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Illuminating the dark side of the human

transcriptome with long read transcript
sequencing

Richard I. Kuo1* , Yuanyuan Cheng2,3, Runxuan Zhang4, John W. S. Brown5,6, Jacqueline Smith1,
Alan L. Archibald1 and David W. Burt1,2
Abstract

Background: The human transcriptome annotation is regarded as one of the most complete of any eukaryotic
species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein
coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for
rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or
impossible to differentiate from sequencing noise.

Results: We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the
power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA
achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and
unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore
sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal
Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of
using alignment identity to measure error correction performance does not reflect actual gain in accuracy of
predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping,
resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome
annotation. Using TAMA’s genome assembly based error correction and gene feature evidence, we predicted 2566
putative novel non-coding genes and 1557 putative novel protein coding gene models.

Conclusions: Long read transcript sequencing data has the power to identify novel genes within the highly
annotated human genome. The use of parameter tuning and extensive output information of the TAMA software
package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based
evidence for thousands of unannotated genes within the human genome. More development in sequencing library
preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA
sequencing data.

Keywords: Human, Transcriptome, Long read RNA sequencing, Iso-Seq, TAMA, Annotation, Pacbio, Nanopore, Gene
models, Bioinformatics
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Background
The transcriptome remains a vastly underexplored space
despite its significance as a foundation for biology. Major
challenges for transcriptome annotation of eukaryotic spe-
cies stem from biological complexity, RNA preparation,
limitations of sequencing technologies, and sequence ana-
lysis. The biological complexity of alternative transcription
start/stop sites and splice junctions [1] results in a com-
binatorial array of transcript sequences [2]. To complicate
matters, RNA samples collected from eukaryotic species
contain a mixture of mature functional RNA as well as
pre-processed RNA, degraded RNA, and possible genomic
contamination [3] (Fig. 1a-b). Meanwhile, low-throughput
cDNA sequencing fails to provide coverage for rare/un-
stable transcripts, while short read RNA sequencing
(RNA-seq) present computational challenges in accurate
transcript model reconstruction [4–6]. The ambiguities
created by these combined factors forced previous annota-
tion software to adopt conservative algorithms that filtered
out many real transcripts/genes such as single exon genes
and long non-coding RNA (lncRNA).
High-throughput long read transcript sequencing pro-

vides higher confidence in predicting alternative transcripts
Fig. 1 Long read RNA diversity and splice junction wobble. a RNA samples
as well as DNA fragments that can be erroneously identified as novel gene
not have a 5′ cap or poly-A tail. b Representation of how RNA sample nois
mapping reads can introduce wobble in determination of splice junctions.
between mapped reads. Wobble walking occurs when 3 or more transcrip
the wobble threshold but with the outer pair of exon starts/ends having a
Collapse uses several methods of analyzing wobble to identify true splice j
and distinguishing real genes from sequencing noise [5].
While there have been many studies using long read tran-
script sequencing for transcriptome discovery [7–11], their
sensitivity may have been compromised by the use of or-
thogonal verification/filtering. Filtering transcript models
based on orthogonal information, such as requiring gene
models to have sequence homology to annotated genes
from closely related species, reduces gene discovery and is
only applicable for a small number of species where such
information exists [6].
The use of inter-read error correction in previous

studies by either hybrid approaches (aligning short reads
to long reads) or long read methods (aligning long reads
into clusters) could also cause issues with both reducing
gene detection sensitivity and producing erroneous gene
models. Long read inter-read error correction methods
such as PacBio’s Cluster/Polish method [7] filter out any
reads that do not cluster with at least one other read.
Due to the lower read depth of long read sequencing
methods (relative to short read sequencing), this results
in the removal of many low expressed genes and tran-
scripts. Inter-read error correction methods can also
produce erroneous hybrid sequences since long reads
are typically comprised of a mixture of degraded and immature RNA
s and transcripts. Non-classical RNA here represents lncRNA that do
e appears when mapped to the genome. c Due to sequencing errors,
Wobble is defined as the difference between exon starts/ends
t models have exon starts/ends with each closest pair occuring within
n in between distance greater than the wobble threshold. TAMA
unctions
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with higher error rates have an increased probability of
grouping with other high error rate reads from different
transcripts either from the same or paralogous genes.
This type of error occurs when the alignment of reads is
compromised by regions of high error density. While
this effect could be reduced by requiring high alignment
scores for clustering reads, this would also decrease the
intended effect of rescuing low quality reads.
To leverage the power of long read transcript sequen-

cing and address the issues with current processing pipe-
lines, we developed the Transcriptome Annotation by
Modular Algorithms (TAMA) tool kit. TAMA uses long
read transcript data and high-quality reference genome
assemblies to produce accurate and informative tran-
script models. TAMA is designed to improve transcript
model prediction accuracy and increase transcriptome
discovery with transparent and traceable steps. Evidence,
including raw reads, read counts, local sequencing char-
acteristics (e.g. mismatches, internal poly-A sequencing)
supporting or compromising each transcript model is re-
corded and presented. This makes TAMA useful for sit-
uations where additional types of data, such as public
annotations or short read RNA-seq, are not available [8].
In addition, by not relying on orthogonal information
and having transparent and traceable steps, TAMA also
provides a more agnostic approach to transcriptome an-
notation which can reveal problems with prior assump-
tions from previous annotation efforts.
We report the use of TAMA to analyze the Universal

Human Reference RNA (UHRR) Sequel II Iso-Seq data
released to the public by Pacific Biosciences (PacBio).
This dataset represents the combination of the highest
read depth for long read sequencing on a single human
RNA sample with the highest long read accuracy. As
such, the challenges of analyzing this dataset are applic-
able to all long read transcriptome datasets. We com-
pared different long read based transcriptome assembly
methods to identify corresponding benefits and issues.
Our analyses indicate that long read transcript sequence
data together with appropriate analysis tools has the po-
tential to reveal yet further complexity in eukaryote
transcriptomes.

Results
TAMA – Transcriptome annotation by modular algorithms
TAMA is comprised of modular tools with transparent
algorithms, precise parameter control, and traceable out-
puts to allow users to analyze, interpret, and diagnose
the resulting transcript models. The main analysis func-
tions consist of two modules: TAMA Collapse and
TAMA Merge.
TAMA Collapse uses mapped reads and a reference

genome assembly to create a transcriptome annotation.
TAMA Collapse uses four main methods for identifying
true splice junctions: alignment quality filtration, local
density error filtration (LDE), splice junction ranking,
and splice junction coverage. All of these methods can
be tuned by the user. First, alignment quality filtration is
applied by assessing the alignment length coverage and
alignment identity of each mapped read with respect to
the reference genome. Reads below the user defined
thresholds are discarded. The reads passing this first step
are then examined via the LDE algorithm for the num-
ber of mismatches flanking each predicted splice junc-
tion. Errors around splice junctions exacerbate mis-
mapping and cause the prediction of false splice junc-
tions. This assessment removes reads with high error
density within a specified base pair distance from each
splice junction. The remaining reads are then grouped
based on exon-intron structure allowing for user defined
differences (called wobble in the TAMA nomenclature)
in exon starts and ends measured in base pairs (Fig. 1c).
The predicted splice junctions for the grouped reads are
then ranked based on the flanking mismatch profiles
and coverage. The highest ranked splice junctions are
then used in the final transcript model. A large wobble
threshold can help remove false positive predictions for
splice junctions but may remove real splice junctions
within the wobble length. Thus the LDE algorithm and
splice junction ranking allows for smaller wobble lengths
while also reducing false splice junction predictions.
In addition to rigorously identifying splice junctions,

TAMA Collapse also allows the incorporation of the
confidence of transcript starting sites by running the
program in a capped or non-capped mode. For example,
for 5′ captured RNAs, the capped mode will allow the
transcripts with alternative transcript starting sites to be
retained; while for non 5′ captured RNAs, the non-
capped mode removes transcript models which appear
to be 5′ degraded. The capped mode, requires grouped
mapped reads to have the same number of exons and
the same exon-intron structure. The non-capped mode
is similar to the capped mode but allows for grouped
reads to have differences in the number of exons on the
5′ end reflecting reads derived from RNAs with degrad-
ation from the 5′ end. Thus, all predicted splice junc-
tions for the shorter mapped read model and the 3′ end
would have to match those of the longer model. These
two methods of grouping are described in a previous
study where they were referred to as Transcription Start
Site Collapse (equivalent to capped mode) and Exon
Cascade Collapse (equivalent to non-capped mode) [4].
In addition to the transcriptome assembly, TAMA

Collapse also outputs detailed information showing read
mapping quality, collapsed read groups, predicted se-
quence variation, and transcript models with 3′ genomic
poly-A (genomic contamination or truncated transcript).
These outputs are intended to provide users with a full
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understanding of the behavior of TAMA Collapse and
thus allow users to trace, diagnose, and improve their
transcriptome assemblies.
TAMA Merge combines transcript models by examin-

ing exon-intron structures of transcript models to create
a non-redundant set of genes and transcripts. TAMA
Merge can be used on a single input transcriptome an-
notation to remove redundancy or can be used on mul-
tiple transcriptome annotations to create a unified
annotation. TAMA Merge also produces output files
that can be used to understand the differences between
the input annotations. TAMA Merge uses the same col-
lapsing mode algorithms from TAMA Collapse. One
unique feature of TAMA Merge is the ability to merge
transcript assemblies by assigning different collapsing
modes and transcript model feature priorities between
different annotations. For example, when using TAMA
Merge to combine a long read sequencing derived anno-
tation to a reference annotation, the reference annota-
tion can be given priority for transcription start/end
sites and splice junctions. The user created annotation
can also be set to the non-capped mode to allow user
produced models to collapse with 5′ longer reference
models. The output files from TAMA Merge include de-
tailed reports on how merging was done. These report
files show which input annotations supported each of
the final transcript and gene models as well as the
amount of wobble that occurred at each exon start and
end between merged models.
Along with TAMA Collapse and TAMA Merge, the

TAMA toolkit contains many other tools that either
apply additional filters or add information. Other TAMA
tools used in this study are explained in further detail in
the Methods section. A more detailed description of
how TAMA works can be found here: github.com/Gen-
omeRIK/tama/wiki/.

