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ABSTRACT
We investigate the redshift evolution of the intrinsic alignments (IAs) of galaxies in the
MassiveBlackII (MBII) simulation. We select galaxy samples above fixed subhalo mass
cuts (Mh > 1011,12,13 M� h−1) at z = 0.6 and trace their progenitors to z = 3 along their
merger trees. Dark matter components of z = 0.6 galaxies are more spherical than their
progenitors while stellar matter components tend to be less spherical than their progenitors. The
distribution of the galaxy–subhalo misalignment angle peaks at ∼10 deg with a mild increase
with time. The evolution of the ellipticity–direction (ED) correlation amplitude ω(r) of galaxies
(which quantifies the tendency of galaxies to preferentially point towards surrounding matter
overdensities) is governed by the evolution in the alignment of underlying dark matter (DM)
subhaloes to the matter density of field, as well as the alignment between galaxies and their
DM subhaloes. At scales ∼ 1 Mpc h−1, the alignment between DM subhaloes and matter
overdensity gets suppressed with time, whereas the alignment between galaxies and DM
subhaloes is enhanced. These competing tendencies lead to a complex redshift evolution of
ω(r) for galaxies at ∼ 1 Mpc h−1. At scales > 1 Mpc h−1, alignment between DM subhaloes
and matter overdensity does not evolve significantly; the evolution of the galaxy–subhalo
misalignment therefore leads to an increase in ω(r) for galaxies by a factor of ∼4 from z =
3 to 0.6 at scales > 1 Mpc h−1. The balance between competing physical effects is scale
dependent, leading to different conclusions at much smaller scales (∼ 0.1 Mpc h−1).

Key words: gravitational lensing: weak – hydrodynamics – methods: numerical – galaxies:
formation.

1 IN T RO D U C T I O N

The shapes and orientations of galaxies have an intrinsic correlation
with respect to those of nearby galaxies and the overall matter
distribution; this effect is known as galaxy intrinsic alignments
(IAs; see Joachimi et al. 2015; Kiessling et al. 2015; Kirk et al.
2015, and references therein for review; Troxel & Ishak 2015).
The importance of IA is two-fold: (i) IA emerges as a natural
outcome of the current paradigm of galaxy formation in the �

cold dark matter cosmological model, as emphasized also in state-
of-the-art cosmological hydrodynamic simulations that include
direct modelling of galaxy formation (e.g. Tenneti et al. 2014;
Chisari et al. 2015; Velliscig et al. 2015; Hilbert et al. 2017).
IA is therefore a promising probe for galaxy formation physics.
(ii) If not properly modelled and removed, IA is a significant
source of systematic bias in inferring cosmological parameters in
weak lensing studies (Krause, Eifler & Blazek 2016). Many of

� E-mail: akbhowmi@andrew.cmu.edu

the upcoming surveys like the Large Synoptic Survey Telescope
(LSST; Ivezić et al. 2008; Abell et al. 2009; ), Euclid (Laureijs et al.
2011), and the Wide-Field Infrared Survey Telescope (WFIRST;
Spergel et al. 2015) aim to determine the dark energy equation of
state to very high precision using weak lensing, and IA is one of
the major sources of astrophysical systematic uncertainty for such
studies (Mandelbaum 2018). The existence of IA in galaxies with
correlations out to 100 h−1 Mpc scales has been firmly established
in observational data (e.g. Mandelbaum et al. 2006; Hirata et al.
2007; Joachimi et al. 2011; Singh, Mandelbaum & More 2015).
An understanding of IAs and their scaling with galaxy mass and
redshift is therefore crucial to mitigating this effect in weak lensing
studies, and is also a good diagnostic for galaxy formation physics.

Intrinsic alignments have been studied using analytical methods
such as the linear model (Catelan, Kamionkowski & Blandford
2001), the non-linear alignment model (Bridle & King 2007),
and the full tidal alignment model (Blazek, Vlah & Seljak 2015).
While these methods are easy to implement, also requiring few
computational resources, they inevitably rely on assumptions about
the alignment of galaxies and the underlying tidal field. This
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limitation can be overcome by state-of-the-art cosmological hy-
drodynamic simulations (e.g. Dubois et al. 2014; Vogelsberger
et al. 2014; Khandai et al. 2015; Schaye et al. 2015), which can
directly probe the impact of galaxy formation physics on the shapes
and alignments of galaxies and the relation to their dark matter
counterparts (haloes/subhaloes) and the tidal fields themselves.
Therefore, in recent years galaxy shapes and alignments have been
extensively studied using hydrodynamic simulations (e.g. Chisari
et al. 2015; Tenneti, Mandelbaum & Di Matteo 2016; Chisari et al.
2017; Hilbert et al. 2017).

An important step towards understanding galaxy intrinsic align-
ments is to study their redshift evolution. This has been initiated by a
series of works (Tenneti et al. 2015a) using theMassiveBlackII
(MBII) hydrodynamic simulation (Khandai et al. 2015), including a
detailed study of the redshift evolution of galaxy shapes, alignment
with respect to host halo/subhalo, and associated shape–density
correlation functions. A noteworthy feature of these works was
that the sampling of galaxies was based on fixed subhalo mass
cut (� 1011, 1012, 1013 M� h−1) at each redshift (from z ∼
0.06 to 1); this is somewhat representative of cuts in observed galaxy
samples in properties such as stellar mass or magnitude, which are
known to correlate with the host subhalo mass. However, with such
an approach, the resulting redshift evolution may be dominated by
the effects of sample selection. In order to study the intrinsic redshift
evolution (i.e. separated from the effects of sample selection), we
must select samples of galaxies at a given redshift and trace their
progenitors to higher redshifts.

In this work, we study the redshift evolution of IA properties
of MBII galaxies by making subhalo mass cuts at a single fixed
redshift (z ∼ 0.6) and then tracing the properties of their progenitors
along a merger tree. In Section 2, we outline the basic methodology
and definitions. In Section 3, we study the redshift evolution of
galaxy properties (axis ratios, galaxy−subhalo misalignment angle,
and density–shape correlation functions) on the merger tree. We
summarize our key results in Section 4.

2 ME T H O D S

2.1 MBII simulation

We briefly describe MBII, which is a state-of-the-art cosmological
hydrodynamic simulation of structure formation (Khandai et al.
2015). MBII is evolved from z = 159 to z = 0.06 in a cubic periodic
box of comoving volume Vbox = (100 h−1Mpc)3 and a gravitational
smoothing length of ε = 1.85 h−1 kpc. The box contains 2 × 17923

particles (dark matter+gas). The mass of a single dark matter
particle and a single gas particle is mDM = 1.1 × 107 h−1 M�
and mgas = 2.2 × 106 h−1 M�, respectively. The cosmological
parameters used in the simulation are based on WMAP7 (Komatsu
et al. 2011) with amplitude of matter fluctuations σ 8 = 0.816,
spectral index ns = 0.96, mass density parameter �m = 0.275,
cosmological constant density parameter �� = 0.725, baryon
density parameter �b = 0.046, and Hubble parameter h = 0.702.
Halos are identified using a friends-of-friends (FOF) halo finder
(Davis et al. 1985) with a linking length of 0.2 times the mean
particle separation.

2.2 Galaxy identification

Here, we describe how galaxies are identified in MBII. Galaxies
are defined to be the stellar component of subhaloes, which
are locally overdense, self-bound particle groups within a larger

parent group (FOF halo). The subhalo catalogues are generated
using the substructure finder SUBFIND on the halo catalogues. In
SUBFIND, for each particle in the parent group, a local density is
estimated using the positions of a prescribed number of nearest
neighbours. After identifying the local peaks in density field,
it rebuilds the parent group by adding particles in the order
of decreasing density. In doing so, a saddle point is eventually
reached that connects two disjoint overdense regions. The smaller
structure is then identified as a candidate substructure. For further
implementation details, see the original paper (Springel et al.
2001).

