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Abstract

While numerous studies have found horizontal transposon transfer (HTT) to be widespread across 

metazoans, few have focused on HTT in marine ecosystems. To investigate potential recent HTTs into 

marine species we searched for novel repetitive elements in sea snakes, a group of elapids which 

transitioned to a marine habitat at most 18 Mya. Our analysis uncovered repeated HTTs into sea 

snakes following their marine transition. The 7 subfamilies of horizontally transferred LINE 

retrotransposons we identified in the olive sea snake (Aipysurus laevis) are transcribed, and hence are 

likely still active and expanding across the genome. A search of 600 metazoan genomes found all 7 

were absent from other amniotes, including terrestrial elapids, with the most similar LINEs present in 

fish and marine invertebrates. The one exception was a similar LINE found in sea kraits, a lineage of 

amphibious elapids which independently transitioned to a marine environment 25 Mya. Our finding of 

repeated horizontal transfer events into marine snakes greatly expands past findingst that the marine 

environment promotes  the transfer of transposons. Transposons are drivers of evolution as sources of 

genomic sequence and hence genomic novelty. We identified 13 candidate genes for HTT-induced 

adaptive change based on internal or neighbouring HTT LINE insertions. One of these, ADCY4, is of 

particular interest as a part of the KEGG adaptation pathway “Circadian Entrainment”. This provides 

evidence of the ecological interactions between species influencing evolution of metazoans not only 

through specific selection pressures, but also by contributing novel genomic material. 

Significance Statement

Recent research has found horizontal transfer (HT) of transposons between marine animals. We 

analyzed the olive sea snake (Aipysurus laevis) genome, uncovering HT of six novel retrotransposons 

into sea snakes since their marine transition within the last 18 Mya. All six are absent from terrestrial 

animals and are most similar to retrotransposons found in fish, corals and the independently marine 

sea kraits. All six retrotransposons are likely still active and expanding across the genome in A. laevis. 

Our findings suggest the marine environment is ideal for the HT of transposons; and provide evidence 

that changing environments can  influence evolution not only through novel selective pressures, but 

also by contributing novel genomic material.
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Main Text

Introduction

Transposons are a major component of metazoan genomes, making up between 24 and 56% of 

squamate genomes (Pasquesi et al, 2018). Transposons are split into two classes: Class I containing 

LINEs (long interspersed elements) and LTR (long terminal repeat) retrotransposons; and Class II 

containing DNA transposons (Wicker et al. 2007). Although all three groups of transposons are 

present in squamates, recent activity is dominated by LINEs including CR1s, RTE-BovBs, Rex1 and 

L2s (Pasquesi et al, 2018). While transposons are normally vertically transmitted (parent to offspring) 

there have been many instances of horizontal transfer of transposons (HTT) observed between 

distantly related species. HTT of DNA transposons and LTR retrotransposons appears to be more 

common, yet many examples of HTT of non-LTR retrotransposons (LINEs) have been described 

(Peccoud et al. 2018). These include transfers of RTE-BovBs between multiple distant lineages 

(Ivancevic et al. 2018), of AviRTEs between birds and parasitic nematodes (Suh et al. 2016), and of 

Rex1 elements between teleost fish (Volff et al. 2000; Zhang et al. 2020). As transposons proliferate 

throughout a genome they can contribute novel coding sequences, alter gene regulatory networks, 

modify coding regions and lead to gene copy number variation (Rebollo et al. 2012; Chuong et al. 

2017; Cerbin and Jiang 2018; Schrader and Schmitz 2019). Within a lifetime most insertions will be 

neutral and some may be deleterious; however, on an evolutionary time scale, some TE insertions 

constitute a key source of genomic innovation as organisms adapt to new and changing environments 

(Casacuberta and González 2013; Salces-Ortiz et al. 2020). Previous studies in Drosophila found HTT 

to increase following colonization of new habitats due to exposure to new species (Biémont et al., 

1999; Vieira et al., 2002).

Hydrophiinae (Elapidae) are a prolific radiation of more than 100 terrestrial snakes plus ~70 aquatic 

species. The aquatic species form two separate lineages which independently transitioned to a marine 

habitat: the fully marine sea snakes and the amphibious sea kraits (Laticauda) (Lee et al. 2016). Sea 

snakes are phylogenetically nested inside the terrestrial hydrophiine radiation and appeared ~6-18 

Mya, while sea kraits form the sister lineage to all other Hydrophiinae and diverged 25 Mya (Lee et al. 

2016; Sanders et al. 2008). Sea snakes include >60 species in two major clades, Hydrophis and 
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Aipysurus-Emydocephalus, which shared a semi-aquatic common ancestor ~6-18 Mya and exhibit 

highly contrasting evolutionary histories since their transitions from terrestrial to marine habits 

(Sanders et al. 2013; Lee et al. 2016; Nitschke et al. 2018). Both of these lineages have independently 

developed adaptations to the aquatic environment including a lingual notch allowing for full closure of 

the mouth when underwater, and tail paddles for efficient underwater movement (Lillywhite 2014). 

However, the Aipysurus-Emydocephalus lineage has continued to evolve at the same rate as 

terrestrial lineages of Hydrophiinae, diverging into 9 species, while the Hydrophis lineage has rapidly 

radiated into 48 species (Sanders et al. 2010).

Following major ecological transitions, such as sea snakes’ transition from a terrestrial to a marine 

habitat, organisms must adapt to their new environment, with transposons potentially being a key 

genomic source for genomic adaptations (Schlötterer et al. 2015; Marques et al. 2018). Peng et al. 

(2020) found expansions of LTR retrotransposons in Shaw’s sea snake (Hydrophis curtus) to be linked 

to its adaptation to the marine environment. This was based on overrepresentation of GO terms of 

genes near inserted LTR retrotransposons and found potential links to locomotory behavior, eye 

pigmentation, cellular hypotonic response, positive regulation of wound healing, and olfactory bulb in- 

terneuron development. Here we analyzed transposons in 3 sea snake genomes and one sea krait 

genome, where the marine environment appears to have fostered the repeated, independent 

acquisition of these transposons through horizontal transfer of transposons (HTT).  The repeated HTT 

suggests that direct effects of the environment on genome structure may be an important but 

overlooked driver of evolutionary change during major ecological transitions. 

