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Abstract

Direction-of-Arrival (DOA) estimation is a fundamental task in acoustic signal processing

and is used in source separation, localization, tracking, environment mapping, speech

enhancement and dereverberation. In applications such as hearing aids, robot audition,

teleconferencing and meeting diarization, the presence of multiple simultaneously active

sources often occurs. Therefore DOA estimation which is robust to Multi-Source (MS)

scenarios is of particular importance.

In the past decade, interest in Spherical Microphone Arrays (SMAs) has been

rapidly grown due to its ability to analyse the sound field with equal resolution in all

directions. Such symmetry makes SMAs suitable for applications in robot audition where

potential variety of heights and positions of the talkers are expected. Acoustic signal

processing for SMAs is often formulated in the Spherical Harmonic Domain (SHD) which

describes the sound field in a form that is independent of the geometry of the SMA. DOA

estimation methods for the real-world scenarios address one or more performance degrad-

ing factors such as noise, reverberation, multi-source activity or tackled problems such as

source counting or reducing computational complexity.

This thesis addresses various problems in MS DOA estimation for speech sources

each of which focuses on one or more performance degrading factor(s). Firstly a narrow-

band DOA estimator is proposed utilizing high order spatial information in two compu-

tationally efficient ways. Secondly, an autonomous source counting technique is proposed

which uses density-based clustering in an evolutionary framework. Thirdly, a confidence

metric for validity of Single Source (SS) assumption in a Time-Frequency (TF) bin is pro-

posed. It is based on MS assumption in a short time interval where the number and the

TF bin of active sources are adaptively estimated. Finally two analytical narrowband MS
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DOA estimators are proposed based on MS assumption in a TF bin.

The proposed methods are evaluated using simulations and real recordings. Each

proposed technique outperforms comparative baseline methods and performs at least as

accurately as the state-of-the-art.
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erank(.) Effective Rank, rank of matrix under a particular condition
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Symbols and variables

alm Eigenbeam (compensated spherical harmonic coefficient) of order l and degree m

bl Microphone array mode-strength of order l

c Centroid

C Cluster

D Direct path from source n

hl Spherical Hankel function of order l

i Complex number, i2 = −1

I Intensity vector

II Identity matrix

jl Spherical Bessel function of order l

Jτ Size of STFT window across time domain

Jk Size of STFT window across frequency domain

k Frequency index

K Number of clusters

l Spherical harmonic order

L Maximum spherical harmonic order

m Spherical harmonic degree

n Source index

N Assumed number of active sources

Ns Overall number of sources

Nε Set of neighbouring DOAs within ε neighbourhood

p Soundfield pressure or probability value for ANOVA test

p̂ DOA estimate unit vector

plm Spherical harmonic coefficient of order l and degree m

Plm Legendre function of order l and degree m

q Microphone index

q̂ DOA estimate unit vector

Q Number of microphones
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r Range

R Covariance matrix

S Source plane wave

t Time frame variable

T Temporal window size

u Unit vector

U Set of DOA estimates

U Matrix of eigenvectors

Ylm Spherical harmonic basis function of order l and degree m

ε Angular distance

ε Threshold

η Singular value ratio (ratio of the largest to the second largest eigenvalue)

θ Inclination ∈ [0, π]

κ Wavenumber

σ Standard deviation

Σ Matrix of eigenvalues

τ Time frame index

Υ Set of time-frequency bins

ϕ Azimuth ∈ [0, 2π)

Ω Direction
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Chapter 1

Introduction

M
ULTI -Source (MS) Direction-of-Arrival (DOA) estimation is the process of es-

timating the direction of multiple acoustic sources using their received acoustic

signals. It is a fundamental acoustic signal processing task and has been used in areas

including source separation/localization/tracking, spatial filtering, environment mapping,

dereverberation and speech enhancement. It addresses the often-occurring case in real-

world scenarios where multiple sources are simultaneously active. As such it can be used

in applications for hearing aids, robot audition, meeting diarization and teleconferencing.

The performance of MS DOA estimation can be challenged by several degrading factors

including sensor or environmental noise, coherent reflections, referred to as reverbera-

tion, low angular separation of sources, simultaneous activity and/or unknown number

of sources. The movement of the sources is not considered in DOA estimation since it

is mainly treated as a problem in source tracking. Hence it is mostly assumed that the

sources are stationary in DOA estimation and also in this thesis.

The hardware tool used for DOA estimation is referred to as a microphone array,

which employs multiple microphones configured in a particular geometry to exploit the

spatial information encoded in the differences of signals captured by each microphone.

There are various types of microphone array such as linear, planar, circular and spherical,

each of which benefits from their unique geometry in different applications. The array

geometry and the number of microphones respectively indicate the directionality and the
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spatial resolution of the array’s capability. For example, a planar array provides a finer

spatial resolution for the sound field to which the array faces compared to the side sound

field. Circular, and linear, arrays suffer from limitation to estimation of azimuth only

and not the inclination. Such limitation makes the mentioned types of array unsuitable

for scenarios in which the 3D full-sphere sound field is of interest, e.g. robot audition

where varying azimuths and inclinations, due to various height and position of talkers, are

expected. Spherical Microphone Arrays (SMAs) [1, 2] can be used for such applications.

This work focuses on Spherical Microphone Arrays, which have recently had growing

interest in various fields such as array design [2, 3, 4, 5, 6, 7, 8], spatial filtering [9, 10, 11,

12, 13] and localization [1, 14, 15, 16, 17, 18].

1.1 Spherical Microphone Arrays

The SMAs consist of multiple microphones configured in a spherical geometry. For the

purpose of DOA estimation only, the microphones are all distributed with the same dis-

tance from the centre of the array (on a spherical shell). Such geometry enables the

Figure 1.1: The example of (right) an open SMA, Sphere48-35 AC Pro, and (left) a
rigid SMA, VisiSonics 5/64. Photo credits: (Right) Acoustic Camera (www.acoustic-
camera.com), (Left) VisiSonics (www.visisonics.com)
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analysis and processing of the sound field in 3D with equal resolution in all directions.

They come with either an open or rigid body as seen in Figure 1.1. The rigid SMAs are

often more preferred over the open spheres since the scattering effect of the rigid baffle [19]

reinforces the inter-channel time and level differences as shown in [1]. The first works on

DOA estimation using SMAs can be found in [20] and the first works on signal processing

for SMAs are presented in [21, 4, 22].

Acoustic signal processing for SMAs is mainly done in the Spherical Harmonic

Domain (SHD), which provides an elegant mathematical framework to represent the sound

field on the surface of the sphere independent of the array properties such as radius, body

type and the number of microphones (sampling scheme). In addition, it decouples the

range-and-direction dependency of the signals into two separate range- and direction-

dependant components making it a preferred domain for the formulation of the problem

and solution in the context of DOA estimation. In the SHD, an arbitrary sound field is

decomposed into a weighted sum of predefined orthogonal and spatially harmonic sound

fields ordered by their spatial resolution. The weights and the pre-defined sound fields are

respectively called SH coefficients and basis functions.

DOA estimation for SMAs, as for other types of arrays, can be discussed in two

frequency scales: narrowband and wideband. The narrowband DOA estimation assumes a

narrowband signal for which the frequency can be assumed to be fixed. On the other hand,

wideband DOA estimators aim to estimate the DOA of a wideband signal consisting of

Figure 1.2: The system block diagram for conventional wideband MS DOA estimation.
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various frequencies. The conventional DOA estimation methods for the wideband signals,

such as speech, usually perform narrowband DOA estimation in the Short-Time Frequency

Domain (STFT). The DOA outcomes from each Time-Frequency (TF) bin are gathered

and post-processed to obtain the source(s)’ DOA(s).

Figure 1.2 illustrates the conventional system for wideband DOA estimation. The

chain consists of four main blocks as follow: 1) A pre-processing stage where signals in

the STFT domain are denoised, demixed or dereverberated in order to extract the signals

representing isolated sources. Some techniques, as will be discussed later, may be used in

this stage to select some TF bins rather than all for the next stage of processing. 2) A

narrowband DOA estimation, mostly based on single source assumption, is performed per

TF bin or maybe only for some pre-selected TF bins. 3) The DOAs in the STFT domain

(one per TF bin) may be post-processed to keep the reliable DOAs and remove the outlier

DOAs. 4) The remaining DOAs are processed for source counting (if number of sources is

unknown) and extract the final DOAs belonging to sources. Such a procedure can be seen

as a chain of operating blocks each of which deals with one or more particular challenge(s)

in DOA estimation.

1.2 Challenges in DOA estimation

Several degrading factors including noise, simultaneously active multi-source, reverbera-

tion, low separation and unknown number of sources can challenge the problem-solving for

DOA estimation. An efficiently realistic computational complexity must also be considered

for real-time applications in real-world scenarios.

1.2.1 Noise

The core problem formulation of the conventional narrowband DOA estimation meth-

ods in the simplest case assumes a noise-free scenario. The noise-robustness is mainly

achieved by employing de-noising, which is either performed on the input noisy signals

(pre-processing block in Figure 1.2) or on the erroneous outcome DOAs (post-processing
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block in Figure 1.2). A well-known and commonly-used technique for de-noising the in-

put signal is subspace decomposition [23, 24] in which the covariance of the observed

noisy correlated signals is decomposed into linearly uncorrelated and weighted principal

components using Principal Component Analysis (PCA). The de-noising is performed by

splitting the principal components into two sets of signal and noise subspaces distinguished

by a thresholding-approach based on the principal components’ weight. The well-known

MUltiple Signal Classification (MUSIC) DOA estimator [14, 25] uses direction-dependent

minimization on the noise subspace. Maximum-Likelihood (ML) approaches [26, 27, 28, 29]

are also often used in which an optimization is performed on an objective function to find

the model with the best fit to noisy observations. They require accurate models for the

noise and mostly assume the presence of isotropic noise (meaning equal noise power from

all directions).

Another technique used by some noise-robust DOA estimators [30, 31] is to perform

de-noising on the set of DOA estimates obtained from the noisy data. This is based on

the assumption that there are often-occurring TF bins with relatively high Signal-to-

Noise Ratio (SNR) in which the resulting narrowband DOA estimate is relatively reliable.

The non-deterministic behaviour of the noise results in erroneous DOAs with stochastic

direction and inaccuracy. Such characteristics are employed to distinguish the reliable and

noisy DOA estimates using their spatial density/spread [32, 33, 34, 35]. These techniques

are used in the post-processing block in Figure 1.2.

1.2.2 Multi-source (correlated and uncorrelated)

A conventional approach for uncorrelated MS-robustness is the use of W-Disjoint Orthog-

onality (WDO) [36], assuming sparseness of each speech in the TF domain. In a MS

scenario with multiple simultaneously active talkers there are often TF bins (or regions)

where only one source is significantly active. This happens because of the differences in

the timing, pauses, voices timbre and the utterances of different talkers. PCA can also be

used to decompose the correlated signals of a mixture of uncorrelated sources into multiple

uncorrelated components each belonging to a source [23]. Such techniques are employed
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in the pre-processing block in Figure 1.2.

For scenarios with correlated sources, early reflections, the mixture signal con-

sists of the direct path signal (from the true source) and the reflections (from the image

sources). The linear dependency of the reflections on the direct path reduces the rank

of the covariance matrix potentially resulting into an erroneous division between signal

and noise subspaces. In order to overcome this problem, Frequency Smoothing (FS) [37]

can be used to decorrelate coherent reflections by combining information across multiple

frequency bands.

1.2.3 Unknown number of sources

Source enumerating (counting) is a fundamental problem in scenarios without a priori

knowledge of the number of sources. The source counting techniques can be categorised

into two groups. The first group estimates the optimum number of the sources using an

Information Criterion (IC) metric [38, 37] which trades-off between the model complexity

and distortion. The second approaches [39, 40, 30] assume a constraint, e.g. minimum

cardinality or density of accurate DOAs, in the distribution of DOAs and consequently

estimate the number of resulting clusters ignoring the DOAs which do not meet the con-

straint. These techniques are used in the final block of the chain in Figure 1.2.

1.2.4 Adjacent sources

Spatial resolution of DOA estimation highly depends on the number of microphones used

in the array. A higher number of microphones provides a more accurate model of the sound

field and therefore higher spatial resolution, as will be shown in Chapter 2 and Figure 2.2.

The use of non-spatial features of the talkers, such as voice timbre or harmonic relations,

is an alternative approach to distinguish the adjacent sources. Such challenge is not

addressed in this thesis.
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1.2.5 Computational cost

In terms of the solution’s mathematical form and computational complexity, DOA esti-

mators can be categorised in two groups: (1) Analytical methods [16, 41, 42] formulate

the problem as a determined system of equations and provide a closed-form solution. Al-

though they benefit from their low computational complexity, which makes them suitable

for fast DOA estimation, they are prone to noise as their problem formulation is based

on either a noise-free scenario or low-order spatial information. (2) Steering methods

[43, 14], on the other hand, formulate the problem as an underdetermined system of equa-

tions assuming the noise as variables in the equations. Given an assumed statistical model

of the noise such as isotropic, an objective function as a function of direction is formed.

Since the solution is in the wrapped spatial domain, an optimization is performed on the

objective function in the form of either maximizing a closeness-of-fit function or minimiz-

ing a cost/loss function where the maxima or minima represent the solutions respectively.

The higher spatial resolution in the look direction domain results in a higher accuracy

as well as a higher computational cost. If a priori knowledge of the minimum angular

separation of the sources is assumed, an efficient spatial resolution of look directions can

be obtained to minimize the complexity with maximum accuracy. Interpolation can be

used to improve the accuracy of discrete outcomes. Although steering-based techniques

are noise-robust, they require an accurate statistical model of the noise and suffer from

high computational complexity if they are applied as a narrowband estimator per TF bin

with fine spatial resolution of look directions.

1.3 Motivation and Aims

As introduced and discussed in the previous section, there are various solutions proposed

for the challenges in DOA estimation. However, they are mostly based on some assump-

tions which may be violated in a real-world scenario. For example, one important limita-

tion of previously discussed methods in a multi-source scenario is the violation of WDO

assumption. This is likely to occur as the number of sources increases or when one source
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is constantly masked due to lower loudness, shorter activity or further distance compared

to other sources. This motivating problem is addressed in more depth in Chapters 5 and

6 where multiple solutions are proposed.

