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ABSTRACT
In this article, a numerical implementation of the exact kinetic energy operator (KEO) for triatomic molecules (symmetric of XY2-
type and asymmetric of YXZ-type) is presented. The implementation is based on the valence coordinates with the bisecting (XY2-
type molecules) and bond-vector (YXZ) embeddings and includes the treatment of the singularity at linear geometry. The KEO
is represented in a sum-of-product form. The singularity caused by the undetermined angle at the linear configuration is resolved
with the help of the associated Legendre and Laguerre polynomials used as parameterized bending basis functions in the finite
basis set representation. The exact KEO implementation is combined with the variational solver theoretical rovibrational energies,
equipped with a general automatic symmetry-adaptation procedure and efficient basis step contraction schemes, providing a pow-
erful computational solver of triatomic molecules for accurate computations of highly excited ro-vibrational spectra. The advan-
tages of different basis set choices are discussed. Examples of specific applications for computing hot spectra of linear molecules are
given.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0019546., s

I. INTRODUCTION

TROVE (Theoretical ROVibrational Energies) is an open-
access Fortran program that uses an efficient variational approach
to compute ro-vibrational energies and spectra for small polyatomic
molecules.1 It is an integral part of the ExoMol toolbox2 and was
used to generate hot line lists or other spectroscopic properties for
18 molecules important for atmospheric studies of exoplanets and
cool stars. These applications require complete spectroscopic data at
extremely high temperatures specific for atmospheres of most of the
known exoplanets, typically for 1000 K–3000 K. TROVE has been
optimized for energy and intensity calculations of highly excited
states, both rotationally and vibrationally. Since it can automatically
generate a kinetic energy operator (KEO) for an arbitrary, semi-rigid
molecule of a general structure, TROVE essentially has a black box
design. Typically, the kinetic energy operator (KEO) is represented
in a Taylor-type expansion around a (non-)rigid reference configu-
ration in terms of linearized1 or curvilinear3 coordinates. Both the

KEO and the potential energy function are represented by a sum-
of-product form, convenient for the integrals involved in the finite
basis set representation (FBR)—which it uses—where the eigen-
functions are sought as linear combinations of basis functions in a
symmetrized sum-of-product form. TROVE has an automatic sym-
metrization tool for building symmetry-adapted basis sets.4 TROVE
is also equipped with a number of auxiliary tools, including refine-
ment of potential energy surfaces5 and thermal averaging of different
properties;6 it provides efficient basis sets for quantum dynamics in
the presence of an external electric field.7 Recently, TROVE has been
extended to compute the electric quadrupole intensities of poly-
atomic molecules.8 Some disadvantages of TROVE are as follows:
(i) a non-exact (expanded) representation of the KEO, (ii) a repre-
sentation in rectilinear coordinates, and (iii) the automatic gener-
ation of the KEO is not capable of treating singularities appearing
when the molecules become linear. The problem with the singu-
larity could be, in principle, solved by using the 3N − 5 approach
for linear molecules, as was recently demonstrated in the case of
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HCCH.9,10 However, the associated rectilinear coordinates can lead
to a rather poor description of the potential energy surface and cause
large errors.9

Our goal is to extend TROVE to the (exact) KEO in curvilinear
coordinates with adequate treatment of the singularities. To this end,
here, we present an implementation of exact kinetic energy oper-
ators for triatomic, non-rigid molecules of general types XY2 and
YXZ with a singularity at the linear configuration. The well-known
KEOs expressed in valence coordinates in the bisecting embedding
for XY2 or along one of the bonds for YXZ (see, e.g., works by
Carter, Handy, and Sutcliffe,11 Littlejohn and Reinsch,12 Sutcliffe
and Tennyson,13 Lukka,14 and Watson15) are used. To resolve the
singularity in the KEO, we follow the standard approach by choos-
ing basis functions with appropriate behavior in the vicinity of the
linear geometry. This is a popular approach in the literature; see,
e.g., the works of Bramley and Handy,16 Jensen,17 Tennyson et al.,18

and Schwenke.19 Our choice here is a bending basis set built from
the associated Legendre and Laguerre polynomials (see, e.g., the
works of Bramley and Handy,16 Bohaček et al.,20 Perić and Peyer-
imhoff21). We show how any other appropriate basis sets can be
easily constructed. In order to make this implementation compat-
ible with the TROVE doctrine of using Taylor-like expansions in
terms of 1D functions, the exact form of the triatomic’s KEO is rep-
resented in a sum-of-product form. In the future, we are going to
explore this form of KEO for accurate treatment of larger polyatomic
molecules.

II. KEO: AN XY2-TYPE MOLECULE
TROVE uses an alternative to the Podolsky22 trick procedure

to build and represent the KEO as developed and described in sev-
eral papers; see, e.g., the works of Watson,15 Sørensen,23 and Nauts
and Chapuisat.24 This approach, which we will refer to as Sørenson’s,
assumes a general kinetic energy operator for an N atomic molecule
in the form

T̂ =
1
2 ∑

α=x,y,z
∑

α′=x,y,z
Ĵα Grot

α,α′(ξ) Ĵα′

−
ih̵
2 ∑

α=x,y,z

M

∑
n=1
[Ĵα GCor

α,n (ξ)
∂

∂ξn
+

∂

∂ξn
GCor
α,n (ξ) Ĵα]

−
h̵2

2

M

∑
n=1

M

∑
n′=1

∂

∂ξn
Gvib(ξ)
n,n′

∂

∂ξn′
+ U(ξ) (1)

in terms of vibrational coordinates, ξ = {ξ1, . . ., ξM}, conjugate vibra-
tional momenta −ih̵∂ /∂ξ = {−ih̵∂ /∂ξ1, . . . ,−ih̵∂ /∂ξM}, angu-
lar momenta operators Ĵx, Ĵy, Ĵz , and the pseudo-potential function,
U(ξ), and the so-called Wilson integration volume25,26

dV = sin θ dξ1dξ2, . . . ,dξM dϕdθ dχ

with ϕ, θ, and χ as Euler angles. M is the number of internal
(vibrational) degrees of freedom, 3N − 6 or 3N − 5. This repre-
sentation offers a number of important advantages comparing to
the Euclidean normalization form. Since it assumes a symmetric,
quadratic KEO in terms of the generalized momenta, the integrals
of the second derivatives of the wavefunctions are not required.

Besides, this form allows for an efficient formulation of the numer-
ical construction of the KEO for a general type of an arbitrary
polyatomic molecule; see, e.g., the works of Yurchenko, Thiel, and
Jensen.1 Finally, and more relevant to this work, this is the form
adopted by TROVE. We, therefore, intend to represent the well-
known KEOs of triatomic molecules, as in Eq. (1). The main dis-
advantage of this form for our work is that the pseudo-potential
function U(ξ), which does not exist in the Euclidean normaliza-
tion, is singular and, thus, as will be shown below, requires special
treatment.

Let us consider a triatomic molecule of the type XY2 with three
internal coordinates r1, r2, and ρ (i.e., ξ = {r1, r2, ρ}). Here, r1 and
r2 are two stretching valence coordinates, and ρ = 180○ − α, with α
being the inter-bond valence angle.

We choose the molecular frame of the XY2 molecule to be
in the angle bisector embedding (bisector “gauge”),12 where the x
axis is selected along the bisector between the X–Y1 and X–Y2 vec-
tors with the center in the nuclear center of mass and the y axis
orthogonal to the molecular plane for any instantaneous position
of the nuclei X, Y1, and Y2, as shown in Fig. 1. With this choice
of the molecular frame, the z axis coincides with the molecular axis
Y1–X–Y2 at the linear geometry (ρ = 0). The exact form of the kinetic
energy operator in the bisector embedding for triatomic molecules
is well known11,13 and can be represented by the following G and U
elements:

1. The vibrational part

Gvib
1,1 = G

vib
2,2 =

1
μXY

, (2)

Gvib
1,2 = G

vib
2,1 = −

cos ρ
mX

, (3)

Gvib
1,3 = G

vib
3,1 =

sin ρ
r2mX

, (4)

Gvib
2,3 = G

vib
3,2 =

sin ρ
r1mX

, (5)

Gvib
3,3 =

1
μXY
(

1
r2

1
+

1
r2

2
) +

2 cos ρ
r1r2mX

. (6)

FIG. 1. The molecular axis orientation for the symmetric molecule in the bisecting
frame, where the x axis is parallel to the bisector of the angle ∠Y1–X–Y2. For
clarity, the position of the axes is not at the center of mass of the molecule.
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2. The pseudo-potential function

U(r1, r2, ρ) = −
h̵2

8 sin2(ρ)
{

1 + sin2
(ρ)

μXY
[

1
r2

1
+

1
r2

2
] +

2 cos3
(ρ)

r1r2mX
}.

