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Abstract.  

Offshore wind turbines (OWTs) must be sufficiently robust and resilient to withstand windstorms over an operational life of 

20-25 years in an aggressive marine environment. Current performance-based assessment methods for OWTs often neglect  

structural failure and focus on equipment failure only, which can be assessed using existing empirical databases. This study 

uses a simulation-based approach to assess various performance metrics associated with offshore wind infrastructure exposed 

to operational wind and wave conditions. Surrogate modelling is used to predict structural failure due to fatigue in a 

computationally efficient manner. The proposed surrogate model is based on Gaussian process regression and allows one to 

run structural simulations at a small training sample of wind and wave conditions and emulates the response at combinations 

where the OWT was not explicitly assessed. This result in an integrated probabilistic performance-based assessment 

framework for OWTs that considers both structural and non-structural (equipment) components. In particular, the proposed 

framework is used to evaluate the potential impact of climate-change scenarios on various OWT performance metrics, namely, 

fatigue damage, fatigue reliability and, ultimately, financial losses (cost of direct damage) for a case study OWT. This is 

compared to the change in revenue resulting from power production to understand which is more sensitive to climate change. 

Both fatigue damage and structural safety are found to be sensitive to changes in the site environmental conditions. However, 

as financial losses additionally depend on non-structural components - which are typically characterised by much higher failure 

rates - they are found to be less sensitive to the considered climate-change scenarios. 

Highlights 

• We compare potential effects of climate change on structural loads of OWTs. 

• We assess structural loads on OWTs using an efficient surrogate modelling approach. 

• We use performance metrics including damage, energy generation and financial losses. 

• Fatigue damage was found more sensitive to climate change effects than energy density. 
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1 Introduction and motivations 

Offshore wind energy is becoming increasingly important as the proportion of energy generation form this source continues 

to grow, particularly in European countries. The International Energy Association forecasts that, under existing policy 

commitments, offshore wind energy production alone will represent up to 16% of electricity generation in the European Union 

by 2040 (1). An offshore wind farm (OWF) consists of a large number of offshore wind turbines (OWTs) distributed over a 

suitable area; for instance, the Hornsea One wind farm contains 174 7 MW OWTs over an area of 407.34 km2 (2). OWT 

structures must be sufficiently robust to survive, and remain operational, throughout a long intended design life of 20-25 years 

(3). During this timeframe, OWTs are exposed to fluctuating loads which depend on site-specific environmental conditions in 

the form of wind and waves. In particular, wind acts as a driver of both structural loads and power production, by causing the 

blades to turn and drive a generator.  

 

Recently, a probabilistic risk assessment framework for OWTs exposed to extreme wind and wave conditions (i.e., considering 

the ultimate limit state, or ULS) has been proposed by the authors, 1) enabling the modelling of these complex loads and their 

induced structural demands for use in financial loss calculations; and 2) considering an OWT as a system of interrelated 

structural and non-structural (e.g., equipment) components (4). The study presented here aims to extend this probabilistic risk 

assessment framework to also include operational wind and wave conditions and consider the fatigue limit state (FLS) which 

more often drives the design of OWT substructures in European waters (5). In this case, structural failure is due to the initiation 

and propagation of small cracks over the design life of an OWTs, which can grow to a critical size, threatening the integrity of 
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the whole structure (6). Various OWT performance metrics such financial losses can also be computed through the proposed 

framework. 

 

State-of-the-art approaches in designing and assessing OWTs (at both FLS and ULS) involve modelling environmental 

conditions using parametric probability distributions that are fit to historical environmental conditions measured at wind farm 

sites (e.g., (7)). Then, OWT structural demands are typically evaluated using advanced time-domain simulations representing 

OWT response to changing wind and wave conditions; however, these simulations can be computationally expensive. In fact, 

they explicitly account for the interaction between aerodynamic loads, hydrodynamic loads and structural response (commonly 

referred to as aero-hydro-servo-elastic simulation). In particular, load-induced fatigue damage is cumulative: it accounts for 

the full range of environmental conditions the OWT is exposed to, requiring an unfeasibly large number of time-history 

simulations (3). One remedy to use surrogate models (also known as metamodels or emulators), which replace the expensive 

time-history simulations with a statistical model fit to the results from a smaller number of intelligently chosen time-history 

simulations. In other words, surrogate models mimic the behaviour of the simulation model as closely as possible while 

remaining computationally cheaper to evaluate. Various surrogate modelling approaches have been recently proposed in the 

literature for OWTs on monopile foundations, including Gaussian Process (GP) regression (8–11) and for onshore wind 

turbines using Polynomial Chaos Expansion (12,13). These models significantly improve the computational efficiency of FLS 

assessment, and therefore also enable structural reliability assessment and the development of probabilistic risk models for 

OWTs to predict the potential financial impact of OWT failures. Such a probabilistic risk assessment framework can be further 

used (as proposed in this paper) to evaluate the potential impact of climate-change scenarios on the fatigue damage, structural 

safety and, ultimately, financial losses (cost of direct damage) of case-study OWTs. 

 

Climate change is expected to affect weather patterns (14), with the potential to impact both OWT energy production and 

structural loading. However, quantifying the impact of climate change on environmental conditions is a challenging task. 

Warming of the poles will reduce the solar gradient across the globe, reducing mean wind speeds (and, consequently, wind 

energy production). However, various studies using climate change forecasting models have predicted localised increasing 

wind speeds in the North Sea, Baltic Sea and off the coast of Spain which are all feasible locations for future wind farms, as 

summarised by (14). Therefore, this study aims to also quantify the potential impact of climate-change scenarios on OWT 

power generation and resulting revenues.  

