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bSchool of Science and Engineering, Computing, University of Dundee, UK

Abstract

-Background. There is a growing need for analyzing medical data such
as brain connectomes. However, the unavailability of large-scale training
samples increases risks of model over-fitting. Recently, deep learning (DL)
architectures quickly gained momentum in synthesizing medical data. How-
ever, such frameworks are primarily designed for Euclidean data (eg., im-
ages), overlooking geometric data (eg., brain connectomes). A few existing
geometric DL works that aimed to predict a target brain connectome from
a source one primarily focused on domain alignment and were agnostic to
preserving the connectome topology.

-New Method. To address the above limitations, firstly, we adapt the
graph translation generative adversarial network (GT GAN) architecture to
brain connectomic data. Secondly, we extend the baseline GT GAN to a
cyclic graph translation (CGT) GAN, allowing bidirectional brain network
translation between the source and target views. Finally, to preserve the
topological strength of brain regions of interest (ROIs), we impose a topo-
logical strength constraint on the CGT GAN learning, thereby introducing
CGTS GAN architecture.

-Comparison with existing methods. We compared CGTS with
graph translation methods and its ablated versions.

-Results. Our deep graph network outperformed the baseline compar-
ison method and its ablated versions in mean squared error (MSE) using
multiview autism spectrum disorder connectomic dataset.

∗Corresponding author; Dr Islem Rekik, http://basira-lab.com/, CGTS GAN code
is available at: https://github.com/basiralab/CGTS-GAN
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-Conclusion. We designed a topology-aware bidirectional brain connec-
tome synthesis framework rooted in geometric deep learning, which can be
used for data augmentation in clinical diagnosis.

Keywords: Brain connectome generation, geometric deep learning, cyclic
adversarial graph translation, topological strength

1. Introduction

Brain connectivities established by synapses reveal the statistical interac-
tions or information flow among distinct anatomical brain regions of interest
(ROIs) within the nervous system (Bullmore and Sporns, 2009; Bassett and
Sporns, 2017). The strength of brain connectivity influences the neural ac-
tivities in the brain as it determines which brain regions are strongly or
weakly connected physically or functionally. Brain connectivity measures
are biomarkers of neural disorders such as Alzheimer’s disease (delEtoile
and Adeli, 2017) and Autism Spectrum Disorder (ASD) (Jeste et al., 2015)
which is a neurodevelopmental disorder that is characterised by deficits in
social skills, speech, and behavior. Hence, understanding how such disorders
disconnect the brain wiring or cause atypical alterations is fundamental in
revealing the mechanism with which these kick off and develop. The field of
network neuroscience (Bassett and Sporns, 2017), where graph theory meets
brain connectivity, presented a compact representation of the human brain
connectome derived from non-invasive magnetic resonance imaging (MRI)
of the brain. Specifically, the brain is modelled as a network composed of
nodes (brain ROI) and edges as connections between nodes and by so do-
ing, interactions between every possible brain anatomical regions is estab-
lished (de Vico Fallani et al., 2014; Soares et al., 2016; Mahjoub et al., 2018;
Lisowska et al., 2018). This graphical modelling of the whole-brain network
enables the usage of graph theory metrics to study important topological
properties of brain connectome like centrality, clustering-coefficient, charac-
teristic path length, modularity and information flow efficiencies (e.g, global
and diffusion efficiency) for analyzing connectional patterns in brain connec-
tomes. In general, these properties give insights into functional integration,
segregation, resilience or organization of the brain network as whole or the
individual brain ROI in both healthy and disordered populations (Bullmore
and Bassett, 2011; Reijneveld et al., 2007; Damoiseaux et al., 2006).
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Brain connectomic acquisition has been enhanced by the evolution of var-
ious structural MRI modalities including T1-weighted imaging, resting-state
functional MRI magnetisation transfer imaging, and diffusion-weighted imag-
ing. Such diverse multimodal connectomic datasets are very vital in exploring
the differences in anatomical ROIs connectivity patterns between healthy and
disordered brains, among other purposes (Hinrichs et al., 2011; Zhang et al.,
2011; Yuan et al., 2012; Tong et al., 2015; Farrell et al., 2009). The brain
connectivity can be encoded in a single view representation or in multiple
views where each view captures a particular relationship (e.g., functional or
morphological) between pairs of brain ROIs; thus, offering additional signif-
icant information about the brain construct. Several promising research in
network neuroscience has been conducted using multiview brain connectomes
(Mahjoub et al., 2018; Lisowska et al., 2017; Raeper et al., 2018; Dhifallah
et al., 2020, 2019a). In (Lisowska et al., 2017; Raeper et al., 2018) multiview
brain networks were used for early dementia diagnosis, and in (Mahjoub
et al., 2018) to discriminate between late mild cognitive impairment and
Alzheimer’s disease patients. In all these works, mutiview brain networks
boosted the diagnostic power of learning models in comparison to using sin-
gle view networks. (Dhifallah et al., 2020, 2019a) proposed machine learning
based frameworks to learn how to integrate a population of multiview brain
networks to estimate a holistic connectional brain template.

