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Abstract First-order reversal curve (FORC) distributions are a powerful diagnostic tool for
characterizing and quantifying magnetization processes in fine magnetic particle systems. Estimation of
FORC distributions requires the computation of the second-order mixed derivative of noisy magnetic
hysteresis data. This operation amplifies measurement noise, and for weakly magnetic systems, it can
compromise estimation of a FORC distribution. Previous processing schemes, which are based typically on
local polynomial regression, have been developed to smooth FORC data to suppress detrimental noise.
Importantly, the smoothed FORC distribution needs to be consistent with the measurement data from
which it was estimated. This can be a challenging task even for expert users, who must adjust subjectively
parameters that define the form and extent of smoothing until a “satisfactory” FORC distribution is
obtained. For nonexpert users, estimation of FORC distributions using inappropriate smoothing
parameters can produce distorted results corrupted by processing artifacts, which can lead to spurious
inferences concerning the magnetic system under investigation. We have developed a statistical machine
learning framework based on a probabilistic model comparison to guide the estimation of FORC
distributions. An intuitive approach is presented that reveals regions of a FORC distribution that may have
been smoothed inappropriately. An associated metric can also be used to compare data preparation and
local regression schemes to assess their suitability for processing a given FORC data set. Ultimately,

our approach selects FORC smoothing parameters in a probabilistic fashion, which automates the
derivative estimation process regardless of user expertise.

1. Introduction

First-order reversal curves (FORCs) are a form of magnetic hysteresis measurement that provide diagnostic
information for characterizing fine magnetic particle systems. FORCs can, for example, reveal the domain
state of magnetic particles (Carvallo et al., 2003; Newell, 2005; Pike et al., 2001; Roberts et al., 2000), dis-
tinguish between different forms of magnetic anisotropy (Harrison & Lascu, 2014; Harrison et al., 2019;
Newell, 2005; Valdez-Grijalva & Muxworthy, 2019), discriminate mineral subpopulations in mixtures
(Harrison et al., 2018; Heslop et al., 2014; Lascu et al., 2015; Muxworthy et al., 2005; Roberts
et al., 2000, 2014), quantify magnetic interactions (Carvallo et al., 2006; Muxworthy et al., 2004), and reveal
thermal relaxation in single-domain (SD) particles (Lanci & Kent, 2018; Pike et al., 2001). Thus, FORCs
can play a crucial role in paleomagnetic, rock magnetic, and environmental magnetic studies where natu-
ral materials contain a variety of magnetic minerals with distributions of sizes, interparticle spacings, and
so forth. Beyond Earth science, FORCs have been used extensively in solid-state physics, materials science,
and industry, where a broad range of fine magnetic particle systems, such as magnetic recording media
(Miyazawa et al., 2019; Papusoi et al., 2011; Valcu et al., 2011), requires quantitative characterization.

Since their introduction to the geophysics community by Pike et al. (1999) and Roberts et al. (2000), effort
has been made to improve experimental measurement protocols, to refine data processing, and to optimize
graphical representation of FORC distributions (see Roberts et al., 2014 for a recent review). Parallel to these
practical developments, experimental, theoretical, and modeling studies have provided insights into the
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expression of different magnetic particle systems in FORCs. Thus, over 20 years of research has provided a
framework for the measurement, processing, representation, and quantitative interpretation of FORC data.

FORGC:s are partial hysteresis curves constructed by taking a sample from a positive saturating field (B,) to a
predefined reversal field, B,, and returning to Bg,. An individual FORC is the magnetization (M) measured
as a function of B, and B as the applied field returns to B,,. FORC diagrams are constructed from a collection
of FORCs and are transformed into a distribution, which is defined by the mixed second derivative of the
magnetization with respect to B, and B (Mayergoyz, 1986; Pike et al., 1999):

1 0°M
20B,0B’

p(B.B,) = — &

Traditionally, FORC distributions are displayed in a rotated coordinate system of coercivity, B, = (B—B,)/2,
versus interaction field, B, = (B + B,)/2 (Pike et al., 1999). While Equation 1 is readily stated, estimation
of p is not trivial. Standard finite difference approximations to Equation 1 amplify measurement noise and
obscure the underlying FORC distribution. The challenge of estimating p is the focus of this paper.

Pike et al. (1999) estimated p using a local regression framework (Cleveland & Devlin, 1988; Loader, 1999).
Specifically, the magnetization around a point of interest is approximated by a second-order polynomial sur-
face fitted in a least-squares sense to the magnetization data deemed “local” to that point. The second-order
polynomial surface takes the form

M(B,B,) = a, + a,B+ a;B, + a,B’ + a;B’ + a,B,B, 2
which in turn provides an estimate of p, denoted as j:

FB.B) = - @)

The choice of a second-order polynomial can be justified from statistical and physical standpoints. First,
a second-order surface corresponds to the lowest order polynomial where j will not be zero everywhere.
Therefore, a second-order surface can be viewed as an appropriately parsimonious polynomial for local
regression of FORC data because it employs a minimum number of parameters. Second, a more complex
polynomial, such as a third-order surface, would have continuous second derivatives, which is incompati-
ble with some magnetic systems (e.g., Stoner & Wohlfarth (1948) particles). Once the estimation process is
repeated for each point of interest, the resulting FORC distribution is a combination of all local regression
models. Smoothing can be increased by enlarging the local region to include more data points in each regres-
sion model. However, selecting the appropriate smoothing level is a subjective decision. If local regions are
too small, noise cancelation will be ineffective, and the underlying structure of the FORC distribution may
remain hidden. Alternatively, if local regions are too large, the magnetization will be overly smoothed, and
the estimated FORC distribution will be distorted (Roberts et al., 2000, 2014). The effects of variable smooth-
ing are illustrated by Roberts et al. (2000, 2014). Oversmoothing will not only provide a poor representation
of the true FORC distribution, but it may also obscure the presence of subtle diagnostic features (Harrison
& Feinberg, 2008).