2.3 Constructing the galaxy merger tree

In this section, we describe the key steps involved in the construction
of the galaxy merger tree. The machinery to obtain the merger
trees involved post-processing the simulation outputs using ROCK-
STAR (Behroozi, Wechsler & Wu 2012a) halo/subhalo finder along
with CONSISTENT-TREES (Behroozi et al. 2012b). However,
these codes can only be run on dark matter particles. In order to
obtain the galaxy merger trees, we first identify galaxies usingSUB-
FIND. We then finally map theSUBFIND galaxies to the dark matter
subhaloes identified within ROCKSTAR-CONSISTENT TREES.
In the process, both ROCKSTAR and SUBFIND catalogues had to
be used to construct the galaxy merger tree.

To begin with, halo/subhalo merger trees were identified by
running the ROCKSTAR (Behroozi et al. 2012a) halo/subhalo finder
along with CONSISTENT-TREES (Behroozi et al. 2012b), both of
which are described in the following two subsections.

2.3.1 ROCKSTAR

ROCKSTAR (or ‘Robust Overdensity Calculation using K-Space
Topologically Adaptive Refinement’) is an algorithm based on
adaptive hierarchical refinement of FOF groups. Primary FOF
groups are first identified using an FOF finder. Within each FOF
group, a hierarchy of FOF subgroups (in phase space) is identified
using an adaptive refinement of the linking length. The FOF
subgroups at the lowest (deepest) level of the hierarchy are then
converted into seed haloes. Starting with the lowest level of the
hierarchy, the FOF subgroup particles are assigned to the seed
haloes based on phase space distances; this process is repeated
for the higher levels of the hierarchy until all particles of the parent
FOF group have been assigned to the halo. After assigning all the
particles, the host–subhalo relationship is calculated by assigning
a seed halo to be a subhalo of the closest seed halo (within the
same FOF group) with larger number of assigned particles. This
process is performed until all the seed haloes are either host haloes
or subhaloes. For further implementation details, see the original
paper (Behroozi et al. 2012a).

2.3.2 CONSISTENT-TREES

We build a merger tree for our ROCKSTAR haloes/subhaloes
using CONSISTENT-TREES algorithm (Behroozi et al. 2012b).
CONSISTENT-TREES is an extension to traditional particle-
based (constructed by tracing trajectories of halo/subhalo particles
across different time-steps) tree building algorithms that can poten-
tially compromise the continuity of halo/subhalo properties across
simulation time-steps, due to the issues listed in section 2.2 of
Behroozi et al. (2012b).
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CONSISTENT-TREES resolves the foregoing problem by trac-
ing (in addition to particles) a subset of halo/subhalo properties
that include halo mass, maximum circular velocity, halo position,
and bulk velocity. A major component of the algorithm is to
ensure continuity in these halo properties by construction. This
is achieved by running a particle-based tree finder and establishing
preliminary links between progenitor haloes (at time-step tn−1) and
descendant haloes (at time-step tn). The subsequent steps consist of
the following actions:

(i) Gravitationally tracing the positions of descendant haloes
from tn to tn−1 to obtain their most likely progenitors at tn−1;
removing progenitors whose properties do not resemble the most
likely progenitors of the corresponding descendants.

(ii) For each descendant halo at tn that lacks a progenitor at tn−1

after step (i), a phantom progenitor is assigned with halo properties
identical to its most likely progenitor at tn−1; however, those
descendant haloes that do not have progenitors for a sufficiently
large sequence of time-steps are removed.

(iii) Finally, if a halo at tn−1 has no descendant at tn after step
(ii), it is merged with a halo (at tn) in its vicinity that has the
strongest tidal field; additionally, the halo is removed as a statistical
fluctuation if it is too far away from other haloes to experience any
significant tidal field.

(iv) Steps (i) to (iii) are iterated over the range of time-steps
(where each iteration corresponds a pair of time slices tn − 1 and
tn) from final time tf to initial time ti. This establishes a lineage of
haloes over the time range ti to tf.

Readers who are interested in more details are encouraged to
refer to section 5 of Behroozi et al. (2012b).

2.3.3 Constructing galaxy merger tree: matching ROCKSTAR and
SUBFIND

The subhalo merger trees obtained using ROCKSTAR-
CONSISTENT TREES are dark matter only. In order to construct
the galaxy merger tree for our SUBFIND galaxies, we must match
the subhaloes on the ROCKSTAR merger tree to our SUBFIND
galaxies. We perform the following steps for the matching:

(i) For a given ROCKSTAR subhalo (mass MRS
h ) denoted by

SUBHALO-RS, we select all SUBFIND subhaloes (with mass
M sub

h ) that satisfy 0.5 × MRS
h < M sub

h < 2 × MRS
h and within a

maximum distance of 5 × RRS
vir , where RRS

vir is the virial radius of
the ROCKSTAR subhalo. We then choose the SUBFIND subhalo
that is closest to the ROCKSTAR subhalo, denoted by SUBHALO-
RS-SUB.

(ii) For theSUBFIND subhaloSUBHALO-RS-SUB, we select all
ROCKSTAR subhaloes (with mass M sub

h ) that satisfy 0.5 × M sub
h <

MRS
h < 2 × M sub

h and within a maximum distance of 5 × Rsub
vir ,

where Rsub
vir is the virial radius of the SUBFIND subhalo. We then

choose the ROCKSTAR subhalo that is closest to the SUBFIND
subhalo, denoted by SUBHALO-RS-SUB-RS.

(iii) If (and only if) we retrieve the original ROCKSTAR subhalo
at the end of step (ii), i.e. SUBHALO-RS-SUB-RS is identical to
SUBHALO-RS, we say that SUBHALO-RS (from the ROCKSTAR
merger tree) and SUBHALO-RS-SUB (from the SUBFIND cata-
logue) have been matched.

In order to generate a corresponding SUBFIND galaxy merger
tree from a ROCKSTAR merger tree, every ROCKSTAR subhalo on
the tree must be matched with a SUBFIND galaxy for the redshift

Figure 1. ηmatching is the matching efficiency, i.e. the ratio between
the number of SUBFIND trees with respect to the original number of
ROCKSTAR trees (before matching ROCKSTAR and SUBFIND trees). 1 −
ηmatching therefore is the fraction of ROCKSTAR trees lost because we could
not find a corresponding SUBFIND tree to match with. ‘≥ log(MH

z=0.6)’ is
the threshold subhalo mass of galaxies selected at z = 0.6; zf is the maximum
redshift up to which their progenitors are traced (starting from zi = 0.6).

range of our interest (zi ≤ z ≤ zf). If the matching fails at any redshift
within (zi ≤ z ≤ zf), the entire tree is discarded. We quantify the
matching success rate by defining a matching efficiency ηmatching

as the ratio of the number of matched SUBFIND trees over the
number of original ROCKSTAR trees (present before matching).
Fig. 1 shows ηmatching as a function of Mh at various values of
zf (zi = 0.6). For zf = 1.5 (red line), the efficiency is 86 per cent for
all masses. At higher zf, we lose more trees (as expected) and the
efficiency decreases to 75–82 per cent for zf = 3. This translates to
a total of 27 942 SUBFIND galaxy merger trees with progenitors
up to redshift 3. This sample is sufficient for a statistical analysis,
and to avoid further decrease in efficiency, we choose not to trace
progenitors beyond redshift 3, hereafter defining the redshift range
of our study to be 0.6 ≤ z ≤ 3. We chose z ≥ 0.6 since it is the time
period when galaxy formation and merger processes are most active.

