
Imperial College London
Department of Computing

Kant’s Cognitive Architecture

Richard Evans

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London and

the Diploma of Imperial College London, March 2020

1

2

Declaration of Originality

I, Richard Evans, declare that the work in this thesis is my own. The work of others has been
appropriately referenced. A full list of references is given in the bibliography.

The copyright of this thesis rests with the author and is made available under a Creative Commons
Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or
transmit the thesis on the condition that they attribute it, that they do not use it for commercial
purposes and that they do not alter, transform or build upon it. For any reuse or redistribution,
researchers must make clear to others the licence terms of this work.

3

4

Abstract

Imagine a machine, equipped with sensors, receiving a stream of sensory information. It must,
somehow, make sense of this stream of sensory data. But what, exactly, does this involve? We have an
intuitive understanding of what is involved in “making sense” of sensory data – but can we specify
precisely what is involved? Can this intuitive notion be formalized?

In this thesis, we make three contributions. First, we provide a precise formalization of what it means
to “make sense” of a sensory sequence. According to our definition, making sense means constructing
a symbolic causal theory that explains the sensory sequence and satisfies a set of unity conditions
that were inspired by Kant’s discussion in the first half of the Critique of Pure Reason. According to
our interpretation, making sense of sensory input is a type of program synthesis, but it is unsupervised
program synthesis.

Our second contribution is a computer implementation, the Apperception Engine, that was designed
to satisfy our requirements for making sense of a sensory sequence. Our system is able to produce
interpretable human-readable causal theories from very small amounts of data, because of the strong
inductive bias provided by the Kantian unity constraints. A causal theory produced by our system
is able to predict future sensor readings, as well as retrodict earlier readings, and impute missing
sensory readings. In fact, it is able to do all three tasks simultaneously. The engine is implemented in
Answer Set Programming (ASP) and induces theories expressed in Datalog⊃−, an extension of Datalog
that includes causal rules and constraints.

We test the engine in a diverse variety of domains, including cellular automata, rhythms and simple
nursery tunes, multi-modal binding problems, occlusion tasks, and sequence induction IQ tests. In
each domain, we test our engine’s ability to predict future sensor values, retrodict earlier sensor values,
and impute missing sensory data. The Apperception Engine performs well in all these domains,
significantly out-performing neural net baselines. These results are significant because neural nets
typically struggle to solve the binding problem (where information from different modalities must
somehow be combined together into different aspects of one unified object) and fail to solve occlusion
tasks (in which objects are sometimes visible and sometimes obscured from view). We note in
particular that in the sequence induction IQ tasks, our system achieves human-level performance.
This is notable because the Apperception Enginewas not designed to solve these IQ tasks; it is not a
bespoke hand-engineered solution to this particular domain. – Rather, it is a general purpose system
that attempts to make sense of any sensory sequence, that just happens to be able to solve these IQ
tasks “out of the box”.

Our third contribution is a major extension of the engine to handle noisy and ambiguous data. While
the initial implementation assumes the sensory input has already been preprocessed into ground
atoms of first-order logic, our extension makes sense of raw unprocessed input – a sequence of pixel
images from a video camera, for example. The resulting system is a neuro-symbolic framework for
distilling interpretable theories out of streams of raw, unprocessed sensory experience.

5

6

Acknowledgements

I would like to thank my PhD supervisor, Professor Marek Sergot for his support and encouragement,
his insight and acuity, his patience and generosity, throughout my PhD. I would also like to thank
Andrew Stephenson, Jose Hernández-Orallo, Andrew Cropper, Mark Law, Ed Grefenstette, Matko
Bos̆njak, Kevin Ellis, Josh Tenenbaum, Daniel Selsam, Johannes Welbl, David Pfau, Pushmeet Kohli,
Jessica Hamrick, Lars Buesing, Yujia Li, Rob Craven, Stephen Muggleton, Murray Shanahan, Krysia
Broda, Robert Long, Nick Shea, Christopher Peacocke, Tom Smith, Demis Hassabis, Ian Holmes,
Martin Berger, Ian Wright, Lewis Evans, and Barnaby Evans for insightful feedback. I am particu-
larly grateful to Alessandra Russo and Michiel van Lambalgen for their thoughtful and penetrating
comments. Thanks also to DeepMind for being such a stimulating and supportive place in which to
do research. Last but not least, I thank my lovely wife Tiffy and our children - Barnaby, Molly, and
Josie - for everything.

7

8

Contents

1 Introduction . 17
1.1 Motivation . 17

1.1.1 AI has something to learn from Kant . 18

1.1.2 Kant interpretation has something to learn from AI 19

1.2 Contributions . 20

1.2.1 Publications . 20

1.3 Thesis structure . 21

2 Background . 22
2.1 Logic programming . 22

2.2 Program synthesis and inductive logic programming 26

2.3 Program synthesis via an interpreter . 26

2.4 Neural networks . 30

3 Making sense of discrete input . 31
3.1 The theory . 32

3.2 Explaining the sensory sequence . 35

3.3 Unifying the sensory sequence . 38

3.3.1 Object connectedness . 38

3.3.2 Conceptual unity . 39

3.3.3 Static unity . 40

3.3.4 Temporal unity . 41

3.3.5 The four conditions of unity . 41

3.4 Making sense . 42

3.5 Examples . 44

3.6 Properties of interpretations . 49

3.7 The computer implementation . 53

3.7.1 Iterating through templates . 54

3.7.2 Finding the best theory from a template . 57

3.7.3 The Datalog⊃− interpreter . 58

3.7.4 Complexity and optimisation . 64

9

3.7.5 Optimization . 66
3.7.6 A comparison with ILASP . 69

4 Experiments . 74
4.1 Experimental setup . 74
4.2 Results . 75

4.2.1 Elementary cellular automata . 76
4.2.2 Drum rhythms and nursery tunes . 79
4.2.3 Seek Whence and C-test sequence induction IQ tasks 81
4.2.4 Binding tasks . 86
4.2.5 Occlusion tasks . 88

4.3 Empirical comparisons with other approaches . 90
4.3.1 Our domains are challenging for existing baselines 90
4.3.2 Our system handles retrodiction and imputation just as easily as prediction . . 94
4.3.3 The features of our system are essential to its performance 95

4.4 Discussion . 96
4.5 Noisy apperception . 97

4.5.1 Experiments . 100

5 Making sense of raw input . 103
5.1 Making sense of disjunctive symbolic input . 103
5.2 Making sense of raw input . 104
5.3 Finding the most probable interpretation . 105
5.4 Applying the Apperception Engine to raw input . 107

5.4.1 Implementing a binary neural network in ASP 107
5.5 Experiments . 112

5.5.1 Seek Whence with noisy images . 112
5.5.2 Sokoban . 119
5.5.3 Fuzzy sequences . 127

6 Kant’s cognitive architecture . 137
6.1 Introduction . 137

6.1.1 From counts-as to counting-as . 138
6.1.2 From derivative to original intentionality . 139
6.1.3 From sensory agents to cognitive agents . 141
6.1.4 Kant’s fundamental question . 142

6.2 Experience and synthetic unity . 142
6.2.1 What does Kant mean by ‘experience’? . 143
6.2.2 What does Kant mean by ‘intuition’? . 143
6.2.3 What does Kant mean by ‘unifying’ intuition? 145

10

6.2.4 The status of claim 1 . 147
6.3 Synthesis . 148

6.3.1 The justification for this particular set of operations and relations 150
6.4 The unity conditions . 151
6.5 The unity conditions for the synthesis of mathematical relations 152
6.6 The unity conditions for the synthesis of dynamical relations 154

6.6.1 Inherence must be backed up by a categorical judgement 158
6.6.2 Succession must be backed up by a causal judgement 159
6.6.3 Simultaneity must be backed up by a pair of causal judgements 159
6.6.4 Incompatibility must be backed up by a disjunctive judgement 160

6.7 Making concepts sensible . 161
6.8 Conceptual unity . 161
6.9 Achieving synthetic unity . 162

6.9.1 The pure relations . 165
6.9.2 Achieving synthetic unity . 166

6.10 The derivation of the categories . 168
6.11 Kant’s cognitive architecture . 171
6.12 Experiment 1: flashing lights . 172

6.12.1 The sensory input . 172
6.12.2 The model . 174
6.12.3 Results . 178
6.12.4 Perceptual discernment and conceptual discrimination 184

6.13 Experiment 2: the house . 186
6.14 Rigidity and spontaneity . 188
6.15 Rigidity and diachrony . 189
6.16 The table . 192

7 Related work . 194
7.1 “Theory learning as stochastic search in a language of thought” 197
7.2 “Learning from interpretation transitions” . 200
7.3 “Unsupervised learning by program synthesis” . 201
7.4 “Beyond imitation” . 203
7.5 “Learning symbolic models of stochastic domains” . 203
7.6 “Nonmonotonic abductive inductive learning” . 204
7.7 The Game Description Language and inductive general game playing 205
7.8 The predictive processing paradigm . 206
7.9 Other related work . 207

8 Discussion . 208
8.1 Appealing features of the Apperception Engine . 208

11

8.1.1 Interpretability . 208
8.1.2 Accuracy . 210
8.1.3 Data efficiency . 210
8.1.4 Summary . 211

8.2 What makes it work . 211
8.2.1 The declarative logic programming language . 211
8.2.2 Our inductive bias . 212
8.2.3 Our hybrid neuro-symbolic architecture . 213

8.3 Concepts . 214
8.4 Limitations . 215

8.4.1 Expressive limitations . 216
8.4.2 Scaling limitations . 216

8.5 Basic assumptions . 217
8.5.1 Succession and causal rules . 218
8.5.2 Explicit or implicit rules . 218
8.5.3 The expressive power of Kant’s logic . 219
8.5.4 One system or two? . 220
8.5.5 SAT or gradient descent? . 221
8.5.6 Alternative options . 222

8.6 Further work . 222
8.6.1 Implementing a probabilistic model of raw input 222
8.6.2 Adding stratified negation as failure . 224
8.6.3 Allowing non-determinism . 224
8.6.4 Supporting incremental theory revision . 225
8.6.5 Integrating with practical reasoning . 225
8.6.6 Moving closer to a faithful implementation of Kant’s a priori psychology 226

8.7 Conclusion . 229

12

List of Figures

3.1 Four candidate theories attempting to explain a sequence 36

3.2 The varieties of inference . 58

3.3 How # ground atoms grows (log-scale) as we increase # vars 65

3.4 Comparing our system and ILASP w.r.t. grounding size 72

4.1 Updates for ECA rule 110 . 76

4.2 One trajectory for ECA rule 110 . 77

4.3 Twinkle Twinkle Little Star tune . 79

4.4 Mazurka rhythm . 79

4.5 Sequences from Seek Whence and the C-test . 83

4.6 Our interpretation of the “theme song” Seek Whence sequence 85

4.7 A multi-modal trace of ECA rule 110 with light sensors and touch sensors 88

4.8 An occlusion task . 89

4.9 Comparison with baselines . 92

4.10 Comparing prediction with retrodiction and imputation 94

4.11 One trajectory for ECA rule # 0 . 95

4.12 Comparing the noise-robust and noise-intolerant versions for data-efficiency 101

4.13 Comparing the noise-robust and noise-intolerant versions for accuracy 102

5.1 Three Seek Whence tasks using MNIST images . 113

5.2 Interpreting Seek Whence sequences from raw images 114

5.3 Interpreting the sequence 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 116

5.4 Neural baseline for the Seek Whence task . 118

5.5 Evaluating the baseline models on the noisy Seek Whence sequences 119

5.6 The Sokoban task . 120

5.7 A binary neural network maps sprite pixel arrays to types 122

5.8 A binary neural network converts the raw pixel input into a set of disjunctions 122

5.9 Interpreting Sokoban from raw pixels . 123

5.10 The Sokoban state evolving over time . 124

5.11 The baseline model for the Sokoban task . 125

5.12 The results on the Sokoban task . 126

5.13 The results for Sokoban on ten trajectories . 127

13

5.14 Generating fuzzy sequences . 128
5.15 Six example sequences . 129
5.16 A fuzzy sequence with held-out data . 129
5.17 Solving the fuzzy sequence with kg = 3 and ng = 2 (the correct guesses) 131
5.18 Solving the fuzzy sequence with kg = 2 and ng = 3 (the wrong guesses) 132
5.19 Two interpretations of a sequence generated from aabbaabbaabb... with k = 3 133
5.20 The results of the Apperception Engine on the Fuzzy Sequences task 134
5.21 The results of the neural baseline on the Fuzzy Sequences task 135

6.1 Binary relations as directed graphs . 146
6.2 Combining intuitions into determinations, and concepts into judgements 156
6.3 Using a judgement to determine the positions of intuitions in a determination 157
6.4 The relationship between the four faculties . 167
6.5 Subsumption . 168
6.6 A simple sequence involving two sensors . 172
6.7 A sequence of individual sensor readings . 173
6.8 Three ways of parsing the individual readings . 173
6.9 The objective temporal sequence is constructed from the subjective temporal sequence 179
6.10 The subsumptions generated by the engine . 179
6.11 Sensors a and b are indirectly connected via the in and r relations 180
6.12 The determinations imagined by the engine . 181
6.13 The result of applying the Apperception Engine to the input of Figure 6.7 183
6.14 An alternative degenerate interpretation of the input of Figure 6.7 185
6.15 The sensory sequence for the “house” example . 188
6.16 Comparing the ground truth with the engine’s reconstruction 188

7.1 A hidden Markov model . 195

8.1 Top-down influence from the symbolic to the sub-symbolic 220

14

List of Tables

3.1 Enumerating (T,n) pairs . 55
3.2 The number of ground atoms in the ASP encoding . 65
3.3 The number of ground clauses in the ASP encoding . 67
3.4 Like-for-like comparison between our system and ILASP 72

4.1 Results for prediction tasks on the five experimental domains 75
4.2 Cohen’s kappa coefficient for the five experimental domains 76
4.3 The complexity of the interpretations found for ECA prediction tasks 79
4.4 The complexity of the interpretations found for rhythm and tune prediction tasks . . . 81
4.5 The complexity of the interpretations found for Seek Whence prediction tasks 85
4.6 The two types of probe task . 90
4.7 Comparing our system against baselines . 92
4.8 The McNemar test comparing our system to each baseline 93
4.9 Ablation experiments . 96

15

16

Chapter 1

Introduction

1.1 Motivation

Imagine a machine, equipped with sensors, receiving a stream of sensory information. It must,
somehow, make sense of this stream of sensory data. But what, exactly, does this involve? We have an
intuitive understanding of what is involved in “making sense” of sensory data – but can we specify
precisely what is involved? Can this intuitive notion be formalized?

In machine learning, this is called the unsupervised learning problem. It is both fundamentally important
and frustratingly ill-defined.

This problem contrasts with the supervised learning problem where the sensory data comes attached
with labels. In a supervised learning problem, there is a clear learning objective, and there are a
number of powerful techniques that perform very successfully. However, the real world does not come
with labels attached to sensory data. We just receive the data. As Geoffrey Hinton said1:

When we’re learning to see, nobody’s telling us what the right answers are – we just look.
Every so often, your mother says “that’s a dog”, but that’s very little information. You’d
be lucky if you got a few bits of information – even one bit per second – that way. The
brain’s visual system has 1014 neural connections. And you only live for 109 seconds. So
it’s no use learning one bit per second. You need more like 105 bits per second. And
there’s only one place you can get that much information: from the input itself.

In unsupervised learning, we are given a sequence of sensor readings, and want to make sense of
that sequence. The trouble is we don’t have a clear formalisable understanding of what it means to
“make sense”. Our problem, here, is inarticulacy. It isn’t that we have a well-defined quantifiable
objective and do not know the best way to optimize for that objective. Rather, we do not know what
it is we really want.

1Quoted in Kevin Murphy’s Machine Learning: a Probabilistic Perspective [Mur12].

17

One approach, the self-supervised approach, is to treat the sensory sequence as the input to a prediction
problem: given a sequence of sensory data from time steps 1 to t, maximize the probability of the next
datum at time t + 1. But we believe there is more to “making sense” than merely predicting future
sensory readings. Predicting the future state of one’s photoreceptors may be part of what is involved
in making sense – but it is not on its own sufficient.

What, then, does it mean to make sense of a sensory sequence? In this thesis, I argue that the solution
to this problem has been hiding in plain sight for over two hundred years. In the Critique of Pure
Reason, Kant defines exactly what it means to make sense of a sequence: to reinterpret that sequence
as a representation of an external world composed of objects, persisting over time, with attributes that change
over time, according to general laws.

In this thesis, I reinterpret part of Kant’s first Critique as a specification of a cognitive architecture, as
a precise computationally-implementable description of what is involved, exactly, in making sense
of the sensory stream. This is an interdisciplinary project and as such is in ever-present danger
of falling between two stools, neither philosophically faithful to Kant’s intentions nor contributing
meaningfully to AI research. Kant himself provides2:

the warning not to carry on at the same time two jobs which are very distinct in the way
they are to be handled, for each of which a special talent is perhaps required, and the
combination of which in one person produces only bunglers [AK 4:388]

The danger with an interdisciplinary project, part AI and part philosophy, is that both potential audi-
ences are unsatisfied. The computer science might reasonably ask: why should a two hundred year
old book have anything to teach us now? Surely if Kant had anything important to teach us, it would
already have been absorbed? The Kant scholar might reasonably complain: is it really necessary
to re-express Kant’s theory using a computational formalism? We do not need these technicalities
to talk about Kant. At best, it is an unnecessary re-articulation. At worst, misunderstandings are
piled on misunderstandings, as Kant’s ideas are inevitably distorted when shoe-horned into a simple
computational formalism.

Nevertheless, I will argue, first, that contemporary AI has something to learn from Kant, and second,
that Kant scholarship has something to gain when rearticulated in the language of computer science.

1.1.1 AI has something to learn from Kant

It is increasingly acknowledged that the strengths and weaknesses of neural networks and logic-
based learning are complementary. While neural networks are robust to noisy or ambiguous data,

2Translations are from the Cambridge Edition of the Works of Immanuel Kant (details at the end), with occasional
modifications. With the exception of those to the Critique of Pure Reason, which take the standard A/B format, references to
Kant are by volume and page number in the Academy Edition [Immanuel Kants gesammelte Schriften, 29 volumes, Berlin: de
Gruyter, 1902-].

18

and are able to absorb and compress the information from vast datasets, they are also data hungry,
uninterpretable, and do not generalize well outside the training distribution [FP88, Mar18a, LUTG17,
EG18]. Logic based learning, by contrast, is very data efficient, produces interpretable models, and
can generalise well outside the training distribution, but struggles with noisy or ambiguous data3,
and finds it hard to scale to large datasets [RR16, EG18].

What we would really like, if only we can get it, is a system that combines the advantages of both.
But this is, of course, much easier said than done. What, exactly, is involved in combining low-level
perception with high-level conceptual thinking?

In the first Critique Kant describes, in remarkable detail, exactly what this hybrid architecture should
look like. The reason why he was interested in hybrid cognitive architectures is because he was
attempting to synthesise the two conflicting philosophical schools of the day, empiricism and ratio-
nalism. The neural network is the intellectual ancestor of empiricism, just as logic-based learning is
the intellectual ancestor of rationalism. Kant’s unification of empiricism and rationalism is a cogni-
tive architecture that attempts to combine the best of both worlds, and points the way to a hybrid
architecture that combines the best of neural networks and logic-based approaches.4

1.1.2 Kant interpretation has something to learn from AI

Some of the most exciting and ambitious work in recent philosophy [Bra94, Bra08, Bra09, Sel67, Sel68,
Sel78] attempts to re-articulate Kantian (and post-Kantian) philosophy in the language of analytic
philosophy. Now this re-articulation is not merely window-dressing; it is not just dressing up old
ideas in the latest fashionable terminology. Rather, analytic philosophy, when done well, achieves a
new level of perspicuity.

My aim in this thesis is to re-articulate Kant’s theory at a further level of precision, by reinterpreting
it as a specification of a computational architecture.

Why descend to this particular level of description? What could possibly be gained? The computa-
tional level of description is the ultimate level of precise description. There is no more precise you
can be: even a mere computer can understand a computer program. Computers force us to clarify our
thoughts. They admit no waffling or vagueness. Hand-waving is greeted with a compilation error,
and a promissory note is returned, unread.

The advantage of re-articulating Kant’s vision in computational terms is that it gives us a new level of
specificity. The danger is that, in an effort to shoe-horn Kant’s theory into a particular implementable
system, we distort his original ideas to the point where they are no longer recognisable. Whether this
is indeed the unfortunate consequence, the gentle reader must decide.

3Some recent systems are able to handle noisy (mislabelled) data effectively [LRB18b]. But, to the best of our knowledge,
there are no such systems that handle ambiguous input data, such as the raw data from a video camera.

4So far, so programmatic. The hybrid neuro-symbolic architecture is described in Chapter 5, and the ascription of this
architecture to Kant in particular is justified in Chapter 6.

19

1.2 Contributions

In this thesis, we make three contributions. First, we provide a precise formalization of what it means
to “make sense” of a sensory sequence. According to our definition, making sense of a sensory
sequence involves constructing a symbolic causal theory that explains the sensory sequence and
satisfies a set of unity conditions that were inspired by Kant’s discussion of the synthetic unity of
apperception in the Critique of Pure Reason. According to our interpretation, making sense of sensory
input is a type of program synthesis, but it is unsupervised program synthesis.

Our second contribution is a computer implementation, the Apperception Engine, that was designed
to satisfy our requirements for making sense of a sensory sequence. Our system is able to produce
interpretable human-readable causal theories from very small amounts of data, because of the strong
inductive bias provided by the Kantian unity constraints. A causal theory produced by our system
is able to predict future sensor readings, as well as retrodict earlier readings, and “impute” (fill
in the blanks of) missing sensory readings. In fact, it is able to do all three tasks simultaneously.
The engine is implemented in Answer Set Programming (ASP) and induces theories expressed in
Datalog⊃−, a simple extension of Datalog to include constraints and causal rules. We show, in a range
of experiments, that the engine significantly outperforms neural network baselines.

Our third contribution is a major extension of the engine to handle noisy and ambiguous data. While
the initial implementation assumes the sensory input has already been preprocessed into ground
atoms of first-order logic, our extension makes sense of raw unprocessed input – a sequence of pixel
images from a video camera, for example. The resulting system is a neuro-symbolic framework for
distilling interpretable theories out of streams of raw, unprocessed sensory experience.

1.2.1 Publications

Some of the work in this thesis has appeared in the following papers:

Richard Evans. “Kant on Constituted Mental Activity”, The American Philosophical Association,
Volume 16, 2017.

Richard Evans. “A Kantian Cognitive Architecture”, Philosophical Studies, 2018.

Richard Evans and Ed Grefenstette. “Learning Explanatory Rules from Noisy Data”, JAIR,
Volume 61, 2018.5

Richard Evans, Andrew Stephenson, and Marek Sergot. “Formalizing Kant’s Rules”, Journal of
Philosophical Logic, 2019.6

5I designed the system and wrote the first drafts of the paper. Ed Grefenstette designed some of the experiments and
improved the text.

6I designed the logic and wrote the first draft of the paper. Marek Sergot developed the alternative semantics for KL1,
developed the semantics for KL2, and improved the semantics for KL3. Andrew Stephenson improved the philosophical
discussion and added further discussion of Kant. All three authors edited, revised, and polished the final draft.

20

Andrew Cropper, Mark Law, and Richard Evans. “Inductive General Game Playing”, Machine
Learning, 2019.7

Richard Evans. “Apperception”, in Human-Like Machine Intelligence, Oxford University Press
(forthcoming).

The following papers are under review:

Richard Evans, Hernandez-Orallo, Johannes Welbl, Pushmeet Kohli, and Marek Sergot. “Mak-
ing sense of sensory input”, Artificial Intelligence.8

Richard Evans, Matko Bosnjak, Lars Buesing, Kevin Elllis, Pushmeet Kohli, and Marek Sergot.
“Making sense of raw input”, Artificial Intelligence.9

1.3 Thesis structure

We first provide the necessary background material in Chapter 2 on logic programming and program
synthesis.

Chapter 3 formalises what it means to make sense of a sensory sequence, culminating in the definition
of the apperception task. We describe our system, the Apperception Engine, that is able to solve
apperception tasks. In Chapter 4, we describe a range of experiments and compare with neural
network baselines.

The main limitation of the approach in Chapter 3 is that it assumes the sensory input has already been
preprocessed into ground atoms of first-order logic. Chapter 5 removes this limitation, providing a
neuro-symbolic architecture for extracting human-readable theories from raw input.

Chapter 6 describes the interpretation of Kant that underlies the Apperception Engine. Although it
is usual to present the philosophical motivation before the technical material, this chapter can best
be understood only after the technical material that precedes it. Readers who are not particularly
interested in Kant exegesis should feel free to skip this chapter.

Chapter 7 discusses related work, and Chapter 8 evaluates the system described, highlighting par-
ticular strengths of the approach, as well as limitations.

7I proposed the IGGP dataset as an ILP problem, generated the dataset, and wrote the first draft. Andrew Cropper ran
the Metagol experiments and rewrote the paper, Mark Law ran the ILASP experiments and wrote the section on ILASP. All
three authors edited, revised, and polished the final draft.

8I designed and implemented the system, designed the experiments, and wrote the first drafts of the paper. Jose
Hernandez-Orallo improved the experiments and the experimental methodology. Johannes Welbl implemented the neural
net baselines. Pushmeet Kohli is my advisor at DeepMind.

9I designed and implemented the system, designed the experiments, and wrote the first draft. Matko Bosnjak imple-
mented the neural net baselines in Sections 5.5. Lars Buesing helped with the related work. Kevin Ellis helped with the
derivation of the formulas in Section 5.3. Pushmeet Kohli is my advisor at DeepMind.

21

Chapter 2

Background

We first introduce logic programming in Answer Set Programming (ASP) and then describe one way
to implement program synthesis in ASP.

2.1 Logic programming

In this thesis, we use basic concepts and standard notation from logic programming. We shall use
a, b, c, ... for constants, X,Y,Z, ... for variables, p, q, r, ... for predicate symbols, and f , g, h, ... for function
symbols.

A term is either simple or complex. A simple term is a constant or variable. A complex term is of the
form f (t1, ..., tn) where t1, ..., tn are terms.

An atom is of the form p(t1, ..., tn) where p is a predicate symbol, and t1, ..., tn are terms. A function-free
atom is an atom where all the terms are simple. If α is an atom, then vars(α) denotes the variables
in α, so e.g. vars(p(X, f (X,Y),Z)) = {X,Y,Z}. An atom α is ground if vars(α) = {}. We say an atom is
unground if it contains no constants. According to this definition, some atoms are neither ground
nor unground e.g. p(a,X).

A Datalog clause is a definite clause of the form :

α1 ∧ ... ∧ αn → α0

where each atom αi is function-free and n ≥ 0. Here, α0 is the head and {α1, ..., αn} is the body of the
clause. It is traditional to write clauses from right to left: α0 ← α1, ..., αn. But in this thesis, we will
define a Datalog interpreter implemented in another logic programming language (ASP). In order to
keep the two languages distinct, we write Datalog rules from left to right and ASP clauses from right
to left. A Datalog program is a set of Datalog clauses.

22

A clause α1∧ ...∧αn → α0 is safe if vars(α0) ⊆ ⋃n
i=1 vars(αi). Throughout, we will restrict our attention

to safe clauses. A clause is ground if each atom in the clause is ground (contains no variables).

The Herbrand universe of a logic program is the set of all ground terms formed from the constants
and functions in the program. The Herbrand universe of a Datalog program is just the set of constants
appearing in the program, and is always finite for a finite program. For logic programs that include
function symbols, the Herbrand universe is not finite. The Herbrand base of a logic program is the
set of all ground atoms that can be formed by applying the predicates to the terms of the Herbrand
base. For Datalog programs, the Herbrand base is finite.

A substitution σ is a mapping from variables to terms. For example σ = {X/a,Y/b} replaces variable X
with constant a and replaces variable Y with constant b. We write ασ for the application of substitution
σ to atom α, so e.g. p(X,Y)σ = p(a, b). Substitutions σ and σ′ can be composed into σ◦σ′ in the obvious
way. There is an empty substitution ε = {} such that σ ◦ ε = ε ◦ σ = σ.

Given a set O of constants representing objects, the grounding of a clause is the set of all ground
clauses obtained by applying all possible substitutions, replacing variables with objects in O.

A set of ground atoms M satisfies a ground clause α1 ∧ ... ∧ αn → α0, written M |= α1 ∧ ... ∧ αn → α0,
if {α1, ...αn} ⊆ M implies α0 ∈ M. A set M of atoms satisfies an unground clause if it satisfies all the
ground instances of that clause. A Herbrand model of a logic program Π is a subset of the Herbrand
base that satisfies all the clauses in Π.

If Π is a ground program and M is a set of ground atoms, let TΠ(M) be the immediate consequence
operator that generates the immediate single-step consequences of the rules in Π when given the
atoms in M:

TΠ(M) = {head(r) | r ∈ Π, body(r) ⊆M}
Let T∞

Π
be the least fixpoint of TΠ, the repeated application of the immediate consequence operator

until there are no more new consequences to derive.

A key result of logic programming is that every Datalog program has a unique subset-minimal
Herbrand model, the least Herbrand model, that can be directly computed by repeatedly generating
the consequences of the ground instances of the clauses [VEK76].

We assume basic concepts and standard terminology from complexity theory. Let P be the class of
problems that can be solved in polynomial time by a deterministic Turing machine, NP be the class
of problems solved in polynomial time by a non-deterministic Turing machine, and EXPTIME be the
class of problems solved in exponential time by a deterministic Turing machine. Let ΣP

i+1 = NPΣP
i be

the class of problems that can be solved in polynomial time by a non-deterministic Turing machine
with a ΣP

i oracle.

If Π is a Datalog program, and A and B are sets of ground atoms, then:

• the data complexity is the complexity of testing whether Π ∪ A |= B, as a function of A and B,
when Π is fixed

23

• the program complexity (also known as “expression complexity”) is the complexity of testing
whether Π ∪ A |= B, as a function of Π and B, when A is fixed

Datalog has polynomial time data complexity but exponential time program complexity: deciding
whether a ground atom is in the least Herbrand model of a Datalog program is in EXPTIME. The
reason for this complexity is because the number of ground instances of a clause is an exponential
function of the number of variables in the clause.

We turn now from Datalog to normal logic programs under the stable model (answer set) semantics
[GL88]. A literal is an atom α or a negated atom not α. A normal logic program is a set of clauses of
the form:

a0 : - a1, ..., an

where a0 is an atom, a1, ..., an is a conjunction of literals, and n ≥ 0. Normal logic clauses extend
Datalog clauses by allowing functions in terms and by allowing negation by failure in the body of the
rule.

The reduct ΠM of a normal logic program Π w.r.t. a set M of atoms results from applying the following
procedure to the grounding of Π: first remove every clause that contains a negative literal not αwhere
α ∈M; second, remove every negative literal from the remaining clauses.

A stable model of a normal logic program Π is any Herbrand model M that is equal to the least
Herbrand model of the reduct of Π w.r.t M. In other words, M is a stable model of Π if M = T∞

ΠM .

Unlike Datalog programs, which have a unique subset-minimal model, a normal logic program under
the stable model semantics can have multiple stable models. For example, let Π be the normal logic
program:

p : - not q
q : - not p

Here, Π has two stable models {p} and {q}.
Answer Set Programming (ASP) is a logic programming language based on normal logic programs
under the stable model semantics. Given a normal logic program, an ASP solver finds the set of stable
models for that program.

A choice rule is a clause of the form:

{a1, ..., am} : - am+1, ..., an

Intuitively, this rule means if conditions am+1, ..., an hold, then feel free to add any subset of {a1, ..., am}
to the database. For example, let Π be the normal logic program:

{a, b} : - c
c

24

Here, Π has four stable models: {c}, {a, c}, {b, c}, {a, b, c}.

Choice rules are just syntactic sugar for sets of normal logic rules. For example, {a0} : - a1, ..., an is
short-hand for the pair of normal logic rules:

a0 : - a1, ..., an, not a0

a0 : - a1, ..., an, not a0

Here, a0 is a fresh atom not appearing elsewhere in the program representing that a0 is false.

A constraint is a clause that rules out a certain combination of literals:

: - a1, ..., an.

This rules out stable models in which a1, ..., an are all true. It is short-hand for:

p : - a1, ..., an, not p

Here, p is a fresh atom not appearing elsewhere in the program.

Modern ASP solvers can also be used to solve optimization problems by the introduction of weak
constraints. A weak constraint is a rule that defines the cost of a certain tuple of atoms. A weak
constraint is of the form:

:∼ a1, ..., an.[w@p, t1, ..., tm]
Here, a1, ..., an are literals, w is the (integer) cost of this set of literals, p is the (integer) priority level,
and t1, ..., tm are terms for determining which aspects of the literals should be considered unique
[CFG+12]. Given a program with weak constraints, an ASP solver can find a preferred answer set
with the lowest cost. It does this by computing the total summed cost for each answer set at each
priority level, and then finding the lowest cost answer at the highest priority level; if there are multiple
answers with the same cost, it considers the next priority level down, and so on.

ASP solvers work by first grounding the first-order logic program into a set of ground clauses, and
then using a modified SAT solver1 to find stable models of the ground program. Finding a solution
to an ASP program is in NP [BED94, DEGV01], while finding an optimal solution to an ASP program
with weak constraints is in ΣP

2 [BNT03, GKS11].

1A SAT solver is a program that takes a formula of propositional logic and attempts to find a satisfying assignment: a
mapping from propositional variables to {True,False} that makes the formula true.

25

2.2 Program synthesis and inductive logic programming

Given a partial specification φ and a language L, the program synthesis problem2 is to find a program
Π in L such that φ(Π). In functional program synthesis, the specification φ often involves a set of
input-output examples. For example:

p(1) = 1

p(2) = 4

p(3) = 9

p(4) = 16

In inductive logic programming (ILP), the program Π defines a relation, and the specification involves
a set E+ of positive examples together with a set E− of negative examples. For example:

E+ =



p(1, 1)

p(2, 4)

p(3, 9)

p(4, 16)

E− =



p(1, 2)

p(2, 1)

p(3, 5)

p(4, 4)

The partial specification does not have to be so direct. It can be any property of the program. We
could ask for a program that terminates in exactly five time-steps, or for a program that contains at
least three for-loops.

In this thesis, the program specification will be rather indirect: given a sequence of sensory inputs,
find a program that makes sense of that sequence. What, exactly, it means to “make sense” of a
sequence will be explained in due course.

Until a few years ago, ILP techniques were restricted to learning simple logic programs; they were
unable to learn recursive programs or learn programs that make use of additional newly defined
predicates (predicate invention). This changed with the introduction of TAL [CRL11a, Cor12, CRL10a]
and Metagol [MLPTN14]. These approaches used meta-interpretive learning, providing a practical
technique for learning recursive programs that used predicate invention. The next section describes
the ideas behind meta-interpretive learning.

2.3 Program synthesis via an interpreter

Suppose we want to write a program in one language (a meta-language) that induces a program in
another language L (the target language) satisfying a specification φ. One general class of approaches

2In this thesis, I use “ program synthesis” to mean the search for a program meeting a specification. This specification
need not be a complete formal specification, but may be partial (e.g. a small set of input/output examples) [GPS+17].

26

solves the induction problem by implementing an interpreter of L in the meta-language. Now, armed
with an interpreter, the problem of finding a program in L satisfyingφ is transformed into the problem
of finding an object in the meta-language that, when interpreted by the interpreter, satisfies φ. We
have reduced the induction problem (finding a program in L) to an abduction problem (finding an
object in the meta-language) [MLPTN14], and can now use standard search techniques.

One prominent example of this class of approaches in ILP is meta-interpretive learning [MLT15,
MLT15, CM16]. In this case, Metagol induces programs in Prolog by having a meta-interpreter of
Prolog that is itself written in Prolog. But in general the target language and meta-language do not
need to coincide.

In this thesis, we use ASP as the meta-language. Applying the general approach to ASP requires us
to:

1. Represent each program in L by a set of ground atoms in ASP.

2. Implement the semantics of L by a set of clauses in ASP. The interpreter takes a program in L
(represented by a set of atoms) and an input (also represented by a set of atoms), and produces
an execution trace for that program (again represented by a set of atoms).

3. Implement the specification φ as an ASP constraint that checks that the execution trace does
indeed satisfy φ.

4. Implement the search over programs in L by means of a set of ASP choice rules that choose
various sets of atoms representing the various programs in L.

5. Add a weak constraint that minimises the size of the induced program.

We illustrate the technique with a simple example: synthesising finite state machines from sets of
acceptable and unacceptable strings.

Suppose, for example, we have the following acceptable and unacceptable strings:

Acceptable Unacceptable
a ab
bb ba
abb aab
bab bbb
bba aba

We want to synthesise a finite state machine (FSM) that accepts strings when they have an even
number of b’s.

First, we need to represent each FSM by a set of ground atoms. We shall use state(S) to represent
that state S is used in the machine. We use natural numbers to represent states, and fix that state

27

1 is always the initial state. We use final(S) to represent that S is a final (accepting) state. We use
trans(S,A,S2) to represent that there is a transition from S to S2 when given symbol A.

So, for example, a FSM that accepts the regular language ab∗ is represented as:

state(1).
state(2).
f inal(2).
trans(1, a, 2).
trans(2, b, 2).

Second, we implement the semantics of the FSM by the following clauses:

in(E, 1, 1) : - example(E).

in(E,T + 1,S2) : - in(E,T,S), trans(S,A,S2), seq(E,T,A).

succeed(E) : - end(E,T), in(E,T,S), f inal(S).

Here, in(E,T,S) means that for example string E, at time step T the machine is in state S; succeed(E)
means that the FSM accepts example string E; seq(E,T,A) means that for example string E, the symbol
at position T is A ; and end(E,T) means that time step T is the final time step for example string E.

The first clause states that for every example string, the FSM starts off in the initial state at the initial
time step. The second clause states that we move from state S to S2 if there is a transition from state
S when receiving symbol A. The third clause states that we accept a string if we are in a final state at
the end of the computation.

Third, we implement the specification as an ASP constraint. We want the FSM to accept the acceptable
strings and reject the unacceptable ones. We represent example string E of length T using T atoms
of the form seq(E,T,A), representing that the T’th symbol of example string E is A. For example, the
acceptable string a and unacceptable string ab are represented by:

seq(e1, 1, a).
accept(e1).

seq(e2, 1, a).
seq(e2, 2, b).
reject(e2).

28

We add constraints to check that the right strings are accepted:

: - accept(E), not succeed(E).

: - reject(E), succeed(E).

Fourth, we implement the following choice rules to search over FSM machines3:

possible(1..maxs).

state(1).

{state(S)} : - possible(S).

{ f inal(S)} : - state(S).

{trans(S,A,S2)} : - state(S), symbol(A), state(S2).

Here, we insist that there is at least one state, the initial state 1. We use possible(S) to represent that
state S might be used in the FSM, and state(S) to mean that S is actually used. The first choice rule
allows as many possible states (from 1 to maxs) as we need. The second choice rule chooses any subset
of states to be final. The third choice rule chooses the transitions between states.

We use the following helper functions:

example(E) : - seq(E, ,).

symbol(A) : - seq(, ,A).

end(E,N + 1) : - seq2(E,N), not seq2(E,N + 1).

seq2(E,N) : - seq(E,N,).

The above code synthesises FSMs from examples. If we want to find the shortest FSM that solves the
examples, we just add the weak constraint:

:∼ trans(S,A,S2).[1@1,S,A,S2]

3The line possible(1..maxs) uses the .. syntactic sugar. This is short-hand for possible(1), ..., possible(maxs).

29

When we run this code on the acceptable and unacceptable strings above, it produces the following
FSM describing the language a∗(bb)∗:

state(1).
state(2).
trans(1, a, 1).
trans(1, b, 2).
trans(2, a, 2).
trans(2, b, 1).
f inal(1).

In this thesis, we shall synthesise programs in an extension of Datalog, and so the interpreter will be
somewhat more involved than that for the FSM. But the basic technique remains essentially the same.

2.4 Neural networks

We shall make occasional use of neural networks, both as baselines (Section 6.12.3), and as parts of
a larger system (Chapter 5). An introduction to neural networks is beyond the scope of this thesis
and we refer to [Mur12]. The key distinction we shall use is between a feed-forward neural network
(in which connections between nodes form a directed acylic graph) and recurrent neural networks
in which connections between nodes may form cycles. The simplest feed-forward network is the
fully-connected multi-layer perceptron, in which the nodes are divided into layers L1,L2, ..., and
there is a connection from each node in layer Li to each node in Li+1. The most common form of
recurrent network is the LSTM [HS97]. References to specific techniques and methods are given in
the text where they are first used.

In Chapter 5, we use a binary neural network [HCS+16, KS16, CNHR18, NKR+18] as a parameterised
perceptual classifier. Binary neural networks (BNNs) are increasingly popular because they are more
efficient (both in memory and processing) than standard artificial neural networks. But our interest
in BNNs is not so much in their resource efficiency as in their discreteness.

In the BNNs that we use [CNHR18], the node activations and weights are all binary values in {0, 1}.
If a node has n binary inputs x1, ..., xn, with associated binary weights w1, ...,wn, the node is activated
if the total sum of inputs xnor-ed with their weights is greater than or equal to half the number of
inputs. In other words, the node is activated if

n∑

i=1

1[xi = wi] ≥
⌈n

2

⌉

30

Chapter 3

Making sense of discrete input

This material is based on my article “Apperception”, in Human-Like Machine Intelligence, Oxford
University Press, 2020 (forthcoming). It is also based on “Making sense of sensory input”, in review
for Artificial Intelligence.1

What does it mean to make sense of a sensory sequence? In this chapter, we formalize what this
means, and describe our implementation. For now, we assume that the sensory sequence has already
been discretised into ground atoms of first-order logic representing sensor readings. In the next
chapter, we let go of our simplifying assumption of already-discretised sensory input and consider
sequences of raw unprocessed input: consider, for example, a sequence of pixel arrays from a video
camera.

But for now, assume that the sensor readings have already been discretized, so a sensory reading
featuring sensor a can be represented by a ground atom p(a) for some unary predicate p, or by an
atom r(a, b) for some binary relation r and unique value b. In this thesis, for performance reasons, we
restrict our attention to unary and binary predicates.

Definition 1. An unambiguous symbolic sensory sequence is a sequence of sets of ground atoms. Given
a sequence S = (S1,S2, ...), every state St in S is a set of ground atoms, representing a partial description of
the world at a discrete time step t. An atom p(a) ∈ St represents that sensor a has property p at time t. An
atom r(a, b) ∈ St represents that sensor a is related via relation r to value b at time t. If G is the set of all ground
atoms, then S ∈

(
2G

)∗
.

4

1The paper is co-authored with Jose Hernandez-Orallo, Johannes Welbl, Pushmeet Kohli, and Marek Sergot. Jose
Hernandez-Orallo improved the experiments and the experimental methodology. Johannes Welbl implemented the neural
net baselines. Pushmeet Kohli is my advisor at DeepMind.

31

Example 1. Consider, the following sequence S1:10. Here there are two sensors a and b, and each
sensor can be either on or off .

S1 = {} S2 = {off (a), on(b)} S3 = {on(a), off (b)}
S4 = {on(a), on(b)} S5 = {on(b)} S6 = {on(a), off (b)}
S7 = {on(a), on(b)} S8 = {off (a), on(b)} S9 = {on(a)}
S10 = {}

There is no expectation that a sensory sequence contains readings for all sensors at all time steps.
Some of the readings may be missing. In state S5, we are missing a reading for a, while in state S9, we
are missing a reading for b. In states S1 and S10, we are missing sensor readings for both a and b. /

The central idea is to make sense of a sensory sequence by constructing a unified theory that explains that
sequence. The key notions, here, are “theory”, “explains”, and “unified”. We consider each in turn.

3.1 The theory

Theories are defined in a new language, Datalog⊃−, designed for modelling dynamics. In this language,
one can describe how facts change over time by writing a causal rule stating that if the antecedent
holds at the current time-step, then the consequent holds at the next time-step. Additionally, our
language includes a frame axiom allowing facts to persist over time: each atom remains true at
the next time-step unless it is overridden by a new fact which is incompossible with it. Two facts
are incompossible if there is a constraint that precludes them from both being true. Thus, Datalog⊃−

extends Datalog with causal rules and constraints.

Definition 2. A theory is a four-tuple (φ, I,R,C) of Datalog⊃− elements where:

• φ is a type signature specifying the types of constants, variables, and arguments of predicates

• I is a set of initial conditions

• R is a set of rules describing the dynamics

• C is a set of constraints

4

We shall consider each element in turn, starting with the type signature.

32

Definition 3. Given a set T of types, a set O of constants representing individual objects, and a set P of
predicates representing properties and relations, let G be the set of all ground atoms formed from T , O, and P.
Given a setV of variables, letU be the set of all unground atoms formed from T ,V, and P.

A type signature is a tuple (T,O,P,V) where T ⊆ T is a finite set of types, O ⊆ O is a finite set of constants
representing objects, P ⊆ P is a finite set of predicates representing properties and relations, and V ⊆ V is a
finite set of variables. We write κO : O→ T for the type of an object, κP : P→ T∗ for the types of the predicate’s
arguments, and κV : V → T for the type of a variable. 4

Now some type signatures are suitable for some sensory sequences, while others are unsuitable,
because they do not contain the right constants and predicates. The following definition formalizes
this:

Definition 4. Let GS =
⋃

t≥1 St be the set of all ground atoms that appear in sensory sequence S = (S1, ...).
Let Gφ be the set of all ground atoms that are well-typed according to type signature φ. If φ = (T,O,P,V)
then Gφ = {p(a1, ..., an) | p ∈ P, κP(p) = (t1, ..., tn), ai ∈ O, κO(ai) = ti for all i = 1..n}. A type signature φ is
suitable for a sensory sequence S if all the atoms in S are well-typed according to signature φ, i.e. GS ⊆ Gφ.

4

Next, we define the set of unground atoms for a particular type signature.

Definition 5. Let Uφ be the set of all unground atoms that are well-typed according to signature φ. If
φ = (T,O,P,V) then Uφ = {p(v1, ..., vn) | p ∈ P, κP(p) = (t1, ..., tn), vi ∈ V, κV(vi) = ti for all i = 1..n}. Note
that, according to this definition, an atom is unground if all its terms are variables. Note that “unground”
means more than simply not ground. For example, p(a,X) is neither ground nor unground. 4

Example 2. One suitable type signature for the sequence of Example 1 is (T,O,P,V) where:

T = {s}
O = {a:s, b:s}
P = {on(s), off (s)}
V = {X:s,Y:s}

Here, and throughout, we write a:s to mean that object a is of type s, on(s) to mean that unary
predicate on takes one argument of type s, and X:s to mean that variable X is of type s. The unground

33

atoms are Uφ = {on(X), off (X), on(Y), off (Y)}. There are, of course, an infinite number of other suitable
signatures. /

Definition 6. The initial conditions I of a theory (φ, I,R,C) is a set of ground atoms from Gφ representing
a partial description of the facts true at the initial time step. 4

The rules define the dynamics of the theory:

Definition 7. There are two types of rule in Datalog⊃−. A static rule is a definite clause of the form
α1 ∧ ...∧ αn → α0, where n ≥ 0 and each αi is an unground atom from Uφ consisting of a predicate and a list
of variables. Informally, a static rule is interpreted as: if conditions α1, ...αn hold at the current time step, then
α0 also holds at that time step. A causal rule is a clause of the form α1 ∧ ... ∧ αn ⊃− α0, where n ≥ 0 and each
αi is an unground atom from Uφ. A causal rule expresses how facts change over time. Rule α1 ∧ ... ∧ αn ⊃− α0

states that if conditions α1, ...αn hold at the current time step, then α0 holds at the next time step. 4

All variables in rules are implicitly universally quantified. So, for example, on(X) ⊃− off (X) states that
for all objects X, if X is currently on, then X will become off at the next-time step.

The constraints rule out certain combinations of atoms from co-occurring in any state in the sequence2:

Definition 8. There are three types of constraint in Datalog⊃−. A unary constraint is an expression of the
form ∀X, p1(X) ⊕ ... ⊕ pn(X), where n > 1, meaning that for all X, exactly one of p1(X), ..., pn(X) holds. A
binary constraint is an expression of the form ∀X,∀Y, r1(X,Y) ⊕ ... ⊕ rn(X,Y) where n > 1, meaning that for
all objects X and Y, exactly one of the binary relations hold. A uniqueness constraint is an expression of the
form ∀X,∃!Y:t2, r(X,Y), which means that for all objects X of type t1 there exists a unique object Y such that
r(X,Y). 4

Note that the rules and constraints are constructed entirely from unground atoms. Disallowing
constants prevents special-case rules that apply to particular objects, and forces the theory to be
general.3

2Exclusive disjunction between atoms p1(X), ..., pn(X) is different from xor between the n atoms. The xor of n atoms is
true if an odd number of the atoms hold, while the exclusive disjunction is true if exactly one of the atoms holds. We write
p1(X) ⊕ ... ⊕ pn(X) to mean exclusive disjunction between n atoms, not the application of n − 1 xor operations.

3This restriction also occurs in some ILP systems [IRS14, EG18]. See [Lon98, ESS19] for a Kantian justification.

34

3.2 Explaining the sensory sequence

A theory explains a sensory sequence if the theory generates a trace that covers that sequence. In this
section, we explain the trace and the covering relation.

Definition 9. Every theory θ = (φ, I,R,C) generates an infinite sequence τ(θ) of sets of ground atoms, called
the trace of that theory. Here, τ(θ) = (A1,A2, ...), where each At is the smallest set of atoms satisfying the
following conditions:

• I ⊆ A1

• If there is a static rule β1 ∧ ... ∧ βm → α in R and a ground substitution σ such that At satisfies βiσ for
each antecedent βi, then ασ ∈ At

• If there is a causal rule β1 ∧ ...∧ βm ⊃− α in R and a ground substitution σ such that At−1 satisfies βiσ for
each antecedent βi, then ασ ∈ At

• Frame axiom: if α is in At−1 and there is no atom in At that is incompossible with α w.r.t constraints
C, then α ∈ At. Two ground atoms are incompossible if there is some constraint c in C and some
substitution σ such that the ground constraint cσ precludes both atoms being true.

4

The frame axiom is a simple way of providing inertia: a proposition continues to remain true until
something new comes along which is incompossible with it.4 Including the frame axiom makes our
theories much more concise: instead of needing rules to specify all the atoms which remain the same,
we only need rules that specify the atoms that change.

Note that the state transition function is deterministic: At is uniquely determined by At−1.

Theorem 1. The trace of every theory repeats after some finite number of steps. For any theory θ, there exists
a k > 0 such that τ(θ) = (A1, ...,Ak−1,Ak,Ak+1, ...) and for all i ≥ 0, Ai = Ak+i.

Proof. As the set Gφ of ground atoms is finite, there must be a k such that A1 = Ak, since each Ai is a
subset of Gφ, and there are only a finite number of such subsets. The proof proceeds by induction on
i. If i = 0, the proof is trivial. When i > 0, note that the trace function τ satisfies the Markov condition
that the next state At+1 depends only on the current state At, and not on any earlier states. Hence if
Ai = Ai+k, then Ai+1 = Ai+k+1. �

One important consequence of Theorem 1 is:
4In the Metaphysical Foundations of Natural Science 4, 543.15-20, Kant held that the law of inertia is a priori.

35

⌧(✓)

St

t1 t2 t3 t4

I

R

C 8X : t, on(X) � o↵ (X)

on(a) o↵ (a) on(a) o↵ (a)

(a) Empty theory

on(a)⌧(✓)

St

t1 t2 t3 t4

I

R

C 8X : t, on(X) � o↵ (X)

on(a)

on(a)

on(a) on(a) on(a)

on(a)o↵ (a) o↵ (a)

(b) One initial condition

on(X) �� o↵ (X)

o↵ (a)on(a)⌧(✓)

St

t1 t2 t3 t4

I

R

C 8X : t, on(X) � o↵ (X)

o↵ (a)

on(a)

o↵ (a)on(a) o↵ (a)

o↵ (a)

on(a)

(c) One rule

on(X) �� o↵ (X)

o↵ (X) �� on(X)

o↵ (a)on(a)⌧(✓)

St

t1 t2 t3 t4

I

R

C 8X : t, on(X) � o↵ (X)

on(a) o↵ (a)

on(a)

o↵ (a)on(a) on(a) o↵ (a)

(d) Two rules

Figure 3.1: Four candidate theories attempting to explain the sequence
(S1,S2,S3,S4) where S1 = S3 = {on(a)} and S2 = S4 = {off (a)}. In each sub-
figure, we show at the top the theory θ composed of constraints C (fixed),
rules R, and initial conditions I; below, we show the trace of the theory, τ(θ),
and the state sequence(S1,S2,S3,S4). When the trace at time t fails to be a
superset of the state St, we color the state St in red. Sub-figure (a) shows the
initial theory, with empty initial conditions and rules. This fails to explain
any of the sensory states. In (b), we add one initial condition. The atom on(a)
persists throughout the time series because of the frame axiom. In (c), we add
one causal rule. This changes on(a) at t1 to off (a) at t2. But off (a) then persists
because of the frame axiom. In (d), we add another causal rule. At this point,
the trace τ(θ) covers the sequence.

36

Theorem 2. Given a theory θ and a ground atom α, it is decidable whether α appears somewhere in the infinite
trace τ(θ).

Proof. Let τ(θ) be the infinite sequence (A1,A2, ...). From Theorem 1, the trace must repeat after k
time steps. Thus, to check whether ground atom α appears somewhere in τ(θ), it suffices to test if α
appears in A1, ...,Ak. �

Next we define what it means for a theory to “explain” a sensory sequence.

Definition 10. Given finite sequence S = (S1, ...,ST) and (not necessarily finite) S′, S v S′ if S′ = (S′1,S
′
2, ...)

and Si ⊆ S′i for all 1 ≤ i ≤ T. If S v S′, we say that S is covered by S′, or that S′ covers S. A theory θ
explains a sensory sequence S if the trace of θ covers S, i.e. S v τ(θ). 4

In providing a theory θ that explains a sensory sequence S, we make S intelligible by placing it within
a bigger picture: while S is a scanty and incomplete description of a fragment of the time-series, τ(θ)
is a complete and determinate description of the whole time-series.

Example 3. We shall provide a theory to explain the sensory sequence S of Example 1.

Consider the type signature φ = (T,O,P,V), consisting of types T = {s}, objects O = {a:s, b:s}, predi-
cates P = {on(s), off (s), p1(s), p2(s), p3(s), r(s, s)}, and variables V = {X:s,Y:s}. Here, φ extends the type
signature of Example 2 by adding three unary predicates p1, p2, p3, and one binary relation r.5

Consider the theory θ = (φ, I,R,C), where:

I =



p1(b)
p2(a)
r(a, b)
r(b, a)



R =



p1(X) ⊃− p2(X)
p2(X) ⊃− p3(X)
p3(X) ⊃− p1(X)
p1(X)→ on(X)
p2(X)→ on(X)
p3(X)→ off (X)



C =



∀X:s, on(X) ⊕ off (X)
∀X:s, p1(X) ⊕ p2(X) ⊕ p3(X)
∀X:s, ∃!Y:s r(X,Y)



The infinite trace τ(θ) = (A1,A2, ...) for theory θ begins with:

A1 = {on(a), on(b), p2(a), p1(b), r(a, b), r(b, a)} A2 = {off (a), on(b), p3(a), p2(b), r(a, b), r(b, a)}
A3 = {on(a), off (b), p1(a), p3(b), r(a, b), r(b, a)} A4 = {on(a), on(b), p2(a), p1(b), r(a, b), r(b, a)}
. . .

5Extended type signatures are generated by the machine, not by hand. Our computer implementation searches through
the space of increasingly complex type signatures extending the original signature. This search process is described in
Section 3.7.1.

37

Note that the trace repeats at step 4. In fact, it is always true that the trace repeats after some finite
set of time steps.

Theory θ explains the sensory sequence S of Example 1, since the trace τ(θ) covers S. Note that τ(θ)
“fills in the blanks” in the original sequence S, both predicting final time step 10, retrodicting initial
time step 1, and imputing missing values for time steps 5 and 9. /

3.3 Unifying the sensory sequence

Next, we proceed from explaining a sensory sequence to “making sense” of that sequence. In order
for θ to make sense of S, it is necessary that τ(θ) covers S. But this condition is not, on its own, sufficient.
The extra condition that is needed for θ to count as “making sense” of S is for θ to be unified. We
formalize what it means for a theory to be “unified” using elements from Kant’s discussion of the
“synthetic unity of apperception”.6

Definition 11. A trace τ(θ) is (i) a sequence of (ii) sets of ground atoms composed of (iii) predicates and (iv)
objects. For the theory θ to be unified is for unity to be achieved at each of the following four levels:

1. Objects are united via chains of binary relations (see Section 3.3.1)

2. Predicates are united via constraints (see Section 3.3.2)

3. Ground atoms are united into states by jointly respecting constraints and static rules (see Section 3.3.3)

4. States are united into a sequence by causal rules (see Section 3.3.4)

4

3.3.1 Object connectedness

Definition 12. A theory θ satisfies object connectedness if for each state At in τ(θ) = (A1,A2, ...),
for each pair (x, y) of distinct objects, x and y are connected via a chain of binary atoms
{r1(x, z1), r2(z1, z2), ...rn(zn−1, zn), rn+1(zn, y)} ⊆ At. 4

6In this chapter, we do not focus on Kant exegesis, but do provide some key references. “The principle of the synthetic
unity of apperception is the supreme principle of all use of the understanding” [B136]; it is “the highest point to which one
must affix all use of the understanding, even the whole of logic and, after it, transcendental philosophy” [B134]. For more
discussion of Kant’s theory of apperception, see Chapter 6.

38

If this condition is satisfied, it means that given any object, we can get to any other object by hopping
along relations. Everything is connected, even if only indirectly.7

Note that this notion of connectedness is rather abstract: the requirement is only that every pair of
objects are indirectly connected via some chain of binary relations. Although some of these binary
relations might be spatial relations (e.g. “left-of”), they need not all be. The requirement is only that
every pair of objects are connected via some chain of binary relations; it does not insist that any of
these binary relations have a specifically “spatial” interpretation.8

3.3.2 Conceptual unity

A theory satisfies conceptual unity if every predicate is involved in some constraint, either exclusive
disjunction (⊕) or unique existence (∃!). The intuition here is that xor constraints combine predicates
into clusters of mutual incompatibility.9

Definition 13. A theory θ = (φ, I,R,C) satisfies conceptual unity if for each unary predicate p in φ, there
is some xor constraint in C of the form ∀X:t, p(X) ⊕ q(X) ⊕ ... containing p; and, for each binary predicate r in
φ, there is some xor constraint in C of the form ∀X:t1,∀Y:t2, r(X,Y) ⊕ s(X,Y) ⊕ ... or some ∃! constraint in C
of the form ∀X:t,∃!Y:t2, r(X,Y). 4

To see the importance of this, observe that if there are no constraints, then there are no exhaustiveness
or exclusiveness relations between atoms. An xor constraint e.g. ∀X:t, on(X) ⊕ off (X) both rules out
the possibility that an object is simultaneously on and off (exclusiveness) and also rules out the
possibility that an object of type t is neither on nor off (exhaustiveness). It is exhaustiveness which
generates states that are determinate, in which it is guaranteed every object of type t is e.g. either on
or off . It is exclusiveness which generates incompossibility between atoms, e.g. that on(a) and off (a)
are incompossible. Incompossibility, in turn, is needed to constrain the scope of the frame axiom
(see Definition 9 above). Without incompossibility, all atoms from the previous time-step would be
transferred to the next time-step, and the set of true atoms in the sequence (S1,S2, ...) would grow
monotonically over time: Si ⊆ S j if i ≤ j, which is clearly unacceptable. The purpose of the constraint
of conceptual unity is to collect predicates into groups10 , to provide determinacy in each state, and
to ground the incompossibility relation that constrains the way information is propagated between
states.11

7See [A211-5/B255-62], [B203].
8For a more substantial notion of spatial unity, see Section 6.5.
9See [A73-4/B98-9]. See also [Jäsche Logic 9:107n].

10See [A103-11]. See also: “What the form of disjunctive judgment may do is contribute to the acts of forming categorical
and hypothetical judgments the perspective of their possible systematic unity”, [Lon98, p.105]

11A natural question to ask at this point is: why use exclusive disjunction to represent constraints? Why not instead rep-

39

3.3.3 Static unity

In our effort to interpret the sensory sequence, we construct various ground atoms. These need to be
grouped together, somehow, into states (sets of atoms). But what determines how these atoms are
grouped together into states?