Results

Annotation of sea snake transposons

We performed ab initio repeat annotation of the olive sea snake (Aipysurus laevis) genome (Ludington 

et al., dx.doi.org/10.5281/zenodo.3975254) using CARP (Zeng et al. 2018) and RepeatModeler (Smit 

and Hubley) to characterise repetitive content. Most repetitive sequences identified by both CARP and 

RepeatModeler were not well classified because both software tools rely on homology to reference 

sequences from Repbase (Bao et al. 2015), a database of repeats from highly studied species that are 

evolutionarily distant to Hydrophiinae. The reliance on sequence homology alone for genome-wide 
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repeat annotation of newly sequenced species often results in the incorrect and misannotation of 

repeats  (Platt et al. 2016). We used a structural homology approach based on the presence of a 

variety of protein domains in these poorly annotated repeats to identify subfamilies of LINEs, Penelope 

and LTR retrotransposons, endogenous retroviruses, and DNA transposons. Consensus sequences 

containing the characteristic protein domains and, if appropriate, TIRs or LTRs were considered as full 

length and confidently assigned to the lowest TE taxonomy level possible. For example, sequences 

identified as containing 90% of a reverse transcriptase domain and 90% of an endonuclease domain 

were classified as LINEs.

To identify potential HTT events which may have occurred since the transition of elapids to a marine 

habitat, we looked for transposons identified in A. laevis that were not present in genome assemblies 

of its closest sequenced terrestrial relatives, Notechis scutatus (tiger snake) and Pseudonaja textilis 

(eastern brown snake).  All the TE subfamilies characterised in the A. laevis genome were found to be 

present in P. textilis and N. scutatus with the exception of five LINE subfamilies discussed below (see 

Figure 1). These subfamilies were further classified based on CENSOR (Kohany et al. 2006) searches 

against Repbase (Bao et al. 2015) using the online interface. Consensus sequences containing the 

characteristic protein domains were confidently assigned to the lowest TE taxonomy level possible. 

In A. laevis two of the five LINEs subfamilies, Rex1-Snek_1 (five full-length copies found) and Rex1-

Snek_2 (three full-length copies found) belong to the CR1/Jockey superfamily but share less than 100 

bp nucleotide sequence homology. Manual curation (see Methods) of a multiple sequence alignment 

of the five full-length copies identified by CARP revealed Rex1-Snek_1 to be three subfamilies; 

henceforth named Rex1-Snek_1H1, Rex1-Snek_1H2 and Rex1-Snek_1H3. Rex1-Snek_1H2 and 

Rex1-Snek_1H3 have 90% and 89% pairwise identity with Rex1-Snek_1H1 respectively. The other 

three subfamilies, RTE-Snek_1 (three full-length sequences found), RTE-Snek_2 (one full-length 

sequence found) and Proto2-Snek (one full-length sequence found) belong to the RTE superfamily but 

have no significant nucleotide sequence homology based on BLASTN searches using default 

parameters. In addition to the full-length sequences, we identified hundreds of highly similar copies 

with 5’ truncation patterns characteristic of recently active LINEs (Figure 2, SI Tables 1 and 2). 

Specifically, coverage plots of the RTE-Snek_1, RTE-Snek_2 and Proto2-Snek families are typical of 

LINEs, with a clear pattern of 5’-truncated insertions (Luan et al. 1993). All 7 LINE subfamilies were 

most similar to Repbase TE reference sequences from a marine annelid worm, a marine crustacean 
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and teleost fishes (Bao et al. 2015) (see Table 1, SI Dataset 1).

The absence of these recently active LINE subfamilies from terrestrial snakes that shared a common 

ancestor with sea snakes within the last approximately 18 Mya, combined with the finding that they 

were most similar to LINEs from distantly related aquatic organisms, suggested HTT as the most 

plausible explanation. There are three diagnostic features of HTT: 1) the sporadic presence of a TE 

family within a set of closely related species, 2) a higher than expected degree of sequence identity in 

long diverged species and 3) discordant topologies for the phylogenies of transposons and their host 

species (Silva et al. 2004). 

Presence/absence in closely related species

As mentioned above, the 7 LINE subfamilies were absent from the closest terrestrial relatives of A. 

laevis. To test if the subfamilies have a sporadic distribution in closer relatives we performed reciprocal 

BLASTN searches for their presence in two closely related sea snake genome assemblies, Hydrophis 

melanocephalus (black-headed sea snake) and Emydocephalus ijimae (Ijima's turtleheaded sea 

snake); the two closest (available) terrestrial species, N. scutatus and P. textilis; an independently 

aquatic species, Laticauda colubrina (yellow-lipped sea krait); and a distant terrestrial relative, 

Ophiophagus hannah (king cobra). The reciprocal search for RTE-Snek_1 revealed a similar yet 

distinct RTE subfamily present in L. colubrina, henceforth referred to as RTE-Kret. From these 

searches, we found RTE-Snek_1 was restricted to A. laevis and RTE-Kret to be restricted to L. 

colubrina. In addition to being present in A. laevis, Proto2-Snek was also present in E. ijimae; Rex1-

Snek_1H1, Rex1-Snek_2 and RTE-Snek_2 in E. ijimae and H. melanocephalus; and Rex1-SnekH2 

and Rex1-SnekH3 in H. melanocephalus. This reciprocal search confirmed all 7 subfamilies were 

absent from both terrestrial (N. scutatus, P. textilis and O. hannah) and aquatic (L. colubrina) 

outgroups, and RTE-Kret was restricted to L. colubrina (Fig. 3, SI Fig. 1-8).