 

The paper is organized as follows: Section 2 provides a brief overview of the impact climate change may have on the wind 

climate and how this might affect both OWT power production and OWT loading/fatigue damage. Section 3 introduces the 

proposed methodology for assessing site-specific structural loads and their induced damage using a GP regression to build a 

surrogate model for computationally expensive aero-elastic analysis. Following this, the proposed approach for estimating the 

financial impact of OWT fatigue failure in terms of direct damage is presented. The archetype OWT and the case-study site in 
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Europe used in this paper are introduced in Section 4 together with the considered climate change scenarios. The results of this 

analysis are presented in Section 5 where potential climate-change-induced variations of financial losses are compared to 

changes in the predicted energy production as a result of climate change affecting wind speeds.  

2 Review of potential climate change impact on OWTs 

2.1 Wind and wave climate  

The potential impact of climate change on renewable energy has been investigated by recent academic studies, summarised in 

a comprehensive literature review by Carvalho et al. (14). Each of the considered studies used general circulation models to 

project the consequence of changes in greenhouse gas emissions on the future climate. These projections are based on 

evaluating future environmental conditions in response to fixed assumptions about future emissions based on the emission 

pathways outlines in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; for example, Barstad, 

Soterberg and Mesquita (15) assume scenarios that result in an increase of global temperatures of 2 °C to 4 °C by 2100.  

 

With regard to wind, a north-south divide is predicted to develop within Europe, with increasing wind speeds, and therefore 

wind energy potential, in northern countries, and decreasing wind energy potential in the Mediterranean, for both onshore and 

offshore sites (14). This was concluded by reviewing studies that have focused on specific locations, including offshore sites 

in the Baltic Sea (15–17) and the Spanish Atlantic Coast (15,18,19), predicting small increases in wind power density (i.e., the 

mean power available per square meter). The results for the North Sea are mixed, with both overall reductions predicted by 

Tobin et al. (17) but possible increases in the Northern North Sea (15,16,19,20), in the Irish sea and along Ireland’s Atlantic 

coastline (16). In all studies reviewed, the wind climate is represented by a Weibull distribution of 10-minute averages at a 

reference height of 10 m above sea-level. None of the studies reported on changes in turbulence intensity. A maximum increase 

in the mean wind speed distribution scale parameter of 0.05 (m/s)/10year in the Baltic Sea and a maximum reduction of -0.05 

on the North Coast of Spain were observed by Gaetani et al. (19); and the observed changes in the distribution shape parameter 

reported by this study were not statistically significant. These small changes in the scale parameter would result in a 1.5 % 

change in the mean of the wind speed distribution at 10 m if extrapolated over a 30-year period assuming the initial 

environmental conditions described in Section 4.2 of this paper. Similarly, Tobin et al. (17) reported changes in the Baltic 

mean wind speed between the periods 1971-2000 and 2071-2100, finding a 5 % increase, i.e., a similar order of magnitude to 

the values reported by Gaetani et al. (19). In the North Sea, (20) estimated hub height mean wind speeds in the 2050’s; using 

an ensemble of models, the study predicted a ~3-4 % average change in the annual mean wind speed over this period across 

all models and a ~10-20 % increase in the model with the largest change. Other results that predicted changes directly in terms 

of wind power density and not wind speed (15,16) are not discussed. 
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There are fewer studies focusing specifically on the wave climate; for instance, Carvalho et al. (14) found that the conclusion 

of studies into the impact of climate change on wave energy production were inconclusive. Hemer et al. (21) used an ensemble 

of previously developed models to evaluate changes in the wave climate. They reported small changes in wave heights 

(approximately 2 % reductions in North Sea and Mediterranean, 4 % increases on Spanish/Portuguese Atlantic coast) and 

spectral period (0s to 0.2 s reductions). 

2.2 Impact on power production  

Wind energy power production (𝑃) is highly non-linear with respect to mean wind speed, as shown in Figure 1 for a National 

Renewable Energy Laboratory (NREL) 5MW archetype OWT (22). The ability of the OWT to extract energy from wind 

depends on OWT specific properties/components including the generator, torque control and other turbine control parameters 

(such as rotor speed and pitching). No power is produced at low wind speeds (when the mean wind speed is below the cut-in 

value) or at high wind speeds when the turbine is shut-down to protect the blades during more severe windstorms (when the 

mean wind speed is above the cut-out value). These changing operational states introduce additional non-linearity into the 

relationship between mean wind speed and power production. The calculation of this value is described in detail by Burton et 

al (23). For example, climate-change scenarios which increase the mean wind speed into the maximum power production range 

can cause the OWT to produce more electricity; however, this might be counteracted by the occurrence of stronger storms, 

forcing the OWT to stop rotating to protect its blades from damage at high wind speeds. 

 

The yearly revenue (𝑅) resulting from operating an OWT can be calculated using the equation: 

𝑅 = 𝑃𝑡𝑎𝑐𝑡𝐶𝑒,               (1) 

where 𝑡𝑎𝑐𝑡 is the time in hours in which the power generating equipment is active over a year, and 𝐶𝑒 is the wholesale energy 

price for each unit of electricity generated. It should be noted that, in reality, the revenue will also be influenced by other 

complex factors such as turbine availability and grid capacity, and that the simplified calculation proposed in this paper is only 

used to compare different climate change scenarios for an individual OWT.  

 

Existing studies have used climate-model projections to estimate the likely changes in weather given different climate-change 

scenarios, and then used wind energy density to compare the potential for power production. For instance, Barstad, Soteberg 

and Mesquita (15) predicted weak reductions (e.g., 0.5 % in terms of estimated power production) in future wind-power 

potential over most of northern Europe during the next 30 to 40 years.  
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Figure 1: Power generated by a NREL 5 MW OWT. 

2.3 Impact on structural loads 

To date, no studies have assessed the impact of different climate change scenarios on OWT structural loads and resulting 

fatigue damage. However, one study focused on the West coast of India (24) highlighted that a 11-14 % increase in design 

wind speeds over the next 30 years is expected for OWTs installed in the Indian Sea. This time-scale is approximately equal 

to the operational life of an OWT if we assume an intended design life of 20-25 years with 25 % life extension (25).  