Another example of limited assumption is in source counting methods. The previ-

ously named solutions such as information criterion are based on a wide set of statistical

assumptions and are prone to radical conditions and spatial distribution of DOAs as shown

later in this thesis. The presence of a reliable source counting with more relaxed constraints

and less user engagement is yet an existing challenge. Chapter 4 addresses this problem

and proposes an autonomous source counting which is more successful in source detection

than conventional methods in challenging conditions.

As discussed previously, the reduction of computationality in analytical algorithms

is achieved at the cost of loss in accuracy and spatial resolution due to utilizing less spatial

information compared to steering-based solutions. To overcome this limitation, Chapter 3

proposes two alternative approaches which provide the accuracy and robustness of steering-

based methods with much less computational complexity.

As a summary, this thesis is motivated by the limitations and violation of assump-

tions in the existing conventional solutions stated above. Each chapter addresses one

operating units of a wideband MS DOA estimation system shown in Figure 1.2, analyses

the limitations of the baseline and the state-of-the-art methods for that particular unit

and proposes various novel methods for each operating unit to overcome the challenges

stated previously.

1.4 Thesis contributions

1.4.1 Research Statement

The aim of this thesis is to propose multiple methods for wideband MS DOA estima-

tion using SMAs each addressing one or multiple degrading factors including sensor noise,

reverberation, unknown number of simultaneously active sources and computational com-

plexity.
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1.4.2 Publications and Software

The following publications and software were produced during the course of this work:

Journal publications

1. S. Hafezi, A. H. Moore, and P. A. Naylor, “Augmented Intensity Vectors for Di-

rection of Arrival Estimation in the Spherical Harmonic Domain” in IEEE/ACM

Transactions on Audio, Speech and Language Processing. Vol. 25, Issue. 10, pp.

1956-1968, Oct 2017. [44]

2. S. Hafezi, A. H. Moore, and P. A. Naylor, “Spatial Consistency for Multiple Source

Direction-of-Arrival Estimation and Source Counting” in Journal of the Acoustic

Society of America. [Submitted: Under Review]

3. S. Hafezi, A. H. Moore, and P. A. Naylor, “Narrowband Multi-Source DOA Esti-

mation in the Spherical Harmonic Domain” in IEEE/ACM Transactions on Audio,

Speech and Language Processing. [Submitted: Under Review]

Conference publications

1. S. Hafezi, A. H. Moore, and P. A. Naylor, “Robust Source Counting for DOA

estimation using Density-based Clustering” in IEEE Sensor Array and Multichannel

Signal Processing Workshop (SAM), Sheffield, UK, July 2018. [45]

2. S. Hafezi, A. H. Moore, and P. A. Naylor, “Multiple DOA estimation based on

Estimation Consistency and Spherical Harmonic MUSIC” in Proceeding European

Signal Processing Conference (EUSIPCO), Kos Island, Greece, Sep 2017. [46]

3. S. Hafezi, A. H. Moore, and P. A. Naylor, “Multi-Source Estimation Consistency

for Improved Multiple Direction-Of-Arrival Estimation” in Workshop on Hands-free

Speech Communication and Microphone Arrays (HSCMA), San Francisco, USA,

Mar 2017. [47]
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4. S. Hafezi, A. H. Moore, and P. A. Naylor, “Multiple Source Localization using

Estimation Consistency in the Time-Frequency Domain” in Proceeding IEEE In-

ternational Conference on Acoustic, Speech and Signal Processing (ICASSP), New

Orleans, USA, Mar 2017. [48]

5. S. Hafezi, A. H. Moore, and P. A. Naylor, “Multiple Source Localization in the

Spherical Harmonic Domain using Augmented Intensity Vectors based on Grid

Search” in Proceeding European Signal Processing Conference (EUSIPCO), Bu-

dapest, Hungary, Sep 2016. [49]

6. S. Hafezi, A. H. Moore, and P. A. Naylor, “3D Acoustic Source Localization in the

Spherical Harmonic Domain based on Optimized Grid Search” in IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China,

Mar 2016. [50]

7. S. Hafezi, A. H. Moore, and P. A. Naylor, “Modelling Source Directivity in Room

Impulse Response Simulation for Spherical Microphone Arrays” in Proceeding Eu-

ropean Signal Processing Conference (EUSIPCO), Nice, France, Sep 2015. [51]

Software

1. S. Hafezi, ”Room Impulse Response generator for Directional source (RIRD)”

http://www.ee.ic.ac.uk/sap/rirdgen/ [52]

2. S. Hafezi, ”Spherical Microphone array Impulse Response generator for Directional

source (SMIRD)” http://www.ee.ic.ac.uk/sap/smirdgen/ [53]

1.4.3 Original Contributions

The following aspects of thesis are, to the best of the author’s knowledge, original contri-

butions:

1. Development of a narrowband DOA estimation method using high order harmonics

in two optimized ways. (Chapter 3, published in [50, 49, 44])
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• Proposing an efficient optimization to utilize high order harmonics in two ver-

sions. (Chapter 3.2.3 and 3.2.4, published in [50, 49, 44])

• Theoretical analysis of DOA estimation error caused by isotropic noise. (Chap-

ter 3.2.2, published in [44])

• Comparison of two variations of the proposed method in Single Source (SS)

scenario for varying sensor noise level and Reverberation Time (RT). (Chapter

3.3.1, published in [50, 44])

• Quantification of the improvement in SS scenario for varying sensor noise level

and RT. (Chapter 3.3.1, published in [50, 44])

• Comparison of the best performing proposed method to the baseline and the

state-of-the-art methods in SS scenario for varying sensor noise level and RT.

(Chapter 3.3.1, published in [50, 44])

• Comparison of the proposed method to the baseline and the state-of-the-art

methods in MS scenario for varying RT, number and angular separation of the

sources. (Chapter 3.3.2, published in [49, 44])

• Performance evaluation and illustrative validation of the proposed method com-

pared with others with real-world data recordings. (Chapter 3.4, published in

[44])

• Analysis and comparison of the computational complexity of the proposed

methods and the comparative ones. (Chapter 3.5, published in [49, 44])

2. Development of an autonomous robust source counting method using density-based

clustering in an evolutionary framework. (Chapter 4, published in [45])

• The use of density-based clustering in the context of DOA estimation. (Chapter

4.1, published in [45])

• Proposing an evolutive approach for source counting and sources direction ex-

traction. (Chapter 4.2, published in [45])

• Proposing a density-based strategy to trade-off between accurate and inaccurate

DOA estimates. (Chapter 4.3, published in [45])
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• Performance evaluation of the proposed technique compared with baseline tech-

niques using generated and estimated DOA estimates for varying separation and

number of sources. (Chapter 4.4, published in [45])

3. Development of a SS-validity confidence metric using Estimation Consistency (EC)

based on MS assumption and a variation of MUSIC using the proposed metric.

(Chapter 5, published in [48, 47, 46] and to be published as a comprehensive journal

paper)

• Proposing a SS-validity confidence metric based on SS assumption in a time

frame. (Chapter 5.2, published in [48])

• Evaluation of the effect of the choice of setting parameters for the proposed

and the comparative methods in MS scenario with varying setting parameters

values, number and angular separation of sources. (Chapter 5.3, published in

[48])

• The use of adaptive distance-based and density-based clustering for estimation

of the number of active sources per frame. (Chapter 5.2.1, published in [47, 46])

• Proposing a SS-validity confidence metric based on MS assumption in a time

frame. (Chapter 5.2.2, published in [47, 46])

• Evaluation of the average accuracy of DOAs selected by the variations of the

proposed and the comparative metrics in MS scenario with varying number and

angular separation of sources. (Chapter 5.3.1, to be published.)

• Evaluation of the correlation between the accuracy of DOAs and their weight

for both variations of the proposed and the comparative metrics in MS scenario

with varying number and angular separation of sources. (Chapter 5.3.2, to be

published.)

• Evaluation of the effect of each metric in the performance of source counting

and wideband DOA estimation with varying number and angular separation of

sources. (Chapter 5.3.3, to be published.)



1.4 Thesis contributions 33

• Performance evaluation and illustrative validation of the proposed metric using

real-world data recording. (Chapter 5.4, to be published.)

• Proposing a variation of MUSIC using the previously proposed metric. (Chapter

5.6, published in [46])

• Evaluation of the effect of the choice of setting parameter for the proposed

technique. (Chapter 5.7.1, published in [46])

• The performance evaluation of the proposed DOA estimation compared to

state-of-the-art method with varying number and angular source separation.

(Chapter 5.7.2, published in [46])

4. Development of two analytical narrowband DOA estimators based on multi-source

and double-source assumption. (Chapter 6, published in [48, 47, 46] and to be pub-

lished as a comprehensive journal paper)

• Proposing an extension to an analytical subspace DOA estimator based on MS

assumption. (Chapter 6.1, to be published.)

• Proposing an analytical DOA estimator based on double-source assumption.

(Chapter 6.2, to be published.)

• Proposing a subspace variation of the proposed method based on double-source

assumption to improve noise-robustness. (Chapter 6.4, to be published.)

• Illustrative validation in narrowband and wideband scenario for both proposed

methods and the comparative ones with varying sensor noise level and sources

mixing ratio. (Chapter 6.3 and 6.5, to be published.)

1.4.4 Thesis outline

The content of this thesis is structured as follows:

• Chapter 2: Reviews of the SHD, signal model, subspace decomposition, various

baseline and the state-of-the-art methods for DOA estimation are provided.
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• Chapter 3: An Augmented Intensity Vector (AIV) is proposed which improves the

accuracy of Pseudo-intensity Vectors (PIVs) by exploiting higher order spherical har-

monics in two optimized versions. A comparison is performed using our proposed

AIVs against PIVs, Steered Response Power (SRP) and subspace methods where

the number of sources, their angular separation, RT and the sensor noise level are

varied. The results show that the proposed approach outperforms the baseline meth-

ods and performs at least as accurately as the state-of-the-art method with strong

robustness to reverberation, sensor noise and number of sources with significantly

less computational cost. In the single and multiple source scenarios tested, which

include realistic levels of reverberation and noise, the proposed method had average

error of 1.5◦ and 2◦, respectively.

• Chapter 4: A method of source counting for DOA estimation using density-based

clustering is proposed. Multiple Density-based Spatial Clustering of Applications

with Noise (DBSCAN) with varying noise sensitivity is applied in an evolutionary

procedure to obtain weighted centroids. An autonomous DBSCAN is finally run on

the weighted centroids to extract the sources’ DOAs. The results using generated

and estimated DOAs show that the proposed technique significantly outperforms the

conventional histogram peak picking as well as the original DBSCAN and variations

of Kmeans with ≤ 4◦ DOA estimation accuracy and improves the source counting.

• Chapter 5: A novel SS-validity confidence metric is proposed that exploits a dy-

namic MS assumption over relatively large TF regions. The proposed metric first

clusters the initial DOA estimates (one per TF bin) and then uses the members’

spatial consistency as well as its cluster’s spread to weight each TF bin. Distance-

based and density-based clustering are employed as two alternative approaches for

clustering DOAs. A noise-robust density-based clustering is also used for source

counting and source direction estimation. The evaluation results show that the

proposed weighting significantly improves the accuracy of source counting and MS

DOA estimation compared to the state-of-the-art. As a result, a version of MUSIC

is also proposed in which all the SS bins for each talker across the TF domain are



1.4 Thesis contributions 35

globally used to improve the quality of covariance matrix for MUSIC. The simula-

tion shows that the proposed technique significantly outperforms the state-of-the-art

with < 6.5◦ mean estimation error and strong robustness to widely varying source

separation for up to 5 sources in the presence of realistic reverberation and sensor

noise.

• Chapter 6: Two novel analytical approaches are proposed for narrowband DOA

estimation based on MS assumption in a bin for low reverberant environment. In the

first approach Eigenvalue Decomposition (EVD) is used to decompose a MS scenario

into multiple SS scenarios on each of which a SS-based analytical DOA estimation

is performed. The second approach analytically estimates up to two DOAs per

bin assuming the presence of two active sources per bin. EVD is used to extend

the second approach to scenarios where more than two sources are active. The

evaluation validates an improvement of double accuracy and robustness to sensor

noise compared to the baseline methods.

• Chapter 7: The thesis is concluded and potential future works are discussed.
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Chapter 2

Background

T
HIS section reviews the signal representation and problem formulation in the SHD,

as well as the baseline and the state-of-the-art DOA estimation methods used in our

evaluations and comparisons. It finally introduces and justifies various evaluation metrics

as well as evaluation datasets used in this thesis. Each Chapter addresses a specific

challenging scenario for each of which there are different comparative methods available in

the literature. Hence the literature reviews and discussion of the methods are provided at

the beginning of each Chapter where only the methods suitable for that specific scenario

are discussed.

2.1 Coordinate system

In this thesis, spatial information is presented in the spherical coordinate system unless

otherwise stated. The spherical coordinates are (r,Ω) = (r, θ, ϕ) with range r, inclination

θ ∈ [0, π], and azimuth ϕ ∈ [0, 2π) as illustrated in Fig. 2.1. Note that the term elevation

in this work refers to the complementary angle of the inclination and is defined within

[π2 ,−
π
2 ].
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Figure 2.1: The spherical coordinate system.

2.2 Spherical Harmonic Domain (SHD)

Consider the sound pressure field p(κ, r,Ω) as a function of wavenumber κ and the point

location (r,Ω). The Spherical Harmonic Transform (SHT) of this field is given by [54]

plm(κ, r) =

∫
Ω∈S2

p(κ, r,Ω)Y ∗lm (Ω) dΩ, (2.1)

where
∫

Ω∈S2 dΩ =
∫ 2π

0

∫ π
0 sin (θ) dθdϕ, and (.)∗ denotes the complex conjugate.

