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Abstract

Neural networks are a powerful model class to learn machine Reading Comprehen-

sion (RC), yet they crucially depend on the availability of suitable training datasets.

In this thesis we describe methods for data collection, evaluate the performance of

established models, and examine a number of model behaviours and dataset limita-

tions.

We first describe the creation of a data resource for the science exam QA do-

main, and compare existing models on the resulting dataset. The collected ques-

tions are plausible – non-experts can distinguish them from real exam questions

with 55% accuracy – and using them as additional training data leads to improved

model scores on real science exam questions.

Second, we describe and apply a distant supervision dataset construction

method for multi-hop RC across documents. We identify and mitigate several

dataset assembly pitfalls – a lack of unanswerable candidates, label imbalance, and

spurious correlations between documents and particular candidates – which often

leave shallow predictive cues for the answer. Furthermore we demonstrate that se-

lecting relevant document combinations is a critical performance bottleneck on the

datasets created. We thus investigate Pseudo-Relevance Feedback, which leads to

improvements compared to TF-IDF-based document combination selection both in

retrieval metrics and answer accuracy.

Third, we investigate model undersensitivity: model predictions do not change

when given adversarially altered questions in SQUAD2.0 and NEWSQA, even

though they should. We characterise affected samples, and show that the phe-

nomenon is related to a lack of structurally similar but unanswerable samples during
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training: data augmentation reduces the adversarial error rate, e.g. from 51.7% to

20.7% for a BERT model on SQUAD2.0, and improves robustness also in other

settings. Finally we explore efficient formal model verification via Interval Bound

Propagation (IBP) to measure and address model undersensitivity, and show that

using an IBP-derived auxiliary loss can improve verification rates, e.g. from 2.8%

to 18.4% on the SNLI test set.



Impact Statement

This PhD thesis presents research in the intersection of Natural Language Process-

ing (NLP) and Machine Learning (ML), and its aim is to further the development

of computer models for text understanding with a particular focus on the datasets

models are trained with.

Systems with intelligent text processing capabilities become increasingly im-

portant as the amount of digital textual information expands. They can be used

to support querying, structuring, filtering, combining, organising and validating in-

formation from text automatically, and thus facilitate access to knowledge in the

digital sphere. Concrete example applications include automatic Question Answer-

ing (QA) sytems, improved web search, and automatic fact checking. Language

understanding forms a core component of artificial intelligence more generally, and

improving machine reading comprehension can be expected to enable new applica-

tions that integrate it with other sub-fields or input modalities, e.g. vision.

In this thesis we address a set of machine reading comprehension scenarios

and study both data annotation methods, the resulting datasets, and the consequent

behaviours and limitations of models trained on these datasets. Our observations

specifically on different dataset biases can help improve our understanding of ma-

chine reading comprehension systems, which is relevant in particular as the overall

interpretability of contemporary neural methods is limited. The datasets whose

construction is described have been made available for further research to the wider

community, and some of the research has led to publication at leading venues in

ML and NLP.
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Chapter 1

Introduction

The written word plays a fundamental role in organising information: it serves to

record memories, store facts and observations, and to share experiences and pre-

serve lessons learnt from them. Reading Comprehension (RC) – the ability to un-

derstand the written word – is a learned cognitive capacity that constitutes a central

prerequisite for knowledge acquisition from text, and it allows humans to tap into a

vast store of collectively assembled historic and contemporary information, e.g. in

encyclopediae or the web.

While RC is originally a human skill, the availability of text in digital form,

and the need to organise, channel, filter and search in it, raise a both philosophically

intriguing, and practically challenging question: to what extent can the ability to

understand natural language text be automated in a machine? Research in Natural

Language Processing (NLP), and more specifically in machine reading comprehen-

sion, aims to answer this question, and in a constructive way: by building systems

that demonstrate text comprehension ability (to varying degrees). If a computer

system is given a natural language text and probed with a comprehension question

about its content – can it produce the correct answer?

Figure 1.1 shows an example from the Stanford Question Answering

Dataset (SQUAD; Rajpurkar et al. (2016)), a widely used benchmark dataset for

this NLP task, which contains snippets of Wikipedia text together with crowd-

sourced questions about their content, and correct answers.

This example illustrates that natural language expressions codify messages in
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Figure 1.1: Example from the SQUAD1.1 dataset for machine Reading Comprehension.

ways that do not strictly adhere to an easily specifiable set of rules that would allow

for programmatic extraction of the content: while the question asks about the “name

of the count of Apulia”, this is not stated in the given text verbatim. Instead, the

paragraph describes that this person was “previously elevated to the dignity of count

of Apulia”, which entails being count of Apulia. There are also various alternative

ways to formulate an information request about “the name” of a person – each with a

subtly different meaning: “Who was ...”, “Which person was ...”, or “Which Norman

adventurer was ...”. Note that the last formulation is specific to this given context:

it includes another property (“Norman adventurer”) which would not be found in

other contexts in which “the name” of an individual is to be identified.

This example illustrates that there is a vast amount of lexical and syntactic di-

versity in natural language – even to express very similar messages or information

requests. The wide range of these variations, which may or may not depend on the

context, makes it infeasible to specify a comprehensive set of regular expressions

both general and precise enough to capture the underlying pattern in information

requests like the above. Interpretations are generally context-sensitive, and various

degrees of inference allow a competent reader to go beyond what is literally stated.

This inherent variety, redundance, flexibility, and context-sensitivity of natural lan-

guage renders RC a very challenging task, and for many decades progress within

NLP was confined to various subtasks, such as extracting individual entities, and

classifying types of relations between them.

But the previous years have established a new paradigm, not only for RC, but
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for NLP in general: the usage of end-to-end trainable neural networks, which fit

continuously parameterised “neural” transformation functions on ideally vast col-

lections of inputs paired with desirable model outputs. For example, the above

mentioned SQUAD dataset contains more than 100,000 input-output pairs of com-

prehension questions and answers obtained via crowdsourcing, without further an-

notations of entities or other potential intermediate stages of a comprehension pro-

cess.

The availability of such large training datasets and ready-to-use neural model-

ing toolkits have spurred a profusion in model and architecture development, and

subsequent rapid progress on benchmark datasets, as can be witnessed on the model

leaderboard for SQUAD.1 This line of research has demonstrated that neural mod-

els possess sufficient representational capacity to acquire relevant reading skills by

fitting correct answering behaviour on comprehension questions end-to-end, and

that this generalises to held-out evaluation questions.

The now well-established paradigm for approaching a new RC task has thus

become, first, to assemble an ideally large scale dataset of relevant texts and com-

prehension questions, and second, to design a neural architecture and train it on the

assembled data, ideally leveraging pre-trained model weights. This framework is

very adaptable, making it possible to interchange different types of datasets, neural

architectures, and types of pretrained model weights. It is also a comparatively re-

cently developed paradigm, which opens a variety of research questions about how

statistical patterns in the collected training data affect the behaviour of the models

trained on it.

On the one hand, it is a core underlying axiom of using a data-driven learning

approach that generalisable reading comprehension skills will emerge from statis-

tical patterns when considering a sufficient amount of relevant training examples.

And indeed, the “super-human” generalisation scores of neural models on datasets

such as SQUAD give justification to this assumption, and raise hopes that the cre-

ation of datasets for other RC tasks can lead to similar outcomes. On the other

1https://rajpurkar.github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/
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hand, any approach to creating a dataset with samples aimed at demonstrating the

necessary skills required for proficiency in a task may come with a misalignment

to this objective. It is currently not well understood how precisely the nature of a

dataset and its statistical patterns and properties reflect on the skills that a model

learns from it, and this extends in particular to RC.

Thus – as datasets form a critical ingredient to build RC systems – both meth-

ods for data annotation and the resulting datasets are worth investigation. We will

in this thesis describe the creation of several datasets for new RC problems, relate

their properties to limitations in RC models trained on them, and evaluate technical

solutions to circumvent the identified issues. The thesis will be structured into three

main parts which focus on more narrow topics within this general problem setting;

we will subsequently give an overview of each.

1.1 Research Overview and Contribution Summary

1.1.1 Dataset Assembly for Reading Comprehension in Science

Exams (Part I)

When considering the field of Artificial Intelligence (AI) more broadly, one long-

standing challenge has been the evaluation of algorithms on tests designed for prob-

ing human intellectual ability and educational progress. A concrete benchmark

problem proposed by the Allen Institute for Artificial Intelligence is to evaluate

computers on 4th or 8th grade exam questions from natural science subjects. Solving

these exams requires a variety of cognitive abilities – including Reading Compre-

hension – as well as various types of background knowledge and other skills (Jansen

et al., 2016). System performance on these exams can thus serve as an aggregate

measuring stick for how far the AI field has progressed in building and integrating

these capacities into a single computer system.

Reading Comprehension in this context is particularly challenging: the domain

is very specific, and the amount of exam questions potentially available for training

is limited. But since current neural RC systems rely on ample training data as a

critical ingredient, we hypothesise that the assembly of such a data resource can be
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of use to train RC models and improve their ability to solve science exam questions.

In our first study, we thus develop a data acquisition pipeline with which we can

obtain new RC training data specifically for the science exam domain. Based on a

large collection of in-domain text and a small collection of real seed exam questions,

we collect more than 10,000 questions about study materials in a crowdsourcing

task, guided by suggestions of an auxiliary predictor to facilitate annotation. We

then compare existing automatic science exam solvers, as well as neural RC models

on the resulting dataset, and use the outcome to highlight a number of important

dataset properties and limitations. Finally, we demonstrate that the created dataset

can be leveraged to improve neural RC system performance on a held out set of real

science exam questions.

Summary of Contributions:

1. We describe a method for crowdsourcing RC data in the particular domain of

multiple-choice science questions and use it to assemble a new training and

evaluation datset resource.

2. We compare the performance of several established science exam solvers and

RC models on this new dataset, discuss its properties, and show that it can be

used to improve RC performance on real exam questions.

1.1.2 Multi-Hop Reading Comprehension (Part II)

The SQUAD-like dataset construction approach, which we also adopt in Part I, cen-

ters around crowdsourcing comprehension questions about a single paragraph. The

necessary information to answer such a question is very locally concentrated (Min

et al., 2018), and there often exists substantial lexical overlap between comprehen-

sion question and given document. This naturally limits the scope of the resulting

models, as they can overly focus on learning to align and (soft-) match questions

with relevant sentences (Weissenborn et al., 2017) which can also be adversarially

exploited (Jia and Liang, 2017). Yet text comprehension should ideally go beyond

searching for requested information in a single, short piece of text which closely

rewords the comprehension question. A more ambitious goal for an RC system
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is to process several distinct pieces of text, and infer new information from them

together. Such “multi-hop” comprehension is a challenging RC task, but even con-

structing the necessary training and evaluation resources presents a non-trivial and

new challenge.

In Part II of this thesis we target this multi-hop comprehension problem, and

first assemble dataset resources for an RC scenario where evidence for the correct

answer can be combined from multiple documents. We describe the construction of

such a data resource in detail, focus on a variety of potential pitfalls and undesirable

statistical cues in the process, and investigate ways to overcome and remove these.

We then compare several models – statistical, neural, and retrieval-based –, inves-

tigate how they reflect data biases, and observe that after removing several salient

statistical cues, neural models tend to generalise most robustly to held out samples.

As we observe that one critical aspect to solving multi-document comprehen-

sion problems is the identification of relevant text combinations, we investigate this

selection problem further. Using standard information retrieval (IR) strategies –

such as BM25 and TF-IDF – to search for relevant documents has limitations when

it comes to retrieving documents whose relevance to a query is co-dependent. A dif-

ferent retrieval method which uses pseudo-relevance feedback (PRF) for query ex-

pansion, however, includes content of initially retrieved documents into the search

query vector. We examine the suitability of this approach for retrieving multiple

related documents, compared to approaches which consider the relevance of docu-

ments independently. Finally we combine the retrieval component with a neural RC

model, and find that PRF-based systems outperform TF-IDF-based systems on the

previously created multi-hop dataset.

Summary of Contributions:

1. We propose a new cross-document multi-hop RC task, and describe a general

dataset induction strategy for this proposed problem.

2. We assemble two datasets from different domains for this task, and identify

dataset construction pitfalls and remedies.
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3. We establish multiple baselines on the resulting multi-step RC data, and anal-

yse model behaviour in detail through ablation studies.

4. We investigate different IR methods for a cross-document RC scenario, in

particular Pseudo Relevance Feedback and TF-IDF.

5. We augment established RC methods with multi-step retrieval, and show that

jointly ranking document combinations can improve over methods that rank

documents independently.

1.1.3 Investigating Model Undersensitivity (Part III)

When neural networks are discriminatively trained to predict correct answers to

comprehension questions, they can learn to use arbitrary predictive cues that help

them identify the answer. Consequently, it is potentially not necessary for a model

to learn adequate representations of comprehension questions and texts in the re-

constructive sense: models can instead learn to form predictions based on shallow

cues, such as answer type consistency, while disregarding important information in

the question.

To substantiate this suspicion we describe an adversarial attack designed to

probe an RC model’s sensitivity (or lack thereof) to meaning-altering perturbations

of comprehension questions which render them unanswerable. Indeed, models ex-

hibit a striking lack of sensitivity to such adversarially chosen question changes,

even though exposed to unanswerable questions in the training data. We charac-

terise the affected samples and proceed to investigate modified training strategies

as defences against the problem. Based on the results of these experiments we con-

clude that a lack of structurally similar unanswerable questions in the training set

can largely be seen as responsible for problematic model undersensitivity behaviour.

Adding such samples into the training set leads to an encouraging yet limited find-

ing: while the cost associated with identifing adversarial samples is substantially

increased, the presence of such attacks is not ruled out, and the underlying problem

still persists.

We thus study a scenario in which we aim at a more ambitious outcome: we
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impose a much stronger requirement onto the model and specify that besides fitting

the training data, it should verifiably not be prone to violate a specification address-

ing the model’s undersensitivity behaviour, which is defined over a combinatorially

large space of possible input alterations. Formally verifying neural network be-

haviour on such large input spaces is a very challenging task with little precedence

in NLP. To understand the feasibility and problems associated with this approach

we investigate the related, but more focused language understanding task of Nat-

ural Language Inference (NLI), which operates on pairs of single sentences. To

check whether the undersensitivity specification can be verified, and to train models

to become verifiable in this regard, we adopt Interval Bound Propagation, an in-

complete method for formal neural network verification. We show that this method

is drastically more efficient than exhaustive verification in establishing specifica-

tion adherence of the Decomposable Attention Model (Parikh et al., 2016), and that

when adding a dedicated auxiliary training objective, models can learn to become

verifiable, albeit at a relatively low absolute rate and with significant detriments in

nominal test accuracy.

Summary of Contributions:

1. We propose a new type of adversarial attack to probe the undersensitivity of

neural RC models to meaningful question alterations, and demonstrate the

vulnerability of current models.

2. We compare two defence strategies – adversarial training and data augmen-

tation with structurally similar unanswerable samples – and show their effec-

tiveness at reducing undersensitivity errors on held-out data, without sacrific-

ing standard performance.

3. We demonstrate that the resulting models generalise better in a biased data

scenario with train / evaluation set mismatch.

4. We design an undersensitivity specification and apply Interval Bound Prop-

agation to efficiently verify the specification in a Decomposable Attention

Model.
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5. We empirically compare the efficacy of different training and evaluation

methods for formally verifying the undersensitivity specification.
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Chapter 2

Background

We will in this chapter discuss general background on reading comprehension, the

neural modelling approach in this context, as well as commonly used dataset re-

sources.

2.1 Reading Comprehension: Definition, Structur-

ing, and Context
We begin with general perspectives from the field of psycholinguistics on the read-

ing process in humans. This helps us structure and understand the high-level phe-

nomenon of reading in some more detail, and we will tie particular aspects of it

to various NLP sub-tasks, before returning again to the more high-level QA-style

reading comprehension task, as found e.g. in SQUAD (Rajpurkar et al., 2016).

Reading Comprehension is an integral part of human education (Bloom et al.,

1956; Krathwohl, 2002), both as a learning objective in itself, and as a means for

subsequent knowledge acquisition. Literacy – the ability to read and write – has

been the focus of research in psycholinguistics, and we will draw on a review from

this field by Perfetti et al. (2001) to structure and illustrate various factors involved

in the reading process. Following Perfetti et al. (2001) we adopt a working definition

of reading as:

“the conversion of written forms into linguistic messages” (Perfetti et al., 2001)

where a linguistic message is a modality-agnostic representation of a natural lan-
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guage expression – in contrast to, for example, a sign. This definition conceives

reading as a process of translation: concretely, as a mapping from the space of

written text into a space of linguistic messages. With this basic conception as a

conversion process, reading lends itself to modeling with an input-output-based

computer system (e.g. a supervised learning model) and this translation structure

is reflected in a variety of reading-related NLP tasks that map text onto structured

interpretations, such as semantic role labelling (Palmer et al., 2010) or composi-

tional semantic parsing (Zelle and Mooney, 1996).

In human readers, the process of reading requires both word identification, and

meaning construction (Perfetti et al., 2001). For NLP purposes however, where

standardised character representations and tokenisation procedures enable the pro-

grammatic identification of words,1 meaning construction is the main challenge.

Further following Perfetti et al. (2001), the meaning construction component

itself involves three (interacting) aspects: i) the selection of contextually appropriate

word meanings ii) sentence parsing iii) the integration of the message into a broader

context and situation model. We will briefly expand on each of these and highlight

ties to NLP.

2.1.1 Resolving Polysemy

The first of the three factors – the selection of contextually appropriate word mean-

ings – is directly related to the NLP task of word sense disambiguation (Agirre and

Edmonds, 2007). Context, redundancy, as well as implied properties can guide a

reader or a computer system towards the intended sense of a word, and thus distin-

guish, for example, “mouse” as either a mammal or an electronic device.

2.1.2 Parsing

Second, parsing requires inferring the logical structure of a given textual statement,

i.e. a formal representation of the relationships between its sub-components. For

example, in the statement “The mouse eats mozzarella.”, a noun (“mouse”, “moz-

zarella”) can be interpreted as either the subject or object of the transitive verb

1In this thesis we only consider English; in other languages this task is not necessarily trivial.
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“eats”; part of the meaning construction process is to interpret such grammatical

roles correctly.

Grammars differ in their types of composition structure – broadly separable

into constituency-based, as well as dependency-based syntax – but generally agree

on the hierarchical character of language and use of nested reference. Furthermore

there exists a variety of semantic representation formalisms which make use of dif-

ferent types of basic representational structure to capture the content of a message,

including predicate-argument structure, events, compositional hierarchy, as well as

logical connectors (Davidson, 1967; Parsons, 1990; Steedman, 1996).

Several NLP tasks aim at extracting the semantic structure (or particular parts

thereof) from text, e.g. semantic role labelling (Palmer et al., 2010), deep seman-

tic parsing (Zelle and Mooney, 1996), information extraction (Cardie, 1997), or

more focused tasks such as relation extraction (Bunescu and Mooney, 2007; Mintz

et al., 2009; Riedel et al., 2010) and named entity recognition (Nadeau and Sekine,

2007). The resulting meaning representations remove both ambiguity and redun-

dancy and have advantages when interfacing with a computer system, e.g. a query

language (Zelle and Mooney, 1996; Zettlemoyer and Collins, 2005; Berant et al.,

2013). Within the framework of Perfetti et al. (2001), successfully parsing a sen-

tence leads to the text base interpretation: a linguistic message corresponding to

the propositions explicitly stated in the text, together with a minimum of inferences

required for coherent interpretation, e.g. to resolve referential coherence.

2.1.3 Context Model and Inference

The third component consists of the integration of the parsed message into a broader

situational context model and inferences therein, and in this regard it differs from

the text base interpretation. Reading goes beyond parsing the correct syntactic and

semantic structure of the message: competent human readers are able to infer in-

formation which is not explicitly stated, and this is necessary for a richer and more

flexible understanding of a document or discourse. Readers maintain a situation

model which depends on previously encountered context (e.g. “The mozzarella was

poisoned.”), and this enriches the text base interpretation. Zwaan et al. (1995) sug-
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gest the five dimensions of time, space, protagonist, causality and intentionality

which human readers use to form a situation model, and which they continuously

update while reading.

Modelling context and inferring additional information are related to a number

of different NLP tasks, each focused on a particular aspect: discourse parsing (Carl-

son et al., 2001) considers the broader rhetorical structure of a document; natural

language inference (Dagan et al., 2006; Bowman et al., 2015) concentrates on iden-

tifying logically entailed consequences in natural language; and knowledge base

inference considers inference from facts represented in predicate-argument struc-

ture – e.g. via statistical relational learning (Getoor and Taskar, 2007).

In summary, we observe that individual aspects of the decomposition of the

meaning construction aspect of reading into three broad subcategories is mirrored

in a variety of NLP tasks – each with its own history, theoretical approach, models,

and evaluation benchmarks. It is worth emphasising that the above components do

not form clearly bounded parts or stages, but depend on and influence each other,

both in humans and in computer systems. For example, syntactic information is

a useful predictive feature for word sense disambiguation (Agirre and Martinez,

2001), but can also be used to infer entailed relations between entity pairs (Riedel

et al., 2013).

2.2 The Neural Approach

The decomposition laid out above highlights various aspects involved in the read-

ing process for humans and puts into perspective the challenge of mimicking this

process with a computer. The integration of these sub-tasks into a broader, high-

level NLP system can be achieved in several ways: for example through the use of

appropriate features, or via intermediate prediction steps in a pipeline system. Sys-

tems with concrete steps and structured representations allow for a degree of error

attribution, interpretability, theoretical justification and incorporation of domain ex-

pert knowledge. Yet imposing such structure comes with several drawbacks when

solving high-level NLP tasks – such as answering a comprehension question about
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a given text.

First, training several intermediate stages of a system pipeline independently

can lead to mismatching distributions between initial component outputs, and the

data which later components are trained on. Second, a pipeline may require ad-

equate training data for each step, multiplying the annotation requirement – this

may furthermore involve expert annotators, as e.g. for syntactic structure.2 Third,

erroneous predictions of initial pipeline steps may lead to problems further down-

stream. Later pipeline stages may fail if given faulty input, thus potentially resulting

in error cascades. Fourth, the predefined choice and structure of intermediate rep-

resentations may not be optimal for a given high-level NLP task at hand. Instead,

using a weaker inductive model bias and very general form of intermediate repre-

sentation, which is optimised based on a sufficient amount of training data, may

lead to overall better model predictions.

The currently dominant paradigm of building RC computer systems overcomes

these above listed issues of pipeline systems: contemporary RC approaches use end-

to-end optimised neural network models, a highly expressive model category (Cy-

benko, 1989). Neural networks do not suffer from intermediate distribution mis-

match, do not require annotations for intermediate stages, have no cascading er-

rors, and can use representations optimised specifically for a given task (or – as a

proxy – a particular dataset). Although reading in humans involves the previously

laid out list of factors for meaning construction, there is no need in a strict sense

for a computer system to mimic them explicitly, or to model them using specifi-

cally structured intermediate representations that reflect these aspects of meaning

construction – if it can achieve the same functional outcome.

When used in the RC task, neural approaches generally do not structure the

reading process into interpretable intermediate stages, but instead model it as a dif-

ferentiable sequence of dense latent vector space transformations, which is fitted

on high-level input-output pairs using gradient-based optimisation. By adapting the

parametrisation of these mappings during training, neural networks can learn to as-

2One can alternatively rely on annotated data from a related problem, but at the cost of potential
domain mismatch.
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sociate input and output space in such a way, that the overall network behaviour

becomes functionally equivalent to the reading process – as measured on held-out

test samples of desirable input-output behaviour. As neural networks process infor-

mation in a distributed fashion, their interior representations are however opaque

and do not lend themselves to intepretation easily.

Large-scale datasets are a critical ingredient for training neural networks. With

the availibility of these, neural networks can be trained to achieve remarkable RC

abilities and have in recent years begun to outperform human performance scores

on established RC benchmarks (Yu et al., 2018; Devlin et al., 2019). Note that with

the paradigm shift towards general vector-based and otherwise unstructured latent

variables, NLP models have lost some of their previous inductive biases. They do

not use concrete pre-specified interpretation schemata and semantic relationships

in their latent representations, but use vectors purely optimised to solve their given

task. A system’s ability to solve a given comprehension task is thus strongly influ-

enced by the input-output data points it is trained to fit.3 This applies consequently

also to model limitations and artefacts that we observe: they can be viewed partly

as a result of the particular dataset which a neural model is trained on.

With the removal of input or intermediate structure in the neural approach, we

have traded away interpretability and control of the learning result for empirical per-

formance on held out test sets. Programming desirable input-output behaviour has

shifted from one extreme point of programming specific high-precision rules that

prescribe desirable behaviour, to a complete relaxation of these rules into learned

neural representations, where the system’s programming is achieved through data.

Thus, as datasets shape the behaviour of neural RC models, both the training

data and the methods to create it deserve particular research interest. In this the-

sis we examine the role of training data for neural machine reading comprehension

systems in various scenarios, and analyse the abilities and limitations of the result-

ing models. With our general focus on datasets, we will to a large extent rely on

previously developed neural RC models, which we will investigate in the context of

3Albeit arguably to a reduced extent with the more recent generation of models initialised with
pre-trained representations (Peters et al., 2018; Devlin et al., 2019).
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various training and evaluation datasets.

We continue with a brief overview of general neural modelling principles in

the context of the language modality, e.g. pre-training, as well as different inductive

biases of neural models.

2.3 Prior Knowledge and Pre-Training

2.3.1 The Role of Prior Knowledge in Reading Comprehension

An important consideration in the context of neural RC models is the implicit use

of prior knowledge through pre-trained representations. Text comprehension in hu-

mans strongly depends on the existing background knowledge of a reader. Begin-

ning already on the level of a reader’s lexicon, the interpretation of a message be-

comes guesswork without a confident understanding of the concepts referred to. For

example, without an understanding of the rules and elements of an unfamiliar sport,

the comprehension of a match report mentioning e.g. an “offside trap” in football,

or a “home run” in baseball, remains limited. Note that this is not a limitation to

text comprehension in particular, but a limitation to the comprehension of concepts

related to these sports in general.

For the context of Reading Comprehension, this shifts our perspective away

from the message inherent in the text, and instead towards the pre-existing knowl-

edge of the reader. Anderson et al. (1977) emphasise the role of background knowl-

edge for comprehension in this exemplary quote:

“Every act of comprehension involves one’s knowledge of the world as

well.”

In the cognitive sciences, the role of prior knowledge to structure both comprehen-

sion and memorisation has been emphasised by schema theory (Kant, 1781; Piaget,

1926; Bartlett, 1932; Rumelhart and Ortony, 1977). Schema-theoretic views on

language comprehension thus similarly stress the importance of knowledge in the

reader; Adams and Collins (1977) for example state:

“A fundamental assumption of schema-theoretic approaches to lan-

guage comprehension is that spoken or written text does not in itself
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carry meaning.”

But if the knowledge of the reader is such an important component to (text) com-

prehension, as postulated by schema theory, how can relevant structures of interpre-

tation be made available to a computer system for RC purposes?

Several NLP-related research directions tackle the integration of background

knowledge by enabling access to information from another resource. This is re-

flected, for example, in the research directions of information retrieval, entity link-

ing, as well as web-scale knowledgebase construction (Banko et al., 2007; Carlson

et al., 2010). With its focus on background knowledge, schema theory has however

also found its way directly into AI in the form of frames (Minsky, 1974; Schank and

Abelson, 1975; Charniak, 1975) and more specifically into NLP via frame seman-

tics (Fillmore, 1982), which has inspired organised efforts to assemble large frame

collections to guide schema-based interpretation in computer systems, including

e.g. FrameNet (Baker et al., 1998), or the Automatic Content Extraction (ACE)

project4 which formalise schematic structures of interpretation, e.g. for particular

types of events.

Formalising schemata and frames is however challenging, even definitions for

what schemata and frames consist in concretely are contentious (Iran-Nejad and

Winsler, 2000). Defining a comprehensive body of schemata is currently elusive,

and event extraction efforts are confined to a narrow subset of possible event types

and domains.

Given the difficulty of definition and limited coverage, OpenIE (Banko et al.,

2007) uses a less rigid conception of what relations or schemata consist in, and

extends relational schemata to concrete surface representations, which can be har-

vested automatically on a large scale. The work on universal schema (Riedel

et al., 2013) broadens the notion of relational schemata further, and has empiri-

cally demonstrated that relational schemata, both in the form of concrete surface

forms as well as abstract relation types, share a joint latent structure.

4https://www.ldc.upenn.edu/collaborations/past-projects/ace

https://www.ldc.upenn.edu/collaborations/past-projects/ace
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2.3.2 Pre-trained Word Representations

One end point of generality and abstraction in defining schemata is to disregard

particular types of relational schemata entirely, and instead only consider a very

basic notion of binary relationship: the relation of two words which co-appear (or do

not co-appear) in the same textual context. Naturally, such relationships are cruder

than more fine-grained schematic relations which make particular assumptions on

the syntactic and semantic types of their arguments, e.g. the author of, or even the

is a relationship.

Capturing co-occurrence information for word pairs explicitly is however im-

practical due to the large number of possible combinations and consequent size of a

matrix to store such information. In addition, low-frequency words, of which there

are many (Zipf, 1935), suffer from infrequent coverage and consequently high vari-

ance in their empirical count estimates. Thus, rather than recording co-occurrence

information explicitly for all word pairs in a given vocabulary, word embedding

methods like word2vec and glove (Mikolov et al., 2013a; Pennington et al., 2014)

approximate this information with dense vector representations (Levy and Gold-

berg, 2014), i.e. word vectors. Word vectors are optimised to predict whether

word pairs co-appear in the same context, thus storing in compressed form the co-

occurrence information from a large set of contexts in a given corpus. Contextual

information is thus lifted into the word representations, which become to varying

degrees linearly aligned with other words that they (or their typical context) are pre-

dictive of. Models using these word vectors as features then have implicit access

to compressed contextual background knowledge from the corpus the word vectors

were trained on. Besides lifting in background knowledge, another key advantage

of dense word vector representations is their natural inter-operability with neural

network models, which can be optimised towards a variety of NLP tasks. Theoret-

ically inspired by distributional semantics (Harris, 1954; Firth, 1957), dense word

vectors have thus found widespread adoption and empirical success as features in

many NLP models.

Beyond computing inner products of word vector pairs, the principle of learn-
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ing representations that model textual context can be realised also in more sophis-

ticated neural networks. Indeed, pre-training neural representations on a large cor-

pus using a language modeling objective leads to representations which prove even

more empirically effective than the previous generation of word vectors (Peters

et al., 2018). Especially when coupled with the transformer model (Vaswani et al.,

2017), a parallelisable – and thus more efficient – neural architecture, word rep-

resentations can be trained on very large text corpora to predict their surrounding

context, as seen in the BERT and RoBERTa models (Devlin et al., 2019; Liu et al.,

2019).

When using the resulting representations for other NLP tasks, models then im-

plicitly have access to distributional information which is both context-dependent

and estimated more precisely due to the use of larger pre-training corpora. The

context-modelling information learned from a large and cross-domain text cor-

pus is collectively stored in the model’s parameters in compressed form, enabling

grounded common-sense inference (Zellers et al., 2018; Devlin et al., 2019), and

even allows for the decoding of concrete factual knowledge (Petroni et al., 2019;

Jiang et al., 2019; Talmor et al., 2019). This compressed background knowledge

learned from context modelling is implicitly available in the model’s weights to

support the text comprehension process, and – overall – pre-trained representations

have led to the empirically strongest generation of computer systems for reading

comprehension and other NLP tasks thus far.

2.4 Evaluating Text Comprehension with Questions

Thus far we have discussed the process of reading, yet not the precise task setup

that a computer system is given to solve, and we shall now introduce it.

When evaluating the output of an RC computer system, it has to be compared

with a correct or desirable output. Different tasks related to Reading Comprehen-

sion measure the system output’s adherence to particular semantic target structures,

e.g. the correct prediction of slots in Semantic Role Labeling, types of relation in

Relation Extraction, or target fact triplets in Information Extraction. The evaluation
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of human reading comprehension ability in educational settings is however very

different and sidesteps formal semantics entirely: a question (in natural language)

is posed to the student that specifies a particular information request about the given

text, which is answered again in natural language.

The Reading Comprehension task in NLP follows a similar paradigm. Con-

cretely, a given document d (usually a document paragraph) is provided to a model,

together with a comprehension question q. The model then predicts an answer to

the question q which is compared to the correct answer a, that usually has been

established through manual data annotation efforts. We emphasise again that gen-

erally in this task d, q, and a are natural language expressions, although variations

and deviations exist.

Question-based comprehension evaluation has found widespread adoption and

several datasets created in recent years make use of this design choice (Richard-

son et al., 2013; Rajpurkar et al., 2016). The approach is very flexible: arbitrary

aspects of the information in the text can be queried in q, which is not bound to

a particular schema of interpretation or composition structure. At the same time,

understanding the information request formulated in the question q requires itself

the comprehension of a natural language expression.

Given the limitations in generating free-form text as well as the inherent chal-

lenges associated with its evaluation, RC systems are in many cases offered a re-

stricted set of possible answers: they are either given questions in multiple-choice

format, or an extractive task format, in which the answer to the comprehension

question consists of a usually short text span within the given document.

In contrast to annotating language with rich linguistic structure (Marcus et al.,

1993), the paradigm of posing natural language comprehension questions has the

advantage of lending itself to non-expert data annotation. This allows for cost-

efficient annotation crowdsourcing (Snow et al., 2008; Rajpurkar et al., 2016) at a

large scale, thus enabling the creation of datasets of a size suitable to fit parameter-

rich neural RC models.

Data collection and neural modeling are both essential components to the cur-
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rent paradigm of building RC systems; we will briefly discuss both in the following

two sections.

2.5 Neural Models for Reading Comprehension

Following the advent of pre-trained word representations (Mikolov et al., 2013a;

Pennington et al., 2014) and large-scale datasets (Hermann et al., 2015; Rajpurkar

et al., 2016), a profusion of neural model architectures has been developed for the

RC task (Weissenborn et al., 2017; Seo et al., 2017a; Yu et al., 2018). These mod-

els make use of dense latent representations, and the set of functions to compute

them is parameterised in a high-dimensional vector space. Parameters are opti-

mised end-to-end in a way that associates desirable input-output pairs, thus forming

connections between each pair of comprehension question q and document d, with

the corresponding answer a.

Neural models in NLP generally differ in their architectural design, and the

choice of the particular type of function to connect inputs with outputs determines

the inductive bias of the resulting model. Convolutional layers, for example, can

model translation-invariant local textual patterns in a document; they represent an

efficient model category that has proven useful e.g. in text classification (Kalch-

brenner et al., 2014; Kim, 2014) or to address unknown words at the character

level (Seo et al., 2017a). Sequential encoders on the other hand, such as RNNs,

LSTMs (Hochreiter and Schmidhuber, 1997) or GRUs (Cho et al., 2014), encode

text following the temporal order of language. Since the effective depth of their

computation depends on the length of the sequence, they are less efficient, and have

difficulty in capturing long-range dependencies. Finally, attention-based architec-

tures facilitate conditioning across long distances in a text, and can be parallelised

across the temporal axis of the text sequence. They can be applied either on the out-

put of sequential encoders (Hermann et al., 2015; Rocktäschel et al., 2016), or as the

central architectural components itself, as in the transformer architecture (Vaswani

et al., 2017).

The above neural architecture types are frequently combined with one another,



2.6. Reading Comprehension Datasets 49

and are generally used across NLP tasks and not only for RC. In particular for RC

however, a general and widely used modelling recipe is to i) encode tokens using

pre-trained word representations, e.g. GloVe; ii) process the resulting representa-

tions with one of the aforementioned neural layer types to allow for interaction;

iii) to predict output probabilities for different answer options, e.g. using a softmax

probability distribution derived from the representations of different start and end

tokens of possible answer spans in the given document.

This general recipe is followed, for example in the BiDAF (Seo et al., 2017a),

FastQA (Weissenborn et al., 2017) or QANet (Yu et al., 2018) models, each with

slightly different architectural details. Note that BERT (Devlin et al., 2019) com-

bines i) and ii) and extends the pre-training of representations into the deeper layers

of the network.

Throughout this thesis we will make use of several neural RC models for our

experiments. We direct the reader to the original published works on these mod-

els – which will be referenced in the relevant sections – for concrete details and

underlying design choices of particular architectures.

2.6 Reading Comprehension Datasets

A variety of dataset resources exists to both train and evaluate reading comprehen-

sion models. These datasets differ in their precise task formulation, complexity,

number of datapoints, domain, and annotation methodology.

One early high-level Reading Comprehension dataset is MCTEST (Richard-

son et al., 2013). This dataset contains short fictional stories and comprehension

questions with multiple choice answers, which were collected using crowdsourced

data annotation. It demonstrated a scalable approach for gathering comprehension

questions, yet with 2,000 questions the dataset was insufficiently large to serve as a

resource for data-driven neural network architectures.

Other datasets were proposed which leverage document structure to train and

measure text comprehension. For example, the CHILDRENBOOKTEST dataset (Hill

et al., 2016) formulates questions in cloze style, or the CNN/DAILYMAIL
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dataset (Hermann et al., 2015) leverages the observation that news texts contain

brief textual summaries about their content. Exploiting document structure to auto-

matically gather a large number of data points from a corpus comes at no annotation

cost, and the resulting datasets have proven valuable in the development of early

RNN-based RC models. On the other hand, the resulting samples can be noisy,

deviate from the above described RC task structure, and models quickly reached

the bounds on their possible performance (Chen et al., 2016).

Crowdsourced data annotation was successfully applied at a larger scale for

the related task of Natural Language Inference in the SNLI dataset (Bowman et al.,

2015), demonstrating the scalability of the approach with more than 500,000 an-

notated samples. This, together with the general penetration of the NLP field by

data-hungry neural networks ultimately led to the seminal work on the SQUAD

dataset (Rajpurkar et al., 2016). SQUAD1.1 contains high-quality natural language

comprehension questions about Wikipedia paragraphs chosen across a variety of

topics. The availibility of this large dataset with more than 100,000 samples, to-

gether with maturing neural modelling toolkits, such as theano (Theano Develop-

ment Team, 2016), tensorflow (Abadi et al., 2015), and pytorch (Paszke et al., 2019),

led to a profusion of neural network models; the SQUAD leaderboard5 bears wit-

ness to this remarkable collective research effort. While crowdsourcing had been

used before (Snow et al., 2008; Richardson et al., 2013; Bowman et al., 2015),

SQUAD was the first realisation of this approach for RC on a large scale. Created

by lay annotators, the SQUAD dataset has enabled the training and benchmark-

ing of neural RC models which have grown progressively more capable, and which

today exceed human performance metrics.

Mixed into the general enthusiasm about the apparent progress and empirical

success of the neural and data-driven approach to building RC models, voices of

caution were however soon raised. For example, Jia and Liang (2017) demon-

strated that although achieving strong test set generalisation, models trained on

SQUAD1.1 fail dramatically when appending adversarially chosen sentences to

5https://rajpurkar.github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/
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the given paragraph. Clearly RC had not been solved yet, despite the ‘super-human’

performance measures on the hidden held-out test set.

One lesson learned from the Jia and Liang (2017) paper was that it is necessary

to include unanswerable comprehension questions into a dataset. Otherwise, mod-

els can quickly learn that type-consistency clues (Sugawara et al., 2018) – e.g. a date

for a When question – can be sufficient to pick the correct answer span in the doc-

ument. In its second iteration, the SQUAD2.0 dataset (Rajpurkar et al., 2018) thus

includes more than 40,000 crowdsourced unanswerable samples into the existing

dataset, and encourages researchers to develop methods which can predict whether

a comprehension question is answerable or not, given the text. NEWSQA (Trischler

et al., 2017) is a second dataset which follows this principle: covering the news do-

main of the previous CNN/DailyMail datasets, NEWSQA samples contain natural

language comprehension questions and notably also include unanswerable ques-

tions.

After demonstrating the effectiveness of collecting large-scale RC datasets

to train neural RC models, dataset creation was extended to new domains, data

sources, and comprehension phenomena. Reading Comprehension datasets were

created, for example based on reading comprehension exam questions (Lai et al.,

2017), book and movie plots (Kočiský et al., 2018; Saha et al., 2018), cooking

recipes (Yagcioglu et al., 2018), comprehension questions involving discrete oper-

ations such as comparisons (Dua et al., 2019), as well as in connection with a QA

system for web engine search queries (Nguyen et al., 2016; Kwiatkowski et al.,

2019). Increasingly, research also addresses cross-dataset generalisation, in order

to avoid overfitting to particular domains and dataset setups (Talmor and Berant,

2019).

In this thesis we will add to this body of research and describe our own experi-

ence with the development of new RC datasets. The first dataset (Part I) is inspired

by the success of SQUAD1.1, yet aims at a new domain: it was constructed by

crowdsourcing the creation of questions in the science exam QA domain. This

comes with a unique set of challenges, but holds the promise of supporting a com-
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puter system that solves real science exams with training data to train relevant RC

capabilities. The second dataset (Part II) aims at overcoming a limitation of the

SQUAD dataset: that it revolves relatively close to the text base interpretation. That

is, by posing questions with a considerable degree of lexical overlap, SQUAD ques-

tions address the explicit interpretation of the given paragraph, and answer-relevant

information can mostly be found within a single sentence (Min et al., 2018). Instead

we will work on broadening the RC task towards a multi-hop setting, in which tex-

tual information from several sources has to be combined to infer the answer to a

comprehension query. This reduces the degree of lexical overlap and involves inter-

pretation beyond the text base, yet dataset creation for such a task is non-trivial. Fi-

nally, in Part III we will investigate a data-induced limitation to neural RC models.

Commonly used RC datasets, concretely SQUAD2.0 and NEWSQA, lack unan-

swerable questions that are structurally similar to existing answerable questions,

which results in models that lack sensitivity to critical aspects of the information

requested in the comprehension question.

Throughout these following three parts of the thesis, our aim is to advance

progress in RC with experimental insights and the provision of data resources to

the research community. We will highlight particular aspects of the dataset cre-

ation procedure and demonstrate at various points how it can result in measurable

artefacts visible in models trained on the resulting datasets. Our hope is that future

efforts in RC dataset creation can take inspiration both from the set of methods used,

dataset biases discovered, as well as experimental findings on the resulting datasets.



Part I

Machine Reading Comprehension for

Science Exams

53





Chapter 3

Dataset Assembly for Reading

Comprehension in Science Exam

Questions

The content of this chapter is based on previously published

work (Welbl et al., 2017). The chapter includes results of experiments

conducted not by the author of this thesis, but by collaborators at the

Allen Institute for Artificial Intelligence, which has developed a variety

of model implementations for science exam QA. Concretely, this refers

to the first five rows in Table 3.2, to Table 3.3, and to the results on

BiDAF (direct answer setting).

Answering natural science school exam questions is not only a challenge to hu-

mans, but also to NLP systems. It involves question comprehension, the identifica-

tion and extraction of relevant textual or structured information to support possible

answers, common sense reasoning, as well as the integration of these and several

other abilities (Clark et al., 2013; Clark, 2015). For example, in order to solve the

question “With which force does the moon affect tidal movements of the oceans?” a

model must both interpret the information request formulated in this question, pos-

sess an understanding of an abstract natural phenomenon, and be able to link the

information request with this background knowledge.

Prior to this study, in a 2016 competition for developing systems that solve 8th
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Q: When a meteoroid reaches earth,
what is the remaining object called?