 

Structural wind loads on OWT are driven by aero-dynamic drag and lift. For example the aero-dynamic loading per unit length 

at time “t” (𝑓𝑎(𝑡)) on the tower is calculated as a function of the square of the instantaneous wind speed (𝑉(𝑡)) (26): 

𝑓𝑎(t) = 0.5𝐶𝑑𝐺𝑓𝜌𝐴𝑉(𝑡)2,            (2) 

where 𝐴 is the cross-sectional area of the structure, 𝐶𝑑 is the drag coefficient, and 𝐺𝑓 is a gust factor (that accounts for the 

effect of wind actions because the peaks in wind pressure may not occur simultaneously with structural vibrations (26)). In 

OWT load assessment, blade loading is typically calculated using different lift and drag equations which are similar in form 

to Eq.(2) (23), but written as differential equations along the blades length and solved using finite element analysis. The 

resulting systems of equations to evaluate structural response are coupled together to predict dynamics of the full OWT 

structure, e.g., (27).  

 

The structural design of OWTs in European waters is often driven by the FLS (5). This limit state addresses cracks which grow 

as a result of stress cycles in the OWT structural components which in turn result from stochastic external loading (in the form 

of wind and waves) and the cyclic motion induced by the rotation of the rotor. Current industry practice is to estimate the 
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impact of crack growth during the design stage using the SN curve approach (28), an example of which is shown in Figure 2. 

This assumes that the damage caused by each stress cycle over the design life of an OWT can be summed (i.e., it is linear). 

The damage per stress cycle is calculated as the ratio of the number of cycles occurring at a given stress level (over the 

structures design life) divided by the tolerable number of cycles the structure could withstand at that stress level before a 

through wall thickness crack forming, as defined by experimental tests (28). The tolerable number of cycles (𝑁𝑗) can be 

predicted using the equation: 

𝑁𝑗 = 𝐾Δ𝑆𝑗
𝑚,             (3) 

where Δ𝑆𝑗  is the applied stress range, 𝐾 is the intersection of the SN curve with the number of cycles axis (Figure 2), 𝑚 is the 

slope of the SN curve; the index refers to the 𝑗th cycle in a stress time history. The SN curve slope depends on the material 

being assessed; the gradient of the SN curve typically ranges between three or 10 (29). As a result, fatigue loads depend on 

wind speed values raised to a power of 2 + 𝑚 and, therefore, are sensitive to changes in the wind climate. In addition, OWTs 

experience wave loading which itself depends on wind speed, as discussed in Section 3.1. 

 

 

Figure 2: SN curve from DNVGL (28) for a butt weld; the figure shows the scatter in the SN-curve when the full distribution of x-

axis intersections is utilised. The 2.5th percentile curve is generally used in structural design and is highlighted as the mean curve 

minus two standard deviations. 

3 Loss assessment methodology  

The impact of changes in the environmental conditions on OWT loading can be quantified through changes in the rate of 

structural failure of the OWT components. If information about the failure of the component is known, failure rates can be 

converted into financial losses, providing stakeholders with more widely interpretable metrics for decision making. 
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Furthermore, structural failure rates due to the FLS can be combined with failure rates of the other non-structural components 

(such as the generator or blades) using the loss calculation procedure described in the following sections. Specifically, this 

calculation consists of three distinct components, as shown in Figure 3. The individual steps are: 

• Simulation-based assessment of the FLS damage for the OWT structural components (i.e., tower and monopile). To this 

end, a surrogate model is built to represent the fatigue damage at different combinations of the environmental conditions 

on a small sample of these conditions. 

• Computation of the FLS failure rates for OWT structural components over their design life, by drawing a larger second 

sample of fatigue damage predictions from the surrogate model, which is efficient to evaluate. These samples follow the 

joint probability distribution of the environmental parameters, described in Section 3.1, which can be updated to reflect the 

assumed climate-change scenarios as described in Section 4.3. Additional uncertainties (such as those modelling the 

variability in fatigue material properties) can be included in the calculation.  

• Estimate financial loss by combining the computed failure rates of OWT structural components with non-structural 

components using published empirical data, e.g., failure rate and cost; (30). 

 

Figure 3: Proposed OWT loss assessment framework considering both structural (for FLS) and non-structural components.  
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3.1 Fatigue damage assessment 

Structural loads acting on OWTs are assessed according to the International Electrotechnical Commission (IEC) code 61400-

3. This document defines a series of different design load cases (DLCs) representing different conditions an OWT may 

experience during its intended design life. It includes various loading conditions for the FLS where the OWT is operational 

(e.g., DLC 1.2) or where the turbine is shut-down due to high wind speed (e.g., DLC 6.4). A range of other DLCs are specified 

to cover fault conditions, transient start-up and shut-down conditions. 

 

Fatigue damage is cumulative; therefore, the DLCs for the FLS require multiple structural simulations performed across all 

the relevant wind and wave conditions. These are defined in terms of all the important variables affecting the wind and wave 

climate distributions, and typically include: mean wind speed (𝑉𝑤), turbulence intensity (𝑇𝑖), wind direction (𝜃𝑤𝑖), significant 

wave height (𝐻𝑠), wave peak spectral period (𝑇𝑝) and wave direction (𝜃𝑤𝑎). Simulation inputs are determined by drawing 

random samples from the joint/conditional probability distributions which define the occurrence of these variables. In the IEC 

61400-3, the assessment can be simplified by allowing 𝑉𝑤 to be discretised into 2 m/s wide bins and considering a single value 

of 𝐻𝑠 for each bin. Nevertheless, a higher accuracy approach, consisting of many more samples, is necessary to accurately 

predict fatigue damage (5). The fatigue damage calculation follows the outline provided in Section 2.3; however, more details 

of the specific assumptions used in this study are provided here and the overall calculation approach is described in Figure 4.  