However, high costs of clinical diagnosis, medical technological challenges,
among other reasons, renders the completion of all medical scans for all pa-
tients hard, leading to missing data samples, or brain views. For a number
of existing connectomic studies, patients with missing data are generally
discarded; yet, training predictive learning models on a few samples poses
risks of model overfitting. To fill this gap, generative learning models and
data completion frameworks have been designed to predict the missing sam-
ples. For instance, in (Wang et al., 2016) a semisupervised tripled dictionary
learning-based method for predicting standard-dose PET (S-PET) image us-
ing low-dose PET (L-PET) and corresponding MRI is proposed. They used
patch-based sparse representation on training dataset with a complete set of
MRI, L-PET and S-PET modalities to construct the dictionary. Their pro-
posed method is able to utilize samples with and without complete modali-
ties, thus, improving the prediction peformance through efficient use of all the
available training samples. Another study, in (Huang et al., 2016) proposed a
nonlinear supervised sparse regression-based random forest (RF) framework
for predicting several longitudinal AD clinical scores. Different from studies
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that oftenly discarded subjects with missing scores, their proposed method
first estimates those missing scores with a sparse regressionbased RF, and
thereafter utilizes those estimated longitudinal scores for all the previous
time points to predict the scores at the next time point. A detailed review of
generative adversarial network in medical imaging is presented in (Yi et al.,
2019).

However, these existing methods are mainly designed for Euclidean data
(e.g., images) but not geometric data (e.g., brain connectomes). A very lim-
ited research has been made on synthesizing brain networks in particular.
In (Zhu and Rekik, 2018), the first work on brain network prediction was
presented based a novel sample selection strategy through canonical corre-
lation analysis with multi-kernel connectomic manifold learning to predict
multiview brain networks from a source view. However, this prediction was
based on simple statistical tools and independent data processing blocks in-
cluding domain alignment, sample selection and ultimately prediction. This
somehow solves the problem in a dichotomized manner that does not al-
low the different learning blocks to improve their learning via feedback and
information sharing.

On the other hand, researchers have embarked on geometrical deep learn-
ing (Levie et al., 2018) to tackle challenges associated with graphs and mani-
folds. Unlike popular fields like computer vision where image data is defined
on Euclidean domains, graph data is non-Euclidean (ie. the shortest distance
between two points is not necessarily a straight line). Such non-Euclidean
data might have self-intersections, infinite curvature, different dimensions
depending on the view scale and location and extreme variations in density.
Thus, Euclidean geometric properties and Euclidian space representation in-
cluding images where x and y coordinates represent pixel location and z for
color/intensity may not directly hold for non-Euclidean data. In addition,
vital basic computation operations such as convolution operations that are
thoroughly explored in the Euclidean domains including images where a con-
volutional neural network (CNN) can sufficiently extract all patterns in image
data, are not well defined on non-Euclidean spaces (Bronstein et al., 2017).
In particular, a graph might have a varying size of unordered nodes, with
nodes having varying size of neighbors and each node having links with other
distant individual nodes. Such complexities render the deployment of spa-
tially localized data operations including convolution and pooling on graph
data non-obvious. Recent review papers (Wu et al., 2020; Zhou et al., 2018)
have investigated approaches for extending deep learning on non-Euclidean
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domains. Generative Adversarial Networks (GANs) (Goodfellow, 2016) and
their extensions have been widely deployed to synthesize datasets with high
levels of realism (Kazeminia et al., 2018; Armanious et al., 2020; Yi et al.,
2019; Wu et al., 2018; Mahapatra et al., 2017). Recently, a few research works
using GANs for graph-based data embedding and generation have been ex-
plored. In (Guo et al., 2018), a novel graph translation GAN was proposed as
an extension of the conventional graph convolutional network (GCN) (Kipf
and Welling, 2016) in addition to designing new graph deconvolution layers.
Unlike graph generation methods that only aim at learning the graph distri-
butions, this graph translation architecture simultaneously learns both the
latent graph representation and generic translation mapping from the input
graph to the target one. The GT GAN outperformed several existing state-
of-the-art graph generation architectures including graph generation method
based on sequential generation with LSTM model (You et al., 2018), Graph-
VAE which is a probability-based graph generation method for small graphs
using variational autoencoders (Simonovsky and Komodakis, 2018), a graph
neural networks based general approach for learning generative models over
arbitrary graphs (Li et al., 2018), and RandomVAE which is a deep gen-
erative model for molecular graphs (Samanta et al., 2019). The GT GAN
exhibited high ability to learn graph translation rules thereby significantly
outperforming these comparison graph generation methods in both effective-
ness and scalability; however, GT GAN architecture is unidirectional, (i.e.,
only caters for translation from source to a target graph at a time but not
vice versa). Besides, it does not provide a special mechanism or constraint for
conserving a distinct graph node topological pattern during the translation
learning.