(7)

3. The Coriolis part (only non-zero elements):

GCor
1,y = −

sin ρ
2r2mX

, (8)

GCor
2,y =

sin ρ
2r1mX

, (9)

GCor
3,y =

1
2μXY

(
1
r2

1
−

1
r2

2
). (10)

4. The rotational part (only non-zero elements):

Grot
x,x =

1
4 cos2(ρ/2)

[
1
μXY
(

1
r2

1
+

1
r2

2
) − 2

1
mXr1r2

], (11)

Grot
x,z = G

rot
z,x =

1
2μXY sin ρ

(
1
r2

2
−

1
r2

1
), (12)

Grot
y,y =

1
4
[

1
μXY
(

1
r2

1
+

1
r2

2
) − 2

cos ρ
mXr1r2

], (13)

Grot
z,z =

cos2
(ρ/2)

sin2 ρ
[

1
μXY
(

1
r2

1
+

1
r2

2
) +

2
mXr1r2

]. (14)

In Eqs. (2)–(14), μXY is the reduced mass, given by

1
μXY
=

1
mX

+
1
mY

,

and we numbered the three coordinates r1, r2, and ρ as 1, 2, and 3,
respectively.

As mentioned above, the Wilson integration volume was used
and is the natural volume element for the Sørensen method. It also
ensures that the KEO is in the form of Eq. (1) and is thus compatible
with the preexisting formulation in TROVE. If one, instead, were to
use the Euclidean integration volume, given by

dV′ = r2
1r

2
2 sin ρ sin θ dr1 dr2 dϕdθ dχ,

the expression of the KEO T̂E would be given by Eqs. (14)–(18) of
Tennyson and Sutcliffe.27 To transform into the Wilson representa-
tion, one changes T̂E according to

T̂ = (r2
1r

2
2 sin ρ)1/2 T̂E (r2

1r
2
2 sin ρ)−1/2,

which leads to Eqs. (1)–(14), and one also changes the basis func-
tions from ϕ(r1, r2, ρ) to r1r2

√
sin ρϕ(r1, r2, ρ). Thus, it becomes

necessary to include a
√

sin ρ term in the basis functions to com-
pensate for the absence of sin ρ in the volume element; this resolves
the apparent singularities, as described below.

A. Singularity
We will assume that the solution of the eigenvalue problem for

the Hamiltonian

Ĥ = T̂ + V(ξ)
for an interatomic potential energy function V(ξ) will be found
variationally, i.e., by constructing and diagonalizing a Hamiltonian
matrix H on an appropriate basis set. When evaluating the integrals
of the kinetic energy part T̂ involving vibrational momentum oper-
ators p̂i = −ih̵∂/∂ξi in Eq. (1), we will change the direction of p̂i to
the left by applying integration by parts,28

− ih̵∫
b

a
ϕ(ξi)

∂

∂ξi
Gi,λ(ξ) Π̂λ ϕ

′
(ξi)dξi

= −ih̵ϕ(ξi)Gi,λ(ξ) Π̂λ ϕ
′
(ξi)∣

b
a

+ ih̵∫
b

a

∂ϕ(ξi)
∂ξi

Gi,λ(ξ) Π̂λ ϕ
′
(ξi)dξi

= ih̵∫
b

a

∂ϕ(ξi)
∂ξi

Gi,λ(ξ) Π̂λ ϕ
′
(ξi)dξi

= −∫

b

a
ϕ(ξi) p̂←i Gi,λ(ξ) Π̂λ ϕ

′
(ξi)dξi, (15)

where we assumed that the first part vanishes due to the boundary
conditions for the bound solution and used the notation

ϕ(ξi)p̂←i = −ih̵
∂ϕ(ξi)
∂ξi

.

Here, Π̂λ is a generalized momentum operator, Π̂ = {p̂1, p̂2, p̂3, Ĵx,
Ĵy, Ĵz}. The pseudo-potential matrix elements are, of course, in the
form

∫

b

a
ϕ(ξi)U(ξ)ϕ′(ξi)dξi. (16)

The singular terms in the KEO above are Grot
x,x, Grot

z,z , Grot
x,z , and

U from Eqs. (11), (14), (12), and (7), respectively. Both the pure
vibrational pseudo-potential function U and the rotational KE fac-
tor Grot

z,z have the singularity of the type 1
sin2 ρ (∼1/ρ2), while the

singularity of Grot
x,z(r1, r2, ρ) is of the type 1

sin ρ (∼1/ρ). The singu-
larity of Grot

x,x(r1, r2, ρ) is of the type 1
cos2(ρ/2) , which is singular at

ρ = 180○.

B. Associated Legendre polynomials
The traditional, 3N − 6-type approach to resolve the singularity

in the KEO is done by properly selecting the basis set functions that
make the corresponding matrix elements of the KEO finite. Among
the most popular choices are the associated Legendre Pk

n(x) and
the associated Laguerre Lln(x) polynomials. The orthogonal basis
functions constructed from the real normalized associated Legendre
polynomials have the form

ψ(k)n (ρ) =
√

sin ρ P̄(k)n (cos ρ), (17)

with the normalization condition
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∫

1

−1
[P̄(k)n (x)]

2
dx = ∫

π

o
[P̄(k)n (cos ρ)]

2
sin ρdρ = ∫

π

0
∣ψ(k)n ∣

2
dρ = 1

where x = cos ρ. Here, the rotational–angular basis (J > 0) is then
given by

ψrv
n,J,k,m = ψ

(k)
n ∣J, k,m⟩,

where k is both the rotational quantum number and the Legendre
index.

We use the factor
√

sin ρ in Eq. (17) to resolve the apparent
singularities by rewriting the Hamiltonian matrix elements so that
the integrals are in the form of Eqs. (15) and (16) with a mod-
ified G matrix and pseudo-potential function U (vibrational part
of the KEO) where P̄(k)n (cos ρ) takes the place of ϕ(ξi). We thus
obtain

h̵2

2
∂ψ(k)n

∂ρ
G3,3

∂ψ(k)m

∂ρ
+ ψ(k)n Uψ(k)m

=
h̵2

2
sin ρ

∂P̄(k)n

∂ρ
G3,3

∂P̄(k)m

∂ρ
+ P̄(k)n ŨP̄(k)m , (18)

where a new pseudo-potential term for the basis P̄(k)n is given by

Ũ =
h̵2

8
[−2 cos ρ

∂G3,3

∂ρ
+ (2 sin ρ +

cos2 ρ
sin ρ

)G3,3] + U sin ρ

= h̵2 sin(2ρ)
2r1r2mX

, (19)

which has a very compact form and is not singular.
The singularity of the term Gz,z Ĵ2

z in Eq. (14) is not relevant for
k = 0 due to the zero action of Ĵz on the rotational rigid rotor basis
functions |J, k, m⟩. The associated Legendre polynomials P̄(k)n (k > 0)
have the following form:16

P̄(k)n (cos ρ) = sink
(ρ) P̃(k)n (cos ρ), (20)

and therefore, the singularity in Eq. (17) is automatically resolved by
the factor sink(ρ) in the definition of P̄k

n (see, e.g., the work of Sutcliffe
and Tennyson13), which cancels the term 1/sin2(ρ) in Eq. (14) for
any k ≥ 1. Moreover, the combination

−
h̵2

2
G3,3

∂2ψ(k)m

∂ρ2 +
h̵2

2
k2Gz,zψ(k)n (21)

is non-singular for ψ(k)m from Eq. (17), which has been explored in
the literature (see, e.g., the work of Jensen29). To show this, first note
that

∂P̄(k)n (cos ρ)
∂ρ

= k
cos ρ
sin ρ

P̄(k)n + P̄(k+1)
n .