Benchmarking TAMA and related software
We benchmarked the long read based transcriptome as-
sembly of TAMA, Stringtie2 [9], TALON [10], and Cup-
cake [7] using three different datasets: simulated PacBio
data, simulated Nanopore data, and PacBio Sequel II
Iso-Seq data from Lexogen’s Spike-in RNA Variant
(SIRV) control mix. The simulated PacBio and Nano-
pore reads were produced in a previous study [11] using
PBSIM [12] and were also used for benchmarking in the
Stringtie2 study [9]. The simulated datasets were based
on the annotations of chromosome 19 of the human ref-
erence annotation. Details of the simulated and human
datasets can be found in the supplementary files (Table
S1). Using these simulated datasets, the Stringtie2 study
showed that Stringtie2 outperformed both FLAIR [13]
and Traphlor [14]. We used the same method of assess-
ment as was used in the Stringtie2 study. While these
simulated datasets are useful due to having a ground
truth, they are not entirely accurate in their representa-
tion of long read sequencing data. In particular, the sim-
ulated reads were created by fragmenting transcript
models at random which is not realistic since the frag-
mentation of transcripts is non-random and influenced
by sequence characteristics and sample processing
methods. The simulated PacBio dataset represents reads
equivalent to PacBio Full Length Non-Chimeric (FLNC)
reads. This means that they assume Circular Consensus
Sequence (CCS) intra-read correction was performed
and that adapters and poly-A tails were removed. The
simulated Nanopore dataset is equivalent to Nanopore
reads after removing poly-A tail and adapter sequences.
Since PacBio’s Iso-Seq software (Cupcake) requires spe-
cific PacBio generated metadata that these simulated
datasets do not contain, we could not benchmark Pac-
Bio’s Cupcake software on these datasets. This means
that we could not use PacBio’s Cluster/Polish inter-read
error correction on these datasets. Thus, these simulated
datasets can only be used to assess the effect of random
errors in long reads on the performance of mapping
tools and transcriptome assemblies tools.
To address the issues with simulated datasets, we also

used reads from the Lexogen SIRV spike-in from the
PacBio UHRR Sequel II Iso-Seq dataset. The Lexogen
SIRV control mix contains synthesized RNA molecules
representing 7 expressed loci (18 genes when strand is
accounted for) with 69 unique transcripts. The ground
truth in this dataset is provided by Lexogen in the form
of expected gene models based on their synthetic gen-
ome. However, it is possible that not all RNA from the
SIRV dataset were sequenced and/or there are other
RNA in the SIRV sample which are not represented in
the annotation file provided on the Lexogen website.
This may explain the lower precision of all unguided
pipelines for the SIRV dataset (< 68% precision for all
unguided approaches).
We used GffCompare [15] to calculate the sensitivity

and precision for each pipeline. Sensitivity is defined as
the number of correct transcript models in the predicted
annotation divided by all the transcript models used for
simulation. Precision is defined as the number of correct
transcript models in the predicted annotation divided by
the number of all predicted transcript models. These
scores can be calculated at either the transcript or gene
loci level. These definitions are from the GffCompare
software. This method of calculation is identical to the
method used in the Stringtie2 study [9]. Since TAMA,
Stringtie2, and TALON can be run either with an un-
guided approach or a reference annotation guided ap-
proach, we tested both methods for each of these tools.
Since TAMA is designed for parameter tuning, we ap-
plied two parameter sets for the unguided TAMA

http://github.com/GenomeRIK/tama/wiki
http://github.com/GenomeRIK/tama/wiki
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pipelines which we refer to as TAMA Low and TAMA
High. TAMA Low uses parameters to maximize genic
loci sensitivity at the cost of transcript model precision
while TAMA High uses more stringent parameters to
remove erroneous transcript models. The parameter se-
lection for TAMA High and TAMA Low differs between
the synthetic datasets and the PacBio Sequel II Iso-Seq
data (SIRV and UHRR) since the synthetic datasets have
higher error rates. TAMA High and TAMA Low param-
eter selection is described in more detail in the Methods
section. Briefly, the TAMA High pipeline uses a more
stringent LDE setting (fewer mismatches surrounding
splice junctions), and requires read support from both
SMRT Cells (in the PacBio Sequel II Iso-Seq data) while
TAMA Low has lower stringency settings for LDE and
requires support from only a single read. The TAMA
High requirement of read support from both SMRT cells
can be viewed as a modified form of the method that the
Cluster/Polish step uses to filter out erroneous transcript
models (removing all reads that do not cluster). However,
the TAMA High approach can provide more sensitivity
since it allows for greater variance on the 5′ end of the
transcript models to account for low expressed genes
which may only be represented by a 5′ truncated model in
one of the SMRT cells (where the predicted 5′ complete
model was picked up in the other SMRT cell). This
method of filtration can also provide greater precision
since requiring read support across sequencing runs can
help reduce artifacts caused by technical batch effects.
This algorithm can be adjusted where only a single SMRT
cell or sequencing run was performed by only requiring
multiple read support for each transcript model. This
would still provide greater sensitivity than the Cluster/Pol-
ish method due to the greater allowance in 5′ variability.
The TAMA Guided pipeline matches the transcript
models from the long read data to the input reference an-
notation and adopts the splice junction predictions from
the reference annotation. It discards any models not
matching the reference annotation using the TAMA
Merge algorithm. See Methods section for description of
TAMA Merge and pipeline parameter selection.
For both the PacBio and Nanopore simulated datasets,

guided approaches achieved better sensitivity and preci-
sion as compared to unguided approaches (Fig. 2). The
TAMA Guided approach had the highest precision
across all datasets with slightly less sensitivity as com-
pared to the Stringtie2 Guided approach for the simu-
lated datasets. In the SIRV dataset, the TALON Guided
method achieved a slightly higher sensitivity score as
compared to TAMA Guided. The higher sensitivity
score for TALON Guided was due to the inclusion of
one more transcript model as compared to TAMA
Guided. When we inspected this transcript model found
only in the TALON Guided assembly, we found that it
did not match the supporting reads (Fig. 2f). The reads
used to support the TALON Guided prediction of that
particular transcript model have a long 3′ extension as
compared to the predicted transcript model. This exten-
sion is present in other transcript models in the SIRV
annotation and it appears that these reads likely origi-
nated from 5′ truncated/degraded RNA from those tran-
scripts. This raises the question of why these reads were
assigned to the transcript model and how this might
affect unguided TALON.
The overall better performance of guided approaches

is to be expected because guided approaches essentially
fit the transcript models to an annotation which has
high similarity to the assessment annotation. However,
guided approaches are not as useful for transcriptome
discovery since they only confirm already known gene/
transcript models. Among all the unguided methods,
TAMA Low achieves the best sensitivity for the gene
loci level while TAMA High achieves the highest preci-
sion and sensitivity at the transcript level compared to
the non-TAMA approaches. The SIRV gene loci com-
parison was not included since the SIRV transcriptome
is comprised of only 18 gene loci across 7 scaffolds. All
methods had perfect sensitivity and precision at the gene
loci level for the SIRV dataset.

Effect of inter-read error correction on gene model
discovery
We processed the UHRR Iso-Seq data using four differ-
ent pipelines to understand the effect of pre-mapping
inter-read error correction on gene discovery and model
prediction accuracy (Fig. 3a). The UHRR Iso-Seq dataset
was comprised of two separate Sequel II runs using the
8M SMRT Cells. There were 4,461,529 and 4,473,633
CCS reads generated by the two SMRT Cells which re-
sulted in 3,504,905 and 3,447,471 FLNC reads, respect-
ively. A plot of FLNC read lengths can be found in the
supplementary files (Figure S1). All four pipelines use
TAMA tools since the TAMA High pipeline has the
highest combination of sensitivity and precision com-
pared to all other non-guided methods in the bench-
marking tests and the TAMA Low pipeline has the
highest sensitivity. We compared two pipelines without
inter-read error correction (TAMA Low and TAMA
High pipelines), one pipeline using long read inter-read
error correction (Polish Pipeline), and one pipeline using
hybrid inter-read error correction (Lordec Pipeline). The
Polish pipeline, uses inter-read error correction (in the
form of clustering long reads and using the alignment to
polish the sequences prior to mapping) along with
TAMA Collapse using the same parameters as the
TAMA Low pipeline. The Lordec pipeline, uses LoRDEC
[16] inter-read error correction (aligning short read
RNA-seq data to long reads prior to mapping) with



