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ABSTRACT

Scientific interest in the mathematical modelling of pollen tube growth has increased
steadily over the last few decades. The highly localized and rapid nature of this growth
necessitates large—scale actomyosin transport of cellular material throughout the cell cy-
toplasm. This directed movement of cellular material induces a flow in the cytosol, also
known as ‘cyclosis’. The extent to which inclusion of this flow is important to mod-
elling the distribution of elements in the cytoplasm is currently unclear, with its effect
often conflated with that of actomyosin transport. In this thesis, a finite volume method
(FVM) is developed for the numerical evaluation of transport equations describing vesicle
distribution in the pollen tube cytoplasm. This is coupled with a novel method of regu-
larized ringlets, derived via analytical azimuthal integration of the regularized Stokeslet,
for obtaining numerical solutions to axisymmetric Stokes flows. Using this method of
regularized ringlets, we present an axisymmetric velocity profile for cytosolic flow in the
pollen tube based on the drag induced by actomyosin vesicle transport. When used in the
transport equation for vesicle distribution, we find that recreation of the apical ‘inverted

vesicle cone’ requires the use of an enlarged effective fluid viscosity amongst other results.
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CHAPTER 1

INTRODUCTION

1.1 On the importance of plants

Throughout history, plants have been essential to our survival. This is a point that is
well illustrated in John Lindley’s excellent introduction to ‘ The Vegetable Kingdom,’ [84]
in which he writes: “We may assume it as a certain fact that the Vegetable Kingdom was
the first to engage the attention of man, for it was more accessible, more easily tuned to
useful purposes, and more directly in contact with him than the Animal. Plants must
have yielded man his earliest food, his first built habitation; his utensils and his weapons
must alike have been derived from the same source.” Some of the most important modern
uses of plants are as a source of food (both for ourselves and for livestock), as a basis for
our clothing (using fibres such as cotton), and as a basis for medicine [46, 111]. Plants
are responsible for producing the oxygen we breathe as a product of photosynthesis,
helping create the conditions necessary for complex life on Earth [13]. Understanding the
mechanisms behind the growth and reproduction of plants is of vital importance if we

are to continue exploiting their beneficial uses long into the future.



1.1.1 Plant cell structure

Research into plant growth has been con-
ducted across a wide range of length scales, cell wall

. plasma membrane
from molecules to entire ecosystems. Here,

nucleus
we focus on the cellular level. In the sim-
plest of terms, we think of the plant cell

cytoplasm
in terms of four rudimentary, distinct com-
ponents: the cell wall, the adjacent plasma

membrane, the cytoplasm, and the nucleus

(Figure . The detail provided about Figure 1.1: A simple plant cell.
these four components here is largely de-

rived from the book ‘Biochemistry and molecular biology of plants’ by Buchanan et al.

[14].

The thick, fibrous cell wall is responsible for maintaining the particular shape of the plant
cell. Tts primary component is usually the polysaccharide cellulose, arranged in longitu-
dinal bundles known as microfibrils. It is the orientation of these cellulose microfibrils
that determines the nature of growth (which we define as an increase in the volume of
the cell) [105]. In cells that grow by expanding uniformly (i.e. in no oriented direction),
microfibrils are arranged in unaligned layers within the wall. For cells that elongate in
a single direction, the microfibrils lie in aligned layers within the wall. The alignment
of the microfibrils within these layers can be parallel or transverse to the direction of
elongation, or in a helical arrangement. The relationship between microfibril orientation

and plant cell growth is discussed further in Section [1.1.3]

Encasing the cytoplasm of the cell is the lipid bilayer plasma membrane which is re-
sponsible for the uptake of vesicles from the cytoplasm via membrane fusion, as well

as the release of vesicles into the cytoplasm via membrane invagination. This plasma



membrane is kept in place, pushed tightly against the cell wall, by the effect of turgor
pressure. Proteins in the membrane perform vital functions for the purpose of growth,
including enabling the transport of ions and solutes against their concentration gradients
by producing an electrochemical potential gradient, promoting the uptake of water to
maintain turgidity and structural integrity of the cell, forming physical links to cell wall

molecules, and promoting the synthesis and assembly of cell wall polymers.

The cytoplasm houses all the internal contents of the cell besides the nucleus. For the
purpose of our modelling, we choose to focus only on the three most relevant components
of the cytoplasm: the cytosol, cytoskeleton, and vesicles. The cytosol simply refers to the
fluid in which all the other elements and organelles are suspended. The cytoskeleton is a
network of filamentous protein polymers, spread throughout the cytosol. These protein
polymers come in two forms: actin filaments and tubulin microtubules. Cellular compo-
nents can be actively transported along the cytoskeleton by the action of motor proteins,
giving the cell a degree of motility. Myosin is responsible for transport along actin fila-
ments, whereas dynein and kinesin are responsible for transport along microtubules. In
plant cells, actin filaments are the predominant mechanism for the active movement of

organelles through the cytosol.

The nucleus contains the majority of the cell’s genetic material and is responsible for
maintaining cell function, but will not be directly included in our modelling attempts;
it is instead grouped with other larger organelles as part of a homogeneous cytoplasmic

continuum.

1.1.2 Plant cell growth

The driving mechanism behind plant cell growth was a matter of widespread debate

amongst 20th century researchers. In 1965 arguably the earliest widely recognised work



concerning the development of a mathematical model for the growth of plant cells was
produced by Lockhart [85], in which the author cites Burstrom [16] when he writes “it is
now generally believed that irreversible elongation of the cell wall is the result of the turgor
pressure exerted on the wall.” Accordingly, Lockhart posits that the total elongation of
a cylindrical plant cell wall is the sum of the change in length due to this irreversible
extension and the change in length due to elastic stretching. Using this hypothesis, the

following equation is derived,

1dl

o =W (P=Y)H[P Y], (1.1.1)

where [ is the length of the cell wall (and thus %% is the relative elongation rate), W is
the (constant) extensibility of the cell wall, P is the turgor pressure, and Y is the yielding
threshold stress of the wall (corresponding to the critical pressure that P must exceed if

irreversible strain is to occur). H[P — Y| denotes the Heaviside step function with values

1 for P>Y,
H[P -Y] = (1.1.2)

0 for P<Y,

ensuring elongation is irreversible.

In 1971 Burstrom himself responded to the work of Lockhart and his peers, criticizing
Rayle [101], Ridge [102], Cleland [30] and Green [60] in the succinct ‘ Wishful thinking
of turgor’ [I7]. Here, Burstém argues that “turgor does not cause expansion and is
not the driving force,” and states that repeated assertions to the contrary have become
“dogmatic.” Instead, he posits that “expansion is due to water uptake” and “volume

changes during growth should be best expressed in terms of water fluxes.”

In rebuttal, Ray, Cleland and Green clarified their position in ‘Role of turgor in plant
cell growth’ [100], stating that “stress relaxation is the primary event in cell enlargement,

whereas water uptake, volume increase and extension (strain) of the cell wall are sec-
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ondary.” This is a small concession; the in vivo experiments of Green [60] focus on the
response of the yield threshold Y to changes in the turgor pressure P (seemingly a con-
sequence of experimental ease), whereas this new statement on stress relaxation makes
it clear that it is in fact a spontaneous lowering of Y that initiates and precedes growth.
During the course of ‘Role of turgor...” the authors also show that an analogous version

of the Lockhart equation holds true for the relative rate of volumetric expansion of the

cell wall chamber, that is,

1dV
S =V.(P-Y)H[P-Y], (1.1.3)

where V is the cell wall volume.

The modern understanding of the process by which a cell undergoes enlargement is per-
haps best summarised by Cosgrove [37], who writes “cell enlargement begins with a
reduction, or relaxation, of wall stress. As a consequence, turgor pressure and water
potential are reduced ... and water is drawn into the cell. The result is that the cell
enlarges by uptake of water (a reversible process) initiated by yielding of the wall (an

Y

irreversible process).” This is, in essence, combining the ideas of Lockhart, Ray and
Burstrom under a single unifying framework and is verified by Cosgrove’s earlier experi-
mental work on practical measurements of wall relaxation [34] [36, 35]. This relaxation of
the wall is thought to occur on the molecular level, a consequence of “selective loosening

and shifting of load—bearing linkages between cellulose microfibrils” [38] that does not

itself substantially change wall dimensions.

Although Lockhart [85] mentions elastic stretching of the wall, it is evident that no cor-

responding term is present in Equation ({L.1.1)). This is the result of an early assumption

of constant turgor pressure (% = 0), eliminating the elastic component. Thus equations

(1.1.1) and (1.1.3)) essentially model the cell wall as a Bingham plastic [9} [10]. It was not

until the work of Ortega [94] that the elastic component was reintroduced, resulting in



the equation,

1dV 1dP

S =W (P=Y)H[P - Y]+ - (1.1.4)

where € is the volumetric elastic modulus of the cell wall (analogous to Young’s modulus).
This is commonly referred to as the Lockhart—Ortega equation, and models the cell wall
as a viscoelastic (or ‘Maxwell’) material [25]. The inclusion of elasticity is essential for

the modelling of plant cells that undergo reversible deformation (e.g. stomatal guard

cells [92]).

1.1.3 Diffuse growth versus tip growth

While Equations ([1.1.1)) - (1.1.4) can be effectively employed to model the uniformly

elongating cell, due to the lack of independent spatial variables they do not capture the
complexity of localized forms of growth. The difference between uniform and localized
growth in plant cells can be seen in Figure , showing (a) an anisotropic diffusely
growing cell, and (b) a cell undergoing localized tip growth. For the cell undergoing tip
growth, elongation is confined to the apex as a result of growth that is approximately

normal to the cell surface and shape-preserving in the tip.
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(a) Diffuse growth. (b) Tip growth.

Figure 1.2: Typical examples of a plant cell undergoing (a) anisotropic diffuse growth,
and (b) localized tip growth. Shaded regions denote regions in which growth occurs.
Dotted lines denote central lines of axisymmetry.



The manner in which a plant cell grows is largely dictated by the orientation of cellulose
microfibrils within the plant cell wall. These microfibrils lie in stratified layers which
span the length of the cell. Fully isotropic wall structures (in which the microfibrils are
not layered and are of completely random orientation) are not observed in nature [43].
Within the layers of the cell wall, microfibrils are typically oriented in helices [7] but
can also display random orientation. Tightly wound microfibril helices of minimal pitch
result in a circumferential microfibril orientation (Figure , which yield in the axial 2
direction under significant turgor pressure to produce the longitudinal anisotropic diffuse
growth as seen in the shaded region of Figure [[.2a] Loose microfibril helices of large
pitch result in a longitudinal microfibril orientation (Figure , which typically does
not yield under turgor pressure. This orientation is commonly adopted by the static

sections of tip—growing cells [2I] such as the unshaded region in Figure m Random
orientation of microfibrils within the wall layers (Figure [1.3c)) is often observed in the

apical region of tip—growing cells (shaded region in Figure [1.2b]).
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(c) Random
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Figure 1.3: Three examples of the possible orientation of cellulose microfibrils (dashed
lines) within square sections of wall layers, showing helical microfibril structures of (a)

small pitch and (b) large pitch, as well as (c) randomly oriented microfibrils.

In order for localized growth to be sustained in tip—growing cells, membrane and wall ma-
terials must be continually delivered to the growing apical region. The coupling of these
processes of material deposition and subsequent growth as part of a mathematical model
is a non—trivial task and few comprehensive attempts to do so exist. One of the primary

goals of this thesis is to investigate the relationship between the internal cytoarchitec-



ture, deposition of new cell wall material, and subsequent growth in a particular type of
tip—growing cell, the angiosperm pollen tube, with the aim of producing a mathematical

model that can accurately capture this relationship.

1.2 On the role of the pollen tube

Pollen grains are the male gametophyte propagules of seed plants, produced in the an-
thers of angiosperms (typically referred to as the ﬂoweringE] plants) and responsible for
the provision of sperm nuclei for fertilization of the egg cell [109]. Following successful
pollination upon a receptive stigma (usually either by animal or by wind [4]), the pollen
grain germinates and a tube is produced. According to Malhé [87], the role of the tube
can be split into two main functions: to elongate, and to interpret guidance cues from
the surrounding tissue. Growth typically occurs quickly but varies between species, with
the tube traversing a great distance through the sporophyte tissues (the stigma, style and
ovary). Growth ends upon successful penetration of the female gametophyte, the embryo
sac, allowing sperm from the pollen grain to travel down the tube and fertilise the egg
[51]. A diagram of an angiosperm pistil and a typical journey the pollen tube must take

can be seen in Figure [1.4]

Figure shows an image taken using brightfield microscopy of an early stage of pollen
tube growth in wvitro for two Tradescantia virginiana pollen grains. Together, the vegeta-
tive grain and tube constitute a single cell with a remarkable geometry. The sphere-like
shape of the grain is markedly different to that of the tube, which displays an extraordi-
nary degree of anisotropy and may have to grow over 30 cm in length (several thousand

times its width) at speeds in excess of 1cmh™! [12].

! This description is somewhat vague, since the flower often does not appear as we might expect it to
(e.g. in grasses). Presence of the ovary is a more definite classification.
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Figure 1.4: Diagram of a pistil in a typical angiosperm.

Figure 1.5: Light micrographs (brightfield microscopy, x230) of two Tradescantia virgini-
ana pollen grains and growing tubes, 15 minutes after being sown on nutrient medium.

Image size has not been altered from original publication in order to preserve microscopy
scaling. (Credit: Steer and Steer [109].)

1.2.1 Pollen tube growth

In order to sustain the rapid, apical growth of the pollen tube, new cell wall materials
(such as phospholipids, polysaccharides, and cell-wall modifying enzymes [22]) must be
continually delivered to the growing tip. Prior to delivery these materials are encased
within exocytic secretory vesicles, spherical balls of plasma membrane synthesised by the

golgi apparatus (a cytoplasmic organelle).

Transport of vesicles occurs along actin filaments (polymers of the globular protein actin),

one of the major components of the cytoskeleton. Myosin motor proteins (comprised



of a force—generating globular head domain, an adjoining ‘lever arm’ neck, and a long
coiled—coil tail of amino acid sequences terminating in another globular domain [I]) are
responsible for moving the vesicles along these actin filaments. The myosin tail attaches
to the vesicle membrane while the myosin head generates a sliding force along an actin
filament in an ATP-dependent manner [76], with movement occurring in a single direction
(towards the ‘positive’ barbed end of the actin filament) [I15]. A diagram showing the
basic structure of the two myosins (VIII) and (XI) found in plants can be seen in Figure
1.6l

Myosin VIII Myosin XI

Tail domain

Coiled coil

Neck

Motor

Figure 1.6: Basic structure of the two myosins (VIII and XI) found in plants. (Credit:
Nebenfiihr and Dixin [93].)

In the angiosperm pollen tube, in which actin filaments form bundles running roughly
in parallel along the periphery of the tube with their barbed ends pointed towards the
apex, actomyosin transport results in the mass movement of exocytic vesicles towards
the annular growth region in the subapex. Here, they fuse with the plasma membrane
to deliver their contents to the extracellular space. Since the ratio of surface area to
volume for spheres is of the order (radius)™', in delivering sufficient wall material for
growth the spherical vesicles also typically deliver an excess of membrane material. This
is compensated for by the release of endocytic vesicles (containing a significantly smaller
proportion of wall materials) from the plasma membrane back into the apical cytoplasm.
It is hypothesised that reverse transport of vesicles also occurs on a central actin bundle,
which aids in the removal of endocytic vesicles from the apical area. This combination of
the anterograde transport of exocytic vesicles and reverse transport of endocytic vesicles

produces a drag force that induces a flow in the cytosol, known as ‘cytoplasmic streaming’
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or ‘cyclosis’ [22]. When viewed as a collective the vesicles form a ‘reverse—fountain’
streaming pattern, a term first attributed to Iwanami [70] by Vidali and Hepler [I19].
The distinction between actomyosin based transport of individual vesicles and subsequent

bulk vesicle movement in response to the induced flow is often unclear in the literature.

Figure presents a closer look at the process of exo—/endo—cytosis, highlighting the
presence of peripheral and central actin bundles as well as the ‘inverted vesicle cone’
often observed in the pollen tube apex (or ‘clear zone’). Polarity of actin filaments
is denoted by + signs. Arrows show the typical reverse—fountain streaming pattern of
vesicles. The peripheral actin bundles extend from the shank into the subapex, stopping
just short of the primary site of exocytosis in the shoulder. The central actin bundle is
primarily situated in the shank and does not extend as far into the subapex as peripheral

actin.

Figure 1.7: Exo-/endo-cytosis in the apex of the pollen tube, showing polarity of actin
filaments in the periphery and central bundles as well as the ‘reverse fountain’ pattern of
cytoplasmic streaming. (Credit: Chebli et al. [22]).

1.3 Motivation for pollen tube research

Mechanisms of growth in the pollen tube are of scientific interest for a number of reasons.
The first of these is by virtue of the role of the tube itself; it is a vital part of the fertil-
ization process. Generation of novel hybrid plants with potentially beneficial properties

is critically limited by the compatibility between pollen and the pistil [54]. These hybrids
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can often display heterosis (or ‘hybrid vigor’) with increased biomass, growth rate, and
yield [24]. As an experimental tool for further study of plant cells in general, the pollen
tube exhibits many interesting behaviours. These include highly localized and rapid
growth, extreme polarity (with associated calcium gradients) [68], and swift responses to
external stimuli (for navigational purposes) [15]. In the following, we provide a detailed
overview of some of the arguments for and progress made in the mathematical modelling

of pollen tube growth.

1.3.1 Literature review

One of the earliest and strongest arguments for study of the tube was first given in ‘Cel-
lular oscillations and the regulation of growth: the pollen tube paradigm’ by Feijo et al.
in 2001 [50]. Their key assertion is that since the chemical processes concerning tube
growth involve many simple inorganic ions (e.g. HT, Ca?", K+, C17) and biomolecules,
the combined oscillatory chemical patterns in the tube may represent a class of basic
ion oscillator providing insight into the spatial and temporal organisation of many other
developing cells. This is supported by the experimental simplicity of handling and ob-
serving pollen tubes as well as the clarity of their oscillatory patterns of both structural
and temporal features. As a means of highlighting these features, the paper goes on to
utilise the theory of deterministic chaos and non-linear phenomena to show that ionic
and chemical fluxes within the tube oscillate with the same periodicity as the growth
rate with a slight phase shift. This work was instrumental in igniting wider interest in

the mathematical modelling of pollen tubes.

Eleven years later in 2012, the most significant results of the previous decade were sum-
marised by Kroeger and Geitmann in ‘The pollen tube paradigm revisited’ [(7]. They
split the various attempts at modelling the pollen tube into three main categories: those

that model growth dynamics using physical equations, those that model chemical interac-
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tions inside growing tubes, and those that combine the two within “closed-loop feedback
models of oscillatory growth.” After reviewing the various models that these categories
encompass, the authors conclude that while great progress has been made on steady state
models of cell morphology, no current model can fully describe phenomena such as actin

dynamics, vesicle secretion, and oscillatory or tropic growth.

To elucidate on the progress made in modelling cell morphology in tip—growing cells we
refer to the examples of Bartnicki-Garcia et al. [0l [5] whose videomicroscopy experiments
were able to determine that hyphal growth in the Rhizoctonia solani fungus occurs via
apical orthogonal cell wall expansion, as well as the work of Goriely et al. [55] 56, 57]
who modelled the hyphal tip as a two dimensional axisymmetric elastic membrane (later
generalised to an elastic shell [58]) which was shown to produce growing tip shapes with
a remarkable degree of self-similarity (i.e. the apical tip shape, once established, appears
to simply translate as it grows). An alternative formulation in which the cell wall is
modelled using a viscous fluid shell is posited by Campas and Mahadevan [19] who include
intracellular processes in the growing cell using just two functions (accounting for local
secretion rate and rheology of the wall). The viscoplastic model of Dumais et al. [43],
initially developed to explain expansion anisotropy in growing Medicago truncatula root
hairs [42], provides an elegant iterative algorithm connecting wall stresses, wall strains,
and the resultant cell geometry through three sets of equations. Finally, Fayant et al. [49]
used finite element modelling of a viscoelastic shell in order to investigate how changes in
parameters such as the elastic moduli, cell wall thickness, turgor pressure and tube radius
affected whether a growing tip would undergo self-similar, swelling, or tapering patterns
of growth. This finite element modelling also provided the framework for breaking the
axisymmetric growth assumption relied upon in all of these works, potentially allowing
for phenomena such as the bending of the tube during changes in growth direction to be
investigated more thoroughly. To our knowledge, this breaking of axisymmetry has yet

to be fully utilised in a tip—growth model.

13



In addition to results obtained from these largely mechanistic models, significant progress
has also been made in establishing links between internal processes in the pollen tube
and subsequent cell growth (following the suggestions of Feijé et al. [50] and Kroeger
and Geitmann [77]). Examples of research focused on these internal processes include
the Spatiotemporal Image Correlation Spectroscopy (STICS) and Fluorescence Recov-
ery After Photobleaching (FRAP) experiments of Bove et al. [12], quantifying vesicle
distribution patterns and movement in the Lilium longifiorum pollen tube. Following
this work Kroeger et al. [78] posed a diffusive mathematical model capable of describing
vesicle distribution patterns in a confined apical region. An equation is derived for the
orientation of filaments within the steadily-advancing apical actin fringe, based on the
tread-milling model for microfilament polymerization [44, 9], with normal vesicle flux
along the fringe assumed to be a consequence of filament orientation. Chavarria-Krauser
and Yejie [20] derived a series of equations based on a one-dimensional model of the
tube, describing rates of exo-/endo-cytosis (with associated vesicle densities and receptor

concentrations) and membrane flow velocity along the length of the tube.

Crucially, no prior mathematical model of any element of the pollen tube cytoplasm
has (to our knowledge) attempted to fully account for the effects of cytosolic flow in a
manner deriving directly from physical principles. One of the primary results of this thesis
is the derivation of an axisymmetric model for this flow, which we employ in simulations
of vesicle distribution and transport in the tube. Through thorough treatment of the
conditions leading to this often simplified cytosolic flow, we are able to produce a model
capable of accurately mapping vesicle distribution in axisymmetric 3D space throughout
the length of the tube. This method is not limited to modelling vesicle transport; in
future work with a different focus (e.g. modelling of cytoplasmic calcium gradients [90])

it is likely that cyclosis will play an important role.

14



1.3.2 Inclusion of cytosolic flow in prior models

In order to understand how a more complete inclusion of cytosolic flow could be of benefit
to the mathematical modelling of pollen tubes, we consider some of the models described
above in more detail and highlight the effect of cyclosis in each. All Equations in this

Section are credited to their respective sources, namely Dumais et al. [43] (Equations

(1.3.1) - (1.3.9))), Kroeger et al. [78 (Equations (1.3.10) - (1.3.11))), and Chavarria-

Krauser and Yejie [20] (Equations (1.3.12)) - (1.3.17))).

In ‘An anisotropic-viscoplastic model of plant cell morphogenesis’ by Dumais et al. [43],
an almost purely mechanistic model for pollen tube growth is derived. An overview for
this iterative model and a description of the cell geometry can be seen in Figure [I.8], with
a full glossary of the symbols used is given in Table In the equations that follow,
subscripts s, 8, n refer to material property components in the meridional, circumferential,

and normal directions respectively (as detailed in Figure .

Starting from a given axisymmetric cell geometry, the turgor stresses in the wall can be

calculated according to the force equilibrium equations

P
= 1.3.1
g 25/19 ( 3 )
P K
(ol 1.3.2
o 2M( ) (1.3.2)

whose derivation follows from arguments concerning forces and stress resultants [75], [117].

Using the turgor stresses, wall strain rates can be calculated according to the constitutive
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Figure 1.8: Left: Dumais’ iterative model for tip growth in plant cells, based on a set
of equations governing relations between cell geometry, turgor stresses, and strain rates.
Right: (A) Principal directions (meridional s, circumferential 6, and normal 1) in Dumais’
tip growth model. (B) Principal stress (o) and strain rates (¢) acting on a shell element,
in which the normal stress o, is considered negligible compared to in-plane wall stresses o,
and gy. (C) Cell wall geometry defined by thickness d as well as principal first (rs = 1/k5)
and second (ry = 1/kg) radii of curvature, defined as functions of meridional distance s.
¢ denotes angle between surface normal and cell axis. (Credit: Dumais et al. [43]).

equations

¢ = (0, — 0,) (%) , (1.3.3)
éo = (0, — 0,) (%) , (1.3.4)
én = D(00 — 0,) <<” - 1)? i 09)) , (1.3.5)

provided o, > o,, with ¢, = ég = ¢, = 0 otherwise. Here, K = [f02 + Bo; + (8 —
6v)o,06)/ and B = 2v% — 2v + 2. The condition o, > o, requires that the ‘effective’

stress o, in the wall is in excess of a yielding stress o,, similar to the model posed by

the Lockhart Equation [85]. Equations (1.3.3]) — (1.3.5]) follow from Hill’s yield criterion

[67], an anisotropic generalisation of the isotropic von Mises criterion [I16]. Their specific

form here is a consequence of defining the global yield stress o, as the average of in-plane

yield stresses (i.e. o, = (01(,5) + al(,e)) /2) and assuming that the expanding cell wall is
transversely isotropic (0?55) = U@(,e)). The effective stress under these conditions is given
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Oe = [V(og —09)? + (1 — ) (09 — 0,)2 + (1 = v) (0, — 0,)?]V2. (1.3.6)

Finally, by considering the deformation of the surface of an infinitesimal meridional ele-
ment over a small time step the following kinematic relations can be used to relate wall

strain rates to displacement velocities of the cell surface:

8Ut
S 1.3.7
€ Upks + D5 ( )
& = Untep 4+ 2P (1.3.8)
T
D
b= (et i) + 5 =0, (1.3.9)

Inversion of Equations and yields v; and v, the tangential and normal
velocities of a point on the cell wall, which can be used to calculate the displacement
of material points over a small time step At. These displaced points form the outline
of the new cell geometry, which is remeshed at each stage before the iterative process is

repeated.

While investigating steady growth Dumais et al. [43] found that “there is a unique
geometry corresponding to a given set of mechanical properties,” with tips of differing
initial geometries but the same set of wall mechanical properties all converging to the
same final configuration after a sufficient number of iterations. Further, in a series of
simulations on non—steady growth they showed that spatiotemporal variations in wall
mechanical properties could result in a great variety of cell shapes, including those of the
oscillatory pollen tube. These variations are attributed to “modifications in either the
rate, or the localization of, delivery to the apical dome’s cell wall, of secreted agents... that
influence the mechanical properties of the wall,” although this is not modelled directly
by Dumais. Indeed, the secretion of wall agents in Dumais’ model is encompassed solely
in the variable D, the rate of wall deposition per unit surface area, whose value is fixed
by Equation (1.3.9)) via an early assumption that “the rate of wall deposition matches

2

the rate of wall thinning due to in—plane expansion.” This assumption is based on the
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observation of Hejnowicz [66] (amongst others) that the thickness of the cell wall in
the growing tip is approximately constant in time. Thus, although Dumais et al. [43]
emphasize the importance of the cytoplasmic distribution and targeted deposition of wall
agents during growth, a mathematical description of these evolving agent populations is

not within the remit of their model.

Symbol Physical meaning

P turgor pressure

4] cell wall thickness

K curvature

o turgor stress

€ strain rate

o cell wall extensibility (reciprocal of viscosity)

O effective stress

oy yield stress

v flow coupling (analogous to Poisson’s ratio in linear elasticity)
Up normal velocity of point on cell wall

N tangential velocity of point on cell wall

D rate of wall deposition per unit surface area

% angle between the normal to the surface and the axis of the cell

Table 1.1: List of symbols used by Dumais et al. [43] and their physical meaning. Addi-
tional sub/super-scripts s, 6, n refer to meridional, circumferential, and normal directions
respectively. All variables are functions of meridional position s.

The question of how secretory vesicles are distributed throughout the cytoplasm was
addressed by Kroeger et al. in ‘Microfilament orientation restricts vesicle flow...” [78§],
which focuses on a confined apical region of the tube between the growing wall boundary
and an advancing actin fringe. Here, it is posited that vesicles enter and exit this region via
actomyosin transport with their direction of movement dictated by filament polarity. The
actin fringe is modelled as a single structure spanning the width of the tube, encompassing
both the central and peripheral actin bundles as well as the intermediate region. Its

leading edge y(z) is defined by the equation

y(2) = — L In(cos O@)) — > In <tan G 4 @(2:”)» | (1.3.10)

m m

with « € [0, L] denoting the radial distance from the centre (x = 0) to the boundary
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(x = L) of the tube. The filament angle ©(x) between the barbed ends of the filaments

and the z axis is given by

T om
S g — 1.3.11

o) =Tu -7 (1311)

such that there is a linear change from ©(0) = —7% at the centre to ©(L) = 7 at the

periphery of the tube, matching the expected polarity of the actin filaments. The param-
eter A =~ 1 is equal to the the profile velocity divided by the maximum filament growth
rate, and m = —7 is the slope in the expression ©(x) = mx 4 b. Note that y — —oo
as x — 0, predicting an infinitely long tail for the clear zone parallel to the central actin
bundle. Kroeger et al. account for this by truncating the range of x used in Equation
(1.3.10) to = € [L/10, L], with the missing part of the profile filled using a quarter circle

of radius L/10 according to arguments regarding surface tension and capillary effects at

the tail end of the cone as outlined in their Supporting Material.

The appearance of this actin profile as well as its approximate location in the tube can
be seen in Figure [I.9] in which the vectors r,n, and v are the vector normal to the
profile, the microfilament orientation vector, and the growth vector of the cytoskeleton
respectively. It is assumed that the growth vector has constant magnitude and direction
such that v = vpj for some growth rate v,. The shape of the profile is then fixed by
n, related to the microfilament angle ©(z) by n = icos © + jsin ©. The direction of the
normal unit vector r can be deduced from the fact that the angle ¢ between n and r is

always equal to the angle 6 between r and v.

The results of Kroeger et al. [78] for vesicle flux and distribution match experimental
results closely but are associated with a number of simplifications. During the course
of the paper, an unusually small Péclet number (the dimensionless ratio of advective to
diffusive transport) is calculated for the vesicle transport problem using vesicle radius
(rather than the arguably more applicable tube radius) as a typical length scale. The
model they use is thus purely diffusive, assuming any advective effects to be negligible.

Replacing vesicle radius with tube radius in their calculation yields a Péclet number of
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Figure 1.9: A diagram of the actin fringe profile used by Kroeger et al. [78]. (Credit:
Kroeger et al. [T8]).

Pe = 5, suggesting advection cannot be ignored. Further, the model is based on the theory
that actin acts as a physical barrier to prevent vesicles from leaving the pool except in the
central region. While the colocalization of the actin fringe and the vesicle cone appear
to provide strong evidence for the action of the fringe as a physical barrier to vesicles,
we do not believe this to be the only mechanism responsible for constraining vesicles.
Rather, we posit that it is the cytosolic flow (induced by bulk vesicle transport along
longitudinal actin cables) that is the primary source of the creation of the distinctive
vesicle cone shape, as well as possibly influencing the shape of the fringe itself. This
partially explains why the inverted vesicle cone can still be observed in tobacco pollen
tubes [81] in spite of the fact that the organization of apical actin is markedly different
from that of lily or arabidopsis [52, 119].

Further possible evidence for the role of the cytosolic flow in the creation of the inverted
vesicle cone (and its influence on the shape of the actin fringe) can be found in the
fluorescence microscopy experiments of Jiang et al. [71]. Here, the authors investigate
actin structure and vesicle distribution in adf10 pollen tube mutants, in which ADF'10
(a member of the the actin—depolymerizing factor family) ceases to function. ADFs,
responsible for the severing of actin filaments, are found throughout the pollen tube but

the effect of ADF10 is most pronounced in the apex. In the adf10 mutant, the disfunction
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of ADF'10 results in disorganised and longer—living apical actin filaments with a greater
tendency to bundle compared to in the wild-type (WT) pollen tube. Interestingly, in
spite of the disorganization of apical actin the funnel shaped fringe is still produced but
its location is ~ 2 to 4pm further away from the apex. Similarly, the depth of the
inverted vesicle cone is increased by ~ 2 pm in the adf10 mutant. The role of apical actin
filaments in preventing the entry of larger organelles into the apical zone is not affected
by the changes in the adf10 pollen tube. This leads Jiang et al. [71] to conclude that,
“the two functions of the physical barrier - preventing the backward movement of small
vesicles and the apical invasion of large organelles - depend on different properties of the
barrier in terms of organization and/or bundling status.” We agree with this assessment
and further posit that apical actin disorganization affects rearward vesicle movement in
the adf10 mutant as a result of cytosolic flow being impeded, but the remaining actin
structure is still sufficiently dense (in spite of its disorganization) to block entry of larger
organelles into the apical area. The preservation of the actin fringe and vesicle cone, albeit
in a more basal location where ADF'10 is less active and directed actomyosin transport
can continue, supports the hypothesis that these features of the tube are primarily a

consequence of cytosolic flow.

