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Abstract
The perovskite oxides are known to be susceptible to structural distortions over a long wavelength
when compared to their parent cubic structures. From an ab initio simulation perspective, this
requires accurate calculations including many thousands of atoms; a task well beyond the remit of
traditional plane wave-based density functional theory (DFT). We suggest that this void can be
filled using the methodology implemented in the large-scale DFT code, CONQUEST, using a local
pseudoatomic orbital (PAO) basis. Whilst this basis has been tested before for some structural and
energetic properties, none have treated the most fundamental quantity to the theory, the charge
density n(r) itself. An accurate description of n(r) is vital to the perovskite oxides due to the crucial
role played by short-range restoring forces (characterised by bond covalency) and long range
Coulomb forces as suggested by the soft-mode theory of Cochran and Anderson. We find that
modestly sized basis sets of PAOs can reproduce the plane-wave charge density to a total integrated
error of better than 0.5% and provide Bader partitioned ionic charges, volumes and average charge
densities to similar degree of accuracy. Further, the multi-mode antiferroelectric distortion of
PbZrO3 and its associated energetics are reproduced by better than 99% when compared to
plane-waves. This work suggests that electronic structure calculations using efficient and compact
basis sets of pseudoatomic orbitals can achieve the same accuracy as high cutoff energy plane-wave
calculations. When paired with the CONQUEST code, calculations with high electronic and
structural accuracy can now be performed on many thousands of atoms, even on systems as
delicate as the perovskite oxides.

1. Introduction

The ABO3 perovskite oxides are well known for their vast and rich variety of physical phenomena. These
include interfacial two-dimensional electron gases [1, 2], negative capacitance [3, 4], high-temperature super-
conductivity [5, 6] and many more. Many of these are linked to a plethora of responsible order parameters
and their competition/coupling with one another [7, 8]. Ferroelectric, ferromagnetic antiferroelectric & anti-
ferromagnetic order are all commonplace in the perovskite oxides as well as antiferrodistortions (rotations
of the BO6 octahedra) and Jahn–Teller distortions. Some of these features are also known to coexist with
one another giving rise to the phenomena of multiferrocity [9]. In simulation, the onset of many different
competing order parameters can create a myriad of distinct local minima with similar energetics. It is then
of paramount importance that our simulation methodology produces accurate results such that we can dis-
tinguish them from one another in their energetics but also accurately resolve their electronic & structural
properties.
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In addition to the requirement of high accuracy, the perovskite oxides present structural and magnetic
features over a long wavelength requiring first principles simulations of thousands of atoms. For example,
thin ferroelectric films are known to form flux-closure domains as a compensation mechanism for the depo-
larising field [10, 11]. The domain period in these films increases also with the depth of the film in question
(the well known Kittel scaling law) thus requiring simulations in excess of a thousand atoms. In the case of
multiferroic BiFeO3, the competition between various exchange interactions manifests in the softening of a
64 nm non-collinear spin-cycloid [12, 13] and a unit cell of ∼1000 atoms. Current simulations often bypass
this fact and approximate this complex magnetic order as simple G-type antiferromagnetism. Studies of solid-
solution families (ABxC1−xO3, (1 − x)ABO3 − xCDO3 and more) are popular in the field. Large supercell
calculations can offer realistic experimental order of these alloys which can improve upon the accuracy of
structural distortions found in smaller supercells and approximations like the virtual crystal approximation
[14–16]. Further, longer wavelength dynamical instabilities are found to be competitive in the important
piezoelectric solid solution PbZr0.5Ti0.5O3 (PZT 50/50) requiring a large number of atoms to simulate the
energetics [14].

Electronic structure calculations based on density functional theory (DFT) employing the plane-wave
pseudopotential method [17, 18] are known to achieve accurate results. This is in part due to the system-
atic, variational nature of the plane-wave basis where increasing the number of basis functions is guaranteed
to increase the level to which your calculations are converged. This method is not without its drawbacks.
A plane-wave by itself (the solution of the free electron) bears little to no resemblance to the Kohn–Sham
orbitals of the systems they are intended to represent. This is especially true for the localised 3d electrons of
the transition metals, responsible for magnetic and orbital order. It is for this reason that many thousands
of plane-waves are required in the basis set expansion at a great computational cost. Further, plane-waves
span the whole of the simulation cell which introduces wasteful calculations on the grid for systems includ-
ing a vacuum region. These issues can be bypassed by replacing plane-waves with physically intuitive local
basis sets of pseudoatomic orbitals (PAOs) [19–23]. These are atomic-like orbitals for which the radial part is
solved in the pseudopotential of each ionic species [24, 25]. PAOs are now regularly used in the Siesta [20],
OpenMX [26] & CONQUEST [27] codes, the last of which is employed in this work. The construction and
generation of such a basis is described in section 2.2.

Our PAOs are designed with a cut-off in real space (where the basis function becomes zero) motivated
by the desire to employ efficient sparse matrix algebra with high parallel efficiency [28]. Further, our formu-
lation of DFT is based on the density matrix ρ(r, r′). Should we choose to truncate the range of this matrix
(a requirement should we wish to use the linear scaling mode of operation), we are physically supported by
the principle of near-sightedness; the assertion that the density matrix ρ(r, r′) decays to zero as |r − r′| →∞
[29]. Complete with a change in algorithm (the scope of which is beyond this work but discussed in ref-
erences [27, 30]), this allows the well known O(N3) scaling wall (where N is the number of atoms in the
simulation) in standard DFT to be broken and replaced with a code which now scales as O(N). This method
paves the way for full electronic structure calculations on systems of many thousands of atoms (or even mil-
lions [31]), well beyond what is possible with conventional plane-wave methods. The CONQUEST code has
recently become publicly available with an MIT license [32].