The first application of geometric deep learning in predicting brain net-
works in particular is presented in (Bessadok et al., 2019b). This work de-
ploys an adversarial regularized graph convolutional autoencoder inspired by
(Pan et al., 2018) to align the source and the target brain graph populations.
The pipeline extracts features in both the source and target domains, and
aligns domains symmetrically prior to the prediction step. Another related
work (Bessadok et al., 2019a) also build on the same adversarial regularized
graph convolution autoencoder (Pan et al., 2018) to learn hierarchical em-
beddings for aligning source and target domains in a coarse to fine manner.
Although pioneering, in both works, the prediction step is independent from
other data processing steps including alignment, thus a potential risk of error
accumulation in the entire framework due to errors at each individual step of
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Figure 1: Comparison between existing brain graph generation methods and our proposed
method. In comparison with existing learning-based frameworks for target brain graph
prediction from a source graph, our proposed framework improves the source-to-target
generation by (i) integrating a reverse prediction task from target to source graphs (dashed
green arrows) and (ii) aligning the distribution of the node strength of the predicted target
brain graphs with that of the ground-truth ones.

the pipeline. Besides, the prediction from source to target is unidirectional,
which makes it prone to mode collapse in GANs (Zhu et al., 2017). Also,
graph topological patterns are not necessarily preserved during the alignment
and prediction steps (Fig. 1).

On the other hand, a cycle generative adversarial network (CGAN) pro-
posed in (Zhu et al., 2017) adds cycle losses on top of the generative adversar-
ial losses and allows bidirectional translation from the source to the target
domain and solves the issue of GAN mode collapse. Another work (Zhou
et al., 2019) applied cycle consistency in graph transfer mappings between
domains so as to have sufficient similarity between the transferred and the
target domains. However, this cyclic graph generation architecture may not
preserve distinct topological properties of the brain network like the ROI
strength, yet, it is so vital for synthesizing realistic brain connectomes. To
address all these limitations, we propose CGTS: a Cyclic Graph Translation
with topological Strength constraint to enforce the conservation of the brain
ROI (i.e., node) topological strength of the generated brain graph in compar-
ison to the ground truth target graph. We list below the main contributions
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of our proposed CGTS brain connectome generation network (Fig. 1):

• First, we extend deep graph translation approach suggested in (Guo
et al., 2018) to multiview brain connectomes.

• Second, to enforce a bidirectional network translation between the
source and target domains while ensuring significant similarity between
the predicted and target ground truth views, we propose a cyclic graph
translation architecture, composed of a cycle loss, with an intuition
that if we translate from the source view to the target view and back
again, we should be able to we should obtain the source view we initially
started with.

• Lastly, to generate a topologically sound target brain connectomes,
we integrate a topological strength constraint into the brain network
translation model.

2. Proposed method

In this section we detail the steps for the proposed brain graph generation
architectures from a source graph. We denote matrices by boldface capital
letters, e.g., X, vectors are denoted by boldface lowercase letters, e.g., x, and
scalars are denoted by lowercase letters, e.g., x. For easy reference, we have
summarized the major mathematical notations used in this paper in Table 1.

Table 1: Key mathematical notations used in this paper.

Mathematical notation Definition

N total number of subjects in the population
nr total number of regions of interest in the brain (ROIs)
Xi source graph view for the ith subject ∈ Rnr×nr

Yi target graph view for the ith subject ∈ Rnr×nr

Wij weighted adjacency matrix for connectivity weight of ROIs pair i and j ∈ Rnr×nr

Ŷi predicted graph view from the source graph view Xi for the ith sujbect ∈ Rnr×nr̂̂Yi predicted graph view from the intermediate brain graph X̂i for the ith subject ∈ Rnr×nr

U random noise ∈ Rnr×nr

s(i) topological strength of the ROI i
λ constant value
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2.1. Brain graph translation by the GT GAN

To begin with, we adapt the GT GAN architecture proposed in (Guo
et al., 2018) to brain connectomes. GT GAN aims at translating a source
graph to the target graph. For an input graph X = (V,E,W ), where V is
the set of N nodes, E ⊆ V × V is the set of egdes and a weighted adjacency
matrix W ∈ Rnr×nr storing the set of weights for edges, where ei,j ∈ E links
node vi ∈ V to vj ∈ V . Wi,j is the weight assigned to the edge ei,j. In
our case, graph nodes are the anatomical brain ROIs, the weights for edges
are connectivity weights between pairs of ROIs. For a subject i, we aim at
translating a source brain graph view Xi to the target graph view Yi. GT
GAN architecture is composed of a translator T and a graph discriminator D.
Here, given an input graph X, a translator T , trained to generate the target
graph Y, a graph discriminatorD and random noise U which is introduced by
dropout operation (Seltzer et al., 2013) in each convolution and deconvolution
layers of the translator. T and D are adversarially trained to compete with
other, where D acts as a binary classifier to distinguish between T ’s translated
(i.e., predicted target from source) connectome Ŷ and the target connectome
Y. The adverserial loss function Lgan for GT GAN’s training process is
expressed in the following Eq. 1:

Lgan(T,D) =EY[log(D(Y))] + EX,U[log(1−D(T (X,U)))] (1)

By considering findings in (Isola et al., 2017), where better results were
attained by including L1 loss on the GAN loss, the L1 loss is computed
on the weights of adjacency matrices of generated brain connectomes and
ground truth target brain connectomes as shown below:

L1(T,D) =EX,Y[‖Y − Ŷ‖1]

where Ŷ =T (X,U)
(2)

We add the L1 on the total generator loss, and the total loss L therefore
becomes:

L(T,D) =Lgan + λL1(T,D) (3)
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λ regulates the weight attached to the L1 loss. The training process is
modeled as a min-max optimization problem over the adversarial loss func-
tion as follows:

T ∗ = argminTmaxDL(T,D) (4)

T aims at maximizing the loss objective against an adverserial D that aims
at minimizing it.

2.1.1. Brain graph translator

The brain graph translator is composed of convolution and deconvolution
layers as shown in Fig. 2. It aims at simultaneously learning the latent
patterns of brain connectomes and their generic translation mappings from
the input brain connectomic view to the target one. Precisely, it focuses
on learning both the general global (connectome level) translation mappings
and the local brain ROIs properties transformations. Since brain connec-
tomic patterns vary for each brain network sample, sample-specific latent
representations need to be learned by the translation model. In order to
meet this need, a skip-net structure (Ronneberger et al., 2015) is deployed so
as to pass over sample-specific connectomic representations to the decoder’s
layers via the skip connections. The sample invariant brain connectomic
mappings are learnt in the encoder-decoder architecture. Brain network de-
convolution, an extension of graph convolution is adopted in order to preserve
global and local brain network information. The brain graph translator (T )
architecture is illustrated in Fig. 2 where the input brain connectome first
undergoes two edge-to-edge convolutions meant for encoding higher-order
topological information and later embedded into node representation by a
edge-to-node convolution operation. Graph deconvolution layers consist of
one node-to-edge deconvolution operation and two edge-to-edge deconvolu-
tion operations. The graph deconvolution operation is a reverse process of
graph convolution as it decodes the single node or edge information to its
connected neighbouring nodes or edges.

2.2. Cycle graph translation (CGT) GAN

In order to guarantee a bidirectional translation while optimizing the sim-
ilarity between the translated (i.e., generated) and target brain connectomes,
we propose to extend the GT GAN architecture to a cycle graph translation
(CGT) GAN whose architecture is shown in Fig. 2. To this aim, we design
two translators T1 and T2 such that:
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Figure 2: Illustration of the proposed cyclic graph translation using topological strength
(CGTS GAN) framework. The CGTS GAN architecture is composed of two translator
networks T1 and T2 with graph convolution and deconvolution layers. For the forward
direction, X and Y are the source and target brain connectomic views respectively and
in the reverse direction Y becomes the source view while X is the target one to predict.
Translators T1 and T2 are trained adversarially with discriminatorsD1 andD2 respectively.
D2 is analogous to D1 in the opposite direction. The framework allows bidirectional
brain connectomic view translation between the source and target views with two learned
mappings, T1: (X,U) −→ Ŷ and T2: (Y,U) −→ X̂, where U is a random noise. We
enforce cycle consistency on the learning of both translators T1 and T2 with the cycle loss
Lcyc(T1, T2) so that, if any source connectomic view is translated to the target one, and
back again, we should be able to obtain the source view again. In the forward direction,̂̂X = T2(Ŷ,U), and similarly in the opposite direction, ̂̂Y = T1(X̂,U). We also integrate
a graph topology-based loss where we aim to align the distribution of the predicted target
graphs in node strength with that of the ground-truth ones.

{
T1 : (X,U) −→ Ŷ

T2 : (Y,U) −→ X̂

Similarly to the GT GAN, T1 inputs the source brain connectomic graph
X and the random noise U, and outputs the predicted brain connectome
Ŷ for the target ground-truth connectome Y. In a reversed manner, T2 in-
puts the random noise and a source brain connectomic graph Y and outputs
the reversely predicted source brain connectome X̂ from the target ground-
truth connectome. Translators T1 and T2 are adversarially trained with dis-
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criminators D1 and D2 respectively, where D1 is a binary classifier built
on graph convolutional networks (GCN), distinguishing between generated

connectome Ŷ and the ground-truth connectome Y, hence the adversarial
training loss function Lgan is defined as follows:

Lgan(T1, D1) =EY[log(D1(Y))] + EX,U[log(1−D1(T1(X,U)))] (5)

Next, we compute the L1 loss as shown below:

L1(T1, D1) =EX,Y[‖Y − Ŷ‖1] (6)

We then add the L1 loss to the Lgan loss, hence the total loss becomes:

L(T1, D1) =Lgan(T1, D1) + λL1(T1, D1) (7)

Likewise we define the loss of the second translator in our cyclic architec-
ture as:

L(T2, D2) =Lgan(T2, D2) + λL1(T2, D2) (8)

where λ regulates importance attached to the L1 loss. To further enforce
the similarity between the predicted and the target connectomes, we adopt
the cycle consistency loss proposed in (Isola et al., 2017) where, for ̂̂X =

T2(Ŷ, U), and ̂̂Y = T1(X̂, U), we should be able to translate ̂̂X back to
the original brain graph X Fig. 2, likewise, ̂̂Y should be translated back to
its original brain graph Y. These conditions are fulfilled by imposing cycle
consistency loss on brain graph translators as shown below:

Lcyc(T1, T2) =EX [‖X− ̂̂X‖1] + EY[‖Y − ̂̂Y‖1] (9)

The total CGT GAN objective becomes:

L(T1, T2, D1, D2) =L(T1, D1) + L(T2, D2) + λ2Lcyc(T1, T2) (10)
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where λ2 is a hyperparameter to tune the cycle loss. By combining equa-
tions 7 and 8, we can achieve the bidirectional translation without necessarily
imposing the cycle losses on the translators, and thus we term this as Bidi-
rectional Graph Translation GAN (BGT GAN), whose total objective Lbgt
is expressed as:

Lbgt(T1, T2, D1, D2) =L(T1, D1) + L(T2, D2) (11)

The bidirectional graph translation (BGT) GAN is trained in the same
way as the CGT GAN but without the cycle losses.

2.3. Strength topological constraint

Given a graph with weights between its nodes embedded in an nr × nr
weight matrix W, the strength s of a node (brain ROI) i is the sum of the
weights of all links attached to it:

s(i) =
nr∑
j

Wij (12)

where j represents all nodes (brain RIOs) other than i, nr is the total
number of nodes, and Wij denotes the connectivity weight between nodes i
and j, and is greater than 0 if node i is connected to node j. Our goal is
to ensure that specifically, the strength topological properties of brain ROIs
of the target connectomic view are well preserved in the generated views
during the cyclic translation process. In order to achieve this, we impose
the topological strength constraint on the learning of our GAN translators.
The topological strength property is a natural measure of the node’s impor-
tance or centrality in the network (Barrat et al., 2004). Physically, node
strength is interpreted as a weight assigned to a node in a graph (Amano
et al., 2018). For example, in world-wide international airport network, node
strength quantifies the volume of traffic handled by each airport, while in
financial networks it measures each individuals wealth. For a scientific col-
laboration network (Newman, 2001), it represents the number of articles
published by each researcher and in human social life, it measures the total
communication time spent by all individuals while communicating with each
other in a certain time interval (Takaguchi et al., 2011). Brain ROI strength
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is a weighted variant of the topological degree measure, which is commonly
used for identifying hubs in brain networks (Fornito et al., 2016; Rubinov and
Sporns, 2010). It differs from the degree measure in the sense that it accounts
for link weights (Korhonen et al., 2017). Thus, node strength can capture
both the topology information (existence of links) and the network weight
distribution that serves a very vital role in uniquely characterizing nodes
especially in fully connected and weighted networks like brain connectomes.
Moreover, our approach can be easily extended to preserve other topological
properties such as clustering coefficient. We propose to impose the strength
constraint on GT, BGT, CGT GAN architectures, thereby producing new
GTS, BGTS, CGTS architectures, where “S” signifies the inclusion of the
topological strength constraint on any of these brain graph translation ar-
chitectures. We achieve this by computing L1 loss on the strength vectors
of the predicted target and ground truth target graphs using the formula
in Eq. 12. Next, we detail the total loss functions of the GTS, BGTS and
CGTS Lgts, Lbgts and Lcgts, respectively.

2.3.1. Graph translation with strength topological constraint (GTS) GAN

We compute the L1 loss on the strength vectors of the source and pre-
dicted brain graphs as L1stg in the equation below:

L1stg(T1, D1) =EX,Y[‖s(Y)− s(Ŷ)‖1] (13)

where s(X) ∈ R1×nr is a vector storing the strength topological magnitude
of each anatomical ROI in the the graph view X.

The total objective loss Lgts(T,D) is then defined as:

Lgts(T,D) =Lgan + λL1(T,D) + λ1L1stg(T1, D1) (14)

λ and λ1 are hyperparameters to tune the L1 loss and the topological
strength constraint respectively.
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2.3.2. Bidirectional graph translation with strength topological constraint (BGTS)
GAN

In a similar way, we define the new total BGTS loss Lbgts by adding the
topology constraint as follows:

Lbgts(T1, T2, D1, D2) =L(T1, D1) + L(T2, D2)

+ λ1[L1stg(T1, D1) + L1stg(T2, D2)]
(15)

where L1stg(T2, D2) is analogous to L1stg(T1, D1) for network pairs T2 and
D2.