The terms containing the k2 factor from Eq. (21)

−
h̵2

2
G3,3

cos2 ρ
sin2 ρ

k2

cancel the divergent term of k2Gz ,z at ρ→ 0.

In order to derive the matrix elements in a non-singular form
for the basis set in Eq. (17), let us factorize out the sin ρ term from
ψ(k)n (ρ) and P̃(k)n (ρ) by introducing the following notation:

χ(k)n (ρ) = sink−1
(ρ) P̃(k)n (cos ρ) (k > 0), (22)

which is related to ψ(k)n as

ψ(k)n (ρ) =
√

sin ρ P̄(k)n (cos ρ) =
√

sin ρ sin ρ χ(k)n (ρ).

Using this notation, Eq. (18) becomes

h̵2

2
∂ψ(k)n

∂ρ
G3,3

∂ψ(k)n′

∂ρ
+ ψ(k)n Uψ(k)n′ +

h̵2

2
Gz,zk2ψ(k)n ψ(k)n′

=
h̵2

2
sin ρ

∂P̄(k)n

∂ρ
G3,3

∂P̄(k)n′

∂ρ
+ P̄(k)n ŨP̄(k)n′

+
h̵2

2
G̃z,zk2χ(k)n χ(k)n′ sin ρ, (23)

where both Ũ, given by Eq. (19), and

G̃z,z = Gz,z sin2 ρ = cos2
(ρ/2)[

1
μXY
(

1
r2

1
+

1
r2

2
) +

2
mXr1r2

] (24)

are non-singular.
For evaluation of matrix elements of other KEO terms contain-

ing p̂3, we define the first derivative of ψ(k)n with respect to ρ in the
following non-singular form:

d(k)n (ρ) ≡
√

sin ρ
∂ψ(k)n

∂ρ
=

1
2

cos ρ P̄(k)n + sin ρ
∂P̄(k)n

∂ρ
. (25)

Here, we assumed that
√

sin ρ can always be borrowed from the
counterpart bra or ket vector in Eq. (23). Second derivatives of
the wavefunctions are not required due to Sørenson’s form of the
KEO in Eq. (1) and the change in the direction of p̂i according to
Eq. (15).

The matrix elements of all the factors of the Hamiltonian in the
associated Legendre basis of ψ(k)n are then given by

∫

π

0
ψ(k)n Vψ(k)n′ dρ, (26)

∫

π

0

⎡
⎢
⎢
⎢
⎢
⎣

sin ρ
∂P̄(k)n

∂ρ
G3,3

∂P̄(k)n′

∂ρ
+

2
h̵2 P̄

(k)
n ŨP̄(k)n′ +k2 sin ρχ(k)n G̃z,zχ(k)n′

⎤
⎥
⎥
⎥
⎥
⎦

dρ,

(27)

∫

π

0
ψ(k)n Gi,3

∂ψ(k)n′

∂ρ
dρ = ∫

π

0
P̄(k)n Gi,3d(k)n′ dρ (i = 1, 2), (28)

∫

π

0
ψ(k)n

∂

∂ρ
G3,iψ(k)n′ dρ = −∫

π

0
d(k)n G3,iP̄(k)n′ dρ (i = 1, 2), (29)
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∫

π

0
ψ(k)n Gi,jψ(k)n′ dρ (i, j = 1, 2), (30)

∫

π

0
P̄(k)n G̃x,zP̄(k

′
)

n′ dρ, ∫

π

0
P̄(k)n G̃z,xP̄(k

′
)

n′ dρ (∣k − k′∣ = 1), (31)

∫

π

0
ψ(k)n Gx,xψ(k

′
)

n′ dρ, ∫

π

0
ψ(k)n Gy,yψ(k

′
)

n′ dρ (∣k − k′∣ = 0, 2),
(32)

∫

π

0
ψ(k)n G̃z,zψ(k

′
)

n′ dρ (∣k − k′∣ = 0), (33)

∫

π

0
(ψ(k)n

∂

∂ρ
G3,yψ(k

′
)

n′ + ψ(k)n Gy,3
∂

∂ρ
ψ(k

′
)

n′ )dρ

= ∫

π

0
G3,y(P̄(k)n d(k

′
)

n′ − d
(k)
n P̄(k

′
)

n′ )dρ (∣k − k′∣ = 1), (34)

∫

π

0
ψ(k)n Gy,iψ(k

′
)

n′ dρ, ∫

π

0
ψ(k)n Gi,yψ(k

′
)

n′ dρ (i = 1, 2, ∣k − k′∣ = 1)
(35)

where

G̃z,z = sin2 ρGz,z , G̃x,z = sin ρGx,z , G̃z,x = sin ρGz,x.

In Eq. (34), the property G3,y = Gy ,3 was used.
It should be noted that the Gx ,x term in Eq. (11) has a singular-

ity that leads to a divergence at ρ = 180○ (the XY2 molecule is fully
bent, α = 0), which cannot be resolved for the associated Legendre
polynomials when k = 0 and J > 0. In practice, however, this diver-
gence is not important because this geometry corresponds to a very
high energy.13 For example, before entering the divergent integrals
of Gx ,x in Eq. (32), the primitive basis functions

√
sin ρP̄(k)n (cos ρ)

can be optimized by eigen-solving the pure angular Schrödinger
equation for a realistic angular potential energy function V̄(ρ), as
will be shown below. The optimized solution usually vanishes at the
limit ρ→ 180○ faster than 1/cos2(ρ/2) in Eq. (11).

C. Basis set generation
The typical way to generate the associated Legendre polynomi-

als is by recurrence relations.30,31 However, having in mind a gener-
alization to arbitrary polynomials (see below) and also to represent
them in the form P̄(k)n (cos ρ) as in Eq. (20) required for the sin-
gularity canceling described above, we generate P̄(k)n (cos ρ) from a
non-orthonormal basis set of the different powers of cosnρ using the
Gram–Schmidt orthogonalization procedure in conjunction with
the ortho-normality condition,

∫

π

0
sin2k+1 ρ P̃(k)n (cos ρ)P̃(k)n′ (cos ρ)dρ = δn,n′. (36)

For any value of k (k = 0, . . ., kmax), we start from a normalized basis
function cosnρ with the weight factor sin2k+1(ρ),

F(k)n (cos ρ) =
cosn ρ

√

∫
π

0 sin2k+1 ρ cos2n ρdρ
, (37)

and then follow the Gram–Schmidt process to generate P̃(k)n (cos ρ)
(n = 0, . . ., nmax) recursively as given by

P̃(k)n (cos ρ) = F(k)n (cos ρ) −
n−1

∑
m=0
∫

π

0
sin2k+1 ρF(k)n

× P̃(k)m (cos ρ)dρ. (38)

The numerical construction of the basis set by the Gram–Schmidt
orthogonalization provides a flexible and robust way to generate
orthonormal basis sets on the fly, as was used by Schiffel and Man-
the32 to generate the cot-DVR (discrete variable representation)
basis set.

D. Associated Laguerre polynomials
The disadvantage of the Legendre-based basis functions is

that they are not sufficiently compact for representing the bending
motion. A more physically motivated basis set that also allows for
the full resolution of the ρ = 0 singularity in Eqs. (7), (12), and (14) is
the one based on the associated Laguerre polynomials L(l)n (ρ) (see,
e.g., the work of Perić and Peyerimhoff21).

Laguerre bending basis functions constructed from the (real)
associated Laguerre polynomials L(l)n (ρ) are given by

ψ(l)n (ρ) = Cn,l ρ
l+1/2 L(l)n (aρ

2
) e−aρ

2
/2 (39)

and are normalized as

∫

∞

0
ψ(l)n (ρ)

2 dρ = 1 (40)

with

Cn,l =

√
2n!
(n + l)!

a
l+1
2 ,

where a is a structural parameter. Due to the bending nature of ρ and
also the singularity at ρ = π, we will have to restrict the integration
range in Eq. (40) to ρ = [0, . . ., ρmax], where ρmax < 180○ with Cn , l

obtained via numerical normalization of ψ(l)n (ρ).
Following the example of the Legendre basis set, we now show

how the Laguerre basis functions resolve the singularity in the KE
terms Grot

z,z , Grot
x,z , and U. In this case, √ρ takes the place of

√
sin ρ.