 

Firstly, specific values of the considered environmental variables are selected and a time-domain aero-elastic simulation is run 

for each combination of those variables using the aeroelastic computer-aided engineering software OpenFAST (27). Within 

OpenFAST, turbulent wind histories are generated using TurbSim (31) and irregular wave time series are generated using 

HydroDyn (32). From these time series, aero-dynamic loads, are calculated as described in Section 2.3 and hydro-dynamic 

loads are calculated using Morrison’s equation (33) which depends on the water particle displacement (𝐻(𝑡)) and velocity 

(𝐻̇(𝑡)). These calculations are conducted for each component of the turbine and require specification of relevant drag and lift 

factors for the cross-sectional properties of the structural component, which for a NREL 5MW OWT are provided by Jonkman 

et al. (22). 

 

The output is a time series of loads, for example at the base of the monopile, which are then converted into component stress 

time histories. These are processed using the rainflow-counting algorithm (34) to extract the stress ranges occurring during the 

time series. For each simulation, a single value of fatigue damage is predicted by using an SN curve (Eq.(3)), by 1) determining 

the number of tolerable cycles at each stress range; then 2) dividing the observed number of cycles (𝑛𝑗) by the number of 

tolerable cycles and summing over each stress cycle in the time history. The fatigue damage over the OWT design life can be 

calculated by linearly scaling the obtained damage value from the time-history structural simulation length to the assumed 

design life of the OWT. Additionally, due to the stochastic nature of the generated wind and wave time series, each analysis 
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has to be repeated for every set of environmental conditions in order to produce a stable estimation of the total fatigue damage 

(where the analysis repetitions are referred to as “seeds"). 

 

 
Figure 4: Flowchart of the fatigue damage calculation from the parameters used to describe the environmental conditions to fatigue 

damage. Where 𝒇(. ) refers to some functional relationship described in the main text.  

The total fatigue damage over the life of the structure can be calculated by averaging the predictions of fatigue lifetime: 

𝐷𝑡𝑜𝑡𝑎𝑙 =
1

𝑁𝑠𝑖𝑚
∑ 𝐷𝑗,𝑙𝑖𝑓𝑒

𝑁𝑠𝑖𝑚
𝑗=1 ,            (4) 

where 𝐷𝑡𝑜𝑡𝑎𝑙  is the total predicted damage for the OWT at the site, 𝑁𝑠𝑖𝑚 is the number of damage samples (i.e., the product of 

the number of samples of environmental conditions and number of seeds) which are indexed by 𝑗, 𝐷𝑗,𝑙𝑖𝑓𝑒  is the lifetime fatigue 

load predicted for each sample of the environmental conditions. 

 

Finally, a limit state (or performance) equation is introduced to model OWT structural component failure as a function of the 

total damage and random variables related to the maximum tolerable fatigue damage (𝑋δ) and the uncertainty in the SN curve 

(𝑋𝑆𝑁); the characterisation of these variables is presented in Table 1: 

𝐺(𝑋δ, 𝑋𝑆𝑁) = 𝑋δ − 𝑋𝑆𝑁𝐷𝑡𝑜𝑡𝑎𝑙 .            (5) 

The limit state depends on two random variables defined by the probability distributions shown in Table 1, although it should 

be noted that a larger set of random variables can be considered to capture other modelling uncertainties e.g., (11). Failure of 

the structure/structural component is assumed to occur when the limit state equation assumes negative values, and the 

probability of failure can be computed as Pr (𝐺 ≤ 0). This can be solved numerically 1) by drawing samples from all the 

random variables involved in the assessment; 2) by evaluating the limit state equation for each set of samples; and 3) by 

averaging over the number of observed failures. This enables calculation of the probability of FLS failure for a given prediction 

of lifetime damage by averaging over the number of observed failures. In fact, OWT structures are normally designed to obtain 

very low probabilities of failure, which implies that the limit state equation must be solved several thousand times, resulting 

in a prohibitively large computational effort. Full details on the proposed simulation-based structural reliability assessment 
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can found in (11). An accurate technique for problems with a low number of random variables is importance sampling (35) 

and is used in this study, as further described in Section 5.3.  

 

Table 1: Statistical properties of the random variables in limit state equation Eq.(5) (11). 

Random variable Distribution Mean of logarithm 
Standard deviation of 

logarithm 

Tolerable damage (𝑋δ) Log-normal 0 0.3 

SN Uncertainty (𝑋𝑆𝑁) Log-normal -0.9 0.46 

3.2 Surrogate model development 

The main challenge in performing the assessment described in the previous section is that large computational resources are 

required to obtain an accurate estimation of lifetime fatigue damage. In fact, dynamic structural simulations must be run for 

many stochastic wind and wave loading conditions. Surrogate modelling represents a potential solution to this challenge, 

allowing one to replace the expensive computer-based simulation model – which links environmental conditions to fatigue 

damage - with a simpler statistical model. A surrogate model is generally trained using a much smaller number of aero-elastic 

simulations than required for a full fatigue damage assessment; this training sample is selected using an appropriate design of 

experiment technique (36). Specifically, a GP regression is used in this study to build a surrogate model for lifetime fatigue 

damage, primarily because of its ease of application and its demonstrated suitability for applications concerning OWTs on 

monopile foundations in the existing literature (8,9,37).  

 

GP-regression predictions consist of a mean component, modelling the overall trends in the training data, and a GP constructed 

through the residuals to interpolate between training samples based on the assumption that there is a spatial correlation between 

the model predictions. To this aim, the GP is characterized by a covariance function which is selected in advance. Most of the 

widely used covariance functions in the literature depend on the distance between input samples, capturing the fact that two 

samples of the input variables (e.g., mean wind speed in this study) which are close are expected to produce similar model 

outputs (i.e., fatigue damage in this study). GP predictions require all the data points they are trained upon, meaning that large 

sample sizes can still be computationally expensive. A comprehensive description of the background theory of GP regression 

and discussions on underlying hypotheses is provided by Santner, Williams and Notz (36). 

