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Abstract. Product reviews which are increasingly commonplace on the web typi-
cally contain a textual component and a numerical rating. The textual component
can be viewed as a collection of arguments for and against the product. Whilst the
reviewer may not have provided the attacks between these arguments they typically
provide an indication of which set of arguments they view as being more accept-
able/winning via the numerical rating (i.e. a positive rating indicates that the pos-
itive arguments are accepted and vice versa). Our framework builds upon this in-
tuition and we propose a two step process for identifying a probability distribution
over the set of possible argument graphs that the reviewer may have had in mind.
The first is the identification step in which for a given review, we identify a distribu-
tion by analysing the relationship between the rating and polarity of arguments in
the review via the constellations approach to probabilistic argumentation. The sec-
ond step is the refinement step in which we harness ratings from multiple reviews
and use this to refine our probability distribution thus enabling us to learn from the
data. We illustrate the applicability of our approach by testing it with real data.

Keywords. Probabilistic argumentation; online reviews; abstract argumentation

1. Introduction

An abstract argument framework, as proposed by Dung, [7] is a graph structure in which
the vertices denote arguments and the edges denote attacks between the arguments.
Probabilistic argumentation extends abstract argumentation by allowing one to associate
probabilities with the argument frameworks. In the epistemic approach probabilities are
associated with arguments and represent uncertainty in the arguments themselves. In
contrast in the constellations approach probabilities are associated with the topology of
a graph and this enables one to model uncertainty in the structure of the graph.

In this paper we explore the use of the constellations approach to model agent rea-
soning within product reviews. These reviews contain arguments for and against the
product; many reviews also have numerical ratings that capture the reviewer’s overall
sentiment towards the product. In essence the rating represents the reviewer’s final ver-
dict on the product and is provided in light of the arguments they have provided in favour
of and against the product. With this in mind we therefore assume that for each review
there is an underlying abstract argument graph which captures the reviewer’s reasoning.
In order to predict this graph we use the constellations approach to identify a probability
distribution over potential argument graphs for each review. The distribution is useful as
it can be used to predict a graph for the review that can be used to then understand the
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Figure 1. Example drug review in which the reviewer gave a rating of 3/10. Text spans labelled red indicate a
negative argument against the drug and blue labels indicate positive arguments

reviewer’s reasoning. Likewise when considering multiple reviews for a product one can
develop an understanding of how all of the reviewers view a product by aggregating and
reasoning with the distributions identified.

To illustrate the problem consider a reader browsing through many product reviews
that contain arguments in favour of (positive arguments) or against (negative argu-

ments) a particular product where each review comes with a numerical rating. We inter-
pret this rating as a proxy for the polarity of the winning arguments. Hence we view a
review with a high rating as an indication that the winning arguments are positive and
vice versa. This also affords us an understanding of the potential graphs assignable to the
review.

As an example consider the review shown in Figure 1. We can reason that the low
rating is being driven by one or both of the negative arguments and consequently that
the positive argument does not play much of a role in the overall assessment. We can
express our reasoning using Dung’s grounded semantics and say that the argument graph
that the reviewer had in mind will likely have one or both of the negative arguments in its
grounded extension and not the positive argument. This can be formalised further using
probabilistic argumentation.

In this paper we propose a method for identifying a probability distribution over the
set of graphs that the reviewer may have had in mind. This is achieved in two steps. The
first is the identification step in which we identify a distribution for a review by building
upon the assumption that there is a relationship between the rating and the winning / ac-
ceptable arguments in that review. This distribution can then be sampled from to assign
a graph to the review. When considering multiple reviews we propose an additional re-
finement step that makes use of data derived from ratings taken from a dataset of reviews
in order to refine the probability distribution so as to better reflect the data.

However not all reviews contain ratings and hence in our experiment section we
demonstrate that we can train a machine learning model to predict ratings for such re-
views. Also we see that our proposal is not limited to product reviews and can indeed be
used in any situation in which agents posit arguments and proxy measures that indicate
which arguments win. For example in a public debate where the viewers, over the course
of the debate, accumulate arguments from both parties and instead of providing the at-
tacks between these arguments or directly identifying the winning arguments they may
instead rate each party thus indicating their overall verdict. Our approach could thus be
used to identify a probability distribution over the set of possible argument graphs for
each viewer.

To summarise we make two main contributions with this paper. Our first contribu-
tion is providing a methodology for identifying a probability distribution over a set of ar-
gument graphs given a review. Our second contribution is refining this distribution by in-
corporating data derived by analysing the ratings from multiple reviews and thus having
a distribution that better reflects the reviews we are modelling.
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(a) product functions
well

(b) product feels
poorly built

(c) product is
affordable

Figure 2. An example of an argument graph containing two positive arguments in favour of a product (a,c)
and one negative argument against it (b)

2. Identifying a Probability Distribution for a Review

Given an argument graph (A,R) a set B⊆ A is conflict-free iff no two arguments a,b∈ B
exists s.t (a.b) ∈ R. An argument b is defended by a set B ∈ A iff any argument a ∈ A
attacks b then ∃c ∈ B s.t. (c,a) ∈ R. A conflict-free set B⊆ A is an admissible extension
iff each argument in B is defended by B. An admissible extension B is an complete

extension iff each argument defended by B is in B. A complete extension B is a grounded

extension if it is minimal (w.r.t set inclusion). We use the notation gr((A,R)) to indicate
the grounded extension for a graph.

We start by considering a setting in which users state positive and negative argu-
ments which are arguments in favour of or against a particular conclusion (e.g. in the
case of product reviews these are in favour or against the product). In other words we
consider, as a simplifying assumption, only bipartite graphs. We thus see reviews as user
provided arguments for or against the product and the rating they provide as indicators
of the underlying argument graph and therefore the winning arguments. Although on the
web ratings tend to be integers they can in fact be any real number.

Definition 2.1. Let A+ be a set of positive arguments and A− be a set of negative ar-
guments s.t. A+ ∩A− = /0. Let the minimum rating be bNeg

min and the maximum be bPos
max.

A view is a tuple v = (A,b) where A ⊆ A+ ∪ A− and b ∈ [bNeg
min ,b

Pos
max] is a rating s.t

bNeg
min ,b

Pos
max ∈ R and bNeg

min < bPos
max .

Example 2.1. Consider the arguments depicted in Figure 2 and rating. Some examples of
views using the arguments {a,b,c} and ratings in the range [1,10] would be ({a,b,c},9)
and ({a,b},10).

When considering the set of possible argument graphs that an agent may have had in
mind when providing a view we are dealing with all argument graphs which contain the
arguments in that view. This translates as the set of all spanning sub graphs using those
arguments. We refer to this set as the graph space. Formally we say that given disjoint
sets A+ and A− that the graph space is the set returned by the function Space(A+,A−) =
{(A+ ∪A−,R)|R ∈P((A+×A−)∪ (A− ×A+)}. An example of a a graph space given
two positive and one negative argument is provided in Table 1.

Proposition 2.1. Given a set of positive and negative arguments A+ and A− let m = |A+|
and n = |A−|. The size of the graph space is then 22mn.

In identifying the probability distribution for a view we make the assumption that
the rating in a view is proportional to the ratio of positive/negative arguments in the
grounded extension for the graph the agent intended for that view; hence if the rating is
high we expect this ratio to be high and vice versa. In terms of the graph space we expect
that when a rating is high, those graphs that have a high proportion of positive arguments
in their grounded extension will have more mass assigned to them and vice versa.
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To this end we rank graphs in the graph space based on two criteria which we de-
fine in the rest of this section: the degree of polarity of the graph’s grounded extension
(proportion of positive/negative arguments) and an assessment of the topological struc-
ture of each graph. An analysis of the graph’s attack structure provides a finer-grained
understanding of how the grounded extension is achieved, therefore enabling us to better
differentiate between graphs that share the same grounded extension.

Definition 2.2. Let A+, A− be positive and negative arguments and S = Space(A+,A−)
be a graph space. For each graph G ∈ S we define the sets gr+(G) = {a ∈ gr(G)|a ∈
A+} and gr−(G) = {a ∈ gr(G)|a ∈ A−}. We then say that the polarity of a graph G is
Pol(G) = |gr+| − |gr−| and that the graph space can be partitioned into the following
sets: Pos(S) = {G∈ S|Pol(gr(G))> 0}, Ntl(S) = {G∈ S|Pol(gr(G)) = 0} and Neg(S) =
{G ∈ S|Pol(gr(G))< 0}.
Proposition 2.2. Pol(G) ∈ Z (i.e. the set of integers) and |A−| ≤ Pol(G)≤ |A+|.
Proposition 2.3. For any graph space in which there are m positive arguments and n
negative arguments then |Pos(S)|> |Neg(S)| when m > n and |Neg(S)|> |Pos(S)| when
n > m.

To analyse the polarity of an argument graph based on its attacks we define a func-
tion that scores each argument based on the number of attacks it inflicts and sustains.

Definition 2.3. Let G = (A,R) be an argument graph. For an argument a∈ A the number
of attacks it receives is def(a)= |{(x,y)∈R|y= a}| and the number of attacks it inflicts is
att(a) = |{(x,y) ∈ R|x = a}|. The grade of argument a in graph G is then Grade(a,G) =
att(a)−def(a).

Example 2.2. Consider graph G1 in Table 1. We can see that Grade(a,G1) = 1,
Grade(c,G1) = 1 and Grade(b,G1) =−2.

The grade of an argument is maximal when it attacks all of its opponents without
being attacked at all and vice versa.

Proposition 2.4. Let Space(A+,A−) be a graph space. Given B ∈ {A+,A−} and a ∈ B
then maxG∈Space(A+,A−)Grade(a,G)= |A+∪A−\B| and minG∈Space(A+,A−)Grade(a,G)=
−|A+∪A− \B|.
Proposition 2.5. Given an argument graph G it holds that ∑a∈A+ Grade(a,G) +

∑b∈A− Grade(b,G) = 0.

The grade of an argument is a score that is a combined indicator of an argument’s
ability to defend its coalition whilst not being attacked by the opposition in a particular
graph [10]. Given our aim of ranking graphs in a graph space we are however interested
in comparing the grade of an argument in a particular graph to its grades in the other
graphs in the graph space so as to assess how well it performed in that particular graph.
In order to gain this relative perspective we use a process of normalisation as follows:

Definition 2.4. Given a graph space S = Space(A+,A−) and an argument a ∈ A+ ∪A−
the normalised grade for a is given below where min(a,S) = minG∈SGrade(a,G) and
max(a,S) = maxG∈SGrade(a,G).

K. Noor and A. Hunter / Analysing Product Reviews Using Probabilistic Argumentation298



NormGrade(G,S,a) =
Grade(G,a)−min(a,S)
max(a,S)−min(a,S)

Example 2.3. Consider Table 1 which uses the arguments a,c ∈ A+ and b ∈ A−. The
normalised grade for arguments a,c are highest in G1 as they are attacking all of their
opponents and not being attacked. The opposite is true in G16.

Proposition 2.6. Given a graph space S = Space(A+,A−) where p = |A+| and n = |A−|
then for a positive argument a∈ A+, maxG∈SGrade(G,a) = n and minG∈SGrade(G,a) =
−n. Likewise for a negative argument that b ∈ A−, maxG∈SGrade(G,b) = p and
minG∈SGrade(G,b) =−p.

By summing the normalised grades for the arguments in an argument graph we are
able to produce a value that summarises the polarity of attacks in that graph.

Definition 2.5. Given a graph space S = Space(A+,A−), for each G ∈ S the aggre-
gate score for positive arguments is AttackScore+ = ∑a∈A+ NormGrade(G,S,a) and the
aggregate score for negative arguments is AttackScore− = ∑a∈A−NormGrade(G,S,a).
The aggregate polarity score for the graph is then given by AttackScore(S,G) =
AttackScore+−AttackScore−.

When considering the ordered set of attack scores for graphs in S the difference
in attack score between any two consecutive graphs is a constant ΔAtt as given in the
following result.

Proposition 2.7. Let p = |A+|, n = |A−| and (AttackScore0, ..,AttackScorem) be
a sequence of all the attack scores ordered from largest to smallest in the set
{AttackScore(G)|G ∈ S} s.t for each i, AttackScorei+1 ≥ AttackScorei. For any two val-
ues in the sequence it holds that the pairwise difference between them is a constant ΔAtt
i.e. ΔAtt = AttackScorei−AttackScorei+1 where ΔAtt = 1

2n +
1

2p .

We can then use ΔAtt to bring together the functions Pol and AttackScore to give a
combined assessment of the polarity of the graphs in a graph space.

Definition 2.6. Let (G1, ..,Gm) be a sequence of graphs in S s.t. for any two graphs
Gi,Gi+1 it holds that Pol(Gi) ≥ Pol(Gi+1) and AttackScore(Gi) ≥ AttackScore(Gi+1).
We say that alike(Gi,Gi+1) holds iff Pol(Gi) = Pol(Gi+1) and AttackScore(Gi) =
AttackScore(Gi+1). We define the aggregate score of a graph Gi s.t. i > 1, as Agg(Gi) =
Agg(Gi−1) if alike(Gi,Gi−1) and Agg(Gi) =Agg(Gi−1−ΔAtt otherwise and Agg(G1) =
AttackScore(G1).

To illustrate we can see that in Table 1 the attack scores are non-unique. The Agg
function enables us distinguish between graphs such as G10 and G11 which share the
same attack score but not the same grounded extension.

We now consider how ratings can be used in identifying a probability distribution
for a view. Our proposal for this is a function which maps a rating to an aggregate value
which is in turn used in specifying our probability distribution. In order to produce this
polynomial we partition the rating scale into three categories which correspond to the
three categories of polarity defined in Definition 2.2.
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No Graph Gr(G)
Attack
Score

Agg
P(G)

10 9 8 7 6 5 4,3,2,1

G1 a→ b← c a,c 2 2 0.16 0.06 0.01 0 0 0 0

G2 a b← c a,c 1.25 1.25 0.13 0.11 0.04 0.01 0.01 0.01 0.01

G3 a→ b c a,c 1.25 1.25 0.13 0.11 0.04 0.01 0.01 0.01 0.01

G4 a→ b↔ c a,c 1.25 1.25 0.13 0.11 0.04 0.01 0.01 0.01 0.01

G5 a↔ b← c a,c 1.25 1.25 0.13 0.11 0.04 0.01 0.01 0.01 0.01

G6 a→ b→ c a,c 0.5 0.5 0.08 0.12 0.11 0.05 0.03 0.02 0.02

G7 a← b← c a,c 0.5 0.5 0.08 0.12 0.11 0.05 0.03 0.02 0.02

G8 a b↔ c a 0.5 -0.25 0.05 0.07 0.15 0.11 0.06 0.05 0.05

G9 a↔ b c c 0.5 -0.25 0.05 0.07 0.15 0.11 0.06 0.05 0.05

G10 a b c a,b,c 0.5 -0.25 0.05 0.07 0.15 0.11 0.06 0.05 0.05

G11 a↔ b↔ c 0.5 -1 0.02 0.03 0.07 0.15 0.11 0.09 0.08

G12 a b→ c a,b -0.25 -1.75 0.01 0.01 0.02 0.08 0.13 0.14 0.13

G13 a← b c b,c -0.25 -1.75 0.01 0.01 0.02 0.08 0.13 0.14 0.13

G14 a↔ b→ c -0.25 -1.75 0.01 0.01 0.02 0.08 0.13 0.14 0.13

G15 a← b↔ c -0.25 -1.75 0.01 0.01 0.02 0.08 0.13 0.14 0.13

G16 a← b→ c b -1 -2.5 0 0 0 0.03 0.01 0.13 0.19
Table 1. Breakdown of probability distribution and aggregate graded scores for each graph in a graph with 2
positive arguments and one negative

Definition 2.7. Let [bNeg
min ,b

Pos
max] be the range of possible ratings assignable in a view

where bNeg
min ,b

Pos
max,∈ R. Within this range we define the positive partition as [bPosmin,b

Pos
max],

the neutral partition as [bNtl
min,b

Ntl
max] and the negative partition as [bNeg

min ,b
Neg
max] s.t bPos

max >

bPosmin > bNtl
max > bNtl

min > bNeg
max > bNeg

min .

Example 2.4. Consider a set of views that use a rating scale range [1,10]. In this case
bNeg

min = 1 and bPos
max = 10. Example boundaries in between this range could be bNeg

min = 4,
bNtl

min = 5, bNtl
max = 7 and bPos

min = 8.

We can now relate these three partitions to the three sets Pos(S),Ntl(S),Neg(S) in
the graph space using a polynomial function that allows us to go from ratings to Agg
scores.

Definition 2.8. Let σ ∈{max,min}, polarity∈{Pos,Ntl,Neg} and V = {bPos
max,b

Pos
min,b

Ntl
max

,bNtl
min,b

Neg
max,b

Neg
min }. We say the corresponding aggregate value for a boundary bpolarity

σ ∈
V is given by Γ(bpolarity

σ ) = σG∈polarity(S)(Agg(G)). In the case that Pos(S) is a single-
ton set then Γ(bPos

max) = maxG∈Pos(S)(Agg(G)) + ΔAtt and likewise if Neg(S) is a sin-
gleton set then Γ(bNeg

min ) = minG∈Neg(S)(Agg(G))−ΔAtt. We then say that the set of all
corresponding aggregate coordinates is AggCoordinates = {(b,Γ(b))|b ∈V}.
Example 2.5. In Table 1 we have AggCoordinates = ((10,2),(8,−0.25),(7,−1),(5,
−1.75),(4,−2.5),(1,−3.25)).

With the coordinates AggCoordinates we can then fit our polynomial function which
will enables us to map a rating to an aggregate score. We experimented with randomly
generated graphs of different sizes and found that second order polynomials were suffi-
cient for fitting to these coordinates.
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Definition 2.9. Given aggregate coordinates AggCoordinates and a rating b we de-
fine a function ratingToAgg : b → R which is a second-order polynomial function
ratingToAgg(b) = c0b2+c1b+c2 where c0,c1,c2 ∈R. The coefficients c0,c1,c2 ∈R are
learnt by fitting AggCoordinates to the polynomial using the least squares approximation
method.

The ratingToAgg function provides an aggregate score for a view based on its rating.
Using this we calculate the differences between this aggregate score and the aggregate
scores of all of the graphs in the graph space. These differences serve as the basis for
identifying a probability distribution. In essence we want those graphs that have a similar
aggregate score to be assigned a larger probability mass.

Definition 2.10. Given a function ratingToAgg and a rating b ∈ [bNeg
min ,b

Pos
max] we define a

distance function AggDist(G,b) = 1
1+|Agg(G)−ratingToAgg(b)|2 . We then define a probability

mass function for a graph G in graph space S as P(G,b) = AggDist(G,b)
∑G∈S AggDist(G,b)

Example 2.6. Table 1 shows two probability distributions for ratings in range [1,10]. In
this example because there are more positive than negative arguments, and hence more
graphs with a positive grounded extension, the probability mass is distributed across
more graphs.

In this section we have defined a method for identifying a probability distribution for
a view using the intuition that the rating provided in a view is a proxy for understanding
the agent’s belief in the polarity of the winning arguments.

3. Refining a Probability Distribution Using Impacts

In the previous section we identified a probability distribution for a view based on the
rating alone. In this section we propose improving this distribution by incorporating real
data about arguments derived from a set of views. We propose a simple measure which
captures the general influence a particular argument has on a rating when it appears in a
review.

Definition 3.1. Given a set of reviews Rev, and boundaries bPosmax, bNeg
min an argument a,

the set of reviews the argument appears in is given by App(a,Rev) = {rev ∈ Rev|rev =
(A,r)& a ∈ A}. We denote the number of reviews it appears in as N = |App(a,Rev)|.
The sum of the ratings is then sum(a,Rev) = ∑(a,r)∈App(a,Rev) r−bNeg

min . The impact of the
argument is then given below.

Impact(a,Rev) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sum(a,Rev)

(bPos
max−bNeg

min )×N
if a ∈ A+

1− sum(a,Rev)

(bPosmax−bNeg
min )×N

if a ∈ A−

The impact of an argument tells us how much the argument caused the ratings of the
reviews that it appeared in to move towards its polarity (positive or negative).
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Example 3.1. Consider a set of reviews Rev = {({a,b,c},9),({a,b,c},8),({a,d},7),
({b,c},2)}. where A+ = {a,c}, A− = {b,d}, bNeg

min = 0 and bPosmax = 10. The im-
pacts are then Impact(a,Rev) = 0.8, Impact(b,Rev) = 0.63, Impact(c,Rev) = 0.36 and
Impact(d,Rev) = 0.3.

We interpret impact as a measure of relative strength of an argument. In the previ-
ous section we defined the relative strength of an argument using the normalised grade
score. Hence in order to incorporate the impacts we weight those argument graphs whose
normalised grade values resemble the impact values we have calculated.

Definition 3.2. Given a set of reviews Rev, a review (A,r) ∈ Rev, the correspond-
ing graph space S for the review and a graph G ∈ S, the similarity between the im-
pacts of the arguments A and their grades in graph G is given by sim(A,Rev,G) =√

∑a∈A (Impact(a,Rev)−NormGrade(G,a))2.

Proposition 3.1. For all A,Rev,G, it holds that 0≤ sim(A,Rev)≤√|A|.
There is a natural correspondence between impact and graded score as they both are

indicators of the degree of importance an argument plays in a graph/review. Hence when
we find graphs where the difference between these values is small for all arguments we
want to increase our probability assignment to such graphs.

Definition 3.3. Let (A,r) Revs be a review, and S a graph space. Given a graph G ∈ S
we say that dG = 1

1+sim(A,Rev,G)) . The update weight associated with graph G is then

Weight(G,r) = dG×P(G,r)
∑F∈S dF×P(F,r) .

The weight assigned to each graph is thus the product of the probability of the graph
and the inverse distance of the graph’s grades to the argument’s impacts. The normalising
constant in the denominator ensures that the distribution of weights across the graph
space is a probability distribution.

Example 3.2. Continuing from Example 3.1 if we now consider a review ({a,b,c},9)
we find that the largest weights are Weight(G6,9) = 0.3; this makes sense in this graph
a has the highest grade followed by b and then c. We also see that Weight(G6,3) =
Weight(G6,3) = 0.10 and that Weight(G2,3) =Weight(G5,3) = 0.05.

In this section we have proposed a method for incorporating data taken from sets of
reviews to be able to identify probability distributions that better reflect the ratings in the
reviews.

4. Experiment

In this section we demonstrate our framework using a set of reviews taken from the
Drugs.com website. The dataset contains 601 reviews pertaining to the condition acne
where each review contains a textual review and a rating between 1 and 10. In order to
identify positive and negative arguments the first author identified arguments in the text
for each review and assigned each argument a label (e.g. ‘bearable side effect’ etc) that
best described it. Each label therefore denotes a different type of argument. In total 41 ar-
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gument labels were used with a total of 2000 arguments being identified from all reviews.
Following this we took 29 reviews and asked two annotators (neither of whom were au-
thors) to provide an argument graph for each review using the identified arguments. We
note that our paper is not intended as an argument mining framework and hence we are
not focused on evaluating the quality of the argument labels, rather we want to evaluate
our proposal for predicting an appropriate argument graph.

To report inter-annotator agreement we measured the degree of overlap between the
grounded extensions of between the annotator’s graphs. Popular inter-annotators agree-
ment measures, such as Kappa-score, were not used as these measures are suitable for
binary/categorical annotations and not graph structures.

Definition 4.1. For an actual graph graph G and a predicted graph Ĝ, the extension

performance is given by the function GroundedPerformance= |gr(G)\gr(Ĝ)|+|gr(Ĝ)\gr(G)|
|gr(G)|+|gr(Ĝ)|

The function GroundedPerformance is 0 when the both graphs have exactly
the same extension and 1 when they share no arguments in common. The average
GroundedPerformance between the annotators was 0.16. To produce the final dataset
annotators were asked to resolve conflicts in annotation between themselves.

We used this annotated data 1 to evaluate our approach in a two part experiment.. In
the first part we trained a machine learning model to predict ratings for reviews using the
full dataset and thus illustrate that it is possible to train such models to predict ratings for
reviews that do not have any. In the second step we identified a probability distribution
over the constellation of possible graphs for each of the 29 dual annotated reviews and
sample from the distributions in order to predict a graph for each review. We measured
the performance of our approach by comparing our predicted graphs to the graphs ac-
quired through the annotators. Hence we required independent annotators for the argu-
ment graphs given a set arguments but not for the identification of those arguments.

4.1. Predicting Ratings for Reviews

We trained a 2-layer feed-forward multi-layer neural network to predict ratings for each
review. We modelled each review as a binary vector of arguments. Our architecture con-
sisted of 250 neurons in the hidden layers and a single neuron in the output layer. We
chose a softmax activation function for the hidden layer and a linear activation function
for the output layer. The model was trained using standard backpropogation with a mean-
square-error loss function. All of our code was implemented using the Keras Python
library. We used a training: validation split of 80:20 for our dataset.

After 150 iterations of training we achieved a mean absolute percentage error
(MAPE) of 30.86 %. MAPE is a standard loss measurement when training regression
models; it is defined as 100%

n ∑n
t−1

∣
∣∣Xt−Yt

Xt

∣
∣∣ where Xt is the ground truth, Yt the predicted

value and n the number of datapoints. Our reported MAPE suggests the model can gen-
erally predict near to the correct rating thus suggesting that their is a correlation between
the polarity of arguments and the ratings. The hardest ratings to predict were the ratings
between 4 and 6. This we believe is partly due to the quality of the original reviews; a
number of times it was noted that the arguments in a review did not always match the
rating provided.

1https://github.com/robienoor/constellationsDataReviews
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Figure 3. Performance results where each tick on the x-axis represents one of the 29 annotated graphs. The
upper graph shows the aggregate distance between actual graph G and predicted graph Ĝ. The bottom graph
shows how far G was from Ĝ in terms of probabilities .

4.2. Predicting Graphs for Reviews

In this section we discuss the process of predicting argument graphs for reviews. We
used the 29 argument graphs acquired from the annotators. For each review we identified
a probability distribution using our approach and then sampled from this distribution in
order to assign a graph to the review. For sampling we took the graph with the highest
probability. In the case that we returned multiple graphs we simply randomly sample
from the returned set of graphs.

In order to measure the performance of our model we used two measurements in
addition to GroundedPerfomance. For the first additional measure, we took the differ-
ence between the aggregate score of the predicted graphs and the actual graph. As per
Definition 2.6 the aggregate scores for graphs in a graph space differ in units of ΔAtt.
Graphs that share the same aggregate score are thus viewed as effectively belonging to
the same equivalence class. This is captured by the following function that measures the
number of equivalence classes by which the actual and predicted graph differ by.

Definition 4.2. Given a graph space S and set Aggs = {Agg(G)|G ∈ S} and a ground
truth graph G and predicted graph Ĝ s.t. G, Ĝ ∈ S we define an aggregate distance

function AggDist(G, Ĝ) = |Agg(G)−Agg(Ĝ)|
ΔAtt .

