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The Land Surface Air Temperature (LSAT) climatology during the period of 1961–1990
and the anomalies (relative to the 1961–1990 climatology) have been developed over
Pan-East Asian region at a (monthly) 0.5◦ × 0.5◦ resolution. The development of
these LSAT data sets are based on the recently released C-LSAT station datasets and
the high resolution Digital Elevation Model (DEM), and interpolated by the Thin Plate
Spline (TPS) method (through ANUSPLIN software) and the Adjusted Inverse Distance
Weighting (AIDW) method. Then they are combined into the high resolution gridded
LSAT datasets (including the monthly mean, maximum, and minimum temperature).
Considering the mean LSAT for example, the Cross Validation (CV) of the datasets
indicates that the regional average of the Root Mean Square Error (RMSE) for the
climatology is about 0.62◦C, and the average RMSE and Mean Absolute Error (MAE)
for the anomalies are between 0.47–0.90◦C and 0.32–0.63◦C during the study period.
The analysis also demonstrate that the gridded anomalies describe the spatial pattern
fairly well for the coldest (1912, 1969) and the warmest (1948, 2007) years during the
first and second half of the 20th century. Further analysis reveals that the high resolution
dataset also performs well in the estimation of long-term LSAT change trend. Thus it can
be concluded that this newly constructed datasets is a useful tool for regional climate
monitoring, climate change research as well as climate model verification.

Keywords: land surface air temperature (LSAT), thin plate spline (TPS), adjusted inverse distance weight (AIDW),
high resolution, gridded dataset

INTRODUCTION

Land Surface Air Temperature (LSAT) is considered one of the important indicators of the global
and regional climate change. Many studies have shown that the global LSAT change can greatly
impact on human being as well as the social and economic society (Köppen, 1931; Callendar,
1938, 1961; Hawkins and Jones, 2013). Major issues in studying the LSAT variations and change
are associated with the inconsistency in observing times, uneven spatial distribution of LSAT
stations, differences in statistical methods, and the quality of the observational data over global
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or continental regions at century scale. To resolve these issues,
scientists developed homogenized station datasets and converted
them into gridded datasets for the convenience of applications
(Hutchinson, 1991; Daly et al., 1994; Li and Li, 2007; Xu
et al., 2009). For global large-scale climate temperature trend
estimation using low-resolution datasets (normally in 5◦ × 5◦
resolution to avoid changes at small scales) (Jones and Briffa,
1992; Peterson and Vose, 1997; Hansen et al., 1999; Li et al., 2017;
Xu C. et al., 2018; Yun et al., 2019) can basically meet the accuracy
requirements. For example, a consistent outcome from available
low-resolution data sets is that the global land temperature trend
since 1880 has become more and more significant (Li et al., 2020).

In contrast, high-resolution datasets (both the climatology
and the anomaly time series) are widely and urgently needed
(Huang et al., 2020; Xu et al., 2020) for research in climate change
monitoring and climate model validation and development in
regional/local scales. However, it is not easy to develop a high-
resolution global and regional datasets due to the problems
such as the uneven distribution and difference in the length of
observation records. New et al. (1999a,b) used the Thin Plate
Spline (TPS) method and angular weighting method to develop
the first relatively high-resolution (0.5◦ × 0.5◦) global LSAT
climatology and anomaly dataset based on the CRU (Climatic
Research Unit) LSAT station dataset, and the Climate Research
Unit gridded Time series (CRU TS) has been produced and
shared openly to facilitate research and analysis in all areas related
to climate and climate change since the first version was released
in 2000. CRU TS Version 4 (CRU TS4) is the first major update
since version 3 was published in 2013 (Harris et al., 2020). The
US Berkeley Earth Program team developed LSAT climatology
and anomaly dataset at high-resolution (1.0◦ × 1.0◦) – Berkeley
Earth Surface Temperature (BEST) using Kriging and Inverse
Distance Weighting (IDW) methods (Rohde et al., 2013).
Besides, Hijmans et al. (2005) developed a global (excluding the
Antarctic) high resolution climatology datasets of 1 km × 1 km
resolution from 1950 to 2000, and they concluded that the
use of the digital elevation model (DEM) is necessary when
developing high-resolution grid data; and Fick and Hijmans
(2017) further updated the datasets from 1970 to 2000 in some
regions by using satellite observations and elevation data as
covariates, and upgraded a new high-resolution datasets (also
in 1 km × 1 km resolution). In addition, observational stations
are relatively sparse in some regions in Asia (Tibet Mountains),
South America, Africa, etc., and data before 1950 is relatively
limited. The records in these regions are very precious for global
climate change studies, while the sparse observations sometimes
resulted in deficiencies in describing regional climate and climate
change with the global high-resolution datasets (Li et al., 2007).
Therefore, with the continuous improvement of data collection
and data quality, it is inevitable to develop new high-quality
global climate datasets.