The change in the basis function that results from using the Wilson
integration volume is thus absorbed into the basis function implic-
itly. As mentioned above, these three KE components are combined
with the Laguerre basis functions ψ(l)n as given by

h̵2

2
∂ψ(l)n
∂ρ

G3,3
∂ψ(l)n′
∂ρ

+ ψ(l)n Uψ(l)n′ +
h̵2

2
Gz,zk2ψ(l)n ψ(l)n′

=
h̵2

2
ρ
∂ϕ(l)n
∂ρ

G3,3
∂ϕ(l)n′
∂ρ

+ ϕ(l)n Ũϕ(l)n′

+
h̵2

2
ρ G̃z,zk2χ(l)n χ(l)n′ , (41)

where the substitution
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Ĵ2
zGz,z ∣J, k,m⟩ = h̵2k2Gz,z ∣J, k,m⟩

was used in conjunction with the rotational basis function |J, k, m⟩
and the following functions were introduced,

ϕ(l)n (ρ) = Cn,l ρ
l L(l)n (aρ

2
) e−aρ

2
/2
(l ≥ 0), (42)

χ(l)n (ρ) = Cn,l ρ
l−1 L(l)n (aρ

2
) e−aρ

2
/2
(l > 0), (43)

which are related to ψ(l)n as

ψ(l)n (ρ) =
√
ρϕ(l)n (ρ) =

√
ρ ρ χ(l)n (ρ).

The exponential term in Eq. (39) ensured that the basis function van-
ishes at ρmax so that, when integrating by parts, the boundary term at
ρmax in Eq. (15) can be ignored. Analogously to the treatment using
the Legendre polynomials, we have also introduced the rotational
KE factor G̃z,z

G̃z,z = Gz,zρ2

and a new pseudo-potential term

Ũ = Uρ +
h̵2

8
[−2

∂G3,3

∂ρ
+
G3,3

ρ
].

It is easy to see from Eqs. (7) and (14) that neither G̃z,z nor Ũ is
singular,

G̃z,z ≈
1
μXY
[

1
r2

1
+

1
r2

2
] +

2
r1r2mX

+ O(ρ2
), (44)

Ũ ≈ h̵2
[−

1
6μXY

(
1
r1

+
1
r2
) +

2
3r1r2mX

]ρ + O(ρ3
). (45)

One can see from Eqs. (43) and (44) that the term G̃z,zk2ϕ(l)n ϕ(l)n′ in
Eq. (41) is never singular either for non-zero values of k if we assume
that l = |k|.

The matrix elements of all the factors of the Hamiltonian in
the basis of ψ(l)n are then given by Eqs. (26)–(35) with d(l)n (ρ) given
analogously to Eq. (25) by

d(l)n (ρ) ≡
√
ρ
∂ψ(k)n

∂ρ
=

1
2
ϕ(l)n + ρ

∂ϕ(l)n
∂ρ

(46)

and sin ρ in Eq. (27) replaced by ρ.
Our next step is to optimize the Laguerre basis functions by

solving a 1D bending Schrödinger equation for the model Hamilto-
nian operator

Ĥ1D
(ρ) = −

h̵2

2
∂

∂ρ
Ḡ3,3(ρ)

∂

∂ρ
+
h̵2

2
Ḡz,z(ρ)k2 + Ū(ρ) + V̄(ρ) (47)

variationally on the basis ψ(l)n (ρ). Here, Ḡ3,3(ρ), Ḡz,z(ρ), Ū, and V̄
are obtained from the corresponding 3D forms by setting r1 = r2
= re (re is the equilibrium bond length). The structural parameter a
is chosen as

a =

¿
Á
ÁÀ f2

g0
(48)

where

f2 =
1
2
∂2V̄(ρ)
∂ρ2 ∣

ρ=0

and g0 = Ḡ3,3(ρ = 0) is the equilibrium value. With this choice of a,
ψ(l)n (ρ) in Eq. (39) are eigenfunctions of the model 1D Hamiltonian
operator,

Ĥmodel
= −

h̵2

2
g0

∂2

∂ρ2 +
h̵2

8
g0
(4l2 − 1)

ρ2 + f2ρ2. (49)

This 1D Hamiltonian operator is equivalent to that of the 2D
isotropic harmonic oscillator.20

We solve the Schrödinger equation for the Hamiltonian oper-
ator Ĥ1D in Eq. (47) variationally on the basis of ψ(l)n (ρ) with l ≥ 0.
The matrix elements of Ĥ1D are computed numerically on a grid of
ρ = 0, . . ., ρmax in quadruple precision. The associated Laguerre poly-
nomial is generated using a Fortran subroutine from the library by
John Burkardt.33 The Hamiltonian matrix is diagonalized with the
quadruple precision. The eigenfunctions Φ(l)n of Ĥ1D are then used
as optimized basis functions for the solution of the full ro-vibrational
problem (see Sec. IV).

Figure 2 shows selected Legendre ψ(k=0)
n (ρ) from Eq. (17)

and Laguerre ψ(l=0)
n (ρ) basis functions from Eq. (39) for n = 10

and compares them to the corresponding optimized eigenfunc-
tions Φ(0)12 for CO2 as an example. Here, a relatively large primi-
tive basis function (associated Laguerre or Legendre polynomials)
of nmax = 48 was used. The Laguerre basis function ψ(l=0)

n has a
much more compact form than the Legendre basis function and
is very close to the optimized solution illustrating the better qual-
ity of the Laguerre basis set. Even the well-optimized Legendre-
based eigenfunction Φ(0)n (Legendre) shows clear oscillations in
the region of small inter-bond angle, which should be forbidden
due to the high potential energy. This artifact of the Legendre
basis is not eliminated completely even with the relatively large set.
The Laguerre-based eigensolution gives a clean eigensolution and,
therefore, should be more preferable for high vibrational excita-
tions. Numerical noise in calculations of matrix elements of dipole
moments is known to lead to intensity instabilities in overtone spec-
tra of diatomics34 and have been recently investigated in the case of
triatomics.35

Figure 3 illustrates the importance of the centrifugal term
h̵2

2 Ḡz,z(ρ)k2 when optimizing the bending basis set for k > 0.
A more detailed discussion of the calculations for CO2 is given
below.

E. Factorization of the KEO
The KEO factors in Eqs. (2)–(6), Eq. (7), Eqs. (8)–(10), and

Eqs. (11)–(14) have a sum-of-product form, which is convenient
for integrations on 1D basis sets. We can also take advantage of
the non-rigid reference approach by Hougen, Bunker, and Johns36
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FIG. 2. Left display: Legendre polynomial based basis function ϕ(0)
10 and Laguerre-polynomial-based basis functions ψ(0)

10 for CO2. Right display: The corresponding optimized

wavefunctions Φ(0)
20 (Legendre) and Φ(0)

20 (Laguerre). The optimized Legendre-based wavefunctions show oscillations in the forbidden (high energy) region. The 1D potential
energy function V(ρ) is shown as reference. The computational details are defined in Sec. V.

implemented in TROVE by representing the KEO as a formal expan-
sion around the non-rigid reference configuration defined by ρ with
respect to the variables 1/ri and 1/r2

i ,

Gλ,λ′(r1, r2, ρ) = ∑
k,m=0,1,2

G(λ,λ′)
k,m (ρ)fk(r1)fm(r2) (50)

where

f1(r) = 1, (51)

f2(r) = 1/r, (52)

f3(r) = 1/r2. (53)

The vibrational expansion factors Gλ,λ′
k,m (λ, λ′ = 1, 2, 3) are then

given by

FIG. 3. The effective potential energy function with the centrifugal term for
k = 10 included, Φ(10)

10 (optimized) basis functions for CO2, compared to the cor-

responding potential energy function V(ρ) and Φ(0)
10 for k = 0. The centrifugal term

is shown as a near flat black line.

