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Abstract

Background: For outcomes that studies report as the means in the treatment and control groups, some medical
applications and nearly half of meta-analyses in ecology express the effect as the ratio of means (RoM), also called the
response ratio (RR), analyzed in the logarithmic scale as the log-response-ratio, LRR.

Methods: In random-effects meta-analysis of LRR, with normal and lognormal data, we studied the performance of
estimators of the between-study variance, τ 2, (measured by bias and coverage) in assessing heterogeneity of
study-level effects, and also the performance of related estimators of the overall effect in the log scale, λ. We obtained
additional empirical evidence from two examples.

Results: The results of our extensive simulations showed several challenges in using LRR as an effect measure. Point
estimators of τ 2 had considerable bias or were unreliable, and interval estimators of τ 2 seldom had the intended 95%
coverage for small to moderate-sized samples (n < 40). Results for estimating λ differed between lognormal and
normal data.

Conclusions: For lognormal data, we can recommend only SSW, a weighted average in which a study’s weight is
proportional to its effective sample size, (when n ≥ 40) and its companion interval (when n ≥ 10). Normal data posed
greater challenges. When the means were far enough from 0 (more than one standard deviation, 4 in our simulations),
SSW was practically unbiased, and its companion interval was the only option.

Keywords: Between-study variance, Heterogeneity, Random-effects model, Meta-analysis, Log-response-ratio, Ratio
of means

Background
Users of meta-analysis assemble estimated effects from
several studies in order to assess their heterogeneity and
obtain an overall estimate. Here we focus on the measure
of effect known as the response ratio (RR, also known in
medical applications as the ratio of means, RoM), ana-
lyzed in the logarithmic scale as the log-response-ratio,
LRR. In ecology almost half of all meta-analyses use this
outcomemeasure [1, 2]. When some studies report means
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but include no information on the corresponding vari-
ances, the alternative of analyzing the standardized mean
difference is not available.
The RR was introduced by Hedges et al. [3] and redis-

covered as RoM by Friedrich et al. [4]; they assumed
normality of the underlying data. To avoid confusing RR
with relative risk, we use RoM on the original scale and
LRR on the log-scale. Because the LRR is not defined
for negative values of the study means, Lajeunesse [5]
modeled the data by lognormal distributions. We explore
meta-analysis of LRR under both normal and lognormal
distributions, combined with the fixed-effect model and
the random-effects model.
The fixed-effect (FE) model regards the studies as shar-

ing a single true effect, whereas the random-effects (RE)
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model regards those true effects as a sample from a distri-
bution. The variance of that distribution, usually denoted
by τ 2, is often used in estimating the overall effect (the
mean of the distribution of random effects). In study-
ing estimation for meta-analysis of LRR, we focus first
on τ 2 and then proceed to the overall effect, which we
denote by λ.
Veroniki et al. [6] give a broad overview of methods

of estimating τ 2 and its uncertainty. However, they study
only “methods that can be applied for any type of out-
come data.” As we show elsewhere [7], the performance of
the methods varies widely among effect measures. Also,
empirical information on the comparative performance of
the methods remains limited. We address both of these
limitations for the effect measure LRR.
Veroniki et al. [6, (Appendix Table 1)] cite no previ-

ous simulation studies on the comparative performance of
estimators of τ 2 for LRR.
Several studies have considered the quality of estimation

of λ. Friedrich et al. [4] report extensive simulations for
LRR under normality, but they use only the DerSimonian-
Laird (DL) method to estimate τ 2 and do not report on
its quality. Lajeunesse [5] discusses bias correction for
study-level LRR and its variance, and provides some sim-
ulation results for lognormal distributions, but there is
no evidence on applicability of this correction under the
RE model. Doncaster and Spake [8] provide some limited
simulation results under normality for accuracy of estima-
tion of the overall LRR and its variance, using the DL and
restricted maximum-likelihood (REML) methods to esti-
mate τ 2. To assess bias of the estimators of λ, they use
mean absolute error, which is not a measure of bias; it is
the linear counterpart of mean squared error.
To address this gap in information on methods of

estimating the heterogeneity variance for LRR, we use
simulation to study four general-purpose methods rec-
ommended by Veroniki et al. [6]. These are the well-
established methods of DerSimonian and Laird [9],
restricted maximum likelihood, and Mandel and Paule
[10] (MP) and the less-familiar method of Jackson [11].
We also study coverage of confidence intervals for τ 2

achieved by four methods: the Q-profile method of
Viechtbauer [12], the methods of Biggerstaff and Jack-
son [13] and Jackson [11], and the profile-likelihood-based
interval [14].
For each estimator of τ 2, we also study bias of the

corresponding inverse-variance-weighted estimator of the
overall effect. However, it is well known that these inverse-
variance-weighted estimators have unacceptable bias for
some other effect measures, as Bakbergenuly et al. [7]
and Hamman et al. [15] show for the standardized mean
difference and Bakbergenuly et al. [16] show for the log-
odds-ratio. As a way of reducing this bias, we added
an estimator (SSW) whose weights depend only on the

sample sizes of the Treatment and Control arms.We study
the coverage of the confidence intervals associated with
the inverse-variance-weighted estimators, and also the
HKSJ interval [17, 18], a modification of the HKSJ inter-
val that uses the MP estimator of τ 2 instead of the DL
estimator, and an interval centered at SSW that uses the
MP estimator of τ 2 in estimating its variance and bases its
width on a t distribution.
Under “Methods” we briefly review study-level esti-

mation of log-response-ratio and the standard random-
effects model for meta-analysis, discuss models for meta-
analysis of log-response-ratio, very briefly discuss point
and interval estimation of between-study variance and
overall effect, introduce the SSW estimator, and describe
our simulations. Then we summarize results of the simu-
lations, discuss the two examples, and provide discussion
and conclusions.
Additional files list the methods and provide additional

plots and our R programs.

Methods
Study-level estimation of log-response-ratio
We assume that each of the K studies in the meta-analysis
consists of two arms, Treatment and Control, with sam-
ple sizes niT and niC . The total sample size in Study i is
ni = niT + niC . The subject-level data in each arm are
assumed to be normally or log-normally distributed with
means μiT and μiC and variances σ 2

iT and σ 2
iC . The sam-

ple means are X̄ij, and the sample variances are s2ij, for
i = 1, . . . ,K and j = C or T.
The response ratio is usually meta-analyzed on a log

scale, where the effect measure is λi = log(μiT/μiC), esti-
mated by λ̂i = log

(
X̄iT/X̄iC

)
, and the population and

sample means are assumed to be positive. As Bakber-
genuly et al. [19] discuss, however, the log transformation
introduces bias: the expected value of exp

(
λ̂i

)
is not

equal to exp(λi). The within-study variance estimate for
λ̂i, obtained by the delta method, is [3]

v̂2i = s2iT
niT X̄2

iT
+ s2iC

niCX̄2
iC

= V̂ 2
iT

niT
+ V̂ 2

iC
niC

, (1)

where V̂ij is the sample coefficient of variation (CV). The
positively skewed distribution of λ̂i is not well approxi-
mated by a normal distribution when at least one of the
sample means is close to zero. This behavior results in
considerable bias of λ̂i and affects the quality of its vari-
ance estimate [3]. The standard advice is to use LRR for
Study i only when at least one of √nijX̄ij/sij ≥ 3. This
advice is often ignored in practice [5].
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To eliminate this bias in small samples, Lajeunesse [5]
proposed two bias-corrected modifications, and he rec-
ommended

λ̂�
i = λ̂i + 1

2

[
s2iT

niT X̄2
iT

− s2iC
niCX̄2

iC

]

(2)

and estimated its variance by

V̂ar
(
λ̂�
i

)
= v2i + 1

2

[
s4iT

n2iT X̄
4
iT

− s4iC
n2iCX̄

4
iC

]

. (3)

However, this bias-corrected estimator and its variance
would be even less stable for small values of X̄ij.