Treating a set A of ground atoms as a state is (i) to insist that A satisfies all the constraints in C and
(ii) to insist that A is closed under the static rules in R.12 If A does not satisfy the constraints, it is
not a coherent and determinate representation; it is “less even than a dream.”13 This motivates the
following definition:

Definition 14. A theory θ = (φ, I,R,C) satisfies static unity if every state (A1,A2, ...) in τ(θ) satisfies all
the constraints in C and is closed under the static rules in R. 4

Note that, from the definition of the trace in Definition 9, all the states in τ(θ) are automatically closed

resent constraints using strong negation or negation as failure[?]? An exclusive disjunction can always be converted into a
set of extended clauses representing the predicates’ exclusiveness, and one normal clause representing their exhaustiveness.
For example, ∀X : t, p(X) ⊕ q(X) can be rendered as:

¬p(X) : - q(X)

¬q(X) : - p(X)

: - not p(X), not q(X), t(X)

In general, if we have an exclusive disjunction featuring n predicates, we can turn this into n ∗ (n − 1) clauses (using
strong negation) to capture the exclusiveness of the n predicates, and one clause (using negation as failure) to capture the
exhaustiveness.

The exclusive disjunction constraint is a compact way of representing a lot of information about the connection between
predicates. Although the exclusive disjunction constraint can always be translated into a set of clauses (using both negation
as failure and strong negation), the representation using exclusive disjunction is much more compact.

One reason, then, for expressing the constraint as an exclusive disjunction is that it is a significantly more compact
representation than the representation using negation as failure. But another, more substantial reason is that it means we
can avoid the complexities involved in the semantics if we added negation as failure to our target language Datalog⊃−.
There are various semantics for normal logic programs that include negation as failure (e.g. Clark completion [Cla78],
stable model semantics [GL88], well-founded models [?]), but each of them introduces significant additional complexities
when compared with the least model of a definite logic program: the Clark completion is not always consistent (does not
always have a model), the stable model semantics assigns the meaning of a normal logic program to a set of models rather
than a single model, and the well-founded model uses a 3-valued logic where atoms can be true, false, or undefined. Thus,
the main reason for expressing constraints using exclusive disjunction (rather than using negation as failure) is to restrict
the rules to definite rules and avoid the complexities of the various semantics of normal logic programs. (Although we
do plan to extend our rules to include stratified negation, as this does not complicate the semantics in the same way that
unrestricted negation does). The inner loop of our program synthesis system is the calculation of the trace τ(θ) by executing
a Datalog⊃− program, so it is essential that the execution is as efficient as possible. Hence our strong preference for definite
logic programs over normal logic programs.

Why do we not allow more complex constraints (e.g. allowing any first-order sentence to be a constraint)? If we allowed
any arbitrary set of first-order formulas as constraints, then computing the incompossibility relation would become much
harder, given that computing entailment in first-order logic is only semi-decidable. The reason, then, why we focus on xor
constraints is that they are the simplest construct that generates the incompossibility relation needed to constrain the frame
axiom.

12See the schema of community [A144/B183-4].
13See [A112].

40

under the static rules in R.

3.3.4 Temporal unity

Given a set of states, we need to unite these elements in a sequence. According to the fourth and final
condition of unity, the only thing that can unite states in a sequence is a set of causal rules.14 These
causal rules are universal in two senses: they apply to all object tuples, and they apply at all times.
A causal rule α1 ∧ ... ∧ αn ⊃− α0 fixes the temporal relation between the atoms α1, ..., αn (which are
true at t) and the atom α0 (which is true at t + 1). According to Kant15, the only thing that can fix the
succession relation between states is the universal causal rule.

Imagine that, instead, we posit a finite sequence of states extensionally (rather than intensionally via
initial conditions and rules). Here, our alternative “interpretation” of the sensory sequence S is just
a finite S′ where S v S′. This S′ is arbitrary because it is not generated by rules that confer on it the
“dignity of necessity”16. In a unified interpretation, by contrast, the states are united in a sequence
by being necessitated by universal causal rules. The above discussion motivates the following:

Definition 15. A sequence (A1,A2, ...) of states satisfies temporal unity with respect to a set R⊃− of causal
rules if, for eachα1∧...∧αn⊃−α0 in R⊃−, for each ground substitution σ, for each time-step t, if {α1σ, ..., αnσ} ⊆ At

then α0σ ∈ At+1. 4

Note that, from the definition of the trace in Definition 9, the trace τ(θ) automatically satisfies temporal
unity.

3.3.5 The four conditions of unity

To recap, the trace of a theory is a sequence of sets of atoms. The four types of element are objects,
predicates, sets of atoms, and sequences of sets of atoms. Each of the four types of element has its
own form of unity:

1. Object connectedness: objects are united by being connected via chains of relations

2. Conceptual unity: predicates are united by constraints

3. Static unity: atoms are united in a state by jointly satisfying constraints and static rules

4. Temporal unity: states are united in a sequence by causal rules

14See the schema of causality [A144/B183].
15See [B233-4].
16See [A91/B124].

41

Since temporal unity is automatically satisfied from the definition of a trace in Definition 9, we are left
with only three unity conditions that need to be explicitly checked: object connectedness, conceptual
unity, and static unity. A trace partially satisfies static unity since the static rules are automatically
enforced by Definition 9; but the constraints are not necessarily satisfied.

Note that both checking object connectedness and checking static unity require checking every time-
step, and the trace is infinitely long. However, as long as the trace repeats at some point, Theorem 1
ensures that we need only check the finite portion of the trace until we find the first repetition (the
first k such that A1 = Ak where τ(θ) = (A1, ...)).

Example 4. The theory θ of Example 3 satisfies the four unity conditions since:

• For each state Ai in τ(θ), a is connected to b via the singleton chain {r(a, b)}, and b is connected
to a via {r(b, a)}.

• The predicates of θ are on, off , p1, p2, p3, r. Here, on and off are involved in the constraint
∀X:s, on(X) ⊕ off (X), while p1, p2, p3 are involved in the constraint ∀X:s, p1(X) ⊕ p2(X) ⊕ p3(X),
and r is involved in the constraint ∀X:s, ∃!Y:s r(X,Y).

• Let τ(θ) = (A1,A2,A3,A4, ...). It is straightforward to check that A1, A2, and A3 satisfy each
constraint in C. Observe that A4 repeats A1, thus Theorem 1 ensures that we do not need to
check any more time steps.

• Temporal unity is automatically satisfied by the definition of the trace τ(θ) in Definition 9. /

3.4 Making sense

Now we are ready to define the central notion of “making sense” of a sequence.

Definition 16. A theory θ makes sense of a sensory sequence S if θ explains S, i.e. S v τ(θ), and θ
satisfies the four conditions of unity of Definition 11. If θ makes sense of S, we also say that θ is a unified
interpretation of S. 4

In our search for interpretations that make sense of sensory sequences, we are particularly interested
in parsimonious interpretations. To this end, we define the cost of a theory17:

17Note that this simple measure of cost does not depend on the constraints in C or the type signature φ. There are various
alternative more complex definitions of cost. We could, for example, use the Kolmogorov complexity [Kol63] of θ: the size
of the smallest program that can generate θ. Or we could use Levin complexity [Lev73] and also take into account the log
of the computation time needed to generate τ(θ), up to the point where the trace first repeats.

42

Definition 17. Given a theory θ = (φ, I,R,C), the cost of θ is

|I| +
∑{

n + 1 | α1 ∧ ... ∧ αn ◦ α0 ∈ R, ◦ ∈ {→,⊃−}
}

Here, cost(θ) is just the total number of ground atoms in I plus the total number of unground atoms in the
rules of R. 4

The key notion of this chapter is the discrete apperception task.

Definition 18. The input to an apperception task is a triple (S, φ,C) consisting of a sensory sequence S, a
suitable type signature φ, and a set C of (well-typed) constraints such that (i) each predicate in S appears in
some constraint in C and (ii) S can be extended to satisfy C: there exists a sequence S′ covering S such that
each state in S′ satisfies each constraint in C.

Given such an input triple (S, φ,C), the discrete apperception task is to find the lowest cost theory θ =

(φ′, I,R,C′) such that φ′ extends φ, C′ ⊇ C, and θ makes sense of S. 4

Note that the input to an apperception task is more than just a sensory sequence S. It also contains a
type signature φ and a set C of constraints. It might be objected: why make things so complicated?
Why not simply let the input to an apperception task be just the sequence S, and ask the system to
produce some theory θ satisfying the unity conditions such that S v τ(θ)? The reason that the input
needs to contain types φ and constraints C to supplement S is that otherwise the task is severely
under-constrained, as the following example shows.

Example 5. Suppose our sequence is S = ({on(a)}, {off (a)}, {on(a)}, {off (a)}, {on(a)}, {off (a)}). If we are not
given any constraints (such as ∀X : t, on(X) ⊕ off (X)), if we are free to construct any φ and any set C
of constraints, then the following interpretation θ = (φ, I,R,C) will suffice, where φ = (T,O,P,V):

T = {t}
O = {a:t}
P = {on(t), off (t), p(t), q(t)}
V = {X:t}

and I,R,C are defined as:

I =


on(a)
off (a)

 R =
{ }

C =


∀X:t, on(X) ⊕ p(X)
∀X:t, off (X) ⊕ q(X)



43

Here we have introduced two latent predicates p and q which are incompossible with on and off
respectively. But in this interpretation, on and off are not incompossible with each other, so the
degenerate interpretation (where both on and off are true at all times) is acceptable. This shows the
need for including constraints on the input predicates as part of the task formulation. /

The apperception task can be generalized to the case where we are given as input, not a single sensory
sequence S, but a set of m such sequences.

Definition 19. Given a set {S1, ...,Sm} of sensory sequences, a type signatureφ and constraints C such that each
(Si, φ,C) is a valid input to an apperception task as defined in Definition 18, the generalized apperception
task is to find a lowest-cost theory (φ′, {},R,C′) and sets {I1, ..., Im} of initial conditions such that φ′ extends
φ, C′ ⊇ C, and for each i = 1..m, (φ′, Ii,R,C′) makes sense of Si. 4

3.5 Examples

In this section, we provide a worked example of an apperception task, along with different unified
interpretations. We wish to highlight that there are always many alternative ways of interpreting a
sensory sequence, each with different latent information (although some may have higher cost than
others).

We continue to use our running example, the sensory sequence from Example 1. Here there are two
sensors a and b, and each sensor can be on or off .

S1 = {} S2 = {off (a), on(b)} S3 = {on(a), off (b)}
S4 = {on(a), on(b)} S5 = {on(b)} S6 = {on(a), off (b)}
S7 = {on(a), on(b)} S8 = {off (a), on(b)} S9 = {on(a)}
S10 = {}

Let φ = (T,O,P,V) where T = {sensor}, O = {a, b}, P = {on(sensor), off (sensor)}, V = {X:sensor}. Let
C = {∀X:sensor, on(X) ⊕ off (X)}.
Examples 6, 7, and 8 below show three different unified interpretations of Example 1.

Example 6. One possible way of interpreting Example 1 is as follows. The sensors a and b are simple
state machines that cycle between states p1, p2, and p3. Each sensor switches between on and off
depending on which state it is in. When it is in states p1 or p2, the sensor is on; when it is in state p3,
the sensor is off. In this interpretation, the two state machines a and b do not interact with each other
in any way. Both sensors are following the same state transitions. The reason the sensors are out of
sync is because they start in different states.

44

The type signature for this first unified interpretation is φ′ = (T,O,P,V), where:

T = {sensor}
O = {a:sensor, b:sensor}
P = {on(sensor), off (sensor), r(sensor, sensor), p1(sensor), p2(sensor), p3(sensor)}
V = {X:sensor,Y:sensor}

The three unary predicates p1, p2, and p3 are used to represent the three states of the state machine.

Our first unified interpretation is the tuple (φ′, I,R,C′), where:

I =



p2(a)
p1(b)
r(a, b)
r(b, a)



R =



p1(X) ⊃− p2(X)
p2(X) ⊃− p3(X)
p3(X) ⊃− p1(X)
p1(X)→ on(X)
p2(X)→ on(X)
p3(X)→ off (X)



C′ =



∀X:sensor, on(X) ⊕ off (X)
∀X:sensor, p1(X) ⊕ p2(X) ⊕ p3(X)
∀X:sensor, ∃!Y:sensor r(X,Y)



The update rules R contain three causal rules (using ⊃−) describing how each sensor cycles from state
p1 to p2 to p3, and then back again to p1. For example, the causal rule p1(X)⊃−p2(X) states that if sensor
X satisfies p1 at time t, then X satisfies p2 at time t + 1. We know that X is a sensor from the variable
typing information in φ′. R also contains three static rules (using →) describing how the on or off
attribute of a sensor depends on its state. For example, the static rule p1(Y) → on(X) states that if X
satisfies p1 at time t, then X also satisfies on at time t.

The constraints C′ state that (i) every sensor is (exclusively) either on or off , that every sensor is
(exclusively) either p1, p2, or p3, and that every sensor has exactly one sensor that is related by r
to it. The third constraint ∀X:sensor, ∃!Y:sensor r(X,Y) is used to satisfy the constraint of object
connectedness.

In this first interpretation, three new predicates are invented (p1, p2, and p3) to represent the three
states of the state machine. In the next interpretation, we will introduce new invented objects instead
of invented predicates.

Given the initial conditions I and the update rules R, we can use our interpretation to compute which
atoms hold at which time step. In this case, τ(θ) = (A1,A2, ...) where Si v Ai. Note that this trace
repeats: Ai = Ai+3. We can use the trace to predict the future values of our two sensors at time step
10, since

A10 = {on(a), on(b), r(a, b), r(b, a), p2(a), p1(b)}

As well as being able to predict future values, we can retrodict past values (filling in A1), or interpolate

45

intermediate unknown values (filling in A5 or A9).18 But although an interpretation provides the
resources to “fill in” missing data, it has no particular bias to predicting future time-steps. The
conditions which it is trying to satisfy (the unity conditions of Section 3.3) do not explicitly insist that
an interpretation must be able to predict future time-steps. Rather, the ability to predict the future (as
well as the ability to retrodict the past, or interpolate intermediate values) is a derived capacity that
emerges from the more fundamental capacity to “make sense” of the sensory sequence.

/

Example 7. There are always infinitely many different ways of interpreting a sensory sequence.
Next, we show a rather different interpretation of S1:10 from that of Example 6. In our second unified
interpretation, we no longer see sensors a and b as self-contained state-machines. Now, we see the
states of the sensors as depending on their left and right neighbours. In this new interpretation, we
no longer need the three invented unary predicates (p1, p2, and p3), but instead introduce a new object.

Object invention is much less explored than predicate invention in inductive logic programming.
Dietterich et al. [DDG+08] anticipated the need for it:

It is a characteristic of many scientific domains that we need to posit the existence of hidden
objects in order to achieve compact hypotheses which explain empirical observations. We
will refer to this process as object invention. For instance, object invention is required when
unknown enzymes produce observable effects related to a given metabolic network.

However, although the need for it has been recognised, object invention remains largely unexplored.

Our new type signature φ′ = (T,O,P,V) is:

T = {sensor}
O = {a:sensor, b:sensor, c:sensor}
P = {on(sensor), off (sensor), r(sensor, sensor)}
V = {X:sensor,Y:sensor}

In this new interpretation, imagine there is a one-dimensional cellular automaton with three cells, a,
b, and (unobserved) c. The three cells wrap around: the right neighbour of a is b, the right neighbour
of b is c, and the right neighbour of c is a. In this interpretation, the spatial relations are fixed. (We
shall see another interpretation later where this is not the case). The cells alternate between on and
off according to the following simple rule: if X’s left neighbour is on (respectively off) at t, then X is
on (respectively off) at t + 1.

18This ability to “impute” intermediate unknown values is straightforward given an interpretation. Recent results
show that current neural methods for sequence learning are more comfortable predicting future values than imputing
intermediate values.

46

Note that objects a and b are the two sensors we are given, but c is a new unobserved latent object
that we posit in order to make sense of the data. Many interpretations follow this pattern: new latent
unobserved objects are posited to make sense of the changes to the sensors we are given.

Note further that part of finding an interpretation is constructing the spatial relation between objects;
this is not something we are given, but something we must construct. In this case, we posit that the
imagined cell c is inserted to the right of b and to the left of a.

We represent this interpretation by the tuple (φ′, I,R,C′), where:

I =



on(a)
on(b)
off (c)
r(a, b)
r(b, c)
r(c, a)



R =


r(X,Y) ∧ off (X) ⊃− off (Y)
r(X,Y) ∧ on(X) ⊃− on(Y)

 C′ =


∀X:sensor, on(X) ⊕ off (X)
∀X:sensor, ∃!Y:sensor, r(X,Y)



Here, φ′ extends φ, C′ extends C, and the interpretation satisfies the unity conditions. /

Example 8. We shall give one more way of interpreting the same sensory sequence, to show the
variety of possible interpretations.

In our third interpretation, we will posit three latent cells, c1, c2, and c3 that are distinct from the
sensors a and b. Cells have static attributes: each cell can be either black or white, and this is a
permanent unchanging feature of the cell. Whether a sensor is on or off depends on whether the cell
it is currently contained in is black or white. The reason why the sensors change from on to off is
because they move from one cell to another.

Our new type signature (T,O,P,V) distinguishes between cells and sensors as separate types:

T = {cell, sensor}
O = {a : sensor, b : sensor, c1 : cell, c2 : cell, c3 : cell}
P = {on(sensor), off (sensor), part(sensor, cell), r(cell, cell), black(cell),white(cell)}
V = {X : sensor,Y : cell,Y2 : cell}

47

Our interpretation is the tuple (φ, I,R,C), where:

I =



part(a, c1)
part(b, c2)
r(c1, c2)
r(c2, c3)
r(c3, c1)
black(c1)
black(c2)
white(c3)



R =



part(X,Y) ∧ black(Y)→ on(X)
part(X,Y) ∧ white(Y)→ off (X)
r(Y,Y2) ∧ part(X,Y2) ⊃− part(X,Y)


C =



∀X:sensor, on(X) ⊕ off (X)
∀Y:cell, black(Y) ⊕ white(Y)
∀X:sensor, ∃!Y : cell, part(X,Y)
∀Y:cell, ∃!Y2 : cell, r(Y,Y2)



The update rules R state that the on or off attribute of a sensor depends on whether its current cell is
black or white. They also state that the sensors move from right-to-left through the cells.

In this interpretation, there is no state information in the sensors. All the variability is explained by
the sensors moving from one static object to another.

Here, the sensors move about, so object connectedness is satisfied by different sets of atoms at different
time-steps. For example, at time-step 1, sensors a and b are indirectly connected via the ground atoms:

part(a, c1), r(c1, c2), part(b, c2)

But at time-step 2, a and b are indirectly connected via a different set of ground atoms:

part(a, c3), r(c3, c1), part(b, c1)

Object connectedness requires all pairs of objects to always be connected via some chain of ground
atoms at each time-step, but it does not insist that it is the same set of ground atoms at each time-
step. /

Examples 6, 7, and 8 provide different ways of interpreting the same sensory input. In Example 6,
the sensors are interpreted as self-contained state machines. Here, there are no causal interactions
between the sensors: each is an isolated machine, a Leibnitzian monad. In Examples 7 and 8, by
contrast, there are causal interactions between the sensors. In Example 7, the on and off attributes
move from left to right along the sensors. In Example 8, it is the sensors that move, not the attributes,
moving from right to left. The difference between these two interpretations is in terms of what is
moving and what is static.19

Note that the interpretations of Examples 6, 7, and 8 have costs 16, 12, and 17 respectively. So the
theory of Example 7, which invents an unseen object, is preferred to the other theories that posit more

19As Kant says, “Every motion, as object of possible experience, can be viewed arbitrarily as motion of the body in a
space at rest or as the contrary motion of the space in the opposite direction with the same speed.” Metaphysical Foundations
of Natural Science 487.16, quoted in [Fri92].

48

complex dynamics. These are just three theories among many; there are always an infinite number
of distinct theories that make sense of any sequence.

3.6 Properties of interpretations

In this section, we provide some general results about unified interpretations. We show that every
unified interpretation assigns some property to each sensor in each time-step, and we show that every
sensory sequence has at least one unified interpretation.

Theorem 3. For each sensory sequence S = (S1, ...,St) and each unified interpretation θ of S, for each object
x that features in S (i.e. x appears in some ground atom p(x) or q(x, y) in some state Si in S), for each state Ai

in τ(θ) = (A1,A2, ...), x features in Ai. In other words, if x features in any state in S, then x features in every
state in τ(θ).

Proof. Let θ = (φ, I,R,C) and φ = (T,O,P,V). Since object x features in sequence S, there exists some
atom α involving x in some state S j in (S1, ...,St). Since θ is an interpretation, S v τ(θ), and hence
α ∈ (τ(θ)) j. Consider the two possible forms of α:

1. α = p(x). Since θ satisfies conceptual unity, there must be a constraint involving p of the
form ∀X : t, p(X) ⊕ q1(X)... ⊕ qn(X) in C. Since φ is suitable for S, x ∈ O and κO(x) = t.
Let τ(θ) = (A1,A2, ...) and consider any Ai in τ(θ). Since θ satisfies static unity, Ai satisfies
each constraint in C and in particular Ai |= ∀X : t, p(X) ⊕ q1(X)... ⊕ qn(X). Since κO(x) = t,
Ai |= p(x) ⊕ q1(x)... ⊕ qn(x). Hence {p(x), q1(x), ..., qn(x)} ∩ Ai , ∅ i.e. x features in Ai.

2. α = q(x, y) for some y. Since θ satisfies conceptual unity, there must be a constraint involving q.
This constraint can either be (i) a binary constraint of the form ∀X : t1,∀Y : t2, q(X,Y)⊕p1(X,Y)⊕
... ⊕ pn(X,Y) or (ii) a uniqueness constraint of the form ∀X : t1,∃!Y : t2, q(X,Y).

Considering first case (i), since φ is suitable for S, x, y ∈ O, κO(x) = t1, and κO(y) = t2. Again,
let τ(θ) = (A1,A2, ...) and consider any Ai in τ(θ). Since θ satisfies static unity, Ai satisfies each
constraint in C and in particular Ai |= ∀X : t1,∀Y : t2, q(X,Y) ⊕ p1(X,Y) ⊕ ... ⊕ pn(X,Y). Since
κO(x) = t1, κO(y) = t2, Ai |= q(x, y)⊕p1(x, y)⊕...⊕pn(x, y). Hence {q(x, y), p1(x, y), ..., pn(x, y)}∩Ai , ∅
i.e. x features in Ai.

For case (ii), again let τ(θ) = (A1,A2, ...) and consider any Ai in τ(θ). Since θ satisfies static unity,
Ai satisfies each constraint in C and in particular Ai |= ∀X : t1,∃!Y : t2, q(X,Y). Since κO(x) = t1,
Ai |= ∃!Y : t2, q(x,Y). Therefore there must be some y such that κO(y) = t2 and q(x, y) ∈ Ai. �

Theorem 3 provides some guarantee that admissible interpretations that satisfy the Kantian conditions
will always be acceptable in the minimal sense that they always provide some value for each sensor.
This theorem is important because it justifies the claim that a unified interpretation will always be

49

able to support prediction (of future values), retrodiction (of previous values), and imputation (of
missing values).

Note that this theorem does not imply that the predicate p of the atom in which x appears is one of the
predicates appearing in the sensory sequence S. It is entirely possible that p is some distinct predicate
that appears in φ but has never been observed in S. The following example illustrates this possibility.

Example 9. Suppose the sensory sequence is just S = ({p(a)}). Suppose the type signature (T,O,P,V)
introduces another unary predicate q:

• T = {t}

• O = {a}

• P = {p(t), q(t)}

• V = {X : t}

Suppose our interpretation is (φ, I,R,C) where:

• I = {p(a)}

• R = {p(X) ⊃− q(X)}

• C = {∀X : t, p(X) ⊕ q(X)}

Here, τ(θ) = ({p(a)}, {q(a)}, {q(a)}, {q(a)}, ...). Note that q is a new predicate that does not appear in the
sensory input; q is a “peer” of p (in that they are connected by an xor constraint), but q was never
observed. /

The next theorem shows that every sensory sequence is solvable, i.e. every sequence has some
admissible interpretation that satisfies the Kantian unity conditions.

Theorem 4. For every apperception task (S, φ,C) there exists some interpretation θ = (φ′, I,R,C′) that makes
sense of S, where φ′ extends φ and C′ ⊇ C.

Proof. First, we define φ′ given φ = (T,O,P,V). For each sensor xi that features in S, i = 1..n, and
each state S j in S, j = 1..m, create a new unary predicate pi

j. The intention is that pi
j(X) is true if X is

the i’th object xi at the j’th time-step. If κO(xi) = t then let κP(pi
j) = (t). For each type t ∈ T, create a

new variable Xt where κV(Xt) = t. Let φ′ = (T,O,P′,V′) where P′ = P ∪ {pi
j | i = 1..n, j = 1..m}, and

V′ = V ∪ {Xt | t ∈ T}.
Second, we define θ = (φ′, I,R,C′). Let the initial conditions I be:

{
pi

1(xi) | i = 1..n
}

50

Let the rules R contain the following causal rules for i = 1..n and j = 1..m − 1 (where xi is of type t):

pi
j(Xt) ⊃− pi

j+1(Xt)

together with the following static rules for each unary atom q(xi) ∈ S j:

pi
j(Xt)→ q(Xt)

and the following static rules for each binary atom r(xi, xk) ∈ S j (where xi is of type t and xk is of type
t′):

pi
j(Xt) ∧ pk

j(Yt′)→ r(Xt,Yt′)

We augment C to C′ by adding the following additional constraints. Let Pt be the unary predicates
for all objects of type t:

Pt =
{

pi
j | κO(xi) = t, j = 1..m

}

Let Pt = {p′1, ..., p′k}. Then for each type t add a unary constraint:

∀Xt : t, p′1(Xt) ⊕ ... ⊕ p′k(Xt)

It is straightforward to check that θ as defined satisfies the constraint of conceptual unity, that the
constraints C′ are satisfied by each state in τ(θ), and that the sensory sequence is covered by τ(θ). To
satisfy object connectedness, add a new “world” object w of a new type tw and for each type t add
a relation partt(t, tw) and a constraint ∀X : t,∃!Y : tw, partt(X,Y). For each object x of type t, add an
initial condition atom partt(x,w) to I. Thus, all the conditions of unity are satisfied, and θ is a unified
interpretation of S. �

Example 10. Consider the following apperception problem (S, φ,C). Suppose there is one sensor a
with values on and off . Suppose the sensory sequence is S1:7 where:

S1 = {on(a)} S2 = {off (a)}
S3 = {on(a)} S4 = {off (a)}
S5 = {on(a)} S6 = {off (a)}
S7 = {on(a)}

Let φ = (T,O,P,V) where T = {t}, O = {a : t}, P = {on(t), off (t)}, and V = {}. Clearly, φ is suitable for S.
The constraints C are just {∀X : t, on(X) ⊕ off (X)}.

Applying Theorem 4, we generate 7 unary predicates p1, ..., p7. The type signature φ′ for this inter-

51

pretation is (T′,O′,P′,V′) where:

T′ = {t, tw}
O′ = {a,w}
P′ = P ∪ {p1(t), p2(t), ..., p7(t), part(t, tw)}
V′ = {X : t,Y : tw}

Our interpretation is (φ′, I,R,C′) where:

I =


p1(a)
part(a,w)

 R =



p1(X) ⊃− p2(X)
p2(X) ⊃− p3(X)
...

p6(Y) ⊃− p7(Y)
p1(X)→ on(X)
p2(X)→ off (X)
p3(X)→ on(X)
p4(X)→ off (X)
p5(X)→ on(X)
p6(X)→ off (X)
p7(X)→ on(X)



C′ =



∀X : t, on(X) ⊕ off (X)
∀X : t, p1(X) ⊕ p2(X) ⊕ ... ⊕ p7(X)
∀X : t, ∃!Y : tw part(X,Y)



/

Note that the interpretation provided by Theorem 4 is degenerate and unilluminating: it treats each
object entirely separately (failing to capture any regularities between objects’ behaviour) and treats
every time-step entirely separately (failing to capture any laws that hold over multiple time-steps).
This unilluminating interpretation provides an upper bound on the complexity needed to make sense of
the sensory sequence. We can use this upper bound to define the randomness of a sensory sequence:

Definition 20. The randomness of a sensory sequence S is the ratio of the cost of the smallest interpretation
of S that satisfies the conditions divided by the cost of the unilluminating interpretation of S of Theorem 4. 4

Compare this definition with the Kolmogorov complexity of a sensory sequence:

Definition 21. The Kolmogorov complexity of a sensory sequence S is the length of the smallest theory that
provides a unified interpretation of S.

K(S) = min
{

cost(θ) | S v τ(θ),unity(θ)
}

52

Here cost(θ) is the size of the initial conditions plus the size of the rules, and unity(θ) is true if theory θ satisfies
the unity conditions. 4

Note that the Kolmogorov complexity of a sequence is an integer value, while the randomness of a
sequence is a real value between 0 and 1.

3.7 The computer implementation

The Apperception Engine is our system for solving apperception tasks.20 Given as input an apper-
ception task (S, φ,C), the engine searches for a type signature φ′ and a theory θ = (φ′, I,R,C′) where
φ′ extends φ, C′ ⊇ C and θ makes sense of S. In this section, we describe how it is implemented.

Definition 22. A template is a structure for circumscribing a large but finite set of theories. It is a type
signature together with constants that bound the complexity of the rules in the theory. Formally, a template χ
is a tuple (φ,N→,N⊃−,NB) where φ is a type signature, N→ is the max number of static rules allowed in R, N⊃−
is the max number of causal rules allowed in R, and NB is the max number of atoms allowed in the body of a
rule in R. 4

Each template χ specifies a large (but finite) set of theories that conform to χ. Let Θχ,C ⊂ Θ be the
subset of theories (φ, I,R,C′) in Θ that conform to χ and where C′ ⊇ C.

Our method, presented in Algorithm 1, is an anytime algorithm that enumerates templates of in-
creasing complexity. For each template χ, it finds the θ ∈ Θχ,C with lowest cost (see Definition 17)
that satisfies the conditions of unity. If it finds such a θ, it stores it. When it has run out of processing
time, it returns the lowest cost θ it has found from all the templates it has considered.

Note that the relationship between the complexity of a template and the cost of a theory satisfying
the template is not always simple. Sometimes a theory of lower cost may be found from a template
of higher complexity. This is why we cannot terminate as soon as we have found the first theory θ.
We must keep going, in case we later find a lower cost theory from a more complex template.

The two non-trivial parts of this algorithm are the way we enumerate templates, and the way we find
the lowest-cost theory θ for a given template χ. We consider each in turn.

20The source code is available at https://github.com/RichardEvans/apperception.

53

Algorithm 1: The Apperception Engine algorithm in outline
input : (S, φ,C), an apperception task
output: θ∗, a unified interpretation of S

(s∗, θ∗)← (max(float),nil)

foreach template χ extending φ of increasing complexity do
θ← argminθ{cost(θ) | θ ∈ Θχ,C,S v τ(θ),unity(θ)}
if θ , nil then

s← cost(θ)
if s < s∗ then

(s∗, θ∗)← (s, θ)
end

end
if exceeded processing time then

return θ∗
end

end

3.7.1 Iterating through templates

We need to enumerate templates in such a way that every template is (eventually) visited by the
enumeration. Since the objects, predicates, and variables are typed (see Definition 3), the acceptable
ranges of O, P, and V depend on T. Because of this, our enumeration procedure is two-tiered: first,
enumerate sets T of types; second, given a particular T, enumerate (O,P,V,N→,N⊃−,NB) tuples for
that particular T. We cannot, of course, enumerate all (O,P,V,N→,N⊃−,NB) tuples because there are
infinitely many. Instead, we specify a constant bound (n) on the number of tuples, and gradually
increase that bound:

foreach (T,n) do
emit n tuples of the form (O,P,V,N→,N⊃−,NB)

end

In order to enumerate (T,n) pairs, we use a standard diagonalization procedure. See Table 3.1.

Once we have a (T,n) pair, we need to emit n (O,P,V,N→,N⊃−,NB) tuples using the types in T.
One way of enumerating k-tuples, where k > 2, is to use the diagonalization technique recursively:
first enumerate pairs, then apply the diagonalization technique to enumerate pairs consisting of
individual elements paired with pairs, and so on. But this recursive application will result in heavy
biases towards certain k-tuples. Instead, we use the Haskell function Universe.Helpers.choices to
enumerate n-tuples while minimizing bias. The choices :: [[a]] -> [[a]] function takes a finite
number n of (possibly infinite) lists, and produces a (possibly infinite) list of n-tuples, generating a
n-way Cartesian product that is guaranteed to eventually produce every such n-tuple.

54

100 200 300 400 ...
1 1 2 4 7 ...
2 3 5 8 ...
3 6 9 ...
4 10 ...
... ...

Table 3.1: Enumerating (T,n) pairs. Row t means that there are t types in T, while column n means
there are n tuples of the form (O,P,V,N→,N⊃−,NB) to enumerate. We increment n by 100. The entries
in the table represent the order in which the (T,n) pairs are visited.

We use choices to generate 6-tuples (O,P,V,N→,N⊃−,NB) tuples by creating six infinite streams:

1. SO: an infinite list of finite lists of typed objects

2. SP: an infinite list of finite lists of typed predicates

3. SV: an infinite list of finite lists of typed variables

4. S→ = {0, 1, ...}: the number of static rules

5. S⊃− = {0, 1, ...}: the number of causal rules

6. SB = {0, 1, ...}: the max number of body atoms

Now when we pass this list of streams to the choices function, it produces an enumeration of the
6-way Cartesian product SO × SP × SV × S→ × S⊃− × SB.

Example 11. Recall the apperception problem from Example 1. There are two sensors a and b, and
each sensor can be on or off . The sensory sequence is S1:7 where:

S1 = {on(a), on(b)} S2 = {off (a), on(b)}
S3 = {on(a), off (b)} S4 = {on(a), on(b)}
S5 = {off (a), on(b)} S6 = {on(a), off (b)}
S7 = {}

We shall start with an initial template χ0 = (φ = (T,O,P,V),N→,N⊃−,NB), where:

T = {sensor, grid}
O = {a:sensor, b:sensor, g:grid}
P = {on(sensor), off (sensor), part(sensor, grid)}
V = {X:sensor,Y:sensor}

N→ = 1

N⊃− = 3

NB = 2

55

We use the template enumeration procedure described above to generate increasingly complex tem-
plates χ1, χ2, ..., using χ0 as a base. This produces the following augmented templates :

∆χ1 = (∅, ∅, ∅, {V1:sensor}, 0, 0, 0)

∆χ2 = (∅, ∅, ∅, ∅, 0, 0, 1)

∆χ3 = (∅, ∅, {p1(sensor)}, ∅, 0, 0, 0)

∆χ4 = (∅, ∅, ∅, {V1:sensor}, 0, 0, 1)

∆χ5 = (∅, ∅, ∅, ∅, 0, 0, 2)

∆χ6 = (∅, {o1:sensor}, ∅, ∅, 0, 0, 0)

∆χ7 = (∅, ∅, {p1(sensor)}, ∅, 0, 0, 1)

∆χ8 = (∅, ∅, ∅, {V1:sensor}, 0, 0, 2)

∆χ9 = (∅, ∅, ∅, ∅, 0, 0, 2)

∆χ10 = (∅, ∅, {p1(sensor)}, {V1:sensor}, 0, 0, 0)

...

In the list above, we display the change from the base template χ0, so ∆χi means the changes in
template χi from the base template χ0. Each template χ = (φ = (T,O,P,V),N→,N⊃−,NB) is flattened
as a 7-tuple (T,O,P,V,N→,N⊃−,NB).

Many of these templates do not have the expressive resource to find a unified interpretation. But
some do. The first solution the Apperception Engine finds has the following type signature (the new
elements are in bold):

T =


grid
sensor

 O =



a : sensor
b : sensor
g : grid


P =



p1(sensor)
p2(sensor)
off (sensor)
on(sensor)
part(sensor, grid)



V =


S : sensor
S2 : sensor



together with the following theory θ = (φ, I,R,C), where:

I =


p1(a) p2(b) on(a)
part(a, g) part(b, g)



R =



p2(S)→ on(S)
p2(S) ⊃− p1(S)
p1(S) ∧ on(S) ⊃− off (S)
off (S) ∧ p1(S) ⊃− p2(S)



56

C =


∀X : sensor, p1(X) ⊕ p2(X)
∀X : sensor, ∃!Y : grid, part(X,Y)



This solution uses the invented predicates p1 and p2 to represent two states of a state-machine. This
is recognisable as a compressed version of Example 6 above.

Later, the Apperception Engine finds another solution using the type signatureφ = (T,O,P,V) (again,
the augmented parts of the type signature are in bold):

T =


grid
sensor

 O =



a : sensor
b : sensor
g : grid
o1 : sensor



P =



r1(sensor, sensor)
off (sensor)
on(sensor)
part(sensor, grid)



V =


S : sensor
S2 : sensor



together with the following theory θ = (φ, I,R,C), where:

I =



off (o1) on(a)
r1(a, o1) r1(b, a) r1(o1, b)
part(a, grid) part(b, grid) part(o1, grid)



R =


off (S) ∧ r1(S,S2)→ on(S2)
off (S2) ∧ r1(S,S2) ∧ on(S) ⊃− off (S)



C =


∀X:sensor, ∃!Y:grid, part(X,Y)
∀X:sensor, ∃!Y:sensor, r1(X,Y)



Here, it has constructed an invented object o1:sensor and posited a one-dimensional relationship r1

between the three sensors. This solution is recognisable as a variant of Example 7 above.

/

3.7.2 Finding the best theory from a template

The most complex part of Algorithm 1 is:

θ← argmin
θ
{cost(θ) | θ ∈ Θχ,C,S v τ(θ),unity(θ)}

Here, we search for a theory θ with the lowest cost (see Definition 17) such that θ conforms to the
template χ and includes the constraints in C, such that τ(θ) covers S, and θ satisfies the conditions of
unity. In this sub-section, we explain in outline how this works.

Our approach combines abduction and induction to generate a unified interpretation θ. See Figure
3.2. Here, X ⊆ G is a set of facts (ground atoms), P : G → G is a procedure for generating the

57

X

P
Y

(a) Deduction

X

P
Y

(b) Abduction

X

P
Y

(c) Induction

X

P
Y

(d) Abduction and induction

Figure 3.2: Varieties of inference. Shaded elements are given, and unshaded elements are generated.

consequences of a set of facts, and Y ⊆ G is the result of applying P to X. If X and P are given, and we
wish to generate Y, then we are performing deduction. If P and Y are given, and we wish to generate
X, then we are performing abduction. If X and Y are given, and we wish to generate P, then we are
performing induction. Finally, if only Y is given, and we wish to generate both X and P, then we are
jointly performing abduction and induction. This is what the Apperception Engine does.21

Our method is described in Algorithm 2. In order to jointly abduce a set I (of initial conditions)
and induce sets R and C (of rules and constraints), we implement a Datalog⊃− interpreter in ASP. See
Section 2.3 for the basic strategy, and Section 3.7.3 for the details. This interpreter takes a set I of atoms
(represented as a set of ground ASP terms) and sets R and C of rules and constraints (represented
again as a set of ground ASP terms), and computes the trace of the theory τ(θ) = (S1,S2, ...) up to a
finite time limit.

Concretely, we implement the interpreter as an ASP program πτ that computes τ(θ) for theory θ.
We implement the conditions of unity as ASP constraints in a program πu. We implement the cost
minimization as an ASP program πm that counts the number of atoms in each rule plus the number of
initialisation atoms in I, and uses an ASP weak constraint [CFG+12] to minimize this total. Then we
generate ASP programs representing the sequence S, the initial conditions, the rules and constraints.
We combine the ASP programs together and ask the ASP solver (clingo [GKKS14]) to find a lowest
cost solution. (There may be multiple solutions that have equally lowest cost; the ASP solver chooses
one of the optimal answer sets). We extract a readable interpretation θ from the ground atoms of the
answer set. In Section 3.7.3, we explain how Algorithm 2 is implemented in ASP. In Section 3.7.4, we
evaluate the computational complexity. In Section 3.7.5, we describe the various optimisations used
to prune the search. In Section 3.7.6, we compare with ILASP, a state of the art ILP system.

3.7.3 The Datalog⊃− interpreter

Our Datalog⊃− interpreter is written in ASP. All elements of Datalog⊃−, including variables, are rep-
resented by ASP constants. A variable X is represented by a constant var_x, and a predicate p is

21At a high level, our system is similar to XHAIL [Ray09]. But there are a number of differences. First, our program P
contains causal rules and constraints as well as standard Horn clauses. Second, our conclusion Y is an infinite sequence
(S1,S2, ...) of sets, rather than a single set. Third, we add additional filters on acceptable theories in the form of the Kantian
unity conditions (see Definition 11).

58

Algorithm 2: Finding the lowest cost θ for sequence S and template χ. Here, πτ computes the trace,
πu checks that the unity conditions are satisfied, and πm minimizes the cost of θ.
input : S, a sensory sequence
input : χ = (φ,N→,N⊃−,NB), a template
input : C, a set of constraints on the predicates of the sensory sequence
output: θ, the simplest unified interpretation of S that conforms to χ

πS ← gen input(S)
πI ← gen inits(φ)
πR ← gen rules(φ,N→,N⊃−,NB)
πC ← gen constraints(φ,C)
Π← πτ ∪ πu ∪ πm ∪ πS ∪ πI ∪ πR ∪ πC
A← clingo(Π)
if satisfiable(A) then

θ← extract(A)
return θ

end
return nil

represented by a constant c_p. An unground atom p(X) is represented by a term s(c_p, var_x). A
rule is represented by a set of unground atoms for the body, and a single unground atom for the head.
For example, the static rule p(X) ∧ q(X,Y)→ r(Y) is represented as:

rule_body(r1, s(c_p, var_x)).

rule_body(r1, s2(c_q, var_x, var_y)).

rule_head_static(r1, s(c_r, var_y)).

Here, c_p, c_q, and c_r are ASP constants representing the Datalog⊃− predicates p, q, and r, while
var_x and var_y are ASP constants representing the Datalog⊃− variables X and Y.

The causal rule on(X) ⊃− off (X) is represented as:

rule_body(r2, s(c_on, var_x)).

rule_head_causes(r2, s(c_off, var_x)).

Given a type signature φ, we construct ASP terms that represent every well-typed unground atom in
Uφ, and wrap these terms in the is_var_atom predicate. For example:

is_var_atom(atom(c_on, var_s)).

is_var_atom(atom(c_off, var_s)).

is_var_atom(atom(c_r, var_c, var_c)).

is_var_atom(atom(c_r, var_c, var_c2)).

is_var_atom(atom(c_r, var_c2, var_c))).

59

is_var_atom(atom(c_r, var_c2, var_c2)).

...

Similarly, we construct ASP terms that represent every well-typed ground atom in Gφ.

We also construct ASP atoms that represent every substitution in Σφ. For each substitution σ and
each X/k in σ, we add an atom of the form subs(σ,X, k). For example, if σ17 = {X/a,Y/b}, then we add:

subs(subs_17, var_x, obj_a).

subs(subs_17, var_y, obj_b).

To represent that the result of applying substitution σ to unground atom α is ground atom α′, we use
the ground_atom predicate:

ground_atom(s(C, V), s(C, Obj), Subs) :-

is_var_fluent(s(C, V)),

subs(Subs, V, Obj).

ground_atom(s2(C, V, V2), s2(C, Obj, Obj2), Subs) :-

is_var_fluent(s2(C, V, V2)),

subs(Subs, V, Obj),

subs(Subs, V2, Obj2).

The initial conditions I ⊆ Gφ are represented by the init predicate.

Rules and constraints are implemented differently: while rules are interpreted, constraints are com-
piled directly into ASP constraints. The system generates all possible constraints that are compatible
with the type signature, and translates each such constraint into a set of ASP clauses. For example, if
k1 is the constraint ∀X:cell, on(X) ⊕ off (X), then k1 is represented as:

:- holds(s(c_on, X), T),

holds(s(c_off, X), T),

use_constraint(k_1).

:- isa(X, t_cell),

is_time(T),

not holds(s(c_on, X), T),

not holds(s(c_off, X), T),

use_constraint(k_1).

incompossible(s(c_on, X), s(c_off, X)) :-

isa(X, t_cell),

use_constraint(k_1).

60

Here, the flag use_constraint(k_1) is used to check whether or not we wish to include this particular
constraint in C. The solver chooses which particular constraints to use, just as it gets to choose the
initial atoms and the update rules. For example, if there are four unary predicates p1, ..., p4, there are
various possible sets of constraints that each satisfy conceptual unity:

{p1(X) ⊕ p2(X), p3(X) ⊕ p4(X)}
{p1(X) ⊕ p3(X), p2(X) ⊕ p4(X)}
{p1(X) ⊕ p4(X), p2(X) ⊕ p3(X)}
{p1(X) ⊕ p2(X) ⊕ p3(X) ⊕ p4(X)}

Our meta-interpreter πτ implements τ : Θ → (2G)∗ from Definition 9. We use holds(a, t) to
represent that a ∈ St where τ(θ) = (S1,S2, ...).

holds(A, T) :-

init(A),

init_time(T).

% frame axiom

holds(S, T+1) :-

holds(S, T),

is_time(T+1),

not -holds(S, T+1).

-holds(S, T) :-

holds(S2, T),

incompossible(S, S2).

% causes update

holds(GC, T+1) :-

rule_head_causes(R, VC),

eval_body(R, Subs, T),

ground_atom(VC, GC, Subs),

is_time(T+1).

% arrow update

holds(GA, T) :-

rule_head_static(R, VA),

eval_body(R, Subs, T),

ground_atom(VA, GA, Subs).

61

Since τ(θ) is an infinite sequence (A1,A2, ...), we cannot compute the whole of it. Instead, we only
compute the sequence up to the max time of the original sensory sequence S.

The conditions of unity described in Section 3.3 are represented directly as ASP constraints in πu. For
example, object connectedness is encoded as:

:- object_connectedness_counterexample(X, Y, T).

object_connectedness_counterexample(X, Y, T) :-

is_object(X),

is_object(Y),

is_time(T),

not related(X, Y, T).

related(X, Y, T) :-

holds(s2(_, X, Y), T).

related(X, X, T) :-

is_object(X),

is_time(T).

related(X, Y, T) :- related(Y, X, T).

related(X, Y, T) :-

related(X, Z, T),

related(Z, Y, T).

The ASP program πm minimizes the cost of the theory θ (see Definition 17) by using weak constraints
[CFG+12]:

:∼ rule body(R, A). [1@1, R, A]

:∼ rule head static(R, A). [1@1, R, A]

:∼ rule head causes(R, A). [1@1, R, A]

:∼ init(A). [1@1, A]

When constructing a theory θ = (φ, I,R,C), the solver needs to choose which ground atoms to use

62

as initial conditions in I, which static and causal rules to include in R, and which xor or uniqueness
conditions to use as conditions in C.

To allow the solver to choose what to include in I, we add the ASP choice rule:

{ init(A) } :- is_ground_atom(A).

To allow the solver to choose which rules to include in R, we add the clauses:

0 { rule_body(R, VA) : is_var_atom(VA) } k_max_body :- is_rule(R).

1 { rule_head_static(R, VA) : is_var_atom(VA) } 1 :- is_static_rule(R).

1 { rule_head_causes(R, VA) : is_var_atom(VA) } 1 :- is_causes_rule(R).

Here, k_max_body is the NB parameter of the template that specifies the max number of body atoms
in any rule. The number of rules satisfying is_static_rule and is_causes_rule is determined by
the parameters N⊃− and N→ in the template.

To allow the solver to choose which constraints to include in C, we generate all possible sets of
constraints and add a cardinality constraint that exactly one such set is active for each type. For
example, if there are four unary predicates p1(t), ...p4(t) of type t, then there are various ways of
collecting them into xor groups:

{p1(X) ⊕ p2(X), p3(X) ⊕ p4(X)}
{p1(X) ⊕ p3(X), p2(X) ⊕ p4(X)}
{p1(X) ⊕ p4(X), p2(X) ⊕ p3(X)}
{p1(X) ⊕ p2(X) ⊕ p3(X) ⊕ p4(X)}

We remove sets that are equivalent up to renaming, so are left with:

{p1(X) ⊕ p2(X), p3(X) ⊕ p4(X)}
{p1(X) ⊕ p2(X) ⊕ p3(X) ⊕ p4(X)}

Let us call these two xor sets k1 and k2. We use flags use_constraint(k_1) and use_constraint(k_2)
to indicate which xor set to use, and add the cardinality constraint:

1 { use_constraint(k_1), use_constraint(k_2) } 1.

63

3.7.4 Complexity and optimisation

This section describes the complexity of Algorithm 2.

We assume basic concepts and standard terminology from complexity theory. Let P be the class of
problems that can be solved in polynomial time by a deterministic Turing machine, NP be the class
of problems solved in polynomial time by a non-deterministic Turing machine, and EXPTIME be the
class of problems solved in time 2nd

by a deterministic Turing machine. Let ΣP
i+1 = NPΣP

i be the class
of problems that can be solved in polynomial time by a non-deterministic Turing machine with a ΣP

i
oracle. If Π is a Datalog program, and A and B are sets of ground atoms, then:

• the data complexity is the complexity of testing whether Π ∪ A |= B, as a function of A and B,
when Π is fixed

• the program complexity (also known as “expression complexity”) is the complexity of testing
whether Π ∪ A |= B, as a function of Π and B, when A is fixed

Datalog has polynomial time data complexity but exponential time program complexity: deciding
whether a ground atom is in the least Herbrand model of a Datalog program is EXPTIME-complete.
The reason for this complexity is because the number of ground instances of a clause is an exponential
function of the number of variables in the clause. Finding a solution to an ASP program is in NP
[BED94, DEGV01], while finding an optimal solution to an ASP program with weak constraints is in
ΣP

2 [BNT03, GKS11].

Since deciding whether a non-disjunctive ASP program has a solution is in NP [BED94, DEGV01],
our ASP encoding of Algorithm 2 shows that finding a unified interpretation θ for a sequence given
a template is in NP. Since verifying whether a solution to an ASP program with preferences is indeed
optimal is in ΣP

2 [BNT03, GKS11], our ASP encoding shows that finding the lowest cost θ is in ΣP
2 .

However, the standard complexity results assume the ASP program has already been grounded into a set
of propositional clauses. To really understand the space and time complexity of Algorithm 2, we need
to examine how the set of ground atoms in the ASP encoding grows as a function of the parameters
in the template χ = (φ = (T,O,P,V),N→,N⊃−,NB).

Observe that, since we restrict ourselves to unary and binary predicates, the number of ground and
unground atoms is a small polynomial function of the type signature parameters22:

|Gφ| ≤ |P| · |O|2
|Uφ| ≤ |P| · |V|2

22The actual numbers will be less than these bounds because type-checking rules out certain combinations.

64

Predicate Max # ground atoms
rule_body(R, VA) |Uφ| · (N→ + N⊃−)
rule_head_static(R, VA) |Uφ| ·N→
rule_head_causes(R, VA) |Uφ| ·N⊃−
holds(GA, T) |Gφ| · t
subs(Subs, Var, Obj) |Σφ| · |V|
ground_atom(VA, GA, Subs) |Σφ| · |Uφ|
eval_atom(VA, Subs, T) |Σφ| · |Uφ| · t
eval_body(R, Subs, T) |Σφ| · (N→ + N⊃−) · t

Table 3.2: The number of ground atoms in the ASP encoding of Algorithm 2.

2 3 4 5 6 7 8

102

103

104

105

vars

#
gr

ou
nd

at
om

s

Figure 3.3: How # ground atoms grows (log-scale) as we increase # vars

But note that the number of substitutions Σφ that is compatible with the signature φ is an exponential
function of the number of variables V:

|Σφ| ≤ |O||V|

Table 3.2 shows the number of ground atoms for the most expensive predicates in the ASP encoding.
Here, R ranges over rules, VA over unground atoms, Subs over substitutions, Var over variables, Obj
over objects, GA over ground atoms, and T over time-steps 1..t. The predicates with the largest number
of groundings are those that feature a variable of type Subs.

From Table 3.2, we can see that the number of ground atoms is a linear function of the number of
time-steps, a quadratic function of the number of objects, and an exponential function of the number
of variables. Figure 3.3 shows how the number of ground atoms increases exponentially as a function
of the number of variables. Here, we plot the number of ground atoms with predicate eval_atom as
a function of the number of variables, when interpreting Twinkle Twinkle Little Star from the music
domain.

65

In terms of the number of ground clauses, the most expensive rule in the ASP encoding is:

holds(GA, T) :-

rule_head_static(R, VA),

eval_body(R, Subs, T),

ground_atom(VA, GA, Subs).

This rule generates |Σφ| · |Uφ| · N→ · t ground instances, each containing 4 atoms. There is a similar
number of ground clauses for the causal rules.

The frame axiom is less expensive.

holds(S, T+1) :-

holds(S, T),

is_time(T+1),

not -holds(S, T+1).

This generates |Gφ| · t ground clauses. There are only another |Gφ| ground clauses for the clause
holds(A, 1) :- init(A).

Another clause that generates a large number of ground clauses is:

eval_body(R, Subs, T) :-

is_rule(R),

is_subs(Subs),

is_time(T),

eval_atom(V, Subs, T) : rule_body(R, V).

This generates |Σφ| · (N→ + N⊃−) · t ground clauses, each of which contains |Uφ| + 4 atoms.

Table 3.3 shows the number of ground clauses for the three most expensive clauses. The total number
of ground atoms for the three most expensive clauses is approximately 5 · |Σφ| · (N→ + N⊃−) · |Uφ| · t.

3.7.5 Optimization

Because of the combinatorial complexity of the apperception task, we had to introduce a number of
optimizations to get reasonable performance on even the simplest of domains.

Reducing grounding with type checking

We use the type signature φ to dramatically restrict the set of ground atoms (Gφ), the unground atoms
(Uφ), the substitutions (Σφ), and rules Rφ. Type-checking has been shown to drastically reduce the
search space in program synthesis tasks [MCO19].

66

Clause # ground clauses # atoms

holds(GA, T) :-

rule_head_static(R, VA),

eval_body(R, Subs, T),

ground_atom(VA, GA, Subs).

|Σφ| · |Uφ| ·N→ · t 4

holds(GA, T+1) :-

rule_head_causes(R, VA),

eval_body(R, Subs, T),

ground_atom(VA, GA, Subs).

|Σφ| · |Uφ| ·N⊃− · t 4

eval_body(R, Subs, T) :-

is_rule(R),

is_subs(Subs),

is_time(T),

eval_atom(V, Subs, T) :

rule_body(R, V).

|Σφ| · (N→ + N⊃−) · t |Uφ| + 4

Table 3.3: The number of ground clauses in the ASP encoding of Algorithm 2.

Symmetry breaking

We use symmetry breaking to remove candidates that are equivalent. For example, the following two
rules are equivalent up to variable renaming:

p(X,Y) → q(X)

p(Y,X) → q(Y)

We prune the second rule by using a strict partial order on variables: X < Y if X and Y are of the
same type (if κV(X) = κV(Y)) and X is lexicographically before Y. Now we prune rules where there is
a variable X in the body B, where Y < X and it is not the case that either:

• there is an atom p(Y) in B, or:

• there is an atom p(Y,X) in B

The second form of symmetry breaking is to prune collections of rules that are equivalent up to
reordering. Because we represent rules using rule-identifiers, there are multiple rule-sets that are

67

equivalent but represented distinctly. For example, the sets R1 and R2 are obviously equivalent:

R1 =


r1 : p(X)→ q(X)

r2 : q(X)→ r(X)

R2 =


r1 : q(X)→ r(X)

r2 : p(X)→ q(X)

We define a strict total ordering < on unground atoms in Uφ, and use this to prune duplicates. We
disallow any rule-set that contains two rules ri : B → α and r j : B′ → α′ where i < j and there exists
an atom β′ ∈ B′ that is < every atom β ∈ B. Assuming that p(X) < q(X) < r(X), this rules out R2 in the
example above.

Adding redundant constraints

ASP programs can be significantly optimized by adding redundant constraints (constraints that are
provably entailed by the other clauses in the program) [GKKS12]. We speeded up solving time (by
about 30%) by adding the following redundant constraints:

:- init(A),

init(B),

incompossible(A, B).

:- rule_body(R, A),

rule_body(R, B),

incompossible_var_atoms(A, B).

:- rule_body(R, A),

rule_head_static(R, A).

:- rule_body(R, A),

rule_head_causes(R, A).

:- rule_body(R, A),

rule_head_static(R, B),

incompossible_var_atoms(A, B).

:- rule_body(R, A),

rule_head_causes(R, B),

incompossible_var_atoms(A, B).

68

Replacing the meta-interpreter of constraints with compiled clauses

In an earlier implementation, the xor and ∃! constraints were evaluated using a meta-interpreter (as
the rules are). We made a significant optimization (approximately 10x speed-up) by replacing this part
of the meta-interpreter with compiled clauses. Here, we used the same approach as ASPAL [CRL12]
and ILASP [LRB14] to compile the constraint clauses directly into ASP. Removing the overhead of the
interpreter gave us a large speedup here. But note that we did not replace the τ(θ) interpreter with a
set of compiled clauses. The reason it is worth compiling the constraint evaluator – but it is not worth
compiling the update rules – is because of the relatively small number of possible constraints. The
number of possible update rules grows quickly with the number of unground atoms, so compiling
each possible update rule into an ASP clause is prohibitively expensive. See Section 3.7.6 for an
empirical evaluation comparing the grounding sizes of the programs when meta-interpreting the
update rules versus compiling the update rules.

3.7.6 A comparison with ILASP

In order to assess the efficiency of our system, we compared it to ILASP [LRB14, LRB15, LRB16,
LRB18a], a state of the art Inductive Logic Programming algorithm23.

We compared against ILASP rather than Metagol (another state-of-the-art inductive logic program-
ming system [MLT15, CM18]) for three reasons. First, since ILASP also uses ASP we can compare
the grounding size of our program with ILASP and get a fair apples-for-apples comparison. Second,
ILASP achieves slightly higher performance (it achieved slightly better results than Metagol in the
Inductive General Game Playing task suite [CEL19], getting 40% correct as opposed to Metagol’s
36%). Third, Metagol requires positive examples of the target program in order to search, while
the apperception framework does not provide any positive examples - we are simply given a trace.
ILASP, by contrast, is a very general framework that is able to induce programs satisfying constraints
without the need to specify positive examples.

Unlike traditional ILP systems that learn definite logic programs, ILASP learns answer set programs24.
ILASP is a powerful and general framework for learning answer set programs; it is able to learn
choice rules, constraints, and even preferences over answer sets [LRB15].

A Learning from Answer Sets task is a tuple (B,SM,E+,E−) where B is a background program, SM

is the hypothesis space (a set of ASP clauses), E+ is a set of positive examples (represented as partial
interpretations) and E− is a set of negative examples (also represented as partial interpretations). A
particular ASP program H ⊆ SM is an inductive solution of the task if:

23Strictly speaking, ILASP is a family of algorithms, rather than a single algorithm. We used ILASP2 [LRB15] in this
evaluation. I am very grateful to Mark Law for all his help in this comparative evaluation.

24Answer set programming under the stable model semantics is distinguished from traditional logic programming in that
it is purely declarative and each program has multiple solutions (known as answer sets). Because of its non-monotonicity,
ASP is well suited for knowledge representation and common-sense reasoning [Mue14, GK14].

69

1. for all e in E+, there exists an answer set A ∈ AS(B ∪H) such that A satisfies e

2. for all e in E−, there is no answer set A ∈ AS(B ∪H) such that A satisfies e

Here, AS(B ∪H) is the set of answer sets of the ASP program combining the sets of clauses B and H.

A discrete apperception task (S, φ,C) can be expressed in this framework as (B,H, {e}, {}), where:

• B combines the Kantian conditions (represented as an ASP program) with the sequence sensory
S and the constraints C

• H is a set of hypothesis clauses generated from the type signature φ

• e is a single positive empty example25

Note that the Kantian unity conditions of Section 3.3 are encoded as ASP constraints and provided
as background knowledge to ILASP. The frame axiom (that allows atoms to persist unless there is
an incompossible atom, see Definition 9) is also provided as background knowledge. Thus, the
comparison between ILASP and the Apperception Engine is fair, as both systems are provided with
the same inductive bias.

Because of the generality of the Learning from Answer Sets framework, we can express an appercep-
tion task within it. Of course, since ILASP was not designed specifically with this task in mind, there
is no reason it would be as efficient as a program synthesis technique which was targeted specifically
at apperception tasks.

In ILASP, the set of H of hypothesis clauses is defined by a set of mode declarations. A mode
declaration specifies the sort of atoms that are allowed in the heads and bodies of clauses. For
example, the declaration #modeh(p(var(t1))) states that an atom p(X) can appear in the head of a
clause, where X is some variable of type t1. The declaration #modeb(2, r(var(t1), const(t2)))
states that an atom f (X, k) can appear in the body of a clause, where k is a constant of type t2. The
parameter 2 in the modeb declaration specifies that an atom of this form can appear at most two times
in the body of any rule.

ILASP uses a similar approach to ASPAL [CRL10b, CRL11b] to generate hypothesis clauses. For
example, given the mode declarations:

#modeh(p(var(t1))).

#modeb(1, q(var(t1), var(t1))).

25Note that we are using ILASP in a highly restricted way, with a single positive empty example and no negative
examples. ILASP is a general framework for learning from positive and negative examples. It can solve tasks whose
satisfiability problem is ΣP

2 -complete [LRB18a]. But if we restrict to positive examples only, it can only solve tasks whose
satisfiability problem is NP-complete.