G1,1
0,0 = G

2,2
0,0 = G

3,3
2,0 = G

3,3
0,2 =

h̵2

μXY
, (54)

G1,2
0,0 = G

2,1
0,0 = − cos ρ

h̵2

mX
, (55)

G1,3
1,0 = G

2,3
0,1 = G

3,1
1,0 = G

3,2
0,1 = sin ρ

h̵2

mX
, (56)

G3,3
1,1 = 2 cos ρ

h̵2

mX
. (57)

The rotational, non-singular factors (α, β = x, y) are given by

Gx,x
0,2 = G

x,x
2,0 =

h̵2

μxy
1

4 cos2 ρ/2
, (58)

Gx,x
1,1 = −

h̵2

mX

1
2 cos2 ρ/2

, (59)

Gy,y
2,0 = G

y,y
0,2 =

h̵2

4
1
μXY

, (60)

Gy,y
1,1 = −

h̵2

mX

cos ρ
2

. (61)

The Coriolis factors (λ = 1, 2, 3, α = y) are given by

G1,y
1,0 = −G

2,y
0,1 = h̵

2 sin ρ
2mX

, (62)

G3,y
2,0 = −G

3,y
0,2 =

h̵2

2μXY
. (63)

The singular terms Gx ,z , Gz ,x, and Gz ,z require special care. In
principle, the basis set functions ψ(l)n in Eq. (39) include the neces-
sary counter-terms to resolve the corresponding singularities at ρ = 0
exactly; however, any numerical evaluations of the fractions
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ρ
sin ρ

and
ρ2

sin2 ρ

must be avoided at very small values of ρ as they lead to numerical
instabilities. We therefore include factors ρ or ρ2 into Gx ,z , Gz ,x, and
Gz ,z explicitly, by transferring them from the basis functions ψ(l)n ,

G̃z,z = ρ2 Gz,z , G̃x,z = ρGx,z , G̃z,x = ρGz,x.

The corresponding expansion terms G̃x,z
k,m, G̃x,z

k,m, and G̃z,z
k,m are

then given by

G̃x,z
0,2 = G̃

z,x
0,2 = −G̃

x,z
2,0 = −G̃

z,x
2,0 =

h̵2

2
1
μXY

ρ
sin(ρ)

, (64)

G̃z,z
2,0 = G̃

z,z
0,2 =

h̵2

μXY
ρ2 cos2

(ρ/2)
sin2(ρ)

, (65)

G̃z,z
1,1 =

2h̵2

mX

ρ2 cos2
(ρ/2)

sin2(ρ)
. (66)

For very small values of ρ (typically ρ < 0.01 rad), G̃α,β are expanded
around ρ = 0 to fourth order.

The pseudo-potential factors are also represented as a sum-of-
product expansion around the non-rigid reference configuration in
a similar fashion,

Ũ(r1, r2, ρ) = ∑
k,m=0,1,2

Ũk,m(ρ)fk(r1)fm(r2), (67)

with the expansion ρ-dependent terms given by

Ũ0,2(ρ) = Ũ2,0(ρ) =
h̵2

8μXY
[

1
ρ
−

ρ
sin2 ρ

− ρ], (68)

Ũ1,1(ρ) =
h̵2

4
1
mX
[cos ρ(

1
ρ
−

ρ
sin2 ρ

+ ρ) + 2 sin ρ] (69)

that are not singular at ρ = 0,

Ũ0,2(ρ) = Ũ2,0(ρ) ≈ −
h̵2

6μXY
ρ + O(ρ3

), (70)

Ũ1,1(ρ) ≈
2 h̵2

3mX
ρ + O(ρ3

). (71)

These factors are also replaced by their Taylor expansion in ρ of
fourth order in the vicinity of ρ = 0.

Some of the KEO expansion factors G̃α,β
n,m and Ũn,m(ρ) from

Eqs. (64)–(69) generated for the CO2 molecule are illustrated in
Fig. 4, where PES by Huang et al.37 was used. The details of the
TROVE calculations can be found in the work of Yurchenko et al.38

F. Hybrid basis
As our final basis set example for the XY2 system, we combine

the advantages of the weight functions sinl+1/2(ρ) and e−aρ
2
/2 in the

Legendre and Laguerre-based basis sets, respectively, see Eqs. (17)

FIG. 4. The KEO terms for CO2.

and (39), by introducing hybrid, ortho-normal basis functions as
given by

ψ̃(l)n (ρ) = sinl+1/2
(ρ) L̃(l)n (aρ

2
) e−aρ

2
/2. (72)

Here, L̃(l)n (aρ2
) (ρ = [0, . . ., 180○]) are orthogonal polynomials

with the weight function sinl+1/2
(ρ)e−aρ

2
/2. These polynomials can

be numerically constructed from the original associated Laguerre
polynomials from Eq. (39) (which are not orthogonal for this
weight factor) and then ortho-normalized using one of the standard
techniques, such as Gram–Schmidt’s orthonormalization given in
Eqs. (36)–(38). The correct weight sinl+1/2(ρ) makes these polyno-
mials compatible with the integrals from Eqs. (25)–(35) and lead
to a more compact form of the KEO. At the same time, the corre-
sponding basis functions are more compact due to the damping term
e−aρ

2
/2. The integration limit can be extended to ρmax = 180○, where

all the KEO terms are now well defined except Gx ,x. The divergence
of the latter is also naturally resolved by the damping term e−aρ

2
/2.

Our tests show that in case of CO2, the hybrid basis functions
ψ̃(l)n in Eq. (72) are very similar to the Laguerre-based wavefunctions
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ψ(l)n from Eq. (39), illustrated in Figs. 2 and 3, and therefore are not
shown here.

Our hybrid basis set is an example of typical orthogonal poly-
nomials pi(x) with a non-classical weight W(x) constructed using
a known set of orthogonal polynomials to improve the stability of
orthogonalization.39 This approach can be easily further explored
depending on the physical problem. For example, the isomeriza-
tion of HCN/HNC (not considered here) can be treated variationally
using the following non-classical, double Gaussian weight function
with a sinl+1/2 factor:

W(ρ) = sinl+1/2
(ρ) [e−a1ρ2

/2 + e−a2(π−ρ)2
/2
],

where a1 and a2 are the corresponding structural constants defined
according to Eq. (48) at ρ = 0○ and ρ = 180○, respectively.

III. ASYMMETRIC TRIATOMIC MOLECULES YXZ
For a non-symmetric YXZ-type triatomic, we use an embed-

ding with the z molecular frame axis oriented along the XY bond
and the y axis orthogonal to the molecular plane (the so-called “xxy
gauge”12 or r1 embedding), as shown in Fig. 5. As mentioned before,
the vibrational coordinates are r1 (X–Y bond length), r2 (Y–Z bond
length), and ρ = 180○ − α, where α is the inter-bond angle ∠YXZ.
The KEO for this choice is given, e.g., by Sutcliffe and Tennyson.13

The methodology presented for an XY2 molecule can be directly
applied to the non-symmetric case. We start by representing the
KEO factors as sum-of-products using the expansion in Eq. (50). The
vibrational expansion factors Gλ,λ′

k,m (λ, λ′ = 1, 2, 3) are then given by

G1,1
0,0 = G

3,3
2,0 =

h̵2

μXY
, (73)

G1,2
0,0 = G

2,1
0,0 = − cos ρ

h̵2

mX
, (74)

G1,3
0,1 = G

2,3
1,0 = G

3,1
0,1 = G

3,2
1,0 = sin ρ

h̵2

mX
, (75)

G2,2
0,0 = G

3,3
0,2 =

h̵2

μXZ
, (76)

G3,3
1,1 = 2 cos ρ

h̵2

mX
(77)

FIG. 5. The orientation of the molecular frame axes for the asymmetric molecule
in the r1 embedding with the z axis parallel to the Y–X bond with the bond length
r1. The second bond Z–X is with the length r2. For clarity, the position of the axes
is not at the center of mass of the molecule.

where
1
μXY
=
mX + mY

mXmY
and

1
μXZ
=
mX + mZ

mXmY
.

