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Abstract—Fluid antenna represents a concept where a position-
flexible antenna can switch its location freely within a given space.
Recently, it has been demonstrated that even with a tiny space,
a single-antenna fluid antenna system (FAS) can outperform an
L-antenna maximum ratio combining (MRC) system in terms of
outage probability if the number of locations (or ports) the fluid
antenna can be switched to, is large enough. This letter aims to
study if extraordinary capacity can also be achieved by FAS with
a small space. We do this by deriving the ergodic capacity, and a
capacity lower bound. This letter also derives the level crossing
rate (LCR) and average fade duration (AFD) for the FAS.

Index Terms—Capacity, Fluid antennas, MIMO.

I. INTRODUCTION

A main challenge in mobile phone design is the increasing
limited physical dimensions. It is common practice that mul-
tiple antennas are only deployed, if they are sufficiently apart.
The rule of thumb is that antennas should have a separation of
at least λ

2 where λ is the wavelength. However, this approach
may need to be changed because the intuition that a tiny space
does not have rich diversity is far from accurate.

In [1], a novel fluid antenna system (FAS) was investigated,
where the antenna can be switched to one of N fixed locations
in a linear space. The work was motivated by the emergence
of mechanically flexible antennas, some of which are based on
liquid metal antennas, e.g., [2]–[5] or ionized solutions [6]–[8],
while others utilize pixel antennas [9]. The beauty of ‘fluid’
antennas is that an antenna is no longer fixed at a location but
can be switched to a more favourable location if needed.

The rationale of FAS resembles traditional antenna selection
with one RF chain. However, for traditional antenna selection
systems, multiple antennas are deployed at fixed locations and
the antenna with the strongest signal is selected. By contrast,
in FAS, there is only one antenna whose position (referred to
as “port”) is flexible within a predefined space. FAS selects
the best port for the strongest reception in the same way as
choosing the best antenna in a multiple antenna system. Note
that FAS may be realized by different ways. One way is to use
conductive fluids or liquid metals which can be mobilized in
a tube-like structure using a software-controlled microfluidic
system, e.g., [2]–[8]. Alternatively, a “fluid” antenna can also
be realized by an array of pixel-like electronic switches [9].
By turning on or off the pixels, an antenna can be made to
appear or disappear instantly in a given space.
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A key finding in [1] is that though space matters, a single-
antenna FAS with a tiny space can achieve any arbitrarily small
outage probability and surpass a multi-antenna maximum ratio
combining (MRC) system, if N is large enough. The aim of
this letter is to examine if the promising outage performance
of FAS can be translated into other benefits. In particular, this
letter derives the level crossing rate (LCR), the average fade
duration (AFD), and the ergodic capacity for the N -port FAS.
One major contribution is a closed-form capacity lower bound
for the FAS. Numerical results confirm the huge capacity gain
unfolded from the diversity hidden in a small space of FAS.

Fig. 1. The concept of FAS. In practice, the relocation of the antenna can
be realized by mechanically moving liquid conductors using a microfluidic
system, or electronically turning on or off radiating pixels.

II. FAS SYSTEM MODEL

We consider a FAS with linear space of Wλ where λ is the
wavelength, as shown in Figure 1. It is a single-antenna system
where the antenna is mechanically flexible, using technologies
such as microfluidic systems [5]–[7] or on-off pixels [9], and
can be switched to one of the N preset locations along the
space.1 We refer to the location as port, and the ports are
evenly distributed over the space of Wλ, sharing one RF chain.

The received signal at the k-th port can be written as

yk = gkx+ ηk, (1)

in which x is the transmitted symbol, ηk is the additive white
Gaussian noise (AWGN) with zero mean and variance of σ2

η ,
gk is the complex channel envelope, and rk = |gk| is Rayleigh
distributed, with the probability density function (pdf)

prk(r) =
2r

σ2
e−

r2

σ2 , for rk ≥ 0, (2)

with E[r2
k] = σ2. Also, we define the average signal-to-noise

ratio (SNR) as Γ , σ2 E[|x|2]
σ2
η

= σ2Θ.