 

In this study, a training sample set is generated by randomly sampling from the probability distributions describing the climate 

conditions, described in Section 4.2. This design of experiment procedure was selected because, as it can be seen from Eq.(4), 

lifetime fatigue damage prediction is a problem of mean estimation: a random sampling scheme is expected to perform well 

in this context (36). This study follows the recommendations in Wilkie and Galasso (11) and uses 500 samples and 20 seeds. 

A larger number of seeds than strictly necessary were used because of available high-performance computing resources. The 

GP regression used in this study has a constant mean function and uses a Matern 5/2 covariance function (38). This model is 
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fit to the training data using the maximum likelihood estimation approach. The error in the model prediction is evaluated using 

a leave-one-out cross-validation approach where the error is sequentially evaluated for a GP regression fit by using each sample 

in the training sample set except one. 

3.3 Loss computation  

A simplified loss assessment procedure is proposed to combine failure rates for the OWT structural components with those 

recorded empirically for the non-structural components (e.g., equipment). The procedure is only sketched in brief as full details 

are provided in Wilkie and Galasso (4). It consists of generating different failure scenarios from all possible combinations of 

different states in a system with a given number of components. For example, if a system of 𝑁 components has two failure 

states (i.e., failure or operation), there will be 2𝑁  combinations. This is achieved by defining a logical matrix of failure 

scenarios (𝑲) with rows equal to the number of components, and columns equal to the number of failure states. A financial 

cost can be associated to each failure scenario, by multiplying 𝑲 by the component failure costs, resulting in the cost matrix 

𝑲𝒄. The probability of incurring a set cost (𝑃𝑠𝑦𝑠(𝑐𝑟)) can then be estimated as a sum over the subset of 𝑲𝒄 which has the total 

cost 𝑐𝑟 denoted 𝒌∗:  

𝑃𝑠𝑦𝑠(𝑐𝑟) = ∑ ∏ 𝑃𝑖
𝑘𝑖(1 − 𝑃𝑖)1−𝑘𝑖𝑁

𝑖=1𝒌∗∈𝑲𝒄
,           (6) 

where 𝑃𝑖  is the probability of failure of the ith component, 𝑘𝑖 is a logical value indicating whether or not the ith component fails 

during the failure scenario and 𝑐𝑟 is a pre-selected cost level.  

 

The expected loss (𝐿𝑡𝑜𝑡𝑎𝑙) can then be computed as an expectation over different cost levels: 

𝐿𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑃𝑠𝑦𝑠(𝑐𝑟) ⋅ 𝑐𝑟𝑐𝑟
.            (7) 

The equipment failure and cost data used in this study is taken from the work of Carroll, McDonald and McMillian (30); the 

study surveyed failure rates for OWT components from databases of observed failures, as summarized on Table 2. The 

structural probability of failure is calculated following the methodology outlined in Section 3.2 and is converted into a failure 

rate by assuming that failures follow a Poisson distribution.  

 

Table 2: Main non-structural component failure rates and costs for a case-study OWT (30). 

Component Major replacement (€) 
Failure rate 

(/turbine/year) 

Gearbox 230,000 0.154 

Hub 95,000 0.001 

Blades (per blade) 90,000 0.001 

Transformer 70,000 0.001 
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Generator 60,000 0.095 

Circuit breaker 14,000 0.002 

Power supply 13,000 0.005 

Pitch system 14,000 0.001 

Yaw system 13,000 0.001 

Controller 13,000 0.001 

3.3.1 Monopile cost 

The cost of the monopile (𝑐𝑚𝑜𝑛) is estimated using the equation proposed by (39) in Euros: 

𝑐𝑚𝑜𝑛 = 320𝑃𝑊𝑇(1 + 0.02(ℎ𝑤𝑎𝑡𝑒𝑟 − 8))(1 + 1 ⋅ 10−7(ℎℎ𝑢𝑏(0.5𝜙𝑅) − 105)).      (8) 

where the cost estimate depends on the rated capacity (𝑃𝑊𝑇 , in MW), the water depth (ℎ𝑤𝑎𝑡𝑒𝑟 , in m), the hub height above the 

mean sea level (ℎℎ𝑢𝑏, in m), and the rotor diameter (𝜙𝑅, in m). The equation was adapted from a 2003 study and was validated 

against actual foundation costs from five real OWFs. The average error was approximately 8.7 %, but Eq.(8) outperformed 

two other cost models, particularly in terms of foundation cost. 

4 Illustrative application 

4.1 Considered OWT 

The OWT considered in this study is a NREL 5MW reference turbine (22) with a monopile foundation, which is shown in 

Figure 5 and has the properties listed in Table 3. The turbine has a cut-in speed of 3 m/s and a cut-off speed of 25 m/s: when 

this mean wind speed is exceeded, the rotor enters its parked state by pitching the blades into the wind to prevent damage. The 

rated wind speed is 11.4 m/s, after which the controller starts to pitch the blades out of the incoming wind flow to regulate the 

rotational speed of the generator. The hub is supported by the tower and is located at an Elevation (EL) of +87.6 m above the 

mean sea level and is attached to a 126 m diameter 3-bladed rotor. The monopile support structure spans from EL +10 m to 

the mudline at EL -20 m. At the base of the tower, a transition piece connects the tower and monopile. A full list of dimensions 

and material properties of the turbine structure are provided by Jonkman et al. (22). The analysis length is set to 11 minutes, 

allowing the first minute to be cut (which includes transient loads due to the simulation initial conditions) while leaving the 

full 10-minute analysis length. The SN curve used in this study is shown on Figure 2 and is taken from DNVGL-RP-C203 (28) 

for a circumferential butt weld from both sides, referred to as type D in the code. 

 

The foundation is modelled using an apparent fixity model, which represents foundation flexibility by extending the monopile 

below the mudline. The extension length is chosen to match the natural frequency from a spectral analysis where the monopile 

is embedded in a linear-elastic soil matrix. This assumes an embedded pile length of 30 m using soil properties from Damgaard 

et al. (40).  
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Figure 5: Schematic of the NREL 5MW OWT. 

