio is monotonic. Any point of the ROC with slope larger/smaller
than 1 indicates that the value of binary-response criterion τ is more likely under the latent distribu-
tion associated with Same/Change trials (for details, see Kellen, Winiger, Dunn, & Singmann, 2019).
To obtain biased confidence ratings, one only needs to place the confidence criteria associated with a
“change”/“same” response along a range of values in which the latent memory-strength values are more
likely under the distribution associated with Same/Change trials.



BIAS IN CONFIDENCE 24

empirical support, given that the models no longer make clear predictions.11

Swap Errors in the Discrete-State Model

One limitation of our discrete-state model is that it omits the possibility of

participants incorrectly associating one of the other studied colors with the test position

— a so-called swap error (Bays, Catalao & Husain 2009; Wheeler & Treisman, 2002).

Let w denote the conditional probability of a swap error, given that the correct color

was not remembered. In the case of Same trials, swap errors will always lead to a

“change” response, as the color has to be different than the one presented at test. In

contrast, in Change trials, the probability of the remembered color mismatching the one

at test is 3
4 (see Donkin, Tran, & Le Pelley, 2015). The equations for

minimum-confidence “change” judgment are then:

P (“changemin” | Change trial) = m · ξmin + (1−m) · w · 3
4 · ξmin + (1−m) · (1− w) · (1− g) · γmin,

P (“changemin” | Same trial) = (1−m) · w · ξmin + (1−m) · (1− w) · (1− g) · γmin.

Based on these equations, we can see that a biased confidence rating is only expected

when m
(1−m) <

w
4 , which only holds when m ≤ .20. The upper boundary m = .20

requires that w = 1, which implies that there are no guessing-based responses, only

swap errors. The required m values are extremely low — with a set size of five items,

they would imply a discrete capacity (with successful binding) of at most one item.

Such a characterization is not consistent with the overall performance observed in both

experiments (see the ROC plots in Figure 5).

Color-Position Binding Failures

Now, let us consider an extended model according to which a person can also

make a judgment based on the fact that they remember the color presented at test from
11It is worth pointing out that Malmberg’s (2002) case for a relaxed mapping of memory states hinges

on the imposition of additional constraints on the mapping of guesses. Specifically, Malmberg assumed
that guesses are distributed uniformly across confidence-rating scale. Without this constraint, one no
longer needs to relax the mapping of memory-based responses to predict curvilinear ROCs (see Klauer
& Kellen, 2010, 2015).
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earlier in the trial but not its exact location:12

P (“changemin” | Change trial) = m · ξmin + (1−m) · c · z · ωmin + (1−m) · (1− c) · (1− g) · γmin,

P (“changemin” | Same trial) = (1−m) · c · z · ωmin + (1−m) · (1− c) · (1− g) · γmin.

with c denoting the probability that the color at test is remembered (but not its

location), z as the probability that this color is not attributed to the test item location,

and ωmin corresponding to the probability of mapping this judgment onto a

minimum-confidence “change” response. Once again, it is easy to see that

P (“changemin” | Change trial) cannot be smaller than P (“changemin” | Same trial),

therefore excluding the possibility of biased confidence.

Assuming Varying Discrete-State Probabilities

One way to accommodate biased confidence ratings is to allow for probability m

to differ between Change and Same trials (i.e., establish mchange and msame parameters

instead of a single m parameter). For instance, the confidence bias observed in the 75%

Change condition would be accounted for if mchange > msame. One explanation for these

probability differences is that the differential expectations induced by base-rate

manipulation affects sensory processing (e.g., Summerfield & de Lange, 2014). Although

we cannot provide a clear-cut evaluation of this hypothesis using the present data, we

can nevertheless point out that it yields predictions that do not seem to pan out in

when inspecting the binary-response ROC data coming from change-detection tasks.

Specifically, the discrete-state model no longer expects linear and symmetric

binary-response ROCs when mchange and msame are allowed to differ across response-bias

conditions. To illustrate this point, we considered three possibilities:

1. mchange and msame vary in opposite directions across response-bias conditions, such

that mchange > msame when there is a bias towards “change” responses and

mchange < msame when there is a bias towards “same” responses.
12As a reminder, note that the color tested in Change trials was always presented in the study array

of the same trial in one of the other locations.
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2. mchange varies across response-bias conditions, but msame remains fixed (the

inequalities stated above are also expected).

3. msame varies across response-bias conditions, but mchange remains fixed (the

inequalities stated above are also expected).

