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Abstract. Transperineal volumetric ultrasound (US) imaging has be-
come routine practice for diagnosing pelvic floor disease (PFD). Hereto,
clinical guidelines stipulate to make measurements in an anatomically
defined 2D plane within a 3D volume, the so-called C-plane. This task
is currently performed manually in clinical practice, which is labour-
intensive and requires expert knowledge of pelvic floor anatomy, as no
computer-aided C-plane method exists. To automate this process, we
propose a novel, guideline-driven approach for automatic detection of
the C-plane. The method uses a convolutional neural network (CNN)
to identify extreme coordinates of the symphysis pubis and levator ani
muscle (which define the C-plane) directly via landmark regression. The
C-plane is identified in a postprocessing step. When evaluated on 100 US
volumes, our best performing method (multi-task regression with UNet)
achieved a mean error of 6.05 mm and 4.81 degrees and took 20 seconds.
Two experts blindly evaluated the quality of the automatically detected
planes and manually defined the (gold standard) C-plane in terms of their
clinical diagnostic quality. We show that the proposed method performs
comparably to the manual definition. The automatic method reduces the
average time to detect the C-plane by 100 seconds and reduces the need
for high-level expertise in PFD US assessment.

1 Introduction

The significance of the levator hiatus Pelvic Floor Disease (PFD) refers
to a group of conditions affecting the anatomy and function of pelvic organs.
PFD consists of urinary and fecal incontinence, sexual dysfunction and pelvic
organ prolapse (POP) [11, 3]. PFD is assessed by observing the levator hiatus
(LH) using 3D/4D ultrasound (US), in the plane of minimal hiatal dimensions
(defined as the C-plane) as shown in Fig. 1. The C-plane is defined as the an-
gled axial plane of shortest distance between the symphysis pubis (SP) and
the pubovisceral muscle at the anorectal angle, referred to as the levator ani
muscle (LAM)[7]. Assessments follow International Urogynecological Associa-
tion (IUGA) and The American Institute of Ultrasound in Medicine (AIUM)



2 H Williams et al.

standards [1]. Manual C-plane detection is prone to errors, labour intensive, and
requires a high level of expertise. Thus, an automatic detection of the C-plane
may reduce measurement variability, improve the clinical workflow, speed-up the
detection process and possibly allows low-skilled clinicians to perform the pro-
cedure and hence may help a wide range of patients. Unfortunately, to date, no
automatic solutions exist.

Automatic plane detection Several studies investigated the extraction of 2D
standard planes from 3D fetal and cardiac US volumes [10, 4, 14, 9, 15]. Chykeyuk
et al. and Yaqub et al. used Regression Random Forests (RRF) to extract planes
from US volumes [4, 14]. Yaqub et al. [14] adopted an RRF and feature asymme-
try to highlight informative voxels during training. Li et al.[9] proposed an itera-
tive transformation network (ITN) for standard plane detection in 3D volumes.
The ITN used a CNN to learn relationships between images of 2D planes and the
transformation required to reach the ground-truth. These methods utilise clin-
ical knowledge but not necessarily clinical guidelines. Zhu et al. [15] proposed
a guideline-driven learning method to determine 2D planes using anatomical
regularities according to guidelines. The use of guidelines improved results and
running time on a variety of images. All methods performed well, but without the
explicit use of clinical guidelines, the output of the networks will not necessarily
produce an output that is clinically interpretable.

Contribution We propose a novel guideline-driven methodology, that utilises
CNNs to extract the C-plane automatically from a 3D US volume. This is a
novel application of CNN landmark regression for plane detection, and, to the
authors’ knowledge, the first paper to present a fully automatic C-plane detection
pipeline. The CNN identifies two coordinates (directly via landmark regression),
that are sufficient to define the C-plane. These coordinates are well-known to
clinicians; thus, the output of our proposed method is interpretable, unlike other
plane detection methods. We determine the vector of minimal hiatal dimensions
within the mid-sagittal (MS) plane, a direction transformation matrix and the
mid-point of the plane. Our contributions consist of: a) a new methodological
approach to identify the C-plane; b) the novel application of advances in land-
mark location for plane detection with clinical context; and c) a clinically viable
blinded evaluation of C-plane detection.