We used two approaches to estimate the number and timing of HTT events into sea snakes. Based on 

the presence or absence of the 7 A. laevis LINEs in O. hannah, L. colubrina, P. textilis, N. scutatus, H. 

melanocephalus, E. ijimae and A. laevis, we conservatively estimated 9 HTT events into sea snakes 

dated using the species divergence times from Sanders et al. (2008, 2009, 2013) and Lee et al. (2016) 

(Figure 3, SI Table 2). Due to the lack of fragments of Rex1-Snek_1H2 and Rex1-Snek_1H3 in 

Emydocephalus (SI Figures. 10 and 11), these two subfamilies were likely transferred independently 
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into Aipysurus and Hydrophis.  In addition, we calculated the timing of HTT into the Aipysurus lineage 

using the average substitutions per site of each LINE subfamily and an estimated genome wide 

substitution rate. The insertion time based on substitution rate (SI Table 2) suggests that the HTTs 

postdates the divergence of Aipysurus and Emydocephalus. Taking the high standard deviation into 

account, the timing of HTT events estimated by both methods overlapped with the exception of the 

transfer of RTE-Snek_2 (Table S2).

As an independent verification of presence/absence and to look for potential current activity of the 

LINEs, we searched assembled transcriptomes of a variety of tissues from three sea snakes - A. 

laevis, A. tenuis and Hydrophis major from Crowe-Riddell (2019), (see SI Dataset 2). We identified 

high-identity transcripts (>95% identity) of all Rex1-Snek1H1, Rex1-Snek1H2, Rex1-Snek1H3, Rex1-

Snek_2 and RTE-Snek_2 in at least one tissue of A. laevis, A. tenuis and H. major. High identity 

transcripts of RTE-Snek_1 and Proto2-Snek were present in A. laevis and A. tenuis, yet absent from 

all H. major tissues, with one small fragment of an RTE-Snek_1-like transcript present in a H. major 

testis transcriptome. The presence of transcripts of all 7 LINE subfamilies both confirmed the 

presence/absence pattern of the specific subfamilies in A. laevis and indicates potential ongoing 

retrotransposition of these elements. 

Verification of HTT and search for HTT donor species

While the absence of the marine specific TEs in close terrestrial species supported HTT to sea 

snakes, we needed to rule out the possibility that those TEs were lost from those terrestrial species. In 

order to confirm HTT vs loss of TEs, we searched for all 7 LINE subfamilies in 630 metazoan genomes 

using BLASTN with relaxed parameters (see methods). Our search identified homologous, yet 

divergent Rex1s in fish and squamates, Proto2s in fish, and RTEs widespread across a variety of 

marine organisms including fish, echinoderms, corals and sea kraits (see Fig. 4, SI Dataset 4). Using 

these hits as seeds we curated consensus repeats of each LINE subfamily in the species they were 

identified in. 

We then aligned our original LINE sequences against a database containing both our curated repeats 

and Repbase repeats. All 7 of our original LINE subfamilies were most similar to curated LINEs found 

in marine species (Table 1) with pairwise identity for all closest hits between 75-85%. Rex1-

Snek_1H1, Rex1-SnekH2, Rex1-SnekH3, and Rex1-Snek_2, were most similar to Rex1s curated from 
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a variety of fish genomes. Proto2-Snek was most similar to a Proto2 from the European carp 

(Cyprinus carpio) genome and RTE-Snek_1 most similar to RTE-Kret from L. colubrina. If the LINE 

subfamilies were present in sea snakes yet absent from terrestrial and amphibious elapids due to 

repeated losses, we would expect to find highly similar LINEs to still be present in other squamates. 

However, we failed to identify highly similar repeats in any squamates, therefore the most 

parsimonious explanation supports HTT and rules out loss. We used the results of this search in an 

attempt to identify the likely donor or vector species by looking for species hosting our HTT LINEs with 

a comparable degree of sequence divergence to that observed in A. laevis. However, none of the 

cross species alignments were greater than 87% nucleotide sequence identity and therefore did not 

show comparable sequence divergence which would be required to identify potential donor species 

(Table 1). 

Discordant phylogenies of RTEs and of Rex1s compared to host species.

As extreme discordance between repeat and species phylogenies would further support  HTT, we 

compared the respective tree topology of all RTEs, Proto2s and Rex1s, using both Repbase 

sequences and our curated sequences, to the species tree topology. As illustrated in figure 5, the 

species and repeat phylogenies of all 7 sea snake LINE subfamilies and the L. colubrina RTE are 

highly discordant, evidenced by their clustering with teleost fishes. This confirms likely HTT events 

from marine organisms into sea snakes and sea kraits, and further refutes independent losses from 

terrestrial Australian elapids.

Insertions in and near coding regions

To identify any insertions of these LINEs in A. laevis which may have the potential to alter gene 

expression or protein structure, we identified all insertions in or near regions annotated as genes, in 

particular exons and untranslated regions (UTRs) (SI Table 1).  Intersects of gene and repeat 

annotation intervals in the A. laevis assembly initially revealed 23 insertions of HTT LINEs in or near 

genes: 19 insertions in 5’ UTRs or within 5,000 bp upstream, 1 into a coding exon and 3 into 3’ UTRs.

To test for potential assembly errors that might have yielded erroneous insertions near genes, we 

searched for the flanking regions of the 23 insertions in the closely related E. ijimae and H. 
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melanocephalus. 8 of the 23 insertions were disregarded as the likely result of assembly errors in A. 

laevis, as their flanking sequences were in the middle of two different contigs in both E. ijimae and H. 

melanocephalus. The flanking regions of the remaining 15 insertions were contiguous in E. ijimae and 

H. melanocephalus. We report these 15 insertions in Table 2. We consider the insertion of 

RTE_Snek_2 into the 3’ UTR of the Adenylate Cyclase Type 4 (ADCY4) gene as the most interesting 

of these, as it is the only gene out the 15 that is present in a KEGG environmental adaptation pathway 

(circadian entrainment).  However, testing the adaptive significance of these insertions will have to 

await improvement of the genome assembly and population genetic data for A. laevis. We note that 

many of these genes are likely to have pleiotropic effects as regulators of transcription or protein 

turnover, thus complicating future assessments of their adaptive significance. However, changes in 

pleiotropic genes have the potential to amplify adaptive changes in other loci (Østman et al. 2012). 