The complex-valued SH basis function Ylm (Ω) of order l and degree m (satisfying

|m| ≤ l) is given by [54]:

Ylm (Ω) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Plm (cos (θ)) eimϕ, (2.2)

where Plm is the associated Legendre function and i2 = −1.

The real form SHs are defined as

Y m
l =



√
2 (−1)m=

(
Yl|m|

)
, if m < 0

Ylm, if m = 0

√
2 (−1)m< (Ylm) , if m > 0

(2.3)
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Figure 2.2: Mollweide projection of the real form SH basis functions, Y m
l , up to the

3rd order.

which are illustrated in Figure 2.2. Note that (Ω) is omitted for notational simplicity.

Using the inverse SHT, the sound pressure field can be reconstructed as [2]

p(κ, r,Ω) =

∞∑
l=0

l∑
m=−l

plm(κ, r)Ylm(Ω), (2.4)

where the coefficients plm are spherical harmonic coefficients.

Considering a SMA with radius ra and Q microphones each with angle Ωq, the

integral in (2.1) is approximated as

plm(κ, ra) =

Q∑
q=1

p(κ, ra,Ωq)wq,lm, (2.5)
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where in the case of a uniform sensor distribution, the weights wq,lm are

wq,lm =
4π

Q
Y ∗lm(Ωq). (2.6)

For up to harmonic order L, there are (L + 1)2 independent harmonics (including

all the degrees m for each order l satisfying |m| ≤ l). In order to avoid spatial aliasing,

the number of microphones Q must satisfy [6]

Q ≥ (L+ 1)2. (2.7)

Further information regarding the analysis of spatial aliasing errors and the selection of

an appropriate spatial sampling scheme can be found in [1].

Since the interested points to analyse the sound pressure field are on the surface

of the SMA which has a known constant radius r = ra, the coefficients plm(κ, r) can

be simplified to be range-independent. This allows the formulation of the problem and

solution to be independent of the array geometry, configuration and type of its body, e.g.

rigid or open. Such dependency is compensated by the mode strength bl(κra) and is used

to form the eigenbeams alm(κ) such that

alm(κ) =
plm(κ, ra)

bl(κra)
. (2.8)

For a rigid SMA, as used in our experimental study, with radius ra the mode

strength bl(κra) is given by [54]

bl(κra) = 4πil

[
jl(κra)−

j
′
l (κra)

h
(2)′

l (κra)
h

(2)
l (κra)

]
, (2.9)

where jl is the spherical Bessel function of order l, h
(2)
l is the spherical Hankel function of

the second kind and of order l, and (.)
′

denotes the first derivative. For an open sphere

the mode strength is bl(κra) = 4πiljl(κra).
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2.3 Problem formulation in the SHD

Consider multiple Ns sources in the far-field with arriving plane waves {Sn}Nsn=1 and DOAs

{Ωn = (θn, ϕn)}Nsn=1, the plane-wave representation of the eigenbeams is [1, 2]

alm(τ, k) =

(
Ns∑
n=1

Sn(τ, k)Y ∗lm(Ωn)

)
+ nlm(τ, k), (2.10)

where nlm is the sensor noise in the SHD, τ and k are time frame and frequency respec-

tively. The matrix representation of (2.10) gives

alm(τ, k) = YH(Ω)S(τ, k) + nlm(τ, k), (2.11)

where

Y (Ω) =


Ylm

T (Ω1)

...

Ylm
T (ΩNs)

 , (2.12)

and alm =
[
a00, a1(−1), a1(0), a1(1), . . . , aLL

]T
is the (L + 1)2-length column vector of

eigenbeams, Ylm =
[
Y00 Y1(−1), Y1(0), Y1(1), . . . , YLL

]T
is the same-length column vector

of SH basis functions, S = [S1 . . . SNs ]
T and Ω = [Ω1 . . .ΩNs ]

T are the Ns-length column

vectors of plane-wave signals and their associated DOA respectively and (.)H denotes the

conjugate transpose. Note that (τ, k) and (Ω) are omitted for notational simplicity.

2.4 Steered Response Power (SRP)

One of the baseline DOA estimation methods used for comparison is the Steered Response

Power approach [43] implemented in the SHD using a Plane Wave Decompositions (PWD)

beamformer [55]. The output of the beamformer steered to look direction Ω is given as

[11]

y(τ, k,Ω) =

Lb∑
l=0

l∑
m=−l

alm(τ, k)Ylm(Ω), (2.13)



2.5 Pseudo-intensity Vectors (PIVs) 41

Figure 2.3: PWD beam pattern for up to 5th order.

where Lb is the maximum harmonic order used in the beamforming. Figure 2.3 illustrates

the beam directivity pattern of PWD for look direction towards the z-axis with varying

Lb. As Lb increases, the beam becomes narrower and more directional. In addition to the

main lobe (look direction), the presence of the side and back lobes results in leakage from

other directions other than the look direction.

The narrowband SRP spectrum is the power of the beamformer’s output

PSRP (τ, k,Ω) =| y(τ, k,Ω) |2 . (2.14)

Assuming the presence of a single source, the narrowband DOA estimate is the global peak

in the SRP spectrum while the wideband DOA estimate is the peak in the SRP spectrum

summed over all TF bins

ΩSRP = arg max
Ω

∑
(τ,k)

PSRP (τ, k,Ω). (2.15)

2.5 Pseudo-intensity Vectors (PIVs)

In acoustics, sound intensity is a measure of the flow of sound energy through a surface per

unit area, in a direction perpendicular to this surface. The intensity vector I, which defines

the magnitude and the direction of the energy flow can be determined by calculating the

flow of sound energy through the three unit surfaces perpendicular to the Cartesian axes
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as [56]:

I(k) =
1

2
<{p∗.v} , (2.16)

where p is the sound pressure, v = [vx, vy, vz]
T is the particle velocity in Cartesian coor-

dinates, and <{.} denotes the real part of a complex number.

Since in practice it is difficult to measure the particle velocity, an alternative is

to use pseudo-intensity vectors. PIVs are calculated using the zeroth- and the first-order

eigenbeams as [16]

Ipiv(τ, k) =
1

2
<

a00(τ, k)∗


D−x(τ, k,alm)

D−y(τ, k,alm)

D−z(τ, k,alm)


 , (2.17)

where

Dν(τ, k,alm) =
1∑

m=−1

Y1m(φν)a1m(τ, k), ν ∈ {−x,−y,−z} (2.18)

are dipoles steered in the negative direction of Cartesian axes, given by φ−x = (π/2, π),

φ−y = (π/2,−π/2) and φ−z = (π, 0).

The DOA unit vector u(k) is given by

upiv(τ, k) = −
Ipiv(τ, k)

‖Ipiv(τ, k)‖
, (2.19)

where ‖.‖ indicates `2-norm.

2.6 Subspace Decomposition

In order to improve the noise-robustness, subspace decomposition can be used to split the

eigenbeams’ covariance matrix into signal and noise subspaces.

Assuming no correlation between the noise and the source signal, the covariance
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matrix of the noisy signals in the SHD is decomposed as

R(τ, k) =E
[
alm(τ, k)alm

H(τ, k)
]

=YH(Ωn)Rs(τ, k)Y(Ωn) + Rv(τ, k), (2.20)

where Rs = E
[
SSH

]
and Rv are respectively the source and noise signals’ covariance

matrices and E [.] denotes the expectation. In the case of spatially white sensor noise, the

noise covariance matrix is proportional to the identity matrix where the proportion is the

noise variance.

In order to obtain the covariance matrix R, it is approximated as the average

covariance matrix over a local TF region [14, 17]

Ra(τ, k) =
1

JτJk

Jτ−1∑
jτ=0

Jk−1∑
jk=0

a(τ − jτ , k + jk)

× aH(τ − jτ , k + jk), (2.21)

where Jτ and Jk are the widths (number of bins) of the averaging windows over time and

frequency respectively.

Using EVD, the covariance matrix of the eigenbeams is decomposed as

Ra = UΣUH , (2.22)

where Σ is the diagonal matrix containing the decreasingly sorted eigenvalues and U is

the square matrix containing the eigenvectors as its columns. Note that (τ, k) are omitted

here for notational simplicity.

Assuming the presence of N (N ≤ (L + 1)2) active sources, let Us
(N), represent-

ing the signal subspace, be the first N columns of U and Uv
(N), representing the noise

subspace, be the rest

Us
(N) = [U1 . . .UN ] (2.23)

Uv
(N) =

[
UN+1 . . .U(L+1)2

]
. (2.24)
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2.7 Subspace-PIV

To improve the noise-robustness of PIV, in [17] the authors proposed Subspace-PIV

(SSPIV), which assumes N = 1. In SSPIV, the raw eigenbeams are replaced with the

signal subspace Us
(1) = U1, which is the first column of U in (2.22) giving

Isspiv(τ, k) =
1

2
<

a00(τ, k)∗


D−x(τ, k,U1)

D−y(τ, k,U1)

D−z(τ, k,U1)


 . (2.25)

Note that in the original SSPIV paper [17], Singular Value Decomposition (SVD) is used

instead of EVD, which is equivalent since Ra is symmetric.

2.8 Multiple Signals Classification (MUSIC)

One of the most well-known subspace-based DOA estimators is MUSIC, in which EVD is

used to decompose the observed noisy signals of a mixture of sources into signal and noise

subspaces. MUSIC uses the spatial steering vector and the noise subspace to obtain the

MUSIC spectrum given by [23]

PMUSIC(Ω) =
1∑

‖(Uv
(N))HYlm

∗(Ω)‖2
. (2.26)

Note that (τ, k) is omitted for notational simplicity. The estimated DOAs of N sources

are the first N highest peaks in the MUSIC spectrum.

2.9 Direct-Path-Dominance (DPD) MUSIC

In [14] authors proposed a reverberation-robust variation of MUSIC based on a narrowband

single source assumption. A Direct-Path-Dominance (DPD) test is designed to identify

the TF regions with significant contribution from the direct-path signal of a single source

where the significance of dominance is defined by a user-controlled threshold. By selecting

only those TF bins passing the test, it aims to improve the robustness to reverberation
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and noise. The TF bins that pass the DPD test are

ΥDPD = {(τ, k) : erank (Ra(τ, k)) = 1} , (2.27)

where

erank (Ra(τ, k)) = 1 if ηDPD(τ, k) > ε (2.28)

is the effective rank, ηDPD is Singular Value Ratio (SVR), the ratio of the largest and the

second largest singular values, of Ra and ε is a user-defined threshold. The two alternative

approaches [14] to apply MUSIC on the outcome of the DPD test are discussed next.

Incoherent DPD-MUSIC

In the first approach the MUSIC spectra in (2.26) are summed over the selected TF bins

(τ, k) ∈ ΥDPD so that

Pincoh−MUSIC(Ω) =
∑

(τ,k)∈ΥDPD

PMUSIC(τ, k,Ω), (2.29)

where the set of N highest peaks in the final spectrum indicates the overall estimated

DOAs.

Coherent DPD-MUSIC

The second approach performs coherent fusion of the directional information from the

selected TF bins. The set of one dimensional signal spaces from the selected TF bins,{
Us

(1) (τ, k)
}

(τ,k)∈ΥDPD

, are clustered using one-run K-means clustering [14] with random

initialization into N clusters with centroids {Us
n}Nn=1 where each centroid signal space is

associated with one source. The DOA of an individual source n is selected as the global

peak in the coherent MUSIC spectrum of source n which is given as
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Pncoh−MUSIC(Ω) =
1

‖ (Uv
n)H Ylm

∗(Ω)‖2
(2.30)

=
1

Ylm
T (Ω)(II −Us

n (Us
n)H)Ylm

∗(Ω)
,

where II is the identity matrix.

2.10 Evaluation metrics

In order to evaluate and compare the performance of methods in different context, various

metrics are used for evaluation in this thesis depending on the scenario and the aim of

evaluation.

2.10.1 Estimation error

DOA estimation error ε between a true DOA unit vector uo and an estimated DOA unit

vector ue is computed in degrees as

ε = cos−1
(
uTo ue

)
. (2.31)

For multiple sources with an equal number of estimated and true DOAs, estimation error

is the average of ε between all pairs of estimated-true DOAs. Each estimated DOA is

paired with a true DOA using best case data association in order to avoid any ambiguity

due to data association uncertainty. This metric is used for evaluations in Chapters 3-6.

2.10.2 Mean error

Mean error is simply the average of estimation errors among the trials with equal number

of estimated and true DOAs. Each evaluation usually consists of various sets of settings,

e.g. noise level, number of sources, separation or reverberation time. Each set of setting

includes various trials in each of which only the distribution of true DOAs varies while all

other configurations and settings are fixed. This metric is used in Chapters 3-6.
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2.10.3 Mean Number of Detected Sources (NoDS)

In the context of DOA estimation for real-world application accuracy is defined within

a limited range of error. For example, 120◦ error is considered as bad and erroneous as

140◦ error and one does not necessarily provide a better performance. In order to avoid

the effect of highly erroneous estimated DOAs on the mean error, NoDS is also used as a

metric next to mean error in the performance evaluations. In the best case assignment of

estimated and true DOAs, the number of pairs with estimation error ≤ 15◦ (half of the

minimum source separation used in our evaluations) is considered as NoDS. The mean

NoDS is the average NoDS across all trials. In evaluations where NoDS is used, the mean

error is the average estimation error among trials with equal number of NoDS and true

DOAs. This metric is used in Chapter 3.

2.10.4 Successful Localization Rate (SLR)

SLR is the percentage of the trials in which NoDS is equal to the number of sources. This

metric is used for evaluation of source counting and estimation accuracy in Chapters 4-5.

2.10.5 Number of real multiplications

The number of multiplications between two real numbers are used as a metric for theo-

retical computational complexity. Note that the multiplication of two complex numbers

is counted as four real multiplications while | . |2 is counted as two real multiplications.

This metric is used for evaluation of computational complexity in Chapters 3 and 6.