Our argument is somewhat reminiscent of that of early disagreements regarding the role
of turgor pressure in growth of the plant cell [85] 17, [100]. In the same way that turgor is
essential to growth but preceded by wall softening, we argue that the shape of the actin
fringe and its role in constraining vesicles is preceded by the establishment of the cytosolic
flow. Later, we will show that this flow is capable of creating the inverted vesicle cone
shape without the imposition of any kind of physical barrier but the response of actin

orientation to cytosolic flow is not within the remit of this thesis.

The final model we consider is that of Chavarria-Krauser and Yejie [20], in which a more
detailed account of the process of exo/endo-cytosis and the balance between the delivery

of plasma membrane and cell wall material is presented based on a conceptual flowing
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membrane. The tube is modelled in 1D with x = 0 at the tip, resulting in growth that
seems to move the pollen grain away from the tip (a reversal of the real physical scenario
but one that is mathematically valid). The membrane flow v is equal to 0 at x = 0 due
to symmetry conditions, and equal to the growth velocity of the tube v, at some point
x = L where it is assumed that the membrane is fixed to the wall. The setup for this

problem can be seen in Figure below.

Figure 1.10: Depiction of model for the flow of the plasma membrane along the cell wall.
The large bold arrows show direction of vesicle movement. (Credit: Chavarria-Krauser
and Yejie [20]).

Using continuity of membrane flow and conservation of momentum, a dimensionless equa-

tion system for the membrane flow velocity v and density p is derived:

dp Ov

FTRE (1.3.12)
P o B2 for () € [0,1] x (0, 00) (1.3.13)
g T te—g =0, for(z, , ,00), 3.

where b is the dimensionless friction coefficient, € is small and equal to the reciprocal of

the Mach number squared, and R is the cytosis rate. This function R is given by,

R(p,c1,ca, pr) = —nper + XpaCa, (1.3.14)

where p, is the density of free exocytic membrane, and ¢; and ¢y are membrane receptors

for endocytosis and exocytosis regulation respectively with associated rate constants n and
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x. A further distinction is made between active and inactive receptors, with activation
described by an exponential activation law (corresponding to activation with an enzyme
in which receptor concentration, but not enzyme concentration, is limiting). Cytoplasmic
vesicle concentration is also considered, in which individual vesicle motion is attributed to
either (diffusive) Brownian motion or (advective) actomyosin transport. The transition
between these two movement regimes is modelled using a stochastic distribution ¢(x),
such that the fraction of free vesicles (not fixed to actin) is given by ®(z) = [ ¢(2) dz
which yields

Pe = Pu®, = @, (1.3.15)

where p,, p, are the total concentration of exocytic and endocytic vesicles respectively.

Conservation laws are then applied such that

o5, 0 ) AN
ot - % ((1 - (I)>va$ + q)Dza_x) - _Xpwq)c% (1316)
op, 0 - opn\

in which D,, D,, are diffusive coefficients associated with exocytic and endocytic vesicles
respectively, and v, is the speed of vesicles undergoing actomyosin transport. This model
does not include the effects of cytosolic flow, assuming all vesicles not undergoing acto-
myosin transport are part of a purely diffusive regime. This is a significant simplification;
spatial differences in flow velocity (greater in the shank than in the apex and greater in
the centre of the tube than the periphery [12]) and vesicle distribution (with exocytic
vesicles entering the clear zone in the periphery and endocytic vesicles exiting through
the centre) suggest a 3D model could yield very different results. Further, the steady
state membrane velocity found by Chavarria-Krauser and Yejie [20] reaches speeds of up
to ~ 0.72pums~ !, far in excess of any apical cytosolic flow speeds observed experimen-
tally [12] (suggesting issues would arise were the membrane flow velocity to be used as a
no—slip boundary condition for internal cytosolic flow). How to reconcile this discrepancy
is currently unclear and highlights the necessity for the development of a 3D model of

vesicle distribution in the tube that can fully account for spatial differences in cytosolic
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velocity.

1.4 Summary and outline of Chapters 2 - 5

In this opening chapter, we began by giving a brief overview of plant cell structure
and early attempts at modelling plant cell growth. These models revolve around the
Lockhart Equation [85], in which the cell wall is modelled as a viscoplastic (Bingham
plastic) material. Later work by Ortega resulted in the Lockhart-Ortega Equation [94],
reintroducing the reversible elastic component of growth such that the cell wall is modelled
as a viscoelastic (Maxwell) material. We also discussed the ongoing debate throughout
the 20th century with regards to the driving mechanism behind growth, through which a
general consensus was reached that stress relaxation of the cell wall is the primary event
driving growth. Although the Lockhart Equation and its variants effectively describe a
diffusely growing cell, their applicability to cells undergoing tip growth is limited. One
type of tip growing cell, the pollen tube, has been of particular interest to researchers
in the last couple of decades. Attempts at modelling the pollen tube using mechanistic
principles have been largely successful (particularly for axisymmetric models such as that
of Dumais et al. [43]) but significant space in the literature exists for models linking
the mechanical process of growth to chemical processes inside the cell. These chemical
processes are typically inextricable from the internal cytosolic flow, an often simplified
part of many models. This thesis presents the methodology for reintroducing this cytosolic

flow to these models within an axisymmetric cylindrical coordinate system.

In Chapter 2, we derive an advection—diffusion—reaction partial-differential-equation
(ADR PDE) for mapping chemical concentrations in the pollen tube. This ADR PDE

takes the form

0 t
1) L 9 (uolx. 1)) = aVo(x) + QUx, 1), (141)
ot - “ ——— S —
advection diffusion reaction
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in which ¢ denotes chemical (e.g. vesicle) concentration, u the velocity vector for cytosolic
flow, a the chemical diffusivity, and @ a source/sink term (additional reaction terms
may appear in the boundary conditions). Numerical methods are developed to find
approximate solutions to this PDE. These methods include both a finite volume method
(FVM) for use on unstructured grids and irregular geometries, as well as an alternating-
direction-implicit (ADI) method for the sake of comparison. Error analysis shows that
our two methods generally produce errors of a similar magnitude, with both displaying

rapid convergence towards analytical solutions as degrees of freedom are increased.

In Chapter 3, we develop methods for finding numerical solutions to low Reynolds number
flow problems (Stokes flow). This is necessary to determine an appropriate form for u, the
velocity vector representing cytosolic flow in the pollen tube. We first present an overview
of the method of regularized Stokeslets, developed by Cortez et al. [31], B3], which forms
the basis of our own work. We convert Cortez’ 3D Cartesian method to cylindrical
coordinates and integrate analytically in the azimuthal direction under the assumption of
axisymmetry about the z axis. Our newly derived solutions, termed ‘regularized ringlets’,
exhibit a favourable speed and accuracy compared to the traditional method of regularized

Stokeslets as well as to analogous singular Stokeslet methods.

In Chapter 4, we use the method of regularized ringlets to produce cytosolic velocity
profiles for the growing pollen tube. A number of different cases are considered, encom-
passing differing proportions and locations of actomyosin vesicle transport as well as a
variety of growth speeds for the tube. Using these velocity profiles in conjunction with
the FVM developed in Chapter 2, we model the cytoplasmic vesicle distribution at (and
during stages leading to) steady—state. Our modelling yields new results regarding cy-
toplasmic viscosity and the rates and locations of exo—/endo—cytosis, validated by new
experimental imaging (courtesy of our collaborators Dr Chebli and Prof Geitmann at
McGill University). These results highlight the importance of including cytosolic fluid

velocity in any modelling of cytoplasmic dynamics.
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Finally, we conclude with a comprehensive summary of our results and a discussion of

future work in Chapter 5.
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CHAPTER 2

DEVELOPING NUMERICAL METHODS FOR
SOLVING THE
ADVECTION-DIFFUSION-REACTION
EQUATION

A key requirement to model vesicle distributions in the pollen tube tip is solving the
associated advection—diffusion—reaction system. This is particularly challenging as the
spatial domain of the tip displays a curved geometry. Here, we develop and test numerical
schemes (both finite volume and alternating—direction—implicit methods) for this system,
which will be coupled to the method for finding flow field solutions developed in Chapter

3 and applied to the pollen tube in Chapter 4.
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2.1 Derivation of the advection—diffusion—reaction equa-
tion

We seek an equation to model the concentration of vesicles in the growing pollen tube.

Starting from the most general form of the continuity equation, let

0o (x,1)
ot

+V-jx,t) = Q(x,1), (2.1.1)

in which ¢ denotes vesicle concentration, j the total flux, and @) a volumetric source/sink
for ¢. The total flux j is given by the sum of diffusive (approximated by Fick’s first law)

and advective components, such that

jait = —aVo(x,t),  Jaav = u(x)o(x,1), (2.1.2)

where « is the (constant) coefficient of vesicle diffusivity and u represents steady cytosolic

flow. Substitution of these flux terms into Equation (2.1.1)) yields

0o (x,1)
ot

+ V- (u(x)o(x,t) —aVo(x,t)) = Q(x,1). (2.1.3)

Under the assumption that @) = 0 (as will be often used in the FVM), Equation ({2.1.3))
reduces to the well known mass conserving form of the advection—diffusion-reaction equa-
tion,

9¢

_ 2
204V (00) = V%0, (2.1.4)

in which V - u = 0 under the assumption of incompressible flow employed throughout

this thesis.

The method for evaluating the flow term u will be detailed in Chapter 3 and applied to

the pollen tube in Chapter 4. When choosing suitable boundary conditions for the ADR
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PDE, the Robin condition will be frequently employed. This is given by

(up +aVo) -n = f(x,t) Vx € 01, (2.1.5)

in which n is the outward pointing unit normal to the boundary d€ on which the con-
dition is applied, and f(x,t) determines flux in/out of 8. The u here represents the
velocity of the fluid relative to the boundary. Thus in the case of an impermeable, static
boundary (or any general case where the velocity of the boundary matches that of the

fluid), the Robin condition reduces to the Neumann

(aVo(x,t)) A= f(x,t) V¥xe dN. (2.1.6)

The Dirichlet condition will also be employed, which can be similarly expressed as

o(x,t) = L(x,t)  Vx € 01, (2.1.7)

for some function L(x,t) € R. This could be used, for example, to maintain a constant
population of vesicles in some basal region in order to allow a constant flow of vesicles

into the shank.
Precise forms of the boundary conditions simulating removal/addition of vesicles to the

apical pool as a result of exo/endocytosis along the growing part of the tube will be

considered in Chapter 4.
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2.2 Developing a finite volume method

The finite volume method (FVM) is a mathematical technique for representing and eval-
uating a PDE as a set of algebraic equations in order to obtain a numerical solution to
the PDE. This is achieved by discretising the spatial domain of the problem into a set of
‘nodes’ (each joined to a number of others by non-overlapping ‘edges’) around which we

construct distinct control volumes (CVs) such that the entire domain is covered.

The first step in developing a FVM for the ADR equation is to re-write Equation ([2.1.3])

in the form

0o (x,1)
ot

=V (aVo(x,t) —u(x)o(x,t)) + Q(x,t). (2.2.1)

By considering the integral of the ADR equation over each CV and by applying Gauss’
divergence theorem so that flux terms need only be evaluated at CV surfaces, it is found

that

[ 225y = [ (7 (06— ux)otx. ) + Q. )

(2.2.2)
= %(anb(x, t) —u(x)o(x,t)) -1 dS +/ Q(x,t)dV.
s v

Application of suitable quadrature rules to each integral then yields a set of algebraic
equations (one for each CV) which can be solved simultaneously to give an approximate
numerical solution to the PDE. The integral formula applies both in 3D (with
a volume V enclosed by a surface S) and in 2D (with an area V' enclosed by a curve
S). In the following, we will explain our method for a 2D system with an extension to
the axisymmetric 3D case. The formulation for the 3D case without axisymmetry is not
considered here but the methodology is similar. In keeping with 3D convention, we will
continue to use the terms ‘volume’ and ‘surface’ when describing elements of our mesh

despite the fact that these are represented graphically as surfaces and lines respectively.
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2.2.1 Mesh generation

Due to the number of spatially-dependent terms in (2.2.2)) (some of which may have
large spatial gradients) it is evident that mesh and CV geometries will have a signifi-
cant effect on the numerical solution to the PDE. We identify three ideal properties of
these geometries, (i) that the mesh should be such that it can be applied to almost any
shape, including curved surfaces, (ii) that the CVs should be such that accurate approx-
imations to the variable values can be made along their surfaces by using the values of
these variables at the mesh nodes, and (iii) that the accuracy of the numerical solution
should increase as the granularity of the mesh is increased. We have used the ‘MESH2D’
algorithm of Engwirda [45] in MATLAB for this purpose, which constructs a triangular

mesh on a given 2D geometry using a Delaunay triangulation algorithm.

2.2.2 Construction of control volumes

Methods of CV construction can be split into two distinct groups, either cell-centred or
vertex-centred approaches. For triangular meshes, the CVs in a cell-centred method cor-
respond to the triangles directly with surfaces described by their edges and their centroids
essentially forming a dual set of nodes on which the numerical solution is obtained. While
this approach seems most natural given the MESH2D output, it is somewhat problematic
in practice. In particular, implementing boundary conditions can prove challenging since
no dual nodes are present on the domain boundary meaning values of the solution here are
not inherently calculated. This is not ideal for situations involving a displacement condi-
tion on the boundary (e.g. due to growth). Fallah [48] suggests the use of additional ‘line
cells’ along boundaries of a cell-centred FVM, transferring boundary conditions into the
internal adjacent cells. This method was found to be very effective, resulting in smaller

errors for cell-centred than vertex-centred FVM for a given mesh but at an unspecified
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additional cost. We instead choose to use a vertex-centred method, whereby a CV is
constructed around each original node by joining the midpoints of the node’s adjacent
edges to the centroids of the triangle(s) each edge belongs to. Development of the code
for this method is undoubtedly more challenging than it is for the cell-centred method,
but the benefits of the vertex-centred approach are substantial. Additional ‘line cells’ at
domain boundaries are not needed in the vertex-centred FVM, with solution values at
the boundary easily calculated in a manner similar to internal parts of the domain. Inter-
polation between vertices to triangle centroids also arguably allows for more consistent
and readily available approximations to the values of variables and parameters on the
CV surfaces in the vertex-centred approach. An example of a CV for the vertex-centred
method can be seen in Figure 2.1} In cases where the central node of the CV lies on the
boundary of the domain, the volume is closed by joining the midpoints of the boundary

edges to the node itself (Figure [2.2)).

—
original mesh

- = O, -
control volume

Figure 2.1: An example of a control volume surrounding the node A in the vertex-
centred method. The midpoints of the edges adjacent to A are joined to the centroids of
the triangle(s) they belong to in order to create the CV. The location of the node B is
purposefully irregular to highlight the fact that the midpoint of each edge in the original
mesh does not necessarily coincide with the midpoint of the line joining the centroids of
the adjacent triangles.
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—
original mesh

- = O, -
control volume

A B

Figure 2.2: An example of a control volume surrounding the boundary node A in the
vertex centred method, in which the lines AB and AC' are part of the boundary of the
domain.

2.2.3 Approximating the integrated advection—diffusion—reaction
PDE

Recall that the integrated ADR equation can be expressed as

/V ((%255;:,73) av = J(é(quS(X, t) —u(x)o(x,t)) - ndS —i—/ Q(x,t)dV. (2.2.3)

\%

The LHS of this equation is easily approximated by using a first forward difference (for
the time derivative) and the midpoint method (for the integral) to yield,
ad) ]2+1 o (b]z

TPav ~AVPA_— P4 2.2.4
/Vatdv VAT (22.4)

where ¢¥ denotes the kth iterate of ¢ in time, evaluated at the central node A (around
which the current control volume has been constructed). The parameters AV and At
are given by the size (area in 2D, volume in 3D) of the current control volume and the
size of the time-step respectively. AV can be calculated by summing the areas of the

‘sub-triangles’ created by drawing edges joining each vertex of the CV surface to the
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central node A (Figure . The vertices of each of these sub-triangles are either a node,
an edge midpoint, or a triangle centroid in our original mesh and so their positions can be
easily calculated. This makes it possible to calculate the area (say, T') of the sub-triangle

using Heron’s Formula

T =+/s(s—a)(s—b)(s—c), (2.2.5)

in which a, b, ¢ are the lengths of each side of the sub-triangle and s = (a + b+ ¢)/2 is

its semiperimeter.

Figure 2.3: Division of control volumes from Figures and into sub-triangles by
drawing (dotted) lines joining each CV vertex to the central node.

For the source/sink term @(x,t), the approximation is straightforward and is given by

/ Q(x.1)dV = AVQ(x, 1). (2.2.6)
1%

Additional complexity comes in the form of a proportional sink, that is, when ) takes

the form Q(x,t) = —y¢(x,t) for constant . In this case, it follows that

- /Vw(x, t)dV = —%AV( A+ k), (2:2.7)

in which ¢ is averaged over time steps k and k + 1 such that our discretization method

is implicit in time. This averaging of ¢ is employed for all terms in the RHS.

In what follows, we frequently make use of linear interpolation to approximate ¢ (and
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later u) at points inside or along the edges of triangles in the original mesh using known
values at triangle vertices. For grid size h (corresponding to the approximate length
of each triangle edge), this interpolation is associated with an error of O(h?) (as can be
verified using a Taylor expansion). When other methods are employed that are associated

with a larger error value, this is made explicitly clear.

To evaluate the diffusive V¢ term in Equation (2.2.3)), it is necessary to calculate the

partial derivatives % and g—ﬁ at the centroid of each triangle in the mesh. This is achieved
using linear extrapolation and a least-squares method. Consider the triangle shown in
Figure with vertices A, B, C' and centroid P, located at x4, xp,X¢c and Xp := %(XA +
xp + X¢) respectively. Linear extrapolation for ¢ from its value ¢p at centroid P to the

vertices yields,

96 8¢

Pa :¢P+(x,4—xp)-% Lt Wa—yp) 3y P+O(h2), (2.2.8)
0 0
¢ =¢p+ (xp—xp) - a_i Lt (ys —yp) - 0_(.5 ot O(h?), (2.2.9)
0 0
bc = ¢p + (xc — xp) - a—f ot (ye —yp) - a_i ot O(h?), (2.2.10)
which can be written as a linear system DX = F| with:
96 ®a — 0P Axpy Aypa
X = zz s F =1\ ¢p—¢p | D=1 Awpp Aypp (2.2.11)
Ay
! ¢c — op Azpc Aypc

where Axpy := x4 — Xp. This is a system of three equations in two unknowns and so is
over-constrained with no solution (in general). By implementing a least squares method,
the system can be reduced to two equations which yield an optimal least squares solution
that minimises the sum of the squares of the errors in each equation of the original system.

This is achieved by multiplying the system by the transpose matrix D, which yields

D'DX = D’F = X = (D'D) 'D’F, (2.2.12)
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a solvable system of equations. This process can be applied to each triangle in order to
approximate V¢ at each centroid to O(h) accuracy. For implementation in MATLAB, the
vector F is further decomposed into the product of a matrix G and vector ¢* (containing

value of ¢ at each node at time kAt) so that (DTD)™'D?G is a linear operator on ¢*.

C

A M B

Figure 2.4: The triangle with centroid P containing portions of the control volumes
surrounding the nodes A, B, and C. The point M is the midpoint of the line AB.

To evaluate the integral of V¢ along the surface of a CV by using a midpoint method on
each of its edges, it is also necessary to find an approximation for V¢ at the midpoint
of each edge in the original mesh. Using the portion of the CV around the point A in
Figure as an example, before evaluating fs(ongb) -nds along the line M P using a
midpoint method an approximation for V¢ at M is required. This can be achieved by
interpolation of V¢ between the two centroids, P and P’, of the adjacent triangles to
which the point M belongs (as shown in Figure . However, in the general case the
midpoint M of the line AB does not lie on the line PP’ so standard linear interpolation

is ineffective. Instead, we employ the modified interpolation

AP’ -Np + dP - Vp:

Vou ~ dP + dP’ ’

(2.2.13)
in which
dP = |XM — Xp|, dP, = |XM — Xp/|. (2214)

The error associated with this approximation is a consequence of irregularity of the mesh
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and thus difficult to quantify, but for two adjacent equilateral triangles of identical size
(the ideal scenario) Equation (2.2.13]) reduces to standard linear interpolation with error

O(h?).

C A

Figure 2.5: The edge midpoint M (a vertex of the CV surrounding the node A) does
not in general lie on the (dotted) line joining the adjacent triangle centroids, P and P’.
Thus, the value of V¢ at M must be found using a modified version of linear interpolation
between P and P’.

Splitting V¢ and n into x and y components, it then follows that

[ o nae (2] ] o (5] ] o]
N 2.
EK% P+ % M)AyMP B <g_j‘P+ g_gyb M)Apr} ’

in which Axy;p = xp — X, as before and the outward pointing unit normal is given by
n = (dy, —dx). Superscripts k and k + 1 refer to the time step at which each term is
evaluated. Applying this to each edge of the CV yields the total diffusive flux through
the surface of the volume. The ordering of the letters M P in the subscripts present
in Equation and the subsequent definition of Ax,,p are important; the path of
integration must be counterclockwise along the surface of the control volume. If the point
M lies on an edge on domain boundary, since there is no point P’ to use for interpolation

the simpler first order approximation

. 1 a 8 k+1
| (avo)ads~; [—¢ L Apr}
MP 2 |0xlp oy lp (2.2.16)
1 [9¢ O F o
+3 {%‘PAZJMP - a_y‘PAxMP] ,



is employed instead.

An alternative approach is to use the least squares method outlined in Equations f
to calculate % and ?)_Z) at the midpoint of the line M P directly (as opposed to
at the centroids P, P’). In this case, the value of ¢ at the midpoint of the line M P is
approximated by ¢y p ~ é(5¢A+5¢B+2¢0), via linear interpolation of ¢y, =~ %(¢A+¢B)
and ¢p ~ %(@x + ¢p + ¢c). The benefit of this approach is that all the information
necessary for approximating M P is now contained within a single triangle, and there
is no additional complexity near the boundary (so the same method can be employed
throughout the entire domain). The major drawback is that data must now be stored for

the derivatives at 3 points in each triangle (instead of just at the centroid), increasing

computational complexity considerably (see Figure .

C

A M B

Figure 2.6: Each evaluation point & is located at the midpoint of a line joining the
midpoint of one of the triangle edges to the centroid P. It is possible to estimate V¢
directly at these locations with improved accuracy using the least squares method and
values for ¢ at A, B, C, but doing so is significantly more computationally expensive than
simply estimating V¢ at the triangle centroid.

Evaluating the advective u¢ term in Equation (2.2.3)) requires more careful consideration
than the diffusive term. Denoting the separate components of the flow vector u by

u = (u,v), the integral for the advective term takes the form

. 1
/ (—uqb) ‘nds =~ —§(¢ﬁ/}}£ + QSI;\/[P) (uMpAyMp — ’UMPAQS'MP) . (2217)
MP
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Let u take the value of uyp ~ 1—12(511A + bup + 2ue) at the midpoint of the line M P
through repeated use of linear interpolation (as for ¢yp when estimating the diffusive
flux). If the previous (central differencing) choice of ¢35 := (5d4 +5¢p +2¢.)/12 is used
for evaluating the advective flux, it is known that while this yields accurate solutions of
2nd order with respect to grid size it also produces unstable oscillations when the Péclet
number (the ratio of advective to diffusive transport rate) is large [82]. The alternative

is to use an upwind scheme, such as,

(bA if (uMp'fl) >O,
o (2.2.18)

¢B if (llMp'fl) < 0.

This choice of ¢,,p provides far superior stability than the linearly interpolated value, but
only exhibits 1st order accuracy. Further, the method works best when the flow direction
is normal to the surface and the line AB is perpendicular to M P; two conditions that
are essentially impossible to guarantee throughout the entirety of the computational
domain, incurring an additional unquantifiable error based on mesh irregularity similar

to in Equation (2.2.13]).

In order to achieve both a sufficient accuracy and stability, it is sensible to implement a

mixed scheme of the form

Sup = Boyrp + (1= B)éiip, (2.2.19)

in which 0 < g < 1. For the remainder of this thesis, we choose to use the value of
B = 0.8 which yields consistently accurate results in the modelling of problems with
smooth ¢. This is by no means an optimal choice but involves a large enough proportion
of upwind differencing that we do not see the emergence of spurious oscillations in our
results. A more rigorous formulation for defining 5 as a linear function that varies in
space and minimizes the emergence of spurious oscillations (based on the total variational

diminishing (TVD) scheme [65, 122] of Darwish and Moukalled [39] for unstructured
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grids) is given in the following Section.

2.2.4 Implementing flux limiters

Following the example of Darwish and Moukalled [39] for implementing a flux limiter in

a PDE discretization with unstructured grids, we introduce the scheme

$a+50(¢p —¢a)  if (uyp-0) >0,
Pmp = (2.2.20)

¢p+ 30(da—dp) i (uyp-n) <0,

where the flux limiter 0 < (/) < 2 is a linear function dependent on %, the upwind ratio

of consecutive gradients of ¢. This ratio v is given by

_ $a—du

V= e —oa

for (uMp . fl) > 0, (2221)

for some theoretical node U downwind of A (the case uyp -0 < 0 will be addressed

shortly).

The value of £ dictates the kind of numerical scheme employed, with the most important
examples including upwind (8 = 0), downwind (5 = 2), and central differences (8 = 1).
Intermediate values of [ represent a combination of these schemes. For a flux—limited
scheme to have second order accuracy with respect to the grid size it is required that
B(1) =1, and in order to be total variational diminishing (TVD) we require 0 < f(¢) <
min|[2¢, 2]. The term TVD, first introduced by Harten et al. [65,122], refers to a numerical

scheme in which the total variation in the solution in the spatial domain €2, given by

TV = /Q Vo(x)| dx, (2.2.22)

is non-increasing in time.
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Observe that ¥ may be written in the form,

_ba—dv _(¢p—¢u)—(9—9a) _ dB—du _
¢ — ¢a ¢ — da ¢ — ¢a

" 1. (2.2.23)

Now if we let U be located such that the node A is the midpoint of the line UB, then

application of the midpoint method yields,

(05 — dv) = Voa - Axyp = (2Va - Axap), (2.2.24)

and so 1 can be expressed solely using values of ¢ at the mesh nodes A and B,

(2V¢A . AXAB)
gbB - ¢A

) = ~1. (2.2.25)

For (upp - 1) < 0, the new formulation for ¢ is found simply by swapping the indices A

and B. That is,
(2V¢B . AXBA)
A — 9B

= —1. (2.2.26)

Since Axap/(¢p—¢a) = Axpa/(da — ¢p), the value of 1) may be neatly summarised as,

@VoaBXap) _ 1 if (upp-0) >0
. py— (2.2.27)

2Vpp-Ax . ~
(Vép-Axap) $§7¢AAB) —1 if (uMp . n) < O,

i.e. the direction of flow affects only the location at which we calculate the derivative V.
Calculation of this derivative can be achieved by application of the least squares method

using values of ¢ at all adjacent nodes.

There are many different ways to construct an appropriate flux limiter § using the gra-
dient ratio ¢». The Koren limiter, given by £(¢)) = max[0, min(2r, (2 + ¢)/3,2)], is a
poplar choice which is third-order accurate for sufficiently smooth data (¢ € [2/5,4])
[18] and lies within the 2nd order TVD region for all values of ¢ [112]. In the limit as

a — 0, the flux-limited FVM typically outperforms the fixed—8 FVM but the increase
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in computational time is significant.

2.2.5 Conversion to an axisymmetric 3D geometry

This Chapter has detailed the key steps in constructing a FVM for solving the diffusion
equation on a 2D geometry in Cartesian (z,y) co-ordinates. In order to extend this work
to a 3D geometry in cylindrical (7,0, z) co-ordinates, axisymmetry is assumed about the
z axis so that the solution can be described in terms of r and z only. A 2D mesh is
generated in exactly the same manner as before, with x = r and y = 2. The only change
necessary is in the AV and Ax terms, which must be multiplied by a factor 27r to
reflect the fact that the spatial domain is now 3D. There is some additional complexity
in choosing which value of r to use to represent each control volume, since the position of
the enclosed node (the easiest choice) does not correspond to the centroid of the CV in
general. In particular, using the value of r at the node may be problematic at the r =0
boundary. Thus, it is sensible to calculate the position of the centroid of each CV and

use this as the representative value of r.

2.3 The alternating-direction-implicit method for use
on structured grids

In addition to the FVM, we also develop a separate finite difference method for the
purpose of comparison of errors (particularly useful in situations where an analytical so-
lution is not readily available). The method we employ is a modification of the original
Alternating—Direction-Implicit (ADI) method of Peaceman and Rachford [95] to include
the QUICK algorithm of Leonard [82] for the discretization of the advective flux. The

standard ADI method for the diffusion equation using central differences is uncondition-
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ally stable and second order in both time and space. The QUICK discretization of the
advective flux is third order accurate with respect to the spatial grid size. Thus the
combination of these two schemes provides a method with remarkable accuracy as well
as impressive computational efficiency. Unfortunately, the method is only applicable to

structured grids and so lacks the flexibility of the FVM.

When working with a structured grid, it is intuitive to write the ADR equation in Carte-

sian form:

9o o Db <a2¢+@)’ (23.1)

ot T Ty T\ T o

where u and v are the  and y components of the flow vector u = (u, v) respectively. The
full ADI discretisation of this equation occurs in two stages using an intermediate time
step. During the first stage, Equation ([2.3.1]) is discretized such that its resultant form

is explicit in one direction (say x) and implicit in the other (y). That is

k+2 _
- ¢—’ (2.3.2)
ot (At/ 2)
82¢ z 1,5 2¢ + ¢z+1 g
N 2.3.3
Ox* (Ax) ’ (2.3.3)
k k k41
o Onn =200 + B .
Iy (Ay) ’ 3.
(
9o | wks (230, =30k, 4 Toh — 0hy)  ifui >0,
9z ) (2.3.5)
L ﬁ (¢ 7¢z 1,5 + 3¢ + 3¢l+1]> if U j < O’
\
k k k+l kL )
00 |y (—3¢,-j21 eyt ek oih) ey >0, .
a_y B k"‘r k—|- k+ k—i—l ) L.
L @ (¢ i 22 7¢l] 21 —+ 3@5 2 —+ 3¢2Jﬁ1> if Vi j < 0.

In the absence of advection, Equations (2.3.1)—(2.3.4]) can be written in the form

—cy® i+ (14 20))¢; ;2 — ¢y ;2 = Capt L+ 2cm) i+ quﬁlﬂj, (2.3.7)
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where ¢, = ﬁ and ¢, = 2&—%‘5)2. Considering the common form of Equation ([2.3.7)) for

all j =1,2,...,N,, it is possible to write

AT =B, (2.3.8)

where

2

e The N, x N, matrix A is a linear operator between q’)er and B; comprised of the
coefficients on the LHS of Equation ([2.3.7)),
k+i . . k+3 .
e ¢; ?isthe N, X 1 vector with elements ¢, ;* for j =1,2,..., N,

e B, is the V, x 1 vector containing the values of the explicit sums on the RHS of

Equation (2.3.7) for j =1,2,..., N,.

For any given 7 € 1,..., N,, following a priori calculation of B; and by inversion of the
1
matrix A the solutions q§f+2 = A\B,; may be found. Iteration over all i then yields the

1
complete solution for all gbf;?.

