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Abstract

Destabilisation effects of forward facing steps, backward facing steps and bumps on

stationary and travelling crossflow disturbances are investigated computationally for

a 40◦ infinitely swept wing. Step and bump heights range from 18% to 82% of the

boundary layer thickness and are located at 3%, 10% and 20% chord. The spectral/hp

element solver, Nektar++, is used to compute base flow profiles with an embedded

swept wing geometry. Parabolised Stability Equations (PSE) and Linearised Harmonic

Navier-Stokes (LHNS) models are used to evaluate growth of convecting instabilities.

The presence of surface step features impose an extremely rapidly varying flow field

locally, which requires accurate resolution of the perturbed flow field. Derivations of

these PSE and LHNS models incorporating the excrescence (PSEh, LHNSh) are eluci-

dated. Unlike the PSE, which suffer from a stream-wise numerical step size restriction,

the LHNS are a fully elliptic set of equations which may use an arbitrarily fine grid

resolution. Unsurprisingly, the PSE codes fail to capture the effect of abrupt changes

in surface geometry introduced by the step features. Results for the LHNS and rough-

ness incorporating LHNSh are given for the varying vertical step and ramped type

steps. Comparisons are made between the LHNSh model and direct numerical sim-

ulations involving the time-stepping linearised Navier-Stokes solver (NekLNS) in the

Nektar++ software framework. Most previous work in the topic area has focused on

Tollmien-Schlichting perturbations over two-dimensional flat plate flows or aerofoils,

the novelty of this work lies with analysing crossflow instability over a swept wing

boundary-layer flow with step features.

PSEh and LHNSh models are tested with convecting Tollmien Schlichting instabil-

ity over a dimple and randomly distributed roughness on an overall flat plate flow.

The dimple case performs very well whereas it is more difficult to obtain converged

results with the random roughness case, likely due to large stream-wise velocity gra-

dient changes. A 45◦ ramped shape roughness is investigated and remarkably good

agreement between the LHNSh solution and NekLNS solution is found. Forward facing

ramps and steps are found to act as greater amplifiers with increased height, whilst

backward facing ramps and steps predict very weak changes in the disturbance de-

velopment. This is contrary to the wider literature and an argument is made that
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backward facing steps and ramps initiate an immediate non-linear interaction which

cannot be captured with linear theory. Vertical forward facing step cases also predict

greater amplification with increased step height, which is not observed in the backward

facing step cases. Again, this is believed to be due to non-linear mode interaction that

is immediately triggered by the step. Bump roughness cases agree well qualitatively

with experimental work on a 40◦ swept wing, the AERAST geometry. Good agree-

ment locally to the roughness could not be drawn with the NekLNS solutions, likely

due to the presence of strong stream-wise gradients and mesh limitations.
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w̄, second and third rows show first derivative and second derivative
respectively in the normal direction and the bottom row is the first
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and bumpR at 10% chord. Upper left: FFR, (β = 450m−1), upper
right: BFR (β = 460m−1) and lower: bump ramp (β = 380m−1) Black
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CHAPTER 1

Introduction

1.1 Motivation for maintaining Laminar Boundary Layers

Drag reduction is one of the most important objectives in the aircraft manufacturing

industry today. An aircraft with lower drag, is not only more economical but also

more environmentally friendly, which is inevitably becoming an ever growing global

concern. Fuel efficiency can be increased through a number of modifications to the

aircraft, such as replacement of aluminium with carbon fibre for allowing stronger,

lighter wings to be built, but a major focus is on the construction of a swept laminar

flow wing38.

Viscous effects play a very important role within a thin layer of fluid in the neigh-

bourhood of the surface geometry, as found by Prandtl in 19043. This thin layer

of fluid is named a boundary layer. Flows with zero pressure gradient, such as flow

over a flat plate, are initially laminar and described by the Blasius solution86. How-

ever, when traversing downstream, away from the leading edge of the flat plate, an

unsteadiness establishes itself within the boundary layer in the form of a so called

Tollmien-Schlichting wave. These Tollmien-Schlichting (TS) waves cause the steady

Blasius flow to become weakly unsteady and initially have an amplitude too small to

cause notable changes in the boundary layer. As they grow downstream these waves

increase in amplitude and eventually cause the flow to notably transition from lami-

nar to turbulent86. Maintaining a laminar boundary layer and delaying the onset of

turbulence over the wing is crucial for minimising fuel consumption. The presence of
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turbulence increases shear stress on the surface which in turn increases drag and hence

increases fuel consumption. Large aircraft of today feature turbulent boundary layers

on the majority of the exposed wetted surface, resulting in viscous drag that is five to

ten times larger than a laminar boundary layer10.

Achieving and maintaining laminar flow on a wing is hindered by surface imperfections

which may be present on the wing. These imperfections can act as flow destabilisa-

tion sites and may arise from rivets, leading edge to wing box junction tolerances,

or even insect contamination. The presence of a roughness, or very localized surface

imperfection which occur primarily in the form of steps or bumps, induces a local flow

modification which can destabilise pre-existing instabilities within the laminar bound-

ary layer. This promoted destabilisation of the instability leads to earlier transition

and can completely eradicate any drag reduction benefit obtained from the laminar

flow wing. The size of the typical roughness, or excrescence, in question can range

from of ten to two hundred micrometres in depth and up to a few centimetres in length

on a wing that is potentially several metres wide and ten times that long.

For design purposes, industry is interested in numerically simulating how disturbances

are further destabilised by the presence of such a roughness feature. This can be

achieved by direct numerical simulation (DNS) but at huge computational expense.

DNS calculations may take days or weeks to run over extensive central processing

unit (CPU) resources meaning this is an infeasible option for day to day use within

industry. Instead, a rapid tool is required. Currently industry have a fast but semi-

empirical tool, the eN method, for predicting the growth of transition within seconds.

However, the tool is based upon Linear Stability Theory (LST), and neglects many

crucial non-parallel and non-linear effects in the transition process. Two superior

methods, the Parabolised Stability Equations (PSE) and Linearised Navier-Stokes

(LHNS) equations, which do encapsulate non-parallelism and some non-linear effects,

can replace LST. These have been around for a few decades but only recently has the

PSE began to be adopted by industry due to cheaper compute power, with fast CPU

processing and increased random access memory (RAM). The LHNS even has the

capability to model how a disturbance can be generated within the boundary layer,

receptivity. However, due to being rapid computational tool sets, they do not solve

for the equation set describing the roughness geometry. The bump is only introduced

through the base flow.

The purpose of this work is to develop rapid perturbation prediction tools which better

capture the roughness geometry and give more insight into the flow physics around

the excrescence locally. A better understanding of the mechanisms at play around a

roughness will help with establishing better criteria for design tolerances.
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Figure 1.1: Varying transition pathways from laminar to turbulent flow84

1.2 Background and state-of-the-art

Instabilities within the boundary layer are influenced greatly by factors both internal

and external to the boundary layer. Depending on the intensity of the environmental

disturbances, transition may take a variety of routes before assuming the turbulent

regime. These pathways usually occur via three main steps: receptivity, instability

and breakdown.

Receptivity is the first building block of transition and occurs due to an environmen-

tal forcing such as surface roughness, acoustic waves or vorticity from free stream

turbulence entering the boundary layer. If the external forcing resonates with natural

eigenmodes of the boundary layer then a receptivity mechanism takes place. If the

environmental forcing scales are not well matched with the natural boundary layer

eigenmodes then these disturbances have a lesser chance of propagating within the

boundary layer. Imagine a broadband noise in the free-stream which generates a sea

of disturbances, only a few select frequencies may resonate with the natural eigen-

modes. The receptivity process provides the essential initial conditions of amplitude,

phase and frequency for the break down to turbulent state73. As this initial distur-

bance amplitude increases different instabilities occur depending on varying Reynolds

number, sweep, roughness and other factors. The varying pathways are well described

by Morkovin and depicted in figure 1.1.

When the disturbance is of a weak amplitude the initial growth of the instability is

linear and follows path A of figure 1.1. Since the growth is linear the perturbation
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Figure 1.2: Graphic of crossflow by Arnal and Casalis5

can be modelled by linear stability theory and grows slowly over a long stream-wise

length scale84. For two dimensional boundary layers the instability takes the form of a

Tollmien-Schlichting (TS) wave and is usually triggered by free-stream acoustic waves

or turbulence55. Secondary instabilities, arising from primary instabilities, begin to

play a role when the amplitude grows in the form of non-linear effects and three di-

mensional disturbances. This usually occurs when the amplitude of the TS wave is

greater than 0.3% to 1% of the free stream velocity U∞
56. For swept wing flow config-

urations there are varying types of instability which arise: attachment line instability,

centrifugal instability and crossflow instability72. The first type of instability occurs

in the attachment-line boundary layer which can become unstable or contaminated

by wing-root turbulence. Generally this type of instability affects swept wings with

large leading-edge radii85. Centrifugal instabilities arise in the shear flow with the

presence of concave surfaces in the form of Gortler Vortices which counter-rotate40,83.

Crossflow vortices tend to arise on wings with a substantial amount of sweep in regions

of strong pressure gradients, see figure 1.272. The crossflow velocity is perpendicular

to the direction of the inviscid streamline and exhibits an inflection point, ensuring

that the crossflow component vanishes at the wall and at the boundary layer edge, all

vortices rotate in the same direction5. At the secondary instability stage the distur-

bance growth is very rapid and breakdown to turbulence quickly ensues, completing

pathway A. This is the pathway generally accepted to best model transport flight74.

Transient growth occurs when two, non-orthogonal, stable modes interact, grow alge-

braically, and then decay exponentially; depicted by paths B, C and D. This mechanism

seems to be highly influenced by stream-wise and wall-normal vorticity. Depending

on the amplitude of the initial disturbance, transient growth can lead to span-wise

modulations of two-dimensional waves, path B, a direct distortion to the basic state

which leads to secondary or sub-critical instabilities, path C, or when the amplitude is

large enough that the transient growth will progress directly to breakdown, path D84.

Transient growth usually occurs in regimes with an increased amount of free-stream

turbulence or in regimes with distributed surface roughness74.

Finally, the receptivity process can immediately induce bypass transition when the
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initial disturbance amplitude is extremely strong, pathway E. Although pathways B,

C and D are still not completely understood, bypass induced transition tripping re-

mains the most mysterious despite various numerical, computational and analytical

studies102.

For effective generation of TS waves the forcing environmental disturbance needs to

resonate with the natural flow oscillations in the boundary layer. This condition must

be satisfied for both frequency and wavelength of the perturbation. It has been shown,

through application of triple deck theory, that roughness elements in conjunction with

acoustic waves trigger TS instabilities by Ruban78 and Goldstein35. Assuming that

the stream-wise length scale of the roughness is of the order of the TS wavelength, the

flow around the roughness can be described by triple deck theory. They found that

the mean flow over the roughness could provide the spatial scale, wavelength, and the

acoustic forcing provides the frequency. When the two are proportional, the acoustic

wave and the Fourier transform of the roughness element, they can give rise to the

generation of a TS wave. Free stream turbulence has also been shown to play a large

role by Duck et al.23. Here they represented the disturbance field as a superposition

of vorticity waves. The boundary layer interacts differently with vorticity waves as

they are unable to carry pressure perturbations, contrary to acoustic waves, and so

cannot penetrate the boundary layer. With the presence of wall roughness, since

wall roughness not only produces perturbations within the boundary layer but also

outside, in the upper tier of triple deck theory, non-linear interactions of the steady

perturbations in the upper tier with vorticity waves create the necessary resonance

conditions for TS wave generation.

Transition prediction schemes used by industry often assume that the transition path-

way follows that of path A. Only the linear regime of this pathway is accounted for,

under the assumption that flow in the free stream has weak disturbances and the

stream-wise linear growth region is large compared to that of the non-linear. Arnal

and Casalis5 state that for flat plate conditions the extent of the linear amplification

in the stream-wise direction covers 75% to 85% of the plate, between the leading edge

to the point of transition. Comparisons between two cases can only be made when

the environmental conditions are similar since receptivity is not captured within the

model.84

Capturing the receptivity process, free-stream disturbances superimposing the basic

state, is crucial to understanding the type of transition pathway activated and therefore

the propagation of the instability before breaking down to turbulence.
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1.2.1 Tollmien Schlichting Instability

Research is rich in the area of unswept flat plates100,33,103,64,75,107 and aerofoil geome-

tries17,94,7 where the boundary layer becomes unstable due to TS waves. TS instability

is generally the dominant mechanism for two dimensional flows. TS waves can be gen-

erated in the presence of acoustic noise or surface roughness. Already convecting TS

waves within the boundary layer can also be further destabilised by surface roughness.

Varying step features such as forward facing steps, backward facing steps, dimples and

pimples have been simulated, either experimentally or numerically, to study how the

presence of the excrescence destabilises a convecting two dimensional perturbation. It

remains of strong interest to try and characterise a destabilising step height in order

to better understand how severe aircraft manufacturing tolerances are required to be.

However, there seems to be quite some variation on this critical characterisation within

the literature.

Wang and Gaster 100 looked at the effect of varying forward facing and backward

facing step heights on transition location by hot wire anemometry on a flat plate.

They found that increasing step height / depth caused earlier transition onset for

the backward facing step than for the forward facing step. Wörner et al. 103 looked

at direct numerical simulation of bumps with sharp and rounded corners at varying

heights, between 37% to 97% of the boundary layer, and widths, ranging between

half and double the TS wavelength introduced. They observed that sharper corners

produce a greater destabilisation than more rounded corners, the width of the bump

does not impact the flow nearly as much as increasing the height and even observed a

stabilisation from their forward facing step case. Park and Park 64 decided to model

bumps and dimples numerically using some of the tool sets, PSE, which will be used in

this work. They computed baseflows over two dimensional smooth symmetric humps

by solving the time iterative parabolised Navier-Stokes equations, involving a splitting

of the stream-wise flux vector92. They found that the influence of a dimple instead of

a bump can be just as impacting on the flow as a bump. They displayed linear PSE

results for attached and separated flows but only showcased results for non-linear PSE

computations for the attached cases. This raises an interesting question as to if the

non-linear PSE are able to converge in the presence of a laminar separation bubble.

Xu et al. 106 looked at staggering forward facing steps between 3% to 30% of the

boundary layer thickness, with a width length scale comparable to the TS wavelength.

They found that smooth steps are considered safe, exhibiting the same growth as

that of a flat plate boundary layer, as long as the convecting TS wave has a high

frequency and the step is rather small. When the step is larger than 20% of the

boundary layer they observed a destabilising effect. Sharp steps were shown to be
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much more dangerous, which they attributed to the presence of a separation bubble,

to be discussed in section 1.2.3. Later, Xu et al. 107 looked at two dimensional and

three dimensional dimples cases which ranged from 40% to 60% of the boundary layer.

They discovered that the presence of a two dimensional dimple is much more degrading

to the TS wave stability than a three dimensional dimple and credit the destabilisation

mechanism to the inflectional instability present from the separated shear layer.

Sumariva and Hein 89 have looked computationally at the effect of smooth and sharp

corners on bump shaped roughness of a height 35% of the boundary layer thickness.

They apply a similar approach to that presented in this work but section off the com-

putational domain into areas without roughness, which are solved with PSE, and an

area with the roughness, which are solved with what they coin the adaptive harmonic

linearised Navier-Stokes equations (AHLNS). They found that the PSE were unable

to be used for such sharp cornered geometries, even with ’smooth’ corners, as this

introduces large stream-wise gradient changes which the PSE are unable to converge

with. They were however, able to gain good agreement from the AHLNS code with ex-

perimental results when comparing transition indicators, such as N-factors, and found

the sharp cornered bump to be much more destabilising. Sumariva and Hein 89 also

studied the effect of varying the width of the hump and found that this had a more

significant effect than that found by Wörner et al. 103 , but they are both agreed that

the height of the bump plays a greater role for destabilisation than the width.

Costantini et al. 17 began looking at a span-wise invariant wing geometry featuring a

step that ranged to 1.45% of the boundary layer thickness. They found a correlation

between increasing the Reynolds number at the step location and the relative step

height (compared with the boundary layer thickness), causing a forward movement in

transition location. They observed a movement in transition even with their smallest

step height. Thomas et al. 94 investigated gap features on a symmetric wing. They

generated the steady flow fields using Reynolds Averaged Navier Stokes (RANS) so-

lutions and conducted analysis by solving PSE and LHNS equations. They found

that although there was a destabilisation at the smallest depth, upon increasing the

depth they observed a plateau in the forward movement of transition. They attribute

this to the re-circulatory flow inside the gap, maintaining an almost constant depth;

the bubble shear layer assimilates a wall boundary condition. They had difficulty ob-

taining converged solutions in the presence of laminar separation bubbles due to the

stream-wise marching inherent in the PSE, the LHNS does not suffer this restriction.

Wu and Dong 104 looked at the impact of a roughness on a TS wave and show that

when the length scale of a roughness is comparable with the characteristic length of the

TS wave, the TS wave undergoes a scattering effect though the mean flow distortion

(MFD), caused by the roughness. Essentially they compose the flow of a scattering set
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of equations and the MFD through the application of triple-deck theory. They intro-

duce a transmission coefficient, dependent on the height and shape of the roughness

and the frequency of the incident TS wave, which accounts for the scattering effect.

This introduces a forcing which is in resonance with the TS wave and so produces

an even larger correction term to the equation sets. The transmission coefficient is

an unknown quantity to be solved for and happens to occur as an eigenvalue in the

discretised equation system. They incorporate this transmission coefficient into the

usual LST or PSE theory in order to account for the local roughness. Wu and Dong 104

find that humps and dimples have an absolute transmission coefficient greater than

one, meaning they cause amplification of the TS wave. This amplification is exacer-

bated if the width or height of the roughness is increased. This scattering effect is also

encapsulated in our LHNS stability tool.

TS waves may be present in swept wing flows but generally the wing geometry can be

constructed in such a way that it maintains a favourable stream-wise pressure gradient.

Favourable stream-wise pressure gradients have a stabilising effect on TS waves but

adverse ones destabilise them, such as in separated flows.

1.2.2 Crossflow Instability

Since almost all transport aircraft feature swept wings with favourable pressure gradi-

ents, the applicability of TS focused studies for transport aircraft is limited. Research

has, instead, begun to grow in the area of crossflow instability (CFI) which can be

destabilised in regions of adverse or favourable pressure gradients. CFI features a ve-

locity profile within the boundary layer which is zero at the wall and the free stream

but has an inflection point, due to a local maximum, at some wall-normal position.

These instabilities can be of a stationary or travelling nature. The size of the envi-

ronmental forcing relative to surface quality, receptivity to free-stream turbulence and

surface roughness, determines which may dominate the boundary layer.

Stationary CFI modifies the mean flow, and hence the stability of the boundary layer,

by pulling low momentum flow from low in the boundary layer and displacing it up-

wards in areas of higher momentum flow. The contrary process is also happening,

pulling the upper high momentum flow closer to the low momentum flow closer to

the wall, resulting in a boundary layer that has high velocity shears11. This can be

seen as a saw-tooth like profile in experiments. Travelling crossflow does not exhibit

this observable feature, but has a more uniform front19. Although acoustic perturba-

tions have been found to leave crossflow unaffected70, both stationary and travelling

crossflow is highly receptive to surface roughness.

Recent studies of swept flows over flat plates and wings with steps has shown that
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an excrescence present in the shape of a backward facing step (BFS) has a more

detrimental effect on boundary layer transition than a forward facing step (FFS).

Duncan Jr. et al. 24 and Perraud et al. 68 suggest that the transition location is generally

unaffected by small steps but then suddenly jumps to the step implying there exists a

critical step height. Duncan Jr. et al. 24 , who experimentally investigated a 30◦ swept

wing with forward and backward facing steps located at 15% chord, observed that the

FFS impacted the flow much further upstream than that of the BFS. The FFS caused

the flow to begin decelerating as far upstream as 2% chord in comparison to the clean

case, whereas the BFS only caused the flow to accelerate a 12% chord. The change

in magnitude of the pressure coefficient (Cp) was also greater in magnitude for the

FFS. Perraud et al. 68 looked at steps in 2D and 3D flows with varying sweep, between

30◦ or 50◦, and at varying angles of attack. They apply the Rh criteria, an empirical

criteria first introduced by Nenni and Gluyas 62 in 1966, which defines a critical height

for steps at which a significant displacement of the transition location is observed.

Reh =
hUe
ν
. (1.1)

Where h denotes the step height, Ue is the velocity at the boundary layer edge at the

step location, and ν is the kinematic viscosity. The critical values are Reh = 900 for a

BFS and Reh = 1800 for a FFS. However, when applying this criteria Perraud et al. 68

find it not to be a very precise prediction method. Although, they did agree with

an element of the criteria, being that FFSs are half as dangerous as equivalent depth

BFSs. Saeed et al. 82 experimentally studied the impact of two-dimensional bump like

features placed at 3%, 10% and 20% chord on a 40◦ swept wing geometry. Beyond

a certain height, waviness and jaggedness was observed within the transition front,

charactering crossflow instability. A further movement of the transition front towards

the bump location was observed for increasing bump heights and bumps located further

down stream. They attributed this to the stationary CFI being more established

further downstream and then interacting with the travelling disturbance, causing the

transition front to move close to the bump.

Further characterisations have been made for critical step heights, those causing a

large forward movement in the transition front, for forward facing steps on swept

wing flows. This could be extremely useful for design of wing tolerances however the

critical step height varies from paper to paper due to the variety of flow configurations.

It is important to note that the separation bubble in swept flows is not a closed

2D recirculation but an open 3D flow due to the span-wise component, see figure

1.3. Generally these are helical flows which flow from the wing route to wing tip,

contrary to the span-wise crossflow direction which flows tip to root95. Vidales et al. 98

experimentally, and Tufts et al. 95 numerically, studied a 45◦ swept wing with a FFS
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Figure 1.3: Cartoon for backward facing step featuring CFI and a three dimensional laminar separation
bubble from Tufts et al. 95 .

placed at 20% and 15% chord respectively. They propose the critical height for a

FFS is determined by the core of the crossflow vortex height (yc) and the height of

the step (h). If the clean case crossflow vortex height is greater than the step height

then the convecting crossflow instability will remain stable and not be amplified by

the step. Otherwise there is a destructive interaction between the crossflow and helical

downstream flow that is the separation bubble. The height of the core of the stationary

crossflow can be determined by finding the CFI wavelength with the largest N-factor at

the step location and then finding the maximum of the v-perturbation shape function.

If h > yc the interaction is constructive, amplifies the stationary crossflow and the

transition front moves towards the step. Vidales et al. 98 also note that an increase in

the ratio of the step height with the boundary layer thickness at the step (h/δh) results

in a higher critical N-factor reduction for a fixed yc/h ratio. Tufts et al. 95 confirm

the interaction with the separation bubble with a trial experiment. They artificially

reduced the size of the separation bubble on top of the step but kept the step hight the

same by modifying the numerical boundary conditions. When doing this they found

that the step produced similar disturbance profiles, amplitudes and shapes, to that of

those from sub-critical step heights when it should have exhibited critical behaviour.

Tufts et al. 95 also investigated the BFS which exhibits a larger recirculation region

than in the FFS case. They observed that increasing the step height results in a

gradual movement of transition towards the step, rather than a quick jump making

it difficult to characterise a critical height. They reason this is because, although the

stationary crossflow itself was not amplified by the BFS, the presence of a travelling

mode found in the recirculation bubble interacts with the stationary CFI causing a

faster breakdown to turbulence. Generally, they found that critical FFS heights were

larger than those for the equivalent BFS’s with the same flow conditions, implying the

BFSs are more dangerous.

Eppink has investigated various FFSs and BFSs on a flat plate experimentally26,29,27,30,31

10



for step heights ranging from 53 to 71% of the boundary layer. Eppink applied the

same criteria for predicting the FFS critical step height as Tufts et al. 95 and although

results agreed well qualitatively, Tufts et al. predicted a critical step height 15% larger

than what Eppink found in experiments. Eppink 27 reasons that upstream of the step

the primary incoming stationary crossflow vortices are lifted up significantly from the

wall and do not directly impact the step. There are a second set of vortices, rotating in

the opposite direction, which form underneath the primary set. Due to their rotation

in the opposite direction, their interaction with the downstream helical flow should

not be constructive. Eppink believes the crossflow reversal region plays a crucial role

in the transition process, firstly because of the effect of the near wall vortex, caused

by the crossflow reversal, on the growth of wall-normal perturbations near the wall.

Secondly due to the strong streamline curvature induced from the positive crossflow

component which causes the two vortices to eventually merge, consequent of which is a

large stationary crossflow growth downstream. The crossflow reversal region may be a

good indicator of critical cases. The BFS’s considered by Eppink et al. 31 ranged from

36% to 49% of the boundary layer and considered both steady and unsteady CFI. She

found that the presence of the step only had a very small localised impact on the sta-

tionary crossflow growth, whereas the amplitude of the unsteady disturbance increased

with larger step depths. Eppink elucidates that the stationary crossflow vortices, al-

though not hugely dangerous on their own, interact with the unsteady disturbances

non-linearly, aiding in the breakdown to turbulent state. Overall, the travelling modes

seem to be the most dangerous in the breakdown mechanism. Eppink and Yao 29 have

further delved into the impact of the 49% BFS on stationary CFI through the use

of time-resolved particle image velocimetry. They discovered three unsteady distur-

bances in the flow downstream of the roughness and characterised them as a travelling

CFI, a TS wave and a shear layer instability. Large velocity peaks were observed in

the frequency spectra which they attributed to the interaction of these modes. They

believe the stream-wise velocity is modulated by the stationary crossflow instability.

The span-wise wavelength of the unsteady CFI is similar to that of the stationary

crossflow and so also enhances the stream-wise velocity modulation further. On top

of this there is the TS mode which is almost phase aligned with the travelling CFI

causing even more velocity modulation and even larger amplitude velocity spikes. Ep-

pink and Yao 29 go on to say the velocity spikes cannot be caused by this interaction

alone since the spikes are not observed for 180◦ phase shift of the travelling CFI and

TS wave. The result of this interaction results in breakdown.

Recently Eppink and Casper 28 have also looked at the effect of varying shapes of ramps

and FFS’s placed on a swept flat plate in the presence of a three dimensional pressure

body, to simulate an infinitely swept wing flow. The ramp height was 81% of the
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boundary layer thickness with an angle of 30◦ or 45◦ slope. The ramps delayed transi-

tion further as their angle was decreased due to the reduction, or even eradication, of

the separation bubble downstream of the step. Although reducing the amplification

of CFI locally to the step region, downstream of this there is a second strong region

of growth. Eppink shows that downstream of the step there are multiple stationary

modes present which are modified in varying ways by the mean flow. Some being

destabilised near the step, growing to large amplitudes and then decaying, and others

which increase in amplitude from the step or end of the separation region. These

can overtake the initial dominant mode. During the flow recovery region unsteady

disturbances are amplified, implying significance of non-linear interactions within this

region.

Groot et al. 37 apply a numerical and experimental approach to analyse the growth of

stationary CFI and the development of secondary high-frequency instabilities of type

one and two in swept wing boundary layers. This work focusses mainly on the latter

stages of transition and breakdown with crossflow inducing this result. The model was

swept to 45◦ and had a 3◦ incidence in order to augment the generation of the CFI. The

stationary CFI advects fluid about its vortical axis to redistribute fluid momentum

across the boundary layer. One side of the vortex draws fluid up and the other draws

fluid down causing high and low speed flow in an otherwise homogeneous boundary

layer. This leads to forward and backward streaky structures in the flow, named

Klebanoff modes97. The span-wise shear layer with the basic state in the upwash

region of the primary vortex generates type one modes and the wall normal shear

with the basic state generates the type two modes. The type two mode remains on

the top of the primary vortex. These modes, also named z-type and y-type modes by

Malik and Li F. 53 , are of interest since they are responsible for turbulent breakdown.

Klebanoff, or K-modes, usually take the form of a lambda structure which is aligned

with the free stream direction. They cause span-wise modulation with a distinctive

span-wise wavelength. Xu et al. 106 document a good image of these over a flat plate

and also H-type modes which are staggered to the free stream.

Groot et al. 37 measure the base flow and mean flow distortion from the primary vortex

directly, as opposed to the usual method of computing the secondary instabilities with

non-linear Parabolised Navier-Stokes Equations. Here the base flow and distorted

mean flow obtained from three dimensional PIV measurements are used as the base

flow for secondary stability analysis. They show that resolving the shear layer allows

for extracting stability data without having to examine the receptivity of the primary

vortices with a computational approach.37 87
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1.2.3 Laminar Separation Bubble Instabilities

Backward facing steps and bump excrescences generally feature a large region of reverse

flow downstream of the excrescence, a laminar separation bubble. This is due to

the strong adverse pressure gradient created by the presence of the step. The re-

attachment of the free-stream flow can be rather unsteady, being subject to low-

frequency oscillations of the separation bubble. The bubble may then become an

amplifier and oscillator to already convecting instabilities within the boundary layer.

Watmuff 101 looked at separation bubbles over a flat plate, initiated by generating an

adverse pressure gradient. Watmuff found that what previously was being referred to

as a TS wave packet, should really be referred to as a Kelvin-Helmholtz wave packet.

After the separated flow region, the wave amplitude grows due the Kelvin-Helmholtz

instability in the shear layer, exhibits classical roll-up formation leading to large scale

vortex loops near reattachment.

Hasan 43 , who looked at varying roughness geometries on the leading edge of flat

plates to generate re-attaching shear layers, found that the shear layer instability

does not seem to correlate with roughness height but does correlate with boundary

layer momentum thickness for large roughness. This seems to be in line with the

findings from Diwan and Ramesh 20 who studied separation bubbles on a flat plate

generated from an imposed pressure gradient. They found that in the frontal region

of the bubble, the so-called dead-air region, instability amplitudes are small and reach

their maximum towards the end of the bubble, at reattachment. They introduced a

small wave packet upstream of the bubble and observed its modification as it advected

downstream. Diwan and Ramesh 20 argue that the separation bubble exhibits an

inviscid inflectional instability due to the separated shear layer, which should be seen

as an appendage of the upstream instability in the attached adverse pressure region.

Only when the separated shear layer has moved substantially away from the wall, one

can assume the instability originates from the bubble and evolves into the Kelvin-

Helmholtz instability scenario.

There are also other mechanisms at play which can cause global instability. In 1998,

Hammond and Redekopp 41 further built on work from Huerre and Monkewitz 47 and

found that flows with a laminar separation bubble have the potential of becoming

absolutely unstable. They showed that if the peak reverse flow velocity was in excess

of 30% of the basic flow then the boundary layer would suffer absolute instability.

Alam and Sandham 2 looked into the effect of laminar separation bubbles on global

instability. They found the peak reverse flow only had to be 15-20% of the freestream

velocity to instigate an absolutely unstable flow, which was also similar to Gaster’s34

findings of peak reverse flow of 15%. Alam and Sandham 2 also found that convective
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instabilities may be present if the reverse flow region reaches 8% of the freestream

flow.

The causes of unsteadiness and three-dimensionality of unforced two dimensional sep-

arated flows have been investigated by Rodŕıguez et al. 77 . The two main contributors

are a global oscillator due to regions of absolute inflectional instability and a centrifu-

gal instability leading to three dimensionality of the base laminar separation bubble.

They study a variety of separation bubbles and discover that absolute instability does

not exist for two dimensional bubbles with a peak reverse flow of less than 12% of

the free stream velocity. The three dimensional instability, however, comes into play

with reverse flow as little at 7% of the free stream. Having applied the peak reverse

flow criteria to gauge the strength of the bubble, they believe this is not the best way

to parametrise the absolute or convective instability. They find that for local parallel

analysis the maximum displacement thickness is a more adequate measure for onset

of absolute instability than the previous basis of peak reverse flow by Huerre and

Monkewitz 47 .

Hosseinverdi and Fasel 46 have recently carried out an in-depth study of laminar sep-

aration bubbles using direct numerical simulation. Simulations without free stream

turbulence usually follow the path of Kelvin-Helmholtz instability of the separated

shear layer before transitioning to turbulence. Bubbles subjected to freesteam tur-

bulence, penetrating the boundary layer upstream of the separation, promote slowly

growing low frequency modes, Klebanoff modes. They find that the transition process

is composed of two mechanisms, high frequency disturbances which are strongly am-

plified and low frequency Klebanoff modes instigated by the free stream turbulence.

Transition is accelerated with increased free stream turbulence and the span-wise roll-

up of the Kelvin-Helmholtz modes into vortical structure which eventually break down.

This break down resultantly aids with the re-attachment process.

1.3 Outline

The arrangement of this thesis will begin with a numerical methods chapter, chapter

2, based upon stability methods. This will first cover the pre-existing tools, such as

linear stability theory, the eN method (utilised by industry), PSE and LHNS equations.

Their limitations and computational implementation will also be divulged. The LHNS

equations have only recently been utilised in industry, with only ourselves and now

others89 replicating this ability. The chapter will then go on to explain the contribution

of this work to modify these stability equation sets to correctly solve the region local

to the roughness, these are coined PSEh and LHNSh.
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Chapter 3 will expand upon the direct numerical simulation tool set, Nektar++, de-

scribing the high order spectral / hp element method utilised by the incompressible

Navier-Stokes and linearised Navier-Stokes time iterating solvers. Due to there being

a huge change in scaling of the mesh in the far field, which can be very coarse, to the

mesh local to the roughness, which requires extremely fine elements, an embedded do-

main approach is adopted. The embedded domain approach for generating base flows

to enable the use of the extremely rapid stability tools PSE and LHNS is described.

The pipeline for the meshing of varying types of roughness and the tests completed to

ensure steady convergence will then be discussed. Due to the presence of separated

flow induced by the roughness, Prandtl Boundary layer equations cannot be used to

extract the base flow profiles. Finally, this chapter will explain the method applied to

extract boundary layer profiles from the steady DNS solutions and the limitations of

the methodology.

Two dimensional flow problems featuring a dimple case and an undulating random

roughness case will be presented in chapter 4. The varying, newly derived, stability

tool sets, PSEh and LHNSh, in the linear and non-linear form, will be applied to

these cases and their merits and limitations discussed. Generally both codes are in

good agreement for the dimple case, with some variation for larger dimple depths.

This is likely due to the PSEh struggling to attain space marching convergence in the

presence of a large separated flow region. The LHNSh solutions compare exceptionally

well with experimental results36, demonstrating the importance of the corrected model.

It is extremely difficult to obtain linear stability analysis convergence for the random

roughness case. Non-linear interaction was unable to be modelled. We reason this is

due to multiple reverse flow regions present in the deeper roughness cases and there

being huge stream-wise gradient changes, making it extremely difficult for either code

to converge.

Following on from here is a three dimensional flow problem for an infinitely swept

wing geometry in chapter 5. This elucidates the experimental work of Saeed et al. 82

upon which the majority of this numerical work is based upon. The clean geometry,

featuring no excrescence, and the boundary layer profiles extracted from the DNS are

validated with the Prandtl Boundary Layer equations. Remarkably good agreement

is obtained between the PSE, LHNS and Nektar++ time stepping LNS equations.

Satisfied with the validation of the clean case, varying roughness shapes are then

introduced to the embedded clean geometry. These are based upon the experimental

investigation of Saeed et al. 82 who placed bump shaped roughness of varying heights on

an infinitely swept wing. In chapter 6 we begin by relaxing the severity of the vertical

bump with a 45◦ ramp case and consider only the largest height from the work of Saeed

et al. 82 . This is also decomposed into its corresponding forward facing ramp (FFR)
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and backward facing ramp (BFR) components and numerically simulated. The PSEh

fail to accurately converge for these regimes due to the length scale of the bump being

too short compared to the crossflow104 and the sharp stream-wise gradient changes.

Again, excellent agreement is obtained between the LHNSh and NekLNS equations,

especially locally to the roughness. We find that the FFR triggers amplified growth

of the stationary CFI, where as the BFR component does not seem to provide any

growth increase; this is in-line with experimental observations28,81.

