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Abstract 
Motivation: The wealth of data resources on human phenotypes, risk factors, molecular traits and 

therapeutic interventions presents new opportunities for population health sciences. These opportuni-

ties are paralleled by a growing need for data integration, curation and mining to increase research 

efficiency, reduce mis-inference and ensure reproducible research. 

Results: We developed EpiGraphDB (https://epigraphdb.org/), a graph database containing an array 

of different biomedical and epidemiological relationships and an analytical platform to support their use 

in human population health data science. In addition, we present three case studies that illustrate the 

value of this platform. The first uses EpiGraphDB to evaluate potential pleiotropic relationships, ad-

dressing mis-inference in systematic causal analysis. In the second case study, we illustrate how pro-

tein-protein interaction data offer opportunities to identify new drug targets. The final case study inte-

grates causal inference using Mendelian randomization with relationships mined from the biomedical 

literature to “triangulate” evidence from different sources. 

Availability: The EpiGraphDB platform is openly available at https://epigraphdb.org. Code for replicating 

case study results is available at https://github.com/MRCIEU/epigraphdb as Jupyter notebooks using 

the API, and https://mrcieu.github.io/epigraphdb-r using the R package. 
Contact: yi6240.liu@bristol.ac.uk, ben.elsworth@bristol.ac.uk, Tom.Gaunt@bristol.ac.uk 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  

The wealth and diversity of biomedical and population data now available 

to epidemiologists is enabling new discoveries and methods development 

in population health data science. However, harmonisation and integration 

of data presents a challenge to researchers aiming to “triangulate” evi-

dence from different sources or uncover potential mechanistic pathways 

of disease development. This challenge can be tackled through the devel-

opment of dedicated data integration platforms which curate and combine 

data sources to enable integrative analyses, taking this burden off of indi-

vidual researchers. 

One area in which data integration offers potential value is causal infer-

ence. Over the last two decades, Mendelian randomization (MR) (Davey 

Smith and Ebrahim, 2003) has risen to prominence as a key causal infer-

ence method. MR exploits genetic variants as causal “anchors” (randomly 

allocated and invariant from conception) to estimate causal effects be-

tween an “exposure” (risk factor) influenced by the genetic variant(s) and 

a health outcome. The approach has various assumptions, of which a key 

constraint is that the genetic variants should not pleiotropically affect the 

health outcome through a pathway other than the risk factor in question. 

https://epigraphdb.org/
https://epigraphdb.org/
https://github.com/MRCIEU/epigraphdb
https://mrcieu.github.io/epigraphdb-r
mailto:yi6240.liu@bristol.ac.uk
mailto:ben.elsworth@bristol.ac.uk
mailto:Tom.Gaunt@bristol.ac.uk
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The two-sample MR approach enables MR to be performed in situations 

where a risk factor (exposure) and an outcome are analysed for genetic 

association in separate studies (Pierce and Burgess, 2013), enabling the 

thousands of published genome-wide association study (GWAS) datasets 

(MacArthur et al., 2016) to be leveraged for causal inference. 

Database resources such as the IEU OpenGWAS database 

(https://gwas.mrcieu.ac.uk) (Elsworth, Lyon, et al., 2020), and the linked 

MR-Base analytical platform (Hemani et al., 2018) now enable systematic 

MR application using the MR Mixture of Experts approach (Hemani et 

al., 2017). Such “systems” approach offers the capacity to standardise the 

evaluation of potential intervention targets, as we have recently demon-

strated with the plasma proteome (Zheng, Haberland, et al., 2019). How-

ever, such throughput approaches raise new challenges in the interpreta-

tion of the wealth of causal estimates generated. The integration of causal 

estimates with data from other sources is one way to tackle such chal-

lenges. Combining evidence with different biases (such as MR estimates, 

observational correlations and literature-mined experimental results) can 

provide more robust causal interpretation in an approach described as “tri-

angulation” (Lawlor et al., 2017). Agreement between sources strengthens 

the case for causality, whilst disagreement helps identify sources of bias. 

Integration of data also offers the scope to gain more mechanistic in-

sight into complex networks of association. For example, linking pheno-

typic data with genetic variants and molecular pathway data may make it 

easier to identify potential intervention targets once a causal relationship 

has been established. Similarly, an extensive network of associations pro-

vides the opportunity to identify drug repositioning opportunities and on-

target side effects for pharmaceutical targets. 

Here we describe EpiGraphDB (https://epigraphdb.org/), a database 

and analytical platform, that integrates trait relationships (causal, observa-

tional or genetic), literature-mined relationships, biological pathways, pro-

tein-protein interactions, drug-target relationships and other data sources 

to support data mining of risk factor/disease relationships. In the following 

sections, we describe the EpiGraphDB platform and its epidemiological 

and biomedical resources, and then illustrate some potential applications 

of this platform through specific case studies. 