Various high-resolution climate datasets at the regional scale
have been developed in many countries in recent years. These
countries include China (Hong et al., 2005; Xie et al., 2007;
Yatagai et al., 2009; Wu and Gao, 2013; Peng et al., 2019;
Huang et al., 2020; Xu et al., 2020), India (Sinha et al., 2006),
Southeast Asia (Van den Besselaar et al., 2017), Europe (Nynke

et al., 2009), the United States (Price et al., 2004), Australia
(Hutchinson, 1991), etc., which provide good supports to climate
change research at regional scales. However, there exist some
obvious difference in accuracy due to the different station
number, data quality control and homogenization processing
in the basic dataset used by each developer. Moreover, the
high-resolution datasets are sometimes difficult to be developed
at the continental or global scales due to different processing
methods or parameterization schemes. Some high-resolution
datasets emphasized the improvement of the spatial distribution
of stations but did not make the necessary assessments for the
inhomogeneity due to the station number changes, which will
have problems in long-term climate change trend detection (Li
et al., 2007). Therefore, it is of vital importance to enhance the
collection of the station data and the in-depth evaluation of
the data accuracy in some regions with few observations, such
as South America, Antarctica and Africa for the existing global
dataset; and it is also important to develop new high quality,
global, high-resolution climate datasets.

The ultimate goal of this study is to develop a global high-
resolution gridded LSAT data set based on C-LSAT, a monthly
global LSAT dataset developed by Chinese scientists recently
(Xu W. et al., 2018; Li et al., 2020). However, C-LSAT is only
a 5◦ × 5◦ anomaly dataset used to determine the long-term
changes of large-scale land surface air temperature. It is necessary
to develop a new higher resolution (0.5◦ × 0.5◦) dataset, which
can describe the spatial details of LSAT change at smaller scales.
In this manuscript, we take the pan-East Asian region as the
research region, which has numerous stations and complex
terrains (including coasts, large plateaus, basins, plains and
undulating areas), to test our high-resolution gridding model, so
as to provide a basis for the subsequent high-resolution gridding
for global area.

The remainder of this paper is arranged as follows: Section
“Data Sources and Methods” introduces the main data sources,
interpolation methods and validation methods used to develop
high resolution gridded LSAT datasets in this paper. The
interpolation and validation results of climatology and anomaly
data are presented in Sections “Climatology Interpolation” and
“Interpolation and Validation of LSAT Anomaly,” respectively.
Section “Regional LSAT Warming Trends Analysis” discusses
the regional warming trend with the newly interpolated LSAT
anomaly data and the comparison with new CRU TS4 dataset.
Section “Conclusion” provides final discussion and conclusions.

DATA SOURCES AND METHODS

Data Sources
In this study, the observational station data is derived from
C-LSAT, a monthly global LSAT dataset developed by Chinese
scientists recently (Xu W. et al., 2018). This dataset has been
systematically homogenized and updated by Yun et al. (2019)
and Li et al. (2020). The advantage of this dataset is that
it has used more observational stations compared to other
similar global datasets, and the elements include monthly mean
2 m air temperature (Tavg), daily maximum (Tmax), and
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minimum (Tmin) temperature for the period from 1850 to 2019
(however, we only intercepts the data from 1901 to 2018 in this
paper for analysis).

A rectangular region (10–60◦N, 60–150◦E, see Figure 1 below)
was selected to test interpolation methods used in this paper. The
region encompasses the key areas affected by both the Indian
and East Asian monsoon. From the topographic perspective, the
region contains high-altitude areas of the Qinghai-Tibet Plateau,
low-altitude plain areas of the middle and lower reaches of the
Yangtze River, undulating terrain areas of southwest China and
central Asia, and ocean areas of western Pacific and Indian Ocean.
There are a total of about 2800 observational stations in this
region, and the distribution of the stations is very uneven with few
stations in some parts and dense coverage in others. The region
is referred to as “Pan-East Asia” henceforth for interpolation
experiments and validation.

