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ABSTRACT
The velocity distributions of stellar tracers in general exhibit weak non-Gaussianity encoding information on the orbital
composition of a galaxy and the underlying potential. The standard solution for measuring non-Gaussianity involves constructing
a series expansion (e.g. the Gauss–Hermite series) that can produce regions of negative probability density. This is a significant
issue for the modelling of discrete data with heteroskedastic uncertainties. Here, we introduce a method to construct positive-
definite probability distributions by the convolution of a given kernel with a Gaussian distribution. Further convolutions by
observational uncertainties are trivial. The statistics (moments and cumulants) of the resulting distributions are governed by
the kernel distribution. Two kernels (uniform and Laplace) offer simple drop-in replacements for a Gauss–Hermite series for
negative and positive excess kurtosis distributions with the option of skewness. We demonstrate the power of our method by
an application to real and mock line-of-sight velocity data sets on dwarf spheroidal galaxies, where kurtosis is indicative of
orbital anisotropy and hence a route to breaking the mass–anisotropy degeneracy for the identification of cusped versus cored
dark matter profiles. Data on the Fornax dwarf spheroidal galaxy indicate positive excess kurtosis and hence favour a cored
dark matter profile. Although designed for discrete data, the analytic Fourier transforms of the new models also make them
appropriate for spectral fitting, which could improve the fits of high-quality data by avoiding unphysical negative wings in the
line-of-sight velocity distribution.
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1 IN T RO D U C T I O N

The velocity distributions of stars within a galaxy exhibit a range of
morphologies. Non-Gaussianity, particularly kurtosis, in the velocity
distributions is linked to anisotropy of the orbits of the stars:
populations of stars on more radial orbits typically produce ‘peakier’
or long-tailed velocity distributions, whilst populations of stars
on circular orbits produce more flat-topped, short-tailed distribu-
tions (Gerhard 1993; van der Marel & Franx 1993). Furthermore,
rotating populations generically produce skewed distributions, as
demonstrated by the azimuthal velocities of the Milky Way disc
populations (e.g. Binney & Merrifield 1998, chap. 10) or the h3–V/σ
relation observed in elliptical galaxies (Bender, Saglia & Gerhard
1994). However, in the main, these deviations from Gaussianity are
weak and so can be captured via a Gauss–Hermite series where
the zeroth-order model is a Gaussian and orthogonal polynomial
corrections produce non-Gaussianity. Typically, only two correction
terms are used with coefficients h3 quantifying the skewness and h4

quantifying the (excess) kurtosis (Gerhard 1993; van der Marel &
Franx 1993).

Gauss–Hermite coefficients have seen widespread use in the
summary of integral field unit spectroscopy data (Emsellem et al.
2004; Cappellari et al. 2011; van de Sande et al. 2017) where
typically one simultaneously extracts information on the stellar
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populations and their kinematics via template fitting (Cappellari &
Emsellem 2004; Cappellari 2017). The coefficients provide useful
intermediate data products for comparison with dynamical models
(e.g. Rix et al. 1997), whilst also giving physical insight into
the orbital distributions and hence potential. They were originally
developed to characterize the velocity profiles near the centres
of elliptical galaxies and hence to measure the masses of central
black holes (e.g. van der Marel et al. 1994, 1998). Applications to
barred galaxies have also been suggested. Debattista et al. (2005)
identified negative h4 (negative excess kurtosis) as an indicator of
viewing a face-on peanut-shaped bar/bulge (e.g. Méndez-Abreu et al.
2019). Recently, Sellwood & Gerhard (2020) have suggested the
sign of h4 of the vertical velocity distribution distinguishes different
formation channels for a peanut-shaped bar/bulge with positive h4

(longer tails) indicative of a peanut formed through resonances,
whilst negative h4 (flat-topped distribution) indicative of a more
violent buckling event that depletes the bar of low vertical velocity
stars.

Higher order moments have also been used in the analysis of dwarf
spheroidal (dSph) galaxy line-of-sight velocity data. Typically, they
have been used to address the question of the nature of the dark
matter density at the centre – whether it is cusped like the famous
Navarro, Frenk & White (1997) model or cored like a harmonic
potential. This information is summarized in the excess kurtosis
(Łokas 2002) and can be extracted from data using Gauss–Hermite
coefficients (Amorisco & Evans 2012b), the virial shape parameters
(Merrifield & Kent 1990; Read, Walker & Steger 2019), higher order
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Jeans equations (Richardson & Fairbairn 2013), or through the use of
a dynamical distribution functions (Łokas 2002; Łokas, Mamon &
Prada 2005; Amorisco & Evans 2011; Breddels & Helmi 2013;
Pascale et al. 2018).

In the application to discrete velocity measurements with het-
eroskedastic uncertainties, as for dSph galaxies, we hit an immediate
stumbling block when using the Gauss–Hermite series: in general
a Gauss–Hermite series is not positive definite and so cannot be
interpreted as a probability density function. This means it cannot be
used in a probabilistic framework that incorporates observational
uncertainties or membership probabilities (in a mixture model).
Although unphysical, typically the regions of negativity are small,
so for spectral fitting this is not a significant issue. However,
negative probabilities in any probabilistic framework produce awk-
ward numerical problems. For the case of dSph galaxies, there are
data sets of at most a few thousand stars (e.g. Walker, Mateo &
Olszewski 2009a) and the varying stellar types produce a range
of differing uncertainties with which velocities can be measured.
In order to extract the maximal information from such a data
set, we wish to avoid either binning the data or assuming the
uncertainties are small. Kuijken & Merrifield (1993) explored the
possibility of ensuring positive definiteness by using a Gaussian
mixture, which also allows for simple convolution with measurement
uncertainties. Amorisco & Evans (2012b) provided an alternative
solution to the issue by constructing probability density functions
inspired by dynamical galaxy models. This approach produced
expressions that required numerical integration, although the authors
demonstrate how to make their procedure numerically efficient. Here,
we provide an alternative and simpler method for the construction
of appropriate analytic probability density functions. Although
slightly more restrictive, they offer a drop-in replacement for the
Gauss–Hermite series that guarantees a positive-definite probability
density function. Here, we focus on data from dSph galaxies, but
our methods can be applied to any sets of discrete tracers such
as globular clusters and planetary nebulae (Agnello et al. 2014;
Oldham & Auger 2016) or clusters of galaxies (Wojtak & Łokas
2010).

We begin in Section 2 by describing how the Gauss–Hermite
series can be used to model discrete tracers with heteroskedas-
tic uncertainties and highlight its limitations, before presenting
an alternative method for constructing appropriate non-Gaussian
probability distribution functions (PDFs) in Section 3. We provide
specific examples of the new families in Section 4 and apply the
new probability density functions to the problem of dSph galaxies,
specifically Fornax, in Section 5. We close with a brief discussion of
the use of the new models in the context of spectral fitting in Section 6
where the guaranteed non-negativity could potentially improve fits
to high-quality data.

2 THE GAUSS–HERMITE SERIES

An approximation to non-Gaussian velocity distributions is given by
the Gauss–Hermite series (Gerhard 1993; van der Marel & Franx
1993),

f (x) = λα(w)

σ

(
1 +

∑
i≥3

hiHi(w)

)
; w = x − V

σ
. (1)

Here, Hi(w) are Hermite polynomials and

α(w) = 1√
2π

e− 1
2 w2

(2)

is the weight function. The Hermite polynomials satisfy the orthog-
onality condition∫ ∞

−∞
dw Hm(w)Hn(w)α2(w) = 1√

4π
δmn. (3)

In Appendix A, we give the expression for the nth Hermite polyno-
mial and the explicit formulae for the first five. The Gauss–Hermite
series is similar to the Gram–Charlier and Edgeworth series familiar
from the theory of statistics (Kendall & Stuart 1977) and discussed
in Appendix D.

Typically, only two terms in the series (1) are used giving five
fitting parameters p = (λ, V, σ , h3, h4). The first three terms give
the amplitude, mean, and dispersion of the distribution, whilst h3

describes the skewness and h4 the excess kurtosis (positive h4 pro-
duces broader tails, whilst negative h4 produces more truncated tails).
Although V and σ are not strictly equal to the mean and dispersion
for non-zero hi, by the orthogonality properties of the series, they
are the mean and dispersion of the best Gaussian fit. As the series
is constructed from orthogonal polynomials, for some parameter
choices the Gauss–Hermite series can have regions of negativity
(e.g. see fig. 1 of van der Marel & Franx 1993). Assuming we can
interpret f(x) as a PDF, the choice of λ that normalizes f(x) such that∫

dx f (x) = 1 is λ = (1 + √
3/8h4)−1.

2.1 Fitting a Gauss–Hermite series to data

The Gauss–Hermite series was introduced as an approximation to
a galaxy’s line-of-sight velocity distribution (LOSVD) as measured
from spectra (Gerhard 1993; van der Marel & Franx 1993). Given
a profile L(x) measured with uncertainty σL(x), the best-fitting
parameters p are measured by minimizing∫

dx
(L(x) − f (x))2

σ 2
L(x)

. (4)

In practice, this integral is performed as a sum over spectral
pixels. For a model galaxy template spectrum, the kinematics
is incorporated through convolution with a Gauss–Hermite series
(Cappellari & Emsellem 2004). As discussed by Cappellari (2017),
when the dispersion is smaller than half the pixel spacing, this
convolution is most efficiently performed by first taking the analytic
Fourier transform of the Gauss–Hermite series, before taking the
discrete inverse transform of the product of the Fourier template
and the Fourier Gauss–Hermite series. Further Gaussian broadening
is trivially incorporated in Fourier space. In these methods, the
requirement of a well-defined probability density function (f(x)
> 0 everywhere) is unimportant as it does not significantly alter
the computation of equation (4). In these cases, it is possible
to introduce a truncation by setting f(x) = 0 when f(x) < 0
that can improve the fit for f(x) > 0 (van der Marel & Franx
1993).