The encouraging results from the ramp cases leads us to investigate the vertical bump,

FFS and BFS cases for all height and locations considered by Saeed et al. 82 in chapter

7. Again the PSEh are unable to capture the presence of the excrescence due to

the reasons mentioned above. The LHNSh predict an increased destabilisation with

increasing step height for both stationary and travelling disturbances for the FFS and

bump excrescences, which are in-line with the literature. We see that the 10% chord

located roughness causes further destabilisation than the 20% chord cases, which is in

agreement with the experimental work82,81. The BFS however, predicts a stabilisation

which is contrary to much of the literature. We attribute this to either an immediate

triggering of non-linear mode interaction that we are unable to capture with linear

growth mechanisms, or a limitation of the problem construction due to the severity

of the vertical step. Comparisons are drawn with NekLNS solutions however we do

not see very good agreement between the models. Limitations of the methodology are

discussed to elucidate why this may be.

Finally, conclusions will be summarised and recommendations for future work will be

given in chapter 8.
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CHAPTER 2

Numerical Methods

2.1 Review of previous methods

In 1908 Orr and Sommerfeld derived an equation based upon the small amplitude

growth of a disturbance, limiting the solution to the initial stage of transition. They

analysed flows where the streamlines ran parallel to one another meaning the par-

tial differential equation can be reduced to an ordinary differential, coined the Orr-

Sommerfeld equation (OSE). This equation is still widely used for stability analysis of

Tollmien-Schlichting, amongst other, waves today and is popularly coupled with the eN

method. There have been many other derivations for compressible flow and attempts

to incorporate non-linear theory in order to obtain better agreement with experimental

results. However, it wasn’t until Herbert44,45, introducing the Parabolised Stability

Equations (PSE), that the interaction of modes was better captured and provided

good agreement with experiments. Similarly to Linear Stability Theory, the PSE still

require the input of an initial starting amplitude, they do not have any capability of

modelling receptivity. One option to obtain the initial amplitude is to use analytical

theory or another could be to solve various receptivity modelling tool sets, such as the

Linearised Harmonic Navier-Stokes (LHNS). The LHNS are another stability analysis

tool which enable significant insight into the detailed flow physics by overcoming many

of the simplifications in the earlier methods. These aforementioned equation sets come

at a fraction of the cost of DNS computations and are used abundantly in this work.

These will now be discussed in detail, along with contribution of this work.
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2.1.1 Governing Equations of Fluid Motion

The incompressible Navier-Stokes equations, neglecting body forces, are commonly

denoted as
∂u′

∂t′
+
(
u′.∇′

)
u′ = −1

ρ
∇′p′ + ν∇′2u′, (2.1a)

∇′.u′ = 0, (2.1b)

where u is the velocity vector composed of u, v and w taken in the Cartesian x, y

and z direction respectively and p is the pressure vector. Time is represented by t

and kinematic viscosity with ν. These equations are made dimensionless with the

variables,

x′ = xL, y′ = yL, z′ = zL,

u′ = uU∞, v′ = vU∞, w′ = wU∞,

t′ = t
U∞
L

, p′ = ρ∞U
2
∞p,

where U∞ is the free stream velocity and L is the length of the chord. The dimensionless

incompressible Navier-Stokes equations are then,

∂u

∂t
+
(
u.∇

)
u = −∇p +

1

Re

∇2u, (2.2a)

∇′.u′ = 0, (2.2b)

where Re = U∞L
ν

is the usual Reynolds number.

The Navier-Stokes Equations are recast into a body-fitted co-ordinate system (x, n,

q) for an aerofoil such that, x, follows the chord geometry, n, is the normal direction

to the aerofoil surface and q is the span-wise direction. For simplicity the velocity

components in the curve linear co-ordinate system will retain the same notation u, v

and w. Assuming the body has a cylindrical surface the curvature of the body contour

can be defined as κ(x) = 1
R

, where R is the radius of curvature.

The transformation from the Cartesian co-ordinate frame to the body-fitted co-ordinate

system, well described in the literature80, gives the body fitted Navier-Stokes equations

2.3.

Re

[
ut − uvκχ+uχux + vun + wuq

]
= −Reχpx − uκ2χ2 − κχun + unn

+ uqq + χ2uxx − 2κχ2vx − vχ2(1 + nκχ)κx + nχ3uxκx,
(2.3a)

Re

[
vt + u2κχ+uχvx + vvn + wvq

]
= −Repn − vκ2χ2 − κχvn + vnn

+ vqq + χ2vxx + 2κχ2ux + uχ2(1 + nκχ)κx + nχ3vxκx,
(2.3b)
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Re

[
wt + uχwx + vwn + wwq

]
= −Repq − κχwn + wnn + wqq

+ χ2wxx + nχ3wxκx,
(2.3c)

χux + vn + wq − vκχ = 0, (2.3d)

where χ = 1
1−nκ(x)

and subscripts denote derivatives.

In order to linearise the set of equations 2.3 the velocity and pressure components

are decomposed into a base flow plus a small perturbation field, such that φ̄ >> εφ̃,

where φ represents the variables u, v, w, p, t.

φ = φ̄(x, n, q) + εφ̃(x, n, q, t) +O(ε2), ε� 1.

Substituting these in and retaining only the order epsilon terms leads to the non-

dimensional body fitted incompressible equations.

Re

[
ũt − ūṽκχ− ũv̄κχ+ ũχūx + ūχũx + v̄ũn + ṽūn

+ w̄ũq + w̃ūq
]

= −Reχp̃x − ũκ2χ2 − κχũn + ũnn + ũqq

+ χ2ũxx − 2κχ2ṽx − ṽχ2(1 + nκχ)κx + nχ3ũxκx,

(2.4a)

Re

[
ṽt + 2ũūκχ+ ũχv̄x + ūχṽx + v̄ṽn + ṽv̄n + w̄ṽq

+ w̃v̄q
]

= −Rep̃n − ṽκ2χ2 − κχṽn + ṽnn + ṽqq

+ χ2ṽxx + 2κχ2ũx + ũχ2(1 + nκχ)κx + nχ3ṽxκx,

(2.4b)

Re

[
w̃t + ũχw̄x + ūχw̃x + v̄w̃n + ṽw̄n + w̄w̃q + w̃w̄q

]
= −Rep̃q − κχw̃n + w̃nn + w̃qq + χ2w̃xx + nχ3w̃xκx,

(2.4c)

χũx + ṽn + w̃q − ṽκχ = 0. (2.4d)

These form the main starter block for the incompressible stability derivations to follow.

For the compressible equation set there are the added variables for temperature, den-

sity and dynamic viscosity,

T ′ = TT∞, ρ′ = ρρ∞, µ′ = µµ∞,

such that the body fitted compressible Navier-Stokes equations are denoted as,

Re(uvκρχ− χpx − vρun − ρut − wρuq − uρχux)
+ µ
(
− uκ2χ2 − κχun + unn + uqq + rχ2uxx − (1 + r)κχ2vx +Qχ(vxn + wxq)

− rvχ2(1 + nκχ)κx + nrχ3uxKx

)
+
(
uκχ+ un + χvx

)
µn

+
(
uq + χwx

)
µq +

(
rχ(−vκχ+ χux) +mχ(vn + wq)

)
µx = 0,

(2.5a)
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Re(−u2κρχ− pn − vρvn − ρvt − wρvq − uρχvx)
+ µ
(
− rvκ2χ2 + (1 + r)κχ2ux − rκχvn + rvnn + vqq + χ2vxx +Q(χuxn + wnq)

+ uχ2(1 + nκχ)κx + nχ3vxKx

)
+
(
rvn +m(−vκχ+ χux + wq)

)
µn

+
(
vq + wn

)
µq + χ(uκχ+ un + χvx

)
µx = 0,

(2.5b)

Re(−pq − vρwn − ρwt − wρwq − uρχwx) + µ
(
Q(vnq + χ(uxq − κvq)

)
− κχwn + wnn + rwqq + χ2wxx + nχ3wxKx

)
+
(
vq + wn

)
µn

+
(
m(−vκχ+ χux + vn) + rwq

)
µq + χ(uq + χwx)µx = 0,

(2.5c)

M2(−1 + γ)σµ
(
(uκχ+ un)2 + u2

q − 2mvκχvn + v2
q + 2uκχ2vx + 2χunvx + χ2v2

x

+ 2vqwn + w2
n + 2m(χuxvn + χ(−vκ+ ux)wq + vnwq) + r

(
χ2(−vκ+ ux)

2 + v2
n + w2

q

)
+ 2χuqwx + χ2w2

x

)
+M2Re(−1 + γ)σ(vpn + pt + wpq + uχpx)

+Reρσ(−vTn − Tt − wTq − uχTx) + µ
(
− κχTn + Tnn + Tqq + χ2Txx + nχ3Txκx

)
+ Tnµn + Tqµq + χ2Txµx = 0,

(2.5d)

− ρvκχ+ ρχux + ρvn + ρwq + vρn + ρt + wρq + uχρx = 0. (2.5e)

The Prandtl number, defining the ratio of momentum diffusivity to thermal diffusivity,

is given by σ, γ = cp
cv

is the ratio of specific heats, µ is the viscosity, M is the Mach

number, m = −2/3 is the stokes constant, Q = m+ 1 and r = m+ 2.

The equations are then linearised with the use of two further laws. The first being the

ideal gas law,

γM2
∞p = ρT , (2.6)

made non-dimensional though using the same definitions above and using the identities

c =
√
γR∗T∞ and M∞ = U∞

c
. Linearising 2.6 in p, ρ and T and substituting the

rearrangement of the 2.6 for the basic flow to give γM2
∞

T̄
= ρ̄

p̄
results with,

ρ̃ = ρ̄
[ p̃
p̄
− T̃

T̄

]
. (2.7)

This enables the removal of ρ̃ terms and corresponding derivatives from equations 2.5

in place of p̃ and T̃ .

For an ideal gas the dynamic viscosity behaves according to Sutherland’s Law,

µ′ = µ∞

(T∞ + S

T ′ + S

)( T ′
T∞

) 3
2
, (2.8)

where S = 110.4 is Sutherland’s constant. This equation is made non-dimensional
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using µ = µ′

µ∞
and T = T ′

T∞
and linearised to give

µ̃ = fT T̃ , where fT =
(

1 +
S

T∞

)
T̄

1
2

(
T̄ +

S

T∞

)−1(3

2
− T̄

(T̄ + S
T∞

)

)
, (2.9)

and for derivative terms,

µ̃x = fT T̃x + fTT T̃ T̄x, (2.10)

where,

fTT = 2
(

1 +
S

T∞

)
T̄

1
2

(
T̄ +

S

T∞

)−1( 1

T̄
−

3
2

(T̄ + S
T∞

)
+

T̄

(T̄ + S
T∞

)2

)
. (2.11)

This means that µ terms and its derivatives may be removed and replaced with T .

Applying these gives the following set of equations which form the foundations for

deriving the various compressible stability models. These are summarised as follows,

x-momentum :

Re

[
(ūv̄κρ̄(

p̃

p̄
− T̃

T̄
) + (ūṽ + ũv̄)κρ̄)χ− χp̃x − v̄ρ̄ũn)− (v̄ρ̄(

p̃

p̄
− T̃

T̄
)

+ ṽρ̄)ūn − ρ̄ũt − w̄ρ̄ũq − (w̄ρ̄(
p̃

p̄
− T̃

T̄
) + w̃ρ̄)ūq − ūρ̄χũx

− (ūρ̄(
p̃

p̄
− T̃

T̄
) + ũρ̄)χūx

]
+ µ̄(−ũκ2χ2 − κχũn + ũnn + ũqq + rχ2ũxx

− (1 + r)κχ2ṽx +Qχ(ṽnx + w̃qx)− rṽχ2(1 + nκχ)κx + nrχ3ũxκx)

+ fT T̃ (−ūκ2χ2 − κχūn + ūnn + ūqq + rχ2ūxx − (1 + r)κχ2v̄x

+Qχ(v̄nx + w̄qx)− rv̄χ2(1 + nκχ)κx + nrχ3ūxκx)

+ (ūκχ+ ūn + χv̄x)(fT T̃n + fTT T̃ T̄n) + (ũκχ+ ũn + χṽx)µ̄n

+ (ūq + χw̄x)fT T̃q + (ũq + χw̃x)µ̄q + (rχ(−v̄κχ+ χūx)

+mχ(v̄n + w̄q)(fT T̃x + fTT T̃ T̄x) + (rχ(−ṽκχ+ χũx) +mχ(ṽn + w̃q)µ̄x = 0,

(2.12a)
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n-momentum :

Re

[
− ū2κρ̄(

p̃

p̄
− T̃

T̄
)− 2ūũκρ̄)χ− p̃n − v̄ρ̄ṽn − (v̄ρ̄(

p̃

p̄
− T̃

T̄
) + ṽρ̄)v̄n

− ρ̄ṽt − w̄ρ̄ṽq − (w̄ρ̄(
p̃

p̄
− T̃

T̄
) + w̃ρ̄)v̄q − ūρ̄χṽx

− (ūρ̄(
p̃

p̄
− T̃

T̄
) + ũρ̄)χv̄x

]
+ µ̄(−rṽκ2χ2 − rκχṽn + rṽnn + ṽqq

+ χ2ṽxx + (1 + r)κχ2ũx +Qχ(ũnx + w̃nq)− ũχ2(1 + nκχ)κx + nχ3ṽxκx)

+ fT T̃ (−rv̄κ2χ2 − rκχv̄n + rv̄nn + v̄qq + χ2v̄xx + (1 + r)κχ2ūx

+Qχ(ūnx + w̄nq)− ūχ2(1 + nκχ)κx + nχ3v̄xκx) + (rv̄n

+m(−v̄κχ+ χūx + w̄q))(fT T̃n + fTT T̃ T̄n) + (rṽn +m(−ṽκχ+ χũx + wq))µ̄n

+ (v̄q + w̄n)fT T̃q + (ṽq + wn)µ̄q + χ(ūκχ+ ūn + χv̄x)(fT T̃x + fTT T̃ T̄x)

+ χ(ũκχ+ ũn + χṽx)µ̄x = 0,

(2.12b)

q-momentum :

Re

[
− p̃q − v̄ρ̄w̃n − (v̄ρ̄(

p̃

p̄
− T̃

T̄
) + ṽρ̄)w̄n − ρ̄w̃t − w̄ρ̄w̃q − (w̄ρ̄(

p̃

p̄
− T̃

T̄
)

+ w̃ρ̄)w̄q − ūρ̄χw̃x − (ūρ̄(
p̃

p̄
− T̃

T̄
) + ũρ̄)χw̄x

]
+ µ̄(−κχw̃n

+ w̃nn + rw̃qq + χ2w̃xx +Q(ṽnq + χ(ũqx − κṽq)) + nχ3w̃xκx)

+ fT T̃ (−κχw̄n + w̄nn + rw̄qq + χ2w̄xx +Q(v̄nq + χ(ūqx − κv̄q))
+ nχ3w̄xκx) + (v̄q + w̄n)(fT T̃n + fTT T̃ T̄n) + (ṽq + wn)µ̄n

+ (m(−v̄κχ+ χūx + v̄n) + rw̄q)fT T̃q + (m(−ṽκχ+ χũx + ṽn) + rw̃q)µ̄q

+ χ(ūq + χw̄x)(fT T̃x + fTT T̃ T̄x) + χ(ũq + χw̃x)µ̄x = 0,

(2.12c)
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Energy :

M2(−1 + γ)µ̄((2(ūκχ+ ūn))(ũκχ+ ũn) + 2ūqũq − 2mv̄κχṽn − 2mṽκχv̄n + 2v̄qṽq

+ 2ūκχ2ṽx + 2ũκχ2v̄x + 2χūnṽx + 2χũnv̄x + 2χ2v̄xṽx + 2v̄qw̃n + 2ṽqw̄n

+ 2w̄nw̃n + 2m(χūxṽn + χũxv̄n + χ(−v̄κ+ ūx)w̃q + χ(−ṽκ+ ũx)w̄q + v̄nw̃q

+ ṽnw̄q) + r(2χ2(−v̄κ+ ūx)(−ṽκ+ ũx) + 2v̄nṽn + 2w̄qw̃q) + 2χūqw̃x

+ 2χũqw̄x + 2χ2w̄xw̃x) +M2(−1 + γ)fT T̃ ((ūκχ+ ūn)2 + ū2
q − 2mv̄κχv̄n

+ v̄2
q + 2ūκχ2v̄x + 2χūnv̄x + χ2v̄2

x + 2v̄qw̄n + w̄2
n + 2m(χūxv̄n

+ χ(−v̄κ+ ūx)w̄q + v̄nw̄q) + r(χ2(−v̄κ+ ūx)
2 + v̄2

n + w̄2
q) + 2χūqw̄x

+ χ2w̄2
x) +M2(−1 + γ)Re(v̄p̃n + ṽp̄n + p̃t + w̄p̃q + w̃p̄q + ūχp̃x

+ ũχp̄x) +Reρ̄σ(−v̄T̃n − ṽT̄n − T̃t − w̄T̃q − w̃T̄q

− ūχT̃x − ũχT̄x) +Reρ̄(
p̃

p̄
− T̃

T̄
)σ(−v̄T̄n − w̄T̄q − ūχT̄x)

+ µ̄(−κχT̃n + T̃nn + T̃qq + χ2T̃xx + nχ3T̃xκx) + fT T̃ (−κχT̄n
+ T̄nn + T̄qq + χ2T̄xx + nχ3T̄xκx) + T̄n(fT T̃n + fTT T̃ T̄n) + T̃nµ̄n

+ T̄qfT T̃q + T̃qµ̄q + χ2T̄x(fT T̃x + fTT T̃ T̄x) + χ2T̃xµ̄x = 0,

(2.12d)

Continuity :

−(ρ̄ṽ + ρ̄(
p̃

p̄
− T̃

T̄
)v̄)κχ+ ρ̄χũx + ρ̄(

p̃

p̄
− T̃

T̄
)χūx + ρ̄ṽn + ρ̄(

p̃

p̄
− T̃

T̄
)v̄n

+ ρ̄w̃q + ρ̄(
p̃

p̄
− T̃

T̄
)w̄q + v̄ρ̄(− T̄np̃

p̄T̄
− T̃ ρ̄n

T̄ ρ̄
+
T̃ T̄n
T̄ 2

+
p̃n
p̄
− T̃n
T̄

)

+ ṽρ̄n + ρ̄(− T̄tp̃
p̄T̄
− T̃ ρ̄t
T̄ ρ̄

+
T̃ T̄t
T̄ 2

+
p̃t
p̄
− T̃t
T̄

) + ρ̄(− T̄qp̃
p̄T̄
− T̃ ρ̄q

T̄ ρ̄
+
T̃ T̄q
T̄ 2

+
p̃q
p̄
− T̃q
T̄

)

+ w̃ρ̄q + ūχρ̄(− T̄xp̃
p̄T̄
− T̃ ρ̄x

T̄ ρ̄
+
T̃ T̄x
T̄ 2

+
p̃x
p̄
− T̃x
T̄

) + ũχρ̄x = 0.

(2.12e)

2.1.2 Linear Stability Theory and eN method

Linear stability theory (LST) is the oldest of the three models mentioned in this chapter

and, coupled with the eN method, is still the most widely used tool by industry to

predict laminar to turbulent transition. The equations are derived by assuming that

small fluctuations may be decomposed into Fourier modes, namely,

φ̃(x, n, q, t) = φ̂(n)ei(αx+βq−ωt). (2.13)

23



LST has many limitations, such as neglecting non-parallel effects and surface cur-

vature, being unable to model non-linear mode interaction and completely omitting

receptivity mechanisms. It does however, reduce to a nice eigenvalue problem, re-

quiring the solution of a an eigenvalue based dispersion problem D(α, β, ω) = 0, and

is still today the single most practical method available for many industrial applica-

tions45, particularly as a foundation for design processes. Essentially the eN method

correlates the transition location with the accumulated growth which is measured by

the so-called N -factor. The N -factor is determined from experiments for different flow

configurations and then used as a criterion in transition prediction methods based on

LST.

The eN method is directly related to the neutral stability curve of the problem at

hand, and is governed by the precise nature of the background steady base state. For

any given point x the spatial amplification, A, of the perturbation always relates to

the amplitude, A0, at the initial point of growth of the disturbance, x0. As stated by

Herbert 45 , Liepmann’s criterion is based on this relation between A and A0 such that

the amplitude ratio is given by,

ln
( A
A0

)
=

x∫
x0

−αidx, (2.14)

where αi is the complex part of the stream-wise wave number. By computing many

frequencies and following the greatest ln(A/A0) the N -factor envelope can be attained,

N = max
f

[
ln
( A
A0

)]
. (2.15)

First found by Van Ingen 96 and Smith and Gamberoni 88 independently back in the

1950’s. For an incompressible flow, with low disturbance environment, the N-factor

reaches a critical value at around 7-9. This means transition will occur when the

most locally unstable frequency is amplified by a factor e7 to e9 with respect to its

initial amplitude A0, ie. Atr

A0
≈ eN . Alternatively to evaluating spatial instability,

where it is assumed the span-wise wave number β and the frequency ω are real, the

temporal instability could be solved for. The temporal case assumes the stream-wise

wave number is now real and instead the frequency is assumed complex, ω = ωr + iωi.

Due to the non-linearities in α the temporal growth problem is much easier to solve

although slightly less attractive since repeatable measurements can be more easily

obtained with spatial theory.45

For compressible flows the problem becomes more extensive. The most unstable modes

in compressible flows are oblique waves meaning the angle θ, between the wave number

24



vector and the x-axis, is required to satisfy a dispersion relation. Under the assump-

tion that the growth only takes place in the stream-wise direction and that a spatial

eigenvalue problem is solved given a fixed real frequency ω, βi = θi = 0 and βr or θr

is still required to be specified. Generally, the envelope method is followed for calcu-

lating the local amplification of a given, real only, frequency. For each x location the

direction θM of the wave is sought to yield the maximum value −αiM for all αi. The

N -factor envelope is then defined as follows.5

N = max
f

x∫
x0

−αiMdx = max
f

x∫
x0

max
θ

(−αi)dx (2.16)

The eN method is widely considered a practical and efficient tool for predicting tran-

sition, particularly when the external environment disturbances are minimal. It is

often able to predict the variation in transition location for a given test model and

disturbance environment when varying a particular stability parameter. Due to the

limitations of LST, the eN method has now began to be coupled with more sophisti-

cated methods, such as the Parabolised Stability Equations.

2.1.3 Parabolised Stability Equations (PSE)

The parabolised stability equations (PSE), contrary to LST, do take into account

weakly non-linear disturbances, as well as wall curvature effects of the body surface.

In this approach the perturbation is assumed to be nearly sinusoidal in the stream-

wise direction and the original elliptic set of equations are forced to become parabolic

in order to halt propagation of information upstream via acoustic waves or stream-

wise viscous diffusive terms108,14. These parabolic equations are then solved by down

stream marching along the free-stream direction, meaning the up stream history of the

disturbance has an impact on the flow at any given position x. Free-stream turbulence

or surface roughness forcing can not be modelled with the PSE, due to the formal

parabolising procedure. This is usually modelled using receptivity modelling which

retain stream-wise ellipticity and short-scale resolution required in the resonance stage

of disturbance emergence.

Linear PSE

In classical stability analysis it is assumed that the basic steady state variations in the

wall normal direction are large compared to variations in the stream-wise and span-

wise directions, ∂φ̄
∂x
, ∂φ̄
∂z
<< ∂φ̄

∂y
, meaning there is no dependence of the base flow on x or

z. This is the so-called parallel flow assumption and is too restrictive for flows around
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two dimensional bodies or complex vortical flows. The flow is instead assumed to be

general in a two-dimensional plane, and mildly inhomogeneous in the third direction

such that the following perturbation ansatz is introduced,

φ̃(x, n, q, t) = φ̂(x, n)ei(θ(x)+βq−ωt) + c.c. , where
dθ

dx
= α(x), (2.17)

where c.c. represents complex conjugate. The perturbation field is decomposed further

into this shape, φ̂, and phase function,
∫
α(x)dx+ βq − ωt. Here α is complex and β

and ω are real45,12. The amplitude functions (the so called slow variable) depend on

n and x, and α depends on x, in contrast to the classical linear theory. Ellipticity is

thereby retained for the wave function but the shape function is enforced to become

parabolic through the application of a normalisation condition. This absorbs any rapid

variations of φ̂ into the phase function,∫∞
0
ũ† ∂ũ

∂x
+ ṽ† ∂ṽ

∂x
+ w̃† ∂w̃

∂x
dx∗∫∞

0
ũ†ũ+ ṽ†ṽ + w̃†w̃ dx∗

. (2.18)

Substituting 2.17 into 2.4 the set of equations can then be discretised and recast into

(
L0 + L1

)
φ̂+ L2

∂φ̂

∂x
+
dα

dx
L3φ̂ = 0. (2.19)

Here, L0, L1, L2 and L3 are all matrix operators in n which depend on (x, n) through

the baseflow terms. L0 corresponds to the linear parallel terms, L1 contains non-

parallel terms of the basic state, L2 encompasses non-parallel perturbation terms and

last, but not least, L3 corresponds to wave number terms. The equations are then

ready to be solved by downstream marching.14,45,12,5

Non-linear PSE

The non-linear PSE, although only capable of capturing weakly non-linear phenomena,

are extremely attractive as they can tackle rather complex geometries and are compu-

tationally more efficient (cheaper) than DNS. Once again, the disturbance is assumed

to be periodic in time and in the span-wise direction meaning the base flow is inde-

pendent of t and q. Double Fourier expansions containing two- and three-dimensional

discrete Fourier modes, (l,m) modes, are used to denote the disturbances,

φ̃ =
∞∑

l=−∞

∞∑
m=−∞

φ̂l,m(x, n)e
i
( x∫

x0

αl,m(ξ)dξ+mβq−lωt
)
. (2.20)

Where the Fourier mode (l,m) corresponds to the Fourier components, αl,m, the
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stream-wise wave number, and φ̂l,m, the shape function; αl,m is complex whereas β

and ω are real constants, chosen such that the longest wavelength and period are 2π
β

and 2π
ω

respectively, in the span-wise and temporal domains. Negative values of l and

m correspond to complex conjugates of the positive ones, i.e. we impose φ−l,−m = φ†l,m.

These are imposed because we require the fluctuations we are considering to be real.

Normalisation conditions are again required to ensure weak stream-wise variation of

amplitude functions φ̂l,m with any rapid variations absorbed into the fast wave expo-

nential component through αl,m.14 5

The mean flow distortion mode (0,0) in equation 2.20 is uniform in the q direction

and independent of time. (0,m) modes do not depend on time but distort the basic

flow periodically in the span-wise direction for a given position x. Analogously, the

mode (l,0) is independent of the span-wise direction but is dependent on time. High

harmonics of the fundamental mode correspond to large values of (l,m). In the linear

regime they have very low amplitudes but in the non-linear regime they grow rapidly,

causing the appearance of small wavelengths with high frequencies.5

For most stability problems the Fourier series can be truncated to a finite number of

modes, N and M , such that,

φ̃ =
∞∑

l=−N

∞∑
m=−M

φ̂l,m(x, n)e
i
( x∫

x0

αl,m(ξ)dξ+mβq−lωt
)
. (2.21)

After substituting this into the linearised Navier-Stokes equations these can be reduced

further though applying harmonic balancing and phase locking each non-linear mode

to the real part of the fundamental wave number. Each mode will have its own growth

rate, which is unlinked to the fundamental mode, and closure condition to be satisfied

resulting with a system of coupled partial equations to be solved iteratively.

For the compressible non-linear PSE the problem becomes much more complex. Due to

the arising of triple, and up to sextuple, summations after substitution of 2.21 into the

linearised compressible Navier-Stokes equations, they are extremely difficult to solve

with harmonic balancing. Instead, fast Fourier transforms are used to represent each

perturbed variable and convolutions applied. These are then solved in the physical

space and fast Fourier transformed back to the spectral space for solving of the systems

of equations.
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Limitations

The PSE, although capturing surface curvature, non-parallel effects and being able

to model non-linear mode interaction, need to be given an initial amplitude to begin

the computation, they can not model receptivity. The starting amplitude may be

provided from a receptivity modelling tool such as the LHNS71 or with analytical

theory, such as triple deck. Triple deck theory involves breaking down the flow into a

main deck, which is the basic boundary layer, a lower deck or viscous sub-layer, where

instabilities generated within this layer cause a displacement in the streamlines. This

displacement is then imparted on the upper deck, or ideal fluid layer. The modification

of the streamlines, causes a variation in the pressure field which is then relayed back

to the lower layer, resulting in a coupled system of equations.79

Another rather large limitation of the PSE is that they suffer a stream-wise step size

restriction. Li and Malik 52 found that the point to point marching must be of a length

scale ∆x such that ∆x ≥ 1
αr

, where αr is the real part of the wave number, in order

to obtain a converged solution. This means that when introducing the roughness

feature to the geometry, the roughness must be large enough to have a sufficient

number of points describing the shape with large enough ∆x to not violate the step

size restriction.

Another potential limitation is whether the PSE can be used for flows with laminar

separation present. Park and Park 64,65 used the PSE for problems with and without

separation bubbles present. They documented results using linear PSE, however when

using non-linear PSE they only documented results for problems which maintained a

favourable pressure gradient, i.e. no reverse flow. Perhaps the non-linear form used

by Park and Park 64,65 was unable to converge in the presence of locally reversed flow

pockets within the laminar boundary layer, i.e in the presence of laminar separation

bubbles.

Computational Framework

The linear or non-linear PSE are solved over a stretched grid in the wall normal di-

rection. First an initial guess eigenvalue file is created, which is generated using a

generalised eigenvalue solve step comprising the QZ algorithm54,1, to compute the en-

tire eigenvalue spectrum at the beginning of the space marching. From this computed

spectrum the least stable eigenvalue is determined. The solver can then be re-ran using

this initial guess eigenvalue to recompute the eigenvalue and corresponding eigenfunc-

tion using a considerably more efficient inverse Rayleigh iteration. This is then used

as the initial condition, inflow state, for the space marching procedure. The equations
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solved are touched on here for a TS wave in the (x, y) co-ordinate frame, correspond-

ing to (stream-wise, wall normal) directions, but can be extended to include CFI also.

The equations are parabolised with the assumptions mentioned in section 2.1.3 and a

linear parabolic marching procedure solves the equations,

(L0 + L1)[φ] + L2

[∂φ
∂x

]
= 0, (2.22)

where L0, L1 and L2 are differential operators containing steady base flow terms and

(ω, α). This is then discretised into a first order Euler scheme,

(L0 + L1)[φj] + L2

[φj − φj−1

∆x

]
= 0, (2.23)

and solved for φj with boundary conditions,

[u, v, w, T ](x, 0) = 0, (2.24)

[u,w, T, p](x, y) =
∂[u, v, w, T, p](x, y)

∂y
= 0 as y →∞, (2.25)

the pressure at the wall is found by solving the y-momentum with the continuity equa-

tion. The initial condition is provided at some starting point x0 from the eigenvalue

solution,

φ(x0, y) = f(y), α(x0) = α0. (2.26)

The shape function is normalised with the closure condition in equation 2.18 which is

discretised into,

αn+1 = αn −
i

∆x

∫∞
0
φ†j(φj − φj−1)dy∫∞

0
φ†jφjdy

. (2.27)

Here n denotes the iteration number.

The solution is marched in a two stage process. First, the system of equations 2.23 is

solved for φj with an initial guess αj, which usually is just the value at the previous

position αj−1. Second, the new φj is used to compute 2.27 and provide a new value

α
(j)
n+1 which is then used in the reconstruction of [Lj]. This two stage process repeats

until alpha converges to some small prescribed convergence criterion. In the code

this is based on no further changes in the number of significant figures in α, meeting

a user specified criteria, typically 4 digits of α
(j)
n+1. This ensures the transfer of the

rapidly changing growth in amplitude of the disturbance into the phase function, or

fast variable, thus maintaining the shape function with slow or weak variations in x.
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A stretched grid is applied in the normal direction to recast y ∈ [0,∞] to the compu-

tational domain η ∈ [0, 1] with the algebraic mapping y = gη
b−η . Here, g is a scaling

parameter. The smaller this scaling parameter is, the finer the distribution of points

at the wall. Also, b = 1 + g/ye, where ye is the location where the Dirichlet conditions

are satisfied. Fourth order accurate central differencing is applied for the grid interior

with second order accurate formulae used at the surface boundary point.

For the non-linear PSE, involving the purely two-dimensional TS interaction, we as-

sume,

q̃(x, y, t) =
∞∑

k=−∞

q̂(k)(x, y)e
i
∫ x
x0
α(k)(s)ds−ikωt

. (2.28)

The equations are formulated into the linear and non-linear parts for each mode of

superscript k, such that,

(L(k)
0 + L(k)

1 )[φ(k)] + L(k)
2

[∂φ(k)

∂x

]
= N (k), (2.29)

for each kth mode. Considering the two dimensional non-linear x-momentum equation,

∂ũ

∂t
+ ũ

∂ū

∂x
+ ū

∂ũ

∂x
+ Ψ = −

(
ũ
∂ũ

∂x
+ ṽ

∂ũ

∂y

)
, (2.30)

where Ψ represents the remaining linear terms,

Ψ = v̄
∂ũ

∂y
+ ṽ

∂ū

∂y
+
∂p̃

∂x
− 1

R

(∂2ũ

∂x2
+
∂2ũ

∂y2

)
. (2.31)

Upon substitution of the ansatz 2.28 the following is obtained,

∞∑
k=−∞

[
(−ikω+iα(k)ū)û(k) + ū

∂û(k)

∂x
+ Ψ(k)

]
e
i
∫ x
x0
α(k)(s)ds−ikωt

= −
∞∑

p=−∞

∞∑
m=−∞

[
û(p)(iα(m)û(m) +

∂û(m)

∂x
)

+ v̂(p)∂û
(m)

∂y

]
e
i
∫ x
x0

(α(p)+α(m))ds−i(p+m)ωt
,

(2.32)

each kth mode can be written,

(−ikω+iαkū)ûk + ū
∂ûk

∂x
+ Ψk

= −
∞∑

p=−∞

∞∑
m=−∞

[
ûp(iαmû

m +
∂ûm

∂x
) + v̂p

∂ûm

∂y

]
e
i
∫ x
x0

(αpds+αm−αk)−i(p+m−k)ωt
.

(2.33)
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The summation can be truncated to a bounded summation, ±K for example, and the

complex conjugate relationships made use of to simplify and reduce equations, q̂−k =

q̂k†. Harmonic balancing is used to reduce the equations further with p + m − k = 0

giving p = k −m to arrive at,

(−ikω+iα(k)ū)û(k) + ū
∂û(k)

∂x
+ Ψ(k)

=
∞∑

m=−M

[
û(k−m)(iα(m)û(m) +

∂û(m)

∂x
)

+ v̂(k−m)∂û
(m)

∂y

]
e
i
∫ x
x0

(α(k−m)ds+α(m)−α(k))
,

(2.34)

for all k ∈ [0, K]. The code also assumes that all non-linear harmonics are phase-locked

with the real part of the fundamental (k=1) wave number such that,

R(αk) = kR(α1). (2.35)

The wave number is phase-locked but the imaginary part, of the growth rate, of each

harmonic is free to change with no constriction to the fundamental forcing mode.

There are then k+1 coupled system of equations which are solved iteratively at each jth

stream-wise position until convergence is obtained in the growth rate of each harmonic

φ̂kj . Each harmonic has its own closure condition which needs to be satisfied in the

marching process.