Pike et al. (1999) employed local regression with a square array of data centered on each point of interest.
The local squares have a constant size across the FORC diagram, which is defined by a smoothing fac-
tor (SF), whereby each side of the square has a length of 2SF + 1 points with respect to the {B,, B} grid of
measurements. Heslop and Muxworthy (2005) developed a statistical framework to accompany the Pike
et al. (1999) regression scheme, whereby a sample-specific SF is selected based on estimating the maximum
level of noise cancelation that can be achieved before the underlying FORC distribution becomes distorted.
Heslop and Muxworthy (2005) further showed how the local regression approach of Pike et al. (1999) could
be accelerated using two-dimensional convolution (Savitzky & Golay, 1964). While this approach accelerated
estimation of a FORC distribution by a factor of ~500, it required the measured magnetizations to be inter-
polated onto a regular field grid, which may produce correlated errors that unduly affect the least-squares
estimate of p.

An alternative approach was proposed by Acton et al. (2007), which suppressed measurement noise by
first filtering the FORC magnetization data before estimating p via a central finite difference scheme. The
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initial filtering step involved a Gaussian function, the width of which could be enlarged to increase the
level of data smoothing. Harrison and Feinberg (2008) adopted an alternative locally weighted regression
(LOESS—Tlocally estimated scatterplot smoothing) scheme, where regression is based on data that lie within
a circle around a point of interest. The relative importance of each data point included in a local regression
estimate is then represented using a tricube function (Cleveland, 1979), whereby data closer to the point of
interest have a greater influence on the estimation of the second-order polynomial and, therefore, j. The
level of smoothing is controlled by changing the size of the circular local regression region to include more
(greater smoothing) or fewer (less smoothing) points. Through analysis of fitting residuals, Harrison and
Feinberg (2008) provided a scheme whereby different smoothing levels could be compared to inform the
selection of the size of the circular regression region to be applied across the FORC diagram. Recently, Berndt
and Chang (2019) showed that LOESS-based FORC processing could be accelerated using a fast Fourier
transform algorithm.

The estimation techniques of Pike et al. (1999) and Harrison and Feinberg (2008) both employ local
regression regions of fixed size throughout a given FORC diagram. Experimental and theoretical analysis,
however, has demonstrated that characteristic features in FORC distributions can be anisotropic. For exam-
ple, noninteracting stable SD particles produce a narrow horizontal “central ridge” feature (Egli et al., 2010;
Newell, 2005; Pike et al., 1999), while multidomain particles produce vertical contours close to B, = 0 (Pike
et al., 2001). To account for these issues, Egli (2013) developed a flexible locally weighted scheme, named
VARIFORC, where both the size and shape of rectangular regression regions aligned with the {B,, B, } coor-
dinate system are adjusted as a function of their location in a FORC diagram. Therefore, smoothing can be
extended horizontally or vertically, depending on the features in a given FORC distribution. The size and
shape of regression rectangles in the VARIFORC scheme are controlled by user-defined parameters, which
are typically adjusted interactively based on the form of the FORC distribution under consideration.

A statistical framework to estimate significance levels and confidence intervals for locations in FORC dis-
tributions was developed by Heslop and Roberts (2012). These statistics are calculated readily for weighted
local regression problems; however, estimated significance levels and confidence intervals depend on the
selected smoothing parameters. As pointed out by Heslop and Roberts (2012), it is feasible to select a
smoothing scheme that will ensure that any given location in a FORC distribution is statistically signifi-
cant. Clearly, such an approach would be inappropriate, and Heslop and Roberts (2012) recommended that
smoothing parameters are selected independently to ensure objective estimation of significance levels and
confidence intervals.

Recently, Cimpoesu et al. (2019) developed a more advanced statistical framework for comparing estimated
FORC distributions via goodness of fit metrics and model comparison techniques. Building on the local
regression framework described by Loader (1999), Cimpoesu et al. (2019) considered different methods for
estimating p and illustrated how information criteria, which measure the level of information loss during
regression (Burnham & Anderson, 2002), can be used to compare different smoothing parameters to guide
calculation of a FORC distribution. The doFORC software of Cimpoesu et al. (2019) provides a flexible local
regression tool where estimated FORC distributions can be compared statistically. The doFORC analysis
framework does not, however, accommodate schemes such as VARIFORC that allow variable smoothing
as a function of position in a FORC distribution. For natural materials, which often contain a number of
magnetic particle subpopulations with drastically different hysteresis properties, such variable smoothing
is crucial to estimate different regions of a FORC distribution in a manner appropriate to data in that region
(Egli, 2013).

