
Enhancing dipolar interactions between molecules using state-dependent optical
tweezer traps

L. Caldwell and M. R. Tarbutt
Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ UK

We show how state-dependent optical potentials can be used to trap a pair of molecules in dif-
ferent internal states at a separation much smaller than the wavelength of the trapping light. This
close spacing greatly enhances the dipole-dipole interaction and we show how it can be used to
implement two-qubit gates between molecules that are 100 times faster than existing protocols and
than rotational coherence times already demonstrated. We analyze complications due to hyperfine
structure, tensor light shifts, photon scattering and collisional loss, and conclude that none is a
barrier to implementing the scheme.

Electric dipole-dipole interactions can be used to en-
tangle polar molecules. Ensembles of such molecules
are a promising platform for quantum simulation [1–3],
quantum computation [4] or the creation of many-body
states for precision metrology [5]. Recent progress in
the production and control of ultracold molecules [6–15]
has brought these goals within reach of near-term exper-
iments.

Molecules confined in arrays of optical tweezer traps
are particularly attractive and have recently been real-
ized [16–19]. The platform is scalable to several hundred
sites, enables re-arrangement of the traps [20, 21] to re-
duce entropy or control which particles interact, and pro-
vides natural single-site addressability. Various authors
have proposed protocols for two-qubit gates using rota-
tional states of molecules [4, 22–27]. The number of pos-
sible gate operations is set by the ratio Eddτc/h where
Edd is the dipole-dipole interaction energy and τc is the
coherence time of a trapped molecule in a superposition
of rotational states. For conventional tweezer traps Edd is
limited by the minimum trap separation. This is roughly
the wavelength of the trapping light, typically ∼ 1 µm,
giving Edd/h ∼ 1 kHz. Recent work has extended τc
to several milliseconds [28, 29] but, at these interaction
strengths, only a few high-fidelity gates are possible.
While prospects are good for further improvements—
coherence times near 1 s have been demonstrated in
hyperfine states of molecules [30] and electronic states
of atoms in tweezers [31]—considerable advances are re-
quired to realize the full potential of this platform for
quantum science.

Here we show how to increase the dipole-dipole interac-
tion between two molecules by trapping them at reduced
separations using the state-dependence of the molecule-
light interaction. Our scheme has similarities to state-
dependent optical lattices which have been used to con-
trol atoms on sub-wavelength scales [34–42], but bene-
fits from the advantages of the tweezer platform noted
above. For atoms, electric dipole-dipole interactions in-
volve electronically excited states [34] whose short life-
times severely limit τc. By using long-lived rotational
states of molecules, we avoid this limitation entirely. Our
method, shown in Fig. 1(a), uses two optical tweezers of
different wavelengths, focused at the same position. The
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FIG. 1. (a) State-dependent trap formed from a two-color
optical tweezer. Two molecules in different internal states are
trapped in different locations due to opposite circular hand-
edness (rotating arrows) on opposite sides of the focus. (b)

Contour plot of (I/Imax)~C · ẑ in y = 0 focal plane for a single
tweezer. Calculated using the vector Debye integral [32] for
a lens with NA = 0.55. The input beam is polarized along
x and has 1/e2 diameter equal to that of the lens. An ap-
proximate analytical approach to this calculation, based on
Ref. [33], is given in the SM.

tight focussing of the light produces elliptical polariza-
tion components with opposite handedness on each side
of the focus [43, 44]. A molecule with non-zero spin has
an interaction with the light field that depends both on
this handedness and on the orientation of the spin. Con-
sequently, two molecules in different internal states are
trapped at different positions in the trap and their sepa-
ration can be controlled by varying the relative intensities
of the two tweezers. This state-dependent potential al-
lows Edd to be enhanced by two orders of magnitude. We
introduce these concepts and show how to apply them in
practice to implement fast two-qubit gates.
Method.—The scheme can be illustrated using a simple

2Σ molecule with no hyperfine structure. We focus on the
four states with total angular momentum J = 1