Discussion 

We have identified 7 LINE subfamilies present in sea snakes and 1 present in sea kraits, yet absent 

from their terrestrial relatives. The two competing hypotheses for this presence/absence pattern are 

loss from the terrestrial species or HTT to the marine species. If the 7 subfamilies were lost from the 

terrestrial species, we would expect to see similar subfamilies still present in other squamates. Our 

search of 630 additional metazoans revealed the seven subfamilies to be absent not just from other 

squamates, but from all other tetrapods. For the majority of the 7 subfamilies the most similar LINE 

was present in a teleost fish, indicating either that the LINEs were repeatedly lost from all other 

tetrapods following their divergence from teleost fish 400 Mya, or the subfamilies were horizontally 

transferred into sea snakes and sea kraits following their divergence from terrestrial relatives.

Based on the observed patchy phylogenetic distribution, the high similarity of HTT TEs to those from 

distantly related marine species, and the discordance of the species and LINE phylogenies (Figs. 3 

and 5), the most parsimonious explanation is that the 7 LINEs identified in A. laevis and 1 identified in 

L. colubrina were horizontally transferred from marine species following the transition of the ancestors 

of these snakes to a marine habitat. Additionally, the estimated timing of transfer supports 

independent transfers of both Rex1-Snek_1H2 and Rex1-Snek_1H3 into the Aipysurus and Hydrophis 

lineages (SI Table 2). While all 7 LINE subfamilies are currently expressed in A. laevis based on 

transcriptome data, the number of large, near-identical fragments of RTE-Snek_1, RTE-Snek_2 and 
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Proto2-Snek found within the A. laevis genome is larger than for the Rex1s. This indicates potentially 

greater replication of RTE-Snek_1, RTE-Snek_2 and Proto2-Snek since the HTT events in the past 3-

17 My (Sanders et al 2008, Sanders et al 2012, Sanders et al 2013, Lee et al. 2016).

As all 7 of the HTT LINE subfamilies are most similar to LINEs found in distantly related marine 

metazoans, we hypothesise that the donor species for each is likely a marine fish or invertebrate. 

However, the degree of sequence divergence between the LINE from L. colubrina and the 7 LINEs 

from A. laevis from the most similar LINEs from aquatic species means we cannot identify a specific 

donor species. Likely donors and vectors of HTT are pathogens, predators, prey, parasites, and 

epibionts (Gilbert and Feschotte, 2018). Sea snake diets vary greatly; some species are generalists 

that eat a wide variety of fish and occasionally crustaceans, cephalopods and molluscs, while others 

specialise on burrowing eel-like or goby-like fish or feed exclusively on fish eggs (Sherratt et al., 2018). 

Parasites of sea snakes include isopods, nematodes, tapeworms and flatworms, while epibionts 

include various, hydrozoans, polychaetes, decapods, gastropods, bivalves and Bryozoa (Gillett, 2017; 

Saravanakumar, 2012). As very few species with ranges overlapping those of Laticauda and 

Aipysurus have been sequenced, and the range of Aipysurus spans highly biodiverse habitats, it is 

unlikely we will further narrow the donor of any of these 8 LINE subfamilies without significant 

additional genome sequence data from Indo-West Pacific tropical marine species.

While we were unable to identify specific donor species, our finding of HTT between marine species is 

in line with multiple past studies that reported HTT within and across marine phyla. HTT is prolific and 

particularly well described in aquatic microbial communities (reviewed in-depth in Sobecky and Hazen, 

2009). HTT of LINEs, LTR retrotransposons and DNA transposons has been reported in marine 

metazoans, with past studies describing the transfer of Rex1s and Rex3s between teleost fishes (Volff 

et al. 2000; Carducci et al. 2018), Steamer-like LTR retrotransposons both within and across phyla 

(Metzger et al. 2018), L1 and BovB LINEs within and across phyla (Ivancevic et al. 2018), Mariner 

DNA transposons between diverse crustaceans (Casse et al. 2006), and a wide variety of TEs 

between tetrapods and teleost fish (Zhang et al., 2020). What sets our findings apart is that HTTs in 

this report have occurred multiple times as a result of the recent terrestrial to marine transition of the 

Aipysurus/Hydrophis common ancestor. The transfer of all 7 LINEs occurred <18 Mya from aquatic 
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animal donor species that diverged from snakes >400 Mya (Broughton et al. 2013; Hughes et al. 

2018). As illustrated in figure 3, the varying presence/absence of the 7 LINEs across the three species 

of sea snakes is indicative of 9 independent HTT events as opposed to a single event. The recent 

timing of HTT into marine squamates is not specific to sea snakes, as we found transfer of an RTE-

Kret to the sea kraits which underwent an independent transition to the marine habitat. These 

repeated invasions suggest aquatic environments potentially foster HTT, with more examples likely to 

be revealed by additional genome sequences from marine species.

The likely ongoing replication of all 7 A. laevis HTT LINEs, as evidenced by both the presence of 

insertions and transcripts with near 100% identity, continues to contribute genetic material to the 

evolution of Aipysurus. Previous investigators have reported entire genes, exons, regulatory 

sequences and noncoding RNAs in vertebrates derived from transposons, as well as TE insertions 

leading to genomic rearrangement (reviewed in-depth in Warren et al. (2015)). For snakes, Peng et al. 

(2020) described the expansion of LTR elements across H. curtus leading to adaptive changes in the 

marine environment. Similarly, the insertion of CR1 fragments near phospholipase A2 venom genes in 

vipers led to non-allelic homologous recombination, in turn causing duplication of these genes (Fujimi 

et al., 2002). Rapid genomic innovation would have been necessary for Aipysurus to adapt to the 

marine environment, with the independent evolution of paddle-like tails, salt excretion glands and 

dermal photoreception following their divergence from their most recent common ancestor with 

Hydrophis (Brischoux et al. 2012; Sanders et al. 2012; Crowe-Riddell et al. 2019). Other adaptations 

are likely to have occurred or are occurring for sea snakes to conform to their marine habitat, as 

evolutionary transitions from terrestrial to marine habits entail massive phenotypic changes spanning 

metabolic, sensory, locomotor, and communication-related traits. Our finding that 15 genes, most with 

likely pleiotropic effects, contain HTT insertions and thus may have altered expression will require 

further investigation. One of these genes, ADCY4 is particularly interesting as it is part of the circadian 

entrainment pathway. Transition to a marine environment is likely to require altered sensitivity of the 

circadian entrainment pathway to environmental cues of light intensity and wavelength. Future 

research to examine the association between these HTT-derived sequences and adaptation will 

require investigation of differential regulation of these genes between terrestrial and marine snakes in 

a variety of tissues as well as improvement of the A. laevis genome assembly and collection of 
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population genomic data.