2 Implementation 

2.1 The EpiGraphDB platform 

The EpiGraphDB platform (Figure 1) integrates data from a range of bi-

oinformatics and epidemiological sources into a Neo4j graph database 

and supports interactive and programmatic access using a variety of 

methods aimed at different needs. We provide a web user interface (UI) 

as a user-friendly entry point to the rich integrated resources that the 

platform offers, and users are able to programmatically query data via 

the application programming interface (API) web service or the client 

package in R. Finally, the Neo4j graph database can be directly queried 

in Cypher, and users are able to do so based on the Cypher examples 

shown from the API queries. 

Interactive access: As an entry point to the platform, the Web UI serves 

two primary purposes: 1) it showcases a selection of exemplar topics for 

the integrated epidemiological evidence that EpiGraphDB provides; 2) as 

an interactive interface it helps users in understanding how the queries of 

their requested data are structured to assist their further use of 

  
1 The getting started guide using Jupyter notebook can be found at 

(TODO) and the guide using the R package can be found at 

EpiGraphDB. For example, the confounder topic view 

https://epigraphdb.org/confounder demonstrates the use of EpiGraphDB 

in investigating the potential confounders, mediators and colliders be-

tween exposures and outcomes. In addition to viewing the returned data 

in tabular format and its visualisation in network diagrams, from the 

"Query" tab users are able to see the underlying API call and Neo4j Cy-

pher query to assist their further use of EpiGraphDB. In addition, users 

can use the Explore views https://epigraphdb.org/explore to browse and 

search EpiGraphDB and visit the Gallery https://epigraphdb.org/gallery 

for exemplar use cases. 

Programmatic access: EpiGraphDB can be queried via the API web 

service https://api.epigraphdb.org which includes a variety of accessible 

topic endpoints (as showcased on the Web UI) and other functionalities 

that enable further customised usage. In addition, we developed an R pack-

age https://mrcieu.github.io/epigraphdb-r to provide further ease of use for 

users to incorporate EpiGraphDB directly into their analytical pipelines in 

R, without having to be proficient in handling web requests or parsing 

response data. We discuss simple examples on how to query EpiGraphDB 

via the API or the R package in Appendix 4 in the supplementary materi-

als, and further details on accessing EpiGraphDB are available in the plat-

form documentation https://docs.epigraphdb.org. In addition, we provide 

companion guides on replicating results of the Section 3 case studies in 

Jupyter notebooks and R package vignettes as well as a "getting started" 

guide1 on accessing EpiGraphDB data programmatically. 

Graph database: At its core, EpiGraphDB stores integrated data using 

the Neo4j graph database. The graph database paradigm supports inter-

pretable representation of biomedical information by storing data as rela-

tionships (e.g. associations, causal estimates, mappings) between entities 

(e.g. genes, proteins, diseases, genetic variants). Compared to a relational 

database architecture using structured query language (SQL), the use of 

Neo4j and the associated Cypher query language enables more natural rep-

resentation of hypothesis as queries. For example, in EpiGraphDB a hy-

pothetical query for the causal effect for a risk factor on disease could be 

conceptualised in Cypher as a directed acyclic graph (DAG) (r:Risk-

Factor)-[c:CausalEffect]->(d:Disease), which as is an exact 

representation of the epidemiological modelling. Although users are not 

https://mrcieu.github.io/epigraphdb-r/articles/getting-started-with-

epigraphdb-r.html 

Fig. 1. Architecture of the EpiGraphDB platform. Source datasets are integrated into 

a Neo4j graph database using Cypher query language (which can also be queried by end 

users). Standard HTTP queries are processed through a RESTful API service which can 

be called from any REST API client, including our R package epigraphdb. The web UI 

showcases main topics of the epidemiological evidence in EpiGraphDB and demon-

strates the example API queries to get the underlying data. 

https://gwas.mrcieu.ac.uk/
https://epigraphdb.org/
https://api.epigraphdb.org/
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required to know Cypher in order to use EpiGraphDB, the underlying Cy-

pher query that is used to return user's requested data via the Web UI, API, 

or R package is returned as part of the response data, which can be further 

used as a baseline query for users to customise for their specific needs. 

Discussions on accessing EpiGraphDB in Cypher using the API and R 

package are available in Appendix 4 in the supplementary materials. 

2.2 Integration of epidemiological evidence 

EpiGraphDB contains data from a range of biomedical sources, with these 

data represented as nodes and relationships2 in a graph database. The re-

lationships broadly represent: epidemiological relationships (e.g. genetic 

correlations) between phenotypes, mappings (e.g. genes to protein and 

pathways) and relationships derived from the biomedical literature. Table 

1 reports a summary of the epidemiological evidence available in 

EpiGraphDB. 