It is important to note that while the vector B; is different for each i, the matrix A is
not. This is only true for the purely diffusive case. When we also include the advective
terms, the diffusive matrix A must be augmented by an advective matrix Al, which is
different for each ¢ as a result of changes in v; ; for ¢ = 1,2, ..., N,. For steady flow each

A’ need only be calculated once.

During the second stage of the ADI method, we alternate direction so that the equations
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are now explicit in y and implicit in . That is

6¢ ¢k+1 ¢k+z

= 2.3.9
ot (At/2) ( )
%0 I, =200 + O 2.3.10
or? (Ax)? ’ (2:3.10)
k+3 k+3 k+3
82¢ . ¢i,j 21 - 2¢ : ¢i,jﬁ1 2311
oy (Ay) ’ (2.3.11)
o9 sz (53000 = 3l + 1ol — ois)) if u; ; >0, (2312)
% — 0.
ﬁ (Con +21,a — 79 +11y +3¢17 + 3¢ﬁll,j) if u;; <0,
1 2 k—f—% .
8¢ . E ( 3 Z] 1 3¢z] + 7¢z j+1 ¢i,j+2> if Vi,j > 07 (2 3 13)
o = ) .3.
Y & ( O, — TorTE 4 36T 4 3¢fjf1) if v, < 0,

so that in the absence of advection

k+3 k+3 k+3
- C:c¢f+113 (1+ 2cx)¢k+1 - Cacﬁb?iij = y(b” 2+ 2Cy)¢ ‘e y(bi,jfl- (2.3.14)
By considering the common form of Equation (2.3.14) for all ¢ = 1,2, ..., N,, it follows
that
Co'™ =Dy, (2.3.15)

where

e The N, x N, matrix C is a linear operator between qb?“ and D; comprised of the
coefficients on the LHS of Equation (2.3.14),
. q§k+1 is the IV, x 1 vector with elements ¢k+1 fori=1,2,...,N,,

e D; is the IV, x 1 vector containing the values of the explicit sums on the RHS of

Equation (2.3.14]) for : = 1,2, ..., N,.

k+1

The process for finding the complete solution for all ¢; ;" and including the advective

terms then follows similarly from the first stage, the only difference being iteration over
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7 instead of ¢ throughout.

2.4 Error analysis

To investigate the accuracy of our numerical methods (both FVM and ADI), consider

the 2D advection—diffusion problem

Xt Vo=aV%,  ayel0l] (2.4.1)

with ¢ =0 on x,y = 0,1 and u = (sin(7z) cos(my), — cos(mz) sin(my)). This choice of flow
field is useful since it results in zero normal flow at the boundaries as well as satisfying the
continuity equation V -u = 0. The Dirichlet condition on the boundaries is necessary for

finding an analytical solution (as will be seen shortly). Employing a separable solution

¢(x,y,t) = F(z,y)T(t), (2.4.2)
it follows that
1dT 1 9 B 9

for some constant A (since temporal and spatial dependencies have been successfully
split). If it is assumed that the spatial part F' of the solution ¢ has sinusoidal form

F = sin(mz) sin(my), then

u- VF = sin(mx) cos(my)—— — cos(mx) sin(ﬂy)g—j,

Ox
= sin(mzx) cos(my)[m cos(mx) sin(my)| — cos(mx) sin(wy)[7 sin(7x) cos(my)],
—0,

(2.4.4)
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and so the advective term disappears completely. This choice of F' dictates why Dirichlet
boundary conditions must be employed, since it is incompatible with Neumann conditions.

Solving the remaining part of the equation for F to find X then yields A\? = 2a?, and so

dr

— = 2am T =T = e 271, (2.4.5)
dt
Thus the analytical solution for ¢ is
Oz, y,t) = e 2"t sin(mz) sin(my), (2.4.6)

with initial condition implicitly defined as

o(z,y,0) = sin(mz) sin(my). (2.4.7)

As a result of the disappearance of the advective term, this solution holds for both u =0
and u = (sin(7x) cos(my), — cos(mz) sin(my)). Note that in spite of the fact that u-Ve¢ =0
in the analytical solution, advection is included in the FVM through approximation of
surface flux through each CV (ie. [, (u¢) - ndS) which is in general non-zero over
each individual surface. Thus, while an analytical solution in which advection does not
disappear would perhaps be preferable, the forthcoming tests should still prove to be a

reasonable measure of the accuracy of the FVM and ADI method in tackling advection.

It is now possible to run MATLAB code and compare the magnitude of the absolute
errors for FVM and ADI.

Test 1: Pure diffusion with Dirichlet boundary conditions

The two methods are first tested in the purely diffusive case (i.e. in the absence of

advection) with Dirichlet boundary conditions. The diffusive constant « = 1 is fixed

47



while mesh size is varied, showing that the magnitude of the errors is decreasing for
increasing degrees of freedom (number of grid points used for meshing). The speed of
convergence of the errors towards zero is approximately quadratic with respect to the grid
size h. For the FVM with uniform meshing (which we have used here), this h represents
the approximate length of each triangle edge. For the ADI method, h represents the
exact spacing between any two adjacent points. Results can be seen in Tables (for
FVM) and [2.2| (for ADI), where the ADI method has been tested using finer grids due to
its superior computational speed. The parameter t,,,, refers to the dimensionless final
time of the simulation whereas INV; denotes the total number of (uniformly spaced) time
steps, implicitly defining step size At via Ny — 1 = t,,4,/At. The value N, in the FVM
calculations is equal to the total number of nodes used (implicitly chosen by h). The
value Ny in the ADI calculations is equal to the total number of nodes used to discretize

each axis (implicitly choosing h). The errors listed in these tables are given by:

max norm error = max |®num — Panal, (2.4.8)

max ‘¢num - ¢ana|
max |¢ana|

: (2.4.9)

max percentage error =

where ¢pnym and @q,, refer to numerical and analytical solutions for ¢ respectively and
the maximum is evaluated using all grid points. Notice that for the percentage error we
use separate max functions in the numerator and denominator (instead of just a single
max function encompassing the whole fraction) to avoid the possibility of dividing by a

number numerically close to 0.

Test 2: Diffusion with advection and Dirichlet boundary condi-
tions

With the introduction of the advective field u = (sin(7wz) cos(my), — cos(mx) sin(7y)),

the analytical solution to the Dirichlet problem remains the same. In the following, the
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Figure 2.7: Initial condition ¢(z,y,0) = sin(mz) sin(my) for use with Dirichlet boundary
conditions.

value of « is varied without changing the mesh size to investigate the accuracy of the
methods while approaching pure advection. FVM is split into two methods here: the
fixed—3 and flux—limited schemes. Results are given in Table The accuracy of the
ADI method begins to deteriorate rapidly near o = 10™* (since QUICK is numerically
unstable for pure advection), whereas the fixed—3 FVM is surprisingly resilient despite
the use of a large value of 8 = 0.8 (tending towards the unstable central differencing).

The flux—limited FVM outperforms all other methods tested for small a.

We also repeat the Test 1 with the inclusion of advection, using « = 1 (for a Péclet
number approximately equal to 1) and varying h. The results in Tables and show
that all of our methods readily cope with the introduction of advection, with no method
showing any significant deterioration in accuracy from the results of Test 1. The increase
in accuracy for small A is more pronounced for the fixed—3 FVM than the flux-limited

FVM for this choice of a = 1.
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h N, max norm error max percentage error

0.1 136 3.8296-1073 2.8046
0.09 162 2.8973-1073 2.1054
0.08 193  2.5523-1073 1.8388
0.07 258  1.9995-1073 1.4397
0.06 368 1.2753-1073 9.2061 - 1071
0.05 507 9.0392-1071 6.5268 - 1071
0.04 780 5.8542-107* 4.2226 - 107!
0.03 1354 3.3712-107* 2.4276 - 1071
0.02 2996 1.4149-1074 1.0192 - 107!

Table 2.1: Error convergence for the FVM in the purely diffusive case with Dirichlet
boundary conditions. Using o = 1, ¢4, = 0.1, Ny = 201.

h Nx max norm error max percentage error

0.02 51  8.9669-107° 6.4551 - 1072
0.01 101 2.1997-107° 1.5835 - 102
0.005 201 5.0816-107° 3.6582 - 1073
0.0025 401 8.5306- 107" 6.1410- 1074

Table 2.2: Error convergence for the ADI method in the purely diffusive case with Dirich-
let boundary conditions. Using o = 1, ¢4, = 0.1, N; = 201.
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max norm error max percentage error

a FVM (fixed-5) FVM (flux-limited) ADI FVM (fixed-5) FVM (flux-limited) ADI
1 6.1452 - 1075 1.4025 - 10~ 5.1169 - 1079 4.4267 - 1072 1.0103 - 1071 3.6836 - 1073
1071 8.8880 - 10~* 1.2906 - 104 3.3605 - 107° 1.0835-107" 1.5733 - 1072 4.0938 - 10~*
1072 1.2542 - 1073 2.6262 - 1071 6.8083 - 107 1.2800 - 1071 2.6803 - 1072 6.9440 - 1074
1073 1.4026 - 1073 4.9002 - 104 5.4476 - 107° 1.4063 - 10! 4.9131-1072 5.4584 - 1073
1074 1.6792 - 1073 5.3149 - 1074 3.3593 - 107! 1.6806 - 10! 5.3194 - 1072 33.9991

Table 2.3: Error analysis for the advection—diffusion Dirichlet problem as we approach pure convection. Using h = 0.02 and £ = 0.8 (for
fixed-p FVM), Nx = 201 (for ADI), and ¢y, = 0.1 with V; = 201 (for both).



max norim error max percentage error

h N, fixed—f flux—limited fixed—f3 flux—limited
0.1 136 2.8846 - 1073 3.5768 - 1073 2.1125 2.6195
0.09 162 2.1014-1073 2.7323-1073 1.5270 1.9855
0.08 193 1.8074-107% 2.4111-1073 1.3022 1.7371

0.07 258 1.3253-107% 1.9201-1073 9.5425 - 1071 1.3825

0.06 368 7.2491-107% 1.2344-1073 5.2331-107' 8.9114-107!
0.05 507 4.5550 - 10~*  8.8075-10~* 3.2890- 107! 6.3596 - 107!
0.04 780 2.2882-107* 5.7477-10~* 1.6505- 1071 4.1458 - 10~
0.03 1354 7.1700-107° 3.3332-107* 5.1631-1072 2.4003 - 107!
0.02 2996 6.1452 - 1075 1.4025-107* 4.4267-1072 1.0103-1071

Table 2.4: Error convergence for the fixed-g FVM (with § = 0.8) and flux-limited FVM
in the advective-diffusive case with Dirichlet boundary conditions. Using o = 1, ¢4 =
0.1, N; = 201.

h Nx max norm error max percentage error

0.02 51 9.0677-107° 6.5277 - 1072
0.01 101 2.2140-107° 1.5938 - 102
0.005 201 5.1169 - 1076 3.6836 - 1073
0.0025 401 8.7480-1077 6.2975- 104

Table 2.5: Error convergence for the ADI method in the advective-diffusive case with
Dirichlet boundary conditions. Using o = 1, %,,4. = 0.1, N; = 201.

Test 3: Pure Diffusion with Neumann boundary conditions

It is also possible to find an analytical solution to the diffusive Neumann problem

99

5 = aV3e, x,y € [0,1], (2.4.10)
with
¢
5, =0 onz=01, (2.4.11)
g—j =0 ony=0,1. (2.4.12)
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This has solutions of the form
G (1,7, 1) = Cppe 't cos mra cos nry, (2.4.13)

where A2, = ar?(m? + n?). Solutions can be combined to give a total solution of the

form

S,y t) =D > mn, (2.4.14)

m=1 n=1

in which the constants C,,,, can be determined via the initial condition. We take the

alternative approach of choosing the constants to be such that

1 ifm=n=1,
Con = (2.4.15)

0 otherwise,

defining the initial condition ¢(z,y,0) = cos(mx)cos(my) implicitly. This condition is
particularly challenging for the Neumann FVM, since it creates sharp gradients near the
boundaries (where the accuracy is reduced as we have to rely on a first order approxima-
tion for the diffusive flux along any CV edge with precisely one vertex on the boundary).
Our results in Tables and show rapid improvements in accuracy as h — 0 for both
FVM and ADI.

h N,  max norm error max percentage error

0.1 136 6.6101-1073 4.7585
0.09 162 4.7432-1073 3.4145
0.08 193  5.9746-1073 4.3010
0.07 258 3.3139-1073 2.3856
0.06 368 3.4013-1073 2.4486
0.05 507 2.7243-1073 1.9612
0.04 780 1.5728-1073 1.1322
0.03 1354 1.2753-1073 9.1809 - 107!
0.02 2996 7.4040-107* 5.3300 - 107!

Table 2.6: Error convergence for the FVM in the purely diffusive case with Neumann
boundary conditions. Using @ = 1, ¢4, = 0.1, N; = 201.
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Figure 2.8: Initial condition ¢(z,y,0) = cos(mx) cos(my) for use with Neumann boundary
conditions.

h Nx max norm error max percentage error

0.02 51 8.9669-107° 6.4551 - 1072
0.01 101 2.1997-107° 1.5835 - 1072
0.005 201 5.0816-107 3.5682 - 1073
0.0025 401 8.5306-1077 6.1410 - 1074

Table 2.7: Error convergence for the ADI method in the purely diffusive case with Neu-
mann boundary conditions. Using a = 1,4, = 0.1, N; = 201.

2.5 Chapter summary

Starting from the most general form of the continuity equation, a generalized advection—
diffusion—reaction partial-differential-equation was derived for use in a model describing
chemical concentrations in the pollen tube cytoplasm. Since this PDE yields analyti-
cal solutions only in specific cases, methods were developed for solving the ADR PDE

numerically.

The first of these methods was the FVM, purposefully constructed to be as general as
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possible and applicable to any domain geometry using an unstructured triangular mesh.
An extensive account of the numerical approximations used for discretizing each term of

the ADR PDE using this method was also given.

In addition to developing a novel FVM, we also presented an outline of the alternating—
direction— implicit method for use on structured meshes. Capable of providing numerical
solutions to PDEs using only the principles of finite differences, the ADI method typically
results in smaller errors than the FVM. This is offset by the need to employ a structured

grid, limiting the use of the ADI to computational domains with a regular geometry.

To conclude this Chapter, we conducted an error analysis for both FVM and ADI in 3
test cases on the unit square with known analytical solutions: both i) pure diffusion and
ii) advection—diffusion with Dirichlet boundary conditions, as well as iii) pure diffusion

with Neumann conditions.
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CHAPTER 3

THE METHOD OF REGULARIZED RINGLETS

In Chapter 2 we developed numerical schemes for advection—diffusion—reaction equations
for use with a given velocity profile. Here, we derive the novel method of ‘regularized
ringlets’” — axisymmetric rings of regularized Stokeslets which can be used to determine
the cytoplasmic flow induced by the motion of vesicles along actin bundles. We verify
and demonstrate the method by application to some simple test cases before combining

with the FVM from Chapter 2 and applying to the pollen tube in Chapter 4.

3.1 Introduction

The Stokes equations for incompressible flow at zero Reynolds number are used exten-
sively to model the viscous-dominated regime of microscale flows, particularly biological
flows associated with cilia-driven transport, and the motility and feeding of flagellated
cells such as bacteria, spermatozoa, algae and choanoflagellates. For an overview, see
Lauga and Powers [80]. The fundamental solution of the Stokes flow equation, which

corresponds to the flow driven by a single spatially-concentrated force is often referred to
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as the Oseen tensor or Stokeslet. The linearity of the Stokes flow equations enables the
construction of solutions to problems involving moving boundaries with complex geome-
try through integral sums of Stokeslets, forming the basis for the method of fundamental
solutions, slender body theory and boundary integral methods. The latter numerical
method has the principle major advantage of avoiding the need to mesh the fluid volume,
which has enabled highly accurate and efficient simulation of biological flow systems for
several decades [96, 99, 106]. Indeed more approximate methods based on line distribu-
tions of Stokeslets and higher order singularities also enabled major progress in this area
before the present era of computationally-intensive research. For review see the earlier
work of Chwang, Wu and co-authors [29], who also explore a wide range of applications

as part of a series of papers on low-Reynolds number flow [28] 26l 27, [73], 69].

Nevertheless, two implementational issues arise with methods based on singular solu-
tions. The first is that boundary integrals of solutions with a 1/r-type singularity can be
technically complex to evaluate on or near the boundary. Line integrals associated with
models of slender bodies such as cilia and flagellar are ‘more singular’, and can require
careful distinction between the inside and outside of the body. Moreover, there are cases
in which immersed forces due to, e.g. many suspended moving particles, are desired to
be modelled by an immersed volumetric force. Cortez et al. developed the method of
regularized Stokeslets [31), B3] based on the exact, divergence-free solution to the Stokes
flow equations due to a concentrated but spatially-smoothed (regularized) force. This
approach has enabled the use of Stokeslet methods in a wider range of applications, such
as those in which an inducing force is present in the interior of the fluid domain (as either

a point in R? or a point/curve in R?).

While conceptually elegant, the standard implementation of the method of regularized
Stokeslets is computationally expensive, motivating the development of boundary element
discretization [107], line integration [32], and meshless interpolation [I08] among other ap-

proaches. Many diverse biological flow problems of interest exhibit rotational symmetry,
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examples including spherical ‘squirmer’ swimmers [11], the conceptual toroidal swimmer
of Purcell [08], and cytosolic flow in elongating pollen tubes [22]. Thus motivated, we
study axisymmetric Stokes flows in which the singular and regularized Stokeslets can
be integrated azimuthally to yield an axisymmetric ring of point forces. The singular
solution to this problem is already known [97]; the regularized solution, which we term
the ‘regularized ringlet’, is newly derived. This solution forms the basis for an efficient

axisymmetric method of regularized Stokeslets.

We begin in Section by introducing the singular and regularized Stokeslets, and re-
view their application in solving the resistance problem for a rigid body translating in
a viscous fluid. This is followed by the derivation of the regularized ringlet, whose an-
alytical solution is given in terms of complete elliptic integrals of the first and second
kind. The double layer potential (DLP), relevant to bodies undergoing volume-changing
deformation, is also considered, with analytical evaluation of the azimuthal integral in
the DLP given in[B.3 In Section we consider some simple cases of motion, applying
the method of regularized ringlets to the resistance problem for the translating and ro-
tating unit sphere. We further consider the case of Purcell’s toroidal swimmer [98] [83],
in which the method of regularized ringlets enables the calculation of propulsion speeds
which are in excellent agreement with analytical results for both slender and non-slender
tori. Section [3.4] encompasses some further examples on the unit sphere, with a thorough
comparison between regularized ringlets and Cortez’ method of regularized Stokeslets [33]
covering both absolute errors and computational speed as well as a comparison to results

obtainable using the singular method of fundamental solutions.
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3.2 Singular and regularized Stokeslet solutions

For the viscous—dominated very low Reynolds number flow associated with microscopic
length scales and slow velocities, incompressible Newtonian flow is well-approximated by

the steady Stokes flow equations

uV*u = Vp —F, (3.2.1)

V-u=0, (3.2.2)

where p is dynamic viscosity, p the pressure, u the velocity, and F the applied force per
unit volume. If we let F be a singular force of the form F(xq) = gPd(xo — x) for arbitrary
strength gP, arbitrary point x at which the singularity is located, and where ¢ is the Dirac

delta function, then the fundamental solution [47, [123] for u is given by

1
ui(Xo) = %Sij(xo,x)9§7 (3.2.3)
where
S = Y ' 3.2.4
J(X07 X) |X0 _ X‘ |XO . X‘S ) ( )

is known as the Stokeslet.

The singularity in the Stokeslet solution can be eliminated without loss of incompressibil-
ity by regularization of the force F, as described by Cortez and colleagues [31], 33]. The
Dirac delta function is replaced with F(xq) = gP¢.(xg — x) where ¢, is a radially sym-
metric, smooth ‘cutoff’ function with the property fRs ¢e(x)dx = 1. This is in essence
applying the force over a small ball, varying smoothly from a maximum at its centre
to =& 0 sufficiently far away, instead of using an infinite point force as in the classical
Stokeslet solution. The numerical parameter ¢ dictates the radius of support of the force,
and as € — 0 we recover the classical solution. Solutions for u using regularized Stokeslets

appreciably differ from those found using the singular Stokeslet only near the point where
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the force is applied. Following Cortez et al. [33] we take

0-(x0 — X) o (3:2:5)
(Xg — X) = ; T
"7 Sl — P B
which yields,
\XO—X|2—|—2€2 ($0i—xi>($0j_xj)
g — 5 : : . 3.2.6
i (XO)X) J <|X0 — X’Q + E2)3/2 (lXO _ X‘Q + 52)3/2 ( )

By considering a solid body D moving through the fluid, it can be shown that [33],

/1133 i (X) (%0 — x) dV (x) = % . S5 (%0, %) g5 dS(x), (3.2.7)

where g® is the force per unit area exerted by the body surface (denoted 0D) on the
surrounding fluid. The above equation is exact; replacing the left hand side with the

velocity wu;(xg) such that

1

Ui(Xo) = %

/8D S5 (%0, %) g5 dS(x), (3.2.8)

introduces an error O(e?) where p = 1 on or near the body surface, and p = 2 sufficiently

far away.

Discretising Equation (3.2.8)) using NV Stokeslets on the surface of the solid body D enables
the approximation of the fluid velocity at any point x( via a numerical quadrature formula
T

ui(Xo) = s S5 (%0, Xn) g i W (3.2.9)
n=1

where g;, ; denotes the jth component of the force per unit area applied at the point
(a Stokeslet location) and W, is the quadrature weight associated with the nth particle.
The value of W, is dependent on the geometry of the body surface 0D and in Cortez and

colleagues’ work has units of area.
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3.2.1 Derivation of the regularized ringlet

Consider a specific case of Equation ({3.2.8)) using a cylindrical (r, 6, z) coordinate system
in which the body D exhibits rotational symmetry about the z axis. This symmetry
enables analytical integration azimuthally, reducing the surface discretisation to a line
discretisation and increasing accuracy. In doing so, we are effectively placing ‘rings’ of
regularized Stokeslets at positions x,, = (1,0, 2,) forn = 1,..., N, and 6 € [0,27) (see
Figure for a diagram of a single ring). This is analogous to covering the surface of
the body in ‘strips’ instead of the patches used in a standard 3D Cartesian discretisation.
With a surface parametrization x(s, ) where 0 < s < ¢ denotes arclength and 0 < 0 < 27,

the boundary integral Equation (3.2.8|) reads

4 27
wi(x0) = —— [ 5% (x0,%)g% (%) dS(x) = — ( /9 s;(xo,x(s,e))g;(s,e)r<s)d@) ds.

=0

87 Jap 8T s

(3.2.10)

yd N

Figure 3.1: Stokeslet ring in the z-y plane. Note that the fluid point (open circle) and
points on the ring (closed circle) do not necessarily both lie in the plane of the page (i.e.
z = zp is not required).
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Converting to cylindrical polar coordinates, we introduce the transformation matrix

cosf) —sinf 0

O)=| sing cosf 0 |- (3.2.11)
0 0 1

Letting indices i, j,k and «, 3, correspond to Cartesian and cylindrical polar bases
respectively (such that ¢ = 1,2,3 and a = 1,2,3 correspond to z,y,z and r,0, z re-
spectively, with Einstein summation convention employed for both sets), it follows that
9% = 0ja(0)gs. Assuming that velocity is evaluated at fluid point xo = (79, 09, 2) in cylin-
drical polars, it further follows that u; = ©;,(0p)u,. Recognizing that O~ = 6T, sub-
stitution of the cylindrical forms of the velocity and force vectors into Equation

thus yields

Ua(ro, 0o, 20) = @m(eo)uz(fo,yo, 2p)

87m Oai(00) // (x0,%(s,0))0,5(0)g5(s) r(s)dfds.  (3.2.12)

Under the assumption of axisymmetry, it is sufficient to only consider cases yg = 6y = 0.
This results in the Cartesian x — z and the cylindrical polar » — z planes coinciding, such
that the transformation matrix with 6y = 0 simply yields the identity matrix (written as

doi = 1 when a = i and 0 otherwise in the summation) and Equation (3.2.12]) reduces to,

1 4 27
Ua (70, 20) = % i 95(s) [5(12-7“(3)/0 S5 (x0,%(5,0))0;5(0) dO | ds, (3.2.13)
1 e a &
= i 95(s) R 5(x0,%(s)) ds, (3.2.14)

in which the ‘ringlet” kernel

Rg5(%0,%(s)) := (5M~7‘(s)/0 ' S5;(%0,%(5,0))0;5(0) db, (3.2.15)

is implicitly defined. Unlike the Stokeslet which has the symmetric property Sf;(xo,x) =
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S5;(x,%), ordering of arguments in the ringlet is important; the first and second argu-
ments in R 3(Xo,x) denote the fluid point and ring location respectively, with the ring

radius 7(s) being the crucial non-symmetric term.

The various terms in the Stokeslet S7; can be evaluated in cylindrical polar coordinates

via

(201 — 1) =19 — 1 COSH, (3.2.16)
(202 — x3) = —rsinb, (3.2.17)
(w03 — 73) = 20 — 2, (3.2.18)

Ixo — x|* = (rg — rcos 0)? + (rsinf)? + (2o — 2)°. (3.2.19)

The resulting form of each Sj; is given in and used in the evaluation of R, in
Equation (3.2.15). These integrals R 5 yield the regularized fundamental solution for an
axisymmetric ring of concentrated force (the regularized ringlet). Analytical evaluation
reveals that RS, = RS, = Ry, = Rj, = 0 such that the rotational problem for gj decouples

T

from g; and g7. The remaining nonzero R ; yield the equations

o | L gt | Botooxt) Bt | () oy
u=(Xo) 0 R (x0,%(5)) R (x0,%(s)) g:(s)
and
up(Xo) zﬁ i Ry (x0,%(5))g4(s) ds. (3.2.21)

Utilising Equations (3.2.20) — (3.2.21)) in tandem models axisymmetric problems with

or without azimuthal rotation, in which the fluid experiences a constant force in each
principal direction (T, 0, z) at points along which the ringlet is located. This could be
used, for example, to model the flow around a mobile axisymmetric body rotating about

an axis defined by its direction of translation.
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Approximating the integrals in Equations (3.2.20) — (3.2.21)) numerically using a series

of N rings yields a system of equations of the form

UT(X0> B L i Rir(XQ,Xn) RiZ(Xo,Xn) g?(Xn) w (3 9 22)
B 871—,u 5 € a " o
Uy (XO) n=1 Rzr (X()? Xn) RZZ(XO’ Xn) g, (Xn)
N
1
ug(Xg) = S Z Ry(%0,X1) g6 (Xp ) W, (3.2.23)
n=1

where ¢g%(x,), 9§ (Xn), g%(x,) are the radial, azimuthal, and axial components of the forces
per unit area applied at ringlet location x,, respectively, and w,, is the quadrature weight
associated with x,, for numerical integration over s. The quantity w, has units of length
unlike its counterpart W, in Cortez’ work (units of length squared). It is also possible
to combine the force per unit area g® and quadrature weight w, into a force per unit

length g', such that Equations ([3.2.22)) and (3.2.23)) can alternatively represent the fluid

velocity induced by a series of rings.

By considering the fluid velocity at each individual ringlet location, an invertible system

can be produced. In the zero-azimuthal-flow case (uy = 0), this takes the block matrix

form,
—1
RY R
G' = 8mu U, (3.2.24)
RL, R
RE
where, ) ) ) )
gh(x1) ur(x1)
L(x Up (X
G | ) , U= (x) , (3.2.25)
g(x1) u.(x1)
| gi(xn) | | u=(xn) |
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and,

Rig(x1,x1)  Reg(x1,%2) ... Rgg(xi,xy)
RE 5(x2,%x R 5(x2,x oo R p(xe,x
RS, = apxeX1) - Fiop(x,%2) olxaxn) | (3.2.26)
I RZB(XN,Xl) RZIB(XN,XQ) RZB(XN,XN) |

Hence, the forces needed to induce a given prescribed velocity in the fluid may be found
(the resistance problem). This works for both a series of translating rings and a translating
axisymmetric body, with the force per unit length g essentially ‘absorbing’ both the force
per unit area g and the quadrature weight w,, in the latter case. Inclusion of azimuthal-
flow involves the formulation of a similar invertible system for Equation which

can be solved separately.

3.2.2 Analytical evaluation of the regularized ringlet

The nonzero elements of the regularized ringlet can be expressed in the form

RE (%0, %) = Tn(—rornlo + (27 — (20 — 20)2) 1 — 3roraly), (3.2.27)
R (x0,%p) = rn(20 — 2n)(rolo — Tnl1), (3.2.28)
RS, (x0,%n) = 1n(20 — 2n)(—7ndo + 1011), (3.2.29)
RE_(%0,%,) = 1 ((T + (20 — 20)? + %) Iy — 2rorp1y), (3.2.30)
R5p(%0, %) = 1 (rorndo + (T + €)1 — 3roraly), (3.2.31)

in which 7 :=r2 + 72 + (20 — 2,)* + €2, and

o cos™ 0
= ao, 3.2.32
/o (T — 2rory, cOs 0)3/2 ( )
4k? > (2cos20 —1)"
" (drora)?? /0 (1 — k2 cos? 0)3/2 do, (3.2.33)
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with k% := 4ror, /(T + 2r¢r,). Equation is found by using the double angle
formula for cosf as well as symmetry arguments about 7/2. Following the example of
Pozrikidis [97], the integrals [,, can be computed by first expanding the numerator of the
integrand in Equation to obtain a series of polynomial integrals with respect to

cosf. Letting

4k3 3 cos?" 0
I =" —— do 2.34
n ((4r0rn)3/2> /0 (1 — k2cos?26)3/2 (3.2.34)

it follows that

Io=1,, L=I—-1, IL=I—-2I+]I (3.2.35)

The individual integrals I}, can be expressed in terms of complete elliptic integrals of the

first and second kind, which are respectively defined

Jus

_ o : dg _ [ 2 i 2 \1/2
F = Fk) ._/0 g M E=EW) ._/ (1= K2 sin? 0)/2 dp.

: (3.2.36)

The solutions for each I/ (as can be found in Section 2.58 of Gradshteyn and Ryzhik [59])

are given by

I = (4ijj)3 7 (1 _1 kQE) : (3.2.37)
. (Mffj)S . ( = L - %F) | (3.2.38)
I = (4r10ii§3 7 ( k42(1_—k12f2)E — %F) , (3.2.39)
from which it follows that
Iy = (47"?5)3 7 (1 _1 kQE) : (3.2.40)
I = (455)3 7 ( k22(1_—kli2)E - %F) : (3.2.41)
I = (Mjfj)s 7 <kz4_<1852kj)813 42 e kQ)F) . (3.2.42)
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Substitution of Equations (3.2.40)) — (3.2.42)) back into Equations (3.2.27) — (3.2.31)) yields

the complete solution for the regularized ringlet,

1
k T 2 47“27“2 . 7_(7_ + (Zo _ )2)
R n;, — — 25 O 0'n n
rr(X07X ) ron <T0> |:(7' + (Zo z ) ) + — 2T0Tn
2 2 2 -
Ry (X0, Xn) = o= b (r_n) {F LE} )
To ') T —2rorn
Rir(x(hxn) = —k<ZO Zl) |: n T E:| ’
(ToTn)§ T = 2T0Tn
3 s
R (x0,%x,) = 2k (T_”) o (20— 2n)° +¢€ E} |
"o T —2ror,

k

RZO (X07 Xn)

roTn

8rér? + 7(e? — 27)

T — 2rory,

E|, (3.243)

(3.2.44)

(3.2.45)

(3.2.46)

(3.2.47)

The solutions given by Equations (3.2.43) — (3.2.47) can be readily evaluated except

when 7y = 0 or r, = 0. In the limit as r, — 0 (zero ring radius), all k3 — 0. In

the limit as rg — 0 (central fluid point), both RS, and RZ, tend to finite values while

R, R,

TZ)

R5y — 0. This behaviour is described in detail in [B.2]

The form of the ringlet solutions R 5 is similar to those for the ring of singular Stokeslets

(as detailed by Pozrikidis in [97] with the exception of the newly derived RY,),

Rgr (X(J? Xn) =

Rgz(x(b Xn) =k

Rgr(X07 Xn) = =

Rgz (XO ) Xn)

Rgﬂ (XO ) Xn)

N|=

k_(rn
ToTn \To

{(rg + 7‘2 +2(z0 — zn)Q)F

2(20 = zn)* +3(20 — 20)°(r§ + 1) + (15 — 13)” E}

(20 — 2p)2 + (ro — T0)?