Fig. 2 Long transcript assembly benchmarking. Sensitivity and precision of guided and unguided long read transcriptome assembly methods. a
Gene loci level for simulated PacBio reads. b Gene loci level for simulated Nanopore reads. c Transcript level for simulated PacBio reads. d
Transcript level for simulated Nanopore reads. e Transcript level for PacBio Sequel II Iso-Seq SIRV reads. f Example of erroneous transcript
prediction by guided Talon where supporting reads are from another transcript model. These supporting reads are from 5′ degraded RNA
resulting in the confusion
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TAMA Collapse (same settings as TAMA Low). For the
Lordec pipeline we used short read RNA-seq data from
the UHRR but from another study [17].
The TAMA Low and Lordec pipelines produced the
most predicted gene and transcript models with more
than 160 K genes and 750 K transcripts (Table 1). These



Fig. 3 Comparing different pipelines on the UHRR Iso-Seq Dataset. a Diagram of workflow for the four pipelines used to analyze the UHRR Iso-
Seq dataset. b Example of the Polish pipeline missing the full length transcript model due to low read coverage for the 5′ complete read. Since
Cluster/Polish filters out any reads that do not cluster with at least one other read, the single read support for the longer model was filtered out
in the Polish pipeline but captured by TAMA. In this case, the truncated model in Polish happens to match a transcript model in the
Ensembl annotation

Table 1 Pipeline comparison

Match type Polish Lordec TAMA low TAMA high

Total Genes 25,731 166,766 168,328 38,743

Total Transcripts 126,288 753,756 752,996 135,218

Ensembl Loci Overlap 19,348 30,835 30,947 21,284

Ensembl Transcript Matches 17,948 24,660 24,691 15,854

Predicted Novel Gene Loci 8519 139,769 141,097 23,302

Predicted Novel Transcripts 106,243 724,316 723,759 118,148

Comparison of gene and transcript numbers across pipelines broken down into different categories. Ensembl loci overlap refers to the number of Ensembl v94
annotation gene models that are overlapped on the same strand by gene models from each Iso-Seq annotation. Transcript matches refer to Ensembl v94
transcript models with identical exon-intron structures as transcript models in each Iso-Seq annotation. The Ensembl v94 human annotation consists of 58,735
gene loci and 206,601 unique transcript models. In some cases, multiple Ensembl gene loci are overlapped by a single Iso-Seq gene locus leading to the
differences between matching loci and predicted novel loci

Kuo et al. BMC Genomics          (2020) 21:751 Page 7 of 22
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extremely high numbers are likely due to issues with the
use of reads with high error rates and reads originating
from transcriptional noise. The Polish pipeline produced
the fewest number of genes and transcript models
(Table 1) while the TAMA High pipeline had over 1.5
times the number predicted genes but with a similar
number of predicted transcripts.

Estimating gene model detection accuracy
While there is no ground truth for the human transcrip-
tome, we used the Ensembl v94 (Release 94, October
2018) human genome reference annotation [18] as a ref-
erence to understand how our results compare to
current annotations. We identified the number of gene
loci and transcript models from the Ensembl annotation
with representation from each pipeline. The TAMA Low
and Lordec pipelines had the highest number of matches
for both gene loci and transcript models indicating high
sensitivity. However, given the high total numbers of
genes and transcripts, the annotations from these pipe-
lines likely contain many erroneous gene and transcript
models. The TAMA High pipeline had more gene loci
matches but slightly fewer transcript matches compared
to the Polish pipeline. This means that there were more
transcripts per gene in the Polish pipeline annotation
(4.9:1) versus the TAMA High annotation (3.5:1). The
higher ratio of transcripts to genes in the Polish pipeline,
as compared to the TAMA High pipeline, suggests that
either TAMA High is filtering out many real alternative
transcripts or that Cluster/Polish is somehow predicting
more erroneous alternative transcript models.
When we investigated the reason for the higher num-

ber of transcript model matches in the Polish annota-
tion, we discovered that in some cases the Polish
transcript models matched the models in the Ensembl
annotation due the removal of reads (by the Cluster/Pol-
ish step) which supported 5′ longer transcript models
(Fig. 3b). In these cases, the mapped reads showed 5′ ex-
tended transcript models with additional 5′ exons along
with 5′ shorter models that may have originated from 5′
degraded RNA molecules. However, since the longer
models had lower read coverage, the Polish pipeline re-
moved them from the transcriptome assembly leaving
only the shorter models that sometimes matched models
in the Ensembl annotation. This tendency toward produ-
cing truncated transcript models could explain the ex-
pansion of alternative transcript predictions in the Polish
Table 2 Comparing 5′ completeness of transcript models between

Match comparison TAMA high longer Poli

TAMA High - Polish 56,198 11,2

TAMA High - Ensembl 15,230 –

Polish - Ensembl – 15,4
pipeline. While it could be argued that these shorter
models are real since they are represented in the
Ensembl annotation, it is also possible that these RNA
are typically rapidly degraded and thus full length repre-
sentations have not been identified in the Ensembl anno-
tation due to a lack of coverage from the supporting
data used by the Ensembl pipelines.

Assessing RNA degradation from Iso-Seq data
To gain a better understanding of the effect that RNA
degradation may have on long read based annotations,
we analyzed the transcript models which had matching
3′ exon-intron structure between the TAMA High (135,
218 transcripts), Polish (126,288 transcripts), and
Ensembl v94 (206,601 transcripts) annotations to see
which annotation had longer 5′ representation (Table 2).
When comparing the TAMA High annotation to the
Polish annotation, there were 67,480 transcript models
with matching 3′ exon-intron structure. Out of those 3′
matching transcript models, 56,198 (83.2%) showed the
TAMA High models as having the longer 5′ representa-
tion with 3357 models (5%) having additional 5′ exons.
This indicates that the Polish pipeline may be producing
a large number of 5′ incomplete transcript models.
While the TAMA High and Polish annotations had simi-
lar numbers of transcript models, roughly half of those
models in each annotation did not have matches be-
tween the annotations. This may be due to differences in
splice junction calls between the two pipelines which is
referred to in this text as splice junction wobble.
When we compared the TAMA High annotation to

the Ensembl annotation using the same method, we
found 23,542 3′ exon-intron structure matching tran-
script models. Out of those matching models, 15,230
(64.7%) showed the TAMA High models as having the
longer 5′ representation with 3521 models (15%) having
additional 5′ exons. Comparing the Polish pipeline an-
notation to the Ensembl annotation using the same
method, we found 26,186 3′ exon-intron structure
matching transcript models. Out of those matching
models, 15,496 (59.2%) showed the Polish models as
having the longer 5′ representation. This could indicate
that over three thousand Ensembl transcript models
have incomplete 5′ ends with missing 5′ exons or that
at least these represent novel alternative transcripts for
these genes. Even though roughly half of the transcript
models (67,480) from the TAMA High and Polish
annotations

sh longer Ensembl longer Total matches

82 – 67,480

8312 23,542

96 10,690 26,186



Fig. 4 Degradation signature analysis. a Pie chart of the 3′ transcript level intersection between the TAMA High, Ensembl, and Polish annotations
with the sections representing the number of 5′ extended transcript models from each annotation. b Diagram of degraded RNA representation
with respect to a genome assembly. The reduced 5′ coverage results in 5′ variability in mapped reads. c Degradation signature by chromosome
per SMRT Cell run
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pipelines had matches between the two pipelines, less
than half (23,542 for TAMA High and 26,186 for Polish)
of those transcript models also matched the Ensembl an-
notation. This suggests that the models matching be-
tween the TAMA High and Polish pipelines but not
found in the Ensembl annotation may represent novel
alternative transcript models. Alternatively, they may in-
dicate a type of systemic error in the transcript model
prediction pipelines.
We then compared the intersection between all three

annotations and identified 19,413 transcripts with com-
mon 3′ regions. Of these transcripts, TAMA High had
the longest transcripts in 65.3% of the matches, Ensembl
in 22.4%, and Polish in 12.3% (Fig. 4a). Although the
Polish pipeline annotation had more 3′ matching
transcript models with the Ensembl annotation in the
two way comparison, the number of 5′ longer tran-
scripts were similar to the TAMA High annotation sug-
gesting that the increase in matches came from Polish
pipeline models which were shorter on the 5′ end as
compared to the matching Ensembl transcript models.
While the 5′ shorter transcript models from the Polish
pipeline may be accurate, these results demonstrate that
the use of transcript model matching for assessing pipe-
line performance (as is used in GffCompare) can be af-
fected by false positives from 5′ incomplete models
where these models happen to match the reference an-
notation. Thus we suggest in depth evaluation of tran-
script models for a more accurate understanding of
pipeline performance.
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A method for estimating RNA degradation from Iso-Seq data
To measure the relative amount of reads originating
from 5′ degraded RNA, we developed a metric called
the “Degradation Signature” (DegSig) which evaluates
the amount of 5′ exon variability in transcript models
(Fig. 4b). The DegSig metric is calculated using the out-
puts from TAMA Collapse runs and inputting them into
the TAMA Degradation Signature tool. The value of
DegSig is given as a percentage which represents the
proportion of reads derived from 5′ degraded RNA (see
Methods for formula). It is important to note that Deg-
Sig only provides an estimate of 5′ degradation with the
caveat that bona fide alternative transcription start sites
and incomplete first strand synthesis in the preparation
of the cDNA library can also produce 5′ exon variability
which can mimic 5′ degradation. To test our DegSig
metric we applied it to two Iso-Seq datasets from
Chicken brain RNA. One dataset was produced from
TeloPrime [19] 5′ cap selected RNA and the other was
produced without 5′ cap selection. The TeloPrime li-
brary should contain a lower percentage of degraded
transcript sequences since it selects for complete capped
RNAs. The non-cap selected data had a DegSig of 56.3%
while the DegSig for the TeloPrime library data was
23.6%, suggesting a large difference in the proportion of
degraded RNA sequences captured as cDNA by the two
different methods. However, there is no ground truth in
any species for the actual amount of 5′ shorter models
with the same 3′ exon-intron structure as longer
models, thus DegSig is only a rough gauge of the pro-
portion of models which may be from degraded RNA.
We ran DegSig on the UHRR Iso-Seq dataset individu-