We combined data from over 20 independent sources. All datasets re-

quired some level of processing in preparation for loading into 

EpiGraphDB. Detailed information including sources of data, processing 

steps and data ingest method are described in the supplementary materials 

(Appendix 2) and further in the platform documentation 

https://docs.epigraphdb.org.  

Table 1. Summary of epidemiological evidence in EpiGraphDB. De-

tailed discussion on data integration and how these biomedical entities 

and associations are represented in EpiGraphDB are available in the sup-

plementary materials (Appendices 1 and 2). 

Cate-

gory 
Description Sources 

Causal 

relation-

ships 

Pairwise MR between 

traits 

MR-EvE (Hemani et al., 

2017) 

pQTL / eQTL MR 
xQTL (Zheng, Brumpton, 

et al., 2019) 

Associa-

tion rela-

tionships 

Genetic correlations 
Neale Lab (Abbot et al., 

2020) 

Observational correlations EpiGraphDB inhouse3 

GWAS top hits 
OpenGWAS (Elsworth, 

Lyon, et al., 2020) 

Polygenic risk score asso-

ciations 

PRS Atlas (Richardson et 

al., 2019) 

Protein-protein interac-

tions 

IntAct (Orchard et al., 

2014), STRING (Szklar-

czyk et al., 2019) 

Drug targets 

Open Targets (Carvalho-

Silva et al., 2019), CPIC 

(Relling and Klein, 2011), 

Druggable genome (Finan 

et al., 2017) 

Pathway ontologies and 

molecular events 

Reactome (Jassal et al., 

2019) 

  
2 We refer to a type of biomedical entity as a meta node (e.g. (Gwas) in 

Cypher notation) and a type of association as a meta relationship (e.g. 

[MR]), whereas a specific entity is referred to as a node (e.g. (Gwas 
{id: “ieu-a-2”, trait: “Body mass index”})) and a specific 

association as a relationship (e.g. (Gwas {trait: “Body mass in-

dex”})-[MR {beta, se, pval}]->(Gwas {trait: “Coronary 
heart disease”})). 

Molecu-

lar path-

ways 

Gene expression for tissues 
GTEx (The GTEx Consor-

tium et al., 2015) 

Litera-

ture 

mined / 

derived 

evidence 

Literature evidence of bio-

medical entities and mech-

anisms 

SemMedDB (Kilicoglu et 

al., 2012), MELODI (Els-

worth et al., 2018), Met-

aMap (Demner-Fushman 

et al., 2017), Monarch 

(Mungall et al., 2017) 

Mapping of biomedical en-

tities to literature terms 

Ontol-

ogy and 

semantic 

relation-

ships 

Mapping of biomedical en-

tities to ontology terms 

EFO (Malone et al., 2010), 

SemMedDB (Kilicoglu et 

al., 2012), Vectology (Els-

worth, Liu, et al., 2020), 

MELODI (Elsworth et al., 

2018),  

Semantic similarities of bi-

omedical entities 

Vectology (Elsworth, Liu, 

et al., 2020) 

Entity 

metrics4  

Meta 

nodes 

Meta rela-

tionships 

Nodes Relation-

ships 

14 42 32,969,103 84,181,124 

3 Case studies 

The data integrated within EpiGraphDB offer a wide array of potential 

opportunities for data mining and analysis. Here we present three case 

studies which illustrate some of the potential that is afforded by 

EpiGraphDB for new knowledge discovery. These do not, however, rep-

resent the full extent of the data or potential of the platform, which is pro-

vided as an open resource for the reader to use for their own novel research 

investigations. 

In case study 1 we explore the potential of pathway data to characterise 

pleiotropy of genetic instruments used to generate causal estimates of the 

effect of protein levels on disease outcomes. Case study 2 seeks to identify 

alternative drug targets using protein-protein interaction data in conjunc-

tion with causal estimates of protein levels on disease outcomes as well as 

literature mined / derived evidence. Case study 3 uses knowledge ex-

tracted from the scientific literature to identify potential mechanistic path-

ways linking causal risk factors to diseases. We discuss the general steps 

to replicate these case studies in Appendix 5 in the supplementary materi-

als and users are encouraged to use the Jupyter notebooks and R package 

to replicate and modify the analyses. 