(r_”)2 {FJF o —Tn — (20— 20)°
o (20 — 2n)2 + (ro — 7n)?
k(zo — z?) {F g = ra (20— 2)? E] |
2 (20 = 2n)* + (ro — 70)?

(20 — 2n) }

E
(20— 20)2+ (ro —70)% |’
k (r—") {2(7“3 + 12+ (20 — 20)2)F

ToTn \To
420 — 2n)* + 4(20 — 20)*(rg +17) +2(r5 —72)°

(ZO - Zn)
To

2
+

(z0 — 2zn)2 + (1o — 70)?
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and in the limit as ¢ — 0 our solutions are equivalent to their singular counterparts. This
can be verified by substitution of ¢ = 0 into R 5 and is a result of the cutoff function ¢.

approaching a delta distribution as ¢ — 0.

Equations (3.2.20) — (3.2.21)) and (3.2.43|) — (3.2.47)) provide the solution (to within reg-

ularization error) for the fluid velocity at any point due to the drag force per unit area

on the surface of a generalized axisymmetric body. Using Equations (3.2.22) — (3.2.23)

in place of (3.2.20) — (3.2.21)) yields the numerical solution based on discretization over

the arclength s. In the case of a single ring, removing the integral over s and replacing
the force per unit area g® with a force per unit length g’ yields the solution for the fluid

velocity induced by the force acting along the ring in 3D space.

3.2.3 On the double layer potential

A more complete formulation of Equation (3.2.7) for the fluid velocity induced by a

translating body D is given by

[ 1000 = x) v () =
o | Sl (0as60 + o= | T e Xm0 dS(). (3259

where the first and second integrals on the right hand side are known as the single layer

potential (SLP) and the double layer potential (DLP) respectively. The stress tensor 77,

present in the DLP is given by

(w0 — i) (w0 — ;) (Tok — T1)
(%o — X[ 1 £2)7/2
a2 (w0, — )04k + (Toj — 75)0i + (Top — k) 0y
(%o — X% + 2y |

Tisjk(xo? X) =—0

(3.2.54)
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Thus far, it has been possible to neglect the contribution of the DLP by only consider-
ing the movement of rigid bodies, in which case the DLP disappears as a result of the
zero-deformation condition on D and the continuity of velocity on 0D (see Cortez [33,
Section I1.B]). However, other cases also exist in which it is possible to eliminate the DLP
without relying on the body being rigid. Following the method outlined by Pozrikidis

[97, Chapter 2.3], for any closed boundary 9D if

/ u-hdS =0, (3.2.55)
oD

as is the case throughout this thesis, then it is always possible to eliminate the DLP
by using a modified value for the force per unit area g* in the SLP. Whether this is
deemed acceptable depends on whether the exact value of g* is of particular consequence

to results, but this certainly allows for a wider range of applications.

Analytical integration of the DLP in the azimuthal direction is also possible, although

the resulting equations are somewhat unwieldy (see [B.3)).

3.3 Simple examples and test cases

In Section [3.2]the expression for the regularized fundamental solution for an axisymmetric
ring of concentrated forces, the regularized ringlet, was derived. In the following, we

demonstrate the validity of the method through application to simple cases of motion.

The first two cases concern the translation and rotation of the unit sphere in a Stokesian

fluid, treated independently in Sections [3.3.1] and [3.3.2] respectively. In Section [3.3.3] a

more complicated example is considered: the propulsion of ‘Purcell’s toroidal swimmer’

[98, 83], powered by tank treading of the torus surface. In considering these different
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cases, it is shown that the method of regularized ringlets can be used to model the
surface motion of axisymmetric bodies in each principal direction r, 0,z in a cylindrical

coordinate system.

3.3.1 Resistance problem for the translating unit sphere

The validity of the regularized ringlet method is illustrated by solving the resistance prob-
lem for the translating unit sphere. Given a prescribed surface velocity (—z), Equation
(3.2.14)) yields a Fredholm first kind integral equation for the unknown force distribution
[108]. The method of regularized ringlets (implemented here via Matlab) can be used to

solve this problem.

The sphere is parametrized in the r-z plane by p = cos ot + sin p z for ¢ € [—7/2,7/2],

then discretized as

—1/2
gOn:’/Tn N/ —g forn=1,...,N. (3.3.1)
The velocity boundary condition u = —z is prescribed at each x, := p(g,), and the

resulting linear system is solved to yield the required force densities g' at each of these

locations. The total drag is then calculated as

- Z / 9: () 7(3)d0) = —2m Z r(%n) % (%), (3.3.2)

which is compared with the Stokes law value of 67. The relative errors are given for
various values of N and regularization parameter £ in Table [3.1] alongside the condition

number of the resistance matrix R® in Table 3.2l

For given N, excessively small ¢ results in the drag error becoming non-monotonic in €.
For larger values of N we see that the error in the total drag is approximately of order ¢,

similar to the regularization error associated with fluid velocity u in transitioning from
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€ N =25 o1 101 201 401

0.01 —1.4689 - 1072 —2.0609 - 1073 1.6439 - 1073 2.4053 - 1073 2.5104 - 1073
0.005 —2.4754-1072 —7.2086-10"% —1.1116-1073 7.6816 - 1074 1.2056 - 1073
0.001 —4.7242-1072 —1.8774-1072 —7.0948-10~% —2.3160-10"% —5.1183-10~*

Table 3.1: Relative errors in the drag calculation for the resistance problem on the trans-
lating unit sphere.

€ N =25 ol 101 201 401

0.01 4.6282- 10" 1.5857-10% 7.1602-10* 7.0167-10% 4.0767 - 10°
0.005 3.3089 - 10*  9.6186 - 10* 3.1303 - 10> 1.4181-10% 1.3947 - 10*
0.001 1.9973 - 101 4.9332-10' 1.2386-10? 5.7653-10% 1.0449-10°

Table 3.2: Condition numbers of the resistance matrix R for the resistance problem on
the translating unit sphere.

Equation (3.2.7) to (3.2.8). For given e, increasing N eventually ceases to result in a

further reduction in the relative error. This is often the case with regularized Stokeslet
methods (eg. see Figure 3.7} Figure 3.8 and references Cortez et al. [33], Gallagher et
al. [53]).

A thorough comparison of our results for the translating unit sphere with those of Cortez
et al. [33] can be found in Section|3.4.1} A further comparison to results obtainable using
the axisymmetric method of fundamental solutions (a singular Stokeslet method) is given

in Section [3.4.3]

3.3.2 Resistance problem for the rotating unit sphere

The solution for the steady motion of a Stokesian fluid surrounding a solid sphere rotating
uniformly about a central axis is well known and can be found in e.g. Hydrodynamics by
Lamb [79, Chapter XI|. If the sphere rotates around its z axis in an (r,0, z) cylindrical
coordinate system with an angular velocity 2 = wyz, the resulting angular velocity of

the fluid is given by w = (a/7)3wy® where v = v/r2 + 22. This can be written in terms of
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the linear velocity (more readily usable in the Stokeslet formulae) over the entire domain

as,

) <%>3w09 Yy > a,

u= (3.3.3)

rwob Vv < a,

where 7 > a corresponds to the surrounding fluid velocity and v < a to the solid body
rotation of the sphere respectively. The zero Reynolds number torque on this sphere is
given by,

T = —8mua’Q, (3.3.4)

the derivation of which can be found in [104]. This torque is associated with a drag force
per unit area on the surface of the sphere given by f = —3pwy(r/a)@ = —g®, which can

be verified by considering the identity

T //Sx X £, (3.3.5)

where S denotes the sphere surface. Multiplication by z yields,
2T = —8mua’w, (3.3.6)
for the LHS of Equation (8.3.5). For the RHS, using f = —3puwo(r/a)0 it follows that

7-(xx£) =2z ((rf + 00 + 22) x (—3uwo(r/a)0))
= —3uwo(r/a)z - (rz — zr) (3.3.7)

= —3uwo(r®/a).
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Converting to a spherical system (r, 6, ¢) in which 6 denotes the azimuthal angle and ¢

the polar angle, we substitute 72 = a?sin” ¢ and dS = a?sin ¢ dfdyp to find

2 s
Z- //x x £dS = —3,ua3w0/ (/ sin3gpdgo> dae,
S = =0

6=0
= —67r,ua3w0/ sin® ¢ de, (3.3.8)
=0

= —6mpatwy - = = —8Tpa’wo,

Q| W~

suchthati-Tzi-ffsxxf:>T:ffo><fasrequired.

Thus, the force per unit length used in the method of regularized ringlets takes form

b e (3T (T

although for the resistance problem this is not prescribed.

As before, the sphere surface is parametrized in the r-z plane by p = cospt + sinpz
for ¢ € [—7/2,7/2], with p discretized using N ringlets at uniformly-spaced locations
X,. Letting wy = —1, the velocity u(x,) = —r(x,)@ is prescribed at each x, and the
resistance matrix is constructed to yield the required force densities g! at each of these

locations. The torque is then calculated as

N 2

_ Z /90 gé(xn) r2(xn)d9 = 27 Z r2(xn)gé(xn), (3.3.10)

n=1 n=1

in which r(x,) is squared since the torque is a moment, the product of distance and
force. Comparing to the value 8, relative errors are given for various values of N and

regularization parameter € in Table [3.3] alongside the condition number of the resistance

matrix R in Table

These results are similar to those of the translating unit sphere, although for given ¢, N

the relative error in the drag is generally slightly larger and the condition number of
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€ N =25 o1 101 201 401

0.01 —6.6820 - 1072 —1.3919 - 1072 3.1012-1073 7.1409 - 1073 7.5502 - 1073
0.005 —1.0168 - 107!  —3.3360- 1072 —7.2206-1073 1.5183 - 1073 3.5556 - 1073
0.001 —1.7339-107!  —7.5656-107% —3.0238-1072 —1.0422-107? —2.6879-1073

Table 3.3: Relative errors in the drag calculation for the resistance problem on the rotating
unit sphere.

€ N =25 o1 101 201 401

0.01 7.7965 2.1678-10' 7.1174-10' 3.4925-10% 4.2212-10°
0.005 6.2313 1.5492-10' 4.2389-10' 1.4119-10% 6.9613 - 10?
0.001 4.4051 9.5164 2.1792-101 5.4064 - 10" 1.4690 - 10?

Table 3.4: Condition numbers of the resistance matrix Rj for the resistance problem on
the rotating unit sphere.

the resistance matrix slightly smaller than for the results using the same €, N on the

translating unit sphere.

3.3.3 Purcell’s toroidal swimmer

The torus is the simplest geometry capable of describing self-propelled organisms [114].
Purcell’s toroidal swimmer [98, [IT3] describes one such organism, the geometry of which
can be seen in Figure Inward rotation of the torus surface produces a net force in the
direction of motion of the outermost surface (against which the torus is propelled). The
magnitude of this net force (and resultant propulsion speed of the torus) is dependent
on the speed with which the surface of the torus rotates as well as the slenderness of
the torus. Three modes of locomotion are considered by Leshansky and Kenneth [83],
corresponding to tank treading of (a) an incompressible surface, in which the tangential
surface velocity is largest on the inner surface, (b) a weakly compressible surface, in which
the tangential surface velocity is constant, (c) a highly compressible surface, in which the
tangential surface velocity is largest on the outer surface. In the following, we restrict

ourselves to looking at the case of constant tangential surface velocity.
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Figure 3.2: The geometry of the toroidal swimmer, whose cross section in the r-z plane is
given by the dashed lines. Rotation around the z axis produces the complete torus. The
torus moves with velocity U in the direction opposing outer surface motion (such that in
the given frame of reference in which the torus remains stationary, the surrounding fluid
appears to move with velocity —U). Redrawn from Leshansky et al. [83].

The torus geometry is reduced to a single slenderness parameter sy = b/a, where b and
a refer to the major and minor radii of the torus respectively. The torus surface is
parametrized in terms of angle n € [0, 27) in the r-z plane such that ds = adn and n = 0
corresponds to the outermost radial point on the surface of the torus, traversed in an
anticlockwise direction. For the free swimming torus, the rigid body translation U and
rotation u®® of the torus surface 9D are related to the force per unit area g® exerted by
the torus on the surrounding fluid by,

1 L

Ua(xo) + u$) (x0) = &y
s=0

R 5(x0,%)g5(s) ds  Vxo € 0D (3.3.11)
subject to the condition of zero net force in the z direction,

/8 gl(x)dS(x) = 0, (3.3.12)

where s is the arclength parametrization of the cross section of the torus surface 0D in

the r-z plane. We note that the additional free swimming conditions of zero net force
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in r and zero total moment (as outlined by Phan—Thien et al. [06]) are automatically

satisfied by axisymmetry and gy = 0 respectively.

The propulsion speed U := |U]| of the rotating torus for any given value of sy and
rotation speed u(® := u® can be determined by considering two separate situations:
one in which motion is purely translational in the z direction (the toroidal glider with
U = z,u® = 0) and one in which motion is purely rotational (the anchored toroidal
pump with U = 0,u® = © where 7 is the unit vector whose direction varies over
s, pointing tangential to the surface in the anticlockwise direction at all points). The
glider and pump have associated force distributions g#'¢ and gP™P respectively. Using the
regularized ringlet, surface motions can be prescribed (Figures & in order to
compute the associated force distributions (Figures & responsible for producing
each motion. For the toroidal glider the radial force is assumed to be zero (g8 = 0) such

that

1 2w

U.(x0) = ol R, (x0,%)g8(x)adn =0 VYx¢€ 0D, (3.3.13)
1 27

U.(x0) = v R, (%o, )gfld( Jadn=1 Vxq € 0D, (3.3.14)
TH Jp=0

which, after solving for the unknown force distribution g8, yields the net axial z force

Ggldz/ g84(x) dS(x), (3.3.15)
oD

which is nonzero. For the anchored toroidal pump the surface velocity is given by u®) =

1 = (—sinn, cosn) in (r, z) coordinates. It follows that

1

ul( — R 5(x0,x)g5"" () adn = —sinny, Vx¢ € D, (3.3.16)
871—#’ 77 0
1
ul( — 5(x0,x)g5" " (n) adn = cosn, Vxg € ID, (3.3.17)
871—# n= O
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from which it can be determined that the net axial z force is given by

GP"P = /ap gP"P(n) dS(x). (3.3.18)

By linearity of the Stokes flow equations we may subtract the gliding solution from the

pump solution so that with g@ = gP™P — (GP™P /Geld)geldy then

1 2
ul(xo) = =— | Ris(x0,x)g5(n) adn, ¥xo €D, (3.3.19)
871—:“ n=0
_Gpmp s) 1 o & a
—ga tulo) =g | Res(ao,x)g5(m) adn, Vxo € 9D, (3.3.20)

in which the net force is equal to

/ap g2(n)dS(x) =0, (3.3.21)

as required for the free—swimmer. The propulsion velocity of the swimming torus is
thus given by U = —(GP™ /G&4)z, opposing the direction of outer surface motion. The
speed U is dependent on both the rotation speed u® and the slenderness ratio sq, so both
G#Y and GP™ must be computed whenever one of these parameters is changed. However,
Leshansky and Kenneth [83] were able to show that the propulsion speed depends linearly
on the rotation speed, such that by considering the scaled propulsion speed U/u(®) it is
only necessary to vary sg to be able to consider all possible propulsion speeds resulting

from a given constant rotational surface velocity.
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(a) Broadwise translation of the torus. (b) Associated force distribution.

Figure 3.3: Surface velocity and associated force distribution of a toroidal glider with
slenderness parameter sy = 2.
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(a) Anticlockwise surface rotation of the torus. (b) Associated force distribution.

Figure 3.4: Surface velocity and associated force distribution of an anchored toroidal
pump with slenderness parameter sg = 2.

Our results for the scaled propulsion velocity found using a discretization of the torus
surface using N = 100 regularized ringlets are compared with those obtained by Leshan-
sky and Kenneth [83], who tackled the same problem using a line distribution of rotlets
at the torus centreline (inaccurate as sy — 1) and an exact series solution via expansion

in toroidal harmonics. A plot of the results for each of these solution methods can be seen
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in Figure Of particular note, in the limit as sy — 1 it is found that using N = 100
rings with € = 0.01 in the regularized ringlet method yields a scaled propulsion velocity
of 0.6684, representing just a 0.513% error when compared to the series solution value
of 0.665. This error can be reduced to < 0.1% by using N = 1000 rings, at which point
the value of the scaled propulsion velocity as calculated by the method of regularized
ringlets is 0.6656. This is a significant improvement over the solution found using a line

distribution of rotlets, in which the error is > 1% for all sq < 6.

Ringlet solution
— — —Rotlet solution
X Seriessolution (Leshansky et al.)

N\

1 2 5 10 20 50
slenderness parameter s

Figure 3.5: Scaled propulsion speed U/u(®) versus slenderness parameter s, using different
numerical schemes. Solid blue line shows regularized ringlet solution using N = 100
rings (method derived in this paper). Dashed red line shows rotlet solution as detailed
n [83]. Red crosses denote values of the exact series solution, obtained from Figure 7
of Leshansky et al. [83] using MathWorks’ grabit function [72] in Matlab.

In addition to giving values for the scaled propulsion speed that are in excellent agree-
ment with the series solution of Leshansky and Kenneth [83], the regularized ringlet
solution also provides the force required at each point on the torus surface to produce the
swimming motion. The series and rotlet solutions do not yield this information, with the
propulsion speed instead being calculated according to the net drag force on the toroidal
glider in these methods. This, in combination with Figures & [3.3B] highlights why
the centreline rotlet solution is inaccurate for small values of sq; as slenderness decreases,
the difference between the magnitude of the force required at the inner- and outer-most
surfaces to produce rigid body translation of the torus grows large. In Figure m (in

which sy = 2), the drag force on the outer surface is approximately 5.7 times larger than
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that on the inner surface. The constant centreline force associated with the rotlet cannot
account, for this discrepancy, whereas the full discretization of the torus surface using

regularized ringlets can.

Figures & show the streamlines and magnitude of the fluid velocity in a region
near the force—free toroidal swimmer with slenderness parameter sy = 2, undergoing uni-
form anticlockwise surface rotation with unit angular velocity. This results in propagation
of the torus in the direction —z. Fluid passing through the central hole of the torus is

caught in closed streamlines, in agreement with the results of Leshansky and Kenneth
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radial distance r radial distance r
(a) Streamlines of fluid velocity. (b) Magnitude of fluid velocity.

Figure 3.6: Streamlines and magnitude of fluid velocity in the region surrounding the
force-free toroidal swimmer with slenderness parameter sy = 2, undergoing uniform anti-
clockwise surface rotation with unit angular velocity. The torus propagates in direction
—z and the frame of reference moves with the swimmer.
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3.4 Further comparisons to other methods

Here, we conduct detailed comparisons between the method of regularized ringlets and
other alternative methods of evaluating Stokes flows, including both Cortez’ method
of regularized Stokeslets [33] in Sections - and the method of fundamental

solutions for the singular ringlet in Section [3.4.3]

3.4.1 Regularized ringlets vs regularized Stokeslets

Following the example of Cortez [33], consider the translating unit sphere with velocity
u = —z. As before, the sphere surface is parametrized in the r-z plane by p = cosp 1 +
sinpz for ¢ € [—7n/2,7/2], with p discretized using N ringlets at uniformly-spaced
locations x,. Assuming the sphere experiences zero azimuthal spin, the fluid velocity
at any point x can be approximated using the N ringlets via Equation . Using
intervals of equal size, the quadrature weight associated with numerical integration over
p is simply w, = & Vn. Now considering the velocity evaluated at the location of each

ring in the r-z plane yields a system of equations which can be written in matrix form,

1 RS R..

T8NV

G, (3.4.1)
R RL

as outlined in Equations (3.2.24)) - (3.2.26)). By setting,

3
gi(xi) =0, g¢(x;) = —%U, Vi=1,..,N, (3.4.2)
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where p,a, U are the fluid viscosity, sphere radius, and sphere speed (in z) respectively,

the classical solution for Stokes flow

ur(x;) =0, wu,(x;)=U, Vi=1,..,N, (3.4.3)

should follow. Note that this calculation is independent of the value of i by cancellation
(besides the implicit requirement that Re = UL/u < 1 for the Stokes equations to be

valid), and that we use a = 1, U = —1 as described in the outline of the problem.

The first test involves using N = 50 regularized rings so that the grid size is given by
/50 =~ 0.065. This is chosen such that the minimum distance between adjacent rings
in the axisymmetric discretisation of the sphere surface is approximately the same as
the distance between adjacent points in Cortez’ discretization using 3N?2/2 regularized
Stokeslets. The regularization parameter ¢ is varied between 0.005 and 0.1, and the error
in the /2 norm for the z component of the flow field is recorded in each case. This error

is defined as,

s+ 1] = \/ Lav:0) £ 17 (3.4.4)

Division by N is necessary for the sake of comparison of errors with later tests where
the value of N will change in order to alter the grid size. Initial results using regularized
ringlets are shown in Figure and are favourable compared to those of Cortez. The
regularized ringlet method appears to be optimal for a lower value of ¢ than Cortez’s
method, with a minimal error found at € ~ 0.015 with our method and ¢ =~ 0.025 with
that of Cortez, as well as being slightly more accurate for almost all values of € tested.
Interestingly, the magnitude of the errors using the two methods briefly appear to coincide

near the point at which Cortez’ error is minimized.

The second test involves varying the grid size for a fixed value of ¢ = 0.01. Regularized
ringlet results are shown in Figure |3.8| and again compare very favourably to the results

of Cortez. For larger grid sizes our errors are significantly reduced compared to those
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Figure 3.7: ¢? errors for various values of ¢ using N = 50 regularized Stokeslet rings
in our discretization of the sphere surface (solid line), plotted against data taken from
Cortez et al. [33] (dashed line).

of Cortez. This is at least in part a result of the ringlet method being better suited to
handling the small value of ¢ = 0.01. With both methods, the error eventually stops
decreasing as the grid size tends towards 0 since in this regime the regularization error

dominates.

The final test again looks at the effect of varying the value of £ on the magnitude of the
numerical error, this time using N = 124 ringlets for a grid size approximately equal to
0.026. Note that we do not use N = 125 ringlets to avoid placing a ring at the point
(r,z) = (1,0), which would result in a singular velocity when € = 0. The velocity error
is compared at two distinct points: (r,z) = (1,0) lying on the surface of the sphere,
and (r,z) = (1.5,0) lying a distance of half the sphere radius away. Ringlet results are
shown in Figures & and once more match the results of Cortez very closely.
The magnitude of the error is linear with respect to € on the surface of the sphere and

quadratic a sufficient distance away.
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Figure 3.8: (2 errors for different grid sizes (N = 25, 50, 100, 200, 400) in our regularized
ring discretization of the sphere surface using fixed ¢ = 0.01 (solid line), plotted against
data taken from Cortez et al. (dashed line).
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Figure 3.9: ¢? errors at surface point (r,2) = (1,0) for various value of € using N = 124
regularized Stokeslet rings in our discretization of the sphere surface (solid line), plotted
against data taken from Cortez et al. (dashed line).
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Figure 3.10: ¢? errors at fluid point (7, z) = (1.5,0) for various value of € using N = 124
regularized Stokeslet rings in our discretization of the sphere surface (solid line), plotted
against data taken from Cortez et al. (dashed line). Value of —31/54 corresponds to
analytical solution for u, at location (r, z) = (1.5,0).
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3.4.2 Ringlet vs Stokeslet speed

Table shows a comparison of the computational times tg and tg (measured in seconds),
associated with constructing the 2N x 2N ringlet matrix R® (in the zero-azimuthal-flow
case) and the 3N x 3N Stokeslet matrix S° respectively. The increase in computational
time for computing R® is a result of needing to compute the complete elliptic integrals
F(k) and E(k) for all combinations of ring locations (x,,,%,)Vm,n € 1,..., N, which
requires the construction of two further 2N x 2N matrices E and F. The computational
time needed for this isolated operation, ¢, is also listed in Table [3.5] The total additional
time needed to construct R® is modest, typically between 10% and 20% of the time needed
for S°.

The computational time associated with F' and E (and by extension, R®) can be reduced
by evaluating F'(k) and E(k) to a lower degree of accuracy; the Matlab function ellipke
(k,TOL) calculates F'(k) and E(k) to the accuracy defined by TOL, which has a default
value of 275 ~ 2.2 - 1071% (double-precision accuracy). This is a far greater accuracy
than we are typically able to achieve using regularized Stokeslet methods, suggesting a

larger value of TOL will suffice.

number of nodes N
1000 2000 3000 4000 5000 6000

te 0.1029 0.4100 0.9208 1.6228 2.5303 3.6553
tr 0.2863 1.1182 2.4406 4.4124 6.9682 9.9643
ts 0.2380 0.9396 2.1676 3.7562 6.0355 8.9524

Table 3.5: Comparison of computational time (in seconds) for constructing ring matrix
R® and Stokeslet matrix S° using varying numbers of nodes.

We note that by consideration of the size of the matrices involved and the typically small
value of t., we should hypothetically be able to achieve tg = (4/9)ts + t. < tg for any
given value of N. In practice, this is not the case. The elements Sj; for ¢,j € {1,2,3}
share a common form that enables them to be encoded in matrix form S¢ very efficiently.

The same is not true of the elements R ; for a, 5 € {r,z}, hence why tg > tgV N in
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Table B.5.

Inclusion of azimuthal-flow (such that an additional N x N matrix must be constructed
for RS incurs an additional cost of small value, approximately equal to (tg —t.)/4 for any
given value of N. We divide by 4 under the assumption that the cost associated with
constructing the additional N x N matrix Rj is one quarter of the cost associated with

constructing the zero-azimuthal 2N x 2N matrix R®.

The true value of working with ringlets can be seen by by evaluating the cost of inverting
the matrices Rj and R® versus S° (as is necessary in the resistance problem for evaluating
the force associated with a given boundary velocity). These matrices are of size N x N,
2N x 2N and 3N x 3N respectively. We investigate the cost of solving a linear system
X = A\ b in which A and b are a M x M matrix and a M X 1 vector of normally
distributed random data respectively, with M € {N,2N,3N}. We denote the time taken
to solve this system by ty, %o, and ¢35 in each case. The results are given in Table m,
in which it is clear to see that t3y is significantly larger than the sum of ¢y and ton for
all values of N tested. In practice, this means that using a 3D Stokeslet implementation
with S¢ for solving an axisymmetric resistance problem will always be significantly more

costly than our 2D ringlet implementation with R®, Rj.

number of nodes N
1000 2000 3000 4000 5000 6000

ty 0.0178 0.1119 0.2986 0.6377  1.2263  2.0053
toy  0.1018 0.7139 2.0614 5.1004 9.3121  15.7495
tay 02978 2.3084 6.7434 15.1372 30.0496 50.7495

Table 3.6: Computational time (in seconds) associated with solving the linear system
X = A\ b for varying sizes of matrix A and vector b.

As well as producing smaller resistance matrices with a reduced associated computational
cost for a given number of nodes, our axisymmetric ringlet method also requires far fewer
nodes in order to achieve the same level of accuracy as the traditional regularized Stokeslet

method. In|3.4.1)we show that for the case of the translating unit sphere our axisymmetric
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discretization of the sphere surface with N rings produces results that are consistently
more accurate than the traditional 3D patch discretization using 3N?/2 nodes. The
result using 1000 ringlets in 2D (computational time ~ 0.1s) thus corresponds to using
1,500, 000 regularized Stokeslets in 3D (computational time & 500 days, extrapolating
from data in Table and assuming that ¢35 oc N2 such that doubling N corresponds

to a sixfold increase in t3y) — a drastic improvement in computational efficiency.

3.4.3 Comparison to singular solutions

Regularized solutions for Stokes flow have the advantage of being simple to implement
and readily usable without needing to worry about the presence of singularities in the
computational domain. This does not mean that singular solutions cannot be used,
however; so long as the appropriate care is taken to deal with the singularities in some way,
singular solutions can also yield excellent results. The method of fundamental solutions
[123, 2] is a popular choice for implementing singular Stokeslet solutions, in which a
fictitious boundary is placed outside of the computational domain and adjacent to the
physical boundary of the problem considered. Stokeslets (or ‘source points’) are placed
on this fictitious boundary and are associated with collocation points (typically of an
equal number) on the physical boundary, with the force density for each Stokeslet being
calculated using the resistance matrix such that the physical boundary conditions are
satisfied. What the appropriate distance between the fictitious and physical boundaries
should be is difficult to determine a priori, and in some sense this distance can be regarded
as a regularization parameter for the singular problem [3]. If the separation distance is
too small, the proximity between the Stokeslet singularities and the physical boundary
may lead to inaccurate solutions, whereas if the distance is too large the resistance matrix
may become ill-conditioned [23]. In some cases, placement of the fictitious boundary may
also be constrained by the geometry of the problem itself, leading to solutions that are

far from optimal. The difficulty in balancing all of these factors is one of the reasons for
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the popularity of regularized methods.

r

e collocation points
(physical boundary)

O source points
(fictitious boundary)

—
z

Figure 3.11: Schematic diagram for implementation of the method of fundamental solu-
tions on the unit sphere using singular rings in the 7-z plane. Separation distance 107°
is exaggerated for the sake of clarity.

In the case of the axisymmetric ring of singular Stokeslets, some interesting behaviour

occurs in the limit as the source and collocation points coincide. In this limit, k& tends

to unity from which it follows that F' — oo and E' — 1 in Equations (3.2.48]) — (3.2.52]).

By employing the asymptotic expansion F' ~ —Inp+ ... in which p = |xq — x,,|, we find
that RY, ~ 2R%, ~ 2R =~ —4Inp + ... which all tend to infinity as p — 0 but at a
significantly slower rate than the individual Stokeslet (= p~'). The matrix elements R?,
and RY are similarly divergent but typically take values in the range [—1, 1]. Figure m
shows a comparison of the magnitude of the singularities as p — 0 for R%,, R?, ~ —2Inp

(circles) versus Sjy ~ 2p~" for i = j (squares). A log-log plot must be employed due to

the speed with which the Stokeslet singularity increases for small p.

As a result of the slow rate with which the singularity in the axisymmetric Stokeslet
ring approaches infinity, the method of fundamental solutions can be employed with a
separation distance between the fictious and physical boundaries that is several orders
of magnitude smaller than is possible using individual Stokeslets. This allows for the
discovery of accurate solutions with a well-conditioned underlying resistance matrix. We
illustrate this by once again conducting Matlab simulations for the resistance problem on

the translating unit sphere (velocity —z) using both regularized and singular Stokeslet
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Figure 3.12: Comparison of the magnitude of the singularities present in the Stokeslet
(squares) and the Stokeslet ring (circles) in the limit as the source and collocation point
coincide.

rings.

As before, the sphere surface is parametrized in the r-z plane by p = cosp T +sin ¢ z for
v € [—7/2,7/2], with p discretized using N ringlets at uniformly-spaced locations x,,.
For the method of regularized ringlets, these x,, denote ringlet locations. The velocity
u(x,) = —z is prescribed at all ringlet locations and the resistance matrix is constructed
to yield the required force densities g!(x,). The condition number of the resistance matrix
R® is determined using the cond function in Matlab. The analytical solution for the drag
on the unit sphere with unit velocity —z is known to be equal to (3/2)z, so that the mean
relative error for the calculation of the force term resulting from the resistance matrix is

given by
gz X,) + 3/2

| (3.4.5)

e(g2) NZ

in which we recall that g is the force per unit area exerted by the sphere on the fluid and

so has opposite sign to the drag. The fluid velocity at the near— and far—field locations
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(r,z) = (0,1.1),(0,1.5) is evaluated using the force densities g* according to Equation

(13.2.22). The relative error in these velocities is given by

u.(0,1.5) 4 23/27
—23/27 ’

u.(0,1.1) + 1315/1331

1.1) =
e(1.1) —1315/1331

. e(1.5) = (3.4.6)

based on the analytical solution given by Cortez et al. [33]. Table shows a summary
of the results obtained for each of these four metrics for various values of regularization

parameter €.