      A: meteorite
      B: comet
      C: meteor
      D: orbit

Textbook Passage: Meteoroids are smaller 
than asteroids, ranging from the size of 
boulders to the size of sand grains. When 
meteoroids enter Earth’s atmosphere, they 
vaporize, creating a trail of glowing gas called a 
meteor. If any of the meteoroid reaches Earth, 
the remaining object is called a meteorite.

Figure 3.1: Natural phenomena are frequently taught in educational curricula and described
in many standard school text books. We use such passages as the basis for mul-
tiple choice question generation in the science exam domain, resulting in sam-
ples like the one in this figure. In total, 13,679 such questions were collected.

grade multiple choice science exam questions (Schoenick et al., 2016), the strongest

method achieved a score of 59.3% accuracy; Information Retrieval (IR) was shown

to be a very strong baseline (Clark et al., 2016); yet neural RC systems were not

among the top-scoring methods.1 Whereas QA and RC system performance in

other domains has substantially advanced with the use of high-capacity neural net-

work models (Kadlec et al., 2016; Dhingra et al., 2016; Sordoni et al., 2016; Seo

et al., 2017a), one factor that has impeded progress of neural RC methods in science

exam QA is the lack of large, in-domain training resources. This raises the question

how we can collect such a dataset for the science exam domain, and thus potentially

support the RC capabilities of neural science exam solution approaches.

The aim of this chapter is to develop a training and evaluation resource for

the science exam QA domain. We will describe a data annotation method which

involves both the formulation of new questions and answers, as well as the creation

of plausible false answer candidates – supported by model suggestions. We crowd-

source the creation of these multiple-choice questions using text passages from ed-

ucational materials and gather a total of 13,679 multiple choice questions with a

budget of $10,415. The resulting dataset will be referred to as SCIQ; Figure 3.1

shows one of its example questions.

This resulting dataset can be used for a multiple choice QA task, in which the

1Note that in more recent work, which was published after this study was conducted, the picture
has changed and models with scores up to 90.7% have been developed (Clark et al., 2019), no-
tably with the introduction of neural RC methods, and in particular large-scale pre-trained language
models (Peters et al., 2018; Devlin et al., 2019).
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goal is to predict an answer among several options using any relevant background

knowledge a system can potentially identify, e.g. using information retrieval. Al-

ternatively, it can be used for a direct-answer task, in which a model is given the

question and has to predict an answer as a span in the given text passage. These

two dataset versions allow for research both on the integration of RC systems with

retrieval components in the science exam domain, as well as more focused studies

on RC in isolation, when relevant text is already provided.

After a detailed description of the dataset assembly process, we will discuss

several experiments with previously developed neural RC models on SCIQ, as well

as other established science exam solvers. We will both compare the performance

of different methods on the newly assembled dataset and discuss its usefulness as

additional training resource for solving real exam questions. The central research

questions in this chapter will thus be the following:

List of Research Questions Addressed in this Chapter:

1. How can the crowdsourcing approach to RC dataset creation be adapted for

collecting a dataset in the science exam domain?

2. How do previously developed science exam solvers and neural RC methods

perform on the resulting dataset?

3. Can the resulting data be used as additional training resource to improve the

performance of RC systems on science exam questions?
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3.1 Annotation Method Overview

Constructing a sizable dataset of multiple-choice science questions, ideally similar

to real exam questions, poses a set of unique challenges. Like in SQUAD (Ra-

jpurkar et al., 2016), annotation workload can be distributed by crowdsourcing the

task, yet annotators generally cannot be expected to possess the same degree of do-

main knowledge as teachers or the designers of educational curricula. Furthermore,

as we consider a multiple-choice QA setting, questions with poorly chosen false

answer candidates can be trivial to solve.

Our data collection pipeline comprises the following main steps: we first use

a noisy filter to select potentially relevant text passages from study books, of which

we then show multiple options to annotators to choose from when composing ques-

tions. Next, we select high-confidence predictions for false answer candidates,

given by a model trained on a set of real multiple-choice exam questions to pre-

dict plausible false answers. These predictions are then used to support annotators

in converting the previously produced questions into multiple choice QA examples.

Overall the procedure thus exploits both an existing corpus of in-domain study

materials and a smaller set of existing exam questions. The method broadly fol-

lows the crowdsourced annotation setup of SQUAD, in which the annotation task

requires reading a text passage and formulating a question about it. However our

approach focuses on passages from the domain of science textbooks in particular, as

questions may otherwise lack both relevance and topic variety, and we further de-

viate from the SQUAD setting by constructing a multiple-choice QA dataset with

several plausible answer distractors. By supporting annotators with sets of passages

and model predictions, the human intelligence task is modified from an exclusively

generative task of producing questions from scratch – which is difficult, slow, ex-

pensive, and can result in a lack of diversity when repeated – to a task that requires

the user to select, modify and validate – which is less challenging, faster, more cost-

effective, and with variation in content induced by the given paragraphs and model

suggestions.
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3.2 Relation to Prior Work

Dataset Construction A series of QA datasets has been created prior to

this work, e.g. based on Freebase (Berant et al., 2013; Bordes et al., 2015),

Wikipedia (Yang et al., 2015; Rajpurkar et al., 2016; Hewlett et al., 2016), web

search queries (Nguyen et al., 2016), news (Hermann et al., 2015; Onishi et al.,

2016) and books (Hill et al., 2016; Paperno et al., 2016), and we add to this work

by constructing a dataset for the science exam domain. In contrast to some of the

prior datasets, SCIQ contains natural language questions composed by annotators,

instead of cloze questions (Hermann et al., 2015; Hill et al., 2016). In addition, it

focuses on the creation of multiple-choice questions, which includes the selection

of plausible answer distractors.

Science Exam QA Clark et al. (2013) give a broad overview of the particular

challenges in the multiple-choice science exam QA task, as well as possible solu-

tion approaches. Generally, prior work on this task varies in their methodology, and

often focuses on particular sub-problems. For example, Li and Clark (2015) en-

rich questions with additional structured background information and evaluate the

coherence of the resulting scenes, whereas Sachan et al. (2016) model entailment

using derivations from knowledge items matched with max-margin ranking. Other

work uses Markov logic networks (Khot et al., 2015), or integer linear program

(ILP)-based methods to construct chains that derive the answer from structured

background knowledge (Khashabi et al., 2016). In contrast to these methods which

derive answers symbolically via several steps, the dataset we will assemble aims less

at complex inference skills, but more at the text comprehension skills necessary to

interpret questions and potentially relevant passages. The Aristo ensemble (Clark

et al., 2016) mixes several other solution approaches with complementary strengths,

including both symbolic reasoning approaches, retrieval, and a shallow statistical

approach based on word co-occurrence. Finally, neural approaches to science exam

QA have – prior to the assembly of this dataset – not found much adoption, likely

due to the lack of adequate data resources. With the effort described in this chapter

we address this problem: we assemble a dataset larger than previously available
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collections, and we will discuss baseline results of both established science exam

solvers and neural RC methods previously used for other datasets.

Automatic Question Generation Prior work has addressed the automatic

conversion of declarative statements into questions, mostly in didactic contexts.

While some methods use syntactic templates for this transformation (Mitkov and

Ha, 2003; Heilman and Smith, 2010), another approach is to leave gaps in the text

to form cloze questions. Initially we considered these approaches, but we observed

that for our purpose these automatic methods did not suffice in producing high-

quality samples. In our target application, we furthermore address a multiple-choice

setting, in which several plausible answer distractors have to be defined. For this

particular task of predicting plausible answer distractors, prior work has proposed a

number of similarity metrics (Mitkov et al., 2009), which includes metrics based on

WordNet (Mitkov and Ha, 2003), a thesaurus (Sumita et al., 2005) or distributional

information (Pino et al., 2008; Aldabe and Maritxalar, 2010). Other work relies

on domain-relevant ontologies (Papasalouros et al., 2008), morphological or pho-

netic similarity (Pino and Eskénazi, 2009; Correia et al., 2010), probabilities for the

context of the question (Mostow and Jang, 2012) and context-dependent lexical en-

tailment (Zesch and Melamud, 2014). Instead of similarity-based answer distractor

selection, our approach relies on a trained model to suggest answer distractors, for

which we will exploit several of the previously named heuristics as features. Prior

work in the context of biology questions has also relied on features to predict an-

swer distractors (Agarwal and Mannem, 2011; Sakaguchi et al., 2013). The model

we choose uses a random forest for candidate ranking, can work both for questions

composed by humans as well as cloze-style questions, and is targeted specifically

at answer distractors for science exam questions.

3.3 Method: Assembling a Science Exam QA Dataset

In this section we lay out a method to assemble a multiple-choice science exam QA

dataset, which comprises two annotation stages. First we give a crowd worker a set

of short text passages from a base corpus, and ask them to pick one to formulate a



3.3. Method: Assembling a Science Exam QA Dataset 61

question about. Second, a different annotator is shown the QA pair produced in the

previous step. This annotator has the option to reject previously written questions,

and then enters three false answer candidates, supported by the suggestions of an

answer distractor prediction model. The outcome of this process is a multiple-

choice question consisting of both a question q, a supporting text passage s, and a

set C of candidate answers, where a∗ ∈C is the correct answer. We will next focus

in more detail on these two individual steps of the dataset creation process.

3.3.1 Step 1: Producing In-domain Questions

Base Corpus The choice of a relevant text corpus as the basis for the composition

of questions is an important factor for the resulting dataset characteristics. In order

to create science questions, the base corpus should be aligned with topics of school

exams, yet not be too specific, linguistically complex, or technical (e.g. scientific

papers). Documents retrieved from the web when searching for content keywords

related to science exams (e.g. “animal” or “food”) contain a substantial fraction of

irrelevant documents, often with commercial content. On the other hand, Simple

Wikipedia articles from science-related categories contain more factual informa-

tion, but often include very specific facts (e.g. “Hoatzin can reach 25 inches in

length and 1.78 pounds of weight”). Instead, we choose study textbooks as our

base corpus: their content is both relevant and directly tailored towards a student

audience. While the digital availability of such study resources is limited, we iden-

tified a collection of 28 books from several resources related to online learning, such

as CK-122 and OpenStax3 – most of which have shared the materials with a Cre-

ative Commons License. These digitally available books cover topics in chemistry,

physics, biology and earth science, and range from elementary to college intro-

ductory level. They contain descriptions of general phenomena covered in natural

science education, instead of cataloguing detailed, yet overly specific knowledge –

as e.g. the above mentioned fact about the Hoatzin. In Appendix A we list titles and

sources for all books used in this base corpus.

2www.ck12.org
3www.openstax.org

www.ck12.org
www.openstax.org
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Paragraph Filter Not all documents within this large corpus of study books are

relevant or appropriate to write questions about: study books contain an abundance

of unsuitable text such as instructions, references to other material, or lengthy illus-

trative examples. To narrow down the base corpus to a smaller set of more relevant

text passages, we filter out individual paragraphs according to a set of rules which

we next describe. Our filter comprises both lexical, syntactic, and pragmatical rules,

as well as constraints based on sentence complexity. Concretely, the filter considers

individual sentences, and filters them out if they i) are an exclamation or question ii)

have no verb phrase iii) contain imperative phrases. This serves the goal of remov-

ing non-declarative statements. Furthermore, we filter out sentenced which iv) con-

tain demonstrative pronouns v) begin with a pronoun vi) mention a graph, table or

web link vii) begin with a discourse marker (e.g. “Nonetheless”) viii) contain modal

verbs. These rules are included because they often mark statements that rely on fur-

ther context, which we want to avoid for subsequent annotation stages. In addition,

statements are removed that focus on aspects of teaching but are unrelated to the

content; concretely statements that ix) contain instructional vocabulary (“teacher”,

“worksheet”) x) contain personal pronouns other than the third-person (as often

used in instructions) xi) contain absolute wording (e.g. “never”, “nothing”, “def-

initely”) xii) contain first names (to avoid illustrative stories with a hypothetical

scope “Karina has a bicycle...”). Finally, we filter out sentences that xiii) have less

than 6 or more than 18 tokens or more than 2 commas xiv) contain special characters

other than punctuation xv) have more than three tokens beginning uppercase. These

rules set limits to the syntactic complexity of the sentences, and remove undesirable

formatting artefacts and acronyms that may require additional context. This over-

all filter is applied on a per-sentence level on the full corpus of study books. The

system then removes paragraphs for subsequent annotation which do not at least

possess a minimum of one sentence passing the filter.

Discussion Several of the above heuristics are applicable more generally to help

identify simple and declarative sentences from a text corpus. Yet they cannot by

themselves ensure domain relevance, e.g. for science exams – this is achieved with
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the choice of the base corpus (in our case: the selection of study books). Further-

more, the above heuristics are unreliable, and the set of artefacts pointed out above

(e.g. instructions or references to figures) is not comprehensive. The artefacts we

highlighted are a common phenomenon in the educational material we choose, but

likely not as relevant in other domains. Next, the above heuristics are mostly shal-

low, and thus miss cases which cannot be detected, e.g. with a lexical match. For

example, a reference in a passage might still point to content outside of it, even

though we have a filter for demonstrative pronouns and keywords for graphs, tables,

and web links. In summary, the application of these heuristics is not a guarantee that

undesirable passages are filtered out; they are instead intended to reduce their total

prevalence and result in fewer irrelevant passages, but also come with potential false

negatives.

Question Formulation Task After having chosen a base corpus and filtered its in-

dividual passages, we next provide these passages to crowd annotators and collect

questions about their content. While many irrelevant passages have been filtered

out with the previously described filter heuristics, the resulting documents still con-

tain a considerable fraction of irrelevant passages. We thus give three passages

to each annotator and provide them with the option to choose any one of them,

or to reject all if the material is deemed irrelevant. In the annotation guidelines

we further specified the desirable attributes of the questions that are to be formu-

lated: (i) no questions with yes/no answers (ii) questions should be about the text

and not require additional information beyond that (iii) where possible, questions

should address general principles instead of particular factual details (iv) the length

of questions should preferably be between 6 and 30, and the answer up to 3 tokens

(v) ambiguous questions should be avoided, and (vi) the correct answer should be

clear given the content of the chosen paragraph. In the annotation guidelines, we

showed examples of both desired and undesired queries, alongside explanations for

what makes them good or bad. Crowd annotators were given the ability to contact

us and were encouraged to give feedback, which several annotators made use of

when we conducted the annotation. Advertising the task on Amazon Mechanical
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Turk, we offered 0.30$ compensation per written question. In total, 175 annotators

participated in the project, and 12.1% of cases were rejected as all three documents

were deemed irrelevant.

Discussion The rejection rate of 12.1% is a lot smaller compared to a task setup

in which only a single passage were given, assuming the same underlying passage

set. Presenting multiple short passages at once increases the probability of includ-

ing at least one suitable text, it is thus more economical and in the ideal case it also

helps to match the preferences of individual annotators. A potential drawback of

this approach is that it may result in an overall tendency and consequent data bias

towards “popular” topics, although this is difficult to measure. Next, questions cre-

ated using crowdsourced annotation can suffer in quality compared to annotations

produced by a small set of expert annotators. To mitigate this risk we require Mas-

ter’s status among the annotators, and furthermore include a validation task for the

resulting questions in the subsequent annotation stage. Finally, another feature of

crowdsourced questions is that the resulting questions are relatively close to what is

explicitly stated in the passage, e.g. the passage “Without Coriolis Effect the global

winds would blow north to south or south to north. But Coriolis makes them blow

northeast to southwest or the reverse in the Northern Hemisphere. The winds blow

northwest to southeast or the reverse in the southern hemisphere.” results in the

question “What phenomenon makes global winds blow northeast to southwest or the

reverse in the northern hemisphere and northwest to southeast or the reverse in the

southern hemisphere?” with the answer “Coriolis Effect”. Formulating questions

this close to the text is clearly a desirable feature if the underlying text explicitly

describes directly relevant natural phenomena; it is however also a limitation as the

necessary text comprehension frequently resides on the text base level (cf. Section

2.1.2 and 2.1.3). The resulting questions thus often possess a considerable degree of

lexical overlap with the passage, and this may lead to over-estimated capabilities of

IR baselines for these questions compared to actual exam questions, if given access

to a relevant text corpus.
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3.3.2 Step 2: Selecting Answer Distractors

Following the collection of question-answer pairs described in the previous section,

we will next lay out a method for adding alternative answer candidates as distrac-

tors. During an initial annotation trial conducted by ourselves, we observed that

generating plausible false answer options poses a substantially higher time demand

than formulating a question about a given passage. To facilitate this process, we

thus provide model-based suggestions for answer distractors in the next step of the

annotation task. This exposes annotators to relevant suggestions, and some of the

suggestions can be accepted directly if deemed sufficient. We will continue first

with a discussion of desirable attributes for false answer candidates, then define

and train a model for proposing false candidates, and finally describe how they are

leveraged in the second annotation step.

Desirable Distractor Characteristics When generating multiple-choice answer

candidates, it is critical that the alternative candidates are convincing. Multiple

choice questions with unrelated or nonsensical false answer candidates pose a sub-

stantially easier task than questions with plausible candidates. The former would

likely be less useful as a resource to train models for science exams, as a model

could solve questions by excluding nonsensical candidates. The main challenge in

generating multiple choice answer candidates is then not the identification of false

answer expressions to q, but the identification of expressions that are plausible an-

swer candidates. Apart from being incorrect answers, we identify the following list

of desiderata for alternative answer candidates:

• grammatical consistency; e.g. for the question “When animals use energy,

what is always produced?” the expected answer is a noun phrase.

• consistency according to abstract attributes: if the correct answer a∗ is a mem-

ber of a particular category (e.g. a∗ is a chemical element), then good alterna-

tive answer options fall into the same or a similar category.

• consistency with the question topic: a question about oceans and ecosystems

should ideally have other answer distractors than e.g. “aikido” or “soprano”.
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Our model to automatically predict plausible answer distractors utilises a feature

representation that takes into account a variety of information, including features

related to the above desiderata. With access to these features, the model is fitted on a

set of actual multiple-choice science exam questions to learn properties of plausible

distractors, and ideally rank them above implausible ones. We next introduce this

model to generate plausible answer distractors in more detail.

Distractor Model Overview On a fundamental level, the model ranks potential

answer candidates from a large set of expressions C̄ and chooses the highest scoring

elements. It uses a ranking function

r : (q,a∗,c) 7→ sc ∈ [0,1] (3.1)

which produces a score sc used to determine if c ∈ C̄ is a plausible false answer in

the particular context of the query q and the correct answer a∗. To define the rank-

ing function r we use the score sc = P(c is plausible | q,a∗) stemming from a binary

classification model trained to distinguish plausible candidates from other, random

expressions, using a set of features φ(q,a∗,c) derived from q, a∗, and c. This clas-

sification model is trained on a small set of real multiple choice exam questions,

where we use the false answers as plausible examples, and a set of randomly cho-

sen expressions from C̄ as negatives, which we sample in equal proportion. We opt

for a random forest (Breiman et al., 1984; Breiman, 2001), a classifier with robust

generalisation performance for small and medium-sized datasets, and the capacity

to model nonlinear interactions. We next list the features φ(q,a∗,c) available to

this classifier; they are derived from both the question q, the correct answer a∗ and

a tentative distractor expression c ∈ C̄. Using these features, the model can learn

common attributes of plausible distractors observed in original science exam ques-

tions and – based on the patterns learned – propose false candidates that appear

realistic for new (q, a∗) pairs.

Distractor Model: Feature List We now list the features used by the false candi-

date prediction model:
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1. Bags of GloVe (Pennington et al., 2014) embeddings for q, a∗, and c;

2. An indicator for PoS-tag consistency of a∗ and c;

3. Singular / plural consistency of a∗ and c;

4. Logarithm of average word frequency in a∗ and c;

5. Levenshtein string edit distance between a∗ and c;

6. Suffix consistency of a∗ and c (e.g. for (“regeneration”, “exhaustion”));

7. Token overlap indicators for q, a∗ and c;

8. Token and character length for a∗ and c, and similarity therein (based on

relative proportions);

9. Indicators for numerical content in q, a∗, and c, and consistency therein;

10. Indicators for units of measure in q, a∗, and c, and for co-occurrence of the

same unit;

11. WORDNET-based hypernymy indicators between tokens in q, a∗, and c, in

both directions, and potentially via two steps;

12. Indicators for 2-step connections between entities in a∗ and c via a KB based

on OpenIE triples (Mausam et al., 2012) extracted from pages in Simple

Wikipedia about anatomical structures;

13. Indicators for shared WORDNET-hyponymy of a∗ and c to one of the con-

cepts most frequently generalising all three question distractors of real sci-

ence questions (e.g. element, organ, organism).

The features involving KB links and indicators for hypernymy can describe

sibling structures between a∗ and c based on a common attribute or hypernym.

If, for example, the correct answer a∗ to a question is heart, then one plausible

alternative answer candidate might be liver, which shares the hyponymy relation to

organ with a∗.
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Distractor Model Training The distractor prediction model is trained on a total of

3,705 multiple-choice questions from 4th and 8th grade science exams, of which we

use 80% for training and 20% for validation. Each of the samples from this dataset

contains four answer candidates, i.e. three examples of false candidates. Using the

scikit-learn’s random forests implementation with default hyperparameters, we

train a model with 500 trees, enforcing a minimum of 4 examples per decision tree

leaf. The same set C̄ is used both to draw random samples during training that are

contrasted against the observed distractors, and as the set of entries to rank, for new

questions at test time. That is, at test time all potential candidates c ∈ C̄ are ranked

for a new given (q,a∗) pair, and the highest-scoring elements will become the model

suggestions. The set C̄ contains a total of 488,819 expressions, concretely: (1) the

400,000 tokens in the pre-trained GloVe vocabulary; (2) any answer candidate from

the set of training questions; (3) a collection of noun phrases gathered from Sim-

ple Wikipedia articles about body parts; (4) ∼6,000 additional noun expressions

collected from primary school texts in the science subject. We furthermore add ex-

pressions formed by replacing any one token in a∗ with a unigram in C̄, in the case

of samples for which a∗ is a multi-word expression.

Distractor Model Evaluation The random forest model for predicting false answer

candidates achieves 99.4% and 94.2% accuracy on the training and validation set,

respectively, where we measure the binary classification accuracy of distinguishing

real answer distractors from randomly drawn alternatives from C̄. We show exam-

ples for the highest scoring predictions of this distractor model in Table 3.1. In a

qualitative inspection, we observe that many of the high-ranking model suggestions

are indeed plausible answer distractors. When considering failure cases, the pre-

dicted distractor is often semantically related, but from a different abstract category

(for example “nutrient” and “soil” in column 1 of Table 3.1 are not chemical el-

ements). For other examples the level of specificity is misaligned (e.g. in column

3: “frogs”). We also observe that multi-word expressions are more likely to be un-

grammatical or irrelevant, despite the inclusion of PoS features; we note that these

can themselves occasionally be erroneous and potentially result in cascading errors.
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Q: Compounds contain-
ing an atom of what ele-
ment, bonded in a hydro-
carbon framework, are
classified as amines?

Q: Elements have
orbitals that are
filled with what?

Q: Many species
use their body
shape and col-
oration to avoid
being detected by
what?

Q: The small amount of
energy input necessary
for all chemical reactions
to occur is called what?

A: nitrogen A: electrons A: predators A: activation energy
oxygen (0.982) ions (0.975) viruses (0.912) conversely energy

(0.987)
hydrogen (0.962) atoms (0.959) ecosystems (0.896) decomposition energy

(0.984)
nutrient (0.942) crystals (0.952) frogs (0.896) membrane energy

(0.982)
calcium (0.938) protons (0.951) distances (0.8952) motion energy (0.982)
silicon (0.938) neutrons (0.946) males (0.877) context energy (0.981)
soil (0.9365) photons (0.912) crocodiles (0.869) distinct energy (0.980)

Table 3.1: Selected distractor prediction model outputs. For each QA pair, the top six pre-
dictions are listed in row 3 (ranking score in parentheses). Boldfaced candidates
were accepted by crowd workers.

Question Validation and Distractor Selection Task We now proceed to the final

annotation step, in which multiple-choice answer candidates are added to the pre-

viously written questions. We give the result of the first annotation task – a (q,a∗)

pair – to a crowd annotator, alongside the six highest scoring predictions for false

answer candidates formed by the above described model. This task has two goals:

first, to control the quality of previously written questions; and second, to validate

the false answer distractors suggested by the model, or compose new alternatives

if they are insufficient. The annotation instructions were given as follows: first, to

determine whether the given question would be likely to appear in a school exam

of a science subject; each question could at this point be labelled as unrelated to

science, ungrammatical, having an incorrect answer, or necessitating very specific

background knowledge. A total of 92.8% of the previously collected questions

passed this stage. A second instruction was then given to pick a maximum of two

of the six suggested false answer candidates, whereas at least one false answer had

to be written by themselves, resulting in a total of three false answer candidates.

We added this requirement for annotators to write an answer candidate themselves

after an initial pilot annotation task, in which we observed that it helped engage the

annotators and resulted in a higher quality of false answer candidates. Again, we
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provided annotators with several examples of desirable, as well as undesirable false

answer candidates, and the opportunity to give feedback on the annotation task.

This annotation task was advertised on Amazon Mechanical Turk, paying 0.20$ per

completed annotation task, and again only working with annotators in possession of

AMT Master’s status. Annotators found the suggested distractors to be sufficient in

about half of the cases; 36.1% of the false answer candidates in the final dataset are

model-generated.4 We observe that acceptance rates for the model-suggested candi-

dates are generally higher for short answers, whereas almost none of the predictions

were accepted for the few questions with answers that are very long.

This concludes the description of the dataset assembly procedure. The remain-

der of this chapter will discuss characteristics of the resulting SCIQ dataset, estab-

lish benchmark performance for several systems, as well as a human performance

baseline on the questions gathered.

4As annotators were able to pick at most two model-suggested candidates, the maximum is 66%.



3.4. SCIQ: Dataset Properties 71

Example 1 Example 2 Example 3 Example 4
Q: What type of organism is
commonly used in preparation of
foods such as cheese and yogurt?

Q: What phenomenon
makes global winds blow
northeast to southwest or
the reverse in the northern
hemisphere and northwest
to southeast or the reverse
in the southern hemisphere?

Q: Changes from a less-ordered
state to a more-ordered state
(such as a liquid to a solid) are
always what?

Q: What is the
least danger-
ous radioactive
decay?

1) mesophilic organisms 1) coriolis e↵ect 1) exothermic 1) alpha decay
2) protozoa 2) muon e↵ect 2) unbalanced 2) beta decay
3) gymnosperms 3) centrifugal e↵ect 3) reactive 3) gamma decay
4) viruses 4) tropical e↵ect 4) endothermic 4) zeta decay
Mesophiles grow best in mod-
erate temperature, typically be-
tween 25�C and 40�C (77�F
and 104�F). Mesophiles are often
found living in or on the bod-
ies of humans or other animals.
The optimal growth temperature
of many pathogenic mesophiles is
37�C (98�F), the normal human
body temperature. Mesophilic
organisms have important uses
in food preparation, including
cheese, yogurt, beer and wine.

Without Coriolis E↵ect the
global winds would blow
north to south or south
to north. But Coriolis
makes them blow north-
east to southwest or the re-
verse in the Northern Hemi-
sphere. The winds blow
northwest to southeast or
the reverse in the southern
hemisphere.

Summary Changes of state are
examples of phase changes, or
phase transitions. All phase
changes are accompanied by
changes in the energy of a sys-
tem. Changes from a more-
ordered state to a less-ordered
state (such as a liquid to a gas)
are endothermic. Changes from
a less-ordered state to a more-
ordered state (such as a liquid to
a solid) are always exothermic.
The conversion . . .

All radioactive
decay is dan-
gerous to living
things, but al-
pha decay is the
least dangerous.

1

Figure 3.2: The first four SCIQ training set examples. An instance consists of a question
and four answer options (the correct one in green). Most instances come with
the document used to formulate the question.

3.4 SCIQ: Dataset Properties

Following the previously described data annotation procedure, we collected a total

of 13,679 multiple choice questions, which make up the SCIQ dataset. This dataset

is shuffled into random order and divided into training, development, and test splits,

using 1,000 samples for the development and test split each, and the rest as training

samples. The initial four samples of this dataset are shown in Figure 3.2.

Each question is naturally associated with the text passage used to write the

question about. If this passage were given in the multiple choice setting, then the

answer would in many cases be trivial to select as the only one of the candidates

mentioned in this given paragraph. For this reason, the multiple choice setting in

SCIQ comes without the passage; systems trying to answer these questions thus

have to find relevant background information elsewhere, e.g. via retrieval.

A different setup – the direct-answer version of SCIQ – has the paragraph and

question given, yet none of the answer candidates. While most of the questions

and texts are made available to the broader research community under a Creative

Commons license, a small fraction of paragraphs is withheld due to copyright re-

strictions. The direct answer setting of SCIQ thus has a slightly reduced size with
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Figure 3.3: Absolute frequency of different lengths for questions, correct answers, and dis-
tractors – measured in number of tokens, and calculated across the training set.

only 10,481 questions in the training, 887 in the development, and 884 questions in

the test set, as the corresponding paragraphs cannot be freely distributed.

Question and Answer Length In Figure 3.3 we plot empirical distributions for the

length of questions and answers in the data; note the log scale of the ordinate. In

the majority of cases both the question and answer are relatively short, with only a

minority of very long questions. The distributions for the number of tokens in the

correct answer and distractors coincide to a large degree; length alone is thus not a

salient characteristic to distinguish correct answers from false candidates.

Distinguishing Real from Crowdsourced Questions To obtain an indication for

the extent to which questions in SCIQ differ from real science exam questions, we

set up another annotation task with the following setup: an annotator is given both

an original science exam question and a SCIQ question, in randomised order (Figure

3.4 shows an example). Annotators are then instructed to predict which of these two

questions is more likely to appear as a real exam question. We paired 100 original

exam questions with 100 randomly chosen instances from the SCIQ training set,

and found that annotators were able to identify the actual exam question in 55% of

the cases. This indicates that while there are notable differences between original

and crowdsourced questions, the plausibility – judged by non-experts – of SCIQ

questions is broadly comparable to real exam questions.

When inspecting questions in SCIQ ourselves, we further observed that espe-

cially in cases of multi-word answers, the questions can be distinguished by the
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Q: In the life cycle of a fly, which 
stage comes after the larval stage?  
A: pupa
B: adult
C: nymph
D: egg

Q: What do metals typically lose to 
achieve stability?  
A: electrons
B: ions
C: atoms
D: molecules

Q: What do metals typically lose to 
achieve stability?  
A: electrons
B: ions
C: atoms
D: molecules

Figure 3.4: Comparison of an original exam question (left) with a question in SCIQ (right).

structural similarity of their answer candidates. For example, in the question “What

can damage the hair cells lining the cochlea of the inner ear?” all the answer

options follow the same pattern: “loud sounds”, “amelodic sounds”, “unexpected

sounds” and “wavering sounds”; this is a consequence of the constrained structure

of C̄ for multi-token candidates. In contrast, multi-word answer candidates for real

exam questions are structurally not as rigid and more varied: for example the ques-

tion “Where will a sidewalk feel hottest on a warm, clear day?” has the answer

options “in direct sunlight”, “under a picnic table”, “under a puddle” and “in the

shade”.

3.5 Experiments
SCIQ is intended as an RC dataset, with a particular emphasis on the science exam

domain. We will next establish a human baseline and then discuss, first, whether

neural RC approaches can learn abilities on the SCIQ training questions that gen-

eralise to held out test questions; second, how neural RC approaches compare to

previously established science exam QA methods; and third, whether SCIQ train-

ing questions can be used to improve neural RC model performance on real science

exam questions.

3.5.1 Human Baseline

To put any results of the subsequently tested models into relative perspective, we

first establish a human performance baseline. To this end, we distribute a subset of

650 SCIQ questions to 13 researchers familiar with the science exam QA task, and

ask them to answer 50 questions. Individuals are not given the supporting SCIQ

document associated with the question, but instead permission to query the web

and no time constraint for selecting the answer. All individuals fully completed
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this task, and the overall accuracy of these individuals is 87.8% on average, with a

standard deviation between the scores of different subjects of 0.045.

It is worth pointing out that a comparison of this observed accuracy value to

a corresponding score on real science exam questions is possible only in a limited

sense. Real exam questions are used as an assessment for both a class’ and individ-

ual student’s knowledge and learning progress. Following the assessment scale of

the real exam questions we consider, the score of – on average – 87.8% indicates

“Meeting the Standards with Distinction”,5 but the individuals we tested likely ben-

efited from the lack of a time constraint, and direct web access. When considering

the performance of human students on real science exam questions, there is typ-

ically also a distribution in performance – with substantially larger variance than

what we observed. The individuals we tested were furthermore familiar with the

science exam QA task and had previously been exposed to several of the real exam

questions.

Overall, the relatively high score achieved on SCIQ demonstrate that the large

majority of questions can be answered correctly by adult individuals with a univer-

sity education and task familiarity.

3.5.2 SCIQ: Multiple Choice Setting

We next consider automatic methods for solving science exam questions. A vari-

ety of such models has been developed, notably the Aristo model ensemble (Clark

et al., 2016) by the Allen Institute for Artificial Intelligence. We will discuss the

performance of Aristo on SCIQ, as well as two of its constitutent sub-components:

the Lucene information retrieval baseline; and TableILP, a table-based integer linear

programming model.

The Lucene method – which uses IR to search for texts that are relevant to

a query and uses search scores for forming an answer prediction – has previously

been shown to be a remarkably strong science exam QA baseline (Clark et al.,

2016). TableILP utilises derivations from a set of knowledge items which have been

identified as relevant for the science exam QA task. We are in particular interested

5https://www.nysedregents.org/grade8/science/618/home.html

https://www.nysedregents.org/grade8/science/618/home.html
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Model QA Accuracy

Aristo (Clark et al., 2016) 77.4
TableILP (Clark et al., 2016) 31.8
Lucene (Clark et al., 2016) 80.0

AS Reader (Kadlec et al., 2016) 74.1
GA Reader (Dhingra et al., 2016) 73.8

Human 87.8 ± 0.045

Table 3.2: Test set accuracy of existing models on the multiple choice version of SCIQ.

in how they compare to the performance of two off-the shelf neural RC models.

The two neural RC models we consider are the Attention Sum Reader (AS Reader;

Kadlec et al. (2016)) and the Gated Attention Reader (GA Reader; Dhingra et al.

(2016)). These RC models can answer multiple-choice questions but require a rel-

evant text passage to read. To this end, the background corpus of Aristo’s Lucene

retrieval model is used to retrieve potentially relevant text passages, which the RC

models then process and base their prediction on. Concretely, this follows the ap-

proach of Clark et al. (2016) where five IR queries are issued based on either the

question text alone, or together with each of the four answer candidate options, con-

catenated to the question. The top three retrieved results for each of these queries

are concatenated to form a larger paragraph, which is read by the RC models. In

Table 3.2 we list the resulting model performance on the SCIQ test set.

A first observation is that all models – besides TableILP – perform relatively

well, albeit still with a substantial margin to human performance. The performance

of the Aristo ensemble on SCIQ is comparable but slightly above its accuracy for

real science exam questions (where this system achieves 71.3% accuracy (Clark

et al., 2016)). Next we observe that with 31.8%, TableILP does not perform well

compared to the other methods, only 6.8% above a random answer selection base-

line, and 12.0% worse than on real exam questions (43.8%; cf. Fig. 2 in Clark

et al. (2016)). The method uses a manually curated collection of structured back-

ground knowledge items, which is likely only to a limited extent relevant to the new

questions in SCIQ. This demonstrates a limitation of the TableILP method, which
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performs substantially better on a set of exam questions with topics which its cor-

pus of background knowledge is curated for, but shows a sharp deterioration when

tested on the new SCIQ questions.

Next, it can be considered surprising that Lucene – a subcomponent of the

Aristo model ensemble – reaches a higher score than the full ensemble. This is due

to the fact that neither the trainable components of TableILP nor Aristo as a whole

where retrained for SCIQ, but the solvers were taken off-the-shelf and evaluated on

the new SCIQ test questions.6 It is worth pointing out that the retrieval corpus of

the Lucene baseline overlaps with the corpus of study books used to create SCIQ.

Consequently the performance of Lucene, but also of Aristo – which uses Lucene

as a component – as well as the AS and GA readers that rely on these retrieved

documents, is positively impacted by the high retrieval success rates of Lucene, and

likely larger than without the availability of directly relevant documents to the IR

system.

Finally, the two neural RC methods (AS reader and GA reader) achieve high

scores on SCIQ, and are almost on par with the Aristo ensemble. This is remark-

able, since Aristo has received a considerable amount of research and engineering

through several iterations to succeed on the science exam QA task. Interestingly

though the neural RC models perform worse than the Lucene information retrieval

baseline, even though they use precisely the same retrieved documents. Lucene

chooses as prediction the option with the highest retrieval score, i.e. the option with

the highest (frequency-weighted) degree of lexical overlap between retrieved docu-

ment words, and each candidate. The strong performance of Lucene thus indicates

that there is a substantial degree of lexical overlap between SCIQ questions and

correct answer option (considered together) with the original documents that these

questions were written about. Like Lucene, the two neural models rely on success-

ful retrieval of relevant documents (as prior step). But unlike Lucene, the two neural

models do not have direct access to the predictive retrieval score used by Lucene,

and achieve slightly lower, albeit overall comparative QA performance.

6Note that this also includes the relative weighting of model contributions in the Aristo ensemble
prediction.
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3.5.3 Using SCIQ to Answer Exam Questions

The previous section has shown that it is possible to successfully tune neural RC

models which can generalise their answering skills to new, held out science ques-

tions within SCIQ. But both the training and test questions in SCIQ are only an

approximation of real exam questions and written in a crowdsourced process by

non-experts. The next question, then, is whether questions assembled in SCIQ can

be used to improve an RC system’s accuracy on real exam questions. To this end, an

experiment was conducted on science exam questions from both 4th and 8th grade.7

The AS and GA reader were trained, first, only on real exam questions, and

then, in a separate experiment, on exam questions together with SCIQ, separately

both for 4th and 8th grade questions. Table 3.3 shows model accuracies on these real

exam test questions with and without the augmentation by SCIQ training questions.

We observe that adding SCIQ results in accuracy improvements for both of the RC

models, and for both of the grade levels. This confirms that SCIQ questions can

provide a useful training signal to help neural RC systems learn reading skills that

can be applied to solve science exam questions. Interestingly, the improvements are

larger on the 4th grade questions, where there are fewer real training questions than

for the 8th grade level.

Overall it is however worth pointing out that these accuracy rates lack behind

those reported on the SCIQ test set (see Table 3.2). We have already established

that the overlap of the retrieval corpus with the texts underlying the SCIQ ques-

tions provides high levels of retrieval success, as visible in the high scores of the

Lucene baseline. Real exam questions, on the other hand, are not composed based

on directly relevant and retrievable text passages – as was done in the assembly of

SCIQ. Consequently the QA performance on real questions is sharply reduced in

comparison, as there are not as many directly relevant documents available in the

underlying corpus.

7There are approx. 3,200 8th grade questions and 1,200 4th grade questions. Some of the ques-
tions come from www.allenai.org/data, others are proprietary.

www.allenai.org/data
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Dataset AS Reader GA Reader

4th grade 40.7% 37.6%
4th grade + SCIQ 45.0% 45.4%
Difference +4.3% +7.8%

8th grade 41.2% 41.0%
8th grade + SCIQ 43.0% 44.3%
Difference +1.8% +3.3%

Table 3.3: Including SCIQ samples during model training increases neural RC model accu-
racy on real science exam questions, both for 4th and 8th grade exam questions.

3.5.4 SCIQ: Direct Answer Setting

The previously described multiple-choice experiments consider the RC components

as part of a QA pipeline, following an information retrieval step. We will next con-

sider how well a neural RC model can perform on the direct answer setting in

SCIQ. Here, no answer candidates are given, but instead the document which the

question was written about – effectively giving the QA model oracle access to a rel-

evant document. We consider the Bidirectional Attention Flow model (BiDAF) (Seo

et al., 2017a), a widely used model for extractive RC. On the SCIQ test set BiDAF

achieves exact match and F1 scores of 66.7 and 75.7, respectively. This is only

1.3% and 1.6% below the corresponding values achieved on SQUAD1.1, and these

numbers are broadly comparable to those reported for the neural RC models in Ta-

ble 3.2.

3.6 Discussion and Conclusion
We have observed that neural RC systems can successfully be applied on SCIQ and

learn to generalise question answering behaviour to held out test questions, both

when coupled with a document retriever and when oracle documents are given.

The evaluation on the specialised domain of science exam study material provides

additional support for these RC models and validates their capability to learn gen-

eralisable RC skills.

We have furthermore identified access to relevant background information as a

critical factor for model performance in a science exam QA system: while TableILP
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lacks relevant background knowledge items that apply to SCIQ questions, neural

RC approaches given relevant documents (either through retrieval, or by an oracle)

perform relatively well. This is in line with observations in open-domain QA (Chen

et al., 2017a) and Fact Checking (Thorne et al., 2018), where the most critical bottle-

neck to overall system performance appears to be the availibility of relevant textual

information as provided by the retrieval component in a system pipeline. Finally,

we have seen that SCIQ is a useful ingredient to support RC systems when solving

real science exam questions.

3.6.1 General Dataset Limitations

Besides the overall encouraging experimental results, it is worth pointing out several

limitations of the SCIQ dataset.

First, as we follow a crowdsourcing approach in which annotators are given a

text passage to formulate a question about, the resulting questions have a consider-

able degree of lexical overlap with the given passage. This is reflected in the strong

performance of the IR baseline, which – based on lexical overlap – reaches a higher

score than the two neural models (see Table 3.2). Given the prevalence of this pre-

dictive signal in the data it is unclear to what extent RC models trained on SCIQ

transfer to settings with less lexical overlap. We point out that subsequent work has

found ways to address this problem in their dataset construction approach, albeit in

another domain (Kočiský et al., 2018).

Second, SCIQ is focused on relatively short text segments. While partly a re-

sponse to memory limitations of many RC models, this setup biases the resulting

dataset towards textual content which can be explained in a relatively short con-

text – thus limiting, for example, the degree of co-reference and total amount of

information in the given pieces of text.

Third, an inherent limitation of using a model to suggest alternative answer

candidates is that they will implicitly reflect properties of this model – its features,

training data points, and modelling limitations. While this is true in general, one

particular limitation is the one we have observed for multi-word answer candidates:

our predictive model often presents plausible alternatives for single-word answers,
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but its suggestions on candidates with more tokens are often less plausible. Future

work using generative models may further improve multi-word candidate sugges-

tions by beginning with more relevant expressions to be scored by the ranker than

the set C̄ we chose, which is very limited for multi-token candidates.

A final – and important – consideration is that the SCIQ question distribution

is one of comprehension questions written about a given piece of in-domain text. In

this regard the dataset differs from real exam questions which are typically posed

without such a concrete available text source. That is, only for few real exam ques-

tions there is a piece of relevant text that explicitly states this requested information,

but in the general case this cannot be expected. This brings the real exam question

setting much closer to that of web search engine or QA system questions (Nguyen

et al., 2016; Kwiatkowski et al., 2019). This mismatch is also reflected in the types

of questions we find in SCIQ: they tend to request factual information about the

given passages, which is often stated explicitly, rather than involve more complex

derivations or inference in hypothetical situations – which is more often found in

real exam questions.

We thus see SCIQ as a potentially useful contributory data resource which may

help an algorithmic science exam solver learn text comprehension behaviour. It is

however not intended to be a standalone dataset which is by itself sufficient – even if

further scaled – to comprehensively learn all the relevant skills necessary to answer

exam questions.