Standard random-effects model
The standard random-effects model accounts for within-
and between-study variabilities by assuming approxi-
mately normal distributions of within- and between-study
effects. We use this model to facilitate comparison with
previous work, which has relied on it, and because appli-
cations have used methods based on it. This traditional
model, however, has shortcomings. For most measures
of effect, within-study variability is only approximately
normal, generally in large samples. In practice, between-
study variability is unlikely to be normal, but few meta-
analyses involve enough studies to reliably evaluate that
assumption or to point toward suitable alternatives. How-
ever, some simulation evidence [20] indicates that various
methods based on the random-effects model are largely
robust to departures from normality.
For a generic measure of effect, denoted by λ,

λ̂i ∼ N
(
λi, v2i

)
and λi ∼ N

(
λ, τ 2

)
, (4)

the resulting marginal distribution is λ̂i ∼ N
(
λ, v2i + τ 2

)
.

λ̂i is the estimate of the effect in study i, and its within-
study variance is v2i , estimated by v̂2i , i = 1, . . . ,K . The
between-study variance, τ 2, is estimated by τ̂ 2. The overall
effect, λ, is customarily estimated by the weighted mean

λ̂RE =

K∑

i=1
ŵi

(
τ̂ 2

)
λ̂i

K∑

i=1
ŵi

(
τ̂ 2

)
(5)

with inverse-variance (IV) weights ŵi
(
τ̂ 2

) = (
v̂2i + τ̂ 2

)−1.
In the FE estimate λ̂ = λ̂FE the weights are ŵi =
ŵi(0). A reviewer raised the concern that, by using IV
weights, random-effects estimators of the overall effect
redistribute weight from larger studies (which contain
more information) to smaller studies. Whenever τ̂ 2 > 0,
such redistribution is an inherent feature of IV weights.
Under “Point estimators” we discuss an estimator that
avoids this shortcoming.

If the Var(λ̂i) are the (known) true variances and wi =
1/Var(λ̂i), the variance of the weighted mean of the λ̂i is
1/

∑
wi. Thus, many authors estimate the variance of λ̂RE

by
[∑K

i=1 ŵi
(
τ̂ 2

)]−1
. In practice, however, this estimator

may not be satisfactory [21–23].
Several methods of estimating τ 2 use Cochran’sQ statis-

tic [24]

Q =
K∑

i=1
ŵi(0)

(
λ̂i − λ̂

)2
(6)

or a modification of it.

Models for meta-analysis of log-response-ratio
Since λ̂ is defined only in the positive quadrant(
X̄T > 0, X̄C > 0

)
, the standard FE and RE models of

meta-analysis are not quite appropriate for normally dis-
tributed data. (We exclude the extraneous and unlikely
possibility X̄T < 0, X̄C < 0.) Let X̄j ∼ N

(
μj, σ 2

j /nj
)
.

Then, under the fixed-effect model, the probability that λ̂

is not defined is

1 − P
(
X̄T > 0

)
P

(
X̄C > 0

)

= 1 − [
1 − �

(−√
nCμC/σC

)] [
1 − �

(−√
nTμT/σT

)]
,

where �(·) is the cumulative distribution function of
the standard normal distribution. This probability is a
decreasing function of nj and an increasing function of
Vj = σj/μj, and it is close to 0 for large sample sizes.
However, very small sample sizes, starting from nT =
nC = 2, are abundant in ecology, where the LRR is a
measure of choice. Keeping, say, √nC/VC = 3, the prob-
ability that λ̂ is not defined is 0.0027 for √nT/VT = 3,
0.024 for √nT/VT = 2, 0.160 for √nT/VT = 1, and
0.309 for √nT/VT = 0.5. Therefore, only large values of
both√nC/VC and√nT/VT would avoid problems.When
the population value √nT/VT < 3, say, studies for which
λ̂ is not defined would occur with comparatively high
probability and would need to be dropped from the meta-
analysis. These omissions imply that themean in each arm
comes from a normal distribution truncated from below
at √nj/Vj, even under the FE model. This truncation may
introduce bias in λ̂.
Restrictions on the range are not unique to LRR; they

apply to other effect measures such as the relative risk
[25], where the restriction arises because the probabilities
of events must be between 0 and 1.
In the RE model, λi ∼ N

(
λ, τ 2

)
and can be negative.

If so, μiT (= μiC exp(λi)) may be close to 0, and conse-
quently the contribution of V̂ 2

iT/niT to v̂2i in Eq. (1) may be
large, further increasing the probability of truncation for
X̄iT .
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Because λ̂ is not defined for negative values of the
study means, Lajeunesse [5] modeled the data by lognor-
mal distributions. In principle, lognormal distributions
oftenmake sense for non-negative data. This choice would
eliminate the restricted-range bias of LRR. Of course, the
choice of model should be based on the properties of the
data and not on perceived ease of statistical modeling.
Even though sample means and variances are unbiased

estimators of the population means and variances for log-
normal distributions, they are very inefficient, especially
in variance estimation [26, Section 14.4.1, p. 220–222].
If the data are assumed to come from lognormal distri-
butions, a much more straightforward approach would
log-transform the individual observations, which would
reduce the problem to meta-analysis of mean difference.
This approach would provide much better inferences.
However, when individual-level data are not available,
meta-analyses must work with the sample means and
variances.

Methods of estimating between-study variance
In this section we briefly list point and interval estimators
of between-study variance τ 2 used in our study.

Point estimators
Themost popular (but rather biased) estimator of τ 2 is the
method-of-moments estimator of DerSimonian and Laird
[9] (DL), denoted by τ̂ 2DL. It is based on the appoximate
first moment of Cochran’s Q, Eq. (6).
Assuming that the λ̂i are distributed as N

(
λ, v̂2i + τ 2

)
,

the restricted-maximum-likelihood (REML) esti-
mator τ̂ 2REML maximizes the restricted (or residual)
log-likelihood function lR

(
λ, τ 2

)
. REML is superior to

DL because of its balance between unbiasedness and
efficiency [27].
DerSimonian and Kacker [28] generalized DL, replac-

ing the weights ŵi of Cochran’s Q, Eq. (6), by arbitrary
fixed positive constants, ai. For situations in which some
unknown amount of heterogeneity is anticipated, Jackson
[11] proposed the estimator of τ 2 with ai = 1/v̂i. We refer
to this method as J.
The Mandel-Paule (MP) estimator [10], τ̂ 2MP , is another

moment-based estimator of the between-study variance.
Its calculation requires iteration. It is known to be superior
to DL [6], but no simulations for LRR had been performed
previously.