The same boundary and initial conditions are applied as in the linear case. However,

special care needs to be paid to the mean flow distortion (0,0) mode. For the (0,0)

mode the pressure gradient term ∂p̂
∂x

is set to zero to ensure full parabolicity of the

equations. The boundary condition in the free-stream is modified to,

û00 =
∂v̂00

∂y
= ŵ00 = T̂00 = p̂00 = 0 as y →∞, (2.36)

allowing for growth in displacement thickness from the corrected mean flow profile

(ū + û00) due to the non-linear interactions. This enables the mean flow from the

boundary layer solution to adjust itself in order to maintain mass conservation14.

2.1.4 Linearised Harmonic Navier-Stokes (LHNS)

The linearised harmonic Navier-Stokes (LHNS), although requiring slightly more com-

putational resource than the PSE, provide much greater information about the growth

of the instability. They also have the capability to model receptivity71.
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Linear

The LHNS equations, representing the BiGlobal problem, are derived by introducing

the following ansatz

φ̃(x, n, q, t) = φ̂(x, n)ei(βq−ωt) + c.c., (2.37)

where β is the wave number and ω is the frequency, both are real quantities. The LHNS

assume strict periodicity in the span-wise direction and are harmonic in time. They

comprise of few assumptions and are a fully elliptic set of equations where, unlike

the PSE formulation, all terms are retained including importantly the stream-wise

pressure derivative term. The partial differential equations can then be recast upon

numerical discretisation into a large matrix problem of unknown field state points,

namely

Lφ̂ = r̂. (2.38)

L is a matrix of known coefficients, φ̂ is a vector of the unknown perturbation field

and r̂ a forcing vector. The solution vector, φ̂, is obtained directly by a lower-upper

matrix decomposition method; the equations are not solved by time marching. The

forcing vector, r̂, is composed of first order Taylor expansions which modify the wall

boundary condition to generate the disturbance ahead of the step feature. The wall

inhomogeneity may be either stationary (to generate zero frequency disturbances) or

non-stationary to generate travelling disturbances, as denoted in figure 2.1.

Point forcing roughness h(s)

Figure 2.1: Depiction of the computational domain showing generation of the instability (red) within
a fully developed laminar boundary layer and how this instability is modified when convecting over the
roughness.

Non-linear

The non-linear harmonic Navier-Stokes (non-linear HNS) equations are capable of

capturing weakly non-linear mode interaction and come at a fraction of the cost of

DNS. In order to solve for the non-linear problem, the perturbation is assumed to take

the following form,
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φ̃ =
∞∑

l=−∞

∞∑
m=−∞

φ̂l,m(x, n)ei(mβq−lωt). (2.39)

The Fourier series can be truncated to a finite number of modes though the applica-

tion of complex conjugate applications, harmonic balancing applied. Contrary to the

PSE, phase locking does not need to be assumed and enforced. It will arise naturally

if indeed the phase locking mechanism is dominant. For the compressible non-linear

problem these summations become extremely difficult to solve with harmonic balanc-

ing, meaning instead fast Fourier transforms are utilised as described in the non-linear

PSE section. The numerical strategy is nearly identical to solving the non-linear PSE

equations, and is in some way less complicated relative to the PSE.

Limitations

The limitations of this method are few. The LHNS require slightly more computational

resource than the PSE, which is mainly due to requiring the direct inversion of a very

large matrix through usage of a banded LU factorisation solver61. They also currently

assume that the steady baseline stream-wise flow derivatives in the normal velocity

component are zero59. Whilst this has been shown to have little impact in the analysis

of smoothly varying aerofoil geometries, i.e. in clean computations, it is expected that

in the presence of a step like feature, this quantity may no-longer be quite so negligible.

This is applied due to the immense difficulty of computing these derivatives accurately,

as opposed to any conceptual issue.

Computational Framework

The equations are discretised with a fourth order accurate central finite differencing

scheme in the stream-wise direction and a pseudo-spectral approach is applied in the

surface normal direction. This pseudo-spectral approach comprises of a Chebyshev

collocation method using Gauss-Lobatto collocation points to evaluate the dependent

variables. Gauss-Lobatto points are defined to include both ends of the domain and

are given by,

ηi = cos
(π ∗ i
Ny

)
, i = 0, 1, ..., Ny, (2.40)

where ηi is the Gauss-Lobatto point existing in [−1, 1] and Ny is the order of the Cheby-

shev polynomial. The flow field can then be represented with a series of Chebyshev
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polynomials at each of these points,

f(ηi) =

Ny∑
k=0

AkTk(ηi), (2.41)

where Ak is the corresponding amplitude to the order k Chebychev polynomial, Tk,

Tk(ηi) = cos(kcos−1(ηi)). (2.42)

Knowing T0 = 1 and T1 = ηi the Chebychev polynomials can also be derived recur-

sively.

The inflow plane is situated sufficiently upstream of the actuation point such that

perturbations can be considered negligible there. At the outflow boundary the PSE

radiation condition is applied,
∂φ̂

∂x
= iαφ̂. (2.43)

Here α is the stream-wise wave number estimated by a linear PSE computation. To

introduce the disturbance to the domain the no-slip boundary conditions are relaxed

at the required forcing location. This is generally dictated from experiments though

it is well known from receptivity theory that forcing at the neutral point generally

provides the most efficient means to generate disturbances. The wall conditions are

relaxed near the location of the neutral point through application of Taylor expanded

boundary conditions,

û(x, 0) =− εĤ(x)
∂ū(x, 0)

∂y
,

v̂(x, 0) =− εĤ(x)
(
iω +

∂v̄(x, 0)

∂y

)
,

ŵ(x, 0) =− εĤ(x)
∂w̄(x, 0)

∂y
,

where ε << 1 and H(x, z) represents the roughness feature and Ĥ(x)eiβz is the cor-

responding Fourier decomposition in the span-wise direction. The perturbation is

assumed to be negligible in the far field. In order to solve the linear problem given

by equation 2.38 a lower-upper factorisation is utilised. Further details may be found

in61 and71.

Typically, 1800 points are used in the stream-wise direction, a more crucial criterion

that we adhere to is having a minimum of 20 points per disturbance wavelength. In

the wall-normal direction we typically use 51 Chebyshev polynomials for the no step

cases. To resolve disturbance evolution over the very rapid changes in the BFS and
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step induced boundary-layer flows as many as 10000 stream-wise and 90+ Chebyshev

polynomials are subsequently utilised.

The non-linear HNS formulation is similar to that described in the PSE computational

framework section, however this is much simpler as a normalisation condition does not

have to be satisfied for each kth mode. If we follow the same example as given in that

earlier section 2.1.3 the ansatz would be,

q̃(x, y, t) =
∞∑

k=−∞

q̂k(x, y)e−ikωt. (2.44)

The equations are formulated into the linear and non-linear parts for each mode of

superscript k, such that,

Lkφk = N k, (2.45)

for each kth mode. The non-linear matrix, N k, consists of the non-linear components

and the wall forcing actuation. The Lower Upper block factorisation must be solved

for each kth mode. The K + 1 system of coupled non-linear equations is solved in

parallel and iteratively. The LU factorisation of the Lk factors remain unchanged with

only the N k forcing terms being updated throughout the iterations. The N k variable

comprises the nonlinear field source terms as well as any wall forced terms that are

imposed as boundary conditions.

2.2 Roughness Transformation

The generation of a perturbation via a small surface actuation has been discussed; now

consideration is needed for the relatively larger scale step feature and its incorporation

into the modelling. It is important to note that for both PSE and LHNS codes, the

solvers have visibility of the roughness though the base-flow profiles, but require an

additional transformation to allow resolution of the step feature introduced. The

original perturbed PSE58 and LHNS61 equations have been formulated based upon

a body-fitted clean geometry coordinate system, without allowance for very rapid

variations in surface topography such as those considered in this work.

In order to incorporate large scale roughness, an addition non-orthogonal coordinate

system must be introduced and a parameter assigned to the roughness profile, h(x),

which is dependent on the stream-wise body fitted coordinate, x. The clean body fitted

coordinate system (x, n, q) is transformed to the roughness incorporating coordinate

system (s, Y, z) by application of the following transformation,

s = x, Y = n− h(x), z = q, (2.46)
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see figure 2.2 also. Transforming the variables with this implies that

∂

∂n
=

∂

∂Y
,

∂2

∂n2
=

∂2

∂Y 2
, (2.47)

∂

∂x
=

∂

∂s
− h′(s) ∂

∂Y
,

∂2

∂x2
= h′2

∂2

∂Y 2
− 2h′

∂2

∂Y ∂s
− h′′ ∂

∂Y
+

∂2

∂s2
. (2.48)

Since, upon substitution into the Navier-Stokes equations, the transformation is only

introduced though the derivative terms, we can see that the roughness edges will

cause the key difference between the original and transformed solutions, where dh/ds

and d2h/ds2 hold non-zero values. If the newly introduced roughness feature shows

streamwise invariance, i.e. with dh/ds = d2h/ds2 = 0, the equations will reduce to the

original body-fitted equation set. The final transformed equation sets, which include

the rapid geometrical step modelling, will from here on be referred to as the LHNSh

and PSEh models.

h(s)
s

Y

n = Y + h(s)

xb

xe
xb xe

Y

s

Figure 2.2: Depiction of coordinate transformation to decompose the roughness incorporating geom-
etry, (x, n, q), to the body fitted clean surface, (s, Y, z), plus a separate h component. Computational
domain is depicted on the right.

2.3 Linearised Harmonic Navier-Stokes with Roughness Correction

(LHNSh)

2.3.1 Linear

We begin with the linearised incompressible body fitted Navier-Stokes equations 2.4

where an infinitely swept wing assumption is enforced, ∂φ̄
∂q

= 0. Upon substitution of

the ansatz 2.37 we attain,

Re(ûv̄ + ūv̂)κχ− ûκ2χ2 −Reχp̂x −Rev̂ūn −Rev̄ûn − κχûn + ûnn

+Reiωû−Reiβw̄û− β2û−Reûχūx −Reūχûx

+ χ2ûxx − 2κχ2v̂x − v̂χ2(1 + nκχ)κx + nχ3ûxκx = 0,

(2.49a)
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−Re2ûūκχ− v̂κ2χ2 −Rep̂n + 2κχ2ûx −Rev̂v̄n −Rev̄v̂n − κχv̂n + v̂nn

+Reiωv̂ −Reiβw̄v̂ − β2v̂ −Reûχv̄x −Reūχv̂x

+ χ2v̂xx + ûχ2(1 + nκχ)κx + nχ3v̂xκx = 0,

(2.49b)

−Reiβp̂−Rev̂w̄n −Rev̄ŵn − κχŵn + ŵnn +Reiωŵ −Reiβw̄ŵ − β2ŵ

−Reûχw̄x −Reūχŵx + χ2ŵxx + nχ3ŵxκx = 0,
(2.49c)

χûx + v̂n + iβŵ − v̂κχ = 0. (2.49d)

Now substituting the transformation in equation 2.46 into these equations 2.49 results

with the Linearised Navier-Stokes Equations with transformation (LHNSh). Notice

here that only the perturbation terms have had the transformation applied to them.

This is due to the base flow, extracted from the Nektar++ solver, already having these

extra h terms included within the base flow derivatives. This happens in the python

script to be covered in chapter 3.

Re(ûv̄ + ūv̂)κχ− ûκ2χ2 −Reχ(p̂s − h′p̂Y )−Rev̂ūY −Rev̄ûY − κχûY + ûY Y

+Reiωû−Reiβw̄û− β2û−Reûχūs −Reūχ(ûs − h′ûY )

+ χ2(ûss − 2h′ûsY − h′′ûY + h′2ûY Y )− 2κχ2(v̂s − h′v̂Y )

− v̂χ2(1 + (Y + h)κχ)κs + (Y + h)χ3(ûs − h′ûY )κs = 0,

(2.50a)

−Re2ûūκχ− v̂κ2χ2 −Rep̂Y + 2κχ2(ûs − h′ûY )−Rev̂v̄Y −Rev̄v̂Y − κχv̂Y + v̂Y Y

+Reiωv̂ −Reiβw̄v̂ − β2v̂ −Reûχv̄s −Reūχ(v̂s − h′v̂Y )

+ χ2(v̂ss − 2h′v̂sY − h′′v̂Y + h′2v̂Y Y ) + ûχ2(1 + (Y + h)κχ)κs

+ (Y + h)χ3(v̂s − h′v̂Y )κs = 0,

(2.50b)

−Reiβp̂−Rev̂w̄Y −Rev̄ŵY − κχŵY + ŵY Y +Reiωŵ −Reiβw̄ŵ +−β2ŵ

−Reûχw̄s −Reūχ(ŵs − h′ŵY ) + χ2(ŵss − 2h′ŵsY − h′′ŵY + h′2ŵY Y )

+ (Y + h)χ3(ŵs − h′ŵY )κs = 0,

(2.50c)

χ(ûs − h′ûY ) + v̂Y + iβŵ − v̂κχ = 0. (2.50d)

To complete the problem, a boundary condition at the wall is also required. This is

calculated by substituting the continuity and differential of the continuity, with respect

to the normal component, into the normal-momentum equation to replace vY and vY Y .

No slip is applied for u and w, but not for v to allow for the suction and blowing to

initiate the perturbation.

In order to simulate this numerically, the physical space must then be transformed
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once again to a bounded computational space. This is achieved with the mapping

Y = gη
b−η to move from Y (0,∞) 7→ η(0, 1), and an equivalent respective mapping for

s(0,∞) 7→ ξ(0, 1), where g and b are constants. This type of mapping, taking the wall

normal direction for example, ensures that the grid points are clustered abundantly

close to the wall with cells gradually lengthening when traversing away from the wall.

In the stream-wise direction this results with fine elements close to the leading edge

of the geometry which become coarser when moving downstream. In this work we do

not utilise a streamwise stretching, a uniform spacing is preferable, due to the short

stream-wise length scales of the roughness.

The assumption φ̄ss = 0 is also adopted since these terms are extremely difficult to

compute accurately. This is reasonable for the clean boundary layer solutions but may

become a limitation in the current framework since we expect these terms to play more

of a role when a roughness is present. However, since the nature of our roughness are

very localised and short-scale, contribution of the φ̄ss term to the overall disturbance

modifications may well be relatively insignificant.

The compressible formulation of the problem is more extensive but follows the same

principle. The final compressible LHNSh equation set is given by,
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s-momentum :[χκρ̄Rev̄ − iRew̄ρ̄β − χūsReρ̄+ iReρ̄ω + µ̄Y κχ

µ̄
− β2 − κ2χ2

]
û

+
[χκρ̄Reū− µ̄srχ2κ− ūYReρ̄

µ̄
− rχ3κsκY − rχ3κsκh− rχ2κs

]
v̂

+
iµ̄smχŵβ

µ̄
+
[χReūv̄κρ̄− ūYRev̄ρ̄− χūsReūρ̄

µ̄p̄

]
p̂

+
[(
ūκχfTT T̄Y + iχw̄sfTβ + rχ2ūsfTT T̄s +mχv̄Y fTT T̄s − fTκχ2v̄sr

− fT rv̄χ3κsκY − fT rv̄χ3κsκh− fT rv̄χ2κs − fT ūκ2χ2 − fTκχūY
− fTκχ2v̄s + fT rχ

2ūss + fTQχv̄sY + χv̄sfTT T̄Y + fT ūY Y + fT rχ
3ūsκsh

− rχ2v̄κfTT T̄s + fT rχ
3ūsκsY + ūY fTT T̄Y

) 1

µ̄
+
ūYRev̄ρ̄− χReūv̄κρ̄+ χūsReūρ̄

µ̄T̄

]
T̂

+
[−Reūρ̄χ+ µ̄srχ

2

µ̄
+ rχ3κsY + rχ3κsh

]
ûs

+
[−µ̄srχ2hs −Rev̄ρ̄+ µ̄Y +Reūρ̄χhs

µ̄
− rχ3κsY hs − rχ3κshhs − κχ− rχ2hss

]
ûY

+
[
− κχ2 +

µ̄Y χ

µ̄
− κχ2r

]
v̂s +

[−µ̄Y χhs + µ̄smχ

µ̄
+ κχ2rhs + κχ2hs

]
v̂Y

+ iQχβŵs − iQχβhsŵY −
Reχp̂s
µ̄

+
Reχhsp̂Y

µ̄
+
[rχ2ūsfT +mχv̄Y fT − rχ2v̄κfT

µ̄

]
T̂s

+
[ ūκχfT + rχ2v̄κfThs + χv̄sfT − rχ2ūsfThs −mχv̄Y fThs + ūY fT

µ̄

]
T̂Y

+ rχ2h2
sûY Y − 2rχ2hsûsY + rχ2ûss −Qχhsv̂Y Y +Qχv̂sY + ûY Y = N1,

(2.51a)
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Y -momentum :[−χ2κs/r − 2χReūκρ̄− χv̄sReρ̄+ χ2µ̄sκ

µ̄r
+
−χ3κsκY − χ3κsκh

r

]
û

+
[−iRew̄ρ̄β + iReρ̄ω − µ̄Ymκχ− v̄YReρ̄

µ̄r
− β2

r
− κ2χ2

]
v̂

+
iµ̄Ymŵβ

µ̄r
+
[−χv̄sReūρ̄− χReū

2κρ̄− v̄YRev̄ρ̄

µ̄rp̄

]
p̂

+
[(
− fT ūχ3κsκh−mv̄κχfTT T̄Y − fT ūχ3κsκY + fTχ

3v̄sκsh+ fTχ
3v̄sκsY

+mχūsfTT T̄Y + ūκχ2fTT T̄s + fTκχ
2ūs + iw̄Y fTβ + fTQχūY s − fT ūχ2κs

χūY fTT T̄s + χ2v̄sfTT T̄s + fTχ
2v̄ss
) 1

µ̄r
+
χReū

2κρ̄+ χv̄sReūρ̄+ v̄YRev̄ρ̄

µ̄rT̄

+
fT v̄Y Y − fT v̄κ2χ2 − fTκχv̄Y + fTκχ

2ūs + v̄Y fTT T̄Y
µ̄

]
T̂

+
[κχ2 + µ̄Ymχ

µ̄r
+
κχ2

r

]
ûs +

[−µ̄Ymχhs + χµ̄s
µ̄r

− κχ2hs
r
− κχ2hs

]
ûY

+
[−Reūρ̄χ+ χ2µ̄s

µ̄r
+
χ3κsY + χ3κsh

r

]
v̂s +

[
− κχ+

µ̄Y
µ̄

+
Reūρ̄χhs

µ̄r

+
−χ3κshhs − χ3κsY hs − χ2hss)

r
+
−χ2µ̄shs −Rev̄ρ̄

µ̄r

]
v̂Y +

iQχŵY β

r

+
−Rep̂Y
µ̄r

+
[ ūκχ2fT + χūY fT + χ2v̄sfT

µ̄r

]
T̂s

+
[−ūκχ2fThs −mv̄κχfT +mχūsfT − χ2v̄sfThs − χūY fThs

µ̄r
+
v̄Y fT
µ̄

]
T̂Y

+
χ2v̂ss
r

+ v̂Y Y +
QχûY s
r
− QχhsûY Y

r
− 2χ2v̂Y shs

r
+
χ2h2

sv̂Y Y
r

= N2,

(2.51b)

40



q-momentum :[−χw̄sReρ̄+ iχµ̄sβ

µ̄

]
û+

[−iQχκβ − w̄YReρ̄+ iµ̄Y β

µ̄

]
v̂

+
[iReρ̄ω − iRew̄ρ̄β

µ̄
− rβ2

]
ŵ +

[−w̄YRev̄ρ̄− χw̄sReūρ̄

µ̄p̄
− iReβ

µ̄

]
p̂

+
[(
− fTκχw̄Y + χ2w̄sfTT T̄s − imfTβv̄κχ+ fTχ

3w̄sκsY + fTχ
3w̄sκsh

+ imfTβv̄Y + imfTβχūs + w̄Y fTT T̄Y + fTχ
2w̄ss + fT w̄Y Y

) 1

µ̄
+
w̄YRev̄ρ̄+ χw̄sReūρ̄

µ̄T̄

]
T̂

− iQχβûY hs + iQv̂Y β + iQχβûs +
[−Reūρ̄χ+ χ2µ̄s

µ̄
+ χ3κsY + χ3κsh

]
ŵs

+
[−χ2µ̄shs −Rev̄ρ̄+Reūρ̄χhs + µ̄Y

µ̄
− χ3κsY hs − χ3κshhs − χ2hss − κχ

]
ŵY

+
χ2w̄sfT T̂s

µ̄
+
[−χ2w̄sfThs + w̄Y fT

µ̄

]
T̂Y − 2χ2ŵY shs + χ2h2

sŵY Y + χ2ŵss + ŵY Y = N3,

(2.51c)
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Energy :[
M2(−1 + γ)

(2ūY κχ+ 2κχ2v̄s + 2ūκ2χ2 + 2iχβw̄s
Re

+
χp̄s
µ̄

)
− ρ̄σχT̄s

µ̄

]
û

+
[
M2(−1 + γ)

(2iβw̄Y − 2mκχv̄Y + 2rχ2v̄κ2 − 2rχ2ūsκ

Re

+
p̄Y
µ̄

)
− ρ̄σT̄Y

µ̄

]
v̂

+
[
M2(−1 + γ)

(2imχβūs − 2imχβv̄κ+ 2imv̄Y β

Re

)]
ŵ

+
[
M2(−1 + γ)(̄

iw̄β − iM2(−1 + γ)ω

µ̄

)
+
−ρ̄σūχT̄s − ρ̄σv̄T̄Y

µ̄p̄

]
p̂

+
[
M2(−1 + γ)

(
2fT ūκχ

2v̄s + 2fTmχūsv̄Y + fT rχ
2v̄2κ2 + 2fT ūκχūY

− 2fTmv̄κχv̄Y − 2fT rχ
2v̄κūs + fT ū

2κ2χ2 + 2fTχūY v̄s + fT rχ
2ū2

s + fT ū
2
Y

fT w̄
2
Y + fTχ

2v̄2
s + fTχ

2w̄2
s + fT rv̄

2
Y

) 1

µ̄Re

+
ρ̄σūχT̄s + ρ̄σv̄T̄Y

µ̄T̄

+
fTχ

3T̄sκsY + fTχ
3T̄sκsh+ fTχ

2T̄ss + χ2T̄ 2
s fTT − fTκχT̄Y + fT T̄Y Y + fTT T̄

2
Y

µ̄Re

+
−β2

Re

+
iρ̄σω − iρ̄σw̄β

µ̄

]
T̂ +

[
M2(−1 + γ)

(−2rχ2v̄κ+ 2mχv̄Y + 2rχ2ūs
Re

)]
ûs

+
[
M2(−1 + γ)

(2χv̄s − 2mχv̄Y hs − 2rχ2ūshs + 2rχ2v̄κhs + 2ūY + 2ūκχ

Re

)]
ûY

+
[
M2(−1 + γ)

(2χūY + 2χ2v̄s + 2ūκχ2

Re

)]
v̂s

+
[
M2(−1 + γ)

(2rv̄Y − 2mv̄κχ− 2ūκχ2hs − 2χūY hs − 2χ2v̄shs + 2mχūs
Re

)]
v̂Y

+
2M2(−1 + γ)χ2w̄sŵs

Re

+
[
M2(−1 + γ)

(2w̄Y − 2χ2w̄shs
Re

)]
ŵY

+
M2(−1 + γ)ūχp̂s

µ̄
+
[
M2(−1 + γ)

( v̄ − ūχhs
µ̄

)]
p̂Y

+
[χ2µ̄s + χ2T̄sfT

µ̄Re

+
χ3κsY + χ3κsh

Re

+
−ρ̄σūχ
µ̄

]
T̂s

+
[ T̄Y fT − χ2T̄sfThs + µ̄Y − χ2µ̄shs

µ̄Re

+
−ρ̄σv̄ + ρ̄σūχhs

µ̄

+
−χ2hss − κχ− χ3κsY hs − χ3κshhs

Re

]
T̂Y −

2χ2T̂Y shs
Re

+
T̂Y Y
Re

+
χ2h2

sT̂Y Y
Re

+
χ2T̂ss
Re

= N4,

(2.51d)
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Continuity :

ûχρ̄s
ρ̄

+
[ ρ̄Y
ρ̄
− κχ

]
v̂ + iŵβ +

[χūs − iω + v̄Y + iw̄β − κχv̄
p̄

+
−ūχT̄s − v̄T̄Y

p̄T̄

]
p̂+

[ v̄T̄Y + ūχT̄s
T̄ 2

+
iω − χūs + κχv̄ − iw̄β − v̄Y

T̄

+
−ūχρ̄s − v̄ρ̄Y

ρ̄T̄

]
T̂ + χûs − χûY hs + v̂Y +

ūχp̂s
p̄

+
[ v̄ − ūχhs

p̄

]
p̂Y −

ūχT̂s
T̄

+
[−v̄
T̄

+
ūχhs
T̄

]
T̂Y = N5.

(2.51e)

For the linear problem all Nj, where j = 1 : 5, are zero. The boundary condition at

the wall is calculated in the same manner as for the incompressible problem and the

same final transformation is applied to the whole equation set to bound the domain

to the computational space.

2.3.2 Non-linear

The non-linear problem is more extensive once again. In addition to the terms stated

in equations 2.51, the non-linear terms are obtained by retaining O(ε2) and O(ε3)

during the linearising step, meaning there are extra inviscid and viscous terms to be

included in the equations. The following equations now define the extra terms for Nj,
where j = 1 : 5, in equations 2.51 to complete the non-linear problem.

[(
(−χũY ũ− ũY ūχ+ T̃Y χγM

2)ρ̃− ũY ρ̄χũ− T̃ χρ̃Y γM2
)
hs

+
(
(−κχṽ − v̄κχ− χūs − χũs)ũ− (ūκχ− ũY − ūY )ṽ

+ ũzw̃ + ũY v̄ + w̄ũz + ũsūχ+ ũt + T̃sχγM
2
)
ρ̃+ (−κχρ̄ṽ + ũsρ̄χ)ũ

+ ũY ρ̄ṽ + ũzρ̄w̃ + T̃ χρ̃sγM
2
]Re

µ̄
= −N1,

(2.52a)

[
(−χṽY ũ− ūχṽY )ρ̃− ũρ̄χṽY

)
hs +

(
(κχũ2 − (−2ūκχ− χṽs − χv̄s)ũ

− (−ṽY − v̄Y )ṽ + ṽzw̃ + ūχṽs + v̄ṽY + w̄ṽz + ṽt + T̃Y γM
2
)
ρ̃

+ κρ̄χũ2 + ρ̄χṽsũ+ ρ̄ṽY ṽ + ρ̄ṽzw̃ + ρ̃Y T̃ γM
2
]Re

rµ̄
= −N2,

(2.52b)

[(
(−w̃Y χũ− w̃Y χū)ρ̃− ρ̄ũχw̃Y

)
hs +

(
− (−χw̄s − χw̃s)ũ− (−w̄Y − w̃Y )ṽ

+ w̃zw̃ + v̄w̃Y + w̄w̃z + w̃t + T̃zγM
2 + ūχw̃s

)
ρ̃+ ρ̄χw̃sũ+ ρ̄w̃Y ṽ

+ ρ̄w̃zw̃ + ρ̃zT̃ γM
2
]Re

µ̄
= −N3,

(2.52c)
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[(
(−(χT̃Y σ −M2(−1 + γ)χT̃Y γM

2)ũ− (χūT̃Y σ −M2(−1 + γ)χūT̃Y γM
2))ρ̃

+ (M2(−1 + γ)χρ̃Y T̃ γM
2)− (χρ̄T̃Y σ −M2(−1 + γ)(χT̄ ρ̃Y + χρ̄T̃Y )γM2))ũ

+M2(−1 + γ)χūT̃ ρ̃Y γM
2)
)
hs +

(
− (−χT̄sσ − χT̃sσ

+M2(−1 + γ)(χT̄s + χT̃s)γM
2)ũ− (−T̃Y σ − T̄Y σ +M2(−1 + γ)(T̃Y + T̄Y )γM2)ṽ

− (−T̃zσ +M2(−1 + γ)T̃zγM
2)w̃ − (M2(−1 + γ)(T̃t + v̄T̃Y + w̄T̃z + χūT̃s)γM

2

− v̄T̃Y σ − w̄T̃zσ − χūT̃sσ − T̃tσ))ρ̃+ (−M2(−1 + γ)(χρ̄s + χρ̃s)γM
2T̃

− (M2(−1 + γ)(χT̄ ρ̃s + χρ̄T̃s)γM
2 − χρ̄T̃sσ))ũ

+ (−M2(−1 + γ)(ρ̃Y + ρ̄Y )γM2T̃ − (−T̃Y ρ̄σ +M2(−1 + γ)(T̃Y ρ̄+ ρ̃Y T̄ )γM2))ṽ

+ (−M2(−1 + γ)ρ̃zT̃ γM
2 − (−ρ̄T̃zσ +M2(−1 + γ)(T̄ ρ̃z + ρ̄T̃z)γM

2))w̃

−M2(−1 + γ)(ρ̃t + v̄ρ̃Y + w̄ρ̃z + χūρ̃s)γM
2T̃
]Re

µ̄
= −N4,

(2.52d)[
(χũY ρ̃+ ũχρ̃Y )hs + (κχṽ − (χũs + ṽY + w̃z))ρ̃− χρ̃sũ− ρ̃Y ṽ − w̃ρ̃z

]1
ρ̄

= −N5.

(2.52e)

Upon substitution of the non-linear HNS ansatz 2.37 we obtain the extra non-linear

terms. The boundary condition is formulated from the continuity equation and its

derivatives to replace vY and vY Y in the non-linear y-momentum equation. In contrast

to the PSE, we do not impose px = 0 in order to halt upstream propagation of

information in the form of acoustic waves104. These are then transformed to the

bounded computational domain as described in the linear section. The boundary

condition is derived in the same way as for the LHNS. These equations are then

mapped to the computational domain. The non-linear version of LHNSh has been

implemented within the simpler original code by Dr. Mughal.

2.4 Parabolised Stability Equations with Roughness Correction (PSEh)

2.4.1 Linear

The PSE equations are only formulated in the compressible form but are, however,

broken down into a surface curvature terms included code and a surface curvature

terms excluded form. Both versions of the code have been derived with the h correction

but only the more extensive curvature set will be covered here. The derivation begins

much the same as with the Linearised Harmonic Navier-Stokes derivation, by taking

the compressible equation set 2.12, linearising, applying the infinite sweep assumption

and then substituting in the ansatz in equation 2.17. After substituting in the ansatz

we must ensure the PSE assumptions are enforced, such as setting second stream-wise
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derivatives, and products of stream-wise derivatives, to zero. Once this is achieved,

the transformation in equation 2.46 can be applied to incorporate the roughness to

the equations, resulting with,

s-momentum :[ µ̄srχ2α + χκρ̄Rev̄ − iRew̄ρ̄β −Reūρ̄χα + µ̄Y κχ+ iReρ̄ω − χūsReρ̄

µ̄

+ rχ2α2 − β2 − κ2χ2 + rχ3κsαY + rχ3κsαh
]
û

+
[
− κχ2α− rχ2κs − κχ2rα− rχ3κsκY − rχ3κsκh

+
χκρ̄Reū+ µ̄Y χα− ūYReρ̄− µ̄srχ2κ

µ̄

]
v̂ +

[iµ̄smχβ
µ̄

+ iQχβα
]
ŵ

+
[−ReχT̄α−ReχT̄s

µ̄γM2
+
χReūv̄κ− ūYRev̄ − χūsReū

µ̄

]
ρ̂

+
[(
fT ūY Y − rχ2v̄κfTα/µ̄+ fT rχ

3ūsκsh− rχ2v̄κfTT T̄s − fT rv̄χ3κsκY

− fT rv̄χ3κsκh+ fT rχ
3ūsκsY + fTQχv̄sY + χv̄sfTT T̄Y + rχ2ūsfTα

+ rχ2ūsfTT T̄s +mχv̄Y fTα +mχv̄Y fTT T̄s + ūκχfTT T̄Y + iχw̄sfTβ

− fTκχ2v̄sr − fT rv̄χ2κs + ūY fTT T̄Y − fTκχ2v̄s − fT ūκ2χ2 − fTκχūY
) 1

µ̄

+
−Reχρ̄α−Reχρ̄s

µ̄γM2

]
T̂ +

[
2rχ2α + rχ3κsY + rχ3κsh+

µ̄srχ
2 −Reūρ̄χ

µ̄

]
ûs

+
[ µ̄Y +Reūρ̄χhs − µ̄srχ2hs −Rev̄ρ̄

µ̄
− κχ− rχ3κsY hs − rχ3κshhs − 2rχ2αhs

]
ûY

+
[ µ̄Y χ
µ̄
− κχ2r − κχ2

]
v̂s +

[ µ̄smχ− µ̄Y χhs
µ̄

+ κχ2hs +Qχα + κχ2rhs
]
v̂Y

+ iQχβŵs − iQχβŵY hs −
ReχT̄ ρ̂s
µ̄γM2

+
ReχT̄ ρ̂Y hs
µ̄γM2

+
[mχv̄Y fT + rχ2ūsfT − rχ2v̄κfT

µ̄
− Reχρ̄

µ̄γM2

]
T̂s +

[Reχρ̄hs
µ̄γM2

+
rχ2v̄κfThs − rχ2ūsfThs −mχv̄Y fThs + χv̄sfT + ūκχfT + ūY fT

µ̄

]
T̂Y

−Qχhsv̂Y Y +Qχv̂sY + ûY Y = N1,

(2.53a)
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Y -momentum :[−χ2κs + κχ2rα− χ3κsκY − χ3κsκh+ κχ2α

r

+
χ2µ̄sκ+ µ̄Ymχα− χv̄sReρ̄− 2χReūκρ̄

r̄µ

]
û+

[χ2α2 + χ3κsαY + χ3κsαh− β2

r

+
(
χ2µ̄sα− v̄YReρ̄+ iReρ̄ω − µ̄Ymκχ− iRew̄ρ̄β −Reūρ̄χα

) 1

rµ̄
− κ2χ2

]
v̂

+
iµ̄Ymŵβ

rµ̄
+
[−v̄YRev̄ − χv̄sReū− χReū

2κ

µ̄r
− ReT̄Y
rµ̄γM2

]
ρ̂

+
[(
fT rv̄Y Y + rv̄Y fTT T̄Y + iw̄Y fTβ + χ2v̄sfTT T̄s + χūY fTα + χūY fTT T̄s

+ χ2v̄sfTα + fTκχ
2ūs + fTQχūsY − fT ūχ2κs − fT ūχ3κsκh

−mv̄κχfTT T̄Y − fT ūχ3κsκY − fT rv̄κ2χ2 +mχūsfTT T̄Y + ūκχ2fTα

+ fTχ
3v̄sκsh+ fTκχ

2ūsr − fT rκχv̄Y + fTχ
3v̄sκsY + ūκχ2fTT T̄s

) 1

rµ̄
− Reρ̄Y
rµ̄γM2

]
T̂

+
[κχ2

r
+
µ̄Ymχ

rµ̄
+ κχ2

]
ûs +

[Qχα− κχ2hs
r

+
χµ̄s − µ̄Ymχhs

rµ̄
− κχ2hs

]
ûY

+
[2χ2α + χ3κsY + χ3κsh

r
+
−Reūρ̄χ+ χ2µ̄s

rµ̄

]
v̂s

+
[ µ̄Y
µ̄
− κχ+

−2χ2αhs − χ3κsY hs − χ3κshhs
r

+
−χ2µ̄shs −Rev̄ρ̄+Reūρ̄χhs

rµ̄

]
v̂Y

+
iQχŵY β

r
− Reρ̂Y T̄

rµ̄γM2
+
[χūY fT + χ2v̄sfT + ūκχ2fT

rµ̄

]
T̂s

+
[ v̄Y fT − ūκχ2fThs −mv̄κχfT − χūY fThs − χ2v̄sfThs +mχūsfT

µ̄
− Reρ̄

rµ̄γM2

]
T̂Y

− QχhsûY Y
r

+
QχûsY
r

+ v̂Y Y = N2,

(2.53b)
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q-momentum :[iχµ̄sβ − χw̄sReρ̄