2.10.6 Peak Strength

As shown later in experimental verifications using recordings in a real room, because of

well separation of sources, all methods may successfully estimate DOAs corresponding

to all sources. In addition, due to lack of exact measurement of the source position in

a real-room with volumetric loudspeaker as sound sources, it is not possible to have an

exact numerical true DOA and therefore none of the estimation metric defined so far can
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be used. In these scenarios the distinctness, sharpness and the height of the peaks in the

DOA histogram may still indicate the relative performance of the methods. In order to

provide a numerical evaluation under such scenarios, for each peak, a measure of ‘peak

strength’ is proposed which is the ratio of the peak height over the peak smoothness where

the peak smoothness is defined as the average height in the normalized peak distribution

within its range of rp = 30◦ neighbourhood (half of the minimum source separation used

for real-room recordings). This metric is used in Chapters 3 and 5.

2.10.7 Accuracy

The normalized accuracy, as used in Chapter 5, is

1− ε/180. (2.32)

2.10.8 Inferential Statistical Analysis

In order to evaluate the significance of difference in the performance of the methods, one-

way Analysis of Variance (ANOVA) is used. It tests the hypothesis that the samples are

drawn from populations with the same mean against the alternative hypothesis that the

population means are not all the same. The output of the test is presented as probability

value p where p < 0.001 indicates that there is at least two methods with significantly

different mean error. In such cases, a Tukey post hoc analysis is also performed to deter-

mine between which pairs of groups the difference is significant. In cases of comparison

between two methods only, an independent-samples t-test is conducted to determine if the

methods perform significantly different. One-way ANOVA is used in Chapters 3 to 6 and

t-test is used in Chapter 5.

2.11 Evaluation Testbeds

In this thesis, various methods are proposed for different conditions and sometimes dif-

ferent assumptions. In order to fairly evaluate the performance of the methods under re-
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Figure 2.4: 32-channel rigid SMA, em32 Eigenmike R©, used in the simulations and
real recordings. Photo credit: mh acoustics (www.mhacoustics.com).

lated conditions and configurations, variety of testbed materials are needed. The testbed

datasets, including both simulated and real recordings, used in this thesis for the perfor-

mance evaluation are categorized into five groups.

2.11.1 Single source simulated recordings

The Acoustic Impulse Responses (AIRs) of a 32-element rigid SMA with radius of 4.2 cm

(corresponding to the em32 Eigenmike R©, as shown in Figure 2.4) in a 5 × 6 × 4 m shoe-

box room were simulated using Spherical Microphone arrays Impulse Response Generator

(SMIRgen) [57] based on Allen & Berkley’s image method [58]. The reflection coeffi-

cient of the walls is calculated using reverberation time [59]. The array was placed at

(2.52, 3.11, 1.97) m and the source signal consists of an anechoic speech signal, using the

same utterance for all trials [60] with duration 5 s, convolved with the simulated AIRs to

each microphone and white Gaussian sensor noise added. Forty different source positions

were considered at the distance of 1 m from the centre of array with a DOA randomly

selected from a uniform distribution around the sphere. For each source position, the test

was repeated over a range of RT, T60 = {0.2, 0.3, 0.4, 0.5, 0.6} s, and signal-to-noise ratio,

SNR={10, 20, 30} dB.
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2.11.2 Multi-source simulated recordings

This dataset is used to evaluate the effect of reverberation, number of sources and angular

separation of the sources in scenarios with multiple sources. The room dimension, type of

microphone array and the simulation method are the same as in Section 2.11.1.

In order to systematically evaluate the effect of source separation with varying num-

ber of sources, multiple sources were distributed with equal angular separation between

them. For simplicity of understanding of the result and maximizing the clarity of sys-

tematic evaluation of the effect of source separation, the sources were distributed on the

same horizontal plane as the microphone array. The datasets in Sections 2.11.1 and 2.11.3

demonstrate the effectiveness of the method in varying azimuth-inclination condition. In

total, 100 trials were used where in each trial the azimuth of the first source is chosen

randomly from a uniform distribution around the circle and the subsequent sources are

placed at regularly spaced azimuth intervals ∆φs. The number of sources Ns and the

angular separation ∆φs vary in each experiment, as described below.

The constraint of fixed inclination reduces the range of variations in distance-to-

the-closest-wall and so the strongest reflection in compare to the single source scenario in

which both the azimuth and inclination vary per trial. In order to compensate for the

reduction in range of variation of the strongest reflection, the microphone array is slightly

displaced away from the centre of the room at (2.52, 4.48, 1.45) m in multi-source scenario

while the distance of the sources to the centre of SMA stays 1 m.

The source signals consist of different anechoic speech signals randomly selected

for each trial from the APLAWD database [61]. The active level of each speech source

according to ITU-T P.56 [62], as measured at p00, is set to be equal across all trials. Spatio-

temporally white Gaussian noise is added to the microphone signals to produce a signal to

incoherent noise ratio (SNR) of 25 dB at p00 for each source. The dataset is divided into

two subsets: 1) Varying T60 = {0.2, 0.4, 0.6} s with Ns = 2 and ∆φs = 45◦; 2) Varying

Ns = {2, 3, 4, 5} and ∆φs from 5◦ to maximum possible separation with T60 = 0.4 s.
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2.11.3 Multi-source real recordings

This dataset is used to demonstrate the performance of each method in a real-world multi-

source scenario. A real recording of 4 s speech in a room with approximate dimensions

of 10× 9× 2.5 m and reverberation time of 0.4 s was used using an Eigenmike 32-channel

rigid spherical microphone array, shown in Figure 2.4, with radius of 4.2 cm placed close

to the centre of the room. Four talkers were simultaneously active and were located 1.5 m

away from the centre of the array at approximately 60◦ intervals while their inclinations

alternated to be above or below the horizontal plane of the array.

2.11.4 Multi-source simulated DOAs

This dataset is used to expand the systematic evaluation of source counting methods to

scenarios with varying controlled spatial distribution of DOAs in addition to scenarios

with varying controlled environmental parameters such as T60.

The simulator for DOA spatial distribution uses two variables defined as Noise

Proportion (Np), which is the ratio of the number of noise DOAs to the total DOAs, and

the Sources Proportion (Sp), which is the ratio of the DOAs from a single distribution

associated with a single source to all DOAs (excluding the noise DOAs). For example, with

500 total DOAs and {Ns, Np, Sp} = {2, 0.8, 0.3}, there are 400 noise DOAs plus 30 and 70

DOAs generated for source 1 and 2 respectively. The Von Mises-Fisher distribution with

true DOA as mean direction and κ = 30 as concentration parameter were used to generate

the DOAs. The noise DOAs were randomly selected from a uniform distribution around

the sphere. For Ns sources, 100 trials per experiment were used. The first true DOA was

randomly selected from uniform distribution around the sphere and the subsequent true

DOAs placed with Sep separation on the randomly-orientated great circle passing through

the first true DOA. A total of 2000 DOAs and {Ns, Np, Sp, Sep} = {2, 0.5, 0.5, 60◦} was

used per trial unless otherwise stated.
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2.11.5 Multi-source simulated recordings with masking

This dataset demonstrates the challenging scenario of multi-source where one source being

strongly masked by others. It uses recorded anechoic speech signals convolved with direct-

path impulse response with varying additive white Gaussian sensor noise for a 32-element

rigid SMA with radius of 4.2 cm (corresponding to the em32 Eigenmike R©). Four anechoic

speech sources were employed in total (3 males and 1 female) each with duration of 2

seconds selected from the APLAWD database [61]. Some segments (with overall duration

of 1 second) of source 2 were cut off to make inconsistency of activity as illustrated in later

in Chapter 6. The sources were mixed with mixing coefficient of 1 for sources 1, 3 and 4

and 0.2 for source 2 so that source 2 is strongly masked by others. The sources were all

1.5 m away from the array. In each trial, four random source positions were selected from

a uniform distribution around the sphere where the angular separation of each two sources

was guaranteed to be ≥ 70◦ and no two sources had equal azimuths or inclinations. 100

trials were used for each SNR={10, 20, 30, Inf} dB.
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Chapter 3

Augmented Intensity Vectors

(AIVs)

T
HE PIVs, as shown in the previous chapter, only use zeroth- and first-order SHs

ignoring the higher order SHs. Since the spatial frequency of Ylm increases with

the SH order as illustrated in Figure 2.2, employing higher order information increases the

spatial resolution. In this chapter high order (l > 1) information is used to improve the

PIV accuracy while avoiding exhaustive search.

3.1 Signal Model

Consider a plane wave S(τ, k) with DOA Ωu = (θu, ϕu) arriving from a single source in

the far-field in an anechoic (reverberation-free) environment. Using (2.10) with Ns = 1

the eigenbeams of the sound field are

alm(τ, k) = S(τ, k)Y ∗lm(Ωu) + nlm(τ, k), (3.1)

where nlm(τ, k) represents the noise.

In case of a noise-free scenario, nlm = 0, considering (3.1) for l ∈ [0, L] and −l ≤

m ≤ l, there would be (L+ 1)2 complex equations with two unknowns S and Ωu. In this

case even for L = 1 the system of equations is overdetermined and the solution can be
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accurately obtained. Increasing L still results in the same solution that is the accurate

true DOA.

Considering the noisy case with non-zero nlm, (3.1) is an underdetermined system

of equations. In such scenario, the aim is to find the Ω which best satisfies all the (L+ 1)2

equations of (3.1) for up to SH order L.

3.2 AIV

3.2.1 Cost function

The zeroth SH order has the noise-reducing characteristic since the noise signals at the

individual sensors are averaged and reduced as in (2.5). For spatially-white noise this

reduction is approximately 10 dB based on (2.6). Using this noise-reducing property of

l = 0, it is assumed that n00(τ, k) = 0 (noise-free omnidirectional eigenbeam only), which

for moderate sensor noise level is a suitable approximation, to approximate S(τ, k) by

substituting (2.2) into (3.1) for l = 0 and m = 0 giving

S(τ, k) =
√

4πa00(τ, k). (3.2)

Substituting (3.2) into rearranged (3.1), for an arbitrary look direction Ω, a

direction-dependent error Elm(τ, k,Ω) is defined as

Elm(τ, k,Ω) = alm(τ, k)−
√

4πa00(τ, k)Y ∗lm(Ω), (3.3)

which leads to the cost function

Ψ(τ, k,Ω) =

L∑
l=0

l∑
m=−l

| Elm(τ, k,Ω) |2 . (3.4)

The corresponding optimized DOA Ωaiv(τ, k) is

Ωaiv(τ, k) = arg min
Ω

Ψ(τ, k,Ω). (3.5)
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To form the AIV, the optimized direction Ωaiv(τ, k) is combined with the norm of

the original PIV in (2.17)

Iaiv(τ, k) = −uaiv(τ, k)‖Ipiv(τ, k)‖, (3.6)

where uaiv(τ, k) is the Cartesian unit vector of Ωaiv(τ, k).

Figure 3.1 shows an example which demonstrates that Ψ(τ, k,Ω) is non-convex.

However, calculation of the cost function (3.4) over all possible directions at each TF bin

is computationally expensive. At first a theoretical error analysis in the presence of noise

is provided and then two grid search and gradient descent approaches, both of which use

the PIV solution to form an initial estimate for optimization, are presented.

3.2.2 DOA Error Analysis

This Section presents an analysis of theoretical DOA error for AIV. For the formulation

in this Section, (τ, k) are omitted for notational simplicity. As proven in Appendix A, for

a close-to-zero inclination error, the azimuth error can be written as a function of SNR,

eigenbeams and Λlm(S,Ωu, nlm) = ∠S + ∠Y ∗lm(Ωu) − ∠nlm that is the combined phase

from the direct path and the noise eigenbeams.

Figure 3.1: Normalized second-order cost function for the entire space at a particular
TF-bin for a single source with true DOA marked by a red cross, T60 = 0.5 s and sensor
noise level with SNR=20 dB.
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For up to the first SH order (L = 1), using (A.10), the azimuth error is

4ϕs = arctan

(
B1

A1

)
, (3.7)

where A and B are defiend in (A.11) and (A.12) respectively.

Figure 3.2 presents the azimuth error 4ϕs in degrees for all possible combinations

of Λlm for L = 1 with 1◦ angle resolution for varying SNR with a random true DOA

Ωu = (φu, θu) = (20, 45)◦ and | S |= 1. Since the overall behaviour of the function is

smooth, the choice of such coarse angle resolution does not affect the outcome. It clearly

shows the decrease in maximum error as the SNR increases.

For up to the second order (L = 2), (A.10) can be simplified into a quartic equation

with one variable sin (4ϕs − arctan (B1/A1)) and parameters as a function of Aj and

Bj . Among the real roots of the quartic equation, the one with the minimum 4ϕs is

considered. Figure 3.3 presents the median of azimuth errors 4ϕs in degrees across all

possible combinations of Λlm with 1◦ angle resolution for varying SNR and L = {1, 2}

with the same true DOA as in Fig. 3.2. It can be clearly seen that the increase in the

maximum SH order of AIV cost function at least doubles the expected accuracy.

3.2.3 Grid search optimization

In the discrete spatial domain sampled with 1◦ resolution across azimuth and inclination,

the search domain is defined as the set of look directions {ΩM} covered within a spherical

cap with a chosen radius centred at the initial DOA estimated by PIV. Note that larger
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Figure 3.2: Azimuth error for all possible combinations of Λlm for L = 1. The title
contains the SNR={0, 10, 20}dB and the worst error.
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Figure 3.3: Median error among all possible combinations of combined phases for
varying SNR and maximum SH order L.

search window size and higher grid resolution both increase the accuracy of estimation

as well as the computational cost. The optimized DOA Ωs(k) is obtained using (3.5) for

Ω ∈ {ΩM}. The performance of this approach is investigated in Section 3.3.1.

3.2.4 Gradient descent optimization

The grid search approach in 3.2.3 suffers from limited spatial domain or high computational

cost for small or large window sizes respectively. A gradient descent approach can be used

to overcome the problem of spatial limitation with low computational cost. Starting from

the initial angle Ω0, using the objective cost function in (3.4) an iterative gradient descent

can be formulated as

Ωn+1(k) = Ωn(k)− γn(k)∇Ψ(k,Ωn), n ≥ 0 (3.8)

where γn is the step at the nth iteration and ∇(.) = ∂
∂θ (.)θ̂ + ∂

∂ϕ(.)ϕ̂ denotes the gradient

operator.