Figure 1 shows the spatial distribution of the observational
stations in the C-LSAT2.0 dataset in Pan-East Asia regions, and
classifies the start year (SY) of the data series for each station.
Many weather stations were established in India, Japan and other
countries before 1930. The observation stations established in
China before 1930 were mainly located in the eastern parts of
the country, and most of them were built by meteorological
enthusiasts or foreign missionaries (Li et al., 2020). A large
number of basic and standard meteorological stations (currently
about 825 stations) were set up after 1949. The Indochina
peninsula has a relatively sparse density station network, and
the stations with long data series are mainly located in coastal
regions. Many stations have been built in Indochina peninsula
and Korean peninsula after 1960, and the record length is
relatively short.

Figure 2 shows the change of the station numbers in the
Pan-East Asia regions during the period from 1901 to 2018
for the monthly LSAT, maximum and minimum temperature.
Obviously, the station numbers of maximum and minimum
temperature were less than those of average LSAT, but the overall
change shape is similar.

Taking the average LSAT as an example, before the 1930s,
the number of stations in Pan-East Asia was less than 500.
From the 1930s to the 1960s, the number of stations gradually
increased, especially from less than 800 stations in the 1950s to
nearly 2,000 stations in the 1960s. The number of stations with
records reached the peak and remains stable during the 1960s–
1990s. In this period, the number of stations with observed data
is the greatest, and the number of stations that can calculate
the climatology and LSAT anomaly is also the greatest. This is
why we choose 1961–1990 as the base period for calculating the
climatology. Further decrease of the station number in recent
years may be related to the lagging of data collection and sharing.

Altitude has a significant influence on the LSAT distribution
at local scales, so the digital elevation model (DEM) is usually
one of the most important factors to be considered in the
interpolation of LSAT, especially climatological LSAT. Previous
comparison (Ma and Li, 2006) showed that although the Shuttle
Radar Topography Mission (SRTM) DEM30 (which is generally
recognized as having higher global average accuracy) (Farr et al.,
2007) has some advantages globally, there are a little more
missing areas of SRTM DEM30 based on the radar mapping
of the space shuttle in complex terrain areas such as the Tibet
Plateau, resulting in lower accuracy than GTOPO30 (a global
30 arc-second elevation data) in these areas; In addition, it
only includes the DEM between 60◦N and 60◦S. So in this

FIGURE 1 | Spatial distribution of the observational stations in the C-LSAT2.0 dataset in the Pan-East Asia regions. The different colored dots represent stations with
different starting years (SY) of observations.
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FIGURE 2 | The number of stations in gridding region over time.

paper, the GTOPO30 is still used for the interpolation of
the LSAT including average, maximum, and minimum LSATs
similar to Xu et al. (2020).

Interpolation Schemes and Methods
In the interpolation process, the spatial density and distribution
of the observational stations have great influence on the results.
Studies indicated that the direct use of absolute temperature data
for long term and large area interpolation are not desirable (Li
et al., 2007). A common method is first to interpolate climatology
and anomaly separately, and then to merge the interpolated
climatology and anomaly (New et al., 1999b; Haylock et al., 2008;
Rohde et al., 2013).

Based on the above procedure, the LSAT data are divided
into two parts: climatology (1961–1990 average) and anomaly.
A three-step procedure was adopted to grid the LSAT data:
(1) the effective station data are used for interpolation of the
LSAT climatology field; (2) the interpolation of LSAT anomaly
field using effective station anomaly series; and (3) the final
grid dataset by adding up the climatology and the anomaly
gridded dataset. This gridding approach is widely used by
many climate data research groups to build global and regional
dataset products. For example, the CRU TS1, TS2 and the
Berkeley earth surface temperature (Berkeley Earth) used a
similar approach to construct the LSAT grid datasets (New et al.,
1999b; Rohde et al., 2013). In this study, we calculated the
1961–1990 averages of the stations for climatology where the
effective data covers temporally no less than 20 years. Then the
anomalies for the whole period are computed relative to this
baseline period.

Thin-Plate Spline (TPS) Interpolation for Climatology
Using the stations during the climatological period, we
interpolated them onto 0.5◦ × 0.5◦ grids with the elevation
information data (GTOPO30) over Pan-East Asia as the
covariates. The ANUSPLIN software package version 4.4

(Hutchinson and Xu, 2013) is used to interpolate the climatology
in this paper. It is an efficient and useful tool for data transparent
analysis and interpolation of multivariate data using the TPS
method. It completes the process by providing comprehensive
statistical analysis, data diagnostics, and spatial distribution
standard errors, as well as support for multiple data inputs
and multiple fitting surface outputs. The TPS method used in
ANUSPLIN is a reliable way to develop the spatial interpolation
of climate elements, which is widely used around the world (New
et al., 1999a; Hijmans et al., 2005; Haylock et al., 2008). The
partial TPS method is the core algorithm of ANUSPLIN, which
was originally proposed by Wahba and Wendelberger (1980).
Hutchinson applied the partial TPS to the spatial interpolation
of the monthly mean climate variables (Hutchinson, 1991), and
its theoretical statistical model is given as follows:

Zi = f (xi)+ bTyi + ei(i = 1, ..., N) (1)

Where Zi is the dependent variable with N observed data
values; xi is the spline independent variable as a multi-
dimensional vector, and f is the unknown smooth function for
the xi; yi is the independent covariate as a multidimensional
vector, and b is the unknown coefficients for the yi. Each ei
is an independent, zero mean error term with variance wiσ

2,
where wi is termed the relative error variance and σ2 is the
error variance which is constant across all data points. It can
be seen from equation (1) that: when there is no covariate, the
second covariate item is ignored and the model turns back to an
ordinary TPS model; on the other hand, when f (xi) is absent,
the first independent item is removed and the model reduces
to a simple multivariate linear regression model. In fact, the
partial thin plate smoothing spline function can be understood
as a generalized standard multivariate linear regression model,
while its parameters are replaced by a suitable non-parameterized
smooth function (Hutchinson, 1991).

Frontiers in Environmental Science | www.frontiersin.org 4 October 2020 | Volume 8 | Article 588570

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-588570 October 23, 2020 Time: 19:3 # 5

Cheng et al. Regional High Resolution Gridded LAST

The function f and the coefficient vector b are determined by
minimizing

N∑
i=1

(
zi − f (xi)− bTyi

wi

)2

+ ρJm(f ) (2)

Where Jm(f ) is a measure of the complexity of f, the
“roughness penalty” defined in terms of an integral of m’th
order partial derivatives of f, and the smoothing parameter ρ is
a positive number. As ρ approaches to zero, the fitted function
approaches an exact interpolation. As ρ approaches to infinity,
the function f approaches a least squares polynomial, with order
depending on the order m of the roughness penalty. The value of
the smoothing parameter is normally determined by minimizing
a measure of predictive error of the fitted surface given by the
generalized cross validation (GCV; Hutchinson, 1991). The GCV
is provided as a predictive error estimate of interpolation by
removing each data point and summing the square of deviation
between each omitted value and the corresponding interpolation
value (Xu et al., 2020). The Root Square of GCV (RGCV) is used
to determine the optimum parameters for ANUSPLIN.

The TPS method is very popular because of its high efficiency
and its ability to generate accurate predictions with a minimum
of guiding covariates (Hutchinson, 1991; New et al., 1999a; Price
et al., 2004; Hijmans et al., 2005; Hong et al., 2005; Xu et al., 2009).
It is observed from the comparison with other methods such as
Kriging (Rohde et al., 2013) and Prism (Daly et al., 2008) that TPS
is more suitable for the interpolation of the LSAT for the selected
region in and hence preferred for this study.

Interpolating Method for Anomaly
In this paper, a kind of Adjusted Inverse Distance Weighted
(AIDW) method was used to interpolate the anomaly data
of LSAT during the period of 1900–2018. Inverse Distance
Weighted (IDW) is a common and simple spatial interpolation
method, based on similarity principle which describes that if
two objects are nearer (farther), their properties will be similar
(different). IDW sets the distance between interpolation point
and sample point as the weight to achieve the weighted average.
In a specific application, a higher weight is given in the LSAT
interpolation when the observation station is more close to the
grid point. The principle of this method is simple and easy to
understand and operate. It is suitable for the case that there are
many observation stations in uniform distribution.

The general formula of the IDW is:

T =
n∑

i=1

wiTi (3)

wi =
d−α

i∑n
i=1 d−α

i
(4)

Where, T means the temperature of the grid point to be
estimated; n stands for the number of observation stations
participating in the interpolation for the finite region; Ti means
the temperature of each station; wi means the distance weighting
of each stations; di means the spatial distance from each stations

to the grid point to be estimated; α is a control parameter,
generally assumed to be 2. Importantly, after calculation we
found that the temperature anomaly field interpolated using the
equations above produces “bull eyes” (Duan et al., 2014), thus we
modified the formula (3) for the specific adjustment (AIDW) as
follows:

wi =
(edi/d0)−α∑n
i=1(edi/d0)−α

(5)

The cross validation indicate that the anomaly temperature
interpolation result is better when assuming α as 4 and
d0 as 1,200 km.