ally by SMRT cell and chromosome. Almost all chromo-
somes had a DegSig between 32 and 41% (Fig. 4c).
However, the Y chromosome had a DegSig of 26.7 and
27.2% for SMRT Cell 1 and 2, respectively. One explan-
ation for the much lower DegSig on the Y chromosome
may be due to the lack of read depth for the Y chromo-
some (only 629 and 588 reads from SMRT cells 1 and 2,
respectively). Lower read depths can decrease the DegSig
values due to the lack of coverage for each gene. The
range of DegSig for the human data is higher than that
for the chicken 5′ cap selected RNA data, suggesting
that there may be a significant number of reads from de-
graded RNA and thus reduced representation of full-
length transcripts.

Comparing splice junction identification accuracy
To understand the accuracy of each pipeline for predict-
ing splice junctions, we looked at both mapping mis-
match rates as well as splice junction wobble. Wobble
refers to mis-mapping of splice junctions causing small
differences in the genomic loci of mapped features such
as exon boundaries and splice junction donor/acceptor
sites (Fig. 1c) (See Methods for more detailed explan-
ation of wobble). While the mismatch percentage of
mapped reads are often used to assess the improvement
of long read data from different error correction pipe-
lines [20], this metric is actually not as useful for under-
standing the overall improvement in the transcriptome
annotation. In genome-based transcriptome annota-
tions, typically the most important features to identify
are the transcription start sites (TSS), transcription
end sites (TES), splice junctions, and exon chaining.
These features allow for predictions of coding and
promoter regions that are often crucial for down-
stream analyses. Thus, for transcript structure identi-
fication, errors near the splice junctions have a
greater probability of altering the resulting transcript
model than errors occurring farther away from the
splice junctions. This means that the percentage of
errors within a read may not be as impactful as the
distribution of errors. Thus, another metric for the
performance of error correction methods is to assess
the amount of splice junction wobble between the
predicted transcripts and known transcripts.
To demonstrate this concept we looked at the mapping

mismatch profiles for each mapped read for the inter-read
error correction pipelines (Polish and Lordec) and the
pipelines using the mapped FLNC reads (TAMA High
and TAMA Low). Note that the mapped FLNC reads are
the same for the TAMA High and TAMA Low pipelines.
Using the output from TAMA Collapse we looked at

length of mapped read coverage, mapping identity, clip-
ping, insertions, deletions, and substitution errors. These
values represent the comparison of the mapped reads to
the genome assembly and thus only serve as an estimate
of the true rates of error since difference between the
reads and the reference genome assembly may be caused
by real polymorphism. We calculated the average mis-
match rates by counting the number of base pairs that
were not matching between the mapped read and the
genome sequence and dividing this number by the
length of the mapped read. Mismatches evaluated in-
clude soft clipping, insertion, deletion, and substitution
mismatches but do not include hard clipping.
The mapped FLNC reads (used in TAMA High/Low

pipelines) had the highest average predicted mismatch
rate (2.83%) and the highest amount of each type of mis-
match while the Cluster/Polish reads had the lowest
mismatch rates (0.52%) with the lowest amount of each
type of mismatch. The LoRDEC error corrected reads
(average 1.38% mismatch rate) had a similar amount of
clipping mismatches as compared to the mapped FLNC
reads (Fig. 5a). This indicates that LoRDEC correction
may have some issues correcting the ends of reads that
may be due to lower short read coverage at the ends of
transcripts.



Fig. 5 Error rate estimation and wobble across pipelines. a The average percent of alignment mismatch by mismatch type across pipelines. b
Average splice junction wobble across all transcript models which matched the Ensembl annotation in all four pipelines. A splice junction wobble
threshold of 30 bp on each side of the splice junction was allowed for matching for these plots. Note that wobble greater than 30 bp is possible
due to wobble walking. c Scatter plots to illustrate the amount of wobble across all pipelines assessed on the transcript models used in Average
Splice Junction Wobble plot
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We then looked at transcript model accuracy by meas-
uring the wobble at splice junctions with respect to tran-
script models annotated in the Ensembl human
annotation for the four different pipelines (Fig. 5b-c).
Wobble typically occurs due a large number of read er-
rors immediately flanking the splice junctions leading to
small shifts in mapping the ends of each exon [21]. The
total wobble for a splice junction within grouped reads
can be larger than the specified wobble threshold due to
a phenomenon we call wobble walking. Wobble walking
occurs when the predicted exon starts/ends are repre-
sented in staggered formation so that the difference be-
tween each closest pair is still within the wobble
threshold but the difference between the most distant
pair is greater than the threshold (Fig. 1c). The amount
of wobble between the transcript models of each pipe-
line compared to the reference annotation provides a
metric for the accuracy of the transcript models
produced by each pipeline. For instance, the expectation
is that if a transcript model from a long read based an-
notation contains identical splice junctions (a splice
junction wobble of zero) as compared to a reference an-
notation, then the long read based transcript model has
the correct predicted splice junctions. We ignored wob-
ble at the transcript start and end sites due to the high
variance of these features in natural RNA [22, 23]. We
also only assessed Ensembl transcript models that had
coverage from all assessed pipelines to account for the
differences in sensitivity between the pipelines.
The TAMA High pipeline with stringent LDE filtra-

tion had the lowest average wobble values per splice
junction while the TAMA Low pipeline produced the
highest average wobble (Fig. 5b-c). Thus, despite the
lower overall error rates in the mapped reads from the
Polish pipeline, the TAMA High pipeline had more
splice junctions matching the Ensembl annotation. This
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suggests that the LDE filtration in the TAMA High pipe-
line resulted in more accurate identification of splice
junctions.

Inter-read error correction mis-clustering may produce
erroneous gene models
One of the major concerns when using inter-read error
correction methods such as Cluster/Polish and LoRDEC
is the possibility of combining read sequences from dif-
ferent transcripts that would result in erroneous tran-
script models. The different transcripts could be from
different genes (gene-level jumble) or a combination of
alternative transcripts within the same gene (transcript-
level jumble). Gene-level jumble typically occurs due to
the sequence similarity of paralogues within gene fam-
ilies [23]. In both gene-level and transcript-level jumble,
it is more likely that the highest expressed gene or tran-
script within the read clusters will mask the lower
expressed genes. This is because the final cluster se-
quence is determined by sequence coverage. However,
in cases where the read coverage within a jumble cluster
is similar across unique transcripts, it is more likely that
the resulting cluster read will have a mixture of se-
quences from each unique transcript within the cluster.
To investigate how often these jumble events occur,

we compared the read mappings from the mapped
FLNC reads (TAMA Low) to the inter-read error cor-
rected reads (Polish and Lordec) to find reads that
mapped to different genes and transcripts in each com-
parison. While it is possible that the FLNC read map-
pings are erroneous, they represent the read sequences
without any over-correction. Also reads that map to dif-
ferent loci after inter-read error correction indicate that
there is enough sequence ambiguity to call into question
the effect of the inter-read error correction.
Comparing the mapped FLNC reads to the Cluster/

Polish mapped reads, we found 34,637 reads (0.6% of
mapped reads) that switched from one gene locus to an-
other after Cluster/Polish correction (Fig. 6a). This gene
loci switching involved 6774 genes, 3230 of which were
only found with the TAMA Low pipeline while 104
genes were only found with the Polish pipeline. The
asymmetry of the number of unique genes between the
pipelines suggests that Cluster/Polish may reduce gene
discovery by combining reads from low expression genes
with high expression genes.
To assess the effect of hybrid inter-read error correc-

tion on gene level read jumbling, we compared the
mapped FLNC reads to the mapped LoRDEC corrected
reads. There were 19,064 reads (0.3% of mapped reads)
which switched from one gene locus to another (Fig. 6b),
involving a total of 3476 genes, 775 of which were only
found with the TAMA Low pipeline while 675 genes
were only found with the Lordec pipeline.
To gain a more detailed understanding of what happens
during a read jumble event, we examined the PReferen-
tially expressed Antigen of MElanoma (PRAME) gene
family. The PRAME gene family is highly associated with
cancer development [24] and is used as a biomarker for
identifying various forms of cancer. Within the PRAME
gene family there are 24 annotated paralogues [25]. In this
example, the Polish pipeline fails to detect one of the
PRAME paralogues (PRAMEF8) while erroneously pre-
dicting the expression of another paralogue (PRAMEF15)
which has no FLNC mapped read support. The TAMA
Low pipeline (using FLNC mapped reads) finds 9 reads
mapping to PRAMEF8 (Fig. 6c) while the Polish pipeline
(using Cluster/Polish mapped reads) shows no reads map-
ping to PRAMEF8. Of the 9 PRAMEF8 reads from the
TAMA Low pipeline, 5 of these reads were clustered and
combined with other reads (3 from PRAMEF11, 4 from
PRAMEF4, 2 from PRAMEF7, and 3 from PRAMEF27 ac-
cording to FLNC mapping) into 1 cluster read by Cluster/
Polish resulting in a jumbled cluster read mapping to the
PRAMEF15 gene (Polish pipeline). We analyzed the se-
quence similarity between the two paralogues by aligning
the PRAMEF8 and PRAMEF15 transcript sequences with
Muscle [26] and found that they had 76% identity. While
the two genes have similar exonic sequences, the genome
mapping identity for the reads were higher than the se-
quence similarity between the two paralogues. The PRAM
EF8 FLNC read with the lowest genome mapping identity
score had a mapping identity of 89% and 6 PRAMEF8
FLNC reads had mapping identities over 98%. Thus, there
is strong evidence that the reads mapped correctly in the
TAMA Low pipeline and were altered to the point of mis-
mapping in the Polish pipeline. This particular type of
error could have major consequences for studies aimed at
identifying gene biomarker expression.
We also examined how erroneous inter-read error cor-