For a convex cost function, convergence to a global minimum can be guaranteed.

However when there are multiple active talkers or an active direct acoustic path plus

one or more active reflections at the same TF bin, Ψ(k,Ω) is nonconvex. In this case,

convergence to a global minimum is only achieved if the initial point is close enough to

the global minimum.
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The gradient at angle Ω = (θ, ϕ) can be found by substituting (3.3) into (3.4) giving

∇Ψ(k,Ω) = ∇{
L∑
lm

|Elm(k,Ω)|2}

=

L∑
lm

∇{|alm(k)−
√

4πa00(k)Y ∗lm(Ω)|2}

=
L∑
lm

∇{|alm(k)|2 + |
√

4πa00(k)|2|Y ∗lm(Ω)|2

− 2|alm(k)||
√

4πa00(k)||Y ∗lm(Ω)| cos (λlm(k)− ∠Y ∗lm(Ω))}

= 4π|a00(k)|2
L∑
lm

{
∇{|Y ∗lm(Ω)|2}

}
− 2
√

4π|a00(k)|

×
L∑
lm

{|alm(k)|∇{|Y ∗lm(Ω)| cos (λlm(k)− ∠Y ∗lm(Ω))}}, (3.9)

where
∑L

lm =
∑L

l=0

∑l
m=−l is the summation over all the harmonic orders and degrees

up to the maximum order L, λlm = ∠alm − ∠a00. The gradient of the components in the

final expression in (3.9) can be calculated individually for each harmonic order and degree

using (2.2) as shown in Tables B.1 and B.2 in Appendix B.

3.2.5 DOA extraction from Intensity Vectors

Considering either PIVs or AIVs, the intensity vectors are calculated for all TF bins. A 2D

histogram (inclination vs azimuth) using the quantized directions of all intensity vectors

is formed. Note that only the directions of the intensity vectors are used and not their

vector length. As shown in [17] in case of multiple arriving plane-waves in a TF bin, it is

possible to have an erroneous resulting intensity vector with direction in between or away

from the sources and a norm higher than the intensity vector norm in the presence of a

single source depending on the relative amplitude and phase of the impinging plane waves.

In order to avoid the accuracy-loss effect of the erroneous intensity vector with high norm,

the norms are ignored and only the cardinality of the quantized directions are considered

in the histogram. An advantage of the histogram is to eliminate the weakening impact of

the erroneous directions with low cardinality on the position of the peaks in the histogram.
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Hence it is preferred over the averaging technique in [16] in which all intensity vectors are

summed to estimate the final DOA where erroneous directions reduce the accuracy if they

are not spatially diffused.

Due to noisy observations and the presence of multiple irregular peaks, the con-

structed DOA histogram is smoothed using a Gaussian kernel. The Gaussian kernel,

centred on the look direction Ω, for an angle Ωθi,ϕi with inclination θi and azimuth ϕi is

expressed as

ξ(Ω,Ωθi,ϕi) =
1

σ
√

2π
exp

(
−
∠(Ω,Ωθi,ϕi)

2

2σ2

)
, (3.10)

where σ denotes the standard deviation, which is chosen empirically as described in Section

3.3. The kernel is truncated by removing the entries with ξ < 0.001. For Ns sources, the

positions of the largest Ns peaks in the smoothed histogram are taken as the estimated

DOAs. Figure 3.4 shows an example of unsmoothed (raw) and smoothed histograms for

two sources with 45◦ separation with simulation configuration as in Section 3.3.2. The

choice for the σ, which represents the smoothness of the histogram, is studied in [48], which

concludes that a suitable σ requires the knowledge of the minimum angular separation of

the sources and the choice of 3 ≤ σ ≤ 6 was shown to provide robust and well distinguished

peaks for ≥ 30◦ separation.

Figure 3.4: An example side view of the raw and the smoothed 2D histograms of the
estimated narrow-band DOAs with σ = 4◦.
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3.3 Evaluation

The proposed DOA estimation algorithms are evaluated in terms of their accuracy and

robustness to RT [63], sensor noise level, number of sources, and angular separation of

sources using simulated data for one talker and for multiple simultaneous talkers. For all

methods, a sampling frequency of 8 kHz was used with a STFT window size of 8 ms and

50% overlap of time frame. The processing band was set to 500 Hz to 3850 Hz to avoid

spatial aliasing and ensuring kr < L for L = 3 as in [64, 14] and to avoid excessive noise

amplification due to mode strength compensation at lower frequencies.

The proposed methods, denoted AIV Grid Search (AIV-GS) and AIV Gradient

Descent (AIV-GD), are compared to the previously presented PIV, SSPIV, PWD-SRP

as the baseline methods and both variations of DPD-MUSIC as the state-of-the-art. For

AIVs, the effect of the choice of maximum SH order L = 2, 3 is evaluated. Accordingly,

the evaluated algorithms are denoted AIV-GS2, AIV-GS3, AIV-GD2 and AIV-GD3. For

the rest of the evaluation L = 3 is considered for the methods using high order SHs.

In order to compare the narrowband PWD-SRP with our AIV-GS under the same

spatial limitation, Spatially Constrained (SC)-SRP is employed which uses the same search

window as AIV-GS and PIV as its centre of window. The employed SC-SRP is the

generalized variation of the proposed method in [65] in which SC-SRP is applied only

on the TF bins with an active single source unlike our SC-SRP which is applied on all

TF bins. The radius of spherical cap search window in AIV-GS and SC-SRP was set to

10◦ as, in our experiments, more than 95% of PIVs were within 10◦ of the true DOA.

For AIV-GD, the optimization function ‘fminunc’ based on ‘trust-region’ algorithm from

MATLAB Optimization ToolboxTM was used and was set to be terminated if the new angle

is less than 0.5◦ (maximum error with 1◦ spatial resolution) away from the current angle

or if the number of calls to the cost function exceeds 100. These termination conditions

were determined empirically. The approximate covariance matrix Ra in (2.21) used by

SSPIV and DPD-MUSIC had an averaging window with Jτ = 6 and Jk = 4 over time

and frequency respectively giving 500Hz and 32ms of window size in the TF domain

based on our frequency and time resolution. The threshold ε in (2.28) for DPD-MUSIC
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was empirically set to 6, which is also the choice in its original paper [14]. The DOA

histogram and MUSIC spectrum were constructed with 1 ◦ resolution along inclination

and azimuth (181 × 360 points respectively). In DOA histogram smoothing, the kernel

had the standard deviation of σ = 4◦ which was chosen empirically from a range of 2◦ to

6◦ giving the lowest mean error.

3.3.1 Single Source

A dataset using simulated AIRs convolved with anechoic speech for a single source was

used in this section. The details of configuration can be found in Section 2.11.1. The

results are presented in two parts. In the first a comparison of the second- and third-

order of two variations of our methods, grid search and gradient descent AIVs with PIV

method are presented. In the second, the most accurate AIV approach is compared with

the baseline and the state-of-the-art methods.

Quantification of the improvements due to higher order spherical harmonics

Figure 3.5 shows the mean DOA estimation error for each method as a function of T60

for all SNRs. As expected due to utilization of higher spatial resolution from higher SHs,

the AIV approaches significantly outperform PIV for all T60 and SNRs. AIV approaches

also show noticeably more robustness to reverberation and noise. Comparing AIV-GS

and AIV-GD, the advantage of gradient descent becomes noticeable as the noise increases.

This is due to spatial freedom of search for gradient descent since the AIV-GS’s search

window centred on PIVs, which are prone to noise, are more likely to not include the

global minimum of cost function. Moreover, the results demonstrate that the increase in

SH order (2 vs 3) has a larger impact on improvement of accuracy and robustness than

the change in optimization method (GS vs GD) highlighting the higher importance of the

cost function quality over the optimization method used for it.
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Comparison with baselines and state-of-the-art

In this section our AIV-GD and AIV-GS are compared with SSPIV, SC-SRP and inco-

herent DPD-MUSIC.

As shown in Figure 3.6, AIV-GD shows the second best accuracy of ≤ 2◦ after

DPD-MUSIC. The worst performance is by PIV as it only uses the low order eigenbeams.

Although SSPIV uses the same formulation as PIV, it performs significantly better than

PIV as it employs high order SH in SVD to estimate de-noised low order eigenbeams.

SC-SRP and AIV-GS outperform the previous two methods due to utilization of high

order eigenbeams but perform very similar to each other as they use the same eigenbeams,

search window and TF bins although their formulations differ. AIV-GD outperforms

all previously stated methods due to the use of high order eigenbeams, compared to

PIV and SSPIV, and lack of spatial limitation compared to SC-SRP and AIV-GS. DPD-

MUSIC leads in the performance with 0.5◦ accuracy due to utilization of denoised high

order eigenbeams using SVD, spatial freedom due to full grid search and DPD test which

estimates reliable TF bins in which accuracy of DOA estimation would be high.

In terms of robustness to noise and reverberation, subspace techniques such as

SSPIV and DPD-MUSIC lead as they take advantage of decomposition of noisy eigenbeams

Figure 3.5: Effect of T60 and SNR on mean DOA estimation error for PIV and AIV
methods in the simulated single source scenario.
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into signal and noise subspaces. Although AIV-GD uses noisy eigenbeams, it shows almost

as strong robustness as subspace techniques due to its spatially-unconstrained optimization

which minimizes the effect of noise on the optimized DOA estimate.

3.3.2 Multiple Sources

This Section uses the testbed dataset introduced in Section 2.11.2 to evaluate the effect

of reverberation, number of sources and angular separation of the sources in the multiple

source scenario.

Experiment 1

The effect of T60 is evaluated here for the illustrative case with Ns = 2 and ∆φs = 45◦.

Figure 3.7 shows the distribution of DOA estimation errors of all methods for T60 =

{0.2, 0.4 , 0.6} s. The black dot in each box shows the median while the boxes show the

upper and lower quartiles, and the whiskers extend to 1.5 times the interquartile range.

As studied in [17], the accuracy of PIV is severely degraded in strong reverberation when

multiple sources are simultaneously active. This can be seen in Figure 3.7 where PIV

median error increases from 2.2◦ at 0.2 s to up to 8.7◦ (out of y-axis limit) at 0.6 s as

Figure 3.6: Effect of T60 and SNR on mean DOA estimation error for the proposed,
baseline and state-of-the-art methods in the single source scenario.
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Figure 3.7: Distribution of DOA estimation errors for two sources 45◦ apart with
varying T60.

T60 increases. AIV-GD, after incoherent DPD-MUSIC, shows the second best accuracy

with median errors of {0.5, 0.9, 1.4}◦ and robustness to reverberation of 1◦ similar to

DPDc-MUSIC for all T60s. Although DPDi-MUSIC leads in accuracy it shows the same

robustness to reverberation as others as its median error increases by around 1◦ from

lowest (0.2 s) to highest (0.6 s) T60. The DPDc-MUSIC provides less accuracy than

DPDi-MUSIC since DPDc-MUSIC is more prone to TF bins with erroneous signal space

due to high sensitivity of clustering to outliers.

The results for T60 = 0.4 s are used for inferential statistical analysis. There was

a statistically significant difference between groups as determined by one-way ANOVA

(F (6, 742) = 63.42, p < 0.001). A Tukey post hoc test revealed that the estimation error

was statistically significantly lower for AIV-GD (0.95◦ ± 0.19◦, p < 0.001) compared to

PIV method (5.39◦ ± 0.19◦).

Experiment 2

The effect of the number of sources and the angular separation of the sources is evaluated

for incremental Ns from 2 to 5 sources with ∆φs = {30, 45 , 90}◦ for up to 4 sources

and ∆φs = {30, 45}◦ for 5 sources with T60 = 0.4 s. The performance of each method is
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evaluated using mean NoDS and mean error as defined in 2.10.

Figure 3.8 shows the mean errors and mean NoDS for all methods with incremental

Ns and varying ∆φs. In terms of accuracy, AIV-GD shows the second best performance

with the worst mean error of 1.8◦ after DPDi-MUSIC with the worst mean error of 1.0◦.

AIV-GS performs as accurately as SC-SRP with the worst mean error of 2.1◦ as they both

utilize the same eigenbeams, initial DOA estimates and search window although differ in

cost function. DPDc-MUSIC shows noticeable accuracy loss of 2.0◦ for adjacent sources

with ∆φs = 30◦ for all the values of Ns. In contrast to the results in the original work [14]

on DPD-MUSIC where the sources are widely separated by 60◦ and 70◦, in scenarios with

lower separation, as in our evaluation, DPDc-MUSIC, compared to DPDi-MUSIC, does

not show a better accuracy. This is caused as the clustering in DPDc-MUSIC becomes

highly prone to adjacent sources and results in the merge of two adjacent clusters of signal
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Figure 3.8: Mean error and Mean NoDS for incremental Ns and varying ∆φs with
T60 = 0.4 s.
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Figure 3.9: Percentage of the bins passed in DPD test for varying Ns and ∆φs.

subspaces giving erroneous centroid signal subspace especially in the presence of outliers

signal subspaces.

In terms of mean NoDS, AIV-GD has the highest robustness to angular separation

and number of sources. Apart from PIV, which generally performs poorly in the multi-

source scenario in all cases, SSPIV, SC-SRP, AIV-GS and AIV-GD show more robustness

to the number of sources than DPD-based methods. Both DPD-MUSIC variations sig-

nificantly lose mean NoDS as the number of sources increases due to the static threshold

for SVR in the DPD test which causes the reduction of number of TF bins that passed

the test with the increase of number of sources. Figure 3.9 presents the percentage of

the passed TF bins in the DPD test for an incremental number of sources. As expected

the percentage reduces with the increase of Ns as the likelihood of a dominant single

source in a bin drops. It can also be observed that the percentage increases as the angular

separation of the sources decreases since the likelihood of strong unity effective rank in

(2.28) increases as the two adjacent sources tend to be considered as a single erroneous

intermediate dominant source. Although an increase in source separation decreases the

percentage of the passed bins, the accuracy and robustness increase as shown in Fig. 3.8

due to having fewer erroneous passed TF bins.