2 Materials and methods

2.1 Data and manual detection of the C-plane

A dataset containing a training subset of 25 transperineal US volumes from 15
patients, and a validation subset of 100 transperineal US volumes from 43 pa-
tients was collected. The small training subset was due to the large clinical over-
head required to generate the ground truth data used for training. The dataset
was curated at UZ Leuven, Belgium, over the course of 6 months. It includes a
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Fig. 1. US at rest, with identification of
the C-plane in the MS (left) and oblique
axial (right) planes. The yellow line shows
the vector of minimal hiatal dimensions
and the red contour delineates the hiatal
area.
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Fig. 2. Extreme coordinates shown as red
dots define the C-plane bisecting the MS
plane. The vector of minimal hiatal di-
mensions is shown as a blue line.

high proportion of pathology cases, representing the true clinical world, with a
variety of pathologies (minor to severe), and a range of image qualities. The vol-
umes were acquired at rest, during Valsalva manoeuvre (i.e. forceful attempted
exhalation against a closed airway), and during pelvic floor contraction [1].

To manually determine the C-plane, the acquired volume has been rotated
such that the pubic rami are horizontally aligned in the coronal plane, follow-
ing this stage there are two possible methods: the Multiplanar (MP) and the
Omniview (OV) technique (GE Healthcare, Austria). In the MP technique, the
MS plane is rotated until the SP and LAM are horizontally aligned. In the OV
technique, the clinician draws a line of shortest distance between the SP and
LAM to define the C-plane. In our study, volumes were annotated using the MP
method, by one expert, resulting in Gold Standard (GS) C-plane orientations
used for validation. In practice, manual determination of the C-plane from an
US volume can take 2 minutes, which may increase depending on expertise and
patient pathology.

2.2 Overall framework

In this work we propose a pipeline to identify the C-plane from an US volume.
This is the first time, to the author’s knowledge, that localisation of anatomical
landmarks has been used directly in the application of plane detection. The
process utilises guidelines and automatically detects two extreme coordinates
within the US volume; the LAM and the SP which define the C-plane, shown in
Fig. 2. Fig. 3 shows the pipeline that detects the extreme coordinates directly via
landmark regression. These coordinates are known to clinicians, thus the output
can be easily understood and interpreted as it follows the clinical guidelines.

Formation of the direction transformation matrix and mid-point Once
SP and LAM extreme points are identified, as described in the following section,
the transformation matrix can be determined. We define the vector of shortest
Euclidean distance between the SP and the LAM within the MS plane,

#    »

AB.
The C-plane is defined in the IUGA guidelines as the plane orthogonal to the
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depth direction of the US volume (i.e.
∣∣0 0 1

∣∣) and containing the vector
#    »

AB.
The second orthogonal vector representing the plane can be defined as the cross
product of the normal, and

#    »

AB, thus we define the final orthogonal vector, by,

as −AByi +ABxj + 0k.
#    »

AB only has magnitude within the x and y components
as we restrict the extreme coordinates to lie within the same z slice, this ensures
adherence to clinical guidelines. Thus, we have defined the bases of the C-plane
and can formulate the following direction matrix

∥∥bx∥∥ ∥∥by∥∥∥∥bz∥∥ =

∥∥∥∥∥∥
ABx −ABy 0
ABy ABx 0

0 0 1

∥∥∥∥∥∥ . (1)

To re-sample the volume, a midpoint,
#»

O, to the C-plane is defined. We identify,
#»

O, as the mid-point between LAM and SP extreme coordinates.

2.3 Regression of extreme coordinates

The method is based on 3D CNN landmark regression, in which we directly
regress smooth, distance maps of the SP and LAM extreme coordinates to define
the C-plane (see Fig. 3). The rationale for this approach is that regression of one
coordinate from an average US volume of 450×500×450 voxels is hard to train.
Hence, to make the regression model robust, we propose to regress a distance
map of the SP/LAM extreme coordinates, and to use a combined distance map
as a weighted sampler. We thus tackle plane detection via regression as a multi-
task learning problem and compare two different CNN network architectures.
The CNN architecture was adapted to have 2 inputs (i.e. SP and LAM distance
maps) and multi-task learning ensuring that features are shared during training.

Determining extreme coordinates The proposed method is based on follow-
ing the IUGA guidelines. While the regression is performed in 3D, clinicians use
2D MS planes to determine these coordinates. Therefore, unlike other plane de-
tection tasks, a 2D approach is also followed in the determination of the extreme
coordinates. As the maximum pixel of the SP and LAM, may be in different MS
plane positions within the volume, the combined local sub-pixel maxima of the
SP and LAM distance maps are calculated for a small range of 2D MS planes.
The range of MS planes remains limited to reduce computational load and is
dependent on the overall pixel maxima position of SP and LAM distance maps.
Hereto, the following are determined: SP and LAM combined overall maximum,
corresponding SP and LAM extreme coordinates, the minimal hiatal vector,

#    »

AB,
and mid-point,

#»

O, of the C-plane.