rection can lead to transcript level jumbling. In this case,
when reads from different transcripts from the same
gene are grouped for error correction, the resulting se-
quence will, at best, represent only the more highly
expressed transcript and, at worst, represent an errone-
ous jumbled sequence. Comparing the TAMA Low pipe-
line to the Polish pipeline, we found 477,351 reads that
mapped to different transcript models within the same
gene. There were 112,891 transcripts affected by
transcript-level jumbling, 44,852 of which were found
only in the TAMA Low annotation while 1372 transcript
were found only in the Polish annotation. Comparing
the TAMA Low pipeline to the Lordec pipeline, we
found 187,829 reads that mapped to different transcript
models. This involved 142,704 transcripts with 7117
transcripts found only in the TAMA Low annotation
and 11,732 transcript found only in the Lordec annota-
tion. It is important to note that this transcript level



Fig. 6 Gene and transcript read swapping from error correction. a Circos plot showing reads mapping to different loci after using Cluster/Polish
for long inter-read error correction. Each line represents one read and the width of each chromosome bin represents the number of reads
(combined thickness of each line). The indented line ends shows FLNC read location and non-indented ends shows read allocation after inter-
read error correction. This plot shows 34,637 reads from 4799 genes moving to 2793 genes after Cluster/Polish. The reads are organized by
chromosome however swapping occurs within chromosome and between chromosomes. b Circos plot as above but after hybrid inter-read
correction with LoRDEC. Each line represents a single read moving from one gene to another with 19,064 reads from 2292 genes moving to
2319 genes after LoRDEC error correction. c The PRAMEF8 gene has coverage from 9 FLNC mapped reads (TAMA Low). Five of these reads were
clustered and combined with other reads into one cluster read by Cluster/Polish resulting in a jumbled cluster read mapping to the PRAMEF15
gene (Polish pipeline). This suggests a false negative for PRAMEF8 and false positive for PRAMEF15 in the Polish pipeline due to the use
of Cluster/Polish
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jumbling assessment is only a rough indication since
without a ground truth for real transcripts it is impos-
sible to know which transcript model is accurate.
To summarize, in both the long and short inter-read

error correction pipelines we saw a significant number
of gene-level and transcript-level read jumbling which
may result in the prediction of gene and transcript
models that are not biologically accurate. Hence, to
avoid read jumbling issues we suggest foregoing inter-
read error correction and instead focus on methods,
such as the TAMA Collapse LDE algorithm, for
removing reads with error profiles that could lead to er-
roneous transcript model predictions.

Analysis of predicted expressed loci not found in the
Ensembl human annotation
Given that the TAMA High pipeline had the highest
sensitivity and precision scores for non-guided annota-
tion in the benchmarking datasets, we used the gene loci
predicted by the TAMA High pipeline to investigate po-
tentially novel genes within the UHRR dataset. To gain
insight into the 23,302 TAMA High predicted gene
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models not found in Ensembl (TAMA High specific
gene models), we looked at several features which pro-
vide support for or against real gene models: coding po-
tential, number of exons, intronic overlap with other
genes, overlap with regulatory features, and the presence
of immediately downstream genomic poly-A stretches.
The combination of coding potential and splice junc-
tions is often used as evidence of a functional gene. Con-
versely, overlap with introns (from other genes),
genomic poly-A stretches immediately downstream of a
gene model, and the absence of splice junctions (single
exon transcripts) provide evidence that the source of the
model could be from either non-functional transcribed
products or genomic contamination.
Coding potential was assessed using three complementary

methods. First, we used an open reading frame sequence
analysis tool, CPAT [27], to detect coding potential. This
method only works when the transcripts models do not con-
tain frame shifts caused by erroneous splice junction calling.
Second, we used TAMA merge to identify gene models that
overlapped the genomic loci (on the same strand) of protein
coding genes within the Ensembl annotation. Third, we used
the TAMA ORF/NMD pipeline which is a frame shift-
tolerant method of matching transcript sequences to peptide
sequences from the UniProt [28] database. We combined
these three methods to account for the various errors that
can cause false negatives in protein coding gene prediction.
Only a small number of the TAMA High predicted gene

models which were not found in the Ensembl v94 annotation
(18 out of 23,302) were supported by all features which are
considered evidence for functionality (multi-exonic, coding,
intergenic, and processed poly-A) (Fig. 7). This is expected
given that these features are used by short read RNA-seq an-
notation pipelines for validation. Therefore, many of the gene
models with these features are likely to have already been
identified within the Ensembl annotation.
There were 1059 TAMA High specific gene models

which were intergenic, single exonic, and had genomic
poly-A. These features are commonly ascribed to gen-
omic DNA contamination. However, the precise mech-
anism for how these sequences make it through to the
final sequencing library is not well characterized.
The two most common sets of features for the TAMA

High specific gene models are “single exonic, non-
coding, intronic gene overlap, and genomic poly-A” at
24% (5679) and “single exonic, coding, intronic gene
overlap, and genomic poly-A” at 19% (4440). These fea-
ture sets are typically used as indicators for non-real
models since they could be derived from internal prim-
ing of unprocessed RNA. However, this would require
further truncation of the template so that the resulting
model does not overlap with transcripts from the gene
of origin. In theory a subset of loci with the first feature
set could be comprised of lncRNA while a subset of loci
with the second feature set could be comprised of proc-
essed pseudogenes. Together, these account for over
43% of the TAMA High specific gene models.
There were 2566 (11% of TAMA High specific gene

models) gene models that were predicted to be non-
coding with processed poly-A tails. Of these, 461 were
multi-exonic while 2105 were single exon genes (Fig. 7).
Given that these models did not overlap any exonic re-
gions of gene models in the Ensembl annotation, this
would represent a large increase in the number of pre-
dicted lncRNA for the human genome.
There were 1557 (7%) TAMA High specific gene

models with features (multi-exonic, coding, intron over-
lapping, and processed poly-A) that are indicative of real
protein coding genes that exist within the introns of larger
genes. However, it is possible that these are alternative
transcripts from the surrounding genes but due to lack of
5′ completeness, the overlapping 5′ exons were not repre-
sented in the transcript models. If these gene models are
derived from alternative transcripts of their surrounding
genes, these models would represent novel transcripts.
These analyses were based on the Ensembl v94 human

annotation, the Ensembl v100 annotation has since been
released. This new Ensembl version has more than a
thousand new lncRNA gene models as compared to v94.
We compared the TAMA High annotation to v100 and
found 144 matching lncRNA genes that were not
present in v94. This raises questions regarding what
exactly is present in our sequencing data and what is the
best way to further dissect this information to produce
biologically meaningful results.
With the UHRR being one of the most carefully pre-

pared RNA samples, this would indicate that researchers
would require more advanced methods of either RNA
preparation and/or sequencing analysis to confidently
identify novel genes.

Discussion
The UHRR PacBio Sequel II Iso-Seq dataset is the result
of one of the most accurate high-throughput long read
transcript sequencing technologies [29] applied to an
RNA library used as a reference for gene profiling exper-
iments. Thus, this dataset represents the technological
limits and challenges that are pertinent to all RNA se-
quencing studies as well as the potential of long read
transcript sequencing for discovering novel genes and
isoforms. To date, there has been a heavy emphasis on
the use of multi-omics or orthogonal data to identify
what is real and functional within the transcriptome.
While this is certainly a powerful means of investigating
novel genes, the pipelines developed for this purpose
often overlook the need to properly process individual
sources of data before integrating across data types.
Using TAMA, we have demonstrated some key issues