The accuracy of the PAO basis has been reported in previous works [22, 23, 33–35] including calculations
of the structural parameters (bulk moduli and lattice constants) for this set of pseudopotentials [33]. Notably,
none have reported on the effects to the most fundamental quantity in DFT; the charge density n(r) itself.
An accurate account of n(r) is of a high importance for the perovskite oxides. Not only because applications
require it (like the simulation of 2DEGs [36]) but because of the possible ramifications for the soft-mode
theory of ferroelectricity [37, 38]. That is, the ferroelectric transition is governed by a zone centre dynami-
cal instability driven by the competition of short range covalent forces (preferring cubic symmetry) and long
range Coulomb forces (favouring the ferroelectric state). The charge density n(r) (and its derived quanti-
ties) is clearly a probe of bond covalency [39, 40] whilst electron–electron Coulomb terms feature explicit
dependence on n(r) in the calculation of the Hartree potential [41].

It is the purpose of this work to quantify the performance of PAOs versus the plane-wave pseudopoten-
tial method using calculations with the same pseudopotential. We compare the groundstate charge densities
and the order parameters controlling ferroelectric & antiferroelectric order. We do so by considering crys-
tals of PbTiO3 (PTO), PbZrO3 (PZO) and two supercell arrangements of the solid solution PbZrxTi1−xO3,
x = 0.5 (PZT 50/50). PTO is a prototypical ferroelectric known to undergo a paraelectric to ferroelectric
phase transition from cubic Pm3̄m to tetragonal P4mm below 763 K [42]. This phase transition is known to
come about from the softening of a zone centre lattice mode of irreducible representation (irrep) Γ−

4 [42]. In
contrast, PZO undergoes a paraelectric to antiferroelectric phase transition from cubic Pm3̄m to orthorhom-
bic Pbam below 505 K [43]. This transition is also thought to be caused by soft lattice modes [43–46] but
in this case has a more complex multi-mode description comprised primarily of R+

4 , Σ2 & S4 modes [44,
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45]. A small part of the distortion is also due to the softening of R+
5 , X−

3 & M−
5 lattice modes [44, 45].

We quantify the amplitudes of each individual lattice mode (and strain modes, detailed in the supplemen-
tal material (https://stacks.iop.org/EST/02/025002/mmedia)) in the phase transitions of both perovskites as
well determining the associated energetics for each of the considered PAO basis sets. Since the energy differ-
ences associated with the perovskite oxides are generally small (a few meV/atom), this is a strict test for the
accuracy of PAOs.

The remainder of this work is now organized as follows. Within section 2.1, we outline the general sim-
ulation method for both the plane-wave and PAO DFT calculations and describe the phases of PTO, PZO
& PZT 50/50 considered in the study. In section 2.2 we describe the method for the generation of the
PAO basis set and the details of the basis sets used in this work. Section 3.1 provides charge density differ-
ence analysis between PAO calculations and plane-waves as well presenting the Bader analysis of the ionic
charges, volumes and average densities. In section 3.2 we compare the amplitudes of the soft-mode distortions
responsible for the ferroelectric and antiferroelectric phase transitions in the PTO & PZO including the
energetics associated with crucial displacive modes. We also closely examine the energetics over the phase
transition paths by steadily increasing mode amplitudes until a maximal value, then, cumulatively add the
remaining important modes. We conclude this work in section 4 with a broad overview of our findings. This
includes a discussion of the impact this work has on the topic of local basis sets and the promise of accurate
and large-scale electronic structure calculations on the perovskite oxides.

2. Theoretical method

2.1. Calculational details
Calculations are performed using two different implementations of DFT. Calculations using the plane-wave
basis set are performed with the ABINIT code [47, 48] (v8.10.2) whilst calculations utilising PAOs are
carried out using the CONQUEST code (v1.0) [27, 32, 49] with the direct diagonalisation of the Hamiltonian
matrix. Both codes are able to use the same norm-conserving pseudopotentials as produced by ONCVPSP
[50] (v3.3.1) where input parameters were taken from the library (v0.4) on the PseudoDojo website
[51]. This library is known for its high accuracy results versus other pseudopotentials, projector augmented
wave methods & all-electron results as characterised in the well known DFT delta study [18]. These pseu-
dopotentials are scalar-relativistic and include partial core corrections. The Pb 5d, 6s, 6p, Ti 3s, 3p, 4s, 3d,
Zr 4s, 4p, 5s, 5d and O 2s, 2p orbitals are treated as valence in the pseudopotentials, but, in the CONQUEST

calculations the n = 3/4 states of Ti/Zr are treated as semi-core (see below). Exchange & correlation is rep-
resented by the PBESol functional [52] as present in Libxc [53] (v3.0.0). This functional is known to
produce accurate structural properties for many crystals including the perovskite oxides [54]. For the CON-

QUEST calculations, we consider three different basis sets with increasing accuracy. These are the single-ζ plus
polarisation (SZP), double-ζ plus double-polarisation (DZDP) and triple-ζ plus triple-polarisation (TZTP)
basis sets respectively. Semi-core states (like those present in Ti/Zr) include only a single-ζ per l-channel. This
approach allows us to study the effect of systematically adding an extra ζ per angular momentum channel.
The basis sets and details of their generation are described fully in section 2.2

The different crystal structures treated in this study are shown in figure 1. They display the cubic & tetrag-
onal phases of PTO, the cubic & orthorhombic phases of PZO and two cubic arrangements of the PZT
50/50 solid solution. For cubic PZO, cubic PTO and tetragonal PTO, reciprocal space integrals are replaced
with summations over a 9 × 9 × 9 Monkhorst-pack [55] mesh whilst orthorhombic PZO and the cubic
PZT 50/50 arrangements use a 7 × 3 × 5 & 5 × 5 × 5 mesh respectively. For structural relaxation, ABINIT
calculations use a 40 Ha plane-wave cutoff and a 160 Ha cutoff on the charge density grid whilst CON-

QUEST calculations use a 300 Ha plane-wave-equivalent cutoff for both integrals on the grid and the charge
density grid. These parameters were chosen that total energies are converged to better than 1 meV/ABO3

formula unit. The ionic positions are relaxed until the magnitude of the maximum force on all ions falls
below 5 × 10−3 eV Å−1. Stresses are also relaxed until all elements of the Cartesian stress tensor fall below
1 × 10−4 GPa. This process is repeated for all considered crystals and for each basis set.

