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ABSTRACT: The ability to actuate liquids remains a fundamental challenge in smart
microsystems, such as those for soft robotics, where devices often need to conform to
either natural or three-dimensional solid shapes, in various orientations. Here, we
propose a hierarchical nanotexturing of piezoelectric films as active microfluidic
actuators, exploiting a unique combination of both topographical and chemical
properties on flexible surfaces, while also introducing design concepts of shear
hydrophobicity and tensile hydrophilicity. In doing so, we create nanostructured
surfaces that are, at the same time, both slippery (low in-plane pinning) and sticky
(high normal-to-plane liquid adhesion). By enabling fluid transportation on such
arbitrarily shaped surfaces, we demonstrate efficient fluid motions on inclined, vertical,
inverted, or even flexible geometries in three dimensions. Such surfaces can also be
deformed and then reformed into their original shapes, thereby paving the way for
advanced microfluidic applications.
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Precision control of microfluids on a small scale, particularly
in a microdroplet format, underpins a range of smart

microsystems, such as those for soft robotics and lab-on-chip.1−3

However, a major challenge remains in the complexity of
assembling all the necessary functionalities using conventional
microfluidic devices which are generally based upon rigid
substrates and are thus unable to conform to the flexing of
natural shapes.4−7 Future applications for the directional
transport of fluids will require liquid actuation on flexible and
deformable surfaces, on three-dimensional shapes, such as those
in robotics.
Thin film piezoelectric surface acoustic wave (SAW) devices

have previously been shown to enable all necessary microfluidic
functions in diagnosis and sensing applications.8 Material
stoichiometry, texture, and crystallinity can be easily controlled,
while remaining biocompatible.9−11 They have previously been
developed on conformable substrates and have been used for
sensing and microfluidics with similar performances to their
rigid counterparts.12−14 However, to date, their deformability
has not been exploited due to challenges both in realizing long-
range wave propagation across the surfaces as well as in
implementing liquid handling on curved surfaces (where gravity
causes the droplet to detach).
To address these issues, we now show that we can deposit and

control the surface structures of ZnO on the nanoscale, on
aluminum foils (with thickness from 50 to 600 μm) as flexible
and acoustically actuated microfluidic devices, which can be
deformed (and maintain their temporal shape) before being

returned to their original shapes. Importantly, we show that the
acoustic waves not only propagate over long distances of several
centimeters without significant dissipation but also overcome
the major challenge of enabling efficient liquid handling on
curved surfacesproviding the designated slipperiness neces-
sary for motion along the surface, while ensuring sufficient
stickiness for the retention of the liquid when the surface is
inclined, vertical, or even inverted.
Hydrophobic coatings such as CYTOP,15 or topographic

structures (including roughness), have previously been
combined with hydrophobic materials16−18 to create surfaces
with superhydrophobicity, minimizing droplet pinning forces
and creating a slippery surface. However, this also minimizes the
surface contact area, which itself is directly related to the quanta
of energy that can be transferred from the acoustic waves into
the liquid.
The reduced contact area for superhydrophobic surfaces also

necessarily results in a reduced droplet adhesion normal to the
plane (“stickiness”). Additionally, as the surface oscillates with a
nanometer-scale amplitude generated by the acoustic excitation,
this increases the probability that the liquid penetrates the
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surface texture, resulting in an irreversible pinning of the droplet.
Such issues are counterintuitive to the key design criteria for a
three-dimensional and bendable smart system for droplet
transport, which critically requires retaining droplets on the
surface as the physical orientation is varied (e.g., either as the
angle of inclination or curvature).
We demonstrate that, by engineering the material stack and

surface texture of a ZnO/Al piezoelectric flexible sheet for our
SAW-based devices, we can achieve droplet manipulation on
large scales and conformable shapes not previously possible,
opening a new way for flexible devices to perform complex smart
microfluidic systems. We combine the microscale roughness of
themetal foil substrate with the nanoscale structures of ZnO film
to create a hierarchically textured surface, showing not only a
low contact angle hysteresis (i.e., shear hydrophobicity19