3.1 Distinguishing vertical and horizontal pleiotropy 

for SNP-protein associations 

A key MR assumption is that the genetic variant (SNP) is only related to 

the outcome of interest through the exposure under study (the “exclusion 

restriction” assumption). This assumption is potentially violated under 

horizontal pleiotropy, where a SNP is associated with multiple pheno-

types (e.g. proteins) independently of the exposure of interest. In con-

3 Further details on the inhouse results by EpiGraphDB members are 

available from Appendix 2 in the supplementary materials. 
4 Information and metrics are based on latest version of EpiGraphDB 

platform (version 0.3.0, 21 April 2020). 
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trast, vertical pleiotropy, where a SNP is associated with multiple pheno-

types on the causal pathway to the outcome, does not violate the “exclu-

sion restriction criterion” of MR (Figure 2A). For molecular phenotypes, 

where the number of genetic instruments is typically limited, it is almost 

impossible to distinguish vertical and horizontal pleiotropy using estab-

lished statistical approaches (van Kippersluis and Rietveld, 2018). 

Here, by integrating SNP-protein associations with biological pathway 

and protein-protein interaction (PPI) information retrieved from 

EpiGraphDB, we have developed an approach to assess potential horizon-

tal pleiotropy. As demonstrated in Figure 2B, for a SNP associated with a 

group of proteins, we check the number of biological pathways and PPIs 

that are shared across this group of proteins. If these proteins are mapped 

to the same biological pathway and/or a PPI exists between them, then the 

SNP is more likely to act through vertical pleiotropy and therefore be a 

valid instrument for MR. 

3.1.1 Assessing the pleiotropy of an autoimmune-related variant 

In this case study, we assessed the pleiotropy of rs12720356, a SNP lo-

cated in TYK2 gene that is associated with Crohn’s disease and psoriasis 

(Solovieff et al., 2013), by exploring the relationships between genes (and 

their products) to which this SNP can be mapped using expression QTL 

data. We used the GTEx database (The GTEx Consortium et al., 2015) to 

identify single-tissue eQTL effects, gathering a set of genes whose expres-

sion level is associated with rs12720356 in different tissues: FDX1L, 

ICAM1, ICAM5, KRI1, MRPL4, GRAP2, TMED1, TYK2 and ZGLP5. 

We then proceeded to query EpiGraphDB to extract pathway and PPI data 

as described in the methods section. 

The results were then converted to a graph that shows two small con-

nected components and a few isolated nodes (Figure 3). Note that the 

knowledge about the biological processes described by pathways have to 

be considered incomplete, and perhaps partially incorrect, and therefore 

these results must be treated as hypothesis generating, and the user should 

be aware that absence of interaction evidence is not definitive proof of an 

absence of pleiotropy. Also, given that the same protein might participate 

  
5 Details on the list of pleiotropic genes are reported in Supplementary 

Table 4. 

in different pathways in different contexts, it is important to verify the 

soundness of these relationships. For instance, in our case study ICAM1 

shares pathways with ICAM5, the interactions of integrin cell surface and 

between lymphoid and non-lymphoid cells. Integrin expression has been 

shown to be altered in psoriasis (Creamer et al., 1995), and integrins also 

have an important pro-inflammatory role in Crohn's disease, where they 

facilitate the movement of leukocytes from the systemic circulation (note 

that the association is detected in whole blood) to the intestinal mucosa 

(Park and Jeen, 2018). ICAM1 also participates with TYK2 in the regula-

tion of Interleukin-4 (IL4) and Interleukin-13 (IL3) signalling, important 

actors that drive a predominantly humorally mediated hypersensitivity re-

sponse (Sartor, 1994). In terms of PPIs, the above pairs of genes are still 

connected, and we retrieved a triple formed by ICAM1, RAVER1 and 

TYK2, and the pair KRI1-MRPL4 that is associated with sun exposure, a 

well-established beneficial factor for psoriasis and Crohn’s disease (Søy-

land et al., 2011; Jantchou et al., 2014). However, here the results depict 

that some single-tissue eQTLs with a strong association, like ZGLP1 and 

FDX2, remain unconnected in our network. This shows that they poten-

tially work along different molecular pathways, acting in horizontal plei-

otropy. It would be important to consider their potential biological role in 

the outcome phenotypes of any MR analyses using this instrument. 

3.1.2 An exemplar valid instrument 

We recently used the same approach to explore potential vertical and hor-

izontal pleiotropy for a number of pleiotropic protein associated SNPs 

(Zheng, Haberland, et al., 2019). In one example, a specific set of three 

proteins (IL6ST, ICAM1 and TIMP1) were associated with the same SNP 

(rs144276707). The pair ICAM1 and TIMP1 were found to participate in 

two common pathways, and there were 4 shared PPIs among all three pro-

teins. These results supported the hypothesis that rs144276707 is more 

likely to influence these proteins via the same biological pathway (acting 

through vertical pleiotropy), strengthening the evidence that this SNP is a 

valid instrument for MR analysis. 