For calculations assessing the charge density (section 3.1), we use a finer charge density grid with
100 × 100 × 100 grid points/ABO3 formula unit. For the orthorhombic

√
2 × 2

√
2 × 2 PZO unit cell, we

use 150 × 300 × 200 grid points. Each of these finer charge density calculations, for each basis, are per-
formed using the optimised plane-wave structure of each crystal. In order to assign ionic charges, volumes
and average ionic densities, we use the Bader partitioning scheme as implemented in the Bader code [56–59]
(v1.03). This code partitions individual atoms in crystals using the zero-flux surface of the charge density.
This is a 2-D surface for which the charge density is at a minimum perpendicular to the surface. We note that
whilst there is no unequivocal definition for the assignment of ionic charge, we choose the Bader definition
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Figure 1. The crystal structures of PTO, PZO and PZT 50/50 considered in this work. Illustrated also are the paraelectric to
ferroelectric and paraelectric to antiferroelectric phase transitions in PTO & PZO, respectively. The responsible displacive soft
lattice modes for the transitions are also indicated.

since it derives only from n(r) thus introducing no new variables to our analysis. We define also a total inte-
grated electronic error designed to quantify the level of disagreement in n(r) for the plane-wave and PAO
calculations. This is defined by the integral

Ne
error =

∫
|nPAO(r) − nPW(r)|dr (1)

for plane-wave/PAO electronic charge density nPW(r)/nPAO(r).
In section 3.2 we assess the amplitudes of individual soft lattice modes in the phase transitions of PTO

and PZO. To do so, we use the group symmetry analysis software made available in the ISOTROPY suite,
in particular ISODISTORT [60] (6.7.0). This code is able to perform mode decompositional analysis
when provided with the cubic Pm3̄m parent structures and the distorted daughter structures of PTO and
PZO. In our calculations, the parent structures are the relaxed cubic Pm3̄m crystals for each basis set and
daughter structures are the relaxed ferroelectric tetragonal PTO and antiferroelectric orthorhombic PZO cells
for each basis. The soft mode amplitudes can then be extracted from the ionic displacements present in the
daughter structures compared with the parents.

2.2. Generation of pseudoatomic orbitals
PAOs are a local basis with a simple construction of a radial function Rnlζ(r) multiplied by an appropriate
spherical harmonic Yl

m(r̂).
χnlmζ(r) = Rnlζ(r)Yl

m(r̂) (2)

for principal quantum number n, orbital angular momentum l and projection of orbital angular momen-
tum m. The last subscript ζ is related to the number of functions per l-channel. Increasing the number of
zetas adds flexibility to basis set and improves the accuracy in a non-variational manner. Since the spherical
harmonics are analytic functions, the responsibility of the PAO generation code is to solve for the radial func-
tions only. There is a question in this process with regards to how we should apply their confinement. The
Siesta code introduced the concept of a uniform energy shift in the eigenvalues of the radial Schrödinger
equation. This allows for a consistent definition of confinement for all angular momentum channels across
all PAOs. Whilst our approach stems from this, we have implemented two variations for doing so within the
CONQUEST PAO generator code (v1.02). One approach is that of equal energies where all functions with the
same zeta share an energy shift. To increase flexibility of multiple zeta basis sets, one of the zetas should have
a large confinement energy to create a highly confined function whilst others should have progressively less
confinement. Another approach is equal radii. Here, we solve all the radial functions at a given energy shift
for given ζ then take the mean of the resulting radii. This radius is then used for the given ζ . It was found
in a recent study that whilst both methods showed good agreement with plane-wave calculations, the equal
radii approach was found to give slightly better results for lattice constants and bulk moduli versus the equal
energies method [33].

4
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Table 1. The cut-off radii rc for each ζ component of the radial functions which construct the
basis sets used in this work by the equal radii method. Note that the equal radii method produces
radial functions whose cutoff does not vary with l-channel. Semi-core states are not included here.

Cut-off radius, rc (Å)

Species ζ = 1 ζ = 2 ζ = 3

Pb 3.625 2.826 2.000
Zr 4.667 3.551 2.392
Ti 4.355 3.270 2.153
O 2.572 1.979 1.365

Figure 2. The charge density difference between PAO calculations and plane-waves for increasing PAO basis set size for cubic
PTO (a) and cubic PZO (b). For each case, we display the full 3d isosurfaces and slices through the PbO and BO2 planes.
Isosurfaces are plotted at the +0.10 (dark red), +0.020 (light red) and −0.020 (blue) electrons/Å−3 levels.

To generate the radial functions for the SZP, DZDP & TZTP basis sets in this study, we use the CONQUEST

PAO generator (v1.02) operating under the equal radii scheme. Polarisation functions are solved in a petur-
bative manner by considering the effect of a finite local electric field acting on the highest valence state [61].
We use the default setting, applying confinement energies of 2 eV, 0.2 eV and 0.02 eV for the first, second
and third zetas respectively. The average radii for each zeta for each species for the valence states are shown
in table 1. The semi-core Zr and Ti radial functions are highly confined with the Zr 4s & 4p radii being
1.953 Å & 2.281 Å respectively. Ti 3s & 3p semi-core states are cut off at 1.757 Å & 2.001 Å (the radial func-
tions are displayed in section 1 of the supplemental material). The equal radii method produces slightly more
compressed functions than the equal energies method which are generally more efficient (due to their smaller
cut-off radius) but may require integration on a finer grid due to their more exaggerated gradients. We empha-
size once more that the radial functions used in this work are the defaults of the PAO generator code. Any results
here then should be regarded as out-of-the-box performance because in principle, it is possible to fit/optimize
these functions for specific situations. For example, the approach made by the Siesta code is a downhill
simplex minimisation of the total energy carried out on the material system to be studied (usually a solid-
state or molecular system) with respect to the parameters of the PAO generation mechanism [24]. Another
approach optimises the binding energy curve of dimers [62]. Whilst these methods can produce good results,
the possibility of many local minima in the optimisation is an issue as is the overfitting of smaller PAO bases
such that their transferability is diminished. In this respect, a large basis set of default (and more general) PAOs
may be more transferable.