allowing easy translation of droplets across the surface) but
also a receding contact angle allowing droplets to be retained in a
wide range of surface orientations (i.e., with sufficient tensile
hydrophilicity19). Importantly, we not only demonstrate that
such ZnO/Al sheets support low power wave propagation and
efficiently drive liquids on horizontal, inclined, vertical, and
arbitrarily shaped surfaces but also show that both the contact
angle hysteresis and receding contact angle are key design
parameters for requiring droplet transportation and adhesion.
Surface Design Considerations. Figure 1a depicts a

droplet in sequential positions along a curved surface driven by
SAW propagating along the surface. For microliter-sized
droplets (for instance 1 μL with a radius of ∼1 mm), the radius
of curvature of surfaces conforming to geometric features can be
considered infinitely large (>10 cm) as compared to the droplet,
so that we can estimate the forces applied to the droplet by
considering a flat sheet tangential to the curved surface. For a
droplet placed on a horizontal flat surface (see Figure 1b), the
idealized static equilibrium state is described using Young’s
equation

cossl lv Y svγ γ θ γ+ = (1)

where, γsl is the surface tension of the liquid−solid interface, γlv is
the liquid surface tension, γsv is the solid surface tension, and θY
is the contact angle in the idealized equilibrium state.
When the SAW propagates, and thus moves a droplet along

the horizontal surface, the advancing and receding contact
angles, θadv, and θrec, define the contact hysteresis and the
pinning of the contact line.20 To agitate and move the droplet,
the externally applied driving force must overcome the pinning
force of the droplet due to this contact angle hysteresis.
Assuming there is a perfect circular contact line for the droplet,
the lateral (radial) pinning force can be formulated as21,22

F D
24

(cos cos )cl 3 lv 0 rec advπ
γ θ θ= −

(2)

where D0 is the equivalent base diameter in a static state.
The force can be reduced by decreasing the difference

between the advancing and receding contact angles, or by tuning
the surface topography and hydrophobicity, thus enabling the
liquid to ball up and changing the length of the contact line
(represented in eq 2 by the equivalent base diameter).
Considering the case of driving a hanging droplet, e.g.,

perpendicular to a surface and upward, the actuation force must
overcome both the work of adhesion (given by γlv(1 + cos
θrec)

19,23) and gravity. Use of a superhydrophobic surface is
difficult to implement, because although droplets can be pushed
on inclined or inverted superhydrophobic surfaces (at an angle
α, 0° < α ≤ 180°), in practice, once the actuation force stops,
gravity will often cause the moving liquid droplet to detach from
the surface and fall off.
An alternative approach that reduces the contact line force is

to reduce the contact angle hysteresis (i.e., increase shear
hydrophobicity19), while retaining a receding contact angle at a
value appropriate to ensure that the droplet adheres to the
surface when subject to normal forces (i.e., tensile hydro-
philicity19). In this approach, the reduction in contact angle
hysteresis does not require the droplet to be balled-up or the
contact line length to be reduced to achieve an easy droplet

Figure 1. Principles of droplets moving on a curved surface. (a) Schematic diagram of droplet movement on a curved surface, which can be treated as a
sum of movements on tangential planes. (b−e) Force analysis of the water droplet retained and moving on hydrophobic surfaces: (b) placed
horizontally, (c) tilted at angle α, (d) placed vertically (α = 90°), and (e) placed upsidedown (α = 180°) in static and dynamic (surface acoustic wave
power is on) states.
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transport along the surface. Moreover, since the contact line
length does not have to be reduced, the droplet-surface area is
large enough for the acoustic wave to interact with the liquid
droplet and, hence, enable an efficient wave energy dissipation;
thus, low power actuation is maintained.
Once the droplet starts moving under agitation of a SAW, the

viscous resistance force becomes significant due to a strain
formed along the contact line. This force, Fr(v), can be written
as24

F v
v

h r
r r( )

3
( )

(2 ) d
D

r
0

/20 c∫ μ π=
ε−

(3)

where εc is the cutoff length to prevent the singularity at the
contact line, μ is the liquid viscosity, v is the droplet velocity, and
h(r) is the height of the droplet at a certain position dependent
on the radial coordinate r. Fr(v) is equal to zero when the droplet
is immobile.
Figure 1b−e compares the total SAW streaming forces, Fs,

applied to the droplet in both static and dynamic states of
different substrate orientations, induced by an acoustic pressure,
which is defined as25−27