When we have discrete velocity measurements {xi}, as is common
for Milky Way or Local Group studies, these fitting methods are
not always easily applicable. One simple method applicable for
error-free data is to relate h3 and h4 to moments of the data.
As shown in Appendix B, for small deviations from Gaussianity,
h3 and h4 are related to the skewness g and excess kurtosis κ

as

h3 = g

4
√

3
, h4 = κ

8
√

6
. (5)

For N samples, the corresponding variance in these quanti-
ties (for near-Gaussian distributions) are (Kenney & Keeping

MNRAS 499, 5806–5825 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/4/5806/5909981 by U
niversity C

ollege London user on 29 April 2021



5808 J. L. Sanders and N. W. Evans

1951)

Var(h3) = N (N − 1)

8(N − 2)(N + 1)(N + 3)
,

Var(h4) = N (N − 1)2

16(N − 3)(N − 2)(N + 3)(N + 5)
. (6)

Typically, however, equation (5) gives quite poor approxi-
mations for h3 and h4 (in particular h4 where it is only
valid to 10 per cent for |h4| < 0.01). In turn, equation (6)
gives poor estimates of the excepted error and only ap-
pears valid using Gaussian-distributed samples of size �1000.
For smaller samples, following Amorisco & Evans (2012b),
the uncertainty in h3 and h4 is better approximated as
(2N)−1/2.

A further method is to bin the data into an approximation of L(x)
and minimize equation (4). This is undesirable, as it generically
loses information through smoothing and typically we only have a
small numbers of measurements to work with. Sellwood & Gerhard
(2020) propose a method for avoiding binning where the (analytic)
cumulative distribution function for the Gauss–Hermite series is
fitted to the cumulative velocity distribution of simulation data. Such
a method does not adapt well when observational uncertainties are
considered.

To avoid binning and fully incorporate the measurement uncer-
tainties for a set of samples {xi} measured with uncertainties {σ ei},
we should maximize∏

i

∫ ∞

−∞
dx ′ f (x ′)N (xi − x ′|σei), (7)

where

N (x|σ ) = (2πσ 2)−1/2 e− 1
2 x2/σ 2

. (8)

Generically, the Gauss–Hermite series (and other series expansions)
produces negative values of f(x) for some choice of x. This makes
the interpretation of f(x) as a PDF awkward. Regions of negative
probability are particularly an issue for negative h4, where the PDF
is zero somewhere for any reasonable choice of h3. However, usually
the region of negative PDF is small. This deficiency is not simple
to fix with the addition of higher order terms. An alternative is to
truncate the PDF at the first zero crossing. The roots of the Gauss–
Hermite series for h3 = 0 are

w = 3

2
± 1√

2h4

√
3h2

4 −
√

6h4. (9)

It is then possible to analytically normalize f(x) between these
limits, although the expressions are long-winded. Incorporating these
workarounds into a likelihood call significantly increases the cost of
a likelihood evaluation and is not easily adapted for h3 �= 0.

In the next subsection, we will demonstrate how the Gauss–
Hermite series can be used when f(x) is a well-defined probability
density function, before we move on to presenting an alternative set
of models.

2.2 Convolution of the Gauss–Hermite series with
observational uncertainties

A sample of points xi drawn from f(x) but measured with some
uncertainty σ e follow the distribution fσe

(x) given by

fσe
(x) =

∫ ∞

−∞
dx ′ f (x ′)N (x − x ′|σe). (10)

Given the form of the Gauss–Hermite series, it is possible to compute
this convolution analytically. In Appendix C, we provide the details
and here quote the final result as

fσe
(x) = λ

σ ′ α(w′)
{

1 +
∑
n≥3

hn

( σ

σ ′

)n
� n

2 	∑
j=0

(σe

σ

)2j

×
√

n!

j !2j
√

(n − 2j )!
Hn−2j (w′)

}
, (11)

where w
′ = (x − V)/σ

′
and σ ′ = √

σ 2 + σ 2
e . For the truncated series

hi = 0 for i > 4, we find

fσe
(x) = λ

σ ′ α(w′)
{

1 + h3

(σ ′/σ )3

[
H3(w′) +

√
3

2

(σe

σ

)2
H1(w′)

]

+ h4

(σ ′/σ )4

[
H4(w′) +

√
3
(σe

σ

)2
H2(w′)

+
√

3

8

(σe

σ

)4
H0(w′)

]}
. (12)

This function can now be used as the likelihood of data with
heteroskedastic errors σ ei to recover the underlying h3 and h4

moments, provided f(x) is everywhere positive.
Equation (12) can be used to assess the impact of uncertainties on

the recovery of the Gauss–Hermite coefficients. We observe for h3 =
h4 = 0, we recover the standard result that the convolution broadens
the Gaussian from dispersion σ to σ

′
. Note that for non-zero h3 and

h4, the convolution also introduces contributions from H1(w
′
) and

H2(w
′
) that we identify as further modifications to the mean and

dispersion. However, in the limit of small uncertainties σ e 
 σ , we
find

fσe
(x) ≈ λ

σ ′ α(w′)
(

1 + h′
3H3(w′) + h′

4H4(w′)
)
, (13)

where h′
3 = h3(σ/σ ′)3 and h′

4 = h4(σ/σ ′)4. Therefore, small uncer-
tainties do not bias the mean, but bias the dispersion in the expected
way: σ ′2 = σ 2 + σ 2

e . We remark that h3 and h4 are also biased:
without accounting for uncertainties h3 is reduced by a factor of (1 +
(σ e/σ )2)−3/2 and h4 by a factor of (1 + (σ e/σ )2)−2. In Fig. 1, we show
the result of fitting a Gauss–Hermite series with h3 = 0.06 and h4 =
0.1 to a sample of N ≈ 6000 data points scattered by two choices of
uncertainty σ e/σ = 0.2 and σ e/σ = 0.5. We see the true parameters
are recovered when sampling from the likelihood

∑
i ln fσei

(xi) using
the EMCEE sampler (Foreman-Mackey et al. 2013). If one fails to
account for the uncertainties, we recover the expected biases in h3

and h4 (see Amorisco & Evans 2012b, for a similar discussion).
We have demonstrated how the Gauss–Hermite series can be used

to model discrete data with heteroskedastic uncertainties, but only
when the series is positive definite. Generically, for negative h4 the
series will produce negative wings making its use in a probabilistic
framework awkward. In the next section, we will introduce a method
to produce everywhere positive-definite PDFs that can be used as
replacements for the Gauss–Hermite series.

3 A G E N E R A L FA M I LY O F W E A K LY
NON-GAUSSI AN PDFS

Our goal is to construct a family of everywhere positive PDFs, which
can model weakly non-Gaussian distributions and also are able to
incorporate observational uncertainties. This means that the models
must have an easily computable convolution with a Gaussian kernel.
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This class of models is very desirable for modelling star-by-star
data with heteroskedastic observational uncertainties, as otherwise
the likelihood call for each star requires an integration over the
uncertainty. We begin with a general scheme for constructing such
models before discussing in detail two specific examples useful for
modelling positive and negative excess kurtosis.

3.1 Model specification

With the requirement of analytic convolution with uncertainties, it
is logical to investigate models that have been constructed by a
convolution of a general kernel with a Gaussian. Further Gaussian
kernel convolutions can then be simply performed and transform the
models into another Gaussian convolution with a slightly modified
general kernel. The models are

f (w) = b

∫ ∞

−∞
dy K(y)α(y − b(w − w0)), (14)

where α(y) is a unit Gaussian as defined in equation (2) and K(y)
is a general kernel normalized to have unit weight. w0 and b are
parameters controlling the mean and variance of the model. To
reproduce the unit Gaussian model α(w) when K(y) = δ(y), we
require b = 1 and w0 = 0 in this limit, which implies b and w0

in general depend upon the parameters of the kernel K(y). In the
opposite limit where the kernel K(y) is significantly broader than the
unit Gaussian, α(y − b(w − w0)) → δ(y − b(w − w0)) so f(w) →
bK(b(w − w0)), a scaled and shifted version of the kernel.

As with the Gauss–Hermite series, we have the freedom to
introduce an arbitrary shift and scale to redefine the PDF in terms of
x = V + σw.

3.1.1 Model moments and cumulants

The moments of these models are given by

μn(c) =
∫ ∞

−∞
dw (w − c)nf (w)

= 1

bn

� n
2 	∑

k=0

(
n

2k

)
(2k − 1)!!μ̃n−2k(bc − bw0), (15)

where μ̃n(c) are the moments of K(y) (we use a tilde to denote
properties of K(y)). For instance, the mean μ ≡ μ1(0) is given by

μ = 1

b

∫ ∞

−∞
dy yK(y − bw0) = μ̃

b
+ w0, (16)

where μ̃ ≡ μ̃(0). The central moments are defined as μn ≡ μn(μ),
which can be combined in the usual way to find the cumulants.
However, the cumulants κn are more simply computed via the
cumulant generating function ln φ(u) defined as

ln φ(u) = ln
∫ ∞

−∞
dw eiuwf (w) =

r=∞∑
r=1

κr

(iu)r

r!
. (17)

In this way, the rth cumulant is

κr = 1

ir
dr ln φ(u)

dur

∣∣∣
u=0

. (18)

From the properties of the Fourier transform, the cumulant generating
function of f(w) is given by

ln φ(u) = iw0u − u2

2b2
+ ln φK (u/b), (19)

Figure 1. Gauss–Hermite series fitting to a mock distribution: the left-hand
panel shows a sample of N draws (the black histogram) from a Gauss–Hermite
series with h3 = 0.06 and h4 = 0.1 (the black line). The samples have then been
scattered by an uncertainty of 0.5. The blue line is the fit result accounting for
uncertainties, whilst green is without accounting for uncertainties. Note that
the recovered h3 and h4 are higher when the uncertainties are accounted for.
This is also depicted in the right-hand panels that show the bias in h3 and h4 as
a function of these parameters if one fails to account for the uncertainties. Two
choices of error are shown (0.2 and 0.5). The lines give the approximations
h3((1 + (σ e/σ )2)−3/2 − 1) and h4((1 + (σ e/σ )2)−2 − 1).

where φK(u) is the characteristic function of K(y),

φK (u) =
∫ ∞

−∞
dw eiuyK(y). (20)

From the cumulants, we define the variance v ≡ κ2, the skewness g ≡
κ3/v3/2, and the excess kurtosis κ ≡ κ4/v2. We note that the variance
of K(y), ṽ, is related to the variance of f(w) by

v = 1

b2
(ṽ + 1), (21)

and all higher order cumulants (r ≥ 3) satisfy κr = κ̃r /b
r . This

demonstrates that the signs of the skewness and the excess kurtosis
of the kernel govern, respectively, the signs of the skewness and the
excess kurtosis of the model.