3.6.2 Summary of Answers to Initial Research Questions

Finally, we summarise the answers to our initial research questions posed in the

chapter introduction:

1. How can the crowdsourcing approach to RC dataset creation be adapted

for collecting a dataset in the science exam domain? We have described

a two-stage annotation approach, in which the first stage involves writing a

question about a paragraph from a corpus of digitally available study text

books, followed by a second step in which annotators both validate the pre-

viously written questions and add false multiple-choice answer candidates,
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supported by model suggestions.

2. How do previously developed science exam solvers and neural RC meth-

ods perform on the resulting dataset? The previously used Aristo ensemble

performs similar on SCIQ compared to real exam questions; TableILP perfor-

mance on the other hand drops, likely due to a lack of relevant background

knowledge items for these new questions. The Lucene baseline reaches a

higher score than on real exam questions, likely due to having access to the

corpus of directly relevant documents that the question were written about,

and lexical overlap of these articles with the questions. When coupled with

IR outputs, neural RC models achieve comparable performance to Aristo and

Lucene in the multiple-choice setting, and only a small performance deterio-

ration in the direct-answer setting, indicating that the availability of relevant

documents to read is the main bottleneck for QA performance of neural RC

systems.

3. Can the resulting data be used as additional training resource to improve

the performance of RC systems on science exam questions? We observe

that adding the SCIQ dataset to a smaller training dataset of real exam ques-

tions boosts the performance of two neural RC models, both for 4th and 8th

grade questions.
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Chapter 4

Constructing Datasets for Multi-hop

Reading Comprehension across

Documents

The content of this chapter is based on previously published

work (Welbl et al., 2018). The chapter includes descriptions for the

construction of two datasets, following a shared methodology. The

assembly of the MEDHOP dataset and its annotation were conducted

by a coauthor in Welbl et al. (2018).

The maturation of end-to-end RC methods has led to systems that can learn

to identify correct answers to text comprehension questions at a level that has ap-

proached and surpassed human-level performance on SQUAD (Kadlec et al., 2016;

Seo et al., 2017a; Yu et al., 2018). However, the focus of SQUAD is on questions

about a single document, and within this given document the information necessary

for answering the comprehension question is often very locally concentrated: prior

work (Min et al., 2018) found that for 90% of samples in SQUAD only a single

sentence is relevant to answer the given question. Furthermore, relevant sentences

in SQUAD typically exhibit a substantial degree of word overlap with the com-

prehension question, which makes lexical overlap an informative cue for selecting

the correct answer. For example, Weissenborn et al. (2017) demonstrated that us-

ing a binary word-in-question indicator feature improves the relative accuracy of a
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Document 1:  The Hanging Gardens, in Mumbai, also known as Pherozeshah Mehta 
Gardens, are terraced gardens […] They provide sunset views over the Arabian Sea […]

Document 2:  Mumbai (also known as Bombay, the official name until  1995) is the 
capital city of the Indian state of Maharashtra. It is the most populous city in India […]

Document 3: The Arabian Sea is a region of the northern Indian Ocean bounded on the 
north by Pakistan  and Iran,  on the west  by northeastern Somalia  and the Arabian 
Peninsula, and on the east by India […]

Query: (Hanging Gardens of Mumbai, country, ?)
Answer Options: {India, Pakistan, Iran, Somalia}

Figure 4.1: An example from the WIKIHOP dataset where, to infer the correct answer, it
is necessary to combine information spread across multiple documents. Un-
derlined entities of different colours in Document 1 appear also in other con-
texts (Document 2 and Document 3), together with the correct answer (green)
and false answer options (grey).

baseline model by 27.9%.

A possible explanation for these observations is the crowdsourcing approach

to comprehension question writing: annotators have an incentive to complete the

annotation task as quickly as possible. This is most easily achieved by following

the least cognitively demanding route, and often results in questions about explicitly

stated information in the given text, i.e. its base interpretation. As a consequence,

the resulting models trained on this data emphasise the role of locating, matching,

and aligning relevant words between comprehension question and given text, rather

than developing more general and abstractive text comprehension and inference

capabilities.

One direction for advancing the abilities of machine comprehension methods,

then, is to progress towards reading scenarios where the information relevant to

the comprehension question is not explicitly stated within a single sentence or doc-

ument, and where the answer cannot be inferred directly. Consider for example

Figure 4.1, where a query about the country property of the Hanging Gardens of

Mumbai is given, together with three different WIKIPEDIA articles. The correct an-

swer to the country property (India) cannot be inferred by reading any one of the

articles alone without additional background knowledge; the answer is not stated ex-

plicitly in the article about the Hanging Gardens itself. However the linked articles
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both mention the correct answer India (as well as other countries), in connection

with entities appearing in the same article as the Hanging Gardens (Mumbai and

the Arabian Sea).

Finding the answer in this example requires multi-hop inference: first, infer-

ring that the Hanging Gardens are located in Mumbai; second, and from a separate

document, that Mumbai is a city in India; this together entails that the country

property of the Hanging Gardens is India. Text comprehension thus involves the

integration of information from a context spanning several documents, thus reach-

ing beyond what is typically required to answer questions in SQUAD, or the SCIQ

dataset from the previous chapter.

Extending the scope of text comprehension methods with the ability to inte-

grate textual information across various documents could aid applications of Infor-

mation Extraction (IE), such as discovering drug-drug interactions (Gurulingappa

et al., 2012) by connecting protein interactions reported in different scientific pub-

lications. It could also benefit text search (Carpineto and Romano, 2012) and QA

applications (Lin and Pantel, 2001) in which required information is not always

comprehensively and explicitly stated in a single sentence or document. However,

the progress and development of RC methods with cross-document multi-hop infer-

ence abilities has in the past been impeded by a lack of large-scale dataset resources.

In this chapter we will define an RC task in which a model has to learn to

answer queries by reading and combining textual evidence stated in multiple doc-

uments. Modelling progress generally depends on the availability of datasets, both

for training and for evaluation. We will thus initially introduce a dataset induction

methodology for this task, which we then apply to construct two datasets. The first

of these datasets, WIKIHOP, contains sets of WIKIPEDIA paragraphs where an-

swers to queries about particular attributes of a given entity cannot be located as a

span in the paragraph associated with the entity’s WIKIPEDIA article, like in the ex-

ample given in Figure 4.1. For the second dataset, MEDHOP, the objective is to pre-

dict interactions between drug pairs based on information stated in combinations of

MEDLINE research paper abstracts which cover scientific findings about drugs, pro-
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teins and interactions between them. During the construction of the two datasets we

utilise existing Knowledge Bases (KBs) – WIKIDATA and DRUGBANK– as ground

truth, and follow prior work (Hewlett et al., 2016; Joshi et al., 2017) in utilising

distant supervision (Mintz et al., 2009).

We will observe that assembling datasets for cross-document RC poses chal-

lenges: there exists a variety of pitfalls that can render the resulting datasets trivial

to solve using shallow statistical predictors, e.g. spurious co-occurrences of answers

with particular documents. Thus, woven into the dataset induction description there

will be a thread of remedial procedures that address and mitigate these issues.

After describing the dataset construction in detail we will establish a human

performance baseline, and analyse to which extent assumptions made during dataset

assembly were justified. We then compare several baseline methods on the two

resulting datasets – both shallow statistical predictors and established neural RC

architectures – analysing various aspects of their behaviour in ablation studies. In

summary, this chapter aims to answer the following research questions:

List of Research Questions Addressed in this Chapter:

1. How can we construct datasets for multi-hop Reading Comprehension across

documents?

2. What are potential dataset biases and pitfalls associated with the dataset as-

sembly approach chosen?

3. How do two neural RC models – FastQA and BiDAF – perform on the result-

ing cross-document multi-hop RC datasets, in particular compared to shallow

statistical baselines?

4.1 Dataset Induction Method

4.1.1 Task Formalisation

We will begin by defining the multi-hop RC task more formally and then describe

a general method for dataset induction. In Sections 4.2 and 4.3 we will show how
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the methodology can be applied, and describe the creation of such datasets in two

domains.

In the multi-hop RC task, a model is in each sample given a query q (either

posed in natural language, or structured; we focus on the latter case), a set of sup-

porting documents S, as well as a set of candidate answers C. We assume that all

answer candidates are mentioned in S. The goal for the model is to predict the

correct answer a∗ ∈ C based on both q and S.

Generally, queries can potentially have several true answers if they are not

constrained to a specific set of given documents, for example a query about the

parent of a particular person. In our setup the samples are however intended to only

have one correct answer among the given candidates C based on S.

It is further worth pointing out that although we will make use of background

information when assembling the datasets, such information is generally not avail-

able to the model: the set of documents is given in randomised order and with-

out further metadata (such as hyperlinks) or additional information about the doc-

uments. While we expect such information to potentially be beneficial, this would

likely not be available in the same form in different domains, and distract from our

goal of encouraging RC methods to infer new facts by combining information stated

in separate texts.

4.1.2 Dataset Induction Using a Bipartite Graph

In this section we will describe an automatic dataset induction strategy with which

we assemble a collection of samples in the format laid out above. The method

requires a document corpus D, as well as a KB of fact tuples (s,r,o), where s is a

subject entity, r a relation type, and o an object entity. One example of such a tuple

is (Hanging Gardens of Mumbai, country, India).

In our first dataset construction step we begin with a set of such KB fact tuples.

We convert them individually into query-answer pairs by removing the object slot,

i.e. q = (s,r,?), and then using the object as the correct answer, i.e. a∗ = o.

We then introduce a directed bipartite graph, in which one side of vertices

corresponds to individual documents in D, and the other side of vertices to particular
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DocumentsEntities KB
(s, r, o)

(s, r, o0)

(s0, r, o00)

s

o

o0

o00

Figure 4.2: A bipartite graph connecting entities and documents mentioning them. Bold
edges are those traversed for the first fact in the small KB on the right; yellow
highlighting indicates documents in S and candidates in C. Check and cross
indicate correct and false candidates.

KB entities; Figure 4.2 shows an example. In this graph, a node d (corresponding to

a document) is connected to a node e (corresponding to an entity) if e is mentioned

in d, though there may be additional constraints on the connectivity of the graph.

To identify possible support documents and answer candidates for a given (q,a∗)

pair, this bipartite graph is then traversed with a breadth-first search – beginning at

the node of the subject entity s of q. The possible end points of the graph traversal

are chosen as the set of all entity nodes which are type-consistent answer entities to

q (more on that below).

The graph traversal can – beginning from s – potentially visit several end

points, although generally not necessarily all. End points which are visited will

become the set of answer candidates C for q, which is usually substantially smaller

than the set of all potential type-consistent answers to q. We discard (q,a∗) pairs

in which a∗ is not among the end points visited. For the remaining samples, the

documents visited along the paths towards end points which were reached define

the set S of support documents for q. S thus comprises document chains connected

by entities mentioned in both of two linked documents, and which lead not only

from s to the correct answer, but also towards documents mentioning false other

type-consistent answer candidates.

In order to identify a set of type-consistent answer entities to the query q in the
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first place, all entities in the KB are considered. Those which appear as the object

in at least one fact with r as relation type are considered type consistent and thus

potential candidates – notably also including a∗. If another fact (s,r,o′) exists in the

KB, i.e. a fact indicating another true answer to the same query, then we exclude o′

from the set of graph traversal end points for this particular sample. Thus, relying

on a closed-world assumption for the KB, only one of the end points resembles a

correct answer to the query.1

Following this general data induction approach, we will consider two concrete

applications: first in the case of WIKIPEDIA, and second in the case of PUBMED,

each with its own intricacies.

4.1.3 Discussion

By using the methodology described above, the query entity s and correct answer a∗

are located in separate documents, linked by a chain of intermediate other docu-

ments and entities they coappear with. This means that potentially relevant textual

evidence for (q,a∗) is spread across the chain of documents linking s with a∗. In

this manner, multi-hop inference requires more than co-reference resolution in one

of the given documents alone.

It is worth pointing out that the inclusion of type-consistent alternative candi-

dates besides a∗ results in an additional challenge for a model. False answer can-

didates counterbalance potential predictive regularities among the answers: models

could otherwise predict a∗ based on their type (Jia and Liang, 2017; Lewis and Fan,

2019). For example, if only a single country is mentioned in the given documents, it

is much easier for a model to identify this country as the correct answer to a country

query – without having to take into account the query subject, or other informa-

tion from the text. By introducing multiple answer candidates (and corresponding

documents), our dataset assembly method stands in contrast to prior work, which

avoids such cues with masking (Hermann et al., 2015; Hill et al., 2016). While en-

tity masking removes type information, it also masks out potentially relevant lexical

information; in the Experiments Section 4.6 we will analyse the potential impact of

1That is, we assume that the facts in the KB state all true facts.
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this in the context of our resulting datasets.

One shortcoming of the dataset induction strategy is its dependence on previ-

ously identified entities, as well as a given KB. Both can be sources of erroneous

or noisy samples, and we will thus later investigate the extent of this problem in

a qualitative analysis of the resulting data points. A second shortcoming is the re-

liance on the closed-world assumption: if facts do not appear in the KB we assume

them to be false, leading to potentially false negative answer candidates where the

closed-world assumption is violated. Next, the task we pose relies on structured

queries of a particular format. While this allows for more control regarding the re-

quested information, it does not cover the full variation of possible comprehension

questions that could be posed using natural language. Furthermore we prescribe

an extractive format for our RC task, similar to SQUAD. While both these latter

factors impose significant restrictions, it facilitates automatic assembly and evalua-

tion, and the extractive character of the task allows for easier transfer of previously

developed RC approaches to the cross-document RC task we have introduced.

The key advantage of the method is its fully automatic character: it does not

rely on humans in the loop, although we rely on human annotations for validation.

It is thus more cost-efficient and easily scalable where KB and corpora are available

– an important factor to train parameter-rich neural RC models. We furthermore

circumvent dataset annotation biases introduced by crowdworkers, and queries are

not posed conditioned on a given text; instead the text is selected based on the query

and its answer. However, as we rely on the distant supervision assumption (Mintz

et al., 2009), there is no guarantee that the provided documents actually serve as

valid support for inferring the correct answer. In our view, this poses perhaps the

most significant limitation to the approach; to what extent the assumption is justi-

fied will thus also be analysed further below, after describing the creation of both

datasets.
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4.2 Dataset Induction: WIKIHOP

WIKIPEDIA presents a large corpus of comparatively clean encyclopedic text

from a variety of domains, and it is associated with structured knowledge re-

sources, e.g. WIKIDATA (Vrandečić, 2012). WIKIPEDIA is a resource widely used

in RC research, although mostly for datasets with queries about individual sen-

tences (Morales et al., 2016; Levy et al., 2017) or articles (Yang et al., 2015; Hewlett

et al., 2016), including SQUAD (Rajpurkar et al., 2016). Prior to this study, no

attempts were undertaken to assemble a multi-step RC dataset involving multiple

WIKIPEDIA documents.

A dataset closely linked to the one we will assemble is the WIKIREAD-

ING (Hewlett et al., 2016) dataset. It is based on WIKIPEDIA and uses WIKIDATA

tuples of the form (item, property, answer) which are matched with WIKIPEDIA

articles associated with their item. In WIKIREADING these tuples are used for

a slot filling task, which consists in identifying the answer, given an article and

property – thus resembling the same type of query also used in our dataset induc-

tion strategy. But one issue with WIKIREADING is that 54.4% of samples do not

mention the correct answer explicitly in the given text (Hewlett et al., 2016), limit-

ing its usefulness as an extractive RC dataset. We observed, however, that several

other WIKIPEDIA articles accessible through hyperlinks in the given article fre-

quently mention the answer, as well as other plausible alternative candidates. This

has inspired our dataset construction method, and we will use WIKIREADING as a

starting point to develop our own dataset: WIKIHOP.

4.2.1 Assembly

We next apply the method described in Section 4.1.2 to assemble a multi-hop dataset

using WIKIPEDIA as corpus and WIKIDATA as KB of fact triples. That is, the (item,

property, answer) WIKIDATA triples correspond to (s,r,o) tuples; and the item and

property of each sample together form the query q – for example (Hanging Gardens

of Mumbai, country, ?). Following prior work (Yang et al., 2015) we utilise only

the first paragraph of a given article, as relevant information is frequently stated at

the start.
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Beginning with the full WIKIREADING dataset, we delete samples in which the

answer is mentioned explicitly in the given WIKIPEDIA article about the item.2 The

bipartite graph then has the following connectivity structure: (1) for edges from ar-

ticles to entities: all articles mentioning an entity e are connected to e; (2) for edges

from entities to articles: each entity e is only connected to the WIKIPEDIA article

about the entity. Traversing this graph is thus equivalent to iteratively following

hyperlinks to new articles about anchor text entities.

Given a WIKIDATA query-answer pair, the item entity forms the graph traver-

sal starting point. The traversal will thus always visit the article about the item, as

it is the only document connected from there. The set of end points comprises both

the correct answer and alternative type-consistent candidate expressions. They are

selected based on all facts appearing in the WIKIREADING training set, choosing

tuples with the property of q, and collecting the answer expressions of these facts.

For example, the country property in WIKIDATA has this set of type-consistent en-

tities (and thus potential answer candidates): {Italy, United Kingdom, ...}.
Overall, graph traversal is carried out to a maximum of three documents per

document chain. In order not to impose unnecessary computational burden, we re-

move samples exceeding 64 different support documents, or 100 candidates, which

amounts to ≈1% of the examples.

4.2.2 Mitigating Dataset Biases

The creation of a new dataset is prone to the unintentional introduction of bi-

ases (Chen et al., 2016; Schwartz et al., 2017). As the analysis of the WIKIREAD-

ING dataset was limited (Hewlett et al., 2016), we now demonstrate some of the

downstream effects observed on WIKIHOP.

Candidate Frequency Imbalance A first finding is that there exists a considerable

bias in the distribution of answers in WIKIREADING. For example, the majority

of examples with the country property has as correct answer the United States of

America, which is due to the geographical topic coverage of English WIKIPEDIA ar-

ticles. The extent of this imbalance is so substantial that after performing our graph-

2We thus use a disjoint subset of WIKIREADING in comparison to Levy et al. (2017).
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traversal procedure, 47.8% of the resulting country queries have United States of

America as the correct answer. Even more, since the country query type tends to be

very prominent, 20.8% of all samples in the entire dataset have this answer. Clearly

a simple baseline which always predicts the majority class (perhaps conditioned

on the query type) would prove already moderately successful, yet without demon-

strating any multi-hop comprehension. To address the issue we thus sub-sample our

dataset such that no more than 0.1% of the examples share the same answer.

Document-Answer Correlations A second problem – one unique to the cross-

document task setup – is the potential for spurious correlations between answer

candidates and particular documents, which can result from the connectivity pattern

of the dataset construction graph. We found that specific documents frequently co-

occur with the correct answer in the same data sample, while others do not. If the

WIKIPEDIA article about London, for example, appears in S, then the correct answer

is very likely the United Kingdom; this can be determined without consideration of

the query type or query entity.

In order to quantify the extent of this problem we design a statistical metric that

measures the effect, which we then use again to sub-sample the dataset. This metric

counts the number of training samples in which a candidate c is the correct answer

when a particular document d is present among S. That is, for a given document

d and candidate c, the metric cooccurrence(d,c) denotes the total number of co-

occurrences of d with c in the same sample, and where c is the correct answer.

Table 4.1 shows a ranked list of document-answer pairs that most frequently co-

appear in this way. Since the mere presence of one of these documents in S can

resemble a very strong cue for the correct answer, a model could thus solve the task

without having to rely on RC capabilities at all.

To address this problem we utilise the above introduced co-occurrence metric

to further sub-sample the WIKIHOP dataset, removing examples for which one or

more pairs (d,c) of document and candidate have cooccurrence(d,c) > 20. That

is, we remove data points containing a document and candidate which frequently

occur together, and where the candidate is the correct answer. Before and after
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Answer a∗ WIKIPEDIA article d Count Prop.

united states of america A U.S. state is a constituent political entity of the
United States of America.

68,233 12.9%

united kingdom England is a country that is part of the United King-
dom.

54,005 10.2%

taxon In biology, a species (abbreviated sp., with the plural
form species abbreviated spp.) is the basic unit of bio-
logical classification and a taxonomic rank.

40,141 7.6%

taxon A genus (pl. genera) is a taxonomic rank used in the
biological classification

38,466 7.3%

united kingdom The United Kingdom of Great Britain and North-
ern Ireland, commonly known as the United King-
dom (UK) or Britain, is a sovereign country in western
Europe.

31,071 5.9%

taxon Biology is a natural science concerned with the study
of life and living organisms, including their structure,
function, growth, evolution, distribution, identification
and taxonomy.

27,609 5.2%

united kingdom Scotland [...] is a country that is part of the United
Kingdom and covers the northern third of the island of
Great Britain.

25,456 4.8%

united kingdom Wales [...] is a country that is part of the United King-
dom and the island of Great Britain.

21,961 4.2%

united kingdom London [...] is the capital and most populous city of
England and the United Kingdom, as well as the most
populous city proper in the European Union.

21,920 4.2%

united states of america Nevada (Spanish for ”snowy”; see pronunciations) is a
state in the Western, Mountain West, and Southwestern
regions of the United States of America.

18,215 3.4%

... ... ...

italy The comune [...] is a basic administrative division in
Italy, roughly equivalent to a township or municipality.

8,785 1.7%

... ... ...

human settlement A town is a human settlement larger than a village but
smaller than a city.

5,092 1.0%

... ... ...

people’s republic of
china

Shanghai [...] often abbreviated as Hu or Shen, is one
of the four direct-controlled municipalities of the Peo-
ple’s Republic of China.

3,628 0.7%

Table 4.1: Pairs of correct answer and article, sorted by their cooccurrence(d,a∗) statis-
tic (before any filtering; total size: 527,773). The Count column states the value
of cooccurrence(d,a∗); the last column states the corresponding total proportion
of samples in the training set.
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sub-sampling, we measure how easy it is for a model to exploit these potentially

informative document-answer co-occurrences. Concretely, we define the following

statistical prediction model which selects the candidate with highest cooccurrence

score across the given documents:

argmax
c∈C

[max
d∈S

(cooccurrence(d,c))]

In fact, before sub-sampling, this shallow statistical baseline model achieves 74.6%

accuracy on the task (more details on this in Section 4.6). This is a surprisingly

strong result, and one can see how it could distort our interpretations of multi-hop

capabilities for a neural RC model when tested on this dataset, even though it might

just have learned to exploit this regularity. After sub-sampling, the performance of

this predictive statistic drops to 36.7% accuracy. That is, this statistic still constitutes

a strong baseline model, but does not stand out as the single predominant signal for

predicting the answer any more.

This concludes our description of the assembly procedure for creating the

WIKIHOP dataset. We will next describe how the same general method described in

Section 4.1.2 is applied to create a different dataset in another domain: MEDHOP;

subsequently we will discuss properties and experiments for both datasets.

4.3 Dataset Induction: MEDHOP

Next we describe how the previously introduced dataset induction method can be

used for the construction of a second dataset in the biomedical domain; the particu-

lar task we will focus on is the detection of Drug-Drug Interactions (DDIs). Such in-

teractions between drug pairs are caused by protein-protein interaction (PPI) chains;

a pair of drugs can interact if the proteins they target interact with one another. Due

to the compositional nature as sequence of interactions, the DDI task lends itself

well to our dataset assembly method.

Prior work on detecting DDI relationships from text focuses on explicit inter-

actions stated within a single sentence (Gurulingappa et al., 2012; Percha et al.,

2012; Segura-Bedmar et al., 2013). But information about the target proteins of
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Document 1: Leuprolide […] elicited a long-lasting potentiation of excitatory 
postsynaptic  currents[…]  GnRH receptor-induced  synaptic  potentiation  was 
blocked […] by Progonadoliberin-1, a specific GnRH receptor antagonist […]

Document 2:  […] our  research to  study the  distribution,  co-localization of 
Urofollitropin  and  its  receptor[,]  and  co-localization  of  Urofollitropin  and 
GnRH receptor […]

Document 3:  Analyses of gene expression demonstrated a dynamic response 
to the Progonadoliberin-1 superagonist Triptorelin. […]

Query: (Leuprolide, interacts_with, ?)
Answer Options: {Triptorelin, Urofollitropin}

Figure 4.3: A sample from the MEDHOP dataset; we aim to collect such samples with
the dataset induction strategy lied out in this section. Pink and blue spans are
proteins, grey and green text represents the false and correct answer options,
respectively.

particular drugs, and information about protein-protein interactions can be stated in

separate sentences, or even separate published articles. Consider, for example, the

set of documents in Figure 4.3, a truncated sample from the MEDHOP dataset. The

first document describes that Leuprolide (a drug) elicited GnRH receptor-induced

synaptic potentiations, which are blocked by the protein Progonadoliberin-1. The

third document states that Triptorelin (a different drug) is a superagonist of the

same protein (Progonadoliberin-1). Triptorelin might thus influence the effect

of the drug Leuprolide, and this is indeed recorded in DRUGBANK. Note that

besides this true drug-drug interaction there is also an alternative drug candidate

Urofollitropin. This drug is mentioned in the same document as another relevant

protein, GnRH receptor, but Document 2 does not indicate an interaction with the

drug Leuprolide, thus rendering it a plausible but false answer distractor in this

particular sample.

This example illustrates that detecting DDI interactions across document

boundaries poses a very challenging scenario, both to human non-experts and to RC

models. Mature models for this task could however in the future improve the recall

of automatically detected DDIs from the available literature by extending the task

across document boundaries. This is in particular relevant considering the compos-
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ite nature of the DDI relationship, which is mediated via interacting target proteins;

reading about it can thus be characterised as a multi-step inference problem. Ma-

ture multi-hop methods could help to find and combine individual relevant facts

and suggest previously unobserved DDIs, which may not explicitly be described in

a given document, but can nevertheless be potentially inferred from several sources.

4.3.1 Assembly

MEDHOP is assembled with DRUGBANK (Law et al., 2014) as the KB of knowl-

edge triples, and a collection of MEDLINE research paper abstracts as document

corpus. Among the DRUGBANK facts we only consider those with one type of

relationship: interacts with, which connects pairs of drug entities. A concrete

MEDHOP query q could thus, for example, be (Leuprolide, interacts with, ?),

with the correct answer a∗ Triptorelin.

In the bipartite dataset assembly graph only drugs and proteins are considered

as the entity nodes. Concretely, the set of entities is limited to drugs in DRUG-

BANK and human proteins recorded in SWISS-PROT (Bairoch et al., 2004). The

document nodes correspond to research paper abstracts from the 2016 MEDLINE

release, pre-processed using the 2011 BioNLP Shared Task (Stenetorp et al., 2011)

preprocessing pipeline. In summary, the bipartitite graph then has a collection of

known drug and protein nodes on one side, and nodes corresponding to MEDLINE

paper abstracts on the other.

The connectivity of the bipartite graph follows the same broad principles as

for WIKIHOP, albeit with a number of refinements. When linking entities and doc-

uments, any name variant of a drug or human protein known in DRUGBANK and

SWISS-PROT is used to detect a mention. Similar to prior work (Percha et al., 2012),

different name variants of the same drug or protein are normalised as recorded in

these databases. The connectivity structure of the graph is then defined as follows:

(1) There exists a bidirectional edge between a document and a drug if this docu-

ment mentions both the drug and mentions a protein known to be a target for the

drug, according to DRUGBANK. (2) There is an edge from a document to all pro-

teins mentioned within it. (3) There is an edge from a protein p to a document
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mentioning p, but only if the document also mentions another protein p′ that is

recorded in REACTOME (Fabregat et al., 2016) as interacting with p. That is, the

graph connectivity is restricted to focus on protein pairs known to interact, and pro-

teins known to be the targets of particular drugs. Recall that our dataset induction

approach relies on distant supervision, which is a potentially noisy signal. Impos-

ing the above described additional requirements on graph connectivity increases the

relevancy of the resulting samples by leveraging additionally available information

about the given entities, thus erring on the side of precision.

For a given DRUGBANK fact (drug1, interacts with, drug2) the subject en-

tity drug1 serves as the graph traversal starting point. The set of possible end points

consists of any other drug, but excluding both drug1 and other drugs known to inter-

act with drug1, in order to avoid false negative answer candidates.

Document Sub-sampling Data samples with very large sets of support documents

S can impose significant computational challenges for existing neural RC models.

As with WIKIHOP, samples are thus limited to a maximum of 64 support docu-

ments, and documents restricted to have no more than 300 tokens (plus title). But

whereas only a negligible fraction of samples had exceeded 64 documents in WIK-

IHOP, the bipartite graph for MEDHOP is very densely connected, resulting in the

possibility of impractically large sets of support documents S. Thus, following the

traversal procedure, document sets are sub-sampled as follows: i) a chain of doc-

uments connecting the drug in the query with the correct answer is added; ii) new

document chains leading to other answer candidates are added, gradually until a

limit of 64 documents is reached, or as many relevant documents as available oth-

erwise. This is carried out in such a way that the different candidates have the same

number of paths through the bipartite graph, hence avoiding frequency imbalances

in the resulting data samples.

Mitigating Label Imbalance As for WIKIHOP, the resulting dataset is potentially

prone to biases, which enables the correct prediction of answers using shallow sta-

tistical heuristics. More concretely, some drugs enjoy a higher coverage rate than

others, or possess more recorded interaction relationships with other drugs. For
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Train Dev Test Total

WIKIHOP 43,738 5,129 2,451 51,318
MEDHOP 1,620 342 546 2,508

Table 4.2: Dataset sizes for our respective datasets.

example Aspirin interacts with 743 drugs, whereas there are only 34 interaction

records for Isotretinoin. Such candidate frequency imbalance issues are problem-

atic, yet due to its smaller total number of samples, sub-sampling MEDHOP would

result in a dataset of insufficient size for the application of neural RC methods. We

can nevertheless address this problem through randomly anonymising drug names,

which will be explained in more detail in Section 4.6.4.

4.4 Dataset Properties
After having assembled both WIKIHOP and MEDHOP, we will next describe some

of their basic properties. We will then conduct qualitative analyses and investigate

the extent to which some of the assumptions made in our dataset induction strategy

are justified.

Dataset Size An overview of the different dataset splits and their size can be found

in Table 4.2. Note that WIKIHOP follows the training, validation, and test dataset

splits from WIKIREADING: the full dataset assembly and sub-sampling pipeline is

carried out separately on each of these parts. Sub-sampling to remove frequency

biases, and document-answer correlations, reduces the size of WIKIHOP consid-

erably, from ≈528K samples to ≈44K in the training set. This constitutes a very

aggressive dataset size reduction; we opted for this choice to mitigate the dataset

biases previously identified, while retaining a large enough dataset to train highly-

parameterised neural RC models. MEDHOP on the other hand is – even without any

sub-sampling – a relatively small RC dataset.

Candidate Statistics In Table 4.3 we summarise other general quantitative char-

acteristics of the datasets, including quantities describing the distribution of candi-

dates per sample. Most samples in MEDHOP have nine candidates, which reflects

how document chains in the dataset construction graph are added up to at most 64
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min max avg median

WIKIHOP: # candidates 2 79 19.8 14
WIKIHOP: # documents 3 63 13.7 11
WIKIHOP: # tokens per document 4 2,046 100.4 91

MEDHOP: # candidates 2 9 8.9 9
MEDHOP: # documents 5 64 36.4 29
MEDHOP: # tokens per document 5 458 253.9 264

Table 4.3: Candidates and documents per sample and document length statistics for both
the WIKIHOP and MEDHOP dataset.
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Figure 4.4: Histogram for the number of candidates per sample in WIKIHOP.

documents. For WIKIHOP the distribution is more varied, and many queries have a

considerable number of answer candidates, with a median of 14. Figure 4.4 further

shows a histogram for the distribution of the number of candidates per sample in

WIKIHOP. The number of candidates begins at the lower limit of 2 candidates and

is skewed to the left; half of the samples have more than 14 candidates (median).

Document Statistics Besides candidate information, Table 4.3 also lists statistics

on the distribution of number of documents per sample, and number of tokens per

document. We observe that MEDHOP has on average a larger number of documents

than WIKIHOP, reflecting its denser dataset assembly graph connectivity. This shift

towards larger numbers of support documents can also be observed in Figure 4.5,

which illustrates the distribution of the number of support documents per sample

in both datasets. WIKIHOP shows a Poisson-like behaviour, whereas MEDHOP

exhibits a bimodal distribution, in line with our observation that certain drugs and
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Figure 4.5: Support documents per training sample in both WIKIHOP and MEDHOP.
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Figure 4.6: Histogram for document lengths in WIKIHOP and MEDHOP. Note that there
is a long, but thin tail for WIKIHOP.

proteins have far more interactions and research papers associated with them. When

we consider the distribution of document lengths in the datasets (see Figure 4.6), we

again observe a Poisson-like distribution for WIKIHOP – note that these documents

correspond directly to individual WIKIPEDIA article paragraphs. On the other hand,

documents in MEDHOP are generally longer. The distribution clearly reflects the

maximum length of 300 words (plus title) for research paper abstracts, as e.g. for

the PLoS ONE journal, and a small number of documents with only a title but no

abstract.
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Query Type Proportion in Dataset
instance of 10.71 %
located in the administrative territorial entity 9.50 %
occupation 7.28 %
place of birth 5.75 %
record label 5.27 %
genre 5.03 %
country of citizenship 3.45 %
parent taxon 3.16 %
place of death 2.46 %
inception 2.20 %
date of birth 1.84 %
country 1.70 %
headquarters location 1.52 %
part of 1.43 %
subclass of 1.40 %
sport 1.36 %
member of political party 1.29 %
publisher 1.16 %
publication date 1.06 %
country of origin 0.92 %
languages spoken or written 0.92 %
date of death 0.90 %
original language of work 0.85 %
followed by 0.82 %
position held 0.79 %

Top 25 72.77 %
Top 50 86.42 %
Top 100 96.62 %
Top 200 99.71 %

Table 4.4: The 25 most frequent query types in WIKIHOP alongside their proportion in the
training set.

Types of Queries Table 4.4 gives an overview over the 25 most frequent query

types in WIKIHOP, alongside their relative proportion in the dataset. Overall, the

distribution across query types has a long tail with rare types of query relations. The

total number of query types in WIKIHOP is 277, MEDHOP on the other hand has

only a single one: interacts with.
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Unique multi-step answer. 36%
Likely multi-step unique answer. 9%
Multiple plausible answers. 15%
Ambiguity due to hypernymy. 11%
Only single document required. 9%

Answer does not follow. 12%
WIKIDATA/WIKIPEDIA discrepancy. 8%

Table 4.5: Qualitative analysis of WIKIHOP samples.

4.5 Qualitative Analysis
After establishing these basic quantitative statistics of the two datasets, we next

perform several qualitative analyses. Our aim is to examine the quality of the re-

sulting data, and in particular revisit some of the assumptions made in the dataset

induction method. We thus sample and manually annotate 100 examples from the

development set of each of the two datasets.

4.5.1 WIKIHOP

A number of examples of the WIKIHOP dataset can be found in Table 4.6, which

excludes document chains leading to distractor candidates for brevity. In Table 4.5

we list several qualitative attributes, and the corresponding proportion of samples

in WIKIHOP.

The answer is not always uniquely determinable from the given text, in some

cases it is merely suggested as the most likely. For example, the first sample from

Table 4.6 suggests the correct answer by analogy. Among the 100 analysed sam-

ples, for a total of 45% the correct answer either follows as the unique answer from

multiple texts directly, or is suggested as likely considering several texts. Further-

more, for a total of 26% of samples more than one candidate is plausibly supported

as the correct answer from the given documents – including the correct answer. We

observe that hypernymy is a frequent reason for this: the appropriate granularity

level for the correct answer is not always clearly specified. For example, the query

(west suffolk, located in the administrative territorial entity, ?) could ei-

ther have the candidate suffolk or england as the correct answer. These ambigu-

ous samples show that the closed world assumption on the KB is only an ideal:
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Query: (the big broadcast of 1937, genre, ?) Answer: musical film
Text 1: The Big Broadcast of 1937 is a 1936 Paramount Pictures production directed by Mitchell
Leisen, and is the third in the series of Big Broadcast movies. The musical comedy stars Jack
Benny, George Burns, Gracie Allen, Bob Burns, Martha Raye, Shirley Ross [...]
Text 2: Shirley Ross (January 7, 1913 – March 9, 1975) was an American actress and singer, no-
table for her duet with Bob Hope, “Thanks for the Memory” from “The Big Broadcast of 1938”[...]
Text 3: The Big Broadcast of 1938 is a Paramount Pictures musical film featuring W.C. Fields
and Bob Hope. Directed by Mitchell Leisen, the film is the last in a series of “Big Broadcast”
movies[...]

Query: (cmos, subclass of, ?) Answer: semiconductor device
Text 1: Complementary metal-oxide-semiconductor (CMOS) [...] is a technology for constructing
integrated circuits. [...] CMOS uses complementary and symmetrical pairs of p-type and n-type
metal oxide semiconductor field effect transistors (MOSFETs) for logic functions. [...]
Text 2: A transistor is a semiconductor device used to amplify or switch electronic signals[...]

Query: (raik dittrich, sport, ?) Answer: biathlon
Text 1: Raik Dittrich (born October 12, 1968 in Sebnitz) is a retired East German biathlete who
won two World Championships medals. He represented the sports club SG Dynamo Zinnwald [...]
Text 2: SG Dynamo Zinnwald is a sector of SV Dynamo located in Altenberg, Saxony[...]
The main sports covered by the club are biathlon, bobsleigh, luge, mountain biking, and Skele-
ton (sport) [...]

Query: (minnesota gubernatorial election, office contested, ?) Answer: governor
Text 1: The 1936 Minnesota gubernatorial election took place on November 3, 1936. Farmer-
Labor Party candidate Elmer Austin Benson defeated Republican Party of Minnesota challenger
Martin A. Nelson.
Text 2: Elmer Austin Benson [...] served as the 24th governor of Minnesota, defeating Republican
Martin Nelson in a landslide victory in Minnesota’s 1936 gubernatorial election.[...]

Query: (ieee transactions on information theory, publisher, ?)
Answer: institute of electrical and electronics engineers
Text 1: IEEE Transactions on Information Theory is a monthly peer-reviewed scientific journal
published by the IEEE Information Theory Society [...] the journal allows the posting of preprints
[...]
Text 2: The IEEE Information Theory Society (ITS or ITSoc), formerly the IEEE Infor-
mation Theory Group, is a professional society of the Institute of Electrical and Electronics
Engineers (IEEE) [...]

Query: (country of citizenship, louis-philippe fiset, ?) Answer: canada
Text1: Louis-Philippe Fiset [...] was a local physician and politician in the Mauricie area [...]
Text2: Mauricie is a traditional and current administrative region of Quebec. La Mauricie National
Park is contained within the region, making it a prime tourist location. [...]
Text3: La Mauricie National Park is located near Shawinigan in the Laurentian mountains, in the
Mauricie region of Quebec, Canada [...]

Table 4.6: Examples of relevant document combinations in WIKIHOP, connecting the en-
tity in the query with the correct answer. The correct answers are underlined.

including type-consistent false answer candidates from WIKIDATA leads to some

questions containing several true answer options, even though no corresponding

facts are listed in WIKIDATA.

In 9% of samples we observe that a single document is already sufficient to
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identify the correct answer, without further background knowledge. These samples

contain a document that states enough information about the query item and the an-

swer together. In one such example, the query is (Louis Auguste, father, ?) with

the correct answer Louis XIV of France, and a slight rewording French king Louis

XIV is already mentioned in the document about Louis Auguste. In this case only rel-

atively shallow paraphrasing is required, which is a consequence of imperfect entity

linking, or – from a different perspective – of framing the task as an extractive RC

task, where the answer has to be mentioned verbatim.

The task we pose is considerably more challenging than many prior tasks re-

lying on distant supervision, yet we observe only 20% of samples in violation of

the distant supervision assumption – a comparable fraction to other work (Riedel

et al., 2010). Such violations can be the result of conflicts between WIKIDATA and

WIKIPEDIA (8%), for example if different birth dates are recorded in WIKIDATA

and the WIKIPEDIA article, or if the correct answer cannot be identified using the

given documents (12%).

When trying to answer 100 of the questions ourselves with unlimited time per

question, but no access to information other than the given documents, we achieved

an overall accuracy of 74%. This human performance estimate may be influenced

by concrete prior knowledge, although only to a limited degree: for 9% of sam-

ples the answer was already known even without the given documents. In addi-

tion, we further tested human accuracy on a validated portion of the development

set (see Section 4.5.3). When answering 100 questions on this dataset, we achieved

a human-level accuracy of 85%.

4.5.1.1 Crowdsourced Annotation

Besides our own qualitative analysis, we presented Amazon Mechanical Turk anno-

tators with samples from the WIKIHOP development set. Annotators were shown

the query-answer pair as a fact, and the chain of relevant documents leading to the

answer. They were then instructed to answer i) whether they knew the fact be-

fore; ii) whether the fact follows from the given texts (with options “fact follows”,

“fact is likely”, and “fact does not follow”); and iii) whether a single or several
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of the documents are required to infer the fact. Each sample was shown to three

different annotators.

The annotators were familiar with the fact 4.6% of the time; we thus rule out

prior knowledge of the given fact as a major factor which could affect the other

judgments. The inter-annotator agreement, measured with Fleiss’ kappa, is 0.253

in ii), and 0.281 in iii). This corresponds to a fair overall agreement, following

the terminology established in prior work (Landis and Koch, 1977). Still, as there

is non-negligible disagreement between annotators, a majority vote was used to

aggregate annotations of the same data sample.

9.5% of the examples did not have a clear outcome of the majority vote in (2).

Among those cases with a majority judgment, 59.8% are examples where the given

fact “follows”, for 14.2% the fact is determined to be “likely”, and to “not follow”

in 25.9%. These results are similar to the findings of our own annotation, and

support the use of the distant supervision strategy, although it also shows that the

dataset contains a significant portion of noisy samples.

Further analysing these annotations, among examples with a clear outcome of

the majority vote in ii) of “follows” or “likely”, 55.9% of examples were judged

by a majority as requiring several documents to infer the fact, and 44.1% stated

that only a single document is required. The latter fraction is substantially larger

than expected, given the dataset construction via graph traversal across several doc-

uments, including the direct filtering out of samples where the graph search starting

point document already mentions the correct answer. But when further analysing

cases judged as “single” in more detail, we found that they often indicate the correct

answer in one of the documents, albeit without mentioning it literally. One such ex-

ample is the fact (witold cichy, country of citizenship, poland) which has sup-

port documents d1: Witold Cichy (born March 15, 1986 in Wodzisław Śla̧ski) is a

Polish footballer[...] and d2: Wodzisław Śla̧ski [...] is a town in Silesian Voivode-

ship, southern Poland[...]. Here the information given in d1 suffices for a human

with the background knowledge that the attribute Polish is related to Poland, which

obviates the need for further information in d2 to establish the correct answer.
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The previous example illustrates that whether or not a sample requires multi-

hop inference is indeed a function of the background knowledge of the reader, as

well as the set of implicit connotations they operate with. If the necessary infor-

mation is already implicitly associated and accessible in the interpretation of the

first document, no further document is needed to provide explicit information that

helps infer the answer via a separate step. Thus, models with access to more con-

notations (e.g. via the distributional semantics learned in their pre-trained word-

embeddings) may be able to solve a given sample without having to rely on other

documents that provide explicit information, and instead leverage their own pre-

trained associations.