2.4 Evaluation methodology

Intra- and inter-rater variability To evaluate the proposed method, we com-
pare results against inter and intra-rater variability. The expert who determined
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Fig. 3. Pipeline of the landmark regression approach to C-plane extraction.

the GS C-planes (Expert 1), determined the C-plane again a month later, on a
subset of 37 volumes. We obtained intra-rater variability using the MP (same
method as the GS) and the OV method. Inter-rater variability was obtained by
a second expert (Expert 2) using the MP method on a subset of 23 volumes.

Visual Turing test To evaluate clinical relevance, we performed what may be
considered a visual Turing Test on 10 US volumes. We asked both experts to
blindly rate each C-plane (GS and automatically detected), and the correspond-
ing MS plane from 0-5 (5 being excellent, 4, above average, 3, average, 2, below
average, 1, poor and 0, no clinical use). Based on the criteria: the minimal hiatal
dimension line is placed in the MS plane (Test 1) and the C-plane is of sufficient
quality for clinical diagnosis (Test 2). We did a paired Wilcoxon test to compare
the proposed method performance against the GS.

Bio-marker analysis The LH identified in the C-plane is a bio-marker used for
PFD analysis. We manually segmented the LH in 35 C-planes extracted via the
proposed method, 35 GS C-planes and 15 Expert 1 and 15 Expert 2 C-planes.
Segmentations were checked and clinically accepted by Expert 1. The Hausdorff
Distance (HD) and Robust 95th percentile HD between the segmentation of the
GS and predicted C-planes were evaluated to assess the bio-marker quality.

3 Experiments, Results and Discussion

3.1 Implementation details

The network was trained with 25 US volumes, from 12 patients, manually anno-
tated for the SP and LAM positions. For validation, 100 US volumes were used
in which C-planes had previously been extracted during clinical routine.

Experiments were implemented using NiftyNet [5] on a desktop with a 24GB
NVIDIA Quadro P6000. Two CNN architectures were compared. First an imple-
mentation of 3D UNet [16] by Isensee et al. [6], almost identical to the original
3D UNet, but due to high memory consumption of 3D convolutions with large
patch sizes, the number of filters was reduced before up-sampling. This network
was chosen due to its performance in LH segmentation [2]. The second network
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implemented was HighRes3DNet, proposed by Li et al. [8]. It has a large con-
textual field of view with little effect to parameter cost and was chosen due
to its performance in 3D segmentation of the urethra from US volumes [12].
HighRes3DNet, has less trainable parameters than UNet, suggesting a faster
inference time, which is beneficial for an in-clinic solution. Both multi-task Re-
gression with UNet (mRegU) and multi-task Regression with HighRes3DNet
(mRegHR) have a combined L2 loss of the SP and LAM distance maps with
initial learning rate of 0.001. A smoother version of the combined distance maps
was used for weighted sampling during training. Methods were optimised until
network convergence, and data augmentation such as rotation and scaling were
used.

3.2 Results and discussion

Fig. 4a compares the Euclidean distance of the mid-point of (manually and au-
tomatically) identified C-planes against the GS. From the proposed methods,
mRegU showed to have the smallest distance to the GS, highlighting that UNet
outperforms other CNN architectures in pelvic floor US landmark localisation
tasks. The mean Euclidean distance of mRegU, mRegHR, Expert 1 (OV), Ex-
pert 1 (MP) and Expert 2 (MP), were 6.05mm, 7.18mm, 6.95mm, 4.44mm and
5.85mm, respectively. This suggests that mRegU, is within a clinically acceptable
error range, as the error is lower than inter-rater variability between experts. The
outliers of mRegU and mRegHR were due to the CNN not identifying the true
‘extreme coordinate’. In all cases, the network had correctly located a coordinate
within the LAM and SP structures. However, it was not the true ‘extreme co-
ordinate’ position. A contributing factor to the error was the severity of patient
pathology. In misclassified cases, patients had one or more conditions such as
severe hiatus ballooning, avulsion, bladder and/or vagina prolapse. In addition,
poor US acquisition, stool and urine presence, poor acoustic coupling, and pa-
tient movement may have contributed to misclassification. In Fig. 4b the angular
error is presented, showing that mRegU’s interquartile range is smaller than the
inter-rater variability. mRegU’s mean angular difference was lower than Expert
1’s (OV) and Expert 2’s (MP), suggesting it is within the range of clinical ac-
ceptability. The worst angular mismatch of the detected C-plane was obtained
in a patient with severe hiatal ballooning resulting in the LH not being fully
within the axial plane due to its size, making it difficult for the network, as the
SP was only partially visible in the MS plane. In extreme cases, the SP may not
be present at all, clinicians face this problem but use a 4D cine-loop to estimate
the SP projection and thereby its location. This is not exploited by the proposed
regression network and thus a limitation of the proposed solution.