£ e(g?) e(1.1) e(1.5) Cond

1 2.3 4.0-107% 1.7-107% 1.1-10%
.05 1.8-1072 25-107% 84-107% 8.6-10"
025 9.7-1073 1.4-107% 4.1-107% 2.9-101°
.01 43-107% 5.8-107% 1.6-107% 4.2-10°
005 25-107% 22-107* 7.6-107* 1.4-10
0025 2.1-107% 23-107% 1.1-107% 2.8-103
001 25-107% 1.0-1073 7.4-107* 1.0-103

Table 3.7: Accuracy of the method of regularized ringlets for various values of the regu-
larization parameter ¢ in the resistance problem on the translating unit sphere. Columns
refer to relative errors in total drag on the sphere e(g?), fluid velocity at the point
(r,z) = (0,1.1) denoted e(1.1) and analogous error at (0,1.5), and finally the condition
number of the underlying resistance matrix.

For the method of fundamental solutions, let x,, denote collocation points on the sphere
surface. N source points are placed at positions x, = (1 —107?)-x. where b is a parameter
that represents the separation distance between the physical and fictitious boundaries
(Figure [3.11]). The velocity u(x,) = —2 is prescribed at all collocation points and the
resistance matrix is constructed to yield the required force densities g'(x,) at each source
point. The accuracy and applicability of the method is measured using the same four
metrics as for the method of regularized ringlets. Table [3.8 shows a summary of results

for various values of separation distance 107°, analogous to the results in the regularized

case from Table B.71

Similar results are achievable using both methods, although the singular method generally

yields more well-conditioned resistance matrices and can produce relative errors of a
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e(g?) e(1.1) e(1.5) Cond

4.8-101  1.5-1071% 35-107% 1.1-10%
1.6-1072 1.6-107¢ 38-107" 9.5-10°
4.3-107% 95-107* 6.3-107* 2.5-10°
54-107* 3.0-107% 251073 4.4-102
7.3-107% 51-107° 4.6-107% 2.4-10?
9.4-107% 7.2-102 6.7-107% 1.6-10?
1.1-1072 9.3-107% 88-1073 1.2-10?

N O U= W NS

Table 3.8: Accuracy of the method of fundamental solutions using singular ringlets for
various values of the separation distance 107? in the resistance problem on the translating
unit sphere. Columns refer to relative errors in total drag on the sphere e(g?), fluid
velocity at the point (r,z) = (0,1.1) denoted e(1.1) and analogous error at (0, 1.5), and
finally the condition number of the underlying resistance matrix.

smaller magnitude for the drag calculation and fluid velocities. It should however be noted
that it is not possible to minimize each error in the singular calculation concurrently (as
the smallest values for e(1.1) and e(1.5) are generally associated with larger values for the
condition number and e(g?)). Despite axisymmetry enabling a drastic reduction of the
separation distance for the singular problem, the question of what distance is considered
‘optimal’ still persists. This is not an issue for the regularized ringlet, in which case each
error achieves a minimal value for similar values of € (=~ 0.0025 to 0.005). For excessively
small £ (< 0.05), the error becomes non-monotonic as is often the case with regularized
Stokeslet methods (eg. see Figure[3.7} Cortez et al. [33], Gallagher et al. [53]). The same
is also true for small b in the singular case. For both regularized and singular methods,
reduction of regularization parameter £ or b always appears to result in a reduction of

the condition number of the resistance matrix.

Although the singular method can be tuned to give smaller relative errors in either the
fluid velocity or total drag separately, it cannot do so simultaneously; regularized ringlets
display more satisfactory convergence properties and are the more effective method to

minimize errors in both fluid velocity and total drag.
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3.5 Chapter summary

In this chapter, we have derived the regularized fundamental solution for the velocity
(single layer potential) and stress (double layer potential) due to an axisymmetric ring
of smoothed point forces, the ‘regularized ringlet’, expanding on the work of Cortez
[31, B3]. The velocity solution, written in the form of complete elliptic integrals of the
first and second kind, tends to the singular solution of Pozrikidis [97] in the limit as the

regularization parameter ¢ tends to 0.

The applicability of the regularized ringlet to fluid flow problems involving motion in
all principal (f',éj) directions was established in the resistance problems on the unit
sphere and the example of Purcell’s toroidal swimmer. Ringlets perform very favourably
on the unit sphere, as was detailed in the comparison with Cortez’ method of regularized
Stokeslets [33]. Using the collocation method for evaluating boundary integrals with just
N regularized Stokeslet rings on a 2D parametrization of the sphere surface, we are able to
produce consistently more accurate results than are achievable using the same collocation
method with 3N?2/2 regularized Stokeslets on the 3D surface for any given value of the

regularization parameter c.

Using the method of regularized ringlets, we were also able to reproduce Leshansky
and Kenneth’s [83] results for the scaled propulsion velocity of the toroidal swimmer,
propelled by surface tank treading against the direction of motion of its outer surface. Our
results show a significant improvement over the asymptotic solution found by integrating
a centre-line distribution of rotlets in the limit as slenderness decreases (s — 0). The
use of regularized ringlets also yields the drag force at all points on the torus surface for
the toroidal swimmer, information that is not readily available using the series or rotlet

solutions.

Discounting the modest cost involved in evaluating the complete elliptic integrals, this
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new method for solving problems involving axisymmetric Stokes flows presents a signif-
icant improvement in accuracy as well as a reduction in both computational time and

memory usage over non—axisymmetric methods.

In the following Chapter, the vital nature of the further benefits of regularization (namely,
the ability to place Stokeslet points directly in the fluid and use the regularization pa-
rameter € to control the spreading of the force) will be highlighted in the determination

of a velocity profile for cytosolic fluid flow in the angiosperm pollen tube.
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CHAPTER 4

TIP GROWTH IN POLLEN TUBES

Chapters 2 and 3 develop the numerical methods necessary for modelling of cytosolic flow
and vesicle transport. In this Chapter, we now model vesicle transport in the growing

pollen tube in detail.

4.1 Introduction

For the rapid elongation of the pollen tube to be sustained, the addition of new mem-
brane and wall material to the growing apex is essential. This material is delivered via
secretory vesicles, the motion of which can occur via a number of different mechanisms.
Myosin—based transport along actin bundles is used to direct long—distance vesicle mo-
tion, which in turn induces a flow in the cytosol that further directs vesicle movement.
In regions of reduced flow (such as near the extreme apex), vesicle motion is thought
to be predominantly Brownian in nature. Uptake and secretion of vesicles by the cor-
tical plasma membrane via exo—/endo—cytosis is also essential to the understanding of

vesicle distribution patterns. Comprehensive models including all of these mechanisms
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are difficult to find in the literature. In particular, the effect of cytosolic flow is rarely
comprehensively considered and is typically conflated with that of actomyosin transport.
The extent to which this is an issue is an open question. Based on the regularized ringlet
method derived in Chapter 3, we are able to consider the cytosolic flow induced by drag
forces resulting from actomyosin transport of vesicles. This can be coupled with the FVM
of Chapter 2 to solve an ADR PDE for vesicle motion (to be derived shortly), yielding

new results concerning the internal dynamics of pollen tube growth.

In the absence of direct measurements of pollen tube cytosolic flow fields, researchers
have employed a variety of models. In the following, we expand upon the diffusive vesicle
distribution model of Kroeger et al. [78] by extending the numerical domain from the apex
into the distal region and incorporating advective effects. In doing so, we see the apical
‘inverted vesicle cone’ emerge naturally without reliance on prescribed flux along the
actin fringe. Our choice of boundary conditions for vesicle flux (corresponding to apical

exo/endo-cytosis) yield comparisons with the work of Chavarria-Krauser and Yejie [20].

We begin in Section by deriving two ADR PDEs for vesicle motion (one for the exo-
cytic population and one for the endocytic) along with accompanying boundary conditions
for the growing tube. We establish the orthogonal growth velocity needed along the apical
hemisphere to result in a steady, self-similar geometry. A transition is made to a moving
coordinate system following the tip of the growing tube for the sake of simplifying our nu-
merical procedure. We introduce the parameter values we will be using for the majority of
the rest of our work and use these to nondimensionalize the advection—diffusion-reaction
and Stokes equations. An appropriate value for the regularization parameter ¢ in the
method of regularized ringlets is determined such that the area over which the majority

of the force is applied approximates the region occupied by the peripheral actin bundle.

In Section [4.3] we seek a complete velocity profile for cytosolic flow in the apex, subapex,

and adjacent shank using relations between the drag induced by the actomyosin vesicle
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transport and the effect on the surrounding fluid. This is achieved using the method
of regularized ringlets, derived in Chapter [3] in conjunction with the STICS imaging of

Bove et al. [12]. We aim to answer three key questions during the course of this work:

e Section [£.3.1} What proportion of the exocytic vesicle population undergoes acto-
myosin based transport on the peripheral actin bundle?

e Section [£.3.2} What is the role of the central actin bundle and does actomyosin
vesicle transport occur here?

o Section[4.3.3} What effect does growth speed have on the cytosolic flow in the tube?

In Section the velocity profiles derived using the method of regularized ringlets are
used in conjunction with the two ADR PDEs to model the spatial distribution of ‘free’ (i.e.
not ‘fixed’ to actin) exocytic and endocytic vesicles at steady state. The two PDEs are
solved using the finite volume method developed in Chapter [2]in Matlab. The parameter
values necessary for the emergence of the ‘inverted vesicle cone’ in the apex highlight the
importance of the cytosolic flow. We conclude with some exploratory work on determining
an accurate value for the exocytosis rate at the apical plasma membrane, as well as
running Fluorescence Recovery After Photobleaching (FRAP) simulations in Matlab with

results closely agreeing with the FRAP experiments of Bove et al. [12].

4.2 Vesicle transport model

We consider two populations of free vesicles - one exocytic and one endocytic. These
are modelled using advection—diffusion—reaction equations, with the advective term cor-

responding to the cytosolic flow induced by actomyosin transport.
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4.2.1 Governing equations

The Reynolds number for fluid flow in the pollen tube can be evaluated using the typical
flow speed (=~ 1pms™'), tube radius (& 8.13um) and the kinematic viscosity of water
(~ 10°pm?s™!) to find Re ~ 8.13 x 107°, firmly in the regime of Stokes flow. Although
pollen tube growth can be oscillatory, acceleration and deceleration are small compared

to growth speed itself enabling the use of the steady Stokes equations

uVU - Vp+F =0, (4.2.1)

V.-U=0. (4.2.2)

Starting from a general differential continuity equation in a static ‘lab frame’ co-ordinate

system for the flux j and generation X of free vesicles @,

0B (x, 1)

BT +V-j=3(x,1), (4.2.3)

we define j to be the sum of diffusive and advective fluxes,

j= U Hd(x,t) — aV(x, 1), (4.2.4)

where U represents cytosolic flow and « is the coefficient of diffusivity. Relying on

continuity of incompressible flow V - U = 0, we may then write,

0P(x,t)

o = V(1) U, 1) - [VO(x)] + X(x, 1). (4.2.5)

Since we consider two separate vesicle populations, we denote the exocytic population
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®®) and the endocytic population ™. Using (4.2.5)), we then have

)

6(% = 2V —U.vo® 43 (4.2.6)
)

0 T oMV U . Vo, (4.2.7)

No source term is present for the endocytic population, since these are instead added to
the system via a boundary condition at the apical wall, whilst the exocytic source term

> represents release of vesicles from actin within the domain.

4.2.2 Boundary conditions

We model the pollen tube in cylindrical (r,0,z) coordinates with axisymmetry about
the axial Z axis. The shape of the tube is given by a cylindrical shank capped by a
hemispherical apex. We consider a region ranging from the extreme apex to a point
equal to 6 tube radii distal where the domain is artificially truncated. In dimensionless
values, the extreme apex is thus given by (r,z) = (0,6) with z = 0 being the distal
truncation line. The central line of axisymmetry is given by » = 0, with » = 1 denoting
the peripheral boundary in the shank. The hemispherical apex is the upper-right quarter

circle of radius 1, centred at (0, 5).

The domain boundary is initially split into five distinct sectionsﬂ (see Figure , with
a different condition applied on each. Steady growth occurs along the apical boundary

such that the shape of the apical hemisphere is conserved (discussed in Section 4.2.3)).

We first consider the conditions placed on the fluid velocity. On the three physical cell

wall boundaries €2ipp in out, We employ the ‘no-slip’ condition such that U = 0 on 2, and

!The Q;, boundary will later be extended to cover the entire apical hemisphere, overlapping with
Qout and Qi When this happens, the endocytic flux condition on £2;, and the exocytic flux condition
on 2, take priority over all other conditions.
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U = u, on i, out Where u, is the growth velocity of the apical wall. On the symmetry
boundary gy, at 7 = 0 we have zero radial fluid flow (U, = 0) as well as % =0, both of
which are automatically satisfied by ringlets. No restriction is placed on the fluid velocity

at the basal boundary 2., since this is an artificial boundary we must impose for the

sake of computing a numerical solution rather than a physical boundary in our problem.

Conditions must also be applied to the vesicle flux through each boundary. For the
impermeable and symmetric boundaries Qiypsym, We have zero normal flux (j-n = 0)
for both vesicle populations. On the basal boundary €2y,,s, we have zero diffusive flux
([aV®] - n = 0) by numerical necessity but allow both populations to freely leave the
domain via advective flux. On the two remaining boundaries, our exocytic and endocytic
populations are treated differently. On the flux boundary €2, at the subapical wall, we
have zero normal endocytic flux (j(”) -n = 0) and normal exocytic flux proportional to
exocytic concentration (j® - A = —y®®@ for some velocity 7). On the flux boundary
Q;, at the apical wall, we have zero normal exocytic flux (j® - fi = 0) and normal
endocytic flux proportional to exocytic flux through the €, boundary (™ -f = ¢ %)
Here, Noyt = 7 fﬂout ®@) dS is the total number of exocytic vesicles taken up through the
Q.. boundary per unit time, A;, = fﬂin dS is the area of the surface €2;,, and ( is the
recycling fraction, a dimensionless constant representing the number of endocytic vesicles
that must be secreted by the apical plasma membrane as a fraction of the number of
successful exocytic fusions in order for the correct balance of wall material and plasma
membrane to be achieved. These apical flux conditions are consistent with the theory
that exo- and endo-cytosis are active processes, mediated by vesicle associated membrane

proteins (VAMPs) as has been suggested in the literature [61], [62].

For a complete summary, we have,
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fluid velocity vesicle flux boundary

U =u,, i@ h=—y0® .5 =0, on Qou,
U = u,, j@ . h =0, j A = ¢ Bpu on Oy,
U=0, i@ . a =0, j™ . h =0, on Qinp,
U, = %UTZ =0, i® . n =0, i™ . h =0, on Qgym,

[@@VE@]. A =0, [aWVOM].A=0,  on Q.

Table 4.1: Summary of boundary conditions for fluid velocity and vesicle flux in the
growing pollen tube.

Qimp

%
‘Full’ exocytic vesicles

Qbas ( s . .
Empty’ endocytic vesicles

—
e 0
1, Qo

z

Figure 4.1: Suggested mechanism for transport of vesicles in the pollen tube, showing
actin bundles (thick interior lines) and dense, apical actin fringe running parallel to the
peripheral wall, as well as pooling of apical vesicles and shape of the ‘inverted vesicle
cone’ (shaded area). The location of each of the five boundaries of our domain are also
shown. Dashed lines show increments of 7/10 in polar angle.

In Figure[4.1] the shape and location of the perhiperal and central actin bundles are drawn
to match results from the experimental imaging of Lovy-Wheeler et al. [86]; the confined
location of apical endocytosis (i.e. the €2, boundary) corresponds to the endocytic region

suggested by Bove et al. [12].
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4.2.3 Normal displacement growth assumption

In order to be able to apply these boundary conditions, we must determine the form
of the growth velocity u,. In accordance with our understanding of tip growth, we set
U = 0 on iy, (the wall of the shank). In the hemispherical apex, we define u, = u,(y)
where ¢ is the angle between the outward-pointing surface normal and the positive r axis,
varying from 0 at the point where the hemisphere joins the shank to 7 at the extreme

apex. Let the point (0, zo) be the centre of the hemisphere and ¢ its radius, such that for

any arbitrary point (71, z1) on its surface we have,

52 = T12 + (21 — 20)2. (428)

The problem setup can be seen in Figure 4.2

u,(3) = (0,0,)

Figure 4.2: Inital configuration for determining growth velocity along the boundary of the
apical hemisphere. We assume maximal growth occurs at the extreme apex (¢ = 7/2)
with velocity v,z, decreasing continuously to a zero velocity at the point at which the
hemispherical apex joins the shank (¢ = 0). By assuming growth always occurs normal
to the boundary surface, we are able to derive the shape-preserving growth velocity

u,(p) = v, sin p(cos @, sin ).
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Now for the hemispherical shape to be preserved (as is necessary under our assumption
of a steady apical geometry) we require d¢/dt = 0. Differentiating Equation (4.2.8)) with

respect to time thus yields,

dr d
Tld_tl + (2’1 - Zo)%(zl —2) =0, (4'29)
that is,
dry dz,
Tl% + (Zl — Zo) (E - 'Ug> =0, (4210)

where we have used the fact that d(zp)/dt = v, in order for shape to be preserved. Now
following the steady state analysis of Dumais et al. [43], we assume that the growth

velocity is normal to the cell surface for all ¢ € [0, 7/2]. This gives,

le d?"l
—_— = — 4.2.11
a @ e (42.11)

which upon substitution into Equation (4.2.10)) yields,

dry vy(21 — 20)

Bl R ) 4.2.12
dt  ri+ (21 —2) tane ( )

Letting 1 = £cos ¢ and (21 — 29) = £sin p (i.e. expressing everything in terms of ¢) then

gives,
: ot
() = vy S'IHQO | Uy smg? an | (12.13)
COS Y +sinptany cos + sin g tan
which reduces to ug(p) = (vysinpcosg, vysin®p) = v, sin (cos ¢, sinp). This is the

vector normal to the cell surface with magnitude v, sin ¢ (varying from v, at the extreme
apex to 0 at the point where the hemisphere joins the shank) as one might intuitively
expect. An example of how the growth of the boundary thus varies over the apical
hemisphere (radius 8.13pum) can be seen in Figure , where the maximum growth
speed v, is equal to 0.1 pms™! and the wall velocity in the adjacent shank (not pictured)

is equal to zero.
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Figure 4.3: Growth velocity of the apical boundary, normal to the cell surface and varying
from a maximum at the extreme apex to zero at the point where the apical hemisphere
joins the adjacent shank. Velocities are scaled by the speed of vesicles on actin (1 pms™),
with lengths scaled by the radius of the tube (8.13 pm).

4.2.4 Formulation with respect to a moving coordinate system

The formulation given in Sections [4.2.1]- outlines the equations for vesicle transport
and associated boundary conditions with respect to a static ‘lab frame’ coordinate sys-
tem. In this system the domain of interest will grow, necessitating frequent re-meshing
operations during numerical evaluation. It is thus intuitive to consider the vesicle trans-
port equation with respect to a moving frame of reference following the tip (‘tip frame’),
such that the domain does not need to be remeshed and the steady Stokes equations must
only be evaluated once. In doing so, we lose information about regions distal to the apex
as we iterate through time and our domain moves forwards, but so long as the domain
is sufficiently large this should have little to no affect on the vesicle distribution in the

apex.
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Consider the full form of Equation (4.2.5)) given in axisymmetric cylindrical coordinates,

0P(r, z,t) 10 [ 00(r, z,t) 0?®(r, 2, 1)
ot -« (;E (T or ) i 022 )

oP(r, z,t)
or

oP(r, z,t)

— U(r, z,t) o

—U,(r, z,t) + X(r, 2, t). (4.2.14)

If the growth speed of the tube is given by v,, we define the moving coordinate system

using (1, 2, t') = (r, z — vyt, t), such that,

o(r', 2 ) = D(r, 2, 1), (4.2.15)
ur(r', 2 = Up(r, 2, 1), (4.2.16)
u (r', ") = Uy(r, 2, t) — vy, (4.2.17)

a(r',2") =%(r, 2, 1), (4.2.18)

where the fluid velocities u, and u, are now invariant in time (convenient for numerical
evaluation of the steady Stokes equations) under the assumption that tube geometry

remains steady in the advancing fluid region we consider. Under this transformation,

Equation (4.2.5)) becomes

Jp(x', 1)

= aV>Pp(x' ) —ux ) - [V, )] + (X, 1), (4.2.19)

which is consistent with our original formulation. Rewriting this in terms of two separate

exocytic and endocytic populations yields,

do®)
gt/ = a@V?® —u. V'@ 4o, (4.2.20)

(n)
8?;/ = o™V —u. V™, (4.2.21)

Linearity of the Stokes flow equations (4.2.1)—(4.2.2)) implies that they remain unchanged
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under this change of coordinate system, such that

pVu—Vp+F =0, (4.2.22)

V-u=0. (4.2.23)

Boundary conditions on the fluid velocity are now given by u = u,; — v42 on Qoyt in,

u = —v,z on iy, and u, = agf = 0 on Q. The conditions on vesicle flux remain

unchanged (since fluid velocity matches boundary velocity in both frames of reference).

We have thus reformulated the problem in terms of a moving coordinate system, in which
the domain geometry, the fluid velocity, and the exocytic source o are all steady in time.
The ‘growing’ problem has essentially been reduced to a static one in which the moving
coordinate system takes the form of a standard cylindrical coordinate system. From this
point onwards, we drop the apostrophe ’ notation with the understanding that we will

continue to work within this new coordinate system.

4.2.5 Parameter estimates and nondimensionalization

Pollen tubes from different plant species can exhibit significant differences in growth-
related parameters (eg. growth velocity, tube radius, vesicle radius etc.). For this reason
it is intuitive to nondimensionalize our problem, generalising our equations for multiple
plant species and allowing efficient comparison between them. In our work, we use pa-

rameter values from a number of sources based on measurements taken experimentally

in lily pollen tubes, as outlined in Table [4.2]
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Parameter Value Reference

Radius of pollen tube (Ry) 8.13 pm [12]
Average vesicle radius (R,) 0.085 pm [12]
Vesicle velocity on actin (U,) Ipms™! [40, 119]
Rate of vesicle supply into clear zone 400s~* [12]
Cytoplasmic viscosity (i) 1073 Pas [78]
Recycling fraction (¢) 5/6 [12]
Cytoplasm temperature (1) 300 K

Boltzmann constant (kg) 1.4 x 107 m? kg K1 572
Diffusivity («) 2.6 pm?s! *
Cytosis rate () 0.1pms~! *

Table 4.2: Estimates for values of various parameters related to pollen tube growth.
Asterisks * in the ‘Reference’ column indicate values established in this thesis.

We note that the diffusivity o has been calculated using the Stokes-Einstein relation,
a = kgT/(6rpR,) ~ 2.6 pm? s~!, which in turn yields a Péclet number of Pe = RyU, /a =
3.15. Our current results use the same average vesicle radius, diffusivity, and Péclet
number for both exocytic and endocytic populations in accordance with the results from

[12]. This can be easily adjusted in future simulations with a different focus.

For the nondimensionalization of our governing equations, we scale,

Lengths using shank radius Ry,

Fluid velocity using average vesicle velocity on actin U,,

e Time using advective timescale T'= Ry /U,

Concentration (number of vesicles per unit volume) using scale ¢o = (37R3) ™" such

that the dimensionless ¢* represents an approximate volume fraction.
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Using asterisks * to denote dimensionless variables, we thus have,

1 R U,
x = Ryx*, V= EOV*, u="0U,u", t= 7:75*, O = Pod*, o= %ﬁoa*. (4.2.24)
The governing transport equations (4.2.20]) - (4.2.21]) nondimensionalize to
ot* Pe® ’ o
D)’ 1 o (e .
_ \VACY OMLIN vAPA(D)) 4.2.26
where Pe®” = U, R, /a® . For the apical boundary conditions, we also require,
Y =Usv", Now = (UaoR)Ni, A = RIAL. (4.2.27)
Then for the exocytic flux on 2., we find,
(V'63) = (4.2.28)
— ‘N = — . 2.
Po P Y P
Similarly, for the endocytic flux on the €2;, boundary we have,
1 Ny
—(V*¢r) -n=(—"=. 4.2.2
pe(V0) = (o (4229

Nondimensionalization of the remaining flux conditions on the boundaries is trivial and

follows similarly.

For the Stokes equations and their regularized Stokeslet solutions (see Chapter 3), we

further employ,

/’LUUL * /l’UUL *
= F = F 4.2.30
P="p TR ( )
With these scalings, the dimensional equation,
pVu—Vp+F =0, (4.2.31)
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reduces to the dimensionless,

V*ur — V' + F* = 0. (4.2.32)

4.2.6 Selecting ¢ for approximating actin bundle thickness

The peripheral actin bundle is considered to be adjacent to the pollen tube wall (see Fig-
ure , with its width equal to one fifth of the pollen tube radius (0.2) and extending
at an angle ¢ = 7/5 into the apical hemisphere in accordance with the confocal mi-
croscopy imaging of Lovy-Wheeler et al. [86]. By placing rings of regularized Stokeslets
in series along the centre line of the peripheral actin bundle, it is possible to carefully
select an appropriate value for the regularization parameter ¢ such that the region over
which the majority of the force distribution is applied is approximately the same as the
bundle thickness. The same procedure is employed for the central actin bundle, only
with individual regularized Stokeslets rather than ringlets since the centreline coincides
with 7 = 0. Using ¢ = 0.05 it is found that = 93% of the total applied force is contained
within a region of radius 0.1 which corresponds well to the approximate thickness of the
actin bundles. This is shown in Figure where p = |x¢9 — X,,| denotes distance from
ring location (in the r-z plane) and the maximal value of ¢. has been scaled to 1 for the
sake of clarity. Smaller values of € result in a larger percentage of the total force being

contained within 0 < p < 0.1 but are increasingly skewed towards p = 0.

We note that our modelling ignores the presence of a third f-actin structure, the short
actin bundles observed in the extreme apex [52]. This is on account of the fact that these
bundles are transient and significantly less dense than the thick peripheral and central
actin bundles. Further, due to their proximity to the growing tube wall, any effect that
these short actin bundles may have on the fluid velocity is likely insignificant compared

to the effect of the growth of the wall.
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z2=06
z=4
z=0
z= =2

Figure 4.4: Geometric elements of the pollen tube model. PAB and CAB refer to periph-
eral actin bundle and central actin bundle respectively, with CAB thickness half that of

PAB thickness: 0.2
CAB thickness: 0.1
Qout

Qimp

PAB by axisymmetry. Image not drawn to scale in Z.

4.3 Cytosolic velocity profiles

Here, we employ the method of regularized ringlets derived in Chapter 3 alongside our
knowledge of cytoplasmic dynamics to produce velocity profiles for internal cytosolic flow

in the growing pollen tube. Schematic diagrams for the problems considered are given in

Figure
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Figure 4.5: Controlled spreading of force distribution using ¢. with ¢ = 0.05
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2=6 1 adjusting growth speed
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Figure 4.6: Schematic diagrams for problems in Section (a) In a force is applied along the peripheral actin bundle (PAB)
corresponding to drag induced by the actomyosin transport of exocytic vesicles. (b) In fluid velocity is prescribed along the PAB
(extended further into the apical hemisphere) to investigate the resulting magnitude of central fluid velocity. (c) In fluid velocities
are prescribed along both the PAB and central actin bundle (CAB) while we determine the effect of adjusting the tube growth speed on
the internal cytosolic flow.



4.3.1 Generating a velocity profile based on toroidal drag forces

For the first velocity profile to be produced, it is assumed that the movement of exocytic
vesicles in the periphery of the tube is entirely dictated by actomyosin transport (i.e. all
exocytic vesicles are fixed to actin with none freely flowing in the cytosol). Based on the
STICS images in Figure[L.8] as well as results from De Win [40] and Vidali et al. [119], we

I (note

make the conservative estimate that vesicle velocity on actin is given by 0.5 pms™
that this is smaller than the value listed in Table . We further assume that exocytic
vesicles undergoing actomyosin transport are arranged in axisymmetric rings, such that
their shape can be approximated by that of a torus with minor radius equal to exocytic
vesicle radius R, and major radius equal to the perpendicular distance from the centre
of the tube to the centre of the peripheral actin bundle, 0.9R,. Letting each vesicle torus

be represented by a single Stokes ringlet, the force per (azimuthal) unit length exerted

by the moving torus on the surrounding fluid is given by,

! drpl, .

= Tog (8/m) 11 %z, (4.3.1)

g

as derived by Johnson and Wu [73], where x = R,/0.9Ry is the ‘slenderness parameter’
for the torus (minor radius divided by major radius). Based on the calculations of Bove

et al. [12], we assume that a tube growing with speed 0.1 pms™

requires the delivery
of 400 vesicles per second to the growing apical region] We calculate the number of
vesicles that it is possible to pack into a single torus to be equal to (0.9Ry)7/R, ~ 270,
such that the maximum separation distance between the centres of adjacent tori must
be (270U,/400) ~ 0.338 pm in order to maintain the constant delivery rate. Placing
Stokeslet rings in series along the centreline of the peripheral actin bundle (r = 0.9Ry)
using this separation distance of 0.338 um (0.0416 in dimensionless terms) and the force

per unit length g! from Equation (4.3.1)) yields the velocity profiles seen in Figure .

Note that the peripheral actin bundle is not modelled as extending beyond z = 5 in this

IThis is a small overestimate, since this number actually applies for a tube growing with speed

7pm min~t or 0.117 pms~ .
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case, and a force along the peripheral boundary of the tube is also applied a posterior:

such that the boundary conditions are satisfied.

2.70 6 2.60
2.43 2.34
2.16 331 2.08
N 11.89 N 11.82
Q <] |
9 11.62 9 : 11.56
-JCE I fg '
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e o .
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(a) Lab frame. (b) Tip frame.

Figure 4.7: Magnitude and direction of apical cytosolic flow induced by drag of myosin-
based exocytic vesicle transport along the peripheral actin bundle. Velocities are scaled
by the speed of vesicles on actin (0.5pms™!), with lengths scaled by the radius of the
tube (8.13um).

Clearly, the combination of these applied drag forces is too large since the speed of the
cytosol exceeds vesicle speed along actin (an ‘unphysical’ situation, given that vesicle
movement along actin is responsible for inducing the flow). This appears to suggest that
it may not be necessary for the entire exocytic vesicle population to be transported via
actin-myosin in order for a sufficiently large cytosolic flow to be induced. There are some

simple and immediate counterarguments against this, which we address in turn.

The first possible counterargument is that the arrangement of vesicles in axisymmetric
rings represents a highly idealised orientation unlikely to ever be observed naturally in
the pollen tube. While true, arranging the vesicles in tori in this idealised configuration
also results in a larger separation distance in the axial direction z than would otherwise
be possible, theoretically limiting the ‘overlap’ of adjacent drag forces. In fact, if the

total drag force produced by the moving torus, 2m(0.9Ry)|g!|, is compared to that of 270
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individual vesicles, 270 - (67 R,U,), the combined drag of the individual vesicles is over
5 times larger than that of the torus. This suggests that the axisymmetric case actually
vastly underestimates the contribution of vesicles undergoing actin-myosin transport to

cytosolic flow.

The second counterargument we foresee is that these calculations do not take into account
the larger combined vesicle population or the presence of other organelles in the tube,
which may impede the speed of cytosolic flow. This is valid criticism and is not easy to
address since a rigorous implementation of these potential flow obstacles in any model
is nontrivial. A quick calculation of the volume fraction occupied by exocytic vesicles in

the peripheral region yields,

400 47 R? 1
U, 3 7(R2—(0.8Ry)?2)

= 2.75%, (4.3.2)

an order of magnitude smaller than the space occupied by the total vesicle population,
other organelles, and the actin filaments themselves. A simple way in which these flow
obstacles could be included is through the use of an ‘effective viscosity’, essentially treat-
ing the cytoplasm as a homogeneous continuum with an effective viscosity larger than
cytosolic viscosity. Cytosolic viscosity could continue to be used for the toroidal drag
calculation in Equation (4.3.1) under the assumption that the fluid region local to any
given exocytic vesicle is largely free of other obstacles, but effective viscosity would be
employed in the calculation of fluid velocity based on Equation . This calculation
is further complicated by the fact that filamentous actin networks also contribute to an

increased local viscosity.