2.3.3. Cyclic graph translation with strength topological constraint GAN (CGTS
GAN)

Here, we not only aim at having bidirectional brain view translation while
ensuring that the strength topological patterns of the brain ROIs in the tar-
get view are preserved in the predicted view, but we also intend to achieve
significant similarity between the translated and target views. Hence, we im-
pose both cycle loss and the strength topological constraints on the translator
learning as shown below:

Lcyc,stg(T1, T2) =EX[‖s(X)− s( ̂̂X)‖1] + EY[‖s(Y)− s( ̂̂Y)‖1] (16)

The total objective function of the CGTS GAN, Lcgts is expressed as
follows:

Lcgts(T1, T2, D1, D2) =L(T1, D1) + L(T2, D2)

+ λ1[L1stg(T1, D1) + L1stg(T2, D2)]

+ λ2Lcyc,stg(T1, T2)

(17)

λ1 and λ2 regulate the weights attached to the topological strength con-
straint and the cycle loss, respectively. Our CGTS-GAN code is available at
https://github.com/basiralab/CGTS-GAN.

3. Results

Evaluation dataset. To evaluate our proposed framework, we used 150
subjects from the Autism Brain Imaging Data Exchange (ABIDE I) public
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dataset 1. For each subject, both right and left cortical hemispheres (RH
and LH) were reconstructed using FreeSurfer (Fischl, 2012). Then, each
cortical hemisphere was split into 35 cortical regions using Desikan-Killiany
atlas (Desikan et al., 2006). Four cortical attributes were assigned to each
vertex on the cortical surface using FreeSurfer. These attributes are the max-
imum principal curvature, the cortical thickness, the sulcal depth, and the
average curvature. Based on these attributes, four morphological networks
(also called views) were generated for each subject. For each cortical view,
the weight of the connectivity between two ROIs i and j is computed as the
absolute difference between the average cortical attribute in ROI i and the
average cortical attribute in ROI j (Mahjoub et al., 2018; Lisowska et al.,
2018; Dhifallah et al., 2019b). We used four views for LH and we named
them view1, view2, view3 and view4, respectively. We illustrate both con-
nectivity weight and topological strength distributions of the brain ROIs in
the ground truth views and predicted views by the different translation GAN
architectures by plotting their kernel density estimates (KDEs) (Silverman,
1986). KDEs are closely related to histograms but more superior in accuracy,
and they allow continuity, there by making it easier to understand modality,
symmetry, skewness and center of the distribution by looking at continuous
lines. Moreover, accuracy of histograms is highly affected by parameters like
bin sizes unlike KDEs where such parameters are not necessary.

Parameter setting. In all experiments, we heuristically set λ = 10, λ1 =
0.01, λ2 = 0.01, epochs to 200, discriminator learning rate to 0.0001, the
generator learning rate to 0.00005, and we used ADAM optimizer (Kingma
and Ba, 2014) for the optimization of the learning models.

Evaluation measures. We trained all the GAN architectures using 5-
fold cross-validation (5-fold-CV). We randomly divided data samples into 5
folds, four folds were used for training and one left-out for testing in each
cross-validation run. In the training phase, the model learns to translate from
the source view to the target one. In the testing phase, the model is fed with
test source brain connectome and outputs the predicted target connectome.
We then compare the predicted connectomic view with the target one (ground

1http://preprocessed-connectomes-project.org/abide/

15

Jo
ur

na
l P

re
-p

ro
of

http://preprocessed-connectomes-project.org/abide/


truth). We use the mean squared error (MSE) as evaluation metric:

MSE =
1

N

N∑
i=1

(Yi − Ŷi)
2 (18)

where Y is the target view. Ŷ denotes the predicted target view. N
represents the number of subjects in the dataset. We translate each view to
other views with different GAN translation architectures we have earlier dis-
cussed in Section 2, e.g., we translate view1 to views 2, 3, and 4. We report
the MSE scores of each translation architecture during these translation by
each architecture, namely GTS, BGTS, CGT, BGT, GTS, GT and GT-CD.
We thereafter obtain the average MSE score of each particular translation
architecture on a source view translation to other target views. Average
MSE scores of translation architectures are shown in Fig. 3. In order to
have an overall comparison of the performance of the proposed brain connec-
tome generative architectures, we report the average MSE for all translations
from all source views. Fig. 4 shows the overall average MSE scores for all
translation architectures from all source views. Our proposed CGTS has the
least MSE score, outperforming the baseline GT-CD and its ablated versions.
In general, bidirectional-based translation architectures outperformed their
unidirectional-based counterparts.