2.4 Shapes of galaxies and dark matter haloes

We now describe how galaxy shapes are quantified. We model
the shapes of the dark matter and stellar matter components of
subhaloes as ellipsoids in three dimensions by using the eigenvalues
and eigenvectors of the inertia tensor (Bailin & Steinmetz 2005;
Tenneti et al. 2014) given by

Iij = 	nmnxnixnjW (rn)

	nmn

(1)

where mn is the mass of the nth particle and xni and xnj represent the
i and j component of the position of the nth particle (0 ≤ i, j ≤ 2).
rn is the distance of the nth particle from the subhalo centre and is
given by r2

n = ∑
x2

ni . W(rn) is a weight function. Several weight
functions have been used in the literature. W(rn) = 1 corresponds to
an unweighted inertia tensor that assigns equal contributions to all
stars within the subhalo. However, observationally it is difficult to
detect stars in the outskirts of the galaxy; in order to minimize the
influence of these regions, one can use

W (rn) = 1

r2
n

(2)
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Figure 2. Shape convergence test: normalized histograms of q = b
a

of the
dark matter component of SAMPLE-TREE galaxies at z = 0.6. We show
the comparison between shapes determined using all particles in the subhalo
with those obtained using a random subsample of Npart = 50, 100, 300, 1000
particles in the subhalo.

which naturally puts a higher weight on stars closer to the galaxy
centre. This corresponds to the reduced inertia tensor.

We denote the principal axis directions or eigenvectors (unit
vectors) of Iij to be (êa, êb, êc) with corresponding eigenvalues (λa,
λb, λc). The lengths of the principal axes (a, b, c) are given by
(
√

λa,
√

λb,
√

λc). The ellipticities can then be measured by the
axis ratios

q = b

a
, s = c

a
(3)

where a is the length of the primary (largest) axis. A perfectly
spherical subhalo corresponds to q = s = 1 and a triaxial halo
corresponds to q �= s < 1.

To minimize any possible bias in the measured shape, we adopt an
iterative approach wherein we first determine the principal axes and
axis ratios using all the particles in the subhalo, thereby determining
the ellipsoidal volume. For each successive iteration, we then
recalculate the inertia tensor and axis ratios ignoring particles
outside the ellipsoidal volume. We repeat this until each iteration
leads to � 1 per cent change in a, b and c. In this work, we have
used the reduced inertia tensor, along with the iterative scheme, for
computing both stellar matter and dark matter shapes, unless stated
otherwise.

2.4.1 Shape convergence test

We require a sufficiently large number of particles to reliably
measure galaxy (subhalo) shapes. Here, we determine the minimum
number of particles. Fig. 2 shows the distribution of q (denoted by
P(q|Mh)) for z = 0.6 and Mh > 1011 M� h−1 galaxies. We show
P(q|Mh) for different numbers (Npart) of subsampled dark matter
particles within each subhalo. We find that the distributions converge
for Npart = 300, 500, 1000 whereas for Npart = 50, q is significantly
underestimated. Therefore, we assume Npart ≥ 300 in this work to
ensure shape convergence; similarly, this choice is also sufficient
for the convergence of s. This sets a minimum subhalo mass of

our Galaxies to Mh ∼ 3 × 109 M� h−1, which limits the subhalo
mass and redshift range over which we can construct merger trees.
We find that for galaxies with Mh > 1011 M� h−1 at z = 0.6, their
progenitors have Mh � 3 × 109 M� h−1 up to z = 3. Therefore, our
final choice for the subhalo mass range and redshift range in this
work are Mh > 1011 M� h−1 and 0.6 < z < 3.

2.5 Misalignment angle

To quantify the misalignment between the galaxy (stellar matter
component) and its host dark matter subhalo, we calculate the
principal axes corresponding to the dark matter and star particles,
i.e. (êDM

a , êDM
b , êDM

c ) and (ê∗
a, ê

∗
b, ê

∗
c ), respectively. The misalign-

ment angle is then defined as the angle between the eigenvectors
corresponding to the primary (longest) axes.

θm = arccos
(∣∣êDM

a · ê∗
a

∣∣) (4)

2.6 Correlation function

The ellipticity–direction (ED) correlation function (Lee et al. 2008)
cross-correlates the orientation of the major axis of a subhalo with
respect to the large-scale density field. For a subhalo centred at
position x with major axis direction êa , the ED cross-correlation
function is given by

ω (r) =
〈
|êa(
x) · r̂(
x + 
r)|2

〉
− 1

3
(5)

where r̂ = 
r
r

and 
r is the position vector originating from the subhalo
position (
x) to a tracer (galaxy positions or dark matter particle
positions) of the large-scale matter distribution around the halo. In
this work, we have used the dark matter particle positions as tracers
of the matter density field.

3 R ESULTS

3.1 Stellar mass–subhalo mass relation

Fig. 3 shows the subhalo total (dark matter+gas+stars+black hole)
mass (Mh) versus stellar mass (M∗) relation of SAMPLE-TREE
galaxies at z = 0.6, 1.5, and 3.0 with Mh > 1011M� h−1 at z =
0.6. As expected, Mh and M∗ are strongly correlated and both
decrease with increasing redshift. The leftmost panel presents the
full sample (by definition of SAMPLE-TREE) of galaxies above
Mh > 1011 M� h−1. It is instructive to compare these predictions
to those of semi-empirical models. The prediction from the semi-
empirical model of Behroozi et al. (2013) is shown as a dashed
black line; they assume a parametric model for the stellar mass
versus halo mass relation, and determine the best-fitting parameters
of that relation using the observational constraints on the stellar mass
function and star formation histories. Note that the semi-empirical
models make predictions for central galaxies only, so we compare
their prediction to the mean trend of only the central galaxies
within SAMPLE-TREE shown as a solid black line. We see that
the semi-empirical model predictions are broadly consistent with
MBII for 1011.5 � Mh � 1013 M� h−1. At Mh � 1013 M� h−1 and
Mh � 1011.5 M� h−1, the semi-empirical model predicts somewhat
lower stellar masses compared to MBII.

The middle and rightmost panels of Fig. 3 correspond to the
progenitors of the z = 0.6 galaxies from the leftmost panel. As
redshift increases along the merger tree, the Mh–M∗ relation does not
significantly change either in slope or intercept, broadly consistent
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4120 A. K. Bhowmick et al.

Figure 3. The 2D histograms show the dark matter mass (Mh) versus stellar mass (M∗) relation of galaxies (and dark matter subhaloes) on 27 942 trees
corresponding to Mh > 1011M� h−1 galaxies at z = 0.6 (leftmost panel) and their main progenitors at z = 1.5 (middle panel) and z = 3 (rightmost panel).
Additionally, in the leftmost panel the solid black line corresponds to the mean relations for the central galaxies at z = 0.6; we compare this to the dashed black
line, which corresponds to the mean relations for the central galaxies predicted using the semi-empirical model of Behroozi, Wechsler & Conroy (2013).

with predictions from semi-analytical models (Mitchell et al. 2016)
as well as observations (Leauthaud et al. 2012). This implies that
galaxies grow in stellar mass and dark matter mass at roughly the
same rate as they evolve along the merger tree.

As the subhalo mass strongly correlates with stellar mass, and
therefore also correlates with other observable properties such as
luminosity, star formation rate, we shall hereafter use subhalo mass
cuts to construct the various galaxy samples defined in the next
section for the rest of this work.

3.2 List of galaxy samples: definitions and notations

Before we discuss the rest of the results, we describe the types of
galaxy samples that we consider in this work.