70

the following clauses are generated26:

p(X) :- q(X, X), in_h(1).

p(X) :- q(X, Y), in_h(2).

p(X) :- q(Y, X), in_h(3).

The in_h atoms are used to control which clauses are in the hypothesis H and which are not. Turning
on and off the in_h atoms controls which atoms are included, expressed using an ASP choice rule:

0 { in_h(1), in_h(2), in_h(3) } 3.

To generate an interpretation for an apperception task, we need to generate a set of initial atoms, a set
of static rules and a set of causal rules. We generate mode declarations for each type. Each potential
initial atom X is turned into a modeh declaration #modeh(init(X)). Static rules and causal rules are
generated by modeb and modeh declarations. For example:

#modeh(causes(s(c_on, var(t_object)), s(c_off, var(t_object)), var(t_time))).

#modeh(causes(s(c_off, var(t_object)), s(c_on, var(t_object)), var(t_time))).

#modeh(static(holds(s(c_on, var(t_object)), var(t_time)), var(t_time))).

#modeh(static(holds(s(c_off, var(t_object)), var(t_time)), var(t_time))).

#modeb(1, holds(s(const(t_pred_fluid_1), var(t_object)), var(t_time)), (positive)).

#constant(t_pred_fluid_1, c_off).

#constant(t_pred_fluid_1, c_on).

Evaluation

ILASP is able to solve some simple apperception tasks. For example, ILASP is able to solve the task
in Example 6. But for the ECA tasks, the music and rhythm tasks, and the Seek Whence tasks, the
ASP programs generated by ILASP were not solvable because they required too much memory.

In order to understand the memory requirements of ILASP on these tasks, and to compare our system
with ILASP in a fair like-for-like manner, we looked at the size of the grounded ASP programs. Recall
that both our system and ILASP generate ASP programs that are then grounded (by gringo) into
propositional clauses that are then solved (by clasp).27 The grounding size determines the memory
usage and is strongly correlated with solution time.

We took a sample ECA, Rule 245, and looked at the grounding size as the number of cells increased
from 2 to 11. The results are in Table 3.4 and Figure 3.4.

26This is a simplification for expository purposes; the actual clauses generated have additional complexity that is not
important for this discussion.

27These two programs are part of the Potassco ASP toolset: https://potassco.org/clingo/

71

cells Our System ILASP
2 0.6 60.7
3 1.8 173.7
4 4.0 376.0
5 7.8 692.8
6 13.4 1149.6
7 21.3 1771.9
8 31.7 2585.1
9 45.1 3103.4
10 61.8 4902.6
11 82.6 6464.1

Table 3.4: Like-for-like comparison between our system and ILASP. We compare the size of the ground
programs (in megabytes) generated as the number of cells in the ECA increases from 2 to 11.

2 4 6 8 10
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Number of cells in the ECA

G
ro

un
di

ng
si

ze
(i

n
m

eg
ab

yt
es

)

ILASP
Our system

Figure 3.4: Comparing our system and ILASP w.r.t. grounding size

72

As we increase the number of cells, the grounding size of the ILASP program grows much faster
than the corresponding Apperception Engine program. The reason for this marked difference is
the different ways the two approaches represent rules. In our system, rules are interpreted by an
interpreter that operates on reified representations of rules. In ILASP, by contrast, rules are compiled
into ASP rules. This means, if there are |Uφ| unground atoms and there are at most NB atoms in the
body of a rule, then ILASP will generate |Uφ|NB+1 different clauses. When it comes to grounding, if
there are |Σφ| substitutions and t time-steps, then ILASP will generate at most |Uφ|NB+1 · |Σφ| · t ground
instances of the generated clauses. Each ground instance will contain NB + 1 atoms, so there are
(NB + 1) · |Uφ|NB+1 · |Σφ| · t ground atoms in total.

Compare this with our system. Here, we do not represent every possible rule explicitly as a separate
clause. Rather, we represent the possible atoms in the body of a rule by an ASP choice rule:

0 { rule_body(R, VA) : is_unground_atom(VA) } k_max_body :- is_rule(R).

If there are N→ static rules and N⊃− causal rules, then this choice rule only generates N→ + N⊃− ground
clauses, each containing |Uφ| atoms.

The most expensive clauses in our encoding are analysed in Table 3.3. Recall from Section 3.7.4 that
the total number of atoms in the ground clauses is approximately 5 · |Σφ| · (N→ + N⊃−) · |Uφ| · t.
To compare this with ILASP, let us set NB = 4 (which is representative). Then ILASP generates
ground clauses with 5 · |Uφ|NB+1 · |Σφ| · t ground atoms while our system generates clauses with
5 · |Σφ| · (N→ + N⊃−) · |Uφ| · t ground atoms.

The reason, then, why our system has such lower grounding sizes than ILASP is because (N→+N⊃−) <<
|Uφ|NB . Intuitively, the key difference28 is that ILASP considers every possible subset of the hypothesis
space, while our system (by restricting to at most N→ + N⊃− rules) only considers subsets of length at
most N→ + N⊃−.

28Another difference that helps to explain the difference in grounding sizes is that ILASP’s grounding multiplies the
number of potential rule bodies by the number of potential heads, while the Apperception Engine splits a rule into two
separate parts – one for the head, and one for the body – and therefore adds the number of rule bodies to the number of
heads, rather than multiplying them. I am grateful to Mark Law for this point.

73

Chapter 4

Experiments

To evaluate the generality of our system, we tested it in a variety of domains: elementary (one-
dimensional) cellular automata, drum rhythms and nursery tunes, sequence induction IQ tasks,
multi-modal binding tasks, and occlusion tasks. These particular domains were chosen because they
represent a diverse range of tasks that are simple for humans but are hard for state of the art machine
learning systems. The tasks were chosen to highlight the difference between mere perception (the
classification tasks that machine learning systems already excel at) and apperception (assimilating
information into a coherent integrated theory, something traditional machine learning systems are
not designed to do). Although all the tasks are data-sparse and designed to be easy for humans but
hard for machines, in other respects the domains were chosen to maximize diversity: the various
domains involve different sensory modalities, and some sensors provide binary discriminators while
others are multi-class.

4.1 Experimental setup

We implemented the Apperception Engine in Haskell and ASP. We used clingo [GKKS14] to solve
the ASP programs generated by our system. We ran all experiments with a time-limit of 4 hours. We
ran clingo in “vanilla” mode, and did not experiment with the various command-line options for
optimization, although it is possible we could achieve significant speedup with judicious use of these
parameters.

We ran all experiments on HTCondor, a high-throughput computing framework for distributed
parallelization of computationally intensive tasks [TTL05]. Note that our experimental setup is
almost fully deterministic: the procedure for generating an ASP program from a template and a
sensory sequence is deterministic; our ASP solver clingo is also deterministic (in that it will always
output the same optimal answer set when given the same input program). However, because we
terminate after a time-limit, if two machines have different processing speeds, they may have found
different local optima after the 4 hour time-limit.

74

Domain Tasks
(#)

Memory
(megs)

Input
size (bits)

Held out
size (bits)

Accuracy
(%)

ECA 256 473.2 154.0 10.7 97.3%
Rhythm & music 30 2172.5 214.4 15.3 73.3%
Seek Whence 30 3767.7 28.4 2.5 76.7%
Multi-modal binding 20 1003.2 266.0 19.1 85.0%
Occlusion 20 604.3 109.2 10.1 90.0 %

Table 4.1: Results for prediction tasks on five domains. We show the mean information size of the
sensory input, to stress the scantiness of our sensory sequences. We also show the mean information
size of the held-out data. Our metric of accuracy for prediction tasks is whether the system predicted
every sensor’s value correctly.

For each of the five domains, we provided an infinite sequence of templates (implemented in Haskell
as an infinite list). Each template sequence is a form of declarative bias [DR12]. It is important
to note that the domain-specific template sequence is not essential to the Apperception Engine, as
our system can also operate using the domain-independent template iterator described in Section
3.7.1. Every template in the template sequence will eventually be found by the domain-independent
iterator. However, in practice, the Apperception Engine will find results in a more timely manner
when it is given a domain-specific template sequence rather than the domain-independent templates
sequence1.

4.2 Results

Our experiments (on the prediction task) are summarised in Table 4.1. Note that our accuracy metric
for a single task is rather exacting: the model is accurate (Boolean) on a task iff every hidden sensor
value is predicted correctly.2 It does not score any points for predicting most of the hidden values
correctly. As can be seen from Table 4.1, our system is able to achieve good accuracy across all five
domains.

In Table 4.2, we display Cohen’s kappa coefficient [Coh60] for the five domains. If a is the accuracy
and r is the chance of randomly agreeing with the actual classification, then the kappa metric κ = a−r

1−r .
Since our accuracy metric for a single task is rather exacting (since the model is accurate only if every
hidden sensor value is predicted correctly), the chance r of random accuracy is very low. For example,
in the ECA domain with 11 cells, the chance of randomly predicting correctly is 2−11. Similarly, in the

1This is analogous to the situation in Metagol, which uses metarules as a form of declarative bias. As shown in [CM15],
there is a pair of highly general metarules which are sufficient to entail all metarules of a certain broad class. However,
in practice, it is significantly more efficient to use a domain-specific set of metarules, rather than the very general pair of
metarules [Cro17, CT18].

2The reason for using this strict notion of accuracy is that, as the domains are deterministic and noise-free, there is a
simplest possible theory that explains the sensory sequence. In such cases where there is a correct answer, we wanted to
assess whether the system found that correct answer exactly – not whether it was fortunate enough to come close while
misunderstanding the underlying dynamics.

75

Domain Accuracy
(a)

Random
agreement
(r)

Kappa
metric (κ)

ECA 0.973% 0.00048 0.972
Rhythm & music 0.733% 0.00001 0.732
Seek Whence 0.767% 0.16666 0.720
Multi-modal binding 0.850% 0.00003 0.849
Occlusion 0.900 % 0.03846 0.896

Table 4.2: Cohen’s kappa coefficient for the five domains. Note that the chance of random agreement
(r) is very low because we define accuracy as correctly predicting every sensor reading. When r is
very low, the κ metric closely tracks the accuracy.

0 1 1 0 1 1 1 0

Figure 4.1: Updates for ECA rule 110. The top row shows the context: the target cell together with its
left and right neighbour. The bottom row shows the new value of the target cell given the context. A
cell is black if it is on and white if it is off.

music domain, if there are 8 sensors and each can have 4 loudness levels, then the chance of randomly
predicting correctly is 4−8. Because the chance of random accuracy is so low, the kappa metric closely
tracks the accuracy.

4.2.1 Elementary cellular automata

An Elementary Cellular Automaton (ECA) [Wol83, Coo04] is a one-dimensional Cellular Automaton.
The world is a circular array of cells. Each cell can be either on or off . The state of a cell depends only
on its previous state and the previous state of its left and right neighbours.

Figure 4.1 shows one set of ECA update rules3. Each update specifies the new value of a cell based on
its previous left neighbour, its previous value, and its previous right neighbour. The top row shows
the values of the left neighbour, previous value, and right neighbour. The bottom row shows the
new value of the cell. There are 8 updates, one for each of the 23 configurations. In the diagram, the
leftmost update states that if the left neighbour is on, and the cell is on, and its right neighbour is on,
then at the next time-step, the cell will be turned off . Given that each of the 23 configurations can
produce on or off at the next time-step, there are 223

= 256 total sets of update rules.

Given update rules for each of the 8 configurations, and an initial starting state, the trajectory of the
ECA is determined. Figure 4.2 shows the state sequence for Rule 110 above from one initial starting
state of length 11.

3This particular set of update rules is known as Rule 110. Here, 110 is the decimal representation of the binary 01101110

76

110
? ? ? ? ? ? ? ? ? ? ?

Figure 4.2: One trajectory for Rule 110. Each row represents the state of the ECA at one time-step. In
this prediction task, the bottom row (representing the final time-step) is held out.

In our experiments, we attach sensors to each of the 11 cells, produce a sensory sequence, and then
ask our system to find an interpretation that makes sense of the sequence. For example, for the state
sequence of Figure 4.2, the sensory sequence is (S1, ...,S10) where:

S1 = {off (c1), off (c2), off (c3), off (c4), off (c5), on(c6), off (c7), off (c8), off (c(), off (c10), off (c11)}
S2 = {off (c1), off (c2), off (c3), off (c4), on(c5), on(c6), off (c7), off (c8), off (c(), off (c10), off (c11)}
S3 = {off (c1), off (c2), off (c3), on(c4), on(c5), on(c6), off (c7), off (c8), off (c(), off (c10), off (c11)}
S4 = {off (c1), off (c2), on(c3), on(c4), off (c5), on(c6), off (c7), off (c8), off (c(), off (c10), off (c11)}
S5 = {off (c1), on(c2), on(c3), on(c4), on(c5), on(c6), off (c7), off (c8), off (c(), off (c10), off (c11)}
...

Note that we do not provide the spatial relation between cells. The system does not know that e.g. cell
c1 is directly to the left of cell c2.

We provide a sequence of templates (χ1, χ2, ...) for the ECA domain. Our initial template χ1 is:

φ =



T = {cell}
O = {c1:cell, c2:cell, ..., c11:cell}
P = {on(cell), off (cell), r(cell, cell)}
V = {X:cell,Y:cell,Z:cell}


N→ = 0

N⊃− = 2

NB = 4

The signature includes a binary relation r on cells. This could be used as a spatial relation between
neighbouring cells. But we do not, of course, insist on this particular interpretation – the system is

update rule, as shown in Figure 4.1. This rule has been shown to be Turing-complete [Coo04].

77

free to interpret the r relation any way it chooses. The other templates χ2, χ3, ... are generated by
increasing the number of static rules, causal rules, and body atoms in χ1.

We applied our interpretation learning method to all 223
= 256 ECA rule-sets. For Rule 110 (see Figure

4.2 above), it found the following interpretation (φ, I,R,C), where:

I =



off (c1) off (c2) off (c3) off (c4)
off (c5) on(c6) off (c7) off (c8)
off (c9) off (c10) off (c11) r(c1, c11)
r(c2, c1) r(c3, c2) r(c4, c3) r(c5, c4)
r(c6, c5) r(c7, c6) r(c8, c7) r(c9, c8)
r(c10, c9) r(c11, c10)



R =


r(X,Y) ∧ on(X) ∧ off (Y) ⊃− on(Y)
r(X,Y) ∧ r(Y,Z) ∧ on(X) ∧ on(Z) ∧ on(Y) ⊃− off (Y)



C =


∀X:cell, on(X) ⊕ off (X)
∀X:cell, ∃!Y r(X,Y)



The two update rules are a very compact representation of the 8 ECA updates in Figure 4.1: the first
rule states that if the right neighbour is on, then the target cell switches from off to on, while the
second rule states that if all three cells are on, then the target cell switches from on to off. Here, the
system uses r(X,Y) to mean that cell Y is immediately to the right of cell X. Note that the system has
constructed the spatial relation itself. It was not given the spatial relation r between cells. All it was
given was the sensor readings of the 11 cells. It constructed the spatial relationship r between the
cells in order to make sense of the data.

Results Given the 256 ECA rules, all with the same initial configuration, we treated the trajectories
as a prediction task and applied our system to it. Our system was able to predict 249/256 correctly.
In each of the 7/256 failure cases, the Apperception Engine found a unified interpretation, but this
interpretation produced a prediction which was not the same as the oracle.

The complexities of the interpretations are shown in Table 4.3. Here, for a sample of ECA rules, we
show the number of static rules, the number of causal rules, the total number of atoms in the body
of all rules, the number of initial atoms, the total number of clauses (total number of static rules,
causal rules, and initial atoms), and the total complexity of the interpretation. It is this final value
that is minimized during search. Note that the number of initial atoms is always 22 for all ECA tasks.
This is because there are 11 cells and each cell needs an initial on or off , and also each cell X needs a
right-neighbour cell (a Y such that r(X,Y) to satisfy the ∃! constraint on the r relation). So we require
11 + 11 = 22 initial atoms.

78

ECA rule # static
rules

#
cause
rules

body
atoms

inits # clauses cost

Rule #0 0 1 0 22 23 24
Rule # 143 0 3 8 22 26 36
Rule #11 0 4 9 22 26 39
Rule #110 0 4 10 22 26 40
Rule # 167 0 4 13 22 26 43
Rule # 150 0 4 16 22 26 46

Table 4.3: The complexity of the interpretations found for ECA prediction tasks

Figure 4.3: Twinkle Twinkle Little Star tune

4.2.2 Drum rhythms and nursery tunes

We also tested our system on simple auditory perception tasks. Here, each sensor is an auditory
receptor that is tuned to listen for a particular note or drum beat. In the tune tasks, there is one
sensor for C, one for D, one for E, all the way to HighC. (There are no flats or sharps). In the rhythm
tasks, there is one sensor listening out for bass drum, one for snare drum, and one for hi-hat. Each
sensor can distinguish four loudness levels, between 0 and 3. When a note is pressed, it starts at max
loudness (3), and then decays down to 0. Multiple notes can be pressed simultaneously.

For example, the Twinkle Twinkle tune generates the following sensor readings (assuming 8 time-steps
for a bar):

S1 = {v(sc, 3), v(sd, 0), v(se, 0), v(s f , 0), v(sg, 0), v(sa, 0), v(sb, 0), v(sc∗, 0)}
S2 = {v(sc, 2), v(sd, 0), v(se, 0), v(s f , 0), v(sg, 0), v(sa, 0), v(sb, 0), v(sc∗, 0)}
S3 = {v(sc, 3), v(sd, 0), v(se, 0), v(s f , 0), v(sg, 0), v(sa, 0), v(sb, 0), v(sc∗, 0)}
S4 = {v(sc, 2), v(sd, 0), v(se, 0), v(s f , 0), v(sg, 0), v(sa, 0), v(sb, 0), v(sc∗, 0)}
S5 = {v(sc, 1), v(sd, 0), v(se, 0), v(s f , 0), v(sg, 3), v(sa, 0), v(sb, 0), v(sc∗, 0)}
S6 = {v(sc, 0), v(sd, 0), v(se, 0), v(s f , 0), v(sg, 2), v(sa, 0), v(sb, 0), v(sc∗, 0)}
...

Figure 4.4: Mazurka rhythm

79

We provided the following initial template χ1:

φ =



T = {sensor, finger, loudness}
O = { f :finger, sc:sensor, sd:sensor, se:sensor, ..., 0:loudness, 1:loudness, ...}
P = {h(finger, sensor), v(sensor, loudness), r(sensor, sensor),
succ(loudness, loudness),max(loudness),min(loudness)}
V = {F:finger,L:loudness,S:sensor}


N→ = 2

N⊃− = 3

NB = 2

To generate the rest of the template sequence (χ1, χ2, χ3, ...), we added additional unary predicates
pi(sensor), qi(finger) and relational predicates ri(sensor, sensor), as well as additional variables Li:loudness
and Si:sensor. We also provided domain-specific knowledge of the succ relation on loudness levels
(e.g. succ(0, 1), succ(1, 2), ...), and we provide the spatial relation r on notes: r(sc, sd), r(sd, se), ..., r(sb, sc∗).
This is the only domain-specific knowledge given.

We tested our system on some simple rhythms (Pop Rock, Samba, etc.) and tunes (Twinkle Twinkle,
Three Blind Mice, etc). On the first two bars of Twinkle Twinkle, it finds an interpretation with 6 rules
and 26 initial atoms. One of the rules states that when sensor S satisfies predicate p1, then the value
of the sensor S is set to the max loudness level:

p1(S) ∧max(L) ∧ v(S,L2) ⊃− v(S,L)

This rule states that when sensor S satisfies p2, then the value decays:

p2(S) ∧ succ(L,L2) ∧ v(S,L2) ⊃− v(S,L)

Clearly, p1 and p2 are exclusive unary predicates used to determine whether a note is currently being
pressed or not.

The next rule states that when the finger F satisfies predicate q1, then the note which the finger is on
is pressed:

q1(F) ∧ h(F,S) ∧ p2(S) ⊃− p1(S)

Here, the system is using q1 to indicate whether or not the finger is down. It uses the other predicates
q2, q3, ... to indicate which state the finger is in (and hence which note the finger should be on), and
the other rules to indicate when to transition from one state to another.

Results Recall that our accuracy metric is stringent and only counts a prediction as accurate if every
sensor’s value is predicted correctly. In the rhythm and music domain, this means the Apperception

80

Task # static rules # cause rules # atoms # inits # clauses complexity
Twinkle Twinkle 2 4 9 26 32 45
Eighth Note Drum Beat 4 8 29 13 25 62
Stairway to Heaven 4 8 30 13 25 63
Three Blind Mice 2 8 17 34 44 69
Twist 4 12 40 16 32 84
Mazurka 4 12 44 14 30 86

Table 4.4: The complexity of the interpretations found for rhythm and tune prediction tasks

Engine must correctly predict the loudness value (between 0 and 3) for each of the sound sensors.
There are 8 sensors for tunes and 3 sensors for rhythms.

When we tested the Apperception Engine on the 20 drum rhythms and 10 nursery tunes, our system
was able to predict 22/30 correctly. The complexities of the interpretations are shown in Table 4.4.
Note that the interpretations found are large and complex programs by the standards of state of the
art ILP systems. In Mazurka, for example, the interpretation contained 16 update rules with 44 body
atoms. In Three Blind Mice, the interpretation contained 10 update rules and 34 initialisation atoms
making a total of 44 clauses.

In the 8 cases where the Apperception Engine failed to predict correctly, this was because the system
failed to find a unified interpretation of the sensory sequence. It was not that the system found an
interpretation which produced the wrong prediction. Rather, in the 8 failure cases, it was simply
unable to find a unified interpretation within the memory and time limits. In the ECA tasks, by
contrast, the system always found some unified interpretation for each of the 256 tasks, but some of
these interpretations produced the wrong prediction.

4.2.3 Seek Whence and C-test sequence induction IQ tasks

Hofstadter introduced the Seek Whence4 domain in [Hof95]. The task is, given a sequence s1, ..., st of
symbols, to predict the next symbol st+1. Typical Seek Whence tasks include5:

• b, b, b, c, c, b, b, b, c, c, b, b, b, c, c, ...

• a, f, b, f, f, c, f, f, f, d, f, f, ...

• b, a, b, b, b, b, b, c, b, b, d, b, b, e, b, ...

Hofstadter called the third sequence the “theme song” of the Seek Whence project because of its
difficulty. There is a “perceptual mirage” in the sequence because of the sub-sequence of five b’s in a
row that makes it hard to see the intended pattern: (b, x, b)∗ for ascending x.

4The name is a pun on “sequence”. See also the related Copycat domain [Mit93].
5Hofstadter used natural numbers, but we transpose the sequences to letters, to bring them in line with the Thurstone

letter completion problems [TT41] and the C-test [HOMC98].

81

It is important to note that these tasks, unlike the tasks in the ECA domain or in the rhythm and music
domain, have a certain subjective element. There are always many different ways of interpreting a
finite sequence. Given that these different interpretations will provide different continuations, why
privilege some continuations over others?

When Hernández-Orallo introduced the C-test [HOMC98, HO00, HOMPS+16, HO17], one of his
central motivations was to address this “subjectivity” objection via the concept of unquestionability.
If we are given a particular programming language for generating sequences, then a sequence s1:T

is unquestionable if it is not the case that the smallest program π that generates s1:T is rivalled by
another program π′ that is almost as small, where π and π′ have different continuations after T
time-steps.

Consider, for example, the sequence a, b, b, c, c, ... This sequence is highly questionable because
there are two interpretations which are very similar in length (according to most programming
languages): one parses the sequence as (a), (b, b), (c, c, c), (d, d, d, d), ..., and the other parses the input
as a sequence of pairs (a, b), (b, c), (c, d), Hernández-Orallo generated the C-test sequences by
enumerating programs from a particular domain-specific language, executing them to generate a
sequence, and then restricting the computer-generated sequences to those that are unquestionable.

For our set of sequence induction tasks, we combined sequences from Hofstadter’s Seek Whence
dataset (transposed from numbers to letters) together with sequences from the C-test. The C-test
sequences are unquestionable by construction, and we also observed (by examining the size of the
smallest interpretations) that Hofstadter’s sequences were unquestionable with respect to Datalog⊃−.
This goes some way to answering the “subjectivity” objection6.

There have been a number of attempts to implement sequence induction systems using domain-
specific knowledge of the types of sequence to be encountered. Simon et al [SK63] implemented
the first program for solving Thurstone’s letter sequences [TT41]. Meredith [Mer86] and Hofstadter
[Hof95] also used domain-specific knowledge: after observing various types of commonly recurring
patterns in the Seek Whence sequences, they hand-crafted a set of procedures to detect the patterns.
Although their search algorithm is general, the patterns over which it is searching are hand-coded
and domain-specific.

If solutions to sequence induction or IQ tasks are to be useful in general models of cognition, it is
essential that we do not provide domain-specific solutions to those tasks. As Hernández-Orallo et al
[HOMPS+16] argue, “ In fact, for most approaches the system does not learn to solve the problems
but it is programmed to solve the problems. In other words, the task is hard-coded into the program
and it can be easier to become ‘superhuman’ in many specific tasks, as happens with chess, draughts,
some kinds of planning, and many other tasks. But humans are not programmed to do intelligence
tests.” What we want is a general-purpose domain-agnostic perceptual system that can solve sequence

6Some may still be concerned that the definition of unquestionability is relative to a particular domain-specific language,
and the Kolmogorov complexity of a sequence depends on the choice of language. Hernández-Orallo [HO17] discusses
this issue at length.

82

a,a,b,a,b,c,a,b,c,d,a, ... a,b,c,d,e, ...
b,a,b,b,b,b,b,c,b,b,d,b,b,e, ... a,b,b,c,c,c,d,d,d,d,e, ...
a,f,e,f,a,f,e,f,a,f,e,f,a, ... b,a,b,b,b,c,b,d,b,e, ...
a,b,b,c,c,d,d,e,e, ... a,b,c,c,d,d,e,e,e,f,f,f, ...
f,a,f,b,f,c,f,d,f, ... a,f,e,e,f,a,a,f,e,e,f,a,a, ...
b,b,b,c,c,b,b,b,c,c,b,b,b,c,c, ... b,a,a,b,b,b,a,a,a,a,b,b,b,b,b, ...
b,c,a,c,a,c,b,d,b,d,b,c,a,c,a, ... a,b,b,c,c,d,d,e,e,f,f, ...
a,a,b,a,b,c,a,b,c,d,a,b,c,d,e, ... b,a,c,a,b,d,a,b,c,e,a,b,c,d,f, ...
a,b,a,c,b,a,d,c,b,a,e,d,c,b, ... c,b,a,b,c,b,a,b,c,b,a,b,c,b, ...
a,a,a,b,b,c,e,f,f, ... a,a,b,a,a,b,c,b,a,a,b,c,d,c,b, ...
a,a,b,c,a,b,b,c,a,b,c,c,a,a,a, ... a,b,a,b,a,b,a,b,a, ...
a,c,b,d,c,e,d, ... a,c,f,b,e,a,d, ...
a,a,f,f,e,e,d,d, ... a,a,a,b,b,b,c,c, ...
a,a,b,b,f,a,b,b,e,a,b,b,d, ... f,a,d,a,b,a,f,a,d,a,b,a, ...
a,b,a,f,a,a,e,f,a, ... b,a,f,b,a,e,b,a,d, ...

Figure 4.5: Sequences from Seek Whence and the C-test

induction tasks “out of the box” without hard-coded domain-specific knowledge [BD15].

The Apperception Engine described in this chapter is just such a general-purpose domain-agnostic
perceptual system. We tested it on 30 sequences (see Figure 4.5), and it got 76.6% correct (23/30
correct, 3/30 incorrect and 4/30 timeout).

For the letter sequence induction problems, we provide the initial template χ1:

φ =



T = {sensor, cell, letter}
O = {s:sensor, c1:cell, la:letter, lb:letter, lc:letter, ...}
P = {value(sensor, letter), h(sensor, cell), p(cell, letter), q1(cell), r(cell, cell)}
V = {X:sensor,Y:cell,Y2:cell,L:letter,L2:letter}


N→ = 1

N⊃− = 2

NB = 3

As we iterate through the templates (χ1, χ2, χ3, ...), we increase the number of objects, the number
of fluent and permanent predicates, the number of static rules and causal rules, and the number of
atoms allowed in the body of a rule.

The one piece of domain-specific knowledge we inject is the successor relation between the letters
la, lb, lc, ... We provide the succ relation with succ(la, lb), succ(lb, lc), ... Please note that this knowledge
does not have to be given to the system. We verified it is possible for the system to learn the successor
relation on a simpler task and then reuse this information in subsequent tasks. We plan to do more
continual learning from curricula in future work.

We illustrate our system on the “theme song” of the Seek Whence project: b, a, b, b, b, b, b, c, b, b, d,

83

b, b, e, b, b, Let the sensory sequence be S1:16 where:

S1 = {value(s, lb)} S2 = {value(s, la)} S3 = {value(s, lb)}
S4 = {value(s, lb)} S5 = {value(s, lb)} S6 = {value(s, lb)}
S7 = {value(s, lb)} S8 = {value(s, lc)} S9 = {value(s, lb)}
S10 = {value(s, lb)} S11 = {value(s, ld)} S12 = {value(s, lb)}
S13 = {value(s, lb)} S14 = {value(s, le)} S15 = {value(s, lb)}
S16 = {value(s, lb)}

When our system is run on this sensory input, the first few templates are unable to find a solution.
The first template that is expressive enough to admit a solution is one where there are three latent
objects c1, c2, c3. The first interpretation found is (φ, I,R,C) where:

I =



p(c1, lb) p(c2, lb) p(c3, la) q1(c3)
q2(c1) q2(c2) r(c1, c3) r(c3, c2)
r(c2, c1) h(s, c1)



R =



h(X,Y) ∧ p(Y,L)→ value(X,L)
r(Y,Y2) ∧ h(X,Y) ⊃− h(X,Y2)
h(X,Y) ∧ q1(Y) ∧ succ(L,L2) ∧ p(Y,L) ⊃− p(Y,L2)



C =



∀X:sensor, ∃!L value(X,L)
∀Y:cell, ∃!L p(Y,L)
∀Y:cell q1(Y) ⊕ q2(Y)
∀Y:cell, ∃!Y2 r(Y,Y2)



In this interpretation, the sensor moves between the three latent objects in the order c1, c3, c2, c1, c3, c2, ...

The two unary predicates q1 and q2 are used to divide the latent objects into two types. Effectively,
q1 is interpreted as an “object that increases its letter” while q2 is interpreted as a “static object”. The
static rule states that the sensor inherits its value from the p-value of the object it is on. The causal rule
r(Y,Y2)∧ h(X,Y)⊃− h(X,Y2) states that the sensor moves from left to right along the latent objects. The
causal rule h(X,Y) ∧ q1(Y) ∧ succ(L,L2) ∧ p(Y,L) ⊃− p(Y,L2) states that q1 objects increase their p-value
when a sensor is on them. This is an intelligible and satisfying interpretation of the sensory sequence.
See Diagram 4.6.

Results Given the 30 Seek Whence sequences, we treated the trajectories as a prediction task and
applied our system to it. Our system was able to predict 23/30 correctly. For the 7 failure cases, 4
of them were due to the system not being able to find any unified interpretation within the memory
and time limits, while in 3 of them, the system found a unified interpretation that produced the
“incorrect” prediction. The complexities of the interpretations are shown in Table 4.5. The first key

84

1

b

b
a
b

2

a

b
a
b

3

b

b
b
b

4

b

b
b
b

5

b

b
b
b

6

b

b
c
b

7

b

b
c
b

8

c

b
c
b

9

b

b
d
b

10

b

b
d
b

11

d

b
d
b

12

b

b
e
b

Figure 4.6: A visualization of the Apperception Engine’s interpretation of the “theme song” Seek
Whence sequence b, a, b, b, b, b, b, c, b, b, d, b, b, e, b, b, We show the trace τ(θ) = A1,A2, ...,
of this interpretation for the first 12 time steps. The t’th column represents the state at time t. Each
column contains the time index t, the sensor reading St, the values of the three latent objects c1, c2, c3
at time t, and the position of the sensor s at t. The only moving object is the sensor, represented by
a triangle, that moves between the three latent objects from top to bottom and then repeats. Note
that the middle object c2’s value changes when the sensor passes over it; we change the color of the
object’s letter to indicate when the object’s value has changed.

Sequence # static
rules

#
cause
rules

body
atoms

inits # clauses complexity

abcde... 0 1 1 7 8 10
fafbfcfdf... 1 2 6 7 10 18
babbbbbcbbdbbe... 1 2 6 14 17 25
aababcabcdabcde... 3 5 19 7 15 39
abccddeeefff... 3 5 21 8 16 42
baabbbaaaabbbbb... 3 5 23 7 15 43

Table 4.5: The complexity of the interpretations found for Seek Whence prediction tasks

85

point we want to emphasise here is that our system was able to achieve human-level performance7

on these tasks without hand-coded domain-specific knowledge. This is a general system for making
sense of sensory data that, when applied to the Seek Whence domain8, is able to solve these particular
problems. The second point we want to stress is that our system did not learn to solve these sequence
induction tasks after seeing many previous examples9. On the contrary: our system had never seen
any such sequences before; it confronts each sequence de novo, without prior experience. This system
is, to the best of our knowledge, the first such general system that is able to achieve such a result.

4.2.4 Binding tasks

We wanted to see whether our system could handle traditional problems from cognitive science “out
of the box”, without needing additional task-specific information. We used probe tasks to evaluate
two key issues: binding and occlusion.

The binding problem [Hol09] is the task of recognising that information from different sensory
modalities should be collected together as different aspects of a single external object. For example,
you hear a buzzing and a siren in your auditory field and you see an insect and an ambulance in your
visual field. How do you associate the buzzing and the insect-appearance as aspects of one object,
and the siren and the ambulance appearance as aspects of a separate object?

To investigate how our system handles such binding problems, we tested it on the following multi-
modal variant of the ECA described above. Here, there are two types of sensor. The light sensors
have just two states: black and white, while the touch sensors have four states: fully un-pressed (0),
fully pressed (3), and two intermediate states (1, 2). After a touch sensor is fully pressed (3), it slowly
depresses, going from states 2 to 1 to 0 over 3 time-steps. In this example, we chose Rule 110 (the
Turing-complete ECA rule) with the same initial configuration as in Figure 4.2, as described earlier.
In this multi-modal variant, there are 11 light sensors, one for each cell in the ECA, and two touch
sensors on cells 3 and 11. See Figure 4.7.

Suppose we insist that the type signature contains no binary relations connecting any of the sensors
together. Suppose there is no relation in the given type signature between light sensors, no relation
between touch sensors, and no relation between light sensors and touch sensors. Now, in order to
satisfy the constraint of object connectedness, there must be some indirect connection between any
two sensors. But if there are no direct relations between the sensors, the only way our system can
satisfy the constraint of object connectedness is by positing latent objects, directly connected to each other, that
the sensors are connected to. Thus the latent objects are the intermediaries through which the various
sensors are indirectly connected.

7See Meredith [Mer86] for empirical results with 25 students on the“Blackburn dozen” Seek Whence problems.
8The only domain-specific information provided is the succ relation on letters.
9Machine learning approaches to these tasks need thousands of examples before they can learn to predict. See for

example [BHS+18].

86

For the binding tasks, we started with the initial template χ1:

φ =



T = {cell, light, touch, int}
O = {c1:cell, c2:cell, ..., c11:cell, l1:light, l2:light, ..., l11:light, t1:touch,
t2:touch, 0:int, 1:int, ...}
P = {black(light),white(light), value(touch, int), on(cell),
off (cell), r(cell, cell), inL(light, cell), inT(touch, cell),min(int),max(int), succ(int, int)}
V = {C:cell,X:touch,Y:light,L:int}


N→ = 4

N⊃− = 4

NB = 4

We provided as background knowledge information about the predicates min, max, and succ, e.g.
succ(2, 3).

As we iterate through the templates (χ1, χ2, χ3, ...), we increase the number of predicates, the number
of variables, the number of static rules and causal rules, and the number of atoms allowed in the body
of a rule.

Given the template sequence (χ1, χ2, χ3, ...), our system found the following interpretation (φ, I,R,C),
where:

I =



off (c1) off (c2) off (c3) off (c4)
off (c5) on(c6) off (c7) off (c8)
off (c9) off (c10) off (c11) r(c1, c11)
r(c2, c1) r(c3, c2) r(c4, c3) r(c5, c4)
r(c6, c5) r(c7, c6) r(c8, c7) r(c9, c8)
r(c10, c9) r(c11, c10) inL(l1, c1) inL(l2, c2)
... inL(l11, c11) inT(t1, c3) inT(t2, c11)



R =



r(C1,C2) ∧ on(C2) ∧ off (C1) ⊃− on(C1)
r(C1,C2) ∧ r(C2,C3) ∧ on(C1) ∧ on(C3) ∧ on(C2) ⊃− off (C2)
touch(X,L1) ∧min(L1) ∧ p(X,L2) ⊃− p(X,L1)
touch(X,L1) ∧ succ(L2,L1) ∧ p(X,L1) ⊃− p(X,L2)
inT(X,C) ∧ on(C) ∧max(L)→ value(X,L)
inT(X,C) ∧ off (C) ∧ p(X,L)→ value(X,L)
inL(Y,C) ∧ on(C)→ black(Y)
inL(Y,C) ∧ off (C)→ white(Y)



87

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 t1 t2

W W W W W B W W W W W 0 0
W W W W B B W W W W W 0 0
W W W B B B W W W W W 0 0
W W B B W B W W W W W 3 0
W B B B B B W W W W W 3 0
B B W W W B W W W W W 2 0
B B W W B B W W W W B 1 3
W B W B B B W W W B B 0 3
B B B B W B W W B B B 3 3
W W W B B B W B B W W 2 2
? ? ? ? ? ? ? ? ? ? ? ? ?

110

Figure 4.7: A multi-modal trace of ECA rule 110 with eleven light sensors (left) l1, ..., l11 and two touch
sensors (right) t1, t2 attached to cells 3 and 11. Each row represents the states of the sensors for one
time-step. For this prediction task, the final time-step is held out.

C =



∀C:cell, on(C) ⊕ off (C)
∀C:cell, ∃!C2 r(C,C2)
∀X:touch, ∃!C inT(X,C)
∀X:touch, ∃!L value(X,L)
∀Y:light, black(Y) ⊕ white(Y)
∀Y:light, ∃!C inL(X,C)



Here, the cells c1, ..., c11 are directly connected via the r relation, and the light and touch sensors are
connected to the cells via the inL and inT relations. Thus all the sensors are indirectly connected.
For example, light sensor l1 is indirectly connected to touch sensor t1 via the chain of relations
inL(l1, c1), r(c1, c2), r(c2, c3), inT(t1, c3). We stress that we did not need to write special code in order to
get the system to satisfy the binding problem. Rather, the binding problem is satisfied automatically, as a
side-effect of satisfying the object connectedness condition.

We ran 20 multi-modal binding experiments, with different ECA rules, different initial conditions,
and the touch sensors attached to different cells. The results are shown in Table 4.6.

4.2.5 Occlusion tasks

Neural nets that predict future sensory data conditioned on past sensory data struggle to solve
occlusion tasks because it is hard to inject into them the prior knowledge that objects persist over
time. Our system, by contrast, was designed to posit latent objects that persist over time.

88

Legend

Speed: slow

Speed: medium

Visible object

Occluded object

eye eye eye eye eye eye eye

Figure 4.8: An occlusion task

To test our system’s ability to solve occlusion problems, we generated a set of tasks of the following
form: there is a 2D grid of cells in which objects move horizontally. Some move from left to right,
while others move from right to left, with wrap around when they get to the edge of a row. The
objects move at different speeds. Each object is placed in its own row, so there is no possibility of
collision. There is an “eye” placed at the bottom of each column, looking up. Each eye can only see
the objects in the column it is placed in. An object is occluded if there is another object below it in the
same column. See Figure 4.8.

The system receives a sensory sequence consisting of the positions of the moving objects whenever
they are visible. The positions of the objects when they are occluded is used as held-out test data to
verify the predictions of the model. This is an imputation task.

For the occlusion tasks, we provide the initial template χ1:

• T = {cell,mover}

• O = {c1,1:cell, ..., c7,5:cell,m1:mover, ...,m5:mover}

• P = {in(mover, cell), right(cell, cell), below(cell, cell),
p1(mover), p2(mover), p3(mover), p4(mover)}

We provide the right and below predicates defining the 2D relation between grid cells. The system is
free to interpret the pi predicates any way it desires.

Here is a sample of the rules generated to solve one of the tasks:

p1(X) ∧ right(C1,C2) ∧ in(X,C1) ⊃− in(X,C2)

p2(X) ∧ p3(X) ⊃− p4(X)

p2(X) ∧ p4(X) ⊃− p3(X)

p2(X) ∧ right(C1,C2) ∧ p4(X) ∧ in(X,C2) ⊃− in(X,C1)

89

Domain # Tasks Memory Time % Correct
Multi-modal binding 20 1003.2 2.4 85.0%
Occlusion 20 604.3 2.3 90.0 %

Table 4.6: The two types of probe task. We show mean memory in megabytes and mean solution
time in hours.

The rules describe the behaviour of two types of moving objects. An object of type p1 moves right one
cell every time-step. An object of type p2 moves left every two time-steps. It uses the state predicates
p3 and p4 as counters to determine when it should move left and when it should remain where it is.

We generated 20 occlusion tasks by varying the size of the grid, the number of moving objects,
their direction and speed. Our system was able to solve these tasks without needing additional
domain-specific information. The results are shown in Table 4.6.

4.3 Empirical comparisons with other approaches

In this section, we evaluate our system experimentally and attempt to establish the following claims.
First, we claim the test domains of Section 5.5 represent a challenging set of tasks. We show that these
domains are challenging by providing baselines that are unable to interpret the sequences. Second,
we claim our system is general in that it can handle retrodiction and imputation as easily as it can
handle prediction tasks. We show in extensive tests that results for retrodicting earlier values and
imputing intermediate values are comparable with results for predicting future values. Third, we
claim that the various features of the system (the Kantian unity conditions and the cost minimization
procedure) are essential to the success of the system. In ablation tests, where individual features are
removed, the system performs significantly worse.

4.3.1 Our domains are challenging for existing baselines

To evaluate whether our domains are indeed sufficiently challenging, we compared our system
against four baselines.10 The first constant baseline always predicts the same constant value for every
sensor for each time-step. The second inertia baseline always predicts that the final hidden time-step
equals the penultimate time-step. The third MLP baseline is a fully-connected multilayer perceptron
(MLP) [Mur12] that looks at a window of earlier time-steps to predict the next time-step. The fourth
LSTM baseline is a recurrent neural net based on the long short-term memory (LSTM) architecture
[HS97].

We also considered using a hidden Markov model (HMM) as a baseline. However, as Ghahramani
emphasizes ([Gha01], Section 5), a HMM represents each of the exponential number of propositional

10I am very grateful to Johannes Welbl for designing and implementing the neural baselines.

90

states separately, and thus fails to generalize in the way that a first-order rule induction system does.
Thus, although we did not test it, we are confident that a HMM would not perform well on our tasks.

Although the neural network architectures are very different from our system, we tried to give the
various systems access to the same amount of information. This means in particular that:

• Since our system interprets the sequence without any knowledge of the other sequences, we
do not allow the neural net baselines to train on any sequences other than the one they are currently
given. Each neural net baseline is only allowed to look at the single sensory sequence it is given.
This extreme paucity of training data is unusual for data-hungry methods like neural nets, and
explains their weak results. But we stress that this is the only fair comparison, given that the
Apperception Engine, also, only has access to a single sequence.

• Since our system interprets the sequence without knowing anything about the relative spatial
position of the sensors (it does not know, in the ECA examples, the spatial locations of the
cells), we do not give the neural nets a (1-dimensional) convolutional structure, even though
this would help significantly in the ECA tasks.

The neural baselines are designed to exploit potential statistical patterns that are indicative of hidden
sensor states. In the MLP baseline, we formulate the problem as a multi-class classification problem,
where the input consists in a feature representation x of relevant context sensors, and a feed-forward
network is trained to predict the correct state y of a given sensor in question. In the prediction task,
the feature representation comprises one-hot11 representations for the state of every sensor in the
previous two time steps before the hidden sensor. The training data consists of the collection of
all observed states in an episode (as potential hidden sensors), together with the respective history
before. Samples with incomplete history window (at the beginning of the episode) are discarded.

The MLP classifier is a 2-layer feed-forward neural network, which is trained on all training examples
derived from the current episode (thus no cross-episode transfer is possible). We restrict the number
of hidden neurons to (20, 20) for the two layers, respectively, in order to prevent overfitting given
the limited number of training points within an episode. We use a learning rate of 10−3 and train
the model using the Adam optimiser [KB14] for up to 200 epochs, holding aside 10% of data for early
stopping.

Given that the input is a temporal sequence, a recurrent neural network (that was designed to model
temporal dynamics) is a natural choice of baseline. But we found that the LSTM performs only
slightly better than the MLP on Seek Whence tasks, and worse on the other tasks. The reason for this
is that the extremely small number of data points (a single temporal sequence consisting of a small
number of time-steps) does not provide enough information for the high capacity LSTM to learn
desirable gating behaviour. The simpler and more constrained MLP with fewer weights is able to do
slightly better on some of the tasks, yet both neural baselines achieve low accuracy in absolute terms.

11A one-hot representation of feature i of n possible features is a vector of length n in which all the elements are 0 except
the i’th element.

91

eca music Seek-Whence

0

50

100

pr
ed

ic
ti

ve
ac

cu
ra

cy

our system (AE) constant baseline inertia baseline MLP baseline LSTM baseline

Figure 4.9: Comparison with baselines. We display predictive accuracy on the held-out final time-step.

ECA Rhythm & Music Seek Whence
Our system (AE) 97.3% 73.3% 76.7%
Constant baseline 8.6% 2.5% 26.7%
Inertia baseline 29.2% 0.0% 33.3%
Neural MLP 15.5% 1.3% 17.9%
Neural LSTM 3.3% 0.0% 18.7%

Table 4.7: Comparison with baselines. We display predictive accuracy on the held-out final time-step.

Why didn’t we give the LSTM significantly longer sequences, to give them a more reasonable chance
of success? It has been shown, in a variety of situations, that humans are able to make sense of
short sequences [Mit93, Hof95, Mar18a, LUTG17]. My aim in this thesis was to build a machine
with the right inductive bias that could also learn from short sequences. The aim was not to see
if these problems could be solved with an unrealistic amount of data – rather, the aim was to see
whether it is possible for a machine to solve problems in sparse data regimes. Thus, since we give the
Apperception Engine short sequences, it is only fair to give the same length sequences to the LSTM.

Figure 4.9 shows the results. Clearly, the tasks are very challenging for all four baseline systems.

Table 4.7 shows a comparison with four baselines: a constant baseline (that always predicts the same
thing), the inertia baseline (that predicts the final time-step equals the penultimate time-step), a simple
neural baseline (a fully connected MLP), and a recurrent neural net (an LSTM [HS97]). The results
for the neural MLP and LSTM are averaged over 5 reruns.

Table 4.8 shows the McNemar test [McN47] for the four baselines. For each baseline, we assess the
null hypothesis that its distribution is the same as the distribution of the Apperception Engine. If b
is the proportion of tasks on which the Apperception Engine is inaccurate, and c is the proportion of

92

ECA Rhythm & Music Seek Whence
AE vs constant baseline 216.6 11.9 7.8
AE vs inertia baseline 164.2 12.7 6.3
AE vs neural MLP 200.6 11.1 7.0
AE vs neural LSTM 242.1 12.7 6.9

Table 4.8: The McNemar test comparing our system (AE) to each baseline. The McNemar test statistic
generates a χ2 distribution with 1 degree of freedom. For each entry in the table, the null hypothesis
(that the baseline’s distribution is the same as our system’s distribution) is extremely unlikely.

tasks in which the baseline is inaccurate, then the McNemar test statistic is

χ2 =
(b − c)2

b + c

In comparison with the Apperception Engine, the LSTM baseline has very little inductive bias to help
it solve the apperception tasks. The LSTM has no equivalent of the frame axiom, no equivalent of
the Kantian unity conditions, and is not able to represent latent unobserved information. While the
Apperception Engine is able to posit latent properties and objects to explain the surface information,
the LSTM operates purely at the surface level [McC06]. But it should be possible to design a more
complex LSTM baseline that is able to induce latent information: let each state be a pair (X,L), where
X is the explicit surface information and L is the latent information, and let the LSTM update from
state (X,L) to (X′,L′). We add weights to the network that are interpreted as representing the initial
condition L0 of the latent information. To calculate the loss, we extract the X state from the (X,L)
pair and compare with the observed result. Implementing this more complex neural baseline is an
exercise for future work.

Although it is possible to add latent unobserved information to the LSTM, it is much less clear how
to add a frame axiom or the Kantian unity conditions to the LSTM. The frame axiom states that a
fact persists until some other fact becomes true that is incompossible with it. This clearly relies on
the notion of incompossibility between atoms. But if atoms are represented implicitly, in a vector of
activations in a neural network, it is not clear how to detect when two atoms are incompossible.

Consider, next, what would be involved in adding the requirement of conceptual unity to a neural
network. The conceptual unity condition insists that every predicate must appear in some xor
constraint. But in a neural model, xor constraints are represented only implicitly in the weights of a
network. Thus, it is hard to see how to detect whether or not a particular predicate features in some
constraint, when the constraints are hidden in the network’s weights, and thus it is not clear how to
detect whether a neural network is respecting the requirement of conceptual unity.

93

eca music Seek-Whence

40

60

80

100

pr
ed

ic
ti

ve
ac

cu
ra

cy

prediction retrodiction imputation

Figure 4.10: Comparing prediction with retrodiction and imputation. In retrodiction, we display
accuracy on the held-out initial time-step. In imputation, a random subset of atoms are held-out;
the held-out atoms are scattered throughout the time-series. In other words, there may be different
held-out atoms at different times. The number of held-out atoms in imputation matches the number
of held-out atoms in prediction and retrodiction.

4.3.2 Our system handles retrodiction and imputation just as easily as prediction

To verify that our system is just as capable of retrodicting earlier values and imputing missing
intermediate values as it is at predicting future values, we ran tests where the unseen hidden sensor
values were at the first time step (in the case of retrodiction) or randomly scattered through the
time-series (in the case of imputation). We made sure that the number of hidden sensor values was
the same for prediction, retrodiction, and imputation.

Figure 4.10 shows the results. The results are significantly lower for retrodiction in the ECA tasks,
but otherwise comparable. The reason for retrodiction’s lower performance on ECA is that for a
particular initial configuration there are a significant number (more than 50%) of the ECA rules that
wipe out all the information in the current state after the first state transition, and all subsequent
states then remain the same. So, for example, in Rule # 0, one trajectory is shown in Figure 4.11. Here,
although it is possible to predict the future state from earlier states, it is not possible to retrodict the
initial state given subsequent states.

The results for imputation are comparable with the results for prediction. Although the results for
rhythm and music are lower, the results on Seek Whence are slightly higher (see Figure 4.10).

94

0

Figure 4.11: One trajectory for ECA rule # 0. This trajectory shows how information is lost as we
progress through time. Here, clearly, retrodiction (where the first row is held-out) is much harder
than prediction (where the final row is held-out).

4.3.3 The features of our system are essential to its performance

To verify that the unity conditions are doing useful work, we performed a number of experiments
in which the various conditions were removed, and compared the results. We ran four ablation
experiments. In the first, we removed the check that the theory’s trace covers the input sequence:
S v τ(θ) (see Definition 16). In the second, we removed the check on conceptual unity. Removing this
condition means that the unary predicates are no longer connected together via exclusion relations
⊕, and the binary predicates are no longer constrained by ∃! conditions. (See Definition 13). In the
third ablation test, we removed the check on object connectedness. Removing this condition means
allowing objects which are not connected via binary relations. In the fourth ablation test, we removed
the cost minimization part of the system. Removing this minimization means that the system will
return the first interpretation it finds, irrespective of size.

The results of the ablation experiments are displayed in Table 4.9.

The first ablation test, where we remove the check that the generated sequence of sets of ground atoms
respects the original sensory sequence (S v τ(θ)), performs very poorly. Of course, if the generated
sequence does not cover the given part of the sensory sequence, it is highly unlikely to accurately
predict the held-out part of the sensory sequence. This test is just a sanity check that our evaluation
scripts are working as intended.

The second ablation test, where we remove the check on conceptual unity, also performs poorly. The
reason is that without constraints, there are no incompossible atoms. Recall from Definition 9 that two
atoms are incompossible if there is some ⊕ constraint or some ∃! constraint that means the two atoms
cannot be simultaneously true. But in Definition 9, the frame axiom forces an atom that was true at
the previous time-step to also be true at the next time-step unless the old atom is incompossible with
some new atom: we add α to Ht if α is in Ht−1 and there is no atom in Ht that is incompossible with
α. But if there are no incompossible atoms, then all previous atoms are always added. Therefore, if
there are no ⊕ and ∃! constraints, then the set of true atoms monotonically increases over time. This in
turn means that state information becomes meaningless, as once something becomes true, it remains
always true, and cannot be used to convey information.

When we remove the object connectedness constraint, the results for the rhythm tasks are identical,
but the results for the ECA and Seek Whence tasks are lower. The reason why the results are

95

ECA Rhythm & Music Seek Whence
Full system (AE) 97.3% 73.3% 76.7%
No check that S v τ(θ) 5.1% 3.0% 4.6%
No conceptual unity 5.3% 0.0% 6.7%
No object connectedness 95.7% 73.3% 73.3%
No cost minimization 96.7% 56.6% 73.3%

Table 4.9: Ablation experiments. We display predictive accuracy on the final held-out time-step.

identical for the rhythm tasks is because the background knowledge provided (the r relation on
notes, see Section 4.2.2) means that the object connectedness constraint is guaranteed to be satisfied.
The reason why the results are lower for ECA tasks is because interpretations that fail to satisfy
object connectedness contain disconnected clusters of cells (e.g. cells {c1, ..., c5} are connected by r in
one cluster, while cells {c6, ..., c11} are connected in another cluster, but {c1, ..., c5} and {c6, ..., c11} are
disconnected). Interpretations with disconnected clusters tend to generalize poorly and hence predict
with less accuracy. The reason why the results are only slightly lower for the Seek Whence tasks is
because the lowest cost unified interpretation for most of these tasks also happens to satisfy object
connectedness. In future work, we shall test the Apperception Engine in a much wider variety of
domains, to understand when object connectedness is12 and is not13 important.

The results for the fourth ablation test, where we remove the cost minimization, are broadly compa-
rable with the full system in ECA and Seek Whence, but are markedly worse in the rhythm / music
tasks. But even if the results were comparable in all tasks, there are independent reasons to want to
minimize the size of the interpretation, since shorter interpretations are more human-readable. On
the other hand, it is significantly more expensive to compute the lowest cost theory than it is to just
find any unified theory (see the complexity results in Section 3.7.4). So in some domains, where the
difference in accuracy is minimal, the cost minimization step can be avoided.

4.4 Discussion

This chapter is an attempt to answer a key question of unsupervised learning: what does it mean to
“make sense” of a (discretised) sensory sequence? Our answer is broadly Kantian [CFH92]: making
sense means positing a collection of objects that persist over time, with attributes that change over
time, according to intelligible laws. As well as providing a precise formalization of this task, we also
provide a concrete implementation of a system that is able to make sense of the sensory stream. We
have tested the Apperception Engine in a variety of domains; in each domain, we tested its ability
to predict future values, retrodict previous values, and impute missing intermediate values. Our

12Recently, we have found other cases where this object connectedness constraint is necessary. Andrew Cropper has some
recent unpublished work using object invention in which the object connectedness constraint was found to be essential.

13Some philosophers (e.g. Strawson [Str18]) have questioned whether spatial unity is, in fact, necessary to make sense of
the sensory stream.

96

system achieves good results across the board.

Of particular note is that it is able to achieve human performance on challenging sequence induction
IQ tasks. We stress, once more, that the system was not hard-coded to solve these tasks. Rather, it
is a general domain-independent sense-making system that is able to apply its general architecture to
the particular problem of Seek Whence induction tasks, and is able to solve these problems “out of
the box” without human hand-engineered help. We also stress, again, that the system did not learn
to solve these sequence induction tasks by being presented with hundreds of training examples14.
Indeed, the system had never seen a single such task before. Instead, it applied its general sense-
making urge to each individual task, de novo. We also stress that the interpretations produced are
human readable and can be used to provide explanations and justifications of the decisions taken:
when the Apperception Engine produces an interpretation, we can not only see what it predicts will
happen next, but we can also understand why it thinks this is the right continuation. We believe these
results are highly suggestive, and shows that a sense-making component such as this will be a key
aspect of any general intelligence.

Our architecture, an unsupervised program synthesis system, is a purely symbolic system, and as
such, it inherits two key advantages of ILP systems [EG18]. First, the interpretations produced are
interpretable. Because the output is symbolic, it can be read and verified by a human15. Second, it is
very data-efficient. Because of the language bias of the Datalog⊃− language, and the strong inductive
bias provided by the Kantian unity conditions, the system is able to make sense of extremely short
sequences of sensory data, without having seen any others.

However, the system in its current form has some clear limitations. First, it does not currently handle
noise in the sensory input. All sensory information is assumed to be significant, and the system will
strive to find an explanation of every sensor reading. There is no room for the idea that some sensor
readings are inaccurate.

Second, the sensory input must be discretized before it can be passed to the system. We assume some
prior system has already discretized the continuous sensory values by grouping them into classes.

The first limitation is addressed in Section 4.5, and the second limitation is addressed in Chapter 5.

4.5 Noisy apperception

So far, we have assumed that our sensor readings are entirely noise-free: some of the readings may
be missing, but none of the readings are inaccurate.

14Raven’s progressive matrices [CJS90] are spatial reasoning tasks requiring inductive reasoning. Barrett et al [BHS+18]
train a neural network to learn to solve Raven’s progressive matrices, but their method requires millions of training
examples.

15Large machine-generated programs are not always easy to understand. But machine-generated symbolic programs
are certainly easier to understand than the weights of a neural network. See Muggleton et al [MSZ+18] for an extensive
discussion.

97

If we give the Apperception Engine a sensory sequence with mislabeled data, it will struggle to
provide a theoretical explanation of the mislabeled input. Consider, for example, S1:20:

S1 = {p(a)} S2 = {p(a)} S3 = {q(a)}
S4 = {p(a)} S5 = {p(a)} S6 = {p(a)}
S7 = {p(a)} S8 = {p(a)} S9 = {p(a)}
S10 = {p(a)} S11 = {p(a)} S12 = {p(a)}
S13 = {p(a)} S14 = {p(a)} S15 = {p(a)}
S16 = {p(a)} S17 = {p(a)} S18 = {p(a)}
S19 = {p(a)} S20 = {p(a)}

Here, S3 = {q(a)} is an outlier in the otherwise tediously predictable sequence.

If we give sequences such as this to the Apperception Engine, it attempts to make sense of all the
input, including the anomalies. In this case, it finds the following baroque explanation:

I =


p(a)
c1(a)

 R =



q(X)→ c3(X)
c3(X) ⊃− p(X)
c1(X) ⊃− c2(X)
c2(X) ⊃− q(X)



C′ =


∀X:s, p(X) ⊕ q(X)
∀X:s, c1(X) ⊕ c2(X) ⊕ c3(X)



Here, the Apperception Engine has introduced three new invented predicates c1, c2, c3 in order to
count how many p’s it has seen, so that it knows when to switch to q. If we move the anomalous entry
q(a) later in the sequence, or add further anomalies, the engine is forced to construct increasingly
complex theories. This is clearly unsatisfactory.

In order to handle noisy mislabeled data, we shall relax our insistence that the sequence S1:T is entirely
covered by the trace of the theory θ. Instead of insisting that S v τ(θ), we shall minimise the number
of discrepancies between each Si and τ(θ)i, for i = 1..T, using the following simple argument.

We want to find the most probable theory θ given our noisy input sequence S1:T:

arg max
θ

p (θ | S1:T) (4.1)

By Bayes’ rule, this is equivalent to

arg max
θ

p(θ) · p (S1:T | θ)
p(S1:T)

(4.2)

Since the denominator does not depend on θ, this is equivalent to:

arg max
θ

p(θ) · p (S1:T | θ) (4.3)

Since the probability of the state Si is conditionally independent of the previous state Si−1 given θ

98

(this is the assumption of the Hidden Markov Model), the above is equivalent to:

arg max
θ

p(θ) ·
T∏

i=1

p (Si | θ) (4.4)

Now each Si depends only on τ(θ)i, the trace of θ at time step i. Thus we can rewrite to:

arg max
θ

p(θ) ·
T∏

i=1

p (Si | τ(θ)i) (4.5)

Let the probability of θ be 2−len(θ). Let16 the probability of Si given τ(θ)i be p (Si | τ(θ)i) = 2−|Si−τ(θ)i|.
Then we can rewrite to:

arg max
θ

2−len(θ) ·
T∏

i=1

2−|Si−τ(θ)i| (4.6)

Since log2 is monotonic, we can take logs and rewrite to:

arg max
θ

−len(θ) +

T∑

i=1

−|Si − τ(θ)i| (4.7)

Thus, we define the costnoise of the theory to be:

costnoise = len(θ) +

T∑

i=1

|Si − τ(θ)i| (4.8)

and search for the theory with lowest cost.