Validation Methods
Cross Validation (CV) is one of the most effective tool to evaluate
the performance of the interpolation method. First, the in situ
observations are the most precise data and are always used as the
baseline data for the validation of other data types. So it is very
difficult to find other different subsets of the data for validation
of the gridded dataset; second, the gridded data set is derived
from the in situ observations, so we cannot use the gridded
data to assess the errors of the gridded data directly, thus Cross
Validation (CV) is used. CV is widely used to validate the gridded
observations dataset. In our manuscript, Leave One Out CV is
used, which refers to taking out one station as the test station
each time, and then interpolating the estimated value from the
corresponding observed values of the other remaining stations.
The advantage of this method is (1) nearly all the samples will
be used to train the model in any round, thus the evaluation will
be more reliable; (2) no random factor affects the experimental
data, thus we make sure the experiment can be duplicated. Based
on the results of CV, we adopted the statistical indices of Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE)
to evaluate the interpolation errors between the estimated and
observational values. The calculation formulas of RMSE and
MAE are shown as follows:

RMSE =

√√√√ 1
n

n∑
i=1

(Xi − Yi)2 (6)

MAE =
1
n

n∑
i=1

|Xi − Yi| (7)

TABLE 1 | The annual average RGCV and RMSE of the six test experiments [Ax
(Bx) is the xth experiment for Group A (B)].

Experiments Model parameters Interpolation error

Independent
variables

Covariates Spline
order

RGCV(◦C) RMSE(◦C)

A1 Lon, Lat, Elev No 2 0.850 0.628

A2 Lon, Lat, Elev No 3 0.835 0.619

A3 Lon, Lat, Elev No 4 0.848 0.633

B1 Lon, Lat Elev 2 0.966 0.745

B2 Lon, Lat Elev 3 0.982 0.749

B3 Lon, Lat Elev 4 0.997 0.751
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Where, Xi, Y i are the estimated value and the original
observational value at each station, respectively, while n is the
sample number. RMSE reflects the random error between the
estimated value and the actual observed value. Moreover, it
estimates the degree of dispersion for the interpolation errors.
MAE reflects the systematic error and estimate the average
deviation between the interpolation results and the actual
observed values.

CLIMATOLOGY INTERPOLATION

Selection of Model Parameters
It is well known that ANUSPLIN can form different interpolation
models based on various input parameters such as independent
variables, covariates and spline orders. Many studies on
meteorological data interpolation treat longitude and latitude as
independent variables, and elevation as independent variables or

FIGURE 3 | Monthly RGCV (A) and RMSE (B) of the six test experiments (◦C).
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covariates in the model (Hutchinson and Xu, 2013). Different
interpolation model parameters may lead to different results.
For example, Hong et al. (2005) used the longitude and latitude
as independent variables and elevation as a covariate, while Xu
et al. (2020) argued toward use of elevation as an independent
variable rather than as covariate in TPS model because of its
better performance.

However, since the data used in the above studies are different
in terms of data volume and coverage, we first want to determine
which model parameter scheme is the most preferable one
according to our own data and actual situation. We use the

RGCV and RMSE to determine the proper model parameter
scheme. Based on the input treatment of elevation as independent
variables or covariate parameters, the test groups were divided
into two large groups: altitude as independent variable in group
A and as covariates parameter in group B. Then according to
the order of splines 2–4, both groups were subdivided again into
three experiments. Therefore, a total of six experiments were
taken to be tested (see Table 1). The statistical indices of RGCV
and RMSE are used to analyze the errors of 6 test experiments.

RGCV is one of the efficient measures of the interpolation
error of the fitted surfaces provided by the ANUSPLIN software.

FIGURE 4 | Gridded climatology (◦C) of LSAT over eastern Asia for (top to bottom) annual mean and different seasons (presented by January, April, July, and
October) of mean, maximum and minimum temperature (left to right).
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Figure 3A shows the RGCV of the six experiments. As seen
from the picture, seasonally, the RGCV in winter (December
to February) is much higher than that in other seasons, and
the RGCVs of group B are higher than those of group A,
especially in winter.

RMSE is another statistical measure to estimate the degree of
dispersion of interpolation errors. Figure 3B shows the RMSE of
the six experiments. As seen from the figure, the lowest RMSE
occurs in spring and autumn, slightly higher in summer, and
highest in winter.

Table 1 shows the annual average RGCV and RMSE for the six
test experiments. It is found that both the RGCV and RMSE are
lower in group A than that in group B, and the smallest RGCV
(0.835◦C) and RMSE (0.619◦C) appear in experiment A2.