3.2 Identification of potential drug targets 

Fig. 2. Distinguishing vertical and horizontal pleiotropy using EpiGraphDB. (A) 

Concept of vertical and horizontal pleiotropy using SNP-proteins relationship as an exam-

ple. We have a valid instrument for MR when a SNP affects proteins in a single path; in 

contrast, if an instrument is associated with proteins participating in different pathways, it 

violates the “exclusion restriction criterion” and our instrument is invalid. (B) Integration 

of SNP-protein associations with pathway information and PPI data to distinguish vertical 

and horizontal pleiotropy using EpiGraphDB. All four proteins are associated with the 

same SNP. Protein 1 and protein 2 share the same biological pathway. Protein 2 and 3 are 

in PPI. Protein 4 shares no links with other proteins. Therefore, the SNP association on 

protein 1, 2 and 3 are likely to act through vertical pleiotropy, where the SNP association 

on protein 4 verse other three proteins are likely to be horizontal pleiotropy. 

Fig. 3. Network diagram with the evidence to assess the pleiotropy of genetic vari-

ant rs12720356. The network has one node for each protein regulated by the eQTL 

rs12720356, and their size is inversely proportional to their P-value (see Supplementary 

Table 4 for details). Dashed pink edges depict the participation in common biological 

pathways, and blue edges represent the number of shared PPIs (value indicated). 



EpiGraphDB 

Systematic MR of molecular phenotypes, such as proteins and levels of 

transcript expression, opens up important possibilities for drug target pri-

oritisation in pharmacological investigations. However, many potential 

targets are not easily druggable. A parallel problem is that current GWAS 

of plasma proteins have limited sample sizes, are not available in many 

tissues, and only represent a subset of all proteins. A potential way to ad-

dress these problems is to use protein-protein interaction (PPI) infor-

mation to identify druggable targets linked to a non-druggable, but ro-

bustly causal gene. Their relationship to the causal gene increases our con-

fidence in their potential causal role even if the initial evidence of their 

causal effect is below our multiple-testing threshold. Here we have devel-

oped an approach using PPI data to prioritise potential alternative drug 

targets. As a proof of principle, we illustrate this approach using IL23R as 

an example. 

3.2.1 Integrating MR evidence with PPI networks for alternative 

drug targets search 

IL23R is a well-established disease-susceptibility gene for inflammatory 

bowel disease (IBD) (de Lange et al., 2017). The protein-disease associa-

tion information retrieved from EpiGraphDB suggests that IL23R has a 

robust causal effect on IBD6 (beta = 1.50, P-value = 2.21 × 10-166, colo-

calization probability = 75%) (Zheng, Haberland, et al., 2019). The drug 

PTG-200, acting as an antagonist of IL23R has just passed Phase I and is 

in Phase II trials for IBD treatment (Cheng et al., 2019), which aligns well 

with the genetic/MR evidence implemented in EpiGraphDB. Whilst 

IL23R is druggable, we illustrate how our approach can identify potential 

alternative targets using pathway data. 

We used PPI information (Orchard et al., 2014; Szklarczyk et al., 2019) 

and data on druggability (Finan et al., 2017) to identify a set of proteins 

which are the target of approved drugs and clinical-phase drug candidates 

and have direct PPI with IL23R. Table 2 shows a subset of this list with 

strong MR evidence (P-value < 1 × 10-5) to IBD7. 

This list of proteins includes IL12B, the target protein for an existing 

drug Ustekinumab, which is currently under Phase 3 and 4 trials for IBD 

treatment8. Although there is strong MR evidence for IL12B (beta = 0.42, 

P-value = 9.59 × 10-34), there is little evidence for genetic colocalization9 

(colocalization probability < 1%), which prevents us prioritizing this tar-

get based on MR evidence alone. However, the PPI between IL12B and 

IL23R (which does have reliable MR and colocalization results) increases 

our confidence that IL12B is a valid target. 

3.2.2 Using literature evidence for results enrichment and triangu-

lation 

A further source of useful evidence is the literature-derived knowledge 

from SemMedDB (Kilicoglu et al., 2012) available in EpiGraphDB. Inte-

grating this literature evidence with the evidence described above can fur-

ther enhance confidence in the findings (as well as identify potential alter-

native drug targets). Table 2 also reports the gene-to-trait literature evi-

dence regarding IL23R and interacting proteins and IBD, where each entry 

shows a literature-derived semantic triple (e.g. “IL23R” – 

“ASSOCIATED_WITH” – “Inflammatory Bowel Diseases”), as well as 

the study articles from which each triple was extracted. For the list of 

genes including IL23R and IL12B that were identified with strong MR 

  
6 https://epigraphdb.org/pqtl/IL23R 
7 Supplementary Table 5 reports the full list of identified proteins with 

druggability information. 

evidence, we were also able to find abundant literature evidence support-

ing the genetic causal evidence with derived mechanisms involving pred-

icates such as ASSOCIATED_WITH, AFFECTS and CAUSES. 