µ̄
+ iQχβα

]
û+

[−iQχκβ + iµ̄Y β − w̄YReρ̄

µ̄

]
v̂

+
[iReρ̄ω −Reūρ̄χα− iRew̄ρ̄β + χ2µ̄sα

µ̄
+ χ3κsαY + χ3κsαh+ χ2α2 − rβ2

]
ŵ

+
[−χw̄sReū− w̄YRev̄

µ̄
+
−iReβT̄

µ̄γM2

]
ρ̂+

[(
χ2w̄sfTα + χ2w̄sfTT T̄s − fTκχw̄Y

+ imfTβv̄Y + fTχ
3w̄sκsY + fTχ

3w̄sκsh+ w̄Y fTT T̄Y − imfTβv̄κχ

+ imfTβχūs + fT w̄Y Y
) 1

µ̄
+
−iReβρ̄

µ̄γM2

]
T̂ + iQχβûs − iQχβûY hs + iQv̂Y β

+
[−Reūρ̄χ+ χ2µ̄s

µ̄
+ 2χ2α + χ3κsY + χ3κsh

]
ŵs

+
[−χ2µ̄shs −Rev̄ρ̄+Reūρ̄χhs + µ̄Y

µ̄
− χ3κsY hs − χ3κshhs − 2χ2αhs − κχ

]
ŵY

+
χ2w̄sfT T̂s

µ̄
+
[−χ2w̄sfThs + w̄Y fT

µ̄

]
T̂Y + ŵY Y = N3,

(2.53c)
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Energy :[−Reρ̄σχT̄s +M2(−1 + γ)Reχp̄s
µ̄

+M2(−1 + γ)
(
− 2rχ2v̄κα + 2mχv̄Y α

+ 2rχ2ūsα + 2iχβw̄s + 2ūκ2χ2 + 2ūY κχ+ 2κχ2v̄s
)]
û

+
[−Reρ̄σT̄Y +M2(−1 + γ)Rep̄Y

µ̄
+M2(−1 + γ)

(
− 2mκχv̄Y + 2ūκχ2α + 2rχ2v̄κ2

− 2rχ2ūsκ+ 2χūY α + 2χ2v̄sα + 2iβw̄Y
)]
v̂

+
[
M2(−1 + γ)

(
− 2imχβv̄κ+ 2imχβūs + 2χ2w̄sα + 2imv̄Y β

)]
ŵ

+
[−ReσūχT̄s −Reσv̄T̄Y

µ̄

+M2(−1 + γ)
ReūχT̄s − iReωT̄ + iRew̄βT̄ +ReūχT̄α +Rev̄T̄Y

µ̄γM2

]
ρ̂

+
[(
χ2T̄ 2

s fTT + χ2µ̄sα−Reρ̄σūχα + fTT T̄
2
Y − iReρ̄σw̄β + fT T̄Y Y

+ iReρ̄σω + fTχ
3T̄sκsY + fTχ

3T̄sκsh+ χ2T̄sfTα− fTκχT̄Y
) 1

µ̄

+M2(−1 + γ)
(
fT ū

2
Y + fT w̄

2
Y + fT rχ

2v̄2κ2 + 2fTmχūsv̄Y + 2fT ūκχūY

+ 2fT/ūκχ
2v̄s + 2fTχūY v̄s − 2fT rχ

2v̄κūs − 2fTmv̄κχv̄Y + fT ū
2κ2χ2

+ fT rχ
2ū2

s + fTχ
2v̄2
s + fTχ

2w̄2
s + fT rv̄

2
Y

) 1

µ̄

+M2(−1 + γ)
(
Reūχρ̄α + iRew̄βρ̄+Rev̄ρ̄Y +Reūχρ̄s − iReωρ̄

) 1

µ̄γM2

+ χ2α2 − β2 + χ3κsαY + χ3κsαh
]
T̂ +

[
M2(−1 + γ)

(
− 2rχ2v̄κ+ 2rχ2ūs + 2mχv̄Y

]
ûs

+
[
2M2(−1 + γ)

(
rχ2v̄κhs − rχ2ūshs −mχv̄Y hs + ūκχ+ χv̄s + ūY

)]
ûY

+
[
2M2(−1 + γ)

(
ūκχ2 + χ2v̄s + χūY

)]
v̂s

+
[
2M2(−1 + γ)

(
− ūκχ2hs −mv̄κχ− χ2v̄shs − χūY hs +mχūs + rv̄Y

)]
v̂Y

+ 2M2(−1 + γ)χ2w̄sŵs +
[
2M2(−1 + γ)

(
− χ2w̄shs + w̄Y

)]
ŵY

+M2(−1 + γ)ReūχT̄ ρ̂s/(µ̄γM
2)

+
[
−M2(−1 + γ)ReūχT̄hs/(µ̄γM

2) +M2(−1 + γ)Rev̄T̄ /(µ̄γM
2)
]
ρ̂Y

+
[−Reρ̄σūχ+ χ2µ̄s + χ2T̄sfT

µ̄
+ χ3κsY + χ3κsh

+
M2(−1 + γ)Reūχρ̄

µ̄γM2
+ 2χ2α

]
T̂s

+
[−Reρ̄σv̄ − χ2T̄sfThs − χ2µ̄shs + µ̄Y +Reρ̄σūχhs + T̄Y fT

µ̄

− χ3κsY hs − χ3κshhs − 2χ2αhs − κχ−
M2(−1 + γ)(Reūχρ̄hs +Rev̄ρ̄)

µ̄γM2

]
T̂Y

+ T̂Y Y = N4,

(2.53d)
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Continuity :[
χα +

χρ̄s
ρ̄

]
û+

[
− κχ+

ρ̄Y
ρ̄

]
v̂ + iŵβ +

[−κχv̄ + χūs + v̄Y + iw̄β − iω + ūχα

ρ̄

]
ρ̂

+ χûs − χûY hs + v̂Y +
ūχρ̂s
ρ̄

+
[ v̄ − ūχhs

ρ̄

]
ρ̂Y = N5.

(2.53e)

For the linear problem all Nj, where j = 1 : 5, are zero. A boundary condition at the

wall is also required to complete the problem. This is calculated by substituting the

continuity and differential of the continuity, with respect to the normal component,

into the normal-momentum equation to replace ṽY and ṽY Y . The enthalpy equation is

also rearranged to substitute T̃Y Y into the normal-momentum equation. The physical

space then needs to be transformed once again to a bounded computational space.

This is achieved with the mapping Y = gη
b−η to move from Y (0,∞) 7→ η(0, 1), where g

and b are constants.

2.4.2 Non-linear

With the addition of non-linearity there inevitably comes complexity, as with the

LHNSh. Again, O(ε2) and O(ε3) terms are additionally retained in the derivation to

arrive at the additions stated in 2.52. Substituting in the ansatz from 2.21 arrives at the

extra non-linear terms defining Nj, where j = 1 : 5, in equations 2.53. The boundary

condition in this case is formulated from the continuity and its derivation to replace

vY and vY Y in the non-linear y-momentum equation. These are then transformed

to the bounded computational domain as described in the linear section. The mean

flow distortion (MFD) mode assumes px = 0 in order to halt upstream propagation of

information in the form of acoustic waves104. The boundary condition is derived the

same as for the linear PSE and these equations are then mapped to the computational

domain.

2.5 Prandtl Boundary Layer Equation Solver

We will also make use of a Prandtl Boundary layer solver tool, CoBLc, to confirm

we have obtained the correct boundary layer profiles from our more accurate steady

DNS generated baseflows with no excrescence present. Unfortunately the CoBLc for-

mulation cannot be used for cases when a roughness is present due to the presence

of adverse pressure gradients and separated flow. The solution process is based on

solving the parabolic boundary layer equations. It is well known that these governing

equations fail on the emergence or onset of separated flow. The equations solved by
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the CoBlc method are those satisfying a compressible boundary layer over an infinitely

swept wing,
∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (2.54a)

ρ
(
u
∂u

∂x
+ v

∂u

∂y

)
= ρeue

due
dx

+
∂

∂y

(
µ
∂u

∂y

)
, (2.54b)

ρ
(
u
∂w

∂x
+ v

∂w

∂y

)
=

∂

∂y

(
µ
∂w

∂y

)
, (2.54c)

ρ
(
u
∂T

∂x
+ v

∂T

∂y

)
=

1

σ

∂

∂y

(
µ
∂T

∂y

)
− u
(ρeue
cp

due
dx

)
+
µ

cp

((∂u
∂y

)2
+ (

∂w

∂y

)2
)

. (2.54d)

All variables here are dimensional and cp is the specific heat at constant pressure.

Values at the edge of the boundary layer are denoted with subscript e which are

dependent on the stream-wise location. The equations are defined in the normal to

leading edge co-ordinate frame. Similarity variables are then introduced through use

of the Faulkner-Skan transformation,

η =
(ρeue
µex

)1/2
∫ y

0

ρ(s)

ρe
ds, (2.55)

with the stream function,

ψ =
(
ρeµeuex

)1/2
f(η, x), (2.56)

to reduce the equations to,

∂

∂η
(χf ′′) +m1(s− f ′2) + cff ′′ = x

(
f ′
∂f ′

∂x
− f ′′∂f

∂x

)
, (2.57a)

∂

∂η
(χg′) + cfg′ = x

(
f ′
∂g

∂x
− g′∂f

∂x

)
, (2.57b)

∂

∂η
(
χ

σ
s′) + (γ − 1)χ(M2

xf
′′2 +M2

c g
′2) + cfs′ = x

(
f ′
∂s

∂x
− s′∂f

∂x

)
, (2.57c)

where,

f ′ =
u

ue
, g′ =

w

we
, s =

T

Te
,

ρ

ρe
=

1

s
, χ =

µρ

µeρe
(2.58a)

m1 =
x

ue

due
dx

, c =
1 +m1

2
+

1

2

x

µeρe

d

dx
(µeρe) (2.58b)

M2
x =

u2
e

γR∗Te
, M2

c =
w2
e

γR∗Te
. (2.58c)

Here f ′, g, s are all functions of η and x, Mx and Mc are stream-wise and crossflow edge

Mach numbers and µ behaves under Sutherlands law. Far field boundary conditions
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are,

f ′(η →∞, x) = g(η →∞, x) = s(η →∞, x) = 1, (2.59)

and wall conditions are,

f(0, x) = fw(x), f ′(0, x) = g(0, x) = 0, (2.60)

where subscript w refers the wall. The wall temperature,

s(0, x) =
Tw(x)

Te(x)
, (2.61)

or adiabatic wall condition

s′(0, x) = 0, (2.62)

must also be satisfied. A fully implicit second-order accurate accurate three point

backward differencing scheme is used in the stream-wise direction and a two point

second order accurate scheme is used in the wall normal direction based on a Keller-

Box scheme50. The equations can thus solve the development of non-similar boundary-

layers over a general infinite swept aerofoil, given the slip velocities (i.e. ue, we) or

surface pressure variations computed by an inviscid flow solver.60
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2.6 Pipeline of Tool Set
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Figure 2.3: Pipeline for the stability tool sets.
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CHAPTER 3

The Embedded Approach

The method generally adopted by industry for solving Partial Differential Equations

(PDE’s) is to use Computational Fluid Dynamics (CFD) models based on Reynolds-

Averaged Navier-Stokes (RANS) equations using second order finite volume schemes.

These produce satisfactory results but even state of the art schemes struggle to com-

pute flows which are highly separated, vortex dominated or have complex geometries.

Low order schemes, which generally encompass, at best, numerical methods that are

second order accurate in space, traditionally struggle with high numerical dissipa-

tion and low accuracy when modelling transient or turbulent flow regimes in complex

geometries.42

In contrast, high order methods such as spectral / hp element methods are very ap-

pealing as they have low numerical dissipation and dispersion. They also have the

ability to increase accuracy in local regions and can, like low order methods, also

use unstructured high order meshes to adapt to complex geometries. Unfortunately,

high order methods suffer from a lack of robustness in terms of numerical stability.

Although they are more computationally efficient at obtaining a smaller error value

than a lower order method, they are not necessarily faster than a lower order method

obtaining a larger error. There is also the issue of a lack in high order mesh generation

software which is crucial for maximising the benefit of these high order methods. The

robustness and mesh generation difficulties with high order methods hinders their use

in industry, if they are used at all.99

One of the oldest and most commonly known method for solving PDE’s is the Finite
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Difference Method (FDM). FDM’s usually begin with the conservative form of the

governing equations and make use of Taylor expansions to approximate PDE’s via

structured grids. FDM’s cope well with increasing order but have issues handling

complex geometries due to the simplicity of the meshing32. Finite Volume Methods

(FVM’s) are based on the integral of the conservative form of the governing equations.

The solution domain is split into a finite number of control volumes and the integral

form of the equations are applied in each cell and solved for, about the centroid of the

cell. FVM’s are extremely good at dealing with complex geometries but are difficult

to develop higher than second order accurate schemes for three dimensions.99

The Finite Element Method (FEM) discretises the domain into a finite number of

elements to create a structured or unstructured mesh. These elements may be triangles

or quadrilaterals in the 2D-case and tetrahedra, hexahedra, pyramids or prisms moving

to the 3D-case. The governing equations are multiplied by a weight function and

then integrated over the domain. The solution is approximated by trial functions, or

shape functions, within each element ensuring continuity across the boundaries. The

selected weight and trial functions are often the same, this is known as the Galerkin

formulation.99 32

When the trial function spans the entire domain the FEM becomes a Spectral method.

The spectral method provides superior convergence rates accompanied by extremely

good error properties due to the exponential convergence achieved when increasing

order, or increasing p-type refinement. However, since the trial functions span the

entire domain, there comes the bottle neck of geometrical rigidity.

The spectral / hp element cherry picks the best aspects from FEM and Spectral

methods to provide a high order solution for complex geometries. The domain is

discretised into a set of finite elements and the solution is represented by a series

of high order polynomials within each element, known as h and p type refinement

respectively.

3.1 The High Order Spectral/HP Element Method

In order to describe the spectral / hp element method we must understand the appli-

cation of the method of weighted residuals and the classical Galerkin formulation. The

method of weighted residuals is used to identify convergence. Firstly, the governing

system of equations for a problem are written in their strong form,

L(u) = 0 ∈ Ω, (3.1)
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where L is a linear differential operator and u(x, t) is a vector of unknowns defined

within domain Ω = {x, t : 0 ≤ x ≤ 1, 0 ≤ t ≤ T}. We assume that the exact solution,

u, can be approximated by, uδ, such that,

uδ(x, t) = u0(x, t) +
N∑
i=1

ui(t)Φi(x). (3.2)

The set of functions Φi(x) are the expansion bases, or trial functions, ui(t) are unknown

coefficients and u0 is selected to satisfy the initial and boundary conditions. The set

of points where Ni−1 6= 0 are defined as the support. Substituting equation (3.2) into

equation (3.1) obtains a residual R which is non-zero,

L(uδ) = R(uδ). (3.3)

The approximation is given by equation (3.2) but at this point we have not uniquely

distinguished each ûi(t). In order to find each ûi(t) the residual R is placed under

a restriction. The type of restriction that is imposed dictates the type of numerical

scheme derived. In the method of weighted residuals a set of test, or weight, functions

are introduced, vj(x), and an inner product between these and the residual R is

computed. A requirement is placed to ensure the Legendre inner product, (<,>), over

the domain Ω must be zero,

< vj(x), R >= 0 for j = 1, ..., N . (3.4)

At convergence the residual R tends to zero since, as N → ∞ the approximated

solution uδ(x, t) approaches the exact solution u(x, t). There are many different choices

of expansion function Φi(x) and test function vj each determining a different scheme.

To name but a few of the most popular there is the collocation method, which uses

the Dirac delta as a test function, vj(x) = δ(x − xj), to define a set of collocation

points xj where the residual is zero, R(xj) = 0. The differential equation is then

exactly satisfied at these grid points and so this is the natural starting point for a finite

difference method. The finite volume method, where the domain Ω is divided into non-

overlapping sub domains, Ωj, which take the value vj = 1 inside Ωj and vj = 0 outside

Ωj. The least squares method, with the test function vj = ∂R
∂ûj

, which determines the

coefficients which minimise < R,R >. Finally, there is the Galerkin method, utilised

by the Nektar++ Spectral / hp element method, which adopts the same test function

as trial functions vj = Φj. For an example of the Galerkin formulation see appendix

A.66

Each of the trial functions, Φi, are global expansion modes which will be zero over

many of the h-type discretised N − 1 elemental regions. Considering the expansion in
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3.2 globally would be very inefficient. Instead they can be mapped to local elemental

expansion functions, φp, for each element,

uδ(x, t) = u0(x, t) +
N−1∑
i=0

ûi(t)Φi(x) = u0(x, t) +
M∑
e=1

P∑
p=0

ûep(t)φ
e
p(ξ), (3.5)

where M is the total number of elements, p is the order of the local expansion. Re-

ducing the element size, h-type refinement, causes the error in the numerical solution

to decay achieving algebraic convergence.

Spectral methods are known for their advantageous convergence properties and high

accuracy. If the support of the basis function does not just span an element, but spans

the whole interval, then the method becomes a spectral method. A global discreti-

sation of the domain is performed by using a single representation of function uδ(x)

throughout the domain. A linear combination of continuous functions represented

with truncated series expansions are used for uδ(x).66

uδ(x) ≈ uN(x) =
N∑
i=0

ûiφi (3.6)

The expansion basis is composed of high order orthogonal polynomials from the Jacobi

polynomial family, such as Chebyshev or Legendre, or trigonometric functions such as

Fourier expansions. Increasing the order of the polynomial, P, or the basis functions, p-

type refinement, leads to exponential convergence. The order of convergence of spectral

methods is dictated by the regularity of the solution. Smooth solutions give better

accuracy and convergence than finite element methods but this very quickly becomes

untrue if the domain is irregular, hence their restriction to simple geometries. The

spectral / hp element method is a combination of these two methods, where converged

solutions can be obtained by refining the mesh or by increasing the polynomial order.

A local expansion is defined upon each standard element Ωst = ξ : −1 ≤ ξ ≤ 1 and

can be mapped through the transformation χe(ξ) to any elemental domain Ωe. The

mapping χ expresses the global co-ordinate, x, to the local, ξ, co-ordinate57. Anal-

ogously, uep are the local expansion coefficients. If the mapping is linear then the

local expansion mode is a polynomial in x as well as in ξ, this also means the global

expansion modes are also polynomials in x. However, curved elements require more

complicated mappings meaning the global expansion may not remain a polynomial in

x, even though by definition it is always a polynomial in ξ. Hence the necessity of a

local expansion.

The choice of local expansion basis, φep(ξ) may be either nodal or modal. The case

where solutions are approximated at a fixed set of nodes is called a nodal expansion,
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Mapping

Connectivity

Figure 3.1: The main building blocks of the spectral / hp element method

and modal expansions apply lower order expansion basis within higher order modal

expansions, more can be found on this in A. One way to ensure the scheme is well

posed is to enforce C0 continuity for the solution, uδ, across the elements. This is a

necessary condition for the continuous Galerkin method. By enforcing C0 continuity

in the global coefficients, ûi(t), the spectral/hp method can decompose these global

expansions into local expansion coefficients, uep(t), with the same shape for efficient

integration and differentiation.

The spectral / hp element method can be broken down into various building blocks

in order to understand the entire process. First the domain is decomposed into non-

overlapping elements, a local to standard element mapping is applied, and an expansion

basis is described to define the solution within each element. Numerical integration

and differentiation is then performed and the standard domain is then connected and

transformed back to the global space. The pipeline is shown in figure 3.1.

3.1.1 Velocity Correction Scheme

A splitting scheme is applied for the use of the unsteady incompressible Navier-Stokes

equations within Nektar++ which decouples the velocity fields from the pressure field.

Application of splitting schemes improve numerical efficiency due to the independent

handling of the velocity and pressure fields. A multi-step time integration which is
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stiffly-stable is applied as follows49,39,

û−
∑J−1

q=0 αqû
n−q

∆t
= −

J−1∑
q=0

βq(û.∇)ûn−q ∈ Ω, (3.7)

∇2pn+1 = ∇.
( û

∆t

)
∈ Ω, (3.8)(

∇2 − γ0

ν∆t

)
ûn+1 = ∇pn+1 − û

ν∆t
∈ Ω, (3.9)

(3.10)

where Neumann boundary conditions are applied for the pressure,

∂pn+1

∂n
= −n.

[∂un+1

∂t
+ ν

J−1∑
q=0

βq(∇× ω)(n−q) +
J−1∑
q=0

βq(∂un−q.∇)(n−q)
]
, (3.11)

and pn+1 = 0 is enforced at the outflow. The velocity field is defined by un, pressure

by pn and vorticity with ωn at time tn. δt denotes a time step, tn+1 − tn. Integra-

tion weights for the explicit-implicit integration of the advection-diffusion equations

are given by αq, βq and γ0 and J is the order of integration. Non-linear advection

terms in equations 3.7 are advanced explicitly in a first step, a second step solves the

pressure Poisson problem and a third step enforces the elliptic viscous terms implic-

itly through application of a Helmholtz problem. The velocity boundary conditions

are also enforced in this final step. An explicit advection scheme is chosen, since the

advection terms are non-linear. The explicit treatment of these terms requires the

Courant-Friedrichs-Lewy (CFL) condition to be satisfied to ensure the time-stepping

remains stable. See Karniadakis and Sherwin 48 for further information.

3.1.2 High Order Outflow Condition

Due to the shape of the wing analysed and incidence applied in this work the flow

can begin to separate from the aerofoil. These perturbations are usually managed

by applying far away outflow boundaries from the geometry such that the separation

has dissipated sufficiently upon exiting the domain. In order to obtain refinement

over the excrescences in this work, an embedded approach is utilised, which will be

expanded upon in the following section. This means the flow can separate and reverse

at, or in very close vicinity of, the outflow boundaries. This influx of kinetic energy to

the domain can cause the solution to become unstable at the boundary. In order to

manage this separation a high order outflow boundary condition, introduced by Dong

et al. 22 , is applied.
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Dong et al. 22 derived an outflow boundary condition which halts uncontrolled growth

of energy flux into the domain via the outflow boundary,

pn+1 = ν

J−1∑
q=0

∇û(n−q).n− 1

2

∣∣∣ J−1∑
q=0

û(n−q)
∣∣∣S0

(
n.

J−1∑
q=0

û(n−q)
)
− fn+1

b .n, (3.12)

where S0(n.u) = 1
2
(1− tanh(n.u

u0δ
)) is a step function. The characteristic velocity scale

is given by u0, δ is a non-dimensional sufficiently small positive constant and fb is

a forcing term. This forcing is set to zero for the aerofoil problem discussed in this

thesis.

3.2 The Embedded Approach

A civil transport wing would have a boundary layer near the leading edge of the order

of millimetres, a wing chord on the order of metres and a span of tens of metres.

Computationally modelling a roughness of the order of microns on a geometry of this

scale is very demanding with a single computation. To overcome such scale difficulties,

in this work a hybrid approach is developed which combines the use of an industrial

finite volume RANS solver to obtain the global flow regime with an embedded spectral

/ hp element approach to more efficiently resolve the fine detail in the laminar bound-

ary layer and roughness. In order to produce the roughness base flow computations,

firstly the clean geometry, steady base flow is computed using RANS solutions of the

industrial flow solver TAU21. This consists of the full geometry prescribed in the line

of flight direction. A new embedded mesh is constructed in the normal to leading

edge direction, required for Nektar++, using AutoCAD Inventor. AutoCAD creates

a smooth curvature spline CAD geometry consisting of 70% of the upper surface and

truncated to 50% on the lower, in order to neglect the reverse flow on the suction

side. Linear external boundaries are constructed to complete the domain. This is

then exported and used as an input file for NekMesh. NekMesh is a mesh constructor

creating curvilinear elements at the geometry surface. It places refinement in areas

of higher curvature and uses smoothness algorithms to automatically set mesh sizings

though application of the following formula,

δe = 2R
√
ε(2− ε) . (3.13)

Here ε is an element scaling parameter, R is the radius of curvature of the CAD geom-

etry and δe is the element size. This is constrained between a maximum and minimum

value prescribed by the user. Triangular elements are created unless additional pa-

rameters are prescribed to create a layer of quadrilateral elements in the domain. This
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layer can be constructed cleverly by assigning the number of layers of quadrilateral

elements, progression and thickness in order to construct a stream-wise growing layer

of quadrilateral elements. Unfortunately this is not enough refinement alone. The

meshing program also needs additional refinement lines over the upper surface which

remains a heavily manual process. When the roughness is incorporated to the geome-

try, these additional refinement lines are absolutely essential. The generation of a well

defined, robust mesh is in no way trivial. Once a valid mesh is created, a DNS simu-

lation with the incompressible Navier-Stokes (ICNS) solver within Nektar++ can be

computed. Although NekMesh offers Jacobian checking routines to highlight invalid

elements introduced though the mapping defining the curvature, to ensure validity of

the mesh, this does not ensure a robust mesh has been created. There may still be

problems when running the ICNS, such as too severe element size changes between

refinement lines, meaning the mesh generation must be returned to in order to try and

resolve the problem. Inflow boundary conditions are extracted from the full TAU solu-

tion and high order outflow pressure conditions are applied at the outflow boundaries

to enable converged solutions on the truncated domain22, see figure 3.2. The angle

of attack is fed in through the inflow velocities and the sweep is introduced through

Fourier expansions along the span with periodic boundary conditions at inflow and

outflow. This completes a 2.5 dimensional domain of one element thickness. The

clean geometry is first simulated with low polynomial order and then ramped up to

attain convergence. The solution is time marched to a steady state and then a time

averaging filter is applied. The process is summarised in figure 3.4.

Figure 3.2: Left shows the full TAU solution, right shows the embedded Nektar++ domain.

3.3 Validation

Convergence studies of h and p type refinement are conducted to ensure no mesh

dependence, see appendix B. Typically a seventh order polynomial approximation is

required within the quadrilateral, near wall, layer and a lower order is sufficient within

the external triangular elements. Usual roughness meshes contain 10,000 elements

which are then expanded though the corresponding polynomial basis. Steady solutions

are confirmed with an L2 norm relative error of averaged velocity fields across the entire
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domain such that,

c

ū∞

∑N
j=1

(
q̄t(j)− q̄t−1(j)

)2∑N
j=1

(
q̄t(j)

)2 ≤ 10−5, (3.14)

where q̄ represents a vector of averaged velocity fields, subscripts denote the time

position, j represents a point in the domain, c is the length scale of the chord and ū∞

the free stream velocity.

3.4 Extraction of Boundary Layer Profiles

Once the DNS has converged, the flow field needs to be converted into the correct

format for input into the stability tool sets, the PSEMEAN.PRO file. Nektar++

simulations are computed in the Cartesian co-ordinate system, whereas the PSEMEAN

file needs to be defined with respect to the h-incorporating body fitted system, the

same as that described by the transformation equations 2.46.

First of all, the time averaged output file needs to be a 2D expansion, not a 2.5D. In

order to do this a post processing routine within the FieldConvert library is applied

(mean mode) in order to extract along the zero plane in Fourier space. This will then

become the 2D file containing all information of the basic flow.

For the PSEMEAN file, only points within the boundary layer and just outside are

required. As previously stated, these must be prescribed normal to the geometry

surface which means the normal vector to the surface must be known. This is attained

by using a wall extraction routine, wall shear stress, within the Nektar++ framework to

provide all points over the geometry surface and a decomposition of the normal vector.

This information can then be used within a python routine to generate a selection

of points in the wall normal direction at each stream-wise wall point. Points are

defined from the attachment line which is found by calculating the pressure coeffiecient

maximum. Not all points along the surface are utilised as this would become too time

consuming for the interpolations to follow. Each point along the surface, coordinate

s, and all its corresponding normal points will now be referred to as a station. The

selection of points prescribed in the wall normal direction are Chebyshev collocation

points, leading to clustered points near the wall which are desired, and clustered points

in the free stream which are undesired.

Once a points file has been constructed containing all the chosen coordinate points,

these need to be probed in the averaged solution field. This is achieved through another

FieldConvert option, interpolate points, to provide a data file of velocity components

and pressure at the requested points. The PSEMEAN file not only requires the prim-

itive variable, but also first and second derivatives with respect to the body fitted
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system. Obtaining smooth second order derivatives is again not trivial, the task of

finding a suitable interpolation process was achieved after a variety of attempts before

finding the best way to proceed. Even now, there is still room for improvement which

will be expanded upon later.

The velocities extracted from the probing routine are still prescribed in the Cartesian

frame meaning these must first be transformed to the body fitted frame. The desire is

then to have a set of points which are clustered at the wall, sparse in the free-stream and

station profiles which are smooth for all derivatives. Although the primitive variables

may look smooth to the eye, when taking derivatives to second order they can become

rather noisy. This is because Nektar++ only enforces C0 continuity of the variables. In

order to smooth them, each station is cubic spline fitted to a set of equidistant points,

every other point is then ignored and another cubic spline interpolation applied to

obtain the original points profile and create smoother primitive variables. Derivatives

of this smooth spline are then calculated with python inbuilt cubic spline interpolation

with every other point of the equidistant distribution. The pressure field and its

derivatives are obtained though the fitting of Chebyshev polynomials via other Python

libraries and interpolated to equispaced points.

This has taken care of the wall normal derivatives, the next point to address is the

stream-wise derivatives. Firstly, the body fitted coordinate system is still defined

with respect to Cartesian coordinates. The wall normal direction is easy to assign

since the points originate at zero, the wall, and are spaced as we prescribed. The

stream-wise coordinate system begins at zero, from the attachment line, and points

growing downstream are calculated using cumulated Pythagoras Theorem. Since the

boundary layer points are more clustered near the leading edge of the geometry both in

the stream-wise and normal direction, each row vector of points traversing away form

the wall will be different. In order to take derivatives in the stream-wise direction,

all stations need to have the same point distribution. This means, the entire domain

of primitive velocity variables are again interpolated, via cubic splineing, along each

station to a set of points defined by a geometric progression. The s-coordinate system

is recalculated and a cubic spline fit can be applied in the stream-wise direction.

Derivatives and cross derivatives can then be calculated and finally the whole flow

field interpolated onto an equispaced grid.

The final task remains to non-dimensionalise the data. This is achieved with the

boundary layer edge values which are determined by finding the point where the

stream-wise velocity is 99.99% of the inviscid stream-wise velocity, such that ūe =

99.99% ūinviscid. The boundary layer edge thickness can can be determined and these

two quantities used in the scaling of the PSEMEAN file. This concludes the generation

for the clean file.
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If an excrescence is present there are some extra modification to be made to the process.

Firstly, the roughness profile, h(s), is required along with first and second derivatives.

The first hurdle here is establishing h(s) in the first place. This is because the roughness

profile has been created in AutoCAD with a filleting procedure applied to curve the

corners. Finding the distance, h, should be a simple task of finding the difference

between the clean geometry and the roughness geometry. However, due to the wall

surface distribution of points being different with each Nektar++ mesh generated,

this does not become very straight forward. Essentially a triangle is constructed from

the three nearest points, one from the roughness and two from the clean geometry.

Two circles are then constructed between the excrescence point and each clean point

and their location of intersection identified. This provides the normal to the clean

surface, at the location of the roughness point. The tangent to the surface can be

found from the negative inverse of this meaning equations of the lines governing the

normal and tangent can be found. The intersection of these then gives the clean surface

location of the roughness point, and so h(s) can be finally found. Due to the steepness

of the steps introduced, spline fitting of the profile to calculate derivatives obtains

spurious overshoots. As a consequence of the non-equidistant grid points the usual

central differencing stencil for the derivative is now only first order accurate. Instead

a polynomial approximation is applied to retain second order accurate derivatives.

The other modification to the routine is for the stream-wise velocity derivatives. Due to

the strong stream-wise gradient changes present in the neighbourhood of the roughness,

a cubic spline fitting can no longer be applied here. Instead, a polynomial fitting is

applied in the region of the roughness only and cubic spline interpolation is applied

elsewhere in the domain, see figure 3.3. Stream-wise derivatives must also incorporate

the transformation,

q̄x = q̄s − h′q̄Y , (3.15)

to ensure correct implementation of the roughness.

A summary of the process can be found in figure 3.4.

3.5 Nektar++ LNS

Nektar++ is also used to compute the unsteady linearized incompressible Navier-

Stokes solutions (Nektar++ LNS) for comparison with the more efficient PSE and LNS

stability codes. Contrary to the harmonic formulation of the LHNS equations, which

provide the long time asymptotic solution, Nektar++ LNS applies a time marching

procedure. The domain and method of solving is set up similarly to that of the

baseflow cases13 however, a finer mesh is required for the Nektar++ LNS in order to
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u′(x, n, z)

u(s, Y, z)

v′(x, n, z)
v(s, Y, z)

s

spline

spline fitting

bump location

linear
fitting

fitting

Figure 3.3: Transfomation of Cartesian velocity components to body fitted. Example of wall normal
spline fitting denoted by the blue oval, stream-wise spline fitting points in red, and the green box de-
notes the region in which spline fitting is replaced with linear fitting.

obtain converged solutions. This results in using another embedded mesh consisting

of only the upper surface geometry. The wall conditions are modified to provide

suction / blowing across one Nektar++ surface element thickness to introduce the

perturbation. The span-wise domain is configured such that it is the same length

scale as the introduced CFI and periodic boundary conditions are then applied.
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3.6 Pipeline of Tools

Line	of	Flight	(LOF)	
coordinate	system	

Normal	to	leading	
edge	(NLE)	coordinate	

system	

(NLE)	coordinate	
system	

Initial	
condition	

and	
boundary	
conditions	

Python	script	to	
generate	body	
fitted	coordinate	

system	

Python	script	to	
generated	body	
fitted	u,	v,	w,	p	

along	with	1st	and	
2nd	derivatives		

PSEMEAN.PRO	

	

Nektar++	
Embedded	clean	

base	flow		

TAU	(RANS)	
Full	clean	base	
flow	generation	

AutoCAD	Inventor	to	create	
embedded	geometry	+	

domain	

NekMesh	to	create	
embedded	mesh	

Clean	Embedded	Generation	

AutoCAD	Inventor	to	create	
embedded	roughness	

geometry	

NekMesh	to	create	
embedded	mesh	

Nektar++	FieldConvert	option:	
Interpolate	the	clean	mesh	to	
the	embedded	mesh	to	provide	

initial	condition	

Nektar++	FieldConvert	option:	
Extract	and	interpolate	clean	
boundaries	to	embedded	mesh	
boundaries	

Nektar++	
Embedded	clean	

base	flow		

Re-submit	with	
increased	polynomial	

order	

Re-submit	with	
increased	polynomial	

order	

Roughness	Embedded	Generation	

Manual	refinement	
lines	required	

Manual	refinement	
lines	required	

Nektar++	FieldConvert	option:	
Extract	the	geometry	surface	

Cartesian	coordinates	

Nektar++	FieldConvert	
option:	

Probe	the	embedded	
solution	at	the	

required	body	fitted	
points	

Figure 3.4: Pipeline for Nektar++.
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CHAPTER 4

Two Dimensional Flow Problems

As a starting block for testing the new stability tools, PSEh and LHNSh, we began

with flat plate un-swept cases. These consist of a dimple case, with a half cosine

shaped indentation, and a randomly distributed roughness case, placed around the

centre of the surface of the flat plate.

4.1 Dimple

The dimple case is based upon the work by Xu et al. 107 which features a surface inden-

tation, of width either 11 (81mm) or 22 (162mm) times the boundary layer thickness,

and height either 45% (0.81mm), 52% (1.62mm) or 60% (2.17mm) of the boundary

layer thickness. There is a laminar separation bubble (LSB) confined within the dim-

ple for some configurations. Two dimensional and three dimensional excrescences were

considered; our analysis will focus on the two dimensional cases where the boundary

layer profiles have been extracted through the mid-symmetry plane.