Interval estimators
The 95% profile-likelihood (PL) confidence interval con-
sists of the values of τ 2 that are not rejected by the
likelihood-ratio test with τ 2 as the null hypothesis [14].
This interval is usually used with τ̂ 2REML.
Similarly, the Q-profile confidence interval [12] consists

of the values that are not rejected by the test based on a Q

statistic (6) in which the weights are ŵi
(
τ 2

)
. The distribu-

tion of Q is assumed to follow the chi-square distribution
with K − 1 degrees of freedom.
For a generic effect measure, Biggerstaff and Jackson

[13] derived the exact distribution of the Q statistic
with arbitrary but constant weights ai. That distribution
yielded a generalized Q-profile confidence interval. We
refer to this interval with ai = ŵi as the BJ confidence
interval.
Jackson [11] proposed another generalized Q-profile

confidence interval (J). The approach is the same as for
the BJ interval, but with ai = 1/v̂i.

Methods of estimating overall effect
Because some of the point estimators of the overall
effect do not have corresponding interval estimators, we
describe point estimators and interval estimators in sepa-
rate sections.

Point estimators
A random-effects method that estimates λ by a weighted
mean with inverse-variance weights, as in Eq. (5), is deter-
mined by the particular τ̂ 2 that it uses in ŵi

(
τ̂ 2

)
. We

refer to these estimators by the names of the respective
τ̂ 2. Because the study-level effects and their variances
are related (see Eq. (1) for LRR), all inverse-variance-
weighted estimators of overall LRR have considerable
biases.
Following negative experience with the bias of inverse-

variance-weighted estimators of SMD, Bakbergenuly et al.
[7] included a point estimator whose weights depend only
on the studies’ sample sizes, as proposed by Hedges and
Olkin [29] and Hunter and Schmidt [30]. For this estima-
tor (SSW), wi = ñi = niTniC/ (niT + niC); that is, wi sets
V̂iT = V̂iC = 1 in Eq. (1). To reduce bias in estimating the
overall LRR, we included SSW.

Interval estimators
The point estimators DL, REML, MP, and J have com-
panion interval estimators of λ. The customary approach

estimates the variance of λ̂RE by
[

K∑

i=1
ŵi

(
τ̂ 2

)
]−1

and bases

the width of the interval on the normal distribution.
These intervals are usually too narrow, and their cover-
age may also be reduced by bias. Hartung and Knapp
[17] and, independently, Sidik and Jonkman [18] devel-
oped an improved estimator for the variance of λ̂RE . The
Hartung-Knapp-Sidik-Jonkman (HKSJ) confidence inter-
val uses this estimator and bases the width on critical
values from the t distribution onK−1 degrees of freedom.
A potential weakness of an HKSJ interval that uses λ̂DL
as its midpoint is that it will have any bias that is present
in λ̂DL. Therefore we also consider an HKSJ confidence
interval centered at λ̂MP (HKSJ MP).
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The interval estimator corresponding to SSW (SSW
MP) uses the SSW point estimator as its center, and its
width equals the estimated standard deviation of SSW
under the random-effects model times twice the critical
value from the t distribution on K −1 degrees of freedom.
The estimator of the variance of SSW is [7, 5.2]

V̂ar
(
λ̂SSW

)
=

∑
ñ2i

(
v̂2i + τ̂ 2

)

(∑
ñi

)2 , (7)

in which v̂2i comes from Eq. (1) and τ̂ 2 = τ̂ 2MP .

Simulation study
As mentioned under “Background”, a few studies have
used simulation to examine estimators of the overall effect
for LRR, but no studies have systematically examined
estimators of τ 2.
The range of values of LRR may be rather wide. The

empirical study by Senior [31] reports values of LRR up to
3.72 (though the second-largest value is 1.46) and values
of K from 3 to 592. The simulations by Friedrich et al. [4]
used values of LRR up to 0.445 (RoM=1.56). Lajeunesse
[5] used means between 0 and 8 in both arms and small
sample sizes, starting from nT +nC = 4. Unfortunately, no
information is available on the accompanying range of τ 2

values. In their simulations for SMD, Hamman et al. [15]
consider the range from 0 to 2.5 as typical for ecology.

Design of the simulations
As summaries of performance our simulation study
estimated bias of point estimators and coverage of
interval estimators, for τ 2 and for λ. Two basic distribu-
tions served as the source of the data in the Treatment and
Control arms: the normal distribution (the subject of Bak-
bergenuly et al. [32]) and the lognormal distribution (the
subject of a separate report [33]).
For the overall value of LRR, we chose λ =

(0, 0.2, 0.5, 1, 2) (corresponding to 1 ≤ RoM ≤ 7.39), as
realistic for a range of applications. The true values of LRR
in the individual studies, λi, were generated from a nor-
mal distribution: λi ∼ N

(
λ, τ 2

)
. For a given Control mean

μiC , the Treatment mean was μiT = μiC exp (λi).
To evaluate performance issues related to proximity to

zero, we used two values of the mean in the Control arm,
μiC = 1 and μiC = 4, in simulations from normal dis-
tributions (with σ 2

C = 1). When the data are lognormal,
proximity to zero does not affect data generation or infer-
ences. Therefore, as the mean of the Control arm we took
μiC = 1.
All simulations used the same numbers of studies, small

(K = 5, 10, 30) and large (K = 50, 100, 125), and equal
numbers of observations in the Control and Treatment
arms.
We studied only meta-analyses in which the study size

was the same in all K studies and niC = niT = ni/2.

The study sizes, ni, started from 4, because some studies
in ecology have such small sample sizes; the small sam-
ple sizes were ni = 4, 10, 20, 40, and the large sample sizes
were ni = 100, 250, 640, 1000. By using the same set of
sample sizes for each combination of the other parame-
ters, we avoided the additional variability in the results
that would arise from choosing sample sizes at random
(e.g., uniformly between 100 and 250).
For simulations from normal distributions, we gener-

ated the within-study sample variances s2ij (j = T , C) from
chi-square distributions as σ 2

ijχ
2
nij−1/(nij − 1). We gener-

ated the estimated means X̄ij from a normal distribution
with mean μij and variance σ 2

ij /nij. We obtained the esti-
mated within-study LRR as λ̂i = log

(
X̄iT/X̄iC

)
and the

estimated within-study variance from Eq. (1). Studies with
at least one negative sample mean were discarded, and the
value of K was reduced accordingly, resulting effectively
in a simulation from a truncated normal distribution of
means in each arm. The median number of studies was
4.859 (quartiles 4.612 and 4.961) for K = 5, 9.715 (9.202,
9.925) for K = 10, and 29.15 (27.60, 29.77) for K = 30.
In summary, we varied five parameters: the overall true
LRR (λ), the between-studies variance (τ 2), the mean in
the Control arm (μC), the number of studies (K), and the
total sample size (n). We set σ 2

C = σ 2
T = 1. Table 1 lists the

configurations.
For simulations from lognormal distributions, we gen-

erated nij independent observations from the lognormal
distribution with mean log

(
μij

) − 0.5 log
(
1 + σ 2

ij /μ
2
ij

)

and variance log
(
1 + σ 2

ij /μ
2
ij

)
, as in Lajeunesse [5], and

obtained their sample means X̄ij and sample variances s2ij.
Then we calculated the sample LRR λ̂i = log

(
X̄iT/X̄iC

)

and the estimated variances v̂2i as in Eq. (1). We also cal-
culated the bias-corrected estimate, λ̂�

i , Eq. (2), and its
estimated variance, Eq. (3) [5]. In summary, we varied four
parameters: the overall true LRR (λ), the between-studies
variance

(
τ 2

)
, the number of studies (K), and the total

sample size (n). We set σ 2
C = σ 2

T = 1. Table 1 lists the
configurations.
For each combination of parameters, we used a total

of 10,000 repetitions. The resulting simulation standard
error for estimated coverage of τ 2 or λ at the 95% confi-
dence level was roughly

√
0.95 × 0.05/10, 000 = 0.00218.