 

Table 3: Main dimensions for the NREL 5MW OWT. 

Parameter Value  

Mass of the rotor-nacelle assembly (kg) 350,000 

Tower diameter bottom, top (m) 6, 3.87 

Tower wall thickness bottom, top (mm) 35, 25 

Monopile diameter (m) 6 

Monopile wall thickness (mm) 60 

4.2 Site environmental conditions 

This study uses environmental data measured by the FINO3 met-mast located in the German North Sea, which is part of the 

FINO project (41). The site has 7-years’ worth of continuously recorded environmental data and the site depth varies between 

22 m and 30 m). This raw data was processed into probability distributions by Hübler, Gebhardt and Roles (42) who discretized 

the data into bins of different mean wind speeds, which is the only independent distribution. The mean wind speed distribution 

follows a Weibull distribution, which has a probability density function (PDF): 
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 𝑓(𝑉𝑤) =
𝑘

𝜆
(

𝑉𝑤

𝜆
)

𝑘−1

𝑒−(𝑥/𝜆)𝑘
,           (9) 

with a scale parameter (𝜆) of 10.94 m/s and a shape parameter (𝑘) 2.32. A series of conditional distributions were determined 

for the other environmental conditions including turbulence intensity, significant wave height, peak spectral period, wind angle 

and wave angle. These distributions were randomly sampled 500 times in order to generate input environmental conditions 

(for training the surrogate model), at which to evaluate the considered NREL 5MW OWT using OpenFAST, as shown on 

Figure 6. Full details of the distributions and parameters used in this study and are provided in the appendices of Hübler, 

Gebhardt and Roles (42); however, a summary of the relationship between the different variables and the distributions used 

are presented on Table 4.  

 

   

  

 

Figure 6: Random samples drawn from the FINO3 site climate distributions and used to fit the GP regression model.  

Table 4: Probability distributions used to model environmental conditions at the FINO3 site showing the conditional dependencies, 

the distribution parameters are defined by Hubler et al. [REF]. * Kernel Density Estimation 
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Parameter Variable Distribution Dependencies 

Mean wind speed 𝑉𝑤 Weibull N/A 

Turbulence intensity 𝑇𝑖  Weibull; Gamma 𝑉𝑤 

Significant wave height  𝐻𝑠 Gumbel; Weibull 𝑉𝑤 

Peak spectral period 𝑇𝑝 Bimodal Gumbel 𝐻𝑠 

Wind direction 𝜃𝑤𝑖𝑛𝑑  Non-parametric KDE* 𝑉𝑤 

Wave direction 𝜃𝑤𝑎𝑣𝑒  Non-parametric KDE* 𝐻𝑠; 𝜃𝑤𝑖𝑛𝑑 

 

 

4.3 Climate-change modified environmental conditions 

Based on the literature review in Section 2.1, climate change may have different effects on the mean wind speed experienced 

by an OWT depending on its location (e.g., if the site is located in the North or South of Europe). Due to the lack of clear 

trends (as discussed above), this paper takes a parametric approach and focuses only on the mean wind speed as small changes 

in the other parameters were found in Section 2.1. It should be noted that the marginal distribution of the other environmental 

parameters will change as a result of their conditional dependence on the mean wind speed described in Table 4.  

 

The distribution of the mean wind speed was varied in order to evaluate the consequence for fatigue damage and power 

production, using the two parameters defined in Eq.(9). Specifically, a ± 14 % change in the scale parameter was selected to 

cover the maximum range found by the predictions of Devis, Van Lipzig and Demuzere (20) which were evaluated over a 30 

year period; while a ± 7 % change in the shape parameters was selected for illustrative purpose, although small variations of 

this parameter were predicted by Gaetani et al. (19). These ranges are sampled with nine and five uniformly spaced points for 

the scale and shape parameter respectively, and 10,000 samples for each combination. The parameters of the other conditional 

distributions (i.e., turbulence intensity, significant wave height, peak spectral period, wind inflow angle and wave inflow angle) 

remain the same. However, because of their conditional dependence on the mean wind speed, the marginal distributions of the 

other parameters will change when the mean wind speed distribution is updated. For example, when the mean wind speed 

distribution is updated with the extreme scale parameter samples, the mean of the significant wave height changes by +/- 12 

%. However, the shape parameter was found to have a very small influence on the distributions of the other variables. 

 

The effects of changing the distribution parameters for the mean wind speed is shown in Figure 7. The resulting variations in 

terms of the mean of the distribution is shown in Figure 7 (left); it is observed that the shape parameter has very little impact 

as the equation for the Weibull mean (𝜇𝑤𝑒𝑖) is 𝜇𝑤𝑒𝑖 = 𝜆Γ(1 + 1/𝑘), and the gamma function (Γ(. )) is flat over the region near 

𝑘 = 2.32. Figure 7 (middle) shows that the probability of the turbine being non-operational due to low mean wind speeds 
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(below 3 m/s) depends on both the scale and shape parameter. A similar result is shown in Figure 7 (right) for the probability 

of high wind speeds (above the 25 m/s cut-off), where much lower values than in Figure 7 (middle) are observed because of 

the low mean of the wind speed distribution (Figure 7 (left)) compared to the cut-off wind speed. The occurrence of these non-

operational conditions is important as the wind turbine will not produce electricity while they persist.  

   

Figure 7: Impact of scale and shape parameters on the mean of the wind speed distribution (left); proportion of 10-minute wind 

speed less than start-up wind speed (middle); and proportion of 10-minute wind speed greater than the cut-out wind speed (right).  