F A k k x k z(1 ) exp(2( ))s 1
2 3/2 2 2

i i 1 iθ ω θ= − + + (4)

where A is the wave amplitude,ω is the angular velocity, and ki is
the imaginary part of kl which is the wavenumber of the leaky
surface acoustic wave. θ1 = jθ (with j2 = −1) is the attenuation
constant where θ2 = 1 − (vLe/vl)

2, vLe is the leaky wave velocity,
while vl is the sound velocity in liquid.
The direction of the pressure/force follows the Rayleigh angle

ΘR which is defined by

v vsin ( / )R
1

1 sΘ = −
(5)

where vs is the sound velocity in the flexible substrate. The
minimum force required to move the droplet can be written as

F Fsin 0s R clΘ − = (6)

The relationship among the different forces applied to the
droplet which are balanced during droplet movement can be
described using the following equation:

F F F v m
v
t

sin ( )
d
ds R cl rΘ − − =

(7)

where m is the mass of the droplet. This relationship predicts
that the projection of acoustic force will be increased with the
Rayleigh angle for a given input power. If the surface is tilted at a
certain inclination angle 0° < α ≤ 180°, the gravitational force is
involved at both static and dynamic states; thus, the force
balance in both the z′ and x′ directions should be considered
(Figure 1c−e). In the static state, the forces are balanced to keep
the droplet stable in its position, and then, we have

mg F

mg D

sin 0 0 180

sin 0 180

cl

lv rec

α α

π γ θ α

− = < <

− = =

◦ ◦

◦

l
m
ooo
n
ooo (8)

where g is the acceleration of gravity. Accordingly, in a dynamic
state, the acoustic force needed to initiate the droplet movement
is

F F mgsin sin 0s R cl αΘ − − = (9)

Meanwhile, eq 7, which describes the relationship between
the droplet velocity and the forces, can be further modified as

F F F v mg m
v
t

sin ( ) sin
d
ds R cl r αΘ − − − =

(10)

Based upon the above discussion and analysis, in order to
realize three-dimensional manipulations of droplets on inclined
or even curved surfaces driven by SAW, the surface needs to be
prepared not only with a low contact angle hysteresis for easy
transportation of droplets but also with a suitable receding
contact angle to retain the droplet on it.
The contact angle hysteresis and receding contact angle can

be regarded as two key parameters describing a design space,
with the first parameter controlling whether a droplet is pinned
(thus preventing motion along it), and the second parameter
controlling how strongly a droplet adheres in the direction
perpendicular to the surface. Figure 2 summarizes these four

fundamental combinations of slipperiness and stickiness (e.g.,
showing low/high pinning and low/high adhesion) and
provides exemplars of potential applications.28−30 For our
application in this study requiring droplet motion along a surface
that can have multiple orientations including vertical and
inverted, the surface wettability design requires ease of transport
and sufficient adhesion, and this was achieved by creating a
hierarchical texture of nano- and microscale features, as shown
in Figure 3a,b.

Hierarchically Textured Surface with Shear Hydro-
phobicity and Tensile Hydrophilicity. Here, we used Al
sheets with a thickness of 600 μm as the underlying substrates.
There are surface grooves with microscale roughness on the
surface, generated by cold rolling manufacturing processes
(Figure S1), and the root-mean-square roughness of grooved
surfaces is in the range 0.72 ± 0.05 μm, measured using a
profilometer. ZnO thin film was deposited on top of the
microstructure, providing a hierarchical and fractal surface with
an average roughness value of 73.6 nm (shown in Figure 3c
AFM image, 5 μm × 8 μm).
Sputtered ZnO thin films have a relatively low surface energy,

and contact angles of a water droplet on such a surface vary
between 70° and 100°.31 When the droplet is located on the