2 ,

|0±〉 = |N = 0, J = 1
2 ,mJ = ± 1

2 〉 ,
|1±〉 = |N = 1, J = 1

2 ,mJ = ± 1
2 〉 ,

(1)

where the pair of states with rotational angular momen-



2

FIG. 2. (a) Schematic of relevant electronic structure. The excited state A2Π is split by spin-orbit coupling into two states with
|Ω| = 1

2
, 3
2
. Dashed lines: energies of scalar (red) and vector (orange) tweezers. (b) Scalar (blue) and vector (green dashed)

polarizabilities calculated using Eqs. (2). (c) Calculated potentials of scalar (red dotted), vector (orange) and combined (blue)
tweezers versus displacement along x for J = 1

2
states of N = 0 and 1. Solid (dashed) line shows the potential for mJ = − 1

2
( 1
2
).

Calculations are for λvec = 0.8λsc, ∆sc = 50δfs and Isc/Ivec = 100. (d) Blue line, left axis: δx versus Isc/Ivec. Green dashed
line, right axis: enhancement of Edd for point particles trapped at the two minima.

tum N = 0 are separated from the pair with N = 1 by
the rotational energy Erot.

Consider the interaction of this molecule with a light
field of intensity I and polarization ~ε. The interaction
has scalar, vector and tensor parts whose dependence on
the frequency of the light can be factored out into three
constants α(0), α(1) and α(2); the scalar, vector and ten-
sor polarizabilities. The scalar interaction shifts all four
of our states by W0 = − 1

2ε0c
α(0)I. The vector and ten-

sor parts cause state-dependent shifts. The vector shift
is non-zero when the field has ellipticity, described by
~C = Im(~ε×~ε ∗). |~C| gives the degree of ellipticity and its
direction gives the handedness. For incident light propa-
gating along y and linearly polarized along x, this hand-
edness is along z and is opposite either side of the focus
(see Fig. 1(b) and Supplemental Material (SM) [45]). In

this case the vector shift is W1 = 1
2ε0c

α(1)gJmJ(~C · ẑ)I,

where gJ = 1/[2J(J + 1)] and we have assumed W1 is
small compared to the spin-rotation interaction. W1 is
identical for |0−/1−〉 and opposite to that of |0+/1+〉.
The tensor shift is zero for our J = 1

2 states; we return
to it later.

The polarizabilities α(k) depend on the details of the
electronic structure [46]. Here, for simplicity, we assume
that they are dominated by interaction with the first ex-
cited electronic state. The relevant electronic structure
is shown in Fig. 2(a). The spin-orbit interaction splits
the excited state into two components separated by δfs,
typically ∼ 2π × 1 THz. Their mid-point is ωAX above
the ground state, typically ∼ 2π×500 THz, and we define
∆ as the detuning of the light field from this point. For
∆� ωAX , the polarizabilities can be written (see SM)

α(0) ' 2∆

3δfs
α(1) ' −α(2) ' d2AX∆

3~(∆− δfs
2 )(∆ + δfs

2 )
, (2)

where dAX is the dipole matrix element connecting the

X2Σ and A2Π states.

We use tweezer traps at two different wavelengths λsc
and λvec, shown schematically in Fig. 2(a), which we call
the scalar and vector traps. Their on-axis intensities are
Isc and Ivec. The scalar trap light is red-detuned with
∆ = ∆sc � δfs. In this regime, α(0) � α(1) and the
interaction is dominated by the scalar component. The
vector trap light is tuned between the fine structure com-
ponents. Figure 2(b) shows α(0) and α(1) in this region.
When ∆ = ∆vec = 0, α(0) = 0 while α(1) = −2d2AX/~δfs
which can be large.