After taking into account the above statistical indices, we
decided to take experiment A2 as the preferred scheme to

interpolate the climatology temperature, which means to treat
the longitude, latitude as well as the elevation as independent
variables, and the spline order as 3. It is worth noting that this
scheme is just applicable to the data in this study. There may
be other better schemes for data from different regions or scales,
which need to be analyzed according to the actual situation.

Climatology Interpolation
After the preparation for the input data and model parameter
setting, we adopted the ANUSPLIN software to interpolate the
gridded temperature climatology over Pan-East Asia. Figure 4
shows the gridded result of the LSAT climatology over the
region. The spatial distribution of LSAT climatology is obviously
affected by the terrain and latitude. Naturally, the climatological
temperature is higher at lower latitudes. The lowest temperature
was found at high latitudes in eastern Siberia while the

FIGURE 5 | The spatial distribution of the annual anomalies of mean (A–D), maximum (E–H) and minimum (I–L) LSAT (left to right) of the coldest (1912) and
warmest (1948) year before 1950s and the coldest (1969) and warmest (2007) year after 1950s.
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highest temperature was found at low latitudes in India and
Indochina. In addition, the temperature climatology decreases
with the increasing elevation. The climatological temperature
at high altitude areas, such as the Tibet plateau and Mount
Tianshan, is significantly lower than that at low altitude areas at
the same latitude.

INTERPOLATION AND VALIDATION OF
LSAT ANOMALY

Anomaly Interpolation
In this section, we used the AIDW method to interpolate
the monthly anomaly of LSAT over Pan-East Asia during
1900–2018. In order to demonstrate the interpolation effect,
four representative years are selected to display the spatial
distributions of temperature anomalies (Figure 5): the spatial
distribution of the LSAT anomalies of the coldest (1912) and
warmest (1948) year before 1950 and the coldest (1969) and
warmest (2007) year after 1950.

In the two coldest years (1912 and 1969), the temperature
anomalies (relative to 1961–1990 averages) in the high latitude
region north of 40◦N is generally lower than those in the
lower latitude region, and there is very little change before
and after 1950s. Differences exist in the detailed distribution
of the anomaly in warmest years, in the first half of the 20th

century, the LSAT anomaly was not so high (0.34◦C) relative
to 1961–1990 average even in the warmest year (1948), and
the warming center happened at higher latitude (55–60◦N). The
regional LSAT anomaly increased significantly after entering the
second half of the 20th century. It reaches the highest LSAT
anomaly (1.6◦C) in 2007, and the warming center moved to
the lower latitude and was significantly expanded. The annual
anomalies of maximum and minimum LSAT perform similarly
to those of mean LSAT.

Anomaly Validation
In this case, we used the leave-one-out CV to evaluate the
interpolation performance. The RMSE, MAE, and MBE have
been calculated to evaluate and analyze the interpolation errors
between the estimated and observational LSAT.

Figures 6A–D show the distribution of the RMSE of the
LSAT anomaly at each station in four seasons (presented by
January, April, July, and October) over Pan-East Asia from
1900 to 2018. Inset figures in the lower right corner is the
probability density distribution diagram of RMSE for all stations.
The stations with RMSE in the range of below 0.75◦C are
in the majority, accounting for 67.5, 88.5, 90.1, and 88.7% in
each month (January, April, July, and October), respectively.
Figures 6B–D show that the spatial distribution and the average
of the RMSE is mostly similar between spring, summer, and
autumn. The stations with lowest RMSE mainly located in

FIGURE 6 | RMSEs of the LSAT anomaly over Pan-East Asian from 1900 to 2018 at each station in 4 months [January (A), April (B), July (C), and October (D)]
calculated by leave-one-out cross validation.

Frontiers in Environmental Science | www.frontiersin.org 9 October 2020 | Volume 8 | Article 588570

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-588570 October 23, 2020 Time: 19:3 # 10

Cheng et al. Regional High Resolution Gridded LAST

the regions with high station density in eastern China, Japan,
and South Korea. Those with higher RMSE are in regions of
relatively sparse station density in India, Indo-China Peninsula
and Mongolia. The stations with largest RMSE exist mainly in
high latitude mountain areas such as Mount Tianshan (around

40–45◦N, 75–80◦E). The RMSE over the Tibetan Plateau is hard
to determine due to the lack of observational station data. The
RMSE in winter is larger than those in other seasons, especially
on the Tibetan Plateau and regions north of 40◦N. The RMSE
in winter (January) is about 0.4◦C higher than that in other

FIGURE 7 | MAEs of the LSAT anomaly over Pan-East Asian from 1900 to 2018 at each station in 4 months [January (A), April (B), July (C), and October (D)]
calculated by leave-one-out cross validation.