Fig. 7 Putative novel genes breakdown. Novel gene breakdown by features. Combinations of features provide support for each gene being
either real and belonging to a specific biotype or not real and the result of erroneous model predictions. The largest feature set faction are
indicative of non-real models. However, there are still thousands of loci with feature sets which are compatible with real genes
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with current long read RNA sequencing data pipelines
that could have a major influence on current transcrip-
tomic studies. Firstly, mis-mapping of reads with se-
quence errors around splice junctions (error generated
wobble) can produce transcript models with false splice
junction predictions. Secondly, RNA degradation can re-
sult in 5′ incomplete transcript models that can have
large downstream effects for data processing and inter-
pretation. Thirdly, inter-read error correction can also
cause false positives and negatives for gene and tran-
script model predictions. Finally, the combination of
these problems also brings up challenges for using long
read data in expression quantification experiments. If a
significant number of reads can change transcript assign-
ment due to either lack of 5′ completeness or changes
in mapping loci after inter-read error correction, quanti-
fication estimates may not reflect the true biological
state. While sequence error correction is currently the
main focus of many long-read bioinformatic tools, it
should not be applied at the cost of biological accuracy
as could be the case for the gene and transcript read
jumbling events from long read and short read inter-
read error correction.
The resulting transcriptome annotation with TAMA
portrays a very different composition of gene models
compared to public transcriptome annotations. These
differences suggest the existence of possibly thousands
of potential novel genes (many of which are classified
within under-represented biotypes) and/or artifacts aris-
ing during the sequencing pipeline.
The underlying issue in all methodologies is the balance

between retaining useful information and discarding mis-
leading information. However, the treatment of long read
RNA data requires customization to accommodate both
the sequencing technology as well as the biological assump-
tions. The TAMA tool kit is designed to allow the user to
tune its behavior. This means that TAMA Collapse and
TAMA Merge can be used with less stringent settings for
maximum discovery potential and/or high stringent param-
eters for curating reference annotations. The resulting gene
models can be assessed with the TAMA ORF/NMD pipe-
line for identifying coding similarity to know protein coding
genes. However, more development is needed for discern-
ing between long non-coding RNA and RNA sample noise.
This may require wet lab methods such as improved 5′ cap
selection for biasing against RNA sample noise.
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From our analyses of the UHRR PacBio Sequel II Iso-
Seq data with TAMA, we have identified that there are
issues with RNA preparation methods and/or there are
still thousands of novel genes that have not been anno-
tated in the human genome.

Conclusions
Long-read transcript sequencing presents new challenges
for annotating transcriptomes. Analysis of the UHRR Pac-
Bio Sequel II Iso-Seq data suggests that there may be
thousands of unannotated non-coding genes within the
human genome. However, the methods for sequencing li-
brary preparation and data processing require more devel-
opment to distinguish expressed genes from sequencing
noise. Wobble analysis should complement read mapping
identity for assessing transcript assembly pipelines. De-
graded RNA within samples can lead to 5′ incomplete
transcript model predictions. Inter-read error correction
(prior to mapping) can cause read jumbling and gene
model ambiguity. Read jumbling represents one challenge
for using long read data for quantification. Long-read se-
quencing analysis benefits from tools (such as TAMA)
which allow for algorithmic tuning to accommodate se-
quencing error rates and biological assumptions.

Methods
TAMA Version Commit 39c1270c6e1ef2cf5d39f7f047-
fa15e0f1a6c790 was used for this study.
More detailed information on how TAMA works can

be found here:
https://github.com/GenomeRIK/tama/wiki

Wobble
Wobble is defined in this text as the distance measured
in bases between the mapped starts and ends for exons.
This term is used to describe small differences (< 50 bp)
in predicted starts/ends based on mapped reads. These
differences can occur due to real differences in starts/
ends or due to errors in the reads flanking the starts/
ends. For example, if a read has a number of missing
bases immediately flanking a splice junction (SJ are com-
prised of one exon start and one exon end), the pre-
dicted splice junction from mapping may be off by the
same number of missing bases. TAMA Collapse and
TAMA Merge both use wobble to allow for the grouping
of reads to be collapsed into a single transcript model.
This is assessed by comparing every pair of transcript
models within the same genomic loci (at least 1 bp same
strand overlap connecting all loci grouped reads). In
each pair assessment, each exon start and end from each
predicted transcript model is compared to see if they
occur within the user defined wobble threshold.
Due to this allowance of wobble between predicted

starts and ends of exons, a phenomenon termed in this
text as wobble walking can occur (Fig. 1c). Wobble walk-
ing is defined as a situation where 3 or more transcript
models have exon starts or ends where the most up-
stream exon start/end prediction and the most down-
stream exon start/end prediction occur at a distance
greater than the wobble threshold. However, the other
exon start/end positions occur in such a way that when
ordered based on genomic position there are no con-
secutive pairs of exon starts/ends which are farther apart
than the wobble threshold. Thus by using the pairwise
non-stochastic method of matching transcript models,
all transcript models in this situation would match due
to the linking effect across all represented exons starts/
ends. When this situation occurs, the distance between
the exon starts/ends between the grouped transcripts
used for collapsing can be greater than the user defined
wobble threshold.

TAMA collapse
TAMA Collapse performs multiple functions: transcrip-
tome assembly, variant calling, genomic downstream
poly-A detection, and transcript/gene level quantifica-
tion. The primary function is to create a non-redundant
error corrected genome reference based transcriptome
annotation. TAMA Collapse takes as input a sorted
SAM/BAM file representing long read RNA sequencing
data mapped onto a reference genome assembly as well
as a fasta file representing the reference genome assem-
bly used for mapping. TAMA Collapse is designed to be
highly tunable and relies on 4 main parameters to define
its behaviour: wobble thresholds, collapse mode, splice
junction ranking, and the amount of mapping mismatch
surrounding splice junctions (LDE).
The wobble thresholds and collapsing modes are used

to define how mapped reads are grouped for collapsing.
Wobble thresholds can be defined for the TSS, TES, and
SJ. Wobble thresholds are given in integer values repre-
senting base pair distances. These thresholds define the
limit between two features (such as TSS) to be consid-
ered a matching feature. There are two collapsing modes
which are termed capped and non-capped modes. The
capped mode requires that all grouped transcript models
(mapped reads) have the same number of exons and all
their exons have matching start and end sites as per the
user defined wobble thresholds. Matches are performed
pairwise in a non-stochastic algorithm. This pair-wise
matching is what leads to wobble walking.
The splice junction ranking and local density error al-

gorithm are designed to identify the most likely real
splice junctions given a group of matching transcript
models. Both the splice junction ranking and LDE rely
on user defined threshold of distance from SJ to assess.
The LDE feature can be turned on or off. When turned
on, the user can specify the distance from the splice

https://github.com/GenomeRIK/tama/wiki
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junction to assess and the number of allowed mis-
matches within that distance. If the number of mis-
matches exceed the threshold, the read is discarded.
This is intended to prevent erroneous splice junction
predictions. The splice junction ranking can be turned
on or off by the user. When turned off, the splice junc-
tions are selected based on the the highest read cover-
age. When splice junction ranking is turned on, TAMA
Collapse ranks the splice junction read support based on
the amoun of mismatches flanking the splice junctions.
In this method, a splice junction with read support
where there are no mismatches flanking the splice junc-
tion is given the highest rank and chosen as the final
predicted splice junction.
While TAMA Collapse has multiple file outputs, the

main output is a bed12 formatted annotation file con-
taining all non-redundant transcript models.
TAMA merge
TAMA Merge is designed to remove transcript model
redundancy either between multiple input annotations
or within a single input annotation. TAMA Merge ac-
cepts as input 1 or more annotations in bed12 format.
TAMA Merge has multiple output files, however the
main output file is an annotation file in bed12 format.
TAMA Merge also keeps track of the transcript models
and their source annotation which were “merged”. This
means that for each transcript model, TAMA Merge
provides information on which input annotations had
transcripts matching it. TAMA Merge uses the same
wobble parameter/algorithm and collapsing modes as
TAMA Collapse. However, individual input files can be
assigned different collapsing modes. This is useful for
merging long read data which is likely to contain 5′
truncated transcript models with a reference annotation.
In addition to collapsing mode and wobble thresholds,
TAMA Merge allows user to assign priority to different
input annotation for features such as TSS, TES, and SJ.
For instance, a short read derived annotation can be
given priority for SJ, while a long read annotation can be
given priority for TSS and TES.
TAMA read support levels
The tama_read_support_levels.py tool is designed to
generate a file that relates each transcript and gene
model with the ID’s of reads which were used to gener-
ate those models. This can also be thought of as produ-
cing read count information for transcripts and genes.
The tama_read_support_levels.py tool works on all an-
notation output files from all TAMA modules as well as
on PacBio annotation files. This tool was used to identify
reads that were involved in read jumbling.
TAMA filter fragments
The tama_remove_fragment_models.py tool is used to
remove transcript models that appear to be fragments of
full length models. The criteria for fragment models is
that they contain the same internal exon-intron struc-
ture as a transcript that is longer on both the 5′ and 3′
ends. The splice junction wobble can be adjusted by the
user.

TAMA remove single read models
The tama_remove_single_read_models_levels.py tool is
used to filter a transcriptome annotation based on the
amount of read support for each transcript model. This
can be run on either the results of TAMA Collapse or
the results of TAMA Merge. When used with TAMA
Merge with multiple input annotations, tama_remove_
single_read_models_levels.py can filter out models based
on the number of supporting sources for each transcript
model. When TAMA Merge is used to merge a long
read data based annotation with a reference annotation.
tama_remove_single_read_models_levels.py can be used
to filter out models in the long read annotation that do
not match the reference annotation. This is how TAMA
performs guided annotation.

TAMA find model changes
The tama_find_model_changes.py tool is designed to
identify reads which have different transcript/gene
model assignments between different pipelines. This is
referred to as read jumble in this study. This tool takes
as input a TAMA Merge annotation which was gener-
ated by merging annotations from the 2 pipelines to be
compared. This tool also requires a read support file
generated by tama_read_support_levels.py. Read jumbles
are identified by using the read ID’s and comparing the
transcript models they are assigned to within the TAMA
Merge annotation file. Any read that supports more than
1 transcript model is considered to be involved in a read
jumbling event.