Comparison methods. In Fig. 4, we compare all the MSE scores of all
proposed GAN architectures and the original graph translation GAN (Guo
et al., 2018). As we gradually add architectural elements to the original
graph translation GAN, we observe the target brain connectome prediction
outcomes so as to evaluate the impact of each architectural component to-
wards our desired goal. Firstly, we consider the original graph translation
GAN architecture with its conditioned discriminator (GT-CD) GAN. We
then consider an architecture built without conditioning the learning of the
discriminator on the input graph (GT GAN). We thereafter gradually add
other architectural components such as bidirectionality and target topology
preservation to produce advanced versions of the GT GAN as described in
Section 2.

In Fig. 5, we plot the brain ROIs connectivity weight distributions of the
predicted views by the different brain graph translation GAN architectures
in relation to the ground truth target connectivity weight distributions. Gen-
erally, translation models of different translation architectures are observed
to have learnt the modalities of target data distributions effectively though
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(a) view1 translation to other views (b) view2 translation to other views

(c) view3 translation to other views (d) view4 translation to other views

Figure 3: Average MSE score for translation of views by the different translation GAN architectures,
the y-axis represents the average MSE and the x-axis shows the different translation GAN architectures.
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Figure 4: Overall average MSE score for all views translations for the different translation GAN
architectures, the y-axis represents the average MSE and the x-axis shows the different translation GAN
architectures.

with varying magnitudes of accuracies.
Brain ROIs topological strength distributions of predicted views

for the different brain graph translation methods. Since one of our
objectives is to predict brain connectomes where the topological strength
distribution of the brain ROIs in the target view is aligned with that of the
predicted view, in Fig. 6 we illustrate sample translations to compare the
node strength distributions of connectomic views predicted by graph trans-
lation architectures with topological strength constraints (GTS, BGTS and
CGTS) with the other architectures without the topological strength con-
straint (GT, BGT and CGT), in relation to the ground truth target topolog-
ical strength distributions. Clearly, our proposed CGTS architecture exhibits
better performance over original graph translation architecture and its ab-
lated versions.

4. Discussion

In this paper, we proposed a cyclic brain connectome generation archi-
tecture with a strength topological constraint to (i) enforce a bidirectional
brain connectomic view translation, (ii) maximize the similarity between the
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(a) view3 to view2 translation CGT vs. GT (b) view3 to view2 translation BGTS vs. BGT

(c) view1 to view4 translation CGT vs. GT (d) view1 to view4 translation BGTS vs. BGT

Figure 5: Analysis of brain ROIs connectivity weight distributions for predicted views by different
GAN architectures. Kernel density estimate for brain ROIs connectivity weight distributions for ground
truth (target) view and predicted views by the different proposed translation GAN architectures for a few
brain graph prediction tasks such as predicting view 2 from view3.
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(a) view1 to view2 translation GT vs. GTS (b) view1 to view2 translation BGTS vs. BGT

(c) view3 to view2 translation GTS vs. GT (d) view3 to view2 translation BGTS vs. BGT

Figure 6: Investigating the effect of the strength topological constraint. Kernel density estimate for
brain ROIs’ topological strength distributions for the ground truth (target) view and views predicted by
the different proposed GAN architectures in different prediction tasks. GTS vs. GT, BGTS vs. BGT,
where in each case the former eg. GTS has a strength constraint “S”, and the latter eg. GT is without
the strength constraint. (a) and (b) illustrate view1 to view2 brain graph predictions while (c) and (d)
for view3 to view2 predictions.
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(a) view1 to view4 translation BGT vs. GT (b) view1 to view4 translation CGT vs. GT

(c) view3 to view1 translation CGT vs. GT (d) view3 to view1 translation CGT vs. BGT

Figure 7: Investigating the effect of the cycle loss. Kernel density estimate for brain ROIs’ strength
distributions for the ground truth (target) brain graph and predicted brain graphs by the different proposed
translation GAN architectures for selected prediction tasks. BGT vs. GT, CGT vs. GT in (a) and (b),
respectively, and CGT vs. GT, CGT vs. BGT in (c) and (d), respectively.

21

Jo
ur

na
l P

re
-p

ro
of



predicted and target connectomic views, and (iii) ensure that the topological
strength distribution of nodes in the target brain graphs is aligned with that
of the predicted brain graphs. We achieved these objectives by imposing
both the cycle loss and the strength topological constraints on the learning
of the brain graph translators.