As shown in the left panel of Figure 6, the first possibility results in curved

binary-response ROCs, which mimic the predictions of the continuous model illustrated

in Figure 3. The prediction is somewhat implausible given that binary-response ROCs

obtained in change-detection paradigms are generally well captured by a linear and

symmetric function (e.g., Donkin et al., 2014; Rouder et al., 2008). If this first

possibility held, then one would expect the extant ROC data to generally favor the

continuous model. In turn, the center and right panels of Figure 6 show that the second

and third possibilities would lead to asymmetric binary-response ROCs. These

asymmetries are at odds with the symmetric functions predicted by both discrete-state

and continuous models (see Figure 3). They are also somewhat implausible given that

to the best of our knowledge, ROC data coming from change-detection tasks have

generally been well accounted for by models assuming symmetrical functions (whether

they are continuous or discrete). One counterargument is that it is entirely possible for

a small asymmetry to be masked by the noise usually found in binary-response ROC

data (for a review, see Kellen, Klauer, & Bröder, 2013). But then again, this noise

would have to somehow leave the prediction of biased confidence ratings unaffected.

Allowing for fallible memory representations in the discrete-state model

Our discrete-state model assumes that items stored in VWM are represented with

high fidelity, such that responses based on them are always accurate. It is not difficult

to see how this assumption can be unreasonable in certain circumstances. For example,

it implies the ability to detect the smallest differences between colors. Our first reaction

to such criticism is to note that both experiments reported here relied on distinct colors,

which should reduce the probability of memory-based errors. Moreover, to dismiss any

concerning regarding the possibility of individuals misunderstanding the large difference
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Figure 6 . Illustrations of binary-response ROCs for three possibilities of varying parameters mchange
and msame. In the left panel, the parameter values are mchange = [.600, .525, .450, .375, .300],
msame = [.300, .375, .450, .525, .600], and g = [.20, .35, .50, .65, .80], with each entry corresponding to one
response-bias condition, going from a bias towards “change” to a bias towards “same”. In the center
panel, msame is fixed to .45, whereas in the right panel, mchange is fixed to .45

between the colors, participants in Experiment 2 were given trial-by-trial feedback in an

initial training phase.

But the key question remains: Could a somewhat fallible representation provide

the discrete-state model with the ability to account for biased confidence judgments?

The answer is no. To show this, we have to extend the model so that it includes the

possibility of incorrectly remembering the color at a given position, while preserving the

conditional-independence assumption (Rouder & Morey, 2009). Specifically, let m?

denote the probability that a remembered color in VWM is correctly determined to be

different from the test item in a Change trial. Also, let m?? denote the probability that

a remembered color in VWM is incorrectly determined to be different than the test item

in a Same trial. Based on this extension, the equations for minimum-confidence

“change” judgment correspond to:

P (“changemin” | Change trial) = m ·m? · ξmin + (1−m) · (1− g) · γmin,

P (“changemin” | Same trial) = m ·m?? · ξmin + (1−m) · (1− g) · γmin.

It follows that biased minimum-confidence judgments are only expected when the

probability of an accurate memory representation in VWM in a Change trial, m?, is

smaller than the probability m?? of an inaccurate memory representation in a Same
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Figure 7 . Example illustration of graded, fallible memory representation and its predictions. The
densities characterize the fallible memory representations, whereas t corresponds to value of the test
item.

trial; i.e., m?

m?? < 1. What this means is that the memory representations provided by

the discrete-state model would have to predict below-chance accuracy, which is not to

be expected under any reasonable circumstances. To show this, let us consider a case in

which both m? and m?? are determined by the comparison of noisy representations and

test items using a pair of perceptual thresholds. More specifically, let us assume that

the noisy representation x of a given studied item is characterized by the normal

distribution illustrated in Figure 7. When a test item T with value t is presented, the

color is deemed to be the same as the one stored in VWM if x falls within the interval

[t−∆, t+ ∆], and different otherwise. The right panel of Figure 7 shows the ratio m?

m??

under different values of ∆ and t. This ratio is larger than 1 across all the different

values considered, therefore failing to show the condition necessary for the model to

predict biased confidence judgments.

Casting Working-Memory Slots Through Mixture Signal-Detection

Modeling

Finally, a discrete-state model extension that can account for biased confidence

judgments in a plausible way assumes that people’s responses consist of a mixture of

guesses and memory-based judgments, the latter being based on a comparison between

graded and fallible memory representations with response criteria (e.g., Nosofsky &

Gold, 2018; Xie & Zhang, 2017; see also Keshvari, van den Berg, & Ma, 2013; Zhang &
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Figure 8 . Example illustration of memory-based judgments according to the mixture model. The
densities characterize the graded, fallible memory representations. The different vertical lines
correspond to the confidence criteria, whereas t corresponds to the test item. Similar to Figue 1, the
six-point confidence scale illustrated here goes from 1: very sure change to 6: very sure same.

Luck, 2008). As illustrated in Figure 8, memory-based confidence judgments are based

on a comparison between the memory representation and the item presented at test.

Specifically, the difference between the two is compared with pairs of confidence criteria.