Conclusions

Our findings reveal repeated HTT of LINEs into fully marine and amphibious lineages of marine 

elapids as a result of their transition from a terrestrial environment. The HTT LINE insertions near 

genes and continued expression of all 7 HTT LINE subfamilies is indicative of possible ongoing impact 

on the adaptive evolution of Aipysurus. Taken together, our results support a likely role for habitat 

transitions as direct contributors to the evolution of metazoan genomes, rather than solely acting 

through selection from altered environmental conditions. 

Materials and Methods

Outline of methods

Our study aimed primarily to identify TE subfamilies present in sea snakes yet absent from close 

terrestrial relatives, determine if their absence was due to TE loss or HTT, and if due to HTT find the 

potential donor or vector species. Our secondary aim was to determine if HTT subfamilies likely 

remain active in sea snakes based on transcriptomic data. Our final aim was to check if any HTT TE 

subfamilies discovered may have impacted the evolution of sea snakes since their divergence from 

terrestrial snakes by identifying insertions near/in genes and if these genes had roles in pathways 

important in adaptation to the marine habitat.

Identification and classification of repetitive sequences in Aipysurus laevis

We identified repetitive sequences present in the Ludington et al. 

(dx.doi.org/10.5281/zenodo.3975254) A. laevis assembly using CARP (Zeng et al. 2018). Using 

RPSTBLASTN 2.7.1+ (Marchler-Bauer and Bryant 2004) and a custom library of position specific 

scoring matrices from the CDD and Pfam databases (Finn et al. 2016; Marchler-Bauer et al. 2017), we 

identified protein domains present in all consensus sequences over 800 bp in length found by CARP. 

Sequences were classified as potential LINEs, LTR retroelements and various DNA transposons 

based on the presence of relevant protein domains following the Wicker et al. (2007) classification. For 

example, we treated consensus sequences containing over 80% of both an exo-endonuclease domain 

and a reverse transcriptase domain as potential LINEs. For a full breakdown of protein domains used 
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to classify retroelements see SI Table 3.  We used CENSOR 4.2.29 (Kohany et al. 2006) to further 

classify the consensus sequences. To reduce redundancy, we aligned all potential TEs to all other 

potential TEs using BLASTN 2.7.1+ (Altschul et al. 1990; Camacho et al. 2009) with default 

parameters and removed consensus sequences with both 94% or higher pairwise identity to, and 50% 

or higher coverage by longer consensus sequences..

Search for ab initio annotated TEs in close terrestrial relatives

To determine if the TEs subfamilies discovered were present in closely related species, we used 

megablast 2.7.1+ (Altschul et al. 1990; Camacho et al. 2009) to perform a nucleotide search for the 

consensus sequences of each subfamily in the genomes of two closely related terrestrial elapids 

(Notechis scutatus and Pseudonaja textilis), (provided by Richard Edwards), and a more distantly 

related semi-marine elapid (Laticauda colubrina) (Kishida et al., 2019). We treated all CARP 

sequences which were found by megablast in both N. scutatus and P. textilis as ancestrally shared, 

and all others as potential HTT candidates (all were LINEs). After discovering a highly similar 

subfamily was present in L. colubrina but absent from the two terrestrial snakes (RTE-Kret), we 

manually curated it using a “search, extend, align, trim” method adapted from Platt et. al (2016) and 

Suh et al. (2018) (see SI Methods and description below).

Curation of TEs absent from close terrestrial relatives

To create a better consensus for each LINE subfamily, we manually curated new consensus 

sequences using a “search, extend, align, trim” method (explained in greater detail in SI Methods, 

script at 

https://github.com/jamesdgalbraith/HT_Workflow/blob/master/PresenceAbsence/extendAlignSoloRstu

dio.R). We used megablast 2.7.1+ (Altschul et al. 1990; Camacho et al. 2009) to search for the 

consensus sequence of a subfamily within the A. laevis genome. We selected the 25 best hits over 

1000 bp based on bitscore and extended the coordinates of these sequences by 1000 bp at each end 

of the hit. We constructed multiple sequence alignments (MSAs) of the extended sequences using 

MAFFT v7.310 (Katoh and Standley 2013). Where multiple full length sequences showing significant 

lack of homology were present, the LINE subfamily was split into multiple subfamilies (See SI Fig. 9). 

Finally, we manually edited the extended sequences in Geneious Prime 2020.0.2 to remove non-
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homologous regions and created a new consensus sequence. If only one full length copy of a 

subfamily was present in the genome, it was used instead of a consensus sequence. We used 

PCOILs (Gruber et al. 2006) and HHpred (Zimmermann et al. 2018) searches of the translated ORFs 

against the CDD and Pfam databases (Finn et al. 2016; Marchler-Bauer et al. 2017) to identify any 

additional protein domains or structures present in the 7 LINEs.

Search for HTT candidate LINEs in the genomes and transcriptomes of other sea snakes

Similar to the search of closely related terrestrial species, we used megablast to perform reciprocal 

searches for the consensus sequences of the 7 Aipysurus LINE subfamilies in the genomes of 

Hydrophis melanocephalus and Emydocephalus annulatus (Kishida, 2019), and assembled 

transcriptomes from various tissues of A. laevis, A. tenuis and H. major from Crowe-Riddell et al. 

(2019).

Estimating timing of HTT events by substitution rate

We estimated the timing of the 7 HTT events using a custom R script 

(https://github.com/jamesdgalbraith/HT_Workflow/blob/master/Divergence/insertion_time_calculator.R 

) . We identified all copies of the 7 A. laevis HTT subfamilies in the A. laevis assembly using 

megablast. A reciprocal megablast search using the identified copies was carried out against the 7 A. 

laevis HTT subfamily consensus sequences to identify the most similar sequence based on pairwise 

identity. Using the reciprocal megablast search output we calculated the mean substitutions per site 

for each HTT subfamily. Finally, using an elapid whole genome substitution rate estimate from 

Ludington and Sanders (under review by Molecular Ecology) of 1.25x10e-08 per site per generation 

and a generation time of 10 years, we calculated the HTT event timing of each subfamily (SI Table 2).