4.5.2 MEDHOP

In terms of prior knowledge requirements MEDHOP is more complex than WIK-

IHOP, and there is a considerable number of documents in each sample (see Fig-

ure 4.5 in Section 4.4). We quickly observed that the workload of a human annotator

to read all support documents for 100 samples is infeasible. Similar to the crowd-

sourced annotation of WIKIHOP, we thus chose to analyse the dataset by consid-

ering only relevant documents – those visited on the path that arrives at the correct

answer. The annotator analysed if the answer to the query “follows”, “is likely”,

or “does not follow”, given the relevant documents. In total, 68% of the cases

were considered as “follows” or as “is likely”, determined by an NLP researcher

with prior experience in biomedical information extraction. One observation made

during this analysis was that many cases which violate the distant supervision as-

sumption are due to a missing PPI which is not stated in the connecting documents.

This finding is encouraging, yet also shows the limitations of our dataset induction

strategy, as it can result in a substantial number of noisy samples.

4.5.3 Validated Test Sets

Training models on data points with distant supervision can be successful, yet test-

ing a model on noisy data is potentially problematic, as we would measure models

partly by how well they fit noise. Ideally, the methods tested should thus also be
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evaluated on a manually validated test set. We hence extract parts of the test sets

of WIKIHOP and MEDHOP for which human annotators judge that the answer is

entailed by the given document. In this we differ from prior work which conducts

evaluation only on distantly supervised samples (Hermann et al., 2015; Hill et al.,

2016; Hewlett et al., 2016).

In the case of WIKIHOP, we follow the annotation method previously laid out

in Section 4.5.1.1. We choose as validated test samples those which are labeled by

at least 2 out of 3 annotators as “follows”, and also as requiring “multiple” docu-

ments. For MEDHOP on the other hand, crowdsourcing is not a feasible approach,

as the domain demands a specialist background. As remarked before, both the num-

ber of texts given, as well as the length of each document are larger for MEDHOP

than for WIKIHOP, which furthermore complicates annotation. Thus, only 20% of

the MEDHOP test set was annotated, which is a small number of samples in abso-

lute terms, yet can still give an indication for a model’s accuracy on validated data,

where the answer is implied by the text and where several documents are necessary.

After having establishing these human-validated test sets, we will next conduct

a number of experiments on the WIKIHOP and MEDHOP datasets. We will compare

established neural RC methods alongside several shallow statistical predictors, and

analyse their behaviour in a variety of settings.
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4.6 Experiments

We have constructed two datasets with a new dataset induction methodology in-

tended to learn multi-hop reading comprehension behaviour across documents. In

the previous section, we have discussed various properties of these datasets, anal-

ysed them, and established validated test sets for a better interpretation of experi-

mental results.

How do neural RC models fare on these new datasets? What do they learn, and

to what extent do they leverage information stemming from separate documents?

We will next establish several model baselines for both WIKIHOP and MEDHOP,

including two neural RC models alongside various shallow statistical predictors.

We will begin by introducing the models we compare one by one, and then discuss

their performance and behaviour in a variety of experimental settings. Models will

be trained on the training set of either WIKIHOP or MEDHOP, whereas evaluation

will be conducted both on the validated parts (Section 4.5.3), as well as the full test

sets.

4.6.1 Models

Random Prediction This baseline predictor randomly chooses one of the given

candidates. Recall that each sample generally has a different number of candidates.

Max-mention This model predicts the most frequently mentioned candidate in the

given support documents S of a sample; ties are broken randomly. The Max-mention

baseline allows us to observe whether the search procedure in the dataset assembly

graph leads to imbalances on the level of candidate mentions, which could be a very

simple signal for neural RC models to exploit.

Majority-candidate-per-query-type This baseline predicts the candidate c ∈ C

most frequently appearing as the correct answer on training samples, conditional on

the query type of q. For WIKIHOP, this corresponds to the property of the given

query, e.g country. For MEDHOP on the other hand, there exists by design only one

type of query: interacts with.
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TF-IDF We have in the experiments on SCIQ (in the previous chapter) already ob-

served that Information Retrieval (IR) models can be strong baselines in QA tasks,

an observation similarly made in prior work (Clark et al., 2016). IR baselines iden-

tify relevant documents based on lexical overlap with the question or query, though

typically do not combine information from several documents besides prediction

aggregation. We include a TF-IDF baseline in order to observe whether the correct

answer can be identified from individual documents by exploiting lexical overlap

of documents with the query and candidates. Concretely, this model forms its pre-

diction as follows: each candidate is (separately) appended to the query, forming

expressions [q;c], which are given to the whoosh text retrieval system as OR query.3

The system uses an inverted index of S, and returns TF-IDF similarity scores for

each of these given support documents. The model then selects the candidate which

scores highest in terms of TF-IDF value, across all support documents:

argmax
c∈C

[max
s∈S

(TF-IDF([q;c],s))] (4.1)

Document-cue We have previously described that particular combinations of docu-

ments and answers frequently co-appear in the training data. This predictive pattern

is so prevalent that the correct answer can be inferred merely by the presence of a

particular document among S. The document-cue baseline uses the predictor intro-

duced in Section 4.2.2, measuring to what extent a model can exploit cooccurrence

cues. As a reminder, this baseline predicts the candidate with highest cooccurrence

score across the given support documents S:

argmax
c∈C

[max
d∈S

(cooccurrence(d,c))] (4.2)

All above models are shallow statistical predictors; they will serve as a useful refer-

ence point to gauge the performance of more sophisticated neural RC approaches.

3https://pypi.python.org/pypi/Whoosh/

https://pypi.python.org/pypi/Whoosh/
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Extractive neural RC models: FastQA and BiDAF The Bidirectional Attention

Flow model (BiDAF, (Seo et al., 2017a)) and FastQA (Weissenborn et al., 2017) are

extractive QA models based on an LSTM architecture. Both have demonstrated ro-

bust test set generalisation on SQUAD, and they form their prediction as a text span

in the given document. It is worth pointing out that both models were developed and

evaluated on single-hop RC datasets. They encode the document using bidirectional

LSTMs, coupled with attention over the full text. This provides them – at least the-

oretically – with the capacity to condition the processing of textual information on

information stated elsewhere, at a separate location in the document.

In order to adapt them to a setting with several documents, we concatenate all

the given support documents d ∈ S, interleaved by separator tokens. As training

target, the first mention of the correct answer in the concatenated super-document

is used as the correct span, which the training loss is derived from. In a small side

experiment we briefly evaluated randomly choosing the gold span among all men-

tions of the correct answer where there are several, but without observing significant

differences. For evaluation we measure the models’ prediction accuracy, which cor-

responds to the exact match (EM) score between the correct answer and the model

prediction. Following the answer normalisation procedure in SQUAD (Rajpurkar

et al., 2016) we lowercase both, remove articles, trailing whitespaces, and punctu-

ation. We rule out the order of the concatenated documents as predictive cue by

randomising it both during training and evaluation.

For the BiDAF model we follow the hyperparameter choice given in the imple-

mentation of the authors (Seo et al., 2017a) and use pre-trained GloVe (Pennington

et al., 2014) word embeddings. We deviate from this setup in restricting the max-

imum length of the super-document to 8,192 words, use a hidden size of 20, and

train the model for 5,000 iterations with batch size 16 to fit the full model into mem-

ory.4 For FastQA we also use the implementation provided by the authors, again

with pre-trained GloVe embeddings, not using character-embeddings, no maximum

support length, hidden size 50, and batch size 64 for 50 epochs.

4Note that the concatenated super-document contains more tokens than the single WIKIPEDIA
paragraph used in SQUAD, hence the demand for additional memory.
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WIKIHOP MEDHOP
Model test test* test test*

Random 11.5 12.2 13.9 20.4
Max-mention 10.6 15.9 9.5 16.3
Majority-candidate-per-query-type 38.8 44.2 58.4 67.3
TF-IDF 25.6 36.7 9.0 14.3
Document-cue 36.7 41.7 44.9 53.1

FastQA 25.7 27.2 23.1 24.5
BiDAF 42.9 49.7 47.8 61.2

Table 4.7: Test accuracy in [%] across models for the WIKIHOP and MEDHOP datasets.
Columns marked with asterisk are for the validated portion of the dataset.

4.6.2 Model Comparison

Table 4.7 summarises the experimental outcomes for WIKIHOP and MEDHOP, on

both the full as well as the validated portion of the respective test sets. We first

observe that the predictions of the max-mention baseline are similarly accurate as

those of the random baseline. That is, the candidate mention frequency is not a

predictive cue to identify the correct answer.

Forming answer predictions based on the frequency with which a candidate

was observed in the training set, however, reaches 38.8% / 44.2% and 58.4% /

67.3% accuracy on WIKIHOP and MEDHOP, for the full / annotated test samples,

respectively. This means that a comparatively simple statistic, which only exploits

the frequency of particular answers to query types on the training set, forms a rel-

atively strong predictor; it even reaches the highest overall accuracy on MEDHOP.

Note that the accuracy of 58.4% for MEDHOP, where only a single query type is

present, does not signify that 58.4% of the test set have the same answer. Instead,

we emphasise that this baseline is restricted to the given candidates C in a sample.

Among these, the relative frequency with which different candidates have been ob-

served as the correct answer for training samples is a strong predictor for the correct

answer at test time.

The information retrieval TF-IDF model outperforms the random baseline on

WIKIHOP, but is overall less predictive than some of the other shallow predictors.

That is, the tokens in the query are useful to identify documents mentioning the
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answer, even though documents mentioning both query subject and answer in the

same document are excluded from the dataset. This highlights a limitation of our

mention-centric approach to interpreting multi-hop behaviour in dataset assembly:

where entities are not explicitly co-mentioned in the same document, it is assumed

that a second document is necessary to answer the query. The TF-IDF baseline,

however, shows that even with a single document, lexical overlap can provide rel-

evant cues to identify documents mentioning the correct answer, at least to a mod-

erate extent. On the other hand, as drug names in MEDHOP are normalised, no

interacting drug pair is mentioned together in the same document, hence the TF-

IDF baseline reaches even lower accuracy than random predictions. In summary,

lexical overlap with an individual given document is a weak but informative cue on

WIKIHOP, and an insufficient basis for accurate predictions on MEDHOP.

As the last shallow predictor baseline, the document-cue method predicts

36.7% / 41.7% and 44.9% / 53.1% of WIKIHOP and MEDHOP samples correctly,

on the two respective test sets for each. Note that this is despite sub-sampling the

data according to the frequency of pairs of particular documents and answers in

WIKIHOP. In MEDHOP, where this sub-sampling was not conducted due to the

much smaller dataset size, this predictor can correctly solve more than half of the

samples on the annotated test set portion.

For the two neural RC models, BiDAF achieves higher accuracy values than

FastQA on both WIKIHOP and MEDHOP. This is unexpected considering the simi-

larity of their respective performance on the SQUAD dataset. Possible explanations

for this are the better ability of BiDAF to process rare words due to its character-

level representations, as well as the use of several layers of latent interaction in the

BiDAF architecture. Compared to SQUAD this may be of increased importance

in our task, where relevant information is spread across various locations in the

super-document. Note that both models select the answer by predicting a span in

one of the given documents, and without direct access to the set of given candidate

options C.

Finally, we generally observe that the results on the validated test set por-
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Model Unfiltered Filtered ∆

Majority-candidate-per-query-type 41.2 38.8 -2.4
TF-IDF 43.8 25.6 -18.2
Document-cue 74.6 36.7 -37.9

Train set size 527,773 43,738 -91.7

Table 4.8: Accuracy comparison (in [%]) for three shallow statistical predictor models on
WIKIHOP, before and after filtering the data. The value of ∆ corresponds to the
absolute percentage difference (for the dataset sizes: the relative difference).

tions correlate strongly with those on the full test set. There is furthermore an

improvement from the full (noisy) test accuracy to the accuracy observed on the

validated test samples, consistently across both datasets and all models. This sug-

gests that i) even the noisy test sets can give a good indication of relative model

abilities ii) the respective training sets – even though noisy – contain a signal which

is strong enough to generalise to validated held-out evaluation samples, and iii) it is

more difficult to predict the correct answer for noisy samples.

4.6.3 The Effect of Sub-Sampling on Statistical Predictors

We have observed that the relative strength of shallow statistical predictors is an im-

portant problem that needs to be addressed when assembling multi-hop RC datasets,

and we have used sub-sampling to mitigate the problem (cf. Section 4.2.2). To

quantify the effectiveness of this, we next compare several statistical predictors on

WIKIHOP, both before and after filtering; results can be found in Table 4.8. The

strong performance of the different predictors, especially of the document-cue base-

line before filtering demonstrates that addressing dataset biases is critical: other-

wise 74.6% accuracy could be reached by only exploiting cooccurrence(d,c). This

also emphasises the significance of examining and circumventing potential dataset

biases, especially when engaging in automatic RC dataset assembly procedures,

where natural structural regularities can result in shortcuts to solving the task.

While we did not fully rid the datasets of these shallow predictive cues, it is

important to be aware of these as they could otherwise lead to misleading inter-

pretations based on model accuracy. The performance drop after filtering shows

that sub-sampling can successfully reduce the extent of the issue, albeit with a sub-
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stantial reduction in terms of dataset size. Hence the application of filtering on

smaller datasets – like MEDHOP– is problematic; we will however see that a differ-

ent method can provide remedy, which we will next investigate.

4.6.4 Candidate Masking

There exist other methods beyond sub-sampling to remove shallow cues from a

given RC dataset, such as randomly masking answer expressions. Lexical cues

among possible answers can be a problem, as previously described by Hermann

et al. (2015). It is worth noting that all of the shallow predictors introduced here

rely on the explicit identity of the given answer candidates, in order to link them to

observations made on the training set. Arguably though, in RC the correct answer to

a comprehension query should be formed from the textual context that the answer is

surrounded with, rather than from an intrinsic property or connotation of the answer

text itself that identifies it as the answer to the query.

As we intend to measure a model’s ability to form a prediction based on the

textual context surrounding the given candidate mentions, we next conduct experi-

ments in which we transform the dataset by masking answer candidates. Concretely,

we substitute any candidate mention randomly with one of 100 placeholder tokens

– for example “Mumbai is the most populous city in MASK7.” We mask candidate

mentions consistently within a sample to preserve coreference, but the placeholder

tokens generally differ if the same candidate appears in another sample. The same

set of 100 masking tokens is used in both training and evaluation sets to avoid po-

tential new out-of-vocabulary effects at test time. Masking effectively avoids cues

stemming from the relative frequency of a candidate, as well as correlations of par-

ticular documents and candidates. Models are thus unable to form predictions based

on properties of the answer itself, and instead have to form them by considering the

surrounding text in which the answer candidates are embedded.

Results for experiments in this masked data version of the task can be found in

Table 4.9. We observe that the baseline predictors, which rely on lexical informa-

tion, deteriorate drastically compared to Table 4.7. This is encouraging in particular

for MEDHOP, for which sub-sampling does not constitute a viable option due to
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WIKIHOP MEDHOP
Model test test* test test*

Random 12.2 13.0 14.1 22.4
Max-mention 13.9 20.1 9.2 16.3
Majority-candidate-per-query-type 12.0 13.7 10.4 6.1
TF-IDF 14.4 24.2 8.8 14.3
Document-cue 7.4 20.3 15.2 16.3

FastQA 35.8 38.0 31.3 30.6
BiDAF 54.5 59.8 33.7 42.9

Table 4.9: Test accuracies for the WIKIHOP and MEDHOP datasets in the masked data
setup. Columns marked with asterisk are for the validated portion of the dataset.

its already relatively small size. Masking answer candidates thus forms an effec-

tive approach to circumvent statistical cues which neural networks could otherwise

learn to exploit.

An interesting observation is that the two neural models can maintain or even

increase their overall accuracy in the masked setting. Both models, and in particular

BiDAF now substantially outperform all shallow heuristics. That is, the neural RC

models successfully exploit the text surrounding the candidate mentions to infer the

correct answer.

It is worth noting that the drug entities mentioned in MEDHOP are normalised,

i.e. represented by a particular identifier unique to a given drug. Randomising this

information, as is done in the masked setting, thus results in overall decreased per-

formance compared to the unmasked setting. On the other hand, the answer candi-

dates in WIKIHOP frequently resemble multi-word expressions. Together with the

wider range of query types, the reduced vocabulary size of only 100 single-word

placeholder tokens in the masked setting thus simplifies the span prediction task on

WIKIHOP.

Finally, while both neural models achieve higher accuracy than the statistical

predictors, both leave a substantial gap to human accuracy (74% / 85% for WIKI-

HOP, cf. Section 4.5.1). We will next conduct two ablation studies which will help

us further understand the behaviour of the two neural RC models, as well as suggest

a promising avenue for improving model performance.
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WIKIHOP MEDHOP
standard masked standard masked

Model test test* test test* test test* test test*

BiDAF 42.9 49.7 54.5 59.8 47.8 61.2 33.7 42.9
BiDAF oracle 57.9 63.4 81.2 85.7 86.4 89.8 99.3 100.0
BiDAF : ∆ +15.0 +13.7 +26.7 +25.9 +38.6 +28.6 +65.6 +57.1

FastQA 25.7 27.2 35.8 38.0 23.1 24.5 31.3 30.6
FastQA oracle 44.5 53.5 65.3 70.0 54.6 59.2 51.8 55.1
FastQA : ∆ +18.8 +26.3 +29.5 +32.0 +31.5 +24.7 +20.5 +24.5

Table 4.10: Comparison of test accuracy in [%] when giving models oracle access to the
documents directly leading to the correct answer. ∆ describes the difference,
again in [%], between standard and oracle setting. Columns with asterisk again
hold results for the validated samples.

4.6.5 Oracle Access to Relevant Documents

The samples in both WIKIHOP and MEDHOP contain not only documents along

paths leading to correct answers, but also irrelevant documents along paths that lead

to false answer candidates. We will next investigate the performance of BiDAF and

FastQA in an oracle setting where models are given only a subset of the documents

in S. Concretely, the models are given those documents which were traversed along

the way to the correct answer in the graph traversal during dataset induction. We

can thus examine the accuracy possible if the RC models were capable of selecting

these relevant documents, both during training and evaluation.

The results of this experiment can be found in Table 4.10. We observe that

both models, across all settings, improve considerably when given document or-

acle information, achieving up to 81.2% / 85.7% accuracy on WIKIHOP, and

99.3% / 100.0% on MEDHOP (masked setting; BiDAF). This shows that the mod-

els are able to predict the correct answer with reasonable accuracy in a scenario

where fewer or no alternative distractor candidates are mentioned. In particular for

MEDHOP, where the given abstracts often center around only one particular drug

candidate, the model can then achieve 100% accuracy. In the masked setting, the

RC models are likely able to select masks as candidates and reach nearly 100%

accuracy, though interestingly only BiDAF is able to learn this. The results further-

more underscore the importance of introducing negative candidates and relevant
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distractor documents, since type consistency alone is a very important cue for the

task. When using false candidates and relevant distractor documents, models have

to consider alternative answer possibilities and their respective surrounding docu-

ment context. Thus, when inverting the interpretation direction, the robust improve-

ments we see in the oracle setting can conversely be interpreted as a deterioration:

across all setups we find that the models’ answer prediction process can be fooled

by the inclusion of documents leading to other, type-consistent alternative answer

candidates.

Finally, these results also indicate that the selection of relevant texts may be a

promising directions for further model development, a route we will embark on in

the subsequent chapter.

4.6.6 Ablation: Removing Relevant Documents

We next conduct an ablation study to investigate if BiDAF and FastQA utilise in-

formation from several documents when forming their prediction. To this end we

conduct an experiment in which we remove the first document traversed in the graph

search, which mentions the entity in the query, and furthermore all documents not

mentioning any answer candidate. This way we i) remove information one would

expect to be relevant when performing multi-hop inference ii) retain the document

mentioning the correct answer, which is necessary for the extractive RC models to

be able to answer correctly, and iii) avoid introducing imbalances between candi-

dates, by treating documents leading to distractors in the same way as documents

on paths leading to the correct answer.

Table 4.11 lists the results of this ablation. We observe a moderate and consis-

tent drop in model performance for the BiDAF model: the difference is 10.0%/2.1%

on WIKIHOP and 3.3%/6.2% on MEDHOP. This suggests that BiDAF is to a small

extent leveraging information from multiple documents when it forms its predic-

tion. FastQA on the other hand behaves inconsistently; it shows a slight increase

of 2.2%/3.2% for WIKIHOP, and a slight decrease of 2.7%/6.1% on MEDHOP, and

results are thus inconclusive overall.

This concludes our experiments for the WIKIHOP and MEDHOP datasets. We
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WIKIHOP MEDHOP
Setup test test* test test*

BiDAF 54.5 59.8 33.7 42.9
BiDAF (doc’s removed) 44.6 57.7 30.4 36.7

FastQA 35.8 38.0 31.3 30.6
FastQA (doc’s removed) 38.0 41.2 28.6 24.5

Table 4.11: Test accuracy (masked), both in the standard setting, as well as when only
documents containing answer candidates are given (doc’s removed).

have found that shallow statistical predictors can be strong baselines compared to

more sophisticated neural RC methods. However after anonymising answer can-

didates, neural RC models are able to retain their performance, which the simple

heuristics could not. Neural RC models benefit from direct oracle access to rele-

vant document sets, and the prediction mechanism in BiDAF partly has learned to

rely on several documents when forming its prediction, although only to a moder-

ate extent. We will continue and conclude this chapter with a broader discussion

of prior work on multi-hop inference in NLP, and how our work on WIKIHOP and

MEDHOP relates to it.

4.7 Discussion: Prior Work on Multi-Hop Inference

Related Datasets WIKIHOP and MEDHOP can be conceived as text-based QA

datasets. In this regard they are related to prior datasets, for example based on

FREEBASE (Berant et al., 2013; Bordes et al., 2015), WIKIPEDIA (Yang et al.,

2015; Rajpurkar et al., 2016; Hewlett et al., 2016), web search queries (Nguyen

et al., 2016), news articles (Hermann et al., 2015; Onishi et al., 2016), books (Hill

et al., 2016; Paperno et al., 2016) or trivia (Boyd-Graber et al., 2012; Dunn et al.,

2017). Apart from TRIVIAQA (Joshi et al., 2017), all the above datasets use sin-

gle documents, and text comprehension typically does not involve a combination of

several independent facts. WIKIHOP and MEDHOP are, in contrast, constructed to

target multi-hop inference and cross-document RC.

Prior to MEDHOP and WIKIHOP other multi-hop RC resources have been as-

sembled, but these have a very limited number of samples (e.g. the FRACAS test
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suite), or are constructed using synthetic language (Weston et al., 2016). While

TRIVIAQA samples frequently involve multi-step inference, the complexity mostly

lies in the interpretation of compositional questions. In contrast, the WIKIHOP and

MEDHOP datasets target inference from several documents, yet with relatively sim-

ple queries. Furthermore, through the use of multiple documents, the multi-hop

inference required extends beyond coreference resolution.

The subsequently developed COMPLEXWEBQUESTIONS (Talmor and Berant,

2018) and HOTPOTQA (Yang et al., 2018) datasets also address multi-hop RC, and

contain questions which are posed in natural language form. A core aspect of these

two datasets is the need for compositional and conjunctive query interpretation (e.g.

“What city is the birthplace of the author of ‘Without end’, and hosted Euro 2012?”

for the former, and “What was the former band of the member of Mother Love Bone

who died just before the release of “Apple”?” for the latter). The more involved

query interpretation approach of these datasets stands in contrast to the datasets

induced with our strategy, which instead emphasises the inference of answers from

distributed textual evidence to structurally simple queries.

Compositional Knowledge Base Inference Rule-based inference with several

facts is more commonly found in the realm of symbolic reasoning with structured

information. These methods include Inductive Logic Programming (Quinlan, 1990;

Pazzani et al., 1991; Richards and Mooney, 1991) and Markov Logic (Richardson

and Domingos, 2006; Schoenmackers et al., 2008) – which can struggle with in-

efficient inference and limited coverage, although efforts to reduce sparsity have

been undertaken, e.g. based on web text (Schoenmackers et al., 2010). A scalable

method for learning compositional rules is the Path Ranking Algorithm (PRA) (Lao

and Cohen, 2010; Lao et al., 2011), which leverages random walks in the entity

graph, thus identifying salient graph paths. Gardner et al. (2013) circumvent the

problem of graph sparsity through the introduction of additional virtual links based

on dense vector similarity. Beyond that, a number of methods with other vector

composition functions have been considered, for example vector addition (Bordes

et al., 2014), RNNs (Neelakantan et al., 2015; Das et al., 2017), and memory net-
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works (Jain, 2016). Another approach is the Neural Theorem Prover (Rocktäschel

and Riedel, 2017), which uses dense rule and symbol embeddings to learn a differ-

entiable backward chaining algorithm.

The above approaches focus on the problem of learning to combine KB facts

of a particular structure and predefined schema. They can either be applied on the

outputs of an IE system (Banko et al., 2007) or on human-annotated facts (Bollacker

et al., 2008). The former can be noisy whereas the latter costly to acquire; both are

typically incomplete and potentially biased in coverage.

The progress on neural RC models from the previous years has however shown

that end-to-end models for natural language comprehension are capable of iden-

tifying answers to freely formulated comprehension questions from unstructured

text directly, thus circumventing potential intermediate stages of question parsing

or information extraction. With the datasets we have created, our aim is to help

understand if neural RC models are capable of learning to process unstructured

documents directly, while at the same time performing the type of inference and

combination of information usually found in the context of logical inference on

structured facts.

Text-Based Multi-Step Reading Comprehension Prior work by Fried et al.

(2015) has shown that leveraging information from other documents can be ben-

eficial for re-ranking predictions in an open-domain QA task. Another approach,

in the context of science exam questions, is to form chains of textual background

knowledge, which has the additional advantage of providing concrete explanations

for the answer (Jansen et al., 2017). A variety of neural network models, tai-

lored towards multi-hop RC, has been developed beyond that. This includes mem-

ory networks (Weston et al., 2015; Sukhbaatar et al., 2015; Kumar et al., 2016),

which attend over memory items multiple times, and which have shown encour-

aging performance on synthetic multi-hop reasoning tasks (Weston et al., 2016).

A common attribute of these neural approaches to multi-hop inference is their con-

ditioning structure which enables the interaction and matching of representations

for the question, the context, potential answer candidates, as well as combinations
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of these (Peng et al., 2015; Weissenborn et al., 2017; Xiong et al., 2017; Liu and

Perez, 2017), which can be repeated in multiple iterations (Sordoni et al., 2016;

Neumann et al., 2016; Seo et al., 2017b; Hu et al., 2017) and which can include

learning to halt (Graves, 2016; Shen et al., 2017).

Learning Search Expansion Another related research direction considers the

expansion of document sets available in a QA task, either using web naviga-

tion (Nogueira and Cho, 2016), query reformulation, or reinforcement learn-

ing (Narasimhan et al., 2016; Nogueira and Cho, 2017; Buck et al., 2018). This

conceptually related research aims at adapting queries to improve the availability

of relevant documents, similar to the expansion of support documents used for our

datasets.

4.8 Conclusion
In this chapter we have defined a cross-document multi-hop Reading Comprehen-

sion task. We have described a general methodology for dataset induction, which

we have used to construct datasets in two domains, and conducted a series of ex-

periments to test several baseline methods. We now summarise the answers to the

research questions posed in the beginning of this chapter:

1. How can we construct datasets for multi-hop Reading Comprehension

across documents? We have developed a methodology for creating such

datasets which requires both a structured knowledge base and a text cor-

pus, ideally aligned in their domain. The method relies on a bipartite graph

of mention-relationships between entities and documents to assemble chains

of documents that link entity pairs across several document contexts. The

method is automatic and relies on distant supervision, and we additionally

relied on human annotations to validate parts of the resulting evaluation sets.

2. What are potential dataset biases and pitfalls associated with the dataset

assembly approach chosen? There are several potential problems, which

we could partly address, though not fully. The problems we have discussed

include: i) the exploitation of type-consistency heuristics, which we have ad-
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dressed through the inclusion of documents with alternative candidates; ii) la-

bel imbalance, which we have addressed through sub-sampling and ran-

domised answer masking; iii) spurious correlations between particular doc-

uments and answers, which we have also addressed through sub-sampling

and answer masking; iv) failure cases of the distant supervision assump-

tion, which we have (at least during evaluation) mitigated through additional

dataset validation.

3. How do two neural RC models – FastQA and BiDAF – perform on the

cross-document multi-hop RC datasets, in particular compared to shal-

low statistical baselines? The two models achieve lower accuracy than on

SQUAD, whereas BiDAF generally scores above FastQA on both WIKIHOP

and MEDHOP. The performance of both does not exceed the accuracy of

shallow statistical baselines by much (if at all), but in contrast to these the

two neural models are able to maintain their performance when answer can-

didates are randomly masked. Both models improve their accuracy when

removing distracting documents from the given support, and the accuracy of

BiDAF shows a modest deterioration when removing some of the relevant

documents, indicating the use of information from multiple documents.

The dataset assembly method in this chapter suffers from several limitations,

which we have addressed and partially mitigated, but also has the strengths of cost-

effectiveness and scalability. The datasets contain structured queries about enti-

ties, and they assume that the correct answer is mentioned literally in one of the

documents. On the one hand this constrains the scope of possible queries and an-

swers, but it also facilitates the assembly of the dataset, and furthermore simplifies

evaluation. We see our study as a step towards models which learn to integrate

cross-document information, and believe the construction of relevant datasets for

this purpose to be an important intermediate objective which is worth further pur-

suit.

Subsequent to the assembly of the WIKIHOP and MEDHOP datasets, the NLP

field has advanced considerably. A new generation of neural models, which lever-
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age pre-trained representations fitted on large text corpora (Peters et al., 2018; De-

vlin et al., 2019; Liu et al., 2019), has led to substantial performance improvements

across tasks – and notably also on RC datasets. It is worth emphasising that pre-

trained models can learn factual information from the corpus they are pre-trained

on (Petroni et al., 2019), which raises the question to what extent they can apply

such prior knowledge on a dataset like WIKIHOP (which is developed based on

WIKIPEDIA – which is itself typically included in pre-training corpora).

As pointed out in Section 2.3, prior knowledge is a central aspect of compre-

hension, and the prior knowledge implicit in pre-trained representations can concep-

tually alter the multi-hop aspect of RC, i.e. whether predictions are formed based

on several pieces of text. In a concrete example, relevant factual knowledge about

entities in WIKIHOP, e.g. Mumbai, may be implicit in the representations of these

entities: Mumbai shares distributional context with India, leading to predictive as-

sociations between these two entities. If such information is available in pre-trained

embeddings, then they obviate the need for additional declarative facts which state

such information explicitly, e.g. “Mumbai [...] is the most populous city in India”.

Implicit prior knowledge can thus potentially replace explicitly stated information

in the comprehension process, and thus blur the conceptual boundaries of multi-

hop comprehension. To what extent this is indeed the case in pre-trained models is

however currently an open question.



Chapter 5

Selecting Document Combinations

for Reading Comprehension across

Documents

5.1 Overview

In the previous chapter we have tested the baseline performance for a number of

different models in the multi-hop RC setting. In one of the experiments (Section

4.6.5), we have identified the benefit of direct oracle access to relevant documents.

But how can an RC model distinguish the relevant documents from the irrelevant

and distracting ones and identify the content that it needs to infer the answer? The

following study will revolve around this question, and we will investigate different

methods for selecting relevant document combinations for an RC model to read.

Selecting relevant pieces of text that convey information necessary to answer

a comprehension question is of central importance in the RC task – even more so

when multiple documents are involved. Text selection is also a sub-problem in text-

based QA systems, and is typically achieved using Information Retrieval (IR) to

efficiently gather documents from a large inverted document index. It would be

computationally very burdensome to apply a costly neural RC model on a large

document collection without previously filtering it – a problem that is further exac-

erbated if the model representations are computed conditional on each new ques-
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tion. Thus, especially when scaling up the corpus of documents under considera-

tion (Chen et al., 2017a), IR can become a critical practical necessity.

Empirically, IR has been shown to be a performance bottleneck in NLP

pipeline systems that apply a natural language understanding (NLU) component

on a large text corpus. For example, for the DAM (Parikh et al., 2016) natural lan-

guage inference model in Fact Checking, (Thorne et al., 2018) report an absolute

accuracy drop of 37.63% when relying on outputs of an upstream TF-IDF retriever,

rather than the text selection of an oracle.1 In Open-Domain QA, Chen et al. (2017a)

found that QA accuracy more than halves (from 69.5% to 27.1% exact match) when

the RC model component has to rely on the noisy outputs of an IR system, rather

than the relevant texts directly.2 Finally, Yang et al. (2018) report more than 10%

F1 improvement on HOTPOTQA when using an oracle to provide multi-hop gold

evidence to a subsequent RC component. Such performance gaps underscore the

critical role that selecting relevant text (parts) plays: as NLU models are typically

employed downstream of an IR component, they hinge on the successful retrieval

of relevant facts or documents, or otherwise suffer from cascading errors.

In our previously conducted multi-hop experiments from Chapter 4, we have

observed an absolute accuracy improvement of 15.0% when relevant document sets

are directly given (WIKIHOP, BiDAF). This highlights the role of adequate content

selection as performance bottleneck also for this task, and suggests that a mecha-

nism for selecting relevant documents might – similar to open-domain QA – be a

promising avenue to improve model performance also on WIKIHOP.

5.1.1 Limitations of TF-IDF as Selection Approach

Prior work in the RC context frequently uses TF-IDF vector similarity to determine

document relevance (Dhingra et al., 2017; Clark and Gardner, 2018). The selection

of relevant text in WIKIHOP is however very different, compared to e.g. SQUAD.

In the case of SQUAD, task-relevant information is locally very concentrated:

prior work found that for 90% of samples in SQUAD a single sentence conveys

1Tables 3 and 4 in (Thorne et al., 2018); ‘RS’ setting.
2Numbers taken from Tables 4 and 6 in (Chen et al., 2017a).
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Document 1: Publius Decius Mus was a Roman politician and general of the plebeian gens 
Decia. … he and his fellow consul … combined their army against Pyrrhus of Epirus at the 
battle of Asculum. Pyrrhus was victorious, but at such a high cost that…

Document 2: Pyrrhus was a Greek general and statesman of the Hellenistic period … king of 
the Greek tribe of Molossians, of the royal Aeacid house. … He was one of the strongest 
opponents of early Rome. 

Document 3: The Molossians were an ancient Greek tribal state and kingdom that inhabited 
the region of Epirus since the Mycenaean era. The Molossians … sided against Rome … The 
result was disastrous, and the vengeful Romans… annexed the region into the Roman 
Republic.

Complementary Document Set
Q: (period, Publius Decius Mus, ?)     A: Roman Republic

Figure 5.1: Problem illustration: selecting a relevant combination of documents for text
comprehension. TF-IDF-based retrieval is not well-suited and only retrieves
the first of the three documents in this example.

sufficient information to correctly answer the given question (Min et al., 2018).

Naturally, identifying this sentence is of crucial importance to finding the correct

answer. Furthermore there is substantial lexical overlap between question and sen-

tence, which provides a strong clue for relevance: 81.2% Hits@1 can be achieved

using a TF-IDF sentence selector alone (Min et al., 2018). Neural RC models for

SQUAD thus benefit from adding explicit features that mark lexical overlap be-

tween question and text (Weissenborn et al., 2017; Chen et al., 2017a), even though

they also possess the ability to learn to soft-match relevant text pieces using atten-

tion structures based on dense dot-product similarity, as e.g. in the BiDAF architec-

ture (Seo et al., 2017a). In summary, lexical overlap to the question gives a direct

cue for relevancy in SQUAD, thus rendering TF-IDF a potent method for selecting

relevant content.

But the situation for WIKIHOP is different: here the lexical overlap between

the given queries and documents mentioning the answer is reduced per design; thus

TF-IDF alone is likely less useful. TF-IDF furthermore provides scores for the

relevance of documents to the question that are computed independently of one an-

other, given the query, thus providing individual sources of textual evidence whose

relevance is considered in isolation. Figure 5.1 shows an example query where re-



130 Chapter 5. Selecting Document Combinations for RC across Documents

trieving documents independently falls short at providing the necessary context for

an RC model to read: the query about the period that Publius Decius Mus lived in

can be used to retrieve Document 1, but fails to select Document 3 which mentions

the answer, as there is no lexical overlap with the query. This illustrates the limita-

tions of TF-IDF when aiming to retrieve complementary documents for queries like

those in WIKIHOP: TF-IDF considers document relevance in isolation and uses

only lexical overlap with the question, but no further information from the other

documents. TF-IDF thus imposes limitations on the types of questions that can

then be answered (or facts that can be checked) by an NLU system – especially

if the relevant information is not comprehensively expressed within a single docu-

ment or sentence. Specifically in the multi-hop setting of WIKIHOP, with chains

of documents inter-linked by entities, it would be desirable to develop a text selec-

tion mechanism for combinations of documents, where the relevance of document

combinations is determined jointly by the constituent documents. In summary, the

different structure of WIKIHOP samples suggests that TF-IDF might not be as effec-

tive a text selection method as elsewhere, hence it is worth considering alternatives.

5.1.2 Chapter Overview

We will in this chapter investigate the usefulness of different text selection mecha-

nisms to address the problem of choosing relevant document combinations for RC

on WIKIHOP. Motivated by the sample structure of WIKIHOP, we will investigate

the use of pseudo-relevance feedback (PRF) as extension to TF-IDF, and show its

empirical usefulness in selecting relevant documents. PRF can – broadly speaking

– retrieve documents dependent on the content of other, previously retrieved docu-

ments, and is different from TF-IDF in this regard. We will see that PRF compares

favourably to other retrieval methods, both in its ability to retrieve relevant docu-

ments, and also when coupled with the previously tested downstream RC models:

FastQA and BiDAF. When further extending text selection with a trainable ranker

for scoring document combinations, we can additionally improve the answer pre-

dictions, demonstrating the usefulness of selecting appropriate content for a down-

stream RC model to read.
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But while PRF-based document combination ranking shows promising im-

provements on WIKIHOP, interestingly it does not result in improvements for HOT-

POTQA (Yang et al., 2018), a more recently developed crowdsourced multi-hop

dataset also based on WIKIPEDIA. We relate the differing model behaviours to

different characteristics of the two datasets, highlighting that different dataset in-

duction strategies result not only in different dataset biases (as previously observed

and analysed for WIKIHOP in Chapter 4), but also affect the suitability of text se-

lection components. We summarise the research questions addressed in this chapter

with the following list.

List of Research Questions:

1. How does Pseudo-Relevance Feedback (PRF) compare to other IR methods

when retrieving relevant documents on WIKIHOP?

2. How can PRF be adapted to retrieve document combinations, rather than in-

dividual documents?

3. How can document combinations retrieved with PRF be integrated with a

trainable ranking model and a neural RC system, and how does this translate

into downstream answer prediction performance on WIKIHOP?

4. How do observations on document selection for WIKIHOP compare with ob-

servations for HOTPOTQA; can they be related to different dataset induction

choices?

5.2 Prior Related Work
Integrating Reading Comprehension with Information Retrieval on a large corpus of

unstructured documents has been coined Machine Reading at Scale (MRS) (Chen

et al., 2017a). The DrQA model for MRS (Chen et al., 2017a) presents a concrete

open-domain QA system that uses TF-IDF to retrieve WIKIPEDIA documents as

knowledge source, and combines them with a neural RC model. While DrQA has

demonstrated the usefulness of neural RC approaches in a QA system on a larger
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corpus, it has also highlighted that the IR component is the main performance bot-

tleneck for such a system. Even then, given the degree of lexical overlap in SQUAD

questions with the relevant text (Min et al., 2018), TF-IDF-based search approaches

may work better in an MRS setting than other, more general questions composed

without prior exposure to the paragraph stating the answer – similar to our observa-

tions on SCIQ in Chapter 3.

One avenue towards improving the MRS pipeline is to tune the IR component

further towards the objective of predicting the correct answer, hence increasing the

relevance of the textual material read by the RC component. Such approaches can

be based on joint training with reinforcement learning (Wang et al., 2018b), re-

ranking (Wang et al., 2017; Htut et al., 2018), multi-task learning (Nishida et al.,

2018), or improving the integration of answer predictions derived from several para-

graphs (Clark and Gardner, 2018).

Expanding the set of retrieved documents can generally be achieved using

Query Expansion (QE) (Azad and Deepak, 2017), for example by identifying and

leveraging word relationships in a corpus, or by analysing documents retrieved by

the initial query (Xu and Croft, 1996). Queries can be rewritten based on a knowl-

edge base and textual entailment (Musa et al., 2018), reinforcement learning to

issue new queries (Narasimhan et al., 2016), or by decomposing complex questions

into a collection of simpler questions (Talmor and Berant, 2018). To navigate in a

larger source of unstructured text, a model can structure documents as trees and train

agents to navigate towards the relevant parts (Geva and Berant, 2018). Other work

answers graph queries using a distribution over paths in a document graph (Chen

et al., 2018), or translates QA into the search for an optimal sub-graph (Khashabi

et al., 2018b).

5.3 Retrieving Combinations of Documents

A commonly used approach when applying a neural NLU component on mul-

tiple potentially relevant documents is to concatenate them into large super-

documents (Thorne et al., 2018; Yang et al., 2018). This way, complementary pieces
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of text are still at least in principle available to the neural model component for joint

processing. However, the approach has major drawbacks: concatenating documents

does not scale; the total time and memory footprint for neural encoders becomes

prohibitively large as more documents are considered. Moreover the recency bias

of RNN-based RC models is not well-suited for long-range dependencies which

arise in super-documents of complementary parts. For encoders which do consider

long-range dependencies, such as transformers (Vaswani et al., 2017), scalability is

quadratic, and thus also computationally problematic.

Decomposing the given textual evidence on the other hand – i.e. considering

smaller groups of documents – and subsequently aggregating RC predictions, can

overcome the aforementioned shortcomings. Binary relevancy judgements could

efficiently be computed with a comparatively shallow model for many different

smaller groups of documents, keeping only the most likely combinations as much

shorter inputs for a more computationally expensive neural reader. A downside to

evidence decomposition, however, is that the number of possible document combi-

nations grows combinatorially in the number of documents used in a group, quickly

approaching ranges that render the approach computationally impractical as well.

In order to reduce this otherwise infeasible number of document combinations un-

der consideration, an efficient selection mechanism for combinations of documents

has to be applied. We will develop such a mechanism based on Pseudo-Relevance

Feedback, and later couple it with a trainable document combination ranker.

5.3.1 Pseudo-Relevance Feedback

When considering the task of retrieving relevant documents to a given search query,

Relevance Feedback (Rocchio, 1971) has been developed as a local analysis tech-

nique to improve retrieval performance. It takes into account user feedback on the

relevancy of retrieved documents, and updates search results with user-provided

relevancy information. In Rocchio’s algorithm, the initial query vector is shifted to-

wards the centroid of documents annotated as relevant, and away from the centroid

of irrelevant documents. This implicit expansion of the search query with terms

from relevant documents can help to better contrast relevant from irrelevant docu-
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ments by incorporating new and distinctive terms into the query, which can translate

into substantial retrieval improvements. However since in practice user annotations

are not always available, Pseudo Relevance Feedback (PRF) (Salton and Buckley,

1997) presents a viable alternative. PRF considers the highest-ranking documents

obtained via an initial query as (pseudo-)relevant, and uses these instead of actual

user relevance feedback to augment the initial query vector. At the cost of poten-

tial semantic drift when erroneously retrieved irrelevant documents are included,

retrieval performance often improves, due to overcoming the problem of extreme

sparsity in TF-IDF query vectors.

Previous work on applying RC systems in conjunction with larger text col-

lections has mostly used uni- or bigram TF-IDF (or variations thereof) as retrieval

component (Chen et al., 2017a; Yang et al., 2018; Thorne and Vlachos, 2019). PRF

differs from TF-IDF in that it scores retrieved documents not only using the query,

but also using the content of other retrieved documents. It is this property that makes

PRF potentially better suited for selecting combinations of documents in WIKIHOP:

PRF determines the relevance of documents to a query partly co-dependent on the

content of other documents. The PRF query vector could thus be updated using

document terms that also include the bridge entities mentioned in separate docu-

ments, and help recover chains of relevant documents. We will next illustrate this

in an ideal example.