In light of these results, it seems clear that only a relatively small proportion of the total
vesicle population needs to be undergoing actomyosin transport in order for cytosolic
flow to attain a similar speed to vesicle velocity on actin. The assumption that the
movement of exocytic vesicles is entirely dictated by actomyosin transport is likely false.

This makes sense given that bulk vesicle movement in the periphery of the tube doesn’t
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1in the SpatioTemporal Image Correlation Spectroscopy results of

exceed &~ 0.5pms—
Bove et al. [12], but the speed of individual organelles in the tube is known to reach
values as large as 2pms™! [40, 119]. The exact proportion of the vesicle population
undergoing actin-myosin transport is linked to the heightened effective viscosity of the
cytoplasm, representing the strength with which free flowing vesicles and other organelles
resist the cytosolic flow. As vesicles accumulate in a region, the effective viscosity is
increased further due to hydrodynamic interactions between them. For example, the
effective viscosity of a fluid containing a uniform suspension of spherical particles at 15%
volume fraction (the approximate density of vesicles in the clear zone [7§]) is known to be
anywhere from ~ 1.7 to ~ 2 that of the fluid viscosity absent the particles [, [64]. This
effect can also be seen in the Escherichia coli bacterium where the small size of the cell
(< 1 pm3) means that the effective viscosity of the cytoplasm is altered by the size of the
probe used in measurements. The effective viscosity here varies from = 1.1 times that of
water at the smallest scale to &~ 26000 times at the largest [74]. Without being able to
quantify the effective viscosity of the cytoplasm or the proportion of vesicles undergoing

actomyosin transport in the pollen tube, it is not possible to produce an accurate cytosolic

velocity profile based on toroidal drag forces.

4.3.2 Role of the central actin bundle

For the next velocity profile, the role of the central actin bundle in the cycling of vesicles
to and from the apical region is considered. Direct observation of actomyosin vesicle
transport is often hindered by the small size of vesicles (typically below the resolution
limit of conventional confocal microscopes). Higher resolution imaging methods such
as evanescent wave microscopy have been used to observe long-range vesicle movement
(presumably a result of actomyosin transport) in the periphery of the tube [120], but
the limited penetration depths available in these methods (< 400nm) do not allow for

imaging of the central region. Thus although it has long been hypothesised that the
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central bundle must aid vesicle transport, this has never been directly observed. In the

STICS analysis of Bove et al. [12] directed vesicle movement in the periphery of the tube

1 1

is not seen to exceed speeds of &~ 0.5 pms™, smaller than the ~ 0.8 pyms™" observed in
the centre. By using the method of regularized ringlets and prescribing fluid velocity
only along the peripheral bundle and tube boundary, the resulting fluid velocity in the
centre should give us some insight into whether the central bundle participates in vesicle

transport.

Figure 4.8: STICS analysis of apical vesicle movement over a 10 s period. The size of
the analysis window is increased in the image on the right, revealing individual waves of
vesicle motion of greater magnitude. Velocities are measured in pms~! with scale bar =
5pm. (Credit: Chebli et al. [22], first published in Bove et al. [12])

The results of this investigation can be seen in Figure[£.9, The centreline of the peripheral
actin bundle is modelled using the union of the straight line extending from (r,z2) =
(0.9,-2) to (0.9,5) and the curve (r,z) = (0.9cosp,5+ 0.9sinp) for ¢ € [0,7/5]. The
regularized ringlet placement is extended to z = —2 to ensure the velocity profile at z = 0
is consistent with the rest of the tube. The fluid velocity on the straight line is given by

(U,,U,) = (0,0.5) with the fluid velocity on the curve being tangential and of constant
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magnitude, that is, (U,,U,) = 0.5(sin ¢, cos¢) for ¢ € [0,7/5]. On the peripheral wall
(again extended to z = —2), the velocity is 0 in the shank and prescribed according
to the growth speed v, of the tube in the apical hemisphere using the velocity function
u,(p) = v, sinp(cos g, sin ) for ¢ € [0,7/2]. We do not prescribe fluid velocity on the
central actin bundle. A regularisation parameter of ¢ = 0.05 is chosen throughout and
the Stokeslets are linearly spaced a distance approximately 0.025 apart, resulting in a
smooth velocity profile. The flow velocity for z < 3 (not pictured) matches the flow

velocity at z = 3 almost exactly, with no further change occurring in the z direction.

The shape of the velocity profile in Figure is in excellent agreement with the STICS
analysis of Bove et al. [12], with a wider band of basal flow through the centre than
apical flow in the periphery. However, despite an arguably exaggerated prescribed pe-
ripheral fluid velocity of 0.5 pms™!, fluid velocity in the centre does not achieve speeds

of 0.8ums™ .

This is a strong indication that the central bundle must also participate
in the transport of vesicles, particularly considering that the current implementation of
the Stokes equations does not account for variations in local fluid viscosity (known to
be larger in the presence of filamentous actin networks [121], reducing the fluid velocity
induced by any given force). The increased flow speed through the centre of the tube can
be easily accounted for by inclusion of additional drag from actomyosin vesicle transport
(known to reach speeds of up to 2pums~! [119, 40]) along the central bundle, with the

largest velocities being observed at the very centre as a result of the reduced cytosolic

volume in this region.
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Figure 4.9: Magnitude and direction of apical cytosolic flow in (a) lab frame, and (b)
tip frame, calculated using prescribed velocity of magnitude 0.5 pms~! on the peripheral
actin bundle, as well as a prescribed normal velocity with maximum magnitude equal to
the growth speed 0.1 pms~! at the apical boundary. Velocities are scaled by the speed of
vesicles on actin (1 pms™'), with lengths caled by the radius of the tube (8.13um).

4.3.3 The influence of growth speed

A further 3 new velocity profiles are produced, based on 3 different growth speeds for
the tube (0,0.1, and 0.2 pms™!). These speeds (approximately) correspond to that of a
static tube, the typical growth rate cited in Bove et al. [12], and the average growth rate
measured by Vidali et al. [I19] for the Lilium longiflorum species. Fluid velocity along

1in each of these profiles, based

the peripheral actin bundle is kept constant at 0.5 pm s~
on the observation that streaming rates are typically independent of pollen tube growth
rates [I19]. In this and all future scenarios, fluid velocity is also prescribed along the
centreline of the central actin bundle, given by r = 0 for —2 < z < 4. It is assumed that

vesicles are sufficiently closely packed on this bundle that the fluid velocity at its centre

can be approximated by the speed of vesicles on actin, giving (U,,U,) = (0,—1). Since
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these node locations are at r = 0, standard regularized Stokeslets must be used here.

Figure shows the velocity profiles for each of these 3 tube growth speeds in the
lab frame. Significant differences can be seen between the three profiles, both in the
magnitude and direction of the fluid velocity. In particular, at larger growth speeds there
is a wider band of cytosolic flow in the positive z direction in the peripheral region, and
the central band of basal flow is both narrower and of a reduced magnitude. This is an
expected consequence of mass conservation, since in a tube with a faster growth speed

more fluid must flow towards the apical region to fill the increasing space.
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Figure 4.10: Magnitude and direction of apical cytosolic flow in the lab frame, calculated
using prescribed velocities of magnitude 0.5pms~" and 1pms~! on the peripheral and
central actin bundles respectively, as well as a prescribed normal velocity with maximum
magnitude equal to the growth speed (a) Opms™, (b) 0.1pms™!, (c) 0.2pms™!, at the
apical boundary. Velocities are scaled by the speed of vesicles on actin (1 pms™!), with
lengths scaled by the radius of the tube (8.13 um).

Figure 4.11| shows the velocity profiles for each of the 3 tube growth speeds in the tip
frame. Here, the growth speed of the tube has been subtracted from the z component of
the fluid velocity for each corresponding velocity profile in the lab frame. Interestingly,
the differences between the velocity profiles are significantly less pronounced in this frame

of reference. Differences in the magnitude of the fluid velocity still persist, but the overall
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shape of the profiles bear a striking similarity. The persistent shape of the velocity profiles
seen in Figure [4.11| could help explain the observed similarities in the distribution of the
apical vesicle population and other elements of the cytoplasm across multiple pollen tube

species and throughout different phases of oscillatory growth.
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Figure 4.11: Magnitude and direction of apical cytosolic flow in the tip frame, calculated
using prescribed velocities of magnitude 0.5pms~! and 1pms~' on the peripheral and
central actin bundles respectively, as well as a prescribed normal velocity with maximum
magnitude equal to the growth speed (a) Opms™, (b) 0.1pms™!, (¢) 0.2pms™ !, at the
apical boundary. Velocities are scaled by the speed of vesicles on actin (1 pms™!), with
lengths scaled by the radius of the tube (8.13 um).

4.4 Cytoplasmic vesicle distributions

Following our determination of a qualitatively accurate cytosolic velocity profile for the
growing Lilium longiflorum pollen tube, we return to the governing equations for vesicle
distribution and consider the conditions under which we see the emergence of the inverted

vesicle cone at steady state.
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4.4.1 Steady state vesicle distributions

Using the velocity profile from Figure 4.11b| (for boundary growth 0.1 pms™'), we find

numerical solutions to the governing equations (#.2.25) — ([#.2.26) for ¢ and ¢™ via

the FVM of Chapter 2 implemented in Matlab. Starting from a zero concentration initial
condition, exocytic vesicles are added to the system at a rate of 400 per second via a
source area extending one fifth of tube radius Ry from the plasma membrane into the
cytoplasm for ¢ € [{5, ?1’—’6] (see Figure . Prior simulations run using a more distal
source point did not yield the desired initial accumulation patterns of exocytic vesicles
seen in the FRAP images from [12], hence our decision to place the source point close
to the apical membrane under the assumption that vesicles are deposited here directly
by actin. We run this until the system is at steady state (change in maximum total
vesicle concentration appreciably 0). We label each of our sets of results ‘Exo’, ‘Endo’, or
‘Combo’ depending on whether they show the exocytic, endocytic, or combined vesicle

population respectively. The results for the exocytic and endocytic populations can be

seen in Figure [4.13] where the exocytosis rate v at the apical wall is altered in each plot.

The shape of the region of largest exocytic vesicle accumulation matches our exocytic
source area and is consistent with the initial accumulation of labelled vesicles in the
FRAP images from Bove et al. [12]. We also note that larger values of the cytosis rate ~
appear to result in a smaller exocytic vesicle concentration in the extreme apex compared
to the rest of the apical hemisphere, matching the lower fluorescence intensity observed
in this area during the early stages of the same FRAP experiments (when the labelled
material is assumed to be exocytic in nature, or at the very least not originating from

the plasma membrane).

The shape of each endocytic vesicle population distribution profile is largely identical,
with the only differences being in the magnitude of the vesicle concentration in each.

For both v = 0.1pms™' and v = 1pms~! the endocytic population dominates. This
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Figure 4.12: Volumetric exocytic source o (shaded area) surrounding terminal location
of peripheral actin bundle (thick lines) in the vesicle transport model. Faint lines show
increments of /10 in polar angle.

is in agreement with the results of Zonia and Munnik [I26], who used high-resolution
refraction-free time lapse DIC micrographs of five pollen tubes to measure the various sizes
of objects in the tube and found the apical population to be predominantly endocytic.
We are also able to extract from our simulation the percentage of exocytic material added
to the system at each time step that successfully fuses with the wall (to be discussed in
more detail in Section , which for v = 0.1 pms~! is 84.52% at steady state, a near-
perfect result for our required vesicle uptake of ~ 340s~! (using our parameter values
from Table and following the calculation in [I2]) given our source rate of 400s™!.
It is clear from Figures - however, that we have not managed to find the
correct vesicle distribution pattern in any of these cases. In addition to this, images of
the exocytic population during the first 100s (not pictured) show the population to be
simply too diffuse, spreading out rapidly from the source area and not reflecting distinct

accumulation patterns seen in the FRAP imaging of Bove et al. [12].
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Figure 4.13: Steady state exocytic and endocytic vesicle populations for three different
values of the cytosis rate 7. Values on the colourbar are given by the product of number
density of vesicles and average vesicle volume, giving an approximate volume fraction.
Lengths are scaled by the tube radius Rj.
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Figure shows the combined vesicle population distribution at steady state under
four different regimes, in which both the value of the Péclet number and the area over
which endocytosis occurs are varied. Figure uses the original parameters with
endocytosis confined to the boundary region corresponding to ¢ € [27/5,7/2] along
the apical hemisphere. Figure shows the result of increasing the Péclet number
by a factor of 10, with a large accumulation of vesicles in the extreme apex. We note
that the maximum value of the volume fraction (almost 0.5) is very large in this case,
particularly given that the density of a packing of congruent spheres (as our vesicles have
been modelled using here) in three dimensions can never be never greater than 7/18 =~
0.74 [63]. Figure shows the result of extending the area over which endocytosis
occurs to occupy the entire boundary of the apical hemisphere (using standard Pe).
Finally, Figure shows the result of using 10 times the Péclet number and the
extended endocytosis area. The shape of the distribution profile is in excellent agreement
with the expected inverted vesicle cone [12, [78]. The occupied volume fraction in the
cone is found to be ~ 0.15, a close match to the average vesicle density of 62pm=3

(corresponding to a volume fraction of 0.1595) calculated in Kroeger et al. [78].
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Figure 4.14: Steady state combined vesicle populations using cytosis rate v = 0.1 pms~!

for different values of the Péclet numer Pe and different endocytic boundary areas. Values
on the colourbar are given by the product of number density of vesicles and average vesicle
volume, giving an approximate volume fraction. Lengths are scaled by the tube radius

Ry.

These results are somewhat surprising, but not entirely. Experimental evidence exists
for the use of a diffusive coefficient that is smaller (using conventional parameters) than

the result of the Stokes-Einstein equation, suggesting the need to use a larger Péclet
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number. Kroeger et al. [78] calculate a value of 0.625 pm? s~ based on the experimental
STICS results of Bove et al. [I2] which is significantly smaller than the S-E value of
2.929 pm? st found using the parameters in the rest of their work. Alternatively, since
viscosity is approximately inversely proportional to diffusivity this could be considered
evidence of the need to employ a larger effective cytoplasmic viscosity as previously
mentioned in Section Increasing the Péclet number by a factor of 10 corresponds
to our effective viscosity having a value roughly 10 times that of water. Whether this is
applicable in the clear zone of the pollen tube is debatable, although we note that the
resulting diffusivity of a = 0.26 pm?s~! does not differ significantly from that of Kroeger
et al. [78] (whose calculation appears to be based on graphical information from [12],
allowing some margin for error) and the volume fraction occupied by the vesicles suggests

the need to use an effective viscosity of at least 2 times that of water [64].

In distal regions, given the crowded internal architecture of the tube and the abundant
presence of F-actin, the use of a smaller diffusive coefficient (or larger viscosity) is more
easily justified. Maruyama et al. [88] conducted experiments using a Couette viscometer
on an F-actin solution of concentration 0.033mgml~! and found the viscosity of the
solution varied from a value ~ 10 to > 100 times that of water depending on the velocity
gradient (see Figure . The velocity gradient is given by the range of the flow speed

1

(=~ 0.5pums™! in the periphery of the pollen tube) divided by the distance over which it

varies (/ 0.8 pm, corresponding to the distance between the centre of the peripheral actin
bundle and the static wall). The velocity gradient for the pollen tube is thus < 1s7!,
resulting in an effective viscosity in excess of our suggested 1072 Pas. This is exacerbated
by the fact that Maruyama et al. [88] also showed that the viscosity of the solution
increases with increased F—actin concentration. In the immunoquantification experiments
of Vidali and Hepler [I18] the intracellular concentration of total actin (comprising both
F-actin and G-actin) in the pollen tube was found to be &~ 1.76 mgml™!, significantly

more concentrated than the 0.033mgml~" solution used by Maruyama et al. [88] and

suggesting that the effective viscosity of the pollen tube cytoplasm could be even greater
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than the values we have considered. Crucially, it is unclear what the effect of proteins
like profilin, responsible for the restructuring of actin filaments [I18], has on the viscosity

of the solution.
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Figure 4.15: Dependence of the viscosity of a 0.033mgml~! F-actin solution on the
velocity gradient in a Couette viscometer. (Credit: Maruyama et al. [88]).

Perhaps of greater interest, in extending the endocytic boundary to encompass the en-
tirety of the apical hemisphere and employing a uniform endocytosis rate throughout,
we have implicitly defined endocytosis to vary from a maximum at the distal region of
the hemisphere (where surface area is largest) to zero at the extreme apex (following a
cosine distribution along the meridian line). This is in disagreement with a number of
other results such as those of Chavarria-Krauser and Yejie [20], where endocytosis occurs
maximally at the extreme apex. It could be argued that our endocytosis profile repre-
sents a redistribution of clathrin-mediated endocytosis in the shank (z < 5) across the
apical hemisphere (focused near the point where the two join), remedying this disparity

between our work and others’ somewhat.

Alternatively, it could simply be the case that the uniform endocytosis rate we employ
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is the best realistic approximation to apical endocytosis and the biological situation is
less complex than had previously been believed. Experimental evidence for the extreme
apex being the primary site of endocytosis appears to be a result of reduced relative
fluorescence intensity after photobleaching in this region [12], but other FRAP studies are
less clear on this. Fluorescence intensity in the apical plasma membrane (APM) is found
to recover most quickly in the extreme tip of tobacco pollen tubes in [81] (suggesting
increased exocytic or endocytic activity here), but the difference in recovery time and
final intensity is arguably insignificant compared to results in the adjacent shoulder.
Fluorescence intensity also appears to be greatest in the extreme APM even prior to
photobleaching in these results and recovery in the first 30s is mostly uniform across the
entirety of the APM. This suggests heightened final fluorescence intensity of the extreme
APM can not be attributed solely to increased endocytosis. Further to this, the yellow
band of fluorescence across the APM in Figure [4.16] (taken from Zonia and Munnik [126])
also suggests significant endocytic activity across the entirety of the APM. This yellow
band represents a mixing of the green-labelled vesicles in the cytoplasm and the red-
labelled plasma membrane, presumably a consequence of endocytosis. Also shown in
Figure is what appears to be a combination of distal endocytosis and exocytosis

(discussed in more detail in[5.3])

Figure 4.16: Pulse-chase labelling of membrane material in a tobacco pollen tube, showing
mixing of lipophilic dyes as a result of exocytosis and endocytosis after (C) 1 min, (D) 3
min, (E) 10 min. A yellow band of dye is clearly visible along the apical plasma membrane,
indicating a mixing of green and red dyes as a result of apical exo-/endo-cytosis. The
white circles (added by me) show the release of red dye into the cytosol (distal endocytosis)
in (C), followed by a yellowing of the plasma membrane (distal exocytosis) in (D). (Credit:
Zonia and Munnik [126]).
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FRAP images (collected by our collaborators Dr Youssef Chebli and Prof Anja Geitmann
at McGill University, analyzed and edited by JT) using laser scanning confocal microscopy
with Camellia pollen tubes clearly show uniform initial fluorescence recovery across the
majority of the apical membrane (Figure , indicative of a flat rate of endocytosis.
A greater intensity in the extreme apex can be observed starting at around ¢ = 7.5s but
this behaviour is not maintained and has ceased by ¢t = 17.5s (Figure . Oscillatory
patterns of increased fluorescence activity originating in the extreme apex and generally
lasting for ~ 10 seconds are visible throughout the duration of our FRAP time lapse
series. We posit that this is the result of oscillatory growth behaviour not accounted
for in our model. A further example of this change in apical fluorescence intensity at a
later point in time can be seen in Figure [{.19] This increased fluorescence intensity in
the extreme APM is often considered evidence of increased endocytic activity since faster
fluorescence recovery indicates a more rapid removal of unlabelled plasma membrane (and
subsequent replacement by labelled membrane). However, if the increased fluorescence
of the extreme APM is an oscillatory feature rather than a permanent one (as our FRAP

series suggests), this line of thinking appears inconclusive.

This oscillatory change in fluorescence appears to be linked to the rate of growth, as
can be seen in Figure where an increase in fluorescence intensity of the extreme
APM precedes the increase in growth speed by = 10 seconds. This matches closely to
the correlation between vesicle accumulation in the apical region and growth rate of the
tube previously observed by Lee et al. [81] (Figure in tobacco pollen tubes, and is
perhaps linked to the oscillatory fluctuations in both apical cellular stiffness (Zerzour et
al. [124], Figure as well as in the concentration of tip-localised F-actin (Fu et al.
[52], Figure [1.23)). Zerzour et al. [124] observe a softening of the cell wall &~ 10 seconds
prior to an increase in the growth rate, with the magnitude of the softening affecting
the magnitude of the increase in growth. It is posited that this could be the result of
the local secretion of highly methyl-esterified pectins into the wall prior to the growth

event. It seems plausible that our observed oscillatory increase in fluorescence in the
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APM is evidence of exactly this process occurring. Finally, in FRAP simulations we run
using Matlab in Section [4.4.2] we will see that the reduced fluorescence intensity in the
cytoplasm of the extreme apical region (as observed in [12]) is a natural consequence of

the velocity profile we use and is consistent with our uniform endocytosis rate.

-05.283

t =0s > t = 4.286s

Figure 4.17: Top left: Fluorescently labelled (using FM4-64FX) apical region of the
pollen tube prior to photobleaching, showing area to bleached. The number in the image
refers to time relative to photobleaching in seconds. Top right: false colour version of
the top left image. The colour bar here (and for the images in the bottom row) is scaled
such that the maximal value corresponds to half the maximum fluorescence intensity
observed in the tube throughout the duration of the experiment. Bottom row: False
colour fluorescence labelling of the apical region of the tube, from 0 to 4.286 seconds
after photobleaching (left to right). Images are taken roughly 1.07 seconds apart. These
experiments were conducted by collaborators at McGill University (see Appendix .
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t = 7.500s ===

----- > t = 17.144s

Figure 4.18: False colour fluorescence intensity in the apical region of the tube between
7.500 and 17.144 seconds after photobleaching (left to right, top to bottom). Images
are taken 1.07 seconds apart. The colour bar is scaled such that the maximal value
corresponds to the maximum fluorescence intensity observed in the tube throughout the
duration of the experiment. These experiments were conducted by collaborators at McGill

University (see Appendix |C.1]).

t = 28.931s ----

----- ¥ t = 38.574s

Figure 4.19: False colour fluorescence intensity in the apical region of the tube between
28.931 and 38.574 seconds after photobleaching (left to right, top to bottom). Images
are taken 1.07 seconds apart. The colour bar is scaled such that the maximal value
corresponds to the maximum fluorescence intensity observed in the tube throughout the
duration of the experiment. These experiments were conducted by collaborators at McGill
University (see Appendix |C.1]).
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Figure 4.20: Similar oscillatory patterns are present in the average growth speed of the
pollen tube and the intensity of fluorescence labelling of the extreme APM. Data for
this graph is taken from the time-lapse FRAP series provided by collaborators at McGill
University (see Appendix with growth measurements calculated according to the
methodology described in Appendix [C.2]
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Figure 4.21: Oscillatory patterns in the growth rate and average fluorescence intensity of
the apical region of tobacco pollen tubes. (Credit: Lee et al. [81]).
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Figure 4.22: Softening/hardening of the apical cell wall precedes an increase/decrease
in growth rate by ~ 10s in the Lilium longiflorum pollen tube, with the magnitude of
the change in cellular softness affecting the magnitude of the change in growth speed.
(Credit: Zerzour et al. [124]).
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Figure 4.23: The intensity of fluorescently labelled tip—localized F—actin oscillates out of
phase with elongation rate in the Nicotiana tabacum pollen tube. (Credit: Fu et al. [52]).
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4.4.2 FRAP simulations

Figure [4.25| shows a simulation of FRAP experiments, conducted using Matlab, over a
period of 160s. All values for time in this section are given in dimensional terms. This
simulation is run by taking the steady-state profile found by solving the governing equa-
tions for ¢® and ¢ numerically via the FVM and setting both vesicle concentrations
to zero in a region corresponding to two tube radii distal to the extreme apex (z > 4).
This is then used as the initial condition for the same system, which is run until a re-
turn to steady state. One adjustment is made to the system, with endocytosis being
suppressed until ¢ ~ 14s. This corresponds to the approximate time by which the en-
tire apical membrane should be replaced by labelled exocytic material, after which it is
assumed that any material being endocytosed is similarly labelled. The results appear
to qualitatively match biological results, with exocytic material initially accumulating in
the shoulder prior to fusion with the plasma membrane, with small quantities beginning
to advect and diffuse in central and rearward directions (Figures - [4.25H). Once
sufficient material has fused with the membrane, endocytosis of labelled material begins
to occur (Figures - . Some time later, fluorescence intensity in the extreme
apex begins to achieve a similar intensity to the rest of the apical hemisphere (Figure
before the accumulation and distal flow of central material finally results in the
emergence of the inverted vesicle cone (Figure .

Notably, the time scales for this simulation are slow compared to the experimental results
found using FRAP; after 160s the average vesicle density in the apical hemisphere is only
62.40% of the steady state value. This rises to 77.24% after 400s and 86.83% after 800s.
This is an issue others’ have faced before, notably in Bove et al. [12] (from which many of
our parameter choices are taken) in which the theoretical turnover time of apical vesicles
they calculate is considerably slower than the time needed for fluorescence recovery. We
posit that this could be accounted for with the inclusion of more exocytic and endocytic

events (i.e. a higher source rate) and a distal sink (representing a degradative pathway
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for excess vesicle material), increasing the speed with which material is added to the

system without significantly increasing the final average density at steady state.

We also note that in spite of the use of a flat endocytosis rate throughout the bound-
ary of the apical hemisphere, the extreme apical area still contains the largest density
of endocytic vesicles at steady state. This is perhaps indicative of the fact that the
heightened concentration of endocytic vesicles in this small, extreme apical region can
be explained by the axisymmetric geometry of the tube rather than increased localised

endocytic activity.

The pattern of fluorescence recovery observed in our Matlab simulation closely resem-
bles the experimental results of Bove et al. [12] (some of which can be seen in Figure
besides the sluggish speed of recovery. Unlike in our FRAP simulations in which
the extreme apex eventually becomes the location of greatest vesicle accumulation, the
FRAP experiments in [I2] show a sustained reduction in fluorescence intensity in this
area compared to the adjacent shoulder. This is likely the result of our steady growth
assumption being an idealised situation not often seen in experiments; the extreme apical
vesicle population doesn’t exceed that of the adjacent regions in our FRAP simulations
until relatively late (¢t ~ 100s), by which point changes in growth direction or small per-
turbations away from steady growth would likely have altered the location of the extreme

apex in an experimental setup (limiting the steady accumulation of vesicles here).

Figure 4.24: FRAP analysis of FM1-43 labelled vesicles in a growing lily pollen tube.
Numbers represent time in seconds after photobleaching, with the first frame ‘H’ being
immediately prior to bleaching. Besides the difference in recovery speed, the qualitative
vesicle dynamics strongly resemble those found using our Matlab simulation. (Credit:
Bove et al. [12]).
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Figure 4.25: FRAP simulation run in Matlab. Exocytic vesicles are added to the system
at a rate of 400 s, with endocytosis of labelled material beginning at ¢t ~ 14 s. The
Péclet number is given by Pe = 31.46 with endocytosis occurring at a flat rate across
the entire apical hemisphere plasma membrane. Values on the colourbar are given by the
product of number density of vesicles and average vesicle volume, giving an approximate
volume fraction. Lengths are scaled by the tube radius Rj.
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4.4.3 Exocytosis rate

We now investigate more fully the effect of varying the cytosis rate . Table lists
five different values of the cytosis rate, along with associated values for average vesicle

densities in the apical hemisphere at steady state and exocytic vesicle uptake.

Exocytosis rate v (nms™1)
0.025 0.050 0.100  0.200  1.000

Exocytic vesicle density 0.0513 0.0335 0.0220 0.0154 0.0095
Endocytic vesicle density 0.0829 0.0978 0.1074 0.1129 0.1178
Combined vesicle density 0.1342 0.1313 0.1294 0.1283 0.1274
Exocytic uptake percentage 65.34  76.98 84.52 88.90 92.76

Table 4.3: Five different values of the exocytosis rate v along with the corresponding
exocytic, endocytic, and combined average vesicle densities at steady state, as well as the
percentage of exocytic material added to the system at each time step that successfully
fuses with the apical plasma membrane. Exocytic vesicles are added to the system at a
rate of 400 s7!. The Péclet number is given by Pe= 31.46 with endocytosis occurring at
a flat rate across the entire apical hemisphere plasma membrane.

Following the work of Bove et al. [12], we calculate that with a source rate of 400 s™!

we require an uptake rate of 85.71% (or 6/7) for our growth rate of 0.1 pms™! to be

1 we are very close to achieving this.

maintained. With an exocytosis rate of 0.1 pms~
The ratio of exocytic to endocytic vesicles is also a good qualitative match to the results of
Zonia and Munnik [126], who found the apical hemisphere to contain primarily endocytic
vesicles with a significantly smaller exocytic population. The combined vesicle density
of 0.1294 is slightly smaller than the average vesicle density of 62 pm™ (corresponding
to 0.1595 using our density measurement) calculated by Kroeger et al. [7§], although
this is partially a result of their measurement being confined to the inverted vesicle cone

(whereas we measure across the entire apical hemisphere (z > 5) and thus also include a

peripheral area of lower vesicle density).

The results from Table 4.3 also hint at a possible reason for the minimal concentration

1

of F-actin in the extreme apex of the pollen tube. Given that v = 1pms™ would

correspond to a cytosis rate equal to our vesicle velocity on actin, our results suggest
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that a direct supply of exocytic vesicles to the apical plasma membrane via the peripheral
actin bundle isn’t necessary; so long as the bundle supplies vesicles to a sufficiently close
region, a reduced cytosis rate (perhaps corresponding to a sparser, transient apical actin
structure) such as that of v = 0.1 ums™! is ‘good enough’ to yield a similar total uptake
of exocytic vesicles as we approach steady state. At the very least, we can clearly see that
increasing the exocytosis rate yields diminishing returns with respect to the percentage
uptake of exocytic vesicles. Relying on a small exocytosis rate with a sub-optimal uptake
percentage and compensating with a higher source rate may be the most efficient method

of growing for the tube.

4.5 Chapter summary

A novel mathematical model of vesicle distribution in the pollen tube has been devel-
oped, including both diffusive and advective effects. This is made possible through the
application of the method of regularized ringlets, derived in Chapter 3, in conjunction

with the FVM developed in Chapter 2.

Three questions were posed which could be answered using the method of regularized

ringlets and our knowledge of the pollen tube:

e What proportion of the exocytic vesicle population undergoes actomyosin based
transport on the peripheral actin bundle?

e What is the role of the central actin bundle and does actomyosin vesicle transport
occur here?

e What effect does growth speed have on the cytosolic flow in the tube?

In producing a velocity profile based on the toroidal drag force induced by the actomyosin
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transport of the entire exocytic vesicle population (a common assumption in the liter-
ature), we found that the resultant cytosolic flow speed was far in excess of biological
observations. This drew our attention to the need to either employ a larger effective
viscosity for the cytosol or reduce the proportion of the vesicle population undergoing
actomyosin transport. The use of a heightened effective viscosity is supported by the-
ory concerning the viscosity of particulate suspensions at high volume fraction [, [64],
as well as experimental evidence on the increased viscosity of F—actin solutions [88] and
other examples in nature (such as the E. coli bacterium [74]) where a small cell size and

crowded cytoplasm can lead to enlarged effective viscosities.

In prescribing internal fluid velocities only along the peripheral actin bundle based on the
STICS imaging of Bove et al. [12], it was observed that cytosolic velocity in the centre
of the tube was smaller than experimental values. This suggests that the central actin
bundle must also partake in actomyosin vesicle transport, a hypothesis often assumed

true but difficult to verify experimentally.

By varying the growth speed of the tube, it was shown that in the frame of reference
moving with the tip growth speed has very little effect on the shape of the cytosolic flow
profile. This result is based on the assumption that the rate of actin polymerization
matches the growth speed of the tube, a reasonable assumption given that the location of
the peripheral actin fringe with respect to the extreme apex is typically fairly consistent

across multiple tubes [86].