Figure 2. Combinations of four different surface types arising from
contact angle hysteresis and receding contact angle. Scheme defining
the design space of slippery/nonsticky,28 pinning/nonsticky,29

pinning/sticky,30 and slippery/sticky surface types with exemplars of
possible applications.
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ZnO/Al sheet structure, a Wenzel state is formed on the surface
as shown in Figure 3a. This Wenzel state could be transformed

into a Wenzel/Cassie−Baxter mixed state by coating the ZnO
surface with a thin hydrophobic layer (300−500 nm thick) of

Figure 3. Surface morphology of hierarchical textures. (a) 3D schematic diagram of the bilayer structure composed of the Al substrate (gray) and ZnO
thin film (orange). (b) 3D scheme of the trilayer structure composed of the Al substrate, ZnO thin film, and CYTOP coating (red). AFM images
showing the root-mean-square (RMS) roughness of the hierarchical structure (c) before and (d) after CYTOP coating.

Figure 4. Contact angle measurements and pumping experiments on horizontal surfaces. (a) Comparison of the static contact angle θs, the receding
contact angle θrec, and the advancing contact angle θadv, and hence the contact angle hysteresis,Δθ = θadv− θrec of water droplets (1 μL) on ZnO/Si and
ZnO/Al surfaces before and after CYTOP coating. (b) Pumping velocity as a function of time with different input powers when the water droplet is
driven by an acoustic wave on a 600 μm thick horizontal Al plate. (c) Average acceleration calculated from videos of horizontal pumping on ZnO
coated 600 μm thick Al plates and ZnO coated Si wafer increasing with the input power. The wavelength of the acoustic wave was 300 μm for both
devices. The inset figure shows the average velocity (over time). Rayleigh angles of the surface acoustic wave can be observed from the jetting trajectory
of 2 μL water droplets on (d) the ZnO/Al device (jetted at 8 W) and (e) the ZnO/Si device (jetted at 14 W).
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CYTOP, an amorphous fluoropolymer with high transparency
and water and oil repellency. Figure 3c,d shows that the
nanoscale roughness is reduced after the surface is coated with
CYTOP. For a comparison, we also measured the surface
roughness of a ZnO film deposited onto a standard polished
(100) Si wafer using the AFM and obtained a homogeneous and
smooth surface with an average roughness of 15.05 ± 4.58 nm
over an area of 100 μm × 100 μm, which is much smaller than
those on the foil substrates.
To further understand the wettability of the ZnO/Al sheet

surface, we measured the static contact angle θs, and the
advancing and receding contact angles, giving us a contact angle
hysteresis, Δθ = θadv − θrec, for 1 μL water droplets with and
without CYTOP treatment as shown in Figure 4a (values are
tabulated in Table S1 in the Supporting Information). The
untreated ZnO/Al sheet delivered good tensile hydrophilicity
with a receding contact angle of 49° ± 14° retaining the droplet
against any normal force. However, the droplet on such a surface
is also pinned in the direction of movement due to the large
contact angle hysteresis of 63° ± 15° and, hence, poor shear
hydrophobicity. Similarly, the untreated ZnO/Si surface
provides a smaller receding contact angle (27° ± 4°), indicating
a better tensile hydrophilicity, while having poor shear
hydrophobicity due to the contact angle hysteresis staying the
same as the untreated ZnO/Al surface. After the surface was
coated with CYTOP, the surface wetting properties were
modified, and the shear hydrophobicity was enhanced with a
decreased contact angle hysteresis of 28° ± 6°. The receding
contact angle of the CYTOP/ZnO/Si surface increased to 95° ±
4° but was still able to prevent the droplet from being detached
perpendicularly providing acceptable tensile hydrophilicity
(adhesion) compared to superhydrophobic surfaces. By using
the ZnO/Al surface, we could further optimize the shear
hydrophobicity and reduce the contact angle hysteresis to 9° ±
2° while achieving a receding contact angle of 105° ± 1°, thus
creating a surface that simultaneously has excellent shear
hydrophobicity (slipperiness) and sufficient tensile hydro-
philicity (adhesiveness). In such cases, the surface acoustic
wave actuation force required to transport a droplet along a
surface, which is proportional to γlv(cos θrec − cos θadv), is
reduced, while the force normal to the surface required to
remove a droplet, which is proportional to γlv(1 + cos θrec),
remains sufficiently large to prevent droplet detachment.
Droplet Transport Enhanced on Horizontal and Tilted