3.1.2 Convolution with uncertainties

With such models, the convolution with observational uncertainties
of magnitude s is

fs(w) =
∫ ∞

−∞
dw′f (w′)N (w − w′|s)

= b

∫ ∞

−∞
dy K(ty)α(y − b(w − w0)/t), (22)

where t2 = 1 + b2s2 and f(w) is recovered for t = 1 (i.e.
f0(w) = f(w)). In principle, if the convolution with K(y) is an-
alytic, the convolution with K(ty) is likely to be analytic. As
the convolution is a multiplication in Fourier space, the cumu-
lant generating function of the error-convolved model is given
by

ln φs(u) = ln φ(u) − u2s2

2
. (23)
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3.1.3 Gauss–Hermite coefficients

The (unnormalized) Gauss–Hermite coefficients of this class of
models are given by

hn =
√

4π
∫ ∞

−∞
dw α(w)Hn(w)f (w). (24)

Note that in the limit where the kernel K is significantly broader than
the unit Gaussian, the Gauss–Hermite coefficients are given by

hn →
√

4πb

∫ ∞

−∞
dy K(b(y − w0))α(y)Hn(y), (25)

i.e. they are the Gauss–Hermite coefficients of K(b(y − w0)). A
general expression for the Gauss–Hermite coefficients is found
via the generating function of the Hermite polynomials given in
equation (A3). We compute the integral

n=∞∑
n=0

zn

n!

√
n!hn =

√
4πb

∫ ∞

−∞
dy K(y)

∫ ∞

−∞
dw α(y − b(w − w0))

×α(w) e
√

2wz−z2/2. (26)

Performing the w integration leaves us with a single integral that is
the same as the integral in equation (22) with t2 = 1 + b2, i.e. s = 1.
We therefore can express hn in the compact form

hn =
√

4π

√
2n

n!

∂n

∂zn

[
ez2/4f1(z)

]
z=0

. (27)

We conclude that if the error-convolved model has an analytic
form, the Gauss–Hermite coefficients and error-deconvolved mod-
els can also be expressed analytically. The requirement h1 =
h2 = 0 is equivalent to f1(z) ∼ e−z2/4(1 + qz3) for small z and
constant q. To match the definition of hn given in equation (1), we
normalize hn by h0 = √

4πf1(0) such that the normalized h0 = 1.
All subsequent references to hn are to their normalized versions.

3.1.4 Model parametrization

There are two options for how to restrict the kernels (in particular,
the parameters b and w0) when modelling: either we choose to fix
the mean μ = 0 and variance v = 1, or we fix h1 = h2 = 0. The
first option is analytically simpler as we have shown the moments
of f(w) are related to moments of K(y). The latter option follows the
parametrization of van der Marel & Franx (1993) who only consider
non-zero hn for n ≥ 3. In general, hn are complicated functions of the
model parameters that do not have analytic roots, so we can only set
h1 = h2 = 0 approximately. We know the two options are equivalent
for narrow kernels when K(y) = δ(y). In the wide K(y) limit, we can
use equation (25) to simplify the mathematics. Our general procedure
for setting h1 ≈ h2 ≈ 0 is then stitching together the constant variance
solution and the wide kernel solution. For symmetric kernels K(y)
(μ̃n(0) = 0 for odd n) setting w0 = 0 ensures μ = 0 and h1 = 0 for
all b.

3.1.5 Half-kernels

The parity of the model f(w) is equal to the parity of the kernel K(y).
We will find it useful to build arbitrary kernels from half-kernels,

K(y) =
⎧⎨
⎩

K+(y) y ≥ 0,

K−(y) y < 0,
(28)

such that f(w) = f+(w) + f−(w). For a positive half-kernel K+(y),
the corresponding negative half-kernel is given by K−(y) = K+(−y).
Therefore, by the symmetry properties of f(w) and K(y), we have
f−(w) = f+(−w). Additionally, the characteristic functions will
satisfy the symmetry φK−(u) = φK+(−u). In general, we can stitch
together any two half-kernels to build a full kernel. This is a simple
way to introduce skewness. There are two possibilities: either we
ensure K+(0) = K−(0) or

∫ ∞
0 dy K+(y) = ∫ 0

−∞ dy K−(y) = 1
2 . Here

we use the latter choice.

4 SPECI FI C C HOI CES O F K ERNEL

With our general theory established, we now turn to some pos-
sible choices of kernel K(y). We note here the similarity be-
tween our procedure and the method of Long & Murali (1992)
for the construction of barred potentials via convolution with
a kernel along the bar’s major axis. Williams & Evans (2017)
and McGough, Evans & Sanders (2020) showed how flat-topped
and cuspy barred potentials could be constructed by this method
through convolution with a uniform and Laplace kernel, respectively.
Here we will follow those choices to construct two families of
PDFs.

4.1 A negative excess kurtosis family – a uniform kernel

We first explore a simple symmetric kernel that produces a family of
models with negative excess kurtosis. We later expand this model to
incorporate skewness. As the models are symmetric w0 = 0 satisfies
both μ = 0 and h1 = 0. Our choice for K(y) is given by a top-hat
function

K(y) =
{

1
2a

if |y| < a,

0 otherwise
(29)

for a > 0, which has an error-convolved model given by

fs(w) = b

2a

[



(
bw + a

t

)
− 


(
bw − a

t

)]
, (30)

where t2 = 1 + b2s2 and 
(x) is the cumulative distribution function
for the unit Gaussian PDF:


(x) = 1√
2π

∫ x

−∞
dt e−t2/2. (31)

The model has zero mean, and the variance and excess kurtosis are
given by

v = 1

b2

(
1 + a2

3

)
, κ = −2a4

15

(
1 + a2

3

)−2

. (32)

We observe that there is a simple choice for b such that the variance
is unity: b2 = (1 + a2/3).

4.1.1 Fixing the Gauss–Hermite coefficients

We now turn to the selection of b such that h1 ≈ h2 ≈ 0. As already
highlighted, this cannot be done exactly and so only approximate
expressions can be derived and choices of fitting functions must be
made. For the uniform model, we explicitly detail the procedure we
follow, which can be approximately followed for any other choice of
model.

In the limit a → ∞, we require a/b → k for constant k such that
the variance and h2 remain finite. We introduce a general functional
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Near-Gaussian distributions for discrete data 5811

Figure 2. Our two families of PDFs with positive (top) and negative (bottom) excess kurtosis (setting skewness or h3 to zero). The left-hand panels show the
second (blue) and fourth (green) Gauss–Hermite coefficients of the models as a function of the model parameter, a. The model parameters have been selected
to minimize variation of h2. The right-hand panels show the probability density functions in terms of the scaled coordinate w = (x − V)/σ for different choices
of h4.

dependence of b of the form

b2 = 1 +
(a

k

)2
, (33)

which encompasses the low (unity variance) and high a limits for
different choices of k. To recover the constant variance choice, we
can set k = k0 = √

3. Using equations (25) and (27), we determine
the normalized h2 and h4 for large a as

lim
a→∞
a/b→k

h2 =
√

1

2
− 2√

π
k e−k2/2

/
erf

(
k√
2

)
,

lim
a→∞
a/b→k

h4 =
√

3

8
− 2√

3π
k3 e−k2/2

/
erf

(
k√
2

)
. (34)

We observe that there is a choice of k = k∞ that sets lima → ∞h2 = 0
given by k∞ = 1.399985. . . , amazingly close to 7/5. With this choice,
lima → ∞h4 = −0.187777. . . ≡ h4, ∞. Therefore, to replicate the
modelling with a Gauss–Hermite series that imposes the requirement
that h2 = 0 we can set k = k∞. This choice produces |h2| � 0.05

everywhere. To improve this, we make k a weak function of a that
reproduces the constant variance limit k = k0 for small a as

k(a) = k0 − (k0 − k∞) tanh(a/a0), (35)

where setting a0 = 3.3 minimizes the variation of h2 to |h2| � 0.006.
We show this set of models in the bottom panels of Fig. 2. We find
that a good approximation for a given h4 is

a = ah4

(√
h4,∞
h4

− 1

)−1/2

, (36)

where ah4 = 2. This fitting function is shown in Fig. 2. In this way,
we can parametrize our models in terms of h4.

4.1.2 Incorporating skewness

Following the discussion in Section 3.1.5, a generalization of this
model that incorporates some skewness is found by using a different
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5812 J. L. Sanders and N. W. Evans

Table 1. Key formulae for the two families of distributions introduced in this paper. fs(w) is the probability density function of the scaled and shifted coordinate
w = (x − V)/σ convolved with observational uncertainties σ e such that s = σ e/σ . 
(x) is the cumulative of the unit normal distribution. Further generic
definitions are w

′ = w − w0, t = 1 + b2s2, a+ = a + �, a− = a − �, δ = �/a, b2 = 1 + (a/k)2, and k = k0 − (k0 − k∞)tanh (a/a0). The parameters
a, b, and � are chosen as per the ‘auxiliary functions’ and ‘parameters’ columns to ensure h1 ≈ h2 ≈ 0 and to match a given h3 and h4. For a given h3

and h4, the quadratic for δ is solved, a is computed using h4, max(δ), and finally b and w0 are found. Code for the computation of all formulae is provided at
https://github.com/jls713/gh alternative.

Name fs(w) Auxiliary functions Parameters
h4, ∞ a0 ah3 ah4 k0 k∞, 0

Uniform

b

2a+a−

[
a+


( bw′ + a−
t

)
− a−


( bw′ − a+
t

)

− 2�

(bw′

t

)]

h4,max = (1 − 4.3δ2)h4,∞

h3,max = 0.82δ

a = ahi

(√
hi,max

hi
− 1

)− 1
2

k∞ = k∞,0
√

1 + δ2 + 3δ4

w0 = − �
2b

+ �
3b

tanh
(

a
a0

)

− 0.1878 3.3 2 2
√

3 7
5

Laplace

b

4a+
exp

( t2 − 2a+bw′

2a2+

)
erfc

( t2 − a+bw′
√

2ta+

)

+ b

4a−
exp

( t2 + 2a−bw′

2a2−

)
erfc

( t2 + a−bw′
√

2ta−

)

h4,max = (1 + 2δ2)h4,∞

h3,max = 0.37δ

a = ahi

(
hi,max

hi
− 1

)− 1
2

k∞ = k∞,0
√

1 + 3δ2

w0 = − �
b

+ 8�
7b

tanh
(

5a
4a0

)

0.1454 2.25 1.1 1.6 1√
2

1.08

uniform distribution for positive and negative y as

K(y) =

⎧⎪⎪⎨
⎪⎪⎩

1
2a+ if 0 < y < a+,

1
2a− if −a− < y < 0,

0 otherwise

(37)

for a+ > 0 and a− > 0 that produces an error-convolved model of
the form

fs(w) = b

2a+a−

[
a+


(
bw′ + a−

t

)

− a−


(
bw′ − a+

t

)
− 2�


(
bw′

t

)]
, (38)

where w′ =w −w0, a = 1
2 (a+ + a−), and � = 1

2 (a+ − a−) < a. We
describe numerical calculation of fs(w) in Appendix F. In Table E2,
we provide the cumulants for this model. As expected, � controls the
skewness of the distribution, which we parametrize in a scale-free
way using δ = �/a.