The non-zero rotational factors Gα,β
n,m (α, β = x, y) and Coriolis factors

Gλ,α
n,m (λ = 1, 2, 3, α = y) are given by

Gx,x
2,0 = G

y,y
2,0 =

h̵2

μXY
, (78)

Gx,z
1,1 = G

z,x
1,1 = h̵

2 ρ
sin ρmX

, Gx,z
2,0 = G

z,x
2,0 = h̵

2 ρ cos ρ
sin ρ μXY

, (79)

Gz,z
0,2 = h̵

2 ρ2

sin2 ρ μXZ
, Gz,z

1,1 = h̵
2 2ρ2 cos ρ

sin2 ρmX
, Gz,z

2,0 = h̵
2 ρ2 cos2 ρ

sin2 ρ μXY
,

(80)

G2,y
1,0 = −h̵

2 sin ρ
mX

, G3,y
1,1 = −h̵

2 cos ρ
mX

, G3,y
2,0 = −

h̵2

μXY
. (81)

The treatment of the singular term U, also expanded accord-
ing to Eq. (67), depends on whether

√
sin ρ or √ρ is used. For the

√
sin ρ choice (Legendre polynomials), the pseudo-potential func-

tion Ũ coincides with that of Eq. (19), and thus, the only non-zero
term is

Ũ = h̵2 sin(2ρ)
2r1r2mX

, with Ũ1,1(ρ) = h̵2 sin(2ρ)
2mX

. (82)

The pseudo-potential expansion factors for the√ρ choice used
for the Laguerre-type function are given by

Ũ2,0(ρ) =
h̵2

8μXY
1

sin2(ρ)
[

sin2 ρ
ρ

+ ρ(cos2
(ρ) − 2)], (83)

Ũ1,1(ρ) =
h̵2

4mX

1
sin2(ρ)

[−ρ cos3
(ρ) + 2 sin3

(ρ) +
cos ρ
ρ
], (84)

Ũ0,2(ρ) =
h̵2

8μXZ
1

sin2(ρ)
[

sin2 ρ
ρ

+ ρ(cos2
(ρ) − 2)], (85)

none of which is singular,

Ũ2,0(ρ) ≈ −
h̵2

6
1
μXY

ρ + O(ρ3
), (86)

Ũ1,1(ρ) ≈
2 h̵2

3
1
mX

ρ + O(ρ3
), (87)

Ũ0,2(ρ) ≈ −
h̵2

6
1
μXZ

ρ + O(ρ3
). (88)

For very small values of ρ, both G̃α,β and Ũ are replaced by their
Taylor expansion in ρ of fourth order when applied to the region of
small values of ρ.
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Analogously to the XY2 treatment above, the integrals in
Eqs. (26)–(35) are used.

IV. RO-VIBRATIONAL TROVE
The KEO and the associated Legendre and Laguerre polyno-

mials based basis set presented above have been implemented in
the variational program TROVE.1 TROVE solves the ro-vibrational
Schrödinger equation using a multi-layer contraction scheme (see,
for example, the work of Yurchenko, Yachmenev, and Ovsyan-
nikov4). At step 1, the 1D primitive basis set functions Φv1(r1),
Φv2(r2) (stretching), and Φ(l)v3 (ρ) (bending) are obtained by numer-
ically solving the corresponding Schrödinger equations. A 1D
Hamiltonian operator for a given mode is constructed by set-
ting all other degrees of freedom to their equilibrium values.
The two equivalent stretching equations are solved on a grid of
about 1000 points using the Numerov–Cooley approach,40,41 with
the grid values of r1 and r2 ranging typically from re − 0.5 Å
to re + 1.0 Å. These stretching basis functions are then used to com-
pute 1D matrix elements of 1/ri, 1/r2

i from the expansions of Gλ ,μ
and U in Eqs. (54)–(63) and Eqs. (68) and (69) as well as of all other
1D combinations of ri used to represent a potential energy func-
tion. The latter is assumed to be given in a sum-of-product form as
well, e.g.,

V(r1, r2, ρ) = ∑
i,j
fi,j(ρ) yi1 y

j
2

where

y1 = 1 − exp[−a1(r1 − re
1)], (89)

y2 = 1 − exp[−a2(r2 − re
2)], (90)

fi,j(ρ) = ∑
k
fi,j,k(cos(ρ) − cos(ρe))

k (91)

with re
1, re

2, and ρe as the corresponding equilibrium values.
The bending mode wavefunctions Φ(l)v3 (ρ) are obtained as solu-

tions of a 1D Schrödinger equation for the Hamiltonian operator
in Eq. (47) using the Laguerre-polynomial basis set ψ(l)n (ρ) from
Eq. (39). Here, l is a parameter ranging from 0 to lmax where lmax
≤ Jmax. The 2D index n, l is combined into a 1D index v3 as

vl3 = n × (lmax + 1) + l.

The matrix elements of all bending properties in the KEO on
∣vl3⟩ = Φ(l)v3 (ρ) are obtained numerically on a grid of ∼1000 points
using quadruple precision. When computing the matrix elements
of the ρ-dependent factors Gλ ,λ′ , the pseudo-potential matrix ele-
ments ⟨vl3∣Ũm,n∣v

′ l
3⟩ and ⟨vl3∣G̃

z,z
m,n∣v

′ l
3⟩ are combined with the matrix

element ⟨vl3∣
∂
∂ρG

3,3
m,n

∂
∂ρ ∣v

′l
3 ⟩ into one term as [see Eq. (27)]

G3,3,m.n
v3 ,v′3 ,l ≡ −⟨v

l
3∣

∂

∂ρ
G3,3
m,n

∂

∂ρ
∣v′l3 ⟩ +

2
h̵2 ⟨v

l
3∣Um,n∣v

′ l
3⟩ + l2 ⟨vl3∣G

z,z
m,n∣v

′ l
3⟩

= ∫

π

0

⎡
⎢
⎢
⎢
⎢
⎣

sin ρ
∂ϕ(l)n
∂ρ

G3,3
m,n

∂ϕ(l)n′
∂ρ

+
2
h̵2 ϕ

(l)
n Ũm,nϕ(l)n′

+l2 sin ρ χ(l)n G̃z,z
n,mχ

(l)
n′

⎤
⎥
⎥
⎥
⎥
⎦

dρ. (92)

Thus, the rotational KEO term Gz,zJ2
z is fully accounted for

already at this stage. Due to the constraint between the vibrational
parameter l and the rotational quantum number k, l = |k|, most of the
matrix elements of the Hamiltonian components are diagonal in k,
except those containing Ĵ2

x , Ĵ2
y , and Ĵx Ĵz . Therefore, most of the bend-

ing matrix elements for Φ(l)v3 are computed for Δl = 0 only, except for
Gzx, Gxz (Δl = ±1) and Gx ,x, Gy ,y (Δl = ±2).

In the case of a symmetric molecule XY2, at step 2, two reduced
problems for the 2D stretching and 1D bending reduced Hamil-
tonians are solved variationally on the primitive basis sets intro-
duced above, with two equivalent modes r1 and r2. The reduced
Hamiltonian operators are constructed by averaging the 3D vibra-
tional (J = 0) Hamiltonian over the ground state basis functions as
follows:

Ĥ(1)str (r1, r2) = ⟨00
3∣Ĥ

3D
∣00

3⟩, (93)

Ĥ(2)bnd(ρ) = ⟨01∣⟨02∣Ĥ3D
∣02⟩∣01⟩, (94)

where ∣vi⟩ = Φv1(r1)Φv2(r2) (i = 1, 2) are stretching and ∣vl3⟩
= Φ(l)v3 (ρ) are bending vibrational basis functions. In principle, the
Hamiltonian matrix vmax

3 × vmax
3

H(2),l
v3 ,v′3
= ⟨vl3∣Ĥ

(2)
bnd(ρ)∣v

′l
3 ⟩

is block-diagonal in l; for a technical reason, this is currently not
recognized, and the whole matrix is diagonalized, which is not a
problem as the dimension (vmax

3 + 1) is relatively small.
The eigenfunctions of Ĥ(1)str and Ĥ(2)str , Ψ(1)i1 (r1, r2) and Ψ(2)i2 ,l (ρ),

respectively, are then symmetrized using the automatic symmetry-
adaptation technique,4 which is an important part of step 2, in this
case using the C2v(M) molecular symmetry group.42

Step 3 involves an eigensolution of the J = 0 Hamiltonian on
a 3D vibrational basis set formed as symmetry-adapted products of
Ψ(1)i1 (r1, r2) and Ψ(2)i2 ,l (ρ),

ΨΓvib
i1 ,i2 ,l = {Ψ

(1)
i1 (r1, r2)Ψ(2)i2 ,l (ρ)}

Γvib , (95)

where Γvib is the vibrational symmetry in the C2v(M) molecular
group symmetry used to classify the irreducible representations
(irreps) of the ro-vibrational states of XY2. C2v(M) is comprised of
four irreps A1, A2, B1, and B2. The ro-vibrational basis set is then
constructed as a symmetrized product of the vibrational eigenfunc-
tions of the J = 0 problem and rigid rotor wavefunctions.