Confidence judgments are determined by the “tightest” pair of criteria that includes the

difference. For instance, low-confidence “change” judgments (e.g., rating 4 in Figure 8)

are expected when the difference is relatively small.

Despite some minor differences, the characterization of memory-based responses

given above ends up being pretty much the same as the continuous account’s (see

Figure 2; see also DeCarlo, 2013). Therefore, it is reasonable to question whether it is

even necessary to consider a mixture between guesses and memory-based judgments. In

other words, would a “pure” continuous account be enough, given that the memory

component in the mixture is what is doing the leg work? Although the present data do

not provide us with the means to implement a critical test on the need for

guessing-based confidence judgments, a tentative assessment can be obtained through

parametric modeling. The approach we pursued here consisted of fitting a mixture

model to individual ROC data coming from each base-rate condition (details can be
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Figure 9 . Median posterior estimates of the mixture weights and their respective 95% credibility
intervals. A mixture weight of 1 would indicate that responses are solely determined by the memory
component and there is no contribution from the guessing component.

found in the Supplemental Materials).13 Using Bayesian methods, we evaluated the

posterior estimates of the mixture weight quantifying the proportion of memory-based

judgments (and its complement the proportion of guesses). If guessing-based responses

make a non-negligible contribution, then the posterior distributions of individuals’

13The mixture model used assumes that the memory representation in Same trials follows a Normal
distribution with mean 0 and variance 1. In turn, the representation of Change also follows a Normal
distribution, this time with mean µ and variance 1. The confidence criteria were free to vary (aside
from their order constraints). Guessing-based confidence judgments is captured by an unconstrained
multinomial distribution. Finally, the model has a mixture-weight parameter ω.
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mixture weights tend be concentrated on values away from 1.14 The posterior estimates

reported in Figure 9 show that even though there is considerable uncertainty, the

mixture weights were often concentrated along values away from 1. This result suggests

that guessing-based responses play a non-negligible role in describing the data (see also

Nosofsky & Gold, 2018).15

Conclusion

The present work showed that a number of discrete-state models of VWM exclude

the possibility of biased confidence ratings. In two experiments, we were able to observe

biased “change” judgments, a behavioral signature that speaks directly against these

models. These results provide us with a clear standard for evaluating the sufficiency

and necessity of certain theoretical features (e.g., the nature of memory representations

in VWM). Subsequent analyses show that a mixture account assuming pure guesses

along with graded memory representations provides a good account of the results (e.g.,

Nosofsky & Gold, 2018). Altogether, these results contribute to the behavioral

foundation of mixture modeling in VWM. These results also have strong implications

on the interpretation of previous model comparisons. For instance, it no longer seems

reasonable to consider model comparisons supporting a discrete-state account, when

such results are predicated on models that fail the present critical test (e.g., Donkin et

al., 2014; Rouder et al., 2008).

More broadly, the present work demonstrates the potential of critical tests in the

comparison of formal theories (Birnbaum, 2011; Kellen & Klauer, 2014, 2015).

Researchers should keep the advantages of this approach in mind: First, it often allows

for the direct testing and dismissal of broad classes of models; i.e., strong inference

(Platt, 1964). Second, it shifts the focus away from global model-performance statistics,
14The mixture model considered here has more parameters (16) than there are degrees of freedom (15),

which means that not all of its parameters are identifiable. The lack of identifiability can sometimes be a
problem, even in the context of Bayesian parameter estimation (see Spektor & Kellen, 2018). Fortunately,
the mixture-weight parameter that we are interested in is not severely compromised given that it plays
a major role in establishing the model’s ability to describe data, a role that cannot be generally fulfilled
by the other model parameters.

15For reference, the rank-correlation of the median posterior mixture weights across base-rate condi-
tions in Experiment 1 (remember that this was a within-subjects manipulation) was 0.84.
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which can be somewhat opaque, and places it entirely on the specific behavioral

patterns that have a clear diagnostic value. Third, it contributes to the development of

a corpus of behavioral results that any candidate theory needs to be able to

accommodate (see Oberauer et al., 2018).

To finalize, a clarification: The focus on specific portions of the data advocated by

the critical-test approach discussed here can be seen as being antagonistic towards the

development of accounts that include as many sources of data as possible (e.g.,

categorical responses, reaction times; Donkin et al., 2013). This is inaccurate. Both

approaches are complementary, serving different goals and criteria (for a discussion, see

Kellen, 2019): Critical tests provide sharp, localized evaluations of theories, whereas the

development of increasingly-encompassing models tests the ability of certain key

theoretical notions to provide a competent and consistent characterization of the

different types of data, and how these can differ across people and conditions. This

complementarity is demonstrated by our parametric mixture-model fits, which show

that among the theoretical accounts that happen to provide a plausible characterization

of biased confidence judgments, one can find support for the presence of pure guesses.
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