Example 12. Consider, for example, the following sequence S1:10:

S1 = {} S2 = {off (a), on(b)} S3 = {on(a), off (b)}
S4 = {on(a), on(b)} S5 = {on(b)} S6 = {on(a), off (b)}
S7 = {on(a), on(b)} S8 = {off (a), on(b)} S9 = {on(a)}
S10 = {}

Because the sequence is so short, the lowest costnoise theory is:

I =
{ }

R =
{ }

C′ =
{
∀X:s, on(X) ⊕ off (X)

}

This degenerate empty theory has cost 14 (the number of atoms in S) which is shorter than any
“proper” explanation that captures the regularities. But as the sequence gets longer, the advantage

16If we want to weight unexplained ground atoms differently from unground atoms of the theory, we could add a β
parameter and use the more general formula p (Si | τ(θ)i) = 2−β·|Si−τ(θ)i |.

99

of a “proper” explanation over a degenerate solution becomes more and more apparent. Consider,
for example, the following extension S′1:30:

S′1 = {} S′2 = {off (a), on(b)} S′3 = {on(a), off (b)}
S′4 = {on(a), on(b)} S′5 = {on(b)} S′6 = {on(a), off (b)}
S′7 = {on(a), on(b)} S′8 = {off (a), on(b)} S′9 = {on(a)}
S′10 = {} S′11 = {off (a), on(b)} S′12 = {on(a), off (b)}
S′13 = {on(a), on(b)} S′14 = {off (a), on(b)} S′15 = {on(a), off (b)}
S′16 = {on(a), on(b)} S′17 = {off (a), on(b)} S′18 = {on(a), off (b)}
S′19 = {on(a), on(b)} S′20 = {off (a), on(b)} S′21 = {on(a), off (b)}
S′22 = {on(a), on(b)} S′23 = {off (a), on(b)} S′24 = {on(a), off (b)}
S′25 = {on(a), on(b)} S′26 = {off (a), on(b)} S′27 = {on(a), off (b)}
S′28 = {on(a), on(b)} S′29 = {off (a), on(b)} S′30 = {}

Now the lowest costnoise theory is one that finds the underlying regularity:

I =



on(a)
p1(a)
p2(b)


R =



off (X)→ p3(X)
p2(X)→ on(X)
p1(X) ⊃− off (X)
p3(X) ⊃− p2(X)
p2(X) ⊃− p1(X)



C′ =


∀X:s, on(X) ⊕ off (X)
∀X:s, p1(X) ⊕ p2(X) ⊕ p3(X)



We can see, then, that the noise-robust version of the Apperception Engine is somewhat less data-
efficient than the noise-intolerant version described earlier. /

4.5.1 Experiments

We used the following sequences to compare the noise-intolerant Apperception Engine with the
noise-robust version:

a,b,a,b,a,b,a,b,a,b,a,b, ... a,a,b,a,a,b,a,a,b,a,a,b, ...
a,a,b,b,a,a,b,b,a,a,b,b, ... a,a,a,b,a,a,a,b,a,a,a,b, ...
a,b,b,a,a,b,b,a,a,b,b,a, ... a,b,c,a,b,c,a,b,c,a,b,c, ...
a,b,c,b,a,a,b,c,b,a,a,b,c,b,a, ... a,b,a,c,a,b,a,c,a,b,a,c, ...
a,b,c,c,a,b,c,c,a,b,c,c, ... a,a,b,b,c,c,a,a,b,b,c,c, ...

We chose these particular sequences because they are simple, noise-free, and the ApperceptionEngine
is able to solve them in a reasonably short time.

We performed two groups of experiments. In the first, we evaluated how much longer the sequence
needs to be for the noise-robust version to capture the underlying regularity, in comparison with the
noise-intolerant version which is more data-efficient. Figure 4.12 shows the results. We plot mean

100

0 10 20 30 40 50
0

0.25

0.5

0.75

1

Length

A
cc

ur
ac

y

noise-intolerant
noise-robust

Figure 4.12: Comparing the data-efficiency of the noise-robust version of the Apperception Engine
with the noise-intolerant version on noise-free sequences. We plot mean percentage accuracy against
length of the sequence. The noise-intolerant version achieves 100% accuracy when the sequence is
length 10 or over, while the noise-robust version only achieves this level of accuracy when the length
is over 30.

percentage accuracy (over the ten sequences) against the length of the sequence that is provided to
the Apperception Engine. Note that the noise-intolerant version only needs sequences of length 10
to achieve 100% accuracy, while the noise-tolerant version needs sequences of length 45.

In the second experiment, we evaluate how much better the noise-robust version of the Apperception
Engine is at handling mislabeled data. We take the same ten sequences above, extended to length 100,
and consider various perturbations of the sequence where we randomly mislabel a certain number
of entries. Figure 4.13 shows the results. We plot mean percentage accuracy (over the ten sequences)
against the percentage of mislabellings. Note that the noise-intolerant version deteriorates to random
as soon as any noise is introduced, while the noise-robust version is able to maintain reasonable
accuracy with up to 30% of the sequence mislabeled.

101

0 10 20 30 40 50
0

0.25

0.5

0.75

1

Percentage of mislabelled data

A
cc

ur
ac

y

noise-intolerant
noise-robust

Figure 4.13: Comparing the accuracy of the noise-robust version of the Apperception Engine with
the noise-intolerant version. We plot mean percentage accuracy against the number of mislabellings.
The noise-intolerant version deteriorates to random as soon as any noise is introduced, while the
noise-robust version is able to maintain reasonable (88%) accuracy with up to 30% of the sequence
mislabelled.

102

Chapter 5

Making sense of raw input

This material is based on “Making sense of raw input”, which is in review for Artificial Intelligence.1

It is also based on my article “Apperception”, in Human-Like Machine Intelligence, Oxford University
Press, 2020 (forthcoming).

In this chapter, we extend the Apperception Engine so that it can handle raw unprocessed sensory
input. First, we shall define what it means to make sense of a disjunctive sensory sequence. Second,
we shall show how to use a neural network to transform raw unprocessed sensory input into a
disjunctive sensory sequence.

5.1 Making sense of disjunctive symbolic input

In this section, we extend the Apperception Engine to handle disjunctive sensory input.

Definition 23. A disjunctive input sequence is a sequence of sets of disjunctions of ground atoms. 4
A disjunctive input sequence generalises the input sequence of Definition 1 to handle uncertainty.
Now if we are unsure if a sensor a satisfies predicate p or predicate q, we can express our uncertainty
as p(a) ∨ q(a).

Example 13. Consider, for example, the following sequence D1:10. This is a disjunctive variant of the
unambiguous sequence from Example 1. Here there are two sensors a and b, and each sensor can be
on or off .

D1 = {} D2 = {off (a), on(b)} D3 = {on(a), off (b)}
D4 = {on(a), on(b)} D5 = {off (a) ∨ on(a), on(b)} D6 = {on(a), off (b)}
D7 = {on(a), on(b)} D8 = {off (a), on(b)} D9 = {off (a) ∨ on(a)}
D10 = {}

1The paper is co-authored with Matko Bosnjak, Lars Buesing, Kevin Elllis, Pushmeet Kohli, and Marek Sergot. Matko
Bosnjak implemented the neural net baselines in Sections 5.5. Lars Buesing helped with the related work. Kevin Ellis
helped with the derivation of the formulas in Section 5.3. Pushmeet Kohli is my advisor at DeepMind.

103

D1:10 contains less information than S1:10 from Example 1, since D9 is unsure whether a is on or off ,
while in S9 a is on. /

Recall that the v relation describes when one (finite) sequence is covered by another. We extend the
v relation to handle disjunctive input sequences in the first argument.

Definition 24. Let D = (D1, ...,DT) be a (finite) disjunctive input sequence and S be an input sequence. D v S
if S contains a finite subsequence (S1, ...,ST) such that Si |= Di for all i = 1..T. 4

Example 14. The theory θ of Example 3 explains the disjunctive sequence D of Example 13, since the
trace τ(θ) (as shown in Example 3) covers D. /

The disjunctive apperception task generalises the simple apperception task of Definition 18 to dis-
junctive input sequences.

Definition 25. The input to a disjunctive apperception task is a triple (D, φ,C) consisting of a disjunctive
input sequence D, a suitable type signature φ, and a set C of (well-typed) constraints such that (i) for each
disjunction featuring predicates p1, ..., pn there exists a constraint in C featuring each of p1, ..., pn. (ii) D can be
extended to satisfy C.

Given such an input triple (D, φ,C), the disjunctive apperception task is to find a lowest cost theory
θ = (φ′, I,R,C′) such that φ′ extends φ, C′ ⊇ C, D v τ(θ), and θ satisfies the four unity conditions of
Definition 11. 4

5.2 Making sense of raw input

The reason for introducing the disjunctive apperception task is as a stepping stone to the real task of
interest: making sense of sequences of raw uninterpreted sensory input.

Definition 26. Let R be the set of all possible raw inputs. A raw input sequence of length T is a sequence
(r1, ..., rT) in RT. Here R is the set of all possible raw inputs for a single time step, e.g. the set of all 20 × 20
binary pixel arrays. 4

A raw apperception framework uses a neural network πw, parameterised by weights w, to map
subregions of each ri into subsets of classes {1, ...,n}. Then the results of the neural network are trans-
formed into a disjunction of ground atoms, transforming the raw input sequence into a disjunctive
input sequence.

Definition 27. A raw apperception framework is a tuple (πw,n,∆, φ,C), where:

• πw is a neural network, a multilabel classifier mapping subregions of ri to subsets of {1, ...,n}; π is
parameterised by weight vector w

104

• n is the number of classes that the perceptual classifier πw uses

• ∆ is a “disjunctifier” that converts the results of the neural network πw into a set of disjunctions; it
takes as input the result of repeatedly applying2 πw to the N subregions {p1

i , ...,p
N
i } of ri, and produces

as output a set of N disjunctions of ground atoms

• φ is a type signature

• C is a set of constraints

The input to a raw apperception task is a raw sequence together with a raw apperception framework. Given
sequence r = (r1, ..., rT) and framework (πw,n,∆, φ,C), the raw apperception task3 is to find the lowest cost
weights w and theory θ such that θ is a solution to the disjunctive apperception task ((D1, ...,DT), φ,C) where
Di = ∆(πw(p1

i), ..., πw(pN
i)).

The best (θ,w) pair is:

arg max
θ, w

log p(θ) +

T∑

i=1

N∑

j=1

log
1

|{p ∈ P | k j
i ∈ πw(p)}|

where P = {p j
i | i = 1..T, j = 1..N} is the union of the subregions appearing at each position j and at each

time-step i, and k j
i is the atom in the i’th state of τ(θ) that represents the class of the object in region j.

4

The intuition here is that p(θ) ∝ 2−cost(θ) represents the prior probability of the theory θ, while the
second term penalises the neural network πw for mapping many elements to the same class. In other
words, it prefers highly selective classes, minimising the number of elements that are assigned by πw

to the same class. This particular optimisation can be justified using Bayes theorem, as we now show.

5.3 Finding the most probable interpretation

We are given a raw sequence r = (r1, ..., rT) together with a raw framework (πw,n,∆, φ,C), where
neural network π is parameterised by weight vector w. We want to find the most probable theory θ
and weights w given our raw input sequence r:

arg max
θ, w

p (θ,w | r) (5.1)

2This repeated application of the same neural net to each subregion is inspired by the convolutional neural network
[LB+95].

3For concrete examples of this rather abstract definition, see Sections 5.5.2 and 5.5.3.

105

By Bayes rule, this is equivalent to

arg max
θ, w

p (r | θ,w) · p(θ,w)
p (r)

(5.2)

Since the denominator does not depend on θ or w, this is equivalent to:

arg max
θ, w

p (r | θ,w) · p(θ,w) (5.3)

Assuming the priors of θ and w are independent, p(θ,w) can be decomposed to get:

arg max
θ, w

p (r | θ,w) · p(θ) · p(w) (5.4)

Let us assume the prior p(w) on the weight vector is uniform, so can be dropped:

arg max
θ, w

p (r | θ,w) · p(θ) (5.5)

Let the trace τ(θ) = (A1,A2, ...). As each ri is conditionally independent of ri−1 given θ, p(r | θ,w) =

p(τ(θ) | θ,w) ·∏T
i=1 p(ri | Ai, θ,w), we can rewrite to get:

arg max
θ, w

p(θ) · p(τ(θ) | θ,w) ·
T∏

i=1

p(ri | Ai, θ,w) (5.6)

Since the latent symbolic trace (A1,A2, ...) is deterministically generated from the theory θ, p(τ(θ) |
θ,w) = 1, and we can remove this term to get:

arg max
θ, w

p(θ) ·
T∏

i=1

p(ri | Ai, θ,w) (5.7)

Since ri is conditionally independent of θ given Ai and w, we can rewrite to:

arg max
θ, w

p(θ) ·
T∏

i=1

p(ri | Ai,w) (5.8)

Assuming raw data ri can be decomposed into independent subregions p1
i , ...,p

N
i , we can rewrite to:

arg max
θ, w

p(θ) ·
T∏

i=1

N∏

j=1

p(p j
i | Ai,w) (5.9)

Assume that subregion p j
i is stochastically sampled conditioned on the latent k j

i in Ai. Here, k j
i is an

atom featuring a class label from {1, ...,n} representing the type of object in region j at time i. Assume

106

the raw subregions are sampled uniformly. Then the probability of the particular subregion p j
i is 1

divided by the number of subregions that are mapped to class k j
i :

p(p j
i | Ai,w) = p(p j

i | k
j
i ,w) =

1

|{p ∈ P | k j
i ∈ πw(p)}|

(5.10)

where P = {p j
i | i = 1..T, j = 1..N} is the union of the subregions appearing at each position j and at

each time-step i.

Substituting Equation 5.10 in Formula 5.9 gives:

arg max
θ, w

p(θ) ·
T∏

i=1

N∏

j=1

1

|{p ∈ P | k j
i ∈ πw(p)}|

(5.11)

Since log(.) is monotonic, we can rewrite to:

arg max
θ, w

log p(θ) +

T∑

i=1

N∑

j=1

log
1

|{p ∈ P | k j
i ∈ πw(p)}|

(5.12)

5.4 Applying the Apperception Engine to raw input

Recall from Section 2.4 that a binary neural network (BNN) is a neural network in which the node
activations and weights are all binary values in {0, 1}. Because the activations and weights are binary,
the state of the network can be represented by a set of atoms, and the dynamics of the network can be
defined as a logic program. This means we can combine the low-level perception task (of mapping
raw data to concepts) and the high-level apperception task (of combining concepts into rules) into a
single logic program in ASP, and solve both simultaneously.

5.4.1 Implementing a binary neural network in ASP

The network is configured by specifying the number of nodes in each layer. For example, to specify
a network with 25 input nodes, 15 hidden units, and 10 output nodes, we write:

nodes(1, 25).

nodes(2, 15).

nodes(3, 10).

The output layer is defined to be the final layer:

is_output_layer(L) :-

107

is_layer(L),

not is_layer(L+1).

is_layer(L) :- nodes(L, _).

Each layer except the output layer has an additional node, the bias node. If layer L has N nodes with
indices 1...N, then the bias node has index 0:

is_bias(node(L, 0)) :- is_layer(L).

is_node(node(L, I)) :-

is_layer(L),

not is_output_layer(L),

nodes(L, N),

I = 0 .. N.

is_node(node(L, I)) :-

is_output_layer(L),

nodes(L, N),

I = 1 .. N.

Each node is represented by a term node(L, I) where L is the layer and I is the index. Each node
has a set of input nodes with associated weights.

Choosing weights

We use weight(X, Y, B) to represent that the weight from input node X to node Y has binary value
B. The assignment of weights is implemented by the choice rule:

0 { weight(node(L, I), node(L+1, J), B) : binary(B) } 1 :-

is_node(node(L, I)),

is_node(node(L+1, J)),

J > 0.

binary(0).

binary(1).

This code makes two choices: first, whether or not to create a connection between node(L, I) and
node(L+1, J); second, if there is such a connection, the binary value of the weight. Note that if there
is no weight from node X to node Y then X is not an input node to Y. Thus we can, if we wish, use a
weak constraint to minimise the number of connections:

108

:˜ weight(N, N2, B). [1@1, N, N2]

This is an extreme form of regularisation, where the ASP solver is guaranteed to find the minimum
number of connections.

Calculating activations

The activation values of the input nodes are determined by the input:

value(E, N, B) :- bnn_input(E, N, B).

The bias nodes are always 1:

value(E, N, 1) :- example(E), is_bias(N).

For the rest of the nodes in the network, the node is activated if the total sum of inputs xi that are
equal to their weight wi is greater than or equal to half the number of inputs:

n∑

i=1

1[xi = wi] ≥
⌈n

2

⌉

This is implemented as:

value(E, N, 1) :-

count_1s(E, N, C),

threshold_count(N, T),

C >= T.

value(E, N, 0) :-

count_1s(E, N, C),

threshold_count(N, T),

C < T.

The threshold_count predicate checks if
∑n

i=1 1[xi = wi] ≥
⌈

n
2

⌉
:

threshold_count(N, C/2) :-

num_inputs(N, C),

C\2 < C/2.

threshold_count(N, C/2+1) :-

num_inputs(N, C),

C\2 >= C/2.

109

The following code counts how many inputs each node has:

has_input(N, N2) :- weight(N2, N, _).

count_inputs(node(L, N), node(L-1, 0), 1) :-

has_input(node(L, N), node(L-1, 0)).

count_inputs(node(L, N), node(L-1, 0), 0) :-

is_node(node(L, N)),

is_node(node(L-1, 0)),

not has_input(node(L, N), node(L-1, 0)).

count_inputs(Output, N, C) :-

count_inputs(Output, N2, C),

next_node(N2, N),

not has_input(Output, N).

count_inputs(Output, N, C+1) :-

count_inputs(Output, N2, C),

next_node(N2, N),

has_input(Output, N).

num_inputs(Output, C) :-

count_inputs(Output, N, C),

last_node(N).

The following code calculates
∑n

i=1 1[xi = wi]:

count_1(E, node(L, N), node(L-1, 0), 1) :-

example(E),

is_node(node(L, N)),

is_node(node(L-1, 0)),

weight(node(L-1, 0), node(L, N), 1).

count_1(E, node(L, N), node(L-1, 0), 0) :-

example(E),

is_node(node(L, N)),

is_node(node(L-1, 0)),

not weight(node(L-1, 0), node(L, N), 1).

110

count_1(E, Output, N, C) :-

count_1(E, Output, N2, C),

next_node(N2, N),

not check_equality(E, N, Output, 1).

count_1(E, Output, N, C+1) :-

count_1(E, Output, N2, C),

next_node(N2, N),

check_equality(E, N, Output, 1).

count_1s(E, N, C) :-

count_1(E, N, N2, C),

last_node(N2).

check_equality(E, N1, N2, B) :-

weight(N1, N2, W),

value(E, N1, B2),

nxor(W, B2, B).

next_node(node(L, N), node(L, N+1)) :-

is_node(node(L, N)),

is_node(node(L, N+1)).

last_node(node(L, N)) :-

is_node(node(L, N)),

not is_node(node(L, N+1)).

nxor(0, 0, 1).

nxor(0, 1, 0).

nxor(1, 0, 0).

nxor(1, 1, 1).

This code uses linearization to efficiently calculate the sum
∑n

i=1 1[xi = wi]. Linearization is much more
efficient than using ASP’s #countmechanism [GKKS12].

The source code for the binary neural network is available here:

https://github.com/RichardEvans/apperception/blob/master/asp/bnn.lp

111

5.5 Experiments

We present three groups of experiment: Seek Whence from noisy images, Sokoban, and fuzzy sequences.

5.5.1 Seek Whence with noisy images

The Seek Whence dataset is a set of challenging sequence induction problems designed by Douglas
Hofstadter [Hof95]. In each problem, you are given a sequence of symbols, and have to predict the
next symbol in the sequence. See Section 4.2.3 for details (but here we use sequences of digits rather
than sequences of letters).

The data

In Hofstadter’s original dataset, the sequences are lists of discrete symbols. In our modified dataset,
we replaced each discrete symbol with a corresponding MNIST image.

To make it more interesting (and harder), we deliberately chose particularly ambiguous images.
Consider Figure 5.1a. Here, the leftmost image could be a 0 or a 2, while the next could be a 5 or
possibly a 6. Of course, we humans are unphased by these ambiguities because the low Kolmogorov
complexity [LV08] of the high-level symbolic sequence helps us to resolve the ambiguities in the
low-level perceptual input. We would like our machines to do the same.

For each sequence, the held-out data used for evaluation is a set of acceptable images, and a set
of unacceptable images, for the final held-out time step. See Figure 5.1. We provide a slice of the
sequence as input, and use a held-out time step for evaluation. If the correct symbol at the held-out
time step is s, then we sample a set of unambiguous images representing s for our set of acceptable
next images, and we sample a set of unambiguous images representing symbols other than s for our
set of unacceptable images.

The model

In this experiment, we combined the ApperceptionEnginewith a three-layer perceptron with dropout
that had been pre-trained to classify images into ten classes representing the digits 0 − 9.4 For each
image, the network produced a probability distribution over the ten classes.

We chose a threshold (0.1), and stipulated that if the probability of a particular digit exceeded the
threshold, then the image possibly represents that digit. According to this threshold, some of the
images (the first, second, and sixth) of Figure 5.2a are ambiguous, while others (the third, fourth, and
fifth) are not.

4For experiments in which the network’s weights are learned simultaneously with rule-induction, see Section 5.5.2
below.

112

raw sensory sequence held-out

acceptable

unacceptable

(a) The sequence 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, ... with held-out value 5

raw sensory sequence held-out

acceptable

unacceptable

(b) The sequence 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, ... with held-out value 5

raw sensory sequence held-out

acceptable

unacceptable

(c) The sequence 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, ... with held-out value 1

Figure 5.1: Three Seek Whence tasks using MNIST images. The left section of each diagram shows the
given sensory sequence, while the right section shows the held-out time step. At the final held-out
time step, there is a set of acceptable images, and a set of unacceptable images.

Our pre-trained neural network MNIST classifier has effectively turned the raw apperception task into
a disjunctive apperception task. Once the input has been transformed into a sequence of disjunctions,
we apply the Apperception Engine to resolve the disjunctions and find a unified theory that explains
the sequence.

In terms of the formalism of Section 5.2, the raw input r = (r1, ..., rT) is a sequence of MNIST images
from [0, 1]28×28. The framework (πw,n,∆, φ,C) consists of:

• πw, a pre-trained MNIST classifier with frozen weights w

• n = 10, representing the digits ‘0’–‘9’

• ∆ takes the output of the pre-trained MNIST classifier, and produces a single disjunction of all
the classes for which the network outputs a probability that is above the threshold

• A type signature φ = (T,O,P,V) consisting of two types: sensors and integers, and two predi-
cates: value(sensor, int) representing the numeric value of a sensor, and succ(int, int) representing
the successor relation

• C contains one constraint that insists that every sensor always has exactly one numeric value

113

2

0 ∨ 6

1 ∨ 6

3

4

5 ∨ 8

Apperception
Engine

thresholdneural
network

thresholdneural
network

thresholdneural
network

thresholdneural
network

thresholdneural
network

thresholdneural
network

(a) Interpreting the sequence 0, 1, 2, 3, 4, 5, ...

0 ∨ 5 ∨ 8

0 ∨ 5

1 ∨ 7

1

0

1 ∨ 6

Apperception
Engine

thresholdneural
network

thresholdneural
network

thresholdneural
network

thresholdneural
network

thresholdneural
network

thresholdneural
network

(b) Interpreting the sequence 0, 1, 0, 1, 0, 1, ...

5

5

2

3

3 ∨ 5

4

Apperception
Engine

thresholdneural
network

thresholdneural
network

thresholdneural
network

thresholdneural
network

thresholdneural
network

thresholdneural
network

1 ∨ 7

5

0 ∨ 2

5

5

5 ∨ 6

neural
network

neural
network

neural
network

neural
network

neural
network

neural
network

threshold

threshold

threshold

threshold

threshold

threshold

(c) Interpreting the sequence 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, ...

Figure 5.2: Interpreting Seek Whence sequences from raw images. Each MNIST
image is passed to a pre-trained neural network classifier that emits a distri-
bution over the digits 0–9. A threshold of 0.1 is applied to the probability dis-
tribution, generating a disjunction over the values of the sensor. For example,
the disjunction 0∨ 6 is short-hand for value(s, 0)∨ value(s, 6). The sequence of
disjunctions is passed to the Apperception Engine, which produces a unified
theory that resolves the disjunctions and explains the sequence. The predi-
cates value and succ are provided to the system, while all other predicates are
invented.

114

The input type signature φ and initial constraints C are:

φ =



T = {sensor, int}
O = {s:sensor, 0:int, 1:int, 2:int, ...}
P = {value(sensor, int), succ(int, int)}
V = {X:sensor,N:int}

C =
{
∀X:sensor, ∃!N:int value(X,N)

}

We ran the Apperception Engine on a standard Unix desktop, allowing 4 hours for each sequence.
Figure 5.2 shows some results.

Understanding the interpretations

Figure 5.3a shows the unified theory found for the “theme song”’ sequence, while Figure 5.3b shows
the interpretation in detail.

Let us try to understand, in detail, why the Apperception Engine believes the bottom MNIST image
in Figure 5.3a (at time step 15) should be interpreted as a ‘1’, rather than a ‘6’. According to the neural
network, the image could either be classified as a ‘1’ or a ‘6’. In fact, the network thinks it is rather
more likely to be a ‘6’. Nevertheless, the overall assessment of the Apperception Engine is that the
image represents a ‘1’. Why is this?

At a high level, the explanation for this interpretation is that the whole sequence exhibits a particular
regularity described by a single general pattern with low Kolmogorov complexity, and that, given
this overall structure, the best way to read the final symbol is as a ‘1’ rather than as a ‘6’.

More specifically, Figure 5.3a describes the following simple process: the sensor is a read-write head
that moves between three cells, in a cycle. These cells are o1, o2, and o3, which are placed in the order:
o1, o3, o2. Initially, cells o1 and o2 have value 1, while cell o3 has value 0. The head reads the value of
the current cell, and writes it onto an output tape. When the head moves over the middle cell (o3), it
increments the value of that cell. When it moves over either of the other two cells, its value remains
unchanged.

Note that the only predicates that are given to the Apperception Engine are value (provided by
the neural network) and the succ relation (provided as prior knowledge). Every other predicate is
invented, its meaning entirely determined by its inferential role in the rules and constraints of the
theory in which it is embedded.

Now, at this particular moment (time step 15 of Figure 5.3a), the read-write head is on the cell o2. This
cell has value 1. So the sensor must be reading a ‘1’ rather than a ‘6’. There is no comparably simple
theory that makes sense of the data which resolves the final image to a ‘6’. So, given the plausibility

115

1

1 ∨ 7

1

1

2

1

Apperception
Engine

thresholdneural
network

thresholdneural
network

thresholdneural
network

thresholdneural
network

thresholdneural
network

thresholdneural
network

1

0

1

0 ∨ 1 ∨ 8

3

1

neural
network

neural
network

neural
network

neural
network

neural
network

neural
network

threshold

threshold

threshold

threshold

threshold

threshold

1neural
network threshold

4 ∨ 9neural
network threshold

1 ∨ 6neural
network threshold

(a) Generating a theory to make sense of the sequence.

value(s, 1)

value(s, 2)

value(s, 1)

value(s, 1)

value(s, 1)

value(s, 1)

value(s, 1)

value(s, 0)

value(s, 1) � value(s, 7)

value(s, 0) � value(s, 1) � value(s, 8)

value(s, 1)

value(s, 0)

value(s, 1)

value(s, 1)

value(s, 1)

value(s, 1)

value(s, 1)

value(s, 2)

value(s, 1)

value(s, 1)

raw
input

latent
state

overt
state

rules
firing

network
output

disjunctive
state

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

8>>>>>><>>>>>>:

q(s, o1)
y(o1, 1)
y(o2, 1)
y(o3, 0)
8>>>>>><>>>>>>:

q(s, o3)
y(o1, 1)
y(o2, 1)
y(o3, 0)

8>>>>>><>>>>>>:

q(s, o2)
y(o1, 1)
y(o2, 1)
y(o3, 1)

8>>>>>><>>>>>>:

q(s, o1)
y(o1, 1)
y(o2, 1)
y(o3, 1)
8>>>>>><>>>>>>:

q(s, o3)
y(o1, 1)
y(o2, 1)
y(o3, 1)
8>>>>>><>>>>>>:

q(s, o2)
y(o1, 1)
y(o2, 1)
y(o3, 2)
8>>>>>><>>>>>>:

q(s, o1)
y(o1, 1)
y(o2, 1)
y(o3, 2)
8>>>>>><>>>>>>:

q(s, o3)
y(o1, 1)
y(o2, 1)
y(o3, 2)
8>>>>>><>>>>>>:

q(s, o2)
y(o1, 1)
y(o2, 1)
y(o3, 3)
8>>>>>><>>>>>>:

q(s, o1)
y(o1, 1)
y(o2, 1)
y(o3, 3)

q(S,C) ^ y(C,N)! value(S,N)
r(C,C2) ^ q(S,C) �� q(S,C2)

q(S,C) ^ y(C,N)! value(S,N)
p1(C) ^ succ(N,N2) ^ q(S,C) ^ y(C,N) �� y(C,N2)
r(C,C2) ^ q(S,C) �� q(S,C2)

q(S,C) ^ y(C,N)! value(S,N)
r(C,C2) ^ q(S,C) �� q(S,C2)

q(S,C) ^ y(C,N)! value(S,N)
r(C,C2) ^ q(S,C) �� q(S,C2)

q(S,C) ^ y(C,N)! value(S,N)
p1(C) ^ succ(N,N2) ^ q(S,C) ^ y(C,N) �� y(C,N2)
r(C,C2) ^ q(S,C) �� q(S,C2)

q(S,C) ^ y(C,N)! value(S,N)
r(C,C2) ^ q(S,C) �� q(S,C2)

q(S,C) ^ y(C,N)! value(S,N)
r(C,C2) ^ q(S,C) �� q(S,C2)

q(S,C) ^ y(C,N)! value(S,N)
p1(C) ^ succ(N,N2) ^ q(S,C) ^ y(C,N) �� y(C,N2)
r(C,C2) ^ q(S,C) �� q(S,C2)

q(S,C) ^ y(C,N)! value(S,N)
r(C,C2) ^ q(S,C) �� q(S,C2)

q(S,C) ^ y(C,N)! value(S,N)
r(C,C2) ^ q(S,C) �� q(S,C2)

(b) The left column shows the raw MNIST images, while the second column shows the output
layer of the pre-trained neural network when given as input the MNIST image on the left. The
third column shows the disjunctive sensor state, and the fourth column shows the overt state
after the disjunctions have been resolved. The fifth column shows the latent state imputed by
the Apperception Engine. The sixth column shows the rules that fire at each time step.

Figure 5.3: Interpreting the sequence 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, ...

116

(simplicity) of the whole theory that explains all the data, we are compelled to interpret the image as
a ‘1’.

The baseline

Given the raw input to the ApperceptionEngine, neural models are the most appropriate baselines for
comparison.5 However, the modes of operation of these two systems differ greatly. The Apperception
Engine outputs a compact theory which aims to fully explain the sequence, making these rules useful
for prediction, imputation, retrodiction as well as explanation. With a neural model, it is hard to
induce a verifiably correct and explainable theory. However, we can compare it to the Apperception
Engine in terms of their predictive capabilities.

In order to make a fair like-for-like comparison between the neural baseline and the Apperception
Engine, we impose the following requirements on the baseline:

• It must learn using self-supervision, predicting future time-steps from earlier time-steps.

• It must be able to work with variable-length data, since the different trajectories are different
lengths.

• It must be able to handle noisy or ambiguous data, since the raw data in all three of our experiments
is noisy and ambiguous.

• It must be able to work with a small amount of data, since the Apperception Engine is able to
learn from a handful of data.

• Its inner workings should be interpretable. The Apperception Engine outputs a fully explainable
model, which we cannot achieve with a neural model. However, we can design a neural model
to induce an almost symbolic representation of the next state. This provides explainability at
the level of the state, though the state transition function itself remains opaque and inscrutable.

Following these desiderata brings us to the class of auto-regressive models with a relaxed discrete
distribution as a bottleneck [MMT16]. We will abide by these desiderata, making slight adjustments
per task, to ensure fair comparison and same testing conditions for both systems.

We follow the proposed desiderata for the Seek Whence task, though in this instance we do not use a
relaxed discrete distribution as a bottleneck. Concretely, this baseline (i) uses a pre-trained MNIST
model to classify digits, as does the Apperception Engine, ii) utilises an LSTM model [HS97] as a
prediction engine over these digits, and importantly iii) does not represent the distribution of the
next state, but directly predicts the next digit. We opted for this approach on the Seek Whence task
only, since we can utilise the pre-trained MNIST model to produce the target for the next sequence

5I am very grateful to Matko Bosnjak for his help in designing and implementing the neural baselines.

117

LSTM

neural
network

neural
network

neural
network

neural
network

neural
network

neural
network

neural
network

Figure 5.4: Neural baseline for the Seek Whence task, utilising a pre-trained digit-recognition network
and an LSTM predicting the output representation of the following digit.

element. This is possible because we do not retrain the MNIST model, as training would otherwise
lead to unstable learning, leading to degenerate solutions.

The model, depicted in Figure 5.4, is using the same pre-trained MNIST model and an LSTM with 10
hidden units. It is optimised with the Adam optimiser with a learning rate of 0.01. Every experiment
is repeated 10 times on different random seeds.

Results

Our Seek Whence experiments contained 10 sequences:

0, 0, 0, 0, 0, 0, ... 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, ...
0, 1, 2, 3, 4, 5, ... 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, ...
5, 4, 3, 2, 1, 0, ... 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, ...
0, 1, 0, 1, 0, 1, ... 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, ...
0, 0, 1, 1, 2, 2, 3, 3, 4, 4, ... 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, ...

For each symbolic sequence, we generated multiple MNIST image sequences. To generate an MNIST
image sequence, we chose α, the number of ambiguities, and then sampled an image sequence with
exactly α ambiguous images. We let α range from 0 to 10. An image counts as ambiguous relative
to our threshold of 0.1 if two or more classes are assigned a probability of higher than 0.1 by our
pre-trained neural network.

Figure 5.5 shows how accuracy deteriorates as we increase the number of ambiguous images. The
interpretations are very robust to a small number of ambiguous images. Eventually, once we have 10
ambiguous images (for sequences of average length 12), the results begin to degenerate, as we would
expect. But the key point here is that the Apperception Engine’s accuracy is robust to a number of
ambiguities.

Comparing with the neural baseline, we can see that the baseline performance also drops with
the increasing number of ambiguous images, when trained on a single example, though not as
significantly as the Apperception Engine. This problem is fixed with an increasing number of

118

0 2 4 6 8 10
ambiguities

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
Model
Neural baseline
Apperception
examples
1
100
10000

Figure 5.5: The evaluation for the noisy Seek Whence sequences from MNIST, for the Apperception
Engine and the baseline models. The horizontal axis records the number of ambiguous images in the
sequence while the vertical axis records the mean percentage accuracy over the ten sequences. The
neural baseline is trained on an increasing number of training examples. The shaded area is the 95%
confidence interval across all the sequences and the 10 runs with different random seeds.

training examples, as expected for a neural model, which perform well with noisy inputs. Qualitative
analysis of models per sequence shows that the neural baseline can easily learn to predict elements
of easy sequences such as the all-zero and the zero-one sequences. However, it struggles with
other sequences, correctly predicting only static elements of a sequence, but failing to learn the
approximation to the succ relation. Though seemingly unfair—requiring a neural model to learn
the succ relation—we emphasise that any background knowledge needs to be explicitly hard-coded
into the architecture of the model necessitating non-trivial modifications per task, as opposed to the
Apperception Engine where the addition of background knowledge is straightforward. In addition,
model performance is highly dependent on the parameter initialisations, shown by the confidence
intervals in Figure 5.5.

5.5.2 Sokoban

In Section 5.5.1, we used a hybrid architecture where the output of a pre-trained neural network was
fed to the Apperception Engine. We assumed that we already knew that the images fell into exactly
ten classes (representing the digits 0− 9), and that we had access to a network that already knew how
to classify images.

But what if these assumptions fail? What if we are doing pure unsupervised learning and don’t know
how many classes the inputs fall into? What if we want to jointly train the neural network and solve
the apperception problem at the same time?

In this next experiment, we combined the Apperception Engine with a neural network, simulta-
neously learning the weights of the neural network and also finding an interpretable theory that
explains the sensory sequence.

119

north east north west west

raw sensory sequence held-out

acceptable

unacceptable

Figure 5.6: The Sokoban task. The input is a sequence of (image, action) pairs. For the held-out time
step, there is a set of acceptable images, and a set of unacceptable images.

We used Sokoban as our domain. This is a puzzle game where the player controls a man who moves
around a two-dimensional grid world, pushing blocks onto designated target squares. We generate
traces of human play, and ask our system to make sense of the sequence. We chose Sokoban because
it is a challenging domain for next-step neural network predictors [BWR+18].

In our version, the system is not given a symbolic representation of the state, but is presented with a
sequence of noisy pixel images together with associated actions. The system must jointly (i) parse the
noisy pixel images into a set of persistent objects, and (ii) construct a set of rules that explain how the
properties of those objects change over time as a result of the actions being performed. We wanted
the learned dynamics to be 100% correct. Although next-step prediction models based on neural
networks are able, with sufficient data, to achieve accuracy of 99% [BWR+18], this is insufficient
for our purposes. If a learned dynamics model is going to be used for long-term planning, 99%
is insufficiently accurate, as the roll-outs will become increasingly untrustworthy as we progress
through time, since 0.99t quickly approaches 0 as t increases.

The data

In this task, the raw input is a sequence of pairs containing a binarised 20 × 20 image together with
a player action from A = {north, east, south,west}. In other words, R = B20×20 × A, and (r1, ..., rT) is a
sequence of (image, action) pairs from R.

Each array is generated from a 4 × 4 grid of 5 × 5 sprites. Each sprite is rendered using a certain
amount of noise (random pixel flipping), and so each 20 × 20 pixel image contains the accumulated
noise from the various noisy sprite renderings.

The player actions are treated as exogenous: although they can be used by the system to predict the
next state, they do not themselves need to be explained.

Each trajectory contains a sequence of (image, action) pairs, plus held-out data for evaluation. Because
of the noisy sprite rendering process, there are many possible acceptable pixel arrays for the final
held-out time step. These acceptable pixel arrays were generated by taking the true underlying
symbolic description of the Sokoban state at the held-out time step, and producing many alternative
renderings. A set of unacceptable pixel arrays was generated by rendering from various symbolic
states distinct from the true symbolic state. Figure 5.6 shows an example.

120

In our evaluation, a model is considered accurate if it accepts every acceptable pixel array at the
held-out time step, and rejects every unacceptable pixel array. This is a stringent test. We do not give
partial scores for getting some of the predictions correct.

The model

In outline, we convert the raw input sequence into a disjunctive input sequence by imposing a grid
on the pixel array and repeatedly applying a binary neural network to each sprite in the grid. In
detail:

1. We choose a sprite size k, and assume the pixel array can be divided into squares of size k × k.
We assume all objects fall exactly within grid cell boundaries. In this experiment6, we set k = 5.

2. We choose a number m of persistent objects o1, ..., om. We choose a number n of distinct types of
objects v1, ..., vn, and add an additional type v0 (where v0 is a distinguished identifier that will
be used to indicate that there is nothing at a grid square). We choose a total map κ : {o1, ..., om} →
{v1, ..., vn} from objects to types. For example, we might choose three objects (m = 3) and two
types (n = 2), where o1 is of type v1, while both o2 and o3 are of type v2.

3. We apply a binary neural network (BNN) to each k× k sprite in the grid. The BNN implements
a mapping Bk×k → {v0, v1, ..., vn}. If sprite s is at (x, y), then BNN(s) = vi can be interpreted as: it
looks as if there is some object of type vi at grid cell (x, y), for i > 0. If BNN(s) = v0, it means that
there is nothing at (x, y). See Figure 5.7. For each time step, for each grid cell, we convert the
output of the BNN into a disjunction of ground atoms: if sprite s is at (x, y), and BNN(s) = vi,
then we create a disjunction featuring each object o of type vi stating that any of them could be
at (x, y). See Figure 5.8.

4. We use the Apperception Engine to solve the disjunctive apperception task generated by steps
1–3.

6Giving the system the grid cell boundaries is a substantial piece of information that helps the Apperception Engine
overcome the combinatorial complexity of the problem. But for a series of experiments in which we do not provide any
spatial information, see Section 5.5.3.

121

7! v07!v0 7! 7! v27!
v2

7!
7! 7! 7! 7!7!

v2 v1 v0

v1 v1 v2 v1 7!v0

Figure 5.7: A binary neural network maps sprite pixel arrays to types {v0, v1, v2}.

v0 v0 v0

v0 v0 v0 v0

v0 v0 v0

v0 v0 v0v1

v2

v2

raw input sprite grid BNN output disjunctive state

convert BNN

in1(o1, c3,4)
in1(o2, c3,3) _ in1(o3, c3,3)
in1(o2, c4,1) _ in1(o3, c4,1)
action(north)

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

s1 s5 s4 s2
s4 s4 s5 s1
s1

s1

s5
s5 s4

s4
s3

s6

Figure 5.8: A binary neural network converts the raw pixel input into a set of disjunctions. There is
one object o1 of type v1 and two objects o2, o3 of type v2. If sprite s is at (x, y), and BNN(s) = vi, then
we create a disjunction featuring each object o of type vi stating that any of them could be at (x, y).

The input type signature φ and initial constraints C are:

φ =



T = {cell, v1, ..., vn, d}

O =



cx,y : cell | (x, y) ∈ {1, 2, 3, 4} × {1, 2, 3, 4}
o1:v1, ..., om:vn

north:d, east:d, south:d,west:d

P =



ini(vi, cell) | i = 1..n

action(d)

right(cell, cell)

below(cell, cell)

V = {C:cell,A:d} ∪ {Xi:vi | i = 1..n}

C =


∀Xi:vi, ∃!C:cell, ini(X,C) | i = 1..n

∃!A:d, action(A)

As background knowledge, we provide the spatial arrangement of the grid cells: right(c1,1, c2,1),
below(c1,1, c1,2), etc.

For each Sokoban trajectory, we gave the Apperception Engine 48 hours running on a standard Unix
desktop to find the lowest cost interpretation according to the score of Definition 27.

122

BNN

v0 v0 v0

v0 v0 v0 v0

v0 v0 v0

v0 v0 v0

v0 v0 v0

v0 v0 v0

v0 v0 v0

v0 v0 v0 v0

v0 v0 v0

v0 v0 v0

v0 v0 v0

v0 v0 v0 v0

v0 v0 v0

v0 v0

v0 v0 v0 v0

v0 v0 v0 v0

v0 v0 v0

v0 v0

v0 v0 v0 v0

v0 v0 v0 v0

v1

v1

v1

v1

v1

v2

v2

v2

v2

v2

v2

v2

v2

v2

v2

t1

t2

t3

t4

t5

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

o1

o2

o3

o3

o3

o3

o3

o1

o1

o1

o1

o2

o2

o2

o2

north

east

north

west

west

8>>>>><>>>>>:

in1(o1, c3,4)
in2(o2, c3,3)
in2(o3, c4,1)
action(north)8>>>>><>>>>>:

in1(o1, c3,3)
in2(o2, c3,2)
in2(o3, c4,1)
action(east)8>>>>><>>>>>:

in1(o1, c4,3)
in2(o2, c3,2)
in2(o3, c4,1)
action(north)8>>>>><>>>>>:

in1(o1, c4,2)
in2(o2, c3,2)
in2(o3, c4,1)
action(west)8>>>>><>>>>>:

in1(o1, c3,2)
in2(o2, c2,2)
in2(o3, c4,1)
action(west)

Apperception
Engine

raw input BNN output symbolic state interpretation

Figure 5.9: Interpreting Sokoban from raw pixels. Raw input is converted into a sprite grid, which is
converted into a grid of types v0, v1, v2. The grid of types is converted into a disjunctive apperception
task. The Apperception Engine finds a unified theory explaining the disjunctive input sequence, a
theory which explains how objects’ positions change over time. The top four rules of R (in blue)
describe how the man X moves when actions are performed. The middle four rules (in magenta)
define four invented predicates p1, ...p4 that are used to describe when a block is being pushed in one
of the four cardinal directions. The bottom four rules (in red) describe what happens when a block is
being pushed in one of the four directions.

Understanding the interpretations

Figure 5.9 shows the best theory7 found by the Apperception Engine from one trajectory of 17 time
steps. When neural network next-step predictors are applied to these sequences, the learned dynamics
typically fail to generalise correctly to different-sized worlds or worlds with a different number of
objects [BWR+18]. But the theory leaned by the Apperception Engine applies to all Sokoban worlds,
no matter how large, no matter how many objects. Not only is this learned theory correct, but it is
provably correct.8

Figure 5.10 shows the evolving state over time. The grid on the left is the raw perceptual input, a
grid of 20 × 20 pixels. The second element is the output of the binary neural network: a 4 × 4 grid
of predicates v0, v1, v2. If vi is at (x, y), this means “it looks as if there is some object of type i at (x, y)”
(but we don’t yet know which particular object). So, for example, the grid in the top row states that
there is some object of type 1 at (3, 4), and some object of type 2 at (4, 1). Here, v0 is a distinguished
predicate meaning there is nothing at this grid square.

7The rules in R describe the state transitions conditioned on actions being performed. They do not describe the conditions
under which the particular actions are available. For example, in Sokoban, you cannot push a block left if there is another
block to the left of the block that you are trying to push. Action availability is not represented explicitly in the theory
θ = (φ, I,R,C).

8The fixed rules of Sokoban determine a deterministic state transition function tr : S × A → S from board states and
actions to board states. We can show that, for any board state S and action A, if τ(θ) contains S ∪ A at time t, then τ(θ)
contains tr(S,A) at time t + 1.

123

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

o1

o2

o3

o3

o3

o3

o3

o1

o1

o1

o1

o2

o2

o2

o2

8>>>>><>>>>>:

in1(o1, c3,4)
in2(o2, c3,3)
in2(o3, c4,1)
action(north)8>>>>><>>>>>:

in1(o1, c3,3)
in2(o2, c3,2)
in2(o3, c4,1)
action(east)8>>>>><>>>>>:

in1(o1, c4,3)
in2(o2, c3,2)
in2(o3, c4,1)
action(north)8>>>>><>>>>>:

in1(o1, c4,2)
in2(o2, c3,2)
in2(o3, c4,1)
action(west)8>>>>><>>>>>:

in1(o1, c3,2)
in2(o2, c2,2)
in2(o3, c4,1)
action(west)

action(east) ^ in1(X,C1) ^ right(C1,C2) �� in1(X,C2)

action(north) ^ in1(X,C1) ^ below(C2,C1) �� in1(X,C2)

in1(X,C1) ^ in2(Y,C2) ^ right(C2,C1) ^ action(west)! p4(Y)
action(west) ^ in1(X,C1) ^ right(C2,C1) �� in1(X,C2)
p4(Y) ^ in2(Y,C1) ^ right(C2,C1) �� in2(Y,C2)

in1(X,C1) ^ in2(Y,C2) ^ right(C2,C1) ^ action(west)! p4(Y)
action(west) ^ in1(X,C1) ^ right(C2,C1) �� in1(X,C2)
p4(Y) ^ in2(Y,C1) ^ right(C2,C1) �� in2(Y,C2)

in1(X,C1) ^ in2(Y,C2) ^ below(C2,C1) ^ action(north)! p1(Y)
action(north) ^ in1(X,C1) ^ below(C2,C1) �� in1(X,C2)
p1(Y) ^ in2(Y,C1) ^ below(C2,C1) �� in2(Y,C2)

v0 v0 v0

v0 v0 v0 v0

v0 v0 v0

v0 v0 v0

v0 v0 v0

v0 v0 v0

v0 v0 v0

v0 v0 v0 v0

v0 v0 v0

v0 v0 v0

v0 v0 v0

v0 v0 v0 v0

v0 v0 v0

v0 v0

v0 v0 v0 v0

v0 v0 v0 v0

v0 v0 v0

v0 v0

v0 v0 v0 v0

v0 v0 v0 v0

v1

v1

v1

v1

v1

v2

v2

v2

v2

v2

v2

v2

v2

v2

v2

t1

t2

t3

t4

t5

north

east

north

west

west

raw input overt state
(grid)

latent statenetwork output overt state
(symbols)

p4(o2)

p1(o2)

p4(o2)

rules firing

Figure 5.10: The state evolving over time. Each row shows one time step. We show the raw pixel
input, the output of the binary neural network, the set of ground atoms that are currently true, and
the rules that fire.

The third element is a 4×4 grid of persistent objects: if oi is at (x, y) this means: the particular persistent
object oi is at (x, y). The fourth element is a set of ground atoms. This is a re-representation of the
persistent object grid (the fourth element) together with an atom representing the player’s action.
The fifth element shows the latent state. In Sokoban, the latent state stores information about which
objects are being pushed in which directions. Here, in the top row, p1(o2) means that persistent object
o2 is being pushed up. The sixth element shows which rules fire in which situations. In the top row,
three rules fire. The first rule describes how the man moves when the north action is performed. The
second rule concludes that a block is pushed northwards if a man is below the block and the man is
moving north. The third rule describes how the block moves when it is pushed northwards.

Looking at how the engine interprets the sensory sequence, it is reasonable—in fact, we claim,
inevitable—to attribute beliefs to the system. In the top row of Figure 5.9, for example, the engine
believes that the object at (3, 3) is the same type of thing as the object at (4, 1), while the object at
(3, 4) is not the same type of thing as the object at (4, 1). As well as beliefs about particular situations,
the system also has general beliefs that apply to all situations. For example, whenever the north
action is performed, and the man is below a block, then the block is pushed upwards. One of
the reasons for using a purely declarative language such as Datalog⊃− is that individual atoms and
clauses can be interpreted as beliefs. If, on the other hand, the program that generated the trace had
been a procedural program, it would have been much less clear what beliefs, if any, the procedure
represented.

124

split

Pt

t1

t2

t3

t4

t5

north

east

north

west

west

LSTM

…

…

…

…

…

…

…

…

…

…

…

…
MLPMLP

MLP

MLP

MLP

MLP

Figure 5.11: The baseline model for the Sokoban task. The perceptual input data is per-sprite fed
into an array of parameter-sharing MLPs and then concatenated with the action data. The result is
fed into an LSTM which predicts the parameters of an array of Gumbel-Softmaxes [JGP16, MMT16],
one per sprite. These distributions approximate a symbolic state of the board, which is then decoded
back into perceptual data of the following step.

The baseline

The baseline we construct for the Sokoban task is an auto-regressive model with a continuously-
relaxed discrete bottleneck [MMT16], fully following the desiderata of Section 5.5.1.9

The model applies an array of parameter-sharing multilayer perceptrons (MLPs) to each block of
the game state, and concatenates the result with the one-hot representation of the actions before
feeding it into an LSTM. The LSTM, combined with a dense layer, produces the parameters of
Gumbel-Softmax [JGP16, MMT16] continuous approximations of the categorical distribution, one
per each block of the state. These distributions, when the model is learned well, can encode a
close-to-symbolic representation of the current state without direct supervision. The step following
is a decoder network consisting of a two-layer perceptron which targets the next raw state of the
sequence.

Given that the presented model is a purely generative model over a large state space, in order to
compare it to the Apperception Engine, we add a density estimation classifier on its output. The
classifier fits a Gaussian per class, trained on log-probabilities of independently sampled acceptable
and unacceptable test states calculated over the Bernoulli distribution outputted by the model.

We trained the baseline with the Adam optimizer, varying the learning rate in [0.05, 0.01, 0.005, 0.001],
batch size in [512, 1024] and executing each experiment 10 times. We selected the best set of hyper-
parameters by choosing the parameters with the best development set performance, and averaged
the performance across 10 repetitions with different random seeds. During training, we annealed

9I am very grateful to Matko Bosnjak for his help in designing and implementing the neural baselines.

125

1 10 100 1000 10000
training examples

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy Model

Neural baseline
Apperception

Figure 5.12: The results on the Sokoban task. Apperception is trained on only a single example
and the dashed line represents the apperception results on only that example. The neural baseline is
trained on an increasing number of training examples. The shaded area is the 95% confidence interval
on 10 runs with different random seeds.

the temperature of the Gumbel-Softmax with an exponential decay, from 2.0 to 0.5 with a per-epoch
decay of 0.0009.

Results

We took ten trajectories of length 22. For each trajectory, we evaluated on eight subsequences of
lengths 3 to 17 in increments of 2. For each subsequence of length n, we used the remaining 22 − n
time-steps for evaluation. The results are shown in Figure 5.13. While most of the trajectories do
not contain enough information for the engine to extract a correct theory, three of them are able to
achieve 100% accuracy on the held-out portion of the trajectory. Of course, getting complete accuracy
on the held-out portion of a single trajectory is necessary, but not sufficient, to confirm that the
induced theory is actually correct on all possible Sokoban configurations. We checked each of the
three accurate induced theories, and verified by inspection that one of the three theories was correct
on all possible Sokoban maps, no matter how large, and no matter how many objects.10

Next, we compare the Apperception Engine to the neural baseline. We train both models on a single
trajectory containing enough information to extract the correct theory. In addition, we train the neural
baseline on an increasingly large training set.

10Note that state of the art ILP systems are unable to learn the correct dynamics of Sokoban given hundreds of trajectories
[CEL19].

126

3 5 7 9 11 13 15 17
0

0.2

0.4

0.6

0.8

1

Sc
or

e

Figure 5.13: The results for Sokoban on ten trajectories. The horizontal axis records the number
of time-steps provided as input. The vertical axis records the mean percentage accuracy over the
held-out time-steps.

The baseline model is not able to absolutely correctly distinguish between acceptable and unacceptable
next steps, neither from the single example, nor a large number of examples. However, as expected,
the accuracy of the baseline increases with increasing size of the training set, though it shows the
tendency to plateau without reaching the maximum. By inspecting the latent distributions, we see
that the model learns to approximate the symbolic state of the board well—the resulting distribution
roughly corresponds to the state, though the visual inspection of the decoded state shows that the
model largely focuses on the large objects (such as the block O) the best, while possibly ignoring
smaller objects (such as the man X). An important thing to emphasise here is that the performance
of the model is highly dependent on the initial random seed: with some random initialisations, the
performance is acceptable, with others unacceptable. From these findings, we conclude that the
neural networks can somewhat learn to predict the next state, and even induce a near-to-symbolic
representation of the state, though the model requires a larger number of training instances and the
performance of the model is not fully reliable.

In contrast, the Apperception Engine is able to learn a fully explainable theory from a single example.

5.5.3 Fuzzy sequences

In the Sokoban experiments described in Section 5.5.2 above, the system jointly solved low-level
perception and high-level apperception. It performed low-level perception by finding the weights of
the binary neural network and it performed high-level apperception by finding a unified theory that
solves the apperception task. Because both tasks were encoded as a single SAT problem, and solved
jointly, information could flow in both directions, both bottom-up and top-down.

But there were two pieces of domain-specific knowledge that we injected: the dimensions of the sprite

127

a a b b a a b b a a b b

000 010 110 110 000 011 100 111 000 001 011 111

000
001
010
011

100
101
110
111

a b
011

0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1

sample

concatenate

Figure 5.14: Generating fuzzy sequences. We start with a symbolic sequence, and convert into a
binary vector. We use a map from discrete symbols to sets of binary vectors. Some of the binary
vectors are ambiguous between different symbols; these are shown in red. For each symbol in the
original symbolic sequence, we sample one of the corresponding vectors using the map. Finally, we
concatenate the binary vectors to produce one large sequence where the segmentations have been
thrown away.

grid and the number of distinct types of objects. In this final set of experiments, we investigate what
happens when we jointly solve low-level perception and high-level apperception without providing
a spatial structure or any hint as to the number of classes.

The data

In these experiments, the inputs are binary sequences that were generated by a stochastic process
from an underlying symbolic sequence with low Kolmogorov complexity. See Figure 5.14. We start
with a simple symbolic sequence, e.g., aabbaabbaabb... We generate a map from symbols to sets of
binary vectors. This map contains some ambiguities, some binary vectors that are associated with
multiple symbols: in Figure 5.14, for example, 011 is ambiguous between a and b. We convert the
sequence of symbols into a sequence of binary vectors by sampling (uniformly randomly) for each
symbol in the sequence one of the corresponding vectors. Then we concatenate the binary vectors
into one large sequence, thus throwing away the information about where the sequence is segmented.
Figure 5.15 shows six example sequences.

We want the Apperception Engine to recover the underlying symbolic structure from this fuzzy,
ambiguous sequence, without giving it privileged access to the segmentation information—we want
the system to recover the segmentation information as part of the perceptual process.

The held-out data

To evaluate the accuracy of the models, we consider what the model predicts about a held-out
portion of the sequence. Because the sequence is ambiguous, there are many different acceptable

128

a a b b a a b b a a b b

000 010 110 110 000 011 100 111 000 001 011 111

0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1

a b a b a b a b a b a b

00 11 00 01 01 11 01 10 00 11 00 10

0 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0

a a b a a b a a b a a b

0101 0000 1110 0011 0110 1110 0011 0111 1010 0101 0010 1110

0 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 1 0

a a a b a a a b a a a b

00 00 00 10 00 01 00 10 00 00 01 10

0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0

a b c a b c a b c a b c

00 00 10 00 01 10 00 01 10 00 01 10

0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0

a b c a b c a b c a b c

000 010 101 001 011 101 000 011 100 001 011 100

0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0

Figure 5.15: Six example sequences. In each, we show the original symbolic sequence, the randomly
sampled vectors, and the final concatenated result.

a a b b a a b b a a b b

000 010 110 110 000 011 100 111 000 001 011 111

a
000 001 010

100 101 110

raw sensory sequence held-out

acceptable
unacceptable

original symbolic sequence

Figure 5.16: A fuzzy sequence with held-out data. Ambiguous vectors are shown in red.

129

continuations of it (see Figure 5.16).

We evaluate a model as accurate on the sequence if it accepts every correct continuation and rejects
every incorrect one, stringently giving no partial credit.

The models

To find the best interpretation of a fuzzy sequence, we consider a set of models, and find the one with
the highest probability (see Definition 27). Each model is an Apperception Engine combined with a
binary neural network.

Recall that the given binary sequence is formed by starting with a symbolic sequence (S1, ...,ST) from
an alphabet of size n, then sampling, for each Si, a binary vector of length k, and then concatenating
the vectors together to produce a single binary vector of size T × k.

We withhold certain crucial information from our model: we do not provide the size k of the con-
stituent binary vectors, and we do not provide the number n of symbols in the alphabet. Instead,
we perform a grid search over pairs (kg,ng), where kg is the guessed value of k and ng is the guessed
value of n, and choose the pair with the best score.

For a particular (kg,ng) pair, we divide the given binary sequence into T · k/kg vectors v1, ...,vT·k/kg

each of size kg, and create a binary neural network with output layer of size ng. We apply the binary
neural network to each vector. We use a type signature with ng unary predicates p1, ..., png .

We apply the network to each vector v1, ...,vT·k/kg and generate, for each vt, a disjunction px1(s) ∨
... ∨ pxm(s) holding at time t, where {px1 , ..., pxm} are the subset of predicates {p1, ..., png} such that the
network’s xi’th output is 1. For example, if ng = 5 and the neural network’s output layer is (1, 0, 1, 1, 0)
on input vt, then the disjunction p1(s)∨p3(s)∨p4(s) is added at time t. The s is a distinguished constant
representing the (single) sensor.

In terms of the formalism of Section 5.2, the raw input sequence is a sequence (r1, ..., rT) of binary
vectors from Bk. The framework (πw,n,∆, φ,C) consists of:

• A binary neural network πw mapping Bk → Bn

• A number n of classes

• A “disjunctifier” ∆ that translates the output of πw into a single disjunction of ground atoms

• A type signature φ = (T,O,P,V) consisting of one type, sensor, one object s of type sensor, and
predicates p1, .., .pn for each of the output classes.

• C contains the constraint that every sensor satisfies exactly one of the pi predicates

130

0
0
0
0
1
0
1
1
0
1
1
0
0
0
0
0
1
1

0
0
0
0
1
0
1
1
0
1
1
0
0
0
0
0
1
1

p
p(s)bnn

bnn

Apperception
Engine

bnn

bnn

bnn

bnn

1

q 0

p
p(s)

1

q 0

p
q(s)

0

q 1

p
q(s)

0

q 1

p
p(s)

1

q 0

p
p(s)∨q(s)

1

q 1

Figure 5.17: Solving the fuzzy sequence with kg = 3 and ng = 2 (the correct guesses). The interpretation
discerns the underlying pattern ppqqppqqppqq...which is isomorphic to the original symbolic sequence
aabbaabbaabb...