3. Results

3.1. Electronic accuracy
Figures 2–4 show the charge density differences Δn(r) = nPAO(r) − nPW(r) for each PAO basis set and each
crystal structure shown in figure 1. We show this quantity using both coloured isosurfaces and slices through

5



Electron. Struct. 2 (2020) 025002 J S Baker et al

Figure 3. The charge density difference between PAO calculations and plane-waves for increasing PAO basis set size for
tetragonal PTO (a) and orthorhombic PZO (b). For each case, we display the full 3d isosurfaces and selected slices. Isosurfaces are
plotted at the +0.10 (dark red), +0.020 (light red) and −0.020 (blue) electrons/Å−3 levels.

chosen planes which are described in each figure. Before discussing the details of each case, we discuss some
striking features shared by all cases. The range of Δn(r) is similar between all crystals, extremal at around 0.25
electrons/Å3 with a very narrow region of negative Δn(r), minimal at ≈0.07 electrons/Å3. Even when con-
sidering these extrema, their magnitudes are ≈50× smaller than the extrema of any given n(r). This is even
more apparent when considering the mean absolute of Δn(r) which is ≈0.01 electrons/Å3 for SZP falling
to ≈0.004 electrons/Å3 by TZTP. This shows that even at first glance for all bases the electronic error versus
plane-waves is small. It is also clear that these regions of maximal Δn(r) are small in volume and isolated
close to each ionic site, especially the O anions. Further, error is almost vanishing proximal to the Pb cations
and Pb–O bonds suggesting this chemistry is well described by the default PAOs. Other than the aforemen-
tioned sites, Δn(r) ≈ 0 for the vast majority of the simulation box. Since all calculations are normalised to
the same number of electrons (44/ABO3 unit) the localised surplus of electrons close to ionic sites has to
result in an electron deficiency elsewhere. This manifests itself in two areas. Firstly, a small negative Δn(r)
appears in bonding areas, especially those characterising the BO6 octahedra. Secondly, the remaining Δn(r)
spreads itself out as an even smaller negative background over the rest of the simulation box. Finally, we see
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Figure 4. The charge density difference between PAO calculations and plane-waves for increasing PAO basis set size for Fm3̄m
cubic PZT 50/50 (a) and Pm3̄m cubic PZT 50/50 (b). For each case, we display the full 3d isosurfaces and selected slices.
Isosurfaces are plotted at the +0.10 (dark red), +0.020 (light red) and −0.020 (blue) electrons/Å−3 levels.

that the effect of increasing the size of the PAO basis from SZP to DZDP results in a large reduction in Δn(r).
This effect is most clear when we examine the shrinking volumes enclosed by the isosurfaces present on any
one of figures 2, 3 or 4. This effect can also be seen as we increase the basis set size from DZDP to TZTP
but is less drastic.

Table 2 shows the total integrated electronic error as defined in equation (1). Much like the range ofΔn(r),
the magnitude is similar across all crystals and decreases as we increase the basis set size. This improvement
is once again greater between the SZP & DZDP basis sets as compared to the drop in Ne

error between DZDP
& TZTP. What is notable, however, is that there is a noticeable (but small) gain in Ne

error as we break Pm3̄m
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Table 2. The total integrated electronic error Ne
error (normalized per five-atom ABO3 perovskite

unit, containing 44 electrons) as defined in equation (1) for the SZP, DZDP & TZTP PAO basis sets
for each of the considered structures in figure 1.

Ne
error/ABO3 unit (44 electrons) (e)

Pm3̄m Pm3̄m P4mm Pbam Fm3̄m Pm3̄m
PTO PZO PTO PZO PZT 50/50 PZT 50/50

SZP 0.719 0.768 0.730 0.772 0.739 0.743
DZDP 0.358 0.382 0.380 0.397 0.369 0.371
TZTP 0.246 0.276 0.257 0.282 0.257 0.259

symmetry for cubic PTO & PZO to the distorted P4mm & Pbam phases respectively. This gain is compa-
rable for both compounds. This effect can be explained by a slight rigidity for each PAO local to sites which
become low symmetry. The basis must now adapt to the now distorted environment in a more asymmetri-
cal manner which does not perform as well as the same process at a higher symmetry site. This effect can
be seen clearly in figure 3(a) when examining the TiO2 panel for the SZP basis set. Close to the O 1b Wyck-
off site we see firstly that Δn(r) is now asymmetrical in the plane perpendicular to the pseudocubic c-axis as
compared to the same panel in figure 2(a) where Δn(r) is symmetrical. We see also the Δn(r) is now greater
(and extremal) in the upper region of the O 1b site which is a primary source of the increase in the total
integrated error as we break cubic symmetry. We see for the two PZT 50/50 configurations that Ne

error is com-
parable since both arrangements have a similar, cubic symmetry. It is also interesting to point out that the
mean of Ne

error between cubic PTO & PZO for any basis very closely mirrors the value of Ne
error for either

of the PZT 50/50 configurations. This suggests that the electronic structure local to PTO & PZO units in
the alloy is similar to that of the pure compound. This is supported further when examining the BO2 pan-
els of figure 4 where local PTO & PZO units are easily discernible when compared with the BO2 panels
of figure 2. This suggests that approximations (like the virtual crystal approximation) designed to circum-
vent the need for large supercell calculations of alloys are unable to accurately account for local electronic
structure.

Figure 5(a) quantifies Ne
error for Pm3̄m PTO in terms of the same error produced by a given plane-wave

cutoff energy using the plane-wave basis. We see that when increasing the number of PAOs to TZTP, we achieve
the same accuracy as a 27.28 Ha cutoff plane-wave calculation. Figure 5(b) makes the same comparison but
for the convergence of the total energy difference ΔE. All PAO basis sets perform better using this metric
(in particular, SZP makes a gain of +4.63 Ha in plane-wave cutoff energy) with TZTP achieving the same
convergence in energy as a 30.85 Ha plane-wave cutoff. We note that these values are close to double those
reported by the PAO basis sets in the Siesta code [20] but accept that some of this difference could be
accounted for due to the softer (and lower accuracy) Troullier–Martins [63] type pseudopotentials used by
the code and the difference in material system used for the study (bulk Si).