Search for and curation of similar TEs in other metazoan genomes

To identify other species containing the 7 Aipysurus and 1 Laticauda LINE subfamilies, we used the 

HTT LINE consensus sequences for BLASTN searches in of over 630 metazoan genomes 

downloaded from Genbank (Benson et al., 2017) using relaxed parameters (-evalue 0.00002 -reward 

3 -penalty -4 -xdrop_ungap 80 -xdrop_gap 130 -xdrop_gap_final 150 -word_size 10 -dust yes -

gapopen 30 -gapextend 6). We treated species containing a hit of at least 1,000 bp as potentially 
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containing a similar LINE subfamily. From the BLASTN hits from these species, we attempted to 

manually curate subfamilies using a variant of the “search, extend, align, trim” method described in the 

SI Methods. If only one copy of the LINE subfamily was present in a genome assembly we did not 

include that species in the list of species containing similar LINEs in order to reduce false positives. 

We used a consensus sequence derived from the initial hits within the species as the query for the 

BLASTN search of the genome, and extended hits by 3,000 bp in the 5’ and 3’ directions. As 

illustrated in SI Fig. 9, if an MSA appeared to contain multiple LINE subfamilies, as judged by lack of 

sequence homology or gaps, it was split and consensuses were constructed for each individual family. 

As homologous, yet highly diverged, Rex1 and RTE subfamilies were identified in other elapids we 

used the same “search, extend, align, trim” method to curate the most similar repeats in the A. laevis 

assembly, using the consensus from N. scutatus as the initial query. All subfamilies identified in N. 

scutatus had highly similar homologues in A. laevis. 

Characterising divergence patterns in the HT repeats across Hydrophiinae

To identify fragments of the 7 Aipysurus and 1 Laticauda HTT LINE subfamilies and determine their 

divergence from the consensus sequences, we performed a reciprocal best hit search using BLASTN 

2.7.1+ (Altschul et al. 1990; Camacho et al. 2009) on the A. laevis, E. ijimae, H. cyanocinctus, H. 

melanocephalus, N. scutatus, P. textilis, L. colubrina and O. hannah assemblies. HTT consensus 

sequences were used as the initial query, with resulting hits then used as queries against a database 

containing the original consensus sequences.

Repeat phylogeny construction

For constructing repeat phylogenies we created two libraries; one containing all Rex1s we curated and 

Rex1s derived from Repbase; and another containing all RTEs we curated and all  RTE-like (Proto2, 

RTE and BovB) sequences from Repbase. In addition, each library contained an outgroup LINE based 

on the Eickbush and Malik (Eickbush and Malik 2002) phylogeny of LINEs. We removed all sequences 

not containing at least 80% of both the endonuclease and reverse transcriptase domains from each 

library based on RPSTBLASTN (Marchler-Bauer and Bryant 2004) searches against the NCBI CDD 

(Marchler-Bauer et al. 2017).

We created nucleotide MSAs of each library of LINEs using MAFFT v7.310 (Katoh and Standley 2013) 
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and removed poorly aligned regions using Gblocks (Talavera and Castresana 2007) allowing smaller 

final blocks,  gap positions within the final blocks and less strict flanking positions. Finally we 

constructed phylogenies from the trimmed MSA using RAxML (Stamatakis 2014) with 20 maximum 

likelihood trees and 500 bootstraps.

Species phylogeny construction

We used TimeTree (Hedges et al. 2006) to infer species phylogenies presented in Figure 4. In cases 

in which a species of interest was not present in the TimeTree database, where possible we used an 

appropriate species from the same clade in its place and corrected the species names on the resulting 

tree.

Repeat insertions near and in genes

Using the plyranges (Lee et al. 2019) and GenomicRanges R packages (Lawrence et al. 2013) (53, 

54), we identified any insertions of the HTT LINEs into coding exons, UTRs and upstream of 5’ UTRs 

for gene annotations from Ludington et. at. (https://dx.doi.org/10.5281/zenodo.3975254) 

(https://github.com/jamesdgalbraith/HT_Workflow/blob/master/GeneInteraction/overlapSearch.R).

To confirm that insertions were assembled correctly, we used BLASTN to search for the repeats 

extended by 2,000 bp in each direction in the E. ijimae and H. melanocephalus assemblies. We 

selected the best hits from each species based on query coverage and percent identity. Using MAFFT 

v7.310 (Katoh and Standley 2013), we constructed multiple sequence alignments of each extended 

repeat and the corresponding regions from the two other assemblies 

(https://github.com/jamesdgalbraith/HT_Workflow/blob/master/GeneInteraction/insertionConfirmation.

R). By manually viewing the resulting alignment in Geneious and the raw BLASTN output, we 

determined if the repeat insertions were assembled correctly. To confirm the insertion of RTE-Snek_2 

identified in the 3’ UTR of ADCY4, we perform megablast searches of the A. laevis transcriptome from 

Ludington et al. (https://dx.doi.org/10.5281/zenodo.3993854).

Data availability

All scripts are available at https://github.com/jamesdgalbraith/HT_Workflow. Repeat sequences and 

phylogenies are in SI Datasets 5-8.
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Figure 1. Structure of the 7 HTT Aipysurus and 1 Laticauda LINE subfamilies. Cyan represents 

endonuclease (EN), red reverse transcriptase (RT), orange coiled coil (CC), green RNA-recognition 

motif (RRM), and yellow domain of unknown function 1891 (U). Protein domains were identified using 

RPSBLAST (Marchler-Bauer et al. 2017) and HHpred (Zimmermann et al. 2018) searches against 

CDD and Pfam (Finn et al. 2016; Marchler-Bauer et al. 2017) databases and the coiled coil domain 

was identified using PCOILS (Gruber et al. 2006).
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Figure 2. Coverage and divergence from consensus of the 7 horizontally transferred LINE subfamilies 

identified in the Aipysurus laevis genome and the 1 identified in Laticauda colubrina. LINE fragments 

were identified with BLASTN (Altschul et al. 1990; Camacho et al. 2009) and plotted using ggplot2 