FIGURE 8 | Mean RMSEs of the LSAT anomaly from 1900 to 2018 for 4 months (January, April, July, and October).
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seasons on average. In contrast, the RMSE in the plain regions
south of 40◦N is just about 0.08◦C higher in winter than in other
seasons on average. We suspect that this higher noise level may
be related to the circulation and front activities in high latitude
regions in winter.

Figures 7A–D show the MAEs of the anomaly of LSAT at each
station in 4 months (January, April, July, and October) over Pan-
East Asia from 1900 to 2018. The magnitude of MAE is smaller
than RMSE, but its spatial distribution is very similar to RMSE.
In addition, Figure 7 also shows that the MAE is relatively low
in general, which means that the systematic error of anomaly
temperature generated by the AIDW interpolation model used
in this paper is relatively small.

Figures 8, 9 show the changes of RMSE and MAE of LSAT
anomaly during 1900 to 2018 for the 4 months (January, April,
July, and October), respectively. Although the 4 months exhibit
short-term fluctuations, their long term variations are very
similar. Before the 1950s, both of RMSE and MAE are relatively
larger and gradually decrease with time. They decreased rapidly
and then rose slowly after 1950s (with the change of the stations
number), but basically remained lower than those before 1950s.
The evolution of RMSE and MAE is strongly related to the change
in the station numbers: more station observations correspond
to a denser station distribution and hence lower error RMSE
and MAE. Similarly, both of the RMSE and MAE in winter are
larger than those in other seasons. This also shows that we need
more stations in January to reduce the error to that of the other
times of the year.

REGIONAL LSAT WARMING TRENDS
ANALYSIS

In order to investigate the long-term climate change trend
reflected by the new interpolation high resolution dataset,
we calculated the long term regional C-LSAT high resolution

(C-LSAT HR) anomaly time series over the Pan-East Asia and
compared it with the newly released high resolution CRU TS4
(Harris et al., 2020) dataset. Table 2 shows the difference of the
high resolution gridded dataset between CRU TS and C-LSAT HR
over Pan East Asia.

Figure 10 shows the time series of the annual surface
air temperature anomaly over Pan-East Asia from the high-
resolution dataset obtained by AIDW (C-LSAT HR) and the
high-resolution estimation of CRU data (CRU TS) in the same
region, respectively. The linear trends with 5% significant range
are listed in Table 3.

From Table 3 and Figure 10, it is noticed that the variations
of the two annual mean LSAT anomalies are overall close
to each other, except for slight difference in the warming
trends between two datasets. The trend derived from the
C-LSAT HR (0.5 × 0.5) (0.155 ± 0.019◦C/10 years) is slightly
larger than that of CRU TS4 (0.126 ± 0.019◦C/10 years)
for the whole period of 1901–2018. It is similar for the
linear trends comparison during different periods. From the
early 20th century to the early 1960s, the trend of annual
average temperature is relatively low (0.076 ± 0.041◦C/10 years
for AIDW and 0.044 ± 0.041◦C/10 years for CRU TS4).
The linear trend of annual LSAT anomaly rose rapidly after
the mid-1960s (0.289 ± 0.054◦C/10 years for AIDW and
0.261 ± 0.052◦C/10 years for CRU TS4). Further comparison
indicates that this agrees well with the result calculated by the
arithmetic average trend of all the stations, which also shows the
interpolation process performs well.

Finally, from Table 3, no matter for C-LSAT or CRU TS
gridded datasets (both 0.5◦ × 0.5◦ and 5◦ × 5◦ resolution),
the trends calculated by low resolution datasets (5◦ × 5◦
resolution, Yun et al., 2019) are lower than those by higher
resolution datasets (0.5◦ × 0.5◦ resolution). This may be due
to the fact that the high-resolution data sets emphasize more
on the amplification effect of local warming in some areas
in high altitudes (Li et al., 2009; Pepin et al., 2015) or in

FIGURE 9 | Mean MAEs of the LSAT anomaly from 1900 to 2018 for 4 months (January, April, July, and October).
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TABLE 2 | The comparison of the high resolution gridded dataset derived from CRU TS and C-LSAT HR.

Station numbers in research region Methodology of gridding DEM

Climatology Anomaly

CRU TS

2179 TPS(thin-plate splines) ADW (angular-distance weighting) TBASE5-min lat-long global DEM

C-LSAT HR

2890 TPS(thin-plate splines) AIDW(adjusted inverse-distance weighting) GTOPO30

FIGURE 10 | The time series of the annual LAST anomaly in Pan-East Asian area from C-LSAT HR (blue) and CRU TS4 (red), including observed (dashed), and
estimated (solid) data.