In the case of an asymmetric YXZ-type triatomic, at step 2,
all three modes are processed independently as 1D reduced Hamil-
tonians. The vibrational eigensolutions are formally symmetrized
according to the representations of the Cs(M) molecular symmetry
group, which in this case can be only of A′, so are the vibrational
(J = 0) basis set functions

ΨA′
i1 ,i2 ,i3 ,l = Ψ

(1)
i1 (r1)Ψ(2)i2 (r2)Ψ(3)i3 ,l (ρ). (96)

The ro-vibrational basis functions transform according to A′ or A′′

of Cs(M).
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V. COMPUTATIONAL EXAMPLES
A. Symmetric molecule: Computing hot
CO2 spectra

Here, we present an example of the computation of spectra for
a linear triatomic molecule CO2. The PES Ames-2016 by Huang
et al.37 was used. For the kinetic energy factors given by Eqs. (54)–
(68), the non-rigid configuration consisted of 3000 equidistant grid
points ranging from 0○ to 170○. The Laguerre basis set was gener-
ated for lmax = 40. The nuclear masses of C and O were used. The
stretching and bending primitive basis set functions ranged up to 56
and 64 quanta, respectively. The stretching basis set was generated
by solving a 1D Schrödinger equation using the Numerov-Cooley
procedure on an equidistant grid of 1000 points ranging from re −

0.4 Å to re + 1.0 Å with re = 1.161 399 7 Å. The potential energy
function Ames-2016 was re-expanded into a 12th order Taylor-type
expansion in terms of the coordinates y1 and y2 from Eqs. (89) and
(90) with a1 = a2 = 1/Å. After solving the reduced problems given by
Eqs. (93) and (94), a 3D vibrational basis set was constructed from
symmetry-adapted [C2v(M)] combinations, Eq. (95), corresponding
to the energies below hc × 40 000 cm−1. The J = 0 energies were
computed by solving the vibrational Schrödinger equation varia-
tionally. Eigenfunctions of the J = 0 problem corresponding to states
below 32 000 cm−1 were used to build the ro-vibrational basis set
with the rotational part as rigid rotor oscillators, after being sym-
metrized according to C2v(M). The parameter a in the definition of
the Laguerre polynomials in Eq. (39) was set to 58.5354 according to
Eq. (48).

To compute all ro-vibrational energies for J ≤ 230 with
this basis set, it took less than 24 h on the Intel Xeon Sky-
lake 2.6 GHz 32 cores per node systems available via the DIRAC
project.

Some of the energies of CO2 (J = 0, 1) computed with TROVE
are compared to the energies computed using the DVR3D pro-
gram18 in Table I using the same potential energy surface, which
show a close agreement within 0.03 cm−1.

Figure 6 (left display) shows how ro-vibrational residuals
depend on the rotational quantum number J for the ground vibra-
tional states and the fundamentals (J = 0, . . ., 40). The same fig-
ure (right display) shows a similar comparison with the experi-
mentally derived ro-vibrational energies of CO2 from the HITRAN
database43 with a larger J range (J ≤ 128). Here, band center shifts
were applied to the TROVE term values to match the HITRAN
energies (see the work of Yurchenko et al.38 for details). The com-
plete set of energies for J ≤ 230 can be found in the work of
Yurchenko et al.38

B. Asymmetric molecule: HCN term values
As an example of applications of the presented methodology to

YXZ molecules, we use the spectroscopic model developed recently
for HCN by Makhnev et al.46 Here, we have used their empirical
PES to compute ro-vibrational energies of H12C14N and compare to
energies reported by Makhnev et al.46 To this end, the KEO repre-
sented by Eqs. (73)–(88) was used with the molecular z axis placed
parallel to the C–N bond. The PES was re-expanded into a sixth

TABLE I. CO2 term values (cm−1) computed using Ames-2 PES with DVR3D (D)44 and TROVE (T) from this work for J = 0, 1. The HITRAN quantum numbers45 are used to
assign the CO2 ro-vibrational states.

Quantum numbers Term values (cm−1) Quantum numbers Term values (cm−1)

J n1 nlin
2 l2 n3 r DVR3D TROVE D-T J n1 nlin

2 l2 n3 r DVR3D TROVE D-T

0 0 0 0 0 1 0.0000 0.0000 0.0000 1 0 1 1 0 1 668.1591 668.1463 0.0128
0 1 0 0 0 2 1285.3982 1285.4037 −0.0055 1 1 1 1 0 2 1933.2289 1933.2126 0.0163
0 1 0 0 0 1 1388.2030 1388.2091 −0.0061 1 1 1 1 0 1 2077.6410 2077.6241 0.0169
0 2 0 0 0 3 2548.3302 2548.3428 −0.0126 1 0 0 0 1 1 2349.9489 2349.9478 0.0011
0 2 0 0 0 2 2671.1369 2671.1435 −0.0066 1 0 1 1 1 1 3004.8580 3004.8445 0.0135
0 2 0 0 0 1 2797.1419 2797.1568 −0.0149 1 2 1 1 0 3 3182.2035 3182.1833 0.0202
0 3 0 0 0 4 3792.6360 3792.6556 −0.0196 1 2 1 1 0 2 3340.1160 3340.0964 0.0196
0 3 0 0 0 3 3942.5071 3942.5173 −0.0102 1 2 1 1 0 1 3501.4460 3501.4241 0.0219
0 3 0 0 0 2 4064.2642 4064.2769 −0.0127 1 1 0 0 1 2 3613.6619 3613.6660 −0.0041
0 3 0 0 0 1 4225.0865 4225.1107 −0.0242 1 1 0 0 1 1 3715.6220 3715.6258 −0.0038
0 0 0 0 2 1 4673.3731 4673.3707 0.0024 1 1 1 1 1 2 4248.5414 4248.5240 0.0174
0 4 0 0 0 5 5022.3280 5022.3544 −0.0264 1 1 1 1 1 1 4391.4677 4391.4497 0.0180
0 4 0 0 0 4 5197.2122 5197.2284 −0.0162 1 3 1 1 0 4 4416.8958 4416.8714 0.0244
0 4 0 0 0 3 5329.6257 5329.6361 −0.0104 1 3 1 1 0 3 4591.8617 4591.8384 0.0233
0 4 0 0 0 2 5475.5362 5475.5581 −0.0219 1 3 1 1 0 2 4754.2080 4754.1836 0.0244
0 4 0 0 0 1 5667.6298 5667.6633 −0.0335 1 2 0 0 1 3 4854.4467 4854.4574 −0.0107
0 1 0 0 2 2 5915.2708 5915.2732 −0.0024 1 3 1 1 0 1 4939.1496 4939.1221 0.0275
0 1 0 0 2 1 6016.7629 6016.7640 −0.0010 1 2 0 0 1 2 4978.6589 4978.6623 −0.0034
0 2 0 0 2 3 7133.8848 7133.8933 −0.0085 1 2 0 0 1 1 5100.4945 5100.5062 −0.0117
0 2 0 0 2 2 7259.8259 7259.8256 0.0003 1 0 1 1 2 1 5316.5820 5316.5676 0.0144
0 2 0 0 2 1 7377.7626 7377.7705 −0.0079 1 2 1 1 1 3 5475.9102 5475.8883 0.0219
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FIG. 6. Left display: The differences between the CO2 term values (cm−1) computed using Ames-2 PES with DVR3D44 and TROVE (this work) as in Table I for three lowest
vibrational states, g.s., ν1, ν1

2, and ν3 and J = 0, 40. Right display: The differences between experimentally derived (“obs.”) energies of CO2 from the HITRAN database43

and calculated (calc.) with TROVE, where the corresponding band centers were shifted to match HITRAN, for a large range of J.

order Taylor-type series in terms of

y1 = r1 − re
1,

y2 = r2 − re
2,

y3 = cos(α) − cos(αe).