1In this letter, the switching delay is assumed negligible, which is particu-
larly reasonable in the case of pixel-based fluid antenna technologies.
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We parameterize the channels for the N -port FAS by

g1 = σx0 + jσy0

gk = σ

(√
1− µ2

kx2 + µkx0

)
+ jσ

(√
1− µ2

ky2 + µky0

)
, for 1 < k ≤ N,

(3)
where x0, x1, . . . , xN , y0, y1, . . . , yN are all independent
Gaussian random variables with zero mean and variance of
1
2 , and {µk} are the parameters that can be chosen freely to
control the correlation between the channels {gk}. Assuming
2-D isotropic scattering and isotropic receiver ports on the
FAS, the autocorrelation parameters are given by [1], [10]

µk = J0

(
2π(k − 1)

N − 1
W

)
, for k = 2, . . . , N, (4)

where J0(·) is the zero-order Bessel function of the first kind.
In this letter, we assume that the FAS can always select the

best port with the strongest signal for communication, i.e.,

rFAS = max{r1, r2, . . . , rN}. (5)

III. LCR AND AFD

To analyze LCR and AFD, we need the time-derivatives of
the signal envelopes, {ṙk}∀k. According to [11], for isotropic
scattering, ṙk is Gaussian distributed with zero mean and
variance σ̂2 = 2π2σ2f2

m where fm = v/λ is the maximum
Doppler shift for speed v.

Theorem 1: The LCR for FAS is given by

NrFAS
(r) =

2
√
πv

σλ
re−

r2

σ2 . (6)

Proof: From [12, (14)], we have

NrFAS(r) =

∫ ∞
0

ṙprFASṙFAS(r, ṙ)dṙ

=

N∑
j=1

NrFAS|rj (r|rj)Prob(rj = rFAS) =
σ̂pr(r)√

2π
,

(7)

where pr(r) is given by (2). We then obtain (6) after using
(2) and the fact that σ̂2 = 2π2σ2f2

m = 2π2σ2v2/λ2.
Theorem 2: The AFD for an N -port FAS, for a level r, is

given by

τrFAS
(r) =

Prob(rFAS ≤ r)
NrFAS

(r)
, (8)

where the outage probability is given by [1, Theorem 3] and
NrFAS

(r) is obtained by (6).
Proof: The result comes from the definition of AFD.

IV. ERGODIC CAPACITY

Lemma 1: The ergodic capacity can be obtained by

E[ln(1 + γ)] =

∫ ∞
0

(
1

1 + y

)
Prob

(
r >

√
y

Θ

)
dy,

(in nats/channel-use), (9)

where γ = r2Θ is the instantaneous SNR.

Proof: Using E[Y ] =
∫∞

0
Prob(Y > x)dx, we get

E[ln(1 + γ)] = E[ln(1 + r2Θ)]

=

∫ ∞
0

Prob
(
ln(1 + r2Θ) > x

)
dx

=

∫ ∞
0

Prob
(
r2Θ > ex − 1

)
dx. (10)

Then by changing the variable y = ex − 1, we get (9).
The following theorem establishes the exact ergodic capac-

ity expression for the FAS in an analytical form.
Theorem 3: The ergodic capacity of the FAS is given by

CFAS =

∫ ∞
0

(
1

1 + y

){
1−

∫ y
Γ

0

e−t×

N∏
k=2

[
1−Q1

(√
2µ2

k

1− µ2
k

√
t,

√
2

1− µ2
k

√
y

Γ

)]
dt

}
dy,

(in nats/channel-use), (11)

where Q1(·, ·) denotes the first-order Marcum Q-function.
Proof: Using Lemma 1 and noting that

Prob

(
r >

√
y

Θ

)
= 1− Prob

(
rFAS ≤

√
y

Θ

)
, (12)

we obtain (11) after substituting Γ = σ2Θ.
Theorem 3 provides the exact result for the ergodic capacity

but it is difficult to gain any insight. We now try to establish a
lower bound in a closed form so that the capacity benefit for
the spatially correlated ports can be quantified.