Table 3 shows the quantities derived from Bader partitioning of the charge densities calculated using the
plane-wave optimised geometries. These results reveal some fine features in the electronic structure. We see
that for all basis sets, taking cubic PTO as an example, the Bader ionic charges qB (obtained from the differ-
ence in the pseudopotential valence charge with the Bader partitioned valence charge) do not coincide well
with the nominal charges (Pb2+, Ti4+, O2−) which are used frequently in the literature as a convenience rather
than an ab initio assignment. We retrieve around half the nominal values suggesting a significant covalent
character to the bonding, especially for the BO6 octahedra. This is in contrast to the well known of phe-
nomenon of anomalous dynamical or Born effective charges (Z∗) in the perovskite oxides, known to approx-
imately double the nominal charges of ions in the perovskite oxides [64]. The reason for this discrepancy is
that the dynamical nature of Z∗ accounts for the additional charge from counter motion of electrons/holes
when an cation/anion is displaced. In comparison, the Bader charge calculated in this work is a static
property.

We see that there is a cation → anion negative charge transfer with increasing basis set size suggesting an
increasing level of ionicity in bonding bringing qB closer to their nominal values. We see that the prediction of
qB is rather underestimated for cations and overestimated for anions in the SZP basis set. This suggests that the
electronegativity of O is underestimated and/or electrons on the metal ion sites are over-localised compared
to plane-waves. This fact first appears to be at odds with the observed effect of an electron surplus near O
anions as seen in figures 2–4. This is however rationalised as we also observe a decrease in the Bader volume
VB for O anions which, in turn, increases the average valence charge density n̄B (as seen in table 3) recovering
the effect observed in the electron density difference plots. Whilst it can be seen that the Bader derived quan-
tities are rather approximate (most notably in qB) for the SZP basis, by DZDP (and certainly by TZTP) they
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Figure 5. The convergence properties of plane-wave calculations where PAO calculations featuring the same error have been
overlaid for comparison. Calculations were performed on the Pm3̄m PTO structure. (a) Convergence with respect to the total
electronic error integral of equation (1). (b) Convergence with respect to ΔE, the energy difference between a given calculation
and the energy obtained from the 40 Ha plane-wave cutoff.

are in good agreement with the values obtained from plane-waves. This once again emphasizes the electronic
accuracy achievable with the default PAOs.

We have also examined the possibility that the errors in qB could be an artefact of pressure using the par-
ticular case of Pm3̄m PZO. We can see from table 6 that the optimised lattice constants for the PAO bases
overestimate the plane-wave result by 0.99%, 0.46% and 0.34% for the SZP, DZDP and TZTP basis sets
respectively. If we then perform simulations at the plane-wave lattice constant (as was done for the results in
table 3) this imposes an isotropic pressure of −5.28 GPa (SZP), −2.63 GPa (DZDP) and −1.46 GPa (TZTP).
Because of this fact, we calculated the Bader quantities once more using the zero pressure lattice constants.
Remarkably, qB changes only marginally (no more than ±0.01e). Since we are working at a larger volume,
the VB must of course increase, but, the ratios of the cationic to anionic volumes remain constant. Since
roughly the same amount of charge is now enclosed within a larger VB, we naturally see a decreased n̄B for
all sites.

We see that the ratio of the cation to anion volumes is a decreasing function of basis set completeness,
decreasing by ≈0.1 for VB

B/VO
B and ≈0.2 for VPb

B /VO
B from SZP to TZTP. This implies that in the smaller

basis set, O occupies a smaller ionic volume in comparison to the Pb and B-sites. This could result in
small differences in lattice dynamics between the basis sets and could effect the Goldschmidt tolerance factor,
depending explicitly on ionic radii [65, 66].

3.2. Soft-mode distortions
In this section we consider the soft-modes known to drive the phase transitions in PTO and PZO. We con-
sider the amplitude of each identifiable irrep in the relaxed structures for each basis set. We also consider the
degree of energy lowering associated with each of these irreps and define phase transition energies. We display
the displacive modes in tables 4 and 5. Strain modes influence the phase transition in PZO only by a small
amount so we include only discussion of strain modes in PTO, coupling strongly to the displacive Γ−

4 mode.
The phase transition energies are quoted in table 7 and the linear evolution of mode energetics are shown
in figure 6.

Before discussing mode amplitudes, we must first carefully define them. We do so following the format
of the ISODISTORT Ap amplitude normalised to the primitive cell [60]. Once an atomic displacement has
been identified as belonging to a particular irrep, the displacement is calculated in fractional coordinates rel-
ative to the parent structure. This defines the amplitude of a specific displacement in the irrep. To calculate
Ap we now normalise the amplitude by a factor of

√
Vp/Vs for supercell/primitive cell volumes Vp/s. Now to

calculate the amplitude of the irrep as a whole, we take the square root of the sum of the squares of the dis-
placement amplitudes belonging to the irrep in question (thereby obtaining an RMS amplitude). If we wish to
characterise the amplitude of the total distortion from the transition, we can take the square root of the sum
of the squares for each irrep amplitude. Tables 4 and 5 are then tabulations of Ap.
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Table 3. The Bader partitioned ionic charges qB, volumes VB and average valence charge densities n̄B for each ionic species and each of
the considered crystal structures calculated for each basis set. Where ionic species have symmetry in-equivalent sites, we take the mean
value over all sites. We give also the mean relative error (MRE) ε and mean absolute relative error (MARE) εabs measured in % error
versus plane-waves.

qB (e) VB (Å
3
) n̄B (eÅ

−3
)

SZP DZDP TZTP PW SZP DZDP TZTP PW SZP DZDP TZTP PW

Pm3̄m PTO

Pb 1.29 1.37 1.39 1.38 18.81 18.40 18.39 18.41 0.676 0.686 0.686 0.686
Ti 2.01 2.08 2.12 2.15 7.68 7.54 7.42 7.35 1.300 1.315 1.331 1.344
O −1.10 −1.15 −1.17 −1.18 11.22 11.40 11.45 11.46 0.633 0.627 0.6326 0.626

Pm3̄m PZO

Pb 1.21 1.30 1.39 1.35 21.89 21.42 20.83 21.06 0.585 0.593 0.606 0.600
Zr 2.31 2.39 2.43 2.47 11.00 10.65 10.39 10.23 0.881 0.903 0.921 0.931
O −1.17 −1.23 −1.27 −1.27 12.70 12.97 13.25 13.23 0.565 0.557 0.549 0.550