5.3.2 Illustration: Multi-Step Retrieval with PRF

In Figure 5.2 we schematically illustrate how iteratively applying PRF can change

the query vector to retrieve the document mentioning the answer. An initial query

vector q0 about the era or period that Publius Decius Mus lived in is generated

from the query. It serves to retrieve document d1: the WIKIPEDIA article about

Publius Decius Mus (yellow), i.e. the subject entity mentioned in the query. Un-

fortunately (though by task design) this document d1 does not mention the correct

answer (Roman Republic), and is thus insufficient for an extractive RC model.

But PRF considers this retrieved document d1 as relevant, and uses the terms

within d1 to form a new query vector q1. Compared to the first query q0, the vector
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Document 1: Publius Decius Mus was a Roman politician and general of the plebeian gens 
Decia. … he and his fellow consul … combined their army against Pyrrhus of Epirus at the 
battle of Asculum. Pyrrhus was victorious, but at such a high cost that…

Document 2: Pyrrhus was a Greek general and statesman of the Hellenistic period … king of 
the Greek tribe of Molossians, of the royal Aeacid house. … He was one of the strongest 
opponents of early Rome. 

Document 3: The Molossians were an ancient Greek tribal state and kingdom that inhabited 
the region of Epirus since the Mycenaean era. The Molossians … sided against Rome … The 
result was disastrous, and the vengeful Romans… annexed the region into the Roman 
Republic.

Complementary Document Set

findsq2 d3

q2

d3

q1

q0

findsq0 d1

q0 d1

q1 = q0 + d1

d1

q0
q1

q2 = q1 + d2

q1 finds d2

q2q1

q0

d2

Q: (period, Publius Decius Mus, ?)     A: Roman Republic

Figure 5.2: An illustration for the use of recursive Pseudo-Relevance Feedback for multi-
hop document selection. An initial query vector is recursively updated based
on the terms in previously retrieved documents.

q1 is shifted towards terms from this first retrieved document d1 (yellow), also in-

cluding the term Pyrrhus. When then applying TF-IDF search again, q1 now also

retrieves a second document d2: the WIKIPEDIA article about Pyrrhus (blue), yet

the correct answer a is still not mentioned in this document. Applying PRF once

more based on q1 creates yet another search vector q2, which is further shifted to-

wards the terms in d2, now including the term Molossians. This second refined

query vector q2 can then retrieve a document d3 which mentions the Molossians,

alongside the correct answer Roman Republic. That is, by recursively applying

PRF (twice), the initial query vector has been gradually updated and shifted to-

wards other terms in such a way that it enables the retrieval of more documents –

including those mentioning the correct answer. In doing so, PRF will rank highest

those documents mentioning the most specific terms from both the query and the
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initially retrieved documents (i.e. terms with high IDF score).

The example demonstrates that recursively applying PRF can potentially be a

useful method for finding relevant documents in WIKIHOP. But the example is an

ideal one, and it is unclear whether PRF can help retrieve such relevant documents

in practice. PRF is by no means precise; there is a risk of semantic drift; in addition,

irrelevant document chains, e.g. those leading to distractor candidates will also be

retrieved, as they are linked to the root documents in the same way as documents

mentioning the correct answer. Thus, in the next section we will quantitatively ex-

plore the use of PRF for selecting documents in WIKIHOP, comparing it to several

other retrieval methods.

5.3.3 Experiment: Comparison of Retrieval Methods

In this section we will conduct experiments with the aim of measuring the extent to

which different retrieval methods can identify relevant documents to answer a given

multi-hop query on WIKIHOP. Besides PRF we will consider a variety of other

retrieval mechanisms for document selection.

First, we test the commonly used TF-IDF and BM25 retrieval methods, each

both for unigrams and for bigrams. These retrieval approaches measure relevance

in terms of lexical overlap with an individual document, weighted by term speci-

ficity. As a second type of baseline, we will test thesaurus-based query expan-

sion (QE), where the query is augmented with additional synonyms to query tokens

from WordNet (Miller, 1995), as well as from thesaurus.com. Third, we consider

query expansion based on an automatically constructed thesaurus, where we select

the nearest neighbours3 of pre-trained GloVe (Pennington et al., 2014) word em-

beddings for each query token and append these to the query, tuning the number

of neighbouring terms in {1,2,5,10}. Fourth we will test PRF based on origial

TF-IDF queries, and tune the number of documents used for relevance feedback in

{1,2,5,10}. Finally, we examine recursive PRF with two recursions, again tuning

the number of documents used for relevance feedback in each level of recursion in

{1,2,5,10}.
3We use cosine similarity to rank word pairs and find nearest neighbours.
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Hits@k
Retrieval Method MRR 1 3 10

TF-IDF (unigram) 25.6 8.9 41.3 50.6
BM25 (unigram) 24.3 6.5 41.5 50.6

TF-IDF (bigram) 25.8 11.1 39.2 48.1
BM25 (bigram) 24.8 8.9 40.2 48.3

QE – Thesaurus 32.3 12.7 48.7 66.4
QE – Automatic Thesaurus 39.4 18.7 53.1 81.7

PRF 42.4 19.2 57.7 90.0
Recursive PRF 45.9 25.0 59.0 90.1

Table 5.1: Comparison of different retrieval methods for WIKIHOP, results in [%]. QE:
Query Expansion, PRF: Pseudo Relevance Feedback.

These baselines allow for a comparison of different contributing factors: we

can measure the effect of using different types of query expansion (local vs. global),

or not using query expansion at all. While the thesaurus and automatic thesaurus-

based query expansion strategies provide general additional information about the

query tokens, PRF uses the local information from some initially retrieved docu-

ments. It is worth pointing out that both PRF and the other QE baselines generally

reduce the sparsity of query vectors. By comparing PRF with other QE baselines,

we can then measure the extent to which potential improvements are due to spar-

sity reduction, compared to the inclusion of information from several documents,

which is specific to PRF. Finally, the usage of pre-trained word embeddings in the

automatic thesaurus baseline can give an indication for the merits of distributional

information of the query words for determining document relevancy.

The previously described retrieval methods each produces a ranked list of indi-

vidual documents. For evaluation, we identify the rank of the first document which

mentions the correct answer, and use it to calculate Hits@k and Mean Reciprocal

Rank (MRR) scores. The results are summarised in Table 5.1.

First, we observe that TF-IDF and BM25 produce a very similar outcome,

both for the unigram and for the bigram case. Compared to all other modifications

tested, making changes here does not lead to major changes in performance. Next,

we observe clear improvements over standard TF-IDF from using any type of query

expansion, i.e. both from local and from global information. This is plausible, since
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WIKIHOP query vectors are very sparse, and query expansion of any type can help

overcome this sparsity. Furthermore we observe that global information is ben-

eficial both when using a curated as well as an automatically induced thesaurus.

In particular the automatic-thesaurus expansion, which relies on the similarity of

word embeddings, shows substantial improvements over both TF-IDF, BM25 and

the synonyms from thesaurus.com. That is, distributional information on the entity

in the query is an important cue for identifying relevant documents that mention

the answer: query terms and terms from these retrieved documents tend to share

the same distributional context, which is picked up and reflected in the respective

GloVe vectors.

The local query expansion approaches improve retrieval performance even fur-

ther. Compared to standard TF-IDF, PRF improves document selection by a sub-

stantial margin; recurring PRF twice then almost triples the Hits@1 score compared

to unigram TF-IDF. That is, by using PRF we can improve the selection of relevant

documents for WIKIHOP, and to an extent that goes beyond the improvements that

we witness with other, global methods for query expansion, which equally help

overcome the problem of query sparsity. Finally we see that these improvements

are largest when applying PRF a second time.

In summary, this experiment shows that (recurred) PRF can indeed provide a

potent means to improve document selection on WIKIHOP when compared to meth-

ods considering the relevance of documents in isolation, such as TF-IDF and BM25.

The benefits of this go beyond those conferred by reducing query vector sparsity,

since PRF outperforms other query expansion approaches. Having established this,

we will next investigate a model pipeline approach where – relying on PRF – we

combine the selection of document tuples with neural RC models.

5.4 Document Combinations as a Latent Variable

So far we have observed that PRF presents a viable starting point for selecting

individual documents mentioning the correct answer for WIKIHOP queries – much

more so than TF-IDF. But how can this observation be leveraged in an integrated
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system that uses the outputs of selected combinations of documents for an RC model

to then process further? We will next lay out a broad structure for such a pipeline

system. This framework will later also serve as the groundwork for comparing

different document selection methods in conjunction with different RC models.

Recall that in the WIKIHOP task, our goal is to find the answer a to a query

q about a set of given documents S. To model this problem, we will introduce

a new latent variable: we will consider tuples D = (d1, . . . ,dT ) of size T among

the given support documents S, where T ∈ N. The full space of arbitrary possible

tuples D is thus ST , the T -fold Cartesian product over S. Having introduced this

new latent variable, we can rewrite the probability for predicting the correct answer

by marginalising over D ∈ ST :

P(a | S,q) = ∑
D∈ST

P(a,D | S,q) (5.1)

= ∑
D∈ST

P(D | S,q) ·P(a | D,q) (5.2)

= ED∼P(.|S,q)[P(a | D,q)] (5.3)

where we rely on the definitions of conditional probability and expectation for

Equations 5.2 and 5.3, respectively, and furthermore drop the dependence of the

answer probability distribution P(a | D,q) on S in Eq. (5.2). That is, we introduce

a variable D for a particular combination of documents, and we use it to factor the

answer prediction probability P(a | S,q) into one factor P(D | S,q) for document

combination selection and one factor P(a | D,q) for an RC model probability, both

of which are then aggregated across all possible options of D in ST . This effectively

decomposes the problem into i) selecting a particular document tuple D to read, ii)

predicting an RC probability for the correct answer a, conditioned on only the query

and D, rather than q and S, and iii) the aggregation of results across different values

for D.

The advantage of this factorisation is that it separates text combination selec-

tion and RC module, allowing for a direct comparison of different choices for each.
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Furthermore, the RC model is now conditioned on smaller subsets of documents

in S, providing it with less text to read than the full set of all documents S, which

is potentially relevant considering that RC models can be distracted when given

irrelevant portions of text (Jia and Liang, 2017).

5.4.1 Pruning the Document Combination Space via Recursive

PRF

The full space of possible combinations, i.e. tuples D = (d1, . . . ,dT )∈ ST grows ex-

ponentially with respect to the tuple size T . As a consequence, even for small values

of T , it becomes impractical to fully cover the space of all possible document com-

binations as inputs to a computationally costly RC model or text relevancy model

in the inner loop during model training. In order to overcome this problem we will

have to restrict the number of available document combinations. We will thus prune

ST and consider only a restricted set of document tuples, and we will use recursive

PRF to achieve this. From the initial query q and given support documents S, we

will construct a sparse document graph G, in which paths correspond to document

combinations. This graph G = (S,E) connects documents from S via a set of edges

E by following the document chains obtained when recursively applying PRF. This

process will now be described in detail.

An initial set of seed documents S0 ⊆ S is obtained via standard TF-IDF re-

trieval, based on an initial search query q0 = q. This query is subsequently ex-

panded to q1 with PRF based on S0. We then query S again with the search vector

of q1 and obtain the next set of retrieved documents S1. This process is repeated,

and after having recursively applied PRF for T − 1 times, we have obtained a se-

quence of search query vectors q0,q1, . . . ,qT−1, each with its own respective sets of

retrieved documents S0,S1, . . . ,ST−1. The connectivity of the document graph G is

then defined as follows: two document nodes (d,d′), with d 6= d′ are connected iff

∃ t ∈ {0,1, ...,T − 1} such that d ∈ St ∧ d′ ∈ St+1; that is, when d and d′ appear in

two subsequently retrieved sets of documents St and St+1.

If G were fully connected, then the set of paths of length T in the graph would

correspond to all document combinations ST . However, when using only the paths
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defined by recursive application of PRF, the resulting graph will generally be sparse.

The sparsity of G can further be controlled by restricting the maximum size of each

document set Si, or alternatively by setting a lower threshold for a minimum re-

quired retrieval score threshold. In summary, we reduce the number of document

combinations under consideration by restricting ourselves to combinations of doc-

uments retrieved in subsequent levels of recursive PRF.

Intuitively, two documents d and d′ are then connected if d′ contains the most

specific words from either d or the query. The method can thus include document tu-

ples where one document mentions an entity name that re-appears in the subsequent

document of the tuple. Consequently, the mechanism can assemble complementary

information about entities mentioned in separate documents along the paths of G,

as required in the WIKIHOP task.

5.4.2 A Model for Document Combination Probabilities

Even though we have established that PRF compares favourably to TF-IDF and

other retrieval approaches when selecting relevant documents, PRF is still not pre-

cise, and can in absolute terms not be expected to reliably provide relevant input to

an RC model. In order to improve the relevancy of the selected document combina-

tions further we will thus additionally score the paths in G with a model that learns

a probability P(D | S,q) for the relevance of a particular document combination D.

That is, PRF is merely used as a first step to identify the inputs (document paths)

for a subsequent document path ranker, which learns a probability distribution over

potentially relevant document combinations. A good model can then ideally learn

to assign lower scores to combinations irrelevant to the original query, and further-

more circumvent potential negative consequences of semantic drift in PRF.

From here on we will refer to the set of all paths of length T in the graph G

as DT (S,q). Concretely, for the model proposed in Equation 5.2, the restriction to

paths in the graph means that rather than summing over all D ∈ ST , we will restrict

the sum to only D∈DT (S,q). We will next introduce a document combination scor-

ing model for D∈DT (S,q), with the aim of learning which document combinations

are relevant to a query.
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The model assigns a probability P(D | S,q) to a combination of documents

D ∈ DT (S,q), given the query and S, and is normalised over DT (S,q). We choose

a model that learns to contrast positive (relevant) combinations from negative (ran-

dom) combinations in a binary classification task using a form of negative sampling.

The resulting binary prediction score achieved for any one given D ∈ DT (S,q) is

then interpreted as the logit for a softmax distribution over all DT (S,q). More con-

cretely, we sample positive training examples D uniformly at random from all paths

D ∈ DT (S,q) in G which contain both a document mentioning the correct answer

ai, as well as the question entity. To contrast against these positive samples, we

sample negative examples in equal proportion uniformly at random from all paths

DT (S,q). We then train a binary classification model with a cross-entropy min-

imisation objective to distinguish positives samples from negatives. We train the

binary classifier on features consisting in the element-wise min, mean, and max of

pre-trained CBOW embeddings (Mikolov et al., 2013a), pooled across tokens, com-

puted individually for both the query q and each document d of the combination D,

and finally concatenated into one vector representation. Simple aggregate feature

representations have been shown to be effective in text classification (Joulin et al.,

2017), and are in addition very fast to compute as they can be pre-computed for

each document and query. Our classification model is an ensemble of 200 decision

trees (Breiman et al., 1984; Breiman, 2001), restricted to a maximum depth of 40.

This overall classification model combines the following advantages: i) fast,

and potentially parallelisable inference due to the parallel nature of the tree ensem-

ble model ii) potential to pre-compute and re-use feature vectors iii) like a two-layer

MLP, the Random Forest model is endowed with the full modelling capacities of a

nonlinear function approximator, allowing for the representation of arbitrary inter-

actions between query and document features. In summary, we have described an

efficient model for learning a probability distribution P(D | S,q) over document

combinations D ∈ DT (S,q).

At inference time we score only those document combinations D retained after

pruning ST with recursive PRF, rather than the full space ST , and weigh respective
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D = (d1, d2, d3)
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Figure 5.3: Method Overview: A question q and corpus S are used to induce a document
graph via recursive Pseudo Relevance Feedback. Individual paths (such as the
ones shown in red and blue) represent potentially relevant complementary evi-
dence. Answer probabilities are computed conditioned on different paths, com-
bined with answer prediction probabilities, and finally marginialised over dif-
ferent paths.

answer predictions of an RC model according to P(D | S,q):

P(a | S,q) = ∑
D∈DT (S,q)

P(D | S,q) ·P(a | D,q) (5.4)

That is, both document combination relevance score and RC answer score are

aggregated into a final model prediction by aggregating model probabilities over

DT (S,q). Figure 5.3 illustrates this overall system structure in a high-level overview.

5.4.3 Combination with Text Comprehension Models

When training the reader component P(a | D,q), we sample uniformly, both from

the training set (indexed by i) and then uniformly among the corresponding D ∈
DT (qi,Si) in which one document mentions the correct answer ai, and one document

mentions the entity in the question. Tuning the RC model then amounts to standard

cross-entropy training to compute the correct answer. While there is a mismatch

to training the RC model parameters directly under the expectation with respect to

P(D|S,q) (cf. Equation 5.3), the training distribution used here ensures that during

RC training the correct answer can always be found within the documents, and that

the document about the entity in question is also always included. The RC model
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is thus optimised on a distribution of document combinations for which the text

selection model is trained to assign high probabilities.

To summarise all these individual model components, we first assemble a

sparse document graph by recursively applying PRF; subsequently we score in-

dividual paths in this graph using a text selection model that we train with negative

sampling, and with an RC model to predict answers; finally all respective scores are

aggregated according to Equation 5.4 to form a final answer prediction probability.

Having described this full model, we will next evaluate it experimentally.

5.5 Experiments: WIKIHOP

We will now evaluate the above proposed method on WIKIHOP using two differ-

ent neural RC models, FastQA (Weissenborn et al., 2017) and BiDAF (Seo et al.,

2017a). As comparison baselines, we also form pipeline models based on TF-IDF

alone, and with PRF but without the additional trainable ranker, each similarly com-

bined with one of the two neural RC models.

For the TF-IDF-based selection approach, we first issue the query q to retrieve

a ranked list of documents in S and use these to assemble document tuples of size

T . Tuples are ordered by the maximum TF-IDF rank that any constituent document

in the tuple has; in the end we retain the top K tuples. We tune K in {1,2,5,10}
and aggregate RC predictions with equal contribution to form the final prediction

for the answer a.

In a second baseline PRF is used for selecting document tuples, but without

the trained model for document combination probabilities. We assemble a list of

document tuples as follows: we conduct recursive PRF, retrieving the sets S0, S1,

. . . , ST−1 which are also used to define G. Next we fill each tuple position with a

document in S0,S1, ...,ST−1, respectively. Different tuples are then sorted according

to the maximum retrieval rank that any document dt has within its respective set St ,

aggregated across all tuple positions t. Again, we retain only the top-K ranked

document combinations, tuning K in {1,2,5,10}.

In summary, these two baselines approaches consist in pipeline models that –



5.5. Experiments: WIKIHOP 145

FastQA BiDAF

TF-IDF + reader 30.1 32.8
PRF + reader 37.5 44.6
Trained ranker + reader 54.1 57.7

Table 5.2: WIKIHOP accuracy for different choices of document combination selec-
tion (TF-IDF, PRF, or a trained document combination ranker model), and neu-
ral reader (either FastQA or BiDAF).

rather than using the trained document combination ranker – perform text selection

either based on TF-IDF or based on PRF. We select T = 3, train the models on the

WIKIHOP training set, keeping aside 5% for tuning purposes, and evaluate in the

standard (unmasked) validation set. The RC models are furthermore restricted to

only predict answer candidates, rather than any span in the document.

5.5.1 Experimental Outcome

Do the retrieval improvements observed for PRF compared to TF-IDF in Table 5.1

also translate into better downstream answer prediction accuracy? The results of

this experiment can be found in Table 5.2, both for FastQA and BiDAF as RC model

component. Indeed, using recursive PRF for document selection leads to a substan-

tial improvement over TF-IDF: 7.4% better accuracy for FastQA and 11.8% for

BiDAF. This again underscores the suitability of PRF for document selection in the

WIKIHOP task.

Including the trainable document tuple ranker then further improves down-

stream accuracy, and by a substantial margin: an additional 16.6% for FastQA,

and 13.1% for BiDAF. Furthermore, when evaluating the document tuple pre-

diction model in terms of pure retrieval success, it reaches a 66.9% Hits@1

score (among document triples), which – although an imperfect juxtaposition –

compares favourably to the Hits@3 score of 59.0% measured for individual doc-

uments with recursive PRF in Table 5.1. That is, the additional step of learning a

relevance distribution for document combinations improves the results beyond those

of PRF and TF-IDF, both in terms of pure retrieval and also in terms of downstream

accuracy.
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In summary, we have shown that recursive PRF does not only provide more

relevant document tuples than TF-IDF, it can also serve as a pruning method to

restrict the number of tuples that are to be evaluated in the marginalisation step of a

latent variable model, which outperforms both pure TF-IDF and recursive PRF by

a large margin.

5.6 Application of the Method on HOTPOTQA
The PRF-based document tuple ranking method described so far in this chapter was

developed with the aim of improving model performance on the WIKIHOP dataset.

But how does this approach fare on a different multi-hop dataset, constructed with

a different dataset induction paradigm? We next conduct experiments on the HOT-

POTQA dataset (Yang et al., 2018), a dataset also assembled with the aim of fos-

tering multi-hop Reading Comprehension. Like WIKIHOP, HOTPOTQA is con-

structed based on WIKIPEDIA articles, but rather than posing structured queries

of the form (entity, relation, ?) which seek answer entities, it poses natu-

ral language questions composed by crowd annotators. In both datasets, answers

are mentioned as spans in the texts (disregarding the yes/no questions in HOT-

POTQA for now). Both WIKIHOP and HOTPOTQA furthermore contain a sig-

nificant amount of questions that involve texts connected by bridge entities. Given

these structural similarities and differences between the two datasets, how well do

different retrieval methods, as well as the above described pipeline approach fare

on HOTPOTQA?

5.6.1 Comparison of Retrieval Methods

We first compare several retrieval baselines on the bridge setting in the dev-

distractor part of the HOTPOTQA dataset. In this setting, a small set of relevant

documents is pre-selected using a variation of TF-IDF (Yang et al., 2018), and

combined with documents containing the relevant information. This bridge set-

ting more closely resembles the type of entity-based cross-document hopping seen

in WIKIHOP (where one would expect PRF to potentially be useful), in contrast to

the comparison portion of the dataset, which focuses on yes/no questions without
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Hits@k
Retrieval Method MRR 2 3 10

TF-IDF (unigram) 11.2 6.1 11.3 38.8
BM25 (unigram) 12.7 8.9 14.9 41.5

TF-IDF (bigram) 10.9 6.4 11.1 36.4
BM25 (bigram) 11.6 7.8 13.1 37.7

QE – Thesaurus 7.5 4.3 8.3 33.5
QE – Automatic Thesaurus 8.5 5.6 10.5 36.2

PRF 13.2 9.4 15.9 43.2
Recursive PRF 13.2 9.4 15.8 43.3

Table 5.3: Comparison of different retrieval methods for HOTPOTQA, results in [%]. QE:
Query Expansion, PRF: Pseudo Relevance Feedback.

requiring an entity bridging structure.

In HOTPOTQA we furthermore have access to human annotations on the sen-

tence level for answering the question. Rather than selecting full documents, we

thus perform retrieval and evaluation on the level of individual sentences of the

given documents. For evaluation, we then measure the first rank at which all sen-

tences annotated as relevant have been retrieved, comprehensively. Since always a

minimum of two sentences are labelled as necessary in HOTPOTQA, we calculate

Hits@k statistics, beginning at k = 2.

Results In Table 5.3 we present the outcome of this experiment. For HOTPOTQA

we observe that PRF – both in its standard and recurred variant – outperforms

TF-IDF, BM25, and all other approaches, albeit only by a small margin: by far

not to the same extent as previously observed for WIKIHOP. Interestingly, QE

based on global information is less useful on HOTPOTQA: both thesaurus- and

automatic thesaurus-induced word embedding similarity actively deteriorates per-

formance compared to standard TF-IDF and BM25. This is noteworthy, especially

in contrast to the results of Table 5.1: the benefits reaped from using QE on WIK-

IHOP queries do largely not transfer to HOTPOTQA. A possible explanation is the

inherent sparsity of the query vectors in WIKIHOP – which is partly responsible for

the improvements of using QE on WIKIHOP – whereas for HOTPOTQA sparsity is

not as big an issue. PRF and recursive PRF in this setting show modest improve-

ments over the baselines without QE, yet thesaurus-based augmentation appears to
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Br EM Br F1 Cp EM Cp F1

TF-IDF* + reader (Yang et al., 2018) 19.76 30.42 43.87 50.70
trained ranker + reader 15.44 22.39 40.42 47.64

Table 5.4: HOTPOTQA Full Wiki results for Bridge (Br) and Comparison (Cp) questions.
The results for the first row stem from the original publication (Yang et al.,
2018), where more details on the implementation of TF-IDF can be found, which
slightly differs from standard TF-IDF.

actively distract the document selection from finding relevant text.

5.6.2 Comparison on the QA Task

If PRF is less useful on HOTPOTQA than on WIKIHOP, how does this affect the

above developed pipeline system on HOTPOTQA? We next test the system using

the RC component described in the original paper (Yang et al., 2018), which amal-

gamates several commonly used neural components of recent RC architectures.4

We combine the RC model with the trainable ranker, set T = 2 and use document

pairs containing the human-annotated relevant sentences as positive samples for

relevancy training. In Table 5.4 we compare the results of this model with the

originally reported results for the full-wiki dev setting (Yang et al., 2018), where a

variation of TF-IDF is used for selecting relevant documents.

We observe that our above developed pipeline system achieves overall compa-

rable, but clearly lower exact match (EM) and answer overlap (F1) scores compared

to the originally reported pipeline of TF-IDF and RC model (Yang et al., 2018).

These results are consistent across metrics, and also when considering results indi-

vidually for either bridge or comparison-type questions. That is, relying on PRF

rather than TF-IDF for document selection on HOTPOTQA does not translate into

downstream answering improvements, as we had observed for WIKIHOP.

5.6.3 Discussion

What can explain the gap in the usefulness of PRF between the two datasets? Both

are designed to pose multi-hop questions; they share the same WIKIPEDIA domain,

and the answers (at least for the bridge questions of HOTPOTQA) are often entities,

4https://github.com/hotpotqa/hotpot

https://github.com/hotpotqa/hotpot
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HOTPOTQA-Short HOTPOTQA-Long

TF-IDF* + reader 11.63 19.77
trained ranker + reader 13.95 15.46

Table 5.5: HOTPOTQA: Comparison of EM (in [%]) on short and long bridge questions for
document selection via TF-IDF*, and via the trained ranker.

just like in WIKIHOP.

One possible explanation for the differences in the usefulness of PRF that we

observe between the two datasets is the different type of query structure. Where in

WIKIHOP we have structured KB queries, in HOTPOTQA the questions are natural

language expressions composed by human annotators. Where in WIKIHOP the

texts are selected based on the queries using a noisy distant supervision assumption,

in HOTPOTQA the questions are composed given the texts, thus guaranteeing the

relevance of the text for the question, but also increasing the likelihood of lexical

transfer between these given (relevant) texts into the question.

Consequently, HOTPOTQA has on average much longer queries than those in

WIKIHOP: the average length differs by 12 tokens between the datasets. A first

possible explanation might then be that the benefits of using PRF (and perhaps

query expansion more generally) stem from overcoming the inherent information

scarcity of the shorter queries in WIKIHOP, i.e. from performing QE in the first

place.

A further analysis of model predictions on HOTPOTQA confirms that question

length plays a role: when we break down results on the Bridge questions (those

excluding yes/no questions) in Table 5.5, we find that the usefulness of performing

QE on short HOTPOTQA questions is very different. We observe that questions

with 10 or more tokens (“long”), which make up the majority of the questions, are

better answered using basic retrieval with no query expansion. Short questions with

less than 10 tokens, on the other hand, are more easily answered relying on PRF.

This adds empirical weight to the explanation that one of the ways in which query

expansion confers its benefits is by reducing the relative sparsity of the query vector

in short questions, as we had hypothesised for the case of WIKIHOP.
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It is worth noting that for TF-IDF-based retrieval we observe a marked perfor-

mance increase when shifting from short (11.63% EM) to long questions (19.77%

EM). A possible explanation for this is that longer questions have more lexical over-

lap with the texts they are composed about, making them more suitable for retrieval

with TF-IDF. In fact, we also observe that for long questions, ngram-overlap in

particular starts to become a very strong retrieval signal: in a small ablation study

we test retrieval by largest common ngram. This method ranks documents accord-

ing to the length of the longest common ngram between question and document.

We find that ngram overlap alone is a very strong indicator for the relevance of a

document, though interestingly also dependent on the question length: while for

short questions a relevant document is retrieved in only 4.65% of cases (Hits@1),

for questions with 10 or more tokens this number more than sextuples to 28.15%

Hits@1.

The usefulness of ngram overlap for the retrieval of long queries, but not

for short queries, suggests that in the crowdsourced data annotation method em-

ployed in HOTPOTQA, question annotators directly lift over sub-sequences from

their given text into the question, and in particular when they compose long ques-

tions. This is a second explanation for the usefulness of the lexical overlap-based

TF-IDF retrieval in HOTPOTQA. When employing query expansion of any sort on

long questions, we add new tokens into the query vector, diluting the relatively clear

signal already provided by the re-use of terms from the text in the original question.

For shorter questions on the other hand, where both ngram-overlap is less indicative

and query vectors are sparser, PRF-based expansion is more useful than TF-IDF.

In conclusion, we have isolated two factors that are suggested by these experi-

ments as plausible explanations for the difference in the usefulness of PRF between

WIKIHOP and HOTPOTQA: the first being a reduction of query vector sparsity for

the shorter queries in WIKIHOP as well as the short questions in HOTPOTQA; and

second the usefulness of direct lexical overlap strategies on longer HOTPOTQA

questions stemming from the direct transfer of relevant text sub-sequences into the

question.
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5.7 Conclusion
In this chapter we have investigated the use of different retrieval methods and query

expansion strategies for selecting relevant documents in a cross-document RC task.

We can thus summarise the answers to the research questions posed in the beginning

of this chapter as follows:

1. How does PRF compare to other IR methods when retrieving relevant

documents on WIKIHOP? We have empirically demonstrated that, for

WIKIHOP, PRF compares favourably to other approaches which rank doc-

uments independently – namely unigram and bigram TF-IDF and BM25,

thesaurus-based query expansion, and query expansion based on word vec-

tor similarity. Compared to TF-IDF, which is widely used for text selection

in RC contexts, recursively applying PRF leads to an improvement from 8.9

to 25.0 Hits@1.

2. How can PRF be adapted to retrieve document combinations, rather

than individual documents? We have described a method of using PRF

to retrieve combinations of documents which gradually builds up document

tuples based on subsequently retrieved sets of documents when recursively

applying PRF.

3. How can document combinations retrieved with PRF be integrated with

a trainable ranking model and neural RC system, and how does this

translate into downstream answer prediction performance on WIKI-

HOP? Document combinations can be viewed as a latent variable, and

PRF-based selection can be used to prune an otherwise exponentially large

marginalisation space. When combined with with a neural RC system, this

approach compares favourably to TF-IDF-based document selection; adding

a trainable document combination ranking model further improves answer

prediction performance on WIKIHOP.

4. How do observations on document selection for WIKIHOP compare with

observations for HOTPOTQA; can they be related to different dataset in-
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duction choices? The improvements on WIKIHOP observed with the use of

PRF, rather than TF-IDF, do largely not translate to HOTPOTQA, neither for

text selection alone, nor when measuring downstream QA performance. We

related the observed discrepancy to elementary differences in query proper-

ties (length, lexical overlap) of these two datasets, which are ultimately rooted

in their different dataset induction strategies.
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Chapter 6

Exploring Undersensitivity of Neural

Reading Comprehension Models

The content of this chapter is based on unpublished work (Welbl et al.,

2020b). For further context, on the OpenReview website1 critical re-

views can be found, which have subsequently been taken into account.

The experiments in Table 6.9, data preparations for Table 6.10 and data

preprocessing for Table 6.6 were conducted by collaborators in Welbl

et al. (2020b).

6.1 Introduction
We have in the previous Parts I and II of this thesis considered RC datasets for

both science exam questions and multi-hop inference, alongside a series of differ-

ent models. Next we focus with more detail on individual comprehension questions

and models’ behaviour on an established task. Do RC models adequately represent

and take into account all relevant information specified in a given comprehension

question? Do they identify answers for the particular information request formu-

lated, or do they rely on shortcuts and shallow predictive cues that help them answer

the question correctly, but could bring the model to fail when exploited? We will

now adopt an adversarial perspective on RC models and explore questions on model

behaviour and their sensitivity (or lack thereof) to modifying the model input. As an

1https://openreview.net/forum?id=HkgxheBFDS

https://openreview.net/forum?id=HkgxheBFDS
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RC model’s behaviour depends on the data it is trained on, we will relate the model

failures we identify to particular properties of the training set. Concretely, we will

demonstrate that an RC model’s lack of sensitivity to meaningful changes in its in-

put question are due to a lack of structurally similar, but unanswerable questions in

the RC dataset.

6.1.1 Adversarial Vulnerability and Undersensitivity in NLP

Neural networks – the core ingredient of contemporary RC models – have been

shown to be vulnerable to adversarial perturbations of their input (Szegedy et al.,

2013; Kurakin et al., 2016). More concretely in NLP, which operates on discrete

symbol sequences, adversarial examples have been studied extensively – see (Zhang

et al., 2019) for a recent survey. Adversarial attacks can take a variety of forms (Et-

tinger et al., 2017; Alzantot et al., 2018) including character perturbations (Ebrahimi

et al., 2018), syntactic and lexical transformations (Li et al., 2017), semantically in-

variant reformulations (Ribeiro et al., 2018b; Iyyer et al., 2018), or adversarially

pre-pended trigger text (Wallace et al., 2019a). Other prior work concentrates on

specific NLP tasks and identifies adversarial attacks: for Fact Checking (Thorne

and Vlachos, 2019), Machine Translation (Belinkov and Bisk, 2018; Zhao et al.,

2018) or notably RC (Jia and Liang, 2017; Wang and Bansal, 2018; Mudrakarta

et al., 2018), where adversarially chosen text insertions can drastically deteriorate a

model’s performance.

All of these attacks demonstrate that RC models – despite strong generalisation

on test sets following the training distribution – are still unreliable, and can fail

in surprisingly simple ways. A model’s inability to handle adversarially chosen

input text puts into perspective otherwise impressive generalisation results for in-

distribution test sets (Seo et al. (2017a); Yu et al. (2018); Devlin et al. (2019); inter

alia) and constitutes an important caveat to conclusions drawn regarding a model’s

language understanding abilities.

While the semantically invariant text transformations used in the above listed

prior work can remarkably alter a model’s predictions – demonstrating their over-

sensitivity to such transformations – the converse problem of model undersensitivity
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Given Text [...] The Normans were famed for their martial spirit and eventually for
their Christian piety, becoming exponents of the Catholic orthodoxy [...]

Question (orig.) What religion were the Normans?
Prediction (orig.) Catholic orthodoxy (78%)
Question (adv.) IP and AM are most commonly defined by what type of proof system?
Prediction (adv.) Catholic orthodoxy (84%)

Given Text The nearby Spanish settlement of St. Augustine attacked Fort Caroline,
and killed nearly all the French soldiers defending it. The Spanish renamed
the fort San Mateo [...]

Question (orig) What was Fort Caroline renamed to after the Spanish attack?
Prediction (orig.) San Mateo (98%)
Question (adv.) What was Robert Oppenheimer renamed to after the Spanish attack?
Prediction (adv.) San Mateo (99%)

Table 6.1: Examples of model undersensitivity in a BERT comprehension model trained on
SQUAD2.0. Undersensitivity is a lack of input specificity: given the same text
to read but altering the question can retain the prediction of the original question
while increasing prediction probability.

is equally troublesome: the meaning of a model’s text input can often be drastically

changed while still retaining the original prediction with high probability. Two such

examples are shown in Table 6.1 for a BERT (Devlin et al., 2019) model trained on

SQUAD2.0 (Rajpurkar et al., 2018).

In the first example, when given the original question “What religion were

the Normans?”, the model answers the question correctly as “Catholic orthodoxy”

with 78% confidence. However, searching among a larger set of other, unrelated

questions (in this case: other SQUAD training questions), shows that the model can

be tricked into predicting the same answer also for an entirely unrelated question

asked about the same paragraph, and with even higher confidence: “IP and AM

are most commonly defined by what type of proof system?” is again answered with

the expression “Catholic Orthodoxy” and 84% confidence. Clearly this answer is

not correct; the question is unrelated to the topic of the given WIKIPEDIA article,

unanswerable from this context, and the model should have chosen a NoAnswer

prediction. Nevertheless, BERT retains its original prediction, even increasing its

confidence. Note that this is despite the addition of unanswerable questions (with

label NoAnswer) into the SQUAD2.0 training set; the model has been trained to be

able to predict if a question is unanswerable.

This particular example presents a striking failure case of the BERT model, but
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the question was discovered by searching among a large set of (generally unrelated)

questions from the SQUAD training set. Often there are no more than a few such

cases per sample – if any. Consequently it is hard to derive concrete insights from

such examples, both regarding the model, or its training data.

The question in the second example in Table 6.1 is derived using a different

and more systematic approach: a named entity in the question has been replaced

with a different one. Again, the model fails to reflect a meaningful change in its in-

put question: we observe an increased model probability for the same answer “San

Mateo”, when replacing the entity “Fort Caroline” with “Robert Oppenheimer”.

That is, the model prediction does not change, despite removing an essential com-

ponent of the information request formulated in the original question, and replacing

it with content unrelated to the paragraph or original question. This suggests that

the entity “Fort Caroline” in the question might not be adequately represented and

taken into account in the selection of “San Mateo” as answer.

Both of these two cases are examples of model undersensitivity: the model

input is altered in a meaningful way – in such a way that a change of the model pre-

diction would be adequate – yet the model prediction remains invariant. This stands

in contrast to undesirable oversensitivity behaviour, where a model changes its pre-

diction when it should not. Models prone to oversensitivity flip their prediction

when applying a small, semantically invariant input transformation, e.g. replacing

a token with a synonym (Ebrahimi et al., 2018). Undersensitivity is the opposite: a

meaningful input change does not lead to a change in the model’s prediction.

Excessive prediction invariance has been linked to adversarial vulnerability

and led to impressive failure cases in computer vision (Jacobsen et al., 2019). Prior

work on model undersensitivity in NLP (Feng et al., 2018; Ribeiro et al., 2018a) has

shown that one can delete all but a small fraction of input words while models still

produce the same output, and with a high probability. The inputs used in this prior

work do however not constitute well-formed text, and are thus unnatural to a human

reader. Consequently it is unclear which behaviour we should expect from natural

language models evaluated on such unnatural text, and it is difficult to derive prac-
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tical insights to improve RC models or datasets. By investigating well-formed and

semantically coherent inputs – as we will in this chapter – we can demonstrate that

undersensitivity is a phenomenon not limited to ill-formed expressions and partial

text, but a phenomenon which extends to concrete and well-formed RC questions,

where models provide false predictions.

6.1.2 Chapter Overview

In this chapter we will develop and test an automatic method for altering input ques-

tions, and use it to probe an RC model’s undersensitivity behaviour. We formalise

the process of finding such questions as an adversarial attack in a discrete input

space arising from perturbations of the original question. There are two types of

discrete perturbations that we consider – based on parts-of-speech, and on named

entities – with the aim of obtaining grammatical and semantically consistent alter-

native questions that do not accidentally have the same correct answer.

Naturally, the success of an adversarial attack depends on the computational

budget used to identify samples that satisfy the attack specification. We find that

both SQUAD2.0 and NEWSQA (Trischler et al., 2017) models can be attacked on

a substantial proportion of samples, already with a small computational adversarial

search budget, and the rates of successful attacks increase further as more input

perturbations are considered. Observing a successful undersensitivity attack on a

particular input sample is furthermore associated with lower standard performance

metrics (EM/F1), suggesting that the undersensitivity phenomenon – where present

– is indeed a reflection of a model’s lack of question comprehension, which can be

exposed by probing it with input perturbations.

When training models to defend against undersensitivity attacks with data aug-

mentation and adversarial training, we observe that they learn to generalise their

robustness to held out evaluation data as well as held out perturbations – without

sacrificing standard performance. Furthermore, we observe that the models trained

with additional altered input data as ‘negative’ examples are also more robust in

their generalisation to adversarial attacks defined in prior work (Jia and Liang,

2017), and show substantial improvements in a biased learning scenario with dif-
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ferent training / evaluation set distributions.

These findings once more highlight the critical role of training data in RC: a

lack of unanswerable counterexamples which are structurally similar to standard

input samples is a cause of model undersensitivity. Including such samples into the

training data alleviates the problem and considerably reduces the model’s under-

sensitivity; at the same time it also improves the specificity in a model’s question

interpretation process. We summarise the research questions addressed in this chap-

ter in the following list.

List of Research Questions:

1. How can RC model undersensitivity to changes in the question be evaluated

using natural language inputs?

2. To what extent is the commonly used BERT (Devlin et al., 2019) model un-

dersensitive to adversarially chosen input perturbations?

3. How can adversarially vulnerable samples be characterised and distin-

guished?

4. Can the two adversarial defence strategies of data augmentation and adver-

sarial training help alleviate the undersensitivity problem?

5. How does training models to be more sensitive to input changes affect their

behaviour?

6.2 Methodology
6.2.1 Problem Formalisation

We will begin by formalising our notion of model undersensitivity to question

changes. Consider a discriminative model fθ parameterised by a collection of dense

vectors θ , which transforms an input x into a prediction ŷ = fθ (x). In our task, the

input x = (d,q) consists of a given document d paired with a question q about d.

The label y(x) in our task is the answer to the comprehension question where it
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exists, or a NoAnswer label where it cannot be answered.2

In a text comprehension setting with a very large set of possible answers, pre-

dictions ŷ should be specific to x, i.e. not the model prediction for arbitrary inputs.

And indeed, randomly choosing a different input x′ = (d′,q′) is usually associated

with a change of the model prediction ŷ. However, there exist many examples where

the prediction erroneously remains stable; the goal of the attack formulated here is

to identify such cases. Concretely, given a computational search budget, the goal is

to discover inputs x′, for which the model still erroneously predicts fθ (x′) = fθ (x),

even though x′ should be mapped onto a different prediction: the NoAnswer label

of the RC task.

Identifying suitable candidates for alternative inputs x′ can be achieved in man-

ifold ways. A simple option is to search among a large question collection, as seen

in the first example of Table 6.1, but we find this approach to only rarely be suc-

cessful. Composing a new x′ with a generative language model, on the other hand,

is prone to result in ungrammatical or otherwise incoherent text. Instead, we con-

sider a perturbation space XT (x) spanned by perturbing original inputs x using a

perturbation function family T :

XT (x) = {Ti(x) | Ti ∈ T } (6.1)

This space XT (x) contains alternative model inputs derived from x that can be cre-

ated by applying transformations in T . Ideally the transformation function fam-

ily T is chosen in such a way that they become unanswerable given d, i.e. for

x′ ∈ XT (x) : y(x′) = NoAnswer. The space XT (x) will later be used as a search

space, and we will try to identify altered inputs x′ ∈ XT (x) which erroneously re-

tain the same prediction as x: ŷ(x) = ŷ(x′), even though the model should predict

NoAnswer.