Flat Surfaces. The input power determines the displacement
amplitude of the Rayleigh wave and, thus, the streaming force Fs.
According to eq 9, when Fs sin ΘR is larger than the lateral
pinning force Fcl (mg sin α = 0 applied for a horizontal surface),
the droplet starts to move forward. During the movement, eq 10
can be used to explain the behavior of the droplet shown in
Figure 3b, where the instant velocity presents multiple peak
values. The streaming force Fs decreases exponentially as the
droplet moves away from the wave source due to its attenuation
in the substrate. Meanwhile, the viscous resistance force Fr(v) is
proportional to the instant velocity. At the starting point, Fs sin
ΘR is much larger than the sum of Fcl, Fr, andmg sin α, creating a
positive acceleration dv/dt. The instant velocity increases
accordingly while Fs sin ΘR decreases, and Fr increases until
the forces reach their first balance point, where dv/dt = 0.
Afterward, the instant velocity decreases rapidly due to the
negative acceleration, causing the fast decrease of Fr until once
again Fs sin ΘR is dominant. This process would repeat several

times before the droplet moves to the position where the
damped acoustic wave cannot initiate the movement.
We also investigated the droplet transport characteristics of

the hydrophobically treated ZnO/Al SAW devices by measuring
average moving velocities and accelerations at different power
levels (Figure 4c) and compared them with those on a ZnO/Si
surface. The average accelerations on both the CYTOP/ZnO/
Al and CYTOP/ZnO/Si surfaces are increased with the input
power, reaching 42.1 ± 7.1 and 0.05 ± 0.003 mm/s2,
respectively, for an applied power of 0.72 W, corresponding to
average velocities (averaged over time) of 8.0 ± 0.8 and 0.2 ±
0.01 mm/s. Importantly, the threshold power to initiate droplet
movement on the CYTOP/ZnO/Al surface is much smaller
than that on the CYTOP/ZnO/Si device. In addition, the
droplet average velocities are higher on the CYTOP/ZnO/Al
surface than that on the CYTOP/ZnO/Si device at the same
power, indicating that the acoustic devices on the ZnO/Al with a
hierarchically textured surface are more efficient for droplet
transport.
This enhanced performance can, in the first instance, be

attributed to the hierarchical CYTOP/ZnO/Al surface, which
reduces the contact angle hysteresis to 9°, significantly smaller
than on the CYTOP/ZnO/Si surface at 28°, decreasing the
threshold power required to initiate the droplet movement along
the surface, and also reducing the power needed to overcome the
lateral pinning force which could restrict the droplet movement.
The surfaces also retained a receding contact angle of 105°,
ensuring that droplets do not detach from the surface when
curved/bent.
For completeness, the Rayleigh angle also plays an important

part in the enhanced performance. We calculated it as 30.8° on
ZnO/Al, as opposed to 19.7° on ZnO/Si (using phase velocities
of 2868 m/s on the ZnO/Al sheet, 4351 m/s on ZnO/Si, and
1468 m/s in water) and verified experimentally (e.g., 33.6° and
15.8° as shown in Figure 4d,e). As predicted by eq 10, the
driving force is the projection of the streaming force on the
moving surface, which can be calculated by Fs sinΘR. For ZnO/
Al, sin ΘR is around 0.55, while it is around 0.27 for ZnO/Si.
Therefore, given the same input power (same Fs), the driving
force of ZnO/Al devices is twice that of ZnO/Si devices along
the moving direction and, thus, is more efficient for droplet
transport.
Furthermore, the enhanced actuation of the liquid can be

attributed to the different ways in which the droplets interact
with the substrate surface. For the droplet on the CYTOP/
ZnO/Al substrate, assuming it is in a mixed Wenzel/Cassie−
Baxter state, the entrapped air prevents the droplet from flowing
into the surface’s topology and reduces the contact area between
the liquid and the solid surface, thus lowering the friction and
causing efficient transport. In contrast, there is little air
entrapped under the droplet on the silicon substrates with
smooth surfaces. The larger Rayleigh angle and smaller contact
angle hysteresis for the CYTOP/ZnO/Al device during
movement imply that liquid droplets move using a combination
of rolling and sliding (Figure S2a). On the contrary, the droplet
movement is dominated by sliding and jumping modes on the
CYTOP/ZnO/Si surface (Figure S2b).
This mechanism enables us to demonstrate movement on