Table 2. Triangulation of MR and literature evidence on the effects 

of IL23R and associated genes to IBD. The MR evidence is the QTL 

MR estimates of IL23R and the associated druggable genes (via direct 

protein-protein interaction with Tier 1 druggability) to Inflammatory 

bowel disease GWAS (OpenGWAS ID: ieu-a-249). The literature evi-

dence is the SemMed predicates derived by SemMedDB and the num-

bers of PubMed articles identified to support the predicate mechanism. 

Here we report the subset of genes that are identified to contain both MR 

evidence (P-value < 1 × 10-5). 

Gene 

Effect 

size 

(SE) 

P-value QTL 
SemMed predicate 

(count) 

IL23R 

1.50 

(0.05) 

2.21 × 10-

166 
pQTL 

AFFECTS (1), 

ASSOCIATED_WITH 

(21), 

NEG_ASSOCIATED_

WITH (2), 

PREDISPOSES (1) 

0.89 

(0.06) 

4.16 × 10-

43 
eQTL 

IL12B 
0.42 

(0.03) 

9.59 × 10-

34 
pQTL 

ASSOCIATED_WITH 

(5) 

IL15 
-1.42 

(0.20) 

5.53 × 10-

13 
eQTL 

ASSOCIATED_WITH 

(2) 

IL4 
0.46 

(0.08) 

4.47 × 10-

08 
eQTL 

ASSOCIATED_WITH 

(3), DISRUPTS (1) 

JAK2 
-1.90 

(0.20) 

1.32 × 10-

20 
eQTL 

AFFECTS (1), 

ASSOCIATED_WITH 

(3) 

NFKB1 
0.97 

(0.17) 

2.16 × 10-

08 
eQTL 

ASSOCIATED_WITH 

(2) 

RORC 
-1.00 

(0.12) 

1.21 × 10-

17 
eQTL 

ASSOCIATED_WITH 

(1) 

STAT3 
0.60 

(0.08) 

2.96 × 10-

15 
eQTL 

AFFECTS (2), 

AUGMENTS (1), 

ASSOCIATED_WITH 

(9), CAUSES (1) 

3.3 Triangulating causal estimates with literature evi-

dence 

Previously, we have demonstrated that existing literature can be used to 
derive relationships and mechanisms between defined biomedical traits 

(Elsworth et al., 2018; Elsworth and Gaunt, 2020). By integrating this 

knowledge with causal estimates in EpiGraphDB, we can triangulate evi-
dence, identifying where these two sources of evidence are in agreement, 

and where they are not (Lawlor et al., 2017). In this case study, we explore 

the literature connecting traits with pre-defined causal relationships. From 
here we can summarise the key mechanisms defined in the literature, and 

also potentially derive novel mechanisms. 

3.3.1 Sleep duration and coronary heart disease as an example 

8 Drug trial information available via Open Targets https://www.target-

validation.org/evi-

dence/ENSG00000113302/EFO_0000540?view=sec:known_drug 
9 http://epigraphdb.org/pqtl/IL12B 

https://epigraphdb.org/pqtl/IL23R
https://www.targetvalidation.org/evidence/ENSG00000113302/EFO_0000540?view=sec:known_drug
https://www.targetvalidation.org/evidence/ENSG00000113302/EFO_0000540?view=sec:known_drug
https://www.targetvalidation.org/evidence/ENSG00000113302/EFO_0000540?view=sec:known_drug
http://epigraphdb.org/pqtl/IL12B
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Starting with an exposure trait of “Sleep duration”, existing MR data, and 

connections between traits and diseases in EpiGraphDB, we extracted a 

set of potentially causally related traits (note that this is limited to traits 

with GWAS and MR results) (Table 3). 

Table 3. Summary of disease traits identified with causal association 

to “Sleep duration”. We searched for MR evidence associated with the 

trait “Sleep duration” with P-value to be under 1 × 10-10, and map the 

outcome trait to a disease term via mappings through EFO terms. “ieu-a-

“/  “ukb-a-“ refer to IDs of OpenGWAS . 