As FORC processing techniques have become more complex, there is an increasing challenge for end users to
make decisions concerning the method by which p is estimated and the choice of technique-specific settings,
such as smoothing parameters. Poorly chosen processing settings may result in spurious inferences being
drawn from inappropriately processed FORC distributions. Ultimately, FORC processing should reduce the
influence of measurement noise without overly distorting the underlying FORC distribution. To address the
problem of estimating FORC distributions that provide a balance between noise reduction and signal distor-
tion, we adopt a Bayesian machine learning framework that considers learning as a probabilistic inference
problem. Specifically, the structure and parameters of a local regression scheme to estimate p for a given
FORC diagram can be learned directly from the data using probabilistic inference. Thus, our aim is to design
a framework that guides the selection of VARIFORC smoothing parameters based on ensuring consistency
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with the measured magnetization data. Such an objective approach is particularly beneficial for nonexpert
users who may not be familiar with FORC processing or who simply want to automate the processing of
large numbers of FORC data sets.

2. Probabilistic Comparison of FORC Regression Models

When estimating p via local regression, it is important to consider the balance between noise removal and
signal distortion (Egli, 2013; Heslop & Muxworthy, 2005; Roberts et al., 2000). In the case of “overfitting”,
the polynomial regression model applied to a local set of points is too complex (i.e., it contains too many
terms) and will fit the data too closely. Thus, the noise will have an inappropriately strong influence on 3.
Overfitting is the reason why FORC distributions are noisy if they are estimated using SFs that are too low.
Alternately, “underfitting” occurs when the local regression model is too simple (i.e., it contains too few
terms) to fit the data appropriately. For example, this is the case when employing SFs that are too high and
FORC distributions become distorted because the local model cannot fit the data adequately. Thus, when
selecting appropriate smoothing parameters for a given FORC data set, it is crucial to develop a strategy that
considers potentially detrimental effects of both underfitting and overfitting.

The simplest implementation of VARIFORC is based on five smoothing parameters; s, , (minimum hor-
izontal smoothing), s, , (minimum vertical smoothing), s, ; (minimum horizontal smoothing away from
H, = 0),s,, (minimum vertical smoothing away from a central ridge if one is present), and 4 (linear increase
in smoothing with increasing field). If we consider the estimation of a collection of FORC distributions
using an ensemble of candidate VARIFORC smoothing parameters, how can we rank the performance of
the estimated distributions in terms of their consistency with the measured data?

2.1. Polynomial Model Selection to Estimate p

Consider a single location in a FORC distribution for which we wish to estimate p. For a given set of
VARIFORC smoothing parameters, a local subset of measurement points is chosen and assigned weights
as a function of their location relative to the point of interest (Egli, 2013). A second-order polynomial
(Equation 2) is then fitted to the selected points to determine jp (Equation 3) via weighted least-squares
regression. Thus, it is assumed implicitly that a second-order polynomial is consistent with the selected
data. If, however, the selected VARIFORC smoothing parameters are inappropriate, estimation of p with a
second-order polynomial could result in overfitting or underfitting. Therefore, an ability to detect either over-
fitting or underfitting in the local regression problem provides a means to assess the suitability of selected
VARIFORC smoothing parameters. To identify overfitting or underfitting, we compare regression models of
different complexity probabilistically to determine which is most consistent with the data. Specifically, the
theorem of Bayes (1763) provides a naturally parsimonious framework for model selection, whereby the per-
formance of alternative models can be compared probabilistically and more complex models are penalized
automatically (MacKay, 1992).

We consider three candidate polynomial surfaces to approximate the n magnetizations, M, in a local regres-
sion region within the {B, B, } coordinate system. The first surface is a second-order polynomial (Hg) that is
constrained to have zero mixed second derivative defined by

M(B,B,) = a; + a,B+a;B, + a,B* + a;B> and 4)

A(B,B,) = 0. (5

Hg will always yield 5 = 0 so its behavior is inconsistent with the main body of a FORC distribution,
where p = 0 is only expected when passing between positive and negative regions (e.g., in SD systems
Newell, 2005). Thus, within the main body of a FORC distribution, an HJ polynomial will tend to underfit
(i.e., oversmooth). A full second-order polynomial surface (H,) is defined by

M(B,B,) = a, + a,B+ a;B, + a,B* + a;B> + a;B,B and (6)
a
P(B.B) = -2 )
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This polynomial surface is standard in FORC processing (Egli, 2013; Harrison & Feinberg, 2008; Pike
etal., 1999), and its use was justified in section 1. Finally, a third-order polynomial surface (H;) is defined by

M(B,B,) = a, + a,B+ a;B, + a,B* + a;B’ + a,B.B

®)
+a,B* + 4B’ + a,B,B* + a,,B’B and

a
A(B,B,) = —?6 —agB—ayB,. 9)

Importantly, the second derivatives of H, are continuous, which is inconsistent with the properties of
Stoner and Wohlfarth (1948) particles. Therefore, an H; polynomial surface may lead to overfitting (i.e.,
undersmoothing).

When performing local regression at a single location of interest, we compare the candidate polynomial
surfaces probabilistically to infer which is most consistent with the data (Appendix A1). If this comparison
indicates that an Hg surface is most consistent with the data, then we infer that a FORC estimate with a
second-order surface may result in overfitting (i.e., insufficient smoothing because H, is more complex than
Hg) and noise will unduly influence p. Alternatively, if the model comparison reveals that an H; surface
is most compatible with the data, then the application of a second-order surface will result in underfit-
ting (i.e., excessive smoothing because H, is less complex than H,) that potentially introduces bias into 5.
Thus, there are two levels of inference necessary for each point of interest in a FORC distribution. The first
involves fitting a candidate model to the data, which requires estimation of the coefficients that describe
a given polynomial surface. The second involves assigning a probability-based ranking to the alternative
models given their compatibility with the data. Model development and comparison are readily undertaken
in a Bayesian setting (Bishop, 2006; Gull, 1989; MacKay, 1992), where the model that is most consistent
with the data can be selected in a probabilistic fashion through estimation of Bayes factors (BFs) (Hoeting
et al., 1999; Sambridge et al., 2006). Therefore, Bayesian model selection (Appendix Al) provides a means
to determine whether a local regression-based p estimate will be influenced by overfitting or underfitting
when p is evaluated based on a second-order polynomial surface.