We programmed the simulations in R version 3.3.2
using the University of East Anglia 140-computer-node
High Performance Computing (HPC) Cluster, which has
a total of 2560 CPU cores, including parallel processing
and large memory resources. For each configuration, the
10,000 replications consisted of 10 parallel sets of 1000
replications.
A reviewer inquired about the values of I2 underlying

our simulations. Figures A3 and A4 in Additional File 3
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Table 1 Data patterns in the simulations for LRR

Parameter Values Full results in e-prints,
appendices

K (number of studies:
small/large)

(5, 10, 30) & (50, 100,
125)

A & B - small n

n (total study size:
small/large)

(4, 10, 20, 40) & (100,
250, 640, 1000)

σ 2
T & σ 2

C (within-study
variances)

1 & 1 C & D - large n

λ (overall value of the
LRR)

0, 0.2, 0.5, 1, 2

τ 2 (between-study
variance)

0(0.1)1

Normal distribution Bakbergenuly et al. [32]

μC (mean in Control arm) 1, 4 appendices

estimation of τ 2 A & C

estimation of λ B & D

Lognormal distribution Bakbergenuly et al. [33]

μC (mean in Control arm) 1 appendices

estimation of τ 2 A & C

estimation of λ B & D

plot I2 = 100τ 2/
(
τ 2 + s2

)
versus τ 2 ∈[ 0, 1] for LRR

when n = 20, 40, 100, and 250, with traces for λ = 0, 0.5,
1, 1.5, and 2. As indicated by the definition, I2 increases
as τ 2 increases. The value of n also has a substantial
impact (larger n yields higher I2). Importantly, for LRR
I2 increases as λ increases, especially for the smaller n,
contrary to the scale-invariance criterion of Higgins and
Thompson [34]. We emphasize that we discourage use of
I2, for reasons that include those mentioned here.

Results
We report our full simulation results under the normal
and lognormal distributions in e-prints [32, 33]. Those
reports include 240 and 160 figures, respectively; each
figure presents 12 plots (versus τ 2) of bias or coverage of
estimators of τ 2 or estimators of λ, corresponding to four
values of n and three values of K. The summary below is
illustrated by Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. Those
figures, however, do not give a comprehensive picture. In
summarizing the results, we sometimes have to describe
the joint contribution of two or three parameters.

Bias and coverage in estimation of τ2 under normal
distribution (Figs. 1 and 2)
Bias The main feature is a negative relation between bias
and τ 2. When μC = 1 and n = 4, all four estimators
have definite positive bias at τ 2 = 0 (e.g., 0.13 to 0.22
when λ = 0 and K = 5). As τ 2 increases, the bias trends
downward, roughly linearly, and it can reach substantial
negative values (e.g.,−0.47 to−0.64 at τ 2 = 1 when λ = 0

and K = 5). When n = 10, the bias at τ 2 = 0 is less
than 0.05, and it goes to 0 as n increases. Also, the slopes
of the traces decrease in magnitude, and the traces sep-
arate (Fig. 1, row 1). The separation is slight at n = 40
but substantial at n = 100. Interestingly, MP and REML
improve steadily, but DL and J do not (Fig. 1, row 4); when
λ = 0, K = 5, and n = 1000, the bias at τ 2 = 1 is
−0.33 for DL and −0.20 for J versus −0.06 for REML and
−0.03 forMP. Increasing K (even to 50, 100, and 125) gen-
erally does not reduce the biases, but the traces separate
when n ≤ 20, especially when n = 4. As λ increases, the
biases at τ 2 = 0 decrease slightly, and the magnitudes
of the slopes decrease substantially (Fig. 1, row 2); when
λ = 2 and n ≥ 40, MP and REML are nearly unbiased.
The biases are much smaller when μC = 4 (see Fig. 1,
row 3 for comparison); we believe the difference is due to
restricted-range issues. None of the four estimators of τ 2

has adequately small bias overall, but (excluding n = 4,
which is generally quite challenging) MP often has the
least bias, followed by REML, and J and DL have the most
bias.
Bias increases when the bias-corrected estimator λ̂� is

used for small n. As expected, bias-correction does not
have any effect for large n.
Coverage When μC = 1, coverage of τ 2 depends

strongly on K. Counterintuitively, all four methods have
coverage close to nominal when K = 5, somewhat below
nominal when K = 10 (unless n > 100), and often far
below nominal when K ≥ 30 (in problematic patterns
when n = 4). At τ 2 = 0 coverage is noticeably above
nominal when n ≥ 10 (Fig. 2, row 1). When n ≤ 40,
coverage generally improves as λ increases (but it dete-
riorates at small τ 2 when n = 4). When n ≥ 100, QP
and PL generally have coverage reasonably close to nom-
inal, even for K = 30, and QP is sometimes closer; when
K = 30, the coverage of BJ and J decreases sharply as
τ 2 increases (except when λ = 2) (Fig. 2, row 3). When
μC = 4, coverage of the Q-profile intervals is close to
nominal for τ 2 ≥ 0.1 (Fig. 2, row 2). All four methods
have below-nominal coverage at τ 2 = 0 when n = 4 and
λ = 0, and the deficit becomes worse and affects other
values of n as λ increases. When n is large or K is large,
the coverage of J and especially BJ declines steeply as τ 2

increases (Fig. 2, row 4). Use of the bias-corrected estima-
tor λ̂� does not affect coverage of τ 2 for smaller K and
makes it considerably worse for larger K.