Figure 2(c) shows the light shifts of the four J = 1
2

states of our model molecule as a function of position
along the x axis. The dotted red line shows the light
shift of all four states in the scalar trap for ∆sc = 50δfs.
The tiny state dependence caused by the residual vector
light shift at λsc is not visible on this scale. The solid
(dashed) orange line shows the light shift of the |0−/1−〉
(|0+/1+〉) states in the vector trap where we have as-
sumed λvec = 0.8λsc and Isc/Ivec = 100. Molecules in
the |0−/1−〉 states and the |0+/1+〉 states are trapped on
opposite sides of the focus. When both scalar and vector
traps are present the potentials add, shown by the blue
lines. Varying their relative intensity controls the separa-
tion of the minima, δx. The blue line in Fig. 2(d) shows
how δx depends on the intensity ratio while the green line
shows the enhancement of Edd for two point particles po-
sitioned at the trap minima relative to those in separated
scalar traps. The enhancement is ultimately limited by
undesirable collisions that occur when the spacing is too
small. As we will see, for realistic parameters, an en-
hancement of 2 orders of magnitude is achievable.

Eigenstates.—The dipole-dipole interaction Hamilto-
nian is

Hdd =
~dA · ~dB − 3(~dA · x̂)⊗ (~dB · x̂)

4πε0|xB − xA|3
, (3)
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where ~dA and ~dB are the dipole moments of the two
molecules, xA and xB their positions, and x̂ is a unit
vector along x. As we show in the SM, after restrict-
ing ourselves to states with one molecule trapped on ei-
ther side of the focus, the eigenstates of the two-molecule
Hamiltonian, including Hdd, are

|00〉 = |0−〉 |0+〉 , |11〉 = |1−〉 |1+〉 ,

|Ψ±〉 =
1√
2

(|0−〉 |1+〉 ± |1−〉 |0+〉) ,
(4)

with energies 0, 2Erot and Erot ± Edd respectively. Here
Edd = Λ10/4πε0|xB − xA|3 and the quantity Λij =

〈j−| 〈i+| ~dA · ~dB − 3(~dA · x̂) ⊗ (~dB · x̂) |i−〉 |j+〉 can be
positive or negative.

Since |Edd| can approach or even exceed the motional
energy spacing in the trap, ~ωt, it is important to con-
sider the motional degree of freedom of the two molecules.
A 1D treatment is sufficient to elucidate the main points.
When the upper and lower states in each pair have the
same vector shift, so that the potential is the same for
both, the eigenstates are (see SM) |ψ〉 |ncm〉 |φ(xrel)〉.
Here |ψ〉 is one of the internal eigenstates of Eqs. (4)
and |ncm〉 is a harmonic oscillator eigenstate for the cen-
ter of mass coordinate xB + xA. The relative motional
state |φ(xrel)〉 is an eigenstate of the state-dependent di-
mensionless Hamiltonian

Hrel =
p2rel
2

+
1

2
(xrel − δ̃x)2 + q

r3

|xrel|3
. (5)

Here xrel =
√

Mωt

2~ (xB − xA) is the reduced relative mo-

tional coordinate, prel the conjugate momentum, δ̃x =√
Mωt

2~ δx, r =
√

Mωt

2~ (Λ10/4πε0~ωt)
1/3 is the separation,

in reduced units, at which Edd = ~ωt, and M is the
mass of the molecule. The factor q reflects the state-
dependence of the dipole-dipole interaction, and is equal
to {0,−1, 1, 0} for |ψ〉 = {|00〉 , |Ψ−〉 , |Ψ+〉 , |11〉} respec-
tively. The relative motional states for qr3 > 0 are
examined in the SM and show two important effects.
First, the finite extent of the wavefunction means that
〈1/x3rel〉 > 1/〈xrel〉3. Second, the molecules are pushed
apart by their interaction so their mean separation is
larger than δx. In the motional ground state, the first
effect dominates at larger δx increasing Edd, while the
second effect dominates at small δx, reducing Edd below
the value for fixed point dipoles.

Complications in real molecules.—The addition of nu-
clear spin introduces a hyperfine interaction which can
mix states of different J . For these mixed states, the
vector Stark shift depends on the relative size of the hy-
perfine and spin-rotation interactions, which differs from
one rotational state to the next. Consequently, the posi-
tion of the potential minimum for |0±〉 is shifted relative
to |1±〉. As shown in the SM, for a shift ξ in reduced
units, the resulting imperfect overlap of the spatial wave-

functions reduces the dipole-dipole energy by e−ξ
2

, the

square of the overlap integral. As we will see, this reduc-
tion is typically small.