3.4 Experimental Verification 67

3.4 Experimental Verification

To demonstrate the performance of each method in a real-world scenario, the methods are

evaluated using real recordings in a real reverberant room. The details of configuration

can be found in Section 2.11.3.

Figure 3.10 shows the normalized smoothed histogram for PIV, SSPIV, SC-SRP,

AIV-GS and AIV-GD as well as normalized MUSIC spectrum for incoherent DPD-MUSIC.

Due to approximate knowledge of the position of sources and array, accurate numerical

estimation error cannot be obtained. The approximate mean estimation error for all

methods is 3◦ except PIV which is 4.5◦. Although, because of well angular separation,

all methods successfully estimate peaks corresponding to all four sources, the measure of

‘peak strength’, as defined in 2.10, clearly present the relative performance of the methods.

Table 3.1 presents the peak strength of each peak for all methods.

AIV-GD and SSPIV lead as they both estimate the most prominent peaks. AIG-

GS and SC-SRP performs similarly as explained in previous sections. SSPIV, due to noise

suppression in eigenbeams by sub-space decomposition, manages to successfully estimate

accurate DOAs in the majority of TF bins where PIV estimates an erroneous DOA. The

performance improvement of AIV-GD compared to AIV-GS, due to utilization of spatially

unconstrained optimization, is clearly observable in Fig. 3.10 and in Table 3.1 as erroneous

DOAs in AIV-GS, which are mainly distributed between and around the peaks, are more

concentrated around the peaks in AIV-GD resulting in sharper peaks. Note that the

number of DOA estimates in all methods except DPD-MUSIC are equal. Comparing the

sharpness and the sparsity of the histograms of PIV and AIV-GD, there is a significant

accuracy improvement by AIV-GD since majority of the erroneous DOAs in PIV histogram

have had their accuracy improved in AIV-GD due to employment of high order eigenbeams.

DPD-MUSIC shows a poor peak strength in Table 3.1 due to having a very low-height,

although sharp, peak (peak 4) as seen in Fig. 3.10. This is caused since an increase in the

number of sources results in reduction of the number of passed bins in the DPD test, as

previously shown in Fig. 3.9, which can result in having low-height peaks in the MUSIC

spectrum and therefore potentially missing a source.
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Figure 3.10: Normalized smoothed histogram of PIV, SSPIV, SC-SRP, AIV-GS, AIV-
GD and normalized incoherent DPD-MUSIC spectrum using real recording. The
black dot represents the approximate true DOA.

3.5 Computational Complexity

This Section discusses the number of computations required in each method for a single

TF bin in terms of the number of real multiplications. Note that the multiplication of

two complex numbers is counted as four real multiplications while | . |2 is counted as two

real multiplications. The number of multiplications in (2.2) is not included as Ylm can be

pre-calculated and stored for all directions in a discrete spatial domain.

For subspace methods, there are 4(L + 1)4JτJk multiplications to compute the

estimated covariance matrix in (2.21) as well as 3(L+ 1)6 for SVD in (2.22).

For PIV, there are 48 (3×3×4+3×4) operations where the numbers in parentheses

respectively represent the number of axes, harmonic modes and the real multiplications

in (2.18) and the number of axes and the real multiplications in (2.17). For AIV and SRP

cost functions using (3.4) and (2.14), there are 48 + (L+ 1)2 × (2 + 4 + 2) operations for

a single look direction where the numbers respectively correspond to the PIV, number of

Peak PIV SC-SRP DPD-M SSPIV AIV-GS AIV-GD

1 2.08 5.66 3.31 6.23 5.24 6.88

2 1.96 4.45 3.04 6.12 4.18 5.37

3 1.82 3.54 2.39 5.32 3.50 3.35

4 0.99 1.50 0.49 2.31 1.46 1.17

Mean 1.71 3.79 2.31 5.00 3.59 4.19

Table 3.1: Peak Strength of each peak for all methods where DPD-M = DPDi-MUSIC.
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eigenbeams up to the order L, a real-complex followed by a complex-complex multiplica-

tions, and squared magnitude. For DPD-MUSIC, as well as subspace computation there

are 4((L+ 1)2− 1)(L+ 1)2 multiplications for MUSIC spectrum in (2.26) for a single look

direction. Coherent DPD-MUSIC is excluded from this consideration due to unknown and

non-deterministic complexity in clustering.

An average of 5 iterations for gradient descent in AIV-GD was achieved. Consider-

ing numerical gradient using the four neighbouring look directions, the AIV cost function

is called 5 times per iteration which results in an average of 25 look directions for AIV-GD.

With a spherical cap window of radius 10◦ for AIV-GS and SC-SRP, there is an average

of 100 look directions. MUSIC uses a full grid search of 181× 360 look directions.

Using the settings in this Chapter, the overall approximate number of real mul-

tiplications of each method per TF bin is as follows: 48 for PIV, 37 × 103 for SSPIV,

13 × 103 for SC-SRP and AIV-GS, 3 × 103 for AIV-GD, and 25 × 107 for DPD-MUSIC

assuming an average of 10% of the bins passing the DPD test. Our proposed AIV-GD

leads in computation after PIV while the state-of-the-art DPD-MUSIC shows an expen-

sive computational cost due to covariance matrix calculation, SVD and full grid search

although it is performed on a small percentage of the total TF bins.

3.6 Conclusions

This Chapter proposed a novel narrowband DOA estimation method for spherical micro-

phone arrays. It uses high order spherical harmonics while avoiding exhaustive search

to enhance the accuracy and robustness of DOA estimates in PIV. Two alternative im-

plementations of the method were evaluated, one based on grid search and the other on

gradient descent optimization. It is shown that the gradient descent approach shows a

better performance in accuracy and robustness compared to spatially limited grid search

approach. Simulations and real recording results have been presented for single and mul-

tiple sources with different sensor noise levels, reverberation times, number of sources,

and angular separation of sources. The results also show that using up to the third order
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spherical harmonics has significant advantages over second order harmonics for AIV and

the increase of order has more impact on accuracy than the choice of optimization tech-

nique. For the third-order gradient descent AIV in the presence of realistic reverberation

and sensor noise level, the worst average error was 1.5◦ for single source and 2◦ for up

to 5 sources with down to 30◦ angular separation. It also outperforms the baseline PIV,

SSPIV and SC-SRP. It is shown that AIV-GD leads in terms of robustness to the number

of sources and separation. In addition, an analysis of computational complexity indicates

that the proposed AIV-GD technique outperforms the state-of-the-art method in terms of

computational complexity with a few thousand real multiplications per bin with only less

than 1.5◦ accuracy loss compared to DPD-MUSIC.
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Chapter 4

Evolutive density-based source

counting

T
HE conventional procedure of DOA estimation for multiple wideband sources typ-

ically consists of two stages: (1) Temporal narrowband DOA estimation in the TF

domain and (2) final DOAs extraction from local DOA estimates. The latter stage has a

direct impact on the outcome accuracy and robustness, and therefore it is important to be

robust to outlier (highly erroneous) DOA estimates. Working in scenarios without knowl-

edge of the number of sources and/or outlier DOAs remains a further on-going challenge

in multi-source DOA estimation.

The two main categories of final DOA extraction techniques are (1) conventional

peak picking and (2) clustering-based techniques. In conventional peak picking, the peaks

with highest cardinality in the smoothed histogram of the DOA estimates are directly [48]

or iteratively [31] extracted where the number of sources is known a priori. As shown in

[48], the required settings for the smoothing function depend on the angular separation of

the sources, the noise level and the irregularity of the peaks. With fixed smoothness, low

reliability may also be expected in scenarios with varying peak irregularity among different

distributions of DOAs. In the second category, a clustering technique such as Kmeans [32]

or mixture models using Gaussian [33], Laplacian [34] or Von Mises [35] distributions

are applied. These approaches typically require a priori knowledge of the source number
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and/or outlier removal in order to perform reliably. In [37], the authors propose the use

of Akaike Information Criterion (AIC) [38] to estimate the number of sources.

Density-based clustering has received much less attention than distance-based or

model-based clustering techniques for acoustic DOA estimation. This chapter investigates

the use of Density-based Spatial Clustering of Applications with Noise (DBSCAN) [39] to

propose Evolutive DBSCAN, an evolutionary framework for DOA clustering and source

counting. The term ‘Evolutive’ refers to the evolutionary process of the birth, growth,

death and merge of the clusters over iterative DBSCAN as will be discussed more in

depth later in this Chapter. DBSCAN, as opposed to other clustering techniques, does

not require a priori knowledge of the source number and is robust to outliers, although

it is not fully autonomous. It is assumed to have no knowledge of the number of sources

and outlier DOAs. The only assumption is that the distribution of accurate DOAs (non-

outliers) is not strongly skewed and the outlier DOAs are spatially white.

4.1 DBSCAN Clustering

Unlike distance-based clustering techniques, density-based DBSCAN clustering does not

consider the number of clusters to be known a priori but instead is based on a user-

defined minimum density for a cluster. Therefore DBSCAN considers an assumption on

the density of clusters rather than the number of clusters, which makes it robust to noise

and suitable for autonomous cluster counting.

The terms used in DBSCAN clustering are defined as follows [39].

Neighbourhood DOAs

The set of neighbourhood DOAs for a DOA estimate p̂ is defined as

Nε(p̂) = {q̂ ∈ U |∠ (p̂, q̂) ≤ ε}, (4.1)

where ∠ (p̂, q̂) is the angular separation (in degrees) between two DOA estimates p̂ and

q̂ and ε is chosen to define the angular extent of the neighbourhood in degrees.
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Density

The density at a DOA estimate p̂ is defined as the number of DOA estimates (including

p̂ itself) within its neighbourhood |Nε(p̂)|, where |.| indicates cardinality.

Threshold density

The threshold density denoted as MinPts is the minimum density for a potential cluster.

Directly density-reachable

A DOA estimate p̂ is directly density-reachable from another DOA estimate q̂ if

• p̂ ∈ Nε(q̂) and

• |Nε(q̂)| ≥ MinPts (core point condition).

Density-reachable

A DOA estimate p̂ is density-reachable from another DOA estimate q̂ if there is a chain

of DOA estimates {p̂i}Li=1, where p̂1 = q̂ and p̂L = p̂, such that p̂i+1 is directly density-

reachable from p̂i.

Density-connected

A DOA estimate p̂ is density-connected to another DOA estimate q̂ if there is a DOA

estimate m̂ such that both p̂ and q̂ are density-reachable from it.

Cluster

A cluster S is a subset of U satisfying:

• ∀p̂, q̂ : if p̂ ∈ S and q̂ is density-reachable from p̂, then q̂ ∈ S and

• ∀p̂, q̂ ∈ S : p̂ is density-connected to q̂.
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Noise point
Border point
Core point

Directly density-reachable
Density-reachable
ε-neighbourhood range

Figure 4.1: DOA estimates labelling by DBSCAN with MinPts=3.

Noise

A subset of DOA estimates in U not belonging to any cluster.

Figure 4.1 illustrates the labelling of an example of several DOA estimates by

DBSCAN with MinPts=3. Each core point (green) has at least three DOAs including

itself within its ε-radius neighbourhood while the border (orange) and the noise (red)

DOAs do not satisfy the core point condition.

Given the user-defined parameters ε and MinPts, the algorithm first detects all the

core points. A single cluster is identified in two steps: (1) start from an arbitrary core

point and (2) retrieve all points which are density-reachable from it. It then visits the

next un-clustered core point and repeats this process until all core points are clustered.

The points which do not belong to any cluster are labelled as noise. Pseudocode can be

found in [39].

The performance of DBSCAN highly depends on the choice for ε and MinPts pair.

In [39], a simple heuristic method is proposed to find the appropriate choice for ε and

MinPts from the least dense cluster. Defining k-dist as the distance to the kth nearest

neighbour for a point, ε is set to the k-dist of the knee in the graph of sorted k-dist values

of all points. Although the tuning is simplified, it is not automatic and the appropriate

choice of k depends on the noise domain.

DBSCAN loses reliability with distributions of varying densities as there may not

be a value for MinPts, given ε, by which all densities are individually clustered. As
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Figure 4.2: Number of neighbours (|N6(.)|) vs data position for an example of 1D data
distribution. Data points are marked as red circles on x-axis. The horizontal dashed
line, with MinPts as its vertical position, distinguishes the core points.

shown in Fig. 4.2, any choice of MinPts leads either to the erroneous merging of adjacent

densities or the missing of the least dense distribution. Mixtures of distributions with

widely varying density often occur in DOA estimation especially in multi-source acoustic

scenarios where one source is less active or relatively further with respect to the microphone

array compared to other sources. Variations of DBSCAN [66, 67, 68, 69, 70] are proposed

but all require user engagement for setting parameters.

4.2 Evolutive DBSCAN

In the context of final DOAs extraction from local DOA estimates, due to potential varia-

tions among the clusters density, the proposed method runs DBSCAN for various MinPts

and iteratively stores the reliable centroids and their associated weights. The distribution

of the resulting weighted centroids is shown to be significantly more sparse and less noisy

than the distribution of the DOAs. Thus, it allows for more reliable cluster counting.

The definition of density, |Nε()|, from (4.1) is used. In order to have a consistent

metric of density across the entire method, a fixed value of ε is defined. This value must be

less than half of the minimum separation of the sources and, since in the example of robot

audition sources are normally separated by > 20◦, ε = 10◦ was found to be a reasonable

choice. Note that ε is defined as a base unit for density in the proposed algorithm and
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Algorithm 1 Evolutive DBSCAN
1: function EVOLUTIVE DBSCAN(points)
2: centroids=[]; %holds alive centroids and weights
3: MinPts=max(|Nε(.)|)− 1; cntr=1;
4: while (MinPts≥ min(|Nε(.)|) + 1) OR (cntr≤NumIt)
5: C=DBSCAN(points,ε,MinPts);
6: if isEmpty(centroids) then
7: centroids += C(all).centroid; %initialization
8: C.dead members=[]; %all dead members
9: else
10: C=LABEL CLUSTERS(C,C last);
11: if anyClusterAlive(C) then
12: centroids += C(alive ones).centroid;
13: C=RemoveDead(C,dead ones);
14: end if
15: end if
16: C last=C; MinPts -= step; cntr += 1;
17: end
18: return centroids
19: end function

is not a user defined parameter. Our experiments showed that varying ε in a relatively

small range does not significantly change performance as the density at each point changes

proportionally to the change in ε.