(Wickham 2011) using the consensus2genome script 

(https://github.com/clemgoub/consensus2genome). The blue line represents the depth of coverage of 

fragments aligned to the subfamily consensus sequence (shown on right hand Y-axis). Each horizontal 

line represents the divergence of a fragment and its position mapped to the repeat consensus 

(position shown on X-axis); orange shows full length repeats and black shows repeat fragments. The 

divergence from consensus of the repeats is shown on the left hand Y-axis.
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Figure 3. Presence of the eight HTT LINE subfamilies across the phylogeny of elapid snakes (adapted 

from Lee et al, (2016). Colour of lineage represents habitat - marine species are blue, terrestrial brown 

and amphibious green. Each symbol represents the likely timing of horizontal transfers, for example 

the square indicates the likely transfer date of both Rex1-Snek_1H1 and Rex1-Snek_2 . 

Presence/absence determined using reciprocal BLASTN search (Altschul et al. 1990; Camacho et al. 

2009) using default parameters.
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Figure 4. Presence of the 7 Aipysurus and 1 Laticauda HTT LINE subfamilies across 540 Metazoa. In 

each ring, darker shading represents the presence of at least one sequence over 1,000 bp in length 

showing 75% or higher pairwise identity to the LINE, lighter shading represents the presence of more 

than one sequence over 1,000 bp with less than 75% pairwise identity, and white represents the 

complete absence of similar sequences. Presence of LINEs identified using BLASTN with custom 

parameters (see Methods) (Altschul et al. 1990; Camacho et al. 2009) and plotted in iToL (Letunic and 

Bork 2019). Species tree generated using TimeTree (Hedges et al. 2006), manually edited to correct 

elapid phylogeny to fit (Lee et al. 2016). Interactive tree available at 

https://itol.embl.de/shared/jamesdgalbraith.
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Figure 5. Excerpts from the phylogenies of all intact curated and Repbase RTEs and all intact curated 

and Repbase Rex1s compared to host species phylogeny. The blue triangles on the left represent 

condensed large subtrees of LINE sequences. TE phylogeny scale bar represents substitutions per 

site. The numbers next to each node in the repeat trees is the support value. Extracts from larger 

phylogenies constructed using RAxML (Stamatakis 2014) based on MAFFT (Katoh and Standley 

2013) nucleotide alignments trimmed with Gblocks (Talavera and Castresana 2007) (for full 

phylogenies see SI Appendix, Fig. S1 and Fig. S2). Species trees constructed with TimeTree (Hedges 

et al. 2006).
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Most similar Repbase sequences

Repeat (query) Species (target repeat)
Percent 

identity
Hit length (bp)

Rex-Snek_1H1 Petromyzon marinus (Rex1-1_PM) 67.5 1,359

Rex-Snek_1H2 Petromyzon marinus (Rex1-1_PM) 66.7 1,359

Rex-Snek_1H3 Petromyzon marinus (Rex1-1_PM) 64.2 2,796

Rex-Snek_2 Cyprinus carpio (Rex1-1_CCa) 75.9 2,795

RTE-Snek_1 Petromyzon marinus (RTE-2_PM) 62.9 3,100

RTE-Snek_2 Chrysemys picta (RTE-9_CPB) 65.3 2,926

Proto2-Snek Oryzias latipes (Proto2-1_OL) 65.6 666

RTE-Kret Petromyzon marinus (RTE-2_PM) 63.6 3102

Most similar curated repeats

Rex-Snek_1H1 Oryzias latipes 85.0 2,987

Rex-Snek_1H2 Oryzias latipes 82.2 2,973

Rex-Snek_1H3 Oryzias latipes 81.6 2,960

Rex-Snek_2 Miichthys miiuy 78.7 2,594

RTE-Snek_1 Laticauda colubrina (RTE-Kret) 84.9 3,252

RTE-Snek_2 Hippocampus comes 74.4 3184

Proto2-Snek Epinephelus lanceolatus 75.4 3,299

RTE-Kret Aipysurus laevis (RTE-Snek_1) 84.9 3.252

Table 1.

Most similar Repbase and curated repeats for each LINE subfamily in species outside of closely 

related snakes. Repbase was searched using the 7 consensus Aipysurus laevis LINEs using relaxed 

BLASTN parameters (see Methods). A database of our curated repeats from all searched species 

(see Methods) was searched using the 7 consensus Aipysurus laevis repeats using default BLASTN 

parameters.
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Gene LINE Distance to 5’

UTR (bp)

Insertion size (bp)

Acetyl-CoA Acyltransferase 1 

(ARIH1)

Proto2-Snek 223 85

KN Motif And Ankyrin Repeat 

Domains 4 (KANK4)

Proto2-Snek 4987 161

Potassium Calcium-Activated 

Channel Subfamily N Member 4 

(KCNN4)

Proto2-Snek 3746 98

Outer Mitochondrial Membrane 

Lipid Metabolism Regulator OPA3 

(OPA3)

Rex1-Snek_2 3149 81

Rabaptin, RAB GTPase Binding 

Effector Protein 1 (RABEP1)

Proto2-Snek 1389 99

Valosin Containing Protein Lysine 

Methyltransferase (VCPKMT)

Rex1-Snek_1H1 512 76

Cdc42 effector protein 4 

(CDC42EP4)

RTE-Snek_2 1475 422

Gamma-aminobutyric acid 

receptor subunit alpha-3 

(GABRA3)

RTE-Snek_2 4247 95

Leucine-zipper-like transcriptional 

regulator 1 (LZTR1)

RTE-Snek_2 2066 421

Polyadenylate-binding protein 2 

(PABPN1)

RTE-Snek_2 145 431

Parvalbumin alpha (PVALB) RTE-Snek_2 4152 52

Deaminated glutathione amidase 

(NIT1)

RTE-Snek_2 In coding exon 228
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Adenylate cyclase type 4   

(ADCY4)

RTE-Snek_2 In 3’ UTR and 

transcript

130

CAP-Gly Domain Containing 

Linker Protein Family Member 4 

(CLIP4)