5 Results and discussion 

5.1 Surrogate model 

The mean surrogate-model predictions for lifetime fatigue damage are shown in Figure 8 for different combinations of the 

environmental variables; a contour plot of the environmental samples used to fit the surrogate model is also shown below each 

surface, to indicate where the training samples were located. The accuracy of the GP-regression model was assessed using the 

normalised mean squared error (𝑁𝑀𝑆𝐸) on the leave-one-out cross-validation set; this is calculated: 

𝑁𝑀𝑆𝐸 = 1 −
∑(𝐷𝑗,𝑙𝑖𝑓𝑒−𝐺𝑃(𝒙𝒋))

2

∑(𝐷𝑗,𝑙𝑖𝑓𝑒−𝑚𝑒𝑎𝑛(𝑫𝑙𝑖𝑓𝑒))
2            (10) 

where 𝐺𝑃(𝒙𝒋) is the GP prediction of damage for the j-th training environmental sample 𝒙𝒋 and 𝐷𝑗,𝑙𝑖𝑓𝑒  is the value of lifetime 

fatigue damage predicted by OpenFAST for the j-th sample. The error was found to be 0.962, where 1 would indicate the GP 

explains the variance in the data perfectly, i.e., an error of less than 4 % was found. 

 

Figure 8 (left) shows that the peak in fatigue damage occurs around the rated mean wind speed (11.4m/s), as also identified by 

Zwick and Muskulus (43). The increase in fatigue damage visible in Figure 8 (middle) occurs around a 𝑇𝑝 of 4 s, at which the 

peak in the wave loading spectrum approaches the fore-aft natural frequency of the OWT and consequently causes larger 

loading. The samples of misalignment angle are grouped around 0° in Figure 8 (right) because wind and wave inflow were 
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generally found to be aligned and the misalignment angle was calculated as the absolute value of the wind inflow angle minus 

the wave inflow angle.  

 

Using the FINO measured environmental conditions, the overall damage was calculated to be 0.11 by solving Eq.(4) using 

Monte Carlo simulation with 10,000 samples; similarly the average power production was calculated to be 2826.72 kW. 

 

   
Figure 8: GP-regressions predictions of fatigue damage as a function of different environmental variables and contour plots of the 

environmental conditions in the sample used to fit the GP. Turbulence intensity and mean wind speed with 𝑯𝒔=1.5m, 𝑻𝒑=7s, 𝜽𝒎𝒊𝒔=0° 

(left). Significant wave height and peak spectral period with 𝑽𝒘=9m/s, 𝑻𝒊=0.05, 𝜽𝒎𝒊𝒔=0° (middle). Mean wind speed and wind and 

wave misalignment with 𝑻𝒊=0.05, 𝑯𝒔=1.5m, 𝑻𝒑=6s (right).  

5.2 Fatigue damage and power at changing environmental conditions 

The fatigue damage and average power production are dependent on the wind speed distribution parameters (see Figure 9), 

where the scale parameter has a greater influence than the shape parameter in both cases. The average power production was 

calculated by taking the average of the power production values listed in Figure 1 over all samples of the environmental 

conditions (equivalent to averaging over the power predicted by each time-history analysis). The parameters of the quadratic 

surface shown in Figure 9 (left) were calibrated using  least squares fitting to describe a continuous function of the average 

power generation (P(𝜆, 𝑘)) across all the data-points with a high adjusted R-squared value of 0.992: 

P(𝜆, 𝑘) = 858.4 + 365.4𝜆 − 1807.3𝑘 + 192.4𝜆𝑘 − 23.6𝜆2 + 13.8𝑘2.       (11) 

Figure 9 (left) shows that the average power generation increases as the scale parameter increases (note that the scale parameter 

has units of m/s; therefore, the units of the fitting coefficients in Eq.(11) and Eq.(12) are consistent with each equation output 

and can be easily obtained through dimensional analysis) . This behaviour is expected from Figure 7 (left) as power production 

is directly affected by the mean wind speed. Additionally, increasing the scale parameter reduces the proportion of samples 

falling below the cut-in (Figure 7 (middle)). However, it also increases the proportion of samples above the cut-out, but this 

has a limited effect on average power production as mean wind speeds above 25m/s are rare anyway (Figure 7 (right)). 
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Fatigue damage against the scale and shape parameters are shown in Figure 9 (right), where the damage surface (𝐷(𝜆, 𝑘)) is 

modelled using a quadratic relationship with a high adjusted R-squared value of 0.969: 

𝐷(𝜆, 𝑘) = 0.080 + 0.012𝜆 − 0.121𝑘 + 0.015𝜆𝑘 − 1.41 ⋅ 10−3𝜆2 − 6.90 ⋅ 10−3𝑘2.     (12) 

The fatigue damage is found to increase at a faster rate than the average power generation. When the shape parameter is held 

at its original value (2.32) and the scale parameter is increased to its maximum value, the average power generation increases 

from 2,799 kW to a maximum of 3,096 kW, a 10 % increase. When the scale parameter is reduced to its minimum value, the 

average power generation reduces from 2,799 kW to a minimum of 2,448 kW, a 14.33 % reduction. In contrast, when the scale 

parameter is increased to its maximum value, fatigue damage increases from an original value of 0.108 to maximum of 0.124, 

a 13 % increase, and reduces from 0.108 to a minimum 0.089, a 17 % reduction when the scale parameter is reduced to its 

minimum value. In terms of shape parameter, the sensitivity of both average power generation and fatigue damage is much 

lower. In particular, when the shape parameter is changed and the scale is held at its original value of 10.94, the average power 

generation reduces from a maximum of 2,339 kW to 2,716 kW an ~6 % change; whereas, the damage reduces from a maximum 

of 0.111 to a minimum of 0.105, a 5 % reduction. 

 

  

Figure 9: Predicted average power production (left) and fatigue damage (right) for various values of the scale and shape parameters 

of the mean wind speed distribution. In both the nominal power and damage have been highlighted with an ‘x’. 