A second complication is that states outside N = 0
can have a tensor Stark shift due to the light at λsc.
The most relevant effect of this is to couple states with
∆m ≤ 2 near the center of the trap, allowing tunnel-
ing between the left and right potentials. This coupling
is eliminated when the incident polarization of the scalar
and vector traps are orthogonal. At other angles the tun-
neling is proportional to the wavefunction overlap so be-
comes negligible when the molecules are well separated.

Realistic example.—To illustrate the power and practi-
cality of our method, we show how to implement a simple
two-qubit gate using CaF molecules. CaF has been con-
fined in optical tweezer traps [18] and has a structure sim-
ilar to the model molecule but with a fluorine nuclear spin
of 1

2 . We map the states of the model molecule to our spe-
cific case as follows: |0±〉 = |N = 0, F = 1,mF = ±1〉,
|1±〉 = |1, 1,±1〉. We also introduce |2±〉 = |2, 2,±2〉
[47]. The states |0±〉 and |2±〉 form our computational
basis, while |1±〉 are used to implement the gate. Many
other choices of states are possible and may have differ-
ent advantages. Figure 3(a) shows the potentials for the
three pairs of states and for the parameters given in the
caption. The closely spaced traps can be loaded adia-
batically and without collisional loss from two separated
tweezers using simple intensity ramps as shown in the
SM. We suppose the molecules have been cooled to the
motional ground state [46], resulting in the wavefunctions
shown for each potential. The trap frequency is within
2% of 160 kHz for all states, and the corresponding rms
wavepacket size is 23 nm.

Figure 3(b) shows the two-molecule states relevant for
the gate. The matrix elements of Hdd are zero be-
tween states of our computational basis |0±〉 and |2±〉.
The states |2−, 1+〉 and |1−, 2+〉 are mixed by Hdd giv-
ing the pair of entangled states |Ψ±

21〉 = (|2−, 1+〉 ±
|1−, 2+〉)/

√
2, split by 2Edd. A microwave pulse reso-

nant with the |2−, 2+〉 ↔ |Ψ+
21〉 transition and of suf-

ficient duration to resolve it from |2−, 2+〉 ↔ |Ψ−
21〉

entangles the two molecules. As we will see, Edd

and ~ωt are similar in size for our choice of param-
eters so a gate which resolves the dipole-dipole split-
ting will also resolve the motional sidebands so that mo-
tional heating can be avoided. Note that the transitions
|2−, 0+〉 ↔ |Ψ−

10〉 and |0−, 2+〉 ↔ |Ψ−
10〉 are detuned be-

cause Λ21/Λ10 ' 2.9. A 2π pulse implements the two-
qubit gate a |0−, 0+〉+b |0−, 2+〉+c |2−, 0+〉+d |2−, 2+〉 →
a |0−, 0+〉+ b |0−, 2+〉+ c |2−, 0+〉 − d |2−, 2+〉. This gate
is universal in combination with single-qubit operations
which can be carried out rapidly using two-photon mi-
crowave pulses [13, 29, 48, 49]. In an array of such qubits,
single-qubit addressability is obtained through a combi-
nation of microwave polarization and tweezer intensity.
The polarization determines which molecule in a pair
is addressed, and a small change in intensity of the se-
lected tweezer relative to all others ensures that only the
molecule in that tweezer is addressed.
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FIG. 3. Two-qubit gate in CaF. (a) Lines: potentials for
the states used, calculated for 10 mW 780 nm scalar tweezer
with incident polarization along z and 35.4 µW 604.966 nm
vector tweezer polarized along x. The lens has NA of 0.55.
Input beams have 1/e2 diameter equal to the lens diameter.
Wavepackets show ground motional states of each potential.
Energies are relative to the |N = 0, F = 0〉 ground state in
zero field. (b) Level diagram of two-molecule states relevant
to the gate, not to scale. Left (right) half shows energies of
states without (with) dipole-dipole interaction. Black arrow:
transition driven for two-qubit gate. (c) Dipole-dipole energy,
photon scattering rate and collisional loss rate versus separa-
tion of |2±〉 states. Dotted blue line: energy for fixed point
dipoles; solid line: full 1D calculation.