We use equation (25) to find expressions for h1 and h2 in the limit
of large a and a/b = k. Adopting the choice of k for � = 0, k = k∞ =
7/5, we find w0 ≈ −�/6b approximately sets h1 = 0. We also find
that k∞ must be made a function of δ = �/a to retain h2 = 0. With
these choices, we set

k∞ = 7

5

√
1 + δ2 + 3δ4,

w0 = − �

2b
+ �

3b
tanh(a/a0), (39)

where δ = �/a. We find that the maximum |h4| is h4, max ≈
(1 − 4.3δ2)h4, ∞ and that the maximum h3 is |h3, max| ≈ 0.82|δ|.
We adopt the same functional form for h3(a) as h4(a), which means
h3/h4 = h3, max/h4, max. For a choice of h3 and h4, we first find
δ by solving a quadratic. We then obtain a from equation (36).

The full set of parameters describing the model is given in
Table 1.

In Fig. 3, we show the variation of hn for this model as a function
of a and δ. We see how our choices have ensured h1 ≈ 0 and h2 ≈
0. δ approximately controls h3 at fixed a, and a controls h4, although
there is some variation of h4 with δ.

4.2 A positive excess kurtosis family – a Laplace kernel

An extension to positive excess kurtosis can be constructed using
a Laplace kernel. The exponential naturally produces broader tails
than the Gaussian. The choice of kernel is

K(y) =
{ 1

2a+ e−y/a+ if y > 0,

1
2a− ey/a− if y < 0

(40)

for a+ > 0 and a− > 0, which produces an error-convolved
distribution of the form

fs(w) = b

4a+
exp

(
t2 − 2a+bw′

2a2+

)
erfc

(
t2 − a+bw′

√
2ta+

)

+ b

4a−
exp

(
t2 + 2a−bw′

2a2−

)
erfc

(
t2 + a−bw′

√
2ta−

)
, (41)

where w′ = w − w0. This model is a sum of exponentially modified
Gaussian distributions. Note that the products of exponentials and
error functions require careful numerics when the arguments of
the exponentials are large and positive. We discuss numerical
implementation details in Appendix F.

In Table E2, we provide the cumulants for this model. We follow
a similar procedure to the uniform kernel case for restricting the
parameters b and w0 such that h1 ≈ h2 ≈ 0. One key difference is
that our choice of parametrization of hi(a) is

a = ahi

(
hi,max

hi

− 1

)−1/2

, (42)
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Near-Gaussian distributions for discrete data 5813

Figure 3. The Gauss–Hermite coefficients, hn, for our two families of
models. The left-hand panels correspond to the positive excess kurtosis
family with a Laplace kernel, and the right-hand panels correspond to
the negative excess kurtosis family with a uniform kernel. The top pan-
els show the variation of hn with the width parameter a (at fixed δ =
0.2), and the bottom panels show the variation of hn with the skewness
parameter δ = �/a (at fixed a = 3). Note that h1 ≈ 0 and h2 ≈ 0 by
design to mirror the Gauss–Hermite series from van der Marel & Franx
(1993).

with different scale parameters ahi
for h3 and h4. We show

the accuracy of this approximation in Fig. 2 along with the
PDFs for h3 = 0. The full model parametrization is given in
Table 1.

In Fig. 3, we show the variation of hn for this model as a function
of a and δ alongside the equivalent for the uniform kernel. We see
our choices have made h1 ≈ 0 and h2 ≈ 0. h3 is controlled by δ at
fixed a, and varying a varies both h3 and h4 together.

4.3 Further choices of kernel

The general procedure we have employed for the uniform and
Laplace kernels is applicable for a broader choice of kernels. The
sole requirement is that the convolution of the kernel with a Gaussian
is analytic. We have considered a number of other kernels with
both positive and negative excess kurtosis. In Table E1, we detail
a number of half-kernels K+(y) along with their corresponding
error-convolved distributions fs+(w). Along with the uniform and
Laplace kernels, we give expressions for a raised cosine distribution,
a Gaussian distribution, and a gamma distribution. In Table E2,
we give the cumulants produced by stitching together two half-

Figure 4. The space of Gauss–Hermite coefficients accessible by our new
models: red points show the positive excess kurtosis family formed by
the Laplace kernel, whilst green crosses show the negative excess kurtosis
family formed from the uniform kernel. The parameters a and δ = �/a act
approximately like polar coordinates in this space. The points are spaced
logarithmically in a and linearly in δ (up to a maximum of δ = 0.5 as this is
the range over which our approximations are valid). A Gauss–Hermite series
can be constructed for all parts of the figure but only in the blue region are
the series non-negative everywhere, only within the black hatched region are
they unimodal and non-negative, and only within the yellow region do they
have a fixed sign of the curvature in the tails.

kernels with different scales (a±). The raised cosine distribution
produces a negative excess kurtosis family (κ = −0.59) and can
be asymmetrized in the same way as the Laplace family. The
Gaussian family produces a family of positive excess kurtosis
but non-zero excess kurtosis is always accompanied by skewness.
The gamma distribution, which is only defined for positive y,
produces a positive excess kurtosis family. We note that the form
of the models we have introduced encompasses the well-known
Voigt profile that is formed from the convolution of a Cauchy
distribution with a Gaussian. It is regularly used in spectroscopy,
and can be computed using the real part of the Faddeeva func-
tion.

4.4 Comparison with the Gauss–Hermite series

We close our investigation of the new families by comparison
to the Gauss–Hermite series. In Fig. 4, we show the range of
h3 and h4 accessible by our two families of models. We show
for comparison the region of (h3, h4) space in which the Gauss–
Hermite series are non-negative, non-negative and unimodal, and
non-negative, unimodal, and with ‘no shoulders’, i.e. the sign of the
curvature of the tails does not change. In this space, the parameters
(a, δ) behave approximately as polar coordinates. The regions of
accessible (h3, h4) form wedges highlighting a limitation of our
models that the range of available h3 depends upon h4 and vice
versa. However, the same is true of the non-negative group of
Gauss–Hermite models. The unimodal, non-negative Gauss–Hermite
series essentially encompasses the range of models accessible by the
Laplace kernel, which suggests the Gauss–Hermite is preferable for
modelling positive excess kurtosis. However, the advantage of our
new family is that non-negativity is built in and does not need to
be checked numerically for each model. Additionally, all of our
new positive excess kurtosis models have a constant sign for the
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5814 J. L. Sanders and N. W. Evans

Figure 5. Comparison between the new models and the Gauss–Hermite
series for four different choices of h3 and h4 (labelled in each row). Each set
of panels show the new models in blue solid, the equivalent Gauss–Hermite
series in green long-dashed, and a reference unit Gaussian in light grey
short-dashed. The left-hand panels have a linear y-axis and right-hand panels
logarithmic. The Gauss–Hermite series models are normalized to have unit
weight over the region of positivity. The two sets of models match well but
for negative excess kurtosis the negative regions of the Gauss–Hermite series
are avoided.

curvature in the tails, whilst for smaller positive h4 values than
admitted by the new family the Gauss–Hermite can develop wings or
shoulders.

In Fig. 5, we show the Gauss–Hermite series and the new family
of models for four choices of h3 and h4. There is a great deal of
similarity between the two different models, although importantly
the new models avoid the regions of negative probability for negative
excess kurtosis. We also note that the new family of positive excess
kurtosis models has stronger tails than the Gauss–Hermite series
showing the presence of higher order Gauss–Hermite coefficients
in their expansion. Another generic feature of our models that
does not appear to arise in the Gauss–Hermite series expansion
is the presence of a ‘shoulder’ for skewed negative excess kur-
tosis models: a feature due to our method of stitching together
half-kernels.

5 A PPLI CATI ON TO DWA RF SPHERO I DAL
DATA

As an illustration of our approach, we will demonstrate its use on
line-of-sight velocity data from dSph galaxies of the Milky Way.
dSph galaxies are gas-poor elliptical low stellar mass systems (Mateo
1998). Within � cold dark matter theory these objects are anticipated
to be highly dark matter dominated. This appears to be borne out by
line-of-sight velocity measurements for the dSph galaxies of the
Local Group and so make these objects ideal laboratories for investi-
gating the properties of dark matter. The density profile of dark matter
within these objects has received considerable attention, in particular
the question of whether the central regions are cored or cuspy. The
profile shape is a probe of both the effects of baryonic feedback on
cold dark matter, or the properties of other dark matter candidates
(such as self-interacting dark matter). However, pinning down the
density profile is not a simple task due to the well-known mass–
anisotropy degeneracy. Solutions to this include the use of proper
motions (Massari et al. 2018) or performing analyses on different
subpopulations within the dSph galaxies (Walker & Peñarrubia 2011;
Amorisco & Evans 2012a). However, it has also been suggested
that the velocity distribution contains sufficient information to break
the mass–anisotropy degeneracy in its higher order moments, in
particular the kurtosis (e.g. Łokas 2002; Richardson & Fairbairn
2013; Read et al. 2019). As highlighted by van der Marel & Franx
(1993), kurtosis is a measure of orbital anisotropy with positive
excess kurtosis associated with radial orbits. Here we will investigate
how our new models can be used to constrain the higher order
velocity moments from dSph data. We will focus on the specific
example of the Fornax dSph as it has the largest line-of-sight velocity
data set.