4.1.1 Nektar++ Base Flow Solution

Base flows were computed with Nektar++ incompressible Navier-Stokes solver. The

flow configuration has a free stream velocity of 18 m/s and a Reynolds number of 1.2

million. The inflow domain is initiated at 0.2m where a Blasius flow, zero pressure

gradient, is prescribed and the outflow is located at 1.2m. Computations typically
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feature 4500 elements in the x − y plane with a 5th order polynomial expansion and

the span is modelled with 120 Fourier expansions107. The dimple profile is described

by a half cosine wave,

ξ =
h

2

(
cos
(2πr

λ

))
, (4.1)

where h is the displacement from the clean surface, i.e. flat plate, λ is the width of the

dimple and r is the radius. For the thinner width dimple there are recirculation bubbles

present for the two deeper depths, but for the wider case, reverse flow is only just

present in the deepest case. An example of a typical 2D baseflow is given in figure 4.1

along with typical dimple depth profiles. As expected, the boundary layer decelerates

in the upstream part of the dimple and accelerates in the downstream part where

the pressure gradient is adverse to favourable respectively. There is some asymmetry

present in the pressure distribution and velocity profiles due to the displacement of

the boundary layer. Example pressure gradients can be found in figure 3 of Gowree

et al. 36 .

Figure 4.1: Left: Base flow for 2D dimple feature of 162mm width and maximum depth107. Right:
Varying depth dimple h(x) profiles.

Steady boundary layer profiles are extracted at 800 stream-wise equispaced positions

for the stability analysis tools and then interpolated to the required grid with bi-cubic

splines.

4.1.2 Linear Analysis

Tollmien Schlichting waves are generated at the neutral point to provide maximum

growth, located at 0.375m from the leading edge of the flat plate. After sweeping

though a range of frequencies, the most dangerous disturbance is identified as a 172Hz

TS wave. This has a wavelength of around 34mm which is about 42% of the smaller

width dimple and 21% of the wider dimple. Computations have been made using

the PSE, PSEh, LHNS and LHNSh codes and are compared in figure 4.2. Generally
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a grid size of 7500 stream-wise points and 57 wall normal polynomials are applied.

The figure is constructed by taking the maximum absolute û perturbation at every

stream-wise location and normalising with the local boundary layer edge velocity. First

of all we can see that as the dimple depth increases the TS wave undergoes greater

amplification. The smaller width dimple case at largest depth is the most dangerous,

note the change in scale as this explosive growth is observed. The PSE is in line with

predictions from the LHNS code and should be applauded for this, showing that even

in the presence of a LSB, the PSE are able to converge to a reliable solution. It is only

in the 81mm width dimple at 1.62mm depth that differences begin to become apparent

and are exacerbated with clear visibility in the depth 2.17mm indentation. The deepest

depth 81mm case features the largest reverse flow region causing more distortion to

the basic flow and an inflectional detached shear layer. Amplitudes of the TS wave

reach over 1% of the free-stream meaning non-linear interaction of modes is likely and

mechanisms leading to break down play a role. The non-linearity is confirmed since in

experiments higher harmonics are detected and a tripping or turbulence signal is also

observed beyond the end of the indentation36. Although the PSE are not predicting

the same as the LHNS, the LHNS result is likely to be unreliable as linear theory

cannot model these features of the flow. The upstream noisiness that is observed

from the dimple in the LHNS / LHNSh computations is probably due to generation

of upstream propagating pressure waves, or acoustic waves, as discussed by Wu and

Dong 104 . However, in our case the upstream propagation is very significant; Wu and

Dong 104 looked at much weaker forms of scattering. To clarify, the LHNS are able to

model the so-called scattering effect in its entirety, while the asymptotic framework

developed by Wu and Dong 104 is an approximate form.

Comparing now the differences between the h corrected codes (PSEh, LHNSh) and

original no-h corrected codes (PSE, LHNS) the change in TS growth over the dimple

region is quite different. Both PSEh and LHNSh predict greater amplification within

the dimple region than the PSE and LHNS, although all seem to converge to the same

result upon exiting the dimple region, at least for the 162mm width case. The PSE

/ LHNS predict a short stabilisation upon entering the dimple whereas the PSEh /

LHNSh predict a continuation of the growth, then an added destabilisation. They

only predict a stabilisation near the end of the dimple. This is likely due to the scale

of the favourable pressure gradient being much larger upon exiting the dimple than

the scale of the adverse pressure gradient when entering the dimple, referring to figure

3 from Gowree et al. 36 .

A comparison of these LHNSh results with the PSE3D and experimental results is

shown in figure 4.3, courtesy of Gowree et al. 36 . The reader may refer to Paredes

et al. 63 , Ashworth and Mughal 6 and Gowree et al. 36 for information on the PSE3D.
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Figure 4.2: Amplitude growth of 172Hz TS wave as it convects over the dimple, marked out with ver-
tical dashed black lines. Left: Dimple case 81mm wide. Right: Dimple case 162mm wide. Top to Bot-
tom: 0.81mm, 1.62mm and 2.17mm depths.
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Figure 4.3: Amplitude of the maximum stream-wise fluctuating component, u′, along the symmetry
plane of the indentation for h = 0.81 mm (black), 1.62 mm (blue) and, 2.17 mm (red) for a constant
λ = 162 mm. The experimental results are represented by the symbol ‘+’; the solid blue and dotted
red lines represent the results from PSE3D and 2D LHNSh simulations. The positions of the beginning,
centre and end of the indentation are represented by the vertical dotted-dashed lines and the horizontal
dotted-dashed represents 1% of free-stream velocity.36

The disturbances max(û), (or u′max in the paper) evolution for varying depth dimples

with constant widths of 162 mm, is shown. For the deeper cases, h = 1.62 and 2.17

mm, largest differences between the PSE3D and LHNSh (just visible in the plots) arise

in the recovery region (x ≈ 700 mm) in the latter half of the indentation and improves

beyond x ≥ 780 mm.

Looking now at the broader û flow field, normalised with the edge velocity at each

station, over the dimple region and comparing the LHNS and LHNSh computations

we can see that there are some slight differences in the perturbed field, see figures 4.4

and 4.5. Beginning with the 162mm width case, we can see that within the dimple

the LHNSh predicts a more symmetrical û profile about the centre line, 0.65 x/c.

Upon the TS wave exiting the dimple we can see that there are two maxima, when

traversing away from the wall, predicted by the LHNS code. This is more clearly seen

in the deepest case around 0.75 x/c. This second maxima is still present in the LHNSh

case but it is much less pronounced. The 81mm width case exhibits rather different

perturbed fields for the 1.62mm depth case; the LHNS tends to show the stabilisation

to the left of the centreline whereas the LHNSh shows stabilisation to the right of the

centreline. The 2.17mm depth case showcases the upstream wave fluctuations.

If we now take wall normal profiles from the centreline of the dimple, and examine

û and v̂ perturbations for the 162mm width dimple, we can see that there are two

maxima, or lobes, for the shallowest dimple û perturbation and three for the two larger

depths. See figure 4.6 for û perturbation profiles in the 162mm width dimple compared

with experiments, extracted from Gowree et al. 36 . This shows a comparison of the

theoretical results computed with the LHNSh formulation compared to experimental
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Figure 4.4: û contour plots of 162mm width dimple case. Left: Computed with LHNS. Right: Com-
puted with LHNSh. Top to bottom: 0.81mm, 1.62mm and 2.17mm depths.
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Figure 4.5: û contour plots of 81mm width dimple case. Left: Computed with LHNS. Right: Com-
puted with LHNSh. Top to bottom: 0.81mm, 1.62mm and 2.17mm depths.
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Figure 4.6: Profiles of the stream-wise fluctuating velocity component, u′, normalised by the maximum
amplitude along the centreline of the plate at x = 650 mm, (a), h = 1.62 mm and (b), h = 2.17 mm
for λ = 162 mm. The experimental results are represented by ‘◦’. The solid blue and dotted red lines
represent the results from PSE3D and 2D LHNSh simulations respectively. Gowree et al. 36

measurements and a fully PSE3D based simulation6,63. See figure 4.7 for û and v̂

perturbation profiles for all cases. Such profiles have also been documented by Diwan

and Ramesh 20 experimentally. As the dimple height increases we can see these maxima

are lifted further away from the wall for both û and v̂. We can also see that the three

max(û) predicted by the LHNSh are slightly larger than that of the LHNS code. This

is similar for the minima, which are also more exaggerated in the LHNSh code. These

features are also observed in the 81mm case, see figures 4.6 and 4.8.

Figure 4.7: Perturbation profiles of 162mm width dimple case at the centre line location. Left: û.
Right: v̂
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Figure 4.8: Perturbation profiles of 81mm width dimple case at the centre line location. Left: û.
Right: v̂

4.1.3 Non-Linear Analysis

Non-linear analysis has also been conducted with all codes to see how well they perform

in the presence of a LSB. First of all the LHNS and LHNSh are compared in figure

4.9. All computations converged except the largest depth 81mm case which features

a LSB with a significantly larger peak reverse flow than the other bubbles, 8% of

the free-stream, which accelerates the non-linear interactions. We can see that for

the 81mm cases and the smallest depth 1.62mm case, all harmonics are very well

agreed outside of the dimple. The mean flow distortion does however exhibit some

differences outside of the dimple region, see figure 4.10. This is to be expected due to

the ∂p
∂x

= 0 assumption applied in the derivation of the PSE / PSEh to halt upstream

propagation of information. This is not enforced in the MFD for the LHNS / LHNSh

which explains the differences. It is only in the larger two 162mm cases that we begin

to see some differences between the amplitude growth after the dimple region for the

second and third harmonics. This is likely due to the scattering effect, where the TS

wave becomes abruptly distorted over the region of the bubble due to interaction with

the MFD mode. The fundamental and higher harmonics then become scattered at this

location, see Wu and Hogg 105 . When the fundamental reaches 1% of the mean flow,

this is an indication the boundary layer will begin to distort. If the second and third

harmonics reach 20% or 8% respectively of the fundamental mode then breakdown

will occur, as stated by Klebanoff et al. 51 . This could be why there is no result for the

largest depth, 81mm dimple case, and / or due to the possible existence of a bi-global

absolute instability4,93.
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Figure 4.9: Non-linear HNS and HNSh comparison. Left: Dimple case 81mm wide. Right: Dimple case
162mm wide. Top to bottom: 0.81mm, 1.62mm and 2.17mm depths. Black for the mean mode, blue
for the first harmonic, red second and green third harmonic. Dashed lines denote LHNS code, solid lines
denote LHNSh code.
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Figure 4.10: Non-linear PSEh and HNSh comparison. Left: Dimple case 81mm wide. Right: Dimple
case 162mm wide. Top to bottom: 0.81mm, 1.62mm and 2.17mm depths. Black for the mean mode,
blue for the first harmonic, red second and green third harmonic. Dashed lines denote PSEh code, solid
lines denote LHNSh code.
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4.2 Random Roughness

After the pleasing agreement of results obtained from the dimple case, we then pro-

gressed to a more complex excrescence, the random roughness. This random roughness

work is based upon investigations by Xu et al. 107 who looked at a roughness of panel

length 162mm over an un-swept flat plate of length 1.2m. A variety of roughness distri-

butions were investigated by Xu et al. 107 but we shall only consider one distribution

at three varying heights. These cases were investigated numerically only, for some

initial insights of undertaking future experimental work on the effects of randomly

distributed roughness on transition.

4.2.1 Nektar++ Base Flow Solution

The roughness distribution we consider is given by,

ξ = h

k=N/2∑
k=−N/2

(√
E(k) ei(2πkx/λ+θk)

)
+ c.c. , (4.2)

where the power spectral density of the roughness is given by,

E(k) = e(k/kmax)2 , (4.3)

and the root-mean-square of the roughness, Rq, is defined by,

Rq =

√
1

λ

∫ λ

ξ2dx . (4.4)

Here k ranges from k = 3 : 1000 for three differing kmax values. We will only be

investigating kmax = 15. Three roughness base flows are computed numerically with

the incompressible Navier-Stokes Nektar++ solver corresponding to Rq = 0.073mm,

0.22mm and 0.37mm which equate to 2%, 6% and 10% respectively of the boundary

layer thickness. The free-stream velocity for the base flows are 18ms−1 , Mach number

0.0527 and a temperature of 290.33K. The Reynolds number per meter is 1.2 million

and the dynamic viscosity is µ = 1.8237 × 10−5Ns/m2. Examples of the roughness

profile h(x) can be seen in figure 4.11.

4.2.2 Linear Analysis

The most destabilising Tollmien-Schlichting instability for this regime has a frequency

of 172Hz and is investigated in the presence of three roughness heights. First, we
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Figure 4.11: Right: Example roughness h(x) profiles from the work of Xu et al. 107 . Both axes are
made non-dimensional with the plate length, c. The y axis is also normalised with the boundary layer
thickness at each x location.

begin with comparing linear computations of the modified PSE and LHNS codes.

We can see that the smallest roughness height does not show much change exterior

to the roughness region which is confined between the vertical dashed black lines,

see figure 4.12. There appear to be some small changes between all codes within

the roughness region. Increasing to the 0.22mm height case we can see that the

differences between the codes become more apparent downstream of the roughness.

The trends of the curves tend to follow the same shape when comparing the PSEh

and LHNSh codes, and also for the PSE and LHNS codes, the differences seem to

be slightly more amplified. Interestingly, here the LHNSh and PSEh (solid lines)

seem to predict a slight stabilisation of the instability. The difference between the

LHNSh and PSEh and then the LHNS and PSE seem to be around the same offset.

This is likely to be due to the PSE and PSEh neglecting the small order terms, such

as the second order stream-wise derivatives, which the LHNS and LHNSh do not.

However, could also be due to the scattering effect caused by the many reverse flow

regions situated in the troughs after large peaks in the roughness105. For the final

plot, largest roughness case, we see a large difference between the PSEh and the other

results. This is due to having to artificially skip over some boundary-layer profiles

for the PSEh computation to converge, probably because of the many present LSBs

and strong stream-wise gradients created in the velocity field, and also to meet the

PSE numerical stability criterion of ∆x < 1/αr, for a converged solution. If we take

the example of a roughness peak, described by 6 stations (blue and orange markers

in figure 4.13), each station on the positive gradient slope has a corresponding station

on the negative gradient slope. This means that the h′ values at these points are very

similar, if not the same, and will have similar ū components and similar opposite v̄

components. If we now choose to ignore a (or multiple) station(s) to ensure the PSE

will march to a solution for the full domain, this equal and opposite relationship is not

retained. Through the act of ignoring stations it can mean that the derivative values
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Figure 4.12: Amplitude growth of TS wave with frequency 172Hz as it convects over the roughness.
Top left is for Rq= 0.073mm case, top right for 0.22mm case and bottom for 0.37mm case.

of h will no longer be of similar opposite weights, similarly for the û and v̂ component

of the velocity. We had to ignore more stations for the largest roughness height for

the PSEh solution to converge. This explains why there is a larger difference between

the PSEh and any other result in figure 4.12. This then leads us to the question, why

did more stations have to be ignored for the PSEh computation than the PSE? This

is likely to be due to the h′′ derivative term, coupled with the ûY Y viscous term in the

x-momentum equations (amongst other contributing terms) which can both be large

order quantities local to the roughness.

Contour plots of the û/max (ūe) perturbation become more and more distorted with

increased roughness height, see figure 4.14.

4.2.3 Non-Linear Analysis

Non-linear analysis for these random roughness case is extremely difficult. We were

only able to attain converged PSE and PSEh computations for the smaller two rough-

ness cases. The non-linear analysis from the PSEh are shown in figure 4.15. We can
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Figure 4.13: A zoomed in of section of roughness profile h(s) to highlight consequence of ignoring
stations in PSE/PSEh computations.

see from the second largest roughness height that the mean flow distortion effects all

harmonics in the roughness region. Particularly halfway though the roughness region,

where there is a large increase in the h profile. The growth of the harmonics undergo a

greater change in amplitude with increasing order. We can see the MFD mode growth

is not very smooth which provides an indication of why the largest roughness case did

not converge. There is likely to be large upstream propagation of signals here that the

PSE are inherently unable to capture. Converged non-linear HNS and HNSh results

could only be obtained for the smallest height random roughness, the latter of which is

shown in figure 4.15. This could be due to the sharp increase suggested by the medium

roughness height PSEh computations. When the MFD mode is captured accurately,

as in the non-linear HNSh code, the upstream modification may become too large for

computations to converge, this should be further explored.

4.3 Concluding Remarks

Testing the new stability tools, PSEh and LHNSh, with the dimple and random rough-

ness cases has highlighted their capabilities and limitations when in the presence of an

excrescence. The dimple case has shown that deeper size roughness provide a greater

destabilising effect on the convecting TS wave which is further exacerbated with a

shorter width dimple. The linear PSEh have been shown to converge in the pres-

ence of a LSB, providing as good an overall growth prediction as the LHNSh. The

LHNSh model, due to retention of all elliptic terms, is considered a more correct tech-

nique due to the existence of reversed flow in the LSB; one would imagine the reverse

flow would invalidate usage of the PSEh model for such flow types. However, we see

nearly identical results between the two fundamentally different flow physics models,

with differences only becoming discernible for large LSBs. Differences between the h-
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Figure 4.14: û contour plots of roughness case. Left: Computed with LHNS. Right: Computed with
LHNSh. Top to bottom Rq= : 0.073mm, 0.22mm and 0.37mm depths.
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Figure 4.15: Non-linear PSEh and HNSh comparison. Left is for Rq = 0.073mm, right is for the
0.22mm case. Black for the mean mode, blue for the first harmonic, red second and green third har-
monic. Dashed lines denote PSEh code, solid lines denote HNSh code.

transformed codes can be observed within the dimple itself, but these differences only

impact the overall growth prediction for deeper cases. The PSEh only begins to break

down in the most extreme of cases, the deepest 81mm width case. The non-linear

computations also seem to cope well in the presence of a reverse flow region. It is only

for the largest 162mm width case that we begin to observe some overall difference in

the higher harmonic growth profiles. These are brought to light earlier for the 81mm

case, exhibiting differences for the middle depth case. The mean flow distortion, (0,0)

mode, does showcase some differences but we might expect this since the PSE / PSEh

assume that the stream-wise pressure gradient is negligible. An assumption which is

not adopted by the non-linear HNS / HNSh.

The roughness case has highlighted a few more limitations of the PSE / PSEh code,

but we must bear in mind that this is a much more challenging problem with complex

surface geometry featuring multiple LSBs. It must be stated that such a problem would

even today pose a significant challenge using full state of the art DNS simulations,

requiring significant HPC resources to resolve scales and complexity of the distributed

and randomised roughness field. This could possibly be classed as an international

first attempt, at modelling such complexity with PSE and LHNS. As shown above the

PSE model is clearly unsuited, due to the very short-scales that require capturing.

The results of all codes for the smallest random roughness case are very similar, it is

only upon increasing to the 0.22mm case that differences begin to become apparent

and the h′ components begin to hold more weight. We could only achieve convergence

of the linear PSEh result for the largest depth dimple by removing stations in the

space marching. This has consequently impacted the PSEh result quite significantly

and is likely to be due to an asymmetry in the h′ and h′′ derivatives over the peaks and

troughs of the roughness profile. The reasoning behind having to ignore such stations
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is likely to be due to the h′′ûY Y viscous term arising in the x-momentum equation,

amongst other contributing terms.

Since the step like features we would like to investigate for the swept wing geometry

only feature a singular reverse flow region, we hope that we do not run into these

problems when undertaking the instability analysis. However, if we do, these two

cases can help to gain a faster understanding and insight of why we might be seeing

such results.
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CHAPTER 5

Three Dimensional Infinitely Swept Wing

Problems

Having shown the stability codes behave reliably for two dimensional problems, we

next investigate a three dimensional problem, the swept wing. As can be expected,

accompanying the more interesting problem of a three dimensional flow is the added

complexity of modelling such a problem with the feature of localised steps or surface

excrescences.

5.1 The Swept Wing

Motivation for this work arose from experiments undertaken by Saeed et al. 82 on the

AERAST61 swept wing geometry where movement of the laminar-turbulent transi-

tion front, with varying localised step heights, was observed with naphthalene. The

AERAST geometry has a rather sharp leading edge and is designed to give favourable

pressure gradients with negative incidence91, see figure 5.3. Experiments were con-

ducted within a 20ms−1 wind tunnel at a Reynolds number of one million. The

geometry is positioned with a 40◦ sweep and a negative wing root incidence of 2.15◦

with a tip down linear twist of 1.5◦ 82. Single, infinitely long, two dimensional steps

were created with Kapton tape at varying heights to mimic steps, see figure 5.1. A key

finding was that beyond a critical height, waviness and jaggedness in the transition

front was observed, and travelling crossflow instability signals were measured in the

hot-wire data. Further increments in step heights moved the transition front forward
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Figure 5.1: Schematic (left image) and experimental set-up (right image) of AERAST swept wing with
bump profile from Saeed et al. 82

towards the step. In recent more detailed experimental work Eppink et al. 31 found

that the CFI destabilization that arises from backward facing steps (BFS’s) is not

straightforward. The movement of the transition front is insensitive to BFS’s below

a critical step height, once a threshold is crossed a rapid movement of the transition

front to the step location is observed. These findings (together with findings of Saeed

et al. 82) suggest an altogether different mechanism in flow destabilisation arises in

BFS based swept wing boundary layer flows.

Saeed et al. 82 looked at four different heights of bump profiles 330µm, 495µm, 660µm

and 715µm located at three different locations over the wing (3%, 10% and 20%

chord). The interest in the experiment was to observe how pre-existing stationary

and travelling crossflow disturbances are affected by the localised step feature. In

the experiment stationary crossflow disturbances were generated by the placement of

periodically aligned leading edge distributed roughness elements, DREs, which were

cylindrical in form61. Travelling crossflow signals were also observed in the experiment

and were thought to have been generated by the wind-tunnel turbulence levels. In the

work that follows, an attempt is made to replicate the experimental conditions and

test matrix undertaken in the experiment. The experiment only looked at the effects

of placing an infinitely long localised two dimensional roughness bump, figure 5.1, on

crossflow disturbances. We replicate this but also then investigate decomposing the

bump into a forward facing step and a backward facing step in the chapters that follow.

This enables us to undertake a more comprehensive investigation of varying backward

facing step, forward facing step and bump heights and locations on disturbance mod-

ification, as the pre-existing disturbances convect over the roughness feature. Before

we can tackle these interesting configurations, we first need to compute the clean,

step-free, case which serves as a benchmark and relative measure on the effects of

excrescence placement.
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Figure 5.2: Full geometry coefficient of pressure (Cp) distribution for varying angles of attack com-
pared with experimental Cp from Saeed et al. 82

Figure 5.3: Aerast Geometry in line of light co-ordinate system for full RANS computation and normal
to leading edge coordinate system for embedded DNS computation.

5.1.1 Validation of Clean Case

The full AERAST, clean, geometry is constructed with an Airbus meshing software,

SOLAR, and then simulated with the Airbus RANS solver, TAU21. Flow conditions

are designed to match the experimental regime as closely as possible. Inflow conditions

are provided for a Mach 0.3 and Reynolds number 1 million case with a symmetry plane

applied in the span-wise direction. A variety of incidences are computed to compare

surface pressure distributions with the experimental data obtained by Saeed et al. 82 .

An incidence of -4.5◦ was found to agree best with the experimental data in order to

have closest agreement with the leading edge pressure profile, see figure 5.2. Various

regression tests are completed to ensure time convergence along with mesh refinement

studies to ensure grid convergence.

The embedded domain is then constructed using AutoCAD Inventor and Nekmesh,

within the Nektar++ framework. The coordinate frame must be rotated from line of

flight to normal to leading edge between the RANS computation and the DNS, see

figure 5.3.
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Figure 5.4: Cp distribution comparison between the full geometry RANS solution, Nektar++ at poly-
nomial order 3 to 7 and experimentally measured data of Saeed et al. 82 . Right: Full geometry. Left:
Zoom of attachment and upstream chord region.

The pressure side of the geometry is truncated to 70% chord and the suction side to

50% chord to avoid large separation at the outflow boundaries. Far field inflow bound-

aries are located 35% of a chord length above and below, and 40% of a chord length

upstream, of the leading edge. Inflow boundary velocity components are interpolated

from the full solution and applied in Dirichlet form, whilst the pressure adopts a Neu-

mann condition. The lower vertical outflow utilises a high order outflow condition and

an averaged pressure difference is applied at the upper outflow. No-slip conditions

are applied at the wall. The embedded coefficient of pressure (Cp) solution is com-

pared with the full geometry Cp to ensure the correct incidence is being enforced, see

figure 5.4.

A polynomial expansion of order seven is required to obtain converged solutions, as

determined from comparing Cp distributions, see figure 5.4, and boundary layer pro-

files, see appendix B. Polynomial convergence and mesh convergence studies can be

found in Appendix B.

The Nektar++ extracted boundary layer profiles are compared with solutions from the

Prandtl boundary layer equations to confirm the validity of the Nektar++ processed

profiles. After ensuring good agreement between the two, see figures 5.5 and 5.6, this

solution can then be used as an initial condition for the excrescence cases.

For the stability analysis, a range of CFI wave numbers and frequencies must be com-

puted in order to find the most destabilizing CFI. When running the PSE solver on

the clean geometry and sweeping through the wave numbers, the most destabilizing

stationary CFI is found to be a wave number β = 500m−1 for the stationary case

and wave number-frequency combination of β = 440m−1, ω = 420Hz for the travel-

ling case. The amplitude growth predicted by the PSE and LHNS codes have been

compared with the Nektar++ LNS computation. Both PSE and LHNS codes have
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Figure 5.5: Clean: Comparison with Nektar++ extracted base flow profiles and the Prandtl boundary
layer solver (CoBLc) generated profiles at 10% chord. All values are real physical quantities. Nektar++
solutions are represented with black, dashed, lines and CoBLc with red, solid, lines. Top row shows u,
v and w, second and third rows show first and second derivatives, respectively, in the normal direction
with respect to u, v and w and the last row is the first derivative in the stream-wise direction with re-
spect to u, v and w. There is no v̄s since this is not computed by CoBLc.
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Figure 5.6: Shear stress comparison of Nektar++ solution with Prandlt boundary layer equations solu-
tion. (Computed with equation 6.3.)

Figure 5.7: Clean AERAST geometry CFI amplitude growth comparison of LHNS and Nektar++ LNS,
for including and excluding curvature, κ(s). Left: Stationary CFI, β = 500m−1. Right: Travelling CFI,
β = 440m−1, ω = 420Hz

been computed including and excluding curvature terms, κ(s). CFI amplitude plots

are given by normalising the maximum of the steam-wise disturbance velocity with

the boundary layer edge velocity at each stream-wise location. As expected, we see a

stabilising effect from the inclusion of the curvature terms which is in good agreement

with the Nektar++ LNS solution, see figure 5.7. There is a slight difference in the

point of generating the instability, for Nektar++ this is slightly further upstream, due

to the precision required in generating a perturbation which spans one element thick-

ness. All analyses to follow will hence be computed with the inclusion of curvature.

The PSE seems to be predicting the disturbance amplitudes very well in the absence

of the roughness, and at the benefit of reduced computational cost. A clean PSE

computation typically takes less than a second, the LHNS is around four minutes and

the Nektar++ LNS solution requires around an hour using 24 nodes, 24 cores and a

memory allocation of 60GB.

Since we have obtained good agreement between the stability codes and the Nektar++
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LNS solution, we next introduce a roughness to the surface.
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CHAPTER 6

Three Dimensional Ramp problem

A roughness case is constructed according to the experimental regime of Saeed et al. 82 ,

however instead of having a vertical step bump feature, we first create ramped edges

in order to create a slightly simpler problem for the stability tools to solve, see figure

6.1. Accompanying this ramped bump is the decomposition of this into a forward

facing ramp and a backward facing ramp.

l
l

h
h

h h

Figure 6.1: Schematic showing ramped edge bump compared to the vertical edge bump case, where l
denotes the length of the bump and h the height.

6.1 Nektar++ Base Flow Computations for the Ramp

The three ramp cases are constructed at 10% chord of the AERAST geometry. The

height and location are chosen corresponding to the maximum height case in the

experimental work of Saeed et al. 82 : 715µm. Roughness shape investigations consist

of a forward facing ramp (FFR), a backward facing ramp (BFR) and a composition

of the two named a bump ramp (BR). Nektar++ computations are constructed for a
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non-dimensional co-ordinate frame meaning the height in the work of Saeed et al. 82

corresponds to 893µm and width of 3.75mm (l = 3.75mm in figure 6.1) for a chord of

length one meter. The roughness is added to the clean geometry surface through use of

AutoCAD Inventor such that each ramp is at a 45◦ incline with the clean surface and

corners are filleted with 0.0001m radii. Meshes are then constructed with NekMesh and

used with the incompressible Navier Stokes solver within the Nektar++ framework,

see figure 6.2. Computations are initialised from the converged steady clean solution

and boundary conditions extracted from the full geometry solution.

Figure 6.2: Localised view of the bump ramp mesh created with Nekmesh. Elements show h-type re-
finement only.

The flow conditions are the same as for the clean case: Reynolds number 1 million,

Mach number 0.3 and the geometry is swept at 40◦. The ramp height equates to 52.93%

of the clean boundary layer thickness at 10% chord. The Nektar++ incompressible

Navier-Stokes solver is used to generate steady base flows, see figure 6.3. Note that

here velocities in Nektar++ are defined in the Cartesian co-ordinate frame, which

is why we see a positive v̄ field, this will become slightly negative when moving to

the body fitted co-ordinate system. We can see that the FFR has virtually no LSB

present whereas the BFR and BR do. Interestingly, the reverse flow region present for

the bump case remains much further downstream than the BFR case; lengths of the

LSBs are given in table 6.1. Here bh is the length of the LSB, bl, with respect to the

ramp height, h, such that bh = bl/h. Analogously, bw is the length of the bubble with

respect to the width of the localised bump case, hw such that bw = bl/hw. The peak

reverse flow within the bubble is, at maximum, 4.5 ms−1 which is under 5% of the free

stream value. This means we do not expect to see absolute instability arising in the

stability analysis34. However, these criteria are based on generally two dimensional

highly idealised LSB analyses, whether such results carry over to the infinity swept

2.5D LSBs with a span-wise velocity component too, may be questionable. Some initial

analysis of such flows were undertaken by Appel et al. 4 . The paper for the first time

investigated the presence of bi-global instabilities where the LSB has an additional

span-wise velocity component; this does not appear to have been investigated in the
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literature prior to the work reported by Appel et al. 4 .

Figure 6.3: Nektar++ solutions at 10% chord, 893 microns for the FFR (top), BFR (middle) and
bump ramp (bottom left). Contours show stream-wise velocity (left) and normal velocity (right), black
lines show the outer boundary layer and free-stream flow. White lines show flow within the inner bound-
ary layer and dashed white lines denote LSBs.

Boundary layer profiles and their derivatives are calculated at 6% chord length down-

stream of the ramp location, as depicted in figure 6.4 and 6.5. The profiles are made

dimensionless with the free-stream edge velocity and boundary layer thickness. Com-

paring the BFR and bump ramp cases we can see that the stream-wise reverse flow is

greater for the bump ramp, which is reasonable given that this location is much closer

to the BFR component of the bump. This is also in line with the vertical component,

which exhibits a clear inflection point within the boundary layer for the bump profile.
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shape height forward bw forward bh backward bw backward bh

Bump Ramp 10% 893 0.07 0.30 2.96 12.41

FFR 10% 893 0.31

BFR 10% 893 8.84

Table 6.1: Bubble lengths for the ramped cases with relation to the roughness height, bh. For the
bump ramp case there are two separation regions, before (forward) and after (backward) the bump,
which have been related to bump width, bw, also.

Figure 6.4: Location depiction of where boundary layer profiles are generated (6% of a chord length
downstream of the ramp location). Blue, red, and black depict the FFS, BFS and bump ramp respec-
tively.

The pressure coefficient (Cp) and skin friction coefficient (Cf ) over the ramp region

are shown in figure 6.6. Pressure coefficient is given by,

Cp =
p− p∞

0.5ρ∞V 2
∞

, (6.1)

and the skin friction coefficient by,

Cf =
τw

0.5ρ∞V 2
∞

, (6.2)

where τw is the shear stress at the wall,

τw = µ
∂u(s, Y )

∂Y

∣∣∣
Y=0

. (6.3)

The Cp shows an increase leading up to the FFR, as the flow begins to decelerate, and

a sharp decrease as the flow accelerates over the top of the ramp. We see the analogous

result for the BFR where the velocity increases upon approaching the ramp, showing

a decrease in Cp, and then we immediately enter the reverse flow region, where we

can see an increase in the Cp denoting an adverse pressure gradient. The recovery of

the pressure gradient takes much longer for the bump, which is why the bump ramp
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Figure 6.5: Ramp cases at 10% chord: Nektar++ generated base flow profiles generated at 10.6%
chord. Non-dimensional values plotted: x-axis can be dimensionalised with the boundary layer edge
velocity (and boundary layer thickness for higher derivatives) and the y-axis with the boundary layer
thickness at that stream-wise location. Top row shows ū, v̄ and w̄, second and third rows show first
derivative and second derivative respectively in the normal direction and the bottom row is the first
derivative of ū, v̄ and w̄ with respect to the stream-wise direction.
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Figure 6.6: Ramp case pressure coefficient (Cp) and skin friction coefficient (Cf ) comparison of all
step heights. Left for Cp, right for Cf . Blue, red, and black depict the FFS, BFS and bump ramp re-
spectively, the clean case is given in yellow. The dashed black line marks where skin friction coefficient
is zero.

exhibits a longer LSB. From the Cf we can clearly identify reverse flow regions, where

the Cf becomes negative, and see that the bump ramp has a much longer flow reversal

than the BFR.

We know from the literature that ramped steps are less dangerous to the fluid flow

than vertical step features. By rounding of the step feature the transition location

can be delayed to further downstream and the step height which is deemed critical

can be increased. In recent experiments, Eppink and Casper 28 looked at varying

FFRs of varying degrees of steepness and their effect on stationary CFI. In their

experiments the ramp height was 81% of the boundary layer thickness and had two

differing incline degrees, 30◦ and 45◦ . Comparisons are drawn with their previous

work for square forward facing steps27. They compare the shape factor, H = δ1
δ2

,

where δ1 is the boundary layer displacement thickness and δ2 is the boundary layer

momentum thickness, to show that the square step exhibits the strongest adverse

pressure gradient. This adverse pressure gradient decreases when moving to the 45◦

ramp and again to the 30◦ ramp. Sumariva et al. 90 have also looked at the effect of

rounding indentations and humps, and obtain similar skin friction profiles to the ones

shown in the present work.

6.2 Stability Analysis

As with any stability problem, we begin by exploring the parameter space. Neutral

curves are constructed for all ramp cases using linear stability theory (LST) to iden-

tify crossflow wave-numbers (β) which are destabilised by the presence of the step,

see figure 6.7. The ramp cases, given in black, are compared with the clean case,

given in yellow, and the dashed vertical line denotes the ramp location. We can see
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that the FFR case has the minimum impact on the parameter space, extending the

range of destabilised wave numbers to β =1500m−1 just after the ramp location at

x/c = 0.1025m, but soon returns to the same upper branch as the clean case at 0.14m.

Interestingly, the unstable parameter space appears to be severed over the ramp re-

gion and becomes a stable space. We believe this region of stable space may not be

completely stable due to being able to find a distinct upper branch point within this

region, see just before 10% chord around β = 1250m−1. The neutral curve in this

region could have very small regions of instability which change rapidly in the stream-

wise direction making it extremely difficult to compute a solution along the branch.

Equally, identifying an unstable mode in this region is extremely difficult.