In a little more detail, the binary neural network πw, parameterised by weights w, takes a binary
vector of length k and maps it to a binary vector of length n. Now the disjunctifier ∆ uses the binary
neural network’s output to generate a disjunction: if the i’th output is 1, then the sensor s could satisfy
pi:

∆ =
{ ∨{pi(s) | πw(r)[i] = 1}

}

Figures 5.17 and 5.18 provide two examples. In Figure 5.17, the guesses are correct as kg = k and
ng = n. Here, each vector vi is of length 3, just as in the true generative process, and there are two
predicates p and q corresponding to the two symbols of the original symbolic sequence. In Figure
5.18, the guesses are incorrect as kg = 2 , k and ng = 3 , n.

Repeated application of the binary neural network to the vectors v1, ...,vT·k/kg produces T · k/kg

disjunctions of the form px1(s) ∨ ... ∨ pxm(s). See the fifth column in Figures 5.17 and 5.18. The
disjunctive sensory sequence is passed to the Apperception Engine which attempts to resolve the
disjunctions and find a unified interpretation. (Note that strictly speaking there is no temporal
sequence here: the weights of the binary neural network, the resolutions of the disjunctions, and the
unified theory are found jointly and simultaneously. But for expository purposes, it can be helpful to
think of the binary neural network as operating before the Apperception Engine).

Once we have chosen kg and ng, we create an initial type signature with ng unary predicates p1, ..., png ,
and then iterate through increasingly complex templates, with an increasingly large number of
invented predicates and additional rules. This iterative procedure produces a set of theories that
need to be compared. From each pair of guesses of kg and ng, we find a vector w of network weights

131

0
0
0
0
1
0
1
1
0
1
1
0
0
0
0
0
1
1

0
0
0
0
1
0
1
1
0
1
1
0
0
0
0
0
1
1

p
q
r

1
0
1

p
q
r

1
0
1

p
q
r

0
1
1

p
q
r

0
0
1

p
q
r

0
0
1

p
q
r

0
1
1

p
q
r

1
0
1

p
q
r

1
0
1

p
q
r

0
0
1

p(s)∨r(s)

p(s)∨r(s)

r(s)

q(s)∨r(s)

r(s)

q(s)∨r(s)

p(s)∨r(s)

p(s)∨r(s)

r(s)

bnn

bnn

bnn

bnn

bnn

bnn

bnn

bnn

bnn

Apperception
Engine

Figure 5.18: Solving the fuzzy sequence with kg = 2 and ng = 3 (the wrong guesses). The interpretation
maps all vectors to c and produces a degenerate interpretation in which r(s) remains true and nothing
changes.

plus a theory θ that satisfies the unity conditions. We score (w, θ) using the function of Definition 27.

Understanding the interpretations

Figure 5.18 shows one interpretation of the fuzzy sequence of Figure 5.14. In this interpretation,
the guessed vector length kg = 2 is wrong as the actual vector length is 3. The guessed number
of predicates ng = 3 is also wrong as the fuzzy sequence was generated from the symbol sequence
aabbaabbaabb... that uses 2 symbols.

In this interpretation, vectors are mapped to concepts as follows:

(0, 0) 7→ p(s) ∨ r(s) (0, 1) 7→ r(s) (1, 0) 7→ q(s) ∨ r(s) (1, 1) 7→ r(s)

Note that every vector is mapped to r.

The interpretation found is very simple. The atom r(s) is initially true, and then remains true forever.
Nothing changes. Because the guessed vector size is wrong, the system is unable to discern any
distinctions in the input, and maps everything to the single concept r. This interpretation is the great
leveller, blurring all distinctions. It is inaccurate on the held-out data.

Figure 5.17 shows another interpretation of the same noisy sequence. In this case, the guessed vector
size kg = 3 is correct, as is the guessed number of predicates ng = 2. In this interpretation, vectors are

132

0
0
0
0
1
0
1
1
0
1
1
0
0
0
0
0
1
1

0
0
0
0
1
0
1
1
0
1
1
0
0
0
0
0
1
1

p
q
r

1
0
1

p
q
r

1
0
1

p
q
r

0
1
1

p
q
r

0
0
1

p
q
r

0
0
1

p
q
r

0
1
1

p
q
r

1
0
1

p
q
r

1
0
1

p
q
r

0
0
1

p(s)∨r(s)

p(s)∨r(s)

r(s)

q(s)∨r(s)

r(s)

q(s)∨r(s)

p(s)∨r(s)

p(s)∨r(s)

r(s)

r(s)

r(s)

r(s)

r(s)

r(s)

r(s)

r(s)

r(s)

r(s)

raw
input

network
outputs

disjunctive
state

sensor
state

latent
 state

rules
firing

chunked
input

(a) Incorrect guess with kg = 2 and ng = 3

0
0
0
0
1
0
1
1
0
1
1
0
0
0
0
0
1
1

0
0
0
0
1
0
1
1
0
1
1
0
0
0
0
0
1
1

p
p(s)

1

q 0

p
p(s)

1

q 0

p
q(s)

0

q 1

p
q(s)

0

q 1

p
p(s)

1

q 0

p
p(s)∨q(s)

1

q 1

raw
input

network
outputs

disjunctive
state

sensor
state

latent
 state

rules
firing

p(s)

p(s)

q(s)

q(s)

p(s)

p(s)

f(s)

g(s)

g(s)

f(s)

f(s)

g(s)

chunked
input

p(X) �� g(X)

g(X) �� q(X)

q(X) �� f (X)

f (X) �� p(X)

p(X) �� g(X)

g(X) �� q(X)

(b) Correct guess with kg = 3 and ng = 2

Figure 5.19: Two interpretations of a sequence generated from aabbaabbaabb... with k = 3. In both (a)
and (b), we show the raw concatenated input, the input divided into chunks of size kg, the output
of the binary neural network, and the disjunction generated by the multiclass classifier. The sensor
state column shows how each disjunction is resolved, while the latent state shows the ground atoms
that were invented to explain the surface sequence. The final column shows all the rules whose
preconditions are satisfied at that moment.

mapped to concepts as follows:

(0, 0, 0) 7→ p(s) (0, 0, 1) 7→ p(s) (0, 1, 0) 7→ p(s) (0, 1, 1) 7→ p(s) ∨ q(s)
(1, 0, 0) 7→ q(s) (1, 0, 1) 7→ q(s) (1, 1, 0) 7→ q(s) (1, 1, 1) 7→ q(s)

Here, the mapping has one ambiguity on vector (0, 1, 1). Note that this ambiguity is unavoidable
given the original ambiguous mapping in Figure 5.14.

Note that the system has discerned the underlying symbolic sequence ppqqppqqppqq..., isomorphic
to the original symbolic sequence aabbaabbaabb.... of Figure 5.14 that was used to generate the fuzzy
sequence. The rules R use f and g as invented predicates to count how many times we are in the two
states of p and q.

It is pleasing that the system is able to recover the underlying symbolic sequence as well as the
low-level mapping from vectors to concepts, from fuzzy ambiguous sequences. This interpretation
is accurate on all the held-out data (see Section 5.5.3).

The two interpretations are compared in Figure 5.19. The left figure (a) shows the interpretation of
Figure 5.18 which blurs all distinctions. The right figure (b) shows the interpretation of Figure 5.17,
which correctly discerns the underlying symbolic structure.

133

k g
=

1
n g
=

2

k g
=

1
n g
=

3

k g
=

2
n g
=

2

k g
=

2
n g
=

3

k g
=

3
n g
=

2

k g
=

3
n g
=

30

0.25

0.5

0.75

1

Sc
or

e

(a) ababababab...with k = 2

k g
=

2
n g
=

2

k g
=

2
n g
=

3

k g
=

3
n g
=

2

k g
=

3
n g
=

3

k g
=

4
n g
=

2

k g
=

4
n g
=

30

0.25

0.5

0.75

1

Sc
or

e

(b) aabbaabbaabb...with k = 3

k g
=

3
n g
=

2

k g
=

3
n g
=

3

k g
=

4
n g
=

2

k g
=

4
n g
=

3

k g
=

5
n g
=

2

k g
=

5
n g
=

30

0.25

0.5

0.75

1

Sc
or

e

(c) aabaabaabaab...with k = 4

k g
=

1
n g
=

2

k g
=

1
n g
=

3

k g
=

2
n g
=

2

k g
=

2
n g
=

3

k g
=

3
n g
=

2

k g
=

3
n g
=

30

0.25

0.5

0.75

1

Sc
or

e

(d) aaabaaabaaab...with k = 2

k g
=

1
n g
=

2

k g
=

1
n g
=

3

k g
=

1
n g
=

4

k g
=

2
n g
=

2

k g
=

2
n g
=

3

k g
=

2
n g
=

40

0.25

0.5

0.75

1

Sc
or

e

(e) abcabcabcabc...with k = 2

k g
=

2
n g
=

2

k g
=

2
n g
=

3

k g
=

2
n g
=

4

k g
=

3
n g
=

2

k g
=

3
n g
=

3

k g
=

3
n g
=

40

0.25

0.5

0.75

1

Sc
or

e

(f) abcabcabcabc...with k = 3

1

Figure 5.20: The results of the Apperception Engine on the Fuzzy Sequences task. Interpretations that
are accurate (on all held-out data) are shown in black, while inaccurate interpretations are shown in
red. In all our experiments, the highest-scoring interpretations are always accurate.

The probability of the accurate interpretation (see Definition 27) is significantly higher than the
probability of the inaccurate interpretation. In general, throughout our experiments, the most probable
interpretations (according to Definition 27) coincide with the accurate interpretations. This means we are
able to retrieve the correct values of kg and ng by taking the interpretation with the highest probability.
See Section 5.5.3.

The baseline

The baseline we construct for the Fuzzy Sequences task is a slightly modified version of the Sokoban
baseline, an auto-regressive model which fully follows the baseline desiderata of Section 5.5.1.

The model applies a two-layer perceptron to each input element, and passes the result to the LSTM
tasked with predicting the distribution (Gumbel-Softmax [JGP16, MMT16]) of the next element.
Following the Gumbel-Softmax is a two-layer perceptron which decodes the samples from the distri-
bution into the following element of the sequence.

We trained the baseline with the Adam optimizer, set the learning rate to 0.01 and trained on only
the single example. After noticing that the model struggles with producing a crisp distribution,
we introduced the KL-weighing beta parameter [HMP+17] and set it to β = 0.1 to produce better
representations. We ran the model on each instance of the task 10 times on different random seeds.

134

1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

ababababab... (k = 2)
n

2
3

2 3 4

aabbaabbaabb... (k = 3)
n

2
3

3 4 5

aabaabaabaab... (k = 4)
n

2
3

1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

aaabaaabaaab... (k = 2)
n

2
3

1 2
k

abcabcabcabc... (k = 2)
n

2
3
4

2 3

abcabcabcabc... (k = 3)
n

2
3
4

Figure 5.21: The results of the neural baseline on the Fuzzy Sequences task. Striped bar denotes the
correct (n, k) choice.

Results

Figure 5.20 shows the results for the Apperception Engine, while Figure 5.21 shows the results for
the neural baseline.

Figure 5.20 shows, for six fuzzy sequences, an evaluation of different theories with different guesses
for kg and ng. The accurate theories (those that correctly predict all held-out data) are shown in black,
while inaccurate theories are shown in red. Notice that the score (based on the log probability of
the (w, θ) pair from Definition 27) is a reliable indicator of the accuracy of the interpretation. This
means that we can run a grid search over guesses for kg and ng, choose the interpretation with the
highest score, and confidently expect that this interpretation will be accurate on the held-out data.
The central point here is that we do not need to provide the system with information about the way
the fuzzy sequence is grouped into chunks. Rather, the system itself can induce the correct way to group
the data as part of the apperception process.

Since the induced baseline representations often were not sharply discrete, we did not compare it to
the Apperception Engine on the same scoring but we evaluated it only on its capacity to correctly
predict elements of the sequence. In Figure 5.21 we observe that the baseline correctly learns to
predict only the ababababab... sequence and the abcabcabcabc... (k = 2) sequence. The first sequence is
correctly predicted, whereas the second one, though simple to learn for the model, does not present
the correct choice of parameters, showing that the model, even though able to predict some sequences,
cannot provide a reliable accuracy for choosing correct parameter guesses. Further looking into the
Gumbel-Softmax parameters shows that, when the model learns the sequence well, it does induce

135

a meaningful crisp distribution, but when it does not it learns a distribution which is not useful
for interpretation. We also notice that for the sequences it cannot learn, the neural model exhibits
severe overfitting on the single example, an expected phenomenon when trained on a low number of
examples.

136

Chapter 6

Kant’s cognitive architecture

In this chapter, we describe the particular interpretation of Kant that underlines the computer models
described above. It might seem, at first, somewhat odd to present the philosophical motivation
only after the computer system has already been described. But the example below (that is needed
to concretise our particular interpretation of Kant) requires the formal machinery that has been
developed in earlier chapters. Readers who are not interested in the interpretation of Kant should
feel free to skip this chapter.

The material in this chapter is based, in part, on the following publications:

“Kant on Constituted Mental Activity”, The American Philosophical Association, Volume 16, 2017.

“A Kantian Cognitive Architecture”, Philosophical Studies, 2018.

“Formalizing Kant’s Rules”, Journal of Philosophical Logic, 2019.

6.1 Introduction

We are familiar with the idea that social activity is constituted activity. The utterance of the words
“I do” counts, in the right circumstances, as an acceptance of marriage vows. Pushing the wooden
horse-shaped piece forward counts, in the right circumstances, as moving the knight to king’s bishop
three. Jones’ running away counts, in the right circumstances, as desertion. These social actions are
things we can only do indirectly, by doing something else. A social action is not something we can
just do.

Kant’s cardinal innovation, as I read him, is to see mental activity as constituted activity. This plurality
of sensory perturbations counts, in the right circumstances, as representing a red triangle. This activity
of rule application counts, under the right circumstances, as seeing an apple. This activity of rule
construction counts, under the right circumstances, as forming the belief that Caius is mortal. Kant’s

137

surprising claim is that mental activity is itself constituted. We have to perform a certain type of activity
in order to experience a world at all.

6.1.1 From counts-as to counting-as

Let us start by considering the activity of counting-as:

• Jones counts Smith’s contortion of the lips as a delighted smile

• The sergeant counts Jones’ running away as desertion

• The teacher counts the boy’s squiggle as an “s”

• The vicar counts the utterance of the words “I do” as an acceptance of the marriage vows

Notice that these examples describe the activity of counting-as, rather than the mere relation of counts-
as. The counts-as relation is commonly formulated as:

x counts as y (in context c)

This sentence, ascribing a three-place relation between x, y and c, ignores the person who is doing
the counting-as, and the business of counting itself, and focuses solely on the resulting judgement. If
we want to acknowledge the individual performing the counting, and the activity of counting as, we
would write it as:

agent a counts x as y (in context c)

This sentence describes the activity of counting-as, and makes explicit the person who is doing the
counting.

Under what circumstances would it be ok to forget about the person doing the counting? Perhaps
it would be ok to suppress the agent and the activity of counting-as in cases where everyone agreed
about what counted-as what, where mass agreement in counting-as was taken for granted. Through-
out the Investigations [Wit09], Wittgenstein repeatedly asks us to stop taking this mass communal
agreement for granted. He demands “what if one person reacts in one way and another in another?”
(Investigations, §206). For example, he considers the case where:

a person naturally reacted to the gesture of pointing with the hand by looking in the
direction of the line from finger-tip to wrist, not from wrist to finger-tip (Investigations,
§185)

138

The divergence here is a difference in what activity the deviant person is counting the gesture as.
The deviant is counting the gesture as pointing in the opposite direction from what “we”1 count the
gesture as.

Whenever Wittgenstein talks about counts-as, he is careful to talk about the activity of counting-as,
rather than an abstract relation of counts-as that presupposes communal agreement:

But now imagine a game of chess translated according to certain rules into a series of
actions which we do not ordinarily associate with a game - say into yells and stamping of
feet. ... Should we still be inclined to count them as playing a game? What right would one
have to say so? (Investigations, §200) (my emphasis)

Wittgenstein focuses on edge cases like these, cases where we are no longer sure that everybody
agrees about what counts as what, in order to help us stop treating this mass agreement as given. In
a shared culture, there is indeed mass agreement in what counts as what. But this mass agreement is
an achievement, something painfully accomplished by constant communication and teaching, a fragile
accomplishment that is always in need of renewal. For Wittgenstein, as Cavell reads him [Cav99],
mass agreement in counting-as activity is not something that should be presupposed at the beginning
of philosophical activity, but is instead rather something to be explained.

I find my general intuition of Wittgenstein’s view of language to be the reverse of the idea
many philosophers seem compelled to argue against in him: it is felt that Wittgenstein’s
view makes language too public, that it cannot do justice to the control I have over what
I say, to the innerness of my meaning. But my wonder, in the face of what I have recently
been saying, is rather how he can arrive at the completed and unshakable edifice of shared
language from within such apparently fragile and intimate moments - private moments -
as our separate counts and out-calls of phenomena, which are after all hardly more than
our interpretations of what occurs, and with no assurance of conventions to back them
up. The Claim of Reason, p.36

Instead of an abstract “x-counts-as-y” relation that suppresses the agent performing the counting-as
activity and that presupposes communal agreement, Wittgenstein wishes us to start with an individual
agent counting something as something. It is this same counting-as activity that is needed, I claim,
to understand Kant’s project in the First Critique.

6.1.2 From derivative to original intentionality

Consider the humble barometer, a simple sensory device that can detect changes in atmospheric
pressure. If the mercury rises, this means the atmospheric pressure is increasing; if the mercury goes

1For Wittgenstein, the community of “we” just is the set of individuals who count-as in the same way.

139

down, the pressure is decreasing. Now we count the mercury’s rising as the machine responding
to the atmospheric pressure. We count, in other words, a process that is internal to the instrument
(the mercury rising) as representing changing properties of an external world (atmospheric pressure
increasing). But although we count the internal process as representing an external process, the
barometer itself does not. The barometer is incapable of counting the internal process as a representing
because - of course - it is incapable of counting anything as anything.

The barometer does not, in other words, have original intentionality. We might interpret some of its
activities as representations, but it does not.

The distinction between original and derivative intentionality comes from Haugeland [Hau90].
Intentionality is derivative if it is attributed by someone else, by another agent who is doing the
counting-as:

At least some outward symbols (for instance, a secret signal that you and I explicitly agree
on) have their intentionality only derivatively - that is, by by inheriting it from something
else that has the same content already (e.g. the stipulation in our agreement). And, indeed,
the latter might also have its content only derivatively, from something else again; but
obviously, that can’t go on forever. Derivative intentionality, like an image in a photocopy,
must derive eventually from something that is not similarly derivative; that is, at least
some intentionality must be original (non derivative). (Intentionality All Stars p.385)

We can reformulate the derivative/original intentionality distinction in terms of the counting-as
activity:

• x has derivative intentionality in representing p if an agent y (distinct from x) counts x’s activity
as x’s representing p

• x has original intentionality in representing p if x himself counts x’s activity as x’s representing
p

What distinguishes an agent with original intentionality from a mere sensory instrument is that the
former counts its own sensings as representations of a determinate external world:

There is no doubt whatever that all our cognition begins with experience; for how else
should the cognitive faculty be awakened into exercise if not through objects that stimulate
our senses and in part themselves produce representations, in part bring the activity of
our understanding into motion to compare these, to connect or separate them, and thus to
work up the raw material of sensible impressions into a cognition of objects that is called experience?
[B1] (my emphasis)

140

Original intentionality, in other words, is a type of activity interpretation. Just as I can count his
moving the horse-shaped wooden piece from one square to another as his moving his knight to king’s
bishop three, just so I can count the perturbations of my sensory instruments as my representing a
determinate world2.

6.1.3 From sensory agents to cognitive agents

A sensory agent is some sort of animal or device, equipped with sensors. It might have a temperature
gauge, a camera with limited resolution, or a sonar that can detect distance. The sensory agent is
continually performing what roboticists call the sense-act cycle: it detects changes to its sensors, and
responds by bodily movements.

A thermostat, for example, is a simple sensory agent. When it notices that the temperature has got too
low, it responds by increasing the temperature. The thermostat has a sense-act cycle, but it does not
experience the world it is responding to. We count the perturbations of its gauge as representations
of the temperature in the room it is in, but it does not. The gauge movements count as temperature
representations for us, but not for the thermostat. Nothing counts as anything for the thermostat. It just
responds blindly.

By contrast, a cognitive agent is a sensory agent with original intentionality, who counts his sensings as
his representing an external world. He interprets his own sensory perturbations as his representation
of a coherent unified world of external objects, interacting with each other. This world contains one
particular distinguished object, with sensors, that the cognitive agent counts as his body, and he
interprets his sensings as the stimulation of his body’s sensors by interaction with the other objects.

Kant’s fundamental question is:

What does a sensory agent have to do, in order for it to count its own sensory perturbations as
experience, as a representation of an external world?

What, in other words, must a sensory agent do to be a cognitive agent?

Note that this is a question about intentionality - not about knowledge. Kant’s question is very
different from the standard epistemological question:

Given a set of beliefs, what else has to be true of him for us to count his beliefs as
knowledge?

2(Aside). In other words, we can only represent a world because we can count some activity as mental activity. Therefore,
the ability to count activity as intentional (representational) behaviour is necessary to be able to think a world at all. This
has interesting consequences for scepticism about others’ minds. The sceptic suggests it is possible for us to be able to
make sense of a purely physical world of physical activity, and asks with what right we assume that some of this activity is
mental activity. But if the above is right, the capacity to count activity as mental activity is necessary to think anything at all -
there is no intentionality-free representation of the world, in terms of bare particulars. There is always already the ability
to see activity as intentional activity before we can see anything.

141

Kant’s question is pre-epistemological: he does not assume the agent is “given” a set of beliefs. Instead,
we see his beliefs as an achievement that cannot be taken for granted, but has to be explained:

Understanding belongs to all experience and its possibility, and the first thing that it does
for this is not to make the representation of the objects distinct, but rather to make the
representation of an object possible at all [A199, B244-5]

Kant asks for the conditions that must be satisfied for the agent to have any possible cognition (true
or false) [A158, B197].

6.1.4 Kant’s fundamental question

Kant’s fundamental question, then, is:

What activities must be performed if the agent is to achieve experience?3

Now this is not an empirical psychological question about the processes that homo sapiens happen
to use, but rather a question of a priori psychology4: what must a system – any physically realised
system at all5 – do in order to achieve experience?6

In this chapter, I will try to distill Kant’s answer to this fundamental question, and reinterpret his
answer as the specification of a cognitive architecture.

6.2 Experience and synthetic unity

A central claim of the Transcendental Deduction is that:

(1) In order to achieve experience, I must unify my intuitions. [A110]

Before we can assess the truth of such a claim, we first need to understand what it means. (i) What
does Kant mean by an experience? (ii) What are intuitions? (iii) What does it mean to unify them? I
shall consider each in turn.

3The subtitle of the Transcendental Deduction in the First Edition is: “On the a priori grounds for the possibility of
experience.” [A95]

4In this thesis, I side with Longuenesse[Lon98], Waxman [Wax14], and others in interpreting the first half of the Critique
as a priori psychology. Contra Strawson [Str18], I believe that a priori psychology is a legitimate and important form of
inquiry, and that if we try to expunge it from Kant’s text, there is not much left that is intelligible.

5There are a number of places in the Critique where Kant seems to restrict his inquiry to just humans e.g., [B138-9]. But
Kant uses the term “human” to refer to any agent who perceives the world in terms of space and time and has two distinct
faculties of sensibility and understanding. This is a much broader characterisation than just homo sapiens.

6Because the second question is broader, it is more relevant to the project of artificial intelligence [Den78].

142

6.2.1 What does Kant mean by ‘experience’?

Kant’s notion of experience (‘Erfahrung’) is close to our usual use of the term. I shall list some features
of this term as Kant uses it.

• Experience is everyday. It is not an unusual peak state that people only achieve occasionally, like
enlightenment or ecstasy. Rather, it is a state that most of us have most of the time when we are
awake.

• Experience is unified. At any one time, I am having one experience [A110]. I cannot have multiple
simultaneous experiences. I may be conscious of multiple stimuli, but they are all part of one
experience.

• Experience is mine [B134]. It belongs to me. My experience is different from your experience.

• Experience is articulated [Ste13]. It is not a mere ‘blooming, buzzing confusion’ [JBBS90]. Rather,
experience is composed of distinct objects with distinct properties.

• Experience is not (merely) conceptual. It is not just a collection of beliefs. It is, to anticipate, a
unified combination of sensible and discursive cognition.

• Experience is not necessarily veridical. It purports to represent the world accurately, but may fail
to do so [Lon98, Ste13, Wax14].

Experience, then, is an everyday not-necessarily-veridical mental state in which I am conscious of
various distinct objects and their attributes.

Experience is not something we should take for granted. Rather, experience is an achievement. When I
open my eyes, I see various objects, with various properties that change over time. But this experience
is a complex achievement that only occurs if a myriad of underlying processes work exactly as they
should do. The central contribution of Kant’s a priori psychology is to describe in detail the underlying
processes needed in order for experience to be achieved.

6.2.2 What does Kant mean by ‘intuition’?

An intuition (‘Anschauung’) is a representation of a particular object7 (e.g., this particular jumper) or
a representation of a particular attribute8 of a particular object at a particular time (e.g., the particular
dirtiness of this particular jumper at this particular time).

7[B76]
8A186/B229: “The determinations of a substance that are nothing other than particular ways for it to exist are called

accidents.” Note that whenever Kant talks about “existence” in the Analogies, he is really talking about a particular way of
existing. See e.g., A160/B199: “synthesis is either mathematical or dynamical: for it pertains partly merely to the intuition,
partly to the existence of an appearance in general”. Here, “the existence of an appearance” means the particular way of
existing of an appearance (e.g., the particular dirtiness of this particular jumper).

143

Intuitions are produced by the faculty of sensibility [A19/B33]: the receptive faculty that detects
sensory input. Sensibility provides the agent with a plurality of intuitions [B68], which the mind
needs to make sense of.

Intuitions are private to the individual. My intuitions are different from yours. It is not just that
we do not share intuitions – we cannot share intuitions, as they are essentially private. To see this,
consider four possible relations between an action and its object:

1. the object existed before and after the action (e.g., kicking the football)

2. the object existed before but not after the action (e.g., destroying the evidence)

3. the object existed after but not before the action (e.g., making a cake)

4. the object existed neither before nor after, but was only an aspect of the action

Let us focus on the fourth. When I draw a circle in the air, this thing – the circle – only exists for the
duration of the activity because it is an aspect of the activity. Or consider “the contempt in his voice”:
this thing, this contempt, only exists for the duration of his speech-act because it is an aspect of the
speech-act.

The way I read Kant, the object of intuition is a type (4) object: it only exists as part of the act because
it is an aspect of the act.9

But in order to cognize something in space, e.g., a line, I must draw it. [B137]

Now because intuiting is a private mental act (no other agent can perform the same token-identical
act), and because the object of intuition is a type (4) object that only exists as an aspect of the act, it
follows that the object of intuition inherits the privacy of the intuiting act of which it is an aspect.
Nobody else can have my particular object of intuition because this object is an aspect of my activity
of intuition, and nobody else can perform this particular activity.

Intuitions are distinct from concepts. While an intuition is a representation of a particular object,
a concept is a general representation that many intuitions fall under [B377]. For Kant, intuitions

9Kant interpreters differ on whether intuitions are relations between conscious minds and actual existing material objects
[All09, Gom13, McL16], or whether the object of an intuition is just a mental representation that in no way implies the
existence of a corresponding external physical object [Lon98, Ste15, Ste17]. The interpretation in this thesis fits squarely
within the latter, representational interpretation. My reason for preferring the representational interpretation is based on
a general interpretive prejudice: whenever there are two ways of reading Kant, and one of those interpretations relies on
fewer prior capacities, thus requiring the mind to do more work to achieve the coherent representation of an external world
that we take for granted in our everyday life, then prefer that interpretation. The relational view takes for granted a certain
type of cognitive achievement: the ability of the mind to be about an external object. The representational view, by contrast,
sees this intentionality, this mind-directedness, as something that requires work to be achieved. Thus, simply because it is
more demanding and asks harder questions, it should be preferred. Further, and not coincidentally, the representational
view can be implemented in a computer program, while it is entirely unclear how we could begin to implement any
relational view that takes for granted the ability for the mind’s thoughts to be directed to particular external physical
objects.

144

and concepts are distinct types of representation. While empiricists saw concepts as a special type
of intuition that is used in a general way, and while rationalists saw intuitions as a special type of
concept that is maximally specific, Kant understood intuitions and concepts to be entirely distinct
sui-generis types of representation. His reasons for thinking intuitions and concepts are entirely
distinct are: (i) they come from distinct faculties (sensibility and understanding respectively); (ii)
while intuitions are private to an individual, concepts can be shared between individuals; (iii) while
intuitions are immediately directed to an object (the particular object only exists as an aspect of the
activity of intuiting, just as the circle only exists as an aspect of the activity of drawing a circle in the
air), concepts are only mediately related to objects via intuitions [A68/B93, B377].

The intuition occupies a unique place in Kant’s a priori psychology: it is the ultimate goal of all
thought, the final end that all cognition is aiming at. All the other aspects of thought (e.g. concepts
and judgements) are only needed in so far as they help to unify the intuitions:

In whatever way and through whatever means a cognition may relate to objects, that
through which it relates immediately to them, and at which all thought as a means is directed
as an end, is intuition. [A19/B33, my emphasis.]

6.2.3 What does Kant mean by ‘unifying’ intuition?

Recall Kant’s key claim that:

(1) In order to achieve experience, I must unify my intuitions.

Here, the explanandum is a mental state (experience), while the explanans is a process (the process of
unifying the intuitions). But what, exactly, does this process involve, and how will we know when it
is finished?

The process of unifying intuitions can be unpacked as a particular type of synthesising process that
satisfies a particular constraint, the constraint of unity:

But in addition to the concept of the manifold and of its synthesis, the concept of combi-
nation also carries with it the concept of the unity of the manifold. [B130]

I shall first consider the synthesising process in general, and then turn to the unity constraint. The
activity of synthesis may seem frustratingly metaphorical or ill-defined:

The inadequacies of such locutions as “holding together” and “connecting” are obvious,
and need little comment. Perceptions do not move past the mind like parts on a conveyor
belt, waiting to be picked off and fitted into a finished product. There is no workshop
where a busy ego can put together the bits and snatches of sensory experience, hooking a
color to a hardness, and balancing the two atop a shape. [Wol63, p. 126]

145

Peter Mary

Jane

Tom

Harry

father of

father of

brother of wife of

(a) A directed graph

Peter Mary

Jane

Tom

Harry

father of

father of

wife of

(b) Another directed graph

Peter Mary

Jane

Tom

Harry

(c) Undirected version of (a).

Peter Mary

Jane

Tom

Harry

(d) Undirected version of (b)

Figure 6.1: Binary relations as directed graphs. Only (c) is fully connected.

146

What exactly does it mean to unify intuitions? What is the glue that binds the intuitions together? As
I read Kant, the only thing that can bind intuitions together is the binary relation10. Consider Figure
6.1. Here, in Figure 6.1(a), we have various objects related by various directed binary relations. The
diagram below it, Figure 6.1(c), is the undirected variant of (a). Note that Figure 6.1(c) is connected:
we can get from every node to every other node via some path. Figure 6.1(b) shows another set of
directed binary relations. The diagram below it, Figure 6.1(d), is the undirected variant of (b). Figure
6.1(d) is not connected, since we cannot reach Mary from Peter, for example.

Synthesising intuitions means connecting the intuitions together using binary relations so that the
resulting undirected graph is fully connected. The synthesising process is the job of the faculty of
productive imagination11 [A78/B103; A188/B230], described in Section 6.3 and formalized in Section
6.9.

But there is much – much more – to unifying intuitions than just connecting them together with binary
relations. The extra requirement that must be satisfied for a connected binary graph to count as a
unification of intuitions is that the graph satisfies Kant’s unity conditions. While there are many ways
to connect intuitions together via binary relations to form a connected graph, only a small subset of
these satisfy the various conditions of unity that Kant imposes. These unity conditions are satisfied
by the faculty of understanding [A79/B104], and are described in detail in Sections 6.5, 6.6, 6.7, and
6.8.

The second claim, then, unpacks what it means to unify intuitions:

(2) Unifying intuitions means combining them using binary relations to form a connected graph, in
such a way as to satisfy various unity conditions (described in detail in Sections 6.5, 6.6, and 6.8).

6.2.4 The status of claim 1

Claim (1), then, is the claim that an agent can only achieve experience – everyday conscious experience
of a single articulated world – if it can unify its intuitions by connecting them together in a relational
graph that satisfies various (as yet unspecified) unity conditions.

Let us break this down into two claims:

(1a) In order to achieve experience, my intuitions must be unified.

(1b) In order for my intuitions to be unified, I must unify them.

Claim (1a) can be interpreted with at least two levels of strength. A strong interpretation treats the
claim as definitional: experience just is unified intuition. A weaker interpretation sees the claim as

10The precise binary relations involved are listed in the Schematism and described in detail in Section 6.3.
11Kant distinguished between the productive and reproductive imagination [A100-2]. Here, we focus exclusively on the

productive imagination. The reproductive imagination’s job is to recall earlier determinations and reproduce them. This
capacity is taken for granted in the current implementation: we assume the whole sequence of sensory input has been
given as a whole, so the agent does not need to recall earlier elements.

147

merely a necessary condition: experience requires unified intuition, but it also needs more besides. In
this thesis, we adopt the stronger interpretation, and there is reason to think that Kant endorsed this
stronger interpretation too.12

The second claim (1b) is not entirely trivial. An alternative possibility is that my intuitions arrive, via
the faculty of sensibility, already unified. But Kant clearly rules out this alternative13. So, then, if my
intuitions do not arrive already unified, and if I cannot pay or persuade somebody else to unify them
for me14, then I must unify them myself. This is a task that only I can do.

Kant also uses various alternative formulations of Claim 1. For example:

(1*) In order for the intuitions to be mine, I must unify them. [B134]

This follows from Claim 1 if experience just is (definitional equality) the intuitions that are mine.

He also uses another formulation:

(1**) In order for me to be conscious of the intuitions, I must unify them. [B135]

This follows from Claim 1 if experience just is (definitional equality) the consciousness of my intu-
itions.

6.3 Synthesis

In this section, I describe the relations that are used by the imagination to connect the intuitions
together [A78/B103].

In Figure 6.1(a), the intuitions were connected by empirical relations (e.g., father-of). These family-
tree relations may relate some types of objects in some situations, but they do not relate all objects in
all situations.

When Kant talks about pure synthesis [A78/B104], he means connecting intuitions by pure relations
that apply to all intuitions in all situations15. Why does Kant insist that synthesis can only use pure
relations to connect intuitions? Because the unity conditions (that will be described in Sections 6.5, 6.6,
and 6.8) are conditions that must apply to every possible synthesis of intuitions. If the unity conditions
are to apply to every possible synthesis, they can only reference relations that feature in every possible
synthesis, and these are the pure relations.

There are three16 operations that bind intuitions together:
12“[Experience] is therefore a synthesis of perceptions.” [A176/B218] “There is only one experience, in which all percep-

tions are represented as in thoroughgoing and lawlike connection.” [A110]
13“Yet the combination (conjunctio) of a manifold in general can never come to us through the senses, and therefore

cannot already be contained in the pure form of sensible intuition.” [B129]
14Nobody else can get anywhere near my intuitions because they are aspects of my private mental acts. See Section 6.2.2.
15Kant enumerates the pure relations in the Schematism.
16The containment operation is described in the Axioms of Intuition, the comparison operation in the Anticipations of

Perception, and the inherence operation in the First Analogy.

148

• containment: in(X,Y) means that object X is (currently) in object Y (e.g., the package is in the
kitchen)

• comparison: X < Y means that attribute X is (currently) less than attribute Y (e.g., the weight
of the package is less than the weight of the spoon)

• inherence: det(X,Y) means that attribute Y (currently) inheres in object X (e.g., this particular
heaviness (of 2.3 kg) is an attribute of this particular parcel)

When two intuitions are bound together by one of the three operations, the result is a determination.
Thus, det(a, b), in(a, b), and a < b are all determinations. Determinations hold at a particular moment
or moments in time; they do not persist indefinitely [A183-4,B227].

The constituents of determinations are intuitions, representations of individuals; these are either
particular objects, or particular attributes of those objects. To hold det(a, b) is to ascribe particular
attribute b to particular object a (for example, to ascribe this particular dirtiness to this particular
jumper).

It is absolutely essential, I believe, for understanding Kant’s architecture that we distinguish clearly
between attributes and concepts. Attributes are a type of intuition representing the particular way in
which a particular object exists at a particular moment. Concepts, by contrast, are general representa-
tions. A number of different attributes typically fall under the same concept. Consider, for example,
the particular dirtiness of this particular jumper, and the particular dirtiness of this particular lap-
top. Both attributes fall under the concept “dirty”, but they are nevertheless distinct attributes: this
jumper’s particular dirtiness is different in myriad subtle ways from the dirtiness of my laptop.

Just as an attribute is a different kind of representation from a concept, just so a determination is a
different kind of thought from a judgement. Seeing the particular dirtiness of the particular jumper at
this particular moment (a determination) is very different from believing that the particular jumper
is dirty (a judgement). In the former, I notice an individual property of an individual object. In the
latter, I subsume a concept representing an individual object (the particular jumper) under a general
concept (“dirty”).

A determination is not a judgement, but a way of perceiving:

• I hear the baby in the cot (containment)

• I feel the package being heavier than the spoon (comparison)

• I see the dirtiness of the jumper (inherence)

In each case, the argument of the perceptual verb is a noun-phrase, not a that-clause [Sel78].

Since a determination is a way of perceiving, it does not have a truth-value:

149

For truth and illusion are not in the object insofar as it is intuited, but in the judgment
about it insofar as it is thought. Thus it is correctly said that the senses do not err; yet not
because they always judge correctly, but because they do not judge at all. Hence truth,
as much as error, and thus also illusion as leading to the latter, are to be found only in
judgments, i.e., only in the relation of the object to our understanding... In the senses there
is no judgment at all, neither a true nor a false one. [A293-4/B350] See also [Jäsche Logic
9:53].

As well as the three pure operations that bind intuitions together, there are three17 pure relations that
bind determinations together:

• succession: succ(P1,P2) means that P1 is succeeded (at the next time-step) by P2

• simultaneity: sim(P1,P2) means that P1 occurs at the same moment as P2

• incompatibility: inc(P1,P2) means that P1 and P2 are incompatible

When two determinations are bound together by one of the three relations, the result is a con-
nection18. Thus, succ(in(a, b), in(a, c)) means that a’s being in b is succeeded by a’s being in c, and
inc(det(a, b), det(a, c)) means that attributing b to a is incompatible with attributing c to a.

6.3.1 The justification for this particular set of operations and relations

Why these particular pure relations? What makes this particular list special? The justification for this
list is that the three pure operations and the three pure relations together constitute a minimal set of
binary operators that together are sufficient to construct the forms of space and time [A145/B184ff].19

According to Kant, intuitions and determinations do not arrive with space and time coordinates
attached [B129]. The job of sensibility is just to provide us with intuitions, but not to arrange them in
objective space/time. It is the function of synthesis, the job of the imagination, to connect the intuitions
together, using the pure operations and relations described above, so as to construct the objective
spatio-temporal form:

since time itself cannot be perceived, the determination of the existence of objects in time
can only come about through their combination in time in general, hence only through a
priori connecting concepts. [A176/B219]

17The succession and simultaneity relations are described in the second and third Analogies, and incompatibility is
discussed in the Postulates of Empirical Thought.

18“Experience is possible only through the representation of a necessary connection of perceptions.” [B218]
19This claim holds for a suitably qualified minimal notion of space. See Section 6.5.

150

To see that sensibility does not provide us with intuitions that are already positioned in space
and time, consider a robot with a camera that provides a two-dimensional array of pixels for each
visual snapshot. The robot receives information about the location of each pixel in subjective two-
dimensional space, and it must determine the positions of objects in three-dimensional space. Suppose
a yellow pixel is left of a red pixel. Does the yellow pixel represent an object that is in front of the object
represented by the red pixel, or behind? The visual input does not provide this information – the robot
must decide itself. Next, consider time. Suppose the robot receives a sequence of visual impressions
as its camera surveys the various parts of a large house [B162]. Do these subjectively successive
impressions count as various representations of one moment in objective time, or do they represent
different moments of objective time? The sensory input arrives ordered in subjective space/time but
not in objective space/time.20 In order to place our intuitions in objective space/time, the imagination
needs to connect them together using the pure relations described above.21

The three pure operations together with the three pure relations constitute a minimal set that is
sufficient for generating the form of objective space/time. The containment operation in allows us
to combine intuitions into a spatial field (a minimal representation of space that abstracts from the
number of dimensions [Wax14]) [A162/B203ff]. The comparison operation < allows us to compare
two different attributes; if we generate an intermediate attribute between two comparable attributes,
we can generate an intermediate moment in time between two observed moments [A165/B208ff],
thus filling time [A145/B184]. The inherence operation det allows us to ascribe different attributions
to an object at different times. The simultaneity and succession relations allow us to order determi-
nations in time. Finally, the incompatibility relation allows us to test when sets of determinations are
compossible.

Now one sees from all this that the schema of each category contains and makes rep-
resentable: in the case of magnitude, the generation (synthesis) of time itself, in the
successive apprehension of an object; in the case of the schema of quality, the synthesis of
sensation (perception) with the representation of time, or the filling of time; in the case of
the schema of relation, the relation of the perceptions among themselves to all time (i.e., in
accordance with a rule of time-determination); finally, in the schema of modality and its
categories, time itself, as the correlate of the determination of whether and how an object
belongs to time. The schemata are therefore nothing but a priori time-determinations in
accordance with rules, and these concern, according to the order of the categories, the
time-series, the content of time, the order of time, and finally the sum total of time in
regard to all possible objects. [A145/B184ff]

The third key claim, then, is:
20Kant makes this claim many times in the Principles. See [A181/B225], [A183/B226], etc.
21In [Wax14] Chapter 3, Wayne Waxman makes a powerful case that intuitions do not arrive from sensibility already

unified. They arrive as a mere multitude, and it is the job of the imagination to unify them in space/time. In other words,
what the empiricist takes as “given” (the unified field of sensory input) is not actually “given” but rather has to be achieved
by a mental process.

151

(3) Synthesis involves (i) connecting intuitions together via containment, comparison, and inher-
ence operations to form determinations; and (ii) connecting determinations together via succession,
simultaneity, and incompatibility relations.

6.4 The unity conditions

There are many ways to connect intuitions together via binary relations to form a connected graph22,
but only a small fraction of these satisfy the various unity conditions that Kant imposes.

(4) There are, in total, four types of unity condition that Kant imposes: (i) the unity conditions for the
synthesis of mathematical relations, (ii) the unity conditions for the synthesis of dynamical relations,
(iii) the requirement that the judgements are underwritten by determinations, and (iv) the conceptual
unity condition.

I shall go through each in turn.

6.5 The unity conditions for the synthesis of mathematical relations

Kant divides the pure relations into two groups: the mathematical relations (containment and
comparison) and the dynamical relations (inherence, succession, simultaneity, and incompatibility).
The mathematical relations control the arbitrary synthesis of homogeneous elements23, while the
dynamical relations control the necessary synthesis of heterogeneous elements24 [B201n].

Kant says that the mathematical relations combine “what does not necessarily belong to each other”
while the dynamical relations combine what “necessarily belongs to one another” [B201n]. This
means that the agent has freedom to synthesise using containment and comparison in a way that is
unconstrained by the conceptual realm of the understanding, but the synthesis using the dynamical
categories is constrained by judgements produced by the understanding.25

I shall start with the unity conditions for the mathematical relations, before moving to the unity con-
ditions on the dynamical relations. The fundamental unity condition for the mathematical relations is
that the intuitions are combined in a fully connected graph. There are two further specific conditions,
one for containment and one for comparison.

22If there are n nodes, then there are 2(n
2) simple undirected graphs. The number of simple connected graphs for n nodes

is the integer sequence A001187 which starts 1, 1, 1, 4, 38, 728, 26704, 1866256, ... See http://oeis.org/A001187
23Observe that in relates two objects of intuition, while < relates two intuition attributes.
24Observe that det relates two different types of intuition, an attribute and an object.
25See also [B110]: “the first class (mathematical categories) has no correlates which are to be met with only in the second

class”. Here, the correlates are the judgements that are required to underwrite the dynamical connections, but that are not
required to underwrite the mathematical compositions.

152

The unity condition for containment requires that there is some object, the maximal container, which
contains all objects at all times [A25/B39]. Slightly more formally, the first unity condition for the
synthesis of mathematical relations is:

(5)(a) There exists some intuition x such that for each object of intuition y, for each moment in time,
there is a chain of in determinations between y and x.

Of course, objects can move about, from one container to another, but at every moment, the objects
must always be contained in the maximal container.

Satisfying this unity condition means positing both pure objects (spatial regions with a mereological
structure) and also impure objects (appearances) which are in the spatial regions.

Once objects have been placed in the containment hierarchy, and once we know which intuitions fall
under which concepts, then we have all the information we need for counting. In order to count how
many pens are in the box, I need to be able to tell whether each object falls under the concept “pen”,
and I also need to be able to tell which objects are actually in the box and which are outside. Thus,
as Kant says, the pure schema of magnitude is “number, which is a representation that summarizes
the successive addition of one (homogeneous) unit to another” [A142/B182]. The appearances are
homogenous since they fall under the same concept, and we know which appearances to count and
which to ignore by choosing a particular container in the containment hierarchy.

Now this containment hierarchy is a necessary aspect of any spatial representation: if we fix the
positions and extensions of objects in 3D space, then the containment hierarchy is also fixed. But, of
course, the converse does not hold: specifying the containment hierarchy does not determine all the
spatial information. Suppose, for example, that x and y are both in container z. We know that x and y
are in the same container, but we do not know if x is above y, or below it. We do not know how near
x is to y, etc.

The containment hierarchy is a distinguished sub-structure of the spatial world. If we abstract from
our spatial representation all the aspects that are peculiar to our human form of intuition, all that is
left is the containment hierarchy. As Kant says:

“Thus if, e.g., I make the empirical intuition of a house into perception through appre-
hension of its manifold, my ground is the necessary unity of space and of outer sensible
intuition in general, and I as it were draw its shape in agreement with this synthetic unity
of the manifold in space. This very same synthetic unity, however, if I abstract from the
form of space, has its seat in the understanding, and is the category of the synthesis of the homoge-
neous in an intuition in general, i.e., the category of quantity, with which that synthesis of
apprehension, i.e., the perception, must therefore be in thoroughgoing agreement. [B162]

And again:

153

The pure image of all magnitudes (quantorum) for outer sense is space... The pure
schema of magnitude (quantitatis), however, as a concept of the understanding, is number.
[A142/B182]

Of course, a spatial representation performs many functions. It allows us, for example, to position
and orient the parts of our bodies to manipulate other objects. But the function of space that is
highlighted in the First Critique is space as the medium in which appearances are unified. Now space-
qua-unifier-of-intuitions has fewer essential properties than space-qua-form-of-human-outer-sense.
Qua unifier of intuitions, the key property of space is that it supports a containment hierarchy, in
which we can tell which objects are in which containers. Kant makes it clear, when he first introduces
space in the Aesthetic, that the function of space that he is focusing on is its ability to support the
containment hierarchy:

For in order for certain sensations to be related to something outside me (i.e., to something
in another place in space from that in which I find myself), thus in order for me to represent
them as outside one another, thus not merely as different but as in different places, the
representation of space must already be their ground) [A23/B38]

Space, qua unifier, is just the medium in which appearance can be placed together, the medium that
allows me to infer from “I am intuiting x” and “I am intuiting y” to “I am intuiting x and y.” This
abstract unifying space just is the containment hierarchy: “space is the representation of coexistence
(juxtaposition)”[A374].

To summarize, although Kant’s notion of space was the standard (at the time) three-dimensional space
of Euclidean geometry (B41), when he was thinking of space as the medium in which appearances can
be unified, he focused on a substructure in which many of the features of space have been abstracted
away: the containment hierarchy.26

The unity condition for comparison27 simply requires that:

(5)(b) The comparison operator < forms a strict partial order.

Of course, we do not insist that< is a total order: although the dirtiness of this jumper can be compared
with the dirtiness of this mug, the weight of this jumper need not be comparable with the dirtiness of
this mug.

26For a related position, see Waxman [Wax14] Section 4B: “It as if the mere use of the word ‘space’ is enough for many
to reflexively read into Kant’s doctrine virtually every meaning commonly attached to the term, or at least everything
one supposes to remain after factoring in the adjective ‘pure’. It becomes a space with all the features attributed to it by
Euclid or Newton and so a space a priori incompatible with the features that have been or will be ascribed to space by later
mathematicians and physicists. But... the unity of sensibility clearly does not require that pure space be determinately flat
hyperbolic or elliptical, three-dimensional or ten-dimensional or any other number of dimensions, Ricci-flat or Ricci-curved,
etc.”

27See [A143/B182-3] and [A168/B210].

154

We do not, also, insist that < is dense.28 This is because we follow Kant in wanting to allow finite
models.29

6.6 The unity conditions for the synthesis of dynamical relations

The dependency of the dynamical relations on judgement is perhaps the most important, the most
original, and the most difficult part of the Transcendental Analytic. In fact, one of the major reasons
that Kant rewrote the Transcendental Deduction in the B edition is precisely to re-express this condition
as clearly as possible. In this section, I shall first explain Kant’s general strategy before going into the
specific details of how he handles each of the pure dynamical relations.

Kant was dissatisfied with the presentation of the Transcendental Deduction in the A edition. In the
B edition, he changed the exposition significantly by splitting the proof into two parts (concluding in
§20 and §26)30. The first part of the Transcendental Deduction, culminating in §20, relies heavily on
a new explanation of the categories that was added to §13 in the B edition:

I will merely precede this with the explanation of the categories. They are concepts
of an object in general, by means of which its intuition is regarded as determined with
regard to one of the logical functions for judgments. Thus, the function of the categorical
judgment was that of the relationship of the subject to the predicate, e.g., “All bodies are
divisible.” Yet in regard to the merely logical use of the understanding it would remain
undetermined which of these two concepts will be given the function of the subject and
which will be given that of the predicate. For one can also say: “Something divisible is a
body.” Through the category of substance, however, if I bring the concept of a body under
it, it is determined that its empirical intuition in experience must always be considered as
subject, never as mere predicate; and likewise with all the other categories. [B128-9]

There are many other places where Kant makes similar claims.31 What exactly is the claim here, and
how exactly does Kant justify it?

Imagine someone trying to connect his intuitions together. Suppose he has “intuition dyslexia” – he
is not sure if this intuition is the object and this other intuition is the attribute, or the other way round.
Or he has two determinations in a relation of succession, but he is not sure which is earlier and which
is later. The intuitions are swimming before his eyes. He needs something that can pin down which

28A relation R is dense if Rxy implies there exists a z such that Rxz and Rzy.
29[Pin17] page 119.
30The first half aims to show that we are always permitted to apply the pure concepts to intuitions, while the second half

aims to show that the pure judgements (the synthetic a priori claims of the Principles) always hold.
31For example, in a note added to Kant’s copy of the first edition: “Categories are concepts, through which certain

intuitions are determined in regard to the synthetic unity of their consciousness as contained under these functions; e.g.,
what must be thought as subject and not as predicate.” He also makes similar claims in the Metaphysik von Schon, quoted
in Kant and the Capacity to Judge, p.251, and Prolegomena §20.

155

intuitions are assigned which roles, but what could perform this function? Kant’s fundamental claim
is that it is only the judgement that can fix the positioning of the intuitions. Moreover, this is not just
one role of the judgement amongst many – this is the primary role of the judgement:

a judgment is nothing other than the way to bring given cognitions to the objective unity
of apperception [B141]

More specifically, the relative positions of intuitions in a determination can only be fixed by forming
a judgement that necessitates this particular positioning. This judgement contains concepts that the
intuitions fall under, and the position of the intuitions in the determination are indirectly determined
by the positions of the corresponding intuitions in the judgement. See Figures 6.2 and 6.3. Thus:

The same function that gives unity to the different representations in a judgment also gives
unity to the mere synthesis of different representations in an intuition. The same understanding,
therefore, and indeed by means of the very same actions through which it brings the
logical form of a judgment into concepts by means of the analytical unity, also brings
a transcendental content into its representations by means of the synthetic unity of the
manifold in intuition in general. [A79/B104-5]

There is a parallel claim one level up, at the level of complex judgements: the relative positions of
determinations in a connection can only be fixed by forming a complex judgement that itself contains
a pair of judgements as constituents32 that necessitates this particular positioning. This complex
judgement contains two constituents – judgements – that the two determinations fall under, and the
position of the determinations in the connection are indirectly determined by the positions of the
corresponding judgements in the complex judgement.

What justification does Kant provide for this claim? His argument goes something like this: the
aim of the dynamical relations is to order the intuitions and determinations in objective space-time.
Now we can only achieve objectivity by imposing necessity on the combination.33 But the faculty of
imagination is entirely incapable of imposing necessity. All the imagination can do is connect the
intuitions using the pure relations – it cannot impose necessity on those connections.34 In fact, the
only element that can provide the desired necessity is the judgement.35 Thus, the only way dynamical
relations can be ordered in objective space-time is by indirectly positioning them, using judgements
that impose the necessity that the connections require.36

32Kant is emphatic on this point: “ hypothetical and disjunctive judgments do not contain a relation of concepts but of
judgments themselves.” [B141]

33“Our thought of the relation of all cognition to its object carries something of necessity with it.” [A104] The concept of
an object is “the concept of something in which [the appearances] are necessarily connected” [A108]

34“Apprehension is only a juxtaposition of the manifold of empirical intuition, but no representation of the necessity of
the combined existence of the appearances that it juxtaposes in space and time is to be encountered in it.” [A176/B219]

35“This word [the copula “is”] designates the relation of the representations to the original apperception and its necessary

156

determination

concept

judgement

intuition

underwritten by

falls under

combined into combined into

Figure 6.2: Intuitions are combined into determinations, just as concepts are combined into judge-
ments. An intuition falls under a concept, just as a determination is underwritten by a judgement.

intuition of
jumper

intuition of
dirtiness

concept
“jumper”

concept
“dirtiness”

falls under

falls under

determination categorical
judgement

subject

predicate

subject

attribute

corresponds to

Figure 6.3: Here, the imagination wants to construct an inherence determination involving an intuition
of a particular jumper and an intuition of a particular dirtiness. But it does not know whether the
jumper intuition should be the subject of the determination, and the dirtiness should be the attribute,
or the other way round. The imagination itself does not have the resources to resolve this indecision,
but the understanding – the capacity to judge together with the power of judgement – can answer
this question. The capacity to judge constructs a categorical judgement, “some jumper is dirty”, that
corresponds to the determination. The power of judgement decides that my intuition of this jumper
falls under the concept “’jumper”, and my intuition of this particular dirtiness falls under the concept
“dirty”. Now, given these assignments, the relative positions of the intuitions in the determination
are fixed, indirectly determined by the corresponding positions of the concepts in the judgement. The
dashed arrows are determined by the solid arrows.

157

In terms of the cognitive faculties responsible for the various processes, the capacity to judge37

is responsible for constructing the judgements, and the faculty of the power of judgement38 is
responsible for constructing the subsumptions that decide which intuitions fall under which concepts.

This, then, is the general claim, as it applies to all the dynamical relations. Next, I shall describe the
various forms of judgement that are needed to underwrite the various dynamical relations: inherence,
succession, simultaneity, and incompatibility.

6.6.1 Inherence must be backed up by a categorical judgement

The first of the four conditions of dynamical unity is that the positions of intuitions in an inherence
determination must be backed up by a corresponding judgement39 :

(6)(a) If I form an inherence determination, ascribing a particular attribute a to a particular object o,
then I must be committed to a judgement “this/some/all X are P”, where o falls under X, and a falls
under P.

Suppose, for example, I am seeing the particular dirtiness of this particular jumper. This inherence
determination is a combination of two bare particulars: this particular jumper and this particular
instantiation of dirtiness. Now it is essential, in seeing the inherence correctly, that this particular
dirtiness is the attribute and this particular jumper is the object in which the attribute inheres. Things
would be very different indeed if the intuition of the dirtiness is the object, and the intuition of the
jumper is the attribute.40

Kant’s fundamental claim is that it is only because I form some corresponding categorical judgement
that I am able to fix the positions of the two arguments of the inherence operator det [B128-9]. In
this case, suppose I have formed the judgement “Some jumper is dirty.” Now my intuition of this
particular jumper falls under the concept “jumper”, and my intuition of this particular dirtiness (of
this particular jumper at this particular moment) falls under the concept “dirty”. Thus, I am able to
fix the positions of the two arguments to the inherence operator indirectly, via the judgement and the

unity, even if the judgement itself is empirical, hence contingent.” [B142]
36Here, the agent “binds” itself in two distinct but related senses. First, it binds its intuitions together via the pure

relations. But this binding at the intuitive sensible level must be underwritten by a second binding at the conceptual
discursive level: it is only because the agent binds itself to a rule relating concepts that the binding of intuitions achieves
the necessity required for objectivity. See [ESS19].

37See [A81/B106] and [Lon98].
38See [A132/B171] and [Kan90].
39In each of the unity conditions that follow, I restrict to the case of unary predicates. The extension to binary, ternary,

and so on is straightforward but complicates the presentation.
40It is perhaps tempting to argue that it is just obvious which is the attribute and which is the object of the inherence:

we can tell from the types of the two intuitions which one is which. Above, I said that there are two types of intuitions:
intuitions of objects and intuitions of particular attributes. But this distinction only applies after a judgement has been
constructed which allows the intuitions to be positioned; before that, these intuitions are not yet dignified with these roles
as intuitions of objects or intuitions of particular attributes; they are just indeterminate intuitions. In other words, this
response just begs the question, assuming that we have already access to the very positioning assignments that we are
struggling to achieve.

158

falls-under relation. I see the positions of the intuitions in the inherence through the corresponding
judgement.

Now of course I do not need to use that precise judgement “Some jumper is dirty” to fix the positions
of the intuitions in the inherence determination. I could have used “Some jumper is revolting”, or
“This jumper is dirty”, and so on and so forth. All that is needed is some categorical judgement where
the two intuitions fall under the two concepts.

6.6.2 Succession must be backed up by a causal judgement

The second condition of dynamical unity is that every succession of determinations must be backed
up by a causal judgement:

(6)(b) If I form a succession, in which one determination (say, particular object o having particular
attribute a) is followed by another determination (say, o having incompatible attribute b), then I must
have formed a conditional judgement “If φ(X) holds and X is P then X becomes Q at the next time-
step”, where object o falls under concept X, attribute a falls under concept P, attribute b falls under
concept Q, and φ(X) is an sentence featuring free variable X.

Suppose, for example, I see the jumper’s cleanliness followed by the jumper’s dirtiness. It is essential,
when seeing this succession, that I see the order correctly. Seeing the cleanliness followed by the
dirtiness is very different from seeing the dirtiness followed by the cleanliness.

Kant claims41 that it is only because I form some corresponding causal judgement that I am able
to fix the positions of the two determinations in the succession relation [A189/B232]. Suppose, for
example, I have formed the causal rule that if I wallow about in the mud, then the clothing I wear will
transform from clean to dirty. Now my intuition of this jumper falls under the concept “clothing”,
my intuition of this particular cleanliness falls under the concept “clean”, and my intuition of this
particular dirtiness falls under the concept “dirty”. Thus, I am able to fix the positions of the two
determinations in the succession relation indirectly, via the causal judgement and the falls-under
relation.

6.6.3 Simultaneity must be backed up by a pair of causal judgements

The third condition of dynamical unity is that every simultaneity of determinations must be backed
up by a pair of causal judgements:

41Not all commentators agree with this way of reading Kant. Beatrice Longuenesse, for example, believes that we do not
have to have already formed a causal judgement – we just need to acknowledge that we should form a causal judgement.
For Longuenesse, perceiving a succession means being committed to look for a causal rule – it does not mean that I need
to have already found one [Lon98].

159

(6)(c) If I form a simultaneity, in which one determination (say, particular object o1 having particular
attribute a) is simultaneous with another determination (say, object o2 having attribute b), then there
must be a pair of causal judgements, one of which states that an attribute of o1 (simultaneous with a)
causally depends on an attribute of o2, and another of which states that an attribute of o2 (simultaneous
with b) causally depends on an attribute of o1.

Suppose, for example, I have two determinations simultaneously, one involving the sun, and one
involving the moon. Now since simultaneity is a symmetric relation, it does not matter which of
the two determinations is placed where in the sim relation. But it does matter whether we ascribe
simultaneity or succession to the pair of determinations. When we are presented with a subjective
succession of determinations, should we ascribe them to the same moment (of objective time) or to
two successive moments (of objective time)?42

Kant’s claim here is that in order to choose simultaneity over succession, we need to form a pair
of judgements describing, for both objects, how some attribute of that object causally depends on
some attribute of the other [A212/B259]. I do not dwell on this principle, because it is the most
controversial43, hard to understand, and does not feature in our computer implementation.