2Unanswerable questions are part of the SQUAD2.0 and NEWSQA datasets, but not
SQUAD1.1.
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6.2.2 The Part-of-Speech (PoS) Perturbation Space

We first consider a perturbation space XTP(x) generated by PoS perturbations TP

of the original question. The perturbations TP are defined by swapping individ-

ual tokens with other, PoS-consistent alternative tokens, where we draw from large

collections of tokens of the same PoS types. Large collections of particular lexi-

cal realisations of a given PoS tag can be gathered automatically, e.g. from the RC

training corpus. Any particular transformation changes one token; the result of ap-

plying one such perturbation t1 ∈ TP might then, for example, result in the following

transformation, which exchanges the past tense verb “patronised” with “betrayed”.

q : “Who patronised the monks in Italy?”

t1(q) : “Who betrayed the monks in Italy?”

Individual token substitutions can furthermore be chained. For example, a second

perturbation t2 ∈ TP might result in the following:

q : “Who patronised the monks in Italy?”

t2(q) : “Who patronised the accountants in Italy?”

(t2 ◦ t1)(q) : “Who betrayed the accountants in Italy?”

Applying several individual transformations quickly results in questions that can be

very different from the original. The set of possibilities grows exponentially with

the number of perturbations applied, and the resulting question can be considerably

different from the original and unanswerable given the document d.

There is generally no guarantee that the altered question will actually require

a different answer (e.g. due to synonyms). Even more, there might be type clashes

or other semantic inconsistencies (e.g. “Who built the monks in Italy?”). To avoid

these, we found it useful to disregard perturbations of particular PoS types that

frequently led to only minor changes or incorrectly formed expressions, such as

punctuation or determiners. Concretely, we omit these following tags when per-

turbing questions: “IN”, “DT”, “.”, “VBD”, “VBZ”, “WP”, “WRB”, “WDT”,

“CC”, “MD”, “TO”. Even then, the problem cannot entirely be circumvented. We
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will thus later conduct a qualitative analysis on adversarial attacks derived from this

type of perturbation and quantify the issue of ill-formed questions. About half of the

attacks generated based on this transformation resemble coherent and well-formed

questions which do not accidentally still possess the same correct answer (cf. Sec-

tion 6.4).

6.2.3 The Named Entity Perturbation Space

A different perturbation space XTE (x) generated by the transformation family TE

is created by substituting mentions of named entities in the question with different

type-consistent named entities. These replacements are drawn from a large collec-

tion of named entities (ordered by type), which can again be collected automatically

from a sufficiently large text corpus. For example, a comprehension question “Who

patronised the monks in Italy?” could be altered to “Who patronised the monks

in Las Vegas?”, replacing the geopolitical named entity “Italy” with “Las Vegas”,

chosen from a larger set of entities of this type. We observe that altering named enti-

ties often changes the specifics of the question while keeping it syntactically correct

and semantically coherent. It furthermore specifies a different information request

about a new, unrelated entity, which is unlikely to be satisfied from what is stated in

the given document d, given the generally large number of possible named entities.

While it is again not guaranteed that perturbed questions are in fact unanswerable

or require a different answer, we will find in the later following qualitative analysis

that in the large majority of cases they do (see Section 6.4).

6.2.4 Undersensitivity Attacks

Thus far we have described two different methods for perturbing an original ques-

tion, each with a different space of perturbations. We will use the resulting pertur-

bation spaces XTP(x) and XTE (x) to search for altered inputs x′ for which the model

prediction remains constant, compared to the original question: ŷ(x) = ŷ(x′). In

addition we pose a slightly stricter requirement than only preserving the (argmax)

prediction: fθ should assign a higher probability to the same prediction ŷ(x) = ŷ(x′)
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0.90

0.95

0.99

F. Caroline → R.Oppenheimer Spanish → Hungarian
F.Caroline → Fort Knox 

Given Text: The nearby 
Spanish settlement of St. 
Augustine attacked Fort 
Caroline, and killed nearly all 
the French soldiers defending 
it. The Spanish renamed the 
fort San Mateo […]

q

q0
qadv

Adversarial Example (         ):
What was Robert Oppenheimer renamed to after the Spanish attack?  San Mateo (0.99)

qadv

Original Example (   ):
What was Fort Caroline renamed to after the Spanish attack?  San Mateo (0.98)

q

Figure 6.1: Method Overview: Adversarial search over semantic variations of RC ques-
tions, producing unanswerable questions for which the model retains its pre-
dictions with even higher probability.

than for the original input:

P(ŷ | x′)> P(ŷ | x) (6.2)

That is, we search in a perturbation space for altered questions which result in a

higher model probability for the same answer as the original question. Note that this

is a conservative choice; it rules out cases in which the model might still produce

the same prediction given the altered input, but with less certainty. If we can find

an altered input question that satisfies the inequality (6.2), then we have identified a

successful adversarial attack, and we will refer to it as an undersensitivity attack.

In its simplest form, a search for an adversarial attack in the previously defined

attack spaces amounts to a search over a list of single lexical alterations for the max-

imum (or any) higher prediction probability. We can however recur the replacement

procedure multiple times, arriving at questions with larger lexical distance to the

original question – see Fig. 6.1 for a schematic overview. For example, in two

iterations of named entity replacements, we can alter “What was Fort Caroline re-

named to after the Spanish attack?” to “What was Fort Knox renamed to after the

Hungarian attack?”. Similarly, using PoS-consistent perturbations we could in two

perturbation steps alter the original question “Who was the duke in the battle of

Hastings?” to “Who was the duke in the expedition of Roger?”

Note that the space of possibilities grows combinatorially with increasing per-
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turbation distance from the original question. Thus at some point it becomes com-

putationally infeasible to comprehensively cover the full space arising from iterated

substitutions in an exhaustive search for a successful adversarial attack. To address

this, we follow prior work (Feng et al., 2018) that faced a similar problem when

examining partial input deletions and apply a variation of beam search to narrow

the search space. Concretely, during our search we seek to maximise the difference

∆(x′) = P(ŷ | x′)−P(ŷ | x) (6.3)

That is, any x′ ∈ XT for which ∆(x′) > 0 is satisfied resembles a successful under-

sensitivity attack on x. To find such attacks we conduct beam search with a beam

of width b ∈ N+ up to a maximum perturbation radius ρ ∈ N+, corresponding to

the maximum search depth. Both these hyperparameters are pre-specified and con-

strain the computational search budget of the search for an adversarial input. Once

a single x′ with ∆(x′) > 0 has been discovered the search is stopped: an under-

sensitivity attack has been found. That is, rather than finding the most extreme

adversarial attack (with largest value of ∆) we here only aim to find any success-

ful undersensitivity attack (with ∆ > 0). Using beam search rather than exhaustive

search under-estimates the undersensitivity attack rate since the search space is not

exhaustively covered. However, the worst-case computational time complexity of

this search is linear, rather than the exponential complexity in the worst case of an

exhaustive search.

6.2.5 Relation to Attacks in Prior Work

We again emphasise that the type of adversarial attack considered here stands

in contrast to other attacks on NLP systems which are based on small, semanti-

cally invariant input text perturbations (Belinkov and Bisk, 2018; Ebrahimi et al.,

2018; Ribeiro et al., 2018b) which highlight oversensitivity problems. Semantic

invariance comes with stronger requirements and may rely on synonym dictionar-

ies (Ebrahimi et al., 2018) – which are either incomplete or potentially mismatching

the context – or paraphrases harvested from back-translation (Iyyer et al., 2018),
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which can be noisy. Our attack is instead focused on undersensitivity, i.e. where

the model is stable in its prediction even though it should not be. Consequently

the requirements for perturbation spaces that alter the question meaning are less

difficult to fulfil, and one can rely on sets of named entities and PoS examples

automatically extracted from large text collections. In additional contrast to prior

attacks (Ebrahimi et al., 2018; Wallace et al., 2019a) we evaluate each perturbed

input with a standard forward pass, rather than a first-order Taylor approximation

to estimate the output change induced by a change in the input. This is less effi-

cient but exact, and furthermore does not require white-box access to the model and

its parameters, as opposed to the attacks formulated by Ebrahimi et al. (2018) and

Wallace et al. (2019a).

Our method does not require a human in the loop to adversarially compose

questions (Wallace et al., 2019b). On the other hand, it can be seen as connected

to previous work (Kang et al., 2018; Minervini and Riedel, 2018) which leverages

domain knowledge to generate adversarial inputs. Adopting this perspective, we

leverage the idea that modifying, e.g., named entities in a question will likely alter

the nature of its information request. The substitution-based approach is further-

more open to extension by restricting the altered expressions under consideration,

e.g. based on WordNet (Miller, 1995).

6.2.6 Relation to Prior Work on Undersensitivity

A related viewpoint to undersensitivity is the one of model diagnosis, with the goal

of identifying minimal feature sets that are sufficient for a model to form high-

confidence predictions (Ribeiro et al., 2018a). In contrast to model diagnosis and

other prior work (Feng et al., 2018) showing that it is possible to reduce inputs to

minimal input word sequences without changing a model’s predictions, we consider

concrete natural language alternative questions. We will later furthermore address

the observed undersensitivity using additional training data, whereas prior work

highlights the problem but does not provide an effective defence (Feng et al., 2018;

Ribeiro et al., 2018a). Specifically in dialogue models, undersensitivity has been

identified and addressed with a max-margin training approach (Niu and Bansal,
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2018). We see our study as an addition and continuation of this previous work

on model undersensitivity, with a particular focus set on undersensitivity in extrac-

tive RC.

6.2.7 Unanswerable Questions in Reading Comprehension

A central premise of the undersensitivity attack we have described above, is that

models have the ability to give a NoAnswer prediction. Following the publica-

tion of adversarial attacks (Jia and Liang, 2017) on the SQUAD1.1 dataset, the

SQUAD2.0 dataset was proposed (Rajpurkar et al., 2018), which includes more

than 43,000 new and human-curated unanswerable questions into SQUAD. Another

dataset with unanswerable question is NEWSQA (Trischler et al., 2017), which

comprises questions about news texts. Training on these datasets should result in

models that have learned to predict whether questions are answerable or not. We

will however see in the subsequent experiments that this ability does not extend to

the adversarially chosen unanswerable questions in our undersensitivity attacks. To

improve model’s performance on unanswerable questions, prior work includes ad-

ditional verification steps (Hu et al., 2019) or uses synthetic data (Zhu et al., 2019;

Alberti et al., 2019), which coincides with one of the adversarial defences we will

later test.

6.3 Experiments: Model Vulnerability

6.3.1 Training and Dataset Details

We next conduct experiments using the attacks laid out above to investigate model

undersensitivity. We first attack the BERT model (Devlin et al., 2019) fine-tuned

on SQUAD2.0 (Rajpurkar et al., 2018), and measure to what extent the model ex-

hibits undersensitivity when adversarially choosing input perturbations. Note that

SQUAD2.0 per design contains unanswerable questions in both training and eval-

uation sets; models are thus trained to predict a NoAnswer option where a compre-

hension question cannot be answered.

In a preliminary pilot experiment, we first train a BERT LARGE model on the

full training set for 2 epochs, where it reaches 78.32%EM and 81.44%F1, in close
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range to the results (78.7%EM and 81.9%F1) reported by Devlin et al. (2019). We

then however choose a different training setup as we would like to conduct adver-

sarial attacks on data entirely inaccessible during training: we split off 5% from

the original training set for development purposes and retain the remaining 95% for

training, stratified by articles. We use this development data to tune hyperparame-

ters and perform early stopping, evaluated every 5,000 steps with a batch size of 16

and maximum patience of 5, and will later tune hyperparameters for defence on it.

The original SQUAD2.0 development set is then used as evaluation data, where the

model reaches 73.0%EM and 76.5%F1. We will search for undersensitivity attacks

on this entirely held out portion of the dataset.

6.3.2 Attack Details

To compute the perturbation spaces, we collect large sets of string expressions

across Named Entity (NE) and PoS types to define the perturbation spaces TE and

TP, which we gather from the Wikipedia paragraphs used in the SQUAD2.0 train-

ing set, with the pretrained taggers in spacy3 and the Penn Treebank tag set for PoS.

This results on average in 5,126 different entities per entity type, and 2,337 different

words per PoS type. As the number of possible perturbations to consider for each

given question reaches into the thousands, we constrain beam search further: we

limit beam search at each iteration step to a maximum of η randomly chosen type-

consistent entities, or lexical realisations of PoS tags, re-sampling these selections

at each level of the search and for each new attack. Overall the worst case bound

on the total computation spent on adversarial search is thus b ·ρ ·η model evalua-

tions per sample (ρ being the perturbation ’radius’ or maximum search depth). We

set beam width to b = 5 throughout. If the number of expressions to potentially

be substituted in the question (e.g. the number of named entities) exceeds ρ , the

search still explores further perturbations of these expressions different to previ-

ously examined perturbations, since η new alternative substitutions are re-sampled

randomly at each level of the search.

3https://spacy.io

https://spacy.io
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Figure 6.2: BERT LARGE on SQUAD2.0: vulnerability to noisy Part of Speech-
perturbation attacks on held out data for differently sized attack spaces (pa-
rameter η) and different beam search depth (perturbation radius ρ).

6.3.3 Evaluation: Adversarial Error Rate

Covering the full, exponentially-sized search space defined by iteratively applying

transformations to a question would come at significant computational cost, hence

the use of beam search as a heuristic. The hyperparameters involved in this beam

search do however influence the portion of the perturbation space covered during

adversarial search, hence it is important to measure adversarial error rates as a func-

tion of the computational budget used. We thus quantify adversarial vulnerability as

a function of different computational search budgets, which are defined by different

values of η and ρ . We measure vulnerability to the described attack by calculating

the proportion of evaluation samples for which at least one undersensitivity attack

is found given a computational search budget and name this the Undersensitivity

Error Rate. We disregard samples where a model predicts NoAnswer already for

the original question, since altering unanswerable samples likely retains their unan-

swerability and a successful attack on these does not carry the same implications on

undesirable model behaviour.

6.3.4 Experimental Outcome: Model Undersensitivity

Figures 6.2 and 6.3 summarise the undersensitivity error rates for both types of

question perturbation across a variety of search budgets. We observe that attacks
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Figure 6.3: BERT LARGE on SQUAD2.0: vulnerability to noisy Named Entity-
perturbation attacks on held out data for differently sized attack spaces (pa-
rameter η) and different beam search depth (perturbation radius ρ).

based on PoS perturbations can already for very small search budgets (η = 32,

ρ = 1) reach more than 60% attack success rates, and this number can be raised to

as much as 95% with a larger computational budget. Furthermore we empirically

observe a direct and monotonic dependence of undersensitivity error rate on both

the maximum perturbation radius ρ , and also on the number η of randomly sampled

perturbations at each search level. For perturbations based on NE substitution, we

observe a qualitatively very similar dependence on the computational search bud-

get parameters. While for NE-based attacks we observe overall much lower attack

success rates than for PoS-based perturbations, we find that more than half of the

samples can be successfully attacked when given a sufficient budget. Given the

observed progression in adversarial error rates, increasing the attack budgets fur-

ther (in particular via η) is likely to result in further increased attack rates, although

the marginal increases appear to slowly decrease. Note that for samples x where an

attack is found, we observe that there often exist not only one x′ with ∆(x′)> 0, but

several successful attacks.

In summary, these results show that the BERT model, trained on SQUAD2.0,

is vulnerable to undersensitivity attacks: a considerable number of samples can suc-

cessfully be attacked for both perturbation types tested. This suggests that the model

prediction procedure indeed lacks specificity towards particular aspects of the infor-
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Figure 6.4: Vulnerability to undersensitivity attacks on NEWSQA.

mation request formulated in the comprehension questions. Even though trained to

tell when questions are unanswerable, the model can be brought to fail more than

half of the time when facing adversarially selected unanswerable questions, already

with a limited search budget.

6.3.5 Experiment: NEWSQA

To test undersensitivity on a second dataset, we next consider the NEWSQA

dataset (Trischler et al., 2017), which – like SQUAD2.0– contains unanswerable

questions. As annotators often do not fully agree on their annotation in NEWSQA,

we opt for a conservative choice and filter the dataset, retaining only those samples

with the same majority annotation, following the pre-processing pipeline of prior

work (Talmor and Berant, 2019).

Fig. 6.4 depicts the vulnerability of a BERT LARGE model trained and eval-

uated on NEWSQA under attacks using NE perturbations. We again observe a

considerable proportion of undersensitivity errors – albeit lower rates than for

SQUAD2.0; the overall dependence of the undersensitivity error rate on the com-

putational attack budget parameters is again similar to the one previously observed.

The presence of undersensitivity errors also on NEWSQA suggests that this phe-

nomenon is not confined to one particular dataset, but a more general issue of RC

models – even when trained on datasets including unanswerable samples.
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6.3.6 Side Experiment: SQUAD1.1

We next briefly investigate undersensitivity attacks using NE-based perturbations

on SQUAD1.1. This allows for a tentative assessment of the addition of unanswer-

able samples into the training data in the context of undersensitivity. Since there

is however no NoAnswer label in SQUAD1.1, the appropriate behaviour for unan-

swerable questions is not well-defined, complicating the interpretation of results

regarding undersensitivity.

Using exactly the same model and experimental setup as for SQUAD2.0 (but

trained on SQUAD1.1 and without the ability to predict NoAnswer), we see that

when BERT is trained on SQUAD1.1, it is even more adversarially vulnerable (in

the sense of a large sample fraction for which alternative questions can be found that

satisfy Inequality 6.2). The “undersensitivity error rate”4 reaches 70% already with

a search budget of η = 32; ρ = 1 (compared to 34% on SQUAD2.0). That is, under-

sensitivity is a much larger issue for SQUAD1.1 than for SQUAD2.0. The notable

drop in undersensitivity error rate between versions 1.1 and 2.0 of the SQUAD

dataset suggests that adding unanswerable questions might be an effective means to

mitigate model undersensitivity – a route we will pursue later in Section 6.6.

6.4 Qualitative Analysis of Attacks
The perturbation spaces for the undersensitivity attack are designed to retain the

syntactic or semantic structure of the original question, while altering its concrete

information request. However the PoS and NER tag predictions contain potential

errors, and the introduced substitutions are not guaranteed to always result in syn-

tactically and semantically coherent expressions, or indeed have a different correct

answer than the original question.5 To gauge the extent of this potential issue, we

4Referring to this metric as an “error rate” is not necessarily justified given the inability of
SQUAD1.1 models to predict a NoAnswer label.

5There are different opinions on whether or not to consider successful adversarial attacks based
on ill-formed questions as problematic. On the one hand, a model’s desirable behaviour is not well
defined for such inputs; evaluating a model on non-sensical comprehension questions is in itself not
very useful. On the other hand it can – like for well-formed questions – demonstrate that the question
processing of the model is not as sensitive as it perhaps should be to the expression that has been
substituted from the original question, even if its replacement is nonsensical.
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PoS NE

Syntax Error 10% 6%
Semantically Incoherent 24% 5%
Same Answer 15% 5%
Valid Attack 51% 84%

Table 6.2: Quantitative results for the analysis of undersensitivity attack samples for both
PoS and named entity (NE) perturbations.

inspect 100 successful attacks conducted at ρ = 6 and η = 256 on SQUAD2.0,

both for PoS-based and NE-based perturbations. We label them according to the

following schema:

1. Syntax Error: e.g. “What would platform lower if there were fewer peo-

ple?”. Such cases are mostly due to cascading errors stemming from wrong

NE / PoS tag predictions.

2. Semantically Incoherent: e.g. “Who built the monks?”

3. Same Answer: Questions that require the same correct answer as the origi-

nal, e.g. due to a paraphrase.

4. Valid Attack: Questions that would either demand a different answer than

the original question or are unanswerable, given the text (e.g. “When did the

United States withdraw from the Bretton Woods Accord?” and its perturbed

version “When did Tuvalu withdraw from the Bretton Woods Accord?”)

When labelling the attacks according to this schema, a single option of these four

alternatives is selected. Where several could apply (e.g. with both a syntactic and

a semantic incoherence issue) labels are selected in the above presented order with

higher items receiving higher priority. For illustration, Table 6.3 shows several

example attacks alongside their selected labels.

In Table 6.2 we then summarise the results of this analysis quantitatively for

both perturbation types. First, we observe that a non-negligible portion of altered
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Original / Modified Question Prediction Annotation Scores

What city in Victoria is called the cricket ground of Melbourne valid 0.63/0.75
Australia the Delhi Metro Rail Corporation Limited ?

What ethnic neighborhood in Fresno Kilbride had Chinatown valid 0.998/
primarily Japanese residents in 1940? 0.999

What are some of the accepted general principles of fundamental valid 0.59/0.61
European Union Al-Andalus law? rights [...]

The Mitchell Tower MIT is designed to look like what Magdalen valid 0.96/0.97
Oxford tower? Tower

What were the annual every year carriage fees for £30m same answer 0.95/0.97
the channels?

What percentage of Victorians are Christian Girlish ? 61.1% valid 0.92/0.93

What does the EU’s legitimacy digimon rest on? the ultimate valid 0.38/0.40
authority of [...]

What is Jacksonville’s hottest recorded temperature atm ? 104◦F valid 0.60/0.62

Which plateau is the left part achievement of Warsaw on? moraine semantic 0.52/0.58
inconsistency

Q: Who leads the Student commissioning Government? an Executive same answer 0.61/0.65
Paragraph: [...] Student Government is made up Committee
of graduate and undergraduate students [...]. It is led
by an Executive Committee, chaired by [...]

Table 6.3: Example adversarial questions ( original , attack ), together with their annota-
tion as either a valid counterexample or other type. Top 5 rows: perturbations
based on Named Entity substitutions. Bottom 5 rows: perturbations based on
PoS substitutions. The last column lists the prediction probability assigned by
the model for the original / attack question. For clarification of the last example
the respective WIKIPEDIA paragraph is shown.

questions indeed has some form of syntax error or incoherent semantics, in par-

ticular for PoS-based perturbations. About a quarter of the attacks based on PoS-

perturbations have some sort of semantic incoherence (e.g. “What year did the case

go before the supreme court?” vs. its perturbed version “What scorer did the case

go before the supreme court?”).

Questions with the same correct answer are comparatively rare, though again

more prevalent with PoS-based perturbations than with the NE-based ones. Overall,

with 84% the attacks based on NE perturbations are more often valid, featuring

fewer problems of any type compared to those based on PoS perturbations, for

which only about half of all attacks are valid.
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6.4.1 Discussion

Our analysis shows that far from all of the identified attacks are indeed valid ones.

For example, with approximately 51% of valid PoS attacks and a vulnerability of

95% (η=256, ρ = 6), only about half of the attacks can be considered valid (0.51 ·
0.95 ≈ 0.48). But even with our restriction of using beam search and considering

only η perturbations per level, there is usually more than one successful attack per

sample. Our qualitative analysis, on the other hand, only considers one of them.

The above calculated number of 48% is hence rather a lower bound on the extent of

the model’s adversarial vulnerability to valid and well-formed questions.

It is further worth noting that the observed problems, especially for PoS-type

perturbations, are a consequence of imperfectly characterising the natural language

perturbation space to search in: not all perturbations result in well-formed ques-

tions, thus introducing noise into the adversarial search space. While the results

of the qualitative analysis diminish the empirical weight of the quantitative results

of the undersensitivity experiment, we believe that the underlying issue is one of

an imperfect metric derived using noisy attack spaces (thus also counting invalid

attacks), rather than a lack of model undersensitivity to valid perturbations. Never-

theless, since the named entity-based attacks have a substantially larger fraction of

valid alternative questions as attack, we will for the remainder of this chapter focus

our study on NE-based attacks.

6.5 Characterising Vulnerable Data Points

Even with noisy attacks, we have empirically established that the BERT model is

vulnerable to undersensitivity adversaries. However not all samples were success-

fully attacked. Naturally, this gives rise to the following question: what distin-

guishes those samples that can from those samples that cannot be attacked by an

undersensitivity adversary? We will next investigate various characteristics of the

questions and perturbations, with the aim of understanding causes of the undersen-

sitivity vulnerability. For all subsequent characterisations we rely on adversarial

attacks on SQUAD2.0 based on NE perturbations computed with an adversarial



176 Chapter 6. Exploring Undersensitivity of Neural RC Models

search budget of ρ = 6 and η = 256.

A first observation is that questions that can be attacked tend to produce lower

original prediction probabilities with an average of only 72.9% prediction confi-

dence, compared to 83.8% for questions without a successful attack found using

the given search budget. That is, there exists a direct inverse link between a model’s

original prediction probability and a sample’s vulnerability to an undersensitivity at-

tack. The adversarially chosen questions then have an average probability of 78.2%,

i.e. a notable gap to the original questions.6

Second, the BERT model generally struggles to give the correct prediction

for the vulnerable samples: they are less likely to be given the correct answer

prediction by the model. Concretely, evaluation metrics for vulnerable examples

are only 56.4% / 69.6% EM/F1, compared to 73.0%/76.5% on the full dataset, or

77.1%/83.3% on answerable questions.7 An RC model’s vulnerability to an under-

sensitivity attack on a particular sample is thus a negative predictor for the model’s

accuracy on this sample. A possible explanation for this observation is that if a

model builds a poor representation of the particular information request specified in

the comprehension question, which is reflected in its vulnerability to an undersen-

sitivity attack, then it is also more likely to be wrong about its prediction.

Next, we observe that questions of vulnerable samples are on average slightly

longer: their mean length is 12.3 tokens, compared to 11.1 tokens for questions not

found vulnerable to the undersensitivity attack. When we consider the distribution

of different question types (What, Who, When, ...) for both successfully attacked and

samples without attack, we do not observe notable differences apart from the single

most frequent question type What; it is more prevalent among samples without

attack (56.4%) than under successfully attacked samples (42.1%). This is by far the

most common question type; it is furthermore comparatively open-ended, i.e. does

not prescribe particular type constraints to its answer, as e.g., a Where question

would require a location, or a When question usually requires a date. A possible

6It is worth noting again that the adversarial search in our above experiment halts as soon as a
single question with higher answer probability than the original is found; hence it is likely that a
more thorough search can identify adversarial attacks with higher probabilities, on average.

7Answerable questions are those where a is not the NoAnswer label.
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Figure 6.5: Named entity type characteristics of successfully vs. unsuccessfully attacked
samples.

explanation for the prevalence of the What questions among the samples without

attack is that when the model forms its predictions on these questions, it cannot rely

as much on type constraints to the answer as predictive cue and shortcut, and is thus

less prone to adversarial exploitation. In Section 6.7.3 we will pursue this avenue

further and examine undersensitivity behaviour in the context of very predictive

type constraints.

Finally, in Fig. 6.5 a histogram shows the 10 most common named entity tags

appearing in samples without attack, contrasting them to the corresponding fraction

in successfully attacked samples. Besides one exception, the distributions are re-

markably similar: undersensitivity can be found across entity types. Questions with

geopolitical entities (GPE), however, are particularly error-prone. A possible ex-

planation for this observation could be that (non-contextualised) embeddings tend

to cluster geopolitical entities (e.g. countries), thus rendering it harder for a model

to distinguish them based on their respective embeddings (Mikolov et al., 2013b).

Such vector similarity could be the reason for the model’s lack of discrimination be-

tween these entities, although the GPEs here are multi-word expressions and their

embeddings computed based on further contextual information (Devlin et al., 2019).

6.5.1 Transferability of Adversarial Attacks between Models

Prior work has pointed out that the same adversarial attacks can generalise between

different models (Feng et al., 2018; Wallace et al., 2019a), which would suggest that

adversarial vulnerability might be a consequence of the training data, the training

method, or the pre-training data – rather than the particular model architecture. We
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conduct an experiment where we train the ROBERTA model (Liu et al., 2019), also

on SQUAD2.0, and carry out NE-based undersensitivity attacks with ρ = 6 and

η = 256.

With 35%, the attack rates for ROBERTA are lower than for BERT (53%),

nevertheless a considerable number of samples is vulnerable. That is, the improved

pre-training of ROBERTA, which leads to improved nominal generalisation results

on the SQUAD2.0 test set compared to BERT, also alleviates model undersensitiv-

ity, which for BERT we previously observed is negatively correlated with nominal

generalisation performance.

But indeed, the more striking result is about the transferability of adversarial

vulnerability: there is a substantial overlap between the sets of vulnerable samples

of the two models. While overall successfully attacked less often, when considering

only those samples for which RoBERTa was successfully attacked, BERT has an

undersensitivity error rate of 90.7%. That is, the vulnerability of a sample to an

undersensitivity attack on RoBERTa predicts the vulnerability of the same sample

also for BERT.

Moreover, even concrete adversarial inputs chosen based on RoBERTa can

transfer to the BERT model. Feeding specific pairs of original and adversarial ques-

tion selected using the RoBERTA model as inputs to the BERT model leads to a

successful attack on BERT for 17.5% of these samples. For illustration, one such

example of an attack that is transferable between the models is shown in Table 6.4.

The large overlap of vulnerable data points between the two models suggests

that the vulnerability to undersensitivity attacks might partially be dependent on

the training data used to tune these models. In the next section we will consider

altering the data points that the model is exposed to during training, and observe that

changing the training data indeed affects the model’s undersensitivity behaviour.
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Given Text James Hutton is often viewed as the first modern geologist.
In 1785 he presented a paper entitled Theory of the Earth
to the Royal Society of Edinburgh. [...]

Question: In 1785 James Hutton Jacob Ettlinger presented what paper
to the Royal Society of Edinburgh?

Prediction (BERT): Theory of the Earth 99.9% / 99.9% (Difference: +0.05%)
Prediction (RoBERTA): Theory of the Earth 99.3% / 99.6% (Difference: +0.30%)

Table 6.4: An example where a concrete adversarial undersensitivity attack identified on
RoBERTA is transferable to a BERT model, where it also presents a valid at-
tack. Expressions highlighted in green / red belong to the original/adversarial
question.

6.6 Defending Against Undersensitivity Attacks

6.6.1 Defence Baselines

We will now investigate methods for mitigating a model’s undersensitivity. Prior

work has considered both data augmentation and adversarial training as methods to

achieve more robust models with decreased adversarial vulnerability; we will con-

duct experiments with both. However, introducing an additional objective to im-

prove a model’s robustness can negatively impact standard test metrics, and there is

a natural trade-off between performance on one particular test set, and performance

on a dataset comprising adversarial inputs (Tsipras et al., 2019).

The two defences we test both make use of additional training samples in an

attempt to improve a model’s undersensitivity. We denote with Ω the standard (orig-

inal) training dataset; our defence methods then each include a new set of (sampled)

data points Ω′ that contributes to the training loss. Concretely, we perform both data

augmentation and adversarial training by adding a corresponding loss term to the

standard log-likelihood training objective:

LTotal = Lllh(Ω)+λ ·Lllh(Ω′) (6.4)

where Ω is the standard training data, fit with a discriminative log-likelihood objec-

tive, Ω′ either a set of (sampled) augmentation data points, or of successful adver-

sarial attacks where they exist, and λ > 0 a hyperparameter. In data augmentation,

we randomly sample perturbed input questions, whereas in adversarial training we
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perform an adversarial search to identify them. In both cases, alternative data points

in Ω′ will be fit using a log-likelihood objective to a NULL label corresponding to

the NoAnswer prediction on the SQUAD2.0 and NEWSQA datasets we examine.

In data augmentation we sample randomly perturbed input questions from the

same perturbation spaces used for the undersensitivity attacks. We update these data

points throughout training, and we sample them in equal proportion to the original

data, but weigh their relative contribution to the loss using λ . Irrespective of the

probability assigned for the answer to the original question, the target label for the

new data points in Ω′ is the NULL label. During training, the model is then not only

exposed to the original training samples, but also to structurally similar but unan-

swerable samples. Our hope is that the presence of these closely related ‘negative’

samples encourages the model to become more specific to the given entities in the

question, and thus less undersensitive.

The second defence we test is adversarial training: here we perform, in every

training step, an adversarial search to identify successful adversarial attacks. As this

requires several forward passes in the inner training loop, we restrict ourselves to a

relatively low adversarial search budget (η = 32,ρ = 1). We emphasise that while

the original training data Ω remains constant throughout training, we continuously

update Ω′ in order to reflect adversarial samples based on the current model.

6.6.2 Experimental Setup

We train a BERT LARGE model on SQUAD2.0 and tune the hyperparameter

λ ∈ {0.0,0.01,0.1,0.25,0.5,0.75,1.0,2.0}. We tune the threshold for predicting

NoAnswer based on validation data and report results on our test set (the original

SQUAD2.0 dev set). All experiments are run with batch size 16 and NE perturba-

tions for both attacks and defences. Where no attack is found for a given question

during adversarial training, we redraw standard samples from the original training

data and use these instead of adversarial samples (with their original, annotated la-

bel). We evaluate the model on its validation data every 5,000 training steps and

perform early stopping with a patience of 5 based on the F1 score on the validation

data. Following the same experimental protocol, we also experiment with a BERT
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SQUAD2.0 Undersensitivity Error Rate HasAns NoAns Overall
Adv. budget η @32 @64 @128 @256 EM F1 EM/F1 EM F1

BERT LARGE 44.0 50.3 52.7 54.7 70.1 77.1 76.0 73.0 76.5
+ Data Augment. 4.5 9.1 11.9 18.9 66.1 72.2 80.7 73.4 76.5
+ Adv. Training 11.0 15.9 22.8 28.3 69.0 76.4 77.1 73.0 76.7

Table 6.5: Breakdown of undersensitivity error rates (lower is better) for different adver-
sarial search budgets η , and standard performance metrics (EM, F1; higher is
better) on different subsets of the SQUAD2.0 evaluation data, all in [%].

NEWSQA Undersensitivity Error Rate HasAns NoAns Overall
Adv. budget η @32 @64 @128 @256 EM F1 EM/F1 EM F1

BERT BASE 34.2 34.7 36.4 37.3 41.6 53.1 61.6 45.7 54.8
+ Data Augment. 7.1 11.6 17.5 20.8 41.5 53.6 62.1 45.8 55.3
+ Adv. Training 20.1 24.1 26.9 29.1 39.0 50.4 67.1 44.8 53.9

Table 6.6: Breakdown of undersensitivity error rates (lower is better) for different adver-
sarial search budgets η , and standard performance metrics (EM, F1; higher is
better) on different subsets of the NEWSQA evaluation data, all in [%].

BASE model on the NEWSQA dataset.

6.6.3 Results and Discussion

Can the two defence strategies reduce a model’s undersensitivity error rate? How

are the standard performance metrics affected by this? The results of the experi-

ments for the two datasets can be found in Table 6.5 and Table 6.6.

A first, and very robust observation is that both data augmentation and adver-

sarial training substantially reduce the number of undersensitivity errors the model

commits – consistently across all adversarial search budgets, and consistently across

both datasets. That is, the addition of “negative”, unanswerable training samples

can indeed reduce a model’s undersensitivity. Both defence methods are effective

and relieve – but do not entirely rid – the model of undersensitivity errors. Notably

the improved robustness – especially for data augmentation – is possible without

sacrificing performance in the EM and F1 standard metrics; we even see slight im-

provements.

Next we observe that data augmentation is generally a more effective defence

training strategy than adversarial training (at least in the form tested here). This

potentially hints at adversarial overfitting, but might also be a consequence of the
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relatively low adversarial search budget used during training; further experiments

would be needed to draw more robust conclusions.

Finally, a closer inspection of how performance changes on answer-

able (HasAns) vs. unanswerable (NoAns) samples of the datasets reveals that mod-

els with modified training objectives have improved performance on unanswerable

samples, while sacrificing performance on answerable samples.8 This suggests that

the trained models – even though similar in standard metrics – evolve on different

paths during training, and that modifying their training objective prioritises fitting

unanswerable questions to a higher degree.

6.7 Positive Consequences of Reduced Undersensi-

tivity

6.7.1 Generalisation to New Perturbations

The previously reported results in Tables 6.5 and 6.6 are computed using the same

perturbations at training and evaluation time. The perturbation space is relatively

large, with on average several thousand entries per NE tag, and evaluation questions

are furthermore posed about a set of articles disjoint from those used during training.

Nevertheless there is a potential risk of overfitting to the particular perturbations

used in the adversarial defences. Does the improved undersensitivity behaviour

for the set of perturbations used during training translate to new perturbations with

previously unseen named entities?

To measure the extent to which the defences generalise also to new, held out

sets of perturbations, we assemble a new, disjoint perturbation space, and evaluate

models on attacks with respect to these perturbations. Named entities are chosen

from English WIKIPEDIA using the same method as for the training perturbation

spaces, and chosen such that they are disjoint from the training perturbation space.

Furthermore we ensure that the new space has an identical number of NE expres-

sions per NE type as before, to rule out that differences in size are responsible for

8Note that the NoAnswer prediction threshold is fine-tuned after training on the respective vali-
dation sets.
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SQUAD2.0 Undersensitivity Error Rate
Adv. budget η @32 @64 @128 @256

BERT LARGE 40.7 45.2 48.6 51.7
+ Data Augment. 4.8 7.9 11.9 20.7
+ Adv. Training 9.2 12.2 16.5 23.8

Table 6.7: Breakdown of undersensitivity error rate on SQUAD2.0 with a held-out pertur-
bation space (lower is better).

NEWSQA Undersensitivity Error Rate
Adv. budget η @32 @64 @128 @256

BERT BASE 32.8 33.9 35.0 36.2
+ Data Augment. 3.9 6.5 11.9 17.5
+ Adv. Training 17.6 20.7 25.4 28.5

Table 6.8: Breakdown of undersensitivity error rate on NEWSQA with a held-out perturba-
tion space (lower is better).

any of our observations. We then conduct adversarial attacks using these new at-

tack spaces on the previously trained models. Vulnerability results for these new,

held-out perturbation spaces, disjoint from those used during training, can be found

in Table 6.7 for SQUAD2.0, and in Table 6.8 for NEWSQA.

We observe that both the vulnerability rates of the original model, and – re-

markably – also the relative and absolute success of the defences transfers to the

new set of perturbations. This demonstrates that adding closely related unanswer-

able samples during training leads to benefits that are not confined to a narrow set

of specific perturbations used during training, but hold more broadly for a similarly

large set of new perturbations as well.

6.7.2 Improved Robustness on Adversarial SQUAD

How does data augmentation with closely related unanswerable samples affect

the model’s robustness to adversarial samples from an oversensitivity attack? We

next compare the original BERT LARGE model, and a BERT LARGE model

trained with the data augmentation defence on the ADDSENT and ADDONESENT

datasets (Jia and Liang, 2017).

These datasets contain adversarially composed samples about WIKIPEDIA ar-
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ADDSENT ADDONESENT DEV 2.0
EM F1 EM F1 EM F1

BERT Large 61.3 66.0 70.1 74.9 78.3 81.4
BERT Large+Aug. 64.0 70.3 70.2 76.5 78.9 82.1

Table 6.9: Comparison between BERT LARGE and BERT LARGE + Data Augmentation
Training on two sets of adversarial examples: ADDSENT and ADDONESENT

from Jia and Liang (2017).

ticles and test in particular how well models react to the adversarial injection of

new sentences (with high degrees of lexical overlap to the question) into the given

paragraph. It has been shown that across a wide range of models, RC model perfor-

mance on these questions drops compared to standard SQUAD questions (Jia and

Liang, 2017), demonstrating that models overly rely on surface cues – in particu-

lar lexical overlap and answer type – when forming their prediction. We train the

BERT LARGE model on the full SQUAD2.0 training set; for data augmentation

we set λ to 1.0.

Our results, summarised in Table 6.9, show that the data augmentation defence

improves the EM and F1 scores of BERT LARGE on ADDSENT and ADDONE-

SENT, boosting F1 by 4.3 and 1.6 points on the two datasets, respectively. That is,

when adding structurally related “negative” examples during training, the model’s

robustness when adversarially inserting distracting text into the given paragraph im-

proves. This demonstrates that adding such training samples positively affects the

model’s specificity not only when processing the information request formulated in

the question, but also in the given paragraph – it does not get distracted as easily.

6.7.3 Generalisation in a Biased Data Setting

As we have already observed several times in this thesis, datasets for high-level

NLP tasks often come with annotation and selection biases. Models can then learn

to exploit shortcut triggers which are dataset- but not task-specific (Jia and Liang,

2017; Gururangan et al., 2018). For example, a model might be confronted with

question / paragraph pairs which only ever contain one type-consistent answer span,

e.g. mention only a single number in the paragraph for a “How many...?” question.
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Person Date Numerical
EM F1 EM F1 EM F1

Data Setting I (w/ data bias): GQA 53.1 61.9 64.7 72.5 58.5 67.6
BERT BASE 66.0 72.5 67.1 72.0 46.6 54.5
BERT BASE + Augmentation 67.4 72.8 68.1 74.4 56.3 64.5

Data Setting II (w/ data bias): BERT BASE 55.9 63.1 48.9 58.2 38.7 48.0
BERT BASE + Augmentation 59.1 66.6 58.4 65.6 48.7 58.9

Data Setting III (w/o data bias): BERT BASE 69.2 78.1 73.2 81.7 69.6 80.5

Table 6.10: Training with augmented data leads to improved generalisation under train/test
distribution mismatch (w/ data bias, Data Settings I and II). Data Setting I: di-
rect comparison to prior work (Lewis and Fan, 2019). Data Setting II: Dataset
splits stratified by article + held out development set; Data Setting III: Con-
trol experiment shuffling all data points, i.e. with no train/test distribution mis-
match.

To solve the task it is then sufficient – and indeed a viable strategy – for the model

to learn to pick out numbers from text – irrespective of other information given in

the question. Such a model might then have trouble generalising its RC capabilities

to articles that mention several numbers, as it has never learned that it is neces-

sary to take into account other relevant information specified in the comprehension

question.

We now test models in such a scenario: a model is trained on SQUAD1.1

questions with paragraphs containing only a single type-consistent answer expres-

sion for either a person, date, or numerical answer. At test time, we present it with

question / article pairs of the same respective question types, but now there are

multiple possible type-consistent answers in the paragraph. We obtain such data

after correspondence from the authors of prior work (Lewis and Fan, 2019), who

first described this biased data scenario. We will test three data settings (I-III) for

three categories of answer types (Person, Date, Numerical). The results of all these

experiments are summarised in Table 6.10.

In the first setting (Data Setting I), we compare both a standard BERT BASE

transformer model, and a model trained to be less vulnerable to undersensitivity

attacks using the data augmentation defence. We follow the data setup used in

prior work (Lewis and Fan, 2019) for direct comparison to the GQA model (not

holding aside a dedicated validation set, selecting hyperparameters based on the fi-
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nal evaluation set performance). We find that the augmentation defence improves

the model’s performance on the test set with a different data bias, for all three

data categories (Person, Date, Numerical). Furthermore, the model outperforms

GQA (Lewis and Fan, 2019) in two of the three subtasks, although this may be

partially due to the usage of BERT.

While allowing for a direct comparison with prior work, the hyperparameter

selection in Data Setting I is not ideal. Thus, in Data Setting II we conduct the

same experiment once again, splitting the dataset into a training, development, and

a test set. We train on the same training data as before, but split the original test set

with a 40/60% split, stratified by article, into development and test data.9 Again, we

observe considerable improvements when using data augmentation – across metrics

and all three types of answer categories.

Finally, in Data Setting III we perform a control experiment: we join and shuf-

fle all data points from train / dev / test (of each question type, respectively), and

split the dataset into new parts of the same sizes as before in Data Setting II. The

resulting data distribution is thus identical during training and evaluation, i.e. we

observe both one and several type-consistent answers during training and during

evaluation (w/o data bias setting). We observe a much stronger generalisation model

performance in Data Setting III, which does not have the data bias of Settings I and

II. The considerable gap to the previously computed results confirms that models

trained on biased data with only one type-consistent answer (Settings I and II) in-

deed learn to rely on the shallow cue of type consistency for predicting the answer

– which negatively impacts the model’s performance on the evaluation questions

with several type-consistent answers in Settings I and II. Training the model with

structurally similar unanswerable samples based on NE perturbations – as is done

in data augmentation – considerably reduces this gap. This indicates that the al-

tered training data encourages the model to rely on information other than merely

type consistency; consequently it generalises better to the evaluation questions in

Settings I and II.