TAMA ORF/NMD pipeline
The TAMA ORF/NMD pipeline is a method for identi-
fying open reading frames (ORF) from transcript models
and relating them to known protein coding genes. Non-
sense mediated decay (NMD) product predictions are
also made by identifying stop codons which occur 50 bp
upstream of a splice junction. The first step of the pipe-
line is the conversion of the transcript nucleotide se-
quences into amino acid sequences. This is done by
looking for all ORF’s which have a stop codon and
selecting the longest ORF’s from each frame (3 forward
strand frames). Start codons are not required for an
ORF prediction, however, if a start codon is not found,
the corresponding ORF is labeled as evidence that the
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transcript is from a degraded RNA. BlastP is then used
to relate the resulting amino acid sequences to a protein
database. The ORF from each transcript with the best
hit to the database is then selected as the predicted true
ORF. Using the ORF information, the transcripts are
then labeled with attributes based on the protein hit.

TAMA degradation signature
The TAMA Degradation Signature (DegSig) score is
intended to provide a metric for the relative amount of
sequencing reads originating from degraded RNA. The
DegSig score is calculated by the following formula:
DegSig = (CT −NT)/CT
Where CT is the number of multi-exon transcript

models from genes with more than 1 read support after
using TAMA Collapse with the capped mode, and NT is
the number of multi-exon transcript models from genes
with more than one read support after using TAMA
Collapse with the no_cap mode.

Simulated long read datasets and processing for
benchmarking
The simulated PacBio and Nanopore datasets (https://
figshare.com/articles/RNA_benchmark_datasets/536
0998) were produced in another study [11] using PBSIM
[12]. These datasets were also used and described in the
Stringtie2 paper [9].
Both datasets were mapped to chromosome 19 of the

human reference genome as provided in the simulated
dataset. Minimap2 [30] (version 2.15-r915-dirty) with
the parameters “--secondary=no -ax splice -uf” was used
for mapping. Samtools [31] (version 1.9) was used for all
SAM/BAM file handling.
For the TAMA Low processing, TAMA Collapse was

used with the parameters “-d merge_dup -x ${capflag} -a
200 -z 200 -sj sj_priority -log log_off -b BAM”. For the
TAMA High processing, TAMA Collapse was used with
the parameters “-d merge_dup -x no_cap -a 300 -m 20
-z 300 -sj sj_priority -lde 3 -sjt 10 -log log_off -b BAM”.
After TAMA Collapse, both TAMA Low and TAMA
High shared the same processing with tama_remove_
fragment_models.py used with default parameters to re-
move transcript models that appear to be fragments of
longer models. This resulted in the final annotations for
both pipelines.
For the TAMA Guided pipeline, the output from the

TAMA Low TAMA Collapse run was merged with the
reference annotation containing both expressed and
non-expressed transcript models using TAMA Merge
with “-a 300 -z 300 -m 20 -d merge_dup” parameters.
The input filelist.txt file for TAMA Merge set both an-
notations to capped mode with full priority (1,1,1) given
to the reference annotation. The tama_remove_single_
read_models_levels.py tool was then used with “-l
transcript -k remove_multi -s 2” parameters resulting in
the final annotation. The tama_read_support_levels.py
tool was used at each step of processing to keep track of
read support for each transcript model.
For the Stringtie2 pipeline, Stringtie2 (v2.1.3b) was

used with the “-L” parameter after mapping.
For the Stringtie2 Guided pipeline, Stringtie2 (v2.1.3b)

with “-L -G <reference annotation>” parameters was
used. The reference annotation used was the same anno-
tation as used in in TAMA Merge for the TAMA
Guided pipeline.
For the TALON pipeline (unguided), a blank database

was created using “talon_initialize_database” with default
settings and an empty GFF file. Then “talon_label_reads”
was used with “--t 1 --ar 20 --deleteTmp” parameters.
Then default “talon” was used. This was followed by
“talon_filter_transcripts” using “--maxFracA 0.5 --min-
Count 5 --minDatasets 1” parameters. The default
“talon_create_GTF” was used to create a GTF file for the
annotation.
For the TALON guided pipeline, a database was cre-

ated using “talon_initialize_database” with default set-
tings and the same GFF reference annotation file used
for TAMA Guided and Striingtie2 Guided. Then default
“talon” was used. This was followed by “talon_filter_
transcripts” using” --maxFracA 0.5 --minCount 1
--minDatasets 2″ parameters. The default “talon_create_
GTF” was used to create a GTF file for the annotation.
All resulting annotations were compared to the anno-

tation file containing all expressed transcript models
using GffCompare (v0.11.2).

Universal human reference RNA and PacBio sequencing
RNA and cDNA library preparation and sequencing
were undertaken by Pacific Biosciences. Pacific Biosci-
ences made the data available for public use via a Github
repository (https://github.com/PacificBiosciences/Dev-
Net/wiki/Sequel-II-System-Data-Release:-Universal-Hu-
man-Reference-(UHR)-Iso-Seq). The RNA library was
first created by pooling the Universal Human Reference
RNA (Agilent) with SIRV Isoform Mix E0 (Lexogen).
cDNA was prepared from the RNA using the Clontech
SMARTer kit. The sequencing library was prepared
using the Iso-Seq Template Preparation for Sequel Sys-
tems (PN 101–070-200) and Sequencing Sequel System
II with “Early Access” binding kit (101–490-800) and
chemistry (101–490-900). The sequencing library was
sequenced on two Sequel II SMRT cells.

Iso-Seq processing
The UHRR Sequel II Iso-Seq data was processed into
CCS reads using the ccs tool with the parameters
“--noPolish --minPasses = 1”. CCS reads with cDNA
primers and polyA tails were identified as full-length,

https://figshare.com/articles/RNA_benchmark_datasets/5360998
https://figshare.com/articles/RNA_benchmark_datasets/5360998
https://figshare.com/articles/RNA_benchmark_datasets/5360998
https://github.com/PacificBiosciences/DevNet/wiki/Sequel-II-System-Data-Release:-Universal-Human-Reference-
https://github.com/PacificBiosciences/DevNet/wiki/Sequel-II-System-Data-Release:-Universal-Human-Reference-
https://github.com/PacificBiosciences/DevNet/wiki/Sequel-II-System-Data-Release:-Universal-Human-Reference-
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non-concatemer (FLNC) reads using lima (−-isoseq –
dump-clips) and isoseq3 refine (−-require-polya).
Lexogen SIRV Iso-Seq dataset benchmarking
The UHRR Sequel II Iso-Seq data also contained a spike-
in of Lexogen SIRV RNA. For the Cupcake pipeline we
used the FLNC reads from each SMRT cell and used
Cluster/Polish for long read inter-read error correction.
We then mapped the resulting reads using Minimap2
(−-secondary = no -ax splice -uf -C5) to the “SIRV_iso-
forms_multi-fasta_170612a.fasta” reference genome as-
sembly provided by Lexogen. After mapping we ran
Cupcake Collapse “collapse_isoforms_by_sam.py” with the
Cupcake manual recommended settings “--dun-merge-5-
shorter”. We then used Cupcake “chain_samples.py” to
merge the assemblies from each SMRT Cell. This resulted
in the final annotation for the Cupcake pipeline.
For all the other pipelines (TAMA Low, TAMA High,

TAMA Guided, Stringtie2, Stringtie2 Guided, TALON,
and TALON Guided), we mapped the FLNC reads to
the same reference genome as above using the same pa-
rameters for Minimap2.
For the TAMA Low processing, TAMA Collapse was

used with the parameters “-d merge_dup -x no_cap -sj
sj_priority -log log_off -b BAM -lde 5 -sjt 20 -a 100 -z
100”. For the TAMA High processing, TAMA Collapse
was used with the parameters “-d merge_dup -x no_cap
-sj sj_priority -log log_off -b BAM -lde 1 -sjt 20 -a 100
-z 100”. After TAMA Collapse, both the TAMA Low
and TAMA High pipelines used TAMA Merge (−a 100
-z 100 -d merge_dup) was used to merge the TAMA
Collapse outputs from each SMRT Cell. The tama_re-
move_single_read_models_levels.py tool was then used
with “-l transcript -k remove_multi -s 2” parameters
resulting in the final annotation. The tama_read_sup-
port_levels.py tool was used at each step of processing
to keep track of read support for each transcript model.
For the TAMA Guided pipeline, TAMA Collapse (−d

merge_dup -x capped -sj sj_priority -log log_off -b BAM
-a 0 -m 0 -z 0) was used on the Minimap2 output files for
each SMRT Cell. TAMA Merge (−d merge_dup -a 0 -m 0
-z 0) was then used to combined the TAMA Collapse out-
puts from each SMRT cell. TAMA Merge (−d merge_dup
-a 0 -m 0 -z 0) was then used again to match the output
with the SIRV annotation file (SIRV_isoforms_multi-fasta-
annotation_C_170612a.gtf).. The tama_remove_single_
read_models_levels.py tool was then used with “-l tran-
script -k remove_multi -s 2” parameters resulting in the
final annotation. The tama_read_support_levels.py tool
was used at each step of processing to keep track of read
support for each transcript model.
For the Stringtie2 pipeline, Stringtie2 (v2.1.3b) was

used with the “-L” parameter after mapping.
For the Stringtie2 Guided pipeline, Stringtie2 (v2.1.3b)
with “-L -G <reference annotation>” parameters was
used. The reference annotation used was the same anno-
tation as used in in TAMA Merge for the TAMA
Guided pipeline.
For the TALON pipeline (unguided), a blank database

was created using “talon_initialize_database” with default
settings and an empty GFF file. Then “talon_label_reads”
was used with “--t 1 --ar 20 --deleteTmp” parameters.
Then default “talon” was used. This was followed by
“talon_filter_transcripts” using “--maxFracA 0.5 --min-
Count 10 --minDatasets 2” parameters. The default
“talon_create_GTF” was used to create a GTF file for the
annotation.
For the TALON guided pipeline, a database was cre-

ated using “talon_initialize_database” with default set-
tings and the same GFF reference annotation file used
for TAMA Guided and Striingtie2 Guided. Then default
“talon” was used. This was followed by “talon_filter_
transcripts” using” --maxFracA 0.5 --minCount 5
--minDatasets 2″ parameters. The default “talon_create_
GTF” was used to create a GTF file for the annotation.
All resulting annotations were compared to the Lexo-

gen SIRV annotation file (https://www.lexogen.com/wp-
content/uploads/2018/08/SIRV_Set2_Sequences_170612
a-ZIP.zip) using GffCompare (v0.11.2).