From the BFR case we can see that the presence of the ramp destabilises the parameter

space much more aggressively, sending the range of destabilised wave-numbers to as

high as 2500 m−1 over the separation region. The LSB ends at around 10.7% chord

which is where we see the upper and lower branches begin to converge to one another.

Continuing traversing downstream we have now entered a short region of stability

before another unstable parameter space begins again. The lower branch tends to

recover to the clean branch curve almost immediately, whereas the upper branch does

not recover back to the clean branch solution until just after 16% chord.

Moving now to the bump ramp case we can see a composition of the two FFR and

BFR neutral curves. We observe the first unstable region, just prior to the FFR ramp,

followed by a rapid expansion of the destabilised parameter space after the FFR to

around β = 1500m−1 just before the BFR. When reaching the BFR the parameter

space is destabilised completely for the lower branch and reaching over β =2500 m−1

for the upper branch. Remembering that the LSB present in the bump ramp case is

33% larger than that of the BFR, the lower neutral branch does not begin to converge

to the upper branch until 11.9% chord, and even so, never completely converges to

the upper branch meaning that there is no severed parameter space at the end of the

reverse flow region. The bump ramp lower branch then quickly converges to the clean

lower branch and the upper branch does not meet the clean until 20% chord.

Now that we have explored the range of destabilised wave numbers the next step

is to determine which is the most destabilising for each case. The PSE are used to

scan through a range of wave numbers with the frequency fixed to zero for a stationary

crossflow. N-factor curves are plotted to establish the CFI which is amplified the most,

an example can be seen in figure 6.8 where we can see that the most destabilising mode

here has wave number β = 366m−1. Upon further refinement we find that the most

dangerous wave number is β =350m−1. These most destabilised wave numbers are

identified for each of the ramp cases.
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Figure 6.7: Stationary neutral stability curves, computed with LST, for the FFR (upper left), BFR
(upper right) and bumpR (lower) each compared with the clean case. Black triangles depict neutral
curves for the excrescence case and the clean is given in yellow points.
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The PSE and PSEh codes are then compared with the clean case for the same wave

number. Amplitude growths are compared and overlaid by scaling the initial amplitude

to match downstream of the ramp location, see figure 6.9. All ramp cases predict a

stabilisation compared to the clean case. This stabilisation is even more pronounced

when solving with the PSEh code. The BFR shows the largest stabilisation, next

being the bump ramp and the least stabilisation is shown from the FFR. These results

are contrary to that of the literature which generally tend to show a destabilisation of

the instability for similar CFI regimes and for two dimensional base flows.

The difference could be due to a few factors, the first being that many stream-wise

station locations need to be neglected during the computation in order to attain a

converging solution. We can see from figure 6.8 that the β = 300m−1 case fails to

continue the space marching past the ramp location. In order to enable the majority

of these wave numbers to pass this point and converge to a solution, a number of

station profiles are ignored, or ’stepped over’. This could be due to being on the cusp

of the PSE numerical step size restriction although it is more likely due to the problem

of having extremely rapid velocity gradient changes when traversing over the ramp.

These are particularly large in the stream-wise direction which augments the need to

ignore certain stations over the ramp region to enable the PSE to complete the space

marching. This has also been observed by Sumariva and Hein 89 . The PSE concept is

based on only weak variations in the basic flow stream-wise derivatives which is not

true in the neighbourhood of the stepped features. However, even if these problems

were not present and the PSE step size condition was satisfied, a major drawback of

the PSE is that it will fail to compute a valid solution if the instability wavelength is

greater than, or of the same length as, the roughness width104. In this case the ramp

width is 0.893mm long for the FFR and BFS and 5.536mm for the bump ramp. The

wavelength of the CFI is 11mm, meaning the PSE will fail to compute a valid solution

for these configurations. With this in mind, we turned to the LHNS equations. The

LHNS will not suffer a step-size restriction since all stream-wise derivative terms are

retained; the equations are fully elliptic in character and as such with finer spatial

discretisation we expect more accurate solutions. In principal the very rapid and

short scale variations in the basic field should not pose any conceptual modelling or

numerical issues, however the impact of these rapid stream-wise gradient fluctuations

remains to be assessed.

All ramp cases are solved with the LHNS and LHNSh equations and compared with

the Nektar++ time-stepping LHNS solution. The LHNS and LHNSh generates the

CFI with a wall forcing placed at the clean neutral point (3% chord) and the ramp

is located at 10% chord. The amplitude is plotted by taking the maximum |ũ| at

each stream wise location and normalising with the boundary layer edge velocity.
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Figure 6.8: Sweeping though stationary CF wave numbers between β = 300m−1 to 500m−1 for the
bump ramp case.

Figure 6.9: Stationary CFI PSEh and PSE comparison. Top left is FFR (β = 450m−1), top right is
BFR (β = 460m−1) and bottom is the bump ramp roughness (β = 380m−1) each located at 10%
chord.

The results from these computations are very reassuring. We can see that when

solving the LHNSh equations the amplitude growth follows that of the Nektar++

LNS solution very closely, see figure 6.10. Whereas the LHNS result either predicts

very little change, in the case of the FFR, or predicts a reasonably large stabilisation,

in the case of the bump ramp and BFR. If we look closer at the ramp location, the

LHNSh solution also tends to follow the growth of the Nektar++ LNS solution very

well, showing that the large changes in stream-wise gradients do not prove to be a
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limitation for the LHNSh equations. Sumariva and Hein 89 generated similar growth

profiles for the hump case they studied, although that was only for a two dimensional

flow field with TS wave convecting over a flat plate. From the differences between

the LHNS and LHNSh results and the similar agreement between the LHNSh and the

Nektar++ time-stepping based LNS result, we can see that the h correction is crucial

for capturing correct growth of the instability. We have scaled the Nektar++ derived

result such that it agrees with the LHNS derived behaviour ahead of the ramp, and

due to this a small difference appears between the two downstream of the ramp. We

could equally have scaled the Nektar++ result such that it agreed with the LHNS

amplitude variation downstream of the ramp, but then the small mis-match would

have appeared ahead of the ramp. In a perfect setting we would expect the results

between the two quite different techniques to be identical ahead, over and beyond the

ramp. The small discrepancy is in all likelihood due to the difficulties of extracting

the Nektar++ computed steady field derivatives for subsequent usage in the LHNS.

The observed disturbance growth and evolution over the FFR, top right in figure

6.10, compares well with the experimental work of Eppink and Casper 28 , figure 9a

in their paper, although we tend to see a slightly earlier decrease and increase of the

disturbance amplitude than observed by Eppink and Casper 28 .

The presence of the FFR seems to be causing a larger amplification to the station-

ary CFI than the BFR, which is interesting since there is barely any reverse flow for

the FFR case, whereas there is a large LSB present in the BFR. From the literature

we know that LSBs can act as oscillators or amplifiers to TS waves, Sumariva and

Hein 89 take their two dimensional flow regime with a smoothed hump on a flat plate

and show that amplification of their TS wave is induced from the reattachment of the

separated flow after the hump. Any inference from the Sumariva and Hein 89 simpler

2D flat plate findings are tentative at best since our base flows are three dimensional

with a swept flow component, however in our simulations for CFI over the BFR we

do not observe the reattachment induced growth meaning the mechanisms interacting

with the CFI must be quite different to those interacting with the simpler two dimen-

sional LSB TS wave findings, and needs further investigation. The stationary CFI

amplitude growth curve behaviour is however consistent with the experimental work

of Eppink et al. 31 who observed stationary CFI having little to no modification when

convecting over a backward facing square step. Eppink et al. 31 argue that interaction

of travelling modes with the stationary mode are responsible for the amplification of

the convecting stationary CFI. Since we do not have a travelling component present

in these computations, it can be reasonable to expect no growth from the BFR.

We can observe from the CFI amplification curves 6.10 that the FFR seems to provide

a larger amplification compared to the bump ramp, which incorporates the same FFR
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component. We must recall that these are computed with different wave numbers,

FFR at β = 450m−1 and bump ramp at β = 380m−1 which were determined from the

PSE/PSEh computations. Since we have deemed PSE growth prediction unreliable,

the most unstable wave number we have identified may not truly be the most unstable

wave-number. We consider this highly likely for the bump ramp case as it predicts

less amplification than the clean case.

Figure 6.10: Stationary LHNSh and LHNS comparison with nektar++ time stepping LNS result, each
located at 10% chord. All are compared with the most destabilised clean case, β = 500m−1. Top is
FFR (β = 450m−1), middle is BFR (β = 460m−1) and bottom is the bump ramp roughness (β =
380m−1). Left shows the full embedded chord and right shows a zoom of the ramp location. Dashed
vertical lined denote the ramp.

To try and establish what might be occurring in the vicinity of the ramp, contours of

the û perturbation field normalised with the edge velocity at each station are created,
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see figure 6.11. We can see that the FFR and bump ramp configurations cause the

CFI to be modified and amplified further when convecting over the FFR upper corner.

The û perturbation is lifted up from the upper corner of the ramp, following a rise

in the unperturbed streamlines from the wall. This lift causes an amplification in the

stationary crossflow which we observe in the amplitude plots 6.10. Comparing these

contours to the experimental measurements of Eppink and Casper 28 we can see that

they also observed this rise for the forward facing square step and also for the 45◦

ramp case, although not as pronounced. Comparison with Sumariva and Hein 89 2D

findings we note are tentative at best, however we will remark they observed this same

modification of a TS instability, seeming to originate from the upper corner of their

sharp hump case, although when looking at their smooth hump case this feature seems

to disappear. They still however, observe a similar kick in their TS amplitude growth

curves just after the forward facing component. We consider the upper corner for the

ramp to be a key mechanism in the destabilisation of the stationary CFI.

Non-linear HNSh computations for all ramp cases are shown in figure 6.12. Since the

computations require more extensive computational resource, the domain has been

truncated in order to achieve good mesh refinement over the bump region. We do not

see much change in growth for any of the modes for the FFR. However, for the BFR we

do observe a change in the third harmonic, around 14% chord, and also in the bumpR

third harmonic, further downstream at 17% chord, where the third harmonic begins

to grow at a faster rate than the other modes. The change in growth however, does

not seem substantial enough to surpass the other modes. The enforced fundamental

mode amplitude in the simulations is small enough to elicit a weak linear response,

with the higher forced modes essentially being tied to the fundamental driving mode

evolution. If we were to undertake a more thorough investigation to see the effect of

increasing the initial forcing magnitude of the fundamental driving disturbance, we

may see some very different higher harmonic growth.

6.3 Concluding Remarks

We have successfully generated a baseflow for the largest bump height, 893µm, in

the work of Saeed et al. 82 but with ramped edges at a 45◦incline with the Nektar++

incompressible solver. We have also simulated the decomposition of this into a forward

facing ramp and a backward facing ramp. Each are located at 10% of the AERAST

chord wing. We have found that the presence of the bump ramp causes a 25% more

elongated LSB compared to the BFR.

Stationary CFI is imposed on the base flow and stability tools PSE, PSEh, LHNS,

LHNSh and Nektar++ LNS are compared. We find that the stream-wise length scale
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Figure 6.11: Stream-wise perturbation field, û, for stationary CFI over FFR, BFR and bumpR at 10%
chord. Upper left: FFR, (β = 450m−1), upper right: BFR (β = 460m−1) and lower: bump ramp
(β = 380m−1) Black lines denote constant valued ū and dashed black lines denote flow within the LSB.

of the bump introduced in the experiments of Saeed et al. 82 is far too short relative to

the most unstable stationary CFI wavelength, and also for many others wavelengths

which are amplified104. However, we still see that the ramp, despite being quite short

in the stream-wise extent, has a significant affect on the CF disturbance as it convects

over the ramp. This comes about due the drastic modification of the steady local flow

induced by the ramp. In order to undertake the PSE or PSEh space marching com-

putations a number of stations need to be ignored which we ascertain is due to strong

stream-wise velocity gradient changes meaning obtaining mesh independent results are

unachievable. The LHNSh result, with the harmonic framework, compares remark-

ably well with the Nektar++ time stepping based LNS result which proves extremely
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Figure 6.12: Stationary non-linear HNSh computations for all ramp cases located at 10% chord. Top
is FFR (β = 450m−1), middle is BFR (β = 460m−1) and bottom is the bump ramp roughness
(β = 380m−1). Black denotes the (0,0) mode, blue the (0,1) mode, red for (0,2) and green for (0,3).
Dashed vertical lined denote the ramp.
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reassuring for tackling the true excrescence shape in the work of Saeed et al. 82 . The

forward facing ramp component seems to provide a further amplification kick to the

stationary CFI as it convects over the ramp, similar results have been observed by

Sumariva and Hein 89 for flat plate TS propagation over a smooth hump and Eppink

and Casper 28 for stationary CFI over a FFR. The BFR appears to modify the CFI

growth only very slightly in the neighbourhood of the ramp before returning to the

trend observed in the step free clean geometry analysis. This, somewhat counter in-

tuitive, observation has also been observed in the work of Eppink et al. 31 who looked

at stationary CFI introduced to a flat plate square backward facing step. All in all,

the analysis for the ramp vindicates and provides confidence in the correct implemen-

tation of the modelling and numerical work undertaken in development of the LHNSh

approach. We next investigate the more challenging case of introducing more extreme

vertical step type configurations into the AERAST geometry in order to compare with

the experimental work of Saeed et al. 82 .
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CHAPTER 7

Three Dimensional Vertical Step Problems

In the work of Saeed et al. 82 a vertical step is introduced to the geometry at 3%, 10%

and 20% chord of the AERAST geometry. The steps were created by layering Kapton

tape to create four varying step heights at each of these chord locations. Within this

chapter we replicate this work numerically in order to gain greater understanding of the

destabilisation mechanisms introduced by the roughness site. This work is extended to

the decomposition of the bump into a forward facing step (FFS) and a backward facing

step (BFS), incorporating and expanding upon the current work by Cooke et al. 15 16.

Due to the vast amount of cases considered in this chapter we shall first look at the

generated baseflows as a whole and then break the stability analysis into the three

different cases. Firstly only considering the FFS, followed by the BFS and concluding

with the bump. There will be a final section to draw comparisons between the three

cases.

7.1 Nektar++ Base Flow Computations for the vertical steps

Nektar++ computations are constructed for a non-dimensional co-ordinate frame

meaning the heights of the bump roughness in the work of Saeed et al. 82 correspond to

412.5µm, 618.7µm, 825µm and 893µm for a chord length of one metre. The roughness

is added to the clean geometry surface through use of AutoCAD Inventor such that

each step is perpendicular to the surface and the corners are filleted with 0.0001m

radii. Meshes are then constructed with NekMesh and used with the incompressible
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Navier-Stokes solver within the Nektar++ framework, see figure 7.1. Computations

are initialised from the converged clean solution and boundary conditions extracted

from the full geometry solution.

Figure 7.1: Localised view of the vertical edged bump mesh created with Nekmesh. Elements show
h-type refinement only.

The height of these excrescences compared with the boundary layer of the clean ge-

ometry are shown in table 7.1. Nektar++ base flows with constant ū velocity con-

tours for the bump and step cases for the largest heights at 10% chord can be seen

in figure 7.2. These have been compared with published similar configurations and

are consistent89,9,103,75,8. Lengths of separation bubbles with respect to the roughness

height, bh = bl/h, (and width, bw = bl/hw, in the localized bump case) are listed in

table 7.2 for the varying roughness shapes. We can see that the conjugation of the FFS

and BFS in the bump case causes much more elongated bubbles for the downstream

reverse flow, similar to what was observed from the ramp cases. At 3% chord a nearly

blunt face is presented to the onwards flow, since the original clean step free boundary

layer thickness at the 3% location is quite thin (82% as noted from 7.1). Introduction

of the step at 3% chord gives rise to a major restructuring of the local field and this will

inevitably change the development of and stability behaviour of the boundary layer as

it develops further downstream. At 10% chord the difference between the ramp sep-

aration bubbles and the vertical step separation bubbles seems largely unchanged for

the backward facing component, whereas the forward facing component reverse flow

has tripled in length. Albeit, the forward facing separation is still extremely small

compared to the backward facing separation bubble. As the steps are placed further

downstream the upstream bubble (associated with the FFS) becomes slightly larger,

then stays around the same size, whereas the downstream bubble (associated with the

BFS) grows larger. The peak reverse flow within the bubble is, at maximum, 5 ms−1

which is under 7% of the edge velocity. From previous two dimensional LSB studies76

this generally rules out the possibility of absolute instability. Since our work is 2.5D,

the presence of absolute instability remains open. Indeed this topic, one would say,

has not been given much attention until now, with the work of Appel et al. 4 possibly
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Figure 7.2: Nektar++ solutions at 10% chord, 893 microns for the forward step (top), backward step
(middle) and bump (bottom). Contours show stream-wise velocity (left) and normal velocity (right),
black lines show the outer boundary layer and free-stream flow. White lines show flow within the inner
boundary layer and dashed white lines denote separation bubbles.

being amongst the first to investigate.

Table 7.1: Bump height as a percentage of boundary layer thickness of the clean geometry at each
given location

412.5µm 618.7µm 825µm 893µm
3% chord 38.00% 57.01% 76.01% 82.34%
10% chord 24.43% 36.65% 48.86% 52.93%
20% chord 18.49% 27.73% 36.98% 40.06%

Example non-dimensional baseflow boundary layer profiles for the FFS, extracted at
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shape height forward bw forward bh backward bw backward bh

bump 3% 413 0.02 0.15 0.41 3.74
bump 3% 618.7 0.06 0.38 0.84 5.09
bump 3% 825 0.14 0.63 1.34 6.13
bump 3% 893 0.16 0.69 1.49 6.24

FFS 3% 413 0.25
FFS 3% 618.7 0.49
FFS 3% 825 0.71
FFS 3% 893 0.75

BFS 3% 413 4.53
BFS 3% 618.7 4.99
BFS 3% 825 5.14
BFS 3% 893 5.11

bump 10% 413 0.03 0.25 0.87 7.98
bump 10% 618.7 0.09 0.56 1.74 10.57
bump 10% 825 0.20 0.91 2.69 12.22
bump 10% 893 0.25 1.04 3.06 12.83

FFS 10% 413 0.05
FFS 10% 618.7 0.58
FFS 10% 825 0.97
FFS 10% 893 1.1

BFS 10% 413 6.56
BFS 10% 618.7 7.59
BFS 10% 825 8.19
BFS 10% 893 8.35

bump 20% 413 0.03 0.26 1.12 10.22
bump 20% 618.7 0.08 0.49 2.42 14.69
bump 20% 825 0.19 0.84 3.98 18.08
bump 20% 893 0.23 0.99 4.50 18.88

FFS 20% 413 0.2
FFS 20% 618.7 0.54
FFS 20% 825 0.911
FFS 20% 893 1.06

BFS 20% 413 8.65
BFS 20% 618.7 10.96
BFS 20% 825 12.16
BFS 20% 893 12.41

Table 7.2: Bubble lengths with relation to the roughness height, bh. For the bump case there are two
separation regions, before (forward) and after (backward) the bump, which have been related to bump
width, bw, also.
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2% of a chord length upstream of the step location, are given in figure 7.3. Most notice-

able is the increase in the normal velocity component and corresponding derivatives

as the step height is increased, resulting with an upstream lifting of the streamlines.

Eppink 27 investigated FFSs experimentally, baseflow contours of the Nektar++ com-

puted solutions compare extremely well to their experimentally obtained results in a

qualitative manner. Their geometry was quite different to the AERAST model, a flat

plate in the presence of a three dimensional pressure body to simulate an infinitely

swept wing flow. The pressure coefficient (Cp) and skin friction coefficient (Cf ) over

the surface for all forward facing step heights, is given in figure 7.4. These are calcu-

lated with the formulas in equations 6.1 and 6.2. We can see from the skin friction

coefficient there is a sudden increase in shear at the step location, this is due to the

step inducing a sudden forcing of the boundary layer to halve in thickness. We can

also see that there is barely any recirculation present for even the tallest FFS height

but that as we increase the height of the FFS, there is greater deviation from the

baseline case.

Steady baseflow boundary layer profile examples for the backward facing step are

given in figure 7.5 along with the Cp and Cf variations over the surface for all step

heights, figure 7.6. The drastic decrease in Cf after the BFS, entering negative values,

indicates the presence of the separation bubble. The larger the step height the further

downstream reverse flow is present. We can see that for 10% chord all BFS heights

have returned to the baseline case by 12% chord, for the 20% chord cases it is only

the lower two heights that have returned to the baseline by 22% chord.

Steady baseflow boundary layer profile examples for the bump case are very similar

to those shown in the FFS and BFS sections so will not be presented here, they may

however be found in appendix C. The Cp and Cf over the surface for all bump heights

is shown in figure 7.7. We can clearly see that the bump results are a combination

of features derived from the FFS and BFS with large similarity between these and

the ramp case profiles. Profiles shown here are very similar to the work of Sumariva

et al. 90 who exhibit skin friction plots for humps with varying degrees of steepness.

Although they do not show an image of the skin friction for their steepest edge hump,

we might expect to see something similar to our profile. We note that comparison

may, again, be fortuitous since their investigations were for two dimensional flows.

7.2 Forward Facing Step (FFS) Stability Analysis

The natural place to begin is to gain a feel for how the wave number parameter space,

from an instability viewpoint, is modified by the presence of the step. We achieve this

though computing neutral curves with Linear Stability Theory (LST) for all locations
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Figure 7.3: FFS case at 10% chord: Nektar++ generated base flow profiles generated at 9.8% chord,
just before the bump. Non-dimensional values plotted; x-axis dimensionalised with the boundary layer
edge velocity and y-axis is dimensionalised with the boundary layer thickness at that location. Blue, red,
green and black depict bump height 412.5, 618.7, 825 and 893µm respectively. Top row shows ū, v̄ and
w̄, second and thirds rows show first derivative and second derivative respectively in the normal direc-
tion with respect to ū, v̄ and w̄ and the bottom row is the first derivative in the stream wise direction
with respect to ū, v̄ and w̄.
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Figure 7.4: FFS case pressure coefficient (Cp) and skin friction coefficient (Cf ) comparison of all step
heights. Upper for 10% chord, lower for 20% chord. Blue, red, green and black depict bump height
412.5, 618.7, 825 and 893µm respectively, the clean case is given in yellow. The dashed black line
marks where skin friction coefficient is zero.
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Figure 7.5: BFS case at 10% chord: Nektar++ generated base flow profiles generated at 10.2% chord,
just before the bump. Non-dimensional values plotted; x-axis dimensionalised with the boundary layer
edge velocity and y axis is dimensionalised with the boundary layer thickness at that location. Blue, red,
green and black depict bump height 412.5, 618.7, 825 and 893 respectively. Top row shows ū, v̄ and w̄,
second and thirds rows show first derivative and second derivative respectively in the normal direction
with respect to ū, v̄ and w̄ and the bottom row is the first derivative in the stream wise direction with
respect to ū, v̄ and w̄.
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Figure 7.6: BFS case pressure coefficient (Cp) and skin friction coefficient (Cf ) comparison of all step
heights. Upper for 10% chord, lower for 20%chord. Blue, red, green and black depict bump height
412.5, 618.7, 825 and 893µm respectively, the clean case is given in yellow. The dashed black line
marks where skin friction coefficient is zero.
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Figure 7.7: Bump case pressure coefficient (Cp) and skin friction coefficient (Cf ) comparison of all
step heights. Upper for 10% chord, lower for 20%chord. Blue, red, green and black depict bump height
412.5, 618.7, 825 and 893µm respectively, the clean case is given in yellow. The dashed black line
marks where skin friction coefficient is zero.
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Figure 7.8: Neutral stability curves for the clean (yellow points) and FFS largest height step case
(black triangles). Top row denotes the 10% chord location, bottom row denotes 20% chord location.
Left for stationary crossflow, Right for travelling crossflow: clean frequency at 420Hz, 10% FFS at fre-
quency 190Hz and 20% FFS at frequency 480Hz. The dashed red line denotes the start of the separa-
tion bubble and the dashed black line denotes the step location.

of roughness. LST estimates that the neutral point is located at around 5% chord,

meaning the 3% chord roughness cases are located in a very stable region of the flow.

This makes it extremely difficult for LST to find unstable eigenvalues. A large range

of span-wise wave numbers and frequencies are explored in solution of the dispersion

relationship, but no unstable (ω, β) combinations were found, even with the highest

steps considered at 3% chord.

Comparing the largest step height with the clean case, see figure 7.8, we see the

presence of the forward facing step increases the range of crossflow wave numbers that

are destabilised from β =90-1100m−1 to β =0-2500m−1 in the most extreme case,

at 20% chord. The 10% chord neutral curve, computed just for the stationary CFI,

features two distinct unstable regions, just before the separation bubble and after the

step. The presence of the FFS, or bubble, then expands the destabilised parameter

space to extend the range of the upper branch beyond the step. Similarly to the ramp

step case, we do not consider the stable space over the region of the separation bubble

to be completely stable. There are probably very small areas of the parameter space

that become briefly unstable. However, trying to identify these modes is extremely
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difficult due to their brief spatial existence. The neutral curve we see here for the 10%

stationary case is very similar to that of the FFR case, the main difference being that

the FFS case exhibits a short lived convergence to the baseline, upper branch before

the destabilised parameter range then shoots up to β =1600m−1. For the ramp case

this is more gradual.

When looking at the travelling crossflow case, in figure 7.8, there are no longer two clear

unstable regions as there are in the stationary case. The downstream unstable region

seems to be relatively unchanged except a smoother increase in the upper neutral

branch just after the step, more similar to what we observe in the stationary ramp case.

The upstream unstable region however, now seems to have opened up in the vicinity of

the bubble and at the step location. It appears that just before the separation bubble

the parameter space remains unstable in the lower wave number range, as we move

towards the step location. Around the centre of the bubble the unstable wave number

range shoots up to as high as β =2300m−1. For the 20% chord stationary CFI we also

observe an opening of the unstable region prior to the bubble, again adding to the

suspicion that there may be some unstable region present in the 10% chord case that

we are not able to detect with LST. Contrary to the 10% travelling case the opening of

the first unstable region now appears to be in the higher wave number range, around

β = 1000m−1, and just as we reach the beginning of the separation bubble the two

lower and upper branches diverge until the step location. The downstream unstable

zone seems to have a much smaller range of destabilisation than the 10% chord case,

only reaching around β=1250m−1 at 21% chord. The travelling CFI neutral curve

seems to have a much larger region of destabilisation around the step location where

both upper and lower branches tend to immediately diverge.

Now comparing all FFS height computed neutral stability curves we can see that with

added height the range of destabilised wave numbers are increased, see figure 7.9.

All heights of FFS at 10% chord are computed with the PSE and PSEh codes for

stationary and travelling CFI. Although we expect the PSE to fail to provide a valid

solution for the instability growth, we computed these solutions to see if a result could

even be obtained for such an extreme geometry change. The reason we expect this to

fail is due to the length scale of the roughness being too short for the CFI introduced104,

as we found from the ramp study in chapter 6, and the presence of extremely strong

stream-wise gradients causing the PSE not to converge89. The PSE are also required

to provide the PSE radiation condition for the LHNS outflow boundary.

N-factor growth curves for the 10% chord located roughness are displayed in figure 7.10,

the clean case has been added for reference. The general trend for both codes seems

to be a stabilisation as the FFS height is increased, similarly to what was observed

118



Figure 7.9: Neutral stability curves for all FFS heights. Yellow points denote the clean geometry, blue
circles for 412.5 microns, red squares for 618.7, green downward pointing triangles for 825 and black up-
ward pointing triangles for 893 microns. FFS largest height step case (black triangles). Top row denotes
the 10% chord location, bottom row denotes 20% chord location. Left for stationary crossflow, Right
for travelling crossflow: clean frequency at 420Hz, 10% FFS at frequency 470Hz, 480Hz, 460Hz and
480Hz for step heights 412.5, 618.7, 825 and 893µm respectively and 20% FFS at frequency 490Hz,
560Hz, 490Hz, 500Hz. The dashed black line denotes the step location.
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in the ramp case but contrary to the general expectation and limited experimental

evidence27,31 that all steps will lead to a destabilisation of disturbances. As with

the ramped case, many stream-wise station locations need to be neglected during the

computation in order to attain a converged solution. This is due to the stream-wise

derivative terms exhibiting very large gradient changes over the edges of the step, where

there are rapid variations in geometry. The step, although considered large scale, is

still very small meaning these neglected stations could be a necessary requirement for

satisfying the PSE step size restriction. As a consequence of ignoring some stations,

this can mean no profiles are selected over the edges of the FFS where the curvature of

the roughness, dh/ds, holds a value. We can see this from heights 412.5, 618.7 and 825

microns, which give exactly the same predictions for PSE and PSEh computations.

For the 893 micron case, which is the only case that selected a profile on the corner of

the step, we do see a difference between the PSE and PSEh solutions. Similarly to the

ramp case, the PSEh predicts a greater stabilisation than the PSE. All in all, we can

confirm that the PSE fail, as predicted, to capture the presence of the step, largely

due to vast variations in stream-wise gradients and the roughness being too small for

the CFI introduced. Nevertheless, we did find that a PSE computation could be re-

started beyond, and ahead of, the step, in which case the correct behaviour is computed

with the PSE modelling. In the dimple case investigated, section 4.1, the stream-wise

variations in the geometry were much smoother and gradual, and the PSE was able to

capture this ”kick” or amplitude jump, but in the present case the geometrical changes

are of an extreme nature. In this situation only the LHNS approach is viable.

Since the PSE do not provide a reliable solution, we moved to LHNS and LHNSh

computations. In order to resolve the step location a much finer mesh is required for

LHNS and LHNSh computations than for the clean case. Typically we use around

8000 points in the stream-wise direction and 51 Chebyshev polynomials in the normal

direction, whereas for the clean case we can obtain a mesh independent solution with

as little as 1800 points in the stream-wise direction. CFI amplitude is constructed

by taking the maximum |û| disturbance at each stream-wise location and normalising

with the boundary layer edge velocity at that location. Plots for all FFS heights are

shown in figures 7.11 and 7.12. The instability is generated by a wall forcing placed at

the clean neutral point (3% chord) ahead of the step which is located at 10% chord.

Both codes are generally consistent with the literature for CFI, where increased step

height triggers greater amplification of instability and that travelling CFI is much more

detrimental to the flow27,95,69. Notice that for the travelling cases the amplitude grows

an order of magnitude larger than in the stationary case. Taking just the clean case

we can see the peak of the travelling CFI reaches an amplitude of 5 × 10−2 whereas

the stationary only reaches 5× 10−3. For the stationary CFI, the LHNS code predicts
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Figure 7.10: FFS at 10% chord: PSE calculation (dashed lines) and PSEh (solid lines) comparison of
N-factor growth of most unstable CFI for all roughness heights. Blue for 412.5 microns, red for 618.7,
green for 825 and black for 893 microns. Top: Stationary CFI. Bottom: Travelling CFI
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an amplification in growth of the smallest bump case, compared with the clean and

LHNSh code. This seems an unlikely prediction since there was no modification to

the transition point in the experimental work of Saeed et al. 82 , although their work

did feature a bump roughness not a FFS. The growth predicted by the LHNSh code

seems much more reliable due to a gradual increase in amplification with increased step

height. It is clear that the relatively small correction to the LHNS equations, namely

the LHNShmodel, does capture the correct expected trend, whereas the LHNS without

the h correction is clearly flawed. This is consistent with the literature, and is also

in line with the findings of Saeed et al. 82 . They observed no change in the transition

front for the smallest step height, although we should remember their work was for a

bump shape roughness.

Looking now to the LHNS travelling CFI result, we would not expect the 825 micron

case to move the transition front further forward than the 893 micron case. Again this

merits the LHNSh code for providing a more reliable result. The difference in ampli-

tude predicted by both codes is highlighted for the largest step height in figure 7.13.

If we compare a PSE result with the same corresponding LHNS result, matching the

amplitudes prior to the roughness and after the roughness we can see that the PSE

generally seems to predict the growth very well, however when reaching the roughness

location the equations completely break down, thereby distorting the solution hence-

forth, see figure 7.14. The linear PSE solutions can be made to match, through a simple

scaling, the LHNS result either ahead of the step or beyond the step feature, with the

’jump’ not being modelled. This is precisely the so-called ”scattering effect” that Wu

and Dong 104 discuss, which we see the LHNS does capture. Sumariva and Hein 89

with their PSE composition with the LHNS equations, capture such jumps, but the

approach undertaken in the present work is much simpler and more straightforward.

If we now look at the 20% chord cases, figures 7.15 and 7.16 we can see that for the

LHNS stationary case, the trend for increased step height compared with amplitude of

CFI growth seems to be true. However, there is a sharp decrease and then growth just

after the step for the highest FFS at both 10% and 20% chord. Since this is present

in both step cases, it could be that the velocity gradients are too large here without

the presence of the h−correction in the equations to counteract for this. Looking at

the travelling LHNS we can see that the second largest height seems to be becoming

more stable than the clean case when convecting down-steam. We attribute this to

not finding the truly, most unstable wave number. We can see the wave number for

this case β = 560m−1 is quite a lot higher than for the other cases, a consequence

of using the PSE to rapidly search though the wave numbers and provide boundary

conditions for the LHNS equations.
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Figure 7.11: LHNS calculation for FFS at 10% chord: Comparison of most destabilizing CFIf for all
roughness heights. Red for 412.5 microns, blue for 618.7, green for 825 and black for 893 microns. Top:
Stationary CFI. Bottom: Travelling CFI. The dashed vertical line denotes the FFS location. Units of the
span-wise wave number β are m−1 and the frequency ω is given in Hz.

123



Figure 7.12: LHNSh calculation for FFS at 10% chord: Comparison of most destabilizing CFI for all
roughness heights. Red for 412.5 microns, blue for 618.7, green for 825 and black for 893 microns. Top:
Stationary CFI. Bottom: Travelling CFI. The dashed vertical line denotes the FFS location. Units of the
span-wise wave number β are m−1 and the frequency ω is given in Hz.
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Figure 7.13: FFS at 10% chord with height of 893 microns: LHNSh (solid lines) and LHNS(dashed
lines) comparison of crossflow instability. Top: Stationary CFI. Bottom: Travelling CFI. The dashed ver-
tical line denotes the FFS location. Units of the span-wise wave number β are m−1 and the frequency
ω is given in Hz.
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Figure 7.14: FFS at 10% chord: PSE calculation (dashed lines) and LNS (solid lines) comparison of
amplitude growth of most unstable stationary CFI for all roughness heights. Blue for 412.5 microns,
red for 618.7, green for 825 and black for 893 microns. Top: matching before the roughness location.
Bottom: matching after the roughness location. Units of the span-wise wave number β are m−1.
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Looking now to the LHNSh solutions 7.16, again the general trend in amplification

compared to step height is observed but there seems to be very little growth compared

to the clean case. This could be due to the stream-wise gradient changes being of

even greater magnitude at this further downstream position and these large numbers

now beginning to effect the LHNSh computation. It could once again be due to the

method of selecting the mode destabilised wave number or frequency. For example,

617.8 microns has a much higher wave number than any of the other cases and 825

microns has a much lower frequency than the other cases. Less amplified stationary

CFI further downstream was also observed experimentally81 for the bump case.

To compare LHNSh results with all step heights and both locations we have decided

to take the growth from figure 7.11 and plot the amplitude of disturbance 10% after

the location of the roughness. For the 10% roughness the reference point is 20% and

for the 20% roughness the reference point is 30%. The |û| amplitude is scaled with

the edge velocity at the measurement location (either 20% or 30% chord) and plotted

against the height of the roughness, scaled with the boundary layer thickness at the

excrescence location, as shown in table 7.1. The results can be seen in figure 7.17.

Looking at the 10% located roughness cases it is clear to see the smallest step height

has no effect on the stationary CFI growth but does for the travelling. As step heights

are increased this growth is increased further and further, always with the travelling

CFI being the more dangerous of the two. We observe similar trends for the 20% chord

FFS but for the stationary case we do not see much change from the baseline when

increasing the step height. For the AERAST bump model, similar plots have been

created but evaluated at a fixed location of 25% chord for all of the bump heights81.