In our FVM solution to the ADR PDEs corresponding to vesicle distribution, we were
able to account for the apical pooling or ‘inverted cone’ of vesicles seen in experimental
imaging. This requires the use of an enlarged Péclet number (again indicative of the
need for a larger effective fluid viscosity) and a flat endocytosis rate across the entirety
of the apical hemisphere, in contrast to prior results suggesting an endocytosis rate with

a maximum at the extreme apex. Experimental FRAP evidence for the extreme apex
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being the primary site of endocytosis [12] has been disputed by other studies [81, [126] as
well as our own findings, and can likely be explained solely by the axisymmetric geometry

of the tube.

In analyzing FRAP experiments on Camellia japonica pollen tubes we observed that
initial fluorescence recovery across the apical membrane was largely uniform, supporting
our claim of a flat rate of endocytosis. The increased fluorescence intensity in the extreme
apex was identified as an oscillatory feature of the tube, preceding growth by &~ 10s. Due
to the close temporal proximity between this increased fluorescence and apical increases in
cellular softness of the Lilium longiflorum tube [124], these events appear to be indicative
of the deposition of new apical membrane by exocytosis. This is further supported by
the increased concentration of F—actin ~ 15s to 30s prior to growth in the Nicotiana
tabacum tube [52], presumably aiding in targeted exocytosis, although some care must

be taken when collating results taken from different plant species.

FRAP simulations of vesicle distributions conducted in Matlab are a good qualitative
match to the experimental results of Bove et al. [12]. With the exception of a small
difference in recovery time and an increased vesicle density in the extreme apical region
(likely a result of our steady growth assumption), the distribution of vesicles in our FRAP

simulations match the experimental results closely.

The value of the exocytosis rate required at the apical plasma membrane in order to
provide sufficient material for growth was also considered. We found that provided exo-
cytic vesicles are delivered close to the area of exocytosis on the apical membrane (within
1.6 pm in our simulations) a relatively small (compared to vesicle speed on actin) exo-

1 is sufficient to achieve a successful vesicle fusion rate of

cytosis rate such as 0.1 pms~
> 80% at steady state. This provides some insight into the minimal F-actin concentra-
tions present in the apical clear zone; a combination of a constant vesicle supply from the

peripheral actin fringe and vesicle uptake by short, transient actin filaments anchored to
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the apical plasma membrane is all that is needed to achieve an almost 100% success rate

for exocytic vesicle fusion.

In conjunction with the close similarity between the shape of apical actin organisation
and the inverted vesicle cone, we cannot rule out the possibility that the maintenance of
the heightened population of apical vesicles is still mediated by actin to a larger degree
than our model currently accounts for. We posit that it is likely that these cytoskeletal
elements do play an additional role, perhaps aiding in the cycling of exocytic vesicles
that fail to fuse with the plasma membrane on their ‘first pass’ back into the apical
pool [22] or acting as a semi—permeable vesicle barrier. Inclusion of these ideas in our
model may allow for the use of a smaller effective viscosity without compromising the
shape of the inverted vesicle cone, likely reducing the time it would take for our model
to return to steady state during FRAP simulations (one of the key issues we currently
face). Alternatively, since some of the actin microfilaments in the dense, apical fringe
are known to curve inwards towards the central core of the tube [86], it could be that
the similarity between the shape of apical actin and the inverted vesicle cone is simply
a result of both tending to follow the shape governed by cytosolic streaming. The true

situation is likely a combination of all of these factors.
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CHAPTER 5

CONCLUDING REMARKS

Growth of the pollen tube involves complex interactions between many different systems,
in which the chemical dynamics and hydraulics of the cytoplasm are inextricable from
the mechanical properties and yielding of the cell wall. This presents a great challenge for
researchers intent on modelling tube growth, usually necessitating the use of simplifying
assumptions. One of the most commonly employed assumptions regards the nature of
cytosolic flow in the tube, the relative importance of which has proved difficult to quantify
given the challenges in modelling the flow. This thesis details our method of evaluating
the cytosolic flow induced by drag from the myosin—based transport of vesicles along
actin, as well as the implementation of this flow within a model for vesicle distribution

throughout the tube cytoplasm.

5.1 Developing new methodology

Finding numerical solutions to the vesicle transport equations required the development

of a novel finite volume method capable of application to unstructured triangular meshes
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on irregular geometries (described in detail in Chapter 2). Numerical testing against
known analytical solutions on simple geometries highlighted the stability and accuracy
of the FVM. This method showed particular promise in finding the numerical solution
for the highly—advective transport equation, where the use of a flux—limiter aided in the

minimization of the absolute numerical error.

For the evaluation of Stokes flows in an axisymmetric domain, we modified the method
of regularized Stokeslets |31, 33] using analytical integration around the axis of symme-
try. This modification yields the method of regularized ringlets, a fast, accurate, and
easy—to—implement means of evaluating highly—viscous axisymmetric flows. This method
has applications beyond the pollen tube, with the examples considered in Chapter 3

encompassing mobile spheres and toroidal swimmers.

5.2 Biological findings

Detailed modelling of the pollen tube began in Chapter 4, in which our investigation into

cytosolic flow using the method of regularized ringlets revealed that:

e To obtain cytosolic flow speeds in line with experimental observations or physically
realistic expectations, it is necessary to employ an ‘effective viscosity’ for the ho-
mogeneous cytoplasm that is an order of magnitude larger than the value typically

used (the viscosity of water).
e The fraction of vesicles undergoing actomyosin based transport may be smaller

than the common assumption (the entire exocytic population), but this fraction is

proportional to the effective viscosity of the cytoplasm.
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e The central actin bundle likely participates in the actomyosin based transport of
vesicles, aiding in their removal from the apical region. Forces induced by vesicle
transport on the peripheral actin bundle alone cannot account for the larger central

cytosolic flow speeds observed experimentally.

e Altering the growth speed of the tube appears to have very little effect on the
cytosolic velocity profile relative to the growing tip, influencing magnitude but not
direction of flow. This is reliant on the assumption that the rate at which actin

bundles are polymerized matches the growth speed of the tube.

Evidence for these assertions is drawn from a number of sources. Calculation of the drag
induced by actomyosin transport of vesicles uses the slender body theory of Johnson
and Wu [73] (for the toroidal arrangement of vesicles) in addition to Stokes Drag Law
[T10] (for disordered vesicles), both of which have been widely employed in the modelling
of microscale biological flows. The number of exocytic vesicles used in this calculation
corresponds to the minimum quantity required for maintaining the thickness of the apical
cell wall. The use of a heightened effective viscosity is supported by theory concerning
particulate solutions of large volume fraction [8] [64], experimental observations of the
heightened viscosity of F—actin solutions [88], as well as other examples in nature such
as the cytoplasm of the E. coli bacterium [74]. That a reduced population of vesicles
undergoing actomyosin transport is sufficient to induce cyclosis and direct subsequent
bulk vesicle movement follows from the STICS imaging of Bove et al. [12], in which
observed speeds of bulk vesicle motion are slower than the speed of individual organelles
on actin [40, I19]. The role of the central actin bundle in the transport of vesicles is
not a new result, but one that has proved difficult to verify experimentally and which
our model presents new supporting evidence for. The assumption that the elongation
rate of actin bundles matches the growth speed of the tube has been employed by other

researchers [78], 20] and is supported by experimental observations [86].
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In our subsequent modelling of cytoplasmic vesicle distribution, using both the method
of regularized ringlets and the FVM for solving the ADR PDEs for vesicle transport, we
were further able to show that:

s sufficient to ensure a large proportion of exocytic

e A cytosis rate of v = 0.1 pyms~
vesicles (= 85%) successfully fuse with the apical membrane at steady state and
yields a ratio of exo— to endo—cytic vesicles in close qualitative agreement with the

results of Zonia and Munnik [126].

e Confining endocytosis to the extreme apex does not yield the correct apical vesicle
distribution patterns. Closest agreement with experimental results was achieved
using a flat rate of endocytosis over the entirety of the apical hemisphere. FRAP
images provided by our collaborators at McGill University appear to show this flat
endocytosis rate, as well as an oscillatory pattern of increased fluorescence in the

extreme apical plasma membrane preceding growth.

e The use of a flat endocytosis rate and an enlarged Péclet number (perhaps cor-
responding to a heightened cytoplasmic viscosity) results in the emergence of the

‘inverted vesicle cone’” without the need for actin to act as a physical barrier.

e Simulations we ran of FRAP experiments are an excellent qualitative match to the
results of Bove et al. [I2] but simulated fluorescence recovery takes over twice as
long as experimental observations. This difference in fluorescence recovery times
is very similar to the difference in theoretical and experimental ‘turnover times’ of

the apical vesicle pool calculated by Bove et al. [12].

These results again suggest the importance of employing a heightened effective viscosity
for modelling the cytoplasm, particularly with regards to the emergence of inverted vesi-

cle cone. The alternative explanation, in which apical vesicle motion is largely diffusive
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and the cone is a result of actin acting as a physical barrier, does not yield the correct
initial vesicle accumulation patterns in FRAP simulations. This does not preclude the
possibility of the existence of the actin barrier, but the evidence for the use of a height-
ened viscosity appears strong. In fact, we posit that this heightened viscosity is itself at
least partially responsible for the shape of the actin fringe described by Kroeger et al. [78§]
although producing direct evidence for this is confined to future work. If this heightened
cytoplasmic viscosity is to be accepted, the flat endocytosis rate across the apical hemi-
sphere must surely follow; steady state vesicle distributions using a heightened viscosity

with endocytosis confined to the extreme apex resulted in wildly irregular results.

5.3 Future work

We conclude with a brief discussion of future avenues of research following our progress

thus far, including some preliminary results.

5.3.1 Modelling other pollen tube species

The majority of the modelling conducted in this thesis has been applied to pollen tubes
belonging to the lily species, often used in experimental studies as a result of their large
radius, fast growth rate, and relative resilience. The tobacco plant is another species
frequently used in pollen tube studies, owing to their large vesicle radius (beneficial in
imaging). Here, we repeat some of the calculations we have conducted thus far using
parameter values for tobacco pollen tubes to ascertain the applicability of our results to

multiple pollen tube species.

Using the parameter values from Table |5.1] we can repeat the calculation of Bove et al.
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Parameter Value Reference

Inner radius of pollen tube 4pm [89, 103]
Outer radius of pollen tube 4.1 pm [89, 103]
Growth rate 0.1pms~—! [39, 125]
Average exocytic vesicle radius 0.3 pm [126]
Average endocytic vesicle radius  0.15pum [120]

Table 5.1: Estimates for values of various parameters related to tobacco pollen tube
growth.

[12] to find the ratio of endocytic to exocytic events needed to maintain a constant cell
wall volume and membrane area is =~ 8/135 (far below the value of 5/6 observed in lily
tubes). This is in stark contrast to the experimental results of Zonia and Munnik [126]
who found significant endocytic activity taking place at the apical plasma membrane (as
well as in more distal locations), resulting in an apical vesicle population that is largely

endocytic in nature. How can we explain this disparity?

One possible explanation is the need to transport cellular material other than just cell wall
polysaccharides towards the apex. As the pollen tube elongates, stationary points on the
plasma membrane (and associated proteins) appear to move rearward relative to the tip.
Distal endocytosis could therefore be used to recycle large actin-binding proteins, essential
to the de novo formation of actin filaments [41], forwards towards the subapical cell cortex
from which the peripheral actin fringe originates. We posit that in order for local plasma
membrane density to be maintained, this process would necessitate both the addition
of membrane back into the distal wall (via distal exocytosis) as well as release from the
apical membrane. FEvidence supporting this theory can be seen in Figure 4.16, where
distal endocytosis (the addition of red-labelled material to the cytoplasm) appears to be
followed by exocytosis shortly after (yellowing of the plasma membrane). The necessity of
this additional exocytic and endocytic activity could help explain the difference between
the theoretical and experimental turnover times of the apical vesicle pool found by Bove
et al. [12], with the need to recycle proteins throughout the membrane and maintain local
membrane density resulting in far more fusion activity than their theoretical calculation

suggests.
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We further consider how a change in parameter values from lily to tobacco pollen tubes
may affect the steady state distribution of vesicles. Recall the nondimensional advection—

diffusion—reaction equations for exocytic and endocytic vesicle populations:

Ap@)" 1 . .
gt* "~ pe® V2 —ut . vl o7, (5.3.1)
ot Pe(n)v 2ot —ur - vl (5.3.2)

Due to the linearity of these PDEs, the source rate ¢* influences the magnitude of the
final steady-state populations but not their shape (assuming the source location remains
unchanged). Since the apical endocytic population is known to dominate the exocytic
population, the shape of the inverted vesicle cone is largely a result of the endocytic
population only. This leaves just two terms that could influence the shape of final vesicle
distribution: the endocytic Péclet number Pe(™ and the advective flow u*. From the
results of de Win in Chapter 3 of ‘Quantitative analysis of organelle movements in pollen
tubes’ [40], it is known that the magnitude of the average cytosolic flow in tobacco
tubes is approximately the same as for lily pollen tubes (~ 0.5 ums™!). Since this flow is
induced by vesicle movement along peripheral and central actin bundles, the organisation
of which is known to be similar between lily and tobacco tubes [86], we thus deduce that
any difference in the dimensionless advective term u* between the two species will likely
be very minor. The endocytic Péclet number Pe(™ is found by taking the product of the
pollen tube radius and the average vesicle velocity on actin divided by the diffusivity of
endocytic vesicles. This again is almost entirely unchanged between species, a result of
the pollen tube radius and diffusivity of endocytic vesicles (proportional to the inverse
of the vesicle radius) in tobacco tubes both being approximately half that of lily tubes.
Preservation of the Péclet number in the pollen tube in both plant species helps explain

the striking similarity between the shape of apical vesicle pooling in each.
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Further investigation into the possible similarity of the Péclet number between multiple
pollen tube species could yield vital information on the cytoplasmic conditions neces-
sary for pollen tube growth. Unfortunately, accurate values for relevant parameters are
typically difficult to acquire for any given species, hence our need to sometimes conflate

values from multiple sources.

5.3.2 The response of actin filaments to cytosolic flow

A more challenging extension of our work would involve the modelling of actin filaments
in response to the cytosolic flow. Close similarity between the direction / streamlines of
the flow and the shape of the actin profile derived by Kroeger et al. [78] can be observed
in Figure The orientation of actin filaments within this profile is derived such that
local elastic stress between adjacent filaments is minimized but does not consider shear
stress incurred by the cytosolic flow. This could become large if the fluid viscosity is
similarly large, suggesting that filaments at the leading edge of the profile could orient
themselves parallel to the flow. If the barbed end of one such filament was attached to
the cortical plasma membrane (where it hypothesised that the formation of new actin
filaments takes place), this could account for the cycling of vesicles from the tail end
of the inverted vesicle cone towards the peripheral shoulder as has been observed in
experimental studies [12, 22]. The method of regularized ringlets provides the framework

within which this problem could be studied further.
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Figure 5.1: Close similarities exist between the (dashed) streamlines of cytosolic flow and
the (solid magenta) actin profile of Kroeger et al. [7§], formulated such that elastic stress
between adjacent actin filaments is minimized and the profile advances at a steady rate.

5.3.3 Coupling growth speed and vesicle deposition for non—
steady growth

In its current incarnation, our model of the vesicle transport problem assumes the tube
grows steadily (with the growth speed of the tube being incorporated within apical bound-
ary conditions and used to define the moving coordinate system). This is generally suffi-
cient for studying steady—state vesicle distributions but does not capture the complexities
of non—steady growth. A more refined model would be capable of coupling the rate of vesi-
cle deposition to the growth speed of the tube (under the assumption that the deposition
of new material always precedes growth), such that it would be possible to consider cases
of non—steady growth. Increased fluorescence intensity in the extreme apex of FRAP
imaging preceding growth suggests that employing a pulsatile exocytic source rate in this
refined model could lead to cases of oscillatory growth, a phenomenon we have not been
able to model thus far. The difficulty in implementing this coupled model lies in the need
to frequently recalculate the cytosolic flow based on the changing growth speed of the
tube. Provided the acceleration/deceleration in the growth rate are sufficiently small,

the steady Stokes Equations could continue to be used for this purpose. Here, the rapid
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nature of the method of regularized ringlets would prove to be of a huge benefit to the

modelling procedure.

5.3.4 Bending of the tube and asymmetric models of growth

Our ultimate ambition is to be able consider asymmetric deposition of wall material and
the bending of the tube on its path through the pistil. In order to do this, it seems
inevitable that we will have to remove the assumption of axisymmetry and move into a
fully 3D modelling system. Generalising our finite volume method for use in 3D would be
somewhat challenging, but the development of the method was conducted in such a way
that the 2D and 3D cases are conceptually very similar. Modelling of the cytosolic flow
can be achieved using the standard method of regularized Stokeslets as outlined by Cortez
et al. [33], with our method of regularized ringlets no longer applicable. A finite element
model of the tube allowing for the possibility of asymmetric growth has been developed
by Fayant et al. [49], although axisymmetric conditions are applied throughout their
work. It is our hope that the results put forth in this thesis will be of significant use in
future models capable of coupling vesicle transport and material deposition to asymmetric

growth of the tube.
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CHAPTER 2 APPENDICES

Implementation of the finite volume method for
the advection - diffusion equation with additional
boundary conditions and reaction terms

Consider a domain D in cylindrical (r, z) coordinates in which axisymmetry about the z

axis is assumed. Let this domain encompass

a mass source w(x) located in the region Dgource,

a volumetric sink y(x) located in the region Dg,

a symmetry boundary (s, and an impermeable boundary €2,,, on which there is
zero normal flux,

an advective boundary (), on which only negative normal advective flux is con-

sidered (i.e. no diffusive flux, no positive normal advective flux),

a flux boundary €2,,; on which there is prescribed normal flux (V¢) -n = —1¢ for
some diffusive rate -,
a flux boundary €, on which there is prescribed normal flux (V¢)-n = %%{““ . Here,

0 < ¢ < 1 respresents a recycling rate, Qout = 7y fQ _ ¢ dS is the total instantaneous

uptake of ¢ through the 2., boundary and Aj;, is the area of the surface €.

Let the FVM mesh be comprised of N vertices, so that discretization produces N distinct
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control volumes denoted {V;}¥,. Each V; is enclosed by a surface S;, which can be

decomposed into the union of surfaces:

Sif for any fluid-fluid surface,

Sin for any surface belonging to the ;, boundary,

Seut for any surface belonging to the Qg boundary,

S# for any surface belonging to the €,,s boundary,

SY for any surface belonging to Qimp U Qsym-

Each of these surfaces can be further decomposed into the union of sets of edges e;, such
that S/ is the union of the set e/ and so forth. In the FVM, integration over the surface
S; is approximated via summation over the edges e;. In these summations, we let rj;
denote the r co-ordinate of the midpoint of the current edge, with Ar and Az denoting

the change in r and z co-ordinates over the length of the edge respectively.

A.1.1 Base case: fluid bulk

Consider a control volume V; containing no source/sink and not adjacent to any boundary
of our larger domain (i.e. S; = S/, e; = ef). Integration of the ADR equation over this

volume yields

0 v _ . _
Vkadv_/wv (Ve — ug) dV (A.1.1)

= j{g (aV¢ —ug) -ndS (A.1.2)
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Using the FVM discretisation, this becomes

k+1 k k+1 k k+1 k
o () o) (52

(A.1.3)

= (ur (6" + ) Az —w (9 + ¢7)Ar) (A.1.4)

All ¢, V¢, and u terms on the right hand side of this equation are understood to be
evaluated at the midpoint of the current edge (using interpolation of values from vertices

in the mesh). For brevity, we define

k—+1 k k+1 k
T e [a ((82: ; %%) Ax— (a(g: T %i;) Ar) —(ur<¢’““+¢k>Az—uz<¢‘““+¢’“>Ar>] ,
(A.1.5)

so that the discretisation may be more succinctly written as
¢k+1
(£ ) "

A fluid-fluid surface S/ is present in every one of the CVs V;, so the summation above

will always be used.
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A.1.2 Inclusion of sources and sinks

If the control volume V; contains a nonzero source term w, discretization of the governing

equations must be adjusted accordingly

‘Zﬂf _ / (aV — ug) +wdV (A7)
:»/ <_ - ) Qv = ]{(aw—u@ i ds (A.18)
=AV (W - w) =ry 1/ (A.1.9)

In the presence of a volumetric sink y

0
g a(f dv = / V- (aVe—up) — xodV (A.1.10)
:>/ (——i— qb) j{ (aVp —u¢)-ndS (A.1.11)
S;
¢k+l ¢k X _ f
:»Av( ~ §(¢’“+1+¢’f ) —WZfT (A.1.12)

A.1.3 Inclusion of exocytosis / endocytosis

When part of the surface S; contains a section of the boundary €),,, through there is

prescribed flux (Vo) -0 = —1¢, the FVM discretization deals with the different surface
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types separately

99

| B AV = fii(anb —ug¢)-ndS (A.1.13)

= / (Vo —ug) -ndS — / Yo dS (A.1.14)
s7 Sout

out
eZ €;

= AV (¢k+1 ¢k) — (Z T/ —72 ¢k+1 +¢k)\/<AZ) (Ar)2) (A.1.15)
At

Similarly if S; contains a section of €2, through which there is prescribed flux (V¢)-n =

%%0““, it follows that

in

09

| B AV = 72(&% —ug)-nds (A.1.16)

:/f(aV¢—u¢) nd5+i€f“ / ds (A.1.17)
S in m

i

k+1 k
= AV (¢ ~ — 9 ) (ZTM i%ﬁ‘: ZTM\/(AZ)2+(AT)2) (A.1.18)

in
€

where Qo 18 given by

Qout_gmzz (¢F + %)/ (Az)2 + (Ar)2. (A.1.19)

eout
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CHAPTER 3 APPENDICES

B.1 Regularized Stokeslets in cylindrical coordinates
for ringlet evaluation

The expressions S§;(xg, X,,) for fluid point xo = (1,0, 29) and ring point x,, = (75,0, 2,)

in cylindrical coordinates are given below

1
St = =5 [2(ro — rn cos 0)? + (r sin0)® + (20 — zn)* + 267]
r

€

S5y = = [=(ro — rncos0) (r, sin )],
TE

Sty = =5 [(r0 = ra cos8) (20 — 2)]

S51 = = [—(ro — rncos0)(r,sind)]

S50 == [(ro — 708 0)? +2(r,sin ) + (20 — 2)* + 252} ,

> =
]

Sz = =5 [=(rasin®) (20 — z,)],

S5 = = [(ro — r cos 0) (20 — 25)]
S5 = = [—(rasind)(zo — 2.)],

S5 = ro — 1 €08 0) 4 (rysin6)® + 2(zp — 2,)* + 267] B.1.1
33

=3 =
m\ésl —_ mﬂcfal —_ mCZDl —

in which 7, = ((rg — r,, cos 8)% 4 (1, sin ) + (29 — 2,)% + &2)¥/2.
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B.2 Evaluating the behaviour of R ; as 7,179 — 0

To understand the behaviour of Rf; as rn,ro — 0, it is easiest to consider Rf g in the

form
RE, (X0, %) = Tu(—rornlo + (27 — (20 — 2,)?) 1y — 3rornls), (B.2.1)
Riz<X0> Xn) = Tn(ZO - Zn)(TOIO - Tnjl); (B.Q.Q)
R, (x0,%p) = 1020 — 2n)(—7ndo + 1011), (B.2.3)
RE_(x0,%n) = (T + (20 — 20)* + %) 1y — 2ror,1y), (B.2.4)
R5p(%0, %) = 1 (rornlo + (T + €)1 — 3ror, 1), (B.2.5)
in which
4k3 1
Iy = E B.2.6
4k3 2 — k2 2
I, = E——=F B.2.7
L <k2(1 — k) k2 > ’ (B.27)
4k3 k' — 8k + 8 4(2 — k%)
I, = E— F B.2.8
27 (drgr,)3? < k(1 — k2) = ) ’ (B.28)

with 7 = 78 + 12 + (20 — 2,)* + €% and k? := 4dror, /(7 + 2r¢r,). Evaluating limy o I,

for each n € {0,1,2} and substituting back into Equations (B.2.1)) — (B.2.5)) yields the

desired results for lim,, R and lim,_,o R

The first step in evaluating these limits is to observe that from the definition of k, it

follows that & — 0 as either 7o — 0 or r,, — 0 (or both). Further, noting that

4 4ror 3/2

4k3 <T+27‘0T;‘n> 4

im —— = = li = B.2.
ilclgtl) (4rgry,)3/2 Ilcl—r>r(l) (4ror,, )3/? T3/2 (B:29)

in which the value of 7 as & — 0 depends on whether 7o — 0 or r,, — 0 (or both),

it is observed that Iy, I1, Is contain common finite term outside of the larger brackets.
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Evaluating the remaining parts of Iy, I, I in the limit as k& — 0 requires employing the

power series expansions of the complete elliptic integrals [59], such that

1
F(k):z(1+—k2+3k4+...),

2 4 64
G 1., 9.4
p=T (1l i),

Letting E ~ 7/2 it follows that

. 1 T
s (1 - k2E> T2

Similarly, letting E ~ Z(1 — 1k?) and F ~ Z(1 + 1k?) it can be found that

4
) 2 — k? 2
i%(m”ﬂ)”-

Finally, using F ~ Z(1 — 1k* — 2k*) and F ~ Z(1+ 1k? + 2k*) yields

lim
k—0

4 2 1.2
o8k 48 . 42K ™
(1 — k2) et

Compiling all of the above gives

Iy — 21/ 73/2
I —0 as k — 0,

I, — —7'['/27'3/2
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(B.2.11)

(B.2.12)

(B.2.13)

(B.2.14)

(B.2.15)



which upon substitution into the expressions for R ; yields

lim R 5 =0,

rn—0
lim RS = lim RS, = lim R;, =0
ro—0 r ro—0 rz ro—0 69 ’

lim B2, = =2 (20 — 20) /7%

lim RS, = 277, (7 + (20 — 2) + €%)) /72

ro—0

B.3 Evaluating the double layer potential

Recall the form of the double layer potential

(OLP), = o= [ w50 Tiu(0, )1 x) dS(),

™

in which the stress tensor 77, is given by

(20 — i)(xo; — ;) (Tok — Tk)
(xo — x|? 1 22572

Tiejk(XU’ X) =—0

_ 352(

To; — xi)éjk + (l'o,j — iCj)5ik + (zox — ll?k)5ij

(%o — x|? + £2)>/2

(B.2.16)
(B.2.17)
(B.2.18)

(B.2.19)

(B.3.1)

(B.3.2)

As with the Stokeslet S7; in the SLP, the stress tensor T}, can be expressed in cylindrical

coordinates via

(xo1 — 1) = ro — rpcOSH,
(xo2 — x2) = —rpsinb,
(150,3 - $3) = 20 — Zn,

Ixo — X|* = (rg — 1, c080)? + (1,810 0)% + (20 — 2,)°.
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and the Cartesian and cylindrical forms of the flow vector u are related via u; = ©,3ug

in which

cos@ —sinf 0

O(@) = | sinf cos®# 0 |, (B.3.7)

0 0 1

Recalling that the azimuthal component of the normal to an axisymmetric body is zero,

the transformation from polar to Cartesian coordinates is n; = ¥;,n, where

cosf 0 O
U@)=1| sing 0 0 |- (B.3.8)
0 01
Let
2
Qaﬁ'y:rdai/ @ T]klllk'ydg (B39)
0
such that
(DLP),, /Qalgvuﬁnvds (B.3.10)

For fixed o, nonzero elements of ()3 are given by

Qo111 = Tnlqi fo (17, cos® 0 + T, sin 6 cos 0 + T sin 0 cos 6 + T, sin® §) db),
Qaiz = Tndai fi" (Ths cos O + Thy sin ) d,

Qu21 = Tnlai f (—=T7,sinfcosd — T, sin® 0 + Ty, cos® § + T, sinf cos 0) db,
Qa2z = Tnlqi f (—

Qaz1 = Tnlq; fo (T5, cos 0 + T, sinf) db,
Qo33 = Tnlai f (

T73sin6 + T3 cos ) db,

(2

Ti33)
(B.3.11)

such that each Qs is a linear sum of terms of the form

(@i = 1n /027r ey e db. (B.3.12)
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Letting
sin™ 6 cos™ 0

21
T = rn/ : df (B.3.13)
0

T — 2rgr, cos§)3/2 77

in which .J,,, , = 0 for m odd, each of the necessary (o), can be written as:

{(cos® 0111 = —(6r3 + 92%r¢) Joo + (18731, + 9e%r,) Jo 3 — 18112 Jo.u + 613 Jo 5,
(sin@cosO) 12 = (3e?r, + 6rdr,) oy — 12rgr2 Jos + 613 Jo 3,

((sin? 0122 = —3e%rgJa + 3%, Jaq — 6ror2 a0 + 612 Jyq,
{(cos O)113 = —3(20 — 2n)((2r3 + ) Jo1 — 4rorndo2 + 2r2Jo3),
(sin 0)123 = 6rp(20 — 2n)(T0J2,0 — Tnd21),

(1133 = (6(20 — 20)? + 3¢2)(=710Joo + rnJo1),
(sinf@cosO)or1 = (3e?r, + 6rér,)Jay — 12rgr2 Jos + 613 Jo 3,

(sin? 0) 212 = —3e%rgJa + 32, Jaq — 6ror2Jao + 675 Jy 1,
((cos? 0901 = —3ergJog + 3%, Jo s + 613 Jo 3 — 6roriJas,
(sin@cosO)aoe = 9e%r,Jo 1 + 612 Jy1,

(sin 0213 = 67(20 — 2n)(T0J2,0 — Tnd21),

{(cos 0)a23 = —3e%(20 — 2n)Jo1 — 672(20 — 20) 2.1,

(cos? )11 = —3(20 — 2n)((2r3 + €2) Joo — 417y Jo 3 + 2r2 Jo.4),
(sinf@cosB)z12 = 6rora(20 — 2n)Ja1 — 672 (20 — 25) S22,

(sin® 032 = —3e%(20 — 2n)J20 — 672(20 — 2n) Ju0s

{(cos 0)313 = (6(20 — 2n)? + 3e%)(—roJo1 + rndo2),

{(sin 0) 393 = (6r,,(20 — 2n)* + 3rne?) Jay,

(1)333 = —(6(20 — 2)> + 9€%(20 — 2n)) Jo0-

(B.3.14)
Using the double angle formulae for sin and cos we are able to express J,,, purely in

terms of even powers of cos, such that

z 20 1\n(1 _ 2 n\m/2 m
Jon = \- 2m/2 (2cos? 0 — 1)"(1 — cos* )™/* cos™ 6
0

(1= Koo )772 df for m even, (B.3.15)
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where A = r,,(k/\/Torn)®/8 = 4r,(\/T + 2ror,) ~°. Note that the upper limit of integration

was first reduced by application of the double angle formulae, followed by the even parity

of the resulting integrand about 7/2. If we further define

cn=r [

™

cos?™ @

do

1 — k2cos?0)5/2 7

then expanding Equation (B.3.15)) for the relevant values of m,n yields

Joo = +Co,
Jo1= —Co
Joo = +Cp
Jos = —Co
Joa = +Cp
Jos = —Co
Jap =
J2’1 =
Jag =
Ja3 =
Jip =
Jig =

+2017
—4CY
+6C"

+10C4

+4Cs,
—12C,
+24C,
—40C,

—Cs),
+3C,
—5C%
+7C%

16(+Cy
16(—Cy

+8Cs,
—320,
+80C5

—2C3),
+8C5
—18C}%

—2C;5

+4C'

+16C47
—80C,

—4Cy),
+20C4

+Cy),
—5C4

+32C5,

(B.3.16)

—8C5),

+2C%),

in which the integrals (), can be expressed in terms of complete elliptic integrals of the
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first and second kind (F' and E respectively) with elliptic modulus k as

s (7).

e ( (2=3E)F (ikj ;21>E> ’ (B.3.17)
O = Sma =) 1_k2 <8 oy — K ;i3]7§22+8E>,

) ( (16 - 1682 — ety — 25 4]{;14_ ;3241{2 u 16E> ,

= m <128 120k — gkt — 4i0)p — S LK +127_le2— 184K + 128E) |
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CHAPTER 4 APPENDICES

C.1 Materials and methods for experimental FRAP
imaging

Fluorescence Recovery After Photobleaching experiments (and video capture) in Figures
- were conducted by Dr Youssef Chebli and Prof Anja Geitmann of McGill
University (Montreal, Canada). All subsequent image analysis was conducted by James

Tyrrell with assistance from Dr Meurig Gallagher, University of Birmingham (Birming-

ham, UK).