5.1 Dynamical models of the Fornax dSph

We take the spectroscopic sample of 2633 stars presented in Walker
et al. (2009a), who provide line-of-sight velocities with uncertainties
for all stars and a metallicity indicator, a pseudo-equivalent width
measurement of the Mg triplet, along with its uncertainty for 459
stars. We convert the on-sky positions into projected circularized
radius Rc = √

1 − ε(x2 + y2/(1 − ε)2)1/2, where x/y are the po-
sitions along the major/minor axis of Fornax with respect to the
dwarf centre. We take the centre of Fornax as (α, δ) = (2h39m53s,
−34◦30′32′′), the position angle as 42.◦2, and the ellipticity of ε =
0.31 from the King profile fit of Wang et al. (2019). Some targets
were observed multiple times by Walker et al. (2009a) from which an
inverse-variance-weighted mean line-of-sight velocity and its error
are estimated. For the remainder of the stars we use the single velocity
measurement along with its error. Pascale et al. (2018) discuss the
effect of undetected binarity on the Fornax velocity distributions
by comparing samples with and without binaries as determined by
repeat observations. They find the distributions are very similar
(less than 4 per cent probability the distributions are drawn from
different samples) so we conclude binarity is unimportant and do not
attempt to correct for it. We correct for the velocity gradient across
the dwarf produced by perspective rotation from the bulk proper
motion using the equations in Walker, Mateo & Olszewski (2008)
and the proper motion measurements from Gaia Collaboration et al.
(2018b).

In addition to the spectroscopic data, we use the Fornax surface
density profile measurements from Dark Energy Survey (DES) data
from Wang et al. (2019) and Moskowitz & Walker (2020). Wang
et al. (2019) provide a best-fitting King profile to the data, although
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Near-Gaussian distributions for discrete data 5815

acknowledge all the analytic forms they consider do not exactly
match the data. Moskowitz & Walker (2020) provide posterior draws
from the parameters of a three-component Plummer-like profile, but
with a steeper ρ ∝ r−9 fall-off. We assume a distance to Fornax of
138 kpc (Mateo 1998; Rizzi et al. 2007), although our results are not
particularly sensitive to this choice.

For constructing models of Fornax, we use the AGAMA dynamical
modelling framework from Vasiliev (2019). Such an approach has
also been taken by Pascale et al. (2018) in fitting density and
velocity data on Fornax. To model the stellar distribution, we use
the spheroidal distribution functions similar to those developed in
work by Williams & Evans (2015) and Posti et al. (2015). They take
the form

f ( J) = f0

(2π)3
g( J)−� exp

[
−

(
g( J)

Jcut-off

)ζ
]

,

g( J) ≡ grJr + 1
2 (3 − gr )(Jz + |Jφ |). (43)

The linear combination of the actions g( J) is set to produce
approximately spherical models and gr controls the degree of radial
anisotropy. The models have an exponential cut-off at scale Jcut-off

with the option of a flexible inner slope controlled by �. For the dark
matter, we consider the simple family of density profiles,

ρDM(r) = ρ0(r/rs)
−γ (1 + r/rs)

−3.2. (44)

For the potential from the stars, we fit the projection of a 3D
power law of the form ρ�, 0(1 + (r/r�)2)−9/2 to the Moskowitz &
Walker (2020) density profile and assume a V-band stellar mass-to-
light ratio of 1 and LV = 1.4 × 107 L� (Irwin & Hatzidimitriou
1995).

We use three values of the inner dark matter density slope
γ = (0, 0.5, 1) and by-hand approximately match the density
profile and the velocity dispersion profile of Fornax as shown
in Fig. 6. The chosen parameters are given in Table 2. As our
models are spherical, we always compare to the circularized radius
Rc distributions for the data. We also opt to weight the moments
calculated from the data by membership probabilities computed in
the next subsection and only consider stars within 55 km s−1 of the
mean velocity of Fornax (approximately five times the dispersion of
Fornax).

We observe that the three models have different anisotropy (the
cuspy model is tangentially biased, whilst the cored model is
more radially biased) that correspond to differences in the ex-
cess kurtosis. Although all three models have very similar tracer
density profiles and velocity dispersion profiles, the mass density
distributions, and hence anisotropy profiles are very different (e.g.
Binney & Mamon 1982; Evans, An & Walker 2009). From this
admittedly simplistic fitting approach, it seems the kurtosis of
the data favours more cored models of Fornax, a conclusion also
reached by others (Amorisco, Agnello & Evans 2013; Pascale et al.
2018; Read et al. 2019). However, this is sensitive to how one
allocates membership of the dSph – for instance, Łokas (2009)
and Amorisco & Evans (2012b) find negative excess kurtosis,
possibly due to overly strict thresholds on membership, whilst
Breddels & Helmi (2013) find the excess kurtosis is approximately
zero.

5.2 Extracting kurtosis profiles

With our dynamical models for Fornax in place, we now wish to
extract the kinematic properties as a function of location in the dSph
given known uncertainties. For this we use the newly introduced

models. For the data, we avoid applying arbitrary cuts to the data,
and instead employ a mixture model for the dwarf plus background
Milky Way contaminants. To incorporate more information on dwarf
membership, we use the Mg triplet equivalent width measurements
from Walker et al. (2009a) in addition to the velocities. When these
measurements are unavailable we assign a default value with an
uncertainty of 1000 Å.

5.2.1 Chemo-kinematic mixture model

The likelihood for an individual star at (circularized) radius R with
velocity (v ± σ v) and equivalent width (W ± σ W) is

L(v,W |σv, σW , R) = pmem(R)fσv
(v|μ(R), σ (R), h4(R))

×N
(

W − Wd|
√

σ 2
W + σ 2

Wd

)

+ (1 − pmem(R))B(v|σv)

×N
(

W − Wo|
√

σ 2
W + σ 2

Wo

)
, (45)

where fσv
(v|μ(R), σ (R), h4(R)) are the models introduced in this

paper and the functions μ(R), σ (R), and h4(R) are the parameters of
the LOSVD as a function of radius (mean, dispersion parameter, and
h4). We assume h3 = 0 everywhere. We use interpolating splines for
μ(R), σ (R), and h4(R) specifying μk, σ k, and h4k at four radii equally
spaced in radius percentiles between the 1st and 99th of the data.

For the velocity distribution of the background Milky Way
contaminants B(v|σ v), we use GALAXIA (Sharma et al. 2011) to
sample stars in a 8 deg2 field around Fornax and in the magnitude
range 18 < V < 20. To convert the samples into a probability
density function, we utilize a Gaussian kernel density estimate with a
minimum kernel size of 3 km s−1. For a range of uncertainties σ v , we

use a broader kernel of
√

(3 km s−1)2 + σ 2
v and compute the velocity

and uncertainty-dependent background model B(v|σ v) for each star.

N (W − Wi |
√

σ 2
W + σ 2

Wi
) are Gaussians for the equivalent width

measurements with free means Wi and widths σWi
. The probability

of membership pmem is a function of on-sky location,

pmem(R) = 1 − nb

nb + nd�d(R)/�d(100 pc)
, (46)

where nb is the on-sky background density from GALAXIA

(0.23 stars arcmin−2), nd is a free parameter giving the on-sky dwarf
central density, and �d(R) is the median normalized density profile
from Moskowitz & Walker (2020).

We adopt uniform priors on μk, ln σ k, and h4k, where we work
with a tanh transformation of h4 to ensure it stays within the required
range −0.188 < h4 < 0.145. For the equivalent-width models, we
employ uniform priors for Wi and ln σWi

. We use a uniform prior for
the logarithm of the dwarf number density, ln nd. We therefore have
a total of 17 parameters: three groups of four spline points ({μk},
{ln σ k}, {h4k}), two sets of equivalent-width mean and dispersion
({Wi}, {ln σWi

}), and the density nd. We sample from the product of
the likelihood in equation (45) over stars using the EMCEE package
(Foreman-Mackey et al. 2013). We focus on the results for σ (R) and
h4(R) below.

For the other parameters, we find the mean velocity of Fornax
is (55.3 ± 0.2) km s−1 (computed by inverse-variance weighting of
the spline points), consistent with that reported by McConnachie
(2012). We find an indication of radial variation of the mean velocity
with the central regions (�100 pc) at a velocity ∼2 km s−1 higher.
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5816 J. L. Sanders and N. W. Evans

Figure 6. Dynamical models of the Fornax dwarf spheroidal (dSph) galaxy. Data are always shown in black (statistics are weighted using membership
probabilities from Section 5.2, x error bars show the bin size and y error bars are from Poisson only, e.g. equation (6), so do not consider measurement
uncertainties, although the dispersion is deconvolved by the median uncertainty and the three models are blue solid (cored, γ = 0), green dashed (weakly cusped,
γ = −0.5), and red dash–dot (strongly cusped, γ = −1). The top left-hand panel shows the density profiles as a function of radius. For the data, we always use
the circularized radius

√
1 − ε(x2 + y2/(1 − ε)2)1/2 for flattening ε = 0.31 to compare to our spherical models. We also display the posterior distribution of

the density fits to the Dark Energy Survey (DES) data from Moskowitz & Walker (2020) and the King fit to the DES data from Wang et al. (2019) scaled to have
LV = 1.4 × 107 L� with (M�/LV) = 1. The top middle panel shows the velocity dispersion, and top right-hand panel shows the excess kurtosis of the velocity
distribution. The horizontal lines are the mean excess kurtosis of the models. The black band is the median and ±1σ excess kurtosis of the model. In the bottom
row, we show the orbital anisotropy (left) and the mass density (middle) along with stellar density. In the bottom right, we show the model velocity distributions
(binned histograms) along with fits using the PDFs in this work. The Fornax data are also shown. The models do an excellent job of capturing the kurtosis of
the dynamical models, so much so that they are barely distinguishable in the upper panel, but the deviations are shown in the lower panel of residuals.

Table 2. Parameters of our action-based Fornax models. The models differ
primarily in their inner dark matter slope γ . ρ0 and rs are the normaliza-
tion and scale radius of the dark matter halo with units 1010 M� kpc−3

and kpc. f0 is the normalization of the stellar distribution (with units
1010 M�/(kpc km s−1)3−�). � controls the central density slope of the stars,
Jcut-off (with units kpc km s−1) and ζ govern the location and strength
of the stellar exponential break, and gr the radial anisotropy of the
stars.

γ ρ0 rs f0 � Jcut-off gr ζ

0.0 0.0039 4.0 2 × 10− 5 0.0 1.3 1.2 0.6
0.5 0.005 1.3 7.6 × 10− 6 0.0 3.2 1.6 0.8
1.0 0.0038 1.0 3 × 10− 6 0.2 8.6 1.9 1.4

However, all spline points have consistent mean velocities within
their uncertainties. We re-ran our models with a mean that does not
vary radially and find the conclusions on the variance and kurtosis
profiles unchanged. As found by Walker et al. (2009b), Fornax stars
are not well separated from the background stars in the Mg equivalent
width measurement. For Fornax, we find Wd = (0.616+0.006

−0.006) Å and
σWd = (0.109+0.005

−0.005) Å, whilst for the background distribution we
find Wo = (0.52+0.12

−0.13) Å and σWo = (0.34+0.11
−0.07) Å. Finally, for the

central density of Fornax we find nd = (20.8+3.1
−2.5) stars arcmin−2.