9Note that 40% and 60% are only approximate due to stratification by article; the closest possible
split point is selected.
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These experiments demonstrate that the negative training signal stemming

from related – but unanswerable – questions counterbalances the signal from an-

swerable questions in such a way that the model learns to better take into account the

relevant information in the question. This allows it to correctly distinguish among

several type-consistent answer possibilities in the text, which the standard BERT

BASE model does not learn well.

6.8 Conclusion
In this chapter we have investigated a problematic behaviour of RC models – being

undersensitive, i.e. overly stable in their predictions when given semantically altered

questions. Undersensitivity focuses on a model’s excessive prediction invariance,

i.e. the problem that when input text is meaningfully changed, the model’s predic-

tion does not change even though it should. This makes it a complementary problem

to most prior work on adversarial attacks in NLP, which has studied semantically

invariant text perturbations that cause a model’s prediction to change when it should

not. We have analysed the resulting attacks qualitatively, established their level of

noisiness, and identified characteristics that distinguish successfully attacked sam-

ples from those without an attack. Furthermore, the prevalence of successfully at-

tacked samples changes depending on the availability of structurally similar, but

unanswerable questions during model training. We summarise the answers to our

initially posed research questions as follows:

1. How can RC model undersensitivity to changes in the question be eval-

uated using natural language inputs? We have formulated an adversarial

attack which searches among semantic variations of comprehension questions

for which a model still erroneously produces the same answer as the original

question – and with an even higher probability. We have considered both PoS

and NE perturbations as the basis for semantic variations in the input ques-

tion, and found that the latter produces a higher rate of well-formed questions

and valid attacks than the former.

2. To what extent is the commonly used BERT model undersensitive to ad-
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versarially chosen input perturbations? Despite comprising unanswerable

questions, fine-tuning BERT on SQUAD2.0 and NEWSQA leaves it vulnera-

ble to the undersensitivity attack: it commits a substantial fraction of errors on

noisy adversarially generated questions: at least 95% for PoS perturbations,

and at least 54% for NE perturbations on SQUAD2.0.

3. How can adversarially vulnerable samples be characterised and distin-

guished? Vulnerable samples have, on average, lower prediction probabil-

ities, lower accuracy, fewer What questions, and more questions mentioning

geopolitical entities (GPE) than samples for which the adversarial attack is

unsuccessful.

4. Can the two adversarial defence strategies of data augmentation and

adversarial training help alleviate the undersensitivity problem? Both

methods are effective and substantially reduce the model’s undersensitivity

error rates. This holds true both for perturbations seen during training, as

well as new, unseen perturbation spaces. Overall, data augmentation is more

effective than adversarial training.

5. How does training models to be more sensitive to input changes affect

their behaviour? The experiments on adversarial defences have demon-

strated that the addition of closely related, but unanswerable questions to the

model’s training data has multiple benefits: not only does it not sacrifice stan-

dard performance, but it does leave the model more robust towards adversarial

exploitation (both to undersensitivity attacks and an oversensitivity attack),

and less prone to reliance on shallow type consistency heuristics. These are

desirable properties of an RC model, yet not directly reflected in standard

evaluation metrics.

The fact of a model’s poor performance on adversarially selected inputs high-

lights model shortcomings which nominal test set EM and F1 do not measure. Since

neural RC models are potent data approximation tools, they are prone to learning

predictive shortcuts that help them predict the correct answer, without necessarily
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taking into account all relevant information in the input. As the space of RC input

data is large and complex, a sufficient amount of closely related counterexamples

may not naturally appear in a crowd-sourced dataset like SQUAD. The discrimi-

native learning setup then leads to model behaviours that can be at odds with our

notion of text understanding, and dedicated adversaries can exploit this.

By adding closely related synthetic unanswerable samples to the training data,

we showed that we can direct the model towards learning associations that better

take into account the entity information in the information request formulated in

a comprehension question, rather than learning shortcuts and relying on shallow

predictive cues.

More generally, RC evaluation metrics (and the data points used to derive these

metrics) should reflect what we would like a model to learn; we see a model’s

undersensitivity error rate as one such facet that can help us evaluate a model’s

behaviour and level of reading comprehension.





Chapter 7

Formally Verifying an

Undersensitivity Specification

This chapter is based on previously published work (Welbl et al.,

2020a). The mathematical derivations and experiments were conceived

and conducted by the main author, in close dialogue with the co-

authors. IBP was implemented by collaborators, its particular adap-

tation to the DAM model was implemented by the thesis author.

7.1 Introduction

7.1.1 Adversarial Search in an Exponentially Large Space

We have in the previous chapter explored a model’s vulnerability to adversarially

chosen input changes that highlight undersensitivity. Two defences that we have

considered against it – data augmentation, as well as adversarial training – are both

effective at reducing the extent of the issue, but do not resolve it entirely. A substan-

tial number of examples can still be attacked even after applying the defences: for

example, the BERT LARGE model on SQUAD2.0, trained with data augmentation

and adversarial training still has undersensitivity error rates of 18.9% and 28.3%,

respectively (ρ=256; cf. Table 6.5; cf. Table 6.6 for similar observations regard-

ing NEWSQA). We also saw that undersensitivity error rates crucially depend on

the computational budget allocated for the adversarial search: increasing the search

budget also increases the error rate. Prior work has established that either using
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stronger adversarial attacks or a less restrictive search heuristic can identify new

adversarial inputs (Carlini and Wagner, 2017; Athalye et al., 2018; Uesato et al.,

2018). It is thus unclear whether the previously observed improvements in under-

sensitivity error rate actually eliminate the possibility of such adversarial attacks, or

whether they merely raise the associated cost of finding them.

In this chapter we will explore a more rigorous measure against model under-

sensitivity: the formal verification of a specification against undersensitivity. We

will formulate this specification for a neural model with the aim of ruling out the

possibility that any undersensitivity attack can be found – using an unlimited com-

putational search budget. Naturally, a central issue with comprehensively identify-

ing all adversarial attacks (or ruling out their existence) is the exponentially large

perturbation space of the undersensitivity attack, which arises from deleting or re-

placing arbitrary subsets of a given input sequence. The associated search is costly;

ruling out the presence of any adversarial input requires covering the space in its

entirety.

Prior work on undersensitivity thus relies on heuristics, such as beam

search (Feng et al., 2018) – which we also relied on in the previous Chapter 6 –, or

bandits (Ribeiro et al., 2018a). These heuristics are useful to identify successful at-

tacks, but do not exhaustively cover the full perturbation space. Consequently they

cannot provide a guarantee on the non-existence of adversarial inputs (e.g. after ap-

plying defences) – they might just fail to identify them. Performing an exhaustive

search, on the other hand, can rule out the presence of any adversarial sample, but

the computational cost associated with it renders this approach impractical due to

the exponential growth of the search space with the length of the input text.

7.1.2 Verification Using Interval Bound Propagation

To overcome the problem of exponential computational cost associated with per-

forming exhaustive search, we will make use of Interval Bound Propagation (IBP;

Gowal et al. (2018); Mirman et al. (2018)): a formal verification method to verify

specifications in neural network models. Compared to adversarial search, verifi-

cation begins from a complementary viewpoint and methodological angle: it aims
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to provide mathematically provable certificates that a given specification on model

behaviour is verifiably fulfilled.

As a verification method, IBP is very efficient: it can cover an exponentially

large perturbation space with constant time and memory overhead. In this chap-

ter we will use IBP to comprehensively cover the full perturbation space associated

with undersensitivity attacks in its entirety, and thus determine whether any success-

ful undersensitivity attack can be found. This will be achieved by first formulating,

and then using IBP to verify a specification about the undersensitivity of a model.

IBP is a versatile methodology: it is both useful for evaluation purposes, to verify if

a given model specification is satisfied; it is however also useful during model train-

ing: an auxiliary loss can be derived to direct models towards verifiably adhering to

the given specification.

7.1.3 Task Simplifications

The formal verification of specifications against adversarial attacks on neural NLP

models is a research direction that has only very recently received attention in the

research community (Huang et al., 2019; Jia et al., 2019). It still suffers from a

number of methodological shortcomings, which will be discussed throughout this

chapter. Rather than providing a definite solution, we aim at exploring to what ex-

tent IBP-based verification can be useful in a simplified setting to address undersen-

sitivity, and observe basic challenges associated with the use of this methodology.

Compared to the previous chapter, we modify the setting of our investigation along

three axes.

First, rather than investigating extractive RC, we will focus on the related nat-

ural language understanding problem of Natural Language Inference (NLI; Dagan

et al. (2006); Bowman et al. (2015)). The NLI task consists in determining whether

a given premise entails a given hypothesis – both natural language statements. The

development of sufficiently large data resources for NLI (Bowman et al., 2015;

Williams et al., 2018) has led to a flourishing field of neural modelling (Rocktäschel

et al., 2016; Parikh et al., 2016; Chen et al., 2017b) inter alia. Prior work on ad-

versarial inputs in NLI includes adversarially chosen logical inconsistencies (Min-
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ervini and Riedel, 2018), adversaries relying on background knowledge (Kang et al.,

2018) and lexical entailment relationships (Glockner et al., 2018). But NLI was also

among the tasks for which undersensitivity was first established (Feng et al., 2018).

We choose this task because it also requires text comprehension;1 the text sequences

are shorter than in RC (a pair of single sentences); datasets are large; the complexity

of the label space is small; and the label space furthermore does not vary between

samples.

Second, rather than aiming to identify natural language inputs to probe a

model’s undersensitivity (as, e.g. achieved using Named Entity (NE) substitutions),

we will here focus only on deletions of text, i.e. the removal of subsets of the given

input tokens. This choice of perturbation space simplifies aspects of the formal ver-

ification procedure and follows prior work on undersensitivity (Feng et al., 2018),

but generally does not produce natural language expressions as model inputs. An

example of such an undersensitivity attack, concretely in the NLI task, can be found

in Table 7.1.

Third, we only consider a single, non-state-of-the-art model: the decomposable

attention model (DAM) architecture (Parikh et al., 2016). We focus on formally

verifying a specification for this model in detail. The model comprises several types

of the neural layers used in contemporary models, but uses non-contextualised pre-

trained embeddings. While the formal verification of a larger NLP architecture such

as BERT (Devlin et al., 2019) – which like DAM also utilises attention layers – is

certainly worth pursuing, we choose the DAM architecture as a smaller initial step

in the direction of formally verifying neural NLP models.

7.1.4 Chapter Overview

We will in this chapter describe a method to formally verify an undersensitivity

specification on the DAM model. Concretely, we will verify that a model does not

increase its prediction confidence under the removal of arbitrary subsets of input

tokens. To this end we will leverage IBP, and we will then compare the verification

1In fact, NLI can be interpreted as a multiple-choice RC problem, where the question is whether
the premise entails the hypothesis, and answer options correspond to the different NLI labels.
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Premise (original) A little boy in a blue shirt holding a toy.
Hypothesis A boy dressed in blue holds a toy.
Prediction Entailment (86%)

Premise (adversarially reduced) boy in a blue shirt
Hypothesis A boy dressed in blue holds a toy.
Prediction Entailment (92%)

Table 7.1: Undersensitivity to input deletions in NLI: in this example the deletion of
premise words increases model confidence, but the ‘Entailment’ label is not ad-
equate any more. The issue was identified in prior work (Feng et al., 2018); here
we intend to formally verify if any such adversarial reduction exists. Model:
DAM (Parikh et al., 2016); dataset: SNLI (Bowman et al., 2015).

rates of several potential defence methods against undersensitivity. One particular

defence we will investigate is the addition of an IBP-related auxiliary objective to

the log-likelihood model training loss. We will see that this proves to be an overall

moderately effective approach in directing models towards verifiably adhering to

the given specification, yet largely more effective than other adversarial defence

baselines. By furthermore measuring adversarial accuracy and the performance of

an exhaustive verification oracle (which is possible for short sequences), we can

derive additional insights about the verification process and possible bottlenecks.

List of Research Questions:

1. How can IBP be adapted to formally verify an undersensitivity specification

on the DAM model?

2. How efficient, and how effective is IBP at verifying this specification?

3. How do different training methods aimed at defending against undersensitiv-

ity compare in terms of IBP-verification rates?

7.2 A Specification against Undersensitivity
We will next formulate a specification against undersensitivity with respect to in-

put text deletions, and then introduce the methodology of specification verification,

IBP in particular. Subsequently we will derive how IBP can be used to check for

violations of the specification in the DAM architecture, and finally experiment with
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Figure 7.1: Fraction of words that can be deleted with an adversarial attack using beam
search, for different percentiles of the dataset. Model: DAM; Dataset:
SNLI (test).

this method to measure and compare the extent to which differently trained DAM

models verifiably adhere to the undersensitivity specification.

In the previous chapter we observed that RC models do not reliably take into

account entity information specified in the question. We will now consider ad-

versarial deletions of input tokens. Prior work (Feng et al., 2018) has shown that

adversarially deleting the majority fraction of input tokens can still leave the model

prediction invariant, indicating that short lexical cues can be sufficient to trigger a

model’s decision on entailment. As neural models have the capacity to learn any

association between input and output, the data distribution they are trained on deter-

mines how they achieve this. Models can learn to rely on shallow triggers – e.g. the

presence of particular token combinations – to form their prediction. In the extreme

case, even hypothesis-only baselines can succeed to a surprising degree in correctly

predicting entailment (Poliak et al., 2018; Gururangan et al., 2018).

In Fig. 7.1 we plot the extent to which adversarial token deletions are possible

in SNLI: we adversarially delete as many tokens as possible (following the beam

search procedure of prior work (Feng et al., 2018)) from either the premise, or

from the hypothesis, while the model increases its confidence for the same label

prediction. This figure demonstrates that for many samples a substantial number of

tokens can be removed. This holds true both for deletions from the premise, and

to a very similar degree also for deletions of hypothesis tokens. For example, for

20% of the samples in the dataset, there exists a reduction of 78% (or more) of the
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premise words. That is, 22% or less of the premise tokens remain and still trigger

the same prediction – with the same or higher model confidence than the original,

unaltered input. For the scope of this entire chapter, we will limit our focus and

methodological exploration to deletions of one of the two input sequences. We note

that the DAM model structure is symmetric in its two input sequences, and that

investigations into deletions of premise or hypothesis tokens can be pursued in a

similar way.

In contrast to Chapter 6, where we substituted expressions, we now consider

a perturbation space consisting of the inputs that have some of their input text re-

moved. Concretely we consider arbitrary deletions of token combinations in one

of the two sequences, and denote the resulting perturbation space derived from the

original input x as X in(x). Our specification then concerns the model probabilities

for the label ŷ(x), and the changes observed therein as fractions of input tokens are

removed.

Concretely, our goal will be to check if there exists an input z0 ∈ X in(x) for

which the model assigns a higher probability to ŷ(x). We formalise this in the

following specification:

∀z0 ∈ X in(x) : P(ŷ|z0)≤ P(ŷ|x) (7.1)

where ŷ = argmaxy P(y|x) is the model’s label prediction for the original input x.

7.2.1 Discussion

By enforcing the above Specification 7.1, we rule out undersensitivity attacks based

on word deletions, i.e. z0 ∈ X in(x) for which P(ŷ|z0) > P(ŷ|x). This particular

choice of specification is however not uncontroversial. Do we in fact always want

to enforce that a model’s probability for a label should remain the same or decrease,

if some of its inputs are removed?

On the one hand, not all words carry the same relevance for determining en-

tailment – some might not be relevant at all, such as stop words. On the other

hand, some tokens alone are critical, and can single-handedly invert the correct en-
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tailment label of a given sentence pair, such as the token “not”. How exactly the

output probabilities of a model should change as its inputs are gradually removed

is hard to specify in detail, given the wide range of semantic variations in natural

language expressions. Formulating a more detailed specification than the above is

thus both cumbersome and prone to inconsistencies, though not an impossibility in

principle.

Our aim here is to be careful about not constraining the model too much, while

ruling out the possibility for the particular type of adversarial undersensitivity attack

of increased model probabilities for altered inputs. The specification to not increase

the output confidence, given arbitrary input subset removals, is a relatively conser-

vative choice. We do, for example, not specify that probabilities should monoton-

ically decrease as more and more words are removed. The specification is further-

more only about one of the labels: the one assigned to the original input.2 Even with

our fairly unrestricted choice of specification, we will see that Specification 7.1 can

be positively verified only for the minority of samples in the DAM model.

A potential concern with the chosen specification is that it builds on the implicit

assumption that the prediction of the original sample is correct. If however a model

has low (nominal) accuracy, then the specification is about the model’s confidence

in mostly wrong predictions. This is not necessarily useful as a learning signal and

may further deteriorate performance, as it can lower the relative priority of the main

objective – fitting correct outputs to the given inputs. A second consideration is

that enforcing the above specification may lead to models which generally favour

less confident predictions for shorter inputs. This may bias a model towards fitting

training samples with longer text sequences. Finally, a potential issue is that the

specification is hard to justify for deletions of tokens capable of relativising the

given statement (e.g. “somewhat”, “maybe”). Such tokens are however rare on the

two datasets we will consider in our experiments, and erroneously enforcing the

above specification for such cases is thus unlikely to be a major concern.

2Other, more task-specific alternatives are worth consideration – such as increasing the probabil-
ity of the neutral label. We leave the exploration of such alternative specifications to future work,
noting that much of the subsequent derivations in Section 7.5 can likely be recycled to this end.
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7.3 Formal Verification of Neural Networks in NLP

7.3.1 Formal Model Verification

The central idea of formal model verification is to obtain a certifiable guarantee that

a model adheres to a given specification. The specification is formulated mathe-

matically, as a relationship between model inputs and outputs – our above stated

Specification 7.1 is one such example. Note that rather than specifying desirable

behaviour for concrete input-output pairs – such as annotated training examples, for

which erroneous predictions are penalised and accuracy is measured – a specifica-

tion in the broader sense aims to capture and relate specific properties in the input

and output space.

A second important type of a model specification, which previous work has

aimed to formally verify, is on model oversensitivity. These specifications address

a model’s robustness to adversarially chosen inputs from a given semantically in-

variant input perturbation space. For example they limit the amount of permissible

output variation under l∞-norm bounded perturbations of an input image (Gowal

et al., 2018), or substitutions of synonyms in input text (Huang et al., 2019). The

specification concept however is very broad and has, for example, been used also to

guarantee adherence to the mechanical rules of physics for a model’s outputs (Qin

et al., 2019).

There are both complete and incomplete methods for formal model verification

of model specifications; see Table 7.2 for a high-level summary of their verification

properties. Both approaches can prove a model’s full adherence to a given specifi-

cation and rule out any violations, but they differ in whether there is a guarantee that

they can always achieve this. Complete methods (Bunel et al., 2017; Cheng et al.,

2017; Katz et al., 2017) are more computationally burdensome but can establish

– with certainty – whether a specification is not satisfied. Incomplete methods on

the other hand consider a relaxation of the verification problem (Weng et al., 2018;

Wong and Kolter, 2018; Wang et al., 2018a; Raghunathan et al., 2018b). They are

less expensive and more easily scalable, yet they cannot establish that where they

fail to provide a certificate, there indeed exists a specification violation.
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establish verify always verify
presence non-existence non-existence

Adversarial Search X × ×
Incomplete Verification X X ×
Complete Verification X X X

Table 7.2: Overview of capabilities with respect to adversarial attacks of complete and in-
complete verification, as well as adversarial search. While adversarial search
can identify adversarial samples / violations to a specification, it generally can-
not verify their nonexistence. Incomplete verification methods can verify their
nonexistence, but generally not for all samples. Complete verification methods
can generally establish both the existence and nonexistence of violations.

To further clarify this: on samples where either incomplete or complete ap-

proaches do provide a certificate, the specification is verifiably satisfied. Where

complete approaches provide no certificate, there definitely exists a specification

violation. Where incomplete approaches do not provide a certificate, the model

might still adhere to the specification, yet the verification method might just fail to

provide such a certificate – hence their description as incomplete. Because of their

superior efficiency, incomplete verification methods – such as IBP – can however

be used during training, and direct models towards verifiably adhering to the given

specification (Raghunathan et al., 2018a; Wong and Kolter, 2018; Dvijotham et al.,

2018a; Gowal et al., 2018; Dvijotham et al., 2018b).

7.3.2 Verification of NLP Models

The verification of models in NLP has not received a lot of attention in the research

community. While some work (Barr and Klavans, 2001) has considered the problem

before the advent of deep learning in NLP, most recent work on neural model verifi-

cation focuses on verification against adversarial attacks based on l∞ norm-bounded

adversarial image perturbations in computer vision. In contrast to the continuous

image domain, inputs in NLP are discrete.

Neural network verification is a challenging problem, both in the computer

vision and in the NLP setting, and both IBP and other methods have yet to be suc-

cessfully scaled to deeper networks. Recent work in the NLP context (Huang et al.,

2019; Jia et al., 2019) has used IBP to verify model behaviour against oversensi-
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tivity adversaries under synonym perturbations. Other work (Wang et al., 2019)

has studied the verification of specifications regarding the length of a generative

model’s output sequence. In contrast, the type of specification we consider will be

about model undersensitivity when removing combinations of input words, and we

choose the attention-based DAM model as the object of our study.

7.3.3 Incomplete Verification using Interval Bound Propagation

Interval Bound Propagation (IBP) is an incomplete, yet very efficient verification

method. From a technical viewpoint, it relies on a relaxation of the input per-

turbation space. Assuming vector inputs, IBP bounds the perturbation space via

axis-aligned hyper-rectangles, tracks them throughout the network in the forward

pass and bounds the corresponding activations in each layer, again using hyper-

rectangles. IBP thus establishes bounds for all model activations, as well as the final

model outputs associated with the input perturbation space. We will next describe

this in more formal detail, partly adopting prior notational conventions (Gowal et al.,

2018).

Concretely we assume that our model is a neural network that can be repre-

sented by a chain of functions hk, indexed by k ∈ N, which are either affine or

elementwise nonlinear vector transformations. Let X in(x) be a perturbation space

derived from the original (vector) input x.3 Given an input z0 ∈ X in(x), a network

of K layers then computes its output by sequentially computing these individual

transformations:

zk = hk(zk−1) k = 1, . . . ,K (7.2)

In a multi-class classification problem with C different classes – such as the one

we will consider in the NLI task – the final model output zK ∈ RC in the last layer

comprises C different values, which correspond to the probabilities for each class.

For each layer k, IBP establishes an axis-aligned box (geometrically: a hyper-

rectangle) that bounds the activation vector zk from above and below. That is, the

3For notational convenience we identify the perturbation space X in(x) (derived from a vector
representation x of the input) with the previously used notion of X in(x).
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following relationship holds (elementwise):

zk ≤ zk ≤ zk (7.3)

where zk defines a vector of elementwise lower, and zk a vector of elementwise

upper bounds to zk. More concretely, for each individual neuron indexed by i (cor-

responding to the i’th dimension of the activation vector) the activation zk,i can be

bounded from below and above as follows:

zk,i = min
zk−1≤zk−1≤zk−1

ei
T hk(zk−1)

zk,i = max
zk−1≤zk−1≤zk−1

ei
T hk(zk−1)

(7.4)

where ei is the ith standard basis vector of unit length. We will not derive in detail

how these minima and maxima can be found for different types of transformation

functions hk, but refer the reader to the original work on IBP for this purpose. It is

however worth pointing out that the above bounds can be computed efficiently for

affine transformations and elementwise monotonic activation functions once bounds

of the previous layer zk−1 and zk−1 are given. While this is trivial for monotonic

elementwise activation functions, for affine transformations a key step is decompos-

ing the weight matrix Wk = Wk
++Wk

− into one component Wk
+ = max(Wk,0) of

positive entries, and one component Wk
− = min(Wk,0) containing negative entries.

This effectively separates the weight matrix into two monotonic transformations,

for which bounds can then more easily be computed.

Upper and lower bounds can thus recursively be computed for each layer

based on the previous ones. In particular for the probability values in the last net-

work layer, the resulting inequalities provide bounds for the model outputs of any

z0 ∈ X in(x). IBP hence establishes bounds on any, and notably also the worst-case

violation of a given specification with input perturbation space X in. Concretely ap-

plied on the example of our Specification 7.1, if the upper bound zK,ŷ of the last

layer representations is less than the original output probability P(ŷ|x), then Speci-
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Figure 7.2: Schematic overview: IBP for verifying an undersensitivity specification on a
given sample x, which consists of a pair of word sequences S1 and S2. Re-
moving arbitrary token subsets of S1 leads to an exponentially sized space of
input reductions X in(x). The representations of elements z0 ∈ X in(x) (red)
are bounded (green) in each network layer throughout the forward pass (blue).
Bounds in probability space (on the right) can then be used to evaluate whether
the undersensitivity specification is satisfied.

fication 7.1 is verifiably satisfied:

∀z0 ∈ X in(x) : P(ŷ|z0)≤ zK,ŷ ≤ P(ŷ|x) (7.5)

By relying on Inequality 7.5, we can thus use the arising IBP bounds to check for

any given x, whether zK,ŷ ≤ P(ŷ|x). If this is satisfied, it allows us to infer that there

exist no reduced input samples z0 ∈ X in(x) with higher probability for ŷ than x,

and we can thus certify that Specification 7.1 is satisfied. Fig. 7.2 gives a schematic

overview of the overall approach.

In general, IBP bounds computed for the model outputs are loose, and even

more so with more network layers. This is one of the reasons why we chose to

verify the DAM model, which uses fewer neural layers than many of the more

recent transformer-based NLP models. Because of the looseness of the bounds in

the last layer, IBP tends to over-approximate the transformed image of X in(x) in
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the output vector space. It uses these potentially very loose bounds, rather than the

actual image of X in(x) in the output space, and hence IBP is incomplete: it can fail

to provide a verification certificate, even though the specification is satisfied.

IBP bounds can be efficiently computed in parallel, and with a similar time

complexity as the standard forward pass.4 IBP can be used during evaluation, to

verify a previously trained model. It can however also be used during training by

including a loss term that specifies how far the bounds in the last layer violate the

specification (the extent to which zK,ŷ > P(ŷ|x)), and penalising the model cor-

respondingly. While IBP has in the past been used for verifying oversensitivity

specifications in models with feed-forward and convolutional layers (Gowal et al.,

2018; Huang et al., 2019), we will next show how IBP can be applied on the DAM

architecture, and use it to verify an undersensitivity specification.

7.4 The Decomposable Attention Model
We will next briefly recall the architecture of the DAM model (Parikh et al., 2016),

largely adopting the notation of the original work. This serves both the purposes of

refreshing our memory, and of introducing notation that we will subsequently rely

on when describing the verification of Specification 7.1 for this model.

The DAM architecture was originally designed for the NLI task, and consists of

several widely-used elements of neural NLP models, including word embeddings,

attention, and feed-forward layers. It expects as input two token sequences, and its

purpose is to predict one of three discrete classes, corresponding to different entail-

ment labels. Rather than operating on sequences of token symbols, the DAM model

takes as input sequences of input tokens that are already embedded as d-dimensional

vectors, e.g. relying on pre-trained word embeddings such as GloVe (Penning-

ton et al., 2014). Its input can thus be described as A = [a1; . . . ;aI] ∈ Rd×I , and

B = [b1; . . . ;bJ] ∈ Rd×J , where [.; .] denotes concatenation, and I and J are the re-

spective lengths of the two text sequences. The model then transforms individual

word embedddings with a vector-valued function F(.), and pairs of words (one in

4A ready IBP implementation can be found at https://github.com/deepmind/

interval-bound-propagation, which we also use in our implementation.

https://github.com/deepmind/interval-bound-propagation
https://github.com/deepmind/interval-bound-propagation
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each of the two sequences) are then compared and aggregated in a scalar score:

ei j = F(ai)
T F(b j) ∈ R (7.6)

The vector function F can be any differentiable function to allow for gradient-based

training, e.g. an MLP, or a linear transformation. We next adopt matrix notation

across word position pairs (i, j) to summarise the above more concisely. Eq. (7.6)

can then be reformulated as

E = F(A)T F(B) ∈ RI×J (7.7)

The matrix E thus possesses one scalar term for each pair of words taken from

the two input sequences. In normalising the cumulative exponentiated mass across

either of its two axes (i, or j), the DAM model then computes two attention masks

– one for each of the input sequences:

P(A)
i j =

exp(ei j)

∑k exp(ek j)
; P(A) ∈ RI×J (7.8)

P(B)
i j =

exp(ei j)

∑k exp(eik)
; P(B) ∈ RI×J (7.9)

The coefficients of these two masks P(A) and P(B) now serve as contribution weights

for a convex sum of the original input word vectors, and thus perform an attention-

aggregation of the vectors in the two original sequences:

A=A ·P(A) ∈ Rd×J

B =B · (P(B))T ∈ Rd×I

To summarise, the matrices A and B contain attention-weighted sums of word vec-

tors – one for each position i and j of the two input sequences. These transformed

input representations are then concatenated with the original input vectors from the

same sequence, and transformed using a feed-forward network G : R2d → Rd′ , ap-

plied on each sequence position (indexed by i, or j) individually. The resulting
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vectors are then aggregated with a sum over the resulting vector representations

across all the positions of each of the two sequences. In short:

v1 =∑
i

G([ai;Bi]) ∈ Rd′ (7.10)

v2 =∑
j

G([A j;b j]) ∈ Rd′ (7.11)

Finally, both v1 and v2 are concatenated and transformed using a vector-valued

function (again, a feed-forward network) H : R2d′→RC that maps them onto logits

for each of the C classes of the entailment task.

7.5 Verifying Undersensitivity Guarantees for the

DAM Architecture

After having laid out the basic structure of the DAM model, our next goal is to

formally verify Specification 7.1 for a given (vectorised) model input x=(A,B). By

establishing and checking bounds on even the most extreme output probabilities of

any point in X in(x), the model’s behaviour on the entire perturbation space X in(x)

can be checked. Compared to prior work where IBP has been used to verify neural

network models (Gowal et al., 2018; Huang et al., 2019), the DAM model verified

here contains an attention component, which poses a challenge due to the difficulty

of bounding altered attention normalisation mass. We describe how this challenge

can be overcome by exploiting the fact that both the vectors in A and B are formed

as convex sums and can hence be bounded by bounds on their unweighted summand

constituents.

We will next describe in detail how Specification 7.1 can be verified for the

DAM model using IBP. First, we will lay out how the model and its latent repre-

senations change when deleting an individual word at a fixed and given position.

Second, we will generalise this to the removal of individual words at an arbitrary

position in the sequence. Third, we will relax this even further to the case of remov-

ing arbitrary combinations of tokens from the input.



7.5. Verifying Undersensitivity Guarantees for the DAM Architecture 207

7.5.1 Deleting Individual Words at a Particular Position

We begin by describing how the latent activations of the model change when a

particular token at a given position r is deleted from one of the input sequences. We

note that the DAM architecture is symmetric in its two sequences, and thus assume,

without loss of generality, that we delete a word from the second sequence.

All vector and matrix representations resulting from altered inputs with par-

tially deleted text will from here on be marked with a bar (as in B̄). For example,

when deleting a given token with index r in the sequence:

B̄ = [b1, . . . ,br−1,br+1, . . . ,bJ] ∈ Rd×(J−1) (7.12)

whereas on the other hand Ā = A.

The transformation F(.) is applied position-wise for each vector in the se-

quence. Consequently the deletion of a word remains isolated thus far, and

Ē = F(Ā)T F(B̄) ∈ RI×(J−1) (7.13)

still holds the same values as before, however the r-th column is removed. Similarly,

the attention distribution P̄(A) contains the same values as P(A) before, however

again the r-th column is deleted. That is, for i = 1, . . . , I and j = 1, . . . ,J such

that j 6= r:

P̄(A)
i j =

exp(ēi j)

∑k exp(ēk j)
; P̄(A) ∈ RI×(J−1) (7.14)

The second attention distribution P̄(B), however, now holds renormalised values.

These entries maintain their respective relative ordering, but their values increase

due to the removal of the r-th summand in the normalisation denominator. Con-

cretely, for j 6= r:

P̄(B)
i j =

exp(ei j)

∑k 6=r exp(eik)
; P̄(B) ∈ RI×(J−1) (7.15)

That is, we can alternatively describe P̄(B)
i j as its original value P(B)

i j , rescaled using
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a renormalisation factor:

P̄(B)
i j = P(B)

i j ·
∑k exp(eik)

∑k 6=r exp(eik)
(7.16)

In summary, the attention distribution P(B)
i j mostly maintains its values when re-

moving the word at position r, but they are renormalised to compensate for the

contribution of the r-th word that is now missing. The DAM model next calculates

Ā and B̄. Again, the values of

Ā= Ā · P̄(A) ∈ Rd×(J−1) (7.17)

are identical to before, and the r-th column is deleted. On the other hand, for

B̄ = B̄ · (P̄(B))T ∈ Rd×I (7.18)

the dimensions remain constant, but the values differ from the original values in B
since B̄ contains fewer vector entries and (P̄(B))T is re-scaled accordingly.

These modified quantities Ā, B̄ and Ā, B̄ are then further propagated through

the remaining layers G and H to obtain a concrete model output. It is worth pointing

out that all of the above expressions can be calculated in closed form, and there is

no need to apply IBP yet.

7.5.2 Deleting Individual Words at Arbitrary Positions

So far we have described Ā, B̄,Ā and B̄ in closed form, for a specified position r

in the sequence. The resulting expressions can be calculated for the deletion of any

word, i.e. for any sequence position r. When generalising the above to removals of

individual tokens at arbitrary positions, we can calculate the min and max of these

previously obtained expressions (elementwise) along the sequence, and thus obtain
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upper and lower bounds. For example

B̄max = max
r=1,...,J

B̄(r) (7.19)

B̄min = min
r=1,...,J

B̄(r) (7.20)

serve as upper and lower bounds for B̄. The original DAM model then proceeds in

propagating these activations into the vector transformations G and H (cf. Eq. (7.10)

and Eq. (7.11)), each a dense feed-forward model with two layers and a ReLU ac-

tivation. We deviate from the original model in using a softplus activation, which

serves as a smooth approximation with strictly positive values.5

Together with Ā = A, the above bounds on B̄ are propagated through G us-

ing IBP, hence establishing bounds on v̄1. On the other hand, v̄2 can be calcu-

lated from v2, by subtracting the contribution of its r-th summand (for fixed dele-

tions at position r, cf. Eq. (7.11)). Extending this to arbitrary r, the subtracted

vector can be bounded from above and below using maxr=1,...,J{G([Ā j; b̄ j])} and

minr=1,...,J{G([Ā j; b̄ j])}.

Given these bounds on v̄1 and v̄2, IBP is then used to propagate them through

the feed-forward layers in H. Consequently, we obtain bounds on the logits for

each class – and thus output probabilities – which bound the model outputs for any

arbitrarily chosen deletion of a single input word.

7.5.3 Deleting Multiple Tokens at Arbitrary Position

Thus far we have derived how the model behaviour changes – and can be bounded –

when removing single tokens at an arbitrary position. We next generalise this to the

deletion of an arbitrary subset of input tokens (in one of the two sequences). We will

denote the indices of the remaining tokens as D( {1, . . . ,J}with D 6= /0. In this case

again, the entries of any remaining word vectors ai and b j ( j ∈ D) are unaltered.

5This ensures strict monotonicity of v1 (and v2) in the number of summands, and thus a
strictly positive difference between v1 and v̄1. Without this guarantee, there could be j such that
G([Ā j; b̄ j]) = 0, thus potentially resulting in v̄1 = v1. This would map the perturbed input onto the
same output as the original, thus leading to equality in Specification 7.1.



210 Chapter 7. Formally Verifying an Undersensitivity Specification

Bounding v̄1: Recall that for the original, unaltered input (cf. Eq. (7.10)):

v1 = ∑
i

G([ai;Bi]) ∈ Rd′

If we were in possession of bounds on āi and B̄i, then upper and lower bounds for

v̄1 could be computed directly using IBP for G and the sum. The entries of ai do

not change when deleting tokens from the second sequence (āi = ai). Thus we will

focus on deriving bounds for B̄i.

Recall that during the attention aggregation, the columns in B are calculated as

a convex sum of the column vectors in B. That is, the ith column of B is calculated

as Bi = ∑ j b jP
(B)
i, j , where P(B)

i, j corresponds to the entry of P(B) at position (i, j).

Consequently, the largest and smallest values that the entries of B̄i can possibly

take can be bounded by the elementwise minima and maxima of individual column

vectors in B:

bmin = min
j=1,...,J

{b j} ∈ Rd (7.21)

bmax = max
j=1,...,J

{b j} ∈ Rd (7.22)

The values of these vectors form elementwise bounds on B̄i, e.g. bmax from above:

B̄i = ∑
j∈D

b j · P̄(B̄)
i j ≤ ∑

j∈D
bmax · P̄(B̄)

i j = bmax · ∑
j∈D

P̄(B̄)
i j = bmax ·1 = bmax (7.23)

It is worth pointing out that no matter which tokens are deleted, the adjusted at-

tention distribution P̄(B̄)
i, j always sums to 1. A similar relationship follows for bmin

when bounding B̄i from below.

Bounding v̄2: Next, we recall that for the original, unaltered input, (cf. Eq. (7.11)):

v2 = ∑
j

G([A j;b j]) = ∑
j

g j ∈ Rd′ (7.24)

where we introduce the expression g j = G([A j;b j]) for subsequent notational con-

venience. The vector-valued function G of the DAM model is a two-layer feed-
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forward network using a ReLU activation function. Thus all entries of g j are strictly

non-negative (g j ≥ 0,∀ j). Since we slightly deviate from the original model in us-

ing a softplus activation, the entries of g j are strictly positive (g j > 0,∀ j). Con-

sequently the sum ∑ j g j decreases monotonically in each vector entry when some

of the summands g j are removed – or, conversely, increases monotonically when

new summands are included. We will consider the two most extreme cases of re-

moving arbitrary combinations of tokens: i) deleting all tokens but one ii) deleting

exactly (and only) one token. The values of v̄2 will then be bounded for any combi-

nation of removed words that can be situated between these two extremes.

In the first of the two cases, where all tokens but one, at position r, are deleted,

the expression remaining is v̄2 = gr. Computing the elementwise minimum across

all possibilities for r can thus provide us with a lower bound on any v̄2; not only for

deletions of all but one word, but for any other deletion of fewer words as well, due

to the strictly positive entries of each g j:

v̄2 ≥ min
r=1,...,J

{gr} (7.25)

In the second of the two cases, where merely one token is deleted from the

input (at position r), only one summand is subtracted from the original v2: v̄2 =

v2− gr. We can thus bound v̄2 using the (elementwise) smallest value that gr can

assume, for any r.

v̄2 = v2−gr ≤ v2− min
r=1,...,J

{gr} (7.26)

Since v̄2 increases monotonically with its number of summands (i.e. the number of

tokens in the input), any further deletion of tokens will only further decrease the

value of the entries of v̄2. Hence the above expression provides us with an upper

bound for arbitrary combinations of removed tokens. In summary, we obtain the

following upper and lower bounds for v̄2:

min
r=1,...,J

{gr} ≤ v̄2 ≤ v2− min
r=1,...,J

{gr} (7.27)

Having established these bounds for both v̄1 and v̄2, we can then proceed and
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propagate them using IBP through the two-layer MLP H that follows v1 and v2 in

the forward pass of the DAM architecture.

This concludes our derivations on bound propagation for the deletion of arbi-

trary combinations of input tokens. Given arbitrary inputs x (or, in vectorised form:

x), we can compute bounds on the the output probabilities the DAM model assigns

to any reduced input z0 ∈X in(x) and establish whether Specification 7.1 is satisfied.

We will next proceed to investigating this experimentally.

7.6 Experiments

7.6.1 Datasets

To what extent can the above described IBP-based method verify that a trained

DAM model adheres to the undersensitivity Specification 7.1? We will next exper-

imentally evaluate the method, and compare different training approaches on two

NLI datasets: SNLI (Bowman et al., 2015) and MNLI (Williams et al., 2018). Both

follow the same input-output schema: an input of two symbol sequences has to be

classified according to a catalogue of three possible labels: Entailment, Contradic-

tion, and Neutral.

Prior work (Feng et al., 2018) has established undersensitivity to the removal

of hypothesis tokens for SNLI. We here investigate the phenomenon also for MNLI,

and show that it holds for deletions of premise words. In all the subsequent exper-

iments we delete tokens from the premise, but note that the undersensitivity phe-

nomenon is present to a similar extent in both deletions of premise and hypothesis

tokens (cf. Fig. 7.1), and that similar investigations could be undertaken for hypoth-

esis reductions, given the symmetric structure of the DAM architecture.

For experiments on the SNLI dataset we use the given standard splits and tune

hyperparameters on the validation set while reporting experimental outcomes on

the test set. For experiments on the MNLI dataset, we split off 2000 samples from

the validation dataset for development purposes, using the remaining examples to

compute the test metrics. Overall we closely follow the experimental setup of the

original work introducing the DAM architecture (Parikh et al., 2016), with the same



7.6. Experiments 213

types of feed-forward components, layer size, dropout, and word embedding hyper-

parameters.

7.6.2 Evaluation Metrics

In our experiments we will measure model behaviour according to the subsequent

list of metrics, all evaluated on the respective test set:

1. Accuracy: The standard classification accuracy used in prior work on this

task, i.e. the fraction of test samples for which the prediction is correct.

2. Verified Accuracy: The fraction of test samples for which the prediction is

correct and we can verify, using the above described verification procedure,

that Specification 7.1 is satisfied. Note that standard accuracy is an upper

bound for this metric.

3. Robustness to Undersensitivity Attacks (“Beam Search Heuristic”): Here

we utilise beam search in the same way as prior work (Feng et al., 2018) in an

attempt to identify violations to Specification 7.1 in the perturbation space.

We begin the search with the full input sequence and delete tokens step by

step while maintaining a beam of width 10. We then measure, concretely,

whether our search has not yielded a counterexample and whether the model

prediction was accurate. Note that since this search heuristic does not ex-

haustively cover the input perturbation space, we can miss violations to Spec-

ification 7.1. The resulting metric establishes an upper bound for the above

described verified accuracy metric; conversely verified accuracy is bounded

from below by the beam search heuristic metric.

7.6.3 Training Methods

We will first evaluate the standard log-likelihood model training, and then proceed

in investigating to what extent established defence methods against adversarial at-

tacks can increase the rate of positive verifications of the undersensitivity specifica-

tion. Concretely, we will compare the subsequent list of training approaches:
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1. Standard Training: Here we follow the standard log-likelihood training

commonly used in discriminative classification tasks.

2. Data Augmentation: We have previously in Chapter 6 found that the aug-

mentation of the training data with samples from the perturbation space can

improve the model’s robustness to adversarial attacks. Here, we add such

training samples with randomly deleted subsets of words (using a Bernoulli

probability of 50% for retaining any of the given tokens, and sampling them

independently of one another). If such a randomly drawn reduced input ex-

ample z0 ∈X in(x) results in a model probability P(ŷ(x)|z0)> P(ŷ(x)|x), then

we calculate the (positive) difference between them, multiply it with a scalar

λ > 0 and add it to the loss. Thus, during training we penalise the DAM

model whenever it violates the undersensitivity specification as determined

from randomly drawn samples in X in(x). In this procedure, randomly re-

duced samples are drawn in the same proportion as original samples.