(i) SAMPLE-TREE: The primary sample of interest consists
of galaxies on the merger tree. We select galaxies with different
subhhalo mass cuts (Mh) at z = 0.6 and trace their progenitors
to z = 3 using the methods described in Sections 2.3. Hereafter,
we shall refer to this sample as SAMPLE-TREE. For example, the
sample name ‘SAMPLE-TREE: Mh > 1011 M� h−1: z = 2’ refers
to galaxies at z = 2 that are progenitors of the Mh > 1011 M� h−1

galaxies as selected at z = 0.6. Using this sample, we study the
redshift evolution of IA properties of galaxies, without having to
consider the impact of evolution due to sample selection.

(ii) SAMPLE-MCUT: The secondary sample of interest is ob-
tained using the selection criterion of Tenneti et al. (2015a).
Here, we select galaxy samples with a fixed subhalo mass cut
applied at all redshifts. Hereafter, we shall refer to this sample
as SAMPLE-MCUT. For example, the sample name ‘SAMPLE-
MCUT: Mh > 1011 M� h−1: z = 2’ refers to all galaxies at z =
2 with Mh > 1011 M� h−1. With this sample, the observed redshift
evolution of IA properties is a combination of intrinsic redshift
evolution effects, and the evolution due to sample selection.

(iii) SAMPLE-RANDOM: To interpret the impact of requiring
galaxies to be a part of a merger tree, it will be necessary to
look at differences in IA properties between a progenitor (merger
tree) galaxy and a randomly chosen galaxy of similar mass. To do
this, we construct a galaxy sample by randomly drawing galaxies

from the full sample at some redshift (all galaxies in the simulation
snapshot), such that the total (dark matter+gas+stars+black hole)
mass function is modulated to be identical to that of SAMPLE-
TREE (progenitor) galaxies at the same redshift. We shall refer to
this as sample SAMPLE-RANDOM. For example, the sample name
‘SAMPLE-RANDOM: Mh > 1011 M� h−1: z = 2’ refers to a random
sample of galaxies at z = 2 whose mass function is identical (by
construction) to ‘SAMPLE-TREE: Mh > 1011 M� h−1: z = 2’.

3.3 Evolution of galaxy shapes and misalignment angles

In this subsection, we will investigate how the shapes of galax-
ies (and dark matter subhaloes), described by axis ratios q = b

a

and s = c
a

, and the misalignments between stellar and dark matter
components evolve with redshift along the merger tree. Fig. 4 shows
an illustration of the evolution of a single simulated galaxy along
the merger tree from z = 3 to z = 0.6. We can see that the shape of
the dark matter component (yellow ellipse) becomes more spherical
with decreasing redshift. Furthermore, at z = 3, the stellar matter
is significantly misaligned with respect to the dark matter, but the
alignment becomes stronger as redshift decreases. In the following
subsections, we shall show that the foregoing trends persist for the
overall distribution of shapes and misalignment angles for the entire
set of SAMPLE-TREE galaxies.

3.3.1 Shape

Fig. 5 shows the distributions P(q|z, Mh) and P(s|z, Mh) of axis ratios
q and s, respectively. In Section 2.4.1, we established that �300
particles are required to reliably measure the shape; this dictates our
choice of minimum subhalo mass threshold of Mh > 1011 M� h−1

at z = 0.6. The solid and dashed lines correspond to SAMPLE-
TREE and SAMPLE-MCUT, respectively. The bottom panels show
the ratio between the axis ratio distributions of SAMPLE-TREE and
SAMPLE-MCUT galaxies.

Subhalo mass dependence on the merger tree: We first focus
on shapes of dark matter subhaloes. For SAMPLE-TREE galax-
ies (solid lines), we see that as subhalo mass increases, P(q|z, Mh)
and P(s|z, Mh) (for dark matter) are increasingly skewed towards
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Figure 4. A 2D illustrative example of the evolution of an MBII galaxy on the merger tree. The red histograms show the distribution of stars and grey
histograms show the distribution of underlying dark matter. The yellow ellipse represents the shape identified using dark matter particles, while the green
ellipse represents the shape identified using stellar matter particles; the yellow and green dashed lines are their corresponding major axis directions. We can
see that the subhalo shape is becoming more spherical from z = 3 to z = 0.6. Furthermore, the alignment between stellar matter and dark matter shapes is
becoming stronger as we go from z = 3 to z = 0.6.

lower values of q and s. This is more clearly seen in the mean values
of q and s in Fig. A1. This implies that as subhalo mass increases,
galaxies on the merger tree become less spherical at fixed redshift.
This is also true for SAMPLE-MCUT galaxies (dashed lines) and
has been well established in previous studies (Hopkins, Bahcall &
Bode 2005; Allgood et al. 2006; Tenneti et al. 2015a); therefore, it
is not surprising that it persists for galaxies on the merger tree.

For the shapes of the stellar matter component, the dependence
on subhalo mass at z � 1.5 is the same as that of the dark matter
component for both P(q|Mh) and P(s|Mh), also seen in Tenneti et al.
(2015a). In other words, at z � 1.5 more massive galaxies have
less spherical shapes for the stellar matter component (the mass
dependence is seen much more clearly in Fig. A2). However, this
result does not persist all the way up to z ∼ 3. In fact, we see that
the mass dependence of P(q|Mh) is reversed (i.e. P(q|Mh) skews
towards higher values with increasing subhalo mass) at z ∼ 3 while
P(s|Mh) has no significant mass dependence at z ∼ 3. Therefore,
we find that at z ∼ 3, the sphericity of the stellar matter component
of galaxies increases with increasing subhalo mass.

To summarize the above trends, we find that

(i) the shapes of the dark matter components of galaxies become
less spherical with increasing subhalo mass;

(ii) for the stellar matter components, the shapes become less
spherical with increasing subhalo mass at z � 1.5. The trend starts

to reverse at z� 1.5 and by z ∼ 3, the shapes become more spherical
with increasing subhalo mass.

Redshift evolution on the merger tree: We first focus on
the shapes of dark matter subhaloes. For SAMPLE-TREE galax-
ies (solid lines), we see that for all three panels, as redshift decreases,
the peaks of P(q|z, Mh) and P(s|z, Mh) (for dark matter) shift
towards higher values of q and s. This implies that as redshift
decreases, galaxies on the merger tree evolve to become more
spherical. This is also true for SAMPLE-MCUT galaxies (dashed
lines), as was previously reported in Tenneti et al. (2015a). It
is also noteworthy that our results are consistent with Hopkins
et al. (2005), which investigated the evolution of shapes of cluster-
sized haloes (Mh > 2 × 1013 M� h−1) in N-body simulations over
roughly the same range of redshifts.

The shape evolution of the stellar matter component has signifi-
cant differences compared to that of dark matter (as already hinted
in the discussion on the subhalo mass dependence). For instance,
P(s|z, Mh) tends towards being less spherical as redshift decreases.
This trend is opposite to that of dark matter. However, note also
that the overall evolution of P(s|z, Mh) is significantly weaker for
stellar matter than for dark matter. For P(q|z, Mh), the evolution is
more complicated and depends on the subhalo mass threshold. For
Mh > 1011 M� h−1, there is no significant evolution. On the other
hand, for Mh > 1012 M� h−1 and Mh > 1013 M� h−1, the evolution
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4122 A. K. Bhowmick et al.

Figure 5. Distribution of 3D galaxy shapes: P(q|z, Mh) (top) and P(s|z, Mh) (bottom) show the normalized probability distributions of axis ratios q = b
a

and
s = c

a
of dark/stellar matter components of galaxies (subhaloes). Solid lines and dashed lines correspond to galaxy samples SAMPLE-TREE and SAMPLE-

MCUT, respectively (see Section 3.2 for definition of galaxy samples). δq and δs correspond to the ratio of P(q|z, Mh) and P(s|z, Mh), respectively, between
SAMPLE-TREE and SAMPLE-MCUT galaxies. The error bars are 1σ Poisson errors. Additionally, in the panels showing stellar shapes, the faded dotted lines
show the distributions for stars located within the half-mass radii of the galaxies.