Chicken brain RNA and PacBio sequencing
The non-cap selected chicken brain Iso-Seq data is from
the European Nucleotide Archive submission PRJEB13246
which was previously analyzed and published [4].
The cap selected chicken brain Iso-Seq data was

from an adult Advanced Intercross Line chicken
whole brain sample. The RNA was extracted from the
tissue sample using the Qiagen RNeasy Mini Kit. The
RNA was converted to cDNA using the Lexogen Tel-
oPrime kit. The resulting cDNA library was sent to
Edinburgh Genomics for sequencing on the Sequel
system using 2.0 chemistry.

TAMA low pipeline for UHRR
Full descriptions of the TAMA algorithms can be found
in the wiki pages of the Github repository (https://
github.com/GenomeRIK/tama/wiki). FLNC reads were
mapped to GRCh38 (Homo_sapiens.GRCh38.dna_
sm.primary_assembly.fa) using Minimap2 (−-secondary =
no -ax splice -uf -C5 -t 8). The resulting bam files were
then split into 12 smaller bam files using tama_
mapped_sam_splitter.py which splits bam files by
chromosome thus preventing splitting between reads
from the same gene. Split bam files were annotated
using TAMA collapse (−d merge_dup -x no_cap -a 100
-z 100 -sj sj_priority -lde 5 -sjt 20 -log log_off) then
merged into a single bed file using TAMA merge (−a

https://www.lexogen.com/wp-content/uploads/2018/08/SIRV_Set2_Sequences_170612a-ZIP.zip
https://www.lexogen.com/wp-content/uploads/2018/08/SIRV_Set2_Sequences_170612a-ZIP.zip
https://www.lexogen.com/wp-content/uploads/2018/08/SIRV_Set2_Sequences_170612a-ZIP.zip
https://github.com/GenomeRIK/tama/wiki
https://github.com/GenomeRIK/tama/wiki
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100 -z 100). The tama_read_support_levels.py tool was
used at each step of processing to keep track of read
support for each transcript model.
TAMA high pipeline for UHRR
TAMA collapse was run on the split bam files using
more stringent parameters that filter out any mapped
read with more than 1 error within 20 bp of a splice
junction (−d merge_dup -x no_cap -a 100 -z 100 -sj sj_
priority -lde 1 -sjt 20 -log log_off). Merging was done in
the same manner as the TAMA Low pipeline. Transcript
models supported only by reads from a single SMRT
Cell were filtered out using tama_remove_single_read_
models_levels.py (−l transcript -k remove_multi -s 2).
The tama_read_support_levels.py tool was used at each
step of processing to keep track of read support for each
transcript model.
Polish pipeline for UHRR
FLNC reads from the isoseq3 refine step were clustered
using isoseq3 cluster and isoseq3 polish with default pa-
rameters. The output high-quality transcripts were
mapped to the genome using Minimap2 (−-secondary =
no -ax splice -uf -C5 -t 8) and processed using TAMA
collapse (−d merge_dup -x no_cap -a 100 -z 100 -sj sj_
priority -lde 5 -sjt 20 -log log_off). The tama_read_sup-
port_levels.py tool was used at each step of processing
to keep track of read support for each transcript model.
Lordec pipeline for UHRR
FLNC reads from the isoseq3 refine step were error corrected
using LoRDEC (−k 31 -s 3) with short read RNA-seq data
from the Universal Human Reference RNA (Agilent)
(https://www.ncbi.nlm.nih.gov/sra/SRX1426160) (https://rna-
journal.cshlp.org/content/22/4/597.full.pdf). The resulting
error-corrected reads were processed in the same way as the
TAMA Low starting from the mapping step. The tama_
read_support_levels.py tool was used at each step of process-
ing to keep track of read support for each transcript model.
Finding transcript matches and loci overlap between Iso-
Seq annotations and the Ensembl annotation
We used TAMA Merge to compare the annotations
from each Iso-Seq pipeline (TAMA Low, TAMA High,
Polish, and Lordec) to the Ensembl v94 annotation. All
input annotations were set to capped mode in the input
fielist.txt files. The “-a 300 -z 300 -m 0 -d merge_dup”
parameters were used to run TAMA Merge. Transcript
matches were identified from the trans_report.txt file
while gene loci overlap was identifed from the gene_
report.txt file.
Comparing 5′ completeness between the TAMA high,
polish, and Ensembl v94 annotations
We used TAMA Merge to compare the annotations for
pairs of annotations (TAMA High-Polish, TAMA High-
Ensembl, Polish-Ensembl). Both annotations in each
merging were given no_cap parameters in the filelist.txt
input file. We used the same TAMA Merge settings as
were used for identifying matching transcript models be-
tween annotations. We used the TAMA Merge trans_
report.txt output file to identify which source annotation
had the longer 5′ representation for each matching tran-
script model.

Degradation signature analysis
We split the SAM files from the mapping by chromo-
some. We then used these single chomosome SAM files
as inputs to 2 TAMA Collapse runs. One TAMA Col-
lapse run used the capped mode and the other run used
the no_cap mode. Both runs used “-a 100 -z 100 -sj sj_
priority -lde 5 -sjt 20 -log log_off -b BAM” parameter
settings. We then used the trans_read.bed files from
each pair of TAMA Collapse runs as inputs for the
tama_degradation_signature.py tool which calculated the
DegSig scores.

Mismatch and wobble analysis
The mismatch profiles for the mapped FLNC, Cluster/
Polish corrected, and LoRDEC corrected reads were ex-
tracted from the TAMA Collapse read.txt output files
generated in each pipeline.
To assess the wobble between each pipeline and the

Ensembl annotation, we used TAMA merge with param-
eter settings (−a 300 -z 300 -m 30 -d merge_dup) which
considers any transcripts which have up to 300 bp differ-
ence in their transcription start and end and up to 30 bp
difference in their splice junctions starts and ends to
have “nearly identical structures”. This is the definition
for matching at transcript level.

Read jumbling analysis
Read ID’s were tracked through each processing step
using the tama_read_support_levels.py tool. TAMA
Merge was used to combine the annotations from the
different pipelines (TAMA Low-Polish, TAMA Low-
Lordec) using the same parameters as the was used in
the wobble analysis. The TAMA Merge output and
tama_read_support_levels.py outputs were used as input
for the tama_find_model_changes.py tool that identified
reads which had different transcript model assignment
between each pair of pipelines.

Coding potential analysis
For the Ensembl match evidence of coding potential, we
labelled the Iso-Seq annotation genes as coding if they

https://www.ncbi.nlm.nih.gov/sra/SRX1426160
https://rnajournal.cshlp.org/content/22/4/597.full.pdf
https://rnajournal.cshlp.org/content/22/4/597.full.pdf
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had any overlap on the same strand as an Ensembl-
annotated protein coding gene.
CPAT was used with default parameters and the

built-in Human Hex models. A cutoff score of
0.364 (suggested by the CPAT creators [27]) was
used to segregate between coding and non-coding
transcripts.
We used the TAMA ORF/NMD pipeline for the third

source of coding evidence. The transcript models were
converted into fasta sequences using Bedtools [32].
ORFs were predicted for each transcript from the fasta
file then translated into amino acid sequences. BlastP
[33] (−evalue 1e-10 -ungapped -comp_based_stats F) was
used to match the amino acid sequences to the UniRef90
database, where the top hits were selected as the best
ORF prediction. Transcripts with no hits were consid-
ered to be non-coding.

Matching TAMA high annotation to Ensembl v100
For identifying gene models found in the Ensembl v100
human annotation matching gene models predicted in
the TAMA High annotation which were not present in
the Ensembl v94 human annotation, we used TAMA
Merge with “-m 0 -a 300 -z 300” parameters in capped
mode for all three annotations (TAMA High, Ensembl
v94, and Ensembl v100). These parameters group tran-
script models between the annotations if they share the
exact same splice junctions and exon chaining but with
an allowance of up to 300 bp difference in TSS and TES.
We then identified all gene models which were the prod-
uct of merging a TAMA High annotation gene with an
Ensembl v100 gene and with no Ensembl v94 gene rep-
resented for that loci.
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