2.2. Selection of an Appropriate VARIFORC Scheme

As discussed, model comparison at a single location in a FORC distribution provides a means to assess
if a p estimate based on a second-order polynomial will be affected by either overfitting (ineffective noise
removal) or underfitting (distorting the underlying signal). Thus, the tendency of a given local regression
scheme to overfit or underfit the data can be assessed by examining the frequency with which the collection
of regression models used to estimate a FORC distribution is most consistent with a given order polynomial.
If 5 is to be obtained via Equations 2 and 3, then a regression scheme must be selected that maximizes the
number of cases most consistent with a second-order polynomial. If there are regions of the main body of
the FORC distribution where Hg models are favored, then j based on H, polynomials can be expected to be
noisy in these areas (i.e., insufficient smoothing). Alternatively, j based on H, polynomials can be expected
to be biased in areas where H, polynomials are preferred (i.e., excessive smoothing). For a FORC distribution
estimated for a given set of VARIFORC smoothing parameters, we, therefore, determine the proportion of
cases in the local regression process where an H, model was most consistent with the data. We refer to this
proportion as . If a set of VARIFORC smoothing parameters yields local data consistent with second-order
polynomials at every position under consideration, then y = 1.

While y could be estimated across the entire measurement space of a FORC diagram, this would be inap-
propriate because outside the main body of the distribution, p is expected to be zero and, therefore, more
compatible with HY than H,. We restrict evaluation of y to the triangular region of a FORC distribution
that corresponds to where the major hysteresis loop is open. This involves estimating the upper (M*(B)) and
lower (M~ (B)) branches of the major hysteresis loop from the FORC data. A field, Bpen, is then determined,
which corresponds to

M*(Bypen) = M™(Bype) = @ [M*(0) = M~(0)] , (10)

where w is set to a small value, such as 0.05. Therefore, Bipen corresponds to the field at which the difference
between the upper and low major hysteresis branches is w times the separation between the branches at
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zero field. The triangular region of a FORC distribution in which the major hysteresis loop is considered to
be open is then defined by {B,, B, } vertices of {0, + Byyen }, {0, = Bypen }» and {+ By, 0}

For a given specimen, it may not be feasible to select VARIFORC smoothing parameters that yield local data
consistent with second-order polynomials at every position under consideration in a FORC distribution (i.e.,
y = 1). For example, the FORC response due to a noninteracting SD particle assemblage is represented by
an infinitely sharp ridge (Egli et al., 2010; Newell, 2005; Pike et al., 1999) that by definition cannot be fitted
with a second-order polynomial. Structured deviations from locally second-order data may indicate that the
selected regression scheme is not completely appropriate for a given sample, but it is impractical to reject the
whole VARIFORC scheme simply because y = 1 cannot be achieved. We offer a pragmatic solution to this
problem by considering a large ensemble (typically thousands) of combinations of VARIFORC smoothing
parameters. We then select a suitably smoothed FORC distribution based on the combination of VARIFORC
smoothing parameters that yields the highest proportion of H, models (i.e., it maximizes y).

For a given combination of VARIFORC smoothing parameters, H?, H,, and H, polynomials are estimated
for a given point within the triangle of FORC space defined by B, These polynomial models are then
compared probabilistically using BFs. Kass and Raftery (1995) recommended that when comparing two
hypotheses, H, and Hy, if BF(H 4, H) > 10, there is “strong” support for H,, and when BF(H ,, Hp) < 1/10,
there is “strong” support for H. Using this approach, we estimate y for a given combination of VARIFORC
parameters by assuming that each local regression problem should be represented by an H, model unless
there is “strong” support for Hg or H,. For positions in the FORC distribution where Hg is favored over H,,
p is set to zero. At all other positions, j is estimated using H,. Heslop and Roberts (2012) showed that an
ensemble of null hypothesis tests could be used in a local regression setting to define statistical significance
throughout a FORC distribution. Regions of a FORC distribution where p #0 at a given significance level
can then be demarcated using contours. Our probabilistic model selection scheme removes the need for the
null hypothesis scheme of Heslop and Roberts (2012). Instead, positions in the FORC distribution where Hg
is favored are set as p = 0.

We have developed an open-source Python package, FORCsensei (https://forcaist.github.io), which includes
an interactive Jupyter Notebook to automate FORC processing and selection of VARIFORC smoothing
parameters. The FORCsensei package performs standard FORC preprocessing tasks and then undertakes
a grid-search through an ensemble of combinations of the VARIFORC smoothing parameters defined by
Egli (2013). This ensemble is constructed based on user-defined limits on s, ¢, S, ¢, Sc.1» 5,1, and A. The
smoothing parameters and 4 are restricted to lie in the intervals [2, 10] and [0, 0.2], respectively. Smoothing
values to be considered are spaced logarithmically between the selected minimum and maximum, rounded
to the nearest integer, and duplicate values are removed. A values are spaced linearly with a separation of
0.04. If the full ranges of the parameter intervals are selected, FORCsensei will compare y values of 2,646
FORC distributions generated with different combinations of VARIFORC parameters effectively lying on
a five-dimensional grid. Such a large comparison is computationally expensive, so FORCsensei provides
functionality to employ downsampling in the estimation of y and compare FORC distributions in paral-
lel using Dask (Dask Development Team, 2016), which is an open-source package that can deploy Python
code across a multiprocessor system. The number of VARIFORC distributions to be compared can also be
reduced by assuming s, = 5,9, OF S,y = S, o = S.; = §,1, and 4 = 0, which corresponds to the approach of
Pike et al. (1999).