It seems that when comparing the amplitude of CFI compared with the step height

there is very little difference observed for the stationary CFI with bumps located at

10% and 20% chord, see figure 2a in work by Saeed and Morrison 81 . There is a slight

change when reaching the equivalent height of our 618.8 micron case, but there is no

data point for the 825 micron case at 10% chord, and the 20% chord case seems to

decrease again. The authors mention that the bump provides less amplification to the

CFI when placed further downstream along the chord, however, a downstream location

does result in a decrease in the critical step height. Although we are not comparing

like for like excrescences, it is encouraging that our linear analyses is in agreement

with these experimental observations since we find more amplification from the 10%

chord located FFS than the 20% chord.

Contour plots of the stream-wise perturbation field, normalised with the boundary

layer edge velocity, for the largest step height are depicted in figure 7.18. Similarly

to the FFR case, immediate growth of perturbation seems to be triggered by the step

upper corner. This can be seen more clearly by looking at the travelling CFI 10%
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Figure 7.15: LHNS calculation for FFS at 20% chord: Comparison of most destabilizing CFI for all
roughness heights. Red for 412.5 microns, blue for 618.7, green for 825 and black for 893 microns. Top:
Stationary CFI. Bottom: Travelling CFI. The dashed vertical line denotes the FFS location. Units of the
span-wise wave number β are m−1 and the frequency ω is given in Hz.
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Figure 7.16: LHNSh calculation for FFS at 20% chord: Comparison of most destabilizing CFI for all
roughness heights. Red for 412.5 microns, blue for 618.7, green for 825 and black for 893 microns. Top:
Stationary CFI. Bottom: Travelling CFI. The dashed vertical line denotes the FFS location. Units of the
span-wise wave number β are m−1 and the frequency ω is given in Hz.
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Figure 7.17: FFS LNSHh calculations for most destabilising stationary and travelling CFI for all step
heights placed at 10% chord. Amplitude measurements are taken 10% after each respective roughness
location (20% chord for the 10% chord FFS and 30% chord for the 20% chord FFS) and normalised
with the edge velocity at the corresponding 10% downstream locations.

FFS case than in the FFR case, figure 6.10. As observed by Eppink and Casper 28 ,

who looked at FFS and FFR impact on CFI over a flat plate, we see a lifting of the

CFI from the wall following that of the constant ū contours. Due to the sharpness

of the step this uplift in the step corner is extremely clear. We can also see in the

FFS 10% chord case, figure 7.18, a region of reversed û flow just above the step

corner, sitting amongst the constant ū velocity contours. Upstream of the step there

is a region of crossflow reversal near to the separation bubble which we see clearly

in figure 7.19. The sign of the vorticity at this inflection point is determined from

the direction of the crossflow velocity in the boundary layer. A change in the sign of

the crossflow ŵ component can cause amplification of stationary CF vortices, rotating

in the opposite direction to the primary vortices, leading to destabilisation of these

primary vortices28. This strong kick that the step provides to the CFI is also observed

in the work of Eppink and Casper 28 , see figure 9a in their paper, where the sharp step

peak amplitude immediately increases from 2 to 7. Sumariva and Hein 89 , who looked

at two dimensional flow with a convecting TS wave over a sharp bump on a flat plate,

have also observed this jump in amplitude when reaching the step upper corner.

All velocity perturbation profiles are plotted at varying stream-wise locations in the

neighbourhood of the step feature. Perturbation velocities are scaled with the free-

stream velocity at that location. When examining û perturbation profiles we find that

at the step region there are two peaks which form in the perturbation profile, the

larger of which is closer to the wall. As we move downstream these peaks tend to
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Figure 7.18: Stream-wise perturbation field, |û|, for 893 micron FFS at 10% and 20% chord. Top:
LHNSh 10% chord stationary case, β = 460m−1. Second: LHNSh 10% chord travelling case, β =
460m−1, ω = 190Hz. Third: LHNSh 20% chord stationary case, β = 500m−1. Bottom: LHNSh 20%
chord travelling case, β = 500m−1, ω = 480Hz.
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merge into one, see figure 7.19. Looking at the ŵ component prior to the step at 9.6%

chord, before we enter the small separation bubble, we can see the inflection profile

typical of crossflow. Moving closer to the step to 9.8% chord, now much closer to the

separation bubble location, we start to see a lifting of the upper peak and the lower

peak has become further pronounced, indicating the presence of crossflow reversal27.

These profiles are similar to those observed in experiments by Eppink 27 .

Tufts et al. 95 have studied FFSs and BFSs experimentally and numerically on a swept

wing, but their work features a separated flow region on the upper surface of the

step as well as just prior to the step, which we do not find. Nonetheless, the height

of the clean crossflow vortex (CFV) is compared with that of the height of the step

to examine the postulation of Tufts et al. 95 . Tufts et al. 95 suggest that when the

step height of a FFS, h, is larger than that of the clean case CFV height, yc, there

is a constructive interaction between the helical flow downstream of the FFS and

the CFV. The height of the CFV varies with each wavelength of CFI introduced.

This means the clean case needs to be evaluated for each of the corresponding most

destabilising wavelengths for the FFS cases. When examining the perturbed velocity

profiles, the height of the CFV is between 1463 microns for the stationary cases and

1417 microns for the travelling cases. These CFV heights are larger than any of the

FFS heights, meaning the reasoning by Tufts et. al. is not appropriate for this FFS

configuration. This suggests the amplification could be either due to the earlier helical

flow before the step which the CFI is interacting with, the corner of the step itself

or some other mechanism interacting with the stationary CFI. Since we do not have

laminar separation bubble present above the step in our computations, this cannot be

a key mechanism in our regimes.

From these observed stability results we can see that the FFS indeed works as a very

clear amplifier to the convecting CFI.
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Figure 7.19: 10% chord largest FFS height with stationary CFI: LHNSh generated velocity profiles
generated at a range of stations. The plot in the top left hand corner marks the stations at which the
profiles are evaluated. The dashed horizontal line marks the step height.
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7.3 Backward Facing Step (BFS) Stability Analysis

Neutral curves are computed with linear stability theory for the backward facing step.

The largest step height is compared with the clean case for 10% and 20% chord, see

figure 7.20. The neutral curves are a very different shape to those computed for the

FFS. The BFS seems to have a more severe impact on the range of wave numbers which

are destabilised. They also appear to remain unstable for a much further spatial extent

than the FFS, the 2.5D separation bubble seems to be the main driver for this.

Beginning with the 10% chord stationary crossflow case, we can see there are now three

unstable regions, instead of two as for the FFS. When the BFS is reached, marked

with the dashed vertical black line, the parameter space is immediately completely

destabilised up until β = 2500m−1. The upper branch then seems to curve down to

β = 2000m−1 at around the midpoint of the separation bubble and the lower branch

also begins again. The two branches then converge quite steeply to one another at

the point of reattachment, denoted by the dashed red line. It is very shortly after this

that the third unstable region begins. The lower branch almost immediately returns to

the clean lower branch but the upper branch remains slightly higher at β = 1300m−1.

Until dropping lower than the clean upper branch to β = 850m−1 and then slowly

converging back to the clean upper branch around 18% chord.

Interestingly for the travelling crossflow case, the latter two unstable zones we see

in the stationary case seem to have merged into one large unstable region. There is

also the existence of a small, stable, boomerang shaped, isolated region. This short

lived region of stabilisation is located in and slightly after the separation bubble,

ranging from β = 300m−1 to β = 1300m−1. Similarly for the stationary case, as the

upper neutral curve returns back towards the clean branch it over shoots to as low as

β = 700m−1 before starting to slowly increase back to the clean upper branch. We

also observe a slight overshoot of the lower branch before returning to the clean case

much further downstream.

For the stationary 20% chord case, again the largest range of destabilised wave numbers

is in the region of chord where the reverse flow is. Unlike the 10% chord stationary

case we now see a merging of the second and third unstable regions in the parameter

space β = 1000m−1 to β = 1500m−1 at 21.5% chord. The lower neutral branch has

attempted to converge to the upper branch here, reaching as high as the clean upper

branch, before reversing back down and converging to the clean lower branch. The

merging of the upper neutral branch to the clean case is much more gradual than the

10% case and seems to result in less of an overshoot.

The 20% travelling case has the largest unstable regions overall with the small stable
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zone located within the recirculation region shrinking to a much smaller size than

in the 10% chord case. It now only effects wave numbers between β =400m−1 to

β =800m−1. We do observe a downstream over-shooting of the neutral curves as they

converge to the clean case, similar to the 10% travelling case. We also notice that

the maximum range of destabilised wave numbers, around β = 2250m−1, does not

quite reach as high as the 10% case, β = 2500m−1. This could be due to being in a

thicker region of the boundary layer, since we are further downstream, meaning the

step height is comparatively smaller when the step is scaled with the local boundary

layer thickness.

Comparing through all backward facing step heights, figure 7.21, we can see that

the point of separation between the second and third stable zones is dictated by the

length of the laminar separation. When decreasing the backward facing step depth, the

size of the separation bubble becomes shorter and so the end of the second unstable

region moves further upstream, along with the beginning of the third region. This

therefore may well be related to a Kelvin-Helmholtz type inviscid instability due to

the inflectional nature of the boundary layer profile, existing as a consequence of the

LSB. Most cases tend to behave similarly except for the smallest step height. For

the stationary CFI 20% chord smallest step height we can observe an unstable region

in the lower wave number range, β = 100m−1 to β = 500m−1 immediately after the

step. This narrows to as little as 200 to 300 before the upper branch rapidly increases

up to β = 1250m−1. For both the 10 % and 20% travelling cases there is no small

boomerang shaped stable region present in the reverse flow region for the smallest step

height. The range of destabilised wave numbers is also much smaller after the step

location.

We have already established that the PSE and PSEh will fail to capture the effect

of the BFS, hence the PSE results will not be exhibited hereafter. Although it is

pertinent to point out that the PSE results do not seem to be behaving outlandishly

incorrectly since they are identifying the most unstable wave numbers to exist in the

lower range. We expect lower wave numbers to become more amplified due to the

thickening of the boundary layer caused by the BFS67. The PSE has still been used

to identify dangerous modes to perform LHNS computations and supply the radiation

conditions required in the LHNS outflow plane.

LHNS and LHNSh computations for stationary and travelling CFI are shown in fig-

ures 7.22 and 7.23 for all BFS heights. Typically we use around 9000 points in the

stream-wise direction and 51 Chebyshev polynomials in the normal direction. Surpris-

ingly, both codes seem to predict a stabilisation for the CFI compared with the clean

case. Similar to the FFS, we see the travelling CFI is much more dangerous than the

stationary, growing 10 times that of the equivalent stationary most amplified instabil-
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Figure 7.20: Neutral Stability Curves for the clean (yellow points) and BFS largest depth step case
(black triangles). Top row denotes the 10% chord location, bottom row denotes 20% chord location.
Left for stationary crossflow, Right for travelling crossflow: clean frequency at 420Hz, 10% BFS at fre-
quency 360Hz and 20% BFS at frequency 450Hz. The dashed black line denotes the step location and
the dashed red line denotes the start of the separation bubble.
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Figure 7.21: Neutral Stability Curves for all BFS heights. Yellow points denote the clean geometry,
blue circles for 412.5 microns, red squares for 618.7, green downward pointing triangles for 825 and
black upward pointing triangles for 893 microns. Top row denotes the 10% chord location, bottom row
denotes 20% chord location. Left for stationary crossflow, Right for travelling crossflow: clean frequency
at 420Hz, 10% BFS at frequency 490Hz, 360Hz, 470Hz and 360Hz for step heights 412.5, 618.7, 825
and 893 respectively and 20% BFS at frequency 440Hz, 350Hz, 510Hz and 450Hz. The dashed black
line denotes the step location.
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ity. The trend for the LHNS calculation is not clear. Some larger depth cases do not

stabilise as much as some shorter depth cases and the growth predictions appear to be

quite haphazard with how amplified the CFI becomes. This suggests the roughness

height correction terms, which are missing from the LHNS equations, may hold quite

some weight with respect to capturing the growth of the instability over this region.

The largest step height seems to be the only case which doesn’t show a stabilisation,

which we also see in the LHNSh code. We initially thought this might be due to a

noisy, inaccurately computed base flow profile, however we do not see the same trend

in the travelling cases which utilise the same baseflow. As a result we do not yet have

an explanation for this predicted result of amplitude growth.

From the LHNSh solutions, 7.23, we can see as the depth of the BFS is increased the

stabilisation is increased, which seems contrary to the wider literature. The BFS has

generally been shown to move the transition front forward in experimental works67,95,25.

This is generally presumed as a consequence of 2D LSB analysis. It is clearly an open

question, in view of the fact that few theoretical works have been undertaken on

2.5D swept wing boundary layers in the presence of LSBs, whether stabilisation may

also be possible. In support to our findings, this stabilisation has been observed by

Balakumar et al. 8 who conducted numerical investigations into FFSs and BFSs on a

30◦ swept wing. The heights of the steps varied between a third to a full boundary

layer thickness and the flow regime was supersonic. They applied PSE to track the

growth rates of CFI and found that all step heights provided a stabilising effect to

both stationary and travelling waves, so much so that the amplitude of the CFI was

decreased by 50% compared to the clean case at the transition location. They also

observed increased stability with increased step depth, as we do in our simulations,

and found that higher wave numbers were more stabilising than lower wave numbers.

The use of the PSE in their case is somewhat more justified than in our computations

since the PSE are able to resolve smaller stream-wise step sizes in supersonic flow.

We are aware that the flow regime of Balakumar et al. 8 is very different to ours but

it is reassuring that they have also observed a stabilisation. Eppink 25 ran extensive

hot-wire investigations into backward facing steps placed on a swept flat plate. A

pressure body is used to create a pressure field simulating an infinite swept wing. A

delay in the transition location was observed for the smallest step height, suggesting a

stabilisation. However, Eppink indicates this is contrary to other works and could be

due to various other effects such as inconsistency in the naphthalene coating. Eppink

et al. 31 exhibit amplitude and N-factor plots for the BFS with stationary CFI. For the

large DREs case we can see a growth in amplitude over the reverse flow region followed

a stabilisation upon one to two lengths of the reverse flow region downstream, around

20% of the plate. This occurs for all step heights with DREs present for the shorter
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wavelength crossflow. Upon further private discussion with Eppink over these plots,

it seems transition occurs shortly after the data points finish, which is attributed to

the presence of travelling modes.

Turning now to the work of Saeed and Morrison 81 , who looked at the effect of bumps

on CFI and upon which this work is most similar to. Saeed and Morrison 81 observed

that for their most upstream located bump profile, 3% chord, they could not detect a

stationary CFI structure at 25% chord for bump heights larger than the second tallest

bump. They do however, observe a sharp increase in unsteady disturbance amplitude

after the second tallest bump. We suspect, from these results and the BFS work by

Eppink et al. 31 , that our 10% chord located BFS immediately initiates a highly non-

linear mechanism for all step heights which cannot be captured by the linear analysis

undertaken, and thus requires fully non-linear lines of enquiry. Should this theory be

correct, then our results could be consistent with the wider literature, whereby the

BFS initiates much more dangerous destabilisation mechanisms than the FFS.

The difference in amplitude predicted by both the LHNS and LHNSh are highlighted

for the largest step height in figure 7.24. In the neighbourhood of the step we can see

an opposite trajectory predicted by both codes. The LHNS predicts a short growth

and then decay, whereas the LHNSh predicts a short decay and then growth. We

know that the LHNSh models the step region more correctly, thus the LHNS result

is clearly erroneous in the neighbourhood of the step. Beyond the step however, it is

possible by a simple rescaling of the LHNS derived result, for it to be made to match

precisely onto the LHNSh result downstream of the step.

Results for the 20% chord BFS are exhibited in figures 7.25 and 7.26. The general

trend for the LHNS results, as step height is increased, is for further stabilisation to

occur. For the LHNSh equations the stabilisation is still there but is much reduced,

similar to what was observed for the 20% chord case. The trend in each scenario is

not clear. This could be simply due to the variety in most unstable wave number and

frequency combinations. In this case it would be worth while conducting comparisons

with fixed wave number and frequency across all cases, even at the consequence of not

remaining the most unstable mode for all cases.

To compare all step height configurations for travelling and stationary crossflow, the

amplitude at 10% after the roughness location is plotted against the height of the non-

dimensional roughness, as stated in table 7.1, see figure 7.27. For the 10% roughness

the reference point is 20% and for the 20% roughness the reference point is 30%. The

|û| amplitude is scaled with the edge velocity at the measurement location (either 20%

or 30% chord). It is clear to see that the general trend is to predict a stabilisation of

disturbances.
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Figure 7.22: LHNS calculation for BFS at 10% chord: Comparison of most destabilizing CFI for all
roughness heights. Red for 412.5 microns, blue for 618.7, green for 825 and black for 893 microns. Top:
Stationary CFI. Bottom: Travelling CFI. The dashed vertical line denotes the BFS location. Units of the
span-wise wave number β are m−1 and the frequency ω is given in Hz.
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Figure 7.23: LHNSh calculation for BFS at 10% chord: Comparison of most destabilizing CFI for all
roughness heights. Red for 412.5 microns, blue for 618.7, green for 825 and black for 893 microns. Top:
Stationary CFI. Bottom: Travelling CFI. The dashed vertical line denotes the BFS location. Units of the
span-wise wave number β are m−1 and the frequency ω is given in Hz.

141



Figure 7.24: BFS at 10% chord with height of 893 microns: LNSh (solid lines) and LNS(dashed lines)
comparison of crossflow instability. Top: Stationary CFI. Bottom: Travelling CFI. The dashed vertical
line denotes the BFS location. Units of the span-wise wave number β are m−1 and the frequency ω is
given in Hz.
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Figure 7.25: LHNS calculation for BFS at 10% chord: Comparison of most destabilizing CFI for all
roughness heights. Red for 412.5 microns, blue for 618.7, green for 825 and black for 893 microns. Top:
Stationary CFI. Bottom: Travelling CFI. The dashed vertical line denotes the BFS location. Units of the
span-wise wave number β are m−1 and the frequency ω is given in Hz.
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Figure 7.26: LHNSh calculation for BFS at 10% chord: Comparison of most destabilizing CFI for all
roughness heights. Red for 412.5 microns, blue for 618.7, green for 825 and black for 893 microns. Top:
Stationary CFI. Bottom: Travelling CFI. The dashed vertical line denotes the BFS location. Units of the
span-wise wave number β are m−1 and the frequency ω is given in Hz.
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Figure 7.27: BFS LNSHh calculations for most destabilising stationary and travelling CFI for all step
heights and locations. Amplitude measurements are taken 10% after each respective roughness location
(20% chord for the 10% chord BFS and 30% chord for the 20% chord BFS) and normalised with the
edge velocity at the corresponding 10% downstream locations.

Contour plots of the stream-wise perturbation field for the largest step height are

depicted in figure 7.28. We can see the perturbation is clearly convecting over the

separation bubble, never extending into it. The 10% chord cases seem to fold back

to the wall quite rapidly, whereas the 20% cases remain lifted away from the wall for

a longer distance downstream. If we adjust the velocity scale on the stationary 20%

case we can see there exist multiple maxima and minima of û for some stations in

the neighbourhood of the reverse flow region, see figure 7.29. Some noise within the

contour field can be seen at the step location, giving an indication that the solutions

are not resolved well enough, possibly due to noisiness in the extracted steady base flow

field variables. Another aspect the reader should bear in mind, is that the plotting

tool uses spline fitting, and due to the very rapid variations at the step junction

interface, the slight jaggedness is most likely due to overshoots arising from splining

in the contouring and colour shading algorithms (Python libraries).

Perturbed velocity profiles at locations close to and just downstream of the step are

given in figure 7.30. From the two locations just after the step, we can see a small

inflection point in the ŵ profile and some similarity in the v̂ perturbation field com-

pared with the numerical and experimental study by Tufts et al. 95 , who studied the

effect of FFSs and BFSs on CFI.

Given the linear stability analysis undertaken in this section the results indicate that

the BFS acts as a stabiliser. This is contrary to the literature of BFSs acting as an
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Figure 7.28: Stream-wise perturbation field, |û|, for 893 micron BFS at 10% and 20% chord. Top:
LHNSh 10% chord stationary case, β = 330m−1. Second: LHNSh 10% chord travelling case, β =
330m−1, ω = 360Hz. Third: LHNSh 20% chord stationary case, β = 460m−1. Bottom: LHNSh 20%
chord travelling case, β = 460m−1, ω = 450Hz.
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Figure 7.29: Stream-wise perturbation field, |û|, for 893 micron BFS 20% chord with stationary cross-
flow, β = 460. Scale is modified to see extra maxima/minima in |û|.

amplifier mechanism through destabilising oscillator dynamics induced by the presence

of LSBs. However much of these inferences have been drawn from detailed analysis of

2D LSBs. Destabilisation dynamics of 2.5D LSBs is as yet a topic not investigated in

detail to our knowledge. In fact this was a reasoning for the research undertaken in this

thesis. There is also the aspect that the observed experimental behaviour indicates

that as the step height is increased the transition front does move towards the step

location itself, once some step height amplitude threshold is reached. It could be, in all

likelihood, that the processes involved are inherently non-linear. Certainly the present

analysis, from this current limited study, suggests that a major flow destabilisation of

BFSs does not arise through linear mechanisms.
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Figure 7.30: 10% chord largest BFS height with stationary CFI: LHNSh generated velocity profiles
generated at a range of stations. The plot in the top left hand corner marks the stations at which the
profiles are evaluated. The dashed horizontal line marks the step height.
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Figure 7.31: Neutral Stability Curves for the clean (yellow points) and bump largest height case (black
triangles). Top row denotes the 10% chord location, bottom row denotes 20% chord location. Left for
stationary crossflow, Right for travelling crossflow: clean frequency at 420Hz, 10% bump at frequency
550Hz and 20% bump at frequency 540Hz. The dashed red line denotes the start of the separation
bubble and the dashed black line denotes the step location.

7.4 Bump Stability Analysis

Neutral curves are computed with linear stability theory for the largest bump height

at 10% and 20% chord and compared with the clean, see figure 7.31. Features from

both the FFS and BFS neutral curves can be clearly seen in the bump neutral curves.

Once again the two reverse flow regions seem to be a trigger for destabilising a much

larger range of wave numbers. Comparing this figure with the FFS largest bump height

neutral curves, figure 7.8, we can see that the neutral curve looks identical upstream of

the step for all cases except the travelling CF 10% chord case. For this particular case

the upper branch drops down to the lower branch before dramatically increasing again

to as high as β =2300m−1. We do not observe this in the 10% bump travelling case

where the upper branch immediately lifts up to β =2300 m−1. Just after the FFS, now

located at the top of the bump, the neutral curve begins to diverge again, as we saw

for the FFS cases. However, in the bump case the upper branch moves straight up to

β =1600. We do not observe any short convergence to the clean case and second rise as

we did in the 10% FFS stationary case. When we reach 10.375% chord we hit the BFS

component and the upper neutral curve immediately jumps up to around β =2500m−1
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for most cases, except the 10% chord stationary case which reaches β =2600m−1. All

of the bump case upper branches reach a higher range of unstable wave numbers arising

from the BFS component relative to that observed in the pure BFS case, see figure

7.8. We also observe the lower neutral branch goes to zero number wave numbers. In

the pure BFS stationary cases we observed the returning of the lower branch about

midway though the separation bubble and either converging to the upper branch at

reattachment, for the 10% case, or attempting to merge to the upper branch just

after reattachment, for the 20% chord case. In the bump stationary case we do not

see the lower branch reappear until further downstream at the reattachment point.

The rise of the lower branch to upper branch is then also delayed by almost another

separation bubble length. For the 10% bump stationary case we do not see a merging

of the upper and lower branch as we did in the pure BFS case. Another observation

is that an increase in the upper branch destabilised wave numbers is observed after

reattachment in all bump cases, this feature is not present in the pure BFS case.

For the travelling CFI cases we can also see the presence of this small boomerang

shaped stable region around β = 500m−1, although it now seems to be located down-

stream of the separated region, contrary to the pure BFS case. For the travelling CF

cases we also observe much more overshooting of the neutral curves relative to the

clean case downstream. Their convergence to the clean neutral curve doesn’t occur

until much further downstream, about 10% of a chord length behind the step location.

Generally, the conjugation of the FFS and BFS constructing the bump roughness ap-

pears to be more detrimental to the range of destabilised wave numbers downstream

of the large recirculation reattachment.

All bump height neutral stability curves are compared in figure 7.32. Generally for

all step heights the 10% chord case destabilises a larger range of wave numbers over

the bump, between the solid dashed black lines, compared to the 20% chord case. As

we walk down through the step heights we can see the larger two heights feature very

similar neutral curve shapes. When we progress to the second smallest step height

the main difference is that the upper branch second peak, located about 10% chord

downstream of the bump, is no longer present and the shape looks more like that of the

pure BFS case. As we move to the smallest height we see that the neutral curve has

changed significantly. For the stationary 10% bump we see that immediately after the

BFS component is an unstable region ranging from β =500m−1 to β =2400m−1. The

upper and lower branches merge about one bump length downstream, a brief moment

of stability follows, before the fourth unstable region starts around 10.7% chord in

the lower range parameter space, β =500m−1 to β =1500m−1. The 20% chord case

however, seems to have a small region of instability in the low wave number ranges,

β =100m−1 to β =500m−1, directly after the BFS component. The fourth unstable
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Figure 7.32: Neutral Stability Curves for all bump heights. Yellow points denote the clean geometry,
blue circles for 412.5 microns, red squares for 618.7, green downward pointing triangles for 825 and
black upward pointing triangles for 893 microns. Top row denotes the 10% chord location, bottom row
denotes 20% chord location. Left for stationary crossflow, Right for travelling crossflow: clean frequency
at 420Hz, 10% bump at frequency 380Hz, 340Hz, 330Hz and 550Hz for step heights 412.5, 618.7, 825
and 893 respectively and 20% bump at frequency 460Hz, 460Hz, 420Hz and 540Hz. The dashed black
lines denote the bump beginning and end location.

region then begins shortly downstream. For the travelling cases, the 20% chord case

only destabilised wave numbers as large as β =1700m−1 whereas the 10% chord case

ranges up to β = 2400m−1. There is also no brief boomerang shaped region of stability

for both locations, or if there is, it is too short to be of relevance.

Once again the PSE and PSEh computations fail to capture the presence of the bump

reliably due to the aforementioned reasons. The PSE is still utilised to find the most

destabilising CFI wavelength and frequency to provide outflow boundary conditions

to the LHNS and LHNSh equations. The problem of having to ignore stations with

large stream-wise fluctuations is only exacerbated by the bump. Instead of there only

being one vertical edge, as with the FFS and BFS, there are now two sides to the

bump. This means we could have an event where a station along one edge of the

bump is taken, but not its corresponding other edge, resulting in a positive dh/ds

term in one instance but its corresponding negative contribution not being captured

in the PSE computation. This should be kept in mind when evaluating wave numbers

and frequencies identified as the most unstable for computation with the LHNS and
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LHNSh equations.

LHNS and LHNSh computations for stationary and travelling CFI are shown in figures

7.33 and 7.34 for all bump heights at 10% chord. Typically we use around 8000 points

in the stream-wise direction and 51 Chebyshev polynomials in the normal direction

to achieve mesh independent solutions. Increasing the Chebyshev polynomials in the

wall direction, did not alter the results to graphical accuracy. The LHNS solutions for

the growth of shortest and tallest bump seem reasonable but the heights in between

do not quite follow the trend of a taller bump causing more amplification to the

CFI. The LHNSh solutions are generally consistent with the literature for stationary

CFI, where increased step height triggers greater amplification of disturbances27,95,69.

LHNSh predicts an even larger growth of disturbances for all bump heights larger

than 618.7 microns, in comparison to the LHNS formulation. The 412.5 micron case

gives a similar result to the clean case for both LHNS and LHNSh codes, showing the

smallest bump height does not have any overall effect on the growth of the CFI, this is

in agreement with observations in the experimental work of Saeed et al. 82 . According

to the LHNSh, the next step height, 618.7 microns, also predicts no overall difference

to the clean case. As the bump height increases further we begin to see an increased

forward movement in transition. The LHNS model seems to predict more amplification

of CFI for the 618.7 micron case than the 825 micron case, which seems very unlikely.

Given the differences between the two LHNS / LHNSh solutions we are led to conclude

that the LHNS formulation neglects some crucial role of the perturbed us field locally

at the bump geometry change. Looking at the travelling CFI curves, there is a similar

trend to the results as for the stationary case but the growth is amplified ten times

that of the stationary crossflow. It is noticeable that the clean case is more amplified

than the smaller bump heights in the LHNSh computations. We reason this is likely to

be due to having used the PSE to find the most unstable CFI wave numbers. Since the

PSE in unable to resolve the roughness region, the most unstable wave number it finds

may not, truly, be the most unstable wave number. Our smallest bump height results

compare well with the work of Saeed et al. 82 who found found that the smallest step

height did not cause any forward movement of the transition front. We also however,

observe that the second tallest height does not predict an increase in amplitude to the

CFI, contrary to the experimental work. As the bump height increases we tend to see

a decrease in the most unstable CFI wave number.

A direct comparison of the two codes for the largest bump case can be seen in fig-

ure 7.35. Here we can see the LHNSh code predicts a greater amplification of CFI

than LHNS for both stationary and travelling CFI. Evaluating all heights, it would

appear that if there was a critical bump height to cause transition, it must be located

somewhere between 37% to 48% of the boundary layer thickness.

152



Figure 7.33: LHNS calculation for the bump at 10% chord: Comparison of most destabilizing CFI for
all roughness heights. Red for 412.5 microns, blue for 618.7, green for 825 and black for 893 microns.
Top: Stationary CFI. Bottom: Travelling CFI. Bump is located between the vertical dashed lines. Units
of the span-wise wave number β are m−1 and the frequency ω is given in Hz.
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Figure 7.34: LHNSh calculation for the bump at 10% chord: Comparison of most destabilizing CFI for
all roughness heights. Red for 412.5 microns, blue for 618.7, green for 825 and black for 893 microns.
Top: Stationary CFI. Bottom: Travelling CFI. Bump is located between the vertical dashed lines. Units
of the span-wise wave number β are m−1 and the frequency ω is given in Hz.
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Figure 7.35: Bump at 10% chord with height of 893 microns: LHNSh (solid lines) and LHNS(dashed
lines) comparison of crossflow instability. Top: Stationary CFI. Bottom: Traveling CFI. Units of the
span-wise wave number β are m−1 and the frequency ω is given in Hz.
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Looking at the 20% chord bump cases we can see that the LHNS code predicts a

stabilisation to all bump heights, with increasing stability as the bump height is in-

creased, see figures 7.36 and 7.37. This feature is very similar to what is observed in

the BFS cases. However, when we solve the LHNSh equations the result is much more

consistent with the literature. We see an increase in amplification to the CFI with

increased bump height. The stationary CFI predicts a greater difference in amplitude

growth for the largest bump case than for the travelling CFI, although the travelling

case remains much more dangerous by an order of magnitude. The trend for the trav-

elling case is slightly less clear but this could be attributed to utilising perhaps not

the most dangerous wave number and frequency combination. We do observe that the

most amplified modes, selected by the PSEh, at 20% chord have a longer wavelength

than those at 10% chord, also observed by Saeed and Morrison 81 . Generally the re-

sults from the LHNSh code, predicting less amplification to the CFI when the step is

placed further downstream, were observed in the experimental work81. Transition was

observed by Saeed and Morrison 81 for lower step heights when the bump was placed

further downstream, although the CFI underwent less amplification. They conclude

that downstream located bumps have a lower critical height and that transition occurs

though amplification of unsteady disturbances, also observed by Eppink et al. 31 .

To compare all bump height configurations for travelling and stationary crossflow, the

amplitude at 10% downstream of the roughness location is plotted against the height

of the non-dimensional roughness, as stated in table 7.1, see figure 7.38. For the 10%

roughness the reference point is 20% and for the 20% roughness the reference point is

30%. The |û| amplitude is scaled with the edge velocity at the measurement location

(either 20% or 30% chord) and plotted against the height of the roughness, scaled

with the boundary layer thickness at the excrescence location, as shown in table 7.1.

We see that there is not much difference between the amplitude growth of the clean

case and the first two bump heights, for the 10% chord. The larger two bump cases

do cause an increased amplification to the CFI which is exacerbated with increased

height. The 20% chord bumps do not show much growth from the clean case except

for the largest bump case.

Saeed and Morrison 81 have constructed similar plots but all evaluated at 25% chord,

for the 3%, 10% and 20% chord located bumps. We have also constructed a similar

plot, see figure 7.39, where now we evaluate the disturbance amplitude at a 25% chord

location for both 10% and 20% chord bump locations. Our stationary results compare

relatively well with their experimental results, where there is no growth predicted for

the first two bump heights, but we do see growth for the highest bump heights. Our

travelling disturbance results do however, appear to be quite different. Saeed and

Morrison 81 observe barely any change to any of the 10% chord placed bump heights
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Figure 7.36: LHNS calculation for the bump at 20% chord: Comparison of most destabilizing CFI for
all roughness heights. Red for 412.5 microns, blue for 618.7, green for 825 and black for 893 microns.
Top: Stationary CFI. Bottom: Travelling CFI. Bump is located between the vertical dashed lines. Units
of the span-wise wave number β are m−1 and the frequency ω is given in Hz.
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Figure 7.37: LHNSh calculation for the bump at 20% chord: Comparison of most destabilizing CFI for
all roughness heights. Red for 412.5 microns, blue for 618.7, green for 825 and black for 893 microns.
Top: Stationary CFI. Bottom: Travelling CFI. Bump is located between the vertical dashed lines. Units
of the span-wise wave number β are m−1 and the frequency ω is given in Hz.
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Figure 7.38: Bump LNSHh calculations for most destabilising stationary and travelling CFI for all step
heights and locations. Amplitude measurements are taken 10% after each respective roughness location
(20% chord for the 10% chord bump and 30% chord for the 20% chord bump) and normalised with the
edge velocity at the corresponding 10% downstream locations.

and only in the 20% chord location do they see a slight rise in the unsteady amplitude

caused by the taller two bump cases. We observe the same trend for the 20% chord case

but the amplification is more significant and we also observe a significant increase in

the 10% chord case, contrary to Saeed and Morrison 81 . Though it has to be remarked

that the experimental findings may well have been clouded by the unknown free-stream

tunnel environment. There is some uncertainty as to the precise nature of the unsteady

forcing in the observed wind-tunnel measurements, whereas our LHNS simulations are

of course modelled and forced by a precisely controllable theoretical scenario.

Contour plots of the stream-wise perturbation field for the largest bump height are

depicted in figure 7.40. The 10% chord cases show the CFI clearly traversing over

the separation bubble. Contrary to the BFS case the reverse flow region seems to

be acting as a disturbance amplifier. Looking at the 20% chord cases the instability

is much more amplified than the 10% cases. We can see the disturbance amplitude

growing from the FFS corner of the bump. We see that the instability is no longer

convecting over the laminar separation bubble but is also within it for the travelling

20% case. Also, just downstream of the upper corner, for the 20% chord cases, there

is a region of reversed perturbation.