The density |Nε(.)| is calculated for all DOA estimates using (4.1) where the dis-

tance between two DOA estimates unit vectors p̂ and q̂ with angular separation ∠(p̂, q̂)

(in radians) is

dist(p̂, q̂) = 1− cos (∠(p̂, q̂)) . (4.2)

The choice of ε automatically sets a boundary on the possible values for MinPts in order

to have meaningful clustering. The maximum and minimum |Nε(.)| in the dataset respec-

tively indicate the upper and lower bounds on MinPts since for MinPts > max(|Nε(.)|)

there is no core point and therefore no cluster while for MinPts≤ min(|Nε(.)|) all points are

core points grouped as one cluster. This leads to MinPts∈ [min(|Nε(.)|)+1,max(|Nε(.)|)−

1]. The step-size for searching MinPts can be either defined by the user or calculated based

on the maximum number of iterations (NumIt) specified by the user. Best resolution is

obtained for MinPts steps of 1. Starting from highest to lowest MinPts, at each iteration

after a comparison between the current clustering and the previous clustering, the current

clusters are labelled as ‘dead’ or ‘alive’ each defined as follows:

1) Dead: A cluster is dead if:
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• it has a shared member with more than one alive cluster in the last iteration (merge

condition) or

• it has a shared member with any previously dead cluster (re-occurrence of a previ-

ously merged cluster).

2) Alive: A cluster is alive if it is not dead.

At each iteration the weight and the centroid of the alive clusters are stored where

weight is defined as the mean density of the cluster’s members. The pseudocode for the

main part of the algorithm is presented in Algorithm 1.

4.3 Source counting and DOA extraction

Having obtained M centroids {ci}Mi=1 and their associated weights {wi}Mi=1, an autonomous

final DBSCAN is performed on the centroids to count the number of detected clusters, L,

and their final centroids {di}Li=1 indicating the estimated number of sources and the final

DOA estimates respectively, as shown in Fig. 4.3(c). Assuming the distribution of the

initial DOA estimates as a mixture of unskewed distributions with additive spatially white

noise DOAs, it is expected to have very low spatial variance for the centroids belonging to

a repeatingly alive cluster at consecutive iterations. Therefore a smaller value of εf = 5◦ is

defined in the final DBSCAN while MinPts is autonomously determined as follows. Instead

of a sorted k-dist graph in [39], a sorted weighted-density graph is built from the centroids

{ci}Mi=1 using their weight {wi}Mi=1 and their density {|Nεf (ci)|}Mi=1. The advantage of

density over k-dist as the metric is the consistency in the behaviour of the sorted density

graphs regardless of εf , as opposed to sorted k-dist, the behaviour of which highly depends

on k. Also using the weights exaggerates the dynamic range and so also the angle of the

‘knee’ in the graph since the outlier centroids are expected to be from low density clusters

of outlier DOA estimates that might have been clustered due to low MinPts at the end of

evolutionary process. MinPts is the density at the position of the ‘prominent’ knee with

the lowest weighted density. This is determined as the position of the first peak (excluding

the peaks with less than 10% of the highest peak) in its derivative function as shown in
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Figure 4.3: (a) Sorted weighted density (blue dashed) graph and its derivative (solid
red). Position of the knee marked as blue circle. Distribution of (b) DOA estimates
(c) centroid estimates for 5 sources. Final centroids are marked by coloured circles.

Fig. 4.3(a). If min({|Nεf (ci)|}Mi=1) > 1, no knee detection is performed and MinPts is the

minimum density.

4.4 Evaluation

The algorithm’s performance was evaluated using generated and estimated DOAs. Perfor-

mance metrics SLR and mean error, as defined in 2.10, respectively represent the source

counting reliability and DOA estimation accuracy.

For Ns sources, 100 trials per experiment were used. The first true DOA was

randomly selected from uniform distribution around the sphere and the subsequent true

DOAs placed with Sep separation on the randomly-orientated great circle passing through

the first true DOA. Our algorithm was compared with conventional peak picking from the

smoothed histogram, original DBSCAN based on k-dist graph [39] as well as Kmeans and

its adaptive variations. Peak picking and Kmeans, with K = Ns, use prior knowledge of
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Figure 4.4: Evaluation results using generated DOAs as a function of (a) Np, (b) Ns,
(c) Sep and (d) Sp. Note that the lines and markers for Kmeans and its variations
are mostly overlaid by each other as they share zero value for SLR. If SLR is zero,
then no mean error is calculated as it is averaged only among the successful localized
trials.

the number of sources. Adaptive Kmeans [47] estimates the optimum K by minimising

AIC or Bayesian IC (BIC) for K = {1, ..., 5}. A Gaussian kernel with empirically-chosen

standard deviation of 4◦ was used for peak picking. The original DBSCAN had empirically-

chosen k = 10 for k-dist graph, which gave the best overall results. NumIt=50 was found a

reliable and computationally efficient choice for the proposed Evolutive DBSCAN method.

4.4.1 Evaluation using generated DOAs

The testbed dataset introduced in Section 2.11.4 is used in this evaluation. Figure 4.4

shows that the proposed method significantly outperforms the comparative methods both

in mean error and SLR in all cases except for SLR at angular separation Sep = 30◦.

Kmeans for Np < 0.4 and peak picking show better performance than adaptive Kmeans as

they use prior knowledge of source numbers. Since AIC considers less penalty for model

complexity than model distortion compared to BIC, it has some successful cases of source

counting for Ns = 5 (Fig. 4.4(b)) while BIC is more successful for Ns = 2 with no noise

(Fig. 4.4(a)). Due to presence of noise, Kmeans and its adaptive variations very rarely
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Figure 4.5: Evaluation results using estimated DOAs. Note that the lines and markers
for DBSCAN, Kmeans, Kmeans (AIC) and Kmeans (BIC) are completely overlaid by
each other as they all share zero value for SLR and therefore are not displayed for
the mean error.

localize all the sources successfully which indicates how sensitive distance-based clustering

is to noise in general. On the other hand, DBSCAN, due to noise-robustness, outperforms

all Kmeans-based methods in our tests.

The results for (b)Ns = 5 are used for inferential statistical analysis. There was

a statistically significant difference between groups as determined by one-way ANOVA

(F (5, 173) = 268.9, p < 0.001). A Tukey post hoc test revealed that the estimation error

was statistically significantly lower for the proposed method (1.26◦ ± 0.03◦, p < 0.001)

compared to peak picking method (3.40◦ ± 0.08◦).

4.4.2 Evaluation using estimated DOAs

The testbed dataset introduced in Section 2.11.2 is used in this evaluation. The assumption

of a mixture of unskewed distributions for DOA estimates in multi-source scenarios is

realistic for DOA estimators with, for example, the commonly-used DPD [14] test, avoiding

the potential skewness which is caused by DOAs at TF bins with simultaneously active

multi-source or strong reverberation. Therefore the method of DPD-PIV [42], based on
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the selection of 25% of the TF bins with largest singular value ratios [46] is used as the

DOA estimator.

Figure 4.5 indicates that the proposed method shows an average of 30% improve-

ment in SLR compared to peak picking while maintaining the high accuracy of 3.5◦ on

average. Also shown is the failure of all Kmeans-based methods, due to the presence of

noise, and DBSCAN, due to the smooth knee in k-dist graph leading to erroneous trade-off

between accurate and noise DOAs.

4.5 Conclusions

The use of density-based clustering is investigated for acoustic source DOAs and an au-

tonomous source enumerator using DBSCAN clustering is proposed. The method runs

an evolutive DBSCAN using varying sensitivity to noise and estimates the average den-

sity and the centroid of the reliable clusters at each iteration. It then performs a final

autonomous DBSCAN clustering on the sparse distribution of reliable centroids without

requiring the number of sources. The evaluation using generated and estimated DOAs

validates the DOA estimation accuracy of ≤ 4◦, 30% improvement in SLR compared to

peak picking and the superior source counting robustness to noise, separation and source

numbers for the proposed method compared to the comparative ones.
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Chapter 5

Multi-Source Estimation

Consistency (MSEC)

S
EVERAL existing approaches to MS DOA estimation for speech sources use WDO

[36], assuming sparseness of speech in the TF domain, in combination with subspace

decomposition [23]. Such methods often follow three stages: (1) SS TF bin detection in

which the TF bins predominantly containing a single source are detected; (2) SS DOA esti-

mation where a DOA estimator based on the SS assumption is applied only at the detected

SS bins; (3) Multiple source direction estimation using the set of temporal narrowband

DOA estimates.

In a SS bin, the observation covariance matrix formed from the microphone array

signals is expected to have unit rank. In real-world scenarios, DOA estimation has to be

performed in reverberation that is characterized by the additive combination of direct-path

propagation and reflections [63]. In such scenarios, SS dominance with unit rank covariance

matrix rarely occurs at a TF bin and therefore some form of SS-validity confidence metric

is used to detect the more reliable SS bins for use in DOA estimation. Methods such

as the coherence test [71], SS Zone (SSZ) detection [72] or DPD test [14] assume the

validity of SS assumption over a local TF region in the vicinity of a TF bin of interest

and each method defines a specific SS-validity confidence metric. Having obtained the SS

validity measure at each bin, two alternative approaches can be used for the selection of
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reliable bins. The methods in [72][14] identify the SS bins based on a comparison between

the SS validity measures and a fixed user-defined threshold whereas the method in [46]

selects a user-defined percentage of the TF bins with the strongest SS validity measures.

In [71], SS bins are detected using the rank of the correlation matrix at each TF bin.

Due to averaging across only local time frames and lack of subspace decomposition in

the selection of SS bins, that approach is most effective only for MS DOA estimation in

an anechoic environment. In [72], the average of pairwise correlation coefficients between

adjacent sensors is used as a SS validity confidence metric, where the correlation averaging

is performed only across the local frequencies of each time frame. It does not use subspace

decomposition and is therefore prone to noise and multiple coherent sources. In DPD [14],

SVD is employed and the SVR of the signals’ covariance matrix is used as the SS-validity

confidence metric. DPD performs the covariance averaging over adjacent frequencies and

time-frames. The latter property, along with the use of subspace decomposition makes

DPD robust to reverberation as it aims to find TF bins with not just a dominant SS but

also a dominant direct path, ignoring bins containing significant reverberation.

As the number of simultaneously active sources increases, the performance of the

previously mentioned methods degrades, although presence of the dominant SS still occurs.

This is because the WDO assumption is valid in fewer TF bins and in smaller TF regions

as the number of simultaneously active sources increases as shown in Section 5.1.

This Chapter addresses the problem of DOA estimation when WDO assumption is

violated due to increase in the number of sources. It first proposes a metric in Section 5.2

and then presents a novel variation of MUSIC algorithm based on the proposed metric in

Section 5.6. Figure 5.2 shows an overview of the MS DOA estimation system proposed for

the first section. The novelties in this work are: (1) the use of density-based clustering in

the context of acoustic DOA estimation, as used in DOAs clustering and source counting

units in Fig. 5.2, (2) a novel SS-validity confidence metric for weighting of initial DOA

estimates, as used in DOAs weighting unit in Fig. 5.2, and (3) a novel variation of MUSIC

algorithm which uses the proposed metric to perform MUSIC individually per source. The

proposed Multi-Source Estimation Consistency (MSEC) metric is based on a dynamic MS
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assumption, as opposed to the SS assumption in conventional approaches. MSEC uses a

consistently large TF region where the number of simultaneously active sources within the

region is autonomously estimated.

5.1 Problem Analysis

Consider a reverberant environment containing Ns simultaneously active speech sources

with uniform angular spacing γ at 1 m distance from a microphone array. Each source

represents a different speaker speaking different utterances. The received signal at a

microphone in the STFT domain is

X(k, τ) =

Ns∑
n=1

(Dn(k, τ) +
∞∑
j=1

Rn,j(k, τ)), (5.1)

where Dn denotes the direct-path component from source n and Rn,j is the component of

reflection j from source n. The frequency, k, and time frame, τ , indices are subsequently

omitted for notational simplicity.

Let Signal-to-Interference Ratio (SIR) at a TF bin be the ratio of the magnitude

of the dominant direct path, |Db|, and the magnitude of the rest of the signals from the

mixture of Ns sources, |X −Db|, which includes all other direct paths and reverberations

excluding the dominant direct path where

b = argmax
n

(|Dn|) (5.2)

is the index of the dominant direct path. Figure 5.1 shows in white the TF bins with

SIR ≥ 10 dB in such a scenario for Ns = {2, 3, 4, 5} and γ = 50◦. It can be clearly seen

that with the increase of Ns, the number of the bins and the size of the TF regions with

valid WDO assumption decreases. For SS bin detectors based on a fixed-size analysis

TF window, this leads to increasing failure of the SS assumption validity and consequent

performance degradation for the SS bin detectors that rely on this assumption.

One solution [37] to this problem is the use of a dynamic MS assumption over a
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Figure 5.1: Illustration showing in white the TF bins with SIR≥ 10 dB considering
the signal as the dominant direct path and the interference as the reverberant signals
mixture of (a) 2, (b) 3, (c) 4 and (d) 5 sources with T60 = 0.4 s.

fixed-size TF region where the number of active sources within the processing TF region

is autonomously estimated. For such techniques, estimation of the optimum number of

sources remains a challenge. In [37], the authors propose the use of the AIC [38] to find

the optimum number of eigenvectors spanning the signal space for the MS assumption.

Although this approach overcomes the problem of Ns estimation, it loses reliability with

noisy observations.

The use of temporal narrowband DOA estimation based on the SS assumption in

a MS scenario is expected to be relatively accurate at the TF bins containing one signif-

icantly dominant direct-path component and inaccurate otherwise. The direction of the

error in erroneous DOA estimates is determined by the relative phase and amplitude of

the impinging plane waves as shown in [17]. Such variance of directional displacements in
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Figure 5.2: Block diagram of the proposed system for MS DOA estimation.