6.6.4 Incompatibility must be backed up by a disjunctive judgement

Kant talks throughout the Postulates about the possibility of an object - not of the possibility of a
sentence being true. It is easy to see this as a category error, or as elliptical: perhaps “the object is
possible” is short-hand for “it is possible that the object exists”? This temptation must be resisted.
Kant predicates possibility/actuality/necessity of determinations as well as of judgements. When we
connect two determinations with the inc connective, we are making a modal connection between two
elements, two ways of seeing, elements that do not have a truth value.

Kant claims44 that every incompatibility between determinations must always be backed up by a
disjunctive45 judgement:

(6)(d) If I form an incompatibility in which one determination (say, particular object o having attribute
a) is incompatible with another (say, particular object o having attribute b), then I must have formed
a judgement “All X are either (exclusive disjunction) P or Q or ...”, in which o falls under X, a falls
under P, and b falls under Q.

42“The apprehension of the manifold of appearance is always successive. The representations of the parts succeed one
another. Whether they also succeed in the object is a second point for reflection, which is not contained in the first.”
[A189/B234]

43See e.g., [Lon98] p.388.
44“The schema of possibility is the agreement of the synthesis of various representations with the conditions of time in

general (e.g., since opposites cannot exist in one thing at the same time, they can only exist one after another).” [A144/B184]
45Recall that for Kant, disjunctions are exclusive: “p or q” means either p or q but not both.

160

Suppose, for example, I see this jumper’s cleanliness as incompatible with the jumper’s dirtiness. Now
this is, to repeat, an incompatibility between determinations, ways of seeing, not an incompatibility
between judgements. But Kant claims that this incompatibility between determinations must be
underwritten by an exclusive-or disjunctive judgement. Suppose, for example, I have formed the
judgement that every article of clothing is either clean or dirty. Now my intuition of this particular
cleanliness falls under the concept “clean”, my intuition of this particular dirtiness falls under the
concept “dirty”, and my intuition of this particular jumper falls under the concept “article of clothing.”
Thus, the judgement (expressing an incompatibility between concepts) justifies the relation between
determinations.

6.7 Making concepts sensible

As well as the unity condition requiring that determinations are underwitten by judgements, there are
also unity conditions in the other direction, requiring that judgements are supported by corresponding
determinations.

It is thus just as necessary to make the mind’s concepts sensible (i.e., to add an object to
them in intuition) as it is to makes its intuitions understandable (i.e., to bring them under
concepts).[A51/B75]

The requirement here is that judgements cannot “float free” of the underlying intuitions. Instead,
each judgement must be backed up by a corresponding determination.

More specifically (and restricting ourselves to unary predicates):

(7) If I form a judgement, ascribing a concept P to a particular object X, then there must
be a corresponding inherence determination ascribing particular attribute a to particular
object o, where o falls under X and a falls under P.

It might seem that this condition is trivially satisfied given that the agent starts with intuitions and
determinations, and forms judgements to make them intelligible. But this is not always so: sometimes
the agent constructs new invented objects to make sense of the sensible given and ascribes properties to
these invented objects (see Example 7). In such cases, condition (7) requires that as well as subsuming
object o under concept P, there is also a corresponding particular individual attribute a that inheres
in o. The experiment below in Section 6.12 shows just such an example where an invented object is
postulated, and particular individual attributes of that object are posited in imagination to make the
concepts sensible.

161

6.8 Conceptual unity

In addition to the synthetic unity described above, Kant also requires that one’s concepts are unified
by being connected together via judgements. I shall first consider a weak form of this constraint,
before describing a stronger version.

A judgement connects various concepts together. For example, the judgement “some bodies are
divisible” connects the concepts of “body” and “divisible”. Let us say two concepts are together if
there is some judgement in which they both feature. Define together∗ as the transitive closure of
together. Now the weak constraint of conceptual unity is that every pair of concepts are together∗.

Kant uses a significantly stronger constraint. His requirement is that the concepts are not just
connected, but that they are connected into a hierarchy of genera and species46. In order that one’s
concepts form a system in this sense, we focus exclusively on the judgement form of exclusive
disjunction [A70/B95]. Consider a judgement of the form “every X is either (exclusive) P or Q”. This
does not merely state that P and Q are exclusive; it also states that P and Q form a totality: the totality
of concepts that together capture X. By bringing concepts under the xor judgement form, we bring
them into a hierarchical community with a genera-species structure47.

The condition of conceptual unity is the requirement that:

(8) Every concept features in some disjunctive judgement.

6.9 Achieving synthetic unity

It is time to take stock. For Kant, the fundamental mental representation is the intuition, a repre-
sentation of a particular object or a particular attribute of a particular object. All the other types of
representation serve only to unify the intuitions into a coherent whole.

Intuitions can be combined into determinations using the three pure operations of containment,
comparison, and inherence. Further, determinations can be combined into connections using the
pure relations of succession, simultaneity, and incompatibility. (See Section 6.3).

In order for the connections of determinations to achieve unity48, multiple conditions must be sat-
46See [Lon98, p.105].
47“What the form of disjunctive judgment may do is contribute to the acts of forming categorical and hypothetical

judgments the perspective of their possible systematic unity”, [Lon98], p.105.
48In Section §16 of the B deduction, Kant distinguishes four types of unity using two cross-cutting distinctions: analytic

versus synthetic unity, on the one hand, and original versus empirical unity, on the other. Analytic unity is achieved when
the mind has the ability to subsume each of its intuitions and determinations under the unary predicate “I think”. Synthetic
unity is achieved when the intuitions and determinations are connected together via the pure relations of Section 6.3 in
such a way as to satisfy the unity conditions of Sections 6.5, 6.6, 6.7, and 6.8. Synthetic unity is the more fundamental
concept, as it is presupposed by analytic unity [B133]. The distinction between empirical and original unity is the difference
between a particular unity achieved by a particular mind when confronted with a particular sensory sequence, and what
is in common between all unities achieved by all minds no matter which sensory sequence they are provided with. In this
thesis, I focus on the general conditions common to all minds when achieving synthetic unity.

162

isfied. The mathematical operations (of containment and comparison) must form a structure of the
appropriate sort (Section 6.5), the dynamical functions (of inherence, succession, simultaneity, and
incompatibility) must be underwritten by judgements of the appropriate sort (Section 6.6), the judge-
ments must be underwritten by determinations of the appropriate sort (Section 6.7), and the concepts
used in judgements must form their own unity (Section 6.8).

Why these unity conditions in particular? One of the remarkable things about Kant’s philosophy
is its systematicity. Instead of being content with merely enumerating the pure concepts of the
understanding, Kant insists on showing how the pure concepts form a system, by showing that these
are all and only the a priori concepts needed to make sense of experience.49 The same systematicity
requirement applies to the unity conditions: he must show that these are all and only the unity
conditions needed for the synthesis of apprehension to achieve objectivity. To see that the unity
conditions described above form a system, observe that there are two realms of cognition: the sensible
intuitions and the discursive concepts. There are exactly four possible conditions involving these two
realms: (i) a requirement that the intuitions achieve their own individual unity, (ii) a requirement that
the intuitive realm respects the conceptual, (iii) a requirement that the conceptual realm respects the
intuitive, and (iv) a requirement that the conceptual realm achieves its own individual unity. Here,
(i) is the requirement that the synthesis of apprehension forms a fully connected graph satisfying 5(a)
and 5(b) (Section 6.5). Condition (ii) is the requirement that the connections between intuitions are
underwritten by corresponding judgements (Section 6.6). Condition (iii) is the requirement that the
judgements respect the intuitions (Section 6.7). The final condition (iv) is the requirement that the
discursive realm of judgement achieves conceptual unity (Section 6.8).

If the agent does all these things, and satisfies all these conditions, then it has achieved experience: it has
combined the plurality of sensory inputs into a coherent representation of a single world. Achieving
experience requires four faculties: sensibility (to receive intuitions), the imagination (to connect
intuitions together using the pure relations as glue), the capacity to judge (to generate judgements),
and the power of judgement (to decide whether an intuition falls under a concept).

How does this interpretation relate to the debate between conceptualism and non-conceptualism?
According to our interpretation, intuitions are formed by sensibility, entirely independently of the
understanding.50 Further, intuitions can be connected (via the pure relations of Section 6.3) by the
imagination, without the need for the understanding.51 But intuitions can only constitute experience
if the intuitions are brought under concepts (via the power of judgement) and the concepts are
combined into judgements (via the capacity to judge): experience requires understanding working
in concert with sensibility and the imagination to bring the connected intuitions into a unity. Thus,

49See [Lon98, p.105].
50“Appearances can certainly be given in intuition without functions of the understanding.” [A90/B122]. “The manifold

for intuition must already be given prior to the synthesis of the understanding and independently from it.” [B145]
51“Synthesis in general is, as we shall subsequently see, the mere effect of the imagination, of a blind though indispensable

function of the soul, without which we would have no cognition at all, but of which we are seldom even conscious”
[A78/B103].

163

both sensibility and understanding need each other if they are to jointly achieve experience.52

Here are the core claims, brought together in one place for ease of reference:

1. In order to achieve experience, I must unify my intuitions.

2. Unifying intuitions means combining them using binary relations to form a connected graph,
in such a way as to satisfy the various unity conditions.

3. Synthesis involves (i) connecting intuitions together via containment, comparison, and in-
herence operations to form determinations; and (ii) connecting determinations together via
succession, simultaneity, and incompatibility relations.

4. There are, in total, four types of unity condition that Kant imposes: (i) the unity conditions for
the synthesis of mathematical relations, (ii) the unity conditions for the synthesis of dynamical
relations, (iii) the requirement that the judgements are underwritten by determinations, and
(iv) the conceptual unity condition.

5. The unity conditions for the synthesis of mathematical relations are:

(a) There exists some intuition x such that for each object of intuition y, for each moment in
time, there is a chain of in determinations between y and x.

(b) The comparison operator < forms a strict partial order.

6. The unity conditions for the synthesis of dynamical relations are:

(a) If I form an inherence determination, ascribing a particular attribute a to a particular object
o, then I must be committed to a judgement “this/some/all X are P”, where o falls under X,
and a falls under P.

(b) If I form a succession, in which one determination (say, particular object o having particular
attribute a) is followed by another determination (say, o having incompatible attribute b),
then I must have formed a conditional judgement “Ifφ(X) holds and X is P then X becomes
Q at the next time-step”, where object o falls under concept X, attribute a falls under concept
P, attribute b falls under concept Q, and φ(X) is an sentence featuring free variable X.

(c) If I form a simultaneity, in which one determination (say, particular object o1 having
particular attribute a) is simultaneous with another determination (say, object o2 having
attribute b), then there must be a pair of causal judgements, one of which states that an
attribute of o1 causally depends on an attribute of o2, and another of which states that an
attribute of o2 causally depends on an attribute of o1.

52“Thoughts without content are empty, intuitions without concepts are blind.” [A50-51/B74-76]. But note the striking
asymmetry between the types of deficiency when one activity is performed without the other: blindness is a deficiency of
a living conscious being, while emptiness is a deficiency of a mere container. This asymmetry confirms the interpretation in
Section 6.2.2 that unity of intuition is the final end of all thought, and conceptual thought is merely a means to that end.

164

(d) If I form an incompatibility in which one determination (say, particular object o having
attribute a) is incompatible with another (say, particular object o having attribute b), then I
must have formed a judgement “All X are either (exclusive disjunction) P or Q or ...”, in
which o falls under X, a falls under P, and b falls under Q.

7. The requirement that the conceptual realm respects the intuitive is the condition that if I form
a judgement, ascribing a concept P to a particular object X, then there must be a corresponding
inherence determination ascribing particular attribute a to particular object o, where o falls under
X and a falls under P.

8. The unity condition for conceptual unity is the requirement that every concept must feature in
some disjunctive judgement.

In this section, I shall formalise the task of achieving synthetic unity of apperception. The formalism
introduced is necessary for the derivation of the categories below.

6.9.1 The pure relations

Let I be the set of intuitions,D the set of determinations, and C the set of connections. The signature
of the three pure operations of containment, comparison, and inherence are:

in : I × I → D
< : I × I → D

det : I × I → D

The signature of the three pure relations of succession, simultaneity, and incompatibility are:

succ : D×D→ C
sim : D×D→ C
inc : D×D→ C

For example, if a, b, c are intuitions of type I, then det(a, b), in(a, b), and b < c are determinations of
typeD; and succ(det(a, b), det(a, c)) and sim(in(a, b), b < c)) are connections of type C.

Now succ is stipulated to be a functional relation: there is at most one Y such that succ(X,Y).53 To get
from this functional succ to the traditional successor (where a determination is succeeded by many
determinations), we define non-functional succ′ as the closure of succ under the rule:

succ(X,Y) ∧ sim(X,X2) ∧ sim(Y,Y2)→ succ′(X2,Y2)

We insist that sim and succ′ are well-behaved in that:
53The reason for this will become clear when deriving the category of Cause (Section 6.10).

165

• sim is an equivalence relation

• sim is closed under the rules:

succ′(X,Y) ∧ succ′(X2,Y)→ sim(X,X2)

succ′(X,Y) ∧ succ′(X,Y2)→ sim(Y,Y2)

• Let succ∗ be the transitive closure of succ′. There is no X such that succ∗(X,X).

Given these constraints, a set of succ, sim connections induces a sequence (S1, ...,Sn) of states (i.e.
maximal sets of simultaneous determinations).54 For example, given determinations p1...p10 and
connections:

sim(p1, p2) sim(p2, p3) succ(p3, p4)
sim(p4, p5) succ(p5, p6) succ(p6, p7)
sim(p7, p8) sim(p7, p9) succ(p7, p10)

we induce the sequence of states (S1, ...,S4) where:

S1 = {p1, p2, p3}
S2 = {p4, p5}
S3 = {p6}
S4 = {p7, p8, p9, p10}

6.9.2 Achieving synthetic unity

The input that the mind receives from sensibility is a sequence (π1, ..., πt) of individual determinations
from D. Note that the input is not a sequence of sets of determinations that are already assumed to
be simultaneous, but a sequence of individual determinations. Kant insists on this:

The apprehension of the manifold of appearance is always successive. The representations
of the parts succeed one another. Whether they also succeed in the object is a second point
for reflection, which is not contained in the first... Thus, e.g., the apprehension of the
manifold in the appearance of a house that stands before me is successive. Now the
question is whether the manifold of this house itself is also successive, which certainly no
one will concede. [A189/B234ff]

Here, Kant asks us to imagine an agent surveying a large house from close range. Its visual field
cannot take in the whole house in one glance, so its focus moves from one part of the house to

54Kamp has a similar construction from succ and overlaps [Kam79].

166

another. Its sequence of visual impressions is successive, but there is a further question whether
a pair of (subjectively) successive visual impressions represents the house at a single moment of
objective time, or at two successive moments of objective time.55

Given a sequence (π1, ..., πt) of individual determinations, the task of making sense of sensory input
is is to construct a synthetic unity - a triple (κ, υ, θ) - satisfying various conditions, where:

• κ ⊆ C is a set of connections between determinations

• υ ⊆ I×P1 is the falls-under relation (also known as subsumption) between intuitions and unary
predicates P1

• θ is a collection of judgements

The connections κ are generated by the faculty of imagination. Note that not all the determinations
in κ need come from the original sequence (π1, ..., πt). Some of the determinations may involve
new invented objects constructed by pure intuition (for spaces and times) or by the imagination (for
hypothesised unperceived empirical objects). The connections must satisfy the following conditions:

• If πi, πi+1 are successive determinations in (π1, ..., πt), then either sim(πi, πi+1) or succ(πi, πi+1)
must be in κ

• The determinations are fully connected: every determination in κ is connected to every other
determination via some path of undirected edges.

While the falls-under relation υ is generated by the power of judgement, the theory θ is a collection
of judgements that is generated by the capacity to judge. The language of judgements is formalized
in Chapter 3, but in brief: judgements are either rules or constraints. Rules are either arrow rules
α1∧...αn → α0 (stating that ifα1, ..., αn all hold, thenα0 also holds at the same time-step), or causal rules
α1∧ ...αn⊃−α0 (stating that if α1, ..., αn all hold, then α0 also holds at the next time-step). Constraints are
either xor judgements α1 ⊕ ... ⊕ αn (stating that exactly one of the αi hold) or a uniqueness constraint
∀X,∃!Y, r(X,Y) (stating that for each X there is exactly one Y such that r(X,Y)).

Figure 6.4 shows two different ways of grouping the four faculties, according to two cross-cutting
distinctions. According to one distinction, sensation and imagination both fall under sensibility
because both faculties process intuitions.56 The power of judgement and the capacity to judge both fall
under the understanding because both faculties process concepts. According to the other distinction,
sensation falls under receptivity because it is a purely passive capacity that merely receives what
it is given. The other three faculties fall under spontaneity57 because the agent is free to construct
whatsoever it pleases, as long as the resulting construction satisfies the various unity conditions.

55See also [Lon98, p.359].
56“Now since all of our intuition is sensible, the imagination, on account of the subjective condition under which alone

it can give a corresponding intuition to the concepts of understanding, belongs to sensibility.” [B151]
57See [A51/B75], [B133], [B151].

167

sensation imagination power of
judgement

sensibility understanding

receptivity spontaneity

capacity
to judge

Figure 6.4: The relationship between the four faculties

We have now assembled the materials needed to define the task of synthetic unity.

Definition 28. Given a sequence (π1, ..., πt) of determinations, the task of achieving synthetic unity of
apperception is to construct a triple (κ, υ, θ) as described above that satisfies the unity conditions of Sections
6.5, 6.6, 6.7, and 6.8. 4

6.10 The derivation of the categories

The problem of the pure categories is explained in the opening paragraphs of the Schematism:

In all subsumptions of an object under a concept the representations of the former must be
homogeneous with the latter, i.e., the concept must contain that which is represented in
the object that is to be subsumed under it, for that is just what is meant by the expression
“an object is contained under a concept.” ... Now pure concepts of the understand-
ing, however, in comparison with empirical (indeed in general sensible) intuitions, are
entirely unhomogeneous, and can never be encountered in any intuition. Now how is
the subsumption of the latter under the former, thus the application of the category to
appearances possible, since no one would say that the category, e.g., causality, could also
be intuited through the senses and is contained in the appearance? [A137/B176 ff]

For empirical concepts, an object’s being subsumed under a concept can be explained in terms of a
particular attribute that the object has which falls under the concept. See Figure 6.5(a). Suppose,
for example, my intuition of this particular jumper is subsumed under the concept “dirty”. This
subsumption is explained by (i) the object of intuition having, as one of its determinations, a particular
attribute of intuition (my representation of the particular dirtiness of this particular jumper at this
particular moment), and (ii) the attribute of intuition falling under the concept “dirty”. The problem,
for the pure concepts such as Unity, Reality, Substance, and so on, is that there is no corresponding
attribute of intuition, so the explanation of the subsumption in Figure 6.5(a) is not applicable. What,
then, justifies or permits us to subsume the objects of intuition under the pure concepts?

168

object of
intuition

attribute of
intuitionhas

concept

falls under
subsumed under

(a) The explanation of subsumption for an empiri-
cal concept

object of
intuition

no attribute
of intuition

concept

subsumed under

pure relation derived from

bound by

(b) The explanation of subsumption for a pure con-
cept

Figure 6.5: Both diagrams provide an explanation for an object being subsumed under a concept. In
(a), the concept is empirical, and the explanation goes via the intermediary of an attribute of intuition.
In (b), the concept is pure, there is no corresponding attribute, and the explanation goes via the
another intermediary: a pure relation.

According to Kant, what justifies my subsuming an object under a pure concept is the existence of a
pure relation58 that the object is bound to. See Figure 6.5(b). Here, the subsumption of the object under
the pure concept is explained by (i) the object of intuition being bound to the pure relation, and (ii)
the pure concept being derivable from the pure relation. Note that in both Figures 6.5(a) and (b) there
is an intermediary that explains the object being subsumed under a concept, but it is a different sort
of intermediary in the two cases:

Now it is clear that there must be a third thing, which must stand in homogeneity with
the category on the one hand and the appearance on the other, and makes possible the
application of the former to the latter. This mediating representation must be pure (without
anything empirical) and yet intellectual on the one hand and sensible on the other. Such
a representation is the transcendental schema. [A138/B177]

The “transcendental schema” is just another term for what I have been calling a pure relation: in, <,
det, succ, sim, and inc.

This, then, is the outline of Kant’s argument explaining how the pure concepts (categories) apply
to objects of intuition. The next stage is to show, in detail, for each pure concept, exactly how it is
derived from the corresponding pure relation.

The derivation is straightforward and Kant did not see the need to spell it out.59 But for the sake of
maximal explicitness, we shall go through each in turn.

58I.e. one of the six pure relations introduced in Section 6.3 and defined in Section 6.9.1.
59In [Bra09], Brandom describes how new unary concepts can be derived from given relations. So, for example, if we

have the binary relation P(x, y) representing that x admires y, then we can form the new unary predicate Q(x) defined as
Q(x) = R(x, x). Here, Q(x) is true if x is a self-admirer. In a similar manner, the unary categories are derived from the pure
relations of Section 6.3.

169

Starting with the title of Relation, intuition X falls under the pure concept substance if there exists
an intuition Y such that det(X,Y) is a determination in κ [B128-9]. Likewise, X falls under the pure
concept accident if there exists an intuition Y such that det(Y,X) is a determination in κ. Determination
π falls under the pure concept cause if there exists a determination π′ such that succ(π, π′) is in κ
[A144/B183]. Likewise, determination π falls under the pure concept dependent if there exists a
determination π′ such that succ(π′, π) is in κ.60 A set Π of determinations falls under the pure concept
community if for each π, π′ in Π, sim(π, π′) is in κ [A144/B183-4].

Moving to the title of Modality, a set Π of determinations falls under the pure concept possible if there
is some sequence of sensor readings, and some theory θ that makes sense of those readings, such that
Π is contained in one of the states of the trace of θ [A144/B184]. A set Π of determinations is actual if
it is contained in one of the states of the trace of the best theory that explains the sensor readings that
have been received.61 A set Π of determinations is necessary if if it is contained in every state of the
trace of the best theory that explains every possible sensory sequence.

Moving next to the title of Quality, intuition X falls under the pure concept of reality if there exists
an intuition Y such that Y < X [A168/B209]. Likewise, intuition X falls under the pure concept of
negation if there does not exist an intuition Y such that Y < X.

Moving, finally, to the title of Quantity, the categories of Unity, Plurality, and Totality are slightly
more involved because they are implicitly indexed by a predicate p. A container is a unity of p’s if it
contains all the objects that fall under p. In other words, X falls under the pure concept of unity if for
all Y, (Y, p) ∈ υ implies in(Y,X). A container is a plurality of p’s if all the objects within it fall under
p. In other words, X falls under the pure concept of plurality if for all Y, in(Y,X) implies (Y, p) ∈ υ. A
container is a totality of p’s if it contains all and only the objects that fall under p.62

Returning to the overall argument for the derivation of the categories, Kant’s deontic argument can
be summarized as:

• Achieving experience requires that I connect the intuitions using the pure relations.

• If I connect the intuitions using the pure relations, then I may apply the pure concepts (the
categories) to the objects of intuition.

• Therefore, achieving experience permits me to apply the pure concepts to the objects of intuition.

Thus the quid juris question [A84/B116] can be answered in the affirmative. Note, however, that my
permission to apply the pure concepts to objects of intuition is conditioned on my activity, the activity

60This definition relies on succ being defined as a functional relation in Section 6.9.1.
61“The postulate for cognizing the actuality of things requires perception, thus sensation of which one is conscious – not

immediate perception of the object itself the existence of which is to be cognized, but still its connection with some actual
perception.” [A225/B272]

62Kant says that a totality is a plurality considered as a unity [B111].

170

of trying to achieve experience. Hence Kant’s conclusion that the categories are only permitted to
apply to objects of experience.63

Kant insisted that the categories are not innate. The pure unary concepts are not “baked in” as
primitive unary predicates in the language of thought. The only things that are baked in are the
fundamental capacities (sensibility, imagination, power of judgement, and the capacity to judge)
together with the pure relations of Section 6.3. The categories themselves are acquired – derived from
the pure relations in concreto when making sense of a particular sensory sequence. But they are
originally acquired [Entdeckung, Ak. VIII, 222-23; 136.]64 because they are always derivable from any
sensory sequence. The pure concepts, then, are not innate but originally acquired [Lon98].65

6.11 Kant’s cognitive architecture

The first half of the Critique of Pure Reason is a sustained exercise in a priori psychology: the study
of the processes that must be performed if the agent is to achieve experience. For Kant, this a priori
psychology was largely a means to an end, or ends. In fact, his psychology served two overriding
goals. One of his goals was metaphysical: to enumerate once and for all the pure aspects of cognition:
those features of cognition that must be in place no matter what sensory input has been received.
The pure aspects of cognition include the pure forms of intuition (space and time, as described
in the Aesthetic), the pure concepts (the categories, as described in the Analytic of Concepts), and
the pure judgements (the synthetic a priori propositions, as described in the Principles). His other
overriding goal was metaphilosophical: to delimit the bounds of sense, and finally put to rest various
interminable disputes66 (by showing that the pure concepts can only be applied to objects of possible
experience).

But I believe that, apart from its role as a means to his metaphysical and metaphilosophical ends,
Kant’s peculiar brand of psychology has independent interest in its own right, as a specification of a
cognitive architecture. To test this hypothesis, we need to implement this architecture in a computer
program, and test it on a wide array of examples. Kant’s theory is intended to be a general theory of
what is involved in achieving experience, so – if it actually works – it should apply to any sensory
input. To test the viability of this architecture, then, we need to evaluate it in a large and diverse set
of experiments.

63“The category has no other use for the cognition of things than its application to objects of experience.” [B145]
64This is quoted in [Lon98].
65Some cognitive scientists (e.g. Gary Marcus [Mar18b]) place Kant on the nativist side of the nativist versus empiricist

debate. But the key question for Kant is not what humans are born with, but what agents must do in order to make
sense of the sensory input. It is a normative question of a priori psychology, not an empirical question about ontogenetic
development. From Kant’s perspective, the list of innate concepts proposed by cognitive scientists [SK07] is a “mere
rhapsody” [A81/B106] unless they can be unified under a common principle. Nativists compile their list of innate concepts
by looking at what human babies can do. But the capacities that evolution has hard-wired to help us in our particular
situation are not maximally general. For example, babies can distinguish faces from other shapes before they are born, but
the concept of a face is not a pure concept in Kant’s sense.

66He wanted to “put an end to all dispute” [A768/B796].

171

a

b

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

(a)

a

b

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

(b)

Figure 6.6: A simple sequence involving two sensors. (a) shows a noise-free
version, where the pattern is clearly apparent. (b) shows the fuzzy version
with random noise that is used in this experiment.

Recall that Kant’s cognitive architecture involves three capacities: the understanding (generating
judgements), the capacity to judge (mapping intuitions to concepts), and the imagination (connecting
intuitions together). In Chapter 3, we implemented the understanding, and in Chapter 4 we tested
it in a wide variety of domains: cellular automata, sequence induction tasks, rhythms and simple
nursery tunes, occlusion tasks, and multimodal binding tasks. In Chapter 5, we also implemented
the capacity to judge, and tested it on sequence induction tasks, Sokoban, and fuzzy sequences. In the
rest of this chapter, we describe our implementation of the imagination, and evaluate the system as a
whole.

In our implementation, the three faculties are implemented in one ASP program. The understanding
is implemented as an unsupervised program synthesis system, the power of judgement is imple-
mented as a binary neural network (also implemented in ASP), and the productive imagination is
implemented as a set of choice rules (also implemented in the same ASP program).

6.12 Experiment 1: flashing lights

I shall describe two experiments showing Kant’s theory in action. We first describe the sensory input,
and then the interpretation produced by our system.

6.12.1 The sensory input

The sensory input is a noisy version of Example 1.

In this experiment, there are two light sensors that can register various levels of intensity. If we take
readings of both sensors at regular intervals, we get Figure 6.6. Here, the top row shows a human-
readable discretised version of the sensor readings. The bottom row shows a noisier, fuzzier version
of the same pattern. It is this second fuzzier version that is used in this experiment. But the sensory

172

ba a b b a a b b a ba a b a

Figure 6.7: The input to the Apperception Engine is a sequence of individual readings. The engine
must choose how to group the individual readings into groups of simultaneous readings.

ba a b b a a b b a ba a b a

ba a b b a a b b a ba a b a

ba a b b a a b b a ba a b a

Figure 6.8: We show three ways of parsing the individual readings (in subjective time) into a succession
of simultaneous readings (in objective time). The thin dashed lines divide the readings in subjective
time, while the thicker lines group the individual readings into sets of simultaneous readings in
objective time. The bottom row of the three represents the correct ground-truth way of grouping the
readings.

input, as presented in Figure 6.6(b), shows the sensory readings after they have already been assigned
to particular moments in time. In Kant’s theory, this time-assignment is not something that is given
to the system, but rather is a hard-won achievement. In Kant’s theory, the sensory input is presented
as a sequence of individual sensory readings, and the agent has to decide how the various readings
should be combined together into moments of objective time. So the actual input to the Kantian agent
is shown in Figure 6.7. Here, the agent is given a sequence of individual sensory readings, and must
choose how to combine them together into a succession of simultaneous readings. While Figure 6.7
shows the sequence of individual readings in subjective time, Figure 6.8 shows a variety of different
ways of parsing the raw sequence into moments. The bottom row of Figure 6.8 shows the correct
way of parsing the sequence in Figure 6.7; this correct parse corresponds to Figure 6.6(b).

The input, then, is the sequence shown in Figure 6.7. In our implementation, the continuous sensor
readings are first discretised into binary vectors of length 3. Thus, the sequence of Figure 6.7 is

173

represented as:

det(a, [1, 0, 0])

det(b, [1, 0, 1])

det(a, [0, 0, 1])

det(b, [1, 0, 1])

det(b, [0, 0, 0])

det(a, [1, 0, 0])

det(a, [1, 0, 1])

...

The total sequence (d1, ..., d50) is a list of 50 inherence determinations. Note that the readings do not
simply alternate between a and b. Sometimes there are multiple a’s or b’s in a row. The subjective
sequence records the sequence of items the agent is attending to (he can only attend to one sensation
at a time), and the agent might attend to either sensor at any moment of subjective time. Given this
sequence in subjective time, we must reconstruct the moments of objective time by connecting the
determinations using the relations of simultaneity and succession.

6.12.2 The model

Given the sensory sequence, the agent must construct an interpretation that makes sense of the
sequence. The interpretation consists of:

1. A synthesis of intuitions. This contains a set of determinations (that must include the original
sensory sequence, but can also include determinations involving other invented intuitions)
connected together via the pure relations of sim, succ, and inc.

2. A collection of subsumptions. This is a set of mappings from intuitions of individual objects
to general concepts. The mapping is implemented as a binary neural network.

3. A set of judgements that connect the concepts together.

In our implementation, each of these three processes are implemented as parts of one large ASP
program. The productive imagination is implemented as a choice rule, the power of judgement is
implemented as a binary neural network, and the understanding is implemented as an unsupervised
program synthesis system.

174

The synthesis of intuitions

The given sequence (d1, ..., d50) is a sequence of individual determinations in subjective time. We need
to produce a sequence of sets of determinations in objective time. For each consecutive pair dt, dt+1,
they can either be simultaneous or successive.

We implement the productive imagination as a choice rule:

1 { sim((BV1, Obj1, ST), (BV2, Obj2, ST+1));

succ((BV1, Obj1, ST), (BV2, Obj2, ST+1)) } 1 :-

bv_at(BV1, Obj1, ST), bv_at(BV2, Obj2, ST+1).

Here, sim and succ are relations between triples containing the attribute BV, the object of intuition
Obj, and the subjective time index ST. We need to include the subjective time index ST so that two
determinations featuring the same object and the same attribute (but at different times) are not
identified. In our example, this choice rule gives us 250−1 possibilities.67

Once the sim and succ relations are provided, this determines the positions of the determinations in
objective time:

position((BV, Obj, 1), 1) :- bv_at(BV, Obj, 1).

position(X, T) :- position(Y, T), sim(Y, X).

position(X, T+1) :-

position(Y, T), succ(Y, X), max_subjective_time(MT), T+1 <= MT.

max_subjective_time(MT) :- is_st(MT), not is_st(MT+1).

is_st(ST) :- bv_at(_, _, ST).

Here, the first argument of position is a triple containing the attribute BV, the object of intuition Obj,
and the subjective time index ST. The second argument of position is the time index in objective time.

We insist that no two distinct readings of the same sensor can be present in the same moment of
objective time:

:- position((BV1, Obj, _), T), position((BV2, Obj, _), T), BV1 != BV2.

The incompossibility relation between determinations is derived from the incompossibility between
subsumptions:

67The current implementation assumes that any pair of consecutive sensor readings are either simultaneous or successive.
This precludes the possibility that there are intermediate time-steps between the two consecutive readings. In future work,
I plan to expand the choice rule to allow this further possibility, so that it is possible to abduce intermediate time-steps.

175

inc((BV1, Obj, ST1), (BV2, Obj, ST2)) :-

bv_at(BV1, Obj, ST1),

bv_at(BV2, Obj, ST2),

possible_pred(BV1, P1),

possible_pred(BV2, P2),

not is_ambiguous(BV1),

not is_ambiguous(BV2),

incompossible(s(P1, Obj), s(P2, Obj)).

is_ambiguous(BV) :-

possible_pred(BV, P1),

possible_pred(BV, P2),

P1 != P2.

The set of subsumptions

A subsumption maps an intuition (a bit vector) to a concept (symbol). We implement the power of
judgement using a binary neural network parameterised by Boolean weights. (See Section 5.4.1). We
use clingo to jointly find the weights of the neural network and construct the judgements.

The neural network’s input is a binary vector (of length 3 in this experiment) and the output is a binary
vector of length |P| (where |P| is the number of unary predicates). The neural network implements a
multilabel classifier mapping binary vectors to 2|P|.

The power of judgement is implemented by the binary network together with the following choice
rule implementing the multilabel classifier:

1 { senses(s(C, Obj), T) : possible_pred(BV, C) } 1 :-

position((BV, Obj, _), T).

possible_pred(BV, c_p) :- bnn_result(BV, 1, 1).

possible_pred(BV, c_q) :- bnn_result(BV, 2, 1).

This choice rule states that for each object Obj that is assigned intuition attribute BV at objective time
T, the object Objmust be assigned exactly one of the predicates Ci such that the i’th output bit is 1. In
other words, subsume the object Obj under one of the unary predicates C that is associated with BV.

The set of judgements

Kant’s faculty of understanding is implemented as a program synthesis system that takes as input
a stream of sensory information, and produces a theory (a set of judgements) that both explains the
sensory stream and also satisfies various unity conditions.

176

Filling in the unperceived details

Recall Kant’s unity condition that judgements should be underwritten by determinations:

(7) If I form a judgement, ascribing a concept P to a particular object X, then there must
be a corresponding inherence determination ascribing particular attribute a to particular
object o, where o falls under X and a falls under P.

To implement this, we add two choice rules stating that if an object X satisfies p (respectively q) at T,
then there is some particular attribute Attr ascribed to X at T (where Attr falls under p (respectively
q)):

1 { obj_bv_at(Attr, X, ObjT) : bnn_result(Attr, 1, 1) } 1 :-

holds(s(c_p, X), ObjT).

1 { obj_bv_at(Attr, X, ObjT) : bnn_result(Attr, 2, 1) } 1 :-

holds(s(c_q, X), ObjT).

This code relies on the additional predicates connecting subjective with objective time:

obj_bv_at(Attr, X, ObjT) :-

bv_at(Attr, X, SubjT),

subj_obj_t(SubjT, ObjT).

subj_obj_t(SubjT, ObjT) :- position((_, _, SubjT), ObjT).

Finding the best model

When the three sub-systems (the imagination, power of judgement, and understanding) described
above are implemented in one system, many different interpretations are found. In order to decide
between the various interpretations, we use the following preferences:

1. We prefer shorter theories over longer theories, all other things being equal.

2. We prefer sets of subsumptions which assign fewer intuitions to the same concept.

177

The first weak constraint penalises theories based on length:

:∼ rule body(R, A). [1@1, R, A]

:∼ rule arrow head(R, A). [1@1, R, A]

:∼ rule causes head(R, A). [1@1, R, A]

:∼ init(A). [1@1, A]

Note that ground atoms in the initial conditions are penalised just the same as unground atoms in
the rules.

The second weak constraint penalises subsumptions for assigning many intuitions to the same con-
cept.

:∼ max bnn examples per predicate(M). [M@4, M]

max bnn examples per predicate(M) : - M = #max{N : count bnn examples per predicate(C, N)}.

count bnn examples per predicate(C, N) : - possible pred(,C), N = #count{E : possible pred(E, C)}.

See Section 5.3 for a justification of this weak constraint.

The raw apperception framework

In terms of the formalism of Section 5.2, the raw apperception framework (πw,n,∆, φ,C) is:

• πw is a tiny binary neural network of size 3 × 2 × 2. The input layer receives the three bits
of the sensory input, the middle layer has just two units, and the output layer has two nodes
representing whether the input satisfies the unary predicates p and q. The network has just 10
weights.

• n = 2 since there are only two classes: p and q.

• The “disjunctifier” ∆ is implemented by the clauses in Section 6.12.2.

178

ba a b b a a b b a ba a b a

sim succ sim succ sim succ sim succ sim succ sim succ sim succ

Figure 6.9: How the objective temporal sequence is constructed from the subjective temporal sequence
via the pure relations of sim and succ.

The type signature φ = (T,O,P,V), where:

T = {sensor}
O = {o1, o2, o3}
P = {p(sensor), q(sensor), r(sensor, sensor)}
V = {X:sensor,Y:sensor}

The constraints C = {∀X:sensor, p(X) ⊕ q(X)}.

6.12.3 Results

The interpretation found by the Apperception Engine consists of a triple (κ, υ, θ) consisting of a
synthesis of intuitions, a collection of subsumptions, and a set of judgements. We shall consider each
in turn.

The synthesis of intuitions κ. When confronted with the sensory sequence of Figure 6.7, the engine
produces a set κ of connections using the pure relations of sim, succ, and inc. Here is an excerpt:

sim(([1, 0, 0], a, 1), ([1, 0, 1], b, 2)) succ(([1, 0, 1], b, 2), ([0, 0, 1], a, 3)) inc(([1, 0, 0], a, 1), [0, 0, 1], a, 3))
sim(([0, 0, 1], a, 3), ([1, 0, 1], b, 4)) succ(([1, 0, 1], b, 4), ([0, 0, 0], b, 5)) inc(([1, 0, 1], b, 2), ([0, 0, 0], b, 5))
sim(([0, 0, 0], b, 5), ([1, 0, 0], a, 6)) succ(([1, 0, 0], a, 6), ([1, 0, 1], a, 7)) inc(([1, 0, 0], a, 6), ([0, 0, 1], a, 10))
sim(([1, 0, 1], a, 7), ([1, 0, 0], b, 8)) succ(([1, 0, 0], b, 8), ([1, 0, 0], b, 9)) inc(([1, 0, 1], a, 7), ([0, 0, 0], a, 15))

Here, the determinations are triples containing an attribute, an object, and an index in subjective time.
This index is needed so that two determinations sharing the same object and attribute at different
moments of time are nevertheless treated as distinct.

Figure 6.9 shows how the succ and sim relations produce objective time from subjective time.

The falls-under relation υ. The Apperception Engine constructs two unary predicates, p and q,
and subsumes the binary vectors under them. The binary neural network implements a multilabel
classifier, mapping binary vectors to subsets of {p, q}. The subsumptions υ produced by the engine
are:

179

ba a b b a a b b a ba a b

p(a)
p(b)
q(c)

q(a)
p(b)
p(c)

p(a)
q(b)
p(c)

p(a)
p(b)
q(c)

q(a)
p(b)
p(c)

p(a)
q(b)
p(c)

p(a)
p(b)
q(c)

Figure 6.10: The subsumptions generated by the engine. The dashed lines divide subjective time,
while the solid lines divide moments of objective time. The atoms generated at each moment are
displayed below.

[0, 0, 0] 7→ {q} [0, 0, 1] 7→ {q}
[0, 1, 0] 7→ {q} [0, 1, 1] 7→ {p, q}
[1, 0, 0] 7→ {p} [1, 0, 1] 7→ {p}
[1, 1, 0] 7→ {p} [1, 1, 1] 7→ {p}

Note that [0, 1, 1] is considered ambiguous.

Figure 6.13 shows the subsumptions generated by the engine. Note the introduction of an invented
object, c, that was not part of the sensory input.

The set of judgements θ. Along with the synthesis of intuitions and the collection of subsumptions,
the Apperception Engine also generates a theory θ, a set of judgements that explain the dynamics of
the system. The theory constructed for the problem of Figure 6.7 is θ = (φ, I,R,C). The type signature
φ consists of types T, objects O, and predicates P where:

T = {sensor, space}
O = {a:sensor, b:sensor, c:sensor, s1:space, s2:space, s3:space, s4:space}
P = {p(sensor), q(sensor), in(sensor, space), in2(space, space), r(space, space)}

The initial conditions I, rules R and constraints C are:

I =



p(a) p(b) q(c)
in(a, s1) in(b, s2) in(c, s3)
in2(s1, sw) in2(s2, sw) in2(s3, sw) in2(sw, sw)
r(s1, s2) r(s2, s3) r(s3, s1)



R =


q(X) ⊃− p(X)
in(X,S1) ∧ in(Y,S2) ∧ r(S1,S2) ∧ q(X) ⊃− q(Y)



C =



∀X:sensor, p(X) ⊕ q(X)
∀X:sensor,∃!Y:space, in(X,Y)
∀X:space,∃!Y:space, in2(X,Y)
∀X:sensor,∃!Y:sensor, r(X,Y)



180

a

s1

b

s2

in in

r

Figure 6.11: Sensors a and b are indirectly connected via the in and r relations. The dashed line
represents the indirect connection that is derived from the direct connections.

Here, the sensors a and b are given as part of the sensory input, but sensor c is an invented object,
constructed by the imagination. The invented objects s1, s2, and s3 are three parts of space, constructed
by pure intuition. The three spaces are all parts of the spatial whole sw.

The unary predicates p and q are used to distinguish between a sensor’s being on and off. The in
relation places sensors in space, and the in2 relation places spaces inside the spatial whole. The r
relation is used to define a one-dimensional space with wraparound.68 Note that our “spatial unity”
requirement is rather minimal: we just insist that there is some containment structure connecting the
intuitions together. It is not essential that the space constructed has the particular three-dimensional
structure that we are accustomed to. Any spatial structure will do as long as the intuitions are unified
[Wax14, Chapter 3]. In terms of Kant’s distinction between the form of intuition and the formal intuition
[B160n], the relation r describes the form of intuition (relations between objects) while the particular
spaces (s1, s2, s3, and sw) represent the formal intuitions.

Note that the given objects of sensation (the sensors a and b) are not directly related to each other.
Rather, they are indirectly related via the spatial objects and the in and r relations. See Figure 6.11.

The rules describe how the unary properties p and q change over time. The first rule states that objects
that satisfy q at one time-step will satisfy p at the next time-step. The second rule describes how the q
property moves from one sensor to its right neighbour.

The constraints are constructed to satisfy conceptual unity (Section 6.8). The first insists that every
sensor is either p or q but not both. The second requires that every sensor is contained within exactly
one spatial region.

Filling in the unperceived details. In order to make concepts sensible (Section 6.7), the engine must
ensure there is a determination corresponding to every judgement. In particular, the judgements
involving invented unperceived object c must be underwritten by corresponding determinations.
This means that for each time step at which p(c) (respectively q(c)) is true, there must be an inherence
determination det(c, a) ascribing particular attribute a to c, where c falls under p (respectively q).

68Note that, in this example, the spatial structure is static. But see e.g. Sections 4.2.5 and 5.5.2 for examples where objects
move around.

181

ba a b b a a b b a ba a b

p(a)
p(b)
q(c)

q(a)
p(b)
p(c)

p(a)
q(b)
p(c)

p(a)
p(b)
q(c)

q(a)
p(b)
p(c)

p(a)
q(b)
p(c)

p(a)
p(b)
q(c)

c c c c c c c

given determinations

subsumptions

imagined determinations

Figure 6.12: The determinations imagined by the engine. Here we show the given determinations
(top row), the subsumptions (middle row), and the imagined determinations (bottom row) that are
generated to satisfy condition (7): the requirement that every judgement needs to be underwritten
by a determination. Thus, for example, the atom q(c) in time step 1 needs to be underwritten by an
inherence determination attributing a particular shade of q-ness to object c.

Satisfying this condition means imagining particular attributes assigned to c for each moment of
objective time. One set of determinations satisfying this condition is shown in Figure 6.12.

Thus, the unperceived object c is not merely subsumed under a predicate, but is also involved in a
determination. Even though c is an external object with which the agent has no sensory contact, it is cognised
as satisfying particular perceptual determinations. This is, I believe, the truth behind the Kant-inspired
claim that “perception is a kind of controlled hallucination” [Cla13].

Note that requirement (7) of Section 6.7 insists that object c must be involved in some determination,
but does not – of course – insist on any particular determination. The productive imagination is free
to construct any determination it pleases.

Discussion. Figure 6.13 shows the whole experiment, from the original input to the complete output
consisting of a synthesis of intuitions, a collection of subsumptions, and a set of judgements. The
Apperception Engine has discerned a discrete intelligible structure behind the continuous noisy
input. It started with a fuzzy sensory input, and perceived, amongst all the noise, an underlying
system involving two discrete unary predicates, p and q, and devised a simple theory explaining how
p and q change over time.

Let us pause to check that the interpretation of Figure 6.13 satisfies the various conditions (Section
6.9) required to achieve synthetic unity:

• The determinations are connected together via the relations of succ, sim, and inc to form a fully
connected graph, as required in Section 6.3.

• The containment condition 5(a) of Section 6.5 is satisfied by the initial conditions I of Figure
6.13. Here, sw is the spatial whole in which all other objects are contained, directly or indirectly.

• The < relation is not needed in this particular example. The empty relation trivially satisfies the
condition 5(b) that < is a strict partial order.

182

ba a b b a a b b a ba a b

p(a)
p(b)
q(c)

q(a)
p(b)
p(c)

p(a)
q(b)
p(c)

p(a)
p(b)
q(c)

q(a)
p(b)
p(c)

p(a)
q(b)
p(c)

p(a)
p(b)
q(c)

ba a b b a a b b a ba a b
input

output

I =

8>>>>><>>>>>:

p(a) p(b) q(c)
in(a, s1) in(b, s2) in(c, s3)
in2(s1, sw) in2(s2, sw) in2(s3, sw) in2(sw, sw)
r(s1, s2) r(s2, s3) r(s3, s1)

9>>>>>=>>>>>;

R =
(

q(X) �� p(X)
in(X,S1) ^ in(Y,S2) ^ r(S1,S2) ^ q(X) �� q(Y)

)

C =

8>>>>><>>>>>:

8X:sensor, p(X) � q(X)
8X:sensor,9!Y:space, in(X,Y)
8X:space,9!Y:space, in2(X,Y)
8X:sensor,9!Y:sensor, r(X,Y)

9>>>>>=>>>>>;

[0, 0, 0] 7! {q} [0, 0, 1] 7! {q}
[0, 1, 0] 7! {q} [0, 1, 1] 7! {p, q}
[1, 0, 0] 7! {p} [1, 0, 1] 7! {p}
[1, 1, 0] 7! {p} [1, 1, 1] 7! {p}



�

✓

Figure 6.13: The result of applying the Apperception Engine to the input of Figure 6.7. The dashed
lines divide moments of subjective time, while the solid lines divide moments of objective time. We
show the synthesis of intuitions κ, the subsumptions υ, and the theory θ. We also show the ground
atoms at each step of objective time, generated by applying the subsumptions υ to the raw input.

183

• The requirement 6(a) of Section 6.6.1, that every inherence determination is underwritten by a
judgement, is satisfied by the theoryθ together with the subsumptions υ. Consider, for example,
the first determination in the given sequence: det(a, [1, 0, 0]). Note that [1, 0, 0] 7→ p according
to υ, a is an object of type sensor and the determination is underwritten by the judgement
∃X:sensor, p(X).

• The requirement 6(b) of Section 6.6.2, that every succession is underwritten by a causal judge-
ment, is satisfied by the theory θ together with the subsumptions υ. Consider, for example, the
succession:

succ(([0, 0, 1], b, 4), ([1, 1, 0], b, 5))

This represents the succession of det(b, [0, 0, 1]) by det(b, [1, 1, 0]). Note that [0, 0, 1] 7→ q and
[1, 1, 0] 7→ p according to the subsumptions υ, and rules R contain the causal judgement q(X) ⊃−
p(X).

• The requirement 6(c) of Section 6.6.3 is not used in our implementation of the Apperception
Engine.

• The requirement 6(d) of Section 6.6.4, that every incompatibiity is underwritten by a constraint,
is satisfied by the constraints C in θ together with the subsumptions υ. Consider, for example,
the incompatibility:

inc(([1, 0, 0], a, 1), [0, 0, 1], a, 3))

This incompatibility between determinations is underwritten by the constraint∀X:sensor, p(X)⊕
q(X), together with the mappings [1, 0, 0] 7→ p and [0, 0, 1] 7→ q.

• The requirement 7 of Section 6.7 is satisfied by the inherence determinations featuring invented
object c as shown in Figure 6.12.

• The requirement 8 of Section 6.8, that every predicate features in some xor or uniqueness
constraint, is satisfied by the theory θ of Figure 6.13. Here, predicates p and q feature in the
constraint ∀X:sensor, p(X)⊕ q(X), in features in the constraint ∀X:sensor,∃!Y:space, in(X,Y), and
so on for the other binary relations.

This, then, is Kant’s cognitive architecture in action. It is pleasant to see the Apperception Engine
extract a coherent interpretable theory from the indeterminate sensory input it is given.

6.12.4 Perceptual discernment and conceptual discrimination

Compare the interpretation of Figure 6.13 with the alternative degenerate interpretation of Figure
6.14. Both interpretations satisfy the unity conditions of Sections 6.5, 6.6, and 6.8, but they do so in
very different ways. While Figure 6.13 discerns a difference between the inputs – dividing them into
two classes, p and q – and constructs a theory that explains how p and q properties interact over time,

184

ba a b b a a b b a ba a b

ba a b b a a b b a ba a b
input

output

I =

8>>><>>>:

p(a) p(b)
in(a, s1) in(b, s2)
in2(s1, sw) in2(s2, sw) in2(sw, sw)

9>>>=>>>;



�

✓

p(a)
p(b)

p(a)
p(b)

p(a)
p(b)

p(a)
p(b)

p(a)
p(b)

p(a)
p(b)

p(a)
p(b)

p(a)
p(b)

p(a)
p(b)

p(a)
p(b)

p(a)
p(b)

p(a)
p(b)

p(a)
p(b)

p(a)
p(b)

[0, 0, 0] 7! {p} [0, 0, 1] 7! {p}
[0, 1, 0] 7! {p} [0, 1, 1] 7! {p}
[1, 0, 0] 7! {p} [1, 0, 1] 7! {p}
[1, 1, 0] 7! {p} [1, 1, 1] 7! {p}

R =
n o

C =

8>>><>>>:

8X:sensor, p(X) � q(X)
8X:sensor,9!Y:space, in(X,Y)
8X:space,9!Y:space, in2(X,Y)

9>>>=>>>;

Figure 6.14: An alternative degenerate interpretation of the input of Figure 6.7. Here, all sensory
input is mapped, indiscriminately, to p. Because no discriminations are made, and nothing changes,
the induced theory is particularly simple.

185

Figure 6.14, by contrast, fails to discern any difference between the input vectors. Because Figure 6.14
is coarser and less discriminating, mapping all input vectors to p and none to q, it can make do with
a much simpler theory: if everything is always p and never q, we do not need a complex theory to
explain how objects transition between p and q.69

In Kant’s theory of synthetic unity, as we interpret it and implement it, this phenomenon holds across
the board. In order to discern a fine-grained discrimination between sensory input, we must provide
a theory that underwrites that distinction, a theory that explains how the various properties that we
have discriminated actually interact. Fine-grained perceptual discrimination requires an articulated
theory (a collection of concepts and judgements) that underpins the distinctions made at the sensible
level. Intuitions without concepts are blind.

There is a recurrent myth that humans have fallen from a state of pre-conceptual grace [Jay00]. At
some mythic earlier time, humans were not saddled with the conceptual apparatus we now take for
granted, and – precisely because they were unburdened by concepts and judgements – were able to
perceive the world in all its glory, with a fine-grained vividness we moderns can only dream of. It
is as if there is only a finite amount of consciousness to go round; because we modern concept users
waste some of that consciousness on the conceptual side of our experience, there is less consciousness
remaining to spend on the sensible side. The mythic earlier man, by contrast, is able to spend all his
consciousness on the sensible level. Thus for him, in his state of pre-conceptual grace, the colours are
brighter.

If Kant is right, this myth gets things exactly the wrong way round. Consciousness is not a zero-sum
game between sensibility and understanding, in which one side’s gains must be the other side’s losses.
Rather, perceptual discrimination at the sensible level requires conceptual discrimination from the
understanding. The more intricate the theories we are able to construct, the more vividly we are able to see.

6.13 Experiment 2: the house

In the Second Analogy, Kant describes the following example:

The apprehension of the manifold of appearance is always successive. The representations
of the parts succeed one another. Whether they also succeed in the object is a second point
for reflection, which is not contained in the first... Thus, e.g., the apprehension of the
manifold in the appearance of a house that stands before me is successive. Now the
question is whether the manifold of this house itself is also successive, which certainly no
one will concede. [A189/B234ff]

69The Apperception Engine considers and evaluates many different theories when presented with the sensory input of
Figure 6.14. It prefers the interpretation of Figure 6.13 over the degenerate interpretation of Figure 6.14 precisely because the
former discriminates finer. In Chapter 5, I explain how one interpretation is preferred to another, and justify the ordering
using simple Bayesian considerations.

186

Here, Kant asks us to imagine an agent surveying a large house from close range. Its visual field
cannot take in the whole house in one glance, so its focus moves from one part of the house to
another. Its sequence of visual impressions is successive, but there is a further question whether
a pair of (subjectively) successive visual impressions represents the house at a single moment of
objective time, or at two successive moments of objective time.

In the B edition of the Transcendental Deduction, Kant contrasts the example of the house with another
example: an agent watching water slowly freeze:

Thus if, e.g., I make the empirical intuition of a house into perception through appre-
hension of its manifold, my ground is the necessary unity of space and of outer sensible
intuition in general, and I as it were draw its shape in agreement with this synthetic
unity of the manifold in space... If (in another example) I perceive the freezing of water,
I apprehend two states (of fluidity and solidity) as ones standing in a relation of time to
each other. [B162]

Kant asks us to compare and contrast the two cases of subjective succession. In the first case, the
subjective succession represents an objective simultaneity: the perceived state of the top of the house is
simultaneous with the perceived state of the bottom of the house, even if the subjective impressions are
successive. In the second case, by contrast, the subjective succession represents an objective succession:
the water’s transition from liquid to solid is a fact about the world, not just about my mental states.
Kant characterises the difference between the two cases in terms of modality: in the case of the house,
I could have received the impressions in a different order: I could have seen the bottom of the house
before the top. But in the case of the water freezing, I could not have seen the solid state before the
liquid state.70

We gave the Apperception Engine a simplified version of Kant’s example (see Figure 6.15). In our
experiment, there is a pixel image that is too large for the agent to survey in one glance. The agent’s
sensors are only able to take in a small window of the image at any moment, and the agent must move
the sensory window around to survey the whole image. Just as in Kant’s case, where we cannot take
in the whole of the house in one glance, here the agent cannot take in the whole of the pixel image at
one glance, and must reconstruct it from the succession of fragments.

Note that in this experiment, the actions are exogenous and do not need to be explained by the
Apperception Engine. What does need to be explained is the changing sensor information.

When we give the sequence of Figure 6.15 to the Apperception Engine, it is able to reconstruct the
complete picture from the sequence of incomplete partial perceptions. The best theory it finds is

70See [Lon98, p.358].

187

leftrightright right down left left down right left up right right up left left

pixel array

action

sensor info

Figure 6.15: For each of the sixteen time-steps, we show the 4 × 4 pixel grid and the positions of the
sensors (as a red square), the action performed, and the values of the four sensors.

θ = (φ, I,R,C) where:

I =



off (w1,2) off (w1,3) off (w2,3) off (w3,2)
off (w4,2) off (w4,3) on(w1,1) on(w1,4)
on(w2,1) on(w2,2) on(w2,4) on(w3,1)
on(w3,3) on(w3,4) on(w4,1) on(w4,4)
in(v1,1,w1,4) in(v1,2,w1,3) in(v2,1,w2,4) in(v2,2,w2,3)



R =



off (W) ∧ in(V,W) ∧ zero(N)→ intensity(V,N)
on(W) ∧ in(V,W) ∧ one(N)→ intensity(V,N)
right(M) ∧ r(W,W2) ∧ in(V,W) ⊃− in(V,W2)
left(M) ∧ r(W2,W) ∧ in(V,W) ⊃− in(V,W2)
up(M) ∧ b(W,W2) ∧ in(V,W) ⊃− in(V,W2)
down(M) ∧ b(W2,W) ∧ in(V,W) ⊃− in(V,W2)



C =



∀C:cell, on(X) ⊕ off (X)
∀V:sensor,∃!C:cell, in(V,C)
∀V:sensor,∃!N:number, intensity(C,N)



Here, the initial conditions I specify the on/off values of the sixteen pixels {wi, j | i ∈ {1..4}, j ∈ {1..4}},
and the initial placements of the four sensors {vi, j | i ∈ {1, 2}, j ∈ {1, 2}}. Note that the on/off values of
the pixels do not change over time. The 2D spatial relations between the cells wi, j are represented by
the r and b relations. E.g. r(w1,1,w2,1), b(w1,1,w1,2). The spatial relations using r and b are provided as
background knowledge.

The first two rules state that if a sensor is attached to a cell, and that cell is on (respectively off), then
the intensity of the sensory is 1 (respectively 0). The other rules describe how the sensors move as
the actions are performed. Note that the image reconstructed by the Apperception Engine is a mirror
image of the original image used to generate the sensory data. Figure 6.16(b) shows the sequence as
reconstructed by the Apperception Engine. In this interpretation, the original image has been flipped
vertically, and the actions “up” and “down” have been interpreted as “down” and “up” respectively.

Thus, the Apperception Engine is able to make sense of Kant’s famous “house” example [B162]: the
engine posits a two-dimensional array of pixels and interprets the sensors as moving across the array.
Although the sensory readings are successive, the engine posits an objective simultaneity to explain the
subjective succession of sensor readings.

188

leftrightright right down left left down right left up right right up left left

(a)

right right down left left down right right left left up right right up left left

(b)

Figure 6.16: The top row (a) shows the ground truth used to generate the
sensory data, while the bottom row (b) shows the reconstruction made by the
Apperception Engine. Note that the reconstruction is a mirror image of the
ground truth, flipped vertically, in which “up” is interpreted as down, and
“down” is interpreted as up.

6.14 Rigidity and spontaneity

There is a popular image of Kant as a rigid rule-bound automaton whose daily routine was so
tightly scheduled you could use it to calibrate your clock. According to this popular image, Kant’s
philosophy (both practical and theoretical) is as rigid and rule-bound as his unusually unremarkable
personal life. What is most unfair about this gross mischaracterisation is that it omits the critical fact
that, for Kant, the rules I am bound to are rules that I myself create.

Spontaneity and self-legislation are at the heart of Kant’s philosophy, both practical and theoretical.
In his practical philosophy, I am free to construct any maxims whatsoever – as long as they satisfy the
universalisability conditions of the categorical imperative. In his theoretical philosophy, I am free to
construct any rules whatsoever – as long as they satisfy the unity conditions. When confronted with
a stream of raw sensory input, the Kantian agent constructs a synthesis of apprehension, a set of
subsumptions mapping intuitions to concepts, and a set of judgements connecting concepts together.
The agent is completely free to construct any synthesis of apprehension, any set of subsumptions, and
any set of judgements – so long as the package jointly satisfies the unity conditions (Sections 6.5, 6.6,
and 6.8). These conditions of unity are not unnecessary extraneous requirements that Kant insists on
for some personal Puritan preference – they are the absolutely minimal conditions necessary for it to
be you who is doing the constructing. According to Kant, the conditions that need to be satisfied to
interpret the sensory input as a coherent representation of a single world are exactly the same conditions
that need to be satisfied for there to be a self who is perceiving that world.71

Unlike the popular image, Kant’s vision of the mind is one of remarkable freedom. I am continually
constructing the program that I then execute. The only constraint on this spontaneous construction
is the requirement that there is a single person looking out. In our computer implementation, this
spontaneity is manifest in a particular way: when given a sensory sequence, the Apperception
Engine constructs an unending sequence of increasingly complex interpretations, each of which

71“The a priori conditions of a possible experience in general are at the same time conditions of the possibility of the
objects of experience.” [A111]

189

satisfies Kant’s unity conditions. (See Chapter 3). The engine must decide, somehow, which of these
interpretations to choose.72

6.15 Rigidity and diachrony

Wittgenstein is sometimes interpreted as denying the possibility of any rule-based account of cog-
nition. Throughout the Investigations [Wit09], Wittgenstein draws our attention, again and again, to
cases where our rules give out:

I say “There is a chair” What if I go up to it, meaning to fetch it, and it suddenly disappears
from sight? - - “So it wasn’t a chair, but some kind of illusion”. - - But in a few moments
we see it again and are able to touch it and so on. - - “So the chair was there after all and its
disappearance was some kind of illusion”. - - But suppose that after a time it disappears
again - or seems to disappear. What are we to say now? Have you rules ready for such cases
- rules saying whether one may use the word “chair” to include this kind of thing? But
do we miss them when we use the word “chair”; and are we to say that we do not really
attach any meaning to this word, because we are not equipped with rules for every possible
application of it? (Investigations, §80)

Our rules for the identification of chairs cannot anticipate every eventuality, including their continual
appearance and disappearance - but this does not mean we cannot recognise chairs. Or, to take
another famous example, we have rules for determining the time in different places on Earth. But
now suppose someone says:

“It was just 5 o’clock in the afternoon on the sun” (Investigations, §351)

Again, our rules for determining the time do not cover all applications, and sometimes just give out.
They do not cover cases where we apply time of day on the sun. Since any set of rules is inevitably
limited and partial, we must continually improvise and update.