Lemma 2: For 0 < α < β and large β, we have the
following lower bound for Q1(α, β):

Q1(α, β) & %

√
β

α
e−

κ
2 (β−α)2

, (13)

where κ is any positive constant greater than one, and % ,
e

1
π(κ−1)+2

2κ

√
(κ−1)(π(κ−1)+2)

π . Note that 0 < % < 0.5.
Proof: See [1, Lemma 6].

Theorem 4: Defining the service probability of an N -port
FAS, for a level y, as

qN (y) , Prob

(
rFAS >

√
y

Θ

∣∣∣∣N) , (14)

it can be lower-bounded by

qN (y) ≥
N∑
`=1

1≤k1,...,k`≤N
k`1
6=k`2

(−1)`+1εk1
εk2
· · · εk` (15)

where

εk ,


%√
|µk|

e
− κ

1−µ2
k

( yΓ )
, if k > 1 and |µk| > %2

e
− κ

1−µ2
k

( yΓ )
, if k > 1 and |µk| ≤ %2

e−
y
Γ , if k = 1,

(16)

in which κ > 1 and 0 < % < 0.5 are defined in Lemma 2.
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Proof: First of all, define the outage probability so that

pN (y) = Prob

(
rFAS ≤

√
y

Θ

∣∣∣∣N) = 1− qN (y). (17)

A lower bound of qN (y) can be obtained by developing an

upper bound for pN (y). Denoting αk =

√
2µ2
k

1−µ2
k

and βk =√
2

1−µ2
k

√
1
Γ , we can find that

pN (y) = pN−1(y)−
∫ y

Γ

0

Q1

(
αN
√
t, βN

√
y
)
×

e−t
N−1∏
k=2

[
1−Q1

(
αk
√
t, βk
√
y
)]
dt. (18)

As αN
√
t ≤ βN

√
y, we use Lemma 2 to get

Q1(αN
√
t, βN

√
y) &

%√
|µN |

(
y
Γ

)0.25

t0.25
e
− κ

1−µ2
N

(
√

y
Γ−µN

√
t)

2

.

(19)
As 0 ≤ t ≤ y

Γ , we can further have the following lower bound

Q1(αN
√
t, βN

√
y) &

%√
|µN |

e
− κ

1−µ2
N

( yΓ ) ≡ εN . (20)

Now, using this result inside the integration of (18), we have

pN (y) ≤ (1− εN )pN−1(y) ≤ (1− εN )(1− εN−1)pN−2(y)

· · · ≤ p1(y)
N∏
k=2

(1− εk). (21)

As a result, we can obtain a lower bound for qN (y) by

qN (y) ≥ 1− p1(y)

N∏
k=2

(1− εk). (22)

Note that p1(y) = 1 − e−
y
Γ = 1 − ε1. If we then expand the

product in (22), then we have
N∏
k=1

(1− εk) = 1 +
N∑
`=1

1≤k1,...,k`≤N
k`1
6=k`2

(−1)`εk1
εk2
· · · εk` . (23)

Using the above result on (22) gives the desired result. Note

that (21) is valid only if %√
|µk|

e
− κ

1−µ2
k

( yΓ ) ≤ 1. Therefore, the

definition (16) is introduced to guarantee that.
Theorem 5: The ergodic capacity for an N -port FAS in (11)

is lower bounded by

CFAS ≥ CLB =
N∑
`=1

1≤k1,...,k`≤N
k`1
6=k`2

(−1)`+1ak1
· · · ak`×

e
∑`
j=1 bkjΓinc

0,
∑̀
j=1

bkj

 , (24)

where Γinc(x, y) is the upper incomplete Gamma function,

ak ,


1 if k = 1 or |µk| ≤ %2,

%√
|µk|

if k 6= 1 and |µk| > %2,
(25)

Fig. 2. The normalized AFD results against the level for various W and N .

and

bk ,


1

Γ
if k = 1,

κ

1− µ2
k

(
1

Γ

)
if k 6= 1.