Bias, mean squared error, and coverage in estimation of λ
under normal distribution (Figs. 3, 4 and 5)
Bias and mean squared error All four IV-weighted esti-
mators of λ have practically the same bias. When μC = 1
and λ = 0, the bias is 0 at τ 2 = 0 and increases as τ 2

increases (the traces resemble
√

τ 2 for τ 2 ≤ 0.4 and are
nearly linear for τ 2 ≥ 0.4) (Fig. 3, row 1). At τ 2 = 1 it can
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Fig. 1 Bias in point estimators of between-study variance of LRR in simulations from normal distributions
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Fig. 2 Coverage of 95% confidence intervals for between-study variance of LRR in simulations from normal distributions
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Fig. 3 Bias in point estimators of λ in simulations from normal distributions
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Fig. 4MSE of point estimators of λ in simulations from normal distributions
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Fig. 5 Coverage of 95% confidence intervals for λ in simulations from normal distributions
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Fig. 6 Bias in point estimators of between-study variance of LRR in simulations from lognormal distributions
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Fig. 7 Coverage of 95% confidence intervals for between-study variance of LRR in simulations from lognormal distributions
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Fig. 8 Bias in point estimators of λ in simulations from lognormal distributions. No bias correction in the first three rows; for comparison,
bias-corrected estimation of λi in the fourth row
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Fig. 9MSE of point estimators of λ in simulations from lognormal distributions. No bias correction in the first three rows; for comparison,
bias-corrected estimation of λi in the fourth row
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Fig. 10 Coverage of 95% confidence intervals for λ in simulations from lognormal distributions. No bias correction in the first three rows; for
comparison, bias-corrected estimation of λi in the fourth row
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be large when n is small (e.g., around 0.40 whenK = 5 and
n ≤ 20). When λ ≥ 0.2, the bias is negative at small τ 2,
with magnitude exceeding 0.12 when λ ≥ 1 and n ≤ 10; it
becomes positive as τ 2 increases. The bias can be large for
small sample sizes, and it decreases to zero only for very
large sample sizes. The bias depends very little on K. The
bias of SSW is positive, though considerably less than the
bias of the IV-weighted methods, and it decreases much
more rapidly as n increases (Fig. 3, row 4). It decreases for
increasing values of λ, staying at about 5% for n = 10 and
λ = 2. Interestingly, when λ ≥ 1 and n ≥ 10, the bias of
SSW (when positive) is roughly constant across the range
of τ 2 (Fig. 3, row 2). The bias of the IV-weighted estima-
tors is still present, though much smaller, when μC = 4,
whereas SSW is practically unbiased (Fig. 3, row 3). Hence
bias for large μC is due to the use of the IV weights and/or
to transformation bias, as restricted-range effects are not
involved. Use of the bias-corrected estimator λ̂� does
not affect bias in the IV-weighted estimators of λ. SSW,
however, often produces aberrantly large values, because
of the presence of X̄2

iT and X̄2
iC in the denominators in

Eq. (2). An X̄2
iC near zero considerably inflates a study’s λ̂i,

producing an inflated SSW estimate of λ. Because the cor-
responding v̂2i (Eq. (3)) are also inflated, the IV-weighted
methods downweight these studies, but SSW does not. To
summarize, we do not recommend bias-correction under
normal distribution.
Astonishingly, the MSE in estimation of λ does not

reflect the biases of the respective estimators, but strongly
depends onK, even though the bias in estimation of λ does
not. The MSE of SSW is somewhat higher than MSE of
the IV-weighted estimators when K = 5, can be higher or
lower when K = 10 and is usually lower when K = 30.
Coverage When μC = 1, coverage of all IV-weighted

methods is considerably below nominal for n ≤ 40 (with
some exceptions near τ 2 = 0 when λ is small) (Fig. 5,
row 1). Coverage of the IV-weighted methods deteriorates
substantially for largerK and larger values of τ 2, especially
for small values of λ (Fig. 5, rows 2 and 3). The HKSJ inter-
vals provide nominal coverage only for n ≥ 100, and the
standard IV-weighted methods never achieve the nominal
level. SSWMP, with t critical values, is the only choice, but
its coverage is somewhat above nominal for very small n.
When μC = 4, the HKSJ intervals provide nominal cov-
erage starting from n = 10 when K ≤ 30 and τ 2 > 0,
and the coverage of all other IV-weighted methods is con-
siderably lower than nominal. Coverage of all except SSW
MP deteriorates for larger K (Fig. 5, row 4), though cov-
erage of SSW MP is above nominal at τ 2 = 0. Coverage
of all methods except DL and J improves for very large
sample sizes, but it still can be extremely low at zero.
Use of the bias-corrected estimator λ̂� does not affect
coverage of λ.

Bias and coverage in estimation of τ2 under lognormal
distribution (Figs. 6 and 7)
Bias When n is very small (Fig. 6, row 1), all four estima-
tors of τ 2 have substantial positive bias, increasing linearly
with τ 2 (when λ = 0 and n = 4, the intercept is around
0.4, and the slope is around 0.9). This pattern persists
for λ ≤ 1; but when λ = 2, the slope is essentially 0
(Fig. 6, row 3). As n increases to 40, the intercept and slope
decrease; but the trace for DL begins to diverge from the
others, followed by the trace for J, and increasingly as λ

increases. K has little effect. MP and REML have simi-
lar, reasonably small, bias when n ≥ 40 (Fig. 6, rows 2
and 4). When n ≥ 100, the traces for DL and J bend
toward increasingly negative bias as τ 2 increases; their
bias becomes worse as n increases and slightly worse as
K increases (for example, when λ = 0, n = 1000, and
K ≥ 50, the bias of DL is −0.28 at τ 2 = 1). The bias cor-
rection for λ̂i does not reduce the bias [33] (Appendices
A2, A4, C2, and C4).
Coverage When n < 40 and K = 5, the coverage of

all four intervals for τ 2 is below the nominal 95%, espe-
cially when n = 4 and τ 2 < 0.4; increasing K to 10 and
30 reduces coverage substantially and makes this pattern
worse (Fig. 7, row 1), and increasing λ has little effect.
Increasing K to 50 and beyond reduces coverage further,
even to 0 when n = 4 and τ 2 = 0 (Fig. 7, row 2). When
n ≥ 40 and K = 5 or 10, BJ and J generally provide nomi-
nal or slightly higher coverage, and QP and PL are slightly
lower. Situations with K ≥ 30 are often quite challeng-
ing; BJ has low coverage for K ≥ 30, and for larger n and
K, coverage of J deteriorates similarly to BJ, but QP and
PL provide good coverage (Fig. 7, row 3). Coverage of all
methods improves for larger λ (Fig. 7, row 4). The bias
correction does not improve coverage.

Bias, mean squared error, and coverage in estimation of λ
under lognormal distribution (Figs. 8, 9 and 10)
Bias and mean squared error All five estimators of λ

have bias that shows little dependence on K. When λ = 0
and τ 2 = 0, they all have essentially no bias.When τ 2 > 0,
the bias is very roughly linear in τ 2, with negative slope but
a non-negative intercept for the IV-weighted estimators
and a negative intercept for SSW. The intercept for the IV-
weighted estimators is positive for n ≥ 10, so their bias is
positive for smaller τ 2 and negative for larger τ 2; but the
traces flatten as n increases, and by n = 40 their bias is
positive for 0.1 ≤ τ 2 ≤ 1. The trace for SSW flattens sim-
ilarly; and when n = 40, its bias has smaller magnitude
than the IV-weighted estimators when 0.1 ≤ τ 2 ≤ 0.5 and
larger magnitude when 0.6 ≤ τ 2 ≤ 1 (see Fig. 8, rows 1
and 2). When λ > 0, the biases of all five estimators at
τ 2 = 0 and the intercepts (i.e., biases) at τ 2 = 0.1 increase;
for a given λ both the intercepts and the slopes decrease
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as n increases. As a result, when λ ≥ 0, 5, the bias of SSW
usually has smaller magnitude than the IV-weighted esti-
mators. In relative terms, when n < 40, the biases are
substantial: as much as 10% of λ in some cases. Here SSW
has the least bias, about 10% for λ ≥ 1 and n = 10, declin-
ing to 5% for λ ≥ 1 and n = 20 (Fig. 8, row 3). The bias
correction for λ̂i reduces the bias (Fig. 8, row 4) and should
be used.
All estimators have approximately the same MSE. This