Exposure Outcome 
MR 

beta 

MR P-

value 
Disease 

ieu-a-1088: 

Sleep dura-

tion 

ukb-a-107: 

Non-cancer 

illness code 

self-re-

ported: gout 

-

0.00257 

3.8 × 

10-24 

“gout” 

ieu-a-1088: 

Sleep dura-

tion 

ieu-a-6: Cor-

onary heart 

disease 

-

1.03933 

2.3 × 

10-21 
“coronary ar-

tery disease” 

ieu-a-1088: 

Sleep dura-

tion 

ukb-a-548: 

Diagnoses - 

main 

ICD10: K35 

Acute ap-

pendicitis 

-

0.00671 

8.0 × 

10-15 

“appendicitis” 

ieu-a-1088: 

Sleep dura-

tion 

ukb-a-54: 

Cancer code 

self-re-

ported: lung 

cancer 

-

0.00191 

1.1 × 

10-14 “cancer”, 

“lung carci-

noma” 

ukb-a-9: 

Sleep dura-

tion 

ukb-a-13: 

Sleepless-

ness / in-

somnia 

-

0.32167 

1.1 × 

10-11 “insomnia 

(disease)” 

 

Multiple disease entries arise from the mapping between the trait name 

and EFO terms, each of which maps to a disease term. In this case, we 

treated each mapping as a single relationship and extracted the literature 

data connecting a pair of traits. For this example, we selected the outcome 

trait “Coronary heart disease” to explore in more detail the potential mech-

anisms linking this to sleep duration. To do this we queried EpiGraphDB 

to extract the semantic triples associated with each trait and searched for 

overlapping terms, identifying 839 overlapping triples (Supplementary 

Table 6 reports the top 10 items by enrichment P-value). 

We then generated frequency counts for the overlapping terms (Figure 

4), which identified many different overlapping terms and types10, includ-

ing 6 proteins (aapp), 2 genes (gngm) and 11 organic chemicals (orch). 

Each of these represents a key point in a potential mechanism, connecting 

the exposure and outcome traits. Terms of particular interest are those with 

high counts (e.g. Ethanol) as these represent terms with large numbers of 

supporting publications in the literature. However, in this case, Ethanol 

may be present in such numbers due to its inclusion in many publications 

as a co-factor when describing the functionality and efficacy of drugs, 

  
10 https://mmtx.nlm.nih.gov/MMTx/semanticTypes.shtml 

highlighting the importance of reviewing a selection of papers underpin-

ning each mechanism. For this reason, Ethanol can be excluded from this 

example.  

Figure 5 suggests the main route from Sleep Duration to Coronary Heart 

Disease via the intermediate term Leptin involves only one term on the 

Fig. 4. Literature-mined/derived evidence on the intermediates between “Sleep dura-

tion” and “Coronary heart disease”. Counts of overlapping SemMed terms grouped by 

the SemMed term type (aapp – amino acids, peptides, proteins, gngm – genes or genome, 

horm – hormones, orch – organic chemicals; full list available at 

https://mmtx.nlm.nih.gov/MMTx/semanticTypes.shtml ). 

Fig. 5. Literature derived mechanisms between “Sleep duration”, “Leptin”, and 

“Coronary Heart Disease”. Network diagram displaying the literature connections be-

tween “Sleep Duration” and “Coronary Heart Disease” through the intermediate term 

“Leptin”. Predicates connecting two semantic terms, their frequencies and enrichment P-

value are labelled on the edges. Enrichment is calculated via MELODI Presto (Elsworth 

and Gaunt, 2020) based on a comparison of query count to background. Edge width repre-

sents the enrichment log transformed P-value. Red nodes represent the exposure (SLEEP 

DURATION) and outcome (CORONARY HEART DISEASE) traits, blue nodes repre-

sent intermediate semantic literature nodes. 

https://mmtx.nlm.nih.gov/MMTx/semanticTypes.shtml
https://mmtx.nlm.nih.gov/MMTx/semanticTypes.shtml
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exposure side (“ghrelin”) and 10 on the outcome side, the most enriched 

being “Leptin – TREATS - Coronary Arteriosclerosis”, providing this as 

a potential mechanism of interest. 

3.3.2 Check findings against the original publication text 

Finally, EpiGraphDB provides a PubMed identifier to enable us to check 

the validity of these connections in the original text. For example, we 

found evidence of two statements that “Leptin PREDISPOSES Coronary 

heart disease”. These were derived from the following two sentences: 

“CONCLUSIONS: Consumption of sugar-sweetened bever-

ages was associated with increased risk of CHD and some ad-

verse changes in lipids, inflammatory factors, and leptin.” (de 

Koning et al., 2012) 

“Leptin, one of the earlier adipocytokines, is known to play a 

major role in cardiovascular disease and recent observations 

suggest that leptin is an independent risk factor for coronary 

heart disease.” (Amasyali et al., 2010) 

The contrasting causal interpretation of these two sentences highlights 

the importance of manual review of the original articles to validate the 

semantic triples. 