The Laguerre structural parameter a was set to 17.9784 according
to Eq. (48). The Laguerre-type basis functions were generated on a
grid of 1000 points ranging from 0○ to 120○. The basis set comprised
of 48 stretching functions and 56 bending functions. The computed
term values for J = 2 are compared to the corresponding values
reported by Makhnev et al.46 in Table II, showing an agreement

TABLE II. HCN J = 2 term values (cm−1) computed with DVR3D (D)44 using a spectroscopically determined PES by Makhnev et al.46 and TROVE (T) from this work using the
same PES. Experimental term of HCN by Mellau49 is given as reference. The linear molecule quantum numbers v1, vl2, v3, and e/f are used.

Quantum numbers Term values (cm−1) Quantum numbers Term values (cm−1)

v1 V2 l v3 e/f Obs. DVR3D TROVE D-T v1 v2 l v3 e/f Obs. DVR3D TROVE D-T

0 0 0 0 e 8.8692 8.8668 8.8668 0.0000 0 8 0 1 e 6263.3544 6263.4079 6263.4132 −0.0053
0 1 1 0 e 720.8477 720.8509 720.8488 0.0021 0 3 1 2 e 6276.4258 6276.4331 6276.4296 0.0035
0 2 0 0 e 1420.3282 1420.3614 1420.3633 −0.0019 0 6 2 1 e 6278.4229 6278.4901 6278.4885 0.0016
0 2 2 0 e 1435.4400 1435.4613 1435.4602 0.0011 2 0 0 0 e 6528.3528 6528.3620 6528.3603 0.0017
0 0 0 1 e 2105.6543 2105.6944 2105.6942 0.0002 1 7 1 0 e 6718.3561 6718.3416 6718.3370 0.0046
0 3 1 0 e 2122.3417 2122.3805 2122.3773 0.0032 1 2 0 1 e 6769.4994 6769.5340 6769.5351 −0.0011
0 7 1 0 e 3504.0296 3504.0355 3504.0312 0.0043 1 2 2 1 e 6784.1720 6784.1782 6784.1763 0.0019
0 2 0 1 e 3510.9738 3510.9721 3510.9739 −0.0018 0 10 0 0 e 6864.5701 6864.6257 6864.6343 −0.0086
0 2 2 1 e 3525.7201 3525.6959 3525.6946 0.0013 0 1 1 0 f 720.8926 720.8958 720.8937 0.0021
1 1 1 0 e 4012.9686 4012.9634 4012.9609 0.0025 0 2 2 0 f 1435.4399 1435.4612 1435.4601 0.0011
0 0 0 2 e 4181.8188 4181.8874 4181.8870 0.0004 0 3 1 0 f 2122.4342 2122.4729 2122.4697 0.0032
0 8 0 0 e 4183.6223 4183.6063 4183.6119 −0.0056 0 1 1 1 f 2814.4338 2814.4248 2814.4225 0.0023
0 6 2 0 e 4198.9831 4198.9695 4198.9681 0.0014 0 4 2 0 f 2827.1335 2827.1630 2827.1618 0.0012
0 3 1 1 e 4210.0337 4210.0443 4210.0409 0.0034 0 7 1 0 f 3504.1726 3504.1785 3504.1742 0.0043
1 2 0 0 e 4693.1648 4693.1912 4693.1926 −0.0014 0 2 2 1 f 3525.7200 3525.6958 3525.6945 0.0013
1 2 2 0 e 4708.0591 4708.0625 4708.0610 0.0015 1 1 1 0 f 4013.0143 4013.0090 4013.0065 0.0025
0 7 1 0 e 4865.6296 4865.6041 4865.5987 0.0054 0 6 2 0 f 4198.9825 4198.9689 4198.9675 0.0014
0 1 1 2 e 4887.0403 4887.0180 4887.0156 0.0024 0 2 2 2 f 5594.8511 5594.7926 5594.7911 0.0015
0 4 0 1 e 4896.9384 4896.9692 4896.9727 −0.0035 1 4 2 0 f 6060.8190 6060.8312 6060.8296 0.0016
0 4 2 1 e 4911.8322 4911.8538 4911.8524 0.0014 1 1 1 1 f 6092.1407 6092.1347 6092.1319 0.0028
0 3 1 0 e 5375.7074 5375.7355 5375.7320 0.0035 0 9 1 0 f 6206.5672 6206.5780 6206.5717 0.0063
1 0 0 1 e 5402.4452 5402.4557 5402.4547 0.0010 0 3 1 2 f 6276.5173 6276.5246 6276.5210 0.0036
0 8 0 0 e 5534.8809 5534.8643 5534.8716 −0.0073 0 6 2 1 f 6278.4223 6278.4895 6278.4879 0.0016
0 8 2 0 e 5550.4433 5550.4259 5550.4244 0.0015 1 7 1 0 f 6718.5020 6718.4875 6718.4829 0.0046
0 2 0 2 e 5580.5247 5580.5002 5580.5017 −0.0015 1 2 2 1 f 6784.1719 6784.1781 6784.1762 0.0019
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significantly better than 0.01 cm−1 for term values below 6700 cm−1

fully reproducing the l-type doubling splitting. These deviations can
be attributed mostly to the difference in treating the potential energy
surface of HCN.47,48

VI. CONCLUSION
In this work, we report an implementation of the exact kinetic

energy operator for triatomics in the variational program TROVE.
The implementation is based on the formulation of KE operators
developed by Carter, Handy, and Sutcliffe11 and Sutcliffe and Ten-
nyson13 over 30 years ago for the valence coordinates (bond lengths
and inter-bond angle) using the bisector (XY2) and the bond-vector
(XYZ) embeddings. The singularity appearing in these KE opera-
tors at the linear geometry is treated by properly selecting the basis
set either as associated Legendre or Laguerre polynomials, which
are optimized by solving the reduced 1D problem for the bending
degree of freedom and used to construct vibrational basis functions
of the FBR type as sum-of-products. The exact KE operators are also
represented as sum-of-products of 1D stretching functions 1/ri and
1/r2

i (i = 1, 2) around a non-rigid reference configuration defined
by the bending angle ρ = 0, . . ., 180. This procedure is integrated
into the TROVE computational pipeline, which has been previ-
ously optimized for efficient production of hot spectra of polyatomic
molecules characterized by high rotational and vibrational excita-
tions. In order to illustrate the accuracy of our implementation, the
ro-vibrational energies of CO2 and HCN were computed and com-
pared to previous DVR3D calculations based on the same potential
energy surfaces, as well as to experimentally derived energies from
HITRAN (CO2), showing excellent agreement. Moreover, we have
recently successfully used this methodology to produce hot line lists
for SiO2

50 and CO2,38 covering rotational excitations up to J = 230
and 255, respectively, and it is being used to compute hot line lists
for CaOH, NaOH, and KOH.

TROVE is an open-access variational Fortran 2003 code.51

The TROVE input files used in this work for CO2 and HCN ro-
vibrational calculations are provided in the supplementary material
and also included in the TROVE benchmark set.52

The methodology presented in this work can be straight-
forwardly extended to other popular coordinate systems and
embeddings including the Radau coordinates and scattering
coordinates.

Many larger polyatomic systems also allow for the KEO to be
expressed in an exact sum-of-product form. We shall exploit this
representation in future work with a methodology similar to the
one presented for linear molecules. We are also planning to use the
hybrid basis sets, constructed by orthogonalizing polynomials with
the correct behavior at linear configurations, as described in Sec. II F,
to larger molecules, starting from chain tetratomics such as HCCH,
where we can follow a methodology developed in the literature, e.g.,
by Bramley and Handy16 or Schiffel and Manthe.32

SUPPLEMENTARY MATERIAL

See the supplementary material for the TROVE input files spec-
ifying the spectroscopic models (PES) and the level of theory for
CO2 and HCN used in this work.
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