MNRAS 491, 4116–4130 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/491/3/4116/5634270 by U
niversity C

ollege London user on 05 N
ovem

ber 2020



Intrinsic alignments evolution 4123

is significant: P(q|z, Mh) is less spherical at z = 0.6 compared with
z = 3.

To summarize the above trends, we find that:

(i) The shapes of the dark matter components of galaxies tend to
become more spherical with time.

(ii) The shapes of the stellar matter components of galaxies tend
to become less spherical with time, especially for higher mass
thresholds.

Comparison with unweighted stellar shapes within the galaxy
half-mass radius: As mentioned in Section 2.4, we use the
reduced (iterative) inertia tensor so as to minimize the effect of
stars in the outer regions of galaxies. However, it is instructive to
see whether our overall results (shape evolution) change if the stellar
shapes are computed using stars strictly within the galaxy half-mass
radius R1/2 (with all the stars given the same weight). It is important
to note that if we simply use the unweighted (iterative) inertia tensor
with an exclusion of all the stars outside a sphere with half-mass
radius (rn > R1/2) at every iteration, this would artificially introduce
spherical symmetry (Tenneti et al. 2015a), and potentially bias the
inferred shapes towards being more spherical. In order to avoid
this bias, we instead needed to iteratively converge to an ellipsoidal
shape aligned with the respective galaxy, with a volume equal to
that of a sphere enclosed by the half-mass radius. The details of
the computation have been described in Appendix B. The faded
dotted lines in Fig. 5 show the shapes of stellar distributions of
SAMPLE-TREE galaxies within the half-mass radii; overall, we
find that they are less spherical than that of the solid lines. But
most importantly, the redshift evolution of the stellar shapes within
the half-mass radius (faded dotted lines) is the same as that of the
overall stellar shapes (solid lines) obtained using the reduced inertia
tensor, i.e. for both prescriptions, the shapes become less spherical
with decreasing redshift.

Comparing SAMPLE-TREE and SAMPLE-MCUT : We now
compare the axis ratio distributions between SAMPLE-TREE and
SAMPLE-MCUT (see ratio plots in Fig. 5).

For the dark matter shapes, we find that the axis ratio distributions
of SAMPLE-TREE and SAMPLE-MCUT are broadly consistent, i.e.
there is no statistically significant difference in their shapes given
the error bars. The fact that this is persistent all the way up to
z = 3 is noteworthy because at z = 3, SAMPLE-MCUT galaxies
are significantly more massive than SAMPLE-TREE galaxies. This
suggests that at fixed redshift, the subhalo mass is not the sole
parameter that determines the shapes of dark matter component
of galaxies. In particular, galaxies that are progenitors of lower
redshift galaxies above some mass threshold may be less spherical
compared to a randomly chosen set of galaxies of similar subhalo
mass. In order to show this explicitly, in Fig. 6 we compare the
axis ratio distributions (at z = 3) of the dark matter components of
SAMPLE-TREE galaxies with that of a random sample (SAMPLE-
RANDOM) whose mass functions are modulated to be identical to that
of SAMPLE-TREE. We see that the axis ratios for SAMPLE-TREE
galaxies are smaller than that of SAMPLE-RANDOM galaxies. This
is also true in general for z � 1.5. This solidifies the impression
that early galaxies that are progenitors of present-day massive
galaxies (Mh > 1011 M� h−1 at z = 0.6) are more elliptical (on
an average) than a randomly selected galaxy at similar subhalo
mass and redshift.

For the stellar matter shapes, the ratio plots show that at z = 3,
P(q|Mh) for samples with mass thresholds of Mh > 1011 M� h−1

and Mg > 1012 M� h−1 are less spherical for SAMPLE-TREE
galaxies compared with SAMPLE-MCUT galaxies. This is because

Figure 6. Comparison of the shapes of progenitor galaxies and randomly
selected galaxies of similar mass at z = zf = 3. The solid and dashed
lines show P(q|z, Mh) (dark matter component) for SAMPLE-TREE: Mh >

1011 M� h−1: z = 3 and SAMPLE-RANDOM: Mh > 1011 M� h−1: z =
3 (see Section 3.2 for the sample definitions). δq is the ratio between the
solid and dashed lines. SAMPLE-RANDOM is constructed to have a mass
function identical to that of SAMPLE-TREE progenitors.

SAMPLE-MCUT galaxies are more massive compared to SAMPLE-
TREE galaxies at z = 3 (we have already shown that stellar matter
shapes are more spherical at higher subhalo masses at z = 3).
P(s|Mh) however has no significant difference between SAMPLE-
TREE and SAMPLE-MCUT at z = 3 despite the difference in
subhalo masses. This is simply because there is insignificant mass
dependence in P(s/Mh) for stellar matter at z = 3.

The comparison of shapes between SAMPLE-TREE and
SAMPLE-MCUT galaxies at z = 3 can now be summarized as
follows:

(i) For the dark matter components, no difference is found be-
tween the shapes of SAMPLE-TREE and SAMPLE-MCUT galaxies
at z = 3 despite the difference in masses. This is because at z = 3
galaxies that are progenitors of z ∼ 0.6: Mh � 1011 M� h−1 galaxies
are significantly less spherical (on an average) than a randomly
selected galaxy of similar subhalo mass and redshift.

(ii) For the stellar matter component, SAMPLE-TREE galaxies
are less spherical compared to SAMPLE-MCUT galaxies at z = 3.
This is because SAMPLE-MCUT galaxies are more massive (which
we show to be more spherical for stellar matter component) than
SAMPLE-TREE galaxies at z = 3.

Shapes of projected distributions: It is instructive to also
investigate the evolution of the 2D projected shapes. In Fig. 7, we
project the SAMPLE-TREE galaxies on the xy plane. As a result,
there are only two eigenvectors (
ea and 
eb) and eigenvalues (a and
b). We compute the distributions of the axis ratios in Fig. 7. We
see that the dark matter 2D shapes tend to become more spherical
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4124 A. K. Bhowmick et al.

Figure 7. Distribution of projected galaxy shapes: P(q|z, Mh) shows the normalized probability distributions of axis ratio q = b
a

obtained by projecting the
SAMPLE-TREE galaxies on the xy plane. Top and bottom panels correspond to 2D shapes of dark matter and stellar matter, respectively. The error bars are 1σ

Poisson errors.

with decreasing redshift, as also seen for 3D shapes. On the other
hand, the evolution of the stellar matter 2D shape is significantly
smaller compared to dark matter, with no significant evolution for
Mh > 1011,12 M� h−1. For Mh > 1013 M� h−1, the 2D shape is
slightly less spherical at z = 0.6, compared to z = 3.

3.3.2 Misalignment angle

In this section, we investigate how the misalignment angle of
galaxies on the tree evolves with redshift.

The solid lines in Fig. 8 (top panels) show the distribution P(θ |z,
Mh) of misalignment angles (θ ) at different redshifts and subhalo
mass cuts for SAMPLE-TREE galaxies. The distributions are
skewed with a maximum at θm ∼ 5−10 deg accompanied by a
long tail at θm > 10 deg, and a sharp fall-off at θm < 5 deg. At fixed
redshift, as the subhalo mass increases, P(θ |Mh) skews towards
smaller values of θ (seen more clearly in Fig. A3). This implies
that more massive galaxies are more aligned with their subhaloes.
P(θ |Mh) skews towards smaller θ as redshift decreases, implying
that galaxies evolve over time to become increasingly aligned with
their subhaloes, although the evolution is mild.