This number obviously depends on the magnitude selection of stars
so it is more informative to compare relative to the background
density, assumed to be nb = 0.23 stars arcmin−2. We find nd/nb ≈ 90,
in line with the results from Battaglia et al. (2006) (who find nd/nb

≈ (72/0.78) = 93) or Wang et al. (2019) (who find nd/nb ≈ 85).
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Near-Gaussian distributions for discrete data 5817

Figure 7. Fits of our family of PDFs to the Fornax data (top row) and three mock Fornax data sets (bottom three rows). The left-hand column shows the
velocity distribution of the data (mocks) in black and the median with ±1σ fits of the models. In the top panel we also show the background GALAXIA

(Sharma et al. 2011) model used. The second column shows the distribution of uncertainties. The third and fourth columns show the (membership-weighted)
dispersion and excess kurtosis data (black with error bars showing the bin size in x and Poisson errors in y) and fits along with the truth for the mocks in
orange.

5.2.2 Results

The results of our procedure for the Fornax data are shown in
the top panels of Fig. 7. In agreement with the simple weighted
binned estimates (black points), we find that the data favour pos-
itive excess kurtosis models. The uncertainties are larger than the
binned estimates as they also incorporate uncertainty from the
measurement error and membership probabilities. We have also
run our fitting using the Gauss–Hermite series for h4 > 0 (where
it is positive-definite). The results are shown in Fig. G1. The

recovered h4 profile is very similar to using the Laplace kernel
(see Fig. G2) but the excess kurtosis is smaller, partly because
the Gauss–Hermite series does not admit excess kurtosis larger
than ∼0.5.

To test our procedure, we also attempt to recover the kinematic
profiles from our mock dynamical data. For this, we require an
approximation to the uncertainty distribution, for which we use a
gamma distribution (σ v − ve)/vs ∼ �(1.1, 1). ve is an error floor
and vs governs the width of the tail of the error distribution. We set
ve = 0.3 km s−1 and vs = 1.2 km s−1, which gives a good match to
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the error distribution of the Fornax sample. From our mock dynamical
models, we select Nstars = 2000 stars, assign uncertainties and scatter
the velocities by the uncertainty. We do not use a background model
and set pmem = 1 for all mock data. We show the results of applying
our modelling to the three models in the lower panels of Fig. 7.
We find the recovery of the dispersion and excess kurtosis or h4 is
satisfactory.

We run further tests on the recovery of the excess kurtosis of
our mock dynamical models with the quality and size of the data
set. For speed, we ignore the radial dependence of μ, σ , and h4.
Additionally, we set a prior lower limit on σ = 0.05 km s−1. We run
a set of three experiments varying (i) the number of stars Nstars, (ii)
the error floor, ve, and (iii) the scale of the velocity error distribution,
vs. We use default parameters of Nstar = 2000, vs = 1.2 km s−1,
and ve = 0.3 km s−1 as used in the previous test. We use a fixed
random seed to generate the mock samples from the models. The
results of these experiments are shown in Fig. 8. We have varied Nstar

from 100 to 10 000 and find that significant negative excess kurtosis
can be found with relatively few stars (≈200), but for a significant
positive excess kurtosis measurement we require �2000 stars. We
have varied the error floor from ve = 0.1 up to 10 km s−1 finding that
only for ve � 2 km s−1 can the sign of the excess kurtosis be reliable
determined, although again negative excess kurtosis is detectable
for ve ∼ 5 km s−1. Finally, we have varied vs from 0.1 to 10 km s−1

finding its effect on the recovery and size of the uncertainties to
be quite weak such that for all of our tests we can fairly reliably
distinguish the sign of the excess kurtosis and for vs � 2 km s−1

the models are distinguishable. Although our results are tailored for
Fornax, they can be extended to other dSph galaxies by scaling by
the dispersion of Fornax of 11 km s−1.

5.3 Extension to rotation

To conclude our investigation into the use of the new models in the
modelling of dSph data, we briefly demonstrate their application
to rotating galaxies. Typically dSph galaxies exhibit negligible
rotation and most detected rotation can be attributed to perspective
effects from the projection of the bulk proper motion (Walker et al.
2008; Amorisco & Evans 2012b). However, if rotation is present,
the combined signals of shift in the mean velocity and skewness
may prove powerful for its separation from perspective rotation
(Amorisco & Evans 2012b).

We modify the dynamical models by multiplying by an odd
function of the z component of angular momentum, Jφ ,

frot( J) = f ( J)
(
1 + k sgn(Jφ)

)
. (47)

k controls the degree of rotation and can take values |k| ≤ 1. We
investigate the cored γ = 0 and cusped γ = 1 models from the
previous section. We choose k = 0.3 for the cored model and k =
0.2 for the cusped model, and view the models perpendicular to the
rotation axis.

In Fig. 9, we show the rotation curves of the two models. The
rotation reaches ∼3 km s−1 for both models. Such a large rotation
signal in Fornax would be obvious so this experiment is purely
illustrative. We also display the LOSVDs (where the symmetry
allows us to increase the number statistics by multiplying the
velocities by the sign of x). We see both distributions are weakly
skewed (g = −0.067 for the cored model and g = −0.105 for the
cusped). Both the Gauss–Hermite series and the new models from
this paper provide excellent fits to the distributions. In the case of the
positive excess kurtosis model the fits are near identical. However, we
see for the cusped negative excess kurtosis model the residuals with

Figure 8. Measurement of velocity excess kurtosis using discrete samples
of dynamical dSph models. Three models are inspected (cored = blue dot,
weak cusp = green cross, and strong cusp = red triangle). In the top panel
the number of tracers is varied; in the central panel the line-of-sight velocity
error floor is varied; and in the bottom panel the width of the velocity error
distribution varied. The dashed lines show the true values.

respect to our new models are in general smaller and in particular
better capture the right-hand wing.

6 A PPLI CATI ON TO SPECTRAL FI TTI NG

As discussed in Section 2, the Gauss–Hermite series was originally
introduced for the extraction of kinematics from spectra (Gerhard
1993; van der Marel & Franx 1993). Given a library of single
stellar population spectra, Cappellari & Emsellem (2004) describe a
penalized likelihood algorithm for the simultaneous extraction of the
age–metallicity properties of a measured galaxy and the kinematics
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Near-Gaussian distributions for discrete data 5819

Figure 9. Example of rotating dynamical dSph models. Left-hand panel shows the rotation curve of a cored (blue solid) and cuspy (green dashed) model. x is
the on-sky coordinate perpendicular to the rotation axis. The two right-hand panels show the velocity distributions sgn(x)vlos in black along with fits using the
new models of this paper (lines) and the Gauss–Hermite series (with dots and crosses). The skewness g is given in each panel.

via the convolution of the library with a Gauss–Hermite series
for the LOSVD. Cappellari (2017) showed how undersampling
the LOSVD when the LOSVD dispersion is smaller than half the
pixel spacing is problematic for accurate recovery of the kinematics
(particularly the mean) but could be circumvented using the analytic
Fourier transform of the Gauss–Hermite series. This is now the
standard method in the spectral fitting code PPXF (Cappellari &
Emsellem 2004; Cappellari 2017).

Although in the spectral fitting application the issue of negative
wings in the LOSVD is less severe than in the application to
discrete data, it still gives rise to unphysical features that could
bias the recovery of kinematics. However, the new families of
models introduced in this paper provide simple replacements for
the Gauss–Hermite series in the spectral fitting procedure. This is
because they too have analytic Fourier transforms. In fact, the Fourier
transforms are simpler to evaluate than the real-space forms. The
Fourier transforms for the two models are

φs(u) = 1

2
eiw0u−u2t2/2b2

[
1

1 − ia+u/b
+ 1

1 + ia−u/b

]
(48)

for the Laplace kernel, and

φs(u) = 1

2
eiw0u−u2t2/2b2

[
eia+u/b

ia+u/b
− eia−u/b

ia−u/b

]
(49)

for the uniform kernel. We have implemented the models within a
version of the PPXF code and find that for the included examples the
recovery of the kinematics is very similar to using a Gauss–Hermite
series.

In Fig. 10, we show examples of a single stellar population
with solar metallicity and of age 12.6 Gyr (Vazdekis et al. 2010)
convolved with different choices of LOSVD. For all models, we fix
the parameter σ = 50 km s−1 but this does not mean the variance of
all models are the same. We see that for h4 > 0 the wings of the
lines are broader than Gaussian and for h4 < 0 they are narrower.

We observe that when using the Gauss–Hermite series there are
prominent bumps in the wings of the lines (particularly visible for
Hα) due to the negative LOSVD but these are avoided when using
the models of this paper. It should be noted however that in general
the effects and differences are small and the large values of |h4|
chosen for the example have been selected to exaggerate the effect.
We also display the Fourier transform of the LOSVD. One feature of
the Gauss–Hermite series is that it decays like e−u2

in Fourier space,
whereas our negative models oscillate and decay like 1/u. However,
this is unimportant as the template spectra are bandwidth-limited
and Nyquist-sampled so we only require the Fourier transform on a
fixed grid (u/σ < π) and its behaviour for large u is irrelevant. The
disadvantages to our suggested modifications are: (i) one cannot
incorporate higher order moments h5 or h6 – these are already
non-zero for our models. In practice, one rarely uses these higher
order moments anyway; (ii) there is only a finite range of h3 and h4

accessible by our models. Already h3 and h4 are bounded in PPXF

(default is between −0.3 and 0.3) but the difficulty with our models
is in the interdependence of maximum h3 and h4 as shown in Fig. 4.
One could use a and δ as parameters instead.

7 C O N C L U S I O N S

We have introduced a new method for constructing PDFs for the
modelling of discrete stellar velocity data drawn from weakly non-
Gaussian distributions and with heteroskedastic uncertainties. Our
study was motivated by the limitation of the commonly used Gauss–
Hermite series expansion. Although the Gauss–Hermite series has
attractive properties for convolution with measurement uncertainty,
a key limitation is that the Gauss–Hermite series does not give well-
defined probability density functions – there are regions of negativity
particularly for negative excess kurtosis models.