This point is important and true, but is fully compatible with Kant’s vision of the cognitive agent.
Such an agent is continually constructing a new set of rules that makes best sense of its sensory
perturbations. It is not that it constructs a set of rules, once and for all, and then applies them rigidly
and unthinkingly forever after. Rather the process of rule construction is a continual effort.

Kant describes an ongoing process of constructing and applying rules to make sense of the barrage of
sensory stimuli:

72Our way of deciding between the various interpretations is described in Section 5.3. This is one place where we attempt
to go beyond Kant’s explicit pronouncements, since he does not give us guidance here.

190

There is no unity of self-consciousness or “transcendental unity of apperception” apart
from this effort, or conatus towards judgement, ceaselessly affirmed and ceaselessly threatened
with dissolution in the “welter of appearances” [Lon98, p.394]

Kant’s apperceptual agent is continually constructing rules so as to best make sense of the barrage of
sensory stimuli. If he were to cease constructing these rules, he would cease to be a cognitive agent,
and would be merely a machine.

In What is Enlightenment? [Kan84], Kant is emphatic that the cognitive agent must never be satisfied
with a statically defined set of rules - but must always be modifying existing rules and constructing
new rules. He stresses that adhering to any statically-defined set of rules is a form of self-enslavement:

Precepts and formulas, those mechanical instruments of a rational use, or rather misuse,
of his natural endowments, are the ball and chain of an everlasting minority.

Later, he uses the term “machine” to describe a cognitive agent who is no longer open to modifications
of his rule-set. He defines enlightenment as the continual willingness to be open to new and improved
sets of rules. He imagines what would happen if we decided to fix on a particular set of rules, and
forbid any future modifications or additions to that rule-set. He argues that this would be disastrous
for society and also for the self.

In The Metaphysics of Morals [Kan97], he stresses that the business of constructing moral rules is an
ongoing never-ending task:

Virtue is always in progress and yet always starts from the beginning. - It is always in
progress because, considered objectively, it is an ideal and unattainable, while yet constant
approximation to it is a duty. That it always starts from the beginning has a subjective
basis in human nature, which is affected by inclinations because of which virtue can never
settle down in peace and quiet with its maxims adopted once and for all but, if it is not rising, is
unavoidable sinking. [MM 6:409, my emphasis]

Just as for moral rules, just so for cognitive rules: Kant’s cognitive agent is always constructing new
rules to make sense of the pattern.73

Some of Wittgenstein’s remarks are often interpreted as denying the possibility of any sort of rule-
based account of cognition:

We can easily imagine people amusing themselves in a field by playing with a ball so as
to start various existing games, but playing many without finishing them and in between
throwing the ball aimlessly into the air, chasing one another with the ball and bombarding
one another for a joke and so on. And now someone says: The whole time they are playing
a ball-game and following definite rules at every throw. (Investigations §83).

73In this respect, the Apperception Engine is only a partial implementation of Kant’s vision, as our system does not
support incremental theory revision. See Section 8.6.

191

Now there is a crucial scope ambiguity here. Is Wittgenstein merely denying that there is a set of
rules that captures the ball-play at every moment? Or is he making a stronger claim, claiming that
there is some moment during the ball-play that cannot be captured by any set of rules at all? I believe
the weaker claim is more plausible: we make sense of the world by applying rules, but we need to
continually modify our rules as we progress through time. Wittgenstein’s passage in fact continues:

And is there not also the case where we play and make up the rules as we go along? And
there is even one where we alter them, as we go along.

Here, he does not consider the possibility of there being activity that cannot be explained by rules -
rather, he is keen to stress the diachronic nature of the rule-construction process: one set of rules at
one moment in time, a modified set of rules at a subsequent moment. Thus Wittgenstein’s remarks
on rules should not be seen as precluding any type of rule-based account of cognition, but rather
as emphasising the importance of always being open to revising one’s rules in the light of new
information. As T. S. Eliot once observed74:

For the pattern is new in every moment
And every moment is a new and shocking
Valuation of all we have been

74Four Quartets, East Coker.

192

6.16 The table

In Kant’s Theory of Mental Activity, Robert Wolff makes the following striking confession:

But when I tried to restate Kant’s teaching in my own words, I discovered that I simply
could not do so. Indeed, the very wealth of detail which I had gleaned from the secondary
literature proved an embarrassment, for out of it emerged no single coherent doctrine.
The Analytic, and in particular the Deduction, appeared to me a great tangle of insights
and half-completed proofs. Each time I began to unravel it, I found myself enmeshed in
still further loops and snarls. Where it began and where it ended I could not tell, nor
was I sure that it would unwind into a single connected strand of argument. In puzzling
over this failure, it occurred to me that the problem might lie less in the complexity of
the text than in the obscurity of certain of its key terms. While expending immense
energy comparing proof texts and decomposing compound passages, the commentators
had neglected to explain the meanings of the pivotal concepts on which Kant’s analysis
turned. In particular, I realized that I hadn’t any clear idea of what Kant meant by
“synthesis”. [Wol63, p. vii - viii]

In an effort to provide clarity, we present a table mapping some of Kant’s terms to our implementation:

Cognitions
Intuition A vector e.g. [1, 0, 0].
Concept A predicate e.g. p.

Representations
Determination A ground term connecting two intuitions together e.g.

det(b, [1, 0, 1]), in(a, b), or a < b.
Subsumption A ground term subsuming an intuition under a predicate

e.g. s(p, b).
Judgement A rule or constraint e.g. p(X) ⊃− q(X) or ∀X p(X) ⊕ q(X).

Faculties
Sensation The capacity to receive raw sensory input as a sequence of

inherence determinations.
Imagination A collection of ASP choice rules for (i) connecting determi-

nations via succ or sim, (ii) connecting intuitions via det, and
(iii) relating intuitions via in.

Power of judgement A binary neural network (implemented in ASP).
Capacity to judge Unsupervised rule synthesis (implemented in ASP).

193

Processes
The synthesis of apprehension The construction of a set κ of connected determinations. See

Section 6.9.
The synthesis of recognition The construction of subsumptions υ and theory θ satisfying

the unity conditions. See Section 6.9.

Pure aspects of intuition
Form of intuition Relations between pure intuitions e.g. the r relation of Sec-

tion 6.12.3.
Formal intuition Constructed spatial objects e.g. s1, s2 of Section 6.12.3.

Pure aspects of concepts
Schemata Pure relations connecting intuitions and determinations e.g.

in, <, det, succ, sim, and inc. See Section 6.9.1.
Categories Unary predicates derived from the pure relations of the

schemata. See Section 6.10.

194

Chapter 7

Related work

A human being who has built a mental model of the world can use that model for counterfactual
reasoning, anticipation, and planning [Heg04, GS14, JL12, Har00, GT17, GAS16]. Similarly, computer
agents endowed with mental models are able to achieve impressive performance in a variety of
domains. For instance, Lukasz Kaiser et al. [KBM19] show that a model-based reinforcement learning
agent trained on 100K interactions compares with a state-of-the-art model-free agent trained on tens
or hundreds of millions of interactions. David Silver et al. [SHS+18] have shown that a model-based
Monte Carlo tree search planner with policy distillation can achieve superhuman level performance
in a number of board games. The tree search relies, crucially, on an accurate model of the game
dynamics.

When we have an accurate model of the environment, we can leverage that model to anticipate and
plan. But in many domains, we do not have an accurate model. If we want to apply model-based
methods in these domains, we must learn a model from the stream of observations. In the rest of
this section, we shall describe various different approaches to representing and learning models, and
show where our particular approach fits into the landscape of model learning systems.

Before we start to build a model to explain a sensory sequence, one fundamental question is: what
form should the model take? We shall distinguish three dimensions of variation of models (adapted
from [Ham19]): first, whether they simply model the observed phenomena, or whether they also
model latent structure; second, whether the model is explicit and symbolic or implicit; and third,
what type of prior knowledge is built into the model structure.

We shall use the hidden Markov model (HMM)1 [BP66, Gha01] as a general framework for describing
sequential processes. Diagram 7.1a shows a HMM. Here, the observation at time t is xt, and the latent
state is zt. In a HMM, the observation xt at time t depends only on the latent (unobserved) state zt.
The state zt in turn depends only on the previous latent state zt−1.

1Many systems predict state dynamics for partially observable Markov decision processes (POMDPs), rather than
HMMs. In a POMDP, the state transition function depends on the previous state zt and the action at performed by an agent.

195

xt

zt zt+1

xt+1 xt+2

zt+2 ...

(a) Hidden Markov model (HMM)

zt zt+1transition

(b) Transition function

ztxt perceive

(c) Perceive function

zt xtrender

(d) Render function

Figure 7.1: (a) a graphical model of a hidden Markov model. Here, each zt
is a state, a complete description of the world at a particular point t in time.
The xt is the observation at time t. While xt is observed by the agent, zt is
not directly observed and must be inferred. Arrows indicate dependencies
between variables. The Markov assumption is that the next state zt+1 depends
only on state zt and not on earlier states such as zt−1. (b) represents the
transition function for a HMM. (c) represents the perception function that
takes an observation xt and produces a state zt. (d) represents the inverse
rendering function that takes a latent state zt and produces an observation xt.

The first dimension of variation amongst models is whether they actually use latent state information
zt to explain the observation xt. Some approaches [FWS+18, NKFL18, BPL+16, CUTT16, MZW+18,
SGHS+18] assume we are given the underlying state information z1:t. In these approaches, there is
no distinction between the observed phenomena and the latent state: xi = zi. With this simplifying
assumption, the only thing a model needs to learn is the transition function. Other approaches
[LGF16, FL17, BMSF18] focus only on the observed phenomena x1:t and ignore latent information
z1:t altogether. These approaches predict observation xt+1 given observation xt without positing any
hidden latent structure. But some approaches take latent information seriously [OGL+15, CRWM17,
HS18, BWR+18, JLF+18]. These jointly learn a perception function (that produces a latent zt from
an observed xt), a transition function (producing a next latent state zt+1 from latent state zt) and a
rendering function (producing a predicted observation xt+1 from the latent state zt+1). Our approach
also builds a latent representation of the state. As well as positing latent properties (unobserved
properties that explain observed phenomena), we also posit latent objects (unobserved objects whose
relations to observed objects explain observed phenomena).

But our use of latent information is rather different from its use in [OGL+15, CRWM17, HS18, BWR+18,

See Jessica Hamrick’s paper for an excellent overview [Ham19] of model-based methods in deep learning that is framed in
terms of POMDPs. Here, we consider HMMs. Adding actions to our model is not particularly difficult (see Section 5.5.2).

196

JLF+18]. In their work, the latent information is merely a lower-dimensional representation of
the surface information: since a neural network represents a function mapping the given sensor
information to a latent representation, the latent representation is nothing more than a summary,
a distillation, of the sensory given. But we use latent information rather differently. Our latent
information goes beyond the given sensory information to include invented objects and properties
that are not observed but constructed in order to make sense of what is observed.2 Following John
McCarthy [McC06], we assume that making sense of the surface sensory perturbations requires
hypothesizing an underlying reality, distinct from the surface features of our sensors, that makes the
surface phenomena intelligible.

The second dimension of variation concerns whether the learned model is explicit, symbolic and
human-readable, or implicit and inscrutable. In some approaches [OGL+15, CRWM17, HS18, BWR+18],
the latent states are represented by vectors and the dynamics of the model by weight tensors. In these
cases, it is hard to understand what the system has learned. In other approaches [ZLS+18, XLS+19,
AF18, Asa19], the latent state is represented symbolically, but the state transition function is repre-
sented by the weight tensor of a neural network and is inscrutable. We may have some understanding
of what state the machine thinks it is in, but we do not understand why it thinks there is a transition
from this state to that. In some approaches [Ray09, IRS14, KAP15, MSPA16, KAP16, MAP18], both the
latent state and the state transition function are represented symbolically. Here, the latent state is a
set of ground atoms and the state transition function is represented by a set of universally quantified
rules. Our approach falls into this third category. Here, the model is fully interpretable: we can
interpret the state the machine thinks it is in, and we can understand the reason why it believes it will
transition to the next state.

A third dimension of variation between models is the amount and type of prior knowledge that
they include. Some model learning systems have very little prior knowledge. In some of the neural
systems (e.g. [FL17]), the only prior knowledge is the spatial invariance assumption implicit in the
convolutional network’s structure. Other models incorporate prior knowledge about the way objects
and states should be represented. For example, some models assume objects can be composed in
hierarchical structures [XLS+19]. Other systems additionally incorporate prior knowledge about the
type of rules that are used to define the state transition function. For example, some [MSPA16, KAP16,
MAP18] use prior knowledge of the event calculus [KS86]. Our approach falls into this third category.
We impose a language bias in the form of rules used to define the state transition function and also
impose additional requirements on candidate sets of rules: they must satisfy the four Kant-inspired
unity conditions (Section 3.3).

2This is why we use the distinctive “covers” relation between the trace and the given sequence: the covers relation tests
that each state of the given sequence is a subset of the corresponding state of the trace. This contrasts with other systems
(e.g. LFIT [IRS14]) which test if the given state is identical to the corresponding state of the trace.

197

Our approach

To summarize, in order to position our approach within the landscape of other approaches, we have
distinguished three dimensions of variation. Our approach differs from neural approaches in that
the posited theory is explicit and human readable. Not only is the representation of state explicit
(represented as a set of ground atoms) but the transition dynamics of the system are also explicit
(represented as universally quantified rules in a domain specific language designed for describing
causal structures). Our approach differs from other inductive program synthesis methods in that it
posits significant latent structure in addition to the induced rules to explain the observed phenomena:
in our approach, explaining a sensory sequence does not just mean constructing a set of rules that
explain the transitions; it also involves positing a type signature containing a set of latent relations
and a set of latent objects. Our approach also differs from other inductive program synthesis methods
in the type of prior knowledge that is used: as well as providing a strong language bias by using a
particular representation language (a typed extension of datalog with causal rules and constraints),
we also inject a substantial inductive bias: the Kant-inspired unity conditions, the key constraints
on our system, represent domain-independent prior knowledge. Our approach also differs from other
inductive program synthesis methods in being entirely unsupervised. In contrast, OSLA and OLED
[MSPA16, KAP16] are supervised, and SPLICE [MAP18] is semi-supervised.

In the rest of this section, we describe particular systems that are related to our approach.

7.1 “Theory learning as stochastic search in a language of thought”

Tomer Ullman et al [GUT11, UGT12] describe a system for learning first-order rules from symbolic
data. Recasting their approach into our notation, their system is given as input a set S of ground
atoms3, and it searches for a set of static rules R and a set I of atoms such that R, I |= S.

Of course, the task as just formulated admits of entirely trivial solutions: for example, let I = S and
R = {}. Ullman et al rule out such trivial solutions by adding two restrictions. First, they distinguish
between two disjoint sets of predicates: the surface predicates are the predicates that appear in the
input S, while the core predicates are the latent predicates. Only core predicates are allowed to appear
in the initial conditions I. This distinction rules out the trivial solution above, but there are other
degenerate solutions: for each surface predicate p, add a new core predicate pc. If p(k1, ..., kn) is in
S, add pc(k1, ..., kn) to I. Also, add the rule p(X1, ...,Xn) ← pc(X1, ..,Xn) to R. Clearly, R, I |= S but
this solution is unilluminating, to say the least. To prevent such degenerate solutions, the second
restriction that Ullman et al add is to prefer shorter rule-sets R and smaller sets I of initial atoms. The
idea is that if S contains structural regularities, their system will find an R and I that are much simpler
than the degenerate solution above.

3Compare with our system, which is given a sequence (S1, ...,ST) of sets of ground atoms.

198

Consider, for example, the various surface relations in a family tree: John is the father of William;
William is the husband of Anne; Anne is the mother of Judith; John is the grandfather of Judith. All
the various surface relations (father, mother, husband, grandfather...) can be explained by a small
number of core relations: parent(X,Y), spouse(X,Y), male(X), and female(X). Now the surface facts
S = {father(john,william), ...} can be explained by a small number of facts involving core predicates
I = {parent(john,william),male(john), ...} together with rules such as:

father(X,Y)← parent(X,Y),male(X)

At the computational level, then, the task that Ullman et al set out to solve is: given a set S of
ground atoms featuring surface predicates, find the smallest set I of ground atoms featuring only core
predicates, and the smallest set R of static rules, such that R, I |= S. Recasting this task in the language
of probability, they wish to find:

arg max
R,I

p(R, I | S)

Using Bayes’ rule this can be recast as:

arg max
R,I

p(R, I | S) = arg max
R,I

p(S | R, I)p(R, I)
p(S)

= arg max
R,I

p(S | R, I)p(R, I)

= arg max
R,I

p(S | R, I)p(R)p(I | R)

Here, the likelihood p(S | R, I) is the proportion of S that is entailed by R and I, the prior p(R) is the
size of the rules, and p(I | R) is the size of I.

At the algorithmic level, Ullman et al apply Markov Chain Monte Carlo (MCMC). MCMC is a
stochastic search procedure. When it is currently considering search element x, it generates a candidate
next element x′ by randomly perturbing x. Then it compares the scores of x and x′. If x′ is better, it
switches attention to focus on x′. Otherwise, if x′ is worse than x, there is still a non-zero probability
of switching (to avoid local minima), but the probability is lower when x’ is significantly worse than
the current search element x.

In their algorithm, MCMC is applied at two levels. At the first level, a set R of rules is perturbed into
R′ by adding or removing atoms from clauses, or by switching one predicate for another predicate
with the same arity. At the second level, I is perturbed into I′ by changing the extension of the core
predicates.

Given that the search space of sets of rules is so enormous, and that MCMC is a stochastic search
procedure that only operates locally, the algorithm needs additional guidance to find solutions. In
their case, they provide a template, a set of meta-rules that constrain the types of rules that are

199

generated in the outermost MCMC loop. A meta-rule is a higher-order clause in which the predicates
are themselves variables. For example, in the following meta-rule for transitivity, P is a variable
ranging over two-place predicates:

P(X,Y)← P(X,Z),P(Z,Y)

Meta-rules are a key component in many logic program synthesis systems [MLT15, CM16, Cro17,
LRB14, LRB18a].

Ullman et al tested their system in a number of domains including taxonomy hierarchies, simplified
magnetic theories, kinship relations, and psychological explanations of action. In each domain, their
system is able to learn human-interpretable theories from small amounts of data.

At a high level, Ullman et al’s system has much in common with the Apperception Engine. They
are both systems for generating interpretable explanations from small quantities of symbolic data.
While the Apperception Engine generates a (φ, I,R,C) tuple from a sequence (S1, ...,ST), their system
generates an (I,R) pair from a single set S of atoms.

But there are a number of significant differences. First, our system takes as input a sequence (S1, ...,ST)
while their system considers only a single state S. Because they do not model facts changing over
time, their system only needs to represent static rules and does not need to also represent causal rules.

Second, a unified interpretation θ = (φ, I,R,C) in our system includes a set C of constraints. These
constraints play a critical role in our system: they are both regulative (ruling out certain incompossible
combinations of atoms) and constitutive (the constraints determine the incompossible relation that
in turn grounds the frame axiom). There is no equivalent of our constraints C in their system.

A third key difference is that our system has to produce a theory that, as well as explaining the sensory
sequence, also has to satisfy the unity conditions: object connectedness, conceptual unity, static unity,
and temporal unity. There is no analog of these Kant-inspired unity conditions in Ullman et al’s
system.

Fourth, their system requires hand-engineered templates in order to find a theory that explains the input.
This reliance on hand-engineered templates restricts the domain of application of their technique: in
a domain in which they do not know, in advance, the structure of the rules they want to learn, their
system will not be applicable.

Fifth, our system posits latent objects as well as latent predicates, while their system only posits latent
predicates. The ability to imagine unobserved objects, with unobserved attributes that explain the
observed attributes of observed objects, is a key feature of the Apperception Engine.

At the algorithmic level, the systems are very different. While we use a form of meta-interpretive
learning (see Section 3.7.2), they use MCMC. Our system compiles an apperception problem into the
task of finding an answer set to an ASP program that minimises the program cost. The ASP problem
is given to an ASP solver, that is guaranteed to find the global minimum. MCMC, by contrast, is a

200

stochastic procedure that operates locally (moving from one single point in program space to another),
and is not guaranteed to (in fact, in practice, it rarely does) find a global minimum.

Why use MCMC rather than a global method that is guaranteed to find a global minimum? One
reason for using MCMC is if we want to construct a distribution over candidate theories, in order
to generate predictions from a mixture model. If we have a way of predicting an element x from a
theory θ, then we can predict x from data D by:

p(x | D) =
∑

θ

p(θ | D)p(x | θ)

But this is not what Ullman et al actually do. Rather, they use MCMC to find a single point estimate,
the maximum a posteriori (MAP) theory that best explains the data. Computing a distribution over
theories is expensive in time and space. As they acknowledge [UGT12], humans typically only
consider a tiny handful of rival theories, and often only just one.

One concern with MCMC approaches to program synthesis is that, typically, making one small
change in a program requires many other changes to also be made, in order for that first change to be
coherent. Suppose n changes are needed together to make an improvement to a candidate rule set R.
Since MCMC makes these n changes individually, and each of the first n − 1 changes are on their own
insufficient to gain an improvement over the initial R, the chances of MCMC making all n changes
and finding the improvement to R is kn−1 where k is the mean change of making a suboptimal switch.
Since kn−1 quickly tends to 0 as n increases, the chances of MCMC finding large programs becomes
increasingly small. This is, we believe, the reason why the rule sets found by this approach are small
(typically 2 to 4 clauses with at most 2 atoms in the body) in comparison with the programs found by
the Apperception Engine (which can contain over 20 clauses with up to 5 atoms in the body).

7.2 “Learning from interpretation transitions”

Inoue, Ribeiro, and Sakama [IRS14] describe a system (LFIT) for learning logic programs from
sequences of sets of ground atoms. Since their task definition is broadly similar to ours, we focus
on specific differences. In our formulation of the apperception task, we must construct a (φ, I,R,C)
tuple from a sequence (S1, ...,ST) of sets of ground atoms. In their task formulation, they learn a set
of causal rules from a set {(Ai,Bi)}Ni=1 of pairs of sets of ground atoms.

In some respects, their task formulation is more general than ours. First, their input {(Ai,Bi)}Ni=1 can
represent transitions from multiple trajectories, rather than just a single trajectory, and corresponds
to a generalized apperception task (see Definition 19). Second, they learn normal logic programs,
allowing negation as failure in the body of a rule, while our system only learns definite clauses.

But there are a number of other ways in which our task formulation is significantly more general
than LFIT. First, our system posits latent information to explain the observed sequence, while LFIT

201

does not construct any latent information. Their system searches for a program P that generates
exactly the output state. In our approach, by contrast, we search for a program whose trace covers the
output sequence, but does not need to be identical to it. The trace of a unified interpretation typically
contains much extra information that is not part of the original input sequence, but that is used to
explain the input information.

Second, our system abduces a set of initial conditions as well as a set of rules, while LFIT does not
construct initial conditions. Because of this, our system is able to predict the future, retrodict the past,
and impute missing intermediate values. LFIT, by contrast, can only be used to predict future values.

Third, our system generates a set of constraints as well as rules. The constraints perform double duty:
on the one hand, they restrict the sets of compossible atoms that can appear in traces; on the other
hand, they generate the incompossibility relation that grounds the frame axiom. Because it does not
represent incompossibliity, there is no frame axiom in LFIT.

Inoue et al use a bottom-up synthesis method to learn rules. Given a state transition (A,B) in E, they
construct a normal ground rule for each β ∈ B:

∧

α∈A
α ∧

∧

α∈G−A

not α ⊃− β

Then, they use resolution to generalize the individual ground rules. It is important to note that this
strategy is quite conservative in the generalizations it performs, since it only produces a more general
rule if turns out to be a resolvent of a pair of previous rules. While the Apperception Engine searches
for the shortest (and hence most general) rules, LFIT searches for the most specific generalization.

LFIT was tested on Boolean networks and on Elementary Cellular Automata. It is instructive to
compare our system with LFIT on the ECA tasks. There are two key points of difference. First,
their system does not generate the smallest set of maximally general rules. The program that LFIT
learns for rule 110 contains a redundant rule but LFIT is unable to recognize its redundancy. Second,
and more importantly, LFIT is provided with the one-dimensional spatial relation between the cells
as background knowledge. In our approach, by contrast, we do not hand-code the spatial relation,
but rather let the Apperception Engine generate the spatial relation itself unsupervisedly as part of
the initial conditions. (See Section 4.2.1). It is precisely because our system is able to posit latent
information to explain the surface features that it is able to generate the spatial relation itself, rather
than having to be given it.

7.3 “Unsupervised learning by program synthesis”

Kevin Ellis et al [ESLT15] use program synthesis to solve an unsupervised learning problem. Given
an unlabeled dataset {xi}Ni=1, they find a program f and a set of inputs {Ii}Ni=1 such that f (Ii) is close to xi

for each i = 1..N. More precisely, they use Bayesian inference to find the f and {Ii}Ni=1 that minimizes

202

the combined log lengths of the program, the initial conditions, and the data-reconstruction error:

−logP f (f) +

N∑

i=1

(
−logPx|z(xi | f (Ii)) − logPI(Ii)

)

where P f (f) is a description length prior over programs, PI(Ii) is a description length prior over initial
conditions, and Px|z(· | zi) is a noise model. This system was designed from the outset to be robust
to noise, using Bayesian inference to calculate the desired tradeoff between the program length,
the initial conditions length, and the data-reconstruction error cost. They tested this system in two
domains: reproducing two dimensional pictures, and learning morphological rules for English verbs.

This system is similar to ours in that it produces interpretable programs from a small number of
data samples. Like ours, their program length prior acts as an inductive bias that prefers general
solutions over special-case memorized solutions. Like ours, as well as constructing a program, they
also learn initial conditions that combine with the program to produce the desired results4. At a
high level, their algorithm is also similar: they generate a Sketch program [SLTB+06] from the dataset
{xi}Ni=1 of examples, and use a SMT solver to fill in the holes. They then extract a readable program
from the SMT solution, which they then apply to new instances, exhibiting strong generalization.
Another point of similarity between this system and ours is that both systems struggle with large
datasets. Because of the way problems are encoded and then compiled into SAT problems, the tasks
get prohibitively large as the dataset increases in size.

As well as the high level architectural similarities, there are a number of important differences. First,
their goal was to generate an object f (Ii) that matches as closely as possible to the input object xi.
Our goal is more general: we seek to generate a sequence τ(θ) that covers the input sequence. The
covering relation is much more general, as Si only has to be a subset of (τ(θ))i, not identical to it. This
allows the addition of latent information to the trace of the theory.

A second key difference is that we focus on generating sequences, not individual objects. Our system
is designed for making sense (unsupervisedly) of time series, sequences of states, not of reconstructing
individual objects.

A third key difference is that we use a single domain-independent language, Datalog⊃−, for all domains,
while Ellis et al use a different domain-specific imperative language for each domain they consider.

A fourth key difference is that we use a declarative language, rather than an imperative language.
An individual rule or constraint has a truth-conditional interpretation, and can be interpreted as a
belief of the synthesising agent. An individual line of an imperative procedure, by contrast, cannot
be interpreted as a belief.

One major difference is that we synthesise constraints as well as rules. Constraints are the “special
sauce” of our system: exclusive disjunctions combine predicates into groups, enforce that each state

4In fact, they learn a different set of initial conditions Ii for each data point xi. This corresponds to the generalized
apperception task of Definition 19.

203

is fully determinate, and ground the incompossibility relation that underlies the frame axiom.

7.4 “Beyond imitation: zero-shot task transfer on robots by learning con-
cepts as cognitive programs”

Miguel Lázaro-Gredilla et al [LGLGG18] describe a system for learning procedural programs. Their
system is given a set of input/output pairs (visual representations of the start state and target state),
and learns a procedure that, when executed, transforms the input scene into the output scene.

At a high level, this system is similar to ours in that it learns an interpretable program from a small
number of examples. Like our system, they have a program length prior that prefers small general
programs to large special-case programs, so their learned programs tend to generalize well to new
situations. Their system shares the same underlying assumption as ours: concepts are programs in a
language of thought, learned from sensory input.

However, there are a number of key differences between our approaches.

First, our system operates on time series with a built-in domain-independent understanding of
persistence (see the frame axiom in Definition 9). While they operate in a static world (the “tabletop
world”) where the only agent that initiates change is the self, our system attempts to make sense of a
dynamic world where any object can initiate changes.

Second, they concentrate on supervised program synthesis using input/output pairs, while we focus
on unsupervised program synthesis.

Third, we use a declarative language for describing concepts, while they use an imperative one. For
them, a concept is a procedure to change the world in a certain way (e.g. “stack green objects on the
right”). For us, a concept is a predicate that can appear in a declarative sentence.

Fourth, our system includes constraints as well as update rules. These xor and uniqueness constraints
are the key distinctive aspect of our architecture: they allow concepts to be unified into groups, they
provide determinacy in the states of the trace, and they ground the incompossibility relation that
underlies the frame axiom.

Finally, their system has a very distinctive architecture that combines visual attention, imagination, a
vision hierarchy, and a dynamics model. We respect their unapologetic use of architectural bias, but
note that their architecture is very different from ours.

7.5 “Learning symbolic models of stochastic domains”

Hanna Pasula et al [PZK07] describe a system for learning a state transition model from data. The
model learns a probability distribution p(s′ | s, a) where s is the previous state, a is the action that was
performed and s′ is the next state.

204

Each state is represented as a set of ground atoms, just like in our system. They assume complete
observability: they assume they are given the value of every sensor and the task is just to predict the
next values of the sensors.

They represent a state transition model by a set of “dynamic rules”: these are first-order clauses
determining the future state given a current state and an action. These dynamic rules are very close
to the causal rules in Datalog⊃−. Unlike in our system, their rules have a probability outcome for each
possible head. Note their system does not include static rules or constraints.

In their semantics, they assume that exactly one dynamic rule fires every tick. This is a very strong
assumption. But it makes it easier to learn rules with probabilistic outcomes.

They learn state transitions for the noisy gripper domain (where a robot hand is stacking bricks, and
sometimes fails to pick up what it attempts to pick up) and a logistics problem (involving trucks
transporting objects from one location to another). Impressively, they are able to learn probabilistic
rules in noisy settings. They also verify the usefulness of their learned models by passing them to
a planner (a sparse sampling MDP planner), and show, reassuringly, that the agent achieves more
reward with a more accurate model.

At a strategic level, their system is similar in approach to ours. First, they learn first-order rules, not
merely propositional ones. In fact, they show in ablation studies that learning propositional rules
generalises significantly less well, as you would expect. Second, they use an inductive bias against
constants (p.14), just as we do: “learning action models which are restricted to be free of constants
provides a useful bias that can improve generalisation when training with small data sets”. Third,
their system is able to construct new invented predicates.

But there are also a number of differences. One limitation of their system is that they assume only one
rule can fire in any state. In our system, many rules fire (both static rules and causal rules). In theirs,
there is exactly one rule. Because of this assumption, they cannnot model e.g. a cellular automaton,
where each cell has its own individual update rule firing simultaneously.

Another limiting assumption is that they assume they have complete observability of all sensory
predicates. This means they would not be able to solve e.g. occlusion tasks.

More generally, they assume that a subset of events has been distinguished as exogenous actions
and that only actions can create state changes. In our more general system, events bring about other
events. In the ApperceptionEngine, we are not given complete (s, a, s′) triples for supervised learning,
but sequences of partial information (S1,S2, ...).

7.6 “Nonmonotonic abductive inductive learning”

Oliver Ray [Ray09] described a system, XHAIL, for jointly learning to abduce ground atoms and
induce first-order rules. XHAIL learns normal logic programs that can include negation as failure in
the body of a rule.

205

XHAIL is similar to the Apperception Engine in that as well as inducing general first-order rules, it
also constructs a set of initial ground atoms. This enables it to model latent (unobserved) information,
which is a very powerful and useful feature. At the implementation level, it uses a similar strategy in
that solutions are found by iterative deepening over a series of increasingly complex ASP programs.
The simplified event calculus [KS86] is represented explicitly as background knowledge.

But there are also a number of key differences. First, it does not model constraints. This means it
is not able to represent the incompossibility relation between ground atoms. Also, XHAIL does not
try to satisfy other Kant-inspired unity conditions, such as object connectedness or conceptual unity.
Second, the induced rules are compiled in XHAIL, rather than being interpreted (as in our system).
Representing each candidate induced rule explicitly as a separate ASP rule means that the number of
ASP rules considered grows exponentially with the size of the rule body5. Third, XHAIL needs to be
provided with a set of mode declarations to limit the search space of possible induced rules. These
mode declarations constitute a significant piece of background knowledge. Now of course there is
nothing wrong with allowing an ILP system to take advantage of background knowledge to aid the
search. But when an ILP system relies on this hand-engineered knowledge, then it restricts the range
of applicability to domains in which human engineers can anticipate in advance the form of the rules
they want the system to learn6.

7.7 The Game Description Language and inductive general game playing

Our language Datalog⊃− is an extension of Datalog that incorporates, as well as the standard static
rules of Datalog, both causal rules (Definition 7) and constraints (Definition 8). The semantics of
Datalog⊃− are defined according to Definition 9. Unlike standard Datalog, the atoms and rules of
Datalog⊃− are strongly typed (see Definitions 4, 5, and 7).

At a high level, Datalog⊃− is related to the Game Description Language (GDL) [GL05]. The GDL
is an extension of Datalog that was designed to express deterministic multi-agent discrete Markov
decision processes. The GDL includes (stratified) negation by failure, as well as some (restricted)
use of function symbols, but these extensions were carefully designed to preserve the key Datalog
property that a program has a unique subset-minimal Herbrand model. The GDL includes special
keywords, including init for specifying initial conditions (equivalent to the initial conditions I in
a (φ, I,R,C) theory), and next for specifying state transitions (equivalent to our causal rules). The
inductive general game playing (IGGP) task [GB13, CEL19] involves learning the rules of a game from
observing traces of play.

5It shares the same implementation strategy as ASPAL [CRL12] and ILASP [LRB14]. See Section 3.7.6 for discussion
of the grounding problem associated with this family of approaches. The discussion is specifically focused on ILASP, but
the same issue affects ASPAL and XHAIL mutatis mutandem. This issues does not affect TAL [CRL10a], however, which is
closer to our implementation.

6See Appendix C of [EG18] for a discussion of the use of mode declarations as a language bias in ILP systems.

206

An IGGP task is broadly similar to an apperception task in that both involve inducing initial conditions
and rules from traces. But there are many key differences. One major feature of Datalog⊃− is the use of
constraints to generate incompossible sets of ground atoms. These exclusion constraints are needed
to generate the incompossibility relation which in turn is needed to restrict the scope of the frame
axiom (see Definition 9).

The main difference between Datalog⊃− and the GDL is that the former includes exclusion constraints.
The exclusion constraints play two essential roles. First, they enable the theory as a whole to satisfy
the condition of conceptual unity. Second, they provide constraints, via the condition of static unity,
on the generated trace: since the constraints must always be satisfied, this restricts the rules that can
be constructed. Satisfying these constraints means filling in missing information. This is why a unified
interpretation is able to make sense of incomplete traces where some of the sensory data is missing.

7.8 The predictive processing paradigm

The predictive processing (PP) paradigm [Fri05, Fri12, Cla13, Swa16] is an increasingly popular model
in computational and cognitive neuroscience. Inspired by Helmholtz (who was in turn inspired by
Kant [Swa16]), the model learns to make sense of its sensory stream by attempting to predict future
percepts. When the predicted percepts diverge from the actual percepts, the model updates its
parameters to minimize prediction error.

The PP model is probabilistic, Bayesian, and hierarchical. It is probabilistic in that the predicted
sensory readings are represented as probability density functions. It is Bayesian in that the likelihood
(represented by the information size of the misclassified predictions) is combined with prior expec-
tations [Fri12]. It is hierarchical in that each layer provides predictions of sensory input for the layer
below; there are typically many layers.

In terms of Marr’s three levels of analysis, PP combines a computational level of description (what
the model is doing) with the algorithmic level of description (how the model is doing what it does)
in that PP models typically include a commitment to a neural net implementation of the predictive
architecture.

One key difference between our approach and PP is that the Apperception Engine generates a
unified interpretation that is equally adept at predicting future signals, retrodicting past signals,
and imputing missing intermediary signals. In our approach, the ability to predict future signals
is a derived capacity, a capacity that emerges from the more general capacity to construct a unified
interpretation – but prediction is not singled out in particular. The Apperception Engine is able to
predict, retrodict, and impute – in fact, it is able to do all three simultaneously using a single incomplete
sensory sequence with elements missing at the beginning, at the end, and in the middle.

Another key difference is how the two approaches address Hume’s problem of induction: the problem,
roughly, of justifying causal statements on the basis of scanty and particular instances of associations.

207

While Hume attempted to solve the problem by asserting that humans do, as a matter of contingent
empirical fact, have a tendency to posit causal relations, Kant claimed that agents must posit causal
relations in order to perceive temporal succession. In Kant’s solution, necessity is required at two
levels: first, we must (deontic necessity) posit causal laws in order to perceive succession; second, the
law itself states what must (alethic necessity) happen when its antecedent is satisfied.

PP uses probabilistic Bayesian inference to conclude that certain sensory percepts are highly probable
given other sensory percepts. For Kant, by contrast, causal rules do not apply to most instances with a
certain probability; rather, they apply to all of the instances with the “dignity of necessity”. We claim
that the Apperception Engine, which posits universally quantified necessary causal rules in order to
generate temporal succession, is closer to Kant’s understanding of causation than PP.

A third key difference between our approach and PP is that our approach insists on conceptual unity,
which can only be achieved by positing xor constraints which combine predicates into clusters. There
is no equivalent of conceptual unity via constraints in PP approaches so far.

7.9 Other related work

We briefly outline three other related topics. One related area of research is learning action theories
[Moy02, Ote05, IBN05, CSIR11, RGRS11]. Here, the aim is to learn the transition dynamics in the
presence of exogenous actions performed by an agent. The aim is not to predict what actions the
agent performs, but rather to predict the effects of the action on the state.

Another related area is relational reinforcement learning [DDRD01, DR08, BBDS+08]. Here, the agent
works out how to optimize its reward in an environment by constructing (using ILP) a first-order
model of the dynamics of that environment, which it then uses to plan.

Another related area is learning game rules from player traces [Goo96, Mor96, CW03, Kai12, LRB14,
GSBS15]. Here, the learning system is presented with traces (typically, sequences of sets of ground
atoms), representing the state of the game at various points in time, and has to learn the transition
dynamics (or reward function, or action legality function) of the underlying system.

208

Chapter 8

Discussion

In conclusion, we outline the key strengths and limitations of our system.

8.1 Appealing features of the Apperception Engine

As a system for unsupervised induction of interpretable general laws from raw unprocessed data, the
Apperception Engine has the following appealing features: it is (i) interpretable, (ii) accurate, and
(iii) data-efficient. We shall consider each in turn.

8.1.1 Interpretability

The Apperception Engine produces a theory, an explicit program in Datalog⊃−, to make sense of its
given input. This theory is interpretable at three levels.

First, we can understand the general ontology that the system is using: we know what persistent objects
the system has posited, the types of those persistent objects, and the sorts of predicates that can apply
to those objects. In Sokoban, for example, in Section 5.5.2, we understand there are three objects: o1 of
type t1, and o2 and o3 of type t2. The synthesised constraints act like type judgements to restrict the
set of models. For example, the constraint ∀Y:t2,∃!C:cell, in2(Y,C) states that every block is placed in
exactly one cell.

Second, we can understand how the system interprets particular moments in time. In Sokoban, in Figure
5.9, at time step t1, for example, we understand that the system thinks o1 is below o2, that o3 is in the
top right corner, and that o2 is being pushed up by o1. As well as being able to interpret the fluent
properties and relations that the system thinks hold at a particular time, we can also interpret how
the system connects the raw perceptual input to the persistent objects at each moment. In Figure 5.9,
for example, we can see how subregions of the 20× 20 pixel array correspond to particular persistent
objects.

209

Third, we can understand the general dynamics that the system believes hold universally (for all objects,
and for all times). The engine is designed to satisfy the Kant-inspired constraint that whenever
something changes, there must be a general universal law that explains that change: there is no
change that is not intelligible. When we inspect the synthesised laws, we understand how the system
believes properties change over time.

For example, the fifth rule learned for Sokoban is:

in1(X,C1) ∧ in2(Y,C2) ∧ below(C1,C2) ∧ action(south)→ p3(Y)

Now p3 is an invented predicate; its meaning is not apparent just from this single rule. But if we look
at the other rule in which p3 figures:

p3(Y) ∧ in2(Y,C1) ∧ below(C1,C2) ⊃− in2(Y,C2)

we can see that p3 is being used to represent that a block is being pushed south. Now we can
understand the rule whose head is p3 as: when the south action is performed, and the man X is above
a block Y, then Y is pushed downwards.

It is important to note that the interpretability of individual clauses as general laws is a consequence
of our using a declarative logic-based language as the target of our program synthesis, rather than,
say, a procedural language. A procedural program is composed of procedures, each of which contains
a recipe telling us how to do something. A logic program is a set of clauses, each of which tell us
how the world works. Each clause, in other words, can be interpreted as a judgement. A procedure
tells the computer how to do something, while a declarative clause has a truth condition: it makes a
claim (that may be true or false) about how the world is. Systems that generate logic programs have
a special sui generis kind of interpretability that is not shared by systems that generate procedures.
Even though a procedural program may be just as human-readable as a logic program (or more so, for
people who are much more familiar with imperative programming than declarative programming),
it is not decomposable into constituents that can be interpreted as judgements, stating how things
are.

We have attempted to show, in Sections 5.5.1, 5.5.2, and 5.5.3, how the Apperception Engine under-
stands the sensory input it is given. It must be acknowledged, however, that the theories produced
by the Apperception Engine are only readable by a small subset of humans—those comfortable read-
ing logic programs. Whenever we say that a system is “interpretable”, we mean interpretable for a
particular audience in a particular context. So, although we have provided evidence that the system
is interpretable for some people, there is much work to do to provide interpretations accessible to a
wider audience.

210

8.1.2 Accuracy

The Apperception Engine attempts to discern the causal structure that underlies the raw sensory
input. In our experiments, we found the induced theory to be very accurate as a predictive model,
no matter how many time steps into the future we predict. For example, in Seek Whence (Section
5.5.1), the theory induced in Figure 5.3a allows us to predict all future time steps of the series, and
the accuracy of the predictions does not decay with time.

In Sokoban (Section 5.5.2), the learned dynamics are not just 100% correct on all test trajectories, but
they are provably 100% correct. These laws apply to all Sokoban worlds, no matter how large, and no
matter how many objects. Our system is, to the best of our knowledge, the first that is able to go from
raw video of non-trivial games to an explicit first-order causal model that is provably correct.

In the noisy sequences experiments (Section 5.5.3), the induced theory is an accurate predictive model.
In Figure 5.17, for example, the induced theory allows us to predict all future time steps of the series,
and does not degenerate as we go further into the future.

8.1.3 Data efficiency

Neural nets are able to solve some sequence induction IQ tasks from raw input when trained on a suf-
ficiently large number of training examples [BHS+18]. Neural nets are also able to learn the dynamics
of Sokoban from raw input, when trained on a sufficiently large number of episodes [RWR+17].

But these models are notoriously data-hungry. In comparison with humans, who are often capable
of learning concepts from a handful of data [LST15], artificial neural networks need thousands or
millions of examples to reach human performance.

The Apperception Engine, by contrast, is much more data-efficient. While a neural network needs
millions of trajectories to achieve reasonable accuracy on Sokoban [BWR+18], our system is able to
learn a perfectly accurate model from a single trajectory. While a neural network needs hundreds
of thousands of examples [BHS+18] to achieve human-level performance on Raven’s Progressive
Matrices [CJS90], our system is able to discern a pattern from a single sequence. The reason for our
system’s unusual data efficiency is the strong (but domain-independent) inductive bias that we inject
via the Datalog⊃− language (Definition 2) and the unity constraints (Definition 11).

A system that can learn an accurate dynamics model from a handful of examples could be useful for
model-based reinforcement learning. Standard model-free algorithms require millions of episodes
before they can reach human performance on a range of tasks [BWR+18]. Algorithms that learn an
implicit model are able to solve the same tasks in thousands of episodes [KBM19]. But a system that
learns an accurate dynamics model from a handful of examples should be able to apply that model
to plan, anticipating problems in imagination rather than experiencing them in reality [HS18], thus
opening the door to extremely sample efficient model-based reinforcement learning. We anticipate a

211

system that can learn the dynamics of an Atari game from a handful of trajectories1, and then apply
that model to plan, thus playing at reasonable human level on its very first attempt.

8.1.4 Summary

We can see, then, that a number of problems that have dogged neural networks since their very con-
ception are solved or finessed when we move to a hybrid neuro-symbolic architecture that combines
low-level perception with high-level apperception.

The Apperception Engine inherits the traditional advantages of Inductive Logic Programming meth-
ods, in being data-efficient, generalising well, and supporting continual learning. But our system has
two key features which distinguish it from standard ILP. First, it does not require human-labelled
training data, but works with unsupervised sequences of sensory input. Second, it does not expect its
input in pre-processed symbolic form; rather, it is able to work with raw unprocessed sensory input
(e.g. noisy pixels).

8.2 What makes it work

What is it about the architecture that enables the Apperception Engine to satisfy the desiderata
listed above? We identify three features which are critical to its success: (i) the declarative logic
programming language that is used as the target language for program synthesis, (ii) the strong
inductive bias injected into the system, and (iii) the hybrid architecture that combines binary neural
networks with symbolic program synthesis.

8.2.1 The declarative logic programming language

When designing a program synthesis system, a critical decision is: what form should the target
language take? Our target language, Datalog⊃−, has three features which we regard as critical to the
system’s success.

First, the language is very concise. A single Datalog clause is a powerful computational construct:
each quantified variable in the clause represents a single for-loop in a procedural language. In an
evaluation of program-verification tasks, a Datalog program was found to be up to two orders of
magnitude shorter than its Java counterpart [WACL05]. Concision is very important in program
synthesis: the search space of programs considered is bn where b is the mean branching factor and
n is the program length. Thus, a concise language (in which n is shorter) is much more tractable for
search [Cro19]. The conciseness of Datalog⊃− is a key feature allowing us to synthesise theories for

1Atari games have become a standard benchmark for reinforcement learning agents. The Arcade Learning Environment
[BNVB13] is a framework for evaluating reinforcement learning agents. State of the art reinforcement learning agents
achieve human level performance, but require millions of episodes of training [MKS+13].

212

non-trivial domains (see the experiments in Sections 5.5.1, 5.5.2, and 5.5.3). If we had used a less
concise target language, we would not have been able to solve these problems.

The second critical feature of Datalog⊃− is that the language is declarative. The constituents of Datalog⊃−

programs are individual clauses. Each clause can be interpreted separately as a judgement that makes
a distinctive claim about the world. Of course, the meaning of one clause depends on the set of
clauses in which it is embedded, but (given its embedding context) a single clause still has a unique
meaning as a particular claim about the world.

Contrast this declarative decomposability of Datalog with the procedural case: in an imperative program,
the constituents are procedures, not clauses, and a procedure cannot be interpreted as a judgement
with a truth-condition—a procedure is just a recipe for getting something done. The declarative
decomposability of Datalog⊃− was critical to the interpretations of Sections 5.5.1, 5.5.2, and 5.5.3.

Michalski [Mic83] was well aware of the importance of declarative decomposability:

The results of computer induction should be symbolic descriptions of given entities,
semantically and structurally similar to those a human expert might produce observing
the same entities. Components of these descriptions should be comprehensible as single ‘chunks’
of information, directly interpretable in natural language, and should relate quantitative
and qualitative concepts in an integrated fashion

The third critical feature of Datalog⊃− is its built-in treatment of change and persistence. Instead of
creating rules specifying all the facts that are true at a time-step, the rules only need to specify the
facts that change from the previous time-step. This allows the theory to be much shorter and simpler,
thus giving the program synthesis system a much better chance of finding it in a reasonable time.

8.2.2 Our inductive bias

In each of our experiments, the Apperception Engine is shown to be significantly more data-efficient
than the neural network baselines. This data efficiency is only possible because of the significant
inductive bias that has been injected into the system. This inductive bias involves three main aspects.

First, there is inductive bias in the form of clauses that are allowed in the Datalog⊃− language. The
only rules that the system is allowed to produce are general rules that quantify over all objects and
all times. The system is simply incapable of formulating a rule that applies only to a particular
individual, or only to a particular time. In other words, the system is doomed to generalise. This
inductive bias comes from Kant. He argued that all judgements are universal (apply to all objects).2

In Kant’s cognitive architecture, there is no such thing as a specific judgement. Our system respects
this Kantian restriction.3 Although our system can only construct universally quantified rules, it is

2This follows directly from two central claims, that judgements are rules [Prolegomena 4:305], and that rules, in turn, are
“the representation of a universal condition” [A113].

3LFIT has a similar inductive bias [IRS14].

213

capable of constructing complex theories that treat different cases differently. But the simplicity prior
of Definition 17 means we prefer theories with a shorter description length, all other things being
equal.

The second form of inductive bias is the introduction of persistent objects.4 The system is forced
to reinterpret the ephemeral play of transitory sense data as a re-presentation of a set of persistent
objects, with properties that change over time. Again, this inductive bias is inspired by Kant.5

The third form of inductive bias is the unity conditions on an acceptable theory (Definition 11). These
include spatial unity, conceptual unity, static unity, and temporal unity. These constraints, again, are
inspired by Kant’s discussion in the Critique of Pure Reason.6

The standard objection to inductive bias, of course, is that although it helps the system learn efficiently
in certain domains, the same bias also prevents the system learning effectively in others. According
to this objection, inductive bias must be domain-specific bias that can only help performance in some
domains while hindering performance in others.7

We do not accept this argument. The inductive bias we inject is intended to be maximally general
bias that applies to all domains that we can understand. The general assumptions we make—that
the world is composed of persistent objects, that changes to objects must be covered by general
explanatory rules, and so on—are not domain-specific insights but rather general insights about any
situation that we are capable of making sense of.

8.2.3 Our hybrid neuro-symbolic architecture

Our hybrid neuro-symbolic architecture allows both neural networks and symbolic program synthesis
methods to play to their respective strengths. It has often been noted that artificial neural networks
and inductive logic programming have complementary strengths and weaknesses [EG18]: neural
networks are robust to noisy and ambiguous data, but are data inefficient and inscrutable. Inductive
logic programming approaches to machine learning, by contrast, are data-efficient and provide
interpretable models, but do not easily handle noisy data8, let alone ambiguous data. Our hybrid
architecture attempts to combine the best of both worlds, using a neural network to map noisy
ambiguous raw input to discrete concepts, and using program synthesis to generate interpretable
models from handfuls of data.

The overall architecture, because it represents both the binary neural network and the unsupervised
program synthesis system as a single ASP program, allows information to flow both ways: both

4The introduction of persistent objects is inevitable in domains like Sokoban. But it is notable that, even in domains
like Seek Whence that do not feature persistent objects at the surface, it is the ability to posit latent persistent objects, with
properties that change over time, that is needed to make sense of the sequences.

5See [A182/B224] ff.
6See Sections 3.3, 6.5, 6.6, and 6.8.
7For thoughtful discussions of the “no free lunch theorem” see [LH13] and [ELH14].
8There have been some notable recent attempts to address this [MDS+18].

214

bottom-up and top-down. Information flows bottom-up because the ground atoms generated by the
neural network are used by the program synthesis system. Information flows top-down because the
high level unity conditions are the only constraints on the whole system. The system is free to choose
any neural network weights whatsoever, as long as the whole system (of which the neural net is but
a small part) satisfies the unity conditions. In other words, contingent information flows bottom-up
while necessary constraints flow top-down. As Kant says: “through it [the constraint of unity] the
understanding determines the sensibility [B160-1n]”.

8.3 Concepts

What does it mean to understand a concept? When we claim that a particular agent understands a
particular concept, what exactly are we attributing to it?

In Robert Brandom’s monumental Making It Explicit [Bra94], he provides an inferentialist9 interpre-
tation of concept understanding, in which an agent understands a concept when both the following
conditions are satisfied:

1. it knows when to apply the concept; in other words, it knows the circumstances of application

2. it knows the inferential commitments of applying the concept; in other words, it knows the
consequences of application

For example, an agent understands the concept “red” if:

1. it is able, when confronted with objects that are red, to apply the concept “red” to them

2. it understands the inferential consequences of saying that something is red: it knows that no
(monochromatic) red object is also blue, that red objects are coloured, that crimson objects are
red, and so on.

Both of these capacities are required. Neither on its own is sufficient for concept understanding.

Consider, for example, a parrot that has been trained to utter “red” when it sees something that looks
red. The parrot knows when to apply the concept, thus satisfying the first of the two conditions for
concept understanding. But it does not know the consequences of applying the concept: it does not
know that “red” and “blue” are incompatible, that red things are coloured, and so on.

Or consider, for example, Frank Jackson’s famous thought experiment:

9Inferentialism comes to us from Wilfrid Sellars who in turn was attempting to rearticulate Kant’s vision of concept
understanding.

215

Mary is a brilliant scientist who is, for whatever reason, forced to investigate the world
from a black and white room via a black and white television monitor. She specializes in
the neurophysiology of vision and acquires, let us suppose, all the physical information
there is to obtain about what goes on when we see ripe tomatoes, or the sky, and use terms
like ”red”, ”blue”, and so on.

Now Mary knows the inferential consequences of “red”. In fact, as a leading neurophysiologist, she
understands the inferential consequences of colour concepts better than anyone. But, as she has spent
all her life in a black and white room, she does not yet know when to apply the concept “red”. If
she opens the door and is confronted with a red colour patch, she will not immediately know what
colour it is.

We can use this two-aspect inferentialist interpretation of concept understanding to diagnose the
limitations of both connectionism and symbolic AI. The trouble with connectionism, according to
the inferentialist, is that it focuses only on the circumstances of application, while ignoring the
equally important consequences of application. A neural network can be trained to emit “dog” when
presented with an image of a dog, but it does not know that all dogs are mammals, that no dog is
also a cat, or that corgis are a type of dog. The trouble with traditional symbolic AI, according to
the inferentialist, is that it focuses only on the consequences of application—the inferential relations
between concepts—while ignoring the equally crucial circumstances of application. This criticism
applies to good old-fashioned AI (GOFAI) as well as more modern forms of symbolic AI such
as inductive logic programming. In traditional GOFAI, a human hand-engineers the logical rules
describing the inferential connections between concepts, while in inductive logic programming, the
system constructs the rules itself. But in both cases, the symbolic system does not have a way
of mapping raw perceptual input onto concepts. If we want to build a concept understanding
system, then, we will need the system to understand both the circumstances of application and the
consequences of application. The Apperception Engine, when connected to a neural network in the
manner described above, is an attempt to realise both aspects of the inferentialist’s interpretation of
concept understanding: the binary neural network knows when to apply a concept (by mapping raw
perceptual input to predicates), while the Apperception Engine generates the inferential connections
(the constraints and inference rules) that determine the consequences of application.10

8.4 Limitations

I shall describe two groups of limitations: expressive limitations of the sort of theory that the Apper-
ception Engine can synthesise, and scaling limitations of the size and complexity of theories that can
be found.

10One key difference between our approach and Brandom’s is that he believes the inferential connections between
concepts are realised by implicit proprieties of practice, rather than by explicit rules. He calls the reliance on explicit rules
regulism, and appeals to Sellars and Wittgenstein in criticising it.

216

8.4.1 Expressive limitations

At the moment, all rules are strict and exceptionless. There is no room in the current representation
for defeasible causal rules (where normally, all other things being equal, a causes b). Usually, defeasible
rules are expressed using negation as failure.The reason why defeasible rules cannot be expressed is
that there is currently no support in Datalog⊃− for negation as failure.

There is also no room in the current representation for non-deterministic causal rules (where a causes
either b or c). The reason why non-deterministic rules cannot be expressed is that there is currently
no support in Datalog⊃− for disjunctions in the heads of strict or causal rules [LMR92].

A fundamental limitation of Datalog⊃− is that it requires that the underlying dynamics can be expressed
as rules that operate on discrete concepts. While the system is capable of handling raw, noisy,
continuous sensory input, it assumes that the underlying dynamics of the system can be represented
by rules that operate on discrete concepts. There are many domains where the underlying dynamics
are discrete while the surface output is noisy and continuous: Raven’s progressive matrices, puzzle
games, and Atari video games, for example. But our system will struggle in domains where the
underlying dynamics are best modelled using continuous values, such as models of fluid dynamics.
Here, the best our system could do is find a discrete model that crudely approximates the true
continuous dynamics. Extending Datalog⊃− to represent continuous change would be a substantial
and ambitious project.11 A related limitation is that time is represented in our system only as a
sequence of discrete time steps. There is no room in our formalism for continuous time.12

8.4.2 Scaling limitations

In our approach, making sense of sensory input means finding a theory that explains that input.
Finding a theory means searching through the space of logic programs. This is a huge and daunting
task.

The enormous size of the search space (see Section 3.7.4) means that our system is currently restricted to
small problems. Because of the complexity of the search space, we must be careful to choose domains
that do not require too many objects, predicates, or variables. For example, the Apperception Engine
takes 5 GB of RAM and 48 hours on a standard 4-core Unix desktop to make sense of a single Sokoban
trajectory consisting of 17 pixel arrays of size 20×20. This is, undeniably, a computationally expensive
process. Although the Apperception Engine is able to synthesize significantly larger programs than
other program induction systems13, we would like to be able to solve much larger problems than we
currently can. For example, we would like to scale our approach up so that we can learn the dynamics

11For work in this more ambitious direction, see [VLH08, AVL11, AvL+17].
12For a much richer analysis of time that is closer to Kant’s texts, see [Pin17, PVL18].
13See Section 3.7.6 for a comparison with ILASP. Our system significantly outperforms ILASP on apperception tasks, as

shown in Table 3.4 and Figure 3.4. Recently, a successor of ILASP called FastLAS has been proposed [LRB+20]. We plan, in
future work, to evaluate FastLAS on the various apperception tasks.

217

of Atari games from raw pixels. But this will prove to be challenging, as games such as Pacman are
substantially harder than our Sokoban test-case in every dimension: it requires us to increase the
number of pixels, the number of time-steps, the number of trajectories, the number of objects, and
the complexity of the dynamics.

To tame the search space, we provide type signatures for many of the examples described above.
Although the Apperception Engine is capable in principle of working without any provided type
signature, by enumerating signatures of increasing complexity (see Section 3.7.1), in practice for
many of the harder examples, we provide a type signature that has been designed to be sufficiently
expressive for the task at hand.

The dominant reason for our system’s scaling difficulties is that it uses a maximising SAT solver to
search through the space of logic programs. Finding an optimal solution to an ASP program with
weak constraints is in ΣP

2 ; but this complexity is a function of the number of ground atoms, and the
number of ground atoms of our ASP program is exponential in the length of the Datalog⊃− programs
we are synthesising (see Section 3.7.4).

8.5 Basic assumptions

The Apperception Engine in its current form, and its limitations as described above, are a result of
some fundamental decisions that were made early on in the project, answers to some basic questions
about how to interpret and implement Kant:

1. When Kant says that every succession of determinations must be underwritten by a causal rule,
does he mean that (i) there must be a causal rule that the agent believes? Or, much weaker, (ii)
the agent must merely believe there is a causal rule?

2. When Kant says that judgements are rules, does he mean (i) explicit rules formed from discrete
symbols? Or could he mean that some judgements are just (ii) implicit rules?

3. How expressive are Kant’s judgements in the Table of Judgements? Does he just allow (i) simple
definite clauses? Or does he also allow (ii) geometric rules (with disjunctions or existentials in
the head)?

4. Given that the understanding involves two separable capacities – the capacity to subsume
intuitions under concepts and the capacity to combine concepts into rules – how should these
two capacities be implemented? Should there be (i) one system that performs both, or (ii) two
separate systems, with one passing its output to the other?

5. Assuming in (4) a single system that jointly combines intuitions and forms judgements, should
that single system be (i) symbolic (e.g. SAT-based) or (ii) sub-symbolic (e.g. neural)?

218

The design of the Apperception Engine was based on choosing option (i) at each of the five decision
points. I shall attempt to justify each decision in turn.