There are two important caveats to our proposed approach. First, we employ a simple five-parameter
VARIFORC scheme; however, Egli (2013) demonstrated the challenges associated with smoothing arti-
facts in estimated FORC distributions and devised more detailed schemes to remove them. For example,
the five-parameter VARIFORC scheme may not be appropriate in regions of FORC space where B, =% —B,,
when FORC magnetizations are changing rapidly, or when there are large differences between neighbor-
ing FORCs. Egli (2013) devised schemes for minimizing the effects of such smoothing artifacts, and users
are encouraged to employ sample-specific VARIFORC solutions as necessary. Second, users should place
importance on the acquisition of high-quality FORC measurements. No FORC processing algorithm can be
expected to produce high-quality FORC distributions from poor-quality measurements. For example, it is
crucial that a measurement field step is chosen that is appropriate to resolve features of interest (e.g., see
Egli et al., 2010 for a discussion of appropriate FORC parameters for measurement of central ridge features).
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Where possible, instrument drift should be minimized, and samples may need to be remeasured if sudden
impulse drift events occur (Roberts et al., 2014).

3. Case Studies

We present two case studies to demonstrate our proposed y metric and its use in selecting VARIFORC
smoothing parameters. These examples were chosen because they provide an intuitive demonstration of
our approach. We do not question the analyses or conclusions of the original studies in which the following
examples were published.

3.1. Biogenic Magnetite

We present results for a case study from marine sediment core MD00-2361, which was recovered from a
water depth of 1,805 m off the coast of northwestern Western Australia (22°04.92'S, 113°28.63’E). Mag-
netostratigraphic analysis of core MD00-2361 located the Matuyama-Brunhes paleomagnetic reversal at a
depth of ~16 m (Heslop et al., 2013). Environmental magnetic analysis and FORC measurements (Heslop
et al., 2013) reveal that the MD00-2361 sediments contain both magnetofossils and coarse-grained detrital
magnetite. The MD00-2361 FORC distributions have well-defined central ridges (Heslop et al., 2013, 2014),
which are indicative of noninteracting stable SD particles (Egli et al., 2010; Newell, 2005). Transmission
electron microscope observations revealed abundant magnetofossils (Heslop et al., 2013), and analysis of
FORC central ridge signals indicated that the morphology of the magnetofossils changed with the envi-
ronmental alternations between glacial and interglacial periods (Heslop et al., 2014). Here we reanalyze
high-resolution FORC measurements (field spacing of 0.5 mT) (Figure 1a) performed on a sediment sample
from a depth of 1.25 m below the seafloor. For an ensemble of VARIFORC models, based on 2,646 smooth-
ing parameter configurations, a maximum of y = 0.38 (Figure 1b) is obtained when s, = 4,5,, = 2,
5.1 =4, 5,; =4, and A = 0.04. Inspection of the highest-ranked VARIFORC model through the space of
the FORC distribution (Figure 1c) reveals areas where the data are most consistent with H,; however, there
is a region in the lower half-plane in which H; is preferred, where underfitting may occur. Furthermore,
there are regions along the lower coercivity B, = 0 region where underfitting occurs because even with
high-resolution FORC measurements, a second-order polynomial cannot resolve fully the infinitely sharp
central ridge (Egli et al., 2010; Newell, 2005). The resulting FORC distribution (Figure 1d) contains a main
central ridge and vertical spreading at lower coercivities produced by the coarser, potentially vortex state
(Lascu et al., 2018; Roberts et al., 2017), detrital particles. The FORC distribution also contains anomalous
streaking along the so-called remanence diagonal (B, = —B,).

In a detailed analysis of FORC estimation procedures, Egli (2013) identified anomalous remanence diagonal
behavior. Artifacts appear in this region of a FORC distribution when reversible magnetization processes, for
example, due to superparamagnetic particles, produce a sigmoidal response as the applied field crosses zero,
which cannot be well approximated by a second-order polynomial surface. Egli (2013) recommended an
elegant solution to this problem, where the subtraction of the last FORC from all preceding FORCs removes
the sigmoidal signal from the magnetization data. The derivative of the last FORC with respect to B, is zero,
so this subtraction does not change the underlying p but transforms the magnetization data into a form that
is expected to be more consistent with a series of local polynomial surfaces. In practice, this preprocessing
step, which has become known as “lower branch subtraction”, increases noise in the data, but the p estimate
may be improved because the form of the model on which 4 is based is more consistent with the data. In
many cases, the effect of increased noise is negligible, and the Egli (2013) lower branch subtraction technique
removes artifacts produced by reversible magnetizations.

When using lower branch subtracted magnetizations for the MD00-2361 sample (Figure 2a), y is maximized
at 0.70 when s, = 3,5, = 2,5.; = 3,5,; = 5,and 4 = 0.08 (Figures 2b and 2c). Much of the ten-
dency to underfit is removed by lower branch subtraction; however, the overfitting region around the central
ridge remains because it is related to measurement resolution. Diagonal overfitting features appear in the
lower branch subtracted model, which are probably due to uncompensated instrument drift (Figure 2d).
The full FORC diagram and lower branch subtracted FORC diagram have similar distributions (Figures 1d
and 2d, respectively); however, lower branch subtraction has successfully removed the fitting artifact along
the remanence diagonal.