5.3 Comparison between revenue and financial losses 

There is a linear relationship between electricity generation and revenue assumed in Eq.(1); therefore, by changing the scale 

parameter between its minimum and maximum limits, a 24 % change in the revenue is expected, similar to that observed for 

the average power production in Section 5.2. Assuming a wholesale electricity price of £46.44 per Megawatt-hour, which is 

the average of the UK electricity price since 2010 (44) and applying Eq.(1), changing the scale parameter between its maximum 
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and minimum limit translates into yearly revenues varying between a minimum of £751,237.95 and a maximum of £949,911.22 

with the original scale and shape parameter resulting in revenue of £859,236.82. 

 

To calculate financial (material) losses resulting from failure in the FLS, the framework described in Section 3 is applied. 

Firstly, the probability of failure for the monopile is calculated using the limit state equation, Eq.(5), solved with importance 

sampling. To this aim, the design point is located in standard normal space using the first order reliability methods (35) and 

the probability of failure is evaluated by drawing 10,000 random samples about this point. The results are shown in Figure 10 

(left) in terms of lifetime probability of failure and indicate that the small values of fatigue damage predicted for the OWT in 

Section 5.2 result in small probabilities of failure. However, it is notable that the changing damage values (due to the various 

climate-change scenarios) cause magnified changes in the probability of failure. When moving from the minimum to maximum 

scale parameter, the probability of failure increases by a factor of 12, whereas the fatigue damage only increases by a factor of 

1.4. However, it should be noted that the considered NREL 5MW OWT has been designed for the purposes of academic 

studies; therefore, the absolute values of the obtained probability of failures may not be representative of a real OWT. 

 

The loss calculation is finally applied following the procedure described in Section 3.3, which encompasses both the monopile, 

tower and other non-structural components. The monopile cost is calculated using Eq.(8) using the parameters for the NREL 

5MW OWT, with: PWT= 5 MW, ℎ𝑤𝑎𝑡𝑒𝑟  = 20 m, ℎℎ𝑢𝑏 = 87.6 m, 𝜙𝑅 = 64 m; the resulting cost is €2.38·106. This is converted 

into pounds sterling using the average exchange rate in the year 2013 which was 1.1769, resulting in a cost of £2.80·106. The 

resulting expected annual losses for the system, calculated using Eq.(7), are shown in Figure 10 (right). The lifetime probability 

of failure, from Figure 10 (left) has been converted into an ‘equivalent’ annual probability of failure (although it should be 

noted that the actual probability of failure increases yearly, as discussed in (11)) by dividing by the assumed design life of 20-

years and used to calculate annual loss. In this case, varying the scale parameter between its minimum and maximum values 

increases the annual losses by less than 0.1 %. This is because the absolute value of lifetime fatigue damage is low and, 

therefore, the resulting probability of FLS failure is low as well. This means that the structural components have a low weight 

in the loss calculation, as the loss is dominated by the other non-structural components with higher failure rates such as the 

gearbox (see Table 2), as indicated by the plane in Figure 10 (right) which shows the total loss when the structural FLS is 

neglected. This can be seen more clearly in Figure 11 where the complementary cumulative distribution function for the annual 

losses is plotted, it shows the difference between equipment only and including structural components in the loss calculation. 

However, it is important to note that failure of a main structural component would result in loss of the generation ability and 

would ultimately cause loss in revenue for the entire OWT. 

 

A comparison between all the important variables used to calculate the production revenue and loss are shown on Figure 12 

in terms of a ratio between the parameter calculated for different scale and shape parameters to the site original scale and shape 

parameter (described in Section 4.2). The figure shows the constant scaling between power and revenue. It also shows how 
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fatigue damage is magnified into probability of failure and again into revenue losses (due to loss of the turbine) but reduced 

when only system material losses are considered. 

  

Figure 10: Probability of failure (left) and annual financial losses (right) for various values of the scale and shape parameters of the 

mean wind speed distribution. The plane shows the material losses when the structural components are neglected.  

 

Figure 11: Loss complementary cumulative distribution function for the OWT, showing the difference between the equipment only 

and including the structural component.  
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Figure 12: Ratio of the different performance metrics considered in this study calculated at the indicated value of scale and shape 

parameter to the site scale and shape parameter. 

6 Conclusions  

This study has presented a simulation-based, engineering approach to assess various performance metrics associated with 

offshore wind turbines exposed to operational wind and wave conditions. A surrogate-modelling approach has been employed 

to predict structural failure due to the fatigue limit state in a computationally efficient manner. The proposed surrogate model 

has been implemented in a probabilistic performance-based assessment framework for OWTs that considers both structural 

and non-structural (equipment) components. Such a framework has been used to evaluate the potential impact of climate-

change scenarios on various performance metrics, namely, fatigue damage, fatigue reliability, financial losses (cost of direct 

damage), and revenue resulting from power production for a case study OWT. Specifically, climate-change impact on OWT 

loading has been assessed directly in terms of wind loading and through the correlation between this variable and the other 

important environmental conditions, such as wave height.  

 

Both fatigue damage and structural safety were found to be sensitive to changes in the site environmental conditions. However, 

as financial material losses additionally depend on non-structural components - which are typically characterised by much 

higher failure rates - they are found to be less sensitive to the considered climate-change scenarios. In particular, it was found 

that the monopile has an almost negligible influence on the computed financial losses even although the cost of structural 

failure would be much larger than that of the other components. This is a result of the low fatigue failure rate predicted for the 

case-study NREL 5 MW OWT. However, the sensitivity of fatigue damage and resulting probability of failures to changes in 

wind climate is still relevant to OWT design, and particularly if OWT life extension is of concern. In fact, the predicted fatigue 

damage due to various climate-change scenarios may be higher than that resulting from optimised design procedures. 

Additionally, the revenue losses due to failure of the OWT dominates material losses.  
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It should be noted that these findings were based on parametric assumptions about the possible impact of climate change on 

the wind speed distribution at a case-study site, and not on an explicitly modelling of climate change and its effects on the 

occurring wind speed values. This approach was judged to be suitable given that a range of different climate change scenarios 

are predicted by various studies depending on the location of the offshore wind farm and that the relative change in power 

production and fatigue damage were of primary interest. 
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