P4mm PTO

Pb 1.27 1.35 1.39 1.37 19.70 19.26 19.07 19.16 0.646 0.657 0.661 0.659
Ti 2.03 2.10 2.13 2.16 7.83 7.67 7.56 7.48 1.273 1.291 1.306 1.315
O −1.10 −1.15 −1.17 −1.18 11.76 11.96 12.07 12.06 0.603 0.597 0.594 0.595

Pbam PZO

Pb 1.20 1.29 1.34 1.31 21.24 20.70 20.52 20.66 0.603 0.614 0.617 0.614
Zr 2.37 2.47 2.51 2.55 10.99 10.61 10.39 10.28 0.876 0.898 0.913 0.920
O −1.19 −1.25 −1.28 −1.29 12.79 13.10 13.23 13.22 0.562 0.554 0.550 0.551

Fm3̄m PZT 50/50

Pb 1.24 1.34 1.39 1.35 20.29 19.78 19.52 19.76 0.629 0.640 0.646 0.640
Zr 2.26 2.36 2.42 2.55 10.91 10.54 10.28 9.96 0.892 0.915 0.933 0.949
Ti 2.04 2.12 2.15 2.18 7.70 7.53 7.43 7.34 1.294 1.313 1.325 1.338
O −1.13 −1.19 −1.22 −1.24 11.87 12.13 12.28 12.27 0.601 0.593 0.588 0.590

Pm3̄m PZT 50/50

Pb 1.24 1.34 1.39 1.36 20.45 19.86 19.60 19.79 0.624 0.637 0.643 0.639
Zr 2.33 2.39 2.43 2.47 10.64 10.43 10.18 10.03 0.909 0.921 0.939 0.950
Ti 2.04 2.11 2.15 2.18 7.73 7.54 7.42 7.34 1.289 1.311 1.327 1.337
O −1.14 −1.20 −1.23 −1.23 12.01 12.27 12.42 12.39 0.595 0.587 0.582 0.583

ε (%) −7.55 −2.83 −0.26 — 2.45 1.20 0.37 — −1.73 −0.89 −0.26 —
εabs (%) 7.55 2.83 1.45 — 4.27 1.84 4.27 — 2.82 1.25 0.60 —

We consider first the simpler phase transition of PTO. This is characterised by a single displacive mode
Γ−

4 resulting in the ferroelectric P4mm phase. Examining table 4 we see that Pb 1b displacements are set
to zero since we have chosen the Pb site as the origin. We see that for the SZP basis set the Γ−

4 distortion
is rather approximate compared to plane-waves overestimated by ≈35%. This overestimate can be under-
stood in simple terms by considering the arguments of Cochran and Anderson [37, 38, 67] in their seminal
works on soft modes. It is suggested that the condition for stability against the ferroelectric distortion is
that short range restoring forces (favouring the cubic phase) outweigh long range Coulombic forces (favour-
ing ferroelectricity). This condition does not hold for PTO in 0K DFT hence the ferroelectric Γ−

4 mode is
an energy lowering phase transition of the Pm3̄m phase. It is clear, however, that this delicate balance of
short and long range forces is modified between the different PAO bases. As discussed in section 1 (and
displayed in figure 2(a)), there are too few electrons in the covalent bonds defining the TiO6 octahedra; an
effect especially apparent for the SZP basis. This reduces the strength of short range restoring forces whilst
the Coulombic Ewald contribution remains constant (since for these calculations, we work at the plane-wave
lattice constant for each basis). We suggest that this increased imbalance drives a much stronger ferroelec-
tric distortion for the SZP basis. We note that whilst the Hartree forces (a functional of the charge den-
sity) from the coulomb interacting electrons will also play a role in this balancing act, their contribution is
non-trivial.
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Table 4. The mode amplitudes normalised to the parent cell Ap (described in the text) for the irreps characterising the Pm3̄m → P4mm
phase transition in PTO.

SZP DZDP TZTP PW

Γ−
4 → qΓ = [0, 0, 0] Pb 1b T1u 0.000 0.000 0.000 0.000

Ti 1a T1u 0.160 0.118 0.111 0.141
O 3d A2u 0.659 0.458 0.370 0.446
O 3d Eu 0.842 0.646 0.550 0.651

Total distortion 1.081 0.800 0.672 0.802

Table 5. The mode amplitudes normalised to the parent cell Ap (described in the text) for the irreps characterising the Pm3̄m → Pbam
phase transition in PZO. The modes are listed in descending total distortion.

SZP DZDP TZTP PW

R+
4 → qR = [1/2, 1/2, 1/2] O 3d Eu 0.571 0.554 0.553 0.534

Total R+
4 distortion 0.571 0.554 0.553 0.534

Σ2 → qΣ = [1/4, 1/4, 0] Pb 1b T1u 0.213 0.214 0.239 0.256
Zr 1a T1u 0.041 0.034 0.037 0.047
O 3d A2u −0.047 −0.042 −0.035 −0.035
O 3d Eu1 0.253 0.250 0.224 0.227
O 3d Eu2 −0.230 −0.222 −0.216 −0.217
Total Σ2 distortion 0.407 0.400 0.396 0.409

S4 → qS = [1/4, 1/2, 1/4] Pb 1b T1u −0.049 −0.033 −0.026 −0.026
O 3d Eu1 −0.013 −0.129 −0.103 −0.106
O 3d Eu2 0.074 −0.083 −0.071 −0.070
Total S4 distortion 0.154 0.157 0.128 0.129