To demonstrate the effects of overfitting and underfitting, we also provide examples where extreme
VARIFORC parameters were selected for the lower branch subtracted FORCs. A case of overfitting
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Figure 1. (a) High-field slope-corrected FORCs for a marine sediment rich in biogenic magnetite from core MD00-2361
(sample depth of 1.25 m below seafloor). Every fifth FORC is plotted for clarity. (b) Distribution of model-selection
statistics for 2,646 combinations of VARIFORC smoothing parameters. Each point represents a FORC distribution for a
given combination of VARIFORC smoothing parameters, where the “overfitting”, “optimal”, and “underfitting”
proportions represent the estimated relative number of Hg , H,, and Hj cases in the local regression scheme,
respectively. The selected VARIFORC configuration, in which y is maximized, is shown by a red point; the remaining
points are color-coded according to their y values. Model comparison was based on 2,000 random locations selected
within the triangle of the FORC space defined by B, (¢) Color-coded distribution of selected model order across the
space of the selected MD00-2361 FORC distribution. The local regression scheme contains cases of overfitting (black
points), where the data are most consistent with H. 0 optimal cases (blue points), where the data are consistent with H,,
and underfitting (orange points), where the data are most consistent with Hs. The white line corresponds to the Bypey,
triangle. (d) Final FORC distribution estimated with selected VARIFORC parameters: s.o = 4,5, = 2, 5.1 = 4,
sy1=4,and 4 =0.04.

(i.e., insufficient smoothing) is shown in Figure 3, where s, = 2,5, = 2,5.; = 2,5,; = 2,and 4 = 0.0 yield
y = 0.49. The VARIFORC solution contains a high proportion of local regression models where the data are
consistent with H‘z’ rather than the desired H, (Figure 3a). In these areas, the data support a hypothesis of
p =0, and the regions of the FORC distribution that flank the central ridge are lost (Figure 3b). This demon-
strates that when considering the performance of given smoothing parameters, it is important to compare
the estimated FORC distribution with the distribution of the selected model order. VARIFORC parameters
Seo0 =8, 8,0 =85, =8,5,; = 8,and A = 0.12 are selected to demonstrate underfitting (y = 0.10), where
most of the local regression models involve data more consistent with H, than H, (Figure 3c). This results
in oversmoothing of the underlying signal where the central ridge becomes too broad and the low coercivity
flanks widen (compare Figure 3d to Figure 2d).
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Figure 2. (a) Lower branch subtracted FORCs for the MD00-2361 sample illustrated in Figure 1a. (b) As in Figure 1b
for the lower branch subtracted FORCs. (c) As in Figure 1c for the lower branch subtracted FORCs. (d) As in Figure 1d
for the lower branch subtracted FORCs with VARTFORC parameters: s, = 3, 5,0 = 2, 5.1 = 3, 5,7 = 5,and 4 = 0.08.

3.2. Sedimentary Greigite

In their discussion of noise suppression, Roberts et al. (2014) demonstrated changes in the FORC distribu-
tion of a sedimentary greigite sample from South Island, New Zealand, as a function of SF (sample UB199B
from Roberts & Turner, 1993). The sediment contains strongly interacting stable SD greigite particles, which
produce a FORC distribution that is characterized by broad coercivity and interaction field distributions.
With increasing SF, the main body of the FORC distribution becomes smoother and broader as the size of
the local regression regions grows. To develop rigorous interpretations, appropriate smoothing is required
to ensure that the FORC distribution is not overfitted or underfitted. The UB199B magnetization data are
smooth (Figure 4a), and the lower branch subtracted curves contain little visible noise (Figure 4b). Compar-
ison of an ensemble of 2,646 candidate VARIFORC models leads to selection of a model that corresponds to
the lowest smoothing level (s, = 2,5, = 2,5.; = 2,5,; = 2, and 1 = 0.0), yielding y = 0.70 (Figures 4c
and 4d). The resulting FORC distribution (Figure 4e) has a somewhat noisy appearance, which reflects a bal-
ance between noise removal and signal distortion. While an increased level of underfitting would produce a
smoother FORC distribution, the underlying signal would be distorted to a point where it would be less con-
sistent with the data. There are diagonal underfitting regions in Figure 4d that originate at B, &% +0.05 T and
converge toward B, ~0.05 T. Such fitting artifacts can appear in lower branch subtracted data sets if there
are rapid magnetization changes close to the coercive field of the hysteresis loop and can be corrected by
limiting the size of local regression regions in these areas. Such functionality is available in the VARIFORC
package of Egli (2013).
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Figure 3. (a, b) Example of a predominantly overfitted model produced by reducing the level of VARIFORC smoothing
t0 S, 0 =2,8,0=2,51 =2,8,1 =2,and A = 0.0. (a) Color-coded distribution of selected model order across the space
of the MD00-2361 sample FORC distribution. (b) The corresponding FORC distribution is overfitted and is unduly
influenced by noise. (c, d) Example of a predominantly underfitted model produced by increasing the level of
VARIFORC smoothing to s, = 8, 5,0 = 8,5.1 =8, 5,1 =8, and 1 = 0.12. (c) Color-coded distribution of selected
model order across the space of the MD00-2361 sample FORC distribution. (d) The corresponding FORC distribution is
underfitted and is unduly distorted by smoothing.