Analysis of prediction accuracy measurement with MSE. Enforc-
ing a cycle consistency loss in CGT GAN architecture served the intended
purpose of maximizing the similarity between the ground truth and the pre-
dicted graphs, and for this reason, CGTS GAN has the least average MSE
in Fig. 4. The two-way directional translation in the bidirectional models
including BGT and CGT yielded better performance as compared to unidi-
rectional ones including GT, since our bidirectional models learnt extra data
modal distributions mappings in the second direction translation. Bidirec-
tional models like BGT, with no cycle loss constraints, allow more diversity in
the predicted brain connectomes as compared to the cycle loss based mod-
els like CGT; thus, CGT has lower average MSE than BGT and so does
for CGTS when compared to BGTS. By comparing the performance of GT
GAN (with unconditioned discriminator) against that of GT-CD GANs in
Fig 4, we notice that for our datasets, on average, it was generally not so
significant to condition the learning of the discriminator on the input brain
graph. Conditioned GANs (cGANs) are typically superior on predicting
multi-modal distributions (Yang et al., 2019), which is not the case with our
datasets (graph views) in general. In addition, as highlighted in (Pang and
Liu, 2020) cGANs need relatively large training datasets to yield good re-
sults, yet we train on only 150 samples. Hence, for the rest of the translation
GAN architectures, we relaxed the conditioning of the discriminator learning
on the input brain network.

Bidirectional based translation (BGT and CGT) vs. unidirec-
tional (GT) translation. Comparisons between bidirectional (BGT, CGT)
and unidirectional (GT) based translations are shown in Fig. 7-(a,b), dis-
tribution of bidirectional translations based translations were closer to the
target distributions (ground truth) than the undirectional ones. In bidirec-
tional translations, during training, the model learnt extra information for
matching distributions patterns of the source to target distributions due to
the back and forth directional nature of the translation, hence outcompeting
the unidirectional based translations.

Analysis of the strength constraint effect. In Fig. 6, we compared
cases with and without the strength topological constraint (i.e., GTS vs. GT,
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BGTS vs. BGT) . The distribution patterns for translations with the topolog-
ical strength constraint were generally closer to the ground truth topological
strength distribution than the ones without the strength constraints. For
example, in Fig. 6-(a), GTS was closer to the target distribution than GT.
This demonstrates the importance of the topological strength constraint in
guiding the learning of the brain translation model towards the conservation
of the strength topological property of brain ROIs of the ground-truth target
views in the predicted views.

Analyzing the cycle loss (CGT vs. GT) effect. In Fig. 7-(c,d), we
investigated the effect of imposing the cycle loss constraint on the translators
in the graph translation architectures by comparing CGT (graph translation
architecture with cycle losses) and GT (similar graph translation architecture
but without cycle losses). Clearly, CGT-based distributions were closer to
the target distribution and depicted the target graph distribution profile
better than GT and BGT-based distributions since the cycle loss constraint
enhanced the similarity between the target and predicted domains (Zhou
et al., 2019).

Analyzing connectivity weight distributions of predicted views
of by different architectures in relation to the target distributions.
In Fig. 5-(a,c), we observe that the CGT GAN based distributions were
closer to the target distributions than GT GAN, since the CGT GAN uti-
lized the advantage of the cycle constraint and bidirectional translation as
explained in the above analysis. Furthermore, in Fig. 5-(b,d), BGTS-based
distributions were closer to the target distributions in comparison with BGT
GAN-based distributions thanks to the strength topological constraint in the
BGTS GAN. Generally, by imposing the strength topological constraint on
the brain graph translators we not only achieved the goal of preserving the
topological strength distribution of the source brain views in the translated
views but we also improved the accuracy of predicted views as their brain
ROIs connectivity weight distributions got closer to the target connectivity
weight distributions.

Limitations and future work. Our work has some limitations. First,
we heuristically set the parameters for regulating the weight of the strength
constraint, implying that our parameter values were not necessarily optimal,
learning how to automatically tune these parameters could yield better re-
sults. Second, our work is limited to a two-way directional translation. In
the future work, to fasten the translation, we will adopt a multi-directional
brain connectomic view translation approach inspired by the works in (Yu
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et al., 2020; Chen and Denoyer, 2017) to train a translation model that si-
multaneously learns to predict in multiple (more than two) directions.

5. Conclusion

In this paper, we proposed a novel cycle-based and topology-aware brain
graph prediction framework from a source graph. We adopted a cycle con-
sistency architecture to enforce bidirectional translation between the source
and target graphs. We also ensured that the essential strength topological
property of the brain ROIs in the target view is significantly aligned with
that of the target view by imposing the strength constraint on the learning
of translators, which not only pushes the topological strength distribution
of the predicted brain connectomic views to near that of the target ground-
truth view, but also shifts the entire ROIs connectivity weight distribution
of the predicted view closer to the connectivity weight distributions of the
target view. We have shown the role and effect of each architectural compo-
nent of the translation architectures we proposed in relation to our overall
objective. So far, we focused on aligning the topology strength distribution
of the ground-truth target graphs and that of the predicted graphs. No-
tably, our framework can easily be extended to conserving more topological
properties such as eigenvector and betweenness centralities on not only brain
connectomes but also other datasets including transport networks and epi-
demiological networks for disease outbreak detection.
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* We propose a topology-constrained prediction of brain connectomes.

* We design a graph GAN for predicting a target brain graph from a source one.

* Our CGTS GAN propels the field of predictive network neuroscience.
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