may seem astonishing for row 1, where SSW is, on aver-
age, more biased than the IV-weighted estimators. The
explanation lies in inefficiency of the IV weights based on
the sample means and variances, for the lognormal distri-
bution. The fixed weights are more efficient, and this is
another argument for using SSW.
Coverage. t-intervals centered at SSW provide the best

coverage of λ, and that coverage is satisfactory when n ≥
20 and K ≤ 30. Those intervals may have coverage greater
than 97% (primarily when τ 2 = 0 and K = 5 or 10 and
in a few cases where τ 2 = 0.1, K = 5, n = 20 or 40,
and λ ≤ 0.5) or coverage less than 93% (mainly when τ 2

is small, K ≥ 50, n = 20 or 40, and λ ≥ 0.5). All other
methods have inferior coverage and are not recommended
(Fig. 10, row 1). Coverage of the intervals centered at SSW
is better when the bias correction is used for λ̂i; then it
is good when n ≥ 10. When n is small, K ≥ 50, and
λ = 0, coverage of the standard methods improves some-
what, whereas coverage of SSW MP becomes less than
93% when K > 50, especially for large τ 2 (Fig. 10, row 2).
When the bias correction is used, coverage of SSW MP is
the best, and it is good overall for small λ, but it is much
below 95% for n = 4, λ ≥ 0.5 and small τ 2, where it
worsens for larger K. For large K and large n, coverage of
SSW MP is still the best, especially at τ 2 = 0, and the
bias correction still produces better results (Fig. 10, rows
3 and 4).

Examples
Two examples from the literature illustrate ways in
which meta-analyses of LRR can differ. In the first
example the standardized sample means appear to be
normally distributed, whereas in the second example
they are skewed to the right, so the individual-level
data may be more likely to have come from lognormal
distributions.

Example 1: mate choice copying
Mate choice copying (MCC, initially observed in vari-
ous non-human animal species) occurs when an indi-
vidual’s likelihood of accepting or choosing a potential
mate is greater if others regard that mate as attractive.
In controlled experiments, human subjects are commonly
shown images of model individuals and asked to rate the
model’s desirability, interest, or physical attractiveness.

Designs differ between female and male subjects. Gouda-
Vossos et al. [35] report that “The majority of studies on
MCC effects in humans have focused on ‘individual-based
copying’ where the dependent variable is the response
of the subject toward the target individual presented
alongside an opposite-sex other, compared with a tar-
get presented alone. Recent studies have suggested that
MCC may . . . include assessing the underlying biologi-
cal and social qualities of potential mates. For instance, a
man in the presence of a ‘high quality woman of higher
mate value’ who is physically attractive or has a desir-
able personality informs female copiers that the man
must also have high-quality features that are not readily
observable.”
In onemeta-analysis Gouda-Vossos et al. combined data

from 17 studies of female choice in which the experimen-
tal manipulation was the addition of a female cue; that
is, the female subject viewed images of male targets pre-
sented with (vs. without) a female. The data are available
from the supplementary material in Gouda-Vossos et al.
[35] and are reproduced in Fig. 11. The arm-level sam-
ple sizes range from 30 to 263, and all but four studies
have balanced sample sizes. The response ratio was used
as the measure of effect size; a positive log-response-ratio
indicates higher ratings when the male is in the presence
of a female. Parker 2009 has substantially lower arm-level
means than the other studies; but all values of √nijX̄ij/sij
are above 6, and only six are less than 12, so proximity
to zero should not cause problems. Figure 11 shows the
forest plot from the REML-based analysis. The authors
concluded that “The positive mean revealed that men are
rated 6.01% more attractive/desirable when in the pres-
ence of a female.” Q–Q plots of the standardized sample
means (Additional File 2) showed their distribution to be
approximately normal, though with some outliers. There-
fore our simulation results for the normal distribution
may be more relevant.
Table 2 shows the results from various methods of esti-

mation. The estimators of τ 2 show clear differences. DL
provides the highest value at 0.0158, followed by J at
0.0119, REML at 0.0091, and MP at 0.0080, half the size
of DL.
The closest simulation scenarios are for λ = 0, τ 2 = 0

and 0.1, and n = 40 and n = 100. Under these con-
ditions for both normal and lognormal distributions, all
methods overestimate τ 2 at zero, but we do not have
results for positive values of τ 2 below 0.1. Our results
show that for small τ 2 > 0, the standard methods
overestimate λ = 0, and only SSW provides nearly
unbiased estimates of λ under both normal and lognor-
mal distributions. These results agree with our findings
for this example. The SSW estimate of λ, 0.0528, is
lower than all IV-weighted estimates (except FE, which is
negative).



Bakbergenuly et al. BMCMedical ResearchMethodology          (2020) 20:263 Page 19 of 24

Fig. 11 Forest plot for the meta-analysis of the effect of the addition of a female cue on female choice by Gouda-Vossos et al. [35] Subscripts T and C
correspond to the arms with/without a female cue (i.e., the presence of a female). REML was used in estimating the between-study variance

As the sample sizes are moderate to large, the differ-
ences in estimated τ 2 have considerable effect on the
width of the confidence intervals for λ.
Among the IV-weighted methods, only REML and MP

produced confidence intervals for λ that did not include
0. These reflect the combination of a positively biased
estimate of λ and the low estimate of τ 2. The original
meta-analysis used REML. Interestingly, the HKSJ confi-
dence intervals based on MP and DL also do not cross 0.
For HKSJ (DL), this happens because it is actually shorter
than the DL interval for these data. The SSW MP CI is

wider than the HKSJ confidence intervals, and it includes
0.
As the sample sizes are moderate to large, the bias cor-

rection is not needed. It is not recommended for normally
distributed data in any case.
Because, in our simulations, the IV-weighted methods

tend to give positively biased results, we consider the SSW
point estimate to be close to the true value of λ, and the
HKSJ MP interval to provide correct coverage. Therefore,
we do not consider the effect of MCC in women to be
significant.