The Bayesian regression framework provides uncertainties for the estimated polynomial coefficients, which
can be converted readily to confidence intervals on p via standard uncertainty propagation (Heslop &
Roberts, 2012). Therefore, once an independent estimation of the appropriate VARIFORC smoothing param-
eters is made, additional quantification of the FORC distribution can be undertaken. For example, profiles
of p with associated confidence intervals can be constructed (Figure 4f).

To further demonstrate our proposed approach, we provide examples involving the addition of noise to the
UB199B lower branch subtracted FORCs. As expected, higher smoothing parameters are selected as noise is
added to the data (Figure 5). However, with the addition of noise and the need for greater smoothing, artifacts
start to appear in the FORC distribution, for example, streaking (compare Figures 4e and 5f). It is important
to note that FORC processing algorithms may not be able to resolve appropriate smoothing parameters
when FORC data are corrupted by high noise levels. Our approach is designed to find a balance between
noise removal and minimizing signal distortion. When noise is high, it may be infeasible to find smoothing
parameters that remove the noise contribution without overly distorting the signal. Therefore, users should
strive to reduce experimental noise by making the best possible measurements (Roberts et al., 2014).

4. Discussion

In our case studies, we focus on selecting smoothing parameters for the VARIFORC framework of
Egli (2013). More broadly, however, our proposed approach provides an intuitive performance metric that
can be applied readily to compare different local regression schemes. In our approach, smoothing param-
eters that yield the highest y value (i.e., the greatest proportion of second-order cases) can be determined
automatically. Use of y requires further justification because it is reasonable to ask whether with the
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Figure 4. (a) High-field slope-corrected FORCs for sedimentary greigite sample UB199B (Roberts & Turner, 1993;
Roberts et al., 2014). Every fifth FORC is plotted for clarity. (b) Lower branch subtracted curves estimated from the
FORCs shown in panel (a). (c) As in Figure 1b for the UB199B lower branch subtracted FORCs, model comparison was
based on 2,000 random locations within the triangular region (white line) defined by Bpep, in panel (d). (d) As in
Figure 1c for the UB199B lower branch subtracted FORC curves. (e) As in Figure 1d for the UB199B lower branch
subtracted FORCs with VARIFORC parameters: s.o = 2, 5,0 = 2, 5.1 = 2, 5,1 = 2, and 1 = 0.0. (f) Coercivity profile
estimated through the FORC distribution for sample UB199B at B, = 0 T. Shading corresponds to the 95% confidence
interval around p (Heslop & Roberts, 2012).
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Figure 5. Comparison of the effects of adding Gaussian noise to the UB199B lower branch subtracted data with a
standard deviation (c,,) defined relative to the maximum data value. VARIFORC parameters were then estimated for
cases with ¢, = 0.001, 0.002, and 0.003. (a) Color-coded distribution of selected model order across the space of the
UB199B lower branch subtracted sample FORC distribution with ¢,, = 0.001. (b) The corresponding FORC distribution
and VARIFORC parameters for ¢,, = 0.001. (c) Distribution of selected model order for 5,, = 0.002 and (d) the
corresponding FORC distribution. (e) Distribution of selected model order for ¢,, = 0.003 and (f) the corresponding
FORC distribution. As expected, as the magnitude of the added noise increases, the selected VARIFORC smoothing
parameters also increase to compensate for the reduced signal to noise ratio.
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polynomial model selection framework outlined in section 2.1 it would be more appropriate to simply esti-
mate p for each point in the FORC space based on the optimal local polynomial. There is a key hurdle
to such an approach. Model selection techniques should be parsimonious and only favor more complex
(i.e., higher-order) models if sufficient information (i.e., data) is available to support them (MacKay, 1992).
Therefore, the size of a local regression region and selected polynomial order are not independent of each
other. If we were to simply employ the optimal polynomial model in each local problem, how do we ini-
tially select the size of the local regression region on which the model selection will be based? To provide a
concrete example of this issue, consider an analysis that employs small boxes for the local regression prob-
lem. Little information is available in each box, so higher-order polynomials cannot be supported, and Hg
would be selected for each box, leading to the inference that p = 0 throughout the FORC space. Clearly,
such a result would be meaningless and simply an outcome of selecting an arbitrary region size a priori.
We have circumvented this problem by assuming the order of the local polynomials with which p will be
estimated (i.e., H,, which is common to other FORC regression schemes) and searching for the VARIFORC
scheme that produces regions most consistent with this assumption. Our y metric measures directly this
level of consistency. An ability to estimate a FORC distribution where the effects of underfitting and overfit-
ting are minimized also provides an independent technique to ensure that confidence intervals on p can be
estimated rigorously.

It is important to note that the FORC distributions produced by our model selection-based approach may
appear noisier than those typically published in the literature. We do not consider this to be a shortcoming
of our algorithm; rather, it is an indication that user-defined smoothing will tend to underfit FORC data.
This is not surprising. Noise in FORC distributions is easy to identify visually, while the distortion of the
underlying signal is more subtle. Therefore, it is natural for users to oversmooth their data to reduce the
visible effect of noise without having an obvious means to judge the corresponding signal distortion. This
emphasizes the importance of making high-quality FORC measurements, where possible. Removal of noise
comes at the cost of potentially distorting the underlying signal, and advanced FORC processing schemes
can only be expected to reduce, but not solve entirely, this trade-off.