3. Adversarial Training: While in the previously described defence method we

relied on randomly subsampled sequences of input words, we now systemati-

cally search for deletions of word combinations that most strongly violate the

undersensitivity specification. We consider two types of adversarial search:

i) sampling 512 elements from X in(x) at random, and picking the strongest

violation ii) beam search of width 10, again using the procedure laid out in

prior work (Feng et al., 2018). In our search we identify those inputs with the

largest gap between the output probability P(ŷ(x)|x) of the original input, and

the probability for the same output using the reduced input P(ŷ(x)|z0), i.e. the

largest violation to the specification 7.1. The degree of violation (where it is

larger than 0) is multiplied by λ > 0 and added as a contribution to the train-

ing loss, in the same way as for data augmentation. The perturbed inputs are

continuously re-sampled or searched for throughout the whole training pro-

cedure, ensuring that adversarial samples are always up-to-date with the most

recent iteration of the model parameters.
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4. Entropy Regularisation: Prior work (Feng et al., 2018) has identified en-

tropy regularisation (computed on the distribution of output probabilities) as

a modification to standard training that can help alleviate model undersensi-

tivity. We hence include it in our comparison and investigate to what extent it

can also improve the verification rates compared to standard training.

5. IBP-Training: Finally, we experiment with the addition of an auxiliary

training objective that is directly derived from the IBP verification proce-

dure. IBP establishes upper bounds on output probabilities for the entire

reduction space X in(x) (see Eq. (7.5)). If the bound zK,ŷ for the proba-

bility of ŷ, however, exceeds the original probability P(ŷ|x) for the pre-

dicted class ŷ = argmaxy P(y|x), a positive difference between them emerges:

∆(x, ŷ) = zK,ŷ − P(ŷ|x). We use this expression ∆(x, ŷ) to define a hinge

loss (ensuring its contribution to the loss only where it is indeed positive) that

we multiply with λ > 0 and add to the original training objective. Note that

this bound zK,ŷ bounds the output probability of any adversarially chosen (or

randomly sampled) input z0 ∈ X in(x). The value of zK,ŷ over-approximates

the model output probability for any sample arising from arbitrary removals

of tokens in the input, and thus covers the entire perturbation space.

7.6.4 Training Details

Most of the aforementioned training approaches utilise an auxiliary contribution to

the log-likelihood training loss. This contribution is additive and computed for the

same batch of SGD samples as the log-likelihood part of the objective. To iden-

tify a viable degree of contribution to the loss we tune the scalar hyperparameter

λ ∈ {10−2,10−1,100,101,102} that scales the contribution of the auxiliary objec-

tive to the loss.6 Our experiments all use an initial learning rate of 10−3, optimisa-

tion using Adam, and batch size 128. Early stopping is conducted based on verified

accuracy, halting at a maximum of 3M training steps.

When performing IBP-Training, it proves useful to phase in the perturbation

6Naturally, this is done separately for each of the different training approaches.
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space volume continuously, i.e. not begin with its full size but gradually increase the

volume to its full extent (Gowal et al., 2018). This allows for the gradual adapta-

tion of an otherwise potentially very strong loss signal that can over-rule any signal

stemming from fitting the original training data. We achieve this by calculating – for

each dimension of the input – the arithmetic mean of the upper and lower bound.

We then slowly phase in the contribution of the IBP-derived loss contribution by

linearly interpolating from this dimension-wise arithmetic mean to the actual upper

and lower bounds: beginning with a volume of 0, we linearly increase the vol-

ume until it reaches its full extent and covers the entire volume of the perturbation

space. We tune the interval allowed for this gradual phasing in of the volumne

in {100,103,104,105,106} training steps. This approach also allows for linearly

inflating the perturbation volume to an extent larger than the full size, which could

potentially result in larger margins ∆(x, ŷ) = zK,ŷ−P(ŷ|x) and improved verification

levels. We briefly experimented with this, but did not observe improved verifiability

outcomes as a result.

7.6.5 Results: General Observations

Results of our experiments are given in Tables 7.3 and 7.4 for the two datasets,

respectively. Our first observation is that indeed, for a small, yet non-negligible

fraction of samples the undersensitivity specification can be positively verified us-

ing IBP-based verification – across all training methods. The difference between

standard accuracy, and verified accuracy is however striking: compared to all the

samples that have been predicted correctly, only a small fraction IBP-verifiably ad-

heres to the undersensitivity specification.

Next, we observe that beam search attacks succeed in almost all cases, leaving

for the standard training baseline only 3.36% and 8.77% of samples correctly an-

swered without successful attack, on the two datasets respectively. It is at this point

worth pointing out that these adversarially reduced samples pose real challenges to

humans attempting to predict the correct entailment label. Prior work (Feng et al.,

2018) has conducted an analysis of adversarial undersensitivity attacks concretely

on SNLI, which were identified using the beam search procedure also used here.
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Training Method Accuracy Verified Accuracy Beam Search Heuristic
Standard Training 77.22 2.83 3.36
Data Augmentation 76.37 5.09 6.27
Adversarial Training: random 76.89 1.79 4.16
Adversarial Training: beam search 76.09 5.48 23.76
Entropy Regularisation 77.32 5.82 6.28
IBP-Training 75.51 18.36 19.26

Table 7.3: Experimental outcome for different training methods on the SNLI dataset, as
measured in standard accuracy, verified accuracy (using IBP verification), and
the beam search heuristic, which uses adversarial search to find violations to the
undersensitivity specification. Models are selected based on verified accuracy;
all numbers are in [%].

This study found that humans asked to predict the label of adversarially reduced

samples have considerable drops in their predictive accuracy compared to the orig-

inal samples: -48.7%, -2.7% and -15.6% (absolute differences) for ‘entailment’,

‘neutral’, ‘contradiction’, respectively (cf. Table 1 in (Feng et al., 2018)).

In our experiments, we next observe that there are substantial differences in

verified accuracy between training methods, and notably also improvements over

the verification rates achieved using standard training. In particular the addition

of a dedicated IBP-related objective in IBP-Training leads to a sharp increase in

verified accuracy to 18.36% and 17.44% for the two datasets, respectively.

The improved IBP-verifiability however comes at a price: the standard ac-

curacy on the test set is diminished on both datasets; not by much for SNLI, but

drastically on the MNLI dataset. The standard accuracy of the different training

approaches is also diminished in comparison to the originally reported test accu-

racy (Parikh et al., 2016) as we tune for high IBP-verification rates on the develop-

ment set.

These observations suggest that IBP-verifiability and standard test accuracy

may be – at least partially – at odds, in a similar way as previously noted for standard

accuracy and adversarial accuracy (Tsipras et al., 2019). The inclusion of a new

component to the objective function, which is simultaneously fitted with the log-

likelihood objective – as well as model selection based on the corresponding verified

accuracy metric – ultimately lead to lower standard accuracy values.
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Training Method Accuracy Verified Accuracy Beam Search Heuristic
Standard Training 60.00 7.77 8.77
Data Augmentation 62.02 1.93 4.26
Adversarial Training: random 61.89 2.60 5.04
Adversarial Training: beam search 58.74 0.45 7.44
Entropy Regularisation 60.74 8.83 9.47
IBP-Training 44.95 17.44 19.07

Table 7.4: Experimental outcome for different training methods on the MNLI dataset, as
measured in standard accuracy, verified accuracy (using IBP verification), and
the beam search heuristic, which uses adversarial search to find violations to the
undersensitivity specification. Models are selected based on verified accuracy;
all numbers are in [%].

This is however not necessarily a surprising result: the undersensitivity specifi-

cation enforces a much stronger modelling requirement for individual samples than

merely predicting the correct one of three labels: it constrains the latent activations

of arbitrary input reductions. The predictive success of standard NLI models may

to a large extent be based on spurious cues – as witnessed in the strong performance

of hypothesis-only baselines in NLI (Poliak et al., 2018; Gururangan et al., 2018),

which corresponds to an extreme case of deleting all premise tokens. By enforcing

the undersensitivity specification, a model is hindered from forming high output

probability values based on partial inputs, thus lowering data fit as well as train and

test accuracy. We note that nominal test accuracy on an in-distribution test set does

not directly reflect a model’s susceptibility to undersensitivity attacks; it leaves the

modeller blind to shortcomings such as relying on the hypothesis alone, and can

thus only be seen as one (imperfect) indicator for a model’s NLI capabilities.

7.6.6 Comparison of Training Methods

When comparing the different training methods, we first observe that standard train-

ing does only for a small fraction of samples lead to successful verification with IBP,

both on SNLI and MNLI. Entropy regularisation has in prior work been shown to

modestly improve adversarial vulnerability (Feng et al., 2018). Our experiments

confirm this prior result with modest improvements in the beam search heuristic

metric, and also in terms of verified accuracy.

The approaches that add reduced samples during training (data augmentation,
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as well as the two adversarial training approaches) lead to diverging results on the

two datasets, yet where improvements in terms of verified accuracy are observed,

they lack far behind those observed with IBP-based training. A possible explana-

tion for the divergent results is the length of the sequences: in MNLI the premise

symbol sequences are 6.2 tokens longer, on average. Consequently the reduction

space is substantially larger (note the exponential growth of the perturbation space

depending on the sequence length). Covering this space by selecting individual re-

duced samples (either at random, or using adversarial search) is thus less likely to

find worst-case violations. Adversarial training with the beam search attack then

leads to increased verification rates on SNLI but not MNLI, where the sequences

are longer, and the worst case violation is less likely to be found.

It is worth pointing out that adversarial training on MNLI is overall not very

effective, and leads to no improvements in either verified accuracy or beam search

heuristic. On the other hand for SNLI, where sequences are shorter, both data aug-

mentation and beam search adversarial training substantially improve the verified

accuracy and beam search heuristic metrics. Finally, as mentioned before, IBP-

training increases verified accuracy considerably and more effectively than any of

the other approaches.

Recall that verified accuracy is bounded from above by the beam search heuris-

tic. A gap between the two can arise for one of the following reasons: i) IBP is

incomplete, i.e. the bounds it uses are too loose to effectively verify the specifica-

tion, even though it actually holds true ii) the adversarial attack in the beam search

heuristic misses violations to the specification due to it only partially covering the

full search space. To investigate this further, we consider the model’s performance

on inputs with short sequences (at most 12 tokens) of the SNLI test set. For these

sequences, exhaustively covering the full space arising from deleting arbitrary se-

quences of input tokens is computationally feasible, with at most 212 forward passes

per sample. In Table 7.5 we compare the different training approaches on these

samples in terms of verified accuracy (computed with IBP, which is incomplete),

verified accuracy (computed with exhaustive verification, which is complete), and,
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Verified Accuracy
Training BSH Exhaustive IBP Exh./BSH IBP/Exh.

Standard Training 5.37 5.13 4.34 95.5% 84.6%
Data Augmentation 8.78 8.59 6.48 97.8% 75.4%
Adversarial:random 7.03 6.88 1.87 97.9% 27.2%
Adversarial:beam 32.14 31.90 5.13 99.3% 16.1%
Entropy Regul. 9.28 8.90 8.35 95.9% 93.8%
IBP-Training 20.94 20.68 19.29 98.8% 93.2%

Table 7.5: Comparison of different verification-related metrics for SNLI inputs with up to
12 tokens. BSH: Beam Search Heuristic; Exh.: Exhaustive. The ratios in the
two latter columns indicate how many cases BSH and IBP miss: the difference
to 100% in each column shows how many adversarial samples BSH misses, and
how many actually verifiable cases IBP fails to verify, respectively.

again, the beam search heuristic.

The verified accuracy values computed using exhaustive search (which is com-

plete), is then bounded twofold by the other two metrics. On the one hand, it is

bounded from below by the verified accuracy computed using IBP; the gap indi-

cates the degree to which IBP verification is incomplete, i.e. fails to provide a ver-

ification certificate even though the specification is satisfied. On the other hand,

the beam search heuristic metric provides an upper bound to verified accuracy com-

puted using exhaustive search; the gap here indicates to what extent the beam search

heuristic misses violations to the given specification due to its incomplete coverage

of the search space – which exhaustive search can catch.

A first observation is that the verified accuracy rates on this subset of the SNLI

test set are slightly higher than for the full test set. This indicates that verifying

the undersensitivity specification is to some degree less challenging for shorter se-

quences.

Second, we observe that for all training approaches apart from adversarial

training (rows 3 and 4), IBP-based verification indeed approaches the verification

levels of the exhaustive search oracle: in each of these training approaches more

than 75% of actually verifiable cases are positively verified. This means that the

– in absolute terms – low verification rates we observe with IBP are not primarily

due to excessively loose bounds that prevent IBP from verifying samples that in

fact adhere to the specification, but indeed due specification violations. To clarify
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this further: for the large majority of samples it is not the incompleteness of IBP

verification that leads to low IBP verification rates, but the lack of adherence of the

model to the undersensitivity specification, as indicated by the comparative ratio

with the exhaustive verification measure.

Third, adversarial training (of both types tested) leads to a very different out-

come: here (and only here) there is a wide gap between the verification rates

observed with IBP verification, and those theoretically possible using exhaustive

search (27.2% and 16.1% IBP/Exh. ratio).

Fourth, the beam search heuristic (BSH) metric is generally closer to exhaus-

tive verification (approximating it from above), than is IBP verification (approxi-

mating it from below). That is, IBP fails to verify more verifiable cases than BSH

misses adversarial attacks, and the difference is most striking in the adversarial

training baselines. That is, while effective at improving undersensitivity, adversar-

ial training leads to wider IBP bounds – as seen in low IBP-based verification rates

even where samples do adhere to the specification (i.e. where exhaustive verification

succeeds).

These observations give a good indication for the situation on short sequences,

yet due to the computational infeasibility of computing exhaustive attacks for larger

input sequences it remains unclear how observations on the gaps between metrics

translate to larger sequences.

7.6.7 Computational Efficiency of IBP Verification

As previously indicated, the computational burden that comes with exhaustively

covering an exponentially large search space is substantial, rendering full verifica-

tion impractical for larger input sequences. In Table 7.6 we compare the number of

forward passed necessary to perform verification, both for the theoretical worst case,

as well as an empirically computed bound. The incomplete and bound-based ver-

ification using IBP incurs only little additional cost of O(1). This cost stems from

computing upper and lower bounds for the activations, which is similar in complex-

ity to a standard forward pass, and can be achieved in parallel (Gowal et al., 2018).

Since a full exhaustive search is not possible, we instead consider exhaustive search
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Metric Time[s] # Eval’s /sample
Accuracy 2 1
IBP Verification 3 ≈ 2
Exhaustive Search – 2L

Exh. Search up to 200K 45,674 200,000
Beam Search 505 ≈ b ·L

Table 7.6: The computational cost of verifying the given specification. Left: time re-
quired (in [s]) to evaluate 300 randomly chosen SNLI samples, without cross-
sample batching. Right: the theoretical worst-case for the number of forward
passes necessary. L: sequence length; b: beam width.

up to a maximum of 200,000 forward passes, per example (which under-estimates

the true computational cost).

Although only considering a bounded search with a potentially very long tail,

and although the search halts once any violation to the specification has been found,

we observe that both the theoretical worst case number of forward passes required

– as well as the actual computation time in exhaustive evaluation – are orders of

magnitude beyond IBP-based verification. This underscores the computational effi-

ciency of IBP for verification.

7.7 Discussion
Our experiments demonstrate that it is possible to positively verify a specification

addressing a model’s undersensitivity using IBP. This specification is, however, only

for a minority of samples verifiably satisfied. Disregarding the outcome of adversar-

ial training, our results from Table 7.5 furthermore indicate that excessively loose

IBP bounds are not the underlying cause of low verification rates, but rather the

actual presence of specification violations.

Relying on IBP-based training substantially improves the verification rates, al-

beit at the cost of deteriorated nominal test accuracy. One possible interpretation

of this result is that when enforcing the specification during training, models can-

not rely as much on shallow surface cues any more to form their prediction. It

might however also indicate that the bounds propagated are unnecessarily loose

and impede the process of data fitting. Other methods for neural network verifi-

cation – which bound the propagated perturbation spaces in other ways than with
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axis-parallel hyperrectangles (as does IBP) – may improve the “false negative” ratio

associated with loose bounds, and impose less of an impediment to fitting the data.

Formal verification can offer a stronger guarantee than adversarial robustness

to an adversarial attack: it can guarantee that no attack can succeed in breaking

the specification, even with the strongest of possible adversaries. Evaluating ad-

versarial accuracy might be conceptually easier than IBP-based verification, but it

comes with increased computational overhead compared to evaluating IBP-based

verified accuracy, and lacks a guarantee that a stronger adversary or bigger search

budget might not uncover a valid or stronger attack. Prior work (Uesato et al., 2018)

has discussed the problem of measuring adversarial robustness against weak adver-

saries, which under-estimates the true extent of a vulnerability, and may hence lead

to flawed conclusions about a lack thereof.

We see IBP-based verification as a compromise between evaluating a model’s

robustness using adversarial search – which cannot uncover all violations – and

using exhaustive search – which is computationally infeasible due to its exponential

worst-case cost. In particular for larger reduction spaces, where statistical coverage

is harder to achieve and exhaustive verification impossible, IBP-based verification

can be a useful tool to efficiently evaluate a model’s vulnerability, although at the

cost of potential false negatives.

The fact of overall low absolute verification rates, as well as the large number

of specification violations are a reason for concern about the model’s robustness but

not new; such observations are common for adversarial attacks on other tasks and

have been related to datasets with high sample complexity (Schmidt et al., 2018).

7.8 Conclusion

Undersensitivity is a prevalent issue in both Reading Comprehension and Natural

Language Inference. In this chapter we have explored a new method to both evaluate

and potentially mitigate a model’s undersensitivity to deletions in its input text.

We summarise answers to our initially posed list of research questions as fol-

lows:
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1. How can IBP be adapted to formally verify an undersensitivity specifi-

cation on the DAM model? We have described how bounds on perturbed

inputs – resulting from partial input deletions – can be computed for every

layer of the DAM architecture. The resulting bounds in probability space

overestimate the probabilities of any perturbed input from an exponentially

sized reduction space, and can thus be used as a proxy to certify that the

probability of the original input is not exceeded by any perturbed input.

2. How efficient, and how effective is IBP at verifying this specification?

IBP requires the propagation of bounds through the network, which comes at

a constant cost in terms of number of forward passes; this stands in contrast

to exhaustive verification, which requires an exponential number of forward

passes. In a computationally feasible setup, which allows for exhaustive veri-

fication, we observe that IBP is an effective verification tool compared to the

exhaustive verification oracle: IBP can certify 84.6% / 93.2% of the cases of

the oracle, for a standard model and IBP-trained model, respectively.

3. How do different training methods aimed at defending against under-

sensitivity compare in terms of IBP-verification rates? All training meth-

ods tested have low IBP-verification rates, in absolute terms. Entropy regu-

larisation can modestly improve IBP-verification rates over standard train-

ing (+2.99% and +1.06% on SNLI and MNLI), whereas data augmenta-

tion and adversarial training show diverging results for the SNLI and MNLI

datasets, albeit at similarly low overall rates. Training with an additional IBP

auxiliary objective results in large improvements, and increases IBP verifi-

cation rates from 2.83% to 18.36% on SNLI, and from 7.77% to 17.44% on

MNLI, compared to standard training.

As we have observed, only a minority of data points can be positively verified

using IBP, or using exhaustive verification (where possible) – indicating a funda-

mental difficulty of learning to adhere to this specification, and generalising this

behaviour to unseen test data. We thus conclude with a cautionary note on model
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undersensitivity: various defences are able to reduce the extent of the problem, but

ridding models entirely of this undesirable behaviour comes at the cost of what

models are developed for in the first place: generalisation to held-out test samples

– at least when using the technical means considered here.

IBP is general enough to be extendable to other types of specifications, and

one next step would be to adapt it to symbol substitutions, as explored in Chap-

ter 6, rather than symbol deletions. Furthermore, the DAM model architecture ex-

plored here is amenable to bound propagation due to its limited depth and lack of

context-dependent computation of word representations. We see overcoming these

challenges as critical next steps to applying the IBP-based verification methodology

to more recent generations of neural NLP models (Devlin et al., 2019).





Chapter 8

General Conclusion

8.1 Recapitulation
We have in this thesis investigated a series of problems in machine reading com-

prehension with a particular focus on dataset aspects. Following the introduction

in Chapter 1 and general background in Chapter 2, we have considered three sce-

narios which are reflected in parts I-III of the thesis. In Part I / Chapter 3 we have

modified the established crowdsourcing approach to RC dataset creation pioneered

in SQUAD and used it to construct a multiple-choice dataset for the science exam

QA domain. In Part II we have addressed the problem of creating datasets for

cross-document multi-hop RC (Chapter 4), followed by an investigation of Pseudo-

Relevance Feedback as the basis for selecting suitable combinations of documents

for a model to process (Chapter 5). In Part III we have investigated the problem of

RC model undersensitivity – a problem that is related to a lack of closely related

unanswerable samples in RC training data (Chapter 6). Finally we have explored a

formal verification approach to evaluate and address model undersensitivity using

Interval Bound Propagation (Chapter 7). We will proceed with a summary of major

contributions, major findings, and with critical reflections before concluding with

perspectives on future research.

8.2 Major Contributions
New Dataset Resources: We have produced new RC dataset resources both for

the domain of science exam QA (SCIQ), and for multi-hop RC across docu-
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ments (WIKIHOP and MEDHOP). These datasets are publicly available and can

serve as training resources and evaluation benchmarks for future RC research.

Innovation in Dataset Construction Methodology: The construction of these

datasets was supported by innovations in dataset construction methodology. Con-

cretely this includes a method to generate plausible multiple-choice answer candi-

dates for science questions, and a graph traversal approach to construct multi-hop

cross-document RC datasets using distant supervision.

Identification of Dataset Limitations: We have highlighted multiple pitfalls,

dataset biases, and artefacts resulting from different data annotation strategies. This

list of dataset biases includes i) a lack of plausible alternative answer candidates

ii) label imbalance iii) spurious correlations between particular documents and an-

swers in multi-document settings iv) a lack of structurally similar, yet unanswerable

questions. We have then explored the following approaches to circumvent the listed

issues, respectively: the inclusion of plausible alternative answer candidates and

documents (i), sub-sampling (ii, iii), randomised masking (ii, iii), data augmenta-

tion and adversarial training (iv), as well as model verification (iv).

Retrieval for Document Combinations: We have shown that Pseudo-Relevance

Feedback is a better suited retrieval strategy than TF-IDF or BM25 for selecting

document combinations on WIKIHOP, and used this to improve both the document

selection procedure and downstream accuracy of two neural RC models.

Model Undersensitivity: We have established and quantified the problem of RC

model undersensitivity for natural language inputs, which had previously only been

demonstrated for partially deleted inputs. After an examination of the phenomenon

and characterisation of affected samples, we showed that it can be mitigated ef-

fectively through adversarial training and data augmentation, thus showing that the

problem is largely attributable to a lack of structurally similar, but unanswerable

training samples. We have furthermore shown that reducing a model’s undersen-

sitivity improves its behaviour when given a train / test distribution mismatch, and

that it increases the model’s robustness on the adversarial datasets from Jia and

Liang (2017).
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Formal Model Verification: We have introduced formal model verification as a

method to evaluate a specification about an NLP model’s undersensitivity. We

have adapted Interval Bound Propagation to formally verify this specification for

the DAM architecture (Parikh et al., 2016) in the NLI task in particular, evaluated

and discussed its effectiveness and efficiency, and compared the verification and ad-

versarial error rates of several training methods aimed at reducing undersensitivity.

8.3 Major Findings

Science Exam QA: The crowdsourcing approach to RC dataset creation can be ex-

tended to the science exam QA domain. Although questions are similar to real exam

questions as judged by non-experts, they differ from them by being formulated us-

ing concrete documents, with which they show high levels of lexical overlap. We

observed that both Lucene and Aristo (Clark et al., 2016) – two previously devel-

oped science exam solvers with access to a corpus of relevant documents, score

higher on the resulting dataset compared to real exam questions. Neural RC meth-

ods achieve comparable performance to these prior science exam solvers when cou-

pled with an IR component. Adding the newly assembled dataset as additional

training data to existing exam questions improves the performance of two neural

RC models evaluated on real exam questions.

Multi-Hop RC: We have demonstrated that it is possible to collect a noisy dataset

of cross-document multi-hop RC samples using distant supervision and graph

traversal in a bipartite graph of entities and documents. This dataset creation ap-

proach is however prone to biases, notably type consistency, label imbalance, and

spurious correlations between particular documents and answers. These dataset bi-

ases can be mitigated by introducing alternative answer candidates and documents,

via sub-sampling, and via entity masking. Without the application of these counter-

measures statistical heuristics can achieve high accuracy values; even with the ap-

plication of some of these mitigation measures they reach comparable performance

to two neural RC models (FastQA and BiDAF). With the application of randomised

entity masking in particular, the performance of shallow statistical heuristics drops,
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while neural RC models are able to retain their accuracy levels.

Methods for Selecting Document Combinations: The performance of neural RC

methods on the collected multi-hop RC datasets improves when restricting the given

documents to exclude irrelevant documents. This has inspired the sub-problem

of identifying relevant document combinations, and we have shown that Pseudo-

Relevance Feedback is better suited for this than TF-IDF or BM25, and obtained

downstream accuracy improvements on WIKIHOP by exploiting this. These im-

provements were however not reflected in HOTPOTQA, which we related to dif-

ferences in question length (and consequent retrieval vector sparsity), as well as

differences in lexical overlap between query and documents.

Model Undersensitity: Commonly used neural RC methods trained on both

SQUAD2.0 and NEWSQA are vulnerable to model undersensitivity attacks: ad-

versarially chosen semantic changes to the comprehension question do not affect

their answer prediction and even increase prediction confidence. We have identi-

fied a lack of structurally similar samples during training as responsible for this,

and shown that if such samples are added, models become less vulnerable even to

attacks based on new perturbations, become more robust to ADDSENT and AD-

DONESENT adversarial samples, and rely less on spurious type consistency cues

to answer the question. Furthermore, undersensitivity attacks are more prevalent

among samples with lower confidence and lower accuracy, and they transfer be-

tween ROBERTA and BERT models.

Undersensitivity Specification Verification: We have demonstrated that the DAM

model does only for a small minority of samples verifiably adhere to an under-

sensitivity specification under word combination deletions. The rate of samples

for which the verification is satisfied can be improved with the introduction of ei-

ther adversarial, or IBP-related objectives: for example, verified accuracy can be

increased from 2.8% to 18.4% on SNLI with an IBP-related objective. However,

the modifications to conventional discriminative training that we tested come at the

price of deteriorated nominal test accuracy. Besides this, we have shown that IBP-

based verification is by orders of magnitude more efficient than exhaustive verifica-
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tion in the undersensitivity problem setting, while having overall low false negative

ratios when evaluated in a setting where this evaluation is computationally feasi-

ble (e.g. 15.4% for a standard model on short sequences in SNLI).

8.4 Critical Reflection

Work in progress: A first – and important – point to emphasise is that the datasets

we have constructed are not the final word on how we should train models to learn

desirable RC behaviours. Instead, we see them as a step on the way towards improv-

ing our understanding of relevant factors in RC dataset construction and resulting

model capabilities. The observations and perspectives we have described in this

thesis can contribute to this understanding, and hopefully lead to new and further

improved annotation methodologies and task conceptualisations.

Dataset limitations are not comprehensive: It is further worth mentioning that the

dataset biases and limitations we have addressed – e.g. spurious co-occurrences of

documents and answers in Chapter 4, or model undersensitivity in Chapter 6 – do

not form a comprehensive list of such limitations. The diversity of different struc-

tural regularities in RC datasets suggests it to us as likely that additional biases and

shortcuts will be discovered in the future.

Dataset noise: The dataset construction methods we have laid out do not always

and reliably produce high-quality samples. While this is a general concern in data

annotation, it is one for this work in particular, given our reliance on distant super-

vision and crowdsourced annotation by non-experts. We have highlighted this at

various points and partly quantified the extent of this issue, e.g. by estimating the

extent of distant supervision violations in Chapter 4.

Pre-trained models have changed the picture: The recent penetration of the NLP

field with representations from pre-trained language models (Peters et al., 2018; De-

vlin et al., 2019) has shifted the picture regarding the role of RC training data: be-

sides task-specific annotated samples, a large corpus of unlabeled pre-training data

now also affects the resulting models. It is worth noting that models can capture

factual information from their pre-training data (Petroni et al., 2019), which may
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enable them to predict correct answers to RC questions with less or without consid-

eration of the text passage(s) given to them in an RC task. This introduces particular

complications to the conceptual interpretation of multi-hop behaviour e.g. in WIK-

IHOP, which contains queries about paragraphs which are typically included in LM

pre-training data (WIKIPEDIA). Models leveraging pre-trained representations blur

the line between multi-hop and direct text comprehension, as it is unclear to what

extent they rely on implicit background knowledge.

Limitation to the English language: All experiments in this thesis were conducted

on English language corpora and datasets. We do not see any reason in principle

for the transfer of most of our findings to other languages, yet some methodological

contributions may have to be adapted depending on the language in consideration,

e.g. the types of lexical permutations introduced in Part III on undersensitivity.

Limitations to applicability: The datasets we produced and the consequently

trained models are not at a stage in which they are ready for direct practical ap-

plication. Instead, they can be considered a testbed which contributes to an under-

standing of potentially relevant factors for practical applications in the future.

8.5 Future Work

Identification of dataset and model limitations: As RC progresses through the

collective efforts of the research community, pinpointing and systematising partic-

ular RC failure modes will continue to play an important role in improving models,

and likely become more conceptually challenging with increasing model capabili-

ties. Having largely traded away model interpretability for generalisation perfor-

mance in neural RC, new methods that help us understand model behaviours –

especially undesirable ones – are necessary to further improve RC systems and

datasets. We have in this thesis focused mostly on data-related aspects, but there

are many ways in which undesirable model behaviour can be identified. Model di-

agnostics (Ribeiro et al., 2016, 2018a), crowdsourcing the detection of RC model

failures (Bartolo et al., 2020), or adopting adversarial perspectives (Jia and Liang,

2017) are promising directions to identify and systematise model limitations; the
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latter can ideally lead to an ongoing virtuous cycle of new adversarial attacks and

responses. With an improved understanding of dataset and model shortcomings we

can test countermeasures and develop technical solutions that gradually close the

gap between machine and human reading comprehension ability.

Reconsideration of dataset needs for science exam QA: In part I of this thesis

we have considered a particular domain – science exam QA. Since the time of this

study, neural models have substantially progressed (Clark et al., 2019). A thorough

reconsideration of dataset requirements, in particular for the effective use of models

relying on pre-trained LM representations would both be insightful and useful to

further improve these models and lift them to more challenging benchmarks.

Future work on multi-hop datasets: A number of additional datasets targeting

multi-hop RC has been assembled besides WIKIHOP and MEDHOP, using different

annotation paradigms (Talmor and Berant, 2018; Yang et al., 2018; Khashabi et al.,

2018a). Subsequent work has also shown limitations to the degree of multi-hop

inference necessary, e.g. in WIKIHOP and HOTPOTQA (Jiang and Bansal, 2019;

Min et al., 2019; Chen and Durrett, 2019). Future dataset construction efforts to-

wards multi-hop comprehension should take into accounts these lessons and con-

ceive annotation methodologies – potentially using data augmentation strategies –

to circumvent the ability of models to learn such shortcuts.

Further explorations into model undersensitivity: The undersensitivity prob-

lem we considered would benefit from further thorough investigation and analy-

sis, e.g. with the use of different perturbation spaces and countermeasures, and a

better theoretical framework to capture the phenomenon.

Neural network verification in NLP: The formal verification of particular prop-

erties for neural NLP models is still in a nascent stage. We see promise in this

conceptual framework, as it allows us to retain guarantees and a degree of control

over otherwise freely optimised neural structures – if we are able to precisely de-

fine the model behaviour we desire with a formal specification. Future work in this

direction includes improving the looseness of verification bounds, the adaptation of

verification approaches to larger and more potent model architectures in NLP, and
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conceptual work to formally define specifications that address desirable and unde-

sirable model behaviours which go beyond fitting correct labels to individual data

points.



Appendix A

SCIQ: List of Study Books

The following is a list of the books we used as data source:

• OpenStax, Anatomy & Physiology. OpenStax. 25 April 20131

• OpenStax, Biology. OpenStax. May 20, 20132

• OpenStax, Chemistry. OpenStax. 11 March 20153

• OpenStax, College Physics. OpenStax. 21 June 20124

• OpenStax, Concepts of Biology. OpenStax. 25 April 20135

• Biofundamentals 2.0 – by Michael Klymkowsky, University of Colorado &

Melanie Cooper, Michigan State University6

• Earth Systems, An Earth Science Course on www.curriki.org7

• General Chemistry, Principles, Patterns, and Applications by Bruce Averill,

Strategic Energy Security Solutions and Patricia Eldredge, R.H. Hand, LLC;

Saylor Foundation8

1Download for free at http://cnx.org/content/col11496/latest/
2Download for free at http://cnx.org/content/col11448/latest/
3Download for free at http://cnx.org/content/col11760/latest/
4Download for free at http://cnx.org/content/col11406/latest
5Download for free at http://cnx.org/content/col11487/latest
6https://open.umn.edu/opentextbooks/BookDetail.aspx?bookId=350
7http://www.curriki.org/xwiki/bin/view/Group_CLRN-OpenSourceEarthScienceCourse/
8https://www.saylor.org/site/textbooks/General%20Chemistry%20Principles,

%20Patterns,%20and%20Applications.pdf

http://cnx.org/content/col11496/latest/
http://cnx.org/content/col11448/latest/
http://cnx.org/content/col11760/latest/
http://cnx.org/content/col11406/latest
http://cnx.org/content/col11487/latest
https://open.umn.edu/opentextbooks/BookDetail.aspx?bookId=350
http://www.curriki.org/xwiki/bin/view/Group_CLRN- OpenSourceEarthScienceCourse/
https://www.saylor.org/site/textbooks/General%20Chemistry%20Principles,%20Patterns,%20and%20Applications.pdf
https://www.saylor.org/site/textbooks/General%20Chemistry%20Principles,%20Patterns,%20and%20Applications.pdf
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• General Biology; Paul Doerder, Cleveland State University & Ralph Gibson,

Cleveland State University 9

• Introductory Chemistry by David W. Ball, Cleveland State University. Saylor

Foundation 10

• The Basics of General, Organic, and Biological Chemistry by David Ball,

Cleveland State University & John Hill, University of Wisconsin & Rhonda

Scott, Southern Adventist University. Saylor Foundation11

• Barron’s New York State Grade 4 Elementary-Level Science Test, by Joyce

Thornton Barry and Kathleen Cahill 12

• Campbell Biology: Concepts & Connections by Jane B. Reece, Martha R.

Taylor, Eric J. Simon, Jean L. Dickey13

• CK-12 Peoples Physics Book Basic 14

• CK-12 Biology Advanced Concepts 15

• CK-12 Biology Concepts 16

• CK-12 Biology 17

• CK-12 Chemistry - Basic 18

• CK-12 Chemistry Concepts – Intermediate 19

9https://upload.wikimedia.org/wikipedia/commons/4/40/GeneralBiology.pdf
10https://www.saylor.org/site/textbooks/Introductory%20Chemistry.pdf
11http://web.archive.org/web/20131024125808/http://www.saylor.org/site/

textbooks/The%20Basics%20of%20General,%20Organic%20and%20Biological%

20Chemistry.pdf
12We do not include documents from this resource in the shared dataset.
13We do not include documents from this resource in the shared dataset.
14http://www.ck12.org/book/Peoples-Physics-Book-Basic/
15http://www.ck12.org/book/CK-12-Biology-Advanced-Concepts/
16http://www.ck12.org/book/CK-12-Biology-Concepts/
17http://www.ck12.org/book/CK-12-Biology/
18http://www.ck12.org/book/CK-12-Chemistry-Basic/
19http://www.ck12.org/book/CK-12-Chemistry-Concepts-Intermediate/

https://upload.wikimedia.org/wikipedia/commons/4/40/GeneralBiology.pdf
https://www.saylor.org/site/textbooks/Introductory%20Chemistry.pdf
http://web.archive.org/web/20131024125808/http://www.saylor.org/site/textbooks/The%20Basics%20of%20General,%20Organic%20and%20Biological%20Chemistry.pdf
http://web.archive.org/web/20131024125808/http://www.saylor.org/site/textbooks/The%20Basics%20of%20General,%20Organic%20and%20Biological%20Chemistry.pdf
http://web.archive.org/web/20131024125808/http://www.saylor.org/site/textbooks/The%20Basics%20of%20General,%20Organic%20and%20Biological%20Chemistry.pdf
http://www.ck12.org/book/Peoples-Physics-Book-Basic/
http://www.ck12.org/book/CK-12-Biology-Advanced-Concepts/
http://www.ck12.org/book/CK-12-Biology-Concepts/
http://www.ck12.org/book/CK-12-Biology/
http://www.ck12.org/book/CK-12-Chemistry-Basic/
http://www.ck12.org/book/CK-12-Chemistry-Concepts-Intermediate/
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• CK-12 Earth Science Concepts For Middle School20

• CK-12 Earth Science Concepts For High School21

• CK-12 Earth Science For Middle School 22

• CK-12 Life Science Concepts For Middle School 23

• CK-12 Life Science For Middle School 24

• CK-12 Physical Science Concepts For Middle School25

• CK-12 Physical Science For Middle School 26

• CK-12 Physics Concepts - Intermediate 27

• CK-12 People’s Physics Concepts 28

CK-12 books were obtained under the Creative Commons Attribution-Non-

Commercial 3.0 Unported (CC BY-NC 3.0) License. 29

20http://www.ck12.org/book/CK-12-Earth-Science-Concepts-For-Middle-School/
21http://www.ck12.org/book/CK-12-Earth-Science-Concepts-For-High-School/
22http://www.ck12.org/book/CK-12-Earth-Science-For-Middle-School/
23http://www.ck12.org/book/CK-12-Life-Science-Concepts-For-Middle-School/
24http://www.ck12.org/book/CK-12-Life-Science-For-Middle-School/
25http://www.ck12.org/book/CK-12-Physical-Science-Concepts-For-Middle-School/
26http://www.ck12.org/book/CK-12-Physical-Science-For-Middle-School/
27http://www.ck12.org/book/CK-12-Physics-Concepts-Intermediate/
28http://www.ck12.org/book/Peoples-Physics-Concepts/
29http://creativecommons.org/licenses/by-nc/3.0/

http://www.ck12.org/book/CK-12-Earth-Science-Concepts-For-Middle-School/
http://www.ck12.org/book/CK-12-Earth-Science-Concepts-For-High-School/
http://www.ck12.org/book/CK-12-Earth-Science-For-Middle-School/
http://www.ck12.org/book/CK-12-Life-Science-Concepts-For-Middle-School/
http://www.ck12.org/book/CK-12-Life-Science-For-Middle-School/
http://www.ck12.org/book/CK-12-Physical-Science-Concepts-For-Middle-School/
http://www.ck12.org/book/CK-12-Physical-Science-For-Middle-School/
http://www.ck12.org/book/CK-12-Physics-Concepts-Intermediate/
http://www.ck12.org/book/Peoples-Physics-Concepts/
http://creativecommons.org/licenses/by-nc/3.0/
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ter: Crowdsourcing incremental classification games. In Proceedings of the

2012 Joint Conference on Empirical Methods in Natural Language Processing

and Computational Natural Language Learning, EMNLP-CoNLL ’12, pages

1290–1301, 2012. URL http://dl.acm.org/citation.cfm?id=2390948.

2391094.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and

Regression Trees. Wadsworth, 1984. ISBN 0-534-98053-8.

C. Buck, J. Bulian, M. Ciaramita, A. Gesmundo, N. Houlsby, W. Gajewski, and

W. Wang. Ask the right questions: Active question reformulation with reinforce-

ment learning. International Conference on Learning Representations (ICLR),

2018.

http://arxiv.org/abs/1506.02075
http://arxiv.org/abs/1506.02075
http://aclweb.org/anthology/D15-1075
http://dl.acm.org/citation.cfm?id=2390948.2391094
http://dl.acm.org/citation.cfm?id=2390948.2391094


BIBLIOGRAPHY 243

R. Bunel, I. Turkaslan, P. H. Torr, P. Kohli, and M. P. Kumar. Piecewise linear neural

network verification: a comparative study. arXiv preprint arXiv:1711.00455,

2017.

R. Bunescu and R. Mooney. Learning to extract relations from the web us-

ing minimal supervision. In Proceedings of the 45th Annual Meeting of the

Association of Computational Linguistics, pages 576–583, Prague, Czech Re-

public, June 2007. Association for Computational Linguistics. URL https:

//www.aclweb.org/anthology/P07-1073.

C. Cardie. Empirical methods in information extraction. AI magazine, pages 65–79,

1997.

N. Carlini and D. Wagner. Adversarial examples are not easily detected: Bypassing

ten detection methods. In Proceedings of the 10th ACM Workshop on Artificial

Intelligence and Security, pages 3–14. ACM, 2017.

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, and T. M. Mitchell.

Toward an architecture for never-ending language learning. In In AAAI, 2010.

L. Carlson, D. Marcu, and M. E. Okurovsky. Building a discourse-tagged cor-

pus in the framework of rhetorical structure theory. In Proceedings of the

Second SIGdial Workshop on Discourse and Dialogue, 2001. URL https:

//www.aclweb.org/anthology/W01-1605.

C. Carpineto and G. Romano. A survey of automatic query expansion in information

retrieval. ACM Comput. Surv., 44(1):1:1–1:50, Jan. 2012. ISSN 0360-0300. doi:

10.1145/2071389.2071390.

E. Charniak. Organization and inference in a frame-like system of common sense

knowledge. In Theoretical Issues in Natural Language Processing, 1975. URL

https://www.aclweb.org/anthology/T75-2010.

D. Chen, J. Bolton, and C. D. Manning. A thorough examination of the CNN/Daily

Mail reading comprehension task. In Proceedings of the 54th Annual Meeting of

https://www.aclweb.org/anthology/P07-1073
https://www.aclweb.org/anthology/P07-1073
https://www.aclweb.org/anthology/W01-1605
https://www.aclweb.org/anthology/W01-1605
https://www.aclweb.org/anthology/T75-2010


244 BIBLIOGRAPHY

the Association for Computational Linguistics (Volume 1: Long Papers), pages

2358–2367, 2016. URL http://www.aclweb.org/anthology/P16-1223.

D. Chen, A. Fisch, J. Weston, and A. Bordes. Reading wikipedia to answer open-

domain questions. In Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages 1870–1879. As-

sociation for Computational Linguistics, 2017a. URL http://www.aclweb.

org/anthology/P17-1171.

J. Chen and G. Durrett. Understanding dataset design choices for multi-hop reason-

ing. In Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Vol-

ume 1 (Long and Short Papers), pages 4026–4032, Minneapolis, Minnesota, June

2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1405.

URL https://www.aclweb.org/anthology/N19-1405.

Q. Chen, X. Zhu, Z.-H. Ling, S. Wei, H. Jiang, and D. Inkpen. Enhanced lstm

for natural language inference. In Proceedings of the 55th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), pages

1657–1668. Association for Computational Linguistics, 2017b. doi: 10.18653/

v1/P17-1152. URL http://aclweb.org/anthology/P17-1152.

W. Chen, W. Xiong, X. Yan, and W. Y. Wang. Variational knowledge graph reason-

ing. In M. A. Walker et al., editors, Proceedings of the 2018 Conference of the

North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies, NAACL-HLT 2018, pages 1823–1832. Association

for Computational Linguistics, 2018.

C.-H. Cheng, G. Nührenberg, and H. Ruess. Maximum resilience of artificial neural

networks. In International Symposium on Automated Technology for Verification

and Analysis, pages 251–268. Springer, 2017.
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