RTE-Snek_1 In transcript -

BLOC-1 Related Complex Subunit 

8 (BORCS8)

Rex1-Snek_1H3 In transcript -

Table 2: HTT LINEs inserted into exons, UTRs, or within 5,000 bp upstream of 5’ UTRs of genes 

within the Ludington et al. (2020) A. laevis assembly and transcriptome.
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Repeat (query) Species (target repeat)
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identity

Hit length 
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RTE-Snek_2 Chrysemys picta (RTE-9_CPB) 65.3 2,926

Proto2-Snek Oryzias latipes (Proto2-1_OL) 65.6 666

RTE-Kret
Petromyzon marinus (RTE-

2_PM)
63.6 3102

Most similar curated repeats

Rex-Snek_1H1 Oryzias latipes 85.0 2,987

Rex-Snek_1H2 Oryzias latipes 82.2 2,973

Rex-Snek_1H3 Oryzias latipes 81.6 2,960

Rex-Snek_2 Miichthys miiuy 78.7 2,594

RTE-Snek_1 Laticauda colubrina (RTE-Kret) 84.9 3,252

RTE-Snek_2 Hippocampus comes 74.4 3184

Proto2-Snek Epinephelus lanceolatus 75.4 3,299
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Domains 4 (KANK4)

Proto2-Snek 4987 161

Potassium Calcium-Activated 

Channel Subfamily N Member 

4 (KCNN4)

Proto2-Snek 3746 98

Outer Mitochondrial Membrane 

Lipid Metabolism Regulator 

OPA3 (OPA3)

Rex1-Snek_2 3149 81

Rabaptin, RAB GTPase 

Binding Effector Protein 1 

(RABEP1)

Proto2-Snek 1389 99

Valosin Containing Protein 

Lysine Methyltransferase 

(VCPKMT)

Rex1-Snek_1H1 512 76

Cdc42 effector protein 4 

(CDC42EP4)

RTE-Snek_2 1475 422

Gamma-aminobutyric acid RTE-Snek_2 4247 95
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receptor subunit alpha-3 

(GABRA3)

Leucine-zipper-like 

transcriptional regulator 1 

(LZTR1)

RTE-Snek_2 2066 421

Polyadenylate-binding protein 2 

(PABPN1)

RTE-Snek_2 145 431

Parvalbumin alpha (PVALB) RTE-Snek_2 4152 52

Deaminated glutathione 

amidase (NIT1)

RTE-Snek_2 In coding exon 228

Adenylate cyclase type 4   

(ADCY4)

RTE-Snek_2 In 3’ UTR and 

transcript

130

CAP-Gly Domain Containing 

Linker Protein Family Member 

4 (CLIP4)

RTE-Snek_1 In transcript -

BLOC-1 Related Complex 

Subunit 8 (BORCS8)

Rex1-Snek_1H3 In transcript -
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Structure of the 7 HTT Aipysurus and 1 Laticauda LINE subfamilies. Cyan represents endonuclease (EN), red 
reverse transcriptase (RT), orange coiled coil (CC), green RNA-recognition motif (RRM), and yellow domain 

of unknown function 1891 (U). Protein domains were identified using RPSBLAST (Marchler-Bauer et al. 
2017) and HHpred (Zimmermann et al. 2018) searches against CDD and Pfam (Finn et al. 2016; Marchler-
Bauer et al. 2017) databases and the coiled coil domain was identified using PCOILS (Gruber et al. 2006). 
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Coverage and divergence from consensus of the 7 horizontally transferred LINE subfamilies identified in the 
Aipysurus laevis genome and the 1 identified in Laticauda colubrina. LINE fragments were identified with 
BLASTN (Altschul et al. 1990; Camacho et al. 2009) and plotted using ggplot2 (Wickham 2011) using the 

consensus2genome script (https://github.com/clemgoub/consensus2genome). The blue line represents the 
depth of coverage of fragments aligned to the subfamily consensus sequence (shown on right hand Y-axis). 

Each horizontal line represents the divergence of a fragment and its position mapped to the repeat 
consensus (position shown on X-axis); orange shows full length repeats and black shows repeat fragments. 

The divergence from consensus of the repeats is shown on the left hand Y-axis. 
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Presence of the eight HTT LINE subfamilies across the phylogeny of elapid snakes (adapted from Lee et al, 
(2016). Colour of lineage represents habitat - marine species are blue, terrestrial brown and amphibious 

green. Each symbol represents the likely timing of horizontal transfers, for example the square indicates the 
likely transfer date of both Rex1-Snek_1H1 and Rex1-Snek_2 . Presence/absence determined using 

reciprocal BLASTN search (Altschul et al. 1990; Camacho et al. 2009) using default parameters. 
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Presence of the 7 Aipysurus and 1 Laticauda HTT LINE subfamilies across 540 Metazoa. In each ring, darker 
shading represents the presence of at least one sequence over 1,000 bp in length showing 75% or higher 

pairwise identity to the LINE, lighter shading represents the presence of more than one sequence over 1,000 
bp with less than 75% pairwise identity, and white represents the complete absence of similar sequences. 
Presence of LINEs identified using BLASTN with custom parameters (see Methods) (Altschul et al. 1990; 

Camacho et al. 2009) and plotted in iToL (Letunic and Bork 2019). Species tree generated using TimeTree 
(Hedges et al. 2006), manually edited to correct elapid phylogeny to fit (Lee et al. 2016). Interactive tree 

available at https://itol.embl.de/shared/jamesdgalbraith. 
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Excerpts from the phylogenies of all intact curated and Repbase RTEs and all intact curated and Repbase 
Rex1s compared to host species phylogeny. The blue triangles on the left represent condensed large 

subtrees of LINE sequences. TE phylogeny scale bar represents substitutions per site. The numbers next to 
each node in the repeat trees is the support value. Extracts from larger phylogenies constructed using 

RAxML (Stamatakis 2014) based on MAFFT (Katoh and Standley 2013) nucleotide alignments trimmed with 
Gblocks (Talavera and Castresana 2007) (for full phylogenies see SI Appendix, Fig. S1 and Fig. S2). Species 

trees constructed with TimeTree (Hedges et al. 2006). 
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