We have entered an era of high-resolution FORC analysis, with larger data sets containing in excess of 10°
measurement points. This makes estimation of FORC smoothing using our proposed y metric computa-
tionally intensive. However, an ability to quantify overfitting and underfitting as a function of position in a
FORC distribution can guide users toward an appropriate solution. Our proposed y metric is used to per-
form a grid search of candidate smoothing parameters to automatically select a suitable VARIFORC scheme
for a given FORC data set. Such an approach is computationally intensive even for a simplified VARIFORC
scheme defined by five parameters. We, therefore, recommend estimating a downsampled version of v,
where all FORC measurement points are included in the local regression analysis, but the model compari-
son is only performed at a limited number of locations through the triangle of FORC space defined by Be,-
Although downsampling reduces computation time, y estimation becomes more uncertain as fewer data
points are included in its evaluation. Tests on a variety of samples suggest that a downsampled y estimate
should involve approximately 2,000 points or more. FORCsensei employs Dask so that searching through
the ensemble of smoothing parameters is performed automatically in a parallel fashion. To give a concrete
example, the results in Figure 4 involved a data set with 15,364 measurement points, and FORCsensei con-
sidered 2,646 VARIFORC schemes and performed model comparison at 2,000 locations. On a 2015 MacBook
Pro with a 2.8 GHz processor and 16 GB of memory, this analysis took 30 min. While this might seem like a
long time compared to some accelerated algorithms (Berndt & Chang, 2019; Heslop & Muxworthy, 2005),
FORCsensei is automatic and does not rely on subjective user-defined smoothing parameters.

5. Conclusions

FORC distributions have traditionally been estimated via a collection of local second-order polynomial mod-
els. Thus, if a given local regression region is most consistent with a lower-order polynomial, it indicates
that overfitting may occur when the FORC distribution is estimated based on a second-order polynomial.
Similarly, if local regression data are most consistent with a higher-order polynomial, then underfitting may
occur when the FORC distribution is estimated. We have developed an intuitive approach to aid FORC dis-
tribution estimation, which is based on measuring the tendency of a given local regression scheme to overfit
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or underfit measured magnetization data. Bayesian model selection is employed to rank the consistency
of a collection of candidate polynomial regression models with the data in a local regression scheme. This
information is combined into a metric, y, that provides a measure of the appropriateness of the local regres-
sion scheme. Thus, y provides a means to compare automatically the suitability of different local regression
schemes and smoothing parameters to estimate the FORC distribution of a given specimen.

The FORCsensei software automates the process of VARIFORC smoothing parameter selection. Regard-
less of user expertise, an appropriate FORC distribution can be estimated that has a balance between noise
cancelation and preservation of the underlying signal. Such an independent technique also enables rigor-
ous estimation of confidence intervals on p. FORCsensei is not, however, a panacea to all FORC processing
problems. FORC measurements must be of high quality with appropriate resolution to resolve features of
interest. Furthermore, investigators must be ready to employ more refined processing, for example, using
the full VARIFORC approach of Egli (2013), to resolve sample-specific artifacts.

Appendix A: Bayesian Model Comparison

In the theorem of Bayes (1763), the posterior probability of a hypothesis, H, given a collection of observations,
X, is
(H)pX|H)
ppx) = XX, (A1)
pX)

where p(X) is the probability of observing X independently of any specific hypothesis and p(H) is the prob-
ability of hypothesis H being true prior to any observations being made. Thus, the relative probabilities of
two competing hypotheses, H, and Hy, can be estimated by (Gallagher et al., 2009; Sambridge et al., 2006):

Dp(H4IX)  p(H,) ) P(X|H,)

= . (A2)
p(HplX)  p(Hp) p(X|Hp)

The BF is the final term in Equation A2 and can be expressed directly as (Burnham & Anderson, 2002)

pPX|H,)  p(H4IX) p(H,)

BF(H,,Hp) = = .
(Ha, Hy) p(X|Hp) ~ p(HglX)' p(Hyp)

(A3)

Given the observed data, the BF measures the relative posterior probabilities of H, and Hj being true.
Recent work has developed approaches for estimating BF for a given linear regression scheme, such as those
defined in Equations 4, 6, and 8, versus a null model where the observations are independent of the covari-
ates. Specifically, the BF when comparing a linear regression model, H;, to the null model, H,, can be given
in a closed-form (Maruyama & George, 2011; Wang & Maruyama, 2018):

_ pXIH) T(j/2+a+DI(n—j-1)/2)

o= = _ p2y\—(n—j-1)/2+a+1
©~ p(XH,) Fa+ -1y LB : (A%)

where I" denotes the gamma function, n is the number of observations, R? is the unadjusted coefficient of
determination of the linear regression model defined by H;, j is the number of terms included in H;, and a is
an adjustable parameter (set to a = —3/4, as recommended by Maruyama & George, 2011). When estimating
a FORC distribution via local regression, the null model, H,, is a zero-order polynomial surface:

M(B.,B,) = a,. (A5)

Once BFs are calculated comparing each model to H,, the values can be combined to provide pairwise
comparisons for specific models. For example, BF(H,, H,) compares H, to H,, and BF(H;, H,) compares H,
to H,,, which can be combined to compare H, to Hs:

BF(H,, H,)

BF(H,, Hy) = e 7
3>+50

(A6)

If we assume a priori that each of the proposed models is equally probable, the BF can be used directly for
probabilistic model selection.
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