We have demonstrated a generic method for constructing ev-
erywhere positive families of probability functions through the
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Figure 10. Single stellar population [solar metallicity, 12.6 Gyr convolved with different choices of line-of-sight velocity distribution (LOSVD)]. Four LOSVDs
are used, all with identical σ = 50 km s−1 parameters (which does not equal the velocity dispersion except for the Gaussian): (i) Gaussian in black dashed, (ii)
solid green is this paper’s model h4 = 0.14, (iii) solid orange is this paper’s model h4 = −0.18, and (iv) Gauss–Hermite series with h4 = −0.18. The top panel
and bottom two right-hand panels show example regions of the spectra. The corresponding Fourier transforms of the LOSVDs (important in the computation of
the spectra) are given in the bottom left-hand panel. Note the selected h4 parameters are extreme to exaggerate the effects.

convolution of a Gaussian with a choice of kernel. The resulting PDF
inherits the properties (moments and cumulants) of the kernel. We
have examined in detail two choices of kernel, Laplace and uniform,
which give rise to positive and negative excess kurtosis, respectively,
and can be asymmetrized to incorporate skewness. Inspired by the
standard implementation of the Gauss–Hermite expansion, we have
restricted the models to have approximately h1 = h2 = 0 such that
the models can be used as a direct replacement for the Gauss–
Hermite series. However, in theory, the models can be used in greater
generality. We provide code for the evaluation of our models at
https://github.com/jls713/gh alternative.

We have demonstrated the use of our new models with two simple
applications. The first is to discrete sets of line-of-sight velocity
data in galactic modelling. We have shown through a series of
dynamical models how non-Gaussianity can break mass–anisotropy
degeneracies and how our methods allow for a flexible measurement
of the excess kurtosis. This has a ready application to the dwarf
galaxies around the Milky Way, for which large data sets of velocities
of bright giant stars exist and for which the structure of the dark
halo is an open question. For the specific example of the Fornax
dSph galaxy, we have shown using a chemo-kinematical mixture
model that the data seem to favour positive excess kurtosis velocity
distributions and hence indicate cored dark matter density profiles.
Additionally, we have tested our modelling procedure on a series of
dynamical dSph galaxy models with varying dark matter profiles,
finding good recovery of the kinematic profiles and that a cored
model well reproduces the observed data. Furthermore, we have
investigated how the excess kurtosis measurement depends on the
number and uncertainty distribution of stellar tracers. For a Fornax-
like dSph, �2000 stars with uncertainties �2 km s−1 are sufficient to

measure the sign of the excess kurtosis and measure the mass density
slope, although this assumes perfect knowledge of dSph membership.
We have also shown how our models are able to capture skewness,
which could be a powerful indicator of the subtle effects of rotation
and immune to the effects of perspective.

Secondly, although our models were not motivated by spectral
fitting applications, their analytic Fourier transforms allow them to
be used in spectral fitting algorithms where they could reduce bias
produced by negative wings in the LOSVDs of high-quality data.

Our methods for characterizing mildly non-Gaussian velocity dis-
tributions are flexible and adaptable, offering significant advantages
over the conventional Gauss–Hermite series. The skewness and kur-
tosis of such distributions contain important clues on the orbits of the
tracers and the gravitational potential in which they move. The sizes
of such discrete velocity data sets – whether for populations in the
Milky Way or its dwarf satellite entourage or for populations in exter-
nal galaxies like globular clusters and planetary nebulae – have sub-
stantially increased in recent years. We envisage that our new meth-
ods will play an important role in exploiting these data sets to the full.
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APPENDI X A : H ERMI TE POLYNOMI ALS

The convention for the Hermite polynomials employed here follows
van der Marel & Franx (1993) such that they are given by the relation(

− d

dy

)l

α(y) =
√

l!Hl(y/
√

2)α(y). (A1)

This is different from the standard Hn(y) defined in e.g. Olver
et al. (2016) that are given by

√
l!2lHl(y). The first five Hermite

polynomials are

H0(y) = 1, H1(y) =
√

2y, H2(y) = 1√
2

(2y2 − 1),

H3(y) = 1√
6

(2
√

2y3 − 3
√

2y), H4(y) = 1√
24

(4y4 − 12y2 + 3).

(A2)

The generating function for this definition of the Hermite polynomi-
als is given by
n=∞∑
n=0

zn

n!

√
n!Hn(y) = e

√
2yz−z2/2, (A3)

from which the nth polynomial can be found as

Hn(y) = 1√
n!

∂n

∂zn

(
e
√

2yz−z2/2
)∣∣∣

z=0
. (A4)
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A P P E N D I X B: C U M U L A N T S O F TH E
GAUSS–HERMITE SERIES

The cumulant generating function of the Gauss–Hermite series given
in equation (1) is given by

ln φGH(u) = ln
∫ ∞

−∞
dx eiuxf (x) =

∑
r=1

κr

(iu)r

r!

= iV u − (σu)2

2
+ ln

[
1 +

∑
n≥3

inhnHn(σu)

]
. (B1)

The cumulants are then given by

κ1 = V + κ̃1, κ2 = σ 2 + κ̃2, κi = κ̃i , i ≥ 3,

κ̃r = σ r dr−1

dur−1

⎡
⎣(1 +

∑
n≥3

inhnHn(u)

)−1 ∑
n≥3

in−rhn

dHn(u)

du

⎤
⎦

u=0

.

(B2)

Performing the derivative produces long-winded expressions. For
their evaluation, we require the Hermite numbers Hn(0) given by

Hn(0) = (−1)n/2

√
n!

(n/2)!
√

2n
(B3)

for even n and zero for odd n, and the nth derivative of the Hermite
polynomials is

drHn(x)

dxr

∣∣∣
x=0

=
√

2rn!

(n − r)!
Hn−r (0) = (−1)(n−r)/2 2r−n/2

√
n!

((n − r)/2)!

(B4)

for even n − r and zero otherwise. Restricting to hn = 0 for n > 4,
we find for the first four cumulants (note all κ r are non-zero),

κ1 = V +
√

3σλh3 ≈ V +
√

3σh3,

κ2 = σ 2 + σ 2λ2(h4(2
√

6 + 3h4) − 3h2
3) ≈ σ 2(1 + 2

√
6h4),

κ3 = 1
2 h3σ

3λ3
(

8
√

3 + 12
√

3h2
3

− 3h4(8
√

2 + 5
√

3h4)
)

≈ 4
√

3h3σ
3,

κ4 = 1
2 σ 4λ4

(
16

√
6h4 − 9h2

4(8 + 6
√

6h4 + 5h2
4)

+ 12h2
3(15h2

4 + 8
√

6h4 − 8) − 108h4
3

)
≈ 8

√
6h4σ

4, (B5)

where λ =
(

1 + √
3/8h4

)−1
and the approximations for small hn

agree with van der Marel & Franx (1993). Note that for larger values
|h4|, the excess kurtosis κ = κ4/κ

2
2 is not a monotonic function of

h4.

A P P E N D I X C : C O N VO L U T I O N O F A
GAUSS–HERMITE SERIES WITH GAUSSIAN
E R RO R S

In this appendix, we compute the convolution of a Gauss–Hermite
series f(x) with a Gaussian uncertainty distribution N (x − x ′|σe) as

fσe
(x) =

∫ ∞

−∞
dx ′ f (x ′)N (x − x ′|σe). (C1)

We work in terms of the scaled and shifted coordinate w = (x −
V)/σ . Dropping the constant factors, we require the convolution

fs(w) =
∫ ∞

−∞
dw′ f (w′)N (w − w′|s), (C2)

where

N (w|s) = 1√
2πs2

e− 1
2 w2/s2

, (C3)

and s = σ e/σ . For this computation, we shift to Fourier space. One
attractive property of the Gauss–Hermite series is that the terms are
eigenfunctions of the Fourier transform, F,

F
{

α(w)Hn(w)
}

≡
∫ ∞

−∞
dw α(w)Hn(w) eikw =

√
2πinHn(k)α(k).

(C4)

Cappellari (2017) uses this property to rapidly convolve a model
spectrum with the Gauss–Hermite series. Each term in the convolu-
tion of N (w|s) with f(w) is given by

Cn(w|s) ≡
∫

dw′Hn(w′)α(w′)N (w − w′|s). (C5)

Taking the Fourier transform of the convolution yields

F
{
Cn(w|s)

}
=

√
2πinHn(k)α(k) e−s2k2/2 =

√
2πinHn(k)α(s ′k),

(C6)

where s ′ = √
1 + s2. The inverse Fourier transform is given by

Cn(w|s) = in√
2πs ′

∫
dk′ e−ik′ w

s′ Hn

(
k′

s ′

)
α(k′). (C7)

The Hermite polynomials satisfy the following multiplication theo-
rem (equation 18.18.13 of Olver et al. 2016):

Hn(γ x) = γ n

� n
2 	∑

j=0

(1 − γ −2)j
√

n!

j !2j
√

(n − 2j )!
Hn−2j (x). (C8)

Rewriting H(k
′
/s

′
) using this series and using the eigenfunction of

the Fourier transform property of H(k
′
)α(k

′
) gives an expression for

the convolution of each term as

Cn(w|s) = N (w|s ′)
s ′n

� n
2 	∑

j=0

s2j

√
n!

j !2j
√

(n − 2j )!
Hn−2j

(w

s ′

)
. (C9)

The sum can be recombined into a single Hermite polynomial as

Cn(w|s) = N (w|s ′)
s ′n (1 − s2)n/2Hn

(
w√

1 − s4

)
. (C10)

This formula can be derived directly from equation (C5) using
equation (7.374.8) of Gradshteyn & Ryzhik (2007). Note that the
formula is valid for s > 1 although it requires numerical care, as
both the prefactor and the argument of the Hermite polynomial
are imaginary in this case. We give the full result for fσe (x) in
equation (11).