(26)

Proof: From Lemma 1, we have

CFAS =

∫ ∞
0

qN (y)

1 + y
dy. (27)

Using the lower bound for qN (y) in Theorem 4, we get

CFAS ≥
N∑
`=1

1≤k1,...,k`≤N
k`1
6=k`2

(−1)`+1

∫ ∞
0

εk1εk2 · · · εk`
1 + y

dy

=

N∑
`=1

1≤k1,...,k`≤N
k`1
6=k`2

(−1)`+1ak1 · · · ak`
∫ ∞

0

e−(bk1
+···+bk` )y

1 + y
dy.

(28)

Using the fact that
∫∞

0
e−cy

1+y dy = ecΓinc(0, c) gives the final
result (24), which completes the proof.

V. NUMERICAL RESULTS

In this section, we provide the numerical results for the AFD
and ergodic capacity under different settings. Figure 2 shows
the AFD results against the signal envelope level for the FAS
with different N and size W . As expected, if the level is large,
AFD eventually grows rapidly without bound. What is crucial
is when this starts to happen. The results reveal that N helps
increase the signal level with practically zero AFD. Also, the
size W has a positive impact on the AFD. If W is larger, more
diversity potentially exists and AFD can be reduced.

Results in Figure 3 are provided for the ergodic capacity
of the FAS. Figure 3(a) illustrates how the capacity of the
FAS scales with N . As we can observe, capacity continues to
increase with N even when W is very small. Also, W = 0.5
appears to have the biggest jump in performance, as further
increase in W only contributes little. This may be explained
by knowing the fact that a linear space for FAS has its spatial
autocorrelation function following the Bessel function (4). It
is well understood that the Bessel function has the biggest
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drop in the absolute value of the spatial autocorrelation when
the distance is at λ

2 . As such, we interpret that if W = 0.5,
then the FAS obtains the most benefit from the reduction in
spatial correlation for capacity gain. In other words, further
increase in the size will result in a diminishing return. This is
further confirmed by the results in Figure 3(b), which show
that capacity plateaus when W reaches 1. This reveals that N
is a more important factor than W in the FAS. Remarkably,
results also demonstrate that the capacity of a single-antenna
FAS can obtain that of a multi-antenna MRC system with
independent fading. In particular, N = 10 will be enough for
FAS with W ≥ 0.5 to approach a 3-antenna MRC system.
More capacity is also possible if N continues to increase.

Lastly, results in Figure 3(c) evaluate the lower bound in
Theorem 5 against the exact capacity for different values of
SNR. The results indicate that although the lower bound is
not particularly tight, it accurately picks up how the capacity
grows with the SNR. Also, the lower bound scales very well
with N . As we can see, the gap between the bound and the
exact result remains similar if N increases.

VI. CONCLUSION

Following the emergence of mechanically flexible antennas,
this letter studied if the diversity of FAS with a small space
can be translated into substantial capacity gain. To this end, we
first derived the exact ergodic capacity in an analytical form,
and then established a capacity lower bound that was able to
reveal how the capacity scales with the system parameters. We
concluded that a single-antenna FAS, with a small space, can
achieve the capacity of a multi-antenna MRC system.
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(a) Ergodic capacity versus number of ports when Γ = 10dB

(b) Ergodic capacity versus size when Γ = 10dB

(c) Ergodic capacity versus the lower bound with W = 1

Fig. 3. Ergodic capacity results for the FAS.
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