inclined surfaces (Figure S3) by tilting the device plate into
different orientations, e.g., inclined angled slopes, vertical, and
upsidedown positions. Here, an important consideration is the
droplet size, as it has a significant influence on pumping at
different inclination angles due to the effect of gravity. This is
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especially important at inclination angles around 90°, and we
experimentally determined a maximum volume for our device to
be 3 μL. Larger droplets cannot be pumped upward but move
downward due to gravity.
Demonstration of Programmable, Flexible, and

Bendable Acoustofluidics. To demonstrate the concept of
programmable, flexible, and bendable three-dimensional acous-
tofluidics using hierarchical CYTOP/ZnO/Al nanostructured
surfaces, we deformed the CYTOP/ZnO/Al (600 μm thick)
device into a circle (see schematic illustration in Figure 1a).
Figure 5a−c shows that a water droplet could be efficiently
pumped forward on different segments of its surface with a
curvature varying from 54.5 to 85.7 m−1.

To further extend the flexibility of our platform, we reduced
the thickness of Al sheets with the corresponding acoustic wave
modes changing from those associated with Rayleigh waves to
Lamb waves. Acoustic wave devices were designed and
fabricated on 200 μm thick ZnO/Al sheets and deformed in
shapes of a “roller coaster” (Figure 5d,e, andMovies S1 and S2).
Finally, we also show that the droplet can be easily pumped
along arbitrary topographies using a randomly twisted CYTOP/
ZnO/Al (50 μm thick) sample (Figure 5f and Movie S3).
Conclusions. In summary, we designed nanostructured

surfaces using hierarchical textures to optimize shear hydro-
phobicity and tensile hydrophilicity to tune droplet transport

and adhesion on arbitrarily oriented devices. We demonstrated
that the CYTOP/ZnO/Al sheets enabled a significantly better
actuation performance when compared to conventional ZnO/Si
acoustic wave devices. These CYTOP/ZnO/Al sheets were
uniquely capable of efficiently driving droplets across a wide
range of inclination angles (0° < α ≤ 180°). Our designed
devices can be flexibly deformed and then maintain their shape,
while enabling efficient liquid pumping. We envisage that the
surface design principles and demonstrated devices/applications
will be pivotal for liquid sampling for smart diagnostic systems
within mobile and disposable settings.

Methods. Sample Preparation. ZnO/Al and ZnO/Si
substrates were prepared using magnetron sputtering
(NS3750, Nordiko). ZnO films with thicknesses of 5 μm were
deposited on 50 μm thick Al foils, 200 and 600 μm thick Al thin
plates, and 500 μm thick 4 in. (100) Si wafers in vacuum with a
pressure of 0.65 Pa. A 99.99% pure Zn target was used while Ar/
O2 gases with flow rates of 10/13 sccm were introduced to form
a plasma and to provide oxygen ions (power, 400 W).
The acoustic wave devices included interdigital transducers

(IDTs) on top of the ZnO thin films, fabricated through
photolithography and lift-off processes. The Cr/Au electrodes
with a thickness of 20 nm/100 nm were deposited using a
thermal evaporator. For hydrophobic surface treatment, 1%
CYTOP solution (L-809A) was dip-coated on the ZnO surface
and heated to 180 °C for 1 min.

Experimental Methods.The surface roughness of all samples
was characterized using an interferometer (Bruker Contour GT-
K) and an AFM (Veeco Dimension 3100). The static,
advancing, and receding contact angles were measured using
sessile droplets and volume addition and withdrawal on a
droplet shape analyzer (Kruss DSA30S). In the acoustofluidic
experiments, the acoustic wave devices were connected to an RF
signal generator (9 kHz−2.4 GHz 2024, Marconi Instruments)
through a power amplifier (model 75A250, Amplifier Research).
The movements of water droplets were imaged by both a high-
speed camera (Phantom V2511, 3000 FPS) and a standard
CMOS camera.
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