Plant material

Pollen was collected directly after anthesis from a Camellia japonica plant grown in the
greenhouse of the Montreal Botanical Garden. To minimize artefacts due to varying
maturity of pollen grains, only batches collected during the same week were used for any
given series of experiments. Pollen grains were then dehydrated over silica gel for 24 h

and stored at —20°C until use.

Pollen culture
Pollen grains were hydrated for 30 min and suspended in a modified Brewbaker and Kwack

germination medium (100 pgml~! H3BO3, 300 pgml~! Ca(NO3)s, 100 pgml~! KNOs3,
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200 pg ml~! MgSOy, 50 mg ml~! sucrose). The pollen grain suspension was deposited in
the channels of a 0.4 pm Ibidi® plates (p-Slide VI 0.4, IbiTreat) and incubated at 22°C

for 90 min prior to membrane labeling.

Membrane Labeling
Membranes were fluorescently labeled by addition to the germination medium of FM4-
64-FX (Molecular Probes, Invitrogen) to a final concentration of 1.60 pM. To image the

endocytosis process, pollen tubes were labelled for 5 min prior to imaging.

Imaging and Fluorescence recovery after photobleaching

Confocal laser scanning imaging was performed with a Zeiss LSM710 AxioObserver sys-
tem fitted with a Plan Apochromat 63x/1.4 oil objective. The FM4-64FX was excited
with the 514 nm laser (maximal power 25 mW, output set at 3.5 %). The emitted photons
were collected with tunable GaAsP PMT between 590 nm and 760 nm. Pinhole was set

at 1 Airy Unit, detector gain at 740 and detector offset at 0.

A region covering the first 12 pm from the pollen tube tip was defined as the bleaching
region of interest. Three images were taken before bleaching the ROI. Bleaching was
performed with the 488nm line of the argon laser used at maximal power (25mW),
output set 100 % for 10 iterations. After bleaching a series of images were acquired at

different time intervals for at least 2 min.

C.2 Mapping experimental tube growth

The majority of the MATLAB code used in conducting this analysis was provided by Dr

Meurig Gallagher, University of Birmingham, (Birmingham, UK).
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In order to be able to quantify the speed of pollen tube growth for comparison with
fluorescence intensity in the extreme APM, we developed new techniques for tracking
the growth of the pollen tube across small time scales (O(s)). Using a weighted form
of Principal Component Analysis (PCA) where the weights correspond to fluorescence
intensity, a spline is fitted to the boundary of the pollen tube for each frame in our FRAP
video. This can be seen in Figure where the blue curve is the cubic polynomial
interpolant for the location of the extreme apex (minimising the squared error in the x
direction)ﬂ. The data to which this curve has been fitted can be seen in Figure .
Starting from the first frame in our video, the first apical point is found by selecting
the point in the apical region at which the absolute value of the second derivative of
the boundary spline is minimised. The next apical point (for the second frame) is found
by starting from an intermediary point on the second boundary spline that is closest to
the first apical point. We then select the new apical point by choosing the point that
minimises the second derivative of the boundary spline in a region ‘sufficiently close’ to
the intermediate point. This iterative process is repeated for each frame, with the third

apical point being selected based on the location of the second apical point and so on.

Using the apical points we have found, we are able to measure the growth speed of the
tube between frames. Growth of the tube between one frame and the next is measured as
the signed distance between the apical point of the first and the closest boundary point
of the second. This is based on the assumption that growth in the apex occurs in the
normal direction. The speed of growth is determined by dividing the growth distance by
the time between frames. Results of this measurement can be seen in Figure [C.2a] This
data is smoothed in Figure by averaging the growth at each time point with growth
during the two adjacent time points (one prior, one after) except for the data for the
first and final timepoints which remain unchanged. This averaged growth data is used in

our comparison with the fluorescence intensity of the extreme APM in Figure We

note that some of our data appears to show a shrinking of the tube with growth taking

IThis is used purely for visualisation purposes in Figure
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negative values. This is likely a result of the pollen tube shifting ‘up or down’ slightly
in the plane of the ~ 400 nm thick horizontal slice that is visualized during the course
of the confocal laser scanning microscopy experiments, with deviations away from the

centre of the tube (where the apex is located and the tube extends furthest) mimicking

the appearance of shrinking.

distance (pm)
distance (pm)

é 4‘1 é é 1I0 1I2 1I4 ll() ll8 2IO 1‘2 ll3 1I4 1‘5 1‘6 17
distance (pm) distance (pm)
(a) (b)
Figure C.1: (a) An outline of the pollen tube for each frame in the FRAP video we
analyze. The blue line is cubic polynomial interpolant for the location of the extreme

apex, minimizing the squared error in the  direction (used purely for visualization). (b)
A zoomed-in look at the location of apical points for each frame in the FRAP video.
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Figure C.2: (a) Growth speed between frames in the FRAP video. (b) The same data
smoothed by averaging over consecutive time points.

171



[1]

LIST OF REFERENCES

ALBERTS, B., JOHNSON, A., LEwis, J., RAFF, M., ROBERTS, K., AND WAL-
TER, P. Molecular motors. In Molecular Biology of the Cell, fourth ed. Garland
Science, 2002. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26888/.

ALvVESs, C. J., AND SILVESTRE, A. Density results using Stokeslets and a method of

fundamental solutions for the Stokes equations. Engineering Analysis with Bound-
ary Elements 28, 10 (2004), 1245-1252.

BARRERO-GIL, A. The method of fundamental solutions without fictitious bound-
ary for solving Stokes problems. Computers & Fluids 62 (2012), 86-90.

BArRrOWs, E. M. Animal Behavior Desk Reference: A Dictionary of Animal
Behavior, Ecology, and Evolution, third ed. CRC Press, 2011.

BARTNICKI-GARCIA, S. Hyphal tip growth: outstanding questions. Mycology
Series 15 (2002), 29-58.

BARTNICKI-GARCIA, S., BRACKER, C. E., GiErz, G., LOPEz-FRANCO, R.,
AND Lu, H. Mapping the growth of fungal hyphae: orthogonal cell wall expansion
during tip growth and the role of turgor. Biophysical Journal 79, 5 (2000), 2382
2390.

BaAskiN, T. I. On the alignment of cellulose microfibrils by cortical microtubules:
a review and a model. Protoplasma 215, 1-4 (2001), 150-171.

172



8]

[10]

[12]

[13]

[14]

[15]

[16]

[17]

BEENAKKER, C. The effective viscosity of a concentrated suspension of spheres
(and its relation to diffusion). Physica A: Statistical Mechanics and its Applications
128, 1-2 (1984), 48-81.

BincHAM, E. C. An investigation of the laws of plastic low. Bulletin of the Bureau
of Standards 13 (1917), 309-352.

BincHAM, E. C. Fluidity and plasticity. McGraw-Hill Book Company Inc., New
York, 1922.

BLAKE, J. A spherical envelope approach to ciliary propulsion. Journal of Fluid
Mechanics 46, 1 (1971), 199-208.

BovEe, J., VAILLANCOURT, B., KROEGER, J., HEPLER, P. K., WISEMAN,
P. W., AND GEITMANN, A. Magnitude and direction of vesicle dynamics in
growing pollen tubes using spatiotemporal image correlation spectroscopy and flu-
orescence recovery after photobleaching. Plant Physiology 147, 4 (2008), 1646-1658.

BryANT, D. A., AND FRIGAARD, N.-U. Prokaryotic photosynthesis and pho-
totrophy illuminated. Trends in microbiology 14, 11 (2006), 488-496.

BucHANAN, B. B., GruisseM, W., AND JONES, R. L. Biochemistry and molec-
ular biology of plants, second ed. John Wiley & Sons, Hoboken, New Jersey, 2015.

BURRI, JAN T AND VOGLER, HANNES AND LAUBLI, NINO F AND Hu,
CHENGZHI AND GROSSNIKLAUS, UELI AND NELSON, BRADLEY J. Feeling the
force: how pollen tubes deal with obstacles. New Phytologist 220, 1 (2018), 187-195.

BURSTROM, H. Encyclopedia of Plant Physiology, vol. Fourth. Berlin: Springer—
Verlag, 1961.

BURSTROM, H. Wishful thinking of turgor. Nature 234, 5330 (1971), 488.

173



[18]

[19]

[20]

22]

23]

[24]

[26]

[27]

CADA, M., AND TORRILHON, M. Compact third-order limiter functions for finite
volume methods. Journal of Computational Physics 228, 11 (2009), 4118-4145.

CAampAs, O., AND MAHADEVAN, L. Shape and dynamics of tip-growing cells.
Current Biology 19, 24 (2009), 2102-2107.

CHAVARRIA-KRAUSER, A., AND YEJIE, D. A model of plasma membrane flow

and cytosis regulation in growing pollen tubes. Journal of theoretical biology 285,
1 (2011), 10-24.

CHEBLI, Y., KANEDA, M., ZERZOUR, R., AND GEITMANN, A. The cell wall of

the arabidopsis pollen tube—spatial distribution, recycling, and network formation
of polysaccharides. Plant Physiology 160, 4 (2012), 1940-1955.

CHEBLI, Y., KROEGER, J., AND GEITMANN, A. Transport logistics in pollen
tubes. Molecular Plant 6, 4 (2013), 1037-1052.

CHEN, C., YOUNG, D., Tsar, C., AND MURUGESAN, K. The method of funda-
mental solutions for inverse 2D Stokes problems. Computational Mechanics 37, 1

(2005), 2-14.

CHEN, Z. J. Molecular mechanisms of polyploidy and hybrid vigor. Trends in
plant science 15, 2 (2010), 57-71.

CHRISTENSEN, R. Theory of viscoelasticity: an introduction, second ed. Academic
Press, Cambridge, Massachusetts, 1982.

CHWANG, A. T. Hydromechanics of low-Reynolds-number flow. Part 3. Motion of
a spheroidal particle in quadratic flows. Journal of Fluid Mechanics 72, 1 (1975),
17-34.

CHWANG, A. T., AND Wu, T. Y. Hydromechanics of low-Reynolds-number flow.
Part 4. Translation of spheroids. Journal of Fluid Mechanics 75, 4 (1976), 677-689.

174



[28]

[29]

[31]

32]

[33]

[34]

[36]

[37]

CHWANG, A. T., AND Wu, T. Y.-T. Hydromechanics of low-Reynolds-number

flow. Part 1. Rotation of axisymmetric prolate bodies. Journal of Fluid Mechanics
63, 3 (1974), 607-622.

CHWANG, A. T., AND Wu, T. Y.-T. Hydromechanics of low-Reynolds-number
flow. Part 2. Singularity method for Stokes flows. Journal of Fluid Mechanics 67,
4 (1975), 787-815.

CLELAND, R. Auxin and wall extensibility: Reversibility of auxin-induced wall-
loosening process. Science 160, 3824 (1968), 192-194.

CoRTEZ, R. The method of regularized Stokeslets. SIAM Journal on Scientific
Computing 23, 4 (2001), 1204-1225.

CoRTEZ, R. Regularized stokeslet segments. Journal of Computational Physics
375 (2018), 783-796.

CortEZ, R., Fauci, L., AND MEDOVIKOV, A. The method of regularized

Stokeslets in three dimensions: analysis, validation, and application to helical swim-
ming. Physics of Fluids 17, 3 (2005), 031504.

CosGROVE, D. J. Linkage of wall extension with water and solute uptake. In
Physiology of Cell Expansion during Plant Growth (Symposium in Plant Physiology)
(Rockville, MD, 1987), D. J. Cosgrove and D. P. Knievel, Eds., American Society
of Plant Physiologists, pp. 88-100.

CoOSGROVE, D. J. Wall relaxation and the driving forces for cell expansive growth.
Plant physiology 84, 3 (1987), 561-564.

CoSGROVE, D. J. Wall relaxation in growing stems: comparison of four species
and assessment of measurement techniques. Planta 171, 2 (1987), 266-278.

COSGROVE, D. J. Wall extensibility: its nature, measurement and relationship to

175



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[46]

plant cell growth. New Phytologist 124, 1 (1993), 1-23.

CosGRrROVE, D. J. Growth of the plant cell wall. Nature reviews molecular cell
biology 6, 11 (2005), 850.

DARwWISH, M., AND MOUKALLED, F. TVD schemes for unstructured grids. In-
ternational Journal of heat and mass transfer 46, 4 (2003), 599-611.

DeE WIN, A. H. N. Quantitative analysis of organelle movements in pollen tubes.
PhD thesis, Radboud University, 1997.

DomMmINGUEZ, R., AND HoLMES, K. C. Actin structure and function. Annual
Review of Biophysics 40 (2011), 169-186.

Dumars, J., LoNG, S. R., AND SHAW, S. L. The mechanics of surface expansion
anisotropy in medicago truncatula root hairs. Plant physiology 136, 2 (2004), 3266—

3275.

Dumais, J., SHaw, S. L., STeeLE, C. R., LoNnG, S. R., AND RAy, P. M.
An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth. The
International Journal of Developmental Biology 50 (2006), 209-222.

EDELSTEIN-KESHET, L., AND ERMENTROUT, G. B. Models for spatial poly-

merization dynamics of rod-like polymers. Journal of mathematical biology 40, 1
(2000), 64-96.

ENGWIRDA, D. Locally optimal Delaunay-refinement and optimisation-based mesh
generation. PhD thesis, University of Sydney, 2014.

FaBRrRICANT, D. S., AND FARNSWORTH, N. R. The value of plants used in tradi-
tional medicine for drug discovery. Enuvironmental health perspectives 109, Suppl 1

(2001), 69.

176



[47]

[48]

[50]

[51]

[52]

[53]

[54]

[55]

FAIRWEATHER, G., AND KARAGEORGHIS, A. The method of fundamental solu-

tions for elliptic boundary value problems. Advances in Computational Mathematics
9, 1-2 (1998), 69.

Farvaa, N. A cell vertex and cell centred finite volume method for plate bend-

ing analysis. Computer methods in applied Mechanics and Engineering 193, 33-35
(2004), 3457-3470.

FavanT, P., GIRLANDA, O., CHEBLI, Y., AUBIN, C.-E., VILLEMURE, [., AND
GEITMANN, A. Finite element model of polar growth in pollen tubes. The Plant
Cell 22, 8 (2010), 2579-2593.

FELJO, J. A., SAINHAS, J., HOLDAWAY-CLARKE, T., CORDEIRO, M. S.,
KunkEL, J. G.; AND HEPLER, P. K. Cellular oscillations and the regulation
of growth: the pollen tube paradigm. Bioessays 23, 1 (2001), 86-94.

FriTscH, F. E., AND SALISBURY, S. E. J. An introduction to the structure and
reproduction of plants. G. Bell and Sons, London, 1920.

Fu, Y., Wu, G., AND YANG, Z. Rop GTPase-dependent dynamics of tip-

localized F-actin controls tip growth in pollen tubes. The Journal of Cell Biology
152, 5 (2001), 1019-1032.

GALLAGHER, M. T., CHOUDHURI, D., AND SMITH, D. J. Sharp quadrature error
bounds for the nearest-neighbor discretization of the regularized stokeslet boundary
integral equation. SIAM Journal on Scientific Computing (2018).

GEITMANN, A., AND PALANIVELU, R. Fertilization requires communication: sig-
nal generation and perception during pollen tube guidance. Floriculture and Or-
namental Biotechnology 1, 2 (2007), 77-89.

GORIELY, A., AND TABOR, M. Biomechanical models of hyphal growth in acti-
nomycetes. Journal of theoretical biology 222, 2 (2003), 211-218.

177



[56]

[58]

[60]

[62]

[65]

GORIELY, A., AND TABOR, M. Self-similar tip growth in filamentary organisms.
Physical review letters 90, 10 (2003), 108101.

GORIELY, A., AND TABOR, M. Mathematical modeling of hyphal tip growth.
Fungal Biology Reviews 22, 2 (2008), 77-83.

GORIELY, A., TABOR, M., AND TONGEN, A. A morpho-elastic model of hyphal
tip growth in filamentous organisms. In ITUTAM Symposium on Cellular, Molecular
and Tissue Mechanics (2010), Springer, pp. 245-255.

GRADSHTEYN, I. S.; AND RyzHIK, I. M. Tuble of integrals, series, and products.
Academic Press, 2014.

GREEN, P., ERICKSON, R., AND Bucay, J. Metabolic and physical control of cell
elongation rate: in vivo studies in nitella. Plant Physiology 47, 3 (1971), 423-430.

GREFEN, C., AND BrarT, M. R. SNAREs—Molecular governors in signalling
and development. Current opinion in plant biology 11, 6 (2008), 600-609.

Guo, F., AND McCuBBIN, A. G. The pollen-specific R-SNARE/longin Pi-
VAMP726 mediates fusion of endo-and exocytic compartments in pollen tube tip
growth. Journal of experimental botany 63, 8 (2012), 3083-3095.

HaLEs, T. C. An overview of the kepler conjecture. arXiv preprint math/9811071
(1998).

HAPPEL, J., AND BRENNER, H. Low Reynolds number hydrodynamics: with

special applications to particulate media, vol. 1. Springer Science & Business Media,
2012.

HARTEN, A. High resolution schemes for hyperbolic conservation laws. Journal of
computational physics 49, 3 (1983), 357-393.

178



[66]

[67]

[68]

[69]

[70]

[71]

[72]

[74]

HEJNOWICZ, Z., HEINEMANN, B., AND SIEVERS, A. Tip growth: patterns of

growth rate and stress in the chara rhizoid. Zeitschrift fiir Pflanzenphysiologie 81,
5 (1977), 409-424.

HiLL, R. The mathematical theory of plasticity. Oxford University Press, Oxford,
1950.

HimscHOOT, ELLIE AND BEECKMAN, ToM AND FRIML, JIRf AND VANNESTE,

STEFFEN. Calcium is an organizer of cell polarity in plants. Biochimica et Bio-
physica Acta (BBA)-Molecular Cell Research 1853, 9 (2015), 2168-2172.

Huang, L., AND CHWANG, A. Hydromechanics of low-Reynolds-number flow.
Part 6. Rotation of oblate bodies. Journal of Engineering Mathematics 20, 4 (1986),
307-322.

IwaAaNAMI, Y. Protoplasmic movement in pollen grains and tubes. Phytomorphology
6 (1956), 288-295.

JIANG, Y., WANG, J., XiE, Y., CHEN, N., AND HUANG, S. ADF10 shapes
the overall organization of apical actin filaments by promoting their turnover and
ordering in pollen tubes. J Cell Sci (2017), jes—207738.

JIRO (MATHWORKS STAFF).  grabit function (File Exchange).  https:

//uk.mathworks.com/matlabcentral/fileexchange/7173-grabit.  Accessed:
10/12/2018.

JOHNSON, R. E., AND Wu, T. Y. Hydromechanics of low-Reynolds-number flow.
Part 5. Motion of a slender torus. Journal of Fluid Mechanics 95, 2 (1979), 263-277.

KAtwArczYK, T., TABAKA, M., AND HorysT, R. Biologistics—diffusion coef-
ficients for complete proteome of Escherichia coli. Bioinformatics 28, 22 (2012),
2971-2978.

179


https://uk.mathworks.com/matlabcentral/fileexchange/7173-grabit
https://uk.mathworks.com/matlabcentral/fileexchange/7173-grabit

[75]

[77]

[81]

[33]

[84]

KELKAR, V. S., AND SEWELL, R. T. Fundamentals of the analysis and design of
shell structures. Prentice Hall, 1987.

KouNo, T., AND SHIMMEN, T. Accelerated sliding of pollen tube organelles

along Characeae actin bundles regulated by Ca2+. The Journal of cell biology 106,
5 (1988), 1539-1543.

KROEGER, J., AND GEITMANN, A. The pollen tube paradigm revisited. Current
opinion in plant biology 15, 6 (2012), 618-624.

KROEGER, J. H., DAHER, F. B., GRANT, M., AND GEITMANN, A. Microfila-

ment orientation constrains vesicle flow and spatial distribution in growing pollen
tubes. Biophysical Journal 97, 7 (2009), 1822-1831.

LawmB, H. Hydrodynamics. Cambridge university press, 1993.

Lauca, E., AND POwWERS, T. R. The hydrodynamics of swimming microorgan-
isms. Reports on Progress in Physics 72, 9 (2009), 096601.

LEE, Y. J., SZUMLANSKI, A., NIELSEN, E., AND YANG, Z. Rho-GTPase-
dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis

during tip growth. The Journal of cell biology 181, 7 (2008), 1155-1168.

LEONARD, B. P. A stable and accurate convective modelling procedure based
on quadratic upstream interpolation. Computer methods in applied mechanics and
engineering 19, 1 (1979), 59-98.

LESHANSKY, A., AND KENNETH, O. Surface tank treading: Propulsion of Pur-
cell’s toroidal swimmer. Physics of Fluids 20, 6 (2008), 063104.

LINDLEY, J. The vegetable kingdom; or, The structure, classification, and uses
of plants: illustrated upon the natural system, vol. 1. Bradbury & Evans, London,
1853.

180



[85] LOCKHART, J. A. An analysis of irreversible plant cell elongation. Journal of
theoretical biology 8, 2 (1965), 264-275.

[86) Lovy-WHEELER, A., WILSEN, K. L., BaskiN, T. I., AND HEPLER, P. K.

Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent
feature of the pollen tube. Planta 221, 1 (2005), 95-104.

[87] MALHO, R. The pollen tube: a cellular and molecular perspective. Springer-Verlag,
Berlin, 2006.

[88] MARUYAMA, K., KAIBARA, M., AND FUKADA, E. Rheology of F-actin I. Network
of F-actin in solution. Biochimica et Biophysica Acta (BBA )-Protein Structure 371,
1 (1974), 20-29.

[89] McKENnNA, S. T., KunNkeL, J. G., BoscH, M., Rounps, C. M., VIDALI,
L., WinsHip, L. J., AND HEPLER, P. K. Exocytosis precedes and predicts the
increase in growth in oscillating pollen tubes. The Plant Cell 21, 10 (2009), 3026
3040.

[90] M1cHARD, ERWAN AND Dias, PEDRO AND FELIO, JOSE A. Tobacco pollen tubes
as cellular models for ion dynamics: improved spatial and temporal resolution of

extracellular flux and free cytosolic concentration of calcium and protons using
pHluorin and YC3. 1 CaMeleon. Sexual Plant Reproduction 21, 3 (2008), 169-181.

[91] MOGILNER, A., AND EDELSTEIN-KESHET, L. Regulation of actin dynamics in
rapidly moving cells: a quantitative analysis. Biophysical journal 83, 3 (2002),
1237-1258.

[92] MoORRIS, R. J., AND BLyTH, M. How water flow, geometry and material proper-
ties drive plant movements. Journal of Ezperimental Botany (2019).

[93] NEBENFUHR, A., AND DixiT, R. Kinesins and myosins: molecular motors that

coordinate cellular functions in plants. Annual review of plant biology 69 (2018),
329-361.

181



[94]

[95]

[96]

[97]

[98]

[100]

101]

[102]

[103]

ORTEGA, J. K. Augmented growth equation for cell wall expansion. Plant physi-
ology 79, 1 (1985), 318-320.

PEacEMAN, D. W., AND RACHFORD, JR, H. H. The numerical solution of

parabolic and elliptic differential equations. Journal of the Society for Industrial
and Applied Mathematics 3, 1 (1955), 28-41.

PHAN-THIEN, N., TRAN-CONG, T., AND RAMIA, M. A boundary-element anal-
ysis of flagellar propulsion. Journal of Fluid Mechanics 184 (1987), 533-549.

Pozrikipis, C. Boundary integral and singularity methods for linearized viscous
flow. Cambridge University Press, 1992.

PUrceLL, E. M. Life at low Reynolds number. American Journal of Physics 45,
1 (1977), 3-11.

Ramia, M., TuLLocK, D., AND PHAN-THIEN, N. The role of hydrodynamic
interaction in the locomotion of microorganisms. Biophysical journal 65, 2 (1993),
755-TT78.

Ray, P. M., GREEN, P. B., AND CLELAND, R. Role of turgor in plant cell
growth. Nature 239 (1972), 163-164.

RavLE, D. L., HAuGHTON, P. M., AND CLELAND, R. An in vitro system

that simulates plant cell extension growth. Proceedings of the National Academy of
Sciences 67, 4 (1970), 1814-1817.

RiDGE, 1., AND OSBORNE, D. J. Role of peroxidase when hydroxyproline-rich

protein in plant cell walls is increased by ethylene. Nature New Biology 229, 7
(1971), 205.

Rouas, E. R., HoTrTON, S., AND DUMAIS, J. Chemically mediated mechanical
expansion of the pollen tube cell wall. Biophysical journal 101, 8 (2011), 1844-1853.

182



[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

RuBinow, S., AND KELLER, J. B. The transverse force on a spinning sphere
moving in a viscous fluid. Journal of Fluid Mechanics 11, 3 (1961), 447-459.

SCHOPFER, P. Biomechanics of plant growth. American journal of botany 93, 10
(2006), 1415-1425.

SHuM, H., GAFFNEY, E., AND SMITH, D. Modelling bacterial behaviour close to
a no-slip plane boundary: the influence of bacterial geometry. Proceedings of the

Royal Society of London A 466 (2010), 1725-1748.

SMITH, D. J. A boundary element regularized Stokeslet method applied to cilia-
and flagella-driven flow. Proceedings of the Royal Society of London A 465, 2112
(2009), 3605-3626.

SMITH, D. J. A nearest-neighbour discretisation of the regularized stokeslet bound-
ary integral equation. Journal of Computational Physics 358 (2018), 88-102.

STEER, M. W., AND STEER, J. M. Pollen tube tip growth. New Phytologist 111,
3 (1989), 323-358.

STOKES, G. G. On the effect of the internal friction of fluids on the motion of
pendulums, vol. 9. Pitt Press Cambridge, 1851.

SWAIN, T. Plants in the development of modern medicine: [Proceedings]. Harvard
Univ. Press, Cambridge, Massachusetts, 1972.

SWEBY, P. K. High resolution schemes using flux limiters for hyperbolic conser-
vation laws. SIAM journal on numerical analysis 21, 5 (1984), 995-1011.

TAYLOR, G. I. Analysis of the swimming of long and narrow animals. Proc. R.
Soc. Lond. A 214, 1117 (1952), 158-183.

183



[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

THAOKAR, R., ScHIESSEL, H., AND KuLric, I. Hydrodynamics of a rotating
torus. The Furopean Physical Journal B 60, 3 (2007), 325-336.

Tominaca, M., Kojima, H., Yokora, E., Ori, H., NAKAMORI, R.,
KATAyAmA, E., ANson, M., SHIMMEN, T., AND O1twa, K. Higher plant myosin
XI moves processively on actin with 35 nm steps at high velocity. The EMBO
journal 22, 6 (2003), 1263-1272.

UGURAL, A., AND FENSTER, S. Advanced strength of materials. Elsevier, New
York, 1975.

UGURAL, A. C., AND UGURAL, A. C. Stresses in plates and shells, vol. 366.
McGraw-Hill Boston, 1999.

VipaLl, L., AND HEPLER, P. K. Characterization and localization of profilin in

pollen grains and tubes of lilium longiflorum. Cell motility and the cytoskeleton 36,
4 (1997), 323-338.

Viparl, L., McKENNA, S. T., AND HEPLER, P. K. Actin polymerization is
essential for pollen tube growth. Molecular Biology of the Cell 12, 8 (2001), 2534~
2545.

WanNg, X., TENG, Y., WANG, Q., L1, X., SHENG, X., ZHENG, M., SamAJ, J.,
BALUSKA, F., AND LIN, J. Imaging of dynamic secretory vesicles in living pollen

tubes of Picea meyeri using evanescent wave microscopy. Plant Physiology 141, 4
(2006), 1591-1603.

Wonga, 1., GARDEL, M., REICHMAN, D., WEEKS, E. R., VALENTINE, M.,
BauscH, A., AND WEITZ, D. A. Anomalous diffusion probes microstructure
dynamics of entangled F-actin networks. Physical Review Letters 92, 17 (2004),
178101.

YEE, H., WARMING, R., AND HARTEN, A. Implicit total variation diminishing

(TVD) schemes for steady-state calculations. Journal of Computational Physics
57,3 (1985), 327-360.

184



[123] YOouNG, D., JANE, S., FAN, C., MURUGESAN, K., AND Tsar, C. The method of
fundamental solutions for 2D and 3D Stokes problems. Journal of Computational
Physics 211, 1 (2006), 1-8.

[124] ZERZOUR, R., KROEGER, J., AND GEITMANN, A. Polar growth in pollen tubes

is associated with spatially confined dynamic changes in cell mechanical properties.
Developmental biology 334, 2 (2009), 437-446.

[125] ZoniA, L., AND MuNNIK, T. Life under pressure: hydrostatic pressure in cell
growth and function. Trends in plant science 12, 3 (2007), 90-97.

[126] ZoniA, L., AND MUNNIK, T. Vesicle trafficking dynamics and visualization of

zones of exocytosis and endocytosis in tobacco pollen tubes. Journal of experimental
botany 59, 4 (2008), 861-873.

185



	UoB_research_archive_copyright_notice_A4size.pdf
	Tyrrell2019PhD_original_submission.pdf
	Introduction
	On the importance of plants
	Plant cell structure
	Plant cell growth
	Diffuse growth versus tip growth

	On the role of the pollen tube
	Pollen tube growth

	Motivation for pollen tube research
	Literature review
	Inclusion of cytosolic flow in prior models

	Summary and outline of Chapters 2 - 5

	Developing numerical methods for solving the advection–diffusion–reaction equation
	Derivation of the advection–diffusion–reaction equation
	Developing a finite volume method
	Mesh generation
	Construction of control volumes
	Approximating the integrated advection–diffusion–reaction PDE
	Implementing flux limiters
	Conversion to an axisymmetric 3D geometry

	The alternating-direction-implicit method for use on structured grids
	Error analysis
	Chapter summary

	The method of regularized ringlets
	Introduction
	Singular and regularized Stokeslet solutions
	Derivation of the regularized ringlet
	Analytical evaluation of the regularized ringlet
	On the double layer potential

	Simple examples and test cases
	Resistance problem for the translating unit sphere
	Resistance problem for the rotating unit sphere
	Purcell's toroidal swimmer

	Further comparisons to other methods
	Regularized ringlets vs regularized Stokeslets
	Ringlet vs Stokeslet speed
	Comparison to singular solutions

	Chapter summary

	Tip growth in pollen tubes
	Introduction
	Vesicle transport model
	Governing equations
	Boundary conditions
	Normal displacement growth assumption
	Formulation with respect to a moving coordinate system
	Parameter estimates and nondimensionalization
	Selecting  for approximating actin bundle thickness

	Cytosolic velocity profiles
	Generating a velocity profile based on toroidal drag forces
	Role of the central actin bundle
	The influence of growth speed

	Cytoplasmic vesicle distributions
	Steady state vesicle distributions
	FRAP simulations
	Exocytosis rate

	Chapter summary

	Concluding remarks
	Developing new methodology
	Biological findings
	Future work
	Modelling other pollen tube species
	The response of actin filaments to cytosolic flow
	Coupling growth speed and vesicle deposition for non–steady growth
	Bending of the tube and asymmetric models of growth


	Appendices
	Chapter 2 Appendices
	Implementation of the finite volume method for the advection - diffusion equation with additional boundary conditions and reaction terms
	Base case: fluid bulk
	Inclusion of sources and sinks
	Inclusion of exocytosis / endocytosis


	Chapter 3 Appendices
	Regularized Stokeslets in cylindrical coordinates for ringlet evaluation
	Evaluating the behaviour of R as rn,r00
	Evaluating the double layer potential

	Chapter 4 Appendices
	Materials and methods for experimental FRAP imaging
	Mapping experimental tube growth

	List of References