8.5.1 Succession and causal rules

In the Second Analogy, Kant writes:

If, therefore, we experience that something happens, then we always presuppose that
something else precedes it, which it follows in accordance with a rule. [A195/B240]

Now this claim has a crucial scope ambiguity: does it mean that (i) whenever there is a succession there
is a rule which the agent believes that underwrites the succession? Or does it mean that (ii) whenever
there is a succession the agent believes that there is some rule that underwrites the successsion, even
if the agent does not know what the particular rule is?

Some commentators have assumed the second, weaker interpretation. For example, Longuenesse
believes that I do not have to have already formed a causal judgement to perceive a succession –
I just need to acknowledge that I should form a causal judgement. For Longuenesse, perceiving a
succession means being committed to look for a causal rule – it does not mean that I need to have already
found one:

The statement that ”everything that happens presupposes something else upon which
it follows according to a rule” does not mean that we cognize this rule, but that we are
so constituted as to search for it, for its presupposition alone allows us to recognize a
permanent to which we attribute changing properties. [Lon98, p.366]

Others, including Michael Friedman [Fri92] take the first, stronger interpretation.

I do not have the space or time to enter into the exegetical fray, but would like to make one observation.
If we take the first, stronger interpretation, then any implementation of Kant’s theory will be a system
that can be used to predict future states, retrodict past states, and impute missing data (see e.g.,
Example 6). This ability to fill in the blanks in the sensory stream is only available because the agent
actually constructs rules to explain the succession of appearances. If we had implemented the second,
weaker interpretation, then the agent would merely believe that there was some rule – it would not
have been forced to find the rule, it would have been content to know that the rule existed somewhere.
Such an agent would not be able to anticipate the future or reconstruct the past.

8.5.2 Explicit or implicit rules

When Kant says that judgements are rules, does he mean that judgements are (i) explicit rules formed
from discrete symbols? Or could he mean that some judgements are just (ii) implicit rules (e.g., a
procedure that is implicit in the weights of a neural network)?

219

The first interpretation, assuming judgements are explicit rules using discrete symbols in the language
of thought14, is a form of what Brandom calls regulism [Bra94, p.18]. The second interpretation allows
for rules that are universal (they apply to all objects of a certain type), necessary (they apply in all
situations), but implicit: the rule may not be expressible in a concise sentence in a natural or formal
language. For a concrete example of the second interpretation, consider the Neural Logic Machine
[DML+19]. This is a neural network that simulates forward chaining of definite clauses but without
representing the clauses explicitly. The “rules” of the Neural Logic Machine are implicit in the weights
(a large tensor of floating point values) of the neural network and cannot be transformed into concise
human-readable rules. Nevertheless, the rules are universal and necessary, applying to all objects in
all situations.

Most commentators believe that Kant’s rules are explicit rules composed of discrete symbols.15 I
do not want to contribute to the exegetical debate, but rather want to provide a practical reason for
preferring the first interpretation in terms of explicit rules. Part of the attraction of the Apperception
Engine as described above is that the theories found by the engine can be read, understood, and
verified. In Section 5.5, for example, the theory learned from the Sokoban trace is not just correct, but
provably correct. If we need to understand what the machine is thinking, or need to verify that what
it is thinking is correct, then we must prefer explicit rules.

Another, perhaps more fundamental, reason for preferring explicit rules is that they enable us to test
whether Kant’s unity conditions (see Section 6.9) have been satisfied. In order to test whether every
succession is underwritten by a causal judgement (Section 6.6.2), for example, we need to be able to
inspect the rules produced. It is unclear how a system that operates with merely implicit rules can
detect whether or not Kant’s unity conditions have actually been satisfied.

8.5.3 The expressive power of Kant’s logic

Commentators disagree about the expressive power of Kant’s judgements. Some think Kant’s logic
is restricted to Aristotelian syllogisms over judgements containing only unary predicates. If this
were so, Kant’s logic would indeed be “terrifyingly narrowminded and mathematically trivial”16.
Similarly, many commentators (for example, MacFarlane [42], p.26; also [55]) assume or claim that
Kant’s logic is highly restrictive in that it does not support nested quantifiers. Others17 argue that
Kant must have a more expressive logic in mind, a logic that includes at least nested quantifiers of
the form ∀∃.

14In this thesis, I follow Jerry Fodor in assuming that our beliefs are expressed in a language of thought [Fod75] which is
symbolic and compositional. Moreover, I assume that the language of thought is something like Datalog⊃−, but somewhat
more expressive [Pia11].

15But there is a note, inserted in Kant’s copy of the first edition of the first Critique [A74/B99], which suggests that
judgements need not be explicit: “Judgments and propositions are different. That the latter are verbis expressa [explicit
words], since they are assertoric”.

16[Haz99], quoted in [AVL11].
17See in particular [AVL11, AvL+17], and also [ESS19].

220

Figure 8.1: Top-down influence from the symbolic to the sub-symbolic. Here
the ambiguous image (in red) is disambiguated at the sub-symbolic level
using knowledge (of typical English spellings) at the symbolic level.

There is, of course, a tradeoff between the expressiveness of the logic and the tractability of learning
theories in that logic: the more complex the judgement forms allowed, the harder it is to learn.
Geometric logic, for example, is highly expressive18 but it is also undecidable [Bez05]. Datalog, by
contrast, is decidable, and has polynomial time data complexity [DEGV01].

Because of this tradeoff, in this work we opted for a simpler logic (i.e. Datalog⊃− rather than geometric
logic) in order to make it tractable to synthesise theories in that logic. One of the central pillars of
our interpretation is that Kant’s fundamental notion of spontaneity is best understood as unsupervised
program synthesis. To test out this claim, it was necessary to build a system that is capable of generating
theories to explain a diverse range of examples. Thus, in this thesis, we used an extension of Datalog
to define a simple range of judgements. We do not claim that logic adequately represents the range of
judgements expressible in Kant’s Table of Judgements: after all Datalog⊃− contains no negation symbol,
no existential quantifier, and no modal operators. In future work we plan to extend this language
with stratified negation as failure, disjunction in the head, and existential quantifiers, to increase its
expressive power.

8.5.4 One system or two?

The understanding involves two distinguishable capacities: the capacity to subsume intuitions under
concepts (the power of judgement), and the capacity to combine concepts into rules (the capacity to
judge). These two capacities take different sorts of input: the power of judgement takes raw intuitions
and maps them to discrete concepts, while the capacity to judge operates on discrete concepts. This
difference could suggest that we need a hybrid approach involving two distinct systems for the two
capacities: one system (perhaps a neural network) for mapping intuitions to concepts and another
(perhaps a symbolic program synthesis system) for combining concepts into rules. According to this
suggestion, the output of the first system is fed as input to the second system.

A concern with this hybrid approach is that it is very unclear how to support top-down information
flow from the conceptual to the pre-conceptual. There is much evidence that expectations from

18More generally, [DN15] shows that, for each set Σ of first-order sentences, there is a set of sentences of geometric logic
that is a conservative extension of Σ.

221

the conceptual symbolic realm can inform decisions at the pre-conceptual sub-symbolic realm. See,
for example, Figure 8.1.19 Here, part of the image is highly ambiguous: the ‘H’ of “THE” and the
‘A’ of “CAT” use the same ambiguous image, but we are able to effortlessly disambiguate (at the
sub-symbolic level) by using our knowledge of typical English spelling at the symbolic level.

Thus, it is essential that the high-level constraints – the conditions of unity (see Section 3.3) – are
allowed to inform the low-level sub-symbolic processing. This consideration precludes a two-tier
architecture where a neural network transforms intuitions into concepts, and a symbolic system
searches for unified interpretations. In such an architecture, it is not possible for the low-level neural
network to receive the information it needs from the high-level system. The only information that
the neural network will receive in a two-tier approach is a single bit: whether or not the high-level
symbolic system was able to find a unified interpretation. It will not know why it was unable, or which
constraints it was unable to satisfy. This is insufficient information.

Because of this concern, we opted for a different architecture, in which a single system jointly performed
both tasks: both mapping intuitions to concepts and combining concepts into rules.20

8.5.5 SAT or gradient descent?

Assuming we have opted for a single system rather than a hybrid, the next question is whether that
system should search using gradient descent21 or using a symbolic method. The single system has to
jointly perform two tasks: mapping intuitions to concepts and combining concepts into rules. Of the
two tasks, I believe that finding a set of rules is much more challenging. While deep neural networks
are remarkably successful at mapping raw input to classes, neural networks have struggled to solve
program synthesis tasks [GBS+16, BRNR17, RR16, EG18]. In fact, Alex Gaunt and others [GBS+16]
have argued that under certain reasonable assumptions, gradient descent methods are incapable of
solving hard program synthesis tasks, as the number of suboptimal local minima grows exponentially
with the size of the program. In that paper, they compared various program synthesis methods and
found that SAT-based methods significantly outperformed all competitors. Thus, I believe that – as of
now – the most effective way to synthesise large sets of rules is to use SAT. It is, I believe, significantly
easier to use SAT to find suitable weights for a binary neural network than it is to use gradient descent
to find a large set of rules.

19This example is adapted from [CFH92].
20Of course, our single system itself contains both a neural network mapping intuitions to concepts and a program

sythesis component that constructs sets of rules. But this counts as a single architecture rather than a hybrid architecture
because our binary neural network is implemented in ASP and the weights are found using SAT, rather than gradient
descent.

21Gradient descent is a standard optimization method for neural networks that works by repeatedly changing the
network’s weights by a small amount in the direction of the negative derivative of the loss function. This approach will
find a local minimum but is not guaranteed to find a global minimum.

222

8.5.6 Alternative options

The particular design decisions taken in the Apperception Engine represent one way of answering
the five questions above. But there are many other possible architectures. One option, for example,
would be to represent the rules implicitly [DML+19], and to use a single neural network to jointly learn
to map intuitions to concepts and to learn the weights of the implicit rules. Another option would be
to use a hybrid architecture in which a neural network, trained on gradient descent, maps intuitions
to concepts, while another symbolic system combines concepts into rules. These alternative options
have issues of their own, as I hope the discussion above makes clear, but the point remains that the
Apperception Engine is certainly not the only way to implement Kant’s cognitive architecture.

8.6 Further work

I discuss various ways in which this work could be developed.

8.6.1 Implementing a probabilistic model of raw input

The approach to apperceiving raw input described in Chapter 5 suffers from three main limitations.
First, it does not handle information probabilistically. The multiclass binary neural network generates
a disjunction of ground atoms, representing the various properties that the object may have – but
there is no way to represent that one property is more probable than another. Second, the treatment
of noise in Section 3.7.6 and the treatment of raw input in Chapter 5 are separate. It would be better
to have a single system that handles noisy (mislabelled) and raw (ambiguous) input jointly. Third,
the apperception framework of Section 5.2 makes the restrictive assumption that the raw input can
be divided into subregions in which there is at most one object in each subregion. It would be better
to design a more general framework that avoids this restrictive assumption.

In future work, I plan to implement a new system that overcomes these three limitations. This new
system will work as follows.

Recall that Gφ is the set of all ground atoms formed from type signature φ. Recall that a raw input
sequence of length T is a sequence (r1, ..., rT) in RT, where R is the set of all possible raw inputs for a
single time step, e.g. the set of all 20 × 20 binary pixel arrays.

In the new approach, the neural network πw : R→ [0, 1]|Gφ|, parameterised by weights w, maps a raw
input ri to a probability distribution over ground atoms, so that πw(ri)[j] represents the probability of
the j’th atom in Gφ according to πw(ri).

The neural network πw is designed to respect the xor constraints. For each ground constraint

223

α1 ⊕ ... ⊕ αn, we insist that:

n∑

j=1

πw(ri)[α j] = 1 (8.1)

We guarantee that this requirement is satisfied by placing, in the final layer of the network, a softmax
function between the atoms of each ground constraint. (Recall that each ground atom features in
exactly one ground constraint).

Now we want to find the best θ,w pair that makes sense of the raw sensory input. In other words,
we want to find:

arg max
θ, w

p(θ) ·
T∏

i=1

p(ri | τ(θ)[i],w) (8.2)

Let A = τ(θ)[i], the set of ground atoms in the trace of theory θ at time-step i.

Applying Bayes theorem, we have:

p(ri | Ai,w) =
p(Ai | ri) · p(ri)

p(Ai)
(8.3)

=

∏
α∈Ai

πw(ri)[α] · p(ri)

p(Ai)
(8.4)

=

∏
α∈Ai

πw(ri)[α] · p(ri)∑
r p(Ai | r) · p(r)

(8.5)

=

∏
α∈Ai

πw(ri)[α] · p(ri)∑
r′
∏
α∈Ai

πw(r′)[α] · p(r′)
(8.6)

Substituting in, we want to find:

arg max
θ, w

p(θ) ·
T∏

i=1

∏
α∈τ(θ)[i] πw(ri)[α] · p(ri)∑

r′
∏
α∈τ(θ)[i] πw(r′)[α] · p(r′)

(8.7)

Taking logs:

arg max
θ, w

log p(θ) +

T∑

i=1

∑

α∈τ(θ)[i]

logπw(ri)[α] − log
∑

r′

∏

α∈τ(θ)[i]

πw(r′)[α] · p(r′) (8.8)

The score is thus a tradeoff between the size of the theory, how well the trace of the theory matches the
atoms perceived by the neural network, and how discriminating the neural network is in mapping
many raw inputs to the same set of ground atoms.

This new approach overcomes the three limitations described above:

• The system handles information probabilistically, since the neural network maps raw input to

224

a probability distribution over ground atoms that respects the ground xor constraints.

• The system jointly handles noisy (mislabelled) and ambiguous (raw) input. Noisy input is
handled robustly by trading off the size of the theory (in the prior p(θ)) with how well the
atoms in the theory’s trace match the distribution over atoms produced by the neural network:∏
α∈Ai

πw(ri)[α].

• Third, we have removed the restrictive assumption of Section 5.2 that the raw input is divided
into subregions with at most one object per subregion. Instead, we use a general formulation
in which the neural network can perform any mapping from the raw input to a probability
distribution over ground atoms that respects the ground constraints.

8.6.2 Adding stratified negation as failure

In order to extend Datalog⊃− so that it can handle defeasible causal rules (Section 8.4.1), we need
to add negation as failure to the language. But if we allow unrestricted negation as failure in static
rules, then we would need to use a more complex semantics (such as stable model semantics [GL88],
with multiple models of each program, or well-founded models, with three truth-values), and a
more complex semantics would incur a greater performance overhead. Instead, we plan to support
defeasible causal rules (and non-monotonic reasoning in general) by adding stratified negation as
failure [ABW88], as this does not affect the complexity of the semantics: a program with stratified
negation has a unique minimal model. We plan to add stratified negation to static rules, and also add
unrestricted negation to causal rules, since causal rules are automatically locally stratified, as the head
atom is true at the subsequent time-step from the body atoms.

8.6.3 Allowing non-determinism

We plan to extend the Datalog⊃− framework to support non-deterministic environments (Section 8.4.1).

One way to handle non-determinism is to extend Datalog⊃− to include normal logic programs under
the stable model semantics. In this approach, if we want to represent that p entails a non-deterministic
choice between q and r, we use two clauses:

q : - p,not r
r : - p,not q

This is the approach that ILASP [LRB14, LRB15, LRB16, LRB18a] uses to model non-deterministic
environments.

But there is an alternative approach to handling non-determinism that avoids the complexity of
normal logic programs and the stable model semantics. We shall define an extended theory as
a theory with initial conditions for each time-step (rather than only allowing initial conditions for

225

the first time-step, as in Definition 2). An extended theory θ = (φ, {I1, ..., IT},R,C) generates a trace
τ(θ) = (A1,A2, ...) in exactly the same way as in Definition 9, with one small exception: It ⊆ At replaces
I ⊆ A1. In other words, new atoms can be abduced at every time-step. This would allow us to handle
non-determinism by abducing atoms that change their truth-value according to {I1, ..., IT} instead of
according to the rules in R.

8.6.4 Supporting incremental theory revision

One important area for future work is extending the system to accommodate incremental theory
revision. So far, we have worked on the assumption that the agent is given the sequence of sensory
inputs as one block: the agent receives a sequence (S1, ...,St), and constructs a theory to make sense
of that sequence; if, subsequently, the agent receives further information St+1, it constructs an entirely
new theory to make sense of (S1, ...,St,St+1). There is no support, in the current implementation, for
incremental theory building where we reuse parts of earlier theories to make sense of new information.

At the moment, the Apperception Engine keeps track of a single model, the one with the maximum
a posteriori probability (Section 5.3). But the simplest theory that makes sense of (S1, ...,St) may not be
the best candidate for building a theory that makes sense of (S1, ...,St,St+1). Thus, in order to support
incremental theory revision, we shall move away from keeping track of a single model, and instead
keep track of a distribution over different theories.

8.6.5 Integrating with practical reasoning

Another area for future work is extending the system to incorporate practical reasoning. So far, we
have focused on Kant’s theoretical philosophy (in the first Critique) and have avoided discussing his
practical philosophy (in the second Critique). The Apperception Engine, in its initial incarnation, is a
mere bystander: it receives sensory input and tries to make sense of that input – but it does not act on
that understanding. It has no desires, intentions, goals, or world-directed activity. It just sits there,
thinking, like a sentient tree.

Kant believed that practical and theoretical reason share a “common principle” [Groundwork 4:391].
This common principle is unity via self-legislation: just as (in the theoretical sphere) I construct rules to
unify my intuitions together into one coherent experience, just so (in the practical sphere) I construct
maxims to unify my actions together into the activities of one coherent person [Kor09]. Just as the
judgements I construct must satisfy unity conditions in order to achieve a coherent experience, just so
the maxims I construct must satisfy the categorical imperative in order that I may achieve the status
of being a coherent person. In future work, I want to build a new incarnation of the Apperception
Engine that synthesises maxims, tests them for universalisability, and then acts.

226

8.6.6 Moving closer to a faithful implementation of Kant’s a priori psychology

This project is an attempt to repurpose Kant’s a priori psychology as the architectural blueprint for a
machine learning system, and as such has the real potential to irritate two distinct groups of people.
AI practitioners may be irritated by the appeal to a notoriously difficult eighteenth-century text, while
Kant scholars may be irritated by the indelicate attempt to shoe-horn Kant’s ambitious system into
a simple computational formalism. The concern is that Kant’s ideas have been distorted to the point
where they are no longer recognisable.

In what ways, then, does the Apperception Engine represent a faithful implementation of Kant’s
vision, and in what ways does it fall short?

I shall focus, first, on the respects in which the computer architecture is a faithful implementation
of Kant’s psychological theory. Kant proposed various faculties that interoperate to turn raw data
into experience: the imagination (to connect intuitions together using the pure relations as glue), the
power of judgement (to decide whether an intuition falls under a concept), and the capacity to judge
(to generate judgements from concepts). Throughout, Kant emphasized the spontaneity of the mind:
the faculties are free to perform whatever activity they like, as long as the resulting system satisfies
satisfies the various unity conditions described in the Principles.

The Apperception Engine provides a unified implementation of the various faculties Kant describes:
the imagination is implemented as a set of non-deterministic choice rules, the power of judgement
is implemented as a neural network, and the capacity to judge is implemented as an unsupervised
program synthesis system. These sub-systems are highly non-deterministic: the imagination is free
to synthesise the intuitions in any way whatsoever, the power of judgement is free to map intuitions to
concepts in any way it pleases, and the capacity to judge is free to construct any rules at all – so long
as the combined product of the three faculties satisfies the various unity conditions (implemented as
constraints22).

Thus, while contingent information flows bottom-up (from sensibility to the understanding), neces-
sary information flows top-down, as the unity conditions of the understanding are the only constraints
on the operations of the system. As Kant says: “through it [the constraint of unity] the understanding
determines the sensibility [B160-1n]”. This is, I believe, a faithful implementation of Kant’s cognitive
architecture at a high level.

Next I shall turn to the various respects in which the computer architecture described above falls
short of Kant’s ambitious vision of how the mind must work. I shall focus on six aspects of Kant’s
cognitive architecture that are not adequately represented in the current implementation.

§1. The way in which raw data is given to the Apperception Engine is different from how Kant
describes it. Kant describes a cognitive agent receiving a continuous stream of information, making
sense of each segment before receiving the next. The Apperception Engine, by contrast, is given the

22See Sections 3.3 and 6.4)

227

entire stream as a single unit. If the Apperception Engine is to operate with a continuous stream,
it will have to synthesise a new theory from scratch each time it receives a new piece of information
(Section 8.6.4).

In the A Deduction, Kant describes three aspects of synthesis: the synthesis of apprehension in
the intuition, the synthesis of reproduction in the imagination, and the synthesis of recognition
in a concept. The synthesis of reproduction in the imagination involves the ability to recall past
experiences that are no longer present in sensation. The Apperception Engine does not attempt to
model the synthesis of reproduction. Rather, it assumes that the entire sequence is given.

The form of the raw data is also different from how Kant describes it. In Section 6.12.1, the raw
data is provided as a sequence of determinations: assignments of raw attributes to persistent objects
(sensors). Here, we assume that the agent is provided with the sensor, as a persistent object. But
in Kant’s architecture, the construction of determinations featuring persistent objects is a hard-won
achievement - not something that is given. What is given, in Kant’s picture, is the activity of sensing
and the ability to tell when a particular sensing performed at one moment is the same sensing activity
performed at another (the “unity of the action”). Thus, in Kant’s picture, the agent is provided with
a more minimal initial input than that given to our system, and so his agent has more work to do to
achieve experience.

§2. The way space is represented in the Apperception Engine is different from how Kant describes it.
For Kant, space is a single a priori intuition. He starts with space as a totality, and creates sub-spaces
by division (“limitation” [A25/B39]). In the Apperception Engine, by contrast, we start with objects
representing spatial regions, and compose them together using the containment structure (Section
6.5).

Similarly, with time, Kant starts with the original representation of the whole of time, and constructs
sub-times by division [A32/B48]. In the Apperception Engine, by contrast, the sequence of time-steps
are determined by the given input, and it is not possible for the system in its current form to construct
new moments of time that are intermediate between the given moments. Relatedly, it is not possible
to represent continuous causality (e.g. water slowly filling a container) in our formalism. In future
work, we plan to enrich Datalog⊃− so that it can represent continuous change.

§3. The Apperception Engine unifies objects by placing them in a containment structure: each object
is in some spatial region which is itself part of some larger spatial region, until we reach the whole of
space. In Section 6.5, I argued that this containment structure is a central component of any notion of
space. But there is much more to spatial relations than the containment structure: just knowing that
x and y are in z does not tell us anything about the relative positions of x and y.

Kant had a much more full-blooded conception of space than just a containment structure: he assumed
three-dimensional Euclidean space [B41]. In future work, I plan to provide the Apperception Engine
with three-dimensional space23, thus providing a stronger inductive bias, which should help the

23Perhaps by providing an axiomatisation of Euclidean space using Tarski’s formalisation [Tar67], or somesuch (but note

228

system to learn more data-efficiently.

§4. In the Transcendental Deduction, Kant argued that the relative positions of intuitions in a determi-
nation can only be fixed by forming a judgement that necessitates this particular positioning [B128].
The Apperception Engine attempts to respect this fundamental requirement by insisting that the
various connections between intuitions (described in Section 6.9.1) are backed up by judgements of
various forms (Section 6.6). However, the forms of judgement supported in Datalog⊃− are a mere
subset of the forms enumerated in the Table of Judgements [A70/B95]. Datalog⊃− supports universally
quantified conditionals, causal conditionals, and xor constraints (corresponding to Kant’s disjunctive
judgement). But it does not support negative judgements, infinite judgements, particular judgements,
singular judgements, or modal judgements. In future work, we plan to extend the expressive power
of Datalog⊃− to capture the full range of propositions expressible in the Table of Judgements.24

§5. The Third Analogy states that whenever two objects’ determinations are perceived as simultaneous,
there must be a two way interaction between the two objects. This does not mean, of course, that
there must be a direct causal influence between them, but just that there must be a chain of indirect
causal influences between them.

This requirement has not been implemented in the Apperception Engine. This is because it would
make it very hard for the system to find any unified interpretation at all if every time it posited a
simultaneity between determinations it also had to construct some rules whereby one determination
of one object indirectly caused some determination of the other object. Longueness [Lon98] has a
different understanding of the second and third Analogies, and does not believe that we need to have
actually formed a causal rule in order to perceive succession or simultaneity. In her interpretation, we
merely need to believe that there is a causal rule to find (see Section 6.6.2 for a discussion). However,
in our interpretation, in which the rule must actually be found before a temporal relation can be
assigned, the Third Analogy does seem restrictively strong. In future work, we hope to address this
issue and find a way to respect the simultaneity constraint.

§6.

The first Critique contains various discussions of various aspects of self-consciousness. But no aspect of
self-consciousness is implemented in the ApperceptionEngine. In the B Deduction, Kant distinguishes
the synthetic unity of apperception (the connecting together of one’s intuitions via the pure relations
of Section 6.9.1 in such a way as to achieve unity) from the analytic unity of apperception (the
ability to subsume any of my cognitions under the predicate “I think”). He claims that synthetic
unity of apperception is a necessary condition for achieving analytic unity [B133-4]. Although the
Apperception Engine aims to implement the synthetic unity of apperception, no attempt has been
made to implement the analytic unity of apperception.

that axiomatising Euclidean geometry requires ternary predicates, which are not currently handled in the Apperception
Engine). But Tarski assumes points as primitive, where a point is defined as a vector of real numbers. It would be closer
to Kant’s program, I believe, to axiomatise space starting from the notion of limitation, without assuming real numbers as
given.

24By contrast, the geometric logic used in [AVL11, AvL+17] is much more expressive.

229

Kant is clear to distinguish between inner sense and explicit self-consciousness [B154]. Inner sense is
the aspect of sensibility in which the mind perceives its own mental activity: it notices the formation
of a belief, for example, or the application of a rule. Inner sense provides us with intuitions that must
be ordered in time. Explicit self-consciousness, by contrast, is the construction of a theory that makes
sense of the sequence of perturbations produced by inner sense. In inner sense I become aware of
some of the cognitions I am having, and in explicit self-consciousness, I posit a theory that explains
the dynamics of my own mental activity – although this hypothesized theory may or may not reflect
accurately the actual mental processes I am undergoing [B156]. In future work, I plan to extend the
Apperception Engine so that (some of) its own activity is perceptible via inner sense, so that the
system is forced to construct a theory to make sense of its perceptions of its own mental activity.

There are, then, various aspects of Kant’s theory of mental activity that are not captured in the current
incarnation of the Apperception Engine. There is, I think it is fair to say, more work still to do.

8.7 Conclusion

The guiding assumption behind this project is that AI has something to learn from Kant’s a priori
psychology. In the Critique of Pure Reason, Kant asks: what activities must be performed by an agent –
any finite resource-bounded agent – if it is to make sense of its sensory input. This is not an empirical
question about the particular activities that are performed by homo sapiens, but an a priori question
about the activities that any agent must perform. Kant’s answer, if correct, is important because it
provides a blueprint for the space of all possible minds – not just our particular human minds with
their particular human foibles.25

If Kant’s cognitive architecture is along the right lines, this will have significant impact on how
we should design intelligent machines. Consider, to take one important recent example, the data
efficiency of contemporary reinforcement learning systems. Recently, deep reinforcement learning
agents have achieved super-human ability in a variety of games, including Atari [MKS+13] and Go
[SSS+17]. These systems are very impressive, but also very data-inefficient, requiring an enormous
quantity of training data. DQN [MKS+13] requires 200 million frames of experience before it can reach
human performance on Atari games. This is equivalent to playing non-stop for 40 days. AlphaZero
[SSS+17] played 44 million games to reach its performance level.

Pointing out the sample complexity of these programs is not intended to criticise these accomplish-
ments in any way. They are very impressive achievements. But it does point to a fundamental
difference between the way these machines learn to play the game, and the way that humans do. A
human can look at a new Atari game for a few minutes, and then start playing well. He or she does

25“In the history of human inquiry, philosophy has the place of the central sun, seminal and tumultuous: from time to
time it throws off some portion of itself to take station as a science, a planet, cool and well regulated, progressing steadily
towards a distant final state.” – Austin, Ifs and Cans [Aus56]

230

not need to play non-stop for 40 days. A human’s data efficiency at an Atari game is a consequence
of our inductive bias: we start with prior knowledge that informs and guides our search.

It is a commonplace that the stronger the inductive bias, the more data-efficiently a system can learn.
But the danger, of course, with injecting inductive bias into a machine, is that it biases the system,
enabling it to learn some tasks quicker, but preventing it from learning other tasks effectively. What
we really want, if only we can get it, is inductive bias that is maximally general. But what are these
maximally general concepts that we should inject into the machine, and how do we do so?

Neural net practitioniers, for all their official espousal of pure empiricist anti-innatism, do (in practice)
acknowledge the need for certain minimal forms of inductive bias. A convolutional net [LB+95] is
a particular neural architecture that is designed to enforce the constraint that the same invariants
hold no matter where the objects appear in the retinal field. A long short-term memory [HS97] is a
particular neural architecture that is designed to enforce the constraint that invariants that are valid
at one point in time are also valid at other points in time. But these are isolated examples. What, then,
are the maximally general concepts that we should inject into the machine, to enable data efficient learning?

The answer to this question has been lurking in plain sight for over two hundred years. In the
first Critique, Kant identified the maximally general concepts, showed how these concepts structure
perception itself, and identified the conditions specifying how the pure concepts interoperate. Kant’s
principles provide the maximally general inductive bias we need to make our machines data-efficient.

I want to conclude by arguing for a stronger claim. A rule-synthesising system satisfying Kant’s unity
conditions is not merely sufficient for data efficient learning – it is necessary:

1. In order to achieve data efficiency, we need strong priors

2. If the strong priors are domain-specific, the agent will not able to operate in a wide range of
environments

3. Therefore, we need domain-agnostic strong priors

4. The only domain-agnostic strong priors are the Kantian unity conditions

5. The Kantian unity conditions are constraints on the construction of rules

6. Therefore, any data-efficient sense-making agent that can operate in a wide range of environ-
ments must construct rules that satisfy the Kantian unity conditions

231

Bibliography

[ABW88] Krzysztof R Apt, Howard A Blair, and Adrian Walker. Towards a theory of declarative
knowledge. In Foundations of Deductive Databases and Logic Programming, pages 89–148.
Elsevier, 1988.

[AF18] Masataro Asai and Alex Fukunaga. Classical planning in deep latent space: Bridging
the subsymbolic-symbolic boundary. In AAAI Conference on Artificial Intelligence, 2018.

[All09] Lucy Allais. Kant, non-conceptual content and the representation of space. Journal of
the History of Philosophy, 47(3):383–413, 2009.

[Asa19] Masataro Asai. Unsupervised grounding of plannable first-order logic representation
from images. arXiv preprint arXiv:1902.08093, 2019.

[Aus56] John Langshaw Austin. Ifs and cans. Proceedings of the British Academy, 1956.

[AVL11] Theodora Achourioti and Michiel Van Lambalgen. A formalization of Kant’s transcen-
dental logic. The Review of Symbolic Logic, 4(2):254–289, 2011.

[AvL+17] Theodora Achourioti, Michiel van Lambalgen, et al. Kant’s logic revisited. IfCoLog
Journal of Logics and Their Applications, 4:845–865, 2017.

[BBDS+08] Lucian Bu, Robert Babu, Bart De Schutter, et al. A comprehensive survey of multiagent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 38(2):156–172, 2008.

[BD15] Tarek R Besold and OSNABRUECK DE. The artificial jack of all trades: The importance
of generality in approaches to human-level artificial intelligence. In Proceedings of the
Third Annual Conference on Advances in Cognitive Systems (ACS), page 18, 2015.

[BED94] Rachel Ben-Eliyahu and Rina Dechter. Propositional semantics for disjunctive logic
programs. Annals of Mathematics and Artificial intelligence, 12(1-2):53–87, 1994.

[Bez05] Marc Bezem. On the undecidability of coherent logic. In Processes, Terms and Cycles:
Steps on the Road to Infinity, pages 6–13. Springer, 2005.

232

[BHS+18] David GT Barrett, Felix Hill, Adam Santoro, Ari S Morcos, and Timothy Lillicrap.
Measuring abstract reasoning in neural networks. arXiv preprint arXiv:1807.04225,
2018.

[BMSF18] Apratim Bhattacharyya, Mateusz Malinowski, Bernt Schiele, and Mario Fritz. Long-
term image boundary prediction. In AAAI Conference on Artificial Intelligence, 2018.

[BNT03] Gerhard Brewka, Ilkka Niemelä, and Miroslaw Truszczynski. Answer set optimiza-
tion. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
volume 3, pages 867–872, 2003.

[BNVB13] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of Artificial
Intelligence Research (JAIR), 47:253–279, 2013.

[BP66] Leonard E Baum and Ted Petrie. Statistical inference for probabilistic functions of finite
state Markov chains. The Annals of Mathematical Statistics, 37(6):1554–1563, 1966.

[BPL+16] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interac-
tion networks for learning about objects, relations and physics. In Advances in Neural
Information Processing Systems (NEURIPS), pages 4502–4510, 2016.

[Bra94] Robert Brandom. Making It Explicit. Harvard University Press, 1994.

[Bra08] Robert B Brandom. Between Saying and Doing. Oxford University Press, 2008.

[Bra09] Robert Brandom. How analytic philosophy has failed cognitive science. Towards an
Analytic Pragmatism (TAP), pages 121–133, 2009.

[BRNR17] Matko Bošnjak, Tim Rocktäschel, Jason Naradowsky, and Sebastian Riedel. Program-
ming with a differentiable Forth interpreter. In Proceedings of the International Conference
on Machine Learning (ICML), pages 547–556. JMLR. org, 2017.

[BWR+18] Lars Buesing, Theophane Weber, Sebastien Racaniere, SM Eslami, Danilo Rezende,
David P Reichert, Fabio Viola, Frederic Besse, Karol Gregor, Demis Hassabis, et al.
Learning and querying fast generative models for reinforcement learning. arXiv preprint
arXiv:1802.03006, 2018.

[Cav99] Stanley Cavell. The Claim of Reason. Oxford University Press, 1999.

[CEL19] Andrew Cropper, Richard Evans, and Mark Law. Inductive general game playing.
Machine Learning, pages 1–42, 2019.

[CFG+12] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland
Kaminski, Thomas Krennwallner, Nicola Leone, Francesco Ricca, and Torsten Schaub.
Asp-core-2: Input language format. ASP Standardization Working Group, 2012.

233

[CFH92] David J Chalmers, Robert M French, and Douglas R Hofstadter. High-level perception,
representation, and analogy: A critique of artificial intelligence methodology. Journal
of Experimental & Theoretical Artificial Intelligence, 4(3):185–211, 1992.

[CJS90] Patricia A Carpenter, Marcel A Just, and Peter Shell. What one intelligence test mea-
sures: a theoretical account of the processing in the Raven Progressive Matrices test.
Psychological review, 97(3):404, 1990.

[Cla78] Keith L Clark. Negation as failure. In Logic and data bases, pages 293–322. Springer,
1978.

[Cla13] Andy Clark. Whatever next? Predictive brains, situated agents, and the future of
cognitive science. Behavioral and Brain Sciences, 36(3):181–204, 2013.

[CM15] Andrew Cropper and Stephen H Muggleton. Logical minimisation of meta-rules within
meta-interpretive learning. In Inductive Logic Programming, pages 62–75. Springer, 2015.

[CM16] Andrew Cropper and Stephen H. Muggleton. Learning higher-order logic programs
through abstraction and invention. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 1418–1424. IJCAI/AAAI Press, 2016.

[CM18] Andrew Cropper and Stephen H. Muggleton. Learning efficient logic programs. Ma-
chine Learning, pages 1–21, 2018.

[CNHR18] Chih-Hong Cheng, Georg Nührenberg, Chung-Hao Huang, and Harald Ruess. Verifi-
cation of binarized neural networks via inter-neuron factoring. In Working Conference
on Verified Software: Theories, Tools, and Experiments, pages 279–290. Springer, 2018.

[Coh60] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20(1):37–46, 1960.

[Coo04] Matthew Cook. Universality in elementary cellular automata. Complex Systems, 15(1):1–
40, 2004.

[Cor12] Domenico Corapi. Nonmonotonic Inductive Logic Programming as Abductive Search.
PhD thesis, Imperial College London, 2012.

[CRL10a] Domenico Corapi, Alessandra Russo, and Emil Lupu. Inductive logic programming
as abductive search. In Technical Communications of the 26th International Conference on
Logic Programming. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

[CRL10b] Domenico Corapi, Alessandra Russo, and Emil Lupu. Inductive logic programming
as abductive search. In LIPIcs-Leibniz International Proceedings in Informatics, volume 7,
pages 34–41. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

234

[CRL11a] Domenico Corapi, Alessandra Russo, and Emil Lupu. Inductive logic programming
in answer set programming. In International Conference on Inductive Logic Programming,
pages 91–97. Springer, 2011.

[CRL11b] Domenico Corapi, Alessandra Russo, and Emil Lupu. Inductive logic programming
in answer set programming. In International Conference on Inductive Logic Programming,
pages 91–97. Springer, 2011.

[CRL12] Domenico Corapi, Alessandra Russo, and Emil Lupu. Inductive logic programming in
answer set programming. In Inductive Logic Programming, pages 91–97. Springer, 2012.

[Cro17] Andrew Cropper. Efficiently Learning Efficient Programs. PhD thesis, Imperial College
London, UK, 2017.

[Cro19] Andrew Cropper. Playgol: learning programs through play. arXiv preprint
arXiv:1904.08993, 2019.

[CRWM17] Silvia Chiappa, Sébastien Racaniere, Daan Wierstra, and Shakir Mohamed. Recurrent
environment simulators. arXiv preprint arXiv:1704.02254, 2017.

[CSIR11] Domenico Corapi, Daniel Sykes, Katsumi Inoue, and Alessandra Russo. Probabilistic
rule learning in nonmonotonic domains. In International Workshop on Computational
Logic in Multi-Agent Systems, pages 243–258. Springer, 2011.

[CT18] Andrew Cropper and Sophie Tourret. Derivation reduction of metarules in meta-
interpretive learning. In International Conference on Inductive Logic Programming, pages
1–21. Springer, 2018.

[CUTT16] Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A
compositional object-based approach to learning physical dynamics. arXiv preprint
arXiv:1612.00341, 2016.

[CW03] Lourdes Peña Castillo and Stefan Wrobel. Learning minesweeper with multirelational
learning. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pages 533–540. Morgan Kaufmann, 2003.

[DDG+08] Thomas G Dietterich, Pedro Domingos, Lise Getoor, Stephen Muggleton, and Prasad
Tadepalli. Structured machine learning: the next ten years. Machine Learning, 73(1):3,
2008.

[DDRD01] Sašo Džeroski, Luc De Raedt, and Kurt Driessens. Relational reinforcement learning.
Machine Learning, 43(1-2):7–52, 2001.

[DEGV01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and
expressive power of logic programming. ACM Computing Surveys (CSUR), 33(3):374–
425, 2001.

235

[Den78] Daniel C Dennett. Artificial intelligence as philosophy and as psychology. Brainstorms,
pages 109–26, 1978.

[DML+19] Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou.
Neural logic machines. arXiv preprint arXiv:1904.11694, 2019.

[DN15] Roy Dyckhoff and Sara Negri. Geometrisation of first-order logic. Bulletin of Symbolic
Logic, 21(2):123–163, 2015.

[DR08] Luc De Raedt. Logical and Relational Learning. Springer Science & Business Media, 2008.

[DR12] Luc De Raedt. Declarative modeling for machine learning and data mining. In Inter-
national Conference on Formal Concept Analysis, pages 2–2. Springer, 2012.

[EG18] Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data.
Journal of Artificial Intelligence Research (JAIR), 61:1–64, 2018.

[ELH14] Tom Everitt, Tor Lattimore, and Marcus Hutter. Free lunch for optimisation under the
universal distribution. In 2014 IEEE Congress on Evolutionary Computation (CEC), pages
167–174. IEEE, 2014.

[ESLT15] Kevin Ellis, Armando Solar-Lezama, and Josh Tenenbaum. Unsupervised learning by
program synthesis. In Advances in Neural Information Processing Systems (NEURIPS),
pages 973–981, 2015.

[ESS19] Richard Evans, M Sergot, and A Stephenson. Formalizing Kant’s rules. Journal of
Philosophical Logic, pages 1–68, 2019.

[Eva17] Richard Evans. Kant on constituted mental activity. APA on Philosophy and Computers,
2017.

[Eva19] Richard Evans. A Kantian cognitive architecture. In On the Cognitive, Ethical, and
Scientific Dimensions of Artificial Intelligence, pages 233–262. Springer, 2019.

[FL17] Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In
IEEE International Conference on Robotics and Automation (ICRA), pages 2786–2793. IEEE,
2017.

[Fod75] Jerry A Fodor. The Language of Thought. Harvard University Press, 1975.

[FP88] Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A
critical analysis. Cognition, 28(1-2):3–71, 1988.

[Fri92] Michael Friedman. Kant and the Exact Sciences. Harvard University Press, 1992.

[Fri05] Karl Friston. A theory of cortical responses. Philosophical Transactions of the Royal Society
B: Biological sciences, 360(1456):815–836, 2005.

236

[Fri12] Karl Friston. The history of the future of the Bayesian brain. NeuroImage, 62(2):1230–
1233, 2012.

[FWS+18] V Feinberg, A Wan, I Stoica, MI Jordan, JE Gonzalez, and S Levine. Model-based value
expansion for efficient model-free reinforcement learning. In Proceedings of the 35th
International Conference on Machine Learning (ICML), 2018.

[GAS16] Marta Garnelo, Kai Arulkumaran, and Murray Shanahan. Towards deep symbolic
reinforcement learning. arXiv preprint arXiv:1609.05518, 2016.

[GB13] Michael Genesereth and Yngvi Björnsson. The international general game playing
competition. AI Magazine, 34(2):107–107, 2013.

[GBS+16] Alexander L Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet
Kohli, Jonathan Taylor, and Daniel Tarlow. Terpret: A probabilistic programming
language for program induction. arXiv preprint arXiv:1608.04428, 2016.

[Gha01] Zoubin Ghahramani. An introduction to hidden Markov models and Bayesian net-
works. In Hidden Markov models: Applications in Computer Vision, pages 9–41. World
Scientific, 2001.

[GK14] Michael Gelfond and Yulia Kahl. Knowledge Representation, Reasoning, and the Design of
Intelligent Agents. Cambridge University Press, 2014.

[GKKS12] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer
set solving in practice. Synthesis Lectures on Artificial Intelligence and Machine Learning,
6(3):1–238, 2012.

[GKKS14] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Clingo=

ASP+ control. arXiv preprint arXiv:1405.3694, 2014.

[GKS11] Martin Gebser, Roland Kaminski, and Torsten Schaub. Complex optimization in an-
swer set programming. Theory and Practice of Logic Programming, 11(4-5):821–839, 2011.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In Logic Programming: Proc. Fifth International Conference on Logic Programming,
volume 88, pages 1070–1080. MIT Press, 1988.

[GL05] Michael Genesereth and Nathaniel Love. General game playing: Game description
language specification. Computer Science Department, Stanford University, Stanford, CA,
USA, Tech. Rep, 2005.

[Gom13] Anil Gomes. Kant on perception: Naive realism, non-conceptualism, and the B-
deduction. The Philosophical Quarterly, 64(254):1–19, 2013.

237

[Goo96] John Goodacre. Inductive Learning of Chess Rules using Progol. PhD thesis, University
of Oxford, 1996.

[GPS+17] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Founda-
tions and Trends in Programming Languages, 4(1-2):1–119, 2017.

[GS14] Dedre Gentner and Albert L Stevens. Mental Models. Psychology Press, 2014.

[GSBS15] Peter Gregory, Henrique Coli Schumann, Yngvi Björnsson, and Stephan Schiffel. The
GRL system: learning board game rules with piece-move interactions. In Computer
Games, pages 130–148. Springer, 2015.

[GT17] Tobias Gerstenberg and Joshua B Tenenbaum. Intuitive theories. Oxford Handbook of
Causal Reasoning, pages 515–548, 2017.

[GUT11] Noah D Goodman, Tomer D Ullman, and Joshua B Tenenbaum. Learning a theory of
causality. Psychological Review, 118(1):110, 2011.

[Ham19] Jessica B Hamrick. Analogues of mental simulation and imagination in deep learning.
Current Opinion in Behavioral Sciences, 29:8–16, 2019.

[Har00] Paul L Harris. The Work of the Imagination. Blackwell Publishers, Oxford, 2000.

[Hau90] John Haugeland. The intentionality all-stars. Philosophical Perspectives, pages 383–427,
1990.

[Haz99] Allen Patterson Hazen. Logic and analyticity. In The Nature of Logic, pages 79–110.
CSLI, 1999.

[HCS+16] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-
gio. Binarized neural networks. In Advances in Neural Information Processing Systems
(NEURIPS), pages 4107–4115, 2016.

[Heg04] Mary Hegarty. Mechanical reasoning by mental simulation. Trends in Cognitive Sciences,
8(6):280–285, 2004.

[HMP+17] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. Beta-VAE: Learning basic visual
concepts with a constrained variational framework. Proceedings of the International
Conference on Learning Representations (ICLR), 2(5):6, 2017.

[HO00] Jose Hernandez-Orallo. Beyond the Turing test. Journal of Logic, Language and Informa-
tion, 9(4):447–466, 2000.

[HO17] José Hernández-Orallo. The Measure of All Minds. Cambridge University Press, 2017.

238

[Hof95] Douglas R Hofstadter. Fluid Concepts and Creative Analogies. Basic Books, 1995.

[Hol09] AO Holcombe. The binding problem. The Sage Encyclopedia of Perception, 2009.

[HOMC98] José Hernandez-Orallo and Neus Minaya-Collado. A formal definition of intelligence.
In Proceedings of International Symposium of Engineering of Intelligent Systems (EIS 98),
pages 146–163, 1998.

[HOMPS+16] José Hernández-Orallo, Fernando Martı́nez-Plumed, Ute Schmid, Michael Siebers,
and David L Dowe. Computer models solving intelligence test problems: Progress
and implications. Artificial Intelligence, 230:74–107, 2016.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computa-
tion, 9(8):1735–1780, 1997.

[HS18] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution.
In Advances in Neural Information Processing Systems (NEURIPS), pages 2455–2467, 2018.

[IBN05] Katsumi Inoue, Hideyuki Bando, and Hidetomo Nabeshima. Inducing causal laws
by regular inference. In International Conference on Inductive Logic Programming, pages
154–171. Springer, 2005.

[IRS14] Katsumi Inoue, Tony Ribeiro, and Chiaki Sakama. Learning from interpretation tran-
sition. Machine Learning, 94(1):51–79, 2014.

[Jay00] Julian Jaynes. The Origin of Consciousness in the Breakdown of the Bicameral Mind.
Houghton Mifflin Harcourt, 2000.

[JBBS90] William James, Frederick Burkhardt, Fredson Bowers, and Ignas K Skrupskelis. The
Principles of Psychology, volume 1. Macmillan London, 1890.

[JGP16] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-
Softmax. Proceedings of the International Conference on Learning Representations (ICLR),
2016.

[JL12] Philip N Johnson-Laird. Inference with mental models. The Oxford Handbook of Thinking
and Reasoning, pages 134–145, 2012.

[JLF+18] Michael Janner, Sergey Levine, William T Freeman, Joshua B Tenenbaum, Chelsea Finn,
and Jiajun Wu. Reasoning about physical interactions with object-oriented prediction
and planning. arXiv preprint arXiv:1812.10972, 2018.

[Kai12] Lukasz Kaiser. Learning games from videos guided by descriptive complexity. In
AAAI Conference on Artificial Intelligence, 2012.

239

[Kam79] Hans Kamp. Events, instants and temporal reference. In Semantics from Different Points
of View, pages 376–418. Springer, 1979.

[Kan84] Immanuel Kant. What is enlightenment? In Practical Philosophy, pages 11–22. Cam-
bridge University Press, 1784.

[Kan90] Immanuel Kant. Critique of the Power of Judgment. Cambridge University Press, 1790.

[Kan97] Immanuel Kant. The metaphysics of morals. In Practical Philosophy, pages 353–604.
Cambridge University Press, 1797.

[KAP15] Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. Incremental learning of
event definitions with inductive logic programming. Machine Learning, 100(2-3):555–
585, 2015.

[KAP16] Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. Online learning of event
definitions. Theory and Practice of Logic Programming, 16(5-6):817–833, 2016.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[KBM19] Lukasz Kaiser, Mohammad Babaeizadeh, and Piotr Milos. Model based reinforcement
learning for Atari. arXiv preprint arXiv:1903.00374v2, 2019.

[Kol63] Andrei N Kolmogorov. On tables of random numbers. Sankhyā: The Indian Journal of
Statistics, Series A, pages 369–376, 1963.

[Kor09] Christine M Korsgaard. Self-Constitution. Oxford University Press, 2009.

[KS86] Robert Kowalski and Marek Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67–96, 1986.

[KS16] Minje Kim and Paris Smaragdis. Bitwise neural networks. arXiv preprint
arXiv:1601.06071, 2016.

[LB+95] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and
time series. The Handbook of Brain Theory and Neural Networks, 3361(10):1995, 1995.

[Lev73] Leonid Anatolevich Levin. Universal sequential search problems. Problemy Peredachi
Informatsii, 9(3):115–116, 1973.

[LGF16] Adam Lerer, Sam Gross, and Rob Fergus. Learning physical intuition of block towers
by example. arXiv preprint arXiv:1603.01312, 2016.

[LGLGG18] Miguel Lázaro-Gredilla, Dianhuan Lin, J Swaroop Guntupalli, and Dileep George.
Beyond imitation: Zero-shot task transfer on robots by learning concepts as cognitive
programs. arXiv preprint arXiv:1812.02788, 2018.

240

[LH13] Tor Lattimore and Marcus Hutter. No free lunch versus Occam’s razor in supervised
learning. In Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelli-
gence, pages 223–235. Springer, 2013.

[LMR92] Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of Disjunctive Logic Program-
ming. MIT press, 1992.

[Lon98] Béatrice Longuenesse. Kant and the Capacity to Judge. Princeton University Press, 1998.

[LRB14] Mark Law, Alessandra Russo, and Krysia Broda. Inductive learning of answer set
programs. In European Conference on Logics in Artificial Intelligence - (JELIA), pages
311–325, 2014.

[LRB15] Mark Law, Alessandra Russo, and Krysia Broda. Learning weak constraints in answer
set programming. Theory and Practice of Logic Programming, 15(4-5):511–525, 2015.

[LRB16] Mark Law, Alessandra Russo, and Krysia Broda. Iterative learning of answer set
programs from context dependent examples. Theory and Practice of Logic Programming,
16(5-6):834–848, 2016.

[LRB18a] Mark Law, Alessandra Russo, and Krysia Broda. The complexity and generality of
learning answer set programs. Artificial Intelligence, 259:110–146, 2018.

[LRB18b] Mark Law, Alessandra Russo, and Krysia Broda. Inductive learning of answer set
programs from noisy examples. arXiv preprint arXiv:1808.08441, 2018.

[LRB+20] Mark Law, Alessandra Russo, Elisa Bertino, Krysia Broda, and Jorge Lobo. FastLAS:
Scalable inductive logic programming incorporating domain-specific optimisation cri-
teria. In AAAI, pages 2877–2885, 2020.

[LST15] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level
concept learning through probabilistic program induction. Science, 350(6266):1332–
1338, 2015.

[LUTG17] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman.
Building machines that learn and think like people. Behavioral and Brain Sciences, 40,
2017.

[LV08] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and its Applications,
volume 3. Springer, 2008.

[MAP18] Evangelos Michelioudakis, Alexander Artikis, and Georgios Paliouras. Semi-
supervised online structure learning for composite event recognition. arXiv preprint
arXiv:1803.00546, 2018.

241

[Mar18a] Gary Marcus. The Algebraic Mind. MIT press, 2018.

[Mar18b] Gary Marcus. Innateness, AlphaZero, and artificial intelligence. arXiv preprint
arXiv:1801.05667, 2018.

[McC06] John McCarthy. Challenges to machine learning: Relations between reality and appear-
ance. In International Conference on Inductive Logic Programming, pages 2–9. Springer,
2006.

[McL16] Colin McLear. Kant on perceptual content. Mind, 125(497):95–144, 2016.

[McN47] Quinn McNemar. Note on the sampling error of the difference between correlated
proportions or percentages. Psychometrika, 12(2):153–157, 1947.

[MCO19] Rolf Morel, Andrew Cropper, and Luke Ong. Typed meta-interpretive learning of
logic programs. In European Conference on Logics in Artificial Intelligence - (JELIA), pages
973–981, 2019.

[MDS+18] Stephen Muggleton, Wang-Zhou Dai, Claude Sammut, Alireza Tamaddoni-Nezhad,
Jing Wen, and Zhi-Hua Zhou. Meta-interpretive learning from noisy images. Machine
Learning, 107(7):1097–1118, 2018.

[Mer86] Marsha J Ekstrom Meredith. Seek-whence: A model of pattern perception. Technical
report, Indiana University (USA), 1986.

[Mic83] Ryszard S Michalski. A theory and methodology of inductive learning. In Machine
learning, pages 83–134. Springer, 1983.

[Mit93] Melanie Mitchell. Analogy-Making as Perception. MIT Press, 1993.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with deep rein-
forcement learning. arXiv preprint arXiv:1312.5602, 2013.

[MLPTN14] Stephen H Muggleton, Dianhuan Lin, Niels Pahlavi, and Alireza Tamaddoni-Nezhad.
Meta-interpretive learning: application to grammatical inference. Machine Learning,
94(1):25–49, 2014.

[MLT15] Stephen H. Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad. Meta-
interpretive learning of higher-order dyadic datalog: predicate invention revisited.
Machine Learning, 100(1):49–73, 2015.

[MMT16] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A
continuous relaxation of discrete random variables. Proceedings of the International
Conference on Learning Representations (ICLR), 2016.

242

[Mor96] Eduardo M. Morales. Learning playing strategies in chess. Computational Intelligence,
12:65–87, 1996.

[Moy02] Steve Moyle. Using theory completion to learn a robot navigation control program. In
International Conference on Inductive Logic Programming, pages 182–197. Springer, 2002.

[MSPA16] Evangelos Michelioudakis, Anastasios Skarlatidis, Georgios Paliouras, and Alexander
Artikis. Online structure learning using background knowledge axiomatization. In
Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 232–247. Springer, 2016.

[MSZ+18] Stephen H Muggleton, Ute Schmid, Christina Zeller, Alireza Tamaddoni-Nezhad, and
Tarek Besold. Ultra-strong machine learning: comprehensibility of programs learned
with ILP. Machine Learning, 107(7):1119–1140, 2018.

[Mue14] Erik T Mueller. Commonsense Reasoning. Morgan Kaufmann, 2014.

[Mur12] Kevin P Murphy. Machine Learning: a Probabilistic Perspective. MIT press, 2012.

[MZW+18] Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li F Fei-Fei, Josh Tenen-
baum, and Daniel L Yamins. Flexible neural representation for physics prediction. In
Advances in Neural Information Processing Systems (NEURIPS), pages 8813–8824, 2018.

[NKFL18] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural
network dynamics for model-based deep reinforcement learning with model-free fine-
tuning. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages
7559–7566. IEEE, 2018.

[NKR+18] Nina Narodytska, Shiva Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and Toby
Walsh. Verifying properties of binarized deep neural networks. In AAAI Conference on
Artificial Intelligence, pages 6615–6624, 2018.

[OGL+15] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-
conditional video prediction using deep networks in Atari games. In Advances in Neural
Information Processing Systems (NEURIPS), pages 2863–2871, 2015.

[Ote05] Ramon P Otero. Induction of the indirect effects of actions by monotonic methods. In
International Conference on Inductive Logic Programming, pages 279–294. Springer, 2005.

[Pia11] Steven Piantadosi. Learning and the Language of Thought. PhD thesis, Massachusetts
Institute of Technology, 2011.

[Pin17] Riccardo Pinosio. The Logic of Kant’s Temporal Continuum. PhD thesis, University of
Amsterdam, 2017.

243

[PVL18] Riccardo Pinosio and Michiel Van Lambalgen. The logic and topology of Kant’s tem-
poral continuum. The Review of Symbolic Logic, 11(1):160–206, 2018.

[PZK07] Hanna M Pasula, Luke S Zettlemoyer, and Leslie Pack Kaelbling. Learning symbolic
models of stochastic domains. Journal of Artificial Intelligence Research (JAIR), 29:309–352,
2007.

[Ray09] Oliver Ray. Nonmonotonic abductive inductive learning. Journal of Applied Logic,
7(3):329–340, 2009.

[RGRS11] Christophe Rodrigues, Pierre Gérard, Céline Rouveirol, and Henry Soldano. Active
learning of relational action models. In International Conference on Inductive Logic Pro-
gramming, pages 302–316. Springer, 2011.

[RR16] Tim Rocktäschel and Sebastian Riedel. Learning knowledge base inference with neu-
ral theorem provers. In Proceedings of the 5th Workshop on Automated Knowledge Base
Construction, pages 45–50, 2016.

[RWR+17] Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomènech Badia, Oriol Vinyals, Nicolas Heess,
Yujia Li, et al. Imagination-augmented agents for deep reinforcement learning. In
Advances in Neural Information Processing Systems (NEURIPS), pages 5690–5701, 2017.

[Sel67] Wilfrid Sellars. Some remarks on Kant’s theory of experience. In In the Space of Reasons,
pages 437–453. Harvard University Press, 1967.

[Sel68] Wilfrid Sellars. Science and Metaphysics. Routledge, 1968.

[Sel78] Wilfrid Sellars. The role of imagination in Kant’s theory of experience. In In the Space
of Reasons, pages 454–466. Harvard University Press, 1978.

[SGHS+18] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin
Riedmiller, Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics
engines for inference and control. arXiv preprint arXiv:1806.01242, 2018.

[SHS+18] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al.
A general reinforcement learning algorithm that masters chess, shogi, and go through
self-play. Science, 362(6419):1140–1144, 2018.

[SK63] Herbert A Simon and Kenneth Kotovsky. Human acquisition of concepts for sequential
patterns. Psychological Review, 70(6):534, 1963.

[SK07] Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental Science,
10(1):89–96, 2007.

244

[SLTB+06] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. Combinatorial sketching for finite programs. ACM Sigplan Notices,
41(11):404–415, 2006.

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mas-
tering the game of go without human knowledge. Nature, 550(7676):354–359, 2017.

[Ste13] Andrew Stephenson. Kant’s Theory of Experience. PhD thesis, University of Oxford,
2013.

[Ste15] Andrew Stephenson. Kant on the object-dependence of intuition and hallucination.
The Philosophical Quarterly, 65(260):486–508, 2015.

[Ste17] Andrew Stephenson. Imagination and inner intuition. Kant and the Philosophy of Mind,
2017.

[Str18] Peter Strawson. The Bounds of Sense. Routledge, 2018.

[Swa16] Link R Swanson. The predictive processing paradigm has roots in Kant. Frontiers in
Systems Neuroscience, 10:79, 2016.

[Tar67] Alfred Tarski. The completeness of elementary algebra and geometry. 1967.

[TT41] Louis Leon Thurstone and Thelma Gwinn Thurstone. Factorial studies of intelligence.
Psychometric Monographs, 1941.

[TTL05] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in prac-
tice: the Condor experience. Concurrency and Computation, 17(2-4):323–356, 2005.

[UGT12] Tomer D Ullman, Noah D Goodman, and Joshua B Tenenbaum. Theory learning as
stochastic search in the language of thought. Cognitive Development, 27(4):455–480,
2012.

[VEK76] Maarten H Van Emden and Robert A Kowalski. The semantics of predicate logic as a
programming language. Journal of the ACM (JACM), 23(4):733–742, 1976.

[VLH08] Michiel Van Lambalgen and Fritz Hamm. The Proper Treatment of Events. John Wiley &
Sons, 2008.

[WACL05] John Whaley, Dzintars Avots, Michael Carbin, and Monica S Lam. Using Datalog with
binary decision diagrams for program analysis. In Asian Symposium on Programming
Languages and Systems, pages 97–118. Springer, 2005.

[Wax14] Wayne Waxman. Kant’s Anatomy of the Intelligent Mind. Oxford University Press, 2014.

245

[Wit09] Ludwig Wittgenstein. Philosophical Investigations. John Wiley & Sons, 2009.

[Wol63] Robert Wolff. Kant’s Theory of Mental Activity. Harvard University Press, 1963.

[Wol83] Stephen Wolfram. Statistical mechanics of cellular automata. Reviews of Modern Physics,
55(3):601, 1983.

[XLS+19] Zhenjia Xu, Zhijian Liu, Chen Sun, Kevin Murphy, William Freeman, Joshua Tennen-
baum, and Jiajun Wu. Unsupervised discovery of parts, structure, and dynamics.
In Proceedings of the International Conference on Learning Representations (ICLR), pages
1418–1424, 2019.

[ZLS+18] Amy Zhang, Adam Lerer, Sainbayar Sukhbaatar, Rob Fergus, and Arthur Szlam. Com-
posable planning with attributes. Proceedings of the International Conference on Machine
Learning (ICML), 2018.

246