M−
5 → qM = [1/2, 1/2, 0] Pb 1b T1u −0.006 −0.001 −0.009 −0.010

Zr 1a T1u −0.008 −0.003 −0.006 −0.008
O 3d Eu 0.012 0.013 0.009 0.009
Total M−

5 distortion 0.015 0.013 0.014 0.016

R+
5 → qR = [1/2, 1/2, 1/2] Pb 1b T1u 0.011 0.024 0.027 0.027

O 3d Eu −0.001 −0.006 −0.007 0.008
Total R+

5 distortion 0.011 0.025 0.028 0.028

X−
3 → qX = [0, 1/2, 0] Zr 1a T1u 0.001 0.0003 0.002 0.003

O 3d Eu −0.009 −0.009 −0.017 −0.017
Total X−

3 distortion 0.009 0.009 0.018 0.017

Overall distortion 0.718 0.702 0.693 0.686

Consider also the coupling to strain modes Γ+
1σ and Γ+

3σ (the subscript σ denotes a strain mode rather
than a displacive one). The former is responsible for uniform isotropic expansions/contractions of the
cell whilst the latter is responsible for tetragonality. Rather than quote the amplitude of each mode for
each basis (which is available in the supplementary material), it is more illuminating to examine the zero
pressure lattice constants of table 6. We see that for the SZP basis the c/a ratio is considerably overestimated
at 1.24 when compared to the plane-wave c/a of 1.084. This implies also a considerable overestimate of the
amplitudes of Γ+

1σ and Γ+
3σ . The amplitude of the ferroelectric Γ−

4 distortion is then increased as a result of
the strong, mutual coupling to Γ+

1σ and Γ+
3σ . A peculiarity of this transition for the default PAOs is their non-

systematic nature. Despite the smaller number of basis functions, the DZDP basis performs better than TZTP
for the amplitude of displacive modes, strain modes, the phase transition energy (table 7) and lattice constants
of the P4mm phase (table 6). It is for this reason that great care must be taken when using PAOs to describe
systems where the internal and cell degrees of freedom are strongly coupled. We note that using a basis other
than the default can result in vast improvements for this transition. When tuning the confinement energies to
fit the plane-wave c/a, we can achieve a phase transition energy within 1 meV of the plane-wave energy (shown
in the supplemental material).

We have also computed the spontaneous macroscopic polarisation for the relaxed P4mm PTO struc-
tures. For the PAO calculations, we use the method developed by Resta [68, 69] (equivalent to the Berry
phase formalism [70, 71] in the limit of large cells; we use ten cells in the direction of the distortion)
whilst we use the well known Berry phase formalism of King-Smith and Vanderbilt for the plane-wave cal-
culation. With plane-waves, we find a polarisation of 92.74 μCcm−2 which compares very well with the
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Figure 6. The phase transition energetics for PTO and PZO as function of normalised mode amplitude. Points/crosses are
calculated data whereas lines are linear interpolations. Curves labelled with (PW) were calculated along the plane-wave optimised
trajectory. (a) Seven curves indicating phase transition paths for the zone centre distortions in PTO. Modes with the subscript σ
are strain modes coupled to the displacive Γ−

4 mode. (b) Seven curves describing the phase transition path for the three most
important modes in the Pbam PbZrO3 phase transition. Each path begins with the optimised orthorhombic cell for each basis
such that strain modes are ‘pre-frozen’.

Table 6. The optimised, mutually orthogonal, pseudocubic lattice constants a, b and c for each of the considered crystals and basis set.

SZP (Å) DZDP (Å) TZTP (Å) PW (Å)

a b c a b c a b c a b c

Pm3̄m PTO 3.952 3.952 3.952 3.928 3.928 3.928 3.926 3.926 3.926 3.918 3.918 3.918
Pm3̄m PZO 4.181 4.181 4.181 4.159 4.159 4.159 4.154 4.154 4.154 4.140 4.140 4.140
P4mm PTO 3.799 3.799 4.710 3.865 3.865 4.282 3.890 3.890 4.128 3.870 3.870 4.194
Pbam PZO 5.919 11.907 8.241 5.877 11.835 8.223 5.886 11.793 8.206 5.871 11.765 8.178
Fm3̄m PZT 50/50 8.124 8.124 8.124 8.091 8.091 8.091 8.080 8.080 8.080 8.050 8.050 8.050
Pm3̄m PZT 50/50 8.143 8.143 8.143 8.112 8.112 8.112 8.096 8.096 8.096 8.069 8.069 8.069

Table 7. The phase transition energies for the cubic to tetrag-
onal/orthorhombic transitions in PTO/PZO. This quantity is
defined by the difference in total energy between the relaxed
cubic phase and the relaxed distorted phase for each basis.

PTO Pm3̄m ⇒ P4mm PZO Pm3̄m ⇒ Pbam
(meV/ABO3 unit) (meV/ABO3 unit)

SZP −115.51 −295.78
DZDP −58.40 −256.27
TZTP −47.37 −258.71
PW −69.83 −262.24

TZTP value of 92.82 μCcm−2. We note that this is despite the underestimation of the displacive Γ−
4 mode

(indicative of the ionic contribution, table 4) meaning the electronic contribution to the polarisation is
increased. The DZDP polarisation is found to be 104.15 μCcm−2 showing that despite the Γ−

4 mode ampli-
tude closely adhering to the plane-wave value, the electronic contribution is slightly overestimated. For the
SZP basis, we find a polarisation of 95.93 μCcm−2 which at first glance indicates better agreement with plane-
waves than DZDP. We note that this is only because the significantly larger dipole moment (as indicated
by the mode amplitude in table 4) is normalised by the largely overestimated volume (+8.2% compared to
plane-waves).

The PZO transition is more difficult to unpack. Despite this, (perhaps due to only a weak coupling between
displacive and strain modes) the material is impressively described by the default PAOs. The error in both
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the Pm3̄m and Pbam lattice constants are smaller than 0.5% for the TZTP basis demonstrating that even
highly distorted perovskites can be represented well by the default PAOs. We now examine table 5 comment-
ing on the individual contributions of each irrep in the transition. Beginning first with the R+

4 mode we
see that the accuracy improves with basis set size but accounts for the largest source of error in the over-
all distortion. Since the R+

4 mode is AFD, this overestimation leads to a larger rotation angle of the oxygen
octahedra compared to plane-waves. For the antipolar Σ2 distortion, we see that the total distortion becomes
further from the plane-wave value as we increase the number of basis functions. This is somewhat misleading
however as when we examine the individual displacements, we see that O and Pb displacements are better
described by the TZTP basis. The reason the SZP basis appears to perform better is because the underesti-
mated Pb displacement balances with the O Eu2 displacement. Taking both the S4 and X−

3 modes together,
we see that an accurate description requires the TZTP basis. It should be noted, however, the X−

3 mode con-
tributes very little to the energetics of the transition which is dominated by the R+

4 , Σ2 and S4 modes. We
note finally that although the amplitudes of some modes does not improve with basis set size, the overall
distortion does. By TZTP, the distortion is within 0.1% of the plane-wave distortion. This accuracy is seen
also in the phase transition energy (table 7) which improves with basis set size within 1% of the plane-wave
value by TZTP.