Table 2 Point and confidence-interval estimates for τ 2 and λ in meta-analysis of the effect of the addition of a female cue on female
choice; FE is fixed-effect model, and RE is random-effects model. The heterogeneity parameter is τ 2. L and U denote the lower and
upper limits of the 95% confidence intervals

Model Method τ̂2 L U λ̂ L U Length

of CI

FE IV 0 −0.0478 −0.0560 −0.0396 0.0164

RE DL, QP 0.0158 0.0037 0.0230 0.0596 −0.0076 0.1268 0.1344

RE BJ 0.0050 0.0671

RE J 0.0119 0.0046 0.0375 0.0585 −0.0012 0.1181 0.1193

RE REML, PL 0.0091 0.0036 0.0275 0.0575 0.0041 0.1109 0.1068

RE MP 0.0080 0.0571 0.0062 0.1080 0.1018

RE λ̂� & MP 0.0080 0.0567 0.0059 0.1076 0.1017

RE HKSJ (DL) 0.0596 0.0040 0.1151 0.1111

RE HKSJ MP 0.0571 0.0020 0.1122 0.1102

RE λ̂� & HKSJ MP 0.0567 0.0018 0.1117 0.1099

RE SSW, SSW MP 0.0528 −0.0122 0.1178 0.1300

RE λ̂� & SSW, SSW MP 0.0525 −0.0124 0.1173 0.1297
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Example 2: low-dose dopamine
Controversy surrounded the use of low-dose dopamine
(a catecholamine with dose-dependent effects) to pro-
mote kidney function in several categories of patients (e.g.,
having various types of surgery, receiving intravenous
contrast dye). In a systematic review and meta-analysis
of randomized controlled trials that compared low-dose
dopamine (≤ 5μg/kg of body weight per minute) with
placebo or no therapy, Friedrich et al. [36] examined
clinical outcomes (mortality, need for renal replacement
therapy, and adverse events) and renal outcomes (urine
output, creatinine level, and creatinine clearance—each
on Days 1, 2, and 3 after starting therapy). Because of
differences among trials in the units for reporting urine
output, Friedrich et al. could not use mean difference as
the measure of effect. As a more clinically meaningful
summary of treatment than the SMD, they chose the rel-
ative change in the dopamine group compared with the
control group, analyzed as the log-transformed RoM.
J. Friedrich kindly provided the data on the effect of

low-dose dopamine therapy on urine output at Day 1 after
its initiation, which we show in Fig. 12. We re-analyze
the data from the full sample of 34 studies, with arm-
level sample sizes ranging from 6 to 160 and, separately,
the data from the 10 studies in the “Other surgery” cat-
egory. All but two studies had balanced sample sizes. A
positive log-response-ratio indicates higher urine output
with dopamine. Because urine output is nonnegative, it is
reasonable to assume that all μij > 0. All X̄ij are large
enough that proximity to 0 should not be a problem.
Figure 12 shows the forest plot from the DL-based anal-
ysis. The authors concluded that, on average, dopamine

increased Day 1 urine output by 24%. Q–Q plots of the
standardized sample means (Additional File 2) showed
their distribution to be skewed to the right, so our simu-
lation results for the lognormal distribution may be more
relevant.
Table 3 shows the results from various methods of esti-

mation. There are clear differences between the estima-
tors of τ 2. DL provides the lowest value at 0.038, followed
by REML at 0.041, J at 0.057, and MP at 0.067, almost
twice as large as DL. Bias correction results in lower esti-
mates of τ 2, from 0.032 for DL to 0.046 for J. The RE
estimates of λ vary from 0.210 for SSW to 0.220 for MP.
Bias correction further reduces the differences among RE
estimates of λ (0.209 to 0.214). In both analyses, all meth-
ods find a significant effect of dopamine, with SSW MP
providing the widest confidence intervals.
The closest simulation scenarios are for λ = 0.2, K =

30, τ 2 between 0 and 0.1, and n = 10 to n = 100. Under
these conditions for both normal and lognormal distribu-
tions, all methods overestimate τ 2 when n = 10, but are
almost unbiased for n = 40. We expect that all meth-
ods would provide coverage of τ 2 that is too low, with QP
being the best. We do not expect the bias correction to
improve bias or coverage. Our results show that λ = 0.2 is
overestimated by the standard methods for small τ 2 > 0,
and only SSW provides nearly unbiased estimates of λ for
both normal and lognormal underlying distributions. This
agrees with our findings for this example. The SSW esti-
mate of λ, 0.210 (or 0.209 after bias correction), is lower
than all IV-weighted estimates.
For the 10 studies in the “Other surgery” subset,

estimates of τ 2 are higher, at 0.093 for DL to 0.226 for MP.

Fig. 12 Forest plot for the meta-analysis on the effects of low-dose dopamine compared with placebo or no therapy (data provided by J. Friedrich).
Subscripts T and C correspond to the arms with/without dopamine. DL was used in estimating the between-study variance. The studies reported
urine output in a variety of units. For example, Baldwin 1994 used mL/kg, Sprung 2000 used mL/h, Cregg 1999 used ml/kg/h, and O’Hara 2002 used
ml/24h
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Table 3 Point and confidence-interval estimates for τ 2 and λ in fixed-effect (FE) and random-effects meta-analysis of the effect of
low-dose dopamine on Day 1 urine output, compared with placebo or no therapy. The heterogeneity parameter is τ 2. L and U denote
the lower and upper limits of the 95% confidence intervals

Method τ2 τ2
L τ2

U λ̂ L U exp(λ̂) L U

All 34 studies

FE 0 0.207 0.172 0.243 1.230 1.188 1.275

DL, QP 0.038 0.029 0.164 0.216 0.133 0.298 1.241 1.143 1.348

BJ 0.018 0.089

J 0.057 0.030 0.118 0.219 0.123 0.315 1.244 1.130 1.370

REML, PL 0.041 0.018 0.094 0.216 0.131 0.301 1.241 1.140 1.351

MP 0.067 0.220 0.118 0.322 1.246 1.125 1.380

HKSJ (DL) 0.216 0.116 0.315 1.241 1.123 1.371

HKSJ MP 0.220 0.114 0.326 1.246 1.120 1.386

SSW, SSW MP 0.210 0.061 0.359 1.234 1.063 1.432

λ̂� & FE 0 0.196 0.153 0.240 1.217 1.165 1.271

λ̂� & DL, QP 0.032 0.015 0.126 0.212 0.128 0.295 1.236 1.137 1.344

λ̂� & BJ 0.014 0.081

λ̂� & J 0.046 0.019 0.105 0.214 0.120 0.308 1.238 1.127 1.360

λ̂� & REML, PL 0.029 0.011 0.071 0.211 0.130 0.292 1.235 1.139 1.339

λ̂� & MP 0.043 0.213 0.121 0.306 1.238 1.129 1.357

λ̂� & HKSJ (DL) 0.212 0.119 0.304 1.236 1.126 1.356

λ̂� & HKSJ MP 0.213 0.118 0.309 1.238 1.125 1.362

λ̂� & SSW, SSW MP 0.209 0.079 0.338 1.232 1.082 1.402

10 studies in Other surgery

FE 0 0.273 0.206 0.339 1.314 1.229 1.404

DL, QP 0.093 0.064 0.984 0.291 0.070 0.511 1.337 1.073 1.667

BJ 0.030 0.528

J 0.146 0.054 0.611 0.303 0.038 0.567 1.353 1.039 1.764

REML, PL 0.161 0.038 0.672 0.305 0.029 0.582 1.357 1.029 1.789

MP 0.226 0.314 −0.005 0.633 1.369 0.995 1.884

HKSJ (DL) 0.291 −0.045 0.627 1.337 0.956 1.872

HKSJ MP 0.314 −0.054 0.682 1.369 0.947 1.979

SSW, SSW MP 0.270 −0.347 0.888 1.310 0.706 2.430

λ̂� & FE 0 0.244 0.164 0.324 1.277 1.178 1.383

λ̂� & DL, QP 0.088 0.034 0.895 0.275 0.050 0.501 1.317 1.051 1.650

λ̂� & BJ 0.026 0.518

λ̂� & J 0.128 0.041 0.568 0.285 0.025 0.544 1.329 1.025 1.724

λ̂� & REML, PL 0.091 0.020 0.473 0.276 0.048 0.505 1.318 1.049 1.656

λ̂� & MP 0.166 0.292 0.003 0.580 1.339 1.003 1.787

λ̂� & HKSJ (DL) 0.275 −0.032 0.582 1.317 0.969 1.790

λ̂� & HKSJ MP 0.292 −0.041 0.625 1.339 0.960 1.868

λ̂� & SSW, SSW MP 0.271 −0.266 0.808 1.312 0.767 2.243

From our simulations, they may bemore positively biased,
and in these data bias correction reduces estimates of τ 2