DOA estimates at non-SS bins results in spatially inconsistent erroneous DOAs whereas,

in practical scenarios, DOA estimates at SS bins are expected to have spatial consistency

if the sources are stationary or only slowly moving over time. In [73] and [74], the authors

propose the use of diffuseness of DOA estimates which is based on SS assumption and

suffers from the previously-stated problem of SS-based metrics as the number of sources

increases. We therefore investigate the use of spatial consistency of SS-based DOA esti-

mates under the MS assumption. We also investigate how to estimate the number of active

sources over a TF region using this approach, as well as the validity of the SS assumption

at a TF bin.

5.2 MSEC

Assuming that the initial DOAs (one per TF bin) are provided by any chosen temporal

narrowband SS DOA estimation procedure, a new SS validity confidence metric is proposed

based on spatial consistency of initial DOA estimates and a dynamic MS assumption.

Two alternative distance- and density-based clustering techniques for the dynamic MS

assumption are introduced and discussed. The architecture of the proposed system is

illustrated in Fig. 5.2.

In order to increase the distinctness of densities between accurate and inaccurate

initial DOAs for the purpose of robust estimation of the number of active sources, we

consider all initial DOA estimates from the previous T frames. Therefore, at each frame
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τ , we consider the set of DOA estimates U(τ) including all initial DOAs from frame τ to

τ − T , defined as

U(τ) = {û(t, k) : ∀k, t ∈ {τ, τ − 1, . . . , τ − T}}, (5.3)

where û(t, k) is the estimated DOA unit vector at time frame t and frequency k and T is

a fixed user-defined temporal window length.

To quantify spatial consistency of the multi-modal distribution of DOA estimates

from U(τ), an adaptive distance-based clustering technique such as K-means and a density-

based noise-robust clustering technique such as DBSCAN [39] are used as two alternative

approaches. In the following, τ , t and k are omitted for brevity where unambiguous.

5.2.1 Adaptive K-means Clustering

To find the optimum number of clusters, the AIC is calculated as [38]

AIC = −2O + 2v, (5.4)

in which −O, the negative maximum log-likelihood of the data, represents a measure of

distortion and v, the number of parameters of the model, represents a measure of model

complexity.

For K-means with a given K, the first term in (5.4) is replaced with Residual Sum

of Squares (RSS) of the clustering giving [75]

AIC(K) = RSS(K) + 2V K, (5.5)

where RSS(.) is the sum of squared angular distances of each member to its cluster centroid

and V denotes the number of dimensions of the centroid which leads to V K parameters

for K clusters. Note that with the increase of K, RSS(K) decreases while 2V K increases,

which makes AIC(K) a penalty factor for a given model where its minimum gives the best

clustering with the minimum number of clusters.
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Having performed K-means for K = {1, . . . ,Kmax} on the set of DOAs U with

random initializations, using (5.5), the optimum number of clusters, Kc, is chosen as

Kc = arg min
K

[AIC(K)] . (5.6)

5.2.2 MSEC weighting

Having performed clustering on data set U(τ) by either adaptive K-means or DBSCAN, we

obtain the estimated number of clusters Kc(τ), the clusters {Ci(τ)}KC(τ)
i=1 and the centroids

unit vector {ĉi(τ)}KC(τ)
i=1 where i is the cluster index. As a representative of the spread

of DOA estimates within each cluster, the average member-to-centroid angular distance

Θi(τ) is calculated for each cluster as

Θi(τ) =
1

|Ci(τ)|
∑

k∈Ci(τ)

∠(û(τ, k), ĉi(τ)), (5.7)

where ∠ (.) denotes the angle in degrees between two vectors.

The MSEC weight for each DOA estimate is determined from two factors, the

cluster weight and the member weight. For each DOA estimate, the cluster weight, which

represents the normalized measure of concentration in its associated cluster, is

ψ(τ, k) = 1− Θi(τ)

π
, k ∈ Ci(τ), (5.8)

and the member weight, which represents the normalized measure of closeness to its asso-

ciated centroid, is

λ(τ, k) = 1− ∠(û(τ, k), ĉi(τ))

π
, k ∈ Ci(τ). (5.9)

The MSEC weight in the TF domain is then formed as

w(τ, k) =
√
ψ(τ, k)λ(τ, k). (5.10)

A special case of MSEC with T = 0 and Kmax = 1 is proposed and evaluated in [48],

which is based on the SS assumption within a time-frame.
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(a) DBSCAN
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(b) Adaptive K-means

Figure 5.3: An example of DOA estimates from 5 consecutive time-frames clustered
by (a) DBSCAN with (ε,MinPts) = (20◦, 10) and (b) adaptive K-means with Kmax = 4.
The colours and markers indicate the clusters while the black dots in (a) are the noise
DOAs. The true source directions are marked as cyan filled circles.

Figure 5.3 displays DBSCAN and adaptive K-means clusterings of an example

distribution of initial DOA estimates for 5 consecutive frames (T = 4). This illustrates

that DBSCAN identifies and ignores the noise DOA estimates due to the use of a static

definition of cluster density while adaptive K-means assigns every DOA estimate to a

cluster.

Figure 5.4 shows a scatter plot of the normalized MSEC weights versus the nor-

malized accuracy of the initial DOAs used in the example of Fig. 5.3. It can be seen

that the noise-robust DBSCAN-MSEC has only weighted strongly the DOAs that have

> 0.8 normalized accuracy, and zero-weighted the inaccurate DOAs with < 0.8 normalized

accuracy.

Having weighted all the DOA estimates in the TF domain, only the estimates with

the P% strongest weights are selected. The choice of P is investigated and discussed in

Section 5.7.1.
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Figure 5.4: Normalized weight vs normalized accuracy for MSEC using (a) DBSCAN
and (b) adaptive K-means for the example of Fig. 5.3.

5.3 MSEC metric Evaluations

The performance of the proposed metric is first evaluated using recorded anechoic speech

convolved with simulated room impulse responses for SMA in the presence of reverberation

and sensor noise. Performance using real speakers in a reverberant room is considered in

Section 5.4. The evaluation is performed for a varying number of sources and angular

separation. The DPD method is used as a baseline for comparison. Without loss of

generality, the inclination of sources is fixed at 90◦, for simulated data, so as to place them

in the same horizontal plane as the microphone array for clarity of systematic evaluation

of the effect of source separation. However, inclination is varied in the experimental

verification using real data in Section 5.4. The testbed dataset introduced in Section 2.11.2

is used for this evaluation.

Any narrowband method can be used for the DOA estimator but for fast computa-

tion, the efficient PIV [16] method was used in these test as an example SS DOA estimator

to obtain the initial DOA estimates.

The approximate covariance matrix Ra in (2.21) used by DPD had an averaging

window with Jτ = 6 and Jk = 4 over time and frequency respectively giving 500 Hz and

32 ms of window size in the TF domain based on our frequency and time resolution.

MSEC has a temporal window size of T = 4 frames in (5.3), which is chosen to

be small enough to decompose the problem of Ns sources into N < Ns sources over
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the interval and wide enough to form distinguishable densities for consistent DOAs. For

clusterings used in variations of MSEC, adaptive K-means has Kmax = 4 with random

initialization per K and DBSCAN has ε = 10◦ and MinPts= 10 which is approximately

5% of the number of the estimates in dataset U(τ). These values for the setting parameters

of the evaluated methods are empirically chosen.

A uniform weighting strategy, in which all DOA estimates are selected, is also

included in the evaluation as a reference. For the purpose of evaluating the performance

of the weighting metrics only, a fixed selection percentage of P = 25% is empirically

suggested [46] and used for DPD and both variations of MSEC. Therefore DPD and

MSEC both select an equal number of DOA estimates, which is the top 25% DOAs with

the highest weights while uniform weighting selects all DOA estimates. The error (in

degrees) for each selected DOA estimate is calculated as the angular distance between the

estimate and the nearest true DOA.

5.3.1 Accuracy of the selected DOAs

In this section the accuracy of the DOA estimates selected by the weights is evaluated.

Figure 5.5 shows the mean error of the DOA estimates selected by each method for 4φ =

{45◦, 90◦} and incremental Ns = {2, 3, 4}. It can be seen that MSEC variations select

significantly more accurate DOA estimates compared to DPD and uniform weighting which

validates the advantage of MS over SS assumption in MS scenario. DBSCAN-based MSEC

has 92% to 129% mean accuracy improvement in these tests compared to DPD due to the

dynamic MS assumption and noise-robustness. It can also be seen that as Ns increases

the mean accuracy of the uniform and DPD weights improves. This is due to the decrease

in the least possible error as the number of sources increases.

Figure 5.8 shows the top view and side view of the normalized smoothed histogram

of DOA estimates selected by each method for an example experimental trial. The per-

formance benefits of MSEC are shown and can be explained by observing the distinctness

and sharpness of the peaks. It can be seen that MSEC variations have well defined peaks

around each of the source positions especially for the fourth source (from the left) where
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Figure 5.5: The overall mean error of the DOAs for varying separation and incremental
number of sources.
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Figure 5.6: The overall mean correlation between the normalized weight and accuracy
for varying separation and incremental number of sources.

DPD fails due to the oversize processing TF region at the TF bins with a significantly

dominant fourth source resulting in selection of inaccurate DOA estimates. The reason

for such failure is visualised and further discussed in the TF domain in Section 5.3.3.

5.3.2 Correlation between weights and DOA estimates accuracy

Figure 5.6 shows the mean correlation between the normalized weights and the normalized

accuracy, as defined in 2.10, of their DOA estimate. DPD weights show low correlation

with accuracy. On the other hand, MSECs are, at least by a factor of 4, more linearly

correlated with DOA estimate accuracy. This is due to two reasons. (1) MSEC is calcu-
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Figure 5.7: Distribution of the normalized weights and their DOA estimate accuracy
for an example trial with (Ns,4φ) = (2, 90◦).

Figure 5.8: The side view (top row) and the top view (bottom row) of the normal-
ized smoothed histogram of the selected DOA estimates using (a) Uniform weights
including all DOAs, (b) DPD, (c) adaptive K-means MSEC and (d) DBSCAN MSEC
for an example trial with (Ns,4φ) = (4, 90◦).

lated using the DOA estimates and is therefore expected to be directly impacted by DOA

accuracy unlike DPD which uses eigenbeams. (2) The MSEC metric is calculated in the

spatial domain using angular distances which has the same unit and nature as the DOA

estimate accuracy whereas the DPD metric uses the SVR of the eigenbeams.

Figure 5.7 illustrates a scatter plot of the selected normalized weights versus nor-

malized accuracy of their DOA estimates for K-means and DBSCAN-based MSEC for

an example trial. It can be seen that DBSCAN-based weighting has significantly fewer

inaccurate DOA estimates which are falsely weighted high compared to K-means. This is

due to two reasons. (1) DBSCAN is a noise-robust clustering technique and is more capa-

ble of ignoring the inaccurate DOA estimates. (2) The outcome clustering of K-means is
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stochastic for each run because of random initialization and dependency of the outcome on

the initialization, while DBSCAN does not require initialization and its outcome is there-

fore deterministic. During an experimental analysis it was observed that different trials

of K-means on the same dataset with the same choice of K sometimes led to inconsistent

clusterings and therefore inconsistent estimation of Kc(τ). Such inconsistent behaviour

can sometimes lead to erroneous clustering and so erroneous weighting.

5.3.3 Effect of weighting on counting and direction estimation of sources

In this section the performance of each SS-validity confidence metric is evaluated in the

context of source direction estimation and source counting using evolutive DBSCAN pre-

sented in Section 4.2. In Section 4.4 it is shown that the evolutive DBSCAN outperforms

the conventional histogram peak picking as well as adaptive K-means and original DB-

SCAN techniques and is therefore chosen as our source counting and source direction

extraction technique in this Section. The choice of NumIt=50 was empirically found to

be a good trade-off between reliability and computational efficiency for our proposed evo-

lutive DBSCAN. MSEC based on K-means is excluded from the evaluation in this section

since DBSCAN-MSEC has a better performance as shown in the previous sections. The

two performance metrics SLR and mean error, as defined in 2.10, are used for performance

evaluation of the source counting and DOA estimation.

Figure 5.9 shows the mean error and SLR of DPD and DBSCAN-MSEC, abbrevi-

ated to MSEC in this section, for varying4φ and Ns. It can be seen that MSEC noticeably

outperforms DPD in all cases. In terms of DOA estimation accuracy, although MSEC and

DPD perform very closely, MSEC slightly leads by 1◦ at 45◦ separation with 4 sources. In

terms of source counting accuracy, MSEC significantly leads especially for 4φ = 45◦ as

Ns increases. MSEC also shows strong robustness to separation and number of sources as

its SLR drops only to 75% while DPD’s SLR is reduced to 20% with the decrease in 4φ

and increase in Ns. Such results match with the observation in Fig. 5.8. It is seen that

the peaks of the multi-modal distributions, which affect the accuracy of DOA estimation,

remain approximately at the same position for DPD and MSEC while the sharpness and
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Figure 5.9: Mean error (top row) and SLR (bottom row) for (a) 2, (b) 3 and (c) 4
sources with varying source separation.

distinctness of the peaks, which affect the source counting, are significantly different.

An independent-samples t-test was also conducted to compare mean error for

DPD and MSEC methods. There was not a significant difference in the scores

for DPD (mean=4.69◦, standard deviation=1.32◦) and MSEC (mean=4.14◦, standard

deviation=1.11◦) methods; t(93)=1.95, p = 0.054. However, MSEC generally performs

better than DPD in SLR.

Figure 5.10 shows the TF bins with the top P = 25% strongest MSEC and DPD

weights as well as the bins with PIV DOA estimates, which have ≤ 10◦ error and are

considered as accurate DOAs, for an example trial. As shown in Fig. 5.10(c), accurate

DOAs occur at varying-size TF regions and even at isolated TF bins. It can be clearly seen

that MSEC has been more successful in detