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Abstract

Lagrangian mean curvature flow is a promising tool in the study of special Lagrangians.

Though the flow has been of interest now for several decades, singularities of the flow

are still not well understood, and extensions and generalisations of the flow are still

being uncovered and explored. The work of this thesis investigates two distinct topics,

both of which shed light on the structure and behaviour of Lagrangian mean curvature

flow.

We first demonstrate the existence of a boundary condition for Lagrangian mean

curvature flow in Calabi-Yau manifolds which preserves the Lagrangian condition. The

boundary condition is a generalisation of the constant Lagrangian angle difference be-

tween intersecting special Lagrangian submanifolds. This work applies and extends the

original work of Smoczyk [60] which proves that the class of closed Lagrangian sub-

manifolds in Calabi-Yau manifolds is preserved.

We also investigate singularities of equivariant and almost-calibrated Lagrangian

mean curvature flow – flows in Cn with an O(n)-symmetry and a pinching condition on

the Lagrangian angle. Given a singularity, we prove that any Type I blowup is a unique

pair of planes P1 ∪P2, any Type II blowup is the Lawlor neck ΣLaw with asymptotes

P1 ∪P2, and any ‘intermediate’ blowup is P1 ∪P2. We also prove conditions for long-

time existence and singularity formation of the flow.

Finally, we investigate the relationship between these topics. We prove that any

almost-calibrated equivariant Lagrangian mean curvature flow with boundary on the

Lawlor neck converges in infinite time to a special Lagrangian disc, and that the same

is true for any rescaled Lagrangian mean curvature flow with boundary on the Clifford

torus (assuming extra conditions on the Lagrangian angle).





Impact Statement

Geometric flows are an indispensable tool in solving problems, in science and math-

ematics alike. On the scientific end, the physically-inspired nature of geometric flows

means they are the most natural way to describe many physical phenomena; for example

the motion of interfaces by surface tension is described by a modified mean curvature

flow. Geometric flows have also been used to solve conjectures of theoretical physics,

for example the Riemannian Penrose conjecture, solved by H. Bray using a specially

constructed flow of metrics. Further afield, the mean curvature flow has been employed

in computer science as a novel tool for image processing.

In pure mathematics, the most famous application of geometric flows is the use of

the Ricci flow in R. Hamilton and G. Perelman’s work in proving the Poincaré conjec-

ture. However, there are many more examples of geometric flows with applications in

pure mathematics, including the Yamabe flow, the Yang-Mills flow, the Willmore flow

and the mean curvature flow.

This thesis explores singularities and generalisations of Lagrangian mean curva-

ture flow, a geometric flow of Lagrangian submanifolds. Though the work of this thesis

focuses on one particular flow, the techniques and themes of the thesis are of wider inter-

est. Extending the definition of geometric flows to include a suitable boundary condition

is a physically natural problem, and in this thesis I demonstrate how this is achieved in

our special case. Additionally, to apply geometric flows to physical and computational

problems, an understanding of singularities is important, as numerical methods often

break down at singular points. The study of singularities of Lagrangian mean curvature

flow in the latter half of this thesis will make easier such applications. Finally, my re-

sults contribute to the general understanding of geometric flows, and as can be seen from
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the impressive list of problems solved using flow techniques, the development of their

theory is of great value to mathematicians, physicists and computer scientists alike.

I consider the exposition of mathematics to be of similar importance to its creation.

I have therefore taken a great effort to make the work accessible to those with a general

geometric background, and an interest in the subject and its themes. As a result, I expect

it will be of use to anyone who wishes to learn about the subject of Lagrangian mean

curvature flow, or apply the results of the thesis in their own work.
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Chapter 1

Introduction

The search for a ‘canonical representative’ is a common refrain of geometry. Hodge

theory is built on the observation that every de Rham cohomology class of a closed Rie-

mannian manifold has a unique harmonic representative. The Calabi conjecture implies

the existence of a unique Ricci-flat Kähler metric on any compact Kähler manifold with

vanishing first Chern class. The Poincaré conjecture states that any simply-connected

closed 3-fold is represented homeomorphically by the sphere.

Though these problems concern different objects in distinct fields of geometry, they

are all connected by a common proof strategy: the use of flows. The Hodge theorem may

be resolved by noting that closed forms remain closed under the heat flow, and converge

in infinite time to the harmonic representative. The Ricci flow preserves the Kähler

condition, and in certain cases can be shown to converge to Kähler metrics with constant

Ricci curvature – Kähler-Einstein metrics. And most famously, the Poincaré conjecture

was proven correct by Richard Hamilton and Grigori Perelman using the Ricci flow with

surgeries – to date the only Millennium prize problem to have been resolved.

The use of flows to solve geometric problems is a powerful and modern strategy,

and the driving motivation behind this work is to apply this philosophy and emulate

the above successes in the case of a relatively new and surprising geometric flow –

Lagrangian mean curvature flow.
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1.1 Historical Context

Geometric Flows and Singularities

Geometric flows describe the gradient descent of a manifold with respect to a given

functional. Since the important development of regularity theory for nonlinear parabolic

PDE by N. Krylov and M. Safanov [38], they have become a popular and powerful

alternative to the more traditional technique of direct minimisation of a functional when

solving minimisation problems. However, the history of geometric flows predates these

developments. The first use of a geometric flow was by J. Eells and J. Sampson in

1964 [19], where the harmonic map heat flow was used to find harmonic maps into

Riemannian manifolds of non-positive curvature.

The use of flows offers several advantages. In analogy with the heat equation on

functions, the smoothing effect of a gradient flow can provide control over the sub-

manifold’s curvature quantities, and lead to long-time existence and convergence of the

flow. Whereas direct minimisation requires the development of a compactness theorem

to provide a subsequential limit of the minimising subsequence (at which point regu-

larity must often be proven separately), a geometric flow directly provides a homotopy

from the initial condition to the final state, and the smoothing effect of the flow provides

regularity. Even if one applies a surgery procedure to continue the flow past singulari-

ties, the topological changes can be tracked, and so the resulting manifold can be related

to the initial condition. The use of flows also opens up the toolbox of techniques from

parabolic PDE, such as the maximum principle, which is an invaluable tool for bounding

and constraining solutions.

One of the first geometric flows to be studied in detail was the mean curvature

flow, which moves a submanifold of a Riemannian manifold in the direction of the mean

curvature vector (see Section 2.2). Originally proposed as a model for moving grain

boundaries in annealing metals by W. Mullins [49], the mean curvature flow is the gra-

dient descent for one of the most basic and well-studied functionals in mathematics: the

volume functional of submanifolds in Riemannian manifolds.

Geometric flows are not without their problems. The nonlinearities of geometric

flows often lead to singularity formation during the flow. In fact for compact manifolds,
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the best case scenario is often that the entire manifold collapses simultaneously to a

point at the final time. This is true for the most basic example of Ricci flow and mean

curvature flow: a shrinking sphere of constant curvature. An analysis of the possible

singularities of a flow is a vital cornerstone of the theory, as it often makes possible a

smooth continuation of the flow by topological ‘surgeries’, as in the work of R. Hamilton

and G. Perelman on Ricci flow with surgeries [27, 53–55] employed in the proof of the

Poincaré conjecture.

In the case of mean curvature flow, there is a large class of singularities that are

more easily studied. By proving an elegant monotonicity formula, G. Huisken was able

to demonstrate that so called Type I singularities are modelled on self-similarly shrink-

ing solutions of the flow (see Section 2.2.2). Type I singularities are not rare, in fact

it is expected that generic embedded mean curvature flows can only form singularities

modelled on spheres and cylinders, both of which are Type I singularities. Aside from

computational evidence, progress on this problem includes the work of T. Colding and

W. Minicozzi [13] which proves that cylinders, spheres and planes are the only stable

self-shrinkers, and more recent work of O. Chodosh, K. Choi, C. Mantoulidis and F.

Schulze [12] which considers generic initial data. This extremely limited set of singu-

larities makes possible the kind of analysis performed by G. Huisken and C. Sinestrari

in [33], where the mean curvature flow with surgeries is applied to classify 2-convex

immersed submanifolds of Euclidean space.

For mean curvature flow in general, other types of singularities may occur, known

as Type II singularities, which are not modelled on self-shrinkers. These singularities

are much more difficult to study, since it is not simply the local behaviour of the flow

that is causing the singularity to occur. For example, an immersed figure eight curve in

R2 forms a singularity modelled on the translating solution known as the ‘grim reaper’

(see [5] and Figure 2.1), and there even exist embedded spheres that form Type II ‘degen-

erate neck-pinch’ singularities modelled on the translating ‘bowl soliton’ [6]. Perhaps

counter-intuitively, Type II singularities of the flow can even be modelled on minimal

submanifolds, which are themselves static under mean curvature flow. This was exem-

plified in the hypersurface case by J. Velazquez [71], and it has recently been shown
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by M. Stolarski [66] that there exist flows with singularities modelled on his example

whose mean curvature remains bounded as the singularity forms.

Lagrangian Mean Curvature Flow

An exciting new side of mean curvature flow was uncovered by K. Smoczyk [60] when

he proved that the mean curvature flow preserves Lagrangian submanifolds of Calabi-

Yau manifolds, a phenomenon now known as Lagrangian mean curvature flow. La-

grangian submanifolds of Kähler manifolds are those for which the symplectic form

vanishes (see Section 2.3 and Section 2.4 for introductions to Kähler and Lagrangian

geometry). The preservation of the Lagrangian condition is unexpected, since mean

curvature flow is a concept of Riemannian submanifold geometry, rather than one of

symplectic or Kähler geometry! Since mean curvature flow is the gradient descent of

volume, an immediate and natural conjecture is that the Lagrangian mean curvature flow

enjoys long-time existence and convergence to a minimal Lagrangian representative – a

special Lagrangian.

Special Lagrangians are indeed special. As well as being minimal they are cal-

ibrated submanifolds of Calabi-Yau manifolds and so are volume-minimising in their

homology class. Understanding special Lagrangians is therefore an important problem

from both Riemannian and symplectic viewpoints, and the technique of mean curvature

flow could simplify what is otherwise a difficult nonlinear PDE problem.

However, the above conjecture is quickly seen to be overambitious. Just as in mean

curvature flow in general, the Lagrangian mean curvature flow forms singularities. In

fact, a result of A. Neves [51] shows that any Lagrangian may be deformed within its

Hamiltonian isotopy class to one that encounters such a singularity during the flow. Even

more disappointingly, given a homology class of Lagrangian submanifolds, there may

not be a minimal representative to find! An example found by J. Wolfson [77] demon-

strates the existence of 2-dimensional Lagrangians which minimise volume amongst

other Lagrangians in their homology class, but which are not branched immersions.

Surfaces in 4-manifolds minimising volume in their homology class must be branched

immersions, so it follows that there cannot be a special Lagrangian in this class.

The method of geometric flows has seen success before, in very similar contexts.
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For example, Ricci flow preserves the class of Kähler metrics. The resulting Kähler-

Ricci flow has for a while been used in the study of Kähler geometry, for example by H-

D. Cao [10] to demonstrate the existence of Kähler-Einstein metrics on manifolds with

negative first Chern class. S. Donaldson has also used the Yang-Mills flow to demonstrate

the existence of Hermitian Yang-Mills connections on certain holomorphic vector bun-

dles [14], a result now known as the Donaldson-Uhlenbeck-Yau theorem. In this latter

case, the long-time existence and convergence of the flow is equivalent to an algebraic

‘stability’ condition on the holomorphic vector bundle.

The success of the flow approach in finding Hermitian Yang-Mills connections

is particularly promising for Lagrangian mean curvature flow. The complex geome-

try and symplectic geometry of Calabi-Yau manifolds are related by a series of con-

jectural equivalences known as Mirror Symmetry. Under this framework, Lagrangians

correspond to holomorphic vector bundles, and special Lagrangians to those bundles

carrying a Hermitian Yang-Mills connection. These equivalences inspired R. Thomas

and S-T. Yau [69] to conjecture that there is a ‘stability condition’ for Lagrangian sub-

manifolds, that implies long-time existence of the flow and convergence to a special

Lagrangian, just as there is on the other side of the mirror for Yang-Mills flow. This

conjecture, now known as the Thomas-Yau conjecture, has recently been refined further

by D. Joyce [36], who has rephrased the stability condition in terms of Fukaya categories

of Lagrangian submanifolds. The Thomas-Yau conjecture has been proven for special

cases in [36, 43, 69], and these works provide more detail on the precise nature of the

stability condition for Lagrangian mean curvature flow.

Stability aside, there are more fundamental reasons for a Lagrangian submanifold

not to flow to a special Lagrangian representative. Considering a Lagrangian submani-

fold of a Calabi-Yau manifold L⊂Y , the normal bundle is related to the tangent bundle

via the almost-complex structure J. Using this correspondence, the mean curvature may

be represented as a 1-form, H, which is the derivative of a multi-valued function θ -

the Lagrangian angle. The 1-form H is identically zero for special Lagrangians, since

they are minimal - in particular θ is a single-valued function, a constant. It follows that

if a Lagrangian flows to a special Lagrangian under mean curvature flow, then the La-
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grangian angle must be single-valued at all times, and so the Maslov class [H] of L must

be trivial. In this case we say the Lagrangian is zero Maslov.

In fact, in order to properly define the stability condition suggested by Thomas and

Yau, we need the stronger condition of almost-calibrated, which demands not just that

H is exact, but that the Lagrangian angle θ has variation less than π . Therefore, the

study of almost-calibrated Lagrangian submanifolds and their singularities is of vital

importance in resolving the Thomas-Yau conjecture.

Singularities of almost-calibrated Lagrangian mean curvature flow are quite unlike

those of mean curvature flow in general. Type I singularities are no longer the norm, in

fact M-T. Wang shows in [72] that they cannot occur! However, there is still structure

to be found. In [50], A. Neves gives an example of a Type II singularity modelled on an

important special Lagrangian submanifold, the Lawlor neck (see Example 3.3.1), and it

has been conjectured by D. Joyce [36] that singularities modelled on Lawlor necks are

generic for Lagrangian mean curvature flow. Proving this result would go a long way

towards making surgery feasible for Lagrangian mean curvature flow.

1.2 Summary of Results
This thesis builds on the groundbreaking work of mathematicians such as K. Smoczyk,

A. Neves, R. Thomas, S-T. Yau and D. Joyce, by investigating the characteristics of

Lagrangian mean curvature flow. We are motivated by the Thomas-Yau conjecture to

understand singularities of the flow, and so this is our main focus. The other question

that we explore is that of how one may generalise the flow, in order to provide a wider

class of Lagrangian flows for use in symplectic geometry, and to build understanding of

the mechanisms by which the flow preserves the Lagrangian condition. We now give a

summary of the results of the thesis.

Lagrangian Mean Curvature Flow with Boundary

Given that the Lagrangian mean curvature flow is of intrinsic interest, a natural question

is ‘How may Lagrangian mean curvature flow be generalised?’ A historically important

generalisation, which has been considered for many other geometric flows and PDE

more generally, is to find a suitable boundary condition for the flow. Chapter 4 provides
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an exposition of joint work with C. Evans and B. Lambert [20], in which we consider this

question, and succeed in finding a boundary condition for mean curvature flow which

preserves the Lagrangian condition.

Aside from flows with boundary being a geometrically natural problem to consider,

it has been suggested by D. Joyce that to resolve the Thomas-Yau conjecture, one should

work in an isomorphism class of a conjectural enlarged version of the derived Fukaya

category DbF (M) rather than the Hamiltonian isotopy class of L. In particular, the

standard derived Fukaya category (as developed by Fukaya–Oh–Ohta–Ono and P. Sei-

del [59]) should be expanded to include immersed and singular Lagrangians. In order to

work within this category, it is necessary to work with a larger class of Lagrangian mean

curvature flows than have been previously considered. A full generalisation would in-

clude flows of Lagrangian networks (see [47] for the equiangular 1-dimensional version

of this phenomenon), but Lagrangian mean curvature flow with boundary is a first step

towards such a generalisation.

Boundary conditions for codimension 1 mean curvature flow have been considered

in a variety of contexts, for example by K. Ecker [15], B. Priwitzer [57] and B. Thorpe

[70] in the Dirichlet case, by J. Buckland [9], N. Edelen [17] [18], G. Huisken [31], B.

Lambert [39] [40], J. Lira and G. Wanderley [42], A. Stahl [64] [65] and V. Wheeler

[74] [75] in the Neumann case, and by G. Wheeler and V. Wheeler [73] in a mixed

Dirichlet–Neumann case. Generalisations of Lagrangian mean curvature flow have also

been considered. For example, generalisations which relax the condition of Calabi-Yau

on the ambient manifold have been considered by K. Smoczyk [63], T. Behrndt [7] and

J. Sun and L. Yang [68], and J. Lotay and T. Pacini [44] have considered flows which

relax the Lagrangian condition. However, no prior work considers boundary conditions

for mean curvature flow which preserve the Lagrangian condition.

Boundary conditions which preserve the class of Lagrangian submanifolds are ex-

ceptional; standard Dirichlet and Neumann conditions do not have this property. One

might be tempted to consider instead boundary conditions on a potential function (see

Example 2.4.1), but these are not natural on a geometric level. The first main result of

this thesis provides the first example of a suitable geometric boundary condition that
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preserves the Lagrangian condition.

We now give some intuition as to how one may define the condition. Consider a

Lagrangian submanifold of a Calabi-Yau manifold, L ⊂ Y . Even if the Lagrangian is

not zero Maslov, it can be shown that there exists a Lagrangian angle function θ : L→

R/2πZ with the property that the mean curvature 1-form is given by H = dθ . The angle

θ is therefore constant for special Lagrangians, and if two special Lagrangians intersect,

their Lagrangian angles must differ by a constant along the intersection. Inspired by this,

we impose this condition for Lagrangian submanifolds. Fixing a constant Lagrangian

angle difference α for a flowing Lagrangian Lt (with Lagrangian angle θ ) with boundary

on a Lagrangian submanifold Σt (with Lagrangian angle θ̃ ), we have a geometrically

natural mixed Dirichlet–Neumann boundary problem:



( d
dt F(x, t)

)⊥
= ~H(x, t) for all (x, t) ∈ Ln× [0,T ),

F(x,0) = F0(x) for all x ∈ Ln,

∂Lt ⊂ Σt for all t ∈ [0,T ),

ei(θ̃−θ)(x, t) = ieiα for all (x, t) ∈ ∂Ln× [0,T ).

(1.1)

In order for the Lagrangian condition to be preserved, it is in fact necessary for the

boundary Lagrangian submanifold Σt to be moving by mean curvature flow. In this case

are we able to show that enough of the symmetry of the second fundamental form of the

boundary is inherited by the flow, which is required for the flow to remain Lagrangian.

The fact that this works is quite remarkable!

It should be noted, however, that the Lagrangian angle is usually only defined for

Lagrangian submanifolds. During the proof that Lt remains Lagrangian under this flow,

the concept of Lagrangian angle must therefore be generalised, else (1.1) does not make

sense.

The main results of Chapter 4 are Theorem 4.0.1 and Theorem 4.0.2, the former

of which states that mean curvature flow with boundary problem (1.1) preserves the La-

grangian condition, and the latter that any initially smooth configuration of Lagrangian

submanifolds is the initial condition for a unique Lagrangian mean curvature flow with
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boundary. For brevity, we do not include the full proof of the short-time existence result

here, but it is included in the work [20].

Singularities of Equivariant Lagrangian Mean Curvature Flow

In Chapter 5, we investigate in detail the singularities of Lagrangian mean curvature

flow. We focus our attention to almost-calibrated flows, as this condition is required

in the statement of the Thomas-Yau conjecture. The results of Chapter 5 appear in the

preprint [78].

The study of singularities of mean curvature flow in general is now very well es-

tablished. The work of G. Huisken [32], S. Altschuler [1, 2] and R. Hamilton [26] were

among the first to consider blowups of mean curvature flows, and a recent detailed ex-

amination of a Type II singularity was carried out by J. Velazquez [71] and N. Sesum

and S-H. Guo [25]. The Lagrangian case has previously been studied by J. Chen and

J. Li [11], M-T. Wang [72], and more recently by A. Neves [50–52], and X. Han and J.

Li [28]. Analysis of specific cases has also been undertaken: for the Clifford torus by

C. Evans, J. Lotay and F. Schulze [21], and for the Whitney sphere by A. Savas-Halilaj

and K. Smoczyk [58]. A recent paper by W-B. Su [67] studies the long-time behaviour

of equivariant Lagrangian mean curvature flow.

Despite this prior work, the singularities of Lagrangian mean curvature flow are in

general not well understood. However, a few powerful structure theorems have been

proven. For instance, in [50], A. Neves proves that any singularity of almost-calibrated

Lagrangian mean curvature flow is modelled on a union of special Lagrangian cones;

this is achieved by utilising the elementary evolution equation for the Lagrangian angle,

and the monotonicity formula of G. Huisken. Though this result is general and useful,

it does not give information on the finer structure of the singularity, and nor does it give

information on when singularities occur, or their stability.

Though these latter questions are difficult to answer in general, in this work we

give an almost comprehensive answer in the specific case of equivariant Lagrangian

mean curvature flow in Cn, where a submanifold of Cn is equivariant if it has an O(n)

symmetry (see Section 5.1). Such submanifolds are automatically Lagrangian, and in the

almost-calibrated case must be embedded and non-compact. We may study these flows
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by studying the profile curve obtained by a quotient of the group action, which makes

the analysis much simpler than that of higher codimension flow. Therefore, they provide

a good first case to more easily analyse and understand the phenomena of singularity

formation in Lagrangian mean curvature flow.

Our main results are as follows. Theorem 5.0.1 and Theorem 5.0.4 state that all

singularities in the equivariant, almost-calibrated case must be modelled on not just a

union of special Lagrangian cones but a single such cone, on a Type I level, and on

a Type II level they are modelled on a Lawlor neck. This confirms the prediction of

D. Joyce that the Lawlor neck ‘neck-pinch’ singularity is a generic one, in the case of

equivariant Lagrangians, and demonstrates a surprising rigidity in the singularity forma-

tion of Lagrangian mean curvature flow. The proofs revolve around singularity analysis

and geometric arguments, using the almost-calibrated condition and embeddedness to

argue that certain configurations of the profile curve are not possible. To show that the

Type II blowup is a Lawlor neck, it is sufficient to demonstrate that the blowup retains

the equivariant symmetry of the flow. This could be done by proving a curvature bound,

but we instead argue by contradiction and use our knowledge of the possible singularity

models to rule out the possibility that the centre of rotation becomes unbounded under

the sequence of rescalings.

We additionally investigate long-time behaviour of the flow, and give open condi-

tions for when singularities must form and for when they cannot. Theorem 5.0.2 states

that if the initial Lagrangian lies in a sufficiently tight cone, then no singularity can form,

and if it spans a sufficiently large cone, then it must. These theorems are inspired by A.

Neves’ examples of singularity formation [50], but are much more general, painting

an almost complete picture of the long-time behaviour of equivariant Lagrangian mean

curvature flow.

Finally, Theorem 5.0.5 investigates the link between the Type I and Type II models,

and states that the asymptotes of any intermediate blowup match those of the Type I and

Type II blowups. This shows there is no distinct intermediate behaviour, and gives hope

to the idea that we may be able to derive information about the Type II blowup from

just knowledge of the Type I blowup. Given A. Neves’ structure theorem and the results
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by Y. Imagi, D. Joyce and J. dos Santos [35] on uniqueness of special Lagrangians with

given asymptotes this would be a very powerful technique.

Equivariant Lagrangian Mean Curvature Flow with Boundary

In Chapter 6, we use similar techniques to investigate the long-time behaviour of La-

grangian mean curvature flow with boundary, in the equivariant case. This chapter ap-

peared as part of joint work with B. Lambert and C. Evans [20].

The aim is to demonstrate the behaviour of the Lagrangian mean curvature flow

with boundary through the use of two model boundary conditions, the Lawlor neck (see

Example 3.3.1) and the Clifford torus (see Example 3.3.2). The former is a static special

Lagrangian, and the latter is a self-similarly shrinking solution to mean curvature flow,

so examining these two cases gives a good overview of how one might expect the flow

to behave in general.

We first prove that the Lagrangian mean curvature flow with boundary has ex-

tremely good behaviour in the case of the Lawlor neck boundary condition. Specifically,

in Theorem 6.0.1, we prove that any almost-calibrated Lagrangian mean curvature flow

with boundary on the Lawlor neck converges in infinite time to a special Lagrangian

disc. It should be noted that without the almost-calibrated condition one cannot expect

long-time existence, by the examples of A. Neves [51].

The case of the Clifford torus boundary condition is more interesting. As a self-

shrinker, it collapses to the origin in finite time. So, the question is no longer one of

long-time existence, but of the nature of the forced singularity. We prove in Theorem

6.0.2 that if one demands a perpendicular angle for the boundary condition of the profile

curves, and a suitable ‘almost-calibrated-like’ condition on the Lagrangian angle, then

the Type I blowup of the flow is a special Lagrangian disc. However, the more general

behaviour in this case is very different; numerical evidence shows that any other angle

will lead to convergence of the blowups to an eternal, rotating solution to mean curvature

flow. Since Type I blowups of mean curvature flow are usually self-shrinkers, this result

demonstrates the difference in the theory of singularities between the standard flow and

the flow with boundary.





Chapter 2

Preliminaries

In this chapter we cover well known definitions and theorems that will be required for

the rest of the thesis, for reference or as an introduction to those who may not work in

these fields.

Section 2.1 provides background theorems and notation relating to submanifold ge-

ometry in Riemannian manifolds. Section 2.2 reviews mean curvature flow, including

the important monotonicity formula of G. Huisken (Theorem 2.2.7) and regularity the-

orem of B. White (Theorem 2.2.10) – both of which will be of key importance for our

work on singularities in Chapters 5 and 6. The analysis of singularities of mean curva-

ture flow is given particular attention. Section 2.3 reviews complex, symplectic, Kähler

and Calabi-Yau geometry. Section 2.4 reviews the theory of Lagrangian submanifolds in

Kähler and Calabi-Yau manifolds, in particular the important notions of the Lagrangian

angle and mean curvature 1-form.

Sections 2.1 and 2.3 in particular are elementary in nature, and should only be

referred to if and when necessary.

2.1 Riemannian Geometry
Let F : Nn ↪→ (Mm,g) be a smooth Riemannian immersion of a smooth manifold into a

Riemannian manifold with metric g. The image F(N) is then an immersed submanifold.

We will often abuse notation by denoting F(N) by N, and the tangent and normal bundles

T N,T N⊥ will be considered sub-bundles of T M. Pulling back the Riemannian metric

The results of Chapter 2 do not comprise original work, and are individually attributed as appropriate.
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g gives a metric on the manifold N, denoted by g := F∗(g). Both g(X ,Y ) and g(X ,Y )

will be denoted by 〈X ,Y 〉, and since they agree on vectors in T N there should be no

confusion.

When working in a coordinate system with local basis {∂1, . . . ,∂m} of T M, the

metric is written as gαβ dxα ⊗dxβ , and the components of the inverse are denoted gαβ .

The metric and its inverse will be used to ‘raise and lower’ indices according to the

Einstein notation convention.

The metric induces an inner product on higher order tensors, for example if T,S are

(1,1) tensors, then

〈T,S〉 = gαγgβδ T α

β
Sγ

δ
.

The metric also induces a natural norm on all tensor bundles:

|T | =
√
〈T,T 〉,

and a natural volume form, volM :=
√

detg ·dx1∧ . . .∧dxm.

The ambient Riemannian manifold M has a canonical Levi-Civita connection ∇.

The components of the Levi-Civita connection in coordinates are known as the Christof-

fel symbols Γ
α

βγ , and are given by

(∇∂α
∂β ) = Γ

γ

αβ
∂γ .

The connection allows us to define the covariant derivative of tensors. For example,

the covariant derivative of a (1,1)-tensor T is denoted ∇T , and has components ∇αT γ

β
.

This is not to be confused with the derivatives of the components of T, which will be

denoted ∂αT γ

β
. The covariant derivative satisfies the tensor product rule, therefore

∇X(T (Y )) = (∇X T )(Y )+T (∇XY )

=⇒ ∇αT γ

β
= ∂α(T

γ

β
)+T δ

β
Γ

γ

αδ
−T γ

δ
Γ

δ

αβ .

The Levi-Civita connection ∇ has the important property that ∇g = 0, and in general, if

a tensor T satisfies ∇T = 0 we say that it is parallel.
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Higher covariant derivatives of tensors are defined inductively, for example

(∇
2
T )(X ,Y,Z) = ∇X(∇T )(Y,Z) = (∇X ∇Y T )(Z)− (∇

∇XY T )(Z),

with components ∇α∇β T δ
γ .

The connection ∇ induces a connection on the tangent bundle of the submanifold,

T N, which we denote ∇. This is in fact the Levi-Civita connection for (N,g), so that

∇g = 0. It is given by

∇XY =
(

∇XY
)>

.

On the normal bundle T N⊥, there is also an induced normal connection ∇̃, which is

defined on normal vectors ν ∈ T N⊥ by

∇̃X ν =
(

∇X ν

)⊥
.

These two connections may be combined to form canonical connections on all mixed

tensor bundles – for convenience all of these connections will be simply denoted by ∇.

We will usually use Roman indices i, j when working with a basis of the tangent

space T N of the submanifold, and Greek indices α,β for a basis of the normal space

T N⊥ or of the ambient manifold T M, depending on the context. Usually, coordinates

of the submanifold will use variables xi, and coordinates of the ambient manifold will

use variables yα . We will use interchangeably the notations ∂i, ei, ∂

∂xi and ∂F
∂xi for the

coordinate tangent vectors of N.

2.1.1 The Laplacian Operator

We will now define the various notions of Laplacian for the submanifold N. The most

important for us is the tensor Laplacian operator ∆, which is defined as a trace of the

second covariant derivative,

∆T := gpq
∇p∇qT.
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There are however two alternative natural definitions of the Laplacian. For the first, we

define the gradient of a function f and the divergence of a vector field X on N by

∇ f : = gi j
∂i f ∂ j,

divNX : =
1√

detg
∂i

(√
detgX i

)
.

To avoid confusion, the notation ∇ f will always denote the gradient (as opposed to the

covariant derivative of tensors) when f is a function. These are the natural extensions

of the Euclidean concepts of gradient and divergence, and satisfy many of the same

properties. We note some of them in the following two lemmas.

Lemma 2.1.1. Let N be a Riemannian manifold, and f , X be a function and vector field

on N respectively. Then:

divN( f X) = 〈∇ f ,X〉 + f divN(X),

d f (X) = 〈∇ f ,X〉,

divN(X)volN = LX(volN).

Theorem 2.1.2. Let N be a Riemannian manifold with boundary ∂N, and f , X be a

function and vector field on N respectively. Then, if µ is an outward pointing normal

vector,

∫
N

divN( f )volM =
∫

∂N
〈∇,µ〉vol∂N .

We may then define the Laplace-Beltrami operator in the same way as the Lapla-

cian is defined in Euclidean space:

∆
LB f := divN(∇ f ).

For the other important Laplacian, we define the Hodge star operator on basic k-forms
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to satisfy the following property:

ω ∧∗η = 〈ω,η〉volM,

and then extend linearly to define a map on k-forms,

∗ : Λ
k(T ∗N)→ Λ

n−k(T ∗N).

This operator is introduced so as to define the codifferential on forms d∗ : Ω j→Ω j−1,

d∗ω := (−1) j ∗−1 d ∗ω,

which is the L2-adjoint operator of d. With this, the Hodge Laplacian may be defined

on forms by

∆
H = dd∗+d∗d.

Importantly, these three Laplacians coincide on functions:

Theorem 2.1.3. Let N be a Riemannian manifold, and f a function on M. Then,

∆ f = ∆
LB f = −∆

H f .

2.1.2 Curvature

We now introduce the various notions of curvature associated with a Riemannian mani-

fold. The most important intrinsic curvature quantity for the submanifold N is the Rie-

mann curvature tensor, which we define as

〈R(X ,Y )Z,W 〉 := 〈∇2
X ,Y Z−∇

2
Y,X Z,W 〉

with components Ri jkl . One may also consider the Riemann curvature operator, which

measures the obstruction to commutativity of the second covariant derivative of general
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tensors. For example, for a (1,1)-tensor T it is defined as

R(X ,Y )T := ∇
2
X ,Y T −∇

2
Y,X T

=⇒ (∇2
X ,Y T )(W ) = (∇2

Y,X T )(W )+R(X ,Y )(T (W ))−T (R(X ,Y )W )

=⇒ ∇i∇ jT l
k = ∇ j∇iT l

k +R l
i jn T n

k −R n
i jk T l

n . (2.1)

Also important are the Ricci curvature, and scalar curvature, defined as traces of the

Riemann curvature tensor:

Ri j := R k
ki j ,

scal := R k
k = R kl

lk .

The Riemannian curvature tensor and Ricci tensor have the following symmetries:

Ri jkl = −R jikl = −Ri jlk = Rkli j, (2.2)

Ri j = R ji, (2.3)

Ri jkl +R jkil +Rki jl = 0, (1st Bianchi Identity) (2.4)

∇aRi jkl +∇iR jakl +∇ jRaikl = 0. (2nd Bianchi Identity) (2.5)

These curvature quantities are all defined also for the ambient manifold, and will be

denoted with a bar, for example Ri j for the Ricci tensor.

Equally important for us are the following extrinsic curvature tensors, associated

with the immersion F . The vector-valued second fundamental form of the immersion

is the normal part of the ambient covariant derivative,

A(X ,Y ) := ∇
⊥
X Y, A ∈ Γ(T ∗N⊗T ∗N⊗F∗T M).

It is symmetric in its two tangent vector arguments. In local coordinates, where {να} is

an orthonormal basis of the normal space, and ei := ∂F
∂xi , we have:

A = Aα
i j dxi⊗dx j⊗να , Aα

i j = 〈∇eie j,να〉, Ai j =
(

∇eie j

)⊥
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The covariant derivative of the second fundamental form is defined using ∇ and ∇̃ by

(∇X A)(Y,Z) = ∇̃X A(Y,Z)−A(∇XY,Z)−A(Y,∇X Z). (2.6)

Finally, the mean curvature vector is defined as the trace of the second fundamental

form:

~H = Hα
να = gi jAα

i jνα .

In the case of a codimension 1 submanifold, one may make a choice of unit normal

vector ν and define the mean curvature scalar as H := 〈~H,ν〉. Throughout the thesis we

work with higher codimension submanifolds, so this will not be possible.

The link between the intrinsic curvature and the extrinsic curvature of a Riemannian

immersion is encapsulated by the Gauss and Codazzi equations. Explicitly, they express

the tangential and normal parts of the ambient Riemannian curvature tensor restricted to

T N in terms of the second fundamental form. They will be useful again and again to

convert curvature terms, and will take on an especially beautiful form in the context of

Lagrangian geometry.

Theorem 2.1.4. Let F : (N,g) → (M,g) be a Riemannian immersion. Then for

X ,Y,Z,W ∈ T N:

•
〈
R(X ,Y )Z,W

〉
= 〈R(X ,Y )Z,W 〉+ 〈A(X ,Z),A(Y,W )〉−〈A(X ,W ),A(Y,Z)〉,

• (R(X ,Y )Z)⊥ = (∇X A)(Y,Z)− (∇Y A)(X ,Z).

These two equations are known as the Gauss and Codazzi equations respectively.

2.2 Mean Curvature Flow
Consider a compactly supported normal variation ν of an immersed submanifold given

by an immersion F : Nn→ Mm, and let Φt , t ∈ (−ε,ε) be a family of compactly sup-
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ported diffeomorphisms of M such that:


dΦ

dt

∣∣
N = ν ∈ T N⊥,

Φ0 = Id.

For small t, this gives a family Ft : Nn → Mm of immersed submanifolds defined by

Ft := Φt ◦F . By first calculating the change in the induced metric and volume form of

N, we can calculate the first variation of volume. Using ∇g = 0, note first the identities

0 = ∇αgβγ = ∂αgβγ −Γ
δ

αβ gδγ −Γ
δ

αγgβδ ,(
∇ ∂Ft

∂xi
ν

)γ

=

(
∂Ft

∂xi∂ t

)γ

=
∂ 2Fγ

t

∂xi∂ t
+

∂Fα
t

∂xi
∂Fβ

t

∂ t
Γ

γ

αβ
.

The evolution equations then follow from a calculation. Denoting ei := ∂Ft
∂xi , and remem-

bering that ∇g = 0:

d
dt

gi j =
d
dt

(
gβγ

∂Fβ

t

∂xi
∂Fγ

t

∂x j

)
(2.7)

= ∂αgβγ

∂Fα
t

∂ t
∂Fβ

t

∂xi
∂Fγ

t

∂x j + gβγ

∂ 2Fβ

t

∂ t∂xi
∂Fγ

t

∂x j + gβγ

∂Fβ

t

∂xi
∂ 2Fγ

t

∂ t∂x j

= ∇αgβγ +

〈
∂ 2Ft

∂ t∂xi ,
∂Ft

∂x j

〉
+

〈
∂ 2Ft

∂ t∂x j ,
∂Ft

∂xi

〉
=
〈

∇eiν , e j

〉
+
〈

∇e jν , ei

〉
= −2〈ν ,Ai j〉,

d
dt

volg =
d
dt

√
detg dx1∧ . . .∧dxn

=
1

2
√

detg
d
dt

detg dx1∧ . . .∧dxn

= − 1√
detg

detg gi j 〈
ν ,Ai j

〉
dx1∧ . . .∧dxn

= −〈ν , ~H〉 volg.

d
dt

Vol(N) =
d
dt

∫
N

volg

= −
∫

N
〈ν , ~H〉volg.
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Therefore, a submanifold is a critical point for the volume functional if and only if

~H = 0. In this case it is known as a minimal submanifold. Note that this terminology is

slightly misleading as a critical point for the volume functional need not be a minimiser;

an example is the equator of the standard 2-sphere, S2.

The above calculation also shows that the gradient descent for the volume func-

tional is given by the normal variation ν = ~H. Motivated by this, we say that a family

Ft : Nn ↪→Mm of Riemannian immersions is a mean curvature flow (henceforth often

abbreviated to MCF) if
dF
dt

= ~H, (2.8)

which is a (degenerate) quasilinear parabolic partial differential equation. We have al-

ready seen the derivation of the two most important evolution equations for this flow:

Lemma 2.2.1. Let Ft : Nn→Mm be a mean curvature flow. Then the following evolution

equations hold for the induced metric g = g(t) on N:

• d
dt gi j = −2〈~H,Ai j〉,

• d
dt volg = −|~H|2volg.

The evolution of other quantities, such as the mean curvature and second fundamen-

tal form, are significantly more complicated in general. For a full treatment see [62].

2.2.1 Short and Long-Time Existence

As with any parabolic problem, the first natural question to ask is that of well-posedness:

Given a smooth initial condition, does the flow exist for a short time, and is the flow

unique? If the initial immersion is closed and smooth, then the curvature must be

bounded. It is then possible to write the evolving surface locally as a graph over the

initial immersion, and apply quasilinear PDE theory to obtain the following short-time

existence result:

Theorem 2.2.2 (Short-time Existence for MCF). Let F : Nn→Mm be an immersion of a

smooth closed manifold into a Riemannian manifold (Mm,g). Then there exists a unique

smooth solution Ft to (2.8) with F0 = F on a time interval [0,T ) for some T > 0.
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It is possible for a singular initial condition to evolve smoothly in several different

ways – see [4] for an example in R3. For non-compact submanifolds the question is also

more complicated. Unless assumptions are made on the asymptotic behaviour, a smooth

initial condition may result in several different evolutions under mean curvature flow.

The next natural question to ask is whether any mean curvature flow may be ex-

tended to exist for all time. Since mean curvature flow decreases the volume of sub-

manifolds, it may be hoped that the mean curvature flow converges in infinite time to a

volume-minimising representative in the homology class. In general this is not true, as

can be seen by the most simple example of mean curvature flow.

Example 2.2.3 (The Sphere in Rn+1). Given the constant curvature sphere Sn
r ⊂ Rn+1

with radius r, the mean curvature vector points towards the origin and has size n
r . Since

the symmetry of the sphere must be preserved under mean curvature flow, the flow start-

ing with the sphere of radius R is characterised by the evolution of the radius:

dr
dt

= −n
r

=⇒ r =
√

R−2nt.

The sphere therefore shrinks under mean curvature flow and becomes extinct at the

origin at time t = R
2n .

In fact, long-time existence for mean curvature flow is atypical, in contrast to sim-

pler parabolic equations of functions such as the heat equation in Rn. For example,

closed submanifolds of Euclidean space always become singular in a finite time. In the

hypersurface case, this can be proven with the maximum principle, using the sphere

example as a barrier surrounding the flow. In higher codimension, it is still possible

to use maximum principle techniques, see for example the work of F. Schulze and J.

Lotay [45, Theorem A.1]. On the other hand, non-compact submanifolds of Euclidean

space can exist for all time; one of the most famous examples is the translating grim

reaper:

Example 2.2.4 (The Grim Reaper in R2). If a mean curvature flow in R2 is graphical

over the x-axis, then the flow may be reparametrised as γ(x, t) = (x,u(x, t)). It then
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follows from the mean curvature flow equation (2.8) that

du
dt

=
u′′

1+(u′)2 .

If we assume that our solution translates upwards with a speed of 1, then we find that

the function u satisfies

u(x) = − ln(cos(x+a))+b+ t,

for constants a and b. This is an eternally translating solution to mean curvature flow

(see bottom-left panel of Figure 2.2).

The question of long-time existence is less clear when the ambient space is not flat,

the most basic case of which is the classical curve shortening flow on surfaces. The

following theorem is from a paper of Grayson [24, Theorem 0.1].

Theorem 2.2.5 (Grayson’s Theorem). Let M2 be a smooth Riemannian surface which

is convex at infinity. Let

F : S1 ↪→M2

be a smooth embedded curve. Then the unique solution Ft to mean curvature flow (2.8)

with F0 = F either shrinks to a round point in finite time, or smoothly converges to a

geodesic as t→ ∞.

The long-time existence case of Grayson’s theorem is possible. For example, it can

be shown by the Gauss-Bonnet theorem that any curve γ ⊂ S2 ⊂R3 that divides the area

of the sphere equally continues to do so under the mean curvature flow, and converges

to an equator in infinite time. However, the question of which initial conditions result in

singularities and which result in long-time existence is very difficult in general.

2.2.2 Type I Blowups

Our primary interest is in studying finite-time singularities of MCF. The following the-

orem, proven in the hypersurface case by Huisken [30, Theorem 8.1], helps us to under-

stand what happens at these singular times.
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Theorem 2.2.6. Let Ft : Nn ↪→Mm be a mean curvature flow of a closed submanifold,

with corresponding second fundamental form At . If T denotes the maximal time of

existence, then

limsup
t→T

max
p∈Nt
|At(p)|2→ ∞.

In the case where M = Rm, this rate has a lower bound. Explicitly, there exists c > 0

such that

max
p∈Nt
|At(p)|2 ≥ c

T − t
.

The important step in the proof is to show that a bound on |A| implies a bound on all

higher derivatives, implying that the only way a singularity can form is if the curvature

becomes unbounded.

We say a mean curvature flow Ft : Nn→Mm has a Type I singularity at time T if,

for some C ≥ 1,

max
p∈M
|At(p)|2 ≤ C

T − t
. (2.9)

By Theorem 2.2.6, this is the ‘best possible’ blowup rate in Euclidean space. On the

other hand, if for any C there exists t such that

max
p∈M
|At(p)|2 >

C
T − t

,

we say the flow has a Type II singularity.

The quintessential Type I singularity is the shrinking sphere, Sn ⊂ Rn+1. As we

saw in Example 2.2.3, if we translate in time so that the singularity happens at time 0,

the radius of the sphere at time t is given by

r =
√
−2nt.

The norm of the second fundamental form of the sphere takes the constant value n
r2 ,

therefore

max
p∈Nt
|At(p)|2 =

1
−2t

.

This shows that the shrinking sphere has a Type I singularity at time 0.
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To analyse Type I singularities in general, we use a subsequential blowup, which

we illustrate in the Euclidean case of M = Rm. Take a flow Ft : N → Rm with a Type I

singularity at the space-time point (x0,T ), and consider the parabolic rescaling around

this point,

Fλ
s := λ

(
FT+λ−2s− x0

)
, (2.10)

Nλ
s := Fλ

s (N),

which can be shown to be a mean curvature flow with time coordinate s and a Type I

singularity at the space-time point (O,0). Taking a sequence λi → ∞, we can use the

bound (2.9) on |A| (which implies a bound on higher derivatives of A) to show that the

flows Fλi
s converge subsequentially and locally smoothly to an ancient mean curvature

flow F∞
s , which we call a Type I blowup of Ft (see Figure 2.1). The Type I blowup is

analogous to the construction of tangent cones in geometric measure theory, and so is

often referred to as the tangent flow.

If instead we have a Type II singularity, we can still perform this sequence of

parabolic rescalings, and we will still have convergence to a limiting flow (a Type I

blowup) in a weak sense. The limiting object is no longer smooth but a flow of rectifi-

able varifolds, known as a Brakke flow [8]. We will study an example in Chapter 5 – see

Figure 5.2.

There are two very important tools that will help us understand the nature of the

Type I blowup, namely the monotonicity formula of Huisken [32, Theorem 3.1] and

the regularity theorem of White [76, Theorem 3.1]. In what follows, we will need the

following modified backwards heat kernel, defined on the ambient Rm:

Φ(x0,t0)(x, t) := (4π(t0− t))−
n
2 e
− |x−x0|

2

4(t0−t) .

Theorem 2.2.7 (Huisken’s Monotonicity Formula). Let Ft : Nn ↪→ Rm be a smooth so-

lution of MCF, where Nt := Ft(N) has bounded area ratios. Then:

d
dt

∫
Nt

Φ(x0,t0) dH n = −
∫

Nt

∣∣∣∣~H +
(x− x0)

⊥

2(t0− t)

∣∣∣∣2 Φ(x0,t0) dH n.
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Figure 2.1: A depiction of a Type I blowup of a mean curvature flow of a curve in the plane,
which forms a singularity at the space-time point (O,0).
On the left, we have the space-time track of the flow with certain time slices marked,
and the same time slices drawn in the plane.
On the right, we have the Type I blowup of this singularity, i.e. a limit of parabolic
rescalings centred at the space-time point (O,0). Note that close to the singularity,
the flow resembles the singularity model more and more closely.
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More generally, if φt : M→R is any smooth function with polynomial growth at infinity,

then

d
dt

∫
Nt

φt Φ(x0,t0) dH n =
∫

Nt

(
dφt

dt
−∆φt−φt

∣∣∣∣~H +
(x− x0)

⊥

2(t0− t)

∣∣∣∣2
)

Φ(x0,t0) dH n.

Huisken’s monotonicity formula inspires the following quantities, known respec-

tively as the Gaussian density ratio and weighted Gaussian density ratio, for a space-

time point X = (x0, t0) and arbitrary function φ : M→ R:

Θ(F,X ,r) :=
∫

Nt0−r2

ΦX dH n, Θ(F,X ,r,φ) :=
∫

Nt0−r2

φ ΦX dH n.

The monotonicity formula implies that this quantity is increasing in r. Importantly, the

Huisken integral (and therefore the Gaussian density ratio) satisfies the following scaling

invariance, which will make it useful in analysing blowups of singularities.

Lemma 2.2.8. If Fλ
s (N) = Nλ

s is a parabolic rescaling of the flow Ft(N) = Nt around

the point (x0, t0) with s = λ 2(t− t0), then for X = (x, t), and any function f on N,

∫
Nt

f ΦX dH n =
∫

Nλ
s

f Φ(λ (x−x0),λ 2(t−t0)) dH n.

Additionally, the above implies the following symmetry of the Gaussian density ratio

(i.e. in the case where X = (x, t) = (x0, t0)):

Θ(Fλ ,O,r) = Θ(F,X ,λ−1r),

where O = (O,0) is the space-time origin.
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Proof.

∫
Nt

f ΦX dH n =
∫

Nt

f (4π(t− t))−
n
2 · e−

|x−x|2
2(t−t) dH n(x)

=
∫

λ (Nt−x0)
f λ
−n(4π(t− t))−

n
2 · e−

|x−(λ−1x+x0)|
2

2(t−t) dH n(x)

=
∫

λ (N
λ−2s+t0

−x0)
f (4π

(
λ

2(t− t0)− s
)
)−

n
2 · e

− |λ (x−x0)−x|2

2(λ2(t−t0)−s) dH n(x)

=
∫

Nλ
s

f Φ(λ (x−x0),λ 2(t−t0)) dH n.

The possibility of using a function φ in Theorem 2.2.7 allows for localisation of

the monotonicity formula with a suitable cutoff function. In particular, following K.

Ecker [16, Remark 4.8] we define

φ(x0,t0),ρ(x, t) =
(

1− |x− x0|2 +2n(t− t0)
ρ2

)3

+

,

which is a subsolution to the heat equation along a mean curvature flow, is compactly

supported, and has value 1 at the point (x0, t0). Therefore, the weighted Gaussian density

ratio

Θ
ρ(F,X ,r) := Θ(F,X ,r,φX ,ρ) =

∫
Nt0−r2

Φ
ρ

X dH m =
∫

Nt0−r2

ΦX φX ,ρdH m (2.11)

is monotonic by Theorem 2.2.7, with the same limit as the unweighted Gaussian density

ratio as r→ 0.

The scaling invariance together with the monotonicity formula gives the most im-

portant fact about Type I blowups – they are modelled on self-similarly shrinking so-

lutions to mean curvature flow. This is to be expected, since self-similarly shrinking

solutions are invariant under parabolic rescaling, in much the same way that cones are

invariant under homothetic scaling.

Proposition 2.2.9. Consider a mean curvature flow Ft : Nn→Rm, which forms a singu-

larity at the space-time point X = (x0,T ). Consider the sequence of parabolic rescalings
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Fλi
s with factor λi, as defined in (2.10).

Then the flows subsequentially converge smoothly to a self-similarly shrinking flow,

i.e. a flow Fs satisfying

Ns =
√
−sN−1. (2.12)

Proof. Firstly, we show that (2.12) is equivalent to the following alternative characteri-

sation of self-shrinkers:

~H− F⊥s
2s

= 0. (2.13)

In the case that (2.13) holds, the vectors H and F
2s differ only by a tangential vector.

We may therefore reparametrise mean curvature flow tangentially so that dF
ds = F

2s , and

integrating this equation gives (2.12). For the other direction, defining Fs(N) = Ns gives

a tangential reparametrisation of the flow, and so

~H =

(
dF
ds

)⊥
=

(
−1

2
√
−s

N−1

)⊥
=

(√
−sN−1

2s

)⊥
=

F⊥s
2s

.

We now use Theorem 2.2.7 to prove the result. Passing to a subsequence if necessary,

the flows Fλi
s locally smoothly converge to a smooth Type I blowup F∞

s . Since Θ(F,X ,r)

is increasing in r and bounded below, there must exist a limiting density as r→ 0, which

we denote Θ(F,X). Then, by Lemma 2.2.8 and Theorem 2.2.7,

Θ(F,X ,λ−1
i r)−Θ(F,X) = Θ(Fλi,0,r)−Θ(Fλi,0)

=
∫ 0

−r2

∫
Mλ

s

∣∣∣∣~H +
x⊥

2s

∣∣∣∣ΦX dH n.

Limiting i→ ∞, since λi→ ∞ the left hand side of this equation converges to 0, and so

the result is proven.

The other theorem of central importance to the study of singularities of mean cur-

vature flow is White’s regularity theorem, proven by B. White [76, Theorem 3.1]. In

geometric measure theory, Allard’s regularity theorem states that controlling the density

ratios close to 1 for a stationary integral varifold implies a bound on the second funda-

mental form. White’s theorem essentially states that the Gaussian density ratio performs

the same role in mean curvature flow.
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Theorem 2.2.10 (White’s Regularity Theorem). Denote by Pr(x, t) the parabolic cylin-

der Br(x)× (t− r2, t].

Then there exist ε > 0, C > 0 depending on n such that if Ft : Mm→Rn is a smooth

mean curvature flow, and if

∀X ∈ Pr(X0), Θ(M,X ,r) ≤ 1+ ε,

then

sup
X∈P(X0,

r
2 )

|A(X)| ≤ C
r
.

This theorem also holds if we replace the Gaussian density ratio Θ with the lo-

calised Gaussian density ratio Θρ defined in (2.11), as long as r < ρ . It also follows

from standard theory of elliptic PDE that under the same conditions, for similar univer-

sal constants Ck,

sup
X∈P(X0,

r
4 )

|∇kA| ≤ Ck

rm+1 .

This regularity theorem is useful for demonstrating that singularities do not occur, since

the curvature must blow up at a singularity.

2.2.3 Type II Blowups

The Type I blowup procedure results only in a weak flow for Type II singularities. The

trick to resolving these singularities smoothly is to take a sequence of space-time points

(xi, ti) maximising the norm of the second fundamental form Ati , and then to perform

a parabolic rescaling with factor |Ati(pi)| around that point to normalise its value to 1.

There is a complication, however. In order to have a smooth convergence to the blowup

in space-time, we need control on |A| for a period of time around ti. To achieve this, we

choose a sequence of times tk ∈ [0,T − 1
k ] and points pk ∈M such that:

|Atk(pk)|2
(
T − 1

k − tk
)
= max

t∈[0,T−1
k ], p∈M

(
|At(p)|2

(
T − 1

k − t
))

. (2.14)

Note that the second fundamental form at time tk is maximised at the point pk. It then

follows from the Type II condition (see for example [46, Chapter 4]) that one can choose
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a subsequence such that:

• |Atk(pk)| → ∞ monotonically,

• |Atk(pk)|2
(
T − 1

k − tk
)
→ ∞,

• pk→ p for some p ∈M,

where the last point is immediate if our manifold is compact, and otherwise must be

proven.

Now we rescale the flow Ft , restricted to the time interval [0,T − 1
k ], parabolically

with factor Ak := |Atk(pk)| around (xk, tk) := (Ftk(pk), tk):

F(xk,tk)
τ (p) := Ak

(
Ftk+A−2

k τ
(p)− xk

)
.

This flow is defined for τ ∈ Ik :=
[
−A2

ktk,A2
k

(
T − 1

k − tk
)]

. Since we choose the blowup

factors to normalise |A|, these rescalings will converge locally smoothly to a limiting

eternal flow: a Type II blowup. The value of |A| for this blowup takes a maximum of

1 over time and space, and by the definition of the rescalings, this maximum value is

achieved at the space-time point (O,0).

Type II blowups of Type II singularities do not result in self-similar shrinkers, since

these necessarily satisfy the Type I curvature bound, and are not eternal solutions. In-

stead, there are several different possibilities, for example translating solutions and static

(minimal) solutions. Note that a Type II blowup is not necessarily unique, and may de-

pend on the sequence of points chosen.

An example of a flow which forms a Type II singularity is the figure-eight curve,

shown in Figure 2.2. Here, the Type II blowup is an eternal solution known as the Grim

Reaper. We will also see many examples in Chapter 5, see Figure 5.1.

2.3 Complex, Symplectic and Kähler Geometry
Our main setting for this work is Kähler manifolds; manifolds for which there are com-

patible Riemannian, symplectic and complex structures. In this section, we go over the

definitions of these important objects.
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Figure 2.2: An illustration of a mean curvature flow with initial condition (cos(s), 1
2 sin(2s)),

which forms a Type II singularity at the origin.
The Type I blowup at this singularity does not converge to a smooth flow but instead
a Brakke flow of varifolds – in this case a double density plane, depicted on the
lower right.
There are two possible Type II blowups, as there are two points of highest curvature
at any given time (one such sequence of points is highlighted in black). Both Type
II blowups are given by the eternal translating solution to mean curvature flow x =
ln(cos(y))+ t (known as the Grim Reaper) up to a reflection, one of which is shown
on the lower left.
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2.3.1 Complex and Hermitian Manifolds

An n-dimensional complex manifold is a smooth manifold with an atlas of charts to Cn

(with complex coordinates zk = xk + iyk) such that the transition maps are holomorphic.

The tangent bundle then has a natural automorphism J ∈ Γ(T M⊗T ∗M), given by

J
(

∂

∂xk

)
=

∂

∂yk , J
(

∂

∂yk

)
= − ∂

∂xk , J2 =−Id.

This map is known as the almost-complex structure, since the existence of such a J on

a real manifold is weaker than the existence of compatible holomorphic charts.

If we consider the complexified tangent bundle, T M⊗C, then the map J has 2n

eigenvectors:

J
(

∂

∂ zk

)
= i

∂

∂ zk , where
∂

∂ zk =
1
2

(
∂

∂xk − i
∂

∂yk

)
,

J
(

∂

∂ zk

)
= −i

∂

∂ zk , where
∂

∂ zk =
1
2

(
∂

∂xk + i
∂

∂yk

)
. (2.15)

The span of the n eigenvectors of the form ∂

∂ zk (the i-eigenspace of J) is known as the

holomorphic tangent bundle, and denoted T 1,0M, and the span of the others (the −i-

eigenspace of J) is the antiholomorphic tangent bundle, T 0,1M. Therefore, we have

the splitting

T M⊗C = T 1,0M⊕T 0,1M.

There is a similar splitting for forms:

T ∗M⊗C = Ω
1,0⊕Ω

0,1,

where Ω1,0 is spanned by the forms dzi = dxi + idyi, and Ω0,1 by the forms dzi = dxi−

idyi (respectively the i and −i eigenspaces of J∗). Higher tensor bundles are defined

using the wedge product, for example

Ω
p,q = Ω

1,0∧ . . .∧Ω
1,0∧Ω

0,1∧ . . .∧Ω
0,1,

where there are p and q factors of the respective 1-form bundles. Of particular impor-
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tance is the canonical bundle, Ωn,0M, which is 1-dimensional.

The equivalent of a Riemannian metric on a complex manifold is a Hermitian

metric – a positive-definite Hermitian form h ∈ Γ(T 1,0M⊗T 0,1M) such that, for X ,Y ∈

T 1,0M,

h(X ,Y ∗) = h(Y,X∗)∗

h(X ,X∗) ≥ 0,

where X∗ denotes the complex conjugate, to avoid confusion. A complex manifold with

a choice of Hermitian metric is known as a Hermitian manifold. The Hermitian metric

splits into real and imaginary parts:

h = g− iω, g =
1
2

(
h+h

∗)
, ω =

i
2

(
h−h

∗)
, (2.16)

and since both g and ω are closed under complex conjugation, they descend to tensors

on the real bundle T M. g is a Riemannian metric for the manifold M, considered as

a real smooth manifold. ω on the other hand is a differential 2-form, known as the

Hermitian form. The defining structures g, ω , J of a Hermitian manifold are important

and intimately connected, and we record here some important relationships between

them.

Proposition 2.3.1. Let (M2n,g,ω,J) be a Hermitian manifold with Hermitian metric h.

Then:

• h,g, and ω are preserved by J, in the sense that for X ,Y ∈ T M⊗C,

h(X ,Y ) = h(JX ,JY ), g(X ,Y ) = g(JX ,JY ), and ω(X ,Y ) = ω(JX ,JY ).

• g and ω are related by ω(X ,Y ) = g(JX ,Y ), or g(X ,Y ) = ω(X ,JY ).

It should be noted that a choice of any of g,h and ω for a complex manifold M

defines the others, as long as it is preserved by the almost-complex structure J. In

particular, a choice of J-preserving Riemannian metric g for a complex manifold M
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fixes an associated Hermitian metric h and a Hermitian form ω .

2.3.2 Symplectic Manifolds

A symplectic manifold is a 2n-dimensional smooth manifold M2n with a choice of

closed, non-degenerate 2-form ω ∈Ω2(M), known as the symplectic form. Symplectic

manifolds are a generalisation of phase spaces in Hamiltonian mechanics in the follow-

ing sense. Given a Hamiltonian function H : M→ R, there is a unique corresponding

vector field XH , a ‘symplectic gradient’, such that

ω(XH , ·) = dH(·),

this vector field integrates to the ‘flow’ of the Hamiltonian system. Since the form ω is

alternating, the Hamiltonian is constant along the flow:

dh(XH) = ω(XH ,XH) = 0.

The condition that ω is closed corresponds to the requirement that ω does not change

under the flow, since by Cartan’s formula,

LXH ω = ιXH dω +d(ιXH ω) = d(dH) = 0.

2.3.3 Kähler and Calabi-Yau Manifolds

For most of this thesis, we will be working with Kähler manifolds – Hermitian man-

ifolds (M2n,g,ω,J) such that the Hermitian form ω is closed. A Kähler manifold is

therefore simultaneously a Riemannian manifold with metric g, a symplectic manifold

with symplectic form ω , and a complex manifold, with compatible structures. The con-

dition on ω has implications for the other structures:

Proposition 2.3.2. Let (M2n,g,ω,J) be a Hermitian manifold, and let ∇ be the Levi-

Civita connection on M corresponding to g. Then the following are equivalent, and in

the case any of them hold we say that M is Kähler:

• ∇ω = 0,
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• ∇J = 0,

• dω = 0.

It will often be useful to take Riemannian normal coordinates at a point

p in a Kähler manifold, that are also holomorphic coordinates of the form

{ ∂

∂x1 ,
∂

∂y1 , . . . ,
∂

∂xn ,
∂

∂yn}. We call these Kähler normal coordinates. This is in fact

possible precisely when the metric is Kähler!

Calabi-Yau manifolds are Kähler manifolds with additional structure. Though there

are many definitions, we will say that a smooth manifold Y is a Calabi-Yau manifold

if it is a Kähler manifold (Y ,g,ω,J) with vanishing Ricci tensor, and trivial canonical

bundle Ω(n,0)TY . It follows that there exists an everywhere non-zero holomorphic n-

form Ω ∈Ω(n,0)TY , and we may choose it so that

ω
n

n!
= (−1)

n(n−1)
2

(
i
2

)n

Ω∧Ω
∗, (2.17)

where Ω∗ denotes the complex conjugate of Ω. The reason for the chosen factor will

become clear in the following example.

Example 2.3.3 (The Kähler Manifold Cn). Working in standard complex coordinates

{ ∂

∂ z1 ,
∂

∂ zi , . . . ,
∂

∂ zn ,
∂

∂ zn}, the Hermitian metric on Cn is given by

h =
n

∑
i=1

dzi⊗dzi,

and the almost-complex structure is as always given by (2.15). It follows by (2.16, taking

real and imaginary parts, that

ω =
i
2

n

∑
k=1

dzk∧dzk,

g =
1
2

n

∑
k=1

(
dzk⊗dzk +dzk⊗dzk

)
.
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Substituting real and imaginary coordinates gives the real expressions for these objects:

ω =
n

∑
i=1

dxi∧dyi,

g =
n

∑
i=1

(
dxi⊗dxi +dyi⊗dyi) .

Since Cn is flat, and has trivial canonical bundle, we consider it to be a Calabi-Yau

manifold (some authors exclude non-compact examples). The most simple choice of

holomorphic volume form is

Ω = dz1∧ . . .∧dzn,

and this choice satisfies (2.17), justifying the choice of coefficient there.

2.4 Lagrangian Submanifolds
A particularly important class of submanifolds of a symplectic manifold (M2n,ω) are

the Lagrangian submanifolds. These are defined as the n-dimensional submanifolds Ln

on which the symplectic form ω vanishes:

ω := ω|L = 0.

Note that since the symplectic form is non-degenerate, it is not possible for the symplec-

tic form to vanish on a submanifold of higher dimension than n.

Even when the ambient manifold has no additional structure, Lagrangian subman-

ifolds have many interpretations and uses. In the phase space analogy, a Lagrangian

submanifold is the level set of the integrals of motion, by the Arnold-Liouville theorem.

Additionally, the graph of a symplectomorphism between two symplectic manifolds is

a Lagrangian submanifold, with respect to a ‘twisted’ symplectic structure. An un-

derstanding of the Lagrangian submanifolds of a space also provides insight into the

topology of the manifold, through Lagrangian Floer homology (originally developed by

A. Floer [23]).

Example 2.4.1 (Lagrangians in Cn). Consider Cn, with its standard basis
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{ ∂

∂x1 ,
∂

∂y1 , . . . ,
∂

∂xn ,
∂

∂yn}, and symplectic form

ω =
n

∑
k=1

dxk∧dyk.

The most basic Lagrangian submanifold is the span of the real axes, Rn⊂Cn. Which La-

grangians are near to this one? If we consider a function F : Rn→Rn with components

Fi, then we may consider the graph of this function over Rn ⊂ Cn:

N(x1, . . . ,xn) =
(
x1,F1(x1, . . . ,xn), . . . ,xn,Fn(x1, . . . ,xn)

)
.

The tangent vectors to this surface are given by

∂N
∂xi =

(
0,

∂F1

∂xi , . . . ,1,
∂Fi

∂xi , . . . ,0,
∂Fn

∂xi

)
,

and therefore the symplectic form restricted to L has components ∂Fi
∂x j −

∂Fj
∂xi . Viewing

the submanifold as the graph of a 1-form α := Fidxi lends this condition a natural

interpretation: N is Lagrangian precisely when α is a closed 1-form.

There are other Lagrangians in Cn with different global topology; for example we

will later discuss in detail the Clifford torus (Example 3.3.2) and Lawlor neck (Example

3.3.1).

2.4.1 Lagrangians in Kähler Manifolds

Lagrangians in Kähler geometry have especially nice properties. In particular, if Ln ⊂

M2n is a Lagrangian submanifold of a Kähler manifold (M2n,g,ω,J) and X ∈ T L is a

tangent vector, then JX is a normal vector, since for Y ∈ T L,

g(JX ,Y ) = ω(X ,Y ) = 0.

Since g is preserved by J, it follows that in fact J is an isomorphism and an isometry

between the normal and tangent bundles,

J : T L→ T L⊥.
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Figure 2.3: An illustration of a Lagrangian surface Ln, the isomorphism J between the tangent
and normal spaces, and the basis {e1,e2,Je1,Je2} of the ambient Kähler manifold
M2n along the surface.

So, if we take a basis {e1, . . . ,en} for TpL, then {Je1, . . .Jen} is a basis for TpL⊥, and

{e1,Je1, . . .en,Jen} is a basis for TpM (see Figure 2.3). When using this basis, or any

basis of this form (for example induced by the complex coordinate charts of the Kähler

manifold), we use an underline to denote components in the Jei directions. For example,

〈
R(ei,e j)ek,Jel

〉
= Ri jkl ,

gi j = gi j . (2.18)

Additionally, we will use Greek indices α,β ,γ to denote components of an arbitrary

basis of the ambient space, which will range from 1 to 2n, to contrast with Roman indices

i, j,k, which will always range from 1 to n. Underlined Greek indices α will indicate a

J-rotation of this basis. The automorphism J has the useful property of turning ‘mixed

tensors’ on the normal and tangent bundles into tensors defined purely on the tangent

bundle. Of particular importance to us are the second fundamental form, which may

now be considered a (0,3)-tensor, and the mean curvature 1-form. For tangent vectors
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X ,Y,Z ∈ T L, these are defined respectively as

h(X ,Y,Z) :=
〈

∇XY,JZ
〉
= −ω(∇XY,Z), (2.19)

H(X) :=
〈
~H,JX

〉
= −ω(~H,X). (2.20)

In coordinates, if H = Hidxi, then ~H = H iJei. By the usual definition of the second

fundamental form, the components of h and H are related by gi jhi jk = hi
ik = Hk.

The automorphism J may also be used to turn the Ricci curvature tensor of the

ambient Kähler manifold into a 2-form, which we call the Ricci form:

ρ(X ,Y ) := Ric(JX ,Y ).

Proposition 2.4.2. ρ(X ,Y ) = −ρ(Y,X).

Proof. Firstly, as a consequence of ∇J = 0 (Proposition 2.3.2) we have the following

symmetry of the Riemannian curvature tensor:

〈
R(X ,Y )Z,JW

〉
= −

〈
R(X ,Y )JZ,W

〉
=⇒ Rαβγδ = −Rαβγδ , Rαβγδ = Rαβγδ . (2.21)

Using (2.18) and (2.21), along with the usual symmetries of the Riemannian curvature

tensor, it follows that J preserves the Ricci tensor:

Rαβ = gγδ Rγαβδ + gγδ Rγαβδ = gγδ Rγαβδ + gγδ Rγαβδ = Rαβ .

This, along with the usual symmetry of the Ricci tensor, implies the result:

ρ(X ,Y ) = Ric(JX ,Y ) = Ric(Y,JX) = −Ric(JY,X) = −ρ(Y,X).

We may restrict ρ to give a 2-form on T L, which we denote ρ . The three curvature

quantities h,H and ρ have symmetries and relationships that are stronger than in the
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general Riemannian case. Firstly, the second fundamental form in its new form h is

symmetric in all three arguments, and the Gauss and Codazzi equations may be written

as tensor identities on T L.

Proposition 2.4.3. Let Ln ⊂ M2n be a Lagrangian submanifold of a Kähler manifold,

and let h be the (0,3)-version of the second fundamental form. Then:

• hi jk = h jik = hik j,

• Ri jkl = Ri jkl +Aik jl +Ail jk, (Gauss Equation)

• Ri jkl = ∇ih jkl−∇ jhikl, (Codazzi Equation)

where we define the tensor Ai jkl := gnmhi jnhmkl =
〈
A
(
ei,e j

)
,A(ek,el)

〉
.

Proof. For the first equation, note that the symmetry in the first two indices is a standard

fact about the second fundamental form. For the other symmetry, bearing in mind that

∇J = 0 and 〈JX ,JY 〉= 〈X ,Y 〉,

〈
A(ei,e j),Jek

〉
=
〈

∇eie j,Jek

〉
= ei

〈
e j,Jek

〉
−
〈

e j,J∇eiek

〉
= 〈A(ei,ek),Jek〉.

The second equation is simply the Gauss equation from Theorem 2.1.4, using the new

notation. Finally, the last equation follows from the Codazzi equation (Theorem 2.1.4)

and the following calculation:

(∇X h)(Y,Z,W ) = X(h(Y,Z,W ))−h(∇XY,Z,W )−h(Y,∇X Z,W )−h(Y,Z,∇XW )

= X〈A(Y,Z),JW 〉−〈A(∇XY,Z),JW 〉−〈A(Y,∇X Z),JW 〉

−〈A(Y,Z),∇X JW 〉

= 〈(∇X A)(Y,Z),JW 〉,

=⇒ ∇ih jkl = 〈(∇eiA)(e j,ek),Jel〉.

Next, we prove an important and surprising relationship between the mean curva-

ture form and the Ricci curvature.
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Proposition 2.4.4. Let Ln ⊂ M2n be a Lagrangian submanifold of a Kähler manifold,

let H be the mean curvature 1-form, and ρ = ρ|L be the restriction of the Ricci form to

L. Then:

dH = −ρ.

Proof. The result follows by expressing the Ricci form in terms of the second funda-

mental form, using Proposition 2.4.3 as well as (2.21):

R k
ki j = gkmRki jm

= gkm(∇ jhmki−∇mh jki)

= gkm(∇ jhmki−∇ihmk j +Rimk j)

= ∇ jHi−∇iH j−R k
ki j

=⇒ ρi j = R k
ki j +R k

ki j = ∇ jHi−∇iH j = −dHi j.

Note that in the case that the ambient manifold is Ricci-flat, we have ρ = 0, and so

in this case the mean curvature form is closed. In fact, even if the manifold M is only

Einstein (constant Ricci curvature), then for tangent vectors X ,Y ∈ T L we have:

Ric = λg

=⇒ ρ(X ,Y ) = Ric(JX ,Y ) = λg(JX ,Y ) = ω(X ,Y ) = 0 (2.22)

=⇒ dH = 0. (2.23)

2.4.2 Lagrangians in Calabi-Yau Manifolds

We now assume that our ambient manifold is a Calabi-Yau manifold Y , i.e. it is Ricci-

flat with a choice of parallel holomorphic volume form Ω ∈ Ωn,0Y . Since the Ricci

form satisfies ρ = 0, the mean curvature form of any Lagrangian submanifold L⊂ Y is

closed – see (2.22) and (2.23). We may therefore locally find a function θ whose exterior

derivative is the mean curvature form. In fact, the holomorphic volume form gives us a

canonical choice of multivalued function θ on L, such that dθ =H. In Proposition 2.4.5,
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we define this function, and in Proposition 2.4.6 we prove the above key relationship that

it enjoys with the mean curvature.

Proposition 2.4.5. Let Ln ⊂ Y 2n be a Lagrangian submanifold of a Calabi-Yau mani-

fold. Then there exists a smooth function θ : L→ R
2π

such that

Ω|L = eiθ volL.

We call θ the Lagrangian angle at the point p.

Proof. Choose normal coordinates for the Lagrangian { ∂

∂x1 , . . . ,
∂

∂xn}. At a point p ∈ L,

the vectors { ∂

∂xi ,
∂

∂yi} form a basis for TpM, where by an abuse of notation we denote
∂

∂yi := J ∂

∂xi , and the elements of the corresponding dual basis by dxi and dyi. It follows

that at this point, the Kähler form is given by

ω =
n

∑
i=1

dxi∧dyi.

Now define

Ω
′ :=

n∧
k=1

(dxk + idyk) =
n∧

k=1

dzk (2.24)

which is a holomorphic volume form since each of the 1-forms dxk + idyk are linearly

independent and belong to the i-eigenspace of J, Ω1,0Y :

J∗(dxk + idyk)( ∂

∂xk ) = i

J∗(dxk + idyk)(J ∂

∂xk ) = −1

=⇒ J∗(dxk + idyk) = i(dxk + idyk).

Since it is a holomorphic n-form, it must be a multiple of Ω, i.e. λΩ′ = Ω. In fact,

|λ |= 1 , since by (2.17),

Ω
′∧ (Ω′)∗ = (−1)

n(n−1)
2 (−2i)n ω

n

n!
= Ω∧Ω

∗

=⇒ |λ |2 = 1.
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Therefore

Ω = eiθ
Ω
′ (2.25)

for some function θ . Finally, note that Ω′|L =
∧n

i=1 dxi = volL is the volume form for

L, and so it follows that

Ω|L = eiθ volL. (2.26)

Since the tensors Ω and volL are smooth and defined globally on L, it follows that θ may

be uniquely defined everywhere up to multiples of 2π , and is smooth as a multivalued

function.

Proposition 2.4.6. Let Ln ⊂ Y 2n be a Lagrangian submanifold of a Calabi-Yau man-

ifold, let θ be its Lagrangian angle, and let H be its mean curvature 1-form. Then

dθ = H, or equivalently, J∇θ = ~H.

Proof. We work using normal coordinates of the Lagrangian L at p ∈ L, { ∂

∂x1 , . . . ,
∂

∂xn},

and by a slight abuse of notation we denote ∂

∂yi := J ∂

∂xi , the elements of the correspond-

ing dual basis by dxk and dyk, and dzk = dxk + idyk.

Since Ω is parallel, ∇Ω = 0. Therefore, considering the volume form Ω′ as defined

in (2.24), it follows from (2.25) that for any X ∈ T L,

idθ(X)Ω′ + (∇X dz1)∧ . . .∧dzn + . . . + dz1∧ . . .∧ (∇X dzn) = 0. (2.27)

Working with the basis {dz1,dz1, . . . ,dzn,dzn} of TpY ⊗C, the only components of

∇X dzi in dz1∧ . . .∧ (∇X dzi)∧ . . .∧dzn that are not killed by the wedge product are the

dzi and dz j components, for 1≤ j≤ n. By (2.27), the dz j terms must also be zero, since
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none of the other terms in the sum are of this form. Therefore,

idθ(X) +
n

∑
k=1

(∇X dzk)( ∂

∂ zk ) = 0

=⇒ idθ(X) −
n

∑
k=1

dzk(∇X
∂

∂ zk ) = 0

=⇒ idθ(X) −
n

∑
k=1

(dxk + idyk)(1
2∇X

∂

∂xk − i
2∇X

∂

∂yk ) = 0. (2.28)

Since we are working with an orthonormal basis, dxk(Y ) = 〈 ∂

∂xk ,Y 〉. It therefore follows

that

dxk(∇X
∂

∂xk ) = 〈 ∂

∂xk ,∇X
∂

∂xk 〉 = 1
2∇X〈 ∂

∂xk ,
∂

∂xk 〉 = 0,

and similarly for the dyk(∇ ∂

∂yk ) term. Therefore working from (2.28),

idθ(X) =
n

∑
k=1

i
2dxk(∇X

∂

∂yk )− i
2dyk(∇X

∂

∂xk )

=⇒ idθ(X) =
n

∑
k=1

i
2〈

∂

∂xk ,∇X J ∂

∂xk 〉− i
2〈J

∂

∂xk ,∇X
∂

∂xk 〉

=⇒ dθ(X) =
n

∑
k=1
〈 ∂

∂xk ,∇X J ∂

∂xk 〉 = H(X). (2.29)

If we are working in Cn, then there is a simple formula for the Lagrangian angle.

If {X1,X2, . . . ,Xn} ⊂ Cn are linearly independent vectors tangent to L at a point p ∈ L,

then the Lagrangian angle can be calculated (up to a multiple of π) as:

θ(p) = arg(detC(X
j

i )). (2.30)

If we ensure that volL(X1,X2, . . . ,Xn) = 1, i.e. an orientation is chosen, then the La-

grangian angle is determined modulo 2π by this method.

There are several conditions one can impose on the Lagrangian angle which will be

important for Lagrangian mean curvature flow. If the Lagrangian angle is a single-valued

function, then L is known as a zero-Maslov Lagrangian. If additionally cosθ > 0, i.e.

there exists ε such that θ ∈ (−π

2 +ε, π

2 −ε), then we say that the Lagrangian is almost-
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calibrated. Occasionally a more general definition of almost-calibrated is used, where

we demand instead that there exist θ and ε > 0 such that θ ∈ {θ − π

2 + ε,θ + π

2 − ε}.

Note that the almost-calibrated condition implies that the Lagrangian is zero-Maslov, no

matter which definition is used.

2.4.3 Calibrated Geometry and Special Lagrangians

Minimal Lagrangians in Calabi-Yau manifolds are of great importance. One reason

is that any minimal Lagrangian Ln in a Calabi-Yau manifold Y 2n must be volume-

minimising – a fact which is not generally true for minimal submanifolds. Another is

that they are defined by the simple equation θ = c for c ∈ R, which (unlike the standard

minimal submanifold equation) depends only on first order quantities and is a single

equation rather than a system. Both of these facts are special cases of the theory of

calibrated submanifolds, introduced by R. Harvey and H. Lawson [29], which we give

a brief exposition of here.

If Mm is a Riemannian manifold, a closed n-form φ is a calibration if, for any point

x ∈ M and any oriented n-plane V ⊂ TxM, we have φ |V ≤ volV . Then, a submanifold

Nn ⊂Mm is a calibrated submanifold, calibrated by φ if φ |T N = volN .

The importance of calibrated submanifolds is that they are volume-minimising in

their homology class:

Proposition 2.4.7. If Nn is a calibrated submanifold of a compact Riemannian manifold

Mm, calibrated by the n-form φ , then N is volume-minimising in its homology class.

Proof. Consider another submanifold N′ in the same homology class, so that there exists

a region R ⊂ M with ∂R = N′−N. Then by Stokes’ theorem and the definition of a

calibration:

0 =
∫

R
dφ =

∫
N′

φ −
∫

N
φ

=⇒
∫

N
volN ≤

∫
N′

volN′

=⇒ vol(N) ≤ vol(N′).
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For a Calabi-Yau manifold Y 2n, there is a natural calibration.

Proposition 2.4.8. Let Y 2n be a Calabi-Yau manifold, with holomorphic volume form

Ω. Then Re(eiθ Ω) is a calibration, and N is calibrated by Re(eiθ Ω) if and only if N is

a minimal Lagrangian with constant Lagrangian angle θ . In this case, N is known as a

special Lagrangian.

Proof. At any point in Y , we may use Kähler normal coordinates { ∂

∂x1 ,
∂

∂y1 , . . . ,
∂

∂xn ,
∂

∂yn}

so that the holomorphic volume form is given by

Ω =
n∧

k=1

dzk.

Then if {e1,e2, . . . ,en} is an orthonormal basis for an n-plane at x ∈ Y , and we denote

by A the matrix mapping ∂

∂xi to ei, then

|Ω(e1, . . . ,en)|2 = |detCA|2 = |detRA| = |e1∧ Je1∧ . . .∧ en∧ Jen| ≤ 1.

Therefore Re(Y ) is a calibration. If N is a calibrated submanifold with the same or-

thonormal basis at x ∈ N, then

Re(eiθ
Ω)(e1, . . . ,en) = 1

=⇒ |Ω(e1, . . . ,en)| = 1

=⇒ |e1∧ Je1∧ . . .∧ en∧ Jen| = 1,

which can only be true if all these vectors are orthogonal, implying that N is Lagrangian.

Finally, denoting by α its Lagrangian angle,

1 = Re(e−iθ
Ω(e1, . . . ,en))

⇐⇒ 1 = Re(e−iθ eiαvolL(e1, . . . ,en)

⇐⇒ 1 = Re(ei(α−θ))

⇐⇒ α = θ .
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Therefore, N is a minimal Lagrangian with constant Lagrangian angle θ . The above

calculation runs in reverse, which proves the converse statement.

One of the most important questions in Calabi-Yau geometry is: does there exist

a special Lagrangian representative in a given homology class of Lagrangians? Since

the mean curvature 1-form H is closed for a Lagrangian in a Kähler-Einstein manifold

by Proposition 2.4.4, there is a natural associated cohomology class, [H], known as the

Maslov class. Since H = 0 for a special Lagrangian, a necessary condition for L to be

homologous to a special Lagrangian is that this class vanishes. This is equivalent to the

Lagrangian angle being a single valued function: the zero-Maslov condition.



Chapter 3

Lagrangian Mean Curvature Flow

We now introduce the central object of study: Lagrangian mean curvature flow (hence-

forth often abbreviated to LMCF). This is the name given to the phenomenon, first

demonstrated by K. Smoczyk [60], that Lagrangian submanifolds remain Lagrangian

under the mean curvature flow in Kähler-Einstein manifolds (Kähler manifolds such

that ρ = λω). The fact that Lagrangian mean curvature flow works is very surprising,

since mean curvature flow is a concept of Riemannian submanifold geometry, rather

than one of symplectic geometry!

Since Chapter 4 is concerned with introducing Lagrangian mean curvature flow

with boundary, we first take the opportunity to provide a full exposition of Smoczyk’s

original result of preservation of the Lagrangian condition under mean curvature flow

in a Kähler-Einstein manifold in Section 3.1. As well as being expository, the interior

estimates will be used for our proofs in Chapter 4. The key to the preservation of the

condition ω = 0 is the closure of the mean curvature 1-form, as was shown in Proposition

2.4.4. As we will show in Lemma 3.1.1, only deformations corresponding to closed 1-

forms under the identification J : T L→ T L⊥ have a chance of preserving this condition.

The remainder of the work is in calculating the evolution equations for |ω|2.

The rest of the chapter examines properties of the flow. In Section 3.2, we look

at evolution equations of various quantities, most importantly that of the Lagrangian

angle in Lemma 3.2.1. The Lagrangian angle is a tool of enormous importance, due

to its simple evolution equation and the fact that it is a first-order quantity, in contrast

The results of Chapter 3 do not comprise original work. In particular, Section 3.1 is an exposition of
the work of K. Smoczyk [60].
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to the mean curvature form H. Section 3.3 introduces some examples of Lagrangian

mean curvature flow that will be central to our work of Chapters 5 and 6, as singularity

models and boundary conditions for the flow. Finally, Section 3.4 considers singularity

analysis of Lagrangian mean curvature flow. This will provide the context for Chapters

5 and 6, which consider these questions in the special case of equivariant Lagrangian

mean curvature flow. In particular, we review A. Neves’ important work classifying

singularities of zero-Maslov Lagrangian mean curvature flow.

3.1 Preservation of the Lagrangian Condition
The driving question behind Smoczyk’s seminal work [60] is ‘Does there exist a canon-

ical way to deform a Lagrangian submanifold?’ To answer this question, consider a

Lagrangian submanifold L and a normal variation ~N, which can be identified with a one-

form N = Nidxi by N(X) := g(~N,JX). What properties must such a variation have, in

order to preserve the Lagrangian condition ω = 0? In the following Lemma, we see that

N must be a closed form.

Lemma 3.1.1. If ~N is a normal variation of a Lagrangian immersion F : L2 → M2n,

then the derivative of the Kähler form ω := ω|L is given by

dω

dt
= −dN,

where N is the associated 1-form to the normal vector ~N.

Proof. Using ∇ω = 0, an almost identical calculation to (2.7) gives

dωi j

dt
=

d
dt

(
ω

(
∂F
∂xi ,

∂F
∂x j

))
= ω

(
∂ 2F

∂ t∂xi ,
∂F
∂x j

)
+ ω

(
∂F
∂xi ,

∂ 2F
∂ t∂x j

)
.

Remembering that ∂F
∂ t = ~N = NiJ

(
∂

∂xi

)
, it follows using the antisymmetry of ω and the
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relationship ω(X ,Y ) = g(JX ,Y ) that

dωi j

dt
=

∂F
∂xi ω

(
∂F
∂ t

,
∂F
∂x j

)
−ω

(
∂F
∂ t

,
∂ 2F

∂xi∂x j

)
− ∂F

∂x j ω

(
∂F
∂ t

,
∂F
∂xi

)
+ω

(
∂F
∂ t

,
∂ 2F

∂xi∂x j

)
(3.1)

=−∂F
∂xi g

(
Nk ∂F

∂xk ,
∂F
∂x j

)
+

∂F
∂x j g

(
Nk ∂F

∂xk ,
∂F
∂xi

)
= Ni, j−N j,i

= (dN) ji.

We have already seen that the mean curvature one-form is closed for a Lagrangian

submanifold in a Kähler-Einstein manifold, in Proposition 2.4.4 and equation (2.23).

Therefore, taking Lemma 3.1.1 into consideration, one may hope that mean curvature

flow preserves the Lagrangian condition. The above calculation is not enough to show

that this is true, however, as it is only valid when L is a Lagrangian submanifold (else J

is not an isometry between the tangent bundle and the normal bundle), and if ω imme-

diately became non-zero under the flow, the Lagrangian condition would be broken. To

prove that the Lagrangian condition is preserved, we must consider submanifolds nearby

to Lagrangians as well, and calculate the evolution of ω|L for these.

3.1.1 Geometry of Totally Real Submanifolds

The above discussion motivates the following definitions. An n-dimensional submani-

fold Nn of a 2n-dimensional Kähler manifold M2n is totally real if J(TpN)∩TpN = {0}

for all points p ∈ N, i.e. if T N and J(T N) intersect transversally. Taking a local basis

{e1, . . . ,en} of T N, it follows that the function

J̃ : T N→ T N⊥, J̃(X) := J(X)−gi j〈J(X),ei〉e j (3.2)
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is a vector space isomorphism, since if J̃(X) = J̃(Y ), then (3.2) implies that J(X −Y ) ∈

T N, contradicting the totally real assumption. Note the equalities

J̃ek = Jek−ω
l

k el JJ̃ek = −ek−ω
l

k Jel. (3.3)

Unlike J for Lagrangians, J̃ is not an isometry, as 〈X ,Y 〉 and 〈J̃X , J̃Y 〉 are not necessarily

equal. However it is true that

η(X ,Y ) := 〈J̃X , J̃Y 〉, (3.4)

ηi j = gi j +ω
l

i ωl j (3.5)

is a positive-definite, symmetric (0,2)-tensor on T N. We denote the components of the

inverse η i j. In the basis {e1, . . . ,en, J̃e1, . . . , J̃en}, it follows that the matrices g, g−1 take

the form

g =

gi j 0

0 ηi j

 , g−1 =

gi j 0

0 η i j

 .

When compared to Lagrangian submanifolds, what changes in the totally real case?

Firstly, ω = ω|N no longer vanishes, and nor do the derivatives ∇ω , ∇2ω . We may still

define the second fundamental form and mean curvature form as tensors on the tangent

bundle:

h̃(X ,Y,Z) := 〈∇XY, J̃Z〉,

H̃(X) := 〈~H, J̃X〉,

H̃i = gklhkli = hk
ki,

and if the mean curvature vector is expressed in the new basis as ~H = H iJ̃ei, then the

components of the new mean curvature 1-form are given by

H̃i = ηi jH j.

Unlike the Lagrangian case, h̃ is no longer fully symmetric, and the Gauss and Codazzi
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equations take slightly more complicated forms. In the following proposition, we record

the identities describing the obstructions to symmetry for the curvature tensors in the

totally real case.

Lemma 3.1.2. Let Nn ⊂ M2n be a totally real submanifold of a Kähler manifold, and

define the tensors h̃, J̃ as above. Then:

a) h̃i jk = h̃ jik = h̃ jki +∇ jωki

b) ∇k∇ jωli−∇l∇ jωki−∇ j∇iωlk = R s
jli ωks +R s

k ji ωls +R s
lk j ωis

c) Ri jkl = Ri jkl +ηnm (h̃ikmh̃ jln− h̃ilmh̃ jkn
)

d) ∇ih̃ jkl−∇ jh̃ikl = Ri jkl̃ +ω
p

m ηnm (h̃ jlnh̃ikp− h̃ilnh̃ jkp
)

+ω
p

l ηnm (h̃ipmh̃ jkn− h̃ jpmh̃ikn
)

e) ∇ih̃ jkl−∇l h̃ jki = Rilk j̃ + ∇k∇ jωli + ω s
i Rkl js + ω s

l Rik js + ω s
j Rilsk

+ω
p

m ηnm(h̃l jnh̃ikp− h̃i jnh̃lkp),

where an index with a tilde l̃ here represents the component in the direction of J̃el .

Proof. For equation a), note that h̃ is still symmetric in the first two arguments by the

usual symmetries of the second fundamental form. The rest follows from a calculation:

h̃i jk = h̃ jik = g(∇e jei, J̃(ek))

= g(∇e jei,Jek)−g(∇e jei,ω
l

k el)

= e j(g(ei,Jek))+g(∇e jek,ei)−g(∇e jei,ω
l

k el)

= ∂ jωki + h̃ jki +g(∇e jek,ω
l

i )−g(∇e jei,ω
l

k el)

= h̃ jki +∂ jωki−Γ
n

jkωni−Γ
n

jiωkn

= h̃ jki +∇ jωki.

For equation b), note that since ω is closed, we have the equality

∇lωik +∇iωkl +∇kωli = 0.
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Therefore, using the rule for exchanging second covariant derivatives (2.1) and the

Bianchi identity (2.4) for the last line,

∇k∇ jωli = ∇ j∇kωli−R n
k jl ωln−R n

k ji ωni

= −∇ j∇lωik−∇ j∇iωklR n
k jl ωni−R n

k ji ωln

= ∇l∇ jωki−R n
jlk ωni−R n

jli ωkn +∇ j∇iωlk−R n
k jl ωni−R n

k ji ωln

=⇒ ∇k∇ jωli = ∇l∇ jωki +∇ j∇iωlk +R s
jli ωks +R s

k ji ωls−R s
lk j ωsi.

Equation c) is simply the Gauss equation (Theorem 2.1.4), noting that

Aik = η
nm〈∇eiek, J̃em〉J̃en = η

nmh̃ikmJ̃en. (3.6)

For equation d), we use the Codazzi equation (Theorem 2.1.4) and (3.6) to expand and

simplify the left hand side:

∇ih̃ jkl−∇ jh̃ikl = ∂i〈A(e j,ek), J̃el〉−〈A(∇eie j,ek), J̃el〉−〈A(e j,∇eiek), J̃el〉

−∂ j〈A(ei,ek), J̃el〉+ 〈A(∇e jei,ek), J̃el〉+ 〈A(ei,∇e jek), J̃el〉

= 〈∇iA jk−∇ jAik, J̃el〉+ 〈A jk,∇ei J̃el〉−〈Aik,∇e j J̃el〉

−〈A jk, J̃∇eiel〉+ 〈Aik, J̃∇e jel〉

= Ri jkl̃ + 〈A jk,∇ei J̃el− J̃∇eiel〉−〈Aik,∇e j J̃el− J̃∇e jel〉.

To simplify the right hand side further, note by (3.3) that for any normal vector ν ,

〈J(J̃ep),ν〉 = 〈−ω
q

p J̃eq,ν〉,
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and therefore,

〈∇ei J̃el− J̃∇eiel , ν〉 = 〈∇ei(Jel−ω
p

l ep)− J∇eiel , ν〉

= 〈J(A(ei,el))−ω
p

l A(ei,ep) , ν〉

= 〈−η
nmh̃ilnω

p
m J̃ep − η

nmh̃ipnω
p

l J̃em , ν〉.

=⇒ ∇ih̃ jkl−∇ jh̃ikl = Ri jkl̃−〈η
rsh̃ jkrJ̃es , η

nm(h̃ilnω
p

m J̃ep + h̃ipnω
p

l J̃em)〉

+ 〈ηrsh̃ikrJ̃es , η
nm(h̃ jlnω

p
m J̃ep + h̃ jpnω

p
l J̃em)〉

= Ri jkl̃ +ω
p

m η
nm (h̃ jlnh̃ikp− h̃ilnh̃ jkp

)
+ω

p
l η

nm (h̃ipmh̃ jkn− h̃ jpmh̃ikn
)
.

Finally, the last equation can be obtained by combining equations a)-d) to simplify the

left hand side.

3.1.2 Mean Curvature Flow of Totally Real Submanifolds

We now flow these submanifolds by mean curvature flow. Note that the totally real

condition is an open condition, so mean curvature flow of totally real submanifolds is

well-defined for a short time.

Lemma 3.1.3. Consider a mean curvature flow Ft : Nn→M2n such that the image N is

totally real for all t ∈ [0,T ]. Then the following evolution equations hold:

• d
dt gi j = −2ηnmH̃nh̃i jm

• d
dt gi j = 2ηnmgilgk jh̃klnH̃m

• d
dt volg = −ηnmH̃nH̃m volg

• d
dt ω = −dH̃.

Proof. The first and third evolution equations follow from Lemma 2.2.1, and the second

from differentiating gi jg jk in time. The final equation essentially follows from Lemma

3.1.1, however since we are now working with totally real geometry, the latter proof

must be modified slightly. Our deformation vector is now H iJ̃ei. Everything before
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(3.1) is the same, and subsequently the calculation proceeds as

= ei g
(

HkJ̃ek , e j

)
− e j ω

(
HkJ̃ek , ei

)
= e j g

(
HkJ̃ek , J̃ei

)
− ei g

(
HkJ̃ek , J̃e j

)
= e jH̃i− eiH̃ j = −(dH̃)i j.

We can use these to calculate the evolution of the key quantity |ω|2. The aim is to

estimate in terms of |ω|2, so that an initially vanishing ω can be shown to stay zero. We

can then prove the main theorem of the section; mean curvature flow in Kähler-Einstein

manifolds preserves the class of Lagrangians.

Lemma 3.1.4. Consider a smooth mean curvature flow Ft : Nn → M2n, t ∈ [0,T ] of

a compact manifold N in a Kähler-Einstein manifold M2n (so that the Ricci form ρ

vanishes). Assume that the image N is totally real for all t ∈ [0,T ]. Then the following

evolution equation holds:
d
dt
|ω|2 ≤ ∆|ω|2 + c|ω|2,

where c > 0 is a positive constant.

Proof. Throughout, we work in normal coordinates at a point. Using Lemma 3.1.2, we

first calculate the components of the exterior derivative of the mean curvature form:

dH̃il = ∂iH̃l − ∂lH̃i = ∇iH̃l−∇lH̃i

= g jk (
∇ih̃ jkl−∇l h̃ jki

)
= g jk

∇k∇ jωli + ω
s

l Ris − ω
s

i Rls +g jk
ω

s
j Rilsk +g jkRilk j̃

+ω
p

m η
nmg jk (h̃l jnh̃ikp− h̃i jnh̃lkp

)
.

We may estimate the coefficient ωi j by |ω| in normal coordinates:

ω
2
i j ≤

n

∑
i, j=1

ω
2
i j = ωi jω

i j = |ω|2.
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Therefore, since the quantities H̃, h̃, g, R, R are bounded on our smooth flow, we may

estimate any term that depends quadratically on ω by c|ω|2 for a positive constant c

depending on the flow. We use this, along with Lemma 3.1.3, to estimate the evolution

of |ω|2.

d
dt
|ω|2 =

d
dt

(
gi jgkl

ωilω jk

)
= 2

d
dt
(gi j)gkl

ωilω jk + 2gi jgkl d
dt
(ωil)ω jk

= 4η
nmgirg jsh̃rsnH̃mgkl

ωikω jl − 2dH̃il gi jgkl
ω jk

≤ c|ω|2 − 2gi jgkl
ω jkgpq

∇p∇qωli − 2gi jgkl
ω jkgpqRilqp̃

≤ c|ω|2 + ∆|ω|2 + ω
ilR p

il p̃ .

It is left to estimate this final term, which will be possible due to the Kähler-Einstein

assumption. We work using an orthonormal basis of eigenvectors for η , so that

g =

g 0

0 η

 =


Id 0

0

1−a1 · · · 0
... . . . ...

0 · · · 1−an

 ,

where by (3.5), ai = ∑
n
l=1 ω2

il . Since M is Kähler-Einstein,

0 = ρk j = R i
ik j + R ĩ

ĩk j

= Rik ji +
1

1−ai
Rĩk jĩ

= Rik ji + Rĩk jĩ +
ai

1−ai
Rĩk jĩ. (3.7)

Now, using (2.21) to swap the underlined components, and subsequently (3.3) to ex-

change some J terms for J̃ terms,

0 = −Rĩk ji−ωisRsk ji +Rik jĩ +ωisRsk jĩ +
ai

1−ai
Rĩk jĩ.
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Finally, using the Bianchi identity (2.4) and the fact that ai = ∑
n
l=1 ω2

il ,

0 = Rk jiĩ + Rik jĩ + R jikĩ

=⇒ Rk jiĩ = −ωisRsk ji +ωisRsk jĩ +
ai

1−ai
Rĩk jĩ

=⇒ ω
ilR p

il p̃ ≤ c|ω|2,

and the estimation is complete.

Theorem 3.1.5. Consider a smooth mean curvature flow Ft : Nn → M2n of a compact

manifold N in a Kähler-Einstein manifold M2n, so that the Ricci form ρ of M vanishes.

Assume that the initial immersion N0 is a Lagrangian submanifold of M. Then for all

t ∈ [0,T ], Nt is a Lagrangian submanifold.

Proof. The condition of a submanifold being totally real is an open condition. Therefore,

if Nt is Lagrangian, then for a short time interval [t, t + ε) it remains totally real under

the mean curvature flow. We prove that |ω| = 0 on this interval, and then since the

condition |ω| = 0 is also a closed condition, it follows by a continuity argument that N

is Lagrangian for all time.

Consider the function fε := |ω|2 − cεe−2ct , which is initially negative and has

evolution equation

d fε

dt
≤ ∆|ω|2 + c|ω|2−2c2e−2ct < ∆ fε + c fε .

An application of the parabolic maximum principle now implies that fε remains negative

for t ∈ [0,T ]. Letting ε → 0 proves that |ω|2 ≤ 0 for t ∈ [0,T ], and since it is a positive

quantity the result is proven.

Note that this theorem as stated works only for compact Lagrangians, as we need

to bound the mean curvature, second fundamental form and metric. However, as long as

these quantities remain finite (i.e. a singularity does not occur), we are able to apply the

same reasoning, and so in fact any smooth mean curvature flow with Lagrangian initial

condition remains Lagrangian.
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Remark 3.1.6. Though it is necessary for the ambient manifold to be Kähler-Einstein

for the Lagrangian condition to be preserved under mean curvature flow, K. Smoczyk

shows in [61] that if the ambient manifold is Kähler and simultaneously flows by the

Kähler-Ricci flow, then mean curvature flow preserves the Lagrangian condition. The

extra Ricci curvature term in (3.7) which disappears by the Einstein condition is instead

cancelled by the extra Ricci flow terms.

3.2 Evolution of the Lagrangian Angle
For our purposes, by far the most important evolution equation under Lagrangian mean

curvature flow in a Calabi-Yau manifold is that of the Lagrangian angle. It satisfies

the most simple parabolic equation of all when pulled back to the abstract manifold L

- the heat equation. This makes it extremely useful as a test function, for example to

demonstrate convergence to a special Lagrangian.

Proposition 3.2.1. Let Ft : Ln→Y 2n be a Lagrangian mean curvature flow in a Calabi-

Yau manifold Y with holomorphic volume form Ω. Let θt be the Lagrangian angle of

Ft(L), so that

Ω|Lt = eiθt volLt . (3.8)

Then:

dθ

dt
= ∆θ ,

dθ 2

dt
= ∆θ

2−|H|2.

Proof. We calculate the evolution of both sides of (3.8). Note that the flow of L in

Y may be considered as induced by a vector field on the ambient space, which agrees

with ~H on Lt at time t. Denoting the associated diffeomorphisms by φt , it follows from

Proposition 2.4.6 that:

d
dt

Ω|Lt =
d
dt

(F∗0 φ
∗
t Ω) = F∗0 L~HΩ = F∗0

(
d(ι~HΩ)

)
= d(F∗0 (i · ι∇θ Ω))

=⇒ d
dt

Ω|Lt = d
(

ieiθ
ι∇θ volLt

)
.
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Since ι∇θ volL = ∗dθ (by the definition of the Hodge star), it follows that

d
dt

Ω|L = d(eiθ i∗dθ) = −eiθ dθ ∧∗dθ + ieiθ d(∗dθ).

Then, working instead with the right-hand side of (3.8),

d
dt

Ω|L = ieiθ dθ

dt
volL + eiθ d

dt
volL.

Equating imaginary parts, and using the equivalence of the Hodge and Laplace-Beltrami

operators (Theorem 2.1.3),

dθ

dt
volL = d(∗dθ)

=⇒ dθ

dt
= ∗−1d ∗dθ = −d∗dθ = ∆θ .

For the second equation, using the above, Proposition 2.3.1 and Proposition 2.4.6:

d
dt

θ
2−∆(θ 2) = 2θ

dθ

dt
−div(2θ∇θ) = −2〈∇θ ,∇θ〉 = −2|H|2.

One immediate application of the above theorem is that it makes sense to talk of

almost-calibrated Lagrangian mean curvature flow, since the almost-calibrated con-

dition introduced in 2.4.3 is preserved (by the maximum principle applied to the heat

equation of Proposition 3.2.1).

3.3 Examples of LMCF in Cn

In this section, we list some important examples of Lagrangian mean curvature flows in

Cn.

In C1, the 1-dimensional case of mean curvature flow (curve shortening flow) is

an example of Lagrangian mean curvature flow, since any 1-dimensional submanifold

is Lagrangian. Curve shortening flow is well studied, for example Grayson’s theorem

(Theorem 2.2.5) gives a complete classification of long-time behaviour of embedded
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curve shortening flow.

For simple higher-dimensional examples, we consider equivariant submanifolds.

These are Lagrangian submanifolds which may be described as the orbit of a profile

curve γ ⊂ C×{0}n−1 under the following action of O(n):

A ∈ O(n), (x,y) ∈ Rn×Rn ∼= Cn =⇒ A · (x,y) = (Ax,Ay).

Under mean curvature flow, we may study the evolution of the profile curve γ instead

of the entire Lagrangian, which means that equivariant Lagrangian mean curvature flow

can be studied in a similar way to curve shortening flow, and is simpler than the general

case. For more details on equivariant Lagrangians, see Section 5.1.

Figure 3.1: The Lawlor neck, ΣLaw ⊂ C2. The left hand image is the projection of ΣLaw onto
R3×{0} ⊂C2, and the self-intersections are an artefact of this projection. The right
hand image is the profile curve σLaw ⊂C of the Lawlor neck, which may be viewed
either as the intersection with the span of the real axes (depicted here as a translucent
plane), or the quotient under the SO(n) action. It is static under mean curvature flow
as it is a special Lagrangian, and therefore minimal.

Example 3.3.1. A Lawlor neck, ΣLaw ⊂ Cn, is an equivariant special Lagrangian with
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Figure 3.2: The profile curve σCliff ⊂ C of the shrinking Clifford torus, ΣCliff ⊂ C2.

Lagrangian angle θ . Its profile curve may be expressed in polar coordinates as

r(α) =
B

n
√

sin(θ −nα)

for B ≥ 0. Given any pair of equivariant planes that span an angle of π

n , there exists a

Lawlor neck (unique up to scaling) asymptotic to these planes. For n = 2 and θ = π

2 ,

the profile curve is the hyperbola (see Figure 3.1):

σLaw : R→ C, σLaw(s) := (cosh(s),sinh(s)).

Since it is a special Lagrangian, it remains static under Lagrangian mean curvature

flow. There are also non-equivariant Lawlor necks spanning any special Lagrangian

pair of planes in Cn, but they will not be important in this work.

Example 3.3.2. The Clifford torus, ΣCliff ⊂ Cn, is an equivariant Lagrangian whose

profile curve is a circle of radius
√

2n,

σCliff : S1→ C, σCliff(s) := (
√

2ncos(s),
√

2nsin(s)).

By the symmetries it is clear that the Clifford torus is a self-shrinking soliton for mean

curvature flow, and the radius is chosen here so that it solves the self-shrinker equation

(2.13), ~H =−X⊥
2 . Figure 3.2 depicts the Clifford torus in C2.
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Figure 3.3: The profile curves of the four embedded self-shrinking Lagrangian tori in C3. The
top-left curve is the Clifford torus, ΣCliff ⊂ C3.

It is the simplest example of a monotone flow, and of a Lagrangian self-shrinker,

since for example there are no self-shrinking Lagrangian spheres in C2. There are how-

ever other self-shrinking tori which were first discovered by Anciaux [3]; Figure 3.3

depicts the profile curves of the four embedded toric self-shrinkers in C3.

Example 3.3.3. The Anciaux expander is an equivariant self-expander, proven to exist

by H. Anciaux in [3]. They are the equivariant case of the self-expanders found by D.

Joyce, Y-I. Lee and M-P. Tsui in [37]. Though it is not easy to express these expanders

explicitly, it is enough to know that for any pair of lines spanning an angle α < π

n , there

exists an Anciaux expander asymptotic to these lines, unique up to scaling.
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Figure 3.4: The Anciaux expander in C2. As with Figure 3.1, the left hand image is the projec-
tion onto R3×{0} ⊂ C2, and the right hand image is the flow of the profile curve
under mean curvature flow.

3.4 Finite-time Singularities of LMCF
Our primary interest is the study of singularities of zero-Maslov Lagrangian mean cur-

vature flow. This is a distinctly different subject to the study of singularities of generic

mean curvature flow, as is highlighted by the following theorem of M-T. Wang [72, Re-

mark 5.1], which states that an open class of Lagrangian mean curvature flows cannot

form Type I singularities, i.e. the parabolic rescalings around singularities do not con-

verge smoothly to a smooth self-shrinking soliton. This result contrasts starkly with the

work of T. Colding and W. Minicozzi [13] and of O. Chodosh, K. Choi, C. Mantoulidis

and F. Schulze [12], which suggest that generic singularities of hypersurface mean cur-

vature flow are Type I.

Theorem 3.4.1. An almost-calibrated Lagrangian mean curvature flow Lt in a Calabi-

Yau manifold Y cannot form a Type I singularity.

Proof. Assume for a contradiction that the flow Lt forms a Type I singularity, which

without loss of generality we may assume is at the space-time point X0 = (0,0). Using

Proposition 3.2.1, the evolution equation for ∗Re(Ω
∣∣
L) = cosθ is given by

d
dt

cosθ = ∆cosθ + |H|2 cosθ .

Combining this with the weighted monotonicity formula, Theorem 2.2.7, and consider-
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ing a sequence F i of Type I rescalings with factors λi→ ∞, it follows that:

d
dt

Θ(F i,X0,
√
−t,cosθ) =

d
dt

∫
Li

t

(cosθ)ΦX0 dH n

=
∫

Li
t

(
|~H|2−

∣∣∣∣~H− x⊥

2t

∣∣∣∣2
)

cosθ ΦX0 dH n

=⇒ Θ(F i,X0,
√
−b,cosθ)−Θ(F i,X0,

√
−a,cosθ)

=
∫ b

a

∫
F i

t

(
|~H|2−

∣∣∣∣~H− x⊥

2t

∣∣∣∣2
)

cosθ ΦX0 dH n

=⇒ Θ(F,X0,

√
−b
λi

,cosθ)−Θ(F,X0,

√
−a
λi

,cosθ)

=
∫ b

a

∫
F i

t

(
|~H|2−

∣∣∣∣~H− x⊥

2t

∣∣∣∣2
)

cosθ ΦX0 dH n.

Since we have assumed that the singularity is Type I, we may choose the scaling factors

such that Li
t smoothly converges to a self-similarly shrinking mean curvature flow L∞

t ,

with |~H− x⊥
2t |= 0. Therefore, if we can show that Θ(F,X0,r,cosθ) has a limit as r→ 0,

then it follows by limiting the above equation that H = 0 for this limiting shrinker. Then,∣∣∣∣~H− x⊥

2t

∣∣∣∣= 0 =⇒ x⊥ = 0,

implying that L∞
t is a plane. It then follows from White’s regularity theorem, Theorem

2.2.10, that no singularity occurs, giving us a contradiction.

To show that Θ(F,X0,r,cosθ) has a limit, note that by the almost-calibrated condi-

tion,

0≤ 1− cosθ < 1,(
d
dt
−∆

)
(1− cosθ) = −|~H|2 cosθ .

Huisken’s monotonicity formula implies

d
dt

∫
L−r2

(1− cosθ)ΦX0 dH n

=
∫

L−r2

(
−|H|2 cosθ −

∣∣∣∣~H− x⊥

2t

∣∣∣∣2 (1− cosθ)

)
ΦX0dH n,
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and since the right hand side is negative, it follows that
∫

L−r2
(1− cosθ)ΦX0 dH n has a

limit as r→ 0. Since also the density
∫

L−r2
ΦX0dH n has a limiting value by Huisken’s

monotonicity formula, the result follows.

It is possible in general for singularities of Lagrangian mean curvature flow to be of

Type I. For example, any compact embedded curve shortening flow in C1 forms a Type I

singularity modelled on a shrinking circle, by Grayson’s theorem (Theorem 2.2.5). Ad-

ditionally, the Clifford torus of Example 3.3.2 is a self-shrinking monotone solution to

mean curvature flow, and so therefore provides an example of a Type I singularity in any

number of dimensions. However, it has been shown that it is unstable as a Lagrangian

self-shrinker by C. Evans, J. Lotay and F. Schulze [21, Theorem 1.1], in the sense that

generic perturbations do not flow to Clifford torus singularities. This suggests that the

Clifford torus singularity is not a generic behaviour of the flow.

Further work on singularities of zero-Maslov and almost-calibrated LMCF has been

carried out by A. Neves in [50], which contains two important theorems on analysis of

singularities. These theorems utilise the excellent evolution of the Lagrangian angle,

Lemma 3.2.1, to prove that singularities of certain Lagrangian flows are modelled on

special Lagrangian cones.

Theorem A tells us that any Type I blowup of a zero-Maslov LMCF looks like a

union of special Lagrangian cones.

Theorem 3.4.2 (Neves’ Theorem A). If L0 is a zero-Maslov class Lagrangian with

bounded Lagrangian angle, then for any sequence of Type I rescaled flows (Li
s)s<0 at

a singularity, with Lagrangian angle θ i
s, there exist a finite set {θ 1, . . . ,θ N} and integral

special Lagrangian cones {L1, . . . ,LN} such that on passing to a subsequence, for every

f ∈C2(R), φ ∈C∞
c (Cn) and s < 0,

lim
i→∞

∫
Li

s

f (θ i
s)φdH n =

N

∑
j=1

m j f (θ j)µ j(φ),

where µ j, m j denote the Radon measure of the support and multiplicity of L j respec-

tively. Furthermore, the set {θ 1, . . . ,θ N} doesn’t depend on the sequence chosen.

Theorem B tells us that cones corresponding to the same local connected com-
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ponent in fact have the same Lagrangian angle, if we assume that the flow is almost-

calibrated and rational. Rational here means that for some a ∈ R,

λ (H1(L0,Z)) ∈ {a2kπ|k ∈ Z},

for λ := ∑
n
i=0 xidyi− yidxi the Liouville form. The rational condition is a generalisation

of exactness; the form λ |L being exact is precisely L being rational with a = 0, and is

preserved under the flow. See [50, Section 6] for a proof of preservation of rationality.

Theorem 3.4.3 (Neves’ Theorem B). If L0 is almost-calibrated and rational, then af-

ter passing to a subsequence of the rescaled flows Li
s, with Lagrangian angle θ i

s, the

following holds for all R > 0 and almost all s < 0.

For any convergent subsequence (in the Radon measure sense) Σi of connected

components of B4R(0)∩ Li
s intersecting BR(0), there exists a special Lagrangian cone

L in B2R(0) with Lagrangian angle θ such that for every f ∈ C(R) and every φ ∈

C∞
c (B2R(0)),

lim
i→∞

∫
Σi

f (θ i
s)φdH n = m f (θ)µ(φ),

where µ and m denote the Radon measure of the support of L and the multiplicity re-

spectively.

An important aspect of Theorem 3.4.3 to note is that it concerns a sequence of con-

nected components of Li
s∩B4R in the Type I rescaling, which corresponds to a sequence

of connected components in a shrinking ball for the original flow.





Chapter 4

LMCF with Boundary in Calabi-Yau

Manifolds

In Section 3.1, we gave an exposition of Smoczyk’s result [60] that in Kähler-Einstein

manifolds, mean curvature flow preserves Lagrangian submanifolds. A natural follow-

up question to this result is: ‘Does there exist a well-defined boundary condition for

mean curvature flow that preserves the Lagrangian condition?’ In this chapter we answer

this question in the affirmative, in the case that the ambient manifold is a Calabi-Yau

manifold, i.e. a Ricci flat Kähler manifold.

Consider a family of immersed compact-with-boundary Lagrangian submanifolds

Ft : Ln→ Y , and an immersed Lagrangian mean curvature flow Σt in Y for t ∈ [0,TΣ),

which will be our boundary submanifold. Denote Lt := Ft(Ln), and suppose that

∂Lt ⊂ Σt ; this may be thought of as (n−1) Dirichlet boundary conditions for the mean

curvature flow problem on Lt . For a well-posed PDE problem, one more boundary con-

dition is required. For this, we fix the difference between the Lagrangian angles θ̃ and

θ of Σt and Lt respectively on ∂Lt – this is a natural generalisation of the fact that there

is a constant Lagrangian angle difference between intersecting special Lagrangians. We

The results of Chapter 4 comprise original joint work with B. Lambert and C. Evans, and
appear in the preprint [20].
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now have a well-posed boundary value problem:



( d
dt F(x, t)

)NL
= ~H(x, t) for all (x, t) ∈ Ln× [0,T )

F(x,0) = F0(x) for all x ∈ Ln

∂Lt ⊂ Σt for all t ∈ [0,T )

ei(θ̃−θ)(x, t) = ieiα for all (x, t) ∈ ∂Ln× [0,T ),

(4.1)

where NL is the normal bundle of L, θ and θ̃ are the Lagrangian angles of L and Σ

respectively, and α ∈ (−π/2,π/2) is a constant angle. In the case where Σt and Lt are

zero-Maslov, the final condition may be written as θ̃ −θ = α + π

2 .

However, a priori the Lagrangian angle is not well-defined for Lt for t > 0, since

the mean curvature flow does not necessarily preserve the Lagrangian condition. We

must therefore generalise the Neumann boundary condition in equation (4.1) to a state-

ment that holds for any ‘totally real’ n-dimensional manifold Mn intersecting along an

(n−1)-dimensional manifold, see equation (4.4) in Section 4.1. In the case Mt = Lt is

Lagrangian, (4.4) and (4.1) are equivalent.

We remark that the Lagrangian mean curvature flow with boundary together with

its boundary condition does not constitute a Brakke flow, and in particular the blow-up

of a singularity does not need to be a self-similar shrinker. For example, Figure 4.2

depicts an example where the Type I blowup is a rotating soliton solution to (4.4).

Our first main theorem concerns preservation of the Lagrangian condition, so that

(4.4) and (4.1) are equivalent when the initial immersion L0 is Lagrangian, and we call

a solution of this problem a Lagrangian mean curvature flow with boundary. In

the following theorem, inj∂M denotes the boundary injectivity radius, defined in Section

4.3.2.

Theorem 4.0.1. Let Σt be a smooth Lagrangian mean curvature flow in a Calabi-Yau

manifold Y . Suppose Mt is a solution of (4.4) with M0 Lagrangian and

inj∂M > δ > 0,
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for t ∈ [0,T ). Then Mt is Lagrangian for all t ∈ [0,T ).

The proof of this result follows much the same strategy as the original proof of

preservation of the Lagrangian condition by K. Smoczyk in [60], which we gave an

exposition of in Section 3.1. Denoting as before ω := ω|L for the restriction of the

ambient Kähler form to Mt , by a careful analysis of the boundary condition we are able

to apply a maximum principle to estimate the rate of increase of |ω|2 in terms of its initial

value. Since the initial condition is Lagrangian, this implies that |ω|2 is identically zero.

The second major theorem is the short-time existence result:

Theorem 4.0.2. Let Σt be a smooth oriented Lagrangian mean curvature flow in a

Calabi-Yau manifold Y , and let M0 be an oriented smooth compact Lagrangian sub-

manifold of Y with boundary satisfying the boundary conditions in (4.4). Then there

exists a T ∈ (0,∞) such that a unique solution of (4.4) exists for t ∈ [0,T ), and this solu-

tion is smooth for t > 0. Furthermore, if we assume this T is maximal, then at T at least

one of the following hold:

1. Boundary flow curvature singularity: supΣt
|Ã|2→ ∞ as t→ T .

2. Flowing curvature singularity: supMt
|A|2→ ∞ as t→ T .

3. Boundary injectivity singularity: The boundary injectivity radius inj∂M of ∂Mt in

Mt converges to zero as t→ T .

Remark 4.0.3. Whilst singularity options 1 and 2 in Theorem 4.0.2 are standard singu-

larities, the boundary injectivity singularity is new and a result of the flowing boundary

condition.

For brevity, we exclude the proof of this result here, though it can be found in [20].

The boundary condition is a geometric mixed Dirichlet-Neumann boundary condition,

which are not well-covered in the literature.

Finally, we prove a convergence result that will be useful later in Chapter 6, when

investigating the behaviour of specific examples of LMCF with boundary. Explicitly,

we prove that in the case where our flow is almost-calibrated with bounded second fun-

damental form, and the boundary is a special Lagrangian, the flow converges in infinite

time to a special Lagrangian.
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(a) An example of LMCF with boundary on
the Lawlor neck ΣLaw, α = 0.

(b) An example of LMCF with boundary on
the Lawlor neck ΣLaw, α = 0.8.

Figure 4.1: Two examples of LMCF with boundary on the Lawlor neck ΣLaw. Shown here
are the ‘profile curves’ of the equivariant flow, i.e. the intersection of the flowing
Lagrangians with C×{0}. They will both be studied in detail in Chapter 6.

(a) An example of rescaled LMCF with
boundary on the Clifford torus ΣCliff,
α = 0.

(b) Another example on the Clifford torus
ΣCliff, α =− 2π

5 .

Figure 4.2: Two examples of LMCF with boundary on the Clifford torus ΣCliff. Shown here
are the ‘profile curves’ of the equivariant flow, i.e. the intersection of the flowing
Lagrangians with C×{0}. The first example will be studied in detail in Chapter 6.

Proposition 4.0.4. Suppose that:

• Σt = Σ is a special Lagrangian with Lagrangian angle π

2 ,

• L0 is almost-calibrated, that is θ0 ∈ (−π

2 + ε, π

2 − ε),

• and the solution to (4.1), Lt , exists for t ∈ [0,∞) with uniform estimates |∇kA|2 <

Ck.

Then Lt converges smoothly to a special Lagrangian with Lagrangian angle α .
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4.1 The Boundary Conditions
In this section, we generalise (4.1) to a boundary problem that holds for any totally real

Mn
t (as defined in Section 3.1.1) with ∂Mt ⊂ Σt . Note that we use the notation M here for

the submanifold, and the ambient Calabi-Yau manifold is denoted Y . Let Σt , t ∈ [0,T )

be a Lagrangian mean curvature flow in Y 2n, and let M be a submanifold that satisfies

the Dirichlet boundary condition ∂M ∈ Σt .

Throughout, we will employ the following notational conventions. We distinguish

between quantities on the mean curvature flow Mt , the Lagrangian mean curvature flow

Σt and the ambient Calabi-Yau manifold Y by diacritical marks: for instance, the ambi-

ent connection on Y is ∇, the induced connection on M is ∇, and the induced connection

on Σ is ∇̃. We extend this convention in the natural way to other quantities such as the

second fundamental form and the mean curvature. For any submanifold Z ⊂ Y , p ∈ Z

and a general vector V ∈ TpY we will denote orthogonal projection of V onto the tan-

gent space and normal space of Z by V T Z and V NZ respectively. Finally, throughout we

will use the Einstein summation convention of summing over repeated indices, where

we assume that lower case Roman letters sum 1≤ i, j,k, . . .≤ n and upper case Roman

letters sum 1≤ I,K,L, . . .≤ n−1.

We now set up the orthonormal bases that we will be working with to sim-

plify our calculations; see Figure 4.3 for a diagram. At a point p ∈ ∂M, there

exists tangent vectors e1, . . . ,en−1 of Tp∂M, µ ∈ TpM an ‘outward pointing’ tan-

gent vector and ν ∈ TpΣ so that {e1, . . . ,en−1,µ} is an orthonormal basis of TpM

and {e1, . . . ,en−1,ν} is an orthonormal basis of TpΣ. By the Lagrangian condition,

{e1, . . . ,en−1,ν ,Je1, . . . ,Jen−1,Jν} is an orthonormal basis for TpY .

Define also τ = τ IJeI as the projection of µ onto span{Je1, . . . ,Jen−1}. Then, since

µ has no components in any of the eI directions, µ is of the form

µ = τ + 〈ν ,µ〉ν + 〈Jν ,µ〉Jν (4.2)

=⇒ |τ|2 = 1−〈ν ,µ〉2−〈Jν ,µ〉2 . (4.3)

This yields that the Calabi–Yau form Ω′ ‘relative to TpΣ’ (as defined in (2.24)) restricted
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Figure 4.3: An illustration of the bases we will be working with, in the simple case of a 4-
dimensional ambient Calabi-Yau manifold Y 4 and 2-dimensional submanifolds M2

and Σ2. In this case, {e1,µ} is an orthonormal basis of TpM, {e1,ν} is an orthonor-
mal basis of TpΣ, and {e1,ν ,Je1,Jν} is a basis of TpY . Note that µ is the outward
pointing tangent vector to M normal to the boundary at p.

to TpM is given by

Ω
′(e1, . . . ,en−1,µ) = det

 Id iτ I

0 〈ν ,µ〉+ i〈Jν ,µ〉

= 〈ν ,µ〉+ i〈Jν ,µ〉 .

This complex number has modulus 1 if and only if the tangent space of M is Lagrangian

at p, as M can only be Lagrangian if µ ∈ span{ν ,Jν}, and the boundary condition of

(4.1) is equivalent to this unit complex number being constant. We may therefore extend

the boundary condition in (4.1) by simply assuming that the argument of this complex

number is constant, that is we impose that there exists a constant α ∈ (−π

2 ,
π

2 ) so that

〈ν ,µ〉= tanα 〈Jν ,µ〉 .

If both Σt and Mt are Lagrangian submanifolds, this corresponds to a phase difference

ieiα = ei(θ̃−θ). We note that a value α = 0 corresponds to the submanifolds being ‘per-

pendicular’ at the intersection, and the excluded value α = π

2 would correspond to the
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submanifolds being tangent at the intersection.

Remark 4.1.1. We believe an analogous boundary condition could be defined in the

non-Ricci-flat setting since we have only used the existence of a relative Calabi–Yau

form. Hence the results of this chapter should be applicable with some modification to

Lagrangian mean curvature flows in general Kähler–Einstein manifolds.

Now let F : Mn× [0,T )→ Y be a one parameter family of immersions, and write

Mt = F(M, t). We define a reparametrised mean curvature flow as follows:



( d
dt F(x, t)

)NM
= ~H(x, t) for all (x, t) ∈M× [0,T ),

F(x,0) = F0(x) for all x ∈M,

∂Mt ⊂ Σt for all t ∈ [0,T ),

cosα 〈ν ,µ〉− sinα 〈Jν ,µ〉= 0 for all (x, t) ∈ ∂M× [0,T ).

(4.4)

Note that (4.4) is exactly (4.1) when Ft(M) is Lagrangian.

We now assume that Mt is a mean curvature flow that satisfies the boundary condi-

tions in (4.4). It follows from (4.2) that at a boundary point we have

TpΣ = span{e1, . . . ,en−1,ν} ,

TpΣ
⊥ = span{Je1, . . . ,Jen−1,Jν} .

TpM = span{e1, . . . ,en−1,〈ν ,µ〉ν + 〈Jν ,µ〉Jν + τ},

where τ ∈ JTp∂M. As in Section 3.1, we will throughout work with totally real sub-

manifolds, i.e. submanifolds M such that J(TpM)∩TpM = 0. As shown in Section 3.1.1

(Equation 3.2), on such submanifolds there is an isomorphism

J̃ : T M→ T M⊥, J̃(X) := J(X)−gi j〈J(X),ei〉e j.

We may then use the following basis for the normal space:

TpM⊥ = span{ f1, . . . , fn} ,
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where for 1≤ I ≤ n−1,

fI := J̃eI = JeI−〈JeI,µ〉µ, fn := J̃µ = −〈Jν ,µ〉ν + 〈ν ,µ〉Jν . (4.5)

As before, this yields a positive-definite matrix

ηi j =
〈

fi, f j
〉
=

δIJ− τ IτJ 0

0 1−|τ|2


where we write τ I = 〈τ,JeI〉= 〈µ,JeI〉, and used (4.3) for the bottom-right component.

This has inverse

η
i j =

δIJ +
τ IτJ

1−|τ|2 0

0 1
1−|τ|2

 .

We now rewrite some of our vector quantities in terms of normal vectors, which will

later be useful to convert covariant derivatives into second fundamental form terms. We

may write

µ = µ
NΣ + 〈ν ,µ〉ν , ν = ν

NM + 〈ν ,µ〉µ .

Substituting back into the last terms and rearranging yields

µ =
1

1−〈ν ,µ〉2
[
µ

NΣ + 〈ν ,µ〉νNM] (4.6)

ν =
1

1−〈ν ,µ〉2
[
ν

NM + 〈ν ,µ〉µNΣ
]
. (4.7)

We have that τ = τ IJeI ∈ TpΣ⊥ satisfies

〈τ, fI〉 = 〈τ,JeI− τ
I
µ〉 = τ

I(1−|τ|2),
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and so it follows by (4.5) that

τ
NM = η

i j 〈τ, fi〉 f j = η
IJ 〈τ, fI〉 fJ = η

IJ(1−|τ|2)τ I fJ = τ
J fJ

= τ−|τ|2µ, (4.8)

ν
NM = η

i j 〈ν , fi〉 f j = −η
IJ 〈ν ,µ〉τ I fJ−

〈Jν ,µ〉
1−|τ|2

fn

= − 〈ν ,µ〉
1−|τ|2

τ
NM− 〈Jν ,µ〉

1−|τ|2
fn. (4.9)

In the following sections, we will assume that the vectors e1, . . . ,en−1, µ and ν

are extended locally to a neighbourhood in U ⊂ ∂Mt of p so that at every q ∈ U ,

{e1, . . . ,en−1,µ} is an orthonormal basis of TqM and {e1, . . . ,en−1,ν} is an orthonor-

mal basis of TqΣ.

4.2 Derivatives of the Boundary Conditions
In this section, we derive identities that arise by differentiating the boundary condi-

tions. Throughout, we use the notation AXY := A(X ,Y ) = (∇XY )⊥ as shorthand for the

components of the second fundamental form, and we bear in mind that the Lagrangian

condition implies full symmetry of the second fundamental form Ã, i.e. X ,Y,Z ∈ TpΣ,

〈ÃXY ,JZ〉 = 〈ÃY X ,JZ〉 = 〈ÃXZ,JY 〉. (4.10)

4.2.1 Space Derivatives of the Dirichlet Boundary Condition

We first use the Dirichlet condition to compare first order boundary derivatives.

Lemma 4.2.1. Suppose that Σ is Lagrangian, and M is a n-dimensional totally real

submanifold with boundary ∂M ⊂ Σ. At a point p ∈ ∂M, we have that for any X ,Y ∈

Tp∂M,

〈Jν ,µ〉2

1−〈ν ,µ〉2
〈
ÃXY ,τ

〉
= 〈AXY ,τ〉+

|τ|2

1−〈ν ,µ〉2
[
〈Jν ,µ〉

〈
ÃXY ,Jν

〉
+ 〈ν ,µ〉〈AXY ,ν〉

]
.
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Proof. Since X ,Y ∈ Tp∂M, we may write ∇XY in two ways, namely

∇XY =
〈
ÃXY ,JeI

〉
JeI +

〈
ÃXY ,Jν

〉
Jν +

〈
∇XY,eI

〉
eI +

〈
∇XY,ν

〉
ν ,

∇XY = η
ik 〈AXY , fi〉 fk +

〈
∇XY,eI

〉
eI +

〈
∇XY,µ

〉
µ,

where the fi are the basis of NpM as above. Taking an inner product with JeI , and noting

that 〈 fi,Je j〉 = 〈 fi, f j〉 = ηi j since f j, Je j are the same up to a component tangential to

TpM, this equality yields

〈
ÃXY ,JeI

〉
= η

ik
ηkI 〈AXY , fi〉+

〈
∇XY,µ

〉
〈µ,JeI〉

= 〈AXY , fI〉+
〈

∇XY,µ
〉

τ
I . (4.11)

Due to equation (4.6),

〈
∇XY,µ

〉
=

1

1−〈ν ,µ〉2
[〈

∇XY,µNΣ + 〈ν ,µ〉νNM
〉]

=
1

1−〈ν ,µ〉2
[〈

ÃXY ,µ
〉
+ 〈ν ,µ〉〈AXY ,ν〉

]
. (4.12)

Equation (4.11) now yields

〈
ÃXY ,JeI

〉
− τ I

1−〈ν ,µ〉2
〈
ÃXY ,µ

〉
= 〈AXY , fI〉+

〈ν ,µ〉τ I

1−〈ν ,µ〉2
〈AXY ,ν〉 .

Multiplying by τ I and summing, we have that (using (4.8)),〈
ÃXY ,τ−

|τ|2

1−〈ν ,µ〉2
µ

NΣ

〉
= 〈AXY ,τ〉+

|τ|2 〈ν ,µ〉
1−〈ν ,µ〉2

〈AXY ,ν〉 .

By (4.2) and (4.3), we have that

τ−µ + 〈ν ,µ〉ν = 〈Jν ,µ〉Jν

=⇒ τ− |τ|2

1−〈ν ,µ〉2
(µ−〈ν ,µ〉ν) = 〈Jν ,µ〉2

1−〈ν ,µ〉2
τ− 〈Jν ,µ〉 |τ|2

1−〈ν ,µ〉2
Jν .
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Thus we conclude

〈Jν ,µ〉2

1−〈ν ,µ〉2
〈
ÃXY ,τ

〉
= 〈AXY ,τ〉+

|τ|2

1−〈ν ,µ〉2
[
〈Jν ,µ〉

〈
ÃXY ,Jν

〉
+ 〈ν ,µ〉〈AXY ,ν〉

]
.

4.2.2 Time Derivatives of the Dirichlet Boundary Condition

We now consider time derivatives. We denote the mean curvature vector of M by ~H as

before, and the mean curvature vector of Σ by H̃.

Lemma 4.2.2. Let Σt ⊂ Y be a smooth solution of LMCF and assume that Mt ⊂ Y is

a totally real solution to (4.4). Suppose that ∂Mt ⊂ Σt for all t ≥ 0, then for all t > 0,

〈
~H− H̃,τ

〉
〈Jν ,µ〉=

〈
~H− H̃,Jν

〉
|τ|2 .

Proof. We consider a smooth function p(t) = F(p1(t), . . . , pn(t), t) such that p stays in

Σt (such a point exists by assumption). Then we must have that

H̃ =

(
d p
dt

)NpΣ

=
(

P+ ~H
)NpΣ

where P = ∂ pi

∂ t Xi is a tangent vector to M. Fixing t and writing P = PIeI +Pµ µ we see

that

〈
H̃,JeI

〉
= τ

IPµ +
〈

JeI, ~H
〉
,

〈
H̃,Jν

〉
= 〈Jν ,µ〉Pµ +

〈
Jν , ~H

〉
.

This is equivalent to the statement that

~HNΣ− H̃ =−Pµ [τ + 〈Jν ,µ〉Jν ] .

We also see that

〈
~H− H̃,τ

〉
=−Pµ |τ|2,

〈
~H− H̃,Jν

〉
=−Pµ 〈Jν ,µ〉
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which yields the claim.

4.2.3 Space Derivatives of the Neumann Boundary Condition

We will see that at a point p ∈ ∂M such that the Neumann boundary condition holds and
1
2 > |ω|2(p) = max

q∈∂M
|ω|2(q) we have that

∇I 〈ν ,µ〉= 0 = ∇I 〈Jν ,µ〉 .

We will now investigate the implications of these equalities.

Lemma 4.2.3. Let Σt ⊂ Y be a smooth solution of LMCF and assume that Mt ⊂ Y is

a totally real solution to (4.4). Suppose that at some p ∈ ∂M

∇I 〈ν ,µ〉= 0. (4.13)

Then 〈
ν ,AIµ

〉
+
〈
µ, ÃIν

〉
= 0.

Proof. Using (4.13), we have

0 =
〈

∇Iν ,µ
〉
+
〈

∇Iµ,ν
〉
,

and so using equations (4.6) and (4.7),

0 =
〈

∇Iν
NM + 〈ν ,µ〉∇Iµ

NΣ,µ
〉
+
〈

∇Iµ
NΣ + 〈ν ,µ〉∇Iν

NM,ν
〉

=−
〈
ν ,AIµ

〉
−
〈
µ, ÃIν

〉
+ 〈ν ,µ〉

[〈
∇Iµ

NΣ,µ
〉
+
〈

∇Iν
NM,ν

〉]
=−

〈
ν ,AIµ

〉
−
〈
µ, ÃIν

〉
+

〈ν ,µ〉
1−〈ν ,µ〉2

[〈
∇Iµ

NΣ,µNΣ + 〈ν ,µ〉νNM
〉
+
〈

∇Iν
NM,νNM + 〈ν ,µ〉µNΣ

〉]
=−

〈
ν ,AIµ

〉
−
〈
µ, ÃIν

〉
+

〈ν ,µ〉
1−〈ν ,µ〉2

[
1
2
(∇I
∣∣µNΣ

∣∣2 +∇I
∣∣νNM∣∣2)+ 〈ν ,µ〉(∇I

〈
µ

NΣ,νNM〉)]
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However, we see that ∣∣µNΣ
∣∣2 = 1−〈ν ,µ〉2 =

∣∣νNM∣∣2
and 〈

µ
NΣ,νNM〉= 〈µ−〈ν ,µ〉ν ,ν−〈ν ,µ〉µ〉= 〈ν ,µ〉2−〈ν ,µ〉

and so by (4.13) the square bracket vanishes.

Lemma 4.2.4. Let Σt ⊂ Y be a smooth solution of LMCF and assume that Mt ⊂ Y is

a totally real solution to (4.4). Suppose that at p ∈ ∂M we have that

0 = ∇I 〈ν ,µ〉= ∇I 〈Jν ,µ〉 .

Then

0 =
〈
AIµ ,Jν

〉
−
〈
ÃIν ,Jµ

〉
+

1

1−〈ν ,µ〉2
[
〈AIσ ,ν〉+ 〈ν ,µ〉

〈
ÃIσ ,µ

〉]
,

where we define σ := Jτ = −τ IeI to simplify notation.

Proof. We expand the statement ∇I 〈Jν ,µ〉= 0. We first note that

〈
∇Iµ,Jν

〉
=
〈

∇Iµ,(Jν)NM +(Jν)T M
〉

=
〈
AIµ ,Jν

〉
+ 〈Jν ,µ〉

〈
∇Iµ,µ

〉
=
〈
AIµ ,Jν

〉
,

as |µ|2 = 1. We also calculate using (4.2) that

〈
∇Iν ,Jµ

〉
=
〈

∇Iν ,(Jµ)NΣ +(Jµ)T Σ

〉
=
〈
ÃIν ,Jµ

〉
+
〈

∇Iν ,σ −〈Jν ,µ〉ν
〉

=
〈
ÃIν ,Jµ

〉
+
〈

∇Iν ,σ
〉

=
〈
ÃIν ,Jµ

〉
+

1

1−〈ν ,µ〉2
〈

∇I
(
ν

NM + 〈ν ,µ〉µNΣ
)
,σ
〉

=
〈
ÃIν ,Jµ

〉
− 1

1−〈ν ,µ〉2
[
〈AIσ ,ν〉+ 〈ν ,µ〉

〈
ÃIσ ,µ

〉]
.
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Putting these together we have that

∇I 〈Jν ,µ〉=
〈

Jν ,∇Iµ
〉
−
〈

∇Iν ,Jµ

〉
=
〈
AIµ ,Jν

〉
−
〈
ÃIν ,Jµ

〉
+

1

1−〈ν ,µ〉2
[
〈AIσ ,ν〉+ 〈ν ,µ〉

〈
ÃIσ ,µ

〉]
.

4.3 Preservation of the Lagrangian Condition
In this section, we prove Theorem 4.0.1, i.e. that the Lagrangian condition is preserved

(assuming short-time existence of the flow).

4.3.1 Boundary Estimates

In preparation for this proof, we calculate some important quantities using the coordinate

system introduced in Section 4.1. Using the Neumann boundary condition of (4.4),

cosα 〈ν ,µ〉− sinα 〈Jν ,µ〉= 0 , (4.14)

it follows from (4.2) that we may write µ as

µ =
〈Jν ,µ〉
cosα

(sinαν + cosαJν)+ τ, (4.15)

and from (4.3) that we may write |τ|2 as

|τ|2 = 1− 〈Jν ,µ〉2

cos2 α
= 1− 〈ν ,µ〉

2

sin2
α

. (4.16)

Let ω be the restriction of ω to M. We wish to consider |ω|2 = ωi jω
i j where ωi j =〈

JXi,X j
〉
. Calculating on the boundary in the basis {e1, . . . ,en−1,µ} of Section 3.1.1 we

have that

ω =


0

τ1

...

τn−1

−τ1 . . .− τn−1 0


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and so at the boundary

|ω|2 = 2|τ|2 = 2− 2〈Jν ,µ〉2

cos2(α)
. (4.17)

As a result, if |ω|2 < 1
2 at a boundary point then

〈Jν ,µ〉2

cos2 α
>

3
4
, (4.18)

and so at such a point, since νNM = ν−〈ν ,µ〉µ ,

∣∣νNM∣∣2 = ∣∣µNΣ
∣∣2 = 1−〈ν ,µ〉2 = |τ|2 + 〈Jν ,µ〉2 > 3

4
cos2

α > 0 .

Finally, by Lemma 3.1.2 (remembering that h̃(X ,Y,Z) := 〈∇XY, J̃Z〉),

∇ jωki = h̃i jk − h̃ jki

=
〈
Ai j,JXk

〉
−
〈
A jk,JXi

〉
,

and so, denoting σ := Jτ ,

∇µ |ω|2 = 2
[〈

A jµ ,JXi
〉
−
〈
Aiµ ,JX j

〉]
ω

i j

=−4
〈
AIµ ,Jµ

〉
τ

I + 4
〈
Aµµ ,JeI

〉
τ

I

= 4
〈
Aσ µ ,Jµ

〉
+4
〈
Aµµ ,τ

〉
.

We now prove the key estimate for the proof of Theorem 4.0.1.

Lemma 4.3.1. Let Σt ⊂ Y be a smooth solution of LMCF and assume that Mt ⊂ Y is

a totally real solution to (4.4). Let p be a boundary maximum of |ω|2 where |ω| < 1
2 .

Then we have that

∇µ |ω|2 = 2|ω|2
[
− tan2

α〈Aµµ ,τ〉+
1−〈ν ,µ〉2

cos2 α 〈Jν ,µ〉

〈
H− H̃,Jν

〉
+

1
cos2 α

〈
H̃,τ

〉
+

1
cos2 α

[
〈Jν ,µ〉

〈
ÃI

I,Jν
〉
+ 〈ν ,µ〉

〈
AI

I,ν
〉]
− 〈Jν ,µ〉
|σ |2

〈
Ãσσ ,Jν

〉
− tanα 〈Jν ,µ〉

|σ |2
(

1−〈ν ,µ〉2
) [〈Aσσ ,ν〉+ 〈ν ,µ〉

〈
Ãσσ ,µ

〉]]
.
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and in particular, if |Ap| < CM, |Ãp| < CΣ then there exists a constant C = C(n,α) so

that

∇µ |ω|2 =C(CM +CΣ)|ω|2 .

Proof. We first prove that

0 = ∇I 〈ν ,µ〉 = ∇I 〈Jν ,µ〉 ; (4.19)

this will allow us to apply Lemmas 4.2.3 and 4.2.4. By (4.17), p is a boundary maximum

of |τ|2, and so using (4.14),

0 =
1
2

∇I|τ|2 = −〈ν ,µ〉∇I 〈ν ,µ〉−〈Jν ,µ〉∇I 〈Jν ,µ〉

=−〈Jν ,µ〉
cosα

[sinα ∇I 〈ν ,µ〉+ cosα ∇I 〈Jν ,µ〉] .

By (4.18) we have

sinα ∇I 〈ν ,µ〉+ cosα ∇I 〈Jν ,µ〉= 0,

and differentiating (4.14) yields

cosα ∇I 〈ν ,µ〉− sinα ∇I 〈Jν ,µ〉= 0.

These together imply equation (4.19). We now wish to estimate 1
4∇µ |ω|2 =

〈
Aσ µ ,Jµ

〉
+〈

Aµµ ,τ
〉

at the boundary in terms of |ω|2 or equivalently |τ|2 = |σ |2. Using (4.14) and

Lemmas 4.2.3 and 4.2.4:

〈
Aσ µ ,Jµ

〉
=
〈
Aσ µ ,−〈Jν ,µ〉ν + 〈ν ,µ〉Jν

〉
=
〈Jν ,µ〉
cosα

〈
Aσ µ ,−cosα ν + sinα Jν

〉
=
〈Jν ,µ〉
cosα

〈
Ãσν ,cosα µ + sinα Jµ

〉
− tanα 〈Jν ,µ〉

1−〈ν ,µ〉2
[〈

Aσσ ,ν
〉
+ 〈ν ,µ〉

〈
Ãσσ ,µ

〉]
.
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We may extract a |τ|2 from the second of these terms, so working with the first term:

〈Jν ,µ〉
cosα

〈
Ãσν ,cosα µ + sinα Jµ

〉
=
〈Jν ,µ〉
cosα

〈
Ãσν , cosα 〈Jν ,µ〉Jν + cosα 〈ν ,µ〉ν + cosατ

− sinα 〈Jν ,µ〉ν + sinα 〈ν ,µ〉Jν + sinαJτ

〉
=
〈Jν ,µ〉2

cos2 α

〈
Ãσν ,cos2

α Jν + sin2
α Jν

〉
+ 〈Jν ,µ〉

〈
Ãσν ,τ

〉
=
〈Jν ,µ〉2

cos2 α

〈
Ãσν ,Jν

〉
− 〈Jν ,µ〉

〈
Ãσσ ,ν

〉
.

The second term contains a |τ|2, so we work with the first term. Using (4.10) and Lemma

4.2.1 for the third line:

〈Jν ,µ〉2

cos2 α

〈
Ãσν ,Jν

〉
=−〈Jν ,µ〉2

cos2 α

〈
Ãνν ,τ

〉
=
〈Jν ,µ〉2

cos2 α

〈
ÃI

I,τ
〉
− 〈Jν ,µ〉2

cos2 α

〈
H̃,τ

〉
=

1−〈ν ,µ〉2

cos2 α

〈
AI

I,τ
〉
− 〈Jν ,µ〉2

cos2 α

〈
H̃,τ

〉
+
|τ|2

cos2 α

[
〈Jν ,µ〉

〈
ÃI

I,Jν
〉
+ 〈ν ,µ〉

〈
AI

I,ν
〉]
.

The final term contains a |τ|2, so we work with only the first two terms. Using Lemma

4.2.2:

1−〈ν ,µ〉2

cos2 α

〈
AI

I,τ
〉
− 〈Jν ,µ〉2

cos2 α

〈
H̃,τ

〉
=

1−〈ν ,µ〉2

cos2 α

[〈
~H,τ

〉
−
〈
Aµµ ,τ

〉]
− 〈Jν ,µ〉2

cos2 α

〈
H̃,τ

〉
=

(1−〈ν ,µ〉2)|τ|2

cos2 α 〈Jν ,µ〉

〈
~H− H̃,Jν

〉
− 1−〈ν ,µ〉2

cos2 α

〈
Aµµ ,τ

〉
+
|τ|2

cos2 α

〈
H̃,τ

〉
.

Finally we note after rewriting
〈
Aσ µ ,Jµ

〉
following all the steps as above, the coefficient

of
〈
Aµµ ,τ

〉
in the overall equation for 1

4∇µ |ω|2 is now

1−

(
1−〈ν ,µ〉2

cos2 α

)
=
−sin2

α + 〈ν ,µ〉2

cos2 α
= − tan2

α

(
1− 〈ν ,µ〉

2

sin2
α

)
= − tan2

α |τ|2
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if α 6= 0, and vanishes in the case that α = 0. Putting all of this together, we obtain the

result.

4.3.2 Distance to the Boundary

We need a function ρ with a bounded evolution such that ∇µρ = −1 for all boundary

points, to use for our comparison principle argument. A natural choice would be the

ambient distance to Σ, but unfortunately this is not smooth at Σ and we cannot in general

avoid intersections of the interior of M with Σ due to the lack of geometric compari-

son principles for mean curvature flow in higher codimension. We instead consider a

function based on the intrinsic distance to Σ.

We also need the notion of boundary injectivity radius, which we define here.

Let µ be the outward pointing unit vector to ∂M. For p ∈ ∂M let γp(s) be the unit

speed geodesic starting at p ∈ ∂M with tangent vector −µ(p). We define the boundary

injectivity radius to be

inj∂M =
1
2

min
{

λ > 0
∣∣ ∃p ∈ ∂M such that γp((0,λ ))⊂M, but γp(λ )⊂ ∂M

}
.

If M is compact then inj∂M > 0 and in this case inj∂M coincides with the maximal collar

region such that the distance to the boundary function is smooth.

Lemma 4.3.2. Suppose Σt satisfies LMCF and Mt satisfies (4.4) such that there exist

constants CΣ and CM so that

sup
M×[0,T )

|A|<CM, sup
Σ×[0,T )

|Ã|<CΣ .

Let inj∂M > δ > 0 on [0,T ). Then there exists a function ρ : Mt → R which is smooth

and has the properties that 
( d

dt −∆
)

ρ ≤Cρ on Mt

∇µρ =−1 on ∂Mt

where Cρ depends only on Ã, A, and δ .
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Proof. Let r(p, t) = distMt (p,∂Mt), r : M× [0,T )→ R be the intrinsic distance to the

boundary. Note that r satisfies ∇µr = −1 at the boundary. Define the collar region

UR ⊂M by

UR = {p ∈M : r(p, t)≤ R, ∀t ∈ [0,T )},

and denote by gt the pullback metric on UR at time t. Since A and Ã are uniformly

bounded, we can guarantee that r is smooth on UR by choosing R < δ sufficiently small

(dependent on Ã,A) so that Ft(UR) contains no focal or conjugate points for all times

t ∈ [0,T ). We write the metric on UR as a product metric gt = dr2 + gr, and note that

since r is a non-singular distance function, we have the fundamental equation

∂rgr = 2Hess(r), (4.20)

(see for instance [56, Section 3.2.4]). Since (4.20) is linear, the Hessian cannot blow-up

on UR unless the metric degenerates. However, since UR contains no focal points, gr

cannot degenerate and hence

|Hess(r)| ≤C(Ã,A).

We now consider the time derivative of r for r < 1
2R. For any p, t we have that there exists

a unique geodesic γ(p,t) : [0,1]→M such that `(γ(p,t)) = r, γ(p,t)(0) = p and γ(p,t)(1) ∈

∂M. γ(p,t) must vary smoothly with time as otherwise it would contain conjugate points

which are disallowed by the restriction of r. Remembering that the energy of the curve

γ(p,t) is given by

E(γ) =
1
2

∫ 1

0
〈γ ′,γ ′〉g(t)

since γ(p,t)(s) is a minimiser of energy for the metric gt we have

0 =
∫ 1

0

〈
dγ ′

dt
,γ ′
〉

gt

ds,

where for convenience we write γ(p,t) = γ . Therefore, using the fact that 2E(γ) = `(γ)2
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for geodesics and Lemma 2.2.1, we calculate that

dr
dt

∣∣∣∣
(p,t)

=
1

`(γ)

∫ 1

0

(〈
dγ ′

dt
,γ ′
〉

gt

+
1
2
(γ ′)i(γ ′) j dgi j

dt

)
ds =− 1

`(γ)

∫ 1

0

〈
~H,A(γ ′,γ ′)

〉
ds.

We therefore have that for r < 1
2R,

(
d
dt
−∆

)
r ≤C(Ã,A)

and at the boundary

∇µr =−1 .

The lemma is achieved by setting ρ = η(r) where η is a smooth cutoff function so that
η(x) = x for x ∈ [0, R

8 ]

η(x) = R
4 for x ∈ [R

2 ,∞)

∂η

∂x (x)< 8 for x ∈ R.

4.3.3 Proof of Theorem 4.0.1

We now combine the evolution for |ω|2 derived in Section 3.1 and the estimates at the

boundary from Section 4.3.2 to prove by comparison principle that |ω|2 is bounded by its

initial value. This will complete the proof of preservation of the Lagrangian condition.

Lemma 4.3.3. Suppose that Σt satisfies LMCF and Mt is a totally real solution to (4.4)

on the time interval [0,T ). Suppose that there exist constants CM, CΣ and δ as in Lemma

4.3.2. Suppose that supM0
|ω|2 < 1

2 and T̃ is chosen so that for all t ∈ [0, T̃ ), supMt
|ω|2 <

1
2 . Then, there exists constants C1 =C1(CM,CΣ,n), C2 =C2(CM,CΣ,n) such that for all

t ∈ [0, T̃ ),

|ω|2 ≤C1 eC2t sup
M0

|ω|2.
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Proof. For ρ as in Lemma 4.3.2, we now consider

f = |ω|2eAρ−Bt

where 0 < A,B ∈ R. At the boundary we note that using Lemmas 4.3.1 and 4.3.2

∇µ f ≤ |ω|2eAρ−Bt(C(CΣ +CM)−A)

which is negative if we set A = C(CΣ+CM)+1. Therefore f has no boundary maxima.

Using Lemma 3.1.4, originally derived by K. Smoczyk [61, Lemma 3.2.8], there

exists a C2 =C2(CM) so that

(
d
dt
−∆

)
|ω|2 ≤C2|ω|2 .

As a result, at an increasing maximum of f we may estimate

0≤
(

d
dt
−∆

)
f

= |ω|2eAρ−Bt
[

1
|ω|2

(
d
dt
−∆

)
|ω|2 +A

(
d
dt
−∆

)
ρ−A2|∇ρ|2

−2
〈

∇|ω|2

|ω|2
,A∇ρ

〉
−B
]

= |ω|2eAρ−Bt
[

1
|ω|2

(
d
dt
−∆

)
|ω|2 +A

(
d
dt
−∆

)
ρ +A2|∇ρ|2−B

]
≤ |ω|2eAρ−Bt [C2 +ACρ +A2−B

]
where we used that as at a maximum ∇ f = 0, we have that ∇|ω|2

|ω|2 = −A∇ρ . Clearly,

making B sufficiently large now yields a contradiction, implying that

f ≤ sup
M0

f ,

completing the proof.

Proof of Theorem 4.0.1. Suppose Mt is a solution of (4.4) with M0 Lagrangian and

inj∂M > δ > 0, for t ∈ [0,T ). Then for any T̂ ∈ (0,T ), there exists a constant CM so
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that

sup
Ln×[0,T̂ )

|A|<CM, sup
Ln×[0,T̂ )

|Ã|<CΣ .

There also exists a maximal time T̃ ≤ T̂ such that for all t ∈ [0, T̃ ), supMt
|ω|2 < 1

2 and

Mt is totally real. We may therefore apply Lemma 4.3.3 to see that for all t ∈ (0, T̃ ),

|ω|2 = 0 and so T̃ = T̂ . As T̂ was arbitrary we see that for all t ∈ [0,T ), |ω|2 ≡ 0 .

4.4 Long-Time Convergence to a Special Lagrangian
In aid of the material in Chapter 6, we finish this chapter with a proposition on long-time

convergence of LMCF with boundary to a special Lagrangian.

Proposition 4.4.1. Suppose that:

• Σt = Σ is a special Lagrangian with Lagrangian angle π

2 ,

• L0 is almost-calibrated, that is θ0 ∈ (−π

2 + ε, π

2 − ε),

• and the solution to (4.1), Lt , exists for t ∈ [0,∞) with uniform estimates |∇kA|2 <

Ck.

Then Lt converges smoothly to a special Lagrangian with Lagrangian angle α .

To begin, we calculate the following evolution equation:

Lemma 4.4.2. Suppose L0 is zero-Maslov and Lt is a solution to (4.1). Then for any be

a smooth function f on Lt ,

d
dt

∫
Lt

f dH n =
∫

Lt

d f
dt
−|H|2 f dH n+

∫
∂Lt

f
[〈

H̃,Jν

〉
〈Jν ,µ〉−1− tanα∇µθ

]
dH n−1.

Proof. Here we have to distinguish between the standard mean curvature flow F

dF
dt

= ~H

which may “flow through the boundary” and a reparametrised mean curvature flow X :

Ln→ Y such that X(∂L, t)⊂ Σt and
(dX

dt

)⊥
= H, say

dX
dt

= ~H +V,
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where V is a time dependent tangential vector field on Lt . We write ∂ f
∂ t for time dif-

ferentiation with respect to X (as opposed to F , for which we write d f
dt ), and note the

following evolution equations:

∂

∂ t
gt =−2Hkhi jk +

〈
∇X jV,Xi

〉
+
〈

∇XiV,X j

〉
,

d f
dt

=
∂ f
∂ t
−〈∇ f ,V 〉 .

We therefore see that for a general smooth function f (remembering that µ is outward

pointing),

d
dt

∫
Lt

f dH n =
∫

Lt

(
∂ f
∂ t

+ f divLt (V )−|H|2 f
)

dH n

=
∫

Lt

(
∂ f
∂ t
−〈V,∇ f 〉− |H|2 f

)
dH n +

∫
∂Lt

f 〈V,µ〉dH n−1

=
∫

Lt

(
d f
dt
−|H|2 f

)
dH n +

∫
∂Lt

f 〈V,µ〉dH n−1.

At the boundary, ~H − H̃ +V ∈ T Σt , and as in the proof of Lemma 4.2.2, noting that

τ = 0 since L is Lagrangian:

~HNΣ− H̃ =CJν .

Writing V in the basis from Section 4.1,

〈V,µ〉〈µ,Jν〉= 〈V,Jν〉=
〈

H̃− ~H,Jν

〉
.

We observe that due to our boundary condition,
〈
~H,Jν

〉
=
〈
~H,Jµ

〉
〈µ,ν〉 =

〈µ,ν〉∇µθ , and recall that 〈ν ,µ〉〈Jν ,µ〉 = tanα , completing the Lemma.

Corollary 4.4.3. If Σ is special Lagrangian with Lagrangian angle π

2 , then

d
dt

∫
Lt

f dH n =
∫

Lt

((
d
dt
−∆

)
f −|H|2 f

)
dH n

+
∫

∂Lt

(
∇µ f − f tanα∇µθ

)
dH n−1 ,



108 Chapter 4. LMCF with Boundary in Calabi-Yau Manifolds

and if f = f (θ) then

d
dt

∫
Lt

f dH n =
∫

Lt

−|H|2( f ′′+ f )dH n +
∫

∂Lt

( f ′− f tanα)∇µθdH n−1 .

We now make the following observation

Lemma 4.4.4. If Σ is special Lagrangian with Lagrangian angle π

2 , and θ0 ∈ (−π

2 +

ε, π

2 − ε) then while the flow exists

d
dt

∫
Lt

cos(θ)dH n = 0 .

In particular, |Lt | is bounded from above and below.

Proof. Due to the boundary condition on ∂L, θ = −α , and so the maximum princi-

ple implies that the bounds on θ are preserved. Set f (x) = cos(x), then f ′′ = − f and

f ′(−α)− tan(α) f (−α) = 0. |Lt | is bounded as cos(θ) is bounded from above and

below away from 0 (depending on ε).

Lemma 4.4.5. If Σ is special Lagrangian with Lagrangian angle π

2 , L0 is zero Maslov

and there exists a constant V such that |Lt |<V . Then there exists a constant c = c(n,V )

such that

∫
Lt

(θ +α)2dH n ≤Ce−ct ,
∫

∞

0

∫
Lt

|H|2e
c
2 tdH ndt ≤C.

Proof. We apply Corollary 4.4.3 with f (θ) = (θ +α)2p for some p ≥ 1. In particular,

at the boundary f = f ′ = 0 and so

d
dt

∫
Lt

(θ +α)2pdH n =−
∫

Lt

|H|2(θ +α)2p +
2p(2p−1)

p2 |∇(θ +α)p|2dH n. (4.21)

We recall that the Michael–Simon Sobolev inequality [48] implies that

(∫
Lt

φ
2n

n−1

) n−1
2n

≤C(n, |Lt |)
√∫

Lt

|∇φ |2 + |H|2|φ |2dH n,

and we note that as θ +α is zero on ∂Lt , it is a function of compact support on the
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interior of Lt and this theorem applies to φ = (θ +α)p for all p≥ 1.

We see that by choosing φ = (θ +α)p then

d
dt

∫
Lt

(θ +α)2pdH n ≤−c̃(n, |Lt |)
(∫

Lt

[
(θ +α)2p] n

n−1 dH n
) n−1

n

≤−c(n, |Lt |)
∫

Lt

(θ +α)2pdH n, (4.22)

and so
d
dt

∫
Lt

(θ +α)2pectdH n ≤ 0.

Finally, setting p = 1 and using (4.21) and (4.22):

d
dt

∫
Lt

(θ +α)2e
c
2 tdH n =

c
2

∫
Lt

(θ +α)2e
c
2 tdH n + e

c
2 t d

dt

∫
Lt

(θ +α)2dH n

≤ 1
2

e
c
2 t d

dt

∫
Lt

(θ +α)2dH n

≤−1
2

e
c
2 t
∫

Lt

|H|2(θ +α)2 +2|∇θ |2dH n

≤−e
c
2 t
∫

Lt

|H|2dH n .

Integrating implies the final claim.

Proof of Proposition 4.4.1. Due to Lemma 4.4.5 and the above regularity as-

sumptions, there exists a T > 0 such that for all t > T , |H| < e−
c
4 t . This bounds

the normal velocity of the parametrisation F , and as a result we see that for s, t > T ,

dist(Ls,Lt) <
4
c e−

c
4 min{s,t}. Clearly, as t → ∞, ~H → 0, and so we see that Lt converges

to a special Lagrangian, first subsequentially by Arzela–Ascoli, then uniformly by the

above, then smoothly by interpolation.





Chapter 5

Equivariant Lagrangian Mean

Curvature Flow in Cn

We now turn our attention to the formation and structure of singularities and criteria

for long-time existence in Lagrangian mean curvature flow. To make progress on this

daunting program, we choose in this chapter to focus in detail on a particular case: the

flow of O(n)-equivariant submanifolds of Cn. These are submanifolds with an O(n)-

symmetry, and which therefore may be represented as a ‘profile curve’ in C symmetric

across the origin, upon a quotient by the group action. As we shall see, these subman-

ifolds are necessarily Lagrangian (Lemma 5.1.1), and so they provide a model case for

Lagrangian mean curvature flow. The equivariance essentially reduces the codimension

of the flow to 1, making the analysis significantly more tractable, and the diagrams easier

to draw!

We also restrict to almost-calibrated Lagrangian mean curvature flow (as de-

fined in Section 2.4.2), which is the condition that the Lagrangian angle θt satisfies

θt ∈ (θ − π

2 + ε,θ + π

2 − ε) for constants ε > 0 and θ . This is a necessary condition for

the Thomas-Yau conjecture as reformulated by D. Joyce in [36], which approximately

states that long-time existence and convergence of Lagrangian mean curvature flow is

equivalent to a ‘stability condition’, as is true for Hermitian-Yang-Mills flow.

When combined with the equivariance, it can be seen that the almost-calibrated

condition implies that the flow is non-compact and embedded (Lemmas 5.1.2 and 5.1.3).

The results of Chapter 5 comprise original work, and appear in the preprint [78].
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It is therefore most natural to work with asymptotically conical flows Lt , and in fact in

this case by the equivariance the asymptotic cone must be a union of planes. To this

end, we say that a Lagrangian mean curvature flow has planar asymptotics if outside a

compact ball BR, the flow Lt may be written as a graph over finitely many fixed planes

through the origin which decay smoothly to those planes at infinity, and we will work

with flows with planar asymptotics throughout. The questions of short-time existence

and uniqueness for LMCF with planar asymptotics have been answered in the affirmative

by W-B. Su [67], and will not be considered here.

We can already deduce much about what singularities of such a flow must look like.

As we have seen in Theorem 3.4.1 (first proven by M-T. Wang in [72]), a singularity

of almost-calibrated Lagrangian mean curvature flow must be Type II, meaning that the

Type I blowup is not a smooth flow, and in fact Theorem 3.4.2 of A. Neves [50, Theorem

A] implies that the Type I blowup must be a union of special Lagrangian cones. In the

equivariant case, the only special Lagrangian cones are unions of planes through the

origin. The profile curve of such a cone is a union of lines through the origin, which

have pairwise argument differences of multiples of π

n . Therefore, any Type I blowup of

an almost-calibrated equivariant Lagrangian mean curvature flow must consist of a union

of special Lagrangian planes. However, these results still leave much unknown about the

nature of singularities: we do not know where and when a singularity may occur, there

may be any number of planes with any integer density comprising the Type I blowup,

and no information is given on the finer structure of the singularity, for example the Type

II blowups as defined in Section 2.2.3. In this chapter we thoroughly investigate these

topics.

We now go through our results in detail. The first main result, Theorem 5.2.8,

provides a complete classification of singularities for our considered flow. Explicitly,

we prove that any singularity of an almost-calibrated equivariant LMCF with planar

asymptotics must occur at the origin, and that its Type I blowup is a special Lagrangian

transverse pair of planes P1∪P2 which does not depend on the rescaling sequence (see

Figure 5.10).

Theorem 5.0.1. Let Lt be an almost-calibrated, connected O(n)-equivariant mean cur-
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vature flow in Cn with planar asymptotics.

Then any finite-time singularity must occur at the origin. Additionally, a Type I

blowup of such a singularity must be a special Lagrangian cone consisting of a trans-

verse pair of planes P1∪P2 with identical Lagrangian angle, and the blowup does not

depend on the rescaling sequence. The profile curves of these planes intersect at an

angle of π

n .

We also analyse how the initial condition of the flow affects the long-time behaviour

of the flow, and in doing so paint an almost complete picture of almost-calibrated equiv-

ariant mean curvature flow in Cn. The profile curve l0 of a connected, equivariant La-

grangian L0 may have one of two different topologies - it can consist of a single curve

that passes through the origin, asymptotic to a single line, or two mirrored curves that do

not pass through the origin, asymptotic to two different lines spanning an angle α (see

Figure 5.3). We use this profile curve to classify our flows into three groups, namely

the flows that pass through the origin, the flows with α > π

n , and the flows with α ≤ π

n .

We prove in the first and third cases a long-time existence result (Theorems 5.2.9 and

5.2.12), and in the second case that a singularity must occur (Theorem 5.2.11). Here, we

collate these results into one theorem.

Theorem 5.0.2. Let Lt be an almost-calibrated, connected, O(n)-equivariant mean cur-

vature flow in Cn with planar asymptotics. Then, if the profile curve of the initial em-

bedding l0 passes through the origin, then Lt exists for all time. Otherwise, denoting by

α the angle between the asymptotes of a connected component of the profile curve l0:

• If π

n < α < 2π

n , then a finite-time singularity must occur, with form given by Theo-

rem 5.0.1.

• If α ≤ π

n , and l0 is contained in the cone between the asymptotic lines, then Lt

exists for all time.

Remark 5.0.3. In the case where the profile curve has two connected components, a

calculation shows that the Lagrangian angle along these asymptotes differs by nα −

π . Therefore the angle α between the asymptotes must be less than 2π

n by the almost-

calibrated condition (see Lemma 5.2.7 for a rigorous proof). This calculation also shows
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(a) Initial Condition (b) MCF

Figure 5.1: The profile curve of Neves’ equivariant mean curvature flow in C2 spanning an angle
β = 2π

3 , which forms a singularity at the origin.

(a) Type I rescalings, at a fixed time (the initial
condition is in black).

(b) The Type I blowup, i.e. the limiting Brakke
flow of the Type I rescalings.

Figure 5.2: Convergence of the profile curves of the Type I rescalings of Neves’ equivariant
mean curvature flow in C2 spanning an angle of β = 2π

3 .
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Figure 5.3: The flow of the profile curve of three different equivariant almost-calibrated La-
grangian mean curvature flows in C2, representing each of the three different cases
of Theorem 5.0.2. In each diagram, the black curve is the initial condition, and the
thick black lines are the asymptotes.
The top-left diagram depicts the flow of a Lagrangian which passes through the ori-
gin, and exists for all time. The top-right diagram depicts the α > π

2 case, where a
singularity forms under the flow. The lower diagram depicts the α < π

2 case, where
the flow exists for all time (in this case, it converges to an Anciaux expander).
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that two lines with an angle of π

n is the profile curve of a special Lagrangian pair of

planes.

In the α ≤ π

n case, long-time existence was proven by W-B. Su [67], and addition-

ally that (with extra assumptions) the flow converges in infinite time to a Lawlor neck

ΣLaw if α = π

n and the Anciaux expander if α < π

n (see Examples 3.3.1 and 3.3.3 and

Figure 5.3). Note that for this case we require the stronger condition that l0 lies en-

tirely within a cone of angle π

n - without this condition, both singularities and long-time

existence are possible.

Finally, we examine the Type II blowups of the flow. It is conjectured that any Type

II blowup should have the same asymptotes as a Type I blowup, i.e. the ‘blowdown’ of

a Type II blowup should be a Type I blowup of the flow. Evidence for this is provided

both by A. Savas-Halilaj and K. Smoczyk in [58], where it is shown that equivariant

Lagrangian spheres develop Type II singularities with a double-density plane as the

Type I blowup and the grim reaper as the Type II blowup, and by J. Velázquez in [71],

in which he provides a MCF whose Type I blowup is the Simons’ cone and whose

Type II blowup is the unique minimal hypersurface tangent to it at infinity. Further

analysis of the Velázquez example was undertaken by N. Sesum and S-H. Guo [25]

and M. Stolarski [66], including explicit estimates for the mean curvature and second

fundamental form, and an examination of the intermediate scales.

Recently, B. Lambert, J. Lotay and F. Schulze [41] proved that if the blowdown of

a smooth Type II blowup is a pair of transverse planes P1 ∪P2, the blowup must be a

Lawlor neck ΣLaw, which is the minimal hypersurface with asymptotes P1∪P2 (unique

up to scaling). Therefore if the above conjecture were true we would expect by Theorem

5.0.1 that every Type II blowup of an almost-calibrated O(n)-equivariant flow to be a

Lawlor neck. We verify this explicitly.

Theorem 5.0.4. Let Lt be an almost-calibrated, connected, O(n)-equivariant mean cur-

vature flow in Cn with planar asymptotics.

Then up to a translation, a Type II blowup of any finite-time singularity is the unique

Lawlor neck with the same Lagrangian angle as the unique Type I blowup P1∪P2 and

max |A|2 = 1. In particular, the asymptotes of this Type II blowup are the planes P1 and
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P2.

We also check the ‘intermediate scales’, to confirm that there is no different be-

haviour in between the Type I and Type II scales – this is the content of Section 5.2.6.

We prove that, using the same sequence of times as a Type II rescaling, if we use blowup

factors smaller than the second fundamental form then we still obtain the blowup P1∪P2.

Theorem 5.0.5. Let Lt be an almost-calibrated, connected O(n)-equivariant mean cur-

vature flow in Cn with planar asymptotics. Assume that Lt forms a singularity at the

origin at time t = 0, and let

Ltk,λk
τ := λkLtk+T+λ

−2
k τ

be a sequence of rescalings satisfying

δk :=
λk

Ak
→ 0, −λ

2
k tk→ ∞,

where Ak := maxLtk
(|A|), and 0 > tk → 0 satisfies (2.14) for pk ≡ 0. Then for any R,ε

and finite time interval I, there exists a subsequence such that Ltk,λk
τ ∩ (BR\Bε) may be

expressed as a graph over P1∪P2 for τ ∈ I, and this graph converges in C1;0([ε,R]× I)

(C1 in space, C0 in time) to 0.

The proofs of these theorems are contained in Section 5.2. Section 5.1 contains

material on O(n)-equivariant submanifolds, including descriptions of the Lawlor neck

and convergence theorems for sequences of equivariant submanifolds.

5.1 O(n)-Equivariant Submanifolds in Cn

Throughout this chapter, we will restrict our attention to connected O(n)-equivariant

submanifolds in Cn, where Cn is equipped with its usual Kähler structure (see Example

2.3.3). An O(n)-equivariant submanifold L is a submanifold L ⊂ Cn that may be

expressed as the image of a function

L : M1×Sn−1→ Cn = Rn×Rn, L(s,α) = (a(s)α, b(s)α) , (5.1)
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for some smooth functions a,b : M1→ R, where M is a 1-dimensional manifold. L is

invariant under the O(n) action

O(n)� Cn, A
(
(x,y)

)
= (Ax,Ay)

for x,y ∈ Rn, A ∈ O(n). Of particular importance is that L(s,α) =−L(s,−α), implying

that L has reflective symmetry through the origin. The profile curve

l : M1→ C, l(s) = a(s)+ ib(s) (5.2)

can therefore be chosen to have reflective symmetry across the origin. Throughout the

remainder of the chapter, we will make this choice (we can think of the profile curve as

the intersection Lt ∩ (C×{0}n−1), if we identify C with C×{0}n−1). Since we demand

that the manifold L is connected, if l passes through the origin then we must have a

single connected component, and if it does not, then l has two connected components γ

and−γ . In the case that l passes through the origin, note that by the reflective symmetry,

~H = 0 there.

We will now prove some results regarding equivariant submanifolds. Firstly, we

prove that O(n)-equivariant submanifolds are examples of Lagrangian submanifolds,

and that the Lagrangian angle is preserved under the O(n) rotations.

Lemma 5.1.1. An immersed O(n)-equivariant surface L⊂Cn is a Lagrangian subman-

ifold.

Proof. We must show that ω|L ≡ 0. If we pick a local coordinate system (σ1, . . . ,σn−1)

for Sn−1, the derivatives of L are given by

∂L
∂ s

=
(
a′(s)α, b′(s)α

)
,

∂L
∂σ i =

(
a(s)

∂α

∂σ i , b(s)
∂α

∂σ i

)
,

where we identify Cn with Rn×Rn. Remembering that the almost complex structure J
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in Cn is given by J(x,y) = (−y,x), we can then calculate ω|L:

ω

(
∂L
∂σ i ,

∂L
∂σ j

)
=

〈
J
(

∂L
∂σ i

)
,

∂L
∂σ j

〉
=

(
−b(s)

∂α

∂σ i , a(s)
∂α

∂σ i

)
·
(

a(s)
∂α

∂σ j , b(s)
∂α

∂σ j

)
= 0,

ω

(
∂L
∂ s

,
∂L

∂σ j

)
=
(
−b′(s)α, a′(s)α

)
·
(

a(s)
∂α

∂σ j , b(s)
∂α

∂σ j

)
= 0,

ω

(
∂L
∂ s

,
∂L
∂ s

)
=
(
−b′(s)α, a′(s)α

)
·
(
a′(s)α, b′(s)α

)
= 0,

where for the second line we use α · ∂α

∂σ j = 0, which is a property of the sphere Sn−1.

Since equivariant submanifolds are Lagrangian, we may consider the Lagrangian

angle θ , as defined in (2.26). Locally and up to a multiple of 2π , the Lagrangian angle

is given by (2.30) to be

θ(s,α) = (n−1)arg(l(s)) + arg(l′(s)). (5.3)

Note that this implies the Lagrangian angle is well-defined for the profile curve l.

Throughout this chapter, we will be using the more general definition of ‘special

Lagrangian’ and ‘almost-calibrated’. Namely, a Lagrangian is said to be a special La-

grangian if its Lagrangian angle is constant, θ = θ , and almost-calibrated if there

exist θ and ε > 0 such that

θ ∈
(

θ − π

2
+ ε, θ +

π

2
− ε

)
.

Note that the latter condition implies that the Lagrangian is zero-Maslov, i.e. the La-

grangian angle is a function θ : L→ R.

We now show that embedded zero-Maslov O(n)-equivariant Lagrangians cannot be

compact, and the embeddedness assumption follows if our Lagrangian is also almost-

calibrated.

Lemma 5.1.2. A connected, O(n)-equivariant, embedded, zero-Maslov Lagrangian

submanifold L of Cn is non-compact and rational. Moreover, if the profile curve contains
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the origin, then L∼= Rn, and if not, L∼= R×Sn−1.

Proof. Assume that the profile curve l is compact, for a contradiction. Consider for

simplicity a connected component γ of the profile curve l, which is embedded by as-

sumption and homeomorphic to a circle. Firstly we claim that O /∈ γ . Otherwise, we

could parametrise γ by unit-speed such that

γ(0) = O, γ(s) =−γ(−s)

by the O(n)-equivariance. But then since γ is compact, there must exist S > 0 such that

γ(S) = γ(−S), which implies that γ(S) = O. This contradicts embeddedness of γ .

Now consider the following integral:

∫
γ

dθ =
∫

∂

∂ s
arg(γ ′(s))ds + (n−1)

∫
∂

∂ s
arg(γ(s))ds

= 2πT (γ) + 2(n−1)πWO(γ),

where T (γ) is the turning number, and WO(γ) is the winding number around the origin.

Since γ is embedded, it follows from standard theory that T (γ) ∈ {−1,1}, and W (γ) ∈

{T (γ),0} (depending on whether the origin is contained in γ or not). It follows that

[dθ ][γ] 6= 0, contradicting the zero-Maslov assumption.

Finally, since the submanifold has been shown to be non-compact, the domain for

the profile curve M1 must be homeomorphic to R. So, by the equivariance, L ∼= Rn

or R× Sn−1 (depending on whether the profile curve contains the origin or not respec-

tively). Since both of these have first homology generated by at most one element,

rationality of L follows from the definition.

Lemma 5.1.3. A connected, O(n)-equivariant, almost-calibrated Lagrangian submani-

fold L of Cn must be embedded, non-compact and rational.

Proof. Consider a connected component of the profile curve, l : M1→C. Parametrising

M1 by the real numbers (or a quotient of R if M1 is compact), choose a∈M1 sufficiently

small such that there exists c > a with l([a,c]) not embedded. Taking c as the infimum
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Figure 5.4: The proof of Lemma 5.1.3. The case where the intersection is away from the origin
is depicted on the left, with the smoothing highlighted in red, and the case where the
intersection is at the origin is depicted on the right.

of its possible values, it follows that there exists a ≤ b ≤ c such that l(b) = l(c), and

l([b,c]) is a closed loop.

We consider two possibilities: either l(b) = l(c) = O, or l(b), l(c) 6= O (see Figure

5.4). In the latter case, at the point l(b) we may smooth the curve off to create a closed,

embedded loop γ . By (5.3), we can do this so that the Lagrangian angle of the smoothed

section lies in the interval (θ(b)−ε,θ(c)+ε) for any given ε . This produces a compact,

embedded, almost-calibrated loop, which contradicts Lemma 5.1.2. In the other case,

assume without loss of generality that the loop is oriented anticlockwise, and define

α :=
∫

l([b,c])

∂

∂ s
arg(γ ′(s))ds, β :=

∫
l([b,c])

∂

∂ s
arg(γ(s))ds.

Note that due to the orientation and embeddedness, α,β must be positive, and α−β =
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π . It therefore follows that

∫
[b,c]

dθ =
∫

l([b,c])

∂

∂ s
arg(γ ′(s))ds + (n−1)

∫
l([b,c])

∂

∂ s
arg(γ(s))ds

= α +(n−1)β

= π +nβ

> π,

which is a contradiction to the almost-calibrated condition.

We remark that there do exist non-embedded zero-Maslov equivariant curves, for

example any equivariant Lagrangian with a ‘figure 8’ profile curve through the origin,

such as the Whitney sphere studied in [58].

5.1.1 O(n)-Equivariant Special Lagrangians

We would now like to characterise the O(n)-equivariant special Lagrangian cones in Cn

(potential Type I blowup models) and the O(n)-equivariant smooth special Lagrangians

(potential Type II blowup models).

Lemma 5.1.4. The only O(n)-equivariant special Lagrangian cones in Cn are unions of

special Lagrangian planes, with profile curve consisting of unions of lines through the

origin.

Proof. The only special Lagrangian cones in C are lines through the origin, so this

follows from the equivariance and (5.3).

Lemma 5.1.5. The only O(n)-equivariant surfaces in Cn with constant Lagrangian an-

gle of θ are those with profile curves given by either lines through the origin, or the

parametrisation

r(α) =
B

n
√

sin(θ −nα)

for B≥ 0. In the latter case, these are the Lawlor necks of Example 3.3.1.



5.1. O(n)-Equivariant Submanifolds in Cn 123

Proof. If a connected component γ of the profile curve is not a line through the origin,

then there is an open interval on which it may be parametrised by angle, i.e. as γ(α) =

r(α)eiα . Then on this interval,

γ̇ = (ṙ+ ir)eiα =⇒ θ = nα + cot−1( ṙ
r ).

by equation (5.3). Integrating this gives the expression in the statement, and since this

expression is valid until the value of r diverges to ∞, the entire connected component

may be parametrised in this way.

5.1.2 Limits of O(n)-Equivariant Submanifolds

When considering Type I and Type II blowups, we will be trying to understand the limit

of sequences of submanifolds, Li. Since they are translations and dilations of equivariant

submanifolds, they will have rotational symmetry, but the centres of rotation xi may not

be the origin (though without loss of generality, we will be able to assume that xi ∈

C×{0}n−1). There are two possible behaviours: either |xi| stays bounded, or diverges

to infinity. These two cases will correspond to equivariance and translation invariance

respectively for the limiting object.

We formalise and prove these statements. Consider for the rest of this section a

sequence Li of submanifolds of Cn, which converge in the sense of Radon measures

to µ∞ := mH n ¬L∞, where m is a multiplicity function and L∞ is the supporting set.

Explicitly, for all φ ∈C∞
c (Cn), denoting the underlying Radon measures of the Li by µi,

µi(φ) =
∫

Li
φ dH n → µ∞(φ) =

∫
L∞

mφ dH n.

Assume that Li is a translation of an O(n)-invariant submanifold by xi ∈ C×{0}n−1,
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therefore invariant under the rotation mappings

Rxi : Sn−2×R×Cn→ Cn,

Rxi(α,λ ,y) :=


cos
(

λ

|y−xi|

)
−sin

(
λ

|y−xi|

)
sin
(

λ

|y−xi|

)
cos
(

λ

|y−xi|

) 0

0 Id

(y− xi)+ xi, (5.4)

where α ∈ Sn−1 ∩
(
{0}×Rn−1) ∼= Sn−2 is an equatorial element of Sn−1 (the direction

of rotation), λ ∈ R is a distance factor, and for the matrix we have used an orthogonal

basis of Rn starting with e1 and α . Note that keeping α constant and varying λ creates

a 1-parameter family of rotations that corresponds to the rotations of the S1 ⊂ Sn−1

containing α and e1. Define also the translation map

Txi(α,λ ,y) := y−λ


0 −1

1 0
0

0 0

 xi

|xi|
, (5.5)

using the same basis.

Lemma 5.1.6. If |xi| → ∞, then we may pass to a subsequence such that as i→ ∞,

xi
|xi| → v, Rxi → Tv

in C∞
loc. If |xi| remains bounded, then we may pass to a subsequence such that as i→ ∞,

xi→ x, Rxi → Rx

in C∞.

Proof. This is clear in the |xi| bounded case. If |xi| →∞, then first pass to a subsequence

such that xi
|xi| → v. Fixing a compact region of the domain U ⊂ Sn−2×R×Cn and taking
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(α,λ ,y) ∈U ,

λ

|y− xi|
→ 0

=⇒ Rxi(α,λ ,y)−Txi(α,λ ,y) =


cos
(

λ

|y−xi|
)
−1 −sin

(
λ

|y−xi|
)

sin
(

λ

|y−xi|
)

cos
(

λ

|y−xi|
)
−1

0

0 0

y+


1− cos

(
λ

|y−xi|
)

sin
(

λ

|y−xi|
)
− λ

|xi|

−sin
(

λ

|y−xi|
)
+ λ

|xi| 1− cos
(

λ

|y−xi|
) 0

0 0

xi −→ 0,

where all convergences are uniform in U . Similarly, the derivatives converge uniformly.

Since also

|Txi(α,λ ,y)−Tv(α,λ ,y)| → 0

in C∞, the result follows.

What kind of invariance can we deduce for µ∞ from this lemma? It is immediate

that in both cases we can extract a measure-theoretic invariance. For example in the |xi|

unbounded case, taking φ ∈C∞
c :

µ∞(φ ◦Tv(α,λ , ·)) = lim
i→∞

µi(φ ◦Rxi(α,λ , ·)) = lim
i→∞

µi(φ) = µ∞(φ).

It follows that if L∞ is a cone smooth away from the origin, or indeed a smooth

manifold, then we have invariance of the supporting set, as well as of the multiplicity

function.

One of the most useful aspects of O(n)-equivariant smooth manifolds is that they

are characterised by the intersection with C×{0}n−1. In particular, it is convenient to

replace the H n (Hausdorff) measure of our submanifolds with the H 1 measure of their

intersection with C×{0}n−1. We wish to do this also with our limit µ∞, in the case where

L∞ is a cone. In place of the Hausdorff measures H n and H 1, we work with the limiting

measure µ∞, and the limiting measure µ̃∞ of the profile curve l∞ = L∞ ∩ (C×{0}n−1)
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respectively:

µ∞(A) =
∫

L∞∩A
mH n, µ̃∞(A) =

∫
l∞∩A

mH 1.

From now on, we assume that xi
|xi| → e1 = (1,0, . . . ,0), since this may be achieved by

passing to a subsequence and applying a rotation.

Lemma 5.1.7. Assume that the Li are as above, converging to µ∞ as Radon measures.

If |xi| → ∞ and xi
|xi| → e1, then µ∞ is supported on C×Rn−1 ⊂ C×Cn−1. If instead xi

limits to x, then µ∞ is supported on {Rx(α,λ ,z) : α ∈ Sn−2, λ ∈ R, z ∈ C×{0}n−1}.

Proof. Note that Li is supported on {Rxi(α,λ ,z) : α ∈ Sn−2, λ ∈ R, z ∈ C×{0}n−1},

since the profile curve determines the entire submanifold. Therefore in the |xi| un-

bounded case, for any open set U disjoint from C×Rn−1 = {T1(α,λ ,z) : α ∈ Sn−2, λ ∈

R, z ∈ C×{0}n−1}, the submanifolds Li are eventually disjoint from U , by the conver-

gence of Rxi to T1. It follows that L∞ is supported on Uc, and so the result follows since

U was arbitrary. An identical argument works if |xi| is bounded.

Lemma 5.1.8. Assume that Li are as above, converging to µ∞ as Radon measures, |xi|→

∞ and xi
|xi| → e1. Assume L∞ is a cone, smooth away from the origin, with profile curve

l∞ in C. Then, denoting the ball of radius δ in C by BC
δ

, the surface area and enclosed

volume of the unit sphere Sn−1 ⊂ Rn by ωn−1 and Vn respectively,

µ̃∞(BC
δ
)

2δ
=

µ∞(Bδ )

δ nVn
.

Proof. By Lemmas 5.1.6 and 5.1.7, L∞ and m are invariant under T1, and supported on
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C×Rn−1. Remembering that L∞ is a cone, and applying the coarea formula:

µ∞(BCn

δ
)δ nVn =

1
δ nVn

∫
Bn−1

δ
⊂{0}×Rn−1

µ̃∞

(
BC√

δ 2−|α|2

)
dα

=
µ̃∞(BC

δ
)

δ n+1Vn

∫
Bn−1

δ

√
δ 2−|α|2 dα

=
µ̃∞(BC

δ
)

δ n+1Vn

∫
δ

0
rn−2

ωn−2

√
δ 2− r2dr

=
µ̃∞(BC

δ
)

2δ
.

Finally, we show that the H 1 cross-sectional measures of the profile curves li con-

verge to the µ̃∞ measure of the limiting profile curve l∞. In the next section, this will

allow us to consider the densities of the profile curve in C, instead of the densities of the

n-dimensional submanifolds in Cn.

Lemma 5.1.9. Assume Li are as above, converging to µ∞ as Radon measures,

|xi| → ∞ and xi
|xi| → e1. Assume L∞ is a cone, smooth away from the origin, with profile

curve l∞ in C. Then denoting the profile curves by li,

H 1(li∩BC
δ
)→ µ̃∞(Bδ ).

Proof. Define the fattened disk sets:

C∞

δ ,Λ := {T1(α,λ ,z) : λ ∈ [−Λ,Λ], α ∈ Sn−2, z ∈ BC
δ
},

Ci
δ ,Λ := {Rxi(α,λ ,z) : λ ∈ [−Λ,Λ], α ∈ Sn−2, z ∈ BC

δ
}.

By Radon measure convergence and Lemma 5.1.6, it follows that

H n(Li∩Ci
δ ,Λ)→ µ∞(C∞

δ ,Λ).

But also, by rotation invariance and the co-area formula, denoting by An−1(r,λ ) the



128 Chapter 5. Equivariant Lagrangian Mean Curvature Flow in Cn

(n−1)-dimensional Hausdorff measure of the cap of Sn−1
r with polar angle of λ :

lim
i→∞

H n(Li∩Ci
δ ,Λ) = lim

i→∞

∫
li∩BC

δ

An−1

(
|x− xi|,

Λ

|x− xi|

)
dH 1

≤ lim
i→∞

(
An−1

(
|xi|+δ ,

Λ

|xi|−δ

)∫
li∩BC

δ

1 dH 1

)
= Λ

n−1Vn−1 lim
i→∞

(
H 1(li∩BC

δ
)
)
,

and an identical inequality holds in the other direction by changing the sign of δ in the

|xi|+δ , |xi|−δ terms. Since L∞ is invariant under T1, it follows that

lim
i→∞

H 1(li∩BC
δ
) =

µ∞(C∞

δ ,Λ)

Λn−1Vn−1
= µ̃∞(BC

δ
).

5.2 O(n)-Equivariant Mean Curvature Flow in Cn

We now consider an almost-calibrated, connected O(n)-equivariant mean curvature flow

in Cn, which we denote Lt , with profile curve lt in C. By Lemmas 5.1.2 and 5.1.3, lt

is embedded and non-compact. We will denote the abstract manifold by L, and the

Lagrangian angle at time t by θt . We use s ∈ R to denote the parameter along lt (note

that by Lemma 5.1.2, lt is non-compact) and α for the spherical parameter, so that the

Lagrangian submanifold is parametrised by

Lt(s,α) = (at(s)α, bt(s)α).

We will assume throughout that our flow has planar asymptotics. By this, we mean

that our profile curve lt is graphical over finitely many lines outside of some ball BR, and

the graph function converges smoothly to 0 at infinity. In fact due to the equivariance, it

must be graphical over exactly one or two lines, depending on whether lt passes through

the origin or not (see Figure 5.3). This assumption provides uniformly bounded area

ratios, which are necessary to use Neves’ Theorem 3.4.2 and 3.4.3. Note that if the pro-

file curve is asymptotic to two different lines, then for the curve to be almost-calibrated
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the angle between these lines must be less than or equal to 2π

n . This follows from (5.3)

by considering the value of θ as the profile curve decays to the asymptotes, and will be

proven more rigorously in Lemma 5.2.7.

The curvature tensors are simpler in the equivariant case. Working with Lt ∩ (C×

{0}n−1) for simplicity, the mean curvature vector of the Lagrangian can be divided into

two key components:

~H =~k− (n−1)~p,

where~k = γ ′′⊥

|γ ′|2 is the curvature of the profile curve, and ~p = γ⊥

|γ|2 is the curvature induced

by the equivariance. Denoting by ν = Jγ̇

|γ̇| the unit normal vector within C×{0}n−1, we

can also define the scalar quantities~k = kν and ~p = pν . The other curvature quantities

may be expressed in terms of k and p. In the following tensor expressions, we will

use normal coordinates ei on the sphere centred at the point we are considering, where

i ∈ {2,3, . . . ,n}.

Lemma 5.2.1. The extrinsic curvature quantities for equivariant Lagrangians as as fol-

lows, where all unmentioned components are equal to 0 (i, j 6= 1):

gss = |l′|, gii = |l|2,

hsss = |l′|3k, hiis = −|l|2|l′|p,

H = |l′|(k− (n−1)p)ds,

|H|2 = (k− (n−1)p)2 ,

|A|2 = k2 +3(n−1)p2,

5.2.1 Evolution Equations for Equivariant Lagrangians

The equivariant condition significantly simplifies the study of mean curvature flow, since

we may study the flow of the profile curve, given by

∂ l
∂ t

=~k− (n−1)~p. (5.6)
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We refer to this as the equivariant flow. This is simpler than Lagrangian mean curvature

flow in general as it is a codimension 1 flow, and therefore essentially a single PDE as

opposed to a system.

There are several parametrisations of the profile curve that will come in useful.

Firstly, if u : R→ R is a graph function such that our flow may be expressed as lt(x) =

(x,ut(x)), then the evolution of ut under mean curvature flow is given by

∂u
∂ t

=
u′′

1+(u′)2 +(n−1)
xu′−u
x2 +u2 (5.7)

= a(u′)u′′ + b(x,u,u′). (5.8)

It is also often useful to parametrise in polar coordinates, lt(s) = rt(s)eis, in which case

the evolution of rt under mean curvature flow is given by

∂ r
∂ t

= −θ ′

r
, (5.9)

where θ ′ is the derivative of the Lagrangian angle with respect to the angle s.

5.2.2 Embeddedness and Avoidance Principle

We have already seen in Lemma 5.1.3 that almost-calibrated equivariant Lagrangians

in Cn must be embedded. In this section, we derive some more general results about

embeddedness and avoidance for equivariant Lagrangian mean curvature flow, without

requiring the almost-calibrated hypothesis. This will be useful later so that we can use

barriers to control the flow.

Though embeddedness does not typically hold for higher codimension MCF, it does

for the equivariant case, since we may work with the profile curve and the equivariant

flow (5.6). However, the equation (5.6) becomes singular at the origin, so we must treat

the possibility of embeddedness breaking there separately. We cover this complication

first by showing that embeddedness cannot break at the origin. Throughout, we denote

the first time of non-embeddedness by Temb and the singular time (first time of non-

immersion) by Tsing.

Lemma 5.2.2. Let Lt be a connected O(n)-equivariant mean curvature flow in Cn, and
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assume that Temb <∞. Then if Temb 6= Tsing, the embeddedness cannot break at the origin,

i.e. there do not exist a,b ∈ L such that LTemb(a) = LTemb(b) = O.

Proof. We work with the profile curve for simplicity. Assume that there exist a,b such

that

lTemb(a) = lTemb(b) = O,

therefore lt(a), lt(b)→ O as t→ Temb. Choose a sequence tn→ Temb, tn < Temb.

Claim. If Temb 6= Tsing, then there exists N ∈ N such that for all n≥ N, there exists

εn such that ltn(a), ltn(b) lie in different connected components of Bεn(0)∩ ltn .

Proof of claim. We prove the contrapositive, so assume that there exists a subse-

quence nk such that ltnk
(a), ltnk

(b) lie in the same connected component of Bε(0)∩ ltnk

for all suitable ε . Therefore,

∀x ∈ [a,b], ltnk
(x)→ O

and so lTemb is not immersed. Therefore Temb = Tsing, and the claim is proven.

We may therefore find sequences of numbers εn and of connected components αn,

βn in Bεn ∩ ltn such that ltn(a) ∈ αn, ltn(b) ∈ βn. If there exists a time t and a point c with

lt(c) = O, then by the equivariant symmetry and uniqueness of the mean curvature flow,

for all times s > t, ls(c) = O. It follows that if there exist times t < s < Temb and points

c 6= d with lt(c) = ls(d) = O, then

ls(c) = ls(d) = O,

contradicting Temb being the first time of non-embeddedness. Therefore (up to rela-

belling) at least one of the sequences of connected components αn, βn never includes

the origin. Without loss of generality let it be αn.

Now let an ∈ R be the point such that pn := ltn(an) is the closest point in αn to the

origin; note that pn→ 0. Then

〈
∂ ltn
∂ s

(an), pn

〉
= 0 =⇒ 〈pn,ν(an)〉 = |pn|,



132 Chapter 5. Equivariant Lagrangian Mean Curvature Flow in Cn

where ν is the outward normal, so at the space-time point (pn, tn),

|A|2 = k2 +3(n−1)p2

= k2 +
3(n−1)
|pn|2

.

This diverges to infinity as n→ ∞, and therefore, Temb = Tsing.

Theorem 5.2.3 (Preservation of Embeddedness/Avoidance Principle). Let Lt be a con-

nected O(n)-equivariant mean curvature flow in Cn with planar asymptotics, such that

each end is asymptotic to a different n-plane. Assume Temb < ∞. Then Temb = Tsing.

Additionally, if Lt and Lt are two such flows, initially disjoint and embedded and

with different asymptotes, then they remain disjoint until a singularity occurs.

Proof. We prove only preservation of embeddedness. The avoidance principle follows

precisely the same argument, noting that the first point of contact for the flows cannot

be at the origin else the curvature would blow up at that time. Assume that Temb < Tsing,

for a contradiction. Then we may take a sequence of points (xn, tn) and points an,bn ∈R

such that ltn(an) = ltn(bn) = pn, where tn is a decreasing sequence converging to Temb.

Since the ends of the profile curve have different asymptotes, there exists R such that

pn ∈ BR for all n, so passing to a subsequence there exist limits an→ a, bn→ b, pn→ p

such that lTemb(a) = lTemb(b) = p. By Lemma 5.2.2, p is not the origin.

Since p is the first point of contact, we must have (at Temb) l′(a) = l′(b), and so

there is a unique line Λ through the origin parallel to the shared tangent space to l at

p. Additionally we may take ε sufficiently small such that Bε(p)∩ l has two connected

components for t < Temb, which may be written as graphs u1,u2 over Λ, with u1 ≥ u2

and u1 = u2 at a point x ∈ Λ. These graphs both satisfy the equivariant mean curvature

flow equation (5.8).

We show that the difference v := u1−u2 also satisfies a parabolic differential equa-
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tion. Defining us := su1 +(1− s)u2, we interpolate between the equations:

∂v
∂ t

=
∂u1

∂ t
− ∂u2

∂ t
= a(u′1)u

′′
1 + b(x,u1,u′1) − a(u′2)u

′′
2 − b(x,u2,u′2)

=
∫ 1

0

∂

∂ s

(
a(u′s)u

′′
s + b(x,us,u′s)

)
ds

=

(∫ 1

0
a(u′s)ds

)
v′′ + b̃(x)v′ + c̃(x)v.

We may therefore apply the parabolic Harnack inequality or maximum principle ( [22],

Chapter 7) to this equation to conclude that v = 0 at some earlier time, contradicting the

definition of Temb.

5.2.3 The Type I Blowup

We now return to almost-calibrated flows, and examine the Type I blowup. By Neves’

Theorem A (Theorem 3.4.2), any Type I blowup of our LMCF must be a union of equiv-

ariant special Lagrangian planes, and due to Theorem 3.4.1, almost-calibrated LMCF

cannot develop Type I singularities. Therefore we expect the Type I blowup to consist of

a union of multiple equivariant planes through the origin. We will show in this section

that in fact it must be a pair of planes, with the same Lagrangian angle.

Throughout we will use the notation Li
s for a sequence of Type I rescalings, with

factors λi, and profile curves li
s. As before, we assume that L0 is asymptotically planar,

and this implies the area bound

H n(L0∩BR(0)) ≤ C0Rn.

This implies uniformly bounded area ratios for all time by Huisken’s monotonicity for-

mula, see for example [50].

The following main lemma proves that blowup sequences centered away from the

centre of rotation converge to a single plane. This will be used to rule out singularities

away from the origin, as well as double density planes for singularities at the origin.

Throughout, we use the notation Ba(x) for a ball of radius a centered at x, and Ba as

shorthand for Ba(O).
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Lemma 5.2.4. Let Li be a sequence of uniformly almost-calibrated and connected La-

grangian submanifolds in Cn, with the property that Li− xie1 is an O(n)-equivariant

submanifold of Cn for a sequence xi ∈ C and e1 = (1,0, . . . ,0) ∈ Cn. Assume that xi

eventually lies outside of Bd for some d.

Assume further that the conclusions to Theorem 3.4.2 and 3.4.3 hold locally in B1

for the sequence Li. Explicitly,

• There exists a finite set {θ 1, . . . ,θ M} and integral special Lagrangian cones

{L1, . . . ,LM} such that for all f ∈C2(R), φ ∈C∞
c (B1),

lim
i→∞

∫
Li

f (θ i)φ dH n =
M

∑
j=1

m j f (θ j)µ j(φ), (5.10)

• For any convergent sequence Σi of connected components of B2δ ∩Li intersecting

B δ

2
, there exists a special Lagrangian cone L with Lagrangian angle θ such that

for all f ∈C2(R), φ ∈C∞
c (B1),

lim
i→∞

∫
Σi

f (θ i)φ dH n = m f (θ)µ(φ). (5.11)

Then there exists a single special Lagrangian plane P with angle θ and underlying

Radon measure µP such that for all φ ∈C∞
c (B1), f ∈C2(R):

lim
i→∞

∫
Li

f (θ i)φ dH n = f (θ)µP(φ).

Proof. The proof is by a density argument (extending a similar argument of A. Neves

in [50]), a sketch of which is as follows. By the work of Section 5.1 that allows us to

work with the profile curve, we are done if we can prove that

lim
i→∞

H 1(γ i∩Bδ )

2δ
= 1,

where Bδ := Bδ (O). Since we know already that the limit is a union of planes it follows

from this that it must be a single plane. We therefore wish to estimate this density ratio.

Taking a sequence of connected components of li, which we label γ i, (5.11) gives
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integral convergence of the Lagrangian angle in Bδ , and since the centre of O(n) sym-

metry xi is away from the origin, this implies a tight bound on the angle of γ̇ i. We then

use this to show the above density bound, for sufficiently small δ . However we are not

done, as there may be another, different sequence of connected components that can

increase the total density further – we must rule this out.

Considering two different connected components ξ i and η i, they can either con-

verge to the same Lagrangian angle, or a different one. If the limiting Lagrangian angle

is different, then we can show that ξ i and η i must collide, perhaps in a larger ball,

since the angles of their derivatives are tightly bounded around different values. On the

other hand if the Lagrangian angle is the same, then we can show by embeddedness

that there must be another connected component in between with different Lagrangian

angle, causing a collision as before. This shows that there is in fact only one connected

component to consider, and we are done.

We now fill in the details. Let B2δ be small enough so that for i large, xi /∈ B2δ ,

and consider a sequence Σi of connected components of Li∩B2δ intersecting B δ

2
, with

profile curve γ i. By (5.11), there exists a special Lagrangian cone L∞ with underlying

Radon measure µ∞ and an integer multiplicity m such that for φ ∈C∞
c (Bδ ), f ∈C2R:

lim
i→∞

∫
Σi

f (θ i)φdH n = m f (θ)µ∞(φ). (5.12)

We first use this convergence to get a bound on arg(γ̇). For ε > 0, define the following

“ε-good” and “ε-bad” subsets of γ i∩Bδ :

Sδ (γ
i) :=

{
x ∈ γ

i∩Bδ

∣∣∣ |θ i(x)−θ(x)| ≤ ε

}
,

Tδ (γ
i) :=

{
x ∈ γ

i∩Bδ

∣∣∣ |θ i(x)−θ(x)|> ε

}
,

note we suppress the dependence on ε for notational clarity. Then (5.12) implies that

∀ε ∃N s.t ∀i > N, H 1(Tδ (γ
i))< ε. (5.13)
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Figure 5.5: The setup of Lemma 5.2.4.

Our aim is therefore to estimate H 1(Sδ (γ
i)). Taking arguments with respect to the point

xi and the e1 direction, by (5.3) the Lagrangian angle is given by

θ = (n−1)arg(γ) + arg(γ̇). (5.14)

Denoting bi := arg(O− xi), bi converges to some b (after passing to a subsequence if

necessary). Then on Bδ we have the bound

arg(γ i) ∈
(

bi− sin−1
(

δ

|xi|

)
,bi + sin−1

(
δ

|xi|

))
,

(see Figure 5.5) and therefore on Sδ (γ
i), taking i sufficiently large so that |b− bi| < ε ,

we obtain a bound on the argument of γ̇ i:

|arg(γ̇ i)−θ +(n−1)b| ≤ (n−1)sin−1
(

δ

|xi|

)
+2ε =: ρ(δ ,ε). (5.15)

Parametrise by unit speed, so that γ̇ i(s) = ei(λ (s)+θ−(n−1)b) for an angle function λ (s).
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Then equation (5.15) implies |λ (s)| ≤ ρ , and therefore∣∣∣∣∫Sδ (γ
i)

γ̇
i(s)ds

∣∣∣∣ ≥ ∣∣∣∣∫Sδ (γ
i)

ei(θ−(n−1)b) cos(λ (s))ds
∣∣∣∣≥ H 1(Sδ (γ

i))cosρ. (5.16)

We’d like to use (5.16) to bound H 1(Sδ (γ
i)), so we need to bound

∣∣∣∫Sδ (γ
i) γ̇ i(s)ds

∣∣∣. If

γ i∩Bδ was a single connected component, this would be simple, as the integral of γ̇ i over

Bδ would then be less than 2δ by the fundamental theorem of calculus. However there

may be more connected components to worry about. The following lemma demonstrates

that if we widen our ball slightly, we will only have to worry about one connected

component. After its proof, we will resume the proof of Lemma 5.2.4.

Lemma 5.2.5. Assume that we have the setup of Lemma 5.2.4. Then for sufficiently

small δ ,ε , there exists N such that for all i > N, there is only one connected component

of li∩Bδ+3ε intersecting Bδ .

Proof. We demonstrate that for sufficiently small δ , ε , there exists N such that for all

i > N:

1. Two distinct sequences of connected components of li ∩ Bδ+3ε intersecting Bδ

can’t have different Lagrangian angles in the limit.

2. If two distinct sequences of connected components of li ∩Bδ+3ε intersecting Bδ

have the same limiting Lagrangian angle, we can find a third connected component

ζ i with a different limiting Lagrangian angle.

Together, these two claims complete the proof.

Proof of 1. By (5.10), there are a finite number of possible limiting Lagrangian

angles for these curves, {θ 1, . . . ,θ M}. These correspond bijectively to a finite number

of possible limiting values for the argument of the tangent vector, arg(γ̇ i) (see (5.15)):

A = {α1, . . . ,αM} := {θ 1− (n−1)b, . . . ,θ M− (n−1)b}.

By the almost-calibrated condition, these angles are all different modulo π , and so any

two straight lines representing different angles in A that intersect Bδ must intersect in a



138 Chapter 5. Equivariant Lagrangian Mean Curvature Flow in Cn

sufficiently large ball. We may therefore choose R large enough such that any two curves

η and ξ in BRδ intersecting Bδ such that arg(η̇) and arg(ξ̇ ) are ε-close to distinct values

in A (outside a set of H 1-measure ε) must collide inside BRδ .

Now for a contradiction, assume that, after passing to a subsequence, for all i there

exist two distinct connected components η i and ξ i of li∩Bδ+3ε intersecting Bδ whose

Lagrangian angles converge to distinct values θ η and θ ξ . Now extend η i and ξ i to the

connected components in BRδ that contain them (which may be the same): call these

η
i and ξ

i
. For sufficiently small δ we can apply the same argument as in the proof (so

far) of Lemma 5.2.4 and show that, for sufficiently large i, (5.15) holds for η
i and ξ

i
in

BRδ outside a set of H 1-measure ε , with the Lagrangian angles θ η and θ ξ respectively.

This implies that the connected components must be distinct, but by the choice of R, η
i

and ξ
i

must then collide for i sufficiently large, contradicting embeddedness.

Proof of 2. Assume that (after passing to a subsequence) for all i there exist two

distinct connected components η i and ξ i of li ∩ Bδ+3ε intersecting Bδ , and that the

Lagrangian angles of ξ , η converge to the same value θ ; without loss of generality we

assume that θ − (n−1)b = 0.

We first show that ξ i must enter the ball Bδ+3ε on the left-hand side and leave on

the right-hand side. Work with a unit-speed parametrisation, ξ̇ i(s) = eiλ (s). Since ξ i

intersects Bδ , there is some s0 such that ξ i(s0) = p ∈ Bδ . By connectedness,

H 1({ξ (s) : s≥ s0}) ≥ 3ε.

Therefore by splitting the set into Sδ+3ε and Tδ+3ε we can calculate the horizontal and

vertical distance travelled:

∫
{s≥s0}

cos(λ (s))ds =
∫
{s≥s0}∩Tδ+3ε

cos(λ (s))ds +
∫
{s≥s0}∩Sδ+3ε

cos(λ (s))ds

≥ −ε +3ε cos(ρ)≥ ε

2 ,∫
{s≥s0}

|sin(λ (s))|ds =
∫
{s≥s0}∩Tδ+3ε

|sin(λ (s))|ds +
∫
{s≥s0}∩Sδ+3ε

|sin(λ (s))|ds

≤ ε +3ε sin(ρ)≤ 2ε,
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Figure 5.6: Two connected components with the same angle must have another between them.

by (5.15) and (5.13), since by taking δ ,ε sufficiently small we may make ρ(δ ,ε) as

close to 0 as we like. This shows that ξ i leaves the ball on the right-hand side, since p0

must be to the left of the exit point, and less than 2ε vertically separated from it. An

identical argument shows that ξ i enters on the left-hand side. The same is true for η i.

Now if these were the only connected components, we have the situation depicted

in Figure 5.6. Since Li is connected, either AR joins to CL or CR joins to AL. In both

situations, one end of the curve must be trapped in a compact region of the plane by

embeddedness (the CR or AL end in the former case, the CL or AR end in the latter),

which is a contradiction. Therefore there must be another connected component ζ i in

Bδ+3ε ; to solve the above problem it must be a curve from right to left, in the middle

of ξ i and η i (see Figure 5.6). By the above argument, since ζ i does not enter on the

left and leave on the right it must have a different limiting Lagrangian angle, and so the

argument is complete.

We now resume the proof of Lemma 5.2.4. Taking δ , ε sufficiently small, we know

by Lemma 5.2.5 that for sufficiently large i, there is only one connected component of

γ i∩Bδ+3ε that intersects Bδ : call it γ̃ i. Also for sufficiently large i, H 1(Tδ+3ε(γ̃
i))< ε .

Using this, (5.15) and (5.16), we estimate for sufficiently large i using a unit-speed

parametrisation (suppressing the superscript i and defining ρ̃ := ρ(δ + 3ε,ε), ρ :=
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ρ(δ ,ε) for readability):

H 1(Sδ+3ε(γ̃))cos ρ̃ ≤
∣∣∣∣∫Sδ+3ε (γ̃)

˙̃γ ds
∣∣∣∣ ≤ ∣∣∣∣∫Bδ+3ε∩γ̃

˙̃γ ds
∣∣∣∣ + ε ≤ 2δ +7ε

=⇒ H 1(Sδ (γ)) ≤ H 1(Sδ+3ε(γ̃)) ≤
2δ +7ε

cos ρ̃
.

Finally, using this and (5.13) we can estimate our density ratio:

H 1(γ ∩Bδ )

2δ
=

H 1(Sδ (γ))

2δ
+

H 1(Tδ (γ))

2δ
≤ 1

cos ρ̃
+

ε

δ

(
7

2cos ρ̃
+

1
2

)
.

By (5.15), cos ρ̃ = cos(ρ(δ + 2ε,ε)) = 1+O(δ ,ε). Therefore, taking δ and ε

δ
suffi-

ciently small ensures that the density ratio is bounded away from 2. By Lemmas 5.1.4

and 5.1.9, we must have that this density ratio converges to an integer, which due to the

bound must be 1. Therefore, the limit of the sequence Σi of connected components is a

single plane.

Finally, Lemma 5.2.5 implies that there are no other connected components of li∩

B2δ intersecting B δ

2
, so we have in fact proven that Li converges to a single Lagrangian

plane.

Now we apply Lemma 5.2.4 to get our main results.

Theorem 5.2.6. Let Lt be an almost-calibrated, connected O(n)-equivariant mean cur-

vature flow in Cn with planar asymptotics. Then if Lt has a finite-time singularity, it

must occur at the origin.

Proof. Assume for a contradiction that such a flow has a singularity away from the

origin. Without loss of generality, it is at a point (aeib,0, . . . ,0) ∈ C×{0}n−1, since

otherwise we may just perform a rotation that leaves the flow unaffected. Note that the

planar asymptotics imply uniformly bounded area ratios, and by Lemma 5.1.1 the flow is

rational. Taking a sequence of rescalings L j
s around aeib with factor λ j, the conclusions

to Theorems 3.4.2 and 3.4.3 therefore hold for almost all s. The centre of rotation for L j
s

is x j :=−λ jaeib, whose size diverges to ∞.

We may therefore apply Lemma 5.2.4 to conclude that Li
s converges to a density

1 Lagrangian plane for almost all s. This convergence is smooth by White regularity
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Figure 5.7: The half-lines aε,k, a−ε,k, bε,k and b−ε,k in the proof of Lemma 5.2.7, in the case
where n = 4.

(Theorem 2.2.10), by the following argument. Choosing a space-time point X = (x,s),

for any X ∈ Pr(X) we have by Huisken monotonicity (Theorem 2.2.7):

lim
i→∞

Θ(Li,X ,r) = lim
i→∞

∫
Li

s−r2

ΦX(x,s− r2)dH n

≤ lim
i→∞

∫
Li

s−2r2

ΦX(x,s−2r2)dH n ≤ 1,

for any r such that Li
s−2r2 converges to a density 1 Lagrangian plane. The last inequality

holds since Φ integrates to 1 over a plane including X , and less than 1 on any other

plane. It follows that by White regularity that the curvatures are all bounded, giving

smooth convergence upon passing to a subsequence by Arzelà-Ascoli.

But since the singularity is Type II by Theorem 3.4.1 we should have that the cur-

vature of these rescalings is diverging. So, we have a contradiction.

Next, we prove the uniqueness of the Type I blowup. We will need the following

lemma, which gives bounds on the argument of lt .

Lemma 5.2.7. Let L be a connected, O(n)-equivariant Lagrangian submanifold, with
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planar asymptotics. Assume that the profile curve l does not contain the origin, and that

L is almost-calibrated; explicitly that there exist θ and ε such that

θ ∈
(

θ − π

2
+ ε, θ +

π

2
− ε

)
.

Then for a connected component γ of l, there exists a cone of angular width strictly less

than 2π

n containing γ .

Proof. Consider the following half-lines, for k ∈ N (see Figure 5.7 for a diagram):

arg(aε,k) =
θ

n + 2πk
n + π

2n + ε

n ,

arg(a−ε,k) =
θ

n + 2πk
n + π

2n −
ε

n ,

arg(bε,k) =
θ

n + 2πk
n −

π

2n + ε

n ,

arg(b−ε,k) =
θ

n + 2πk
n −

π

2n −
ε

n .

By the almost-calibrated condition, it can be shown that the curve may only pass through

the lines aε,k and a−ε,k in a clockwise direction, and the lines bε,k and b−ε,k in an anti-

clockwise direction. For example, for a contradiction assume that γ passes through aε,k

anticlockwise. Then at that point, by (2.30),

θ ∈
(
narg(aε,k), narg(aε,k)+π

)
mod 2π

≡
(
θ + π

2 + ε, θ + 3π

2 + ε
)

mod 2π,

which contradicts the almost-calibrated condition.

But now it is clear that the curve must remain in a cone of angle less than 2π

n , as it

is constrained by the above lines.

Theorem 5.2.8. Let Lt be an almost-calibrated, connected O(n)-equivariant mean cur-

vature flow in Cn with planar asymptotics. Then the Type I blowup of any finite-time

singularity is a special Lagrangian cone consisting of a transverse pair of planes P1∪P2

whose profile curves span an angle of π

n , and does not depend on the sequence of rescal-

ings.
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Figure 5.8: The profile curve l∞ of a Type I blowup in the proof of Theorem 5.2.8.

Proof. We will first rule out planes with density greater than 1 in the limit, and then

demonstrate that a single transverse pair of planes is the only option. We know from

Theorem 5.2.6 that the singularity must occur at the origin, therefore the centre of ro-

tation for Li
s is O. We also know by Theorem 3.4.2 and Lemma 5.1.4 that any blowup

sequence Li
s converges subsequentially for almost all s to a finite number of special La-

grangian cones. Fix such an s; we suppress the subscript for clarity.

Assume that one of the limiting planes, P, has a multiplicity m > 1. Then there is

a point aeib with a < 1
4 and δ small enough such that all other planes in the blowup do

not intersect Bδ (aeib), and so

lim
i→∞

H 1(li∩Bδ (aeib))

2δ
→ m

(see Figure 5.8). Now for 2ε < δ , any sequence of connected components of Li ∩

B2ε(aeib) intersecting B ε

2
(aeib) may be extended to a sequence of connected compo-

nents of B1 intersecting B 1
4
. These converge to a special Lagrangian in B1 by Theorem

3.4.3, which must be P with some multiplicity.

It therefore follows that the conclusions to Theorems 3.4.2 and 3.4.3 apply to the

flows obtained by translating aeib to the origin and scaling by 1
δ

, locally inside the ball

B1. We may therefore apply Lemma 5.2.4 to the resulting sequence and conclude that

m = 1.
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Now we show that a special Lagrangian pair of planes is the only option for the

Type I blowup, working with the profile curve throughout. ξ i, η i will denote the profile

curves of sequences of different connected components of Li∩Bδ intersecting B δ

4
. We

will rule out a single line in the limit, 3 or more lines in the limit, and two separate lines

coming from different connected components. This will leave the only option as a pair

of lines coming from a single sequence of connected components.

One unit-density line. Assume ξ i converges to a unit-density line; by White reg-

ularity (Theorem 2.2.10) this convergence is smooth. But then there is no curvature

blowup in the Type I rescalings, and by Theorem 3.4.1 the singularity must be Type II,

so this is a contradiction.

Two unit-density lines from different connected components. Assume ξ i and η i

converge to distinct lines. By White regularity (Theorem 2.2.10) they must converge

smoothly to the lines in any annulus, but this means that they must intersect each other

at the origin for sufficiently large i by the reflective symmetry, which is impossible since

li is embedded.

More than three unit-density lines. By White regularity (Theorem 2.2.10), we have

smooth convergence to the Type I blowup in the annulus Bδ \B δ

4
. Take N sufficiently

large, so that for i > N and inside this annulus, the profile curve li can be expressed as a

graph over the limiting lines.

Giving li an orientation, label the first, second and third connected components of

li ∩ (Bδ\B δ

4
) by γ1, γ2 and γ3 respectively (If li has two disconnected components, we

make this definition using one half of it, γ i). By passing to a subsequence, we may

assume that these curves always lie over the same limiting half-lines; we denote the

limiting half-line over which γk is a graph by ck, and the argument of ck by αk. Assume

that γ2 is clockwise from γ1 along li (the other case follows by an identical argument).

Note that the curve li does not pass through the origin between γ1 and γ2, by considering

the reflective symmetry, and so the orientations of γ1, γ2 and γ3 are towards, away from,

and towards the origin respectively. (see Figure 5.9).

Since γ1 and γ2 are part of the same connected component, the limiting Lagrangian

angle must be the same, and since we also have the argument bound from Lemma 5.2.7
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Figure 5.9: The curves γ1,γ2 and γ3.

it follows that

α1−
π

n
= α2. (5.17)

Additionally, the curve γ3 cannot be between γ1 and γ2. If it was, the curve li would have

to leave Bδ again after γ3 between these curves by embeddedness, and since it would

be part of the same connected component as γ3, it would make an angle of π

n with it in

the limit. But since the angle between c1 and c2 is π

n , this would imply that c3 = c1 or

c3 = c2, and we have ruled out the possibility of double-density lines. It follows that

α3 ≤ α2 ≤ α1.

By the smooth convergence, for all ε we may take N large such that if i > N, then

(keeping the orientation of the curves in mind):

|arg(γ̇1)−α1 +π| ≤ ε, |arg(γ̇2)−α2| ≤ ε, |arg(γ̇3)−α3 +π| ≤ ε,

|arg(γk)−αk|< ε.
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Therefore, denoting the Lagrangian angle of γi by θi,

θ1 = arg(γ̇1)+(n−1)arg(γ1)

≥ α1−π− ε +(n−1)(α1− ε)

= nα1−π−nε,

=⇒ θ3 = arg(γ̇3)+(n−1)arg(γ3)

≤ nα3−π +nε

≤ nα2−π +nε

= θ1−π +2nε.

Taking ε sufficiently small gives a contradiction to the almost-calibrated condition.

We therefore must have a single pair of lines in the limit, with the same Lagrangian

angle θ . These lines must span an angle of π

n , by the same argument that gave (5.17).

Uniqueness of the Type I blowup follows from the fact that there is only one such pair of

lines with Lagrangian angle θ in the cone given by Lemma 5.2.7, since this cone spans

an angle of strictly less than 2π

n .

5.2.4 Singularity Formation and Long-Time Existence

In this section, we prove Theorem 5.0.2 on singularity formation and long-time existence

(see Figure 5.3 for a diagram of the different cases). We will use our previous results on

the nature of singularities of equivariant mean curvature flow to rule out singularities in

certain cases, which implies long-time existence.

We first look at the two distinct topologies that our flow may take. One option is

that the profile curve of the initial condition passes through the origin; in this case the

singularity analysis implies long-time existence.

Theorem 5.2.9. Let Lt be an almost-calibrated, connected, O(n)-equivariant mean cur-

vature flow in Cn with planar asymptotics. Assume that the profile curve of the initial

condition, l0, passes through the origin. Then Lt exists for all time.

Proof. Assume for a contradiction that there is a finite-time singularity. By Theorem

5.2.8, the profile curve of any Type I blowup must be a pair of lines. By White regularity,
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Theorem 2.2.10, we must have smooth convergence of the rescalings in an annulus to

this pair of lines. This creates 4 ‘ends’ for the profile curve of each rescaling on the outer

boundary of the annulus.

Now in any rescaling, one connected component must go through the origin. There-

fore, by the reflectional symmetry of the profile curve, this connected component must

account for opposite ends. The other two ends can only be joined if the curve is not

embedded, and so we have a contradiction.

The other option is that the profile curve doesn’t pass through the origin, then lt

has two different asymptotes. In the paper [50], Neves exhibits examples of almost-

calibrated S1-equivariant flows in C2 that are of this form. In particular, he studies the

flow of the initial profile curve

η0(s) :=
(

sin(πs
β
)
)−β

π eis,

which is given in polar form. If π > β > π

2 , this flow forms a finite-time singularity at

the origin, and if π

2 > β > 0, then the flow is eternal, and flows outwards to infinity (see

Figure 5.1).

We generalise Neves’ constructions to Cn, and prove that if 2π

n > β > π

n for the

same initial curve then the flow forms a finite-time singularity. Note that Lemma 5.2.7

implies that this initial condition is only almost-calibrated if β < 2π

n .

Lemma 5.2.10. If 2π

n > β > π

n , then the Lagrangian mean curvature flow Ln
t in Cn with

profile curve ηt starting at the initial condition with profile curve η0 forms a singularity

at the origin in finite time.

Proof. The curve ηt may be expressed in polar form, rt(s)eis, until a singularity forms.

This can be proven using a Sturmian theorem – see [50] for details.

We may then look at the evolution of the area under the curve between angles ε and



148 Chapter 5. Equivariant Lagrangian Mean Curvature Flow in Cn

β − ε , using the evolution equation (5.9):

Aε,t :=
1
2

∫
β−ε

ε

r2
t ds.

dAε,t

dt
=
∫

β−ε

ε

θ
′
t ds = θ(ε)−θ(β − ε).

Using the fact that

θt(s) = arg
(
(r′(s)+ ir(s))eis)+(n−1)arg

(
r(s)eis) = ns+ arg(r′+ ir),

it follows that θt(s) ∈ (ns,ns+ π). Therefore, if π − nβ < 0, we may choose ε suffi-

ciently small such that

dAε,t

dt
< 2nε +π−nβ < −C

for a positive constant C. It follows that a singularity must form in finite time, and by

Theorem 5.2.6 it must occur at the origin.

Theorem 5.2.11. Let Lt be an almost-calibrated, connected, O(n)-equivariant mean

curvature flow in Cn with planar asymptotics. Assume that the profile curve of the initial

condition, l0 does not pass through the origin, and that the angle α between the asymp-

totes of the profile curve are strictly between π

n and 2π

n . Then Lt forms a finite-time

singularity.

Proof. Working with a connected component γ of the profile curve, Lemma 5.2.7 gives

us a cone that γt remains in until a singularity forms. We may then find a scaled and

rotated copy of Neves’ curve η0 with angle π

n < β < α that also lies in this cone, further

away from γ0 than the origin and with different asymptotes, that does not intersect it.

By the avoidance principle, Theorem 5.2.3, under equivariant MCF these curves do not

intersect until one forms a singularity. Since ηt descends to the origin within the cone,

γt is also forced to the origin; here the curvature blows up and so a singularity must

occur.

The final situation is one in which the asymptotes of the flow span an angle α ≤ π

n .
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In this case, long-time existence is possible, as shown by the examples of the Lawlor

neck ΣLaw 3.3.1 and the Anciaux expander 3.3.3. In fact, we may use these examples as

barriers to prove long-time existence in the case where α < π

n . The case where α = π

n

is more difficult, as the avoidance principle as we have stated it does not hold if the

asymptotes of the two flows are matching. To cover this case, we construct subsolutions

to the flow with different asymptotes, and use those as barriers.

Theorem 5.2.12. Let Lt be an almost-calibrated, connected, O(n)-equivariant mean

curvature flow in Cn with planar asymptotics. Assume that the profile curve of the initial

condition l0 does not pass through the origin, and lies completely within a cone of angle

α ≤ π

n . Then the flow exists for all time t ∈ [0,∞).

Proof. We construct subsolutions to the radial mean curvature flow equation (5.9) that

initially lie underneath l0, with different asymptotics to our initial condition l0. For

simplicity, assume that the cone in question is (− π

2n ,
π

2n). Our aim is to find a family of

functions rt(α) :
(
− π

2(n−δ ) ,
π

2(n−δ )

)
→ R+ such that:

• The curve r0(α)eiα lies beneath l0,

• rt diverges to infinity at the ends of the interval,

• dr
dt ≤

−θ ′

r .

For our Ansatz we modify the Lawlor neck (Example 3.3.1) by stretching it so that

the curvature k will be reduced relative to p, and the mean curvature vector will point

towards the origin,

rt(α) :=
B(t)

n
√

sin(π

2 − (n−δ )α)
. (5.18)

We now aim to find a suitable function B(t). By assumption, there exists a value B0 such

that (5.18) lies beneath l0. By a calculation, we find that

θ = nα + cot−1
(

n−δ

n
cot(π

2 − (n−δ )α)

)
,

θ
′ = n ·

1−
(

n−δ

n

)2

1+
(

n−δ

n

)2
cot(π

2 − (n−δ )α)2
,
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and so for sufficiently small δ ,

dr
dt
≤ −θ ′

r

⇐⇒ B′(t)B(t) ≤ −n ·
1−
(

n−δ

n

)2

1+
(

n−δ

n

)
cot(π

2 − (n−δ )α)
sin(π

2 − (n−δ )α)
2
n

⇐= (B(t)2)′ ≤ −(4δ − δ 2

n )sin(π

2 − (n−δ )α)2+ 2
n

⇐= (B(t)2)′ ≤ −4δ

⇐= B(t) =
√

B2
0−4δ t.

With this choice of B(t), we have a subsolution that exists until time t = B2
0

4δ
, and this final

time diverges to infinity as δ → 0. Therefore by using these as barriers below the flow

of the profile curve l, l is prevented from reaching the origin by the avoidance principle

(Lemma 5.1.3), and by Theorem 5.2.6 a singularity cannot occur.

5.2.5 The Type II Blowup

In this section we analyse the Type II blowup of a singularity of our equivariant LMCF.

Since by Theorem 5.2.9 an initial profile curve through the origin cannot form a finite-

time singularity under MCF, we assume throughout this section that the initial profile

curve l avoids the origin, and therefore consists of two connected components, γ and

−γ .

We first show that any Type II blowup of an LMCF must have the same Lagrangian

angle as the Type I blowup, in particular that it must be a special Lagrangian (we actu-

ally prove a slightly more general theorem, so that it can also be used for intermediate

rescalings later). Lemma 5.1.6 will rule out the possibility of the centre of rotation be-

coming unbounded under the rescalings, and then with a combination of Lemma 5.1.6

and Lemma 5.1.5 we will conclude that the only possibility for a Type II blowup is the

Lawlor neck of Lemma 5.1.5.

Theorem 5.2.13. Let Lt be an almost-calibrated LMCF in Cn with Lagrangian angle

θt that forms a singularity at the space-time point (O,0). Assume that any sequence of
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Type I rescalings Lσi
s converge as flows to the same special Lagrangian cone C, with

angle θ .

Let Xi = (xi, ti) be a sequence of space-time points such that (xi, ti)→ (O,0), let

λi ∈ R satisfy −λ 2
i ti→ ∞, and define the rescalings

LXi,λi
τ := λi

(
Lti+λ 2

i τ
− xi

)
with Lagrangian angle θ i

τ .

Then for any bounded parabolic region Ω× I ⊂ Cn×R,

θ
i
τ(χi)→ θ uniformly in Ω× I, (5.19)

where τ ∈ I and χi ∈ LXi,λi
τ ∩Ω is any sequence of points.

Proof. We will be considering the following three flows:

• Lt , the original LMCF

• Lσi
s , the Type I rescaled LMCF with factor σi (σi to be explicitly decided later)

• LXi,λi
τ , the LMCF rescaled around Xi = (xi, ti) with factor λi.

The time variables t,s,τ are related by

s = σ
2
i t, τ = λ

2
i (t− ti) =−tiλ 2

i

(
1− s

σ2
i ti

)
.

For a suitable choice of σi, the result (5.19) can be shown using the following

sequence of steps. For all ε , there exists N independent of τ,(χi)
∞
i=1 such that for all
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i≥ N:

|θ i
τ(χi)−θ |2 =

∫
LXi,λi

τ

|θ −θ |2 Φ(χi,τ)dH 2 (5.20)

≤
∫

LXi,λi
(−tiλ

2
i )(1+t−1

i σ
−2
i )

|θ −θ |2 Φ(χi,τ)dH 2 (5.21)

=
∫

L−σ
−2
i

|θ −θ |2Φ(λ
−1
i χi+xi,λ

−2
i τ+ti)dH 2

=
∫

Lσi
−1

|θ −θ |2 Φ(σi(λ
−1
i χi+xi),σ2

i (λ
−2
i τ+ti))dH 2 (5.22)

≤
∫

Lσi
−1

|θ −θ |2 Φ(0,0)dH 2 + ε

2 (5.23)

≤ ε. (5.24)

The idea is that we have convergence of the Type I rescalings Lσi
−1, as well as con-

vergence of their Lagrangian angles. To change to an integral over Lσi
−1, we first change

to an integral over LXi,λi
τ

, for a suitable choice of τ , using Huisken monotonicity.

We now proceed to justify each of these steps. To prove (5.21), notice that |θ −θ |2

is a subsolution to the heat equation. Also, since by assumption tiλ 2
i →−∞ as i→ ∞, if

we pick our σi such that σi <
1

2
√
−ti

then

(−tiλ 2
i )
(

1+ 1
tiσ2

i

)
→−∞

for sufficiently large i. In particular, this quantity is eventually less than inf(I), so we

may pick a uniform N such that for any i≥ N,

(−tiλ 2
i )
(

1+ 1
tiσ2

i

)
≤ τ

for all τ ∈ I. Then we can directly apply Huisken’s monotonicity formula, Theorem

2.2.7.

To prove (5.22), we relate the integral over the Type II rescaling to the integral over

the Type I rescaling. To do this, we apply Lemma 2.2.8 twice to relate the integral to the
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original flow at time −σ
−2
i , and then to the Type I rescaled flow at time −1.

To prove (5.23), we show that we can replace our spacetime-shifted heat kernel

with the stationary one at (0,0). As long as

(
σi
(
λ
−1
i χi + xi

)
,σ2

i
(
λ
−2
i τ + ti

))
→ (0,0),

we get smooth convergence of Φ(σi(λ
−1
i χi+xi),σ2

i (λ
−2
i τ+ti)) to Φ(0,0). Then by Theorem

3.4.3 and the Type I blowup assumption, it follows that:∣∣∣∣∣
∫

Lσi
−1

|θ −θ |2
(

Φ(σi(λ
−1
i χi+xi),σ2

i (λ
−2
i τ+ti))−Φ(0,0)

)
dH 2

∣∣∣∣∣
≤
∣∣∣Φ(σi(λ

−1
i χi+xi),σ2

i (λ
−2
i τ+ti))−Φ(0,0)

∣∣∣
∞

·
∫

Lσi
−1

|θ −θ |2dH 2 −→ 0.

Convergence of the space-time points
(
σi
(
λ
−1
i χi + xi

)
,σ2

i
(
λ
−2
i τ + ti

))
will follow if

we pick our σi correctly. For example,

σi :=
1
2

min
{

1
4
√
−ti

,
1
√

xi
,
√

λi

}

will work for this step and for step 1. All stated convergences are uniform in χi and τ ,

since Ω and I are bounded regions. Finally, (5.24) follows from Theorem 3.4.3, just as

in step (5.23).

In particular, −tiA2
i → ∞ for a Type II singularity (see Section 2.2). Since the Type

II rescalings converge smoothly to the limiting flow, and the Lagrangian angles of the

Type I rescalings converge to θ by Theorem 5.2.8, Lemma 5.2.13 implies that any Type

II blowup of our flow must be a special Lagrangian.

Corollary 5.2.14. Let Lt be an almost-calibrated, connected, equivariant Lagrangian

MCF with Lagrangian angle θt that forms a singularity at the space-time point (O,0).

Assume that any sequence of Type I rescalings Lσi
s converge subsequentially as flows to

the same special Lagrangian cone C, with angle θ .

Then any sequence of Type II rescalings, L(xi,ti)
τ converges subsequentially in C∞

loc
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to a special Lagrangian, with Lagrangian angle θ .

We are now ready to prove that any Type II blowup of our equivariant flow must be

the unique Lawlor neck with asymptotic planes P1∪P2.

Theorem 5.2.15. Let Lt be an almost-calibrated, connected, O(n)-equivariant mean

curvature flow in Cn with planar asymptotics. Then up to a translation, a Type II blowup

of any finite-time singularity is a Lawlor neck ΣLaw with the same Lagrangian angle as

the (unique) Type I blowup P1∪P2, and is asymptotically planar with asymptotes P1 and

P2. Additionally, the Type II blowup does not depend on the rescaling sequence.

Proof. Consider a sequence of Type II rescalings, L(xi,ti)
τ , that converge to a Type II

blowup L∞
τ , and denote by Ai the rescaling factors. We first show that we may assume

xi ∈ C×{0}n−1, so that we may apply the theory from Section 5.1. Apply a sequence

of rotations Ri(·) centred on the origin so that Ri(xi) ∈ C×{0}n−1, and pass to a subse-

quence so that this sequence of rotations converges in C∞ to a rotation R∞. Then, since

we are working with equivariant Lagrangians,

L(Ri(xi),ti)
τ = Ai

(
Lti+A−2

i τ
−Ri(xi)

)
= Ai

(
Ri(Lti+A−2

i τ
)−Ri(xi)

)
= Ri(L

(xi,ti)
τ )

→ R∞(L∞
τ ),

so up to a rotation we obtain the same limit if we use the sequence Ri(xi) instead of xi.

Now, we know from Corollary 5.2.14 that the Type II blowup L∞
τ is a special La-

grangian, i.e. a static flow with θ = θ . So we only need look at L∞
0 to understand the

entire flow. There are now two cases to consider: either the image of the origin −Aixi

remains bounded under the Type II rescalings, or |Aixi| diverges to ∞.

If |Aixi| → ∞, then (on passing to a subsequence) L∞
0 is invariant under transla-

tions Tv (as defined in Section 5.1) by Lemma 5.1.6, where v = ze1 := limi→∞
−Aixi
|Aixi| ∈

C×{0}n−1, for a constant z ∈C. Therefore, referring to (5.5) for the definition of Tν) at
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the point l∞
0 (s)e1 ∈ L∞

0 ∩ (C×{0}n−1)

∂

∂λ

∣∣∣∣
λ=0

Tv(α,λ ,γ(s)) = −zα

is a tangent direction, for any α ∈ Sn−2. In particular, zei = (0, . . . ,z, . . . ,0) is a tangent

direction at every point in L∞
0 ∩ (C×{0}n−1) for all i 6= 1. So, if the profile curve of the

Type II blowup is l∞
0 (s) = a(s)+ ib(s),

arg



∣∣∣∣∣∣∣∣∣∣∣∣

a′+ ib′ 0 · · · 0

0 z · · · 0
...

... . . . ...

0 0 · · · z

∣∣∣∣∣∣∣∣∣∣∣∣

= θ =⇒ arg(a′+ ib′) = θ − (n−1)arg(z),

which implies that l∞
0 is a straight line through the origin, and that L∞

0 is an n-plane. But

since Type II blowups must satisfy max |A|2 = 1, this is a contradiction.

It follows that |Aixi| remains bounded. In this case it follows from Lemma 5.1.6 and

C∞
loc-convergence of the Type II rescalings that L∞

0 is an O(n)-equivariant submanifold of

Cn, after a translation by an element of C×{0}n−1. Therefore by Lemma 5.1.5, it must

be a Lawlor neck ΣLaw. The uniqueness follows from Lemma 5.2.7, as there is only one

Lawlor neck with sup |A| = 1 and Lagrangian angle θ that fits in the cone containing

γ .

5.2.6 Intermediate Blowups

Finally, we examine the behaviour between the Type I and Type II scales of a finite

time singularity of our LMCF. Assume our flow forms a singularity at the space-time

point (0,0), consider a sequence of times ti→ 0 from a Type II rescaling sequence (i.e.

satisfying (2.14)), and let Ai be the maximum value of the second fundamental form over

Lti , as before. Let λi ∈ R be a sequence diverging to +∞ such that

δi :=
λi

Ai
→ 0, −λ

2
i ti→ ∞.
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Figure 5.10: The profile curves of the Type I and Type II blowups for an equivariant LMCF in
C3.

Then we define the intermediate rescalings corresponding to the sequence (ti,λi) as

Lti,λi
τ := λiLti+λ

−2
i τ

.

Note that we need not translate the rescaling to centre on the point of highest curvature -

we proved in Theorem 5.2.15 that the origin remains bounded along the sequence, so any

convergence will be unaffected by such translations. The assumptions that δi := λi
Ai
→ 0

and −λ 2
i ti→ ∞ are made since otherwise the resulting blowup will just be a scaling of

a Type II blowup or a time-translation of a Type I blowup respectively. We prove the

following:

Theorem 5.2.16. Let Lt be an almost-calibrated, connected, O(n)-equivariant mean

curvature flow in Cn with planar asymptotics. Assume that Lt forms a singularity at

the origin at time t = T , with Type I blowup P1 ∪P2. Then for any R,ε and finite time

interval I, there exists a subsequence such that Lti,λi
τ ∩ (BR\Bε) may be expressed as a

graph over P1∪P2 for τ ∈ I, and this graph converges in C1;0 to P1∪P2.

Proof. Extend I so that it contains 0 in its interior, and pass to a subsequence so that the

Type II rescalings centred at the space-time points (O, ti) converge smoothly to a Type

II blowup. By Theorem 5.2.13, on the cylinder BR×I the Lagrangian angle θ i of the

intermediate rescalings is converging uniformly to a constant θ , the same value as the

Lagrangian angles of the Type I and Type II blowups. For convenience we assume θ =
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π

2 , that the profile curve of the Type I blowup is the pair of lines at α = π

2n and α =− π

2n

(and their reflections in O), and that the Type II blowup is the unique Lawlor neck with

sup |A| = 1 asymptotic to these planes, as in Figure 5.10 (this can all be achieved by a

single rotation of the plane C×{0}n−1).

If ε is small enough, and we take i large enough so that |θ i− π

2 |< ε , then on BR× I

there is at most one intersection of each component of li with the real axis. Denote by bi
τ

the sequence of intersections on the positive real axis at time τ , where it exists, and by γ i
τ

the component of li
τ containing bi

τ . We first prove that we have the expected convergence

on individual time slices.

Lemma 5.2.17. Fix a sequence τi ∈ I.

• If bi
τi
→ 0, then for all ε , the profile curves γ i

τi
parametrised by arc-length converge

in C1 on BR\Bε to the half-lines at α = π

2n and α =− π

2n .

• If bi
τi
→ B > 0, then the profile curves γ i

τi
parametrised by arc-length or by ar-

gument converge in C1 on BR to the profile curve of the Lawlor neck σlaw, with

asymptotes given by these same lines.

Proof. Throughout, we suppress the subscript τi, as nothing depends on it.

We tackle case 2 first, so b j→ B > 0. Take N large enough such that on BR×I for

j > N,

|θ j− π

2 |< ε, |b j−B|< ε.

Note that, close to α = 0, by the above condition on θ j, we may parametrise γ j by angle:

γ
j(α) = r j(α)eiα

=⇒ γ̇
j = (ṙ j + ir j)eiα

=⇒ ṙ j = r j cot(θ j−nα),

where cot : (0,π)→R. In fact, by this gradient equation, we see that it is parametrisable

in this fashion for

α ∈
(
− π

2n
+

ε

n
,

π

2n
− ε

n

)
.
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Integrating the inequality obtained by using the bound on θ j, it follows that for α > 0:

(B− ε) n
√

sin
(

π

2 + ε
)

n
√

sin
(

π

2 + ε−nα
) ≤ r j(α) ≤ B+ ε

n
√

sin
(

π

2 − ε−nα
) .

This implies that, as ε → 0 and j→ ∞,

r j
(

π

2n
− ε

n

)
→ ∞.

An identical argument shows that the same is true for the α < 0 half of the curve. There-

fore, on BR the curve may be fully parametrised by angle for sufficiently large j, and so

this parametrisation converges in C1 to

r∞ =
B

n
√

sin
(

π

2 −nα
) ,

which is the Lawlor neck described in the statement of the lemma.

Now assume that b j → 0. By the same method as above, we see that the curve is

parametrisable by angle for the same range of α , and for α > 0 in this range,

b j n
√

sin
(

π

2 + ε
)

n
√

sin
(

π

2 + ε−nα
) ≤ r j(α) ≤ b j

n
√

sin
(

π

2 − ε−nα
) .

Since b j→ 0, for each ε we may choose N large so that for j > N, r j < ε on the angle

range
(
− π

2n + ε, π

2n − ε
)

and |θ j − π

2 | < ε on BR×I. Therefore for j > N, the curve

enters the cone Γ := {α ∈
(

π

2n − ε, π

2n + ε
)
} within the ball Bε . Now we show that it

remains there while in BR (an identical argument holds for the cone on the other side of

the real axis, Γ′ := {α ∈
(
− π

2n − ε,− π

2n + ε
)
}). Once the curve has entered the cone Γ,

if it intersected the line α = π

2n − ε again, then at this point we would have

arg(γ̇ j) ≤ π

2n
− ε =⇒ θ

j ≤ π

2
−nε,

which is a contradiction. A similar contradiction is reached if we assume that the curve
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intersects the line α = π

2n + ε , therefore the curve must remain in the cone Γ once it

enters. Now, parametrising the curve by arc-length so that

γ
j(s) = r j(s)eiα j(s) =⇒ γ̇

j = ei(θ j−(n−1)α j);

limiting ε → 0 shows that our curves γ j converge in C1 away from the origin to the

specified half-lines.

To finish the proof, we need to show that bi
τ → 0 uniformly in I. The above lemma

will then show that our intermediate rescalings converge uniformly to the pair of planes

we expect. We know from the Type II convergence that bi
0 → 0, and so it suffices to

show that the value bi is a C0-Cauchy sequence as a function of time. Intuitively, the

argument is that if the Lagrangian angle is converging uniformly to a constant, then the

‘average’ value of H also is. This puts a limit on how far the profile curve can travel

between times, which prevents bi converging to two different values.

Lemma 5.2.18. bi
τ is a C0-Cauchy sequence of functions in τ , converging to 0.

Proof. Assume for a contradiction that it isn’t a Cauchy sequence. We know that bi
0→ 0,

so this means that there exists B ∈ R+, B < R
2 such that, on passing to a subsequence,

sup
τ∈I
|bi

τ |> B.

Take a sequence τi ∈ I such that bi
τi
= B; we assume for notational convenience that τi is

negative. Denote by σB the profile curve of the Lawlor neck intersecting the real axis at

B, and by v the two half-lines, both as described in Lemma 5.2.17. Then by this lemma

we may take N sufficiently large such that for all i≥ N:

• |θ − π

2 |< ε in BR×I,

• dHaus(γ
i
τi
∩BR, σB∩BR)< ε ,

• dHaus(γ
i
0∩BR, v∩BR)< ε .

If we denote by Bε(A) the ε-fattening of the set A, then this means that for i ≥ N,

γ i
0 ⊂ Bε(v) and γ i

τi
⊂ Bε(σB). Let d(ε) := dHaus(Bε(σB)∩BR, Bε(v)∩BR), and notice
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that it is a decreasing function of ε .

Taking ε sufficiently small, we may find p1 ≤ p2 ∈R such that γ i
τ(p1),γ

i
τ(p2) ∈ BR

for all τ ∈ I. Such points must exist, else by an identical argument to the one given below,

the integral of ~H over an escaping region of the curve would be large, contradicting the

uniform bound on θ . Now take ν to be the outward pointing normal and s the arc-length

parameter. Then since the flow must travel from Bε(σB) to Bε(v) between times 0 and

τi, it follows by the definition of mean curvature flow that

∀p ∈ [p1, p2],
∫ 0

τi

H(p) ·ν(p)dτ ≥ d(ε)

=⇒
∫ 0

τi

∫
γ i

τ ([p1,p2])
H ·ν dsdτ ≥ d(ε) · min

τ∈[τi,0]
H 1(γ i

τ [p1, p2]).

But on the other hand, since ~H = J∇θ ,∣∣∣∣∫ 0

τi

∫
γ i

τ ([p1,p2])
H ·ν dsdτ

∣∣∣∣ = ∣∣∣∣∫ 0

τi

∫
γ i

τ ([p1,p2])

∂θ i
τ

∂ s
dsdτ

∣∣∣∣
=

∣∣∣∣∫ 0

τi

θ
i
τ(p2)−θ

i
τ(p1)dτ

∣∣∣∣ ≤ −2τiε,

which is a contradictory inequality if ε is taken small.

This completes the proof of Theorem 5.2.16.



Chapter 6

Equivariant Examples of LMCF with

Boundary in C2

We now combine the interests of the previous chapters, and illustrate the behaviour of

the Lagrangian mean curvature flow with boundary (Chapter 4) in the particular case of

S1-equivariant Lagrangian submanifolds of C2 (Chapter 5). To do this, we focus on two

particular boundary conditions – the Lawlor neck ΣLaw (Example 3.3.1) and the Clifford

torus ΣCliff (Example 3.3.2). Our boundary condition for Lagrangian mean curvature

flow can expressed in terms of the Lagrangian angle θ , and θ takes a simple form on

these two flows; in particular it is not time-dependent. These are therefore natural and

relatively simple examples to study. In both cases, we prove a long-time existence and

smooth convergence result – of the original flow in the case of the Lawlor neck, and of

a rescaled flow in the case of the Clifford torus.

We now go over the results of this chapter. The Lawlor neck ΣLaw (see Example

3.3.1 and Figure 4.1) is the only non-flat equivariant special Lagrangian in C2, and is

therefore static under the mean curvature flow; this makes it a good choice of bound-

ary manifold for our flow. We prove that any solution to (4.1) satisfying the almost-

calibrated condition (defined in Section 2.4) with boundary on the static Lawlor neck

exists for all time and converges smoothly to a special Lagrangian. This convergence is

depicted for two specific initial conditions in Figure 4.1.

The results of Chapter 6 comprise original joint work with B. Lambert and C. Evans, and
appear in the preprint [20].
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Theorem 6.0.1. Let F0 be an almost-calibrated S1-equivariant Lagrangian embedding

of the disc D2 into C2 with boundary on the static Lawlor neck, ΣLaw, such that the

Lagragian angle of L0, θ0, satisfies θ0|∂L0 = −α . Then there exists a unique, immortal

solution to the LMCF problem (4.1), and it converges smoothly in infinite time to a

special Lagrangian disc.

Our other choice of boundary manifold is the Clifford torus (see Example 3.3.2 and

Figure 4.2). The symmetry of the Clifford torus is preserved under mean curvature flow,

so it is a self-shrinking solution, and is therefore static under the rescaled flow (defined

in Section 6.2). Here, the condition θ−2arg(γ)∈ (−π

2 +ε, π

2 −ε) is a natural preserved

condition to consider in place of the almost-calibrated condition, as θ −2arg(γ) always

vanishes on the boundary. Given this condition, we show a long-time existence and

convergence result for the rescaled flow in the α = 0 case, as depicted in Figure 4.2a.

Theorem 6.0.2. Let F0 : D→ C be an S1-equivariant Lagrangian embedding of a disc

D, with boundary on the Clifford torus, ΣCliff. Assume that its Lagragian angle θ0

satisfies

θ0(s)−2arg(γ0(s)) ∈ (−π

2 + ε, π

2 − ε)

for some ε > 0, and that θ0−2arg(γ0) = 0 on ∂L0. Then there exists a unique, eternal

solution to the rescaled LMCF problem (6.2.1) (corresponding to (4.1) with α = 0),

which converges smoothly in infinite time to a special Lagrangian disc.

In the case of the Clifford torus, numerical evidence suggests that a rescaled solu-

tion of (4.1) with α 6= 0 exists for all time and converges to a unique rotating soliton -

see Figure 4.2b. This is in contrast to a standard Lagrangian mean curvature flow, where

the blow-up of a singularity would result in a self-shrinking flow.

6.1 The Lawlor Neck
Our first example is an LMCF with boundary on the Lawlor neck, which has constant

Lagrangian angle θ̃ = π

2 . It follows that the boundary condition of (4.1) is equivalent to

θ
∣∣
∂L = −α.
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We prove the following long-time existence result, depicted in Figure 4.1.

Theorem 6.1.1. Let L0 be an S1-equivariant Lagrangian embedding of the disc D2 into

C2 with Lagrangian angle θ0 satisfying

θ0(s) ∈ (−π

2 + ε, π

2 − ε)

for some ε > 0, with boundary on the Lawlor neck with profile curve σLaw =

{(±cosh(φ),sinh(φ)) : φ ∈ R}, and with θ0|∂L0 = −α (as in Figures 4.1a and 4.1b).

Then there exists a unique, immortal solution to the LMCF problem:



( d
dt F(x, t)

)NM
= H(x, t) for all (x, t) ∈ D× [t0,∞)

F(x, t0) = L0(x) for all x ∈ D

∂Lt ⊂ ΣLaw for all t ∈ [t0,∞)

θt |∂Lt =−α for all (x, t) ∈ ∂D× [t0,∞),

(6.1)

and it converges smoothly in infinite time to the disc with profile curve γ∞(s) =

(s,s tan(−α

2 )).

Remark 6.1.2. The ‘almost-calibrated’ condition θ0 ∈ (−π

2 +ε, π

2 −ε) is necessary, as

there exist Lagrangian discs which are not almost-calibrated but which form a finite-time

singularity under the flow – see [51] for an example.

If the profile curve γt does not pass through the origin, i.e. if the topology of the flow

is not a disc, then a finite-time singularity will form. For example one can prove using

the barriers of this section that any curve that does not initially pass through the origin

must approach the origin as t→∞, and therefore by the equivariance the curvature |A|2

must blow up.

6.1.1 Parametrisation

For simplicity, we work throughout with the profile curves of our flow and the boundary

manifold, and we will work with the following parametrisation for the profile curve.

Consider the foliation

Y (s,φ) := (scosh(φ),ssinh(φ))
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and graphs of the form

γt(s) = Y (s,vt(s)) = (scosh(vt(s)), ssinh(vt(s))) (6.2)

γ
′
t (s) = (cosh(vt(s))+ sv′t(s)sinh(vt(s)), sinh(vt(s))+ sv′t(s)cosh(vt(s))).

In this parametrisation, using the equation for equivariant mean curvature flow (5.6), the

problem (6.1) is reduced to the following boundary value problem:
∂v
∂ t = v′′+2s−1v′−s(v′)3

|γ ′|2 + v′
scosh(2v) for s ∈ [−1,1], t ≥ t0,

v(s, t0) = v0 for s ∈ [−1,1],

sv′(s, t) = tan(−α)
cosh(2v(s,t)) − tanh(2v(s, t)) for s ∈ {−1,1}, t ≥ t0.

(6.3)

Note that this PDE problem is uniformly parabolic away from the origin, if we can

bound |γ ′| and |γ|= scosh(2v). We must also show that this parametrisation is valid for

our problem.

6.1.2 The Lagrangian Angle and C1 Bounds

The Lagrangian angle for an equivariant LMCF is given by

θ(s) = arg(γ)+ arg(γ ′).

It is an important quantity, because on the interior of the abstract manifold it has very

simple evolution equations:

∂θ

∂ t
= ∆θ ,

∂ (θ)2

∂ t
= −2|H|2 +∆(θ)2. (6.4)

Lemma 6.1.3. A solution of (6.1) on [t0,T ) which satisfies θ ∈ (−π

2 + ε, π

2 − ε) at the

initial time, satisfies this condition for all t ∈ [t0,T ).

Proof. The boundary conditions on our flow are θ
∣∣
∂L = −α . Therefore by (6.4), θ

solves the Dirichlet problem for the heat equation on the abstract manifold, and by the

parabolic maximum principle must be bounded by its initial values.
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We will now show that our flow may be parametrised using the parametrisation

(6.2) for as long as the flow exists, and derive C1 bounds on the graph function v away

from the origin. Certainly it may be parametrised in this way on a small ball B around

the origin, since at the origin we have the identity

θ = 2arg(γ ′),

and so it follows from the almost-calibrated condition for θ that, on B, the curve inter-

sects the Lawlor neck foliation Y (s,φ) transversely. On this ball B, using (6.2) and the

almost-calibrated condition:

θ(s) = arg(γ)+ arg(γ ′) = arg(γγ
′)

= arg
(
s + i

(
ssinh(2v)+ s2v′ cosh(2v)

))
=⇒ tan(θ) = sinh(2v)+ sv′ cosh(2v)

=⇒ sv′ =
tan(θ)

cosh(2v)
− tanh(2v) (6.5)

=⇒ |γ ′(s)| ≤
(
1+ s|v′|

)
(cosh(v)+ |sinh(v)|)

≤
(

1+
| tan(θ)|
cosh(2v)

+ | tanh(2v)|
)
(cosh(v)+ |sinh(v)|). (6.6)

This will give us a uniform C1 bound for v on any annulus centred at the origin, if we

can parametrise globally in this way, and bound the function v.

Lemma 6.1.4. Let γ be the profile curve of an equivariant Lagrangian submanifold

L ⊂ C2 with boundary on the Lawlor neck, satisfying θ ∈ (−π

2 + ε, π

2 − ε). Then one

connected component of the curve γ \{O} is parametrisable using the parametrisation

(6.2), and satisfies

arg(γ) ∈ (−π

4 +
ε

2 ,
π

4 −
ε

2),

v ∈ (−V,V ),

for V = tanh−1(tan(π

4 −
ε

2)) < ∞. The other connected component satisfies analogous

bounds.
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Proof. At the origin, we must have arg(γ ′(0)) ∈ (−π

4 + ε

2 ,
π

4 −
ε

2) (for one choice of

orientation) by the bound on θ , therefore for small s the curve is parametrisable by

(6.2), and the first bound holds. If there was some smallest s0 such that

arg(γ(s0)) =
π

4 −
ε

2 ,

that at this point,

arg(γ ′(s0))≥ π

4 −
ε

2 =⇒ θ(s0) ≥ π

2 − ε

which is a contradiction. An identical argument works for the lower bound, and so the

first statement is proven.

For the second, note that in the foliation Y (s,φ) = (scosh(φ),ssinh(φ)), the line of

constant argument α satisfies

tan(α) =
sinh(φ)
cosh(φ)

= tanh(φ) =⇒ φ = tanh−1(tan(α)),

therefore lines of constant angle are equivalent to lines of constant φ , with the above

correspondence. The first bound then implies the second, for as long as the parametrisa-

tion is valid. Finally, this bound on v, along with (6.5), proves that v′ is bounded on any

annulus – therefore the parametrisation is valid for all s > 0. The other half of the curve

γ is a reflection of the first in the origin, by the equivariance, and so analogous results

hold.

Using this lemma, (6.6) implies that |γ ′(s)|<C1, for some uniform constant C1. We

can use this to derive the following density bound on small balls, which will be useful

later:

∫
Bδ∩γt

dH 1 ≤
∫

δ

−δ

|γ ′(s)|ds≤ 2δC1.
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6.1.3 Long-Time Existence

Using the mean curvature flow equation (6.3), and the C1 bounds we just derived, we

can now prove long-time existence.

Lemma 6.1.5. A finite-time singularity for a solution of (6.1) cannot occur.

Proof. By (6.6), the mean curvature flow equation (6.3) is uniformly parabolic on any

annulus centred at the origin. Therefore, Schauder estimates give a bound on all cur-

vatures for as long as the flow exists, and so a singularity cannot occur away from the

origin.

Unfortunately, the equation (6.3) degenerates at the origin, so this case must be

dealt with separately. Assume that a singularity occurs at the origin at time 0, and let

Li
t , γ i

t be the Type I rescalings of the rotated flow and their profile curves around this

singularity with factor λ i, defined by

Li
t := λ

iL(λ i)−2t .

We will show that the density of γ i
t converges to 1, and then White’s local regularity

theorem will imply that the curvatures are bounded, contradicting the assumption of a

singularity at (O,0).

Lemma 6.1.6. Let Li
t be a sequence of rescalings of an equivariant LMCF Lt ⊂ C2

around the space-time point (O,0). Assume that ∂Li
t → ∞ as i→ ∞, uniformly on the

time interval [t0,0), and assume also that the flow is uniformly bounded in C3 on ∂Lt .

Then for any a < b < 0 and R > 0,

lim
i→∞

∫ b

a

∫
Li

t∩BR

(
|H|2 + |x⊥|2

)
dH 2 = 0.

Proof. We need the following version of Huisken’s monotonicity formula, which holds
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for flows Mn
t with boundary. For a space-time point X := (x0, t0),

∂

∂ t

∫
Mt

f ΦX dH n =
∫

Mt

ΦX

(
∂ f
∂ t
−∆

M f − f
∣∣∣∣~H +

(x− x0)
⊥

2(t0− t)

∣∣∣∣2
)

dH n

+
∫

∂Mt

ΦX

〈
f

x− x0

2(t0− t)
+∇

M f ,ν
〉

dH n−1. (6.7)

This formula is derived the same way as the standard monotonicity formula, but there

are extra boundary terms from use of the divergence theorem. Using (6.4),(6.7) and

denoting by Φ the monotonicity kernel centred at (O,0),

∂

∂ t

∫
Li

t

ΦdH 2 = −
∫

Li
t

Φ

∣∣∣∣~H− x⊥

2t

∣∣∣∣2 dH 2 +
∫

∂Li
t

Φ

〈
− x

2t
,ν
〉

dH 1, (6.8)

∂

∂ t

∫
Li

t

(θ i
t )

2
ΦdH 2 =

∫
Li

t

Φ

(
−2|H|2− (θ i

t )
2
∣∣∣∣~H− x⊥

2t

∣∣∣∣2
)

dH 2

+
∫

∂Li
t

Φ

〈
−(θ i

t )
2 x

2t
+∇

M(θ i
t )

2,ν
〉

dH 1.

Therefore,

lim
i→∞

2
∫ b

a

∫
Li

t

|H|2ΦdH 2dt ≤ lim
i→∞

(∫
Li

a

(θ i
a)

2
ΦdH 2−

∫
Li

b

(θ i
b)

2
ΦdH 2

+
∫ b

a

∫
∂Li

t

Φ

〈
−(θ i

t )
2 x⊥

2t
+∇

M(θ i
t )

2,ν

〉
dH 1dt

)
.

The boundary ∂Li
t is a circle, radius di(t) > µ i for µ i → ∞ independent of t, and cir-

cumference 2πdi(t). Additionally, the Lagrangian angle and its derivative are bounded

on ∂Li
t by the assumed C3 bound, so we can estimate the last integral using a constant

C depending only on this bound. Using this, and relating the first two integrals to the

original flow by scaling invariance of the heat kernel,

lim
i→∞

2
∫ b

a

∫
Li

t

|H|2ΦdH 2dt

≤ lim
i→∞

(∫
L
(λ i)−2a

(θ(λ i)−2a)
2
ΦdH 2−

∫
L
(λ i)−2b

(θ(λ i)−2b)
2
ΦdH 2

+ C
∫ b

a
2πdi(t)e

−di(t)2
2t (di(t)+1)dt

)
.



6.1. The Lawlor Neck 169

This limit is equal to 0, since by Huisken monotonicity with boundary (6.7) the first two

terms cancel in the limit and by assumption di(t)→ ∞. It can similarly be shown using

(6.8) that

lim
i→∞

∫ b

a

∫
Li

t

∣∣∣∣H− x⊥

2t

∣∣∣∣2 ΦdH 2dt = 0,

and since on BR×[a,b] we can estimate Φ from below, these together imply the result.

We now continue with the proof. Note that Schauder estimates applied to the graph

equation (6.3) imply that our flow has uniformly bounded curvatures at the boundary,

and since the Lawlor neck is static, it diverges to infinity under any sequence of rescal-

ings – therefore Lemma 6.1.6 may be applied. Consider the set

K := {(scosh(v),ssinh(v))|s ∈ [−R,R],v ∈ [−V,V ]};

where V is the constant from Lemma 6.1.4. K must contain γt ∩ (BR\Bδ ) for any t and

δ . The set K is itself contained in a larger ball, BR̃, and on this ball we can apply Lemma

6.1.6 to show that, for almost all t,

∫
γ i

t∩BR̃

|γ⊥|2dH 1→ 0

as i→ ∞ (where we suppress the superscript i for readability). Therefore,

∫
γ i

t∩BR̃

|γ⊥|2dH 1 ≥ 2
∫ R

δ

s4(v′t)
2

|γ ′t |2
ds ≥ 2δ 4

C2
1

∫ R

δ

(v′t)
2ds→ 0.

It follows by Hölder’s inequality that v→ v ∈ R uniformly as i→ ∞, and that v−1(γ i
t ∩

BR)→
[
− R√

cosh(2v)
, R√

cosh(2v)

]
. Now fixing r > 0 and using a localised heat kernel Φρ

supported in BR and centred at the origin 0, we use this L2 estimate and the co-area
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formula to calculate the localised Gaussian density ratio:

lim
i→∞

Θ
ρ(Li,0,r) = lim

i→∞

∫
Li
−r2

Φ
ρdH 2

= lim
i→∞

∫ R√
cosh(2v)

δ

Φ
ρ(γ i,−r2)2π|γ||γ ′|ds + lim

i→∞

∫
δ

0
Φ

ρ(γ i(s),−r2)2π|γ||γ ′|ds

≤ lim
i→∞

∫ R√
cosh(2v)

δ

Φ
ρ(γ i,−r2)2πs

√
cosh(2v)

×
√
(1+ s2(v′)2)cosh(2v)+2s(v′)sinh(2v)ds + Cδ

≤
∫ R√

cosh(2v)

0
2πscosh(2v)Φ

ρ(scosh(v)+ issinh(v),−r2)ds + Cδ

=
∫ R

0
2πσΦ

ρ(σ ,−r2)dσ + Cδ

=
∫

DR

Φ
ρ(·,−r2)dH 2 + Cδ = 1+Cδ ,

for DR := {(scos(ψ),ssin(ψ)) ∈ C2 | s < R, ψ ∈ [0,2π]}, where the last line follows

from the fact that Φρ is normalised to integrate to 1 over a plane. Θρ(Li,0,r) can there-

fore be made as close to 1 as desired, by choosing δ sufficiently small and i sufficiently

large.

More generally, we are able to bound the density Θρ

(
Li,X , 1√

2
r
)

for all (x0,r0) ∈

P
(

O, 1√
2
r
)
= Br(O)×

(
−1

2r2,0
]
. Using the monotonicity formula (6.7),

Θ
ρ

(
Li,(x0,r0),

1√
2

r
)

=
∫

Li
r0−

1
2 r2

Φ
ρ

(x0,r0)
(·,r0− 1

2r2)dH 2

≤
∫

Li
−r2

Φ
ρ

(x0,r0)
(·,−r2)dH 2,

and by a very similar calculation to the above we can choose i large so that this is

less than 1+ ε . It follows by White’s local regularity theorem (Theorem 2.2.10) that

|A| and its derivatives are bounded uniformly in the parabolic ball P(O, r
8). This is a

contradiction, and so no singularity can occur.

6.1.4 Smooth Convergence to the Disc

We now prove that the profile curve γ converges smoothly in infinite time to the real

axis.
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Theorem 6.1.7. Any solution to (6.1) is immortal, and converges smoothly in infinite

time to the real axis.

Proof. The C1 bound (6.6) implies that our graphical mean curvature flow equation (6.3)

is uniformly parabolic, and so Schauder estimates give bounds on all curvatures outside

a ball Bε . By the bound on |H|, it follows from Lemma 4.4.5 that there exists c,T such

that for t > T , |H| < e−
c
4 t . As in the proof of Proposition 4.4.1, it now follows that

Lt ∩Bc
ε converges smoothly to a special Lagrangian. This special Lagrangian cannot be

a Lawlor neck, as we may take Bε smaller than the waist of a candidate Lawlor neck, and

then the flow could not reach Bε in the limit. It follows that Lt ∩Bε converges smoothly

to a plane as t→ ∞.

In order to apply Proposition 4.4.1 to our entire flow, it is left to show that we have

uniform curvature bounds near the origin – for this we use White’s regularity theorem.

Fix r > 0, then for all δ ,

∫
Lt−r2

Φ
ρ

(x,t)dH 2 =
∫

Lt−r2∩Bδ

Φ
ρ

(x,t)dH 2 +
∫

Lt−r2∩Bc
δ

Φ
ρ

(x,t)dH 2

≤ δ
2C +

∫
Lt−r2∩Bc

δ

Φ
ρ

(x,t)dH 2.

Therefore for any ε , we may take δ sufficiently small such that

∫
Lt−r2

Φ
ρ

(x,t)dH 2 ≤
∫

Lt−r2∩Bc
δ

Φ
ρ

(x,t)dH 2 + ε.

By smooth convergence to the disc outside Bε , we may take t sufficiently large such that

the integral in the last line is less than 1 (the localised kernel Φρ has the property that

it integrates to 1 on a hyperplane). In general then, for any ε we may take t sufficiently

large such that ∫
Lt−r2

Φ
ρ

(x,t)dH 2 ≤ 1+ ε,

locally uniformly in x and t. White’s regularity theorem (Theorem 2.2.10) now gives a

uniform bound on |A|2 and its higher derivatives. This implies that our flow converges

smoothly to a special Lagrangian by Proposition 4.4.1, that must be equivariant and

pass through the origin. There is only one submanifold with these properties that also
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intersects the Lawlor neck, an equivariant disc, and so we are done.

6.2 The Clifford Torus
Our second example concerns equivariant discs L (profile curve γ) with boundary on the

Clifford torus. The Lagrangian angle of the Clifford torus Σ with profile curve σ is given

by

θ̃ =
π

2
+2arg(σ),

and therefore the boundary condition of (4.1) becomes

θ
∣∣
∂L−2arg(γ) = −α.

As before, we restrict to the α = 0 case, which corresponds to the profile curves meeting

orthogonally at the boundary.

The Clifford torus is slightly more complicated to work with than the Lawlor neck,

as it is not a static solution to MCF. However it is a self-similarly shrinking solution,

with profile curve

σt =
(√
−4t cos(s),

√
−4t sin(s)

)
,

on the time interval [t0,0). It is then natural to perform the rescaling

Στ :=
1√
−t

Σt
∣∣
t=−e−τ

=⇒ σ τ = (2cos(s),2sin(s))

which is a static solution to the rescaled MCF equation

(
∂F
∂τ

)⊥
= H +

F⊥

2
,

on the time interval [τ0,∞) = [− log(−t0),∞). Applying this rescaling also to our LMCF

with boundary means we are working with a static boundary manifold, albeit with a

different PDE problem.

In this section, we will prove that the rescaled flow is immortal and converges in
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infinite time to a flat equivariant disc (see Figure 4.2a). In terms of the original flow, this

means that no singularity occurs before the final time 0, and any sequence of parabolic

rescalings centred at the singular space-time point (O,0) converges to a flat equivariant

disc. Throughout this section we will work with both the rescaled flow, denoted Lτ with

profile curve γτ , and the original flow, denoted Lt with profile curve γt . For reference,

the rescaled flow for the profile curve is given by

(
∂γ

∂τ

)⊥
= k− γ

⊥

|γ|2
+

γ
⊥

2
. (6.9)

Theorem 6.2.1. Let L0 : D→ C be an S1-equivariant Lagrangian embedding of a disc

D, with boundary on the Clifford torus

ΣCliff := {2eiφ (cos(ψ),sin(ψ)) ∈ C2 : φ ,ψ ∈ [0,2π)},

and let γ0 : [−2,2] : C be its profile curve in C. Assume that its Lagragian angle θ0

satisfies

θ0(s)−2arg(γ0(s)) ∈ (−π

2 + ε, π

2 − ε)

for some ε > 0. Then there exists a unique, eternal solution to the rescaled LMCF

problem:



(
∂

∂τ
F(x,τ)

)NM
= H(x,τ) + F(x,τ)⊥

2 for all (x,τ) ∈ D× [τ0,∞)

F(x,τ0) = L0(x) for all x ∈ D

∂Lτ ⊂ ΣCliff for all τ ∈ [τ0,∞)

θτ |∂Lτ
−2arg(γ0) = 0 for all (x,τ) ∈ ∂D× [τ0,∞),

(6.10)

which converges in smoothly in infinite time to a flat disc.

Remark 6.2.2. Note that here, we demand the condition θ0(s)−2arg(γ0(s)) ∈ (−π

2 +

ε, π

2 − ε) in place of the almost-calibrated condition of the Lawlor neck case. This is

more natural, as not only is this always satisfied at the boundary, but it is also equivalent

to graphicality in a radial parametrisation, as will be shown in the next section.
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If we work with a different boundary condition, α 6= 0 (corresponding to a different

fixed angle between the profile curves), numerical evidence suggests that we still have

long-time existence, and the flow converges to a rotating soliton of the rescaled LMCF

with boundary problem; see Figure 4.2b.

6.2.1 Radial Parametrisation

We will work throughout with the radial parametrisation of the rescaled profile curve:

γ : [−2,2]→ C, γ(r) := reiφ(r)

=⇒ γ
′(r) = (1+ irφ

′)eiφ

=⇒ γ
′′(r) = (−r(φ ′)2 + i(2φ

′+ rφ
′′))eiφ . (6.11)

Writing ν := iγ ′

|γ ′| , the mean curvature is given by:

~H = k− γ
⊥

|γ|2
=

(γ ′′)⊥

|γ ′|2
− γ

⊥

|γ|2

=

(
rφ ′′+ r2(φ ′)3 +2φ ′

|γ ′|3
+

φ ′

|γ ′|

)
ν ,

and therefore in this parametrisation, the problem (6.10) becomes
r ∂φ

∂ t = rφ ′′+r2(φ ′)3+2φ ′

1+r2(φ ′)2 +φ ′− r2φ ′

2 for r ∈ [−2,2], τ ≥ τ0,

φ(r,τ) = φ0 for r ∈ [−2,2],

φ ′(r,τ) = 0 for r ∈ {−2,2}, τ ≥ τ0.

(6.12)

Lemma 6.2.3. In the above parametrisation, the only static solutions to the rescaled

LMCF with boundary (6.10) are straight lines through the origin, with φ = φ0.

Proof. Using (6.12),

H +
F⊥

2
= 0 ⇐⇒ rφ

′′+3φ
′+2r2(φ ′)3− r2φ ′

2
− r4(φ ′)3

2
= 0

⇐⇒ dλ

dr
+(λ +λ

3)

(
2
r
− r

2

)
= 0
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away from r = 0, for λ = rφ ′. This ODE, along with the boundary condition λ = 0, has

the unique solution λ = 0, which implies that our static solution is a straight line.

6.2.2 C1-Bounds on the Graph Function

The chosen parametrisation is special in that our assumed condition on the Lagrangian

angle corresponds to graphicality and gradient bounds for φ .

Lemma 6.2.4. Assume that Fτ is a solution to (6.10) on [τ0,T ), such that at time τ0,

θt−2arg(γτ) ∈
(
−π

2
+ ε,

π

2
− ε

)
. (6.13)

Then for all τ ∈ [τ0,T ):

• The condition (6.13) holds,

• The flow can be radially parametrised as γτ(r) = reiφτ (r),

• In this parametrisation, there exists a constant C2 such that |rφ ′τ | ≤C2. Therefore

|γ ′| is uniformly bounded, and φ ′τ is uniformly bounded on any annulus centred at

the origin.

Proof. If we parametrise the initial profile curve γ0 by arclength, then it may be written

in polar coordinates as

γ0(s) = r(s)eiφ(s), γ
′
0(s) = (r′+ irφ

′)eiφ . (6.14)

Therefore the Lagrangian angle of γ0 may be expressed as

θ(s) = 2φ + tan−1
(

rφ ′

r′

)
.

Note that at the origin, we must have r′ > 0. Using |γ ′| =
√

(r′)2 + r2(φ ′)2 = 1 and
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(6.13), there exists N such that if r′ < 1:∣∣∣∣rφ ′

r′

∣∣∣∣ ≤ N

=⇒ 1− (r′)2 ≤ N2(r′)2

=⇒ (r′)2 ≥ 1
N2 +1

=⇒ r′ ≥ 1√
N2 +1

.

This lower bound allows us to reparametrise as γ(r)= reiφ(r), and in this parametrisation,

θ(r) = 2φ + tan−1(rφ
′),

therefore the condition (6.13) corresponds to a uniform upper bound on |rφ ′|.

It is left to prove that (6.13) is preserved; we start by calculating the evolution equa-

tion of θ − 2φ . Working with the arclength parametrisation of the original unrescaled

flow, γ(s) = r(s)eiφ(s), the metric and Laplacian on the manifold are given by

g = ds⊗ds+ r2dβ ⊗dβ ,

∆ f =
1
|g|

∂i
(
|g|gi j

∂ j f
)
=

∂ 2 f
∂ s2 +

1
r2

∂ 2 f
∂β 2 +

〈γ ′,γ〉
r2

∂ f
∂ s

,

where β is the coordinate of the S1-equivariance. If f is an equivariant function, as θ

and φ both are, then the middle term vanishes. Now, writing ν := iγ ′, it follows from

(6.14) that

∂φ

∂ s
= −〈γ,ν〉

r2 ,
∂ 2φ

∂ s2 = −〈γ, iγ
′′〉

r2 +2
〈γ ′,γ〉〈γ,ν〉

r4 =

〈
iγ,~k

〉
r2 +2

〈γ ′,γ〉
r2
〈γ,ν〉

r2 ,

where~k is the curvature of the profile curve, and using the standard equivariant MCF

equation (5.6),

∂γ

∂ t
=~k− γ⊥

r2 , =⇒ ∂φ

∂ t
=

〈
iγ
r2 ,

∂γ

∂ t

〉
=

〈
iγ,~k

〉
r2 − 〈γ

′,γ〉
r2
〈γ,ν〉

r2 .
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Additionally, under this flow the Lagrangian angle satisfies the heat equation

(
∂

∂ t
−∆

)
θ = 0.

Putting this all together, we arrive at the evolution equation:

(
∂

∂ t
−∆

)
(θ −2φ) = 2

(
− ∂

∂ t
+

∂ 2

∂ s2 +
〈γ ′,γ〉

r2
∂

∂ s

)
φ = 4

〈γ ′,γ〉
r2
〈γ,ν〉

r2 .

Now, since θ −2φ = arg(γ ′)− arg(γ), it follows that

cos(θ −2φ) = cos(arg(γ ′)− arg(γ)) =
〈γ ′,γ〉

r
,

sin(θ −2φ) = cos
(

arg(γ ′)− arg(γ)− π

2

)
= −〈γ,ν〉

r
,

=⇒
(

∂

∂ t
−∆

)
(θ −2φ) = −2

sin(2(θ −2φ))

r2 . (6.15)

Therefore,

(
∂

∂ t
−∆

)
sin(θ −2φ)

= cos(θ −2φ)

(
∂

∂ t
−∆

)
(θ −2φ)+ sin(θ −2φ)

〈
∂ (θ −2φ)

∂ s
,
∂ (θ −2φ)

∂ s

〉
=− 4

r2 sin(θ −2φ)cos2(θ −2φ)+
sin(θ −2φ)

cos2(θ −2φ)
|∇sin(θ −2φ)|2 . (6.16)

Now for a contradiction, assume that at some point p ∈ γt after the initial time, we have

an increasing maximum of θ −2φ (and therefore of sin(θ −2φ)). Since this function is

zero on the boundary and at the origin, it must occur at some interior point away from

the origin. Then at this point, it is valid to parametrise by arclength and use standard

(normal) mean curvature flow, so that the above calculation is valid. The weak maximum

principle applied to (6.16) then provides a contradiction, and so the function θ − 2α is

bounded by its initial values.

Finally, using simple barriers we also obtain uniform C0 estimates on the function

φ .
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Lemma 6.2.5. Let γ be a radially parametrised solution to (6.10) on the time interval

[t0,T ), which satisfies φt1 ∈ [φ−,φ+], θt1 ∈ [θ−,θ+] for some t1 ∈ [t0,T ). Define

A− := min
{

θ−
2
,φ−

}
, A+ := max

{
θ+

2
,φ+

}
.

Then for all t ∈ [t1,T ), φt ∈ [A−,A+].

Proof. We only prove that φt ≤ A+, since the A− case is identical. For a contradiction,

assume that there exist δ and a first time tδ ∈ (t1,T ) such that

max
Lt

δ

= Aδ := A++δ .

Then using the radial parametrisation, if this maximum is achieved on [−2,2]\{0}, we

may use the strong parabolic maximum principle applied to the boundary value problem

(6.12), comparing with the static solution φ̃ ≡ Aδ . This implies that locally in space and

time φ ≡ Aδ , which is a contradiction.

On the other hand, if this maximum is achieved at the origin r = 0, then since

θ −2φ = 0 at this point, θtδ (0) = 2φtδ (0) = 2Aδ , which is larger than the maximum of

θt1 . Since θ satisfies a heat equation on the abstract disc, it follows by the parabolic

maximum principle and the fact that θ −2φ = 0 on the boundary that we must have

θtδ (−2) = θtδ (2) = 2Aδ =⇒ φtδ (−2) = φtδ (2) = Aδ .

But now as before we may apply the maximum principle at the boundary to φ to derive

a contradiction.

6.2.3 Long-Time Existence

We now prove long-time existence for our rescaled flow, in a very similar way to the

Lawlor neck case.

Lemma 6.2.6. A finite-time singularity for a solution of (6.10) cannot occur.

Proof. Note that a finite-time singularity of (6.10) corresponds to a singularity of the

unrescaled flow before time 0.
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Working with the rescaled flow, we have shown that it is graphical and that the

graph function φ satisfies the equation (6.12), which is uniformly parabolic away from

the origin by the C1 bounds of the last section. Therefore we have uniform bounds on

all derivatives by parabolic Schauder estimates, and no singularity can occur away from

the origin.

Just as before, we must deal with the origin separately. Assuming that a singular-

ity of the original flow Lt occurs before the final time 0, the image of ∂Lt under any

sequence of rescalings around this singularity will diverge to infinity, just as with the

Lawlor neck (since at the time of the singularity, the Clifford torus is outside a neigh-

bourhood of the origin). Therefore Lemma 6.1.6 applies, and it follows that

∫
γ i

t∩(BR\Bδ )
|γ⊥|2dH 1 = 2

∫ R

δ

r4(φ ′)2

|γ ′|2
dr ≥ 2δ 4

C2

∫ R

δ

(φ ′)2dr

=⇒
∫ R

δ

(φ ′)2dr → 0.

In exactly the same way as in the proof of Lemma 6.1.5, this estimate gives us bounds on

the densities, and White regularity implies smooth convergence of the rescalings. This

is a contradiction to the assumption of singularity formation at (O,0).

6.2.4 Subsequential Convergence to the Disc

We now prove subsequential convergence to the disc, working with the original flow

throughout. Take a sequence of rescalings Li
t around the space-time point (O,0) with

factors λi→∞. We may use the graphicality and smooth estimates from Schauder theory

away from the origin to conclude that, subsequentially, the profile curves γ i
t converge to

a limiting smooth graph on A× [a,b], where A is any annulus centred at the origin.

A diagonal argument gives a subsequence converging locally smoothly away from the

origin to a limiting flow γ∞
t , with limiting angle function φ ∞

t well defined everywhere

but the origin.

Using the boundary version of Huisken’s monotonicity formula (6.7) with f = (θ−

2φ)2, using the evolution equation (6.15) and noting that f = 0 and ∇ f = 0 on the
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boundary gives the monotonicity formula:

(
∂

∂ t
−∆

)
f = 2(θ −2φ)

(
∂

∂ t
−∆

)
(θ −2φ) − 2

(
∂

∂ s
(θ −2φ)

)2

=− 4
r2 (θ −2φ)sin(2(θ −2φ))−2

(
∂

∂ s
(θ −2φ)

)2

, (6.17)

∂

∂ t

∫
Li

t

f ΦdH 2 =
∫

Li
t

Φ

((
∂

∂ t
−∆

)
f − f

∣∣∣∣H− x⊥

2t

∣∣∣∣2
)

dH 2

+
∫

∂Li
t

Φ

〈
f

x
2t

+∇ f ,ν
〉

dH 1

=
∫

Li
t

Φ

(
− 4

r2 (θ −2φ)sin(2(θ −2φ))−2
(

∂

∂ s
(θ −2φ)

)2

− (θ −2φ)2
∣∣∣∣H− x⊥

2t

∣∣∣∣2)dH 2. (6.18)

Therefore, choosing 0 < a < b,

lim
i→∞

∫ b

a

∫
Li

t

Φ(θ −2φ)2
∣∣∣∣H− x⊥

2t

∣∣∣∣2 dH 2dt

≤ lim
i→∞

(∫
Li

a

f ΦdH n−
∫

Li
b

f ΦdH 2
)

= lim
i→∞

(∫
L
(λ i)−2a

f ΦdH n−
∫

L
(λ i)−2b

f ΦdH 2

)
= 0.

This implies (by the locally smooth convergence) that (θ − 2φ)2
∣∣∣H− x⊥

2t

∣∣∣2 ≡ 0 for the

limiting manifold L∞
t , for any t ∈ R. But if on an open subset we have θ − 2φ ≡ 0,

then the subset must be a part of a straight line through the origin. Therefore on this

subset we also have
∣∣∣H− x⊥

2t

∣∣∣≡ 0, and so γ∞ is a self-shrinker. By Lemma 6.2.3 the only

option is a straight line through the origin; therefore φ ∞ = A for some constant A ∈ R.

Additionally, since we have smooth convergence on any annulus, we have the integral

estimate ∫
Li

t

Φ(θ −2φ)2dH 2 → 0. as i→ ∞. (6.19)

This convergence of the rescalings corresponds to subsequential convergence in the
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rescaled flow. Taking any sequence τi, and choosing λi := e
τi
2 :

Lτi = e
τi
2 L−e−τi = λiL−λ

−2
i

= Li
−1.

By the work above we know that, up to a subsequence, this converges smoothly away

from the origin to a disc.

6.2.5 Smooth Convergence to the Disc

We have proven smooth subsequential convergence to the disc, but we could still have

different subsequences converging to different discs, and we also haven’t shown that the

curvature remains bounded at the origin. To solve these problems, we will demonstrate

uniform curvature estimates via a Type II blowup argument.

Assume that the curvature of the rescaled flow |A| diverges to infinity as τ → ∞.

Then we may find a sequence τi such that maxLτi
|Aτi| → ∞ as i→ ∞. In the unrescaled

flow, this sequence corresponds to a sequence of times ti =−e−τi , such that

√
−2ti max

Lti

|Ati| → ∞;

i.e. the singularity is a Type II singularity.

Passing to a subsequence we may ensure that the manifolds Lτi converge smoothly

to a disc on an annulus by the work of the previous section – therefore the curvature

blowup must be uniformly away from the boundary. By standard theory of Type II

blowups, we also know that we may choose a sequence of points xi such that the se-

quence

L̂(xi,ti)
t := Ai

(
Lti+A−2

i t− xi

)
converges locally smoothly to a limiting flow L̂∞

t , where Ai := maxLti
|Ati|. We may pick

these points in C×{0}, and define the rescaled profile curve γ̂ i
t in the same say as above

by considering xi to be an element of C.

We now prove locally uniform convergence of θ−2φ to 0 for the Type II rescalings

L̂(xi,ti)
t . The argument is identical to the proof of Theorem 5.2.13, and so we suppress

some of the details.
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Lemma 6.2.7. Consider the sequence of Type II blowups as defined above. For any

bounded parabolic region Ω× I ⊂ C2×R,

θ −2φ → 0 as i→ ∞, uniformly in Ω× I. (6.20)

Explicitly, for any ε > 0, there exists N ∈ N such that for any t ∈ I, and any sequence

χi ∈Ω∩ L̂(xi,ti)
t ,

θ
i
t −2φ

i
t ≤ ε,

where φ i
t (p) is the angle of the point γ̂ i

t (p) in the rescaled profile curve, relative to the

image of the origin under the rescaling, −Aixi.

Proof. Choosing

λi :=
1
2

min
{

1
4
√
−ti

,
1
√

xi
,
√

Ai

}
,

it is then possible to pick an N such that for any i > N and τ ∈ I,

(−tiA2
i )(1+ t−1

i λ
−2
i )≥ τ.

Since (θ −2φ)2 is a subsolution to the heat equation by (6.17), it follows that

|θ i
τ(χi)−2φ

i
τ |2 =

∫
L̂(xi,ti)

τ

(θ −2φ)2
Φ(χi,τ)dH 2

≤
∫

L̂(xi,ti)

(−tiA
2
i )(1+t−1

i λ
−2
i )

(θ −2φ)2
Φ(χi,τ)dH 2

=
∫

Li
−1

(θ −2φ)2
Φ(λi(A−1

i χi+xi),λ 2
i (A−2

i τ+ti))dH 2,

where for the first inequality we use Huisken monotonicity (6.18), and in the second

we use invariance of the kernel Φ (Lemma 2.2.8) to equate the integral over the Type

II rescaling with an integral over the Type I rescaling Li
−1, centred at (O,0) and with

rescaling factor λi. Then, since
(
λi
(
A−1

i χi + xi
)
,λ 2

i
(
A−2

i τ + ti
))
→ (O,0) uniformly in

Ω× I, and by the L2 convergence (6.19), we may find Ñ ≥ N such that for i≥ Ñ,

|θ i
τ(χi)−2φ

i
τ |2 ≤

∫
Li
−1

(θ −2φ)2
Φ(0,0)dH 2 + ε

2 ≤ ε.
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This lemma implies that the limiting profile curve γ̂∞
t is a straight line, since

θ − 2φ = 0 ⇐⇒ arg(γ) = arg(γ ′). However, this is a contradiction, as the Type II

blowup satisfies max |Â|= 1 by construction.

Therefore, the rescaled flow Lτ satisfies uniform curvature bounds, and so the sub-

sequential convergence of Lτi to a disc is in fact everywhere smooth. In particular, on

passing to a subsequence their Lagrangian angles converge smoothly to a constant, as

do their angle functions φ . We may now apply Lemma 6.2.5 to conclude that the flow

converges smoothly in τ to a Lagrangian disc, which proves Theorem 6.2.1.





Chapter 7

Conclusions and Future Research

This work has focused on two main themes – extending Lagrangian mean curvature flow

to include flows with boundary, and investigating the long-time behaviour of Lagrangian

mean curvature flow and the nature of singularities. Here, we summarise the results of

the thesis, and consider future extensions of our work.

In Chapter 4, we demonstrated that there is a suitable boundary condition for a sub-

manifold L0 on a Lagrangian mean curvature flow Σt , such that if L0 is Lagrangian, the

mean curvature flow with initial condition L0 is Lagrangian until the maximal time of

existence. As well as augmenting the rich subject of Lagrangian mean curvature flow,

this theorem has potential applications in producing compactly supported Lagrangian

deformations. To take one example, a long-standing conjecture of symplectic geome-

try suggests that every compactly supported symplectomorphism from R2n to itself is

smoothly isotopic to the identity via compactly-supported symplectomorphisms. Since

the graph of a symplectomorphism may be considered as a Lagrangian submanifold,

LMCF with boundary could be a useful tool for this problem.

There is much potential for further extending LMCF with boundary, in particular to

networks of Lagrangians. MCF of networks (see for example [47]) is a natural extension

of curve shortening flow, where one allows triple-junctions of curves intersecting with

an angle of 2π

3 . These conditions are analogous to the phenomenon that the walls of

bubble complexes meet only at triple junctions with angles of 2π

3 . These regular network

flows are in fact the ‘stable’ state of Brakke flow in the 1-dimensional case. F. Schulze,

T. Ilmanen and A. Neves [34] have recently shown that, given a network which does
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not satisfy these conditions (a non-regular network), there exists a regular flow starting

from that network. In contrast, LMCF with boundary introduced in Chapter 4 is not a

Brakke flow when considered together with the boundary flow, as evidenced by the fact

that Type I blowups of singularities are not necessarily self-shrinkers (see Figure 4.2b).

A promising research direction is therefore to investigate Brakke flows of Lagrangian

networks, in particular to find a boundary condition at triple junctions which preserves

the class of Lagrangian submanifolds.

In Chapter 5, we succeeded in giving a near-complete picture of singularities of

almost-calibrated equivariant Lagrangian mean curvature flow in Cn. We showed that

the Type I and Type II blowups are uniquely determined by the initial condition of the

flow, and are given by a pair of planes and a Lawlor neck respectively. One thing that

we did not focus on was the rate of blowup of the curvature, or of the formation of

the Lawlor neck. If investigated, it may be possible to show that the mean curvature

remains bounded for almost-calibrated equivariant mean curvature flow at a singularity,

since the Lawlor neck is a minimal submanifold. Similar analysis has been performed

in the hypersurface case by J. Velazquez [71], N. Sesum and S-H. Guo [25], and M.

Stolarski [66], and resulted in the first example of a singularity with bounded mean

curvature.

The work of Chapter 5 supports the conjecture that the Lawlor neck singularity is

generic for Lagrangian mean curvature flow. Future work could investigate the singular

behaviour of Lagrangian mean curvature flow when perturbed in non-equivariant direc-

tions, to discover whether non-equivariant Lawlor necks are possible as singularities of

the flow. If only equivariant Lawlor necks arise, this may provide a strategy for proving

genericity of Lawlor necks, by reducing a general singularity to the equivariant case in

the limit. One limitation of our analysis is that it required the global almost-calibrated

condition in order to exclude certain possibilities, despite the expectation that this singu-

larity arises far more generally. For example, it is conjectured to arise from the unstable

Hamiltonian perturbations of the Clifford torus considered by C. Evans, J. Lotay, and F.

Schulze [21]. It would therefore be of use to localise our arguments so they can be used

for a wider range of flows.
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Figure 7.1: The profile curve of a Lagrangian submanifold, homeomorphic to a plane. It was
shown by A. Neves [50] to form a Type II singularity at the origin.

There are interesting unstudied singularities, even in the equivariant case. One par-

ticularly intriguing example that warrants further study is one inspired by an example of

A. Neves [50], depicted in Figure 7.1. This curve is not almost-calibrated so the theory

of Chapter 5 does not apply, and indeed one can show that if the loops are large enough,

a singularity forms at the origin whose Type I blowup is the union of three special La-

grangian planes. If the loops are small, however, the flow unravels without a singularity

forming, and converges in infinite time to a single special Lagrangian plane. The be-

haviour at the boundary between these two schemes is unknown, but based on analysis

of similar cases (for example [6]) it is expected that both the Lawlor neck singularity

and a translating grim reaper singularity occur together, the former at the origin and the

latter at the tip of the loops of the profile curve (compare with Figure 2.2).

Finally, in Chapter 6 we thoroughly investigated two examples of Lagrangian mean

curvature flows with boundary, which showcased both long-time existence and singular-

ity formation. These examples demonstrated that the flow is well-behaved; in particular

the long-time existence result for the Lawlor neck highlights the potential uses of LMCF

with boundary in finding minimal configurations and Lagrangian isotopies. In further

work, it would be of interest to generalise the Lawlor neck example and prove a more

general result on long-time existence of Lagrangian mean curvature flow with boundary

on special Lagrangians.
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