The evolution of the misalignment angle can be put in the
context of existing IA models. The fact that the evolution is mild
suggests that it may possibly be mediated by the evolution of
the instantaneous tidal field. This is hinted by the fact that the
contribution of the instantaneous tidal field is small (compared
to observations), as predicted by the analytical model presented
in Camelio & Lombardi (2015). In such a scenario, the redshift
evolution, contributed by the instantaneous tidal field, can be
thought of as a perturbation to the pre-existing alignment (θm ∼
10 deg). Given its strength, the pre-existing alignment is likely set
by the primordial (at the formation epoch of these galaxies) tidal
field, as assumed in linear alignment models (Catelan et al. 2001;
Hirata & Seljak 2004).

We also compare P(θ |z, Mh) for SAMPLE-TREE galaxies to the
predictions for SAMPLE-MCUT galaxies (solid versus dashed lines
in Fig. 8 top panels); Fig. 8 (bottom panels) shows the ratio δθ . For
MH > 1011,12 M� h−1, we find that δθ < 1 for θ < 25 deg and δθ

> 1 for θ > 25 deg at all redshifts. This implies that SAMPLE-
TREE galaxies are less aligned with their subhaloes compared to
SAMPLE-MCUT galaxies. At z = 1.5 and z = 3, one would expect
this to be the case asSAMPLE-MCUT galaxies are more massive, and
therefore more aligned thanSAMPLE-TREE galaxies. However, we
also see the same effect at z = 0.6, where both SAMPLE-MCUT and
SAMPLE-TREE galaxies have the same subhalo mass thresholds.
This implies that galaxies that formed between 0.6 � z � 3 (i.e.
those that do not have progenitors up to z = 3) are more aligned
with their subhaloes than those that formed at z > 3.

Comparison with misalignments of stellar mass within the
galaxy half-mass radius: We now investigate how our results
for the misalignment angle distributions are affected if we only
consider star particles within the galaxy half-mass radius. In Fig. 9,
the faded dotted lines show misalignment angle distributions of
SAMPLE-TREE galaxies using the unweighted inertia tensor of
star particles within the galaxy half-mass radius R1/2. We compare
them to the solid lines (same as Fig. 8), which were made using
the reduced inertia tensor of all star particles in a galaxy (subhalo).
For Mh > 1011,12 M� h−1 galaxies (leftmost and middle panels),
we see that at z = 0.6 (red lines) the faded dotted lines are
slightly more aligned compared to the solid lines; the differences
tend to decrease at z = 3. For Mh > 1013 M� h−1, the error bars
are too large for the distributions to be distinguishable (right-
most panel). Most importantly, we find that the overall redshift
evolution is the same regardless of the inertia tensor that is
used, i.e. galaxies tend to become more aligned with decreasing
redshift.

Misalignments in projected distributions: Fig. 10 shows
the evolution of the projected galaxy–subhalo misalignment an-
gle (θproj) distribution from z = 0.6 to z = 3 for SAMPLE-TREE
galaxies. We note that the peak misalignment in projected space is
significantly smaller compared to 3D space. This is expected due
to the fact that θproj < θ for any given galaxy. Overall, we see that
the redshift evolution reported for 3D misalignments can also be
seen in the projected space, i.e. the projected stellar distributions
of galaxies become more aligned with respect to their dark matter
distributions with decreasing redshifts.
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Intrinsic alignments evolution 4125

Figure 8. P(θ |z, Mh) is the distribution of misalignment angle θ between stellar and dark matter component of subhaloes. Solid and dashed lines
correspond to SAMPLE-TREE and SAMPLE-MCUT galaxies, respectively. The black dotted lines represent the misalignment angle distribution if the
two eigenvectors are uniformly distributed in 3D space. δθ is the ratio between the solid and dashed lines. The error bars are obtained via bootstrap
resampling.

Figure 9. Comparison of the redshift evolution of P(θ |z, Mh) predictions for SAMPLE-TREE galaxies for different definitions of the inertia tensor. Top panels:
the solid lines are obtained using the reduced inertia tensor (same as previous figure). The faded dotted lines correspond to the unweighted inertia tensor
for particles within galaxy half-mass radius R1/2. The black dotted lines represent the misalignment angle distribution if the two eigenvectors are uniformly
distributed in 3D space. δθ is the ratio between the solid lines and the dotted lines shown in the top panel. The error bars are obtained via bootstrap resampling.

We have so far discussed the evolution of distributions of galaxy
shapes and misalignment angles. In Appendix A, we present the
evolution of the average values of the axis ratios and misalign-
ment angles, and provide simple fitting functions to quantify
them.

3.4 ED correlation function

In this section, we will investigate how the ED correlation function
of galaxies on the merger tree evolves with redshift. We now
present the results for the ED correlation function ω(r). The top
panels in Fig. 11 show ω(r) for SAMPLE-TREE galaxies and its
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4126 A. K. Bhowmick et al.

Figure 10. Distribution of projected misalignment angle: P(θproj|z, Mh) shows the normalized probability distribution of misalignment angle between the
projected stellar and dark matter distributions of the SAMPLE-TREE galaxies on the xy plane. The error bars are 1σ Poisson errors.

Figure 11. ω(r) is the ED correlation function of SAMPLE-TREE galaxies at different redshifts. Here, we are using the major axes of the stellar matter
components and galaxy positions as tracers of the matter distribution. The bottom panels show the ratio of ω(r, z) with respect to that of ω(r, z = 0.6). Error
bars are jackknife errors obtained by dividing the simulation volume into eight octants.

redshift evolution along the merger tree. The bottom panels show
the ratio ω(r, z)/ω(r, z = 0.6). They reveal the evolution of the ED
correlation for a wide range of scales to be probed by LSST weak
lensing (The LSST Dark Energy Science Collaboration et al. 2018).
These include scales� 5 Mpc h−1 where the NLA model and its ex-
tensions such as Blazek, Seljak & Mandelbaum (2016) already work
well. Additionally, our simulations also reveal ED correlations at
smaller scales, which are not well probed by these analytical models.
Accordingly, we choose ∼ 1 Mpc h−1 as an interesting scale around
which we shall now describe the evolution of the ED correlation.

At r > 1 Mpc h−1, we see that the correlation function is a
power law as a function of r. The slope of the power law does
not vary significantly with redshift or subhalo mass. The power-
law amplitude increases with subhalo mass at fixed redshift, as also
reported in Tenneti et al. (2015a). The ED correlation amplitude
increases with decreasing redshift along the merger tree (up to
factors of ∼4 from z = 3 to z = 0.6).

At sufficiently small scales (r � 1 Mpc h−1), ω(r) deviates
from a power law and is suppressed (compared to power-law
extrapolation from large scales). The extent of the suppression
increases with decreasing redshift. As we approach even smaller
scales ∼ 0.1 Mpc h−1, the redshift evolution is reversed com-
pared to large scales, i.e. ω(r) decreases with decreasing red-
shift along the merger tree (up to factors of ∼2 from z = 3
to z = 0.6).

We compare ω(r) predictions of SAMPLE-TREE to that of
SAMPLE-MCUT; Fig. 12 shows the ratio between the two as a
function of r. We find that as redshift increases, ω(r) for SAMPLE-
TREE becomes increasingly suppressed at scales r � 1 Mpc h−1 as
compared to that of SAMPLE-MCUT; at z = 3 the suppression is
by factors 3–4. At r � 1 Mpc h−1, the differences are relatively
small (by factors �2). These differences are largely because
SAMPLE-TREE galaxies are less massive compared to SAMPLE-
MCUT galaxies at higher redshifts.
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Intrinsic alignments evolution 4127

Figure 12. ωMCUT/ωTREE is the ratio of ω(r) of SAMPLE-TREE to that of SAMPLE-MCUT galaxies. Error bars are jackknife errors obtained by dividing the
simulation volume into eight octants.