Example 4.1. Consider the example in Table 1 where ΔAtt = 0.75 and assume G = G1
and Ĝ = G10. AggDist(G, Ĝ) = 2.25/0.75 = 3.

For the second additional measure we took the difference between the probability of
the predicted graph and the actual graph. The results for the aggregate measurement and
the probability measurement are depicted in Figure 3.

We found that the average GroundedPerformance was 0.30. In the cases where we
identified an incorrect grounded extension we were either adding an additional argument
or removing one and in other words we were not far off from the actual extension. In
terms of aggregate distance we were never far off in terms of equivalence class as can be
see in Figure 3 and likewise for the probability. Figure 4 depicts a review, in which three
argument types where identified, and the attacks where assigned using our probabilistic
model.
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Figure 4. A shortened review for the acne drug Epiduo with arguments annotated. Three arguments were
identified. The graph sampled from the corresponding graph space is depicted above with Arg3 attacking Arg1

We have demonstrated in this section the end-to-end process of using our framework
for predicting argument graphs for reviews. We started by demonstrating that ratings
could be reasonably predicted for reviews by using off the shelf machine learning algo-
rithms. We then used our framework to identify probability distributions for each review
before finally sampling from this distribution to predict the correct graph for the review.

5. Related Works

In another proposal for generating probability distributions over constellations of argu-
ments graph [1] it is assumed that an agent(s) specifies a belief in the acceptability status
of arguments. Using this data the paper proposes methods for aggregating, combining
and summarising these beliefs. Whilst related to this paper, we have a different starting
point which is that we do not have access to such beliefs directly rather we have access
to ratings which we process to produce a distribution over a set of argument graphs.

There have been a few proposals for argument graphs learning algorithms when
in/out/un labellings are provided by agents. In [3] a learning algorithm is proposed which
takes as input a probability distribution over a set of in/un/out labellings. The algorithm
is an on-the-fly algorithm to aggregate these labellings into a weighted argumentation
graph. In our case we deal with a setting in which we do not have access to such labellings
and furthermore we produce a distribution over a constellation of argument graphs. Like-
wise [4] makes a similar starting assumption in that the algorithm begins which a set of
labellings for each argument. A Bayesian approach is proposed in order to learn from
these labellings a posterior distribution for a set of arguments being in an extension. Both
of these papers differ from our approach in that we do not assume we have such labelled
data rather. Another proposal in [2] provides a method for extracting bipolar argument
frameworks from a set of movie reviews. Each review contains a textual review and a
binary rating indicating whether the reviewer thought the movie was good or bad. The
proposed algorithm produces a quantitative bipolar argument per review which differs
from our probabilistic output.

Various proposals for capturing and aggregating views taken from the social web
have also been made [6][5]. These proposals use judgement aggregation and voting
mechanisms to produce the aggregation which differs from our approach which produces
probabilistic interpretation of views.
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In summary our proposal differs primarily from the existing literature in that it is
driven by our interpretation of ratings. The notion of rating is not dealt with explicitly in
the literature and certainly not in a probabilistic context.

6. Discussion

In this paper we have proposed a methodology for identifying a probability distribution
for a review. In the identification step this is done by exploiting the relationship between
the rating and the accepted arguments in that review. We considered a situation in which
we deal with bipartite argument graphs but this could be generalised to handle multi-
partite graphs. We further provided a refinement step for utilising information extracted
from a set of reviews so as to enrich the identified probability distribution. We illustrated
our approach using an annotated dataset and highlighted how machine learning models
can be employed to provide ratings for reviews without ratings.

In future work we wish to ensure that our proposal is scalable given that the con-
stellations approach can be computationally challenging [11]. We intend to do this by
developing an understanding of the underlying combinatorics as well as the potential
of approximation techniques. We also wish to experiment with other implementations
of the grading function to see if we can improve the distribution. Likewise we wish to
explore the use of additional acceptability semantics in order to enrich our function for
partitioning the graph space based on polarity.
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