to 0.088 to 0.166, respectively, probably reducing biases.
We expect SSW to provide a nearly unbiased estimate
of λ, at 0.270, with other methods positively biased (the

highest at 0.314 for MP). Bias correction does not much
affect the SSW estimate, but it does somewhat reduce
the positive bias of the other methods (0.292 for MP).
Coverage of λ should be nearly nominal for SSW MP
(−0.347, 0.888) and lower than nominal for HKSJ MP,
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with the IV-weighted methods providing considerably
lower coverage. In summary, the IV-weighted methods
seem to indicate a significant effect of dopamine, whereas
SSWMP does not.

Discussion
Our simulations raise concern about the current state of
meta-analysis of LRR. For that effect measure and some
others, the relation between the studies’ estimated effects
and their estimated variances has several undesirable
results: the performance of all inverse-variance-weighted
methods depends on the effect sizes, estimates of over-
all effects are biased, and their confidence intervals have
below-nominal coverage, especially for small sample sizes.
Our simulations show this clearly.
It is well known that the distribution of a ratio of nor-

mal random variables X/Y is, in general, heavy-tailed and
has no moments. It can be approximated by a normal dis-
tribution only when both X and Y are independent and
have positivemeans, and their coefficients of variation ful-
fill some conditions [37]. The log transformation is used
to resolve this difficulty and to make the distribution of
LRR closer to normality. Similarly, for a log-normal under-
lying distribution, the log transformation will make the
LRR ‘almost normal’. However, as we have seen, the LRR
remains a very challenging effect measure.
For normal underlying distributions, we found consid-

erable biases in all methods of estimating τ 2 for very small
n, but overall MP and REML are reasonable choices, espe-
cially for τ 2 farther from zero. QP provides reasonable,
though not perfect, coverage. For lognormal underlying
distributions, τ 2 cannot be estimated reliably for sample
sizes smaller than 100; but oncemore,MP is a good choice
for larger sample sizes.
Most applications of meta-analysis aim primarily to pro-

vide point and interval estimates of an overall effect.
For general use, a point estimator should be unbiased,
and a confidence interval should have (close to) nominal
coverage.
After estimating the between-study variance τ 2, cus-

tomary practice uses an inverse-variance-weighted mean
to estimate the overall effect. The origin of the IV-
weighted approach lies in the fact that, for known vari-
ances, and given unbiased estimates of the study-level
effects, it provides a uniformly minimum-variance unbi-
ased estimate (UMVUE). However, in practice, the within-
study variances are unknown, and using estimates for
them leads to bias in the IV-weighted estimate of the over-
all effect and below-nominal coverage of the confidence
interval. Thus, the IV-weighted approach is misguided; for
most measures of effect, it cannot avoid these shortcom-
ings.
To improve the coverage of confidence intervals sys-

tematically, we would like to have a better understanding

of the underlying sampling distributions. For the IV-
weighted estimators of the overall effect, in this study, we
have retained the customary use of critical values from
the normal distribution. To remedy the familiar problem
of below-nominal coverage, the HKSJ interval uses the t
distribution on K − 1 degrees of freedom, and the SSW
MP interval adopts that choice. We have, however, seen
no empirical evidence relating these choices of reference
distribution to the sampling distributions of the point esti-
mators, for LRR or other measures of effect. In future
work we intend to investigate sampling distributions of
estimators of overall effect and τ 2.
A reviewer called attention to a modification of the IV-

weighted estimator of the overall effect that takes into
account the relative quality of the studies [38, 39]. That
approach has not been studied much in simulations, per-
haps because of the need to assign judgments of the
probability that each study is credible.
The gaps in evidence include the possibility that the

unit-level variances in the two arms may differ, which
simulations rarely, if ever, reflect. Because of the extent
of our simulations, we did not attempt to fill this gap.
However, we do not expect the performance of the IV-
weighted methods to improve under more-challenging
scenarios. Rather they are likely to perform worst in situ-
ations where the (within-study) variances of XiT and XiC
differ substantially.
A pragmatic solution to unbiased estimation of λ uses

weights that do not involve estimated variances (for exam-
ple, weights proportional to the studies’ sample sizes ni).
Our point estimator SSW uses weights proportional to
an effective sample size, ñi = niCniT/ni. Then the esti-
mate of the overall effect is λ̂SSW = ∑

ñiλ̂i/
∑

ñi, and
the estimate of its variance comes from Eq. (7). Finally, the
t-based confidence interval for λ is centered at λ̂SSW .
For underlying lognormal distributions, SSW, combined

with the bias-corrected estimator of λi, works reasonably
well for sample sizes as low as 10 in interval estimation of
λ, and for n ≥ 40 in point estimation. We recommend this
method for further use in applications.
Unfortunately, for underlying normal distributions, the

use of sample-size-based weights does not avoid all the
problems with bias in estimation of λ for very small
sample sizes and λ close to 0, and the bias correction
is harmful. The response ratio is a rather challenging
effect measure, with two additional sources of possible
bias: its restricted range near 0 under the normal model,
and transformation bias in using the log scale for spec-
ification of random effects. Both issues are inherent in
the choice of the respective true model and cannot be
easily resolved. Farther from 0, SSW is practically unbi-
ased, and we recommend its use, in combination with
SSW MP, which is the only feasible option for confidence
intervals.
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Conclusions
• In extensive simulations the four point estimators of

τ 2 that we included all had considerable negative bias
for normal within-study data and very small study-
level sample sizes (n), especially when one of the
means was close to zero. For lognormal underlying
data, τ 2 cannot be estimated reliably for n < 40. MP
had the least bias overall, and DL should not be used.

• For normal underlying data, the four interval
estimators of τ 2 that we included had coverage that
often was below the nominal 95%, in various patterns,
especially as the number of studies (K) increased. For
lognormal underlying data, many situations were
quite challenging. The QP and, to a lesser extent, PL
interval estimators had coverage close to 95% when
n ≥ 100 or when n was moderate and K was small.

• Point estimators of λ that use inverse-variance
weights had substantial bias, systematically related to
τ 2, for normal underlying data, but less bias (with
weaker relation to τ 2) for lognormal data.

• An estimator whose weights used only arm-level
sample sizes (SSW) typically has less bias and is
recommended. Additionally, we recommend bias
correction for lognormal data, but it is
contraindicated for normal data.

• We recommend an interval estimator based on SSW.
It mostly had coverage close to 95% for both normal
and lognormal data, but for small sample sizes
(n ≤ 40) and large numbers of studies (K ≥ 50) its
coverage was sometimes low. Interval estimators
based on the inverse-variance-weighted point
estimators were inferior, in various patterns, and we
do not recommend them.
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