In the following subsections, we shall dig deeper into the
foregoing results by first putting them in the context of the galaxy–
subhalo misalignments, and then finally revealing the factors that
drive the evolution of ED correlations at different scales.

3.4.1 Implications of galaxy–subhalo misalignment on the ED
correlation

We now study the implications of galaxy–subhalo misalignment and
its evolution on the ED correlation function. To do this, we compare
the ED correlations of galaxies (also shown in Fig. 11) to their
underlying dark matter subhaloes. The top panel of Fig. 13 shows
the ED correlation functions of SAMPLE-TREE galaxies, where
the solid and dashed lines correspond to galaxies and dark matter
subhaloes, respectively. As a consequence of the misalignment
between stellar matter and dark matter, the solid lines showing
the galaxy ED correlation functions are significantly suppressed
compared to the subhalo ED correlation functions (by factors ∼2–
4) at all scales. This implies that the alignment of galaxies with
respect to the surrounding density field is suppressed as compared
to their dark matter subhaloes. This has been established in previous
works (Tenneti et al. 2015b), and is also supported observationally in
the alignments of luminous red galaxies (Okumura, Jing & Li 2009).
We now discuss how this suppression evolves with redshift on the
merger tree. In the bottom panel of Fig. 13, we see that the ratio
ωDMsubhalo/ωgalaxy decreases with decreasing redshift; this is because
galaxy–subhalo misalignment decreases with decreasing redshift.
Furthermore, the evolution is stronger for Mh > 1011 M� h−1 haloes
as compared to Mh > 1013 M� h−1. This is because at z = 3,
Mh > 1013 M� h−1 galaxies are more aligned with their subhaloes
as compared to Mh > 1011 M� h−1 galaxies (compare leftmost and
rightmost panels of Fig. 8).

3.4.2 What drives the evolution of ED correlation at different
scales?

Here, we discuss the factors driving the evolution of the galaxy
ED correlation at different scales, as inferred from Fig. 13.
At scales � 1 Mpc h−1, note that the ED correlations for dark

matter subhaloes (dashed lines) undergo a significantly weaker
redshift evolution compared to that of galaxies (solid lines). In
fact, there is no significant evolution for Mh > 1011 M� h−1 and
Mh > 1012 M� h−1 subhaloes. Therefore, the fact that we find a
significant evolution for the galaxy ED correlation implies that its
evolution at scales > 1 Mpc h−1 is primarily driven by the evolution
of the galaxy–subhalo misalignment, as opposed to being driven by
the ED correlation for dark matter haloes.

At scales � 1 Mpc h−1, a suppression (compared to a power law)
is seen in the ED correlations for both galaxies and their dark matter
subhaloes. Furthermore, the suppression in the galaxy ED correla-
tion simply traces that of the dark matter subhalo, but at a lower
normalization. Overall, this tells us that the evolution of the ED
correlation profile for galaxies at scales � 1 Mpc h−1 is governed
by the evolution of both (i) the ED correlation for dark matter haloes
and (ii) the misalignment between galaxies and subhaloes. The
former leads to a decrease in the ED correlation for galaxies with
time, whereas the latter drives an increase in the ED correlation for
galaxies. Due to the complex interplay between these two competing
effects, no straightforward trend is seen in the evolution of ED
correlation at scales ∼ 1 Mpc h−1 (to be targeted by LSST).

At very small scales (∼ 0.1 Mpc h−1), the suppressed ED corre-
lation of DM subhaloes is so large that it dominates compared to the
evolution of galaxy subhalo misalignment angle. This competition
causes the reversal in the redshift evolution of ω(r) for galaxies at
these scales, compared to that in scales > 1 Mpc h−1.

4 C O N C L U S I O N S

This work is part of a continued series of papers dedicated to
studying the IAs of galaxies using the MassiveBlackII cosmo-
logical hydrodynamic simulation. In this work, we study redshift
evolution (0.6 � z � 3) by selecting galaxy samples (SAMPLE-
TREE) based on subhalo mass cuts (Mh > 1011,12,13 M� h−1) at
z = 0.6 and tracing their progenitors to z = 3 along a merger tree.
We study the redshift evolution of galaxy shapes, misalignment with
respect to host subhalo, and the ED correlation functions along the
merger tree. Our key findings are as follows:
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4128 A. K. Bhowmick et al.

Figure 13. Comparing ED correlation functions for SAMPLE-TREE galaxies and their dark matter subhaloes: in the top panels, solid and dashed lines show
the ED correlation functions of galaxies and their dark matter subhaloes, respectively. The ratio between the dashed versus solid lines are shown in the bottom
panels. Error bars in the correlation function are jackknife errors obtained by dividing the simulation volume into eight octants.

(i) The sphericity of the dark matter component of galaxies
increases with time, whereas that of the stellar matter component
decreases with time.

(ii) The distribution of galaxy–subhalo misalignment angle peaks
at ∼10 deg. With decreasing redshift, the distribution becomes
narrower and more skewed towards smaller misalignment angles.

(iii) The evolution of the ED correlation ω(r) of galaxies is driven
by the evolution of their alignment with respect to their host DM
subhaloes, as well as the alignment between DM subhaloes and the
surrounding matter overdensity.

(a) At scales ∼ 1 Mpc h−1, the alignment between DM sub-
haloes and the matter overdensity gets suppressed with time.
On the other hand, the alignment between galaxies and DM
subhaloes is enhanced. Due to these competing tendencies, the
redshift evolution of ω(r) for galaxies at ∼ 1 Mpc h−1 is not
straightforward.

(b) At scales > 1 Mpc h−1, there is no significant evolution in
the alignment between DM subhaloes and the matter overdensity.
As a result, the evolution of the galaxy–subhalo misalignment
leads to an increase in ω(r) for galaxies by a factor of ∼4 from
z = 3 to 0.6.

(c) At ∼ 0.1 Mpc h−1 scales, evolution in ω(r) for galaxies is
completely reversed compared to that at scales � 1 Mpc h−1, i.e.
it decreases by factors ∼2 from z = 3 to 0.6. This is because
at these scales, the alignment between DM subhaloes and the
matter overdensity is strongly suppressed with time, and this
effect dominates over evolution of galaxy–subhalo misalignment.

We also compare our results with the sample selection applied in
the previous work of this series (Tenneti et al. 2015a). In particular,
we also considered galaxy samples (SAMPLE-MCUT) with fixed
subhalo mass cuts (Mh > 1011,12,13 M� h−1), applied at all redshifts
between 0.6 and 3.

Interestingly, upon comparing the sphericities of dark matter
components of SAMPLE-TREE and SAMPLE-MCUT galaxies, we

find that they do not significantly differ (� 10 per cent); this is
true even at the highest redshift (z = 3) where SAMPLE-TREE
galaxies are significantly less massive than SAMPLE-MCUT. This
is explained by our finding that at z � 1.5, progenitors of z ∼ 0.6:
Mh � 1011 M� h−1 galaxies have significantly less spherical (on
an average) dark matter shapes than a randomly selected galaxy of
similar subhalo mass and redshift.

For the stellar matter component, we find that SAMPLE-TREE
progenitors at z = 3 are less spherical compared to SAMPLE-MCUT
galaxies. This is becauseSAMPLE-MCUT galaxies are more massive
(which we show to be more spherical for stellar matter component)
than SAMPLE-TREE galaxies at z = 3.

We find that SAMPLE-TREE galaxies are less aligned with their
subhaloes compared to SAMPLE-MCUT galaxies. At z = 1.5 and
z = 3, this can be attributed to the differences between their subhalo
masses. But the fact that we also see this at z = 0.6 further implies
that galaxies that formed earlier than z = 3 (i.e. those that do not
have progenitors up to z = 3) are more aligned than those that
formed at z < 3.