Figure 6 describes the energy difference ΔE between an initial, undistorted phase and a phase distorted
by some fraction of a displacive or strain mode. For each basis, the maximum amplitude of an irrep is the
amplitude found in the relaxed structure in tables 4 and 5. In figure 6(a), the initial undistorted structure is
the optimised Pm3̄m PTO structure for the basis in question. Since the displacive mode is coupled strongly
to the strain modes, we linearly evolve the three modes (Γ−

4 , Γ+
1σ and Γ+

3σ) simultaneously until their max-
imum amplitudes are reached. As was explained previously, the default DZDP basis best approximates the
plane-wave energetics since the TZTP basis retrieves a less accurate c/a ratio. A small energy barrier (at zero
mode amplitude) exists for the transition for all cases. This is not true in reality, only existing here since we
have assumed the displacive and strain modes are directly proportional on a 1:1 basis (the real coupling is
non-linear). Notable however, is the size of the barrier for the SZP basis of ≈ 35 meV. This is an artefact of
the large strain modes and the highly non-linear coupling with the displacive mode. For curves along the
plane-wave optimised trajectory (explained in the figure 6 caption), a minimum of energy is always reached
before the mode maximum inferring that the optimised plane-wave structure does not so well approximate
the optimised structure of a given PAO basis. This, much like the phase transition energy, can be improved
upon using a non-default basis.

In figure 6(b), our initial undistorted structure is the optimised orthorhombic Pbam cell of PZO (with
lattice constants described in table 6) but with zero displacive mode amplitude. As a general trend, we see
that there is a fair discrepancy between the SZP and plane-wave curves. This almost disappears as we use a
DZDP basis and even more so by TZTP. A clear source of error in our description for all bases is the over-
estimated amplitude the R+

4 mode. We see that along the (0, 0, 0) → (R+
4 , 0, 0) path, this overestimation

results in too much energy lowering. Interestingly, for the DZDP and TZTP bases, this error seems to recover
along the (R+

4 , 0, 0) → (R+
4 , Σ2, 0) path and by the time all three displacive modes are present, the ener-

getics are almost identical. For the plane-wave optimised trajectories, we once again observe a minimum of
energy before the maximal mode amplitude. This barrier appears just before the (R+

4 , Σ2, 0) point indicating
that the plane-wave Σ2 mode (when coupled to R+

4 at least) does not describe a stable structure. This effect
does appear to diminish with basis set size, disappearing almost entirely for TZTP. At the (final) (R+

4 , Σ2, S4)
point, we see that the DZDP, DZDP(PW), TZTP and TZTP(PW) curves very well represent the PW curve.
This implies that in this case, the default PAOs could be used to describe a plane-wave optimised structure
with only a very small penalty in the energetics. This is valuable since this allows us take small plane-wave
optimised cells to build larger supercells for PAO calculations without re-relaxing the structure allowing for
easy up-scaling of accurate DFT calculations.

4. Summary

We have investigated the consequences of representing delicate features of the perovskite oxides with the
default CONQUEST basis sets of PAOs as a replacement for plane-waves. In the electronic structure, we were
able to reproduce the plane-wave electronic charge density with an error of ≈0.5% using the total inte-
grated electronic error integral of equation (1). We found that the largest source of error to this integral
is from a surplus of electronic density close to O anion sites as shown in electronic charge density differ-
ence plots. Even fine features derived from Bader partitioning (Bader charges, volumes and densities) agree
well with plane-wave calculations and once again demonstrates the small surplus in electronic density near
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O anion sites. We quantified the completeness of the PAO basis sets by providing plane-wave cutoff ener-
gies offering the same accuracy in Nerror and energy convergence as those using the plane-wave basis. We
found that although the two metrics disagree (by a small amount) on the cutoff, by TZTP we can achieve
the accuracy of a 27.28–30.85 Ha plane-wave cutoff, close to double what has previously been reported in
the literature. We note that whilst this comparison is useful, the error cancellation in the plane-wave basis
(that is, error in the core regions tend to cancel with one another) is not perfectly achieved when we consider
the energy difference between plane-wave and PAO calculations. Further, we do not expect these errors to
be system dependent in the case of plane-waves but could be for PAOs, especially smaller basis sets (like SZ
and SZP).

When investigating the condensation of soft-modes, we found that larger basis sets of PAOs (DZDP and
TZTP) well described the Pm3̄m → Pbam phase transition in PZO, both structurally and energetically. Impres-
sively, both the total distortion and phase transition energy when using the TZTP basis is within 1% of the
plane-wave figures. We found that more care had to be taken for the Pm3̄m → P4mm phase transition in PTO
due to the strong coupling between displacive and strain modes. This, however, can be remedied by using a
non-default optimised basis. Remarkably, we find that using a default DZDP or TZTP basis set on a plane-
wave optimised geometry for PZO results in close to identical phase transition energies. This suggests that
even highly distorted perovskites can be represented by basis sets of default PAOs.

This work suggests that even fine structural and electronic features of the perovskite oxides can be cal-
culated to near plane-wave accuracy using basis sets of PAOs. Since PAO-based calculations (in partnership
with the correct algorithm) can scale to many thousands (and millions [31]) of atoms, this approach now
offers a pathway for accurate large scale first principles simulations of perovskite systems using DFT. We
note that whilst there is still progress to be made for the calculation of more demanding physical properties
(like soft mode phase transition temperatures), some particularly valuable research questions (as discussed
in section 1) facing the perovskite oxides can now be addressed with this method using large scale structural
relaxations, spin-polarised calculations with highly disordered magnetism and the extraction of electronic
properties from systems with realistic defect concentrations.
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