The blue lines in Fig. 3(c) show the energy shift of
|Ψ+

21〉 as a function of the separation of the potential min-
ima for the |2±〉 states. The dashed and solid lines show
results for fixed point dipoles and the full 1D calcula-
tion respectively (see SM for details). For a separation
of 106 nm, as shown in Fig. 3(a), the combined effect
of the dipole-dipole interaction pushing the molecules
apart and the imperfect overlap of the motional wave-
functions, reduces Edd by ∼ 45%. Also shown are the
expected dominant loss mechanisms in the trap. We
calculate the collisional loss rate Rcol using the coeffi-
cient measured in Ref. [49] for CaF in a 780 nm tweezer
trap. Rcol decreases with increasing separation and is
largest when both molecules are in |2±〉 where their over-
lap is largest. The photon scattering rate Rph is domi-
nated by scattering from the vector trapping light. We
have assumed a fixed Isc so Rph increases with separa-
tion since larger separations require larger Ivec. Over
the range shown, the ratio of Edd/h to the sum of the
loss rates is large. Choosing the separation of the |2±〉

states to be 106 nm, Rcol ' 280 s−1 and Rph ' 200 s−1

while Edd/h = 130 kHz, almost 500 times larger. This is
also 100 times larger than the maximum interaction en-
ergy achievable with separate tweezers. For a fixed vector
Stark shift, Rph scales inversely with the fine-structure
interval, so will be smaller for heavier molecules. For ex-
ample, it is reduced by factors of∼ 4, 6 and 19 in SrF, YO
and YbF respectively. Rcol may be very different in other
systems or for the same system at different wavelengths
[50, 51]; this is an important topic for investigation.

To scale our scheme to many molecules, traps can be
rearranged to implement gates between different pairs. A
useful metric is the time required to move a pair from two
separated potentials into a single, combined trap ready
for the fast gate. In the SM we describe a simple adia-
batic protocol which takes 50 µs. More sophisticated non-
adiabatic transport protocols [52, 53] can be completed
more rapidly and without heating, as demonstrated for
ions [54].
Summary.—We have proposed a new scheme which

uses state-dependent optical tweezer traps to confine
pairs of polar molecules at distances much smaller than
the wavelength of the trapping light, and shown how to
engineer a greatly enhanced dipole-dipole interaction be-
tween them. We have analyzed an example in detail,
including the effects of hyperfine structure and tensor
light shifts. We find that two-qubit gates can be im-
plemented at least 100 times faster than existing proto-
cols with characteristic figure of merit Eddτc/h ∼ 103

for rotational coherence times already demonstrated for
molecules [28, 29]. Thus, our work enables useful quan-
tum information processing without further improve-
ments to coherence times. Because the gate is so much
faster, the effects of fluctuating magnetic fields or tweezer
intensity matter less. We have designed a specific two-
qubit gate, but our scheme provides a similar speedup for
any gate that uses the dipole-dipole interaction e.g. [25].
Shaped microwave pulses that produce remarkable ro-
bustness to various experimental imperfections [27] can
also be utilized in our scheme. Our method will work for
all molecules laser cooled so far, and the heavier ones have
a reduced scattering rate which may be an important ad-
vantage. The method should also work for heteronuclear
bialkali molecules prepared in the 3Σ state [55].

As well as quantum information processing, the en-
hanced dipole-dipole interactions will be useful in quan-
tum simulation. For example, a linear chain of tweezers
with a pair of molecules in each can implement an SSH
model [56] in a natural way. Furthermore, the ability to
control the wavefunction overlap between two molecules
with such precision is unique and offers a new tool for
studying collisions and quantum chemistry with unprece-
dented precision and control.

We thank Jeremy Hutson, Jordi Mur-Petit, Paolo
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Hänsch, and I. Bloch, “Coherent transport of neutral
atoms in spin-dependent optical lattice potentials,” Phys.
Rev. Lett. 91, 010407 (2003).

[37] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W.
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