APPENDI X D : OTHER SERI ES METHODS

The Gauss–Hermite series bears resemblance to two other series
expansions that are more commonly used in probability theory. The
Gram–Charlier and Edgeworth series both approximate a general
probability density function in terms of its cumulants (see Blin-
nikov & Moessner 1998, for general derivations). The construction
of the two series is similar in that the cumulant generating function
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is written as a sum of a Gaussian cumulant generating function (first
two terms) plus a truncated cumulant generating function series (for
n ≥ 3):

ln φapprox(u) = ln φGaussian(u) +
∑
r≥3

κr

(iu)r

r!
. (D1)

The approximating probability density function is then the inverse
Fourier transform of φapprox. The difference between Gram–Charlier
and Edgeworth is in how one chooses to truncate the sum. In
Gram-Charlier, the sum is truncated at the nth cumulant, whilst for
Edgeworth the expansion of the normalized variable x/σ is truncated
at the nth power of the standard deviation, σ (making it a truly
asymptotic series). The advantage of this approach is the terms in the
resulting series are simply related to the cumulants (see Appendix B
for the relationship between the Gauss–Hermite coefficients and the
cumulants). Up to fourth order, the Gram–Charlier series is given by

f (x) = 1

σ
α(w)

[
1 + κ3

3!σ 3
He3(w) + κ4

4!σ 4
He4(w)

]
. (D2)

Correspondingly, the Edgeworth series is given by

f (x) = 1

σ
α(w)

[
1 + κ3

3!σ 3
He3(w) + κ4

4!σ 4
He4(w)

+ 10κ2
3

6!σ 6
He6(w)

]
. (D3)

Here the Chebyshev–Hermite polynomials H en(y) are given by

He3(y) = y3 − 3y, He4(y) = y4 − 6y2 + 3,

He6(y) = y6 − 15y4 + 45y2 − 15. (D4)

For both series, the convolution with observational uncertainties,
σ e, is simple as the series are derived directly from a characteristic
function. The convolution is a multiplication in Fourier space such
that φGaussian(u) in equation (D1) has a width σ ′ = √

σ 2 + σ 2
e .

Equations (D2) and (D3) are then modified as w → w(σ /σ
′
) and

σ → σ
′
.

The Gram–Charlier series has very poor convergence properties
(p(x) must fall off faster than e−x2/4 for large x), whilst the Edgeworth
expansion is designed to converge given any p(x). On the other hand,
the Gauss–Hermite series will converge if p(x) satisfies an α-Hölder
condition and

∫
dx |p(x)|(1 + |x|−3/2) does not diverge (Blinnikov &

Moessner 1998).
We observe that both series methods also necessarily suffer

negative probability density regions so are not suitable workarounds
for our application.

A P P E N D I X E: OT H E R C H O I C E S O F K E R N E L

In this appendix, we give two tables detailing possible other choices
of kernel. Table E1 gives the set of half-kernels, K+(y), which are
non-zero for positive y and their corresponding error-convolved
distributions fs+(w), and characteristic function φK+(u). Table E2
gives the cumulants for models formed by stitching together two
of these half-kernels for positive and negative y with different scale
parameters.

Table E1. Choices of half-kernel K+(y) (zero for y < 0 – all normalized to integrate to 1
2 except Gamma that is normalized to unity), their

error-convolved distribution fs+(w) and their characteristic functions φK+(u). The top two models (Uniform and Cosine) have negative excess
kurtosis and the bottom three (Laplace, Gaussian and Gamma) positive. w

′ = w − w0, t = 1 + b2s2, N (w|s) is a normal distribution with
width s and 
(x) is the cumulative distribution of the unit normal. 1F1(a, b, c, x) is the confluent hypergeometric function.

Name K+(y) fs+(w) φK+(u)

Uniform 1
2a

if y < a,
b

2a

[


( bw′

t

)
− 


( bw′ − a

t

)]
eiau−1

2iau

Cosine π
4a

cos
(

πy
2a

)
if y < a, bπ

8a

(
D(w′, w′ − a/b) − D(−w′, −w′ + a/b)

)
a π

2
π eiau−2iau

π2−4a2u2

Laplace 1
2a

e−y/a b
4a

exp
(

t2−2abw′
2a2

)
erfc

(
t2−abw′√

2ta

)
1

2−2iau

Gaussian 1√
2πa

e−y2/2a2
bN (bw′|√t2 + a2)


(
bw′a

t
√

t2+a2

)
e−a2u2/2
(iau)

Gamma yβ−1 e−y/a

aβ�(β)

√
2β−3b√

πaβ+1�(β)
tβ−2 e−b2w2/2t2

×
[
at�

(β

2

)
1F1

(
β

2
,

1

2
,

(t2 − abw′)2

2a2t2

)

+
√

2(abw′ − t2)�

(
1 + β

2

)
1F1

(
1 + β

2
,

3

2
,

(t2 − abw′)2

2a2t2

)]

1
(1−iau)β

aD(w, q) = e−π2t2/8a2
eiπbw/2a

[


(

iπt2+2abw
2at

)
− 


(
iπt2+2abq

2at

)]
.
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Table E2. Cumulants for kernels built from two half-kernels from Table E1 with the requirement
∫ ∞

0 dy K+(y) = ∫ 0
−∞ dy K−(y) = 1

2 (except Gamma where
we only consider positive y). The width of the positive domain is a+ and a− for the negative domain. These quantities can be derived from Table E1 using

κ̃r = i−r∂r
u ln

[
φK+(u) + φK−(u)

]
u=0

. We define the auxiliary variables. a = 1
2 (a+ + a−) and � = 1

2 (a+ − a−). μ̃ is the mean, ṽ the variance, and κ̃3 and κ̃4

the third and fourth cumulant from which the skewness g̃ and excess kurtosis κ̃ are computed as g̃ = κ̃3/ṽ
3/2 and κ̃ = κ̃4/ṽ

2. Note that all bracketed constants
are positive.

Name μ̃ ṽ κ̃3 κ̃4

Uniform �
2

a2

3 + �2

12
�a2

4 − 1
120

(
16a4 − 4a2�2 + �4

)

Cosine �
(

1 − 2
π

) (
1 − 8

π2

)
a2 + 4

π

(
1 − 3

π

)
�2 2�

π

[
3
(

4
π

− 1
)2

a2 +
(

12
π

− 8
π2 − 3

)
�2

]
− 2a4

π4

(
π4 − 96

)
+ 24a2�2

π4

(
112 − 32π + 2π2 − π3

)

− 8�4

π4

(
12π2 − π3 − 24π − 12

)

Laplace � 2a2 + �2 2�(6a2 + �2) 6
(

2a4 + 12a2�2 + �4
)

Gaussian
√

2
π

� a2 +
(

1 − 2

π

)
�2

√
2
π

�
[

3a2 +
(

4
π

− 1
)
�2

]
4�2

[
3
(

1 − 2
π

)
a2 + 2

π

(
1 − 3

π

)
�2

]

Gamma aβ a2β 2a3β 6a4β

APPENDIX F: NUMERICAL IMPLEMENTAT I ON

When fitting the proposed models to data we require accurate
computation of the logarithm of the PDF fs(w). This requires some
care and we detail some suggested methods.

F1 Uniform kernel

For the uniform kernel, we require accurate computation of equa-
tion (38). We first rewrite this equation as

fs(w) = b

2a+a−

{
a+

[



(
bw′ + a−

t

)
− 


(
bw′

t

)]

+ a−

[



(
bw′

t

)
− 


(
bw′ − a+

t

)]}
. (F1)

Concentrating on the first part (as similar arguments apply to the
second part) we require accurate computation of

ln [
(x + c) − 
(x)] . (F2)

We first compute

ln 
(x) = − ln 2 + ln erfc(−x/
√

2), (F3)

and note the following identity

ln erfc(x) =
{

ln erfcx(x) − x2 x > 0,

ln erfc(x) x ≤ 0,
(F4)

where erfcx(x) is the scaled complementary error function erfcx(x)
≡ exp (x2)erf(x). An alternative computationally cheaper method to
evaluate ln 
(x) uses the LOG NDTR method implemented in SCIPY

that employs a Taylor series expansion for arguments |x| > 20:
typically this is a factor of 2 faster than evaluating ln erfc(x). We then
compute the difference of two ln 
 calls as

ln exp(a − b) = a + ln (1 − exp(−(a − b))) , (F5)

where we can evaluate the second term using a LOG1MEXP function.
For positive arguments we use the identity 
(− x) = 1 − 
(x) and
instead evaluate −
(− x) − 
(− (x + c)).

For the second part of equation (F1) we employ a similar
procedure: for positive (bw

′ − a+)/t we evaluate 
(− (bw
′ − a+)/t)

− 
(− bw
′
/t). The sum of the two parts can then be performed using

a log-add-exp operation: ln exp (a + b) = a + ln exp (b − a).

F2 Laplace kernel

For the Laplace kernel, we must evaluate equation (41) that is
unstable for large positive arguments. An alternative form using the
scaled complementary error function erfcx(x) is

fs(w) =
√

π

8
bα

(
bw′

t

)[
1

a+
erfcx

(
t2 − a+bw′

√
2ta+

)

+ 1

a−
erfcx

(
t2 + a−bw′

√
2ta−

)]
. (F6)

This expression suffers from its own different numerical issues
when the arguments are large and negative. Therefore, for optimum
numerical stability we separate out the two terms in the sum and
use the form in equation (41) for large negative arguments and
equation (F6) for large positive arguments. Note that this occurs
for t2 − 2abw

′
> 0 for one term and t2 + 2abw

′
> 0 for the other.

We compute the logarithm of the two terms using equation (F4) and
the similar identity,

ln erfcx(x) =
{

ln erfc(x) + x2 x < 0,

ln erfcx(x) x ≥ 0.
(F7)

The sum of the two terms can then be performed using a log-add-exp
operation.

A P P E N D I X G : FO R NA X MO D E L S U S I N G TH E
GAUSS–HERMI TE SERI ES

When working with models with positive excess kurtosis, it is
possible to use the Gauss–Hermite series as it is always positive
definite for h3 = 0 and h4 > 0. In Fig. G1, we provide an alternative
fit to the Fornax data using a Gauss–Hermite series instead of the
Laplace kernel model introduced in this paper. Note that at equivalent
h4, the values of kurtosis admitted by the Gauss–Hermite series are
smaller than for the Laplace kernel. However, as shown in Fig. G2,
both models produce similar dispersion and h4 profiles.
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Figure G1. Similar to Fig. 7 but instead using a Gauss–Hermite series for positive excess kurtosis. Note in particular the different relationship between h4 and
the excess kurtosis for these models.

Figure G2. Comparison of the radial dispersion and h4 profiles using the Gauss–Hermite series (dashed purple) and the Laplace kernel model (green solid) for
positive h4. The median and ±1σ bands are shown.
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