TABLE 3 | Warming trends (◦C 10a−1) and their uncertainty at 95% confidence level of annual LSAT anomaly from observation and gridded datasets
over Pan-East Asian.

Dataset Forms 1901–2018 1901–1960 1961–2018

C-LSAT HR C-LSAT_obs 0.141 ± 0.017 0.075 ± 0.032 0.262 ± 0.052

C-LSAT (0.5◦ × 0.5◦) 0.155 ± 0.019 0.076 ± 0.041 0.289 ± 0.054

C-LSAT(5◦ × 5◦) 0.118 ± 0.016 0.041 ± 0.029 0.249 ± 0.041

CRUTEM CRU_obs 0.126 ± 0.017 0.059 ± 0.031 0.264 ± 0.047

CRU TS4 (0.5◦ × 0.5◦) 0.126 ± 0.019 0.045 ± 0.041 0.261 ± 0.052

CRUTEM4 (5◦ × 5◦) 0.105 ± 0.017 0.019 ± 0.029 0.255 ± 0.042

regions with severe drought (Huang et al., 2016) where there
are no actual observation stations especially when the stations
are relatively scarce (mostly in the Tibet Plateau and large desert
areas) before 1960.

CONCLUSION

In this paper, we first split the land surface air temperature
from C-LSAT2.0 into climatology and anomaly data,

and then interpolate them into a 0.5◦ × 0.5◦ grid
datasets, respectively. Finally they are combined into a
new monthly high-resolution LSAT grid data set for the
period of 1900–2018 over Pan-East Asia. The validation
of the dataset shows that the interpolated dataset is
of good accuracy in both climatology and the LSAT
anomaly variations.

The climatology data is interpolated by thin-plate splines
(TPS) method using station LSAT data from C-LSAT2.0 and
elevation information (DEM) from GTOPO30 as the input data

Frontiers in Environmental Science | www.frontiersin.org 12 October 2020 | Volume 8 | Article 588570

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-588570 October 23, 2020 Time: 19:3 # 13

Cheng et al. Regional High Resolution Gridded LAST

to the ANUSPLIN software. We found that the interpolation
scheme performs best when the longitude, latitude and elevation
are all used as independent variables, and the spline order is set to
3. Under this situation, the lowest RGCV and RMSE are achieved.

The LSAT anomaly data is interpolated by an AIDW method.
The gridded LSAT anomaly data errors are evaluated by leave-
one-out CV. The spatial distribution characteristic of RMSE
and MAE are closely correlated with the station density in
both temporal and special perspective. The low RMSE mainly
occurs in the regions with high station density areas in
eastern China, Japan, and South Korea. The RMSE further
decreases with the increase of the station numbers during the
period of 1900–2018. In addition, the RMSE and MAE in
winter are much larger than those in other seasons, which
indicate a clear seasonal difference. This may be related to
the more active cold air activities in the high latitudes regions
in winter and the temperature anomalies in winter being
more controlled by advection when the winds are strong than
the other seasons.

In addition, we evaluated the long term LSAT change trend
during the period of 1901–2018, 1901–1960, and 1961–2018,
respectively with the newly interpolated high resolution dataset,
and compared the results with those derived from CRU TS4
dataset. The LSAT anomaly series during 1900–2018 derived in
this paper and from CRU TS4 are generally consistent with each
other, while the linear warming trends have slight differences. The
trend derived from newly dataset is a bit larger than those from
the latter dataset in different time periods of 1901–2018, 1901–
1960, and 1961–2018, respectively. Based on above analysis, the
dataset developed in this paper is proved to be a useful tool in the
regional climate and climate change detection, monitoring and
validation of model output.

The future plan is developing a global higher resolution LSAT
dataset based on the whole C-LSAT (C-LSAT HR). This is a
part of global dataset, we found it is relatively mature in pan
East Asia. We are going to apply this gridding and validation

method to other sub-regions over the world, and focus on the
gridded data integration of regions and the overall quality of
the global gridded dataset. Once the development of this global
high-resolution LSAT dataset is completed, the dataset will be
available to the public (for free) in near future. The gridding
and validation method used in this study is also helpful for
other similar research, such as gridding of precipitation, wind
speed or other meteorological elements in monthly, daily or even
higher temporal scale, which is also another part of our future
research direction.
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