The effect of differences in subhalo masses (at z > 0.6) of
SAMPLE-TREE and SAMPLE-MCUT galaxies is also seen in their
ED correlation function ω(r). Compared to SAMPLE-MCUT, ω(r)
for SAMPLE-TREE galaxies is suppressed at increasing redshift
(by factors up to ∼3–4 at z = 3); this is due to decreasing subhalo
masses of progenitors in SAMPLE-TREE at increasing redshift.

This work demonstrates that hydrodynamic simulations such as
MBII are dispensable tools to study redshift evolution of galaxy
properties such as IA, primarily because of the ability to directly
trace progenitors of present-day galaxies by constructing merger
trees. This enables us to disentangle true IA evolution from apparent
evolution due to sample selection effects, which are inevitable in
observations. Future work will involve the use of the results from
this study, as well as previous works (Tenneti et al. 2014, 2015a,
2016), to construct halo models for IA of galaxies. These models
can then be used to construct mock catalogues by populating N-
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body simulation volumes, and thereby analyse possible systematic
biases caused by IA in weak lensing analyses.
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APPENDI X A : FI TTI NG THE EVOLUTI ON O F
S H A P E A N D M I S A L I G N M E N T A N G L E

Here, we present fitting functions for the evolution of the axis ratios
and misalignment angles. We model the redshift evolution as a

Figure A1. The filled circles show qmax
h and smax

h , which correspond to the averages of the distributions P(q|Mh, z) and P(s|Mh, z) for the dark matter
component of SAMPLE-TREE galaxies. The dashed lines show the best-fitting trend described by the function in equation (A1). The error bars are jackknife
errors obtained by dividing the simulation volume into eight octants.

MNRAS 491, 4116–4130 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/491/3/4116/5634270 by U
niversity C

ollege London user on 05 N
ovem

ber 2020

https://ui.adsabs.harvard.edu/abs/2009arXiv0912.0201L/abstract
http://dx.doi.org/10.1111/j.1365-2966.2006.10094.x
http://dx.doi.org/10.1086/430397
http://dx.doi.org/10.1088/0004-637X/762/2/109
http://dx.doi.org/10.1088/0004-637X/763/1/18
http://dx.doi.org/10.1088/0004-637X/770/1/57
http://dx.doi.org/10.1088/1367-2630/9/12/444
http://dx.doi.org/10.1051/0004-6361/201425016
http://dx.doi.org/10.1046/j.1365-8711.2001.04105.x
http://dx.doi.org/10.1093/mnras/stv2154
http://dx.doi.org/10.1093/mnras/stx1998
http://dx.doi.org/10.1086/163168
http://dx.doi.org/10.1093/mnras/stu1227
http://dx.doi.org/10.1093/mnras/stx482
http://dx.doi.org/10.1103/PhysRevD.70.063526
http://dx.doi.org/10.1111/j.1365-2966.2007.12312.x
http://dx.doi.org/10.1086/425993
http://dx.doi.org/10.1051/0004-6361/201015621
http://dx.doi.org/10.1007/s11214-015-0177-4
http://dx.doi.org/10.1093/mnras/stv627
http://dx.doi.org/10.1007/s11214-015-0203-6
http://dx.doi.org/10.1007/s11214-015-0213-4
http://dx.doi.org/10.1093/mnras/stv2615
http://arxiv.org/abs/1110.3193
http://dx.doi.org/10.1088/0004-637X/744/2/159
http://dx.doi.org/10.1111/j.1365-2966.2008.13624.x
http://dx.doi.org/10.1146/annurev-astro-081817-051928
http://dx.doi.org/10.1111/j.1365-2966.2005.09946.x
http://dx.doi.org/10.1093/mnras/stv2741
http://dx.doi.org/10.1088/0004-637X/694/1/214
http://dx.doi.org/10.1093/mnras/stu2058
http://dx.doi.org/10.1093/mnras/stv778
http://arxiv.org/abs/1503.03757
http://dx.doi.org/10.1046/j.1365-8711.2001.04912.x
http://dx.doi.org/10.1093/mnras/stu586
http://dx.doi.org/10.1093/mnras/stv272
http://dx.doi.org/10.1093/mnras/stv1625
http://dx.doi.org/10.1093/mnras/stw1823
http://arxiv.org/abs/1809.01669
http://dx.doi.org/10.1016/j.physrep.2014.11.001
http://dx.doi.org/10.1093/mnras/stv2198
http://dx.doi.org/10.1093/mnras/stu1536


4130 A. K. Bhowmick et al.

Figure A2. The filled circles show qmax∗ and smax∗ , which correspond to the averages of the distributions P(q|Mh, z) and P(s|Mh, z) for the stellar matter
component of SAMPLE-TREE galaxies. The dashed lines show the best-fitting trend described by the function in equation (A1). The error bars are jackknife
errors obtained by dividing the simulation volume into eight octants.

Figure A3. The filled circles show θmax, which corresponds to the peaks
of the distributions P(θ |Mh, z) for the dark matter component of SAMPLE-
TREE galaxies. The dashed lines show the best-fitting trend described by
the function in equation (A1).

Table A1. Best-fitting values of X0 and αX for various quantities: qh and
sh are q and s values of dark matter and stellar matter component of the
SAMPLE-TREE galaxies (subhaloes), respectively.

X X0 αX

qh 0.897 0.115
sh 0.756 0.129
q� 0.841 0.04
s� 0.599 − 0.02
θ 28.4 − 0.170

power law

X̄ = X0(1 + z)−αX (A1)

where X represent the quantity of interest (axis ratios/misalignment
angle). X̄ is the average value of the distribution P(X|MH, z). X0 is

the value of X̄ at z = 0. The filled circles in Figs A1, A2, and
A3 correspond to the average of the distributions of axis ratios and
misalignment angles. The dashed lines show the best fits obtained
using equation (A1). The corresponding best-fitting parameters are
shown in Table A1.

APPENDI X B: C OMPUTI NG THE STELLAR
S H A P E PA R A M E T E R S W I T H I N TH E
HALF-MASS RADI I O F G ALAXI ES

In Section 3.3.1, we computed (in addition to stellar shapes with
reduced inertia tensor) the stellar shapes effectively within the half-
mass radii of galaxies using unweighted (iterative) inertia tensor.
However, as mentioned in Section 3.3.1, simply excluding all stars
outside a sphere of half-mass radius artificially imposes a spherical
symmetry in the stellar distributions; this can potentially bias the
inferred shapes towards being more spherical. In order to avoid
this bias, we instead consider ellipsoids and perform the iterative
scheme in the following manner. At the first iteration, we include
all the stars within the subhalo, and determine the eigenvectors
(êa, êb, êc) and (a, b, c). At the second iteration and thereafter, we
consider an ellipsoid with principal axes and axis ratios obtained
from the previous iteration, but scale down the volume such that it
is equal to that of a sphere with half-mass radius. In particular, for
iteration i with eigenvectors (êi

a, ê
i
b, ê

i
c), eigenvalues (ai, bi, ci), and

axis ratios (qi, si), we have for i ≥ 2
(
êi
a, ê

i
b, ê

i
c

) = (
êi−1
a , êi−1

b , êi−1
c

)
(B1)

(qi, si) = (qi−1, si−1) (B2)

(ai, bi, ci) = (ai−1Ri−1, bi−1Ri−1, ci−1Ri−1); (B3)

where Ri = r1/2

(ai bi ci )1/3 . The end of the iteration is marked by when the
shape parameters converge, which then corresponds to an unbiased
measurement of the galaxy shape.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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