Fig. 5 shows a visual comparison between the GS and the detected C and
MS planes. Qualitatively, there is minimal difference; all show the same clinical
diagnosis (symmetric and intact LH); and all structures are visible. The results
of the Turing test, presented in Table 1, show that mRegHR outperformed
all methods including the GS. In one case, the C-plane detected by mRegHR
was voted the true minimum hiatal dimension on the MS plane, and the GS
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Fig. 4. a) Euclidean distance of the mid-point b) angular difference of the planes
determined by the automatic method, Expert 1(MP), Expert1(OV), and Expert 2(MP)
against the GS (generated using MP).

C-plane position was rated sub-optimal. This is due to the nature of pelvic
floor US where occasionally the C-plane is placed slightly higher/lower than the
true position. Although this results in an inaccurate C-plane position, clinicians
obtain a better-quality image of the LH by avoiding the hyperechogenicity of the
LAM and its associated shadow. This is a limitation to the proposed solution, as
although it may determine the true position on the MS plane, the C-plane quality
may be sub-optimal. We use a novel application of data and guidelines, to drive
a hybrid approach to determine the C-plane, thus we can achieve relatively low
errors with a small training dataset, as we utilise the geometry of the patient.

Results of Table 1 show the HD of LH segmentation compared to the GS,
mRegU lies within inter-rater variability, thus clinically acceptable bio-markers
can be extracted. mRegU and mRegHD perform C-plane detection in 20s and
18s respectively, independent of pathology and image quality. We believe this
might reduce with further code optimisation. The time difference, is due to UNet
having more parameters than HighRes3DNet. Manually on average, Expert 1 and
Expert 2 determine the C-plane in 2 mintues. However, this can vary greatly due
to patient’s exhibiting PFD, poor acquisition and limited clinical experience. To

Table 1. Hausdorff distance, Turing test results and time taken to determine the plane

Plane HD/mm Robust 95th Turing Turing Time/s
approach percentile HD/mm Test 1 Test 2

mRegU 8.95±4.20 6.13±3.93 3 4 20
mRegHR 9.81±4.31 6.53±4.33 4 4 18

Intra-rater (MP) 8.30±2.27 5.52±2.99 - - 120
Inter-rater (MP) 8.68 ±3.83 5.99±3.11 - - 120
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Fig. 5. Visualisation of axial
(upper) and MS (lower) plane
of minimal hiatal dimensions for
automatic methods and GS.

the author’s knowledge, landmark regression of only two landmarks has not been
used yet to localise a 2D plane from a 3D US volume, even though by practice
this is how humans navigate a 3D volume. This method provides interpretability
and can be developed to create a fully interactive plane detection application.
Other plane detection tasks may be difficult for clinicians to understand why
a specific plane was selected if incorrect, and more difficult to integrate into a
clinical setting. The results presented in this paper are based on the training
dataset of 25 volumes only. It seems plausible that with more training data the
results will improve further. In future work, clinicians may be able to edit the C-
plane position by re-selecting the extreme coordinate manually. We will expand
this pipeline, by including 2D segmentation of the LH, to produce the first, fully
automatic PFD bio-marker analysis pipeline.

4 Conclusion

We proposed an automatic plane detection method via CNN landmark regres-
sion, that is comparable to experts as demonstrated through validation on 100
US volumes. We automatically detect the plane from an US volume within 18-20
seconds compared to several minutes when performed manually. We discussed
limitations to our solution, such as levator ballooning. However, by focusing on
anatomy and clinical guidelines, we believe our method follows current clinical
workflow, and produces results that are understandable to clinicians. Our hybrid
method, which is data and guideline driven, allows our method to learn from a
small set of examples, compared to a purely data-driven method. We identified
that mRegU performed better than the mRegHR, suggesting the UNet architec-
ture is favourable. In future work, the 2D segmentation of the LH will be included
[2] to the pipeline. This will produce the first fully automatic bio-marker analysis
pipeline, that can detect the C-plane, segment the LH, and indicate PFD disor-
ders from an US volume [1, 13]. This will reduce the need for high-level clinical
expertise and decrease the time needed to perform PFD assessments. Finally,
user interaction can be implemented, allowing clinicians to adapt the detected
C-plane, by adjusting the SP and LAM coordinates if required.
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