Perturbed velocity profiles are given in figure 7.41. For the v̂ perturbation we observe

a rise in the peak from the wall, station s/c =0.102, showing that the crossfow vortex

has lifted up from the wall. Moving past the BFS, station s/c =0.104 and s/c =0.106,

159



Figure 7.39: Bump LNSHh calculations for most destabilising stationary and travelling CFI for all step
heights and locations. All amplitude measurements are taken at 25% chord and scaled with the edge
velocity at this location.

we start to see a smaller maxima below the height of the bump, in the ŵ component

and also, although much smaller, in the û and v̂ components. As we move further

downstream this maxima, that is close to the wall, becomes larger. All of these CFV

core heights are larger than any of the bump heights, meaning the Tufts et al. 95 criteria

does not apply, although Tufts et al. 95 only looked at the singular component FFS

for this criteria and had a helical flow on top of the step interacting with the CFI

which we do not. When examining these instability velocity profiles, we have noticed

max(
√
û2 + ŵ2) seems to correlate with the bump height. The value ofmax(

√
û2 + ŵ2)

ranges from 646 to 692 microns in height, which is just higher than the second bump

height.
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Figure 7.40: Stream-wise perturbation field, |û|, for 893 micron bump at 10% and 20% chord. Top:
LHNSh 10% chord stationary case, β = 390m−1. Second: LHNSh 10% chord travelling case, β =
350m−1, ω = 340Hz. Third: LHNSh 20% chord stationary case, β = 500m−1. Bottom: LHNSh 20%
chord travelling case, β = 500m−1, ω = 540Hz.
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Figure 7.41: 10% chord largest bump height with stationary CFI: LHNSh generated velocity profiles
generated at a range of stations. The plot in the top left hand corner marks the stations at which the
profiles are evaluated. The dashed horizontal line marks the step height.
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7.5 Comparison of all three cases

To compare the three different cases, FFS, BFS and the bump regime directly, we

have compared the CFI amplitude versus the height of the roughness scaled with the

boundary layer thickness, as shown in table 7.1. Comparisons are made for the 10%

chord located roughness in figure 7.42. The |û| amplitude is scaled with the edge

velocity at the measurement location (20% chord). We can see that the FFS appears

to provide the most amplification to the CFI, and this is increased with increasing step

height. The bump also causes an amplification with increasing step height but is not

as substantial as the FFS. The BFS tends to predict a stabilisation with increasing

step height. As stated previously, we think it is likely that there are highly non-linear

mode interactions introduced by the BFS, and even the laminar separation bubble

posterior to the step, which are not able to be captured with linear theory. Should

this hypothesis be true, it likely applies to the bump case as well which is why we see

a lesser destabilising impact on the CFI than the FFS.

7.6 Comparison with the Nektar++ time stepping LNS

To investigate the validity of the results, the time harmonic LHNSh code is com-

pared with the Nektar++ LNS time marching solution, as we did for the ramped case

where good agreement was found. In order to compute the incompressible LNS with

Nektar++ a much finer mesh is required than for computing the baseflow solutions.

Here we utilise a domain with around 1500 elements, the majority of which have been

injected into the near wall quadrature layer, and a polynomial order of five is sufficient.

We do not see good agreement from any of the cases, contrary to that of the ramped

cases, see figure 7.43. The forward and bump Nektar++ LNS (NekLNS) do show some

increase in growth but it is nowhere near as amplified as that of the LHNSh results.

For these two cases the growth in the region prior and after the bump location share

very similar amplitude evolution. The bump does not seem to be providing as large

a kick to amplification in the NekLNS solutions compared to the LHNSh solutions.

Although, downstream of the bump the NekLNS and LHNSh solutions can be made

to match by a simple scaling of one to the other. Mesh refinement studies with respect

to h-type and p-type have been conducted with minimal change to the solutions. We

were also not able to compute a solution for the BFS which did not decay along the

chord. Upon reaching 65% chord the amplitude of CFI with NekLNS is 10−7. The

solution from Nektar++ for the BFS seems to agree qualitatively with the LHNSh

code, that there is a stabilisation predicted for the CFI, but this claim is extremely

tenuous. We would expect the NekLNS BFS result to agree beyond the step, at least
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Figure 7.42: LNSHh calculations for most destabilising stationary (top) and travelling (bottom) CFI
for all step heights and roughness shapes placed at 10% chord. Amplitude measurements are taken
10% after the roughness location (20% chord) and normalised with the edge velocity at each station
location.
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with similar evolution in amplitude as the FFS and bump do. Generally the NekLNS

result requires much further investigation and this demonstrates the immense difficulty

of solving such flows with time marching. A further point to consider here is that we

are investigating spatial growth of convection instabilities. It could be that the reason

forward movement of the transition front is observed in experiments could be due

to temporal growth, an absolute instability or a non-linear interaction phenomenon.

Appel et al. 4 numerically investigated temporal bi-global instability over steps and

bumps on the AERAST geometry. They found that temporally unstable bi-global

modes were present in configurations with BFSs present for heights exceeding 25%

of the boundary layer thickness. No bi-global unstable modes were detected for the

largest FFS heights, which may be due to these strong stream-wise gradient changes.

We have a number of considerations for the reader when evaluating these results.

Firstly, we begin with regard to the NekLNS solution. We do not observe an increase

in amplitude in figure 7.43 compared to the ramp cases in figure 6.10, which we find

quite unlikely given the experimental work of Eppink and Casper 28 , showing that

FFRs are not as dangerous as sharp steps. Although, the reader should remember

we are not comparing like for like wave numbers between our ramp cases and the

vertical step cases here. The next point brings us to the mesh generation software

within the Nektar++ framework. We are limited with the amount of points we can

cluster over the vertical step geometry. This is due to a clustering of the normals

far from the wall when reaching the triangular layer, not dissimilar to that of the

action of a compression fan in compressible flow configurations. This can be seen

in figure 7.1. As we increase the number of points over the step this causes the

clustering of points near the triangular layer to become extremely fine. At some

point we reach a limit where the mesh generation software will begin creating very

poorly shaped elements in this region, elements with a negative Jacobian. Meshes

with negative Jacobian elements will cause simulations to diverge. This puts quite a

high constraint on the amount of refinement we can achieve over the bump region,

although we do consider the refinement to be reasonably fine. Now considering the

baseflow generation, the presence of the sharp step features introduce extremely large

stream-size gradient changes. These could either be too noisy or be too severe, this

becomes more exacerbated in the second order derivative terms, for even the NekLNS

solution to provide a valid trajectory for correct modelling for these cases.

Secondly, we consider the LHNSh solutions. These are computed with baseflows

extracted from the incompressible Navier-Stokes solver in Nektar++, which as just

stated, is solving an extremely difficult problem arising from the rapid geometry

changes the step features impose. We attempt to smooth these profiles over the bump

region in the python script with finite differencing over the step region. However, even
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Figure 7.43: LHNSh comparison with nektar++ time stepping LNS result for stationary CFI. Top is for
the FFS, β =460m−1, middle for the BFS, β =330m−1 and bottom is the bump case, β =440m−1,
each located at 10% chord.
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with this smoothing applied, we can still have some noise present in the second order

derivative terms which can contain extremely large values. On top of this, when the

baseflow is re-mapped to the LHNSh computational grid another linear spline is applied

to the flow field and the step geometry, bi-cubic splining gave overshoots, hence linear

splining was used to interpolate the Nektar++ boundary layer profiles onto the LHNS

grid. This effectively causes a light stretching of the step in the stream-wise direction

meaning that there are not multiple points along the normal axis which would cause

infinitely large dh
ds

terms. Once again, these factors could all be affecting the solution

when solving the LHNSh equations. Finally, there is always the slim chance, that we

cannot entirely rule out, there has been a typo in the coding of these LHNSh equations

when incorporating into the wider routine. These have been checked numerous times

with the derived equations set but as the reader has seen, these are extremely exten-

sive equations especially when considering the compressible formulation. However, we

highly doubt this is the cause of the differences in solutions between the NekLNS and

LHNSh formulations. Generally as shown in the earlier, relatively more benign, cases

the LHNSh gives the expected results, the experimental verifications of the LHNSh

(figures 4.3 and 4.6) are in some way a confirmation on the overall correctness of the

model and coding.

7.7 Concluding Remarks

To summarise, we have numerically investigated the effect of FFSs, BFSs and bumps

on stationary and travelling CFI. The roughness has been placed at 3%, 10% and 20%

chord on the AERAST swept wing geometry, in correspondence with the experimental

work of Saeed et al. 82 . Four different roughness heights have been simulated, also

constructed around the work of Saeed et al. 82 . The Nektar++ incompressible Navier-

Stokes solver has been used to generate steady baseflows. These have then been

utilised in four different stability tool sets, LST, PSEh, LHNSh and the Nektar++

time marching LNS.

When simulating the 3% chord case we were unable to identify any unstable modes

to begin computations with LST, PSE or LHNS. LST has been used to generate

neutral curves which are of very different shapes depending on the shape of roughness.

The presence of the roughness feature can destabilise the wave number parameter

space from the range β =200m−1 to β =1000m−1, in the clean case, to β =0m−1 to

β =2600m−1 for some roughness heights and locations. We have confirmed that the

PSE and PSEh cannot be used to generate mesh independent results for any of the

excrescence cases. Although, they have been used to identify the most destabilising

wave number, or wave number - frequency combination, to provide outflow conditions
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for the LHNS and LHNSh equations. This is due to the step being of a much smaller

length scale than the CFI, the PSE numerical step size restriction must be respected

for a converged solution52. Moreover, the large stream-wise gradient changes brought

about by the roughness are also sources contributing to non-reliance of using the PSE

for such problems.

Comparing the LHNS and LHNSh equations we can see that the incorporation of the

h transformation is crucial to obtaining more accurate results, which thus computes

results in qualitative agreement with literature findings. With the LHNSh equations,

we generally see a large impact on CF disturbances convecting over steps placed at

10% chord, which is not as prominent with identical steps placed at 20% chord. We

also see that the travelling CFI is much more dangerous than the stationary crossflow.

The FFS cases produce a greater amplification than any of the other cases, confirming

that it acts as a CFI amplifier. This amplification is increased with increasing step

height. However, we can not associate this with a separated flow on top of the step,

as Tufts et al. 95 did, due its non-existence in our step geometries. The BFS tends

to predict a stabilisation. This is rather different from experimental results which

tend to observe a forward movement in the transition front81,31. We attribute this

difference to there being an extremely non-linear mechanism instantly present at the

step location in experiments which we cannot capture with a linear growth mechanism.

No added amplification in stationary CFI has been observed in similar experimental

works of Eppink et al. 31 and Saeed and Morrison 81 , they go on to note the non-linear

mechanisms must be playing an important role in the amplification process. The

bump cases generally predict a growth of CFI with increased step height but this is

not as amplified as the FFS case. This is likely to be due to the presence of the BFS

component providing a stabilisation.

We have not been able to validate these results with the Nektar++ time marching

LNS computation. This may be due to the a restriction on how fine we can make the

mesh in the roughness region. Essentially that the vertical step we have created is

just too steep, which introduces extremely large gradient changes which can generate

very noisy second derivative terms. It must be stated the modelling challenges posed

by the extreme gradients and scales involved are formidable. This is, we believe, the

prime reason for some of the inconsistent results that have arisen when comparing the

direct time-marching Nektar++ and time harmonic LHNS derived solutions.
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CHAPTER 8

Conclusions and Future Work

The aim of this work is to investigate how small roughness shapes interact with pre-

existing instabilities within a laminar boundary layer. It is well understood that the

presence of small roughness can cause a forward movement in the transition front.

When considering these small imperfections over an aircraft wing, the turbulent flow

causes an increase in shear stress on the surface, an increase in drag, and finally

results in an increase in fuel consumption. These imperfections, or excrescences, on

a wing could be anything from a rivet to the junction between materials, such as a

leading edge to wing box junction, weather damage, such as hail stones, or even insect

contamination. The roughness in question is usually of the order of 10 to 200 microns

on a commercial aircraft wing that can be metres wide and tens of metres long. The

understanding of the mechanisms behind what may stabilise or destabilise a convecting

instability could help to understand how stringent requirements on manufacturing

tolerances need to be for aircraft wings.

To solve this problem of a instability convecting over an aircraft wing numerically,

industry tend to apply linear stability theory coupled with the eN method to rapidly

predict the growth and transition of an instability. The eN method basically cor-

relates the transition location with the accumulated growth of the instability. The

problem with using LST is that essential geometry curvature information, growth of

the boundary layer and non-linear effects are neglected in the computations. This

type of information is vital for predicting instability growth accurately. At best, in-

dustry couple the eN method with the PSE which do have the ability to encapsulate
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curvature, boundary layer growth and non-linear effects in the transition prediction.

However, the PSE are not derived to encapsulate a rapidly varying surface geometry

introduced by such a feature as an excrescence. Now we could choose to pour exten-

sive computational resource into the problem (evaluating the whole aircraft geometry

instead of a partial wing slice), and gain vast amounts of information from the solu-

tion. However, this would take weeks of high computational power to compute just

one solution and so really is not feasible for an industrial design process. This work

seeks to gain greater understanding of the physical mechanisms at play in the step

region and to achieve results within in a matter of minutes on a simple work station

computational resource. We achieve this though modification and application of the

PSE and LHNS equations.

Research is plentiful for roughness on unswept flat plates or aerofoil geometries which

feature TS instability as the dominant perturbation100,33,103,64,75,107,17,94,7. The rough-

ness can take the simplified shape of a dimple, hump, FFS or BFS and the variation

between flow configurations is wide. There has been reasonable experimental and nu-

merical research in this sector to try and quantify a critical step height, which brings

about the forward movement of the transition front. Although, there has been no

wide spread agreement on this criterion, there are some which are more widely used

in industry than others, such as the Reh criterion62. The difficulty in finding a gen-

eral criterion, if one exists, is the wide variety of flow regimes which may change the

mechanisms involved in the destabilisation. The general finding, whether the research

is experimental or numerical, is that increasing the height, or depth, of the roughness

causes earlier transition onset. This is exacerbated if the roughness is a BFS100,64.

On swept wing flows, the dominant instability becomes CFI which, contrary to TS

modes, can be destabilised by adverse or favourable pressure gradients. The charac-

teristic that defines CFI is a velocity profile featuring an inflection point within the

boundary layer due to some wall-normal local maximum. Research is far less rich in

the area of CFI on a flat plate with a roughness and becomes extremely sparse for

three dimensional flows, specifically for CFI over a swept wing. This very sparsity is

what instigated the present work. Recent studies31,95,89,81 which have revealed new in-

sight into these regimes are referenced and compared with regularly. The general idea

remains that BFSs are more destabilising to the CFI than FFSs due to the oscillation

induced from the laminar separation bubble.

An extensive numerical study is conducted into the effects of these small scale rough-

ness elements on convecting instabilities within the boundary layer, via development of

rapid perturbation prediction tools. We aim to numerically recreate the experimental

work of Saeed et al. 82 who investigated bump shaped steps on the AERAST swept

wing geometry91. We apply the PSE and LHNS equations to solve for the excrescence
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region. However, before this can correctly be applied, both equation sets require an

adjustment to capture the rapidly varying surface topography introduced by the ex-

crescence. We successfully introduced a non-orthoganal transformation to incorporate

the roughness region to the clean geometry. The introduction of this transformation

means that any regions of curvature along the roughness will be introduced though h′

and h′′ terms.

Firstly, we apply these equation sets to a flat plate case with a dimple, in order to

observe how a TS mode is modified when convecting over the region. This work

utilises baseflows generated by Xu et al. 107 where the depth and width of the dimple

is varied between cases which contain a laminar separation bubble, located inside

the dimple, and those that remain fully attached. For the dimple case we observe

that the growth difference between the PSE and PSEh or LHNS and LHNSh seem

to remain unchanged before and after the dimple region, however we observe quite a

different growth within the depression. We also see extremely good agreement with

the non-linear computations outside of the dimple region, only starting to observe

a difference in the third harmonic. Linear results are exhibited from the work of

Gowree et al. 36 that show extremely good agreement of our LHNSh solutions with

experimental results. We have shown that the linear and non-linear PSE / PSEh are

able to converge to accurate solutions when subjected to flows with the presence of

a laminar separation bubble. A random roughness case was also simulated on a flat

plate. However it is much more difficult to obtain converged solutions for these cases.

The smallest random roughness height gave little difference between the codes but

anything larger than that produced visible differences between all codes. We attribute

this to there being extremely large velocity fluctuations over the roughness region and

the presence of multiple small separation bubbles, making this an extremely difficult

problem for the PSEh and LHNSh to solve.

With the encouraging results obtained in the flat plate cases, we moved on to tackling

the problem of a swept wing case. The experimental work of Saeed et al. 82 , whom

looked at varying height bump roughness on the AERAST swept wing, is the work we

chose to construct our numerical investigation around. We have successfully simulated

the AERAST infinitely swept wing using a three stage process. Firstly the full geom-

etry is simulated with a RANS solver to generate a steady clean baseflow of the full

wing. Secondly, an embedded mesh is then created using the high order spectral / hp

element solver, Nektar++. Boundary and initial conditions from the full solution are

provided to the embedded domain circumference and interior. An embedded domain is

necessary in order to capture the magnitude of mesh scale refinement required around

any roughness we chose to place on the wing. Thirdly, these steady baseflows are then

extracted and utilised in varying stability tool sets. Remarkably good agreement is
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obtained between the PSE, LHNS and Nektar++ LNS time-stepping solution.

With the clean AERAST geometry simulated, we then imposed the largest height

roughness from the work of Saeed et al. 82 on the AERAST geometry at 10% chord.

Instead of imposing a vertical bump case, we decided to slope the edges of the bump

in order to create a ramp shape profile and provide a simpler roughness element for

the stability tools to simulate. The ramp shape, chosen with an incline of 45◦ , also

encapsulates a longer stream-wise region where the h component plays a role. To

accompany the bump ramp case, we decomposed this structure into its FFR and BFR

components to gain insight into which may be triggering certain growth mechanisms.

We establish that the PSE and PSEh cannot be used to provide an accurate solution

for any of the ramp cases due to a few contributing factors. One being that a number of

stream-wise stations need to be stepped-over in order for the computation to converge

at the full length of the chord. This, we attribute to there being extremely large

stream-wise gradient changes locally to the ramp. Another factor is that the stream-

wise length scale of the ramp is much shorter than that of the convecting CFI. This

means the PSE will be unable to accurately capture the growth mechanism104. When

applying the LHNSh equations to these cases we see extremely good agreement with

the Nektar++ time-stepping LNS solution, emphasising the importance of solving the

LHNSh equations as opposed to the LHNS. The FFR case tends to provide a large

kick to the amplification growth which seems to originate from the upper ramp corner.

Similar observations were made by Eppink and Casper 28 for convecting stationary CFI

over a FFR, and by Sumariva and Hein 89 numerically for a TS wave over a flat plate,

although we do note that the Sumariva and Hein 89 study was two dimensional and

comparisons may be tenuous. The BFR interestingly appears to modify the stationary

CFI only very slightly after the step location and the growth tends to then follow that

of the clean case. Eppink et al. 31 also observed this in their experimental investigations

for stationary CFI over a BFS.

With these very encouraging results we then moved on to investigating the true prob-

lem we sought to solve, the vertical bump roughness as considered by Saeed et al. 82 .

We applied our embedded mesh approach to construct the four varying vertical bump

heights at the three chord locations considered by Saeed et al. 82 . We also extended this

to pure vertical FFS and pure vertical BFS roughness in order to conduct a thorough

investigation on the roughness impact. We were unable to identify unstable modes at

the 3% chord location with LST, PSE or LHNS for any of the step heights. Instead

our analyses focused on the 10% and 20% chord locations. Neutral curves were con-

structed using LST. We can see that the presence of the roughness can cause the range

of destabilised wave numbers to grow from β =200m−1 to β =1000m−1, in the clean

case, to β =0m−1 to β =2600m−1 in the most severe case. We observe slightly differ-
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ent shaped curves between stationary and travelling CFI, with the latter causing more

prolonged stream-wise destabilisation. Again, the PSE and PSEh cannot be used for

these cases due to the large stream-wise gradient terms and the fact that the bump or

step feature is much too short for the CFI length scale104. The PSEh is used, however,

to provide boundary conditions for the LHNS and LHNSh equations and are thereby

used to determine the most unstable wave numbers. Generally we see that the FFS

and bump predict a destabilisation which is exacerbated with increased step height

and the travelling CFI seems to be much more dangerous than the stationary. We were

not able to correlate the results with some of the aforementioned step height criteria,

such as the Tufts et al. 95 criteria, due to the lack of separation bubble present on top

of the step. Tufts et al. 95 attribute this separation bubble to be the main destabil-

ising mechanism, however, we still observe a destabilisation with no bubble, meaning

this cannot be the mechanism behind our destabilisation. We believe our mechanism

lies heavily in the top corner of the FFS or bump. This theory is supported by the

experimental work of Eppink and Casper 28 due to the similarities in observations.

The BFS tends to predict a stabilisation with increased step height which is contrary to

much of the literature but is observed in the work of Balakumar et al. 8 . We attribute

this feature to there being a highly non-linear mechanism instantly brought about

by the presence of the step. Trying to capture this non-linear interaction with linear

theory is just not possible. Further investigation would need to be carried out with

the non-linear code set to confirm if this is the case. We suspect this is true since

there has been high levels of non-linear mode interaction observed in the experimental

work82,31, where the stationary CFI has been shown to have no growth and even to

have decayed, or not be detected down-stream.

Our bump results tend to correlate with the experimental work of Saeed et al. 82

whereby there was no amplification observed to the CFI from the smallest bump

height. However, we also observed that there was no overall growth for the second

largest bump height, contrary to that of Saeed et al. 82 . After this, we do observe a

more exaggerated growth with increased bump height. Although, these never become

as amplified as in the pure FFS cases. We think this due to the composition with the

BFS, which by our equations are predicting a stabilisation.

When comparing all of these cases with the Nektar++ time stepping LNS we were not

able to gain good agreement, unlike the ramp cases, and observe that the ramp cases

predict a larger amplification of CFI growth compared to the step. Although, we add

the caveat that these are not compared with like for like wave numbers. We would

believe this is due to either the restriction on how fine we can make the mesh locally

to the roughness and possibly that the gradient changes induced from the geometry

of the vertical step are just too large.
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All in all, we have added essential corrections to the PSE and LHNS equations (PSEh

and LHNSh) to enable accurate modelling of the effect of a small roughness on a pre-

existing instability within the boundary layer. We set out to investigate vertical step

features, typical to those found on aircraft wings, and have found that the challenges

in modelling such features are formidable. However, the models perform remarkably

well compared to experiments when not considering a vertical feature.

Going forward, we would suggest that a study is performed varying the angle of the

45◦ ramp to a vertical step with NekLNS. The stationary CFI and roughness height

should remain the same to gauge at what point the solution begins to predict less

amplified growth with a steeper ramp. This can also be conducted with the LHNSh

equations for comparison. We could also extend this in the other direction to lower

the angle of the ramp in order to establish at which point the PSEh begin to break

down. Although, perhaps the ramp angle would be too shallow, in order to make the

ramp longer than the CFI wavelength, to add much insight.

Secondly, we would suggest returning to the ramp cases and solving for the varying

heights at both 10% and 20% chord to gain more insight into what is occurring locally

to the ramp, that we could not achieve with the vertical step cases.

Thirdly, we have began investigations into applying this process to the BLADE natural

laminar flow wing. This is a fully three-dimensional flow problem. The BLADE wing

is swept, tapered and dihedral, adding even further complexity to this already complex

problem. The aim here is to compare the stability tool solutions to in-flight test data

obtained by Airbus. Due to the confidentiality of the geometry and data we do not

discuss this in this thesis.

Our final suggestions relate to the solution pipeline itself. An alternative form of mesh

generation could be investigated, software that allows partitioning of the domain. This

would mean that locally to the step the mesh could be partitioned into different sections

allowing increased refinement to be added, although the corners of the step would have

to be made sharp and un-filleted. This in itself is a hard task. The current high order

meshing software available, that can generate a curve-linear element for the wall of the

aerofoil, is scarce. To the authors knowledge there is GMSH and NekMesh, within the

Nektar++ framework, neither of which support segmented domains. Having curve-

linear wall elements is an important feature for gaining optimal solutions from the

spectral / hp element solver. Improvement could also be made to the python routine

for extracting smooth baseflows from the Nektar++ baseflow solution. Although there

was a lot of time spent on generating these smooth profiles, there still remains some

noise in the second derivative terms around the step located profiles. Perhaps this

problem would solve itself with partitioned mesh generation.
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APPENDIX A

Further Methodology

A.1 The Galerkin Method

The Galerkin method used in FEM assigns the trial functions to the test functions so

that both are equal, vj = Φj. Beginning with the one-dimensional elliptic equation,

L(u) = uxx = s(x) with boundary conditions u(0) = gD and ux = gN . Integrating

gives
1∫

0

v(x)uxxdx =

1∫
0

v(x)s(x)dx (A.1)

integrating by parts to the left hand side attains the weak form

−
1∫

0

vxuxdx+ v(1)ux(1)− v(0)ux(0) =

1∫
0

v(x)s(x)dx (A.2)

For two or three dimensions Gauss divergence Theorem would be applied. Obtaining

the equation in the weak form makes the matrix of the discretized system symmetric

and reduced the smoothness requirements on u. The weight functions v(x) are zero at

Dirichlet boundaries, v(0) = 0. The Dirichlet boundary condition can be applied by

imposing u0 = 0 since the weight functions are zero at this boundary. Next u and v

are replaced by their corresponding trial functions uδ(x), given in equation (3.2), and
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test functions vδ(x), where v(x) = Φi(x). Applying these gives

−
1∫

0

(
vδxu

δ
xdx+ vδ(1)gN =

1∫
0

vδs(x)dx (A.3)

for i = 1, ..., N − 1. This has directly implemented the Neumann boundary condition

but the Dirichlet still remains to be fully dealt with. The approximation for u(x) is

recomposed into a known function, uD, which satisfies the Dirichlet conditions and an

unknown homogeneous function, uH, which is zero on the Dirichlet boundaries, such

that

uδ(x) = uD + uH where uD(∂ΩD) = gD, uH(∂ΩD) = 0 (A.4)

substituting this into equation (A.3) and re-arranging gives

−
1∫

0

vδxu
H
x dx = −vδ(1)gN −

1∫
0

vδs(x)dx+

1∫
0

vδxu
D
x dx (A.5)

all of the terms on the right hand side are known meaning the differential problem has

been reduced to a finite linear algebraic system which may now be solved numerically.

This method for applying the Dirichlet boundary condition is known as the lifting

method.66

A.2 Domain Decomposition

The domain Ω is divided into N non-overlapping sub-domains, elements, Ωn.

Ω =
N−1⋃
i=0

Ωn,
N−1⋂
n=0

Ωn = 0. (A.6)

It is common to associate each elemental shape a reference element called the standard

domain or element denoted as Ωs, see figure (A.1) from the PhD thesis of De Grazia18.

The expansion basis, integration and differentiation are then defined on each of these

standard elements.

For line segments the definition is

Ωs = (ξ) ∈ [−1, 1] (A.7)

where ξ is the one dimensional co-ordinate associated with Ωs. The parametric map-
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Figure A.1: The Mapping Θ(ξ) from the physical to the standard domain18

ping Θ(ξ) defining the transformation is then

x = Θn(ξ) = φ0(ξ)xn−1 + φ(ξ)xn ∀ ξ ∈ Ωs (A.8)

where φ0 and φ1 are general expansions for the mapping and Θ(ξ) is the mapping

between the local element and the standard element. For the straight segment the

mapping becomes

x = Θn(ξ) =
1− ξ

2
xn−1 +

1 + ξ

2
xn ∀ ξ ∈ Ωs (A.9)

Extending this to two-dimensions, the standard quadrilateral is

Ωs = (ξ1, ξ2) ∈ [−1, 1]× [−1, 1] (A.10)

where ξi are orthogonal co-ordinates in Ωs, Cartesian say. Representing the Cartesian

co-ordinates x1 and x2 as

x1 = Θn,1(ξ1, ξ2) x2 = Θn,2(ξ1, ξ2) (A.11)

the mapping for a straight edged quadrilateral with vertexes A,B,C,D, see figure(A.2)

can be written as

x = Θ(ξ1, ξ2) = xA
1− ξ1

2

1− ξ2

2
+xB

1 + ξ1

2

1− ξ2

2
+xD

1− ξ1

2

1 + ξ2

2
+xC

1 + ξ1

2

1 + ξ2

2
(A.12)

For curve-linear edges of a quadrilateral the following mapping may be used

x = (x1, x2)T = Θ(ξ1, ξ2) =

Q1∑
p=0

Q2∑
q=0

x̂pqφp(ξ1)φq(ξ2) (A.13)
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Figure A.2: Vertex labels for quadrilateral element18

where φp and φq are the same basis functions used for representing the solution. If x

is a polynomial of order P and P < Q1, Q2 then the mapping is sub-parametric, and

if P > Q1, Q2 the mapping is super-parametric. These mappings may then be used

to determine the geometric terms needed for transforming back and forth between the

physical and the standard space. The deformation gradient, G, and the determinant

of this, the Jacobian J , for the quadrilateral is given by

Gn =

[
∂x1
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ1

∂x2
∂ξ2

]
=

1

Jn

[
∂x2
∂ξ2

−∂x2
∂ξ1

−∂x1
∂ξ2

∂x1
∂ξ1

]
, J = |G| (A.14)

A.3 Expansion Bases

The choice of local expansion bases functions is very important as it has a large

influence over the efficiency and numerical accuracy of the code. The ability to exploit

particular structure of the matrices is integral. In spectral h/p element methods nodal

or modal polynomials are usually implemented for the expansion bases in each standard

element. To distinguish between modal and nodal basis functions two examples will

be introduced for two sets of polynomials up to order P.

φMp (ξ) = ξp, p = 0, . . . , P (A.15)

φNp (ξ) =

P∏
q=0,q 6=p

(ξ − ξq)

P∏
q=0,q 6=p

(ξp − ξq)
, p = 0, . . . , P (A.16)

(A.17)

Equation (A.15) is a modal expansion because the order P-1 expansion set is contained

within the order P expansion set, therefore satisfying

χδP−1 ⊂ χδP (A.18)
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Usually all the modes, or polynomials, influence the boundary points of a given element

in simple modal bases. This can be extremely inefficient when applying connectivity

rules between the various elements in the spatial discretisation. To increase the effi-

ciency of the connectivity process these expansions can be redefined within a boundary

- interior decomposition. Here only two nodes are defined as non-zero at the bound-

aries whilst all other boundary nodes are zero. Nodes at interior points are assumed

non-zero. The most adopted modal basis using boundary - interior decomposition for

spectral h/p element methods is

φp(ξ) =


ψa0(ξ) = 1−ξ

2
, p = 0

ψap(ξ) =
(

1−ξ
2

)(
1+ξ

2

)
P 1,1
p−1, 0 < p < P

ψaP (ξ) = 1+ξ
2

, p = P

(A.19)

where P 1,1
p−1 represents Jacobi polynomials. Jacobi polynomials are a class of orthogonal

polynomials with respect to the weight (1− x)α(1 + x)β on the interval [−1, 1].

Equation (A.16) is a Lagrange polynomial defined on a set of P+1 nodal points ξq. It

consists of P+1 polynomials of order P meaning

χδP−1 6⊂ χδP (A.20)

The Lagrange polynomials also have the property φNp = δpq, where δ is the Kronecker

delta, leading to

uδ(ξq) =
P∑
p=0

upφ
N
p (ξq) =

P∑
p=0

upδpq = uq (A.21)

which says that the physical values of the discrete solution uδ at the nodal points ξq are

the coefficients of the Lagrange expansion basis. The boundary interior decomposition

is no longer necessary as it already fulfilled, provided that the nodal points include

element boundaries. Both nodal and modal expansion bases described can be written

as one dimensional tensors. This can be extended to quadrilateral elements through

the product of two of these tensors

φpq(ξ1, ξ2) = φp(ξ1)φq(ξ2), 0 ≤ p, q; p ≤ P, q ≤ P2 (A.22)

In general the polynomials are allowed to be different in each co-ordinate direction.

The differences between standard modal and nodal expansion bases are well displayed

by Moxey57 in figure (A.3).

The matrix form of the expansion bases will no be introduced. The equations will be

evaluated on a set of nodal points. For the one-dimensional case u(ξq) on the set of Q
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Figure A.3: Left: Modal expansion bases. Right: Nodal Lagrange expansion bases
Both images from the thesis of Moxey 2011,57

nodal points ξ = [ξ0, ξ1, . . . , ξQ−1]T ,

u = [u(ξ0), u(ξ1), . . . , u(ξQ−1)]T (A.23)

The matrix form for the expansion basis of the one -dimensional case is

B =

 φ0(ξ0) . . . φp(ξ0) . . . φP (ξ0)
...

. . . . . . . . .
...

φ0(ξQ−1) . . . φp(ξQ−1) . . . φP (ξQ−1)

 (A.24)

P is the order of the expansion and B is the basis matrix.

For the two-dimensional case there is also the following, for Qi where i = 1, 2 are

points in the orthogonal directions.

u = [u(ξ1,0, ξ2,0), . . . , u(ξ1,Q−1, ξ2,0), . . . , u(ξ1,0, ξ2,1), . . . , u(ξ1,Q1−1, ξ2,Q2−1)]T (A.25)

with the basis matrix

B =



φ0,0(ξ1,0, ξ2,0) . . . φp,q(ξ1,0, ξ2,0) . . . φP1,P2(ξ1,0, ξ2,0)
...

. . . . . . . . .
...

φ0,0(ξ1,Q1−1, ξ2,0) . . . φp,q(ξ1,Q1−1, ξ2,0) . . . φP1,P2(ξ1,Q1−1, ξ2,0)
...

. . . . . . . . .
...

φ0,0(ξ1,Q1−1, ξ2,Q2−1) . . . φp,q(ξ1,Q1−1, ξ2,Q2−1) . . . φP1,P2(ξ1,Q1−1, ξ2,Q2−1)


(A.26)
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APPENDIX B

Clean AERAST geometry convergence studies

A comparison for increased polynomial order Nektar++ solutions are shown in figure

B.1. Comparison between the currently used mesh and a twice finer mesh is given in

figure B.2. There is some difference between the vs derivative terms but since this is

generally small and ignored in the stability codes currently.
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Figure B.1: Clean: Nektar++ generated base flow profiles at 5% chord with increasing polynomial
order. Red is for p3, blue for p5 and green for p7.
Top row shows ū, v̄ and w̄, middle row shows first derivative in the normal direction with respect to ū,
v̄ and w̄ and the bottom row is the first derivative in the stream wise direction with respect to ū, v̄ and
w̄.
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Figure B.2: Clean: Nektar++ generated base flow profiles at 5% chord with red for the coarser (cur-
rent) mesh and black for the finer mesh.
Top row shows ū, v̄ and w̄, middle row shows first derivative in the normal direction with respect to ū,
v̄ and w̄ and the bottom row is the first derivative in the stream wise direction with respect to ū, v̄ and
w̄.
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APPENDIX C

Bump baseflow profiles.

Base flow profiles extracted at 0.098 x/c, before the beginning of the bump, see figure

C.1, and profiles extracted at 0.106 after the bump, see figure C.2
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Figure C.1: Bump case at 10% chord: Nektar++ generated base flow profiles generated at 9.8%
chord, just before the bump. Non-dimensional values plotted; x axis dimensionalised with the bound-
ary layer edge velocity and y axis is dimensionalised with the boundary layer thickness at that location.
Blue, orange, green and red depict bump height 412.5, 618.7, 825 and 893 respectively. Top row shows
u, v and w, middle row shows first derivative in the normal direction with respect to u, v and w and the
bottom row is the first derivative in the stream wise direction with respect to u, v and w.
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Figure C.2: Bump case at 10% chord: Nektar++ generated base flow profiles generated at 10.2%
chord, in the centre of the bump. Non-dimensional values plotted; x axis dimensionalised with the
boundary layer edge velocity and y axis is dimensionalised with the boundary layer thickness at that
location. Blue, orange, green and red depict bump height 412.5, 618.7, 825 and 893 respectively. Top
row shows u, v and w, middle row shows first derivative in the normal direction with respect to u, v and
w and the bottom row is the first derivative in the stream wise direction with respect to u, v and w.
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