4 Discussion 

EpiGraphDB is a new database and platform for data integration in health 

data science, with a particular focus on understanding the relationships 

between risk factors, intermediate phenotypes and disease outcomes de-

scribed by epidemiological analyses. Whilst we present three specific case 

studies, we anticipate a much wider array of uses and support this through 

an open API and R package. It is, however, important to recognise that 

there are several existing platforms for data integration in the health, bio-

medical and pharmaceutical domains (Supplementary Table 3).  

The Open Targets platform (Koscielny et al., 2017; Carvalho-Silva et 

al., 2019) (https://www.targetvalidation.org/) integrates a wealth of ge-

nomic, phenotypic, ontology and drug target data into a single platform 

aimed at users in the pharmaceutical industry and research community. 

Their platform has a well-developed web interface in addition to a com-

prehensive API and Python package to support the use of the API. This 

open approach has enabled EpiGraphDB to utilise drug/target mappings 

with Open Targets. However, whilst there is some overlap in this context, 

the Open Targets platform lacks MR estimates (although it does include 

genetic association data). Open Targets also includes some literature data, 

and their LINK platform (https://link.opentargets.io/) extracts semantic re-

lationships from PubMed. However, despite some of the conceptual simi-

larities to EpiGraphDB, their focus is primarily on drug target prioritisa-

tion, whilst EpiGraphDB also aims to support the evaluation of lifestyle 

risk factors. 

The Hetionet platform (https://het.io/) is a graph database integrating 

data from more than 29 different databases, which was initially set up to 

prioritize drugs for repurposing using an innovative approach to predict 

gene/disease associations (“Project Rephetio”) (Himmelstein and Baran-

zini, 2015; Himmelstein et al., 2017), but now aims to have a broader re-

mit. The platform is very accessible, with a web application, data down-

loads in multiple formats and open access to their Neo4j database. The 

primary focus of the platform is for molecular mechanisms and pharma-

cologic data while EpiGraphDB additionally encompasses epidemiologi-

cal relationships (MR causal estimates, genetic correlation, etc) and liter-

ature data. However, the open nature of the platform enables users to eas-

ily work with Hetionet in parallel with EpiGraphDB. 

The Monarch Initiative (Mungall et al., 2017) 

(https://monarchinitiative.org/) is focused on the integration of genotypic 

and phenotypic data across species with the aim of identifying related phe-

notypes and potential animal models of disease. This contrasts with the 

human-centric epidemiological focus of EpiGraphDB. The Monarch Ini-

tiative platform has an open-source approach to software development and 

offers web interfaces powered by an open API. In common with Hetionet 

and EpiGraphDB, the platform uses the Neo4j database. Users can easily 

integrate data from the Monarch Initiative with EpiGraphDB given their 

open design principles. 

Wikidata (https://wikidata.org) is a general knowledge base which con-

tains an array of biomedical data sources that have recently been reported 

(Waagmeester et al., 2020). In contrast to curated knowledge bases such 

as EpiGraphDB, Wikidata is developed through community-driven efforts 

and bot automation, and incorporates extensive knowledge across a wide 

array of fields, including (but not limited to) a range of biomedical entities. 

Unfortunately, the scope of this project leads to inevitable duplication and 

redundancy of the entities it comprises. This much broader approach dis-

tinguishes Wikidata from specialist platforms such as EpiGraphDB, which 

is focused on epidemiological and biomedical knowledge. In common 

with other platforms listed above, the open design of this platform sup-

ports cross-platform data integration. 

Various other platforms (Gaspar et al., 2018; Coker et al., 2019; Abbot 

et al., 2020) exist with some conceptual overlaps with EpiGraphDB (Sup-

plementary Table 3). These represent a range of different types of data 

based on molecular and genetic interactions and drug targets. However, in 

contrast to the platforms described above these platforms don’t appear to 

have accessible API or software packages. Although several are open ac-

cess and available to the wider community, the lack of programmatic in-

teroperability limits their scope. 

As with all similar platforms, EpiGraphDB is constrained by the avail-

able data and subject to any errors or quality issues that exist in the original 

sources. However, by integrating data from a range of sources (e.g. 

STRING, IntAct and Reactome for interactions between proteins) we en-

sure the user can evaluate consistency between data sources. 

5 Conclusions 

The EpiGraphDB platform provides an integrated data resource to support 

data mining and interpretation of the relationships between disease risk 

factors, intervention targets and disease outcomes. We present three illus-

trative case studies that demonstrate the functionality and utility of the 

platform, but it is important to note that much more extensive capabilities 

are available and will continue to expand as the platform is developed fur-

ther. We aim to support open science by making the data freely accessible, 

both programmatically and through a web interface, and by providing 

open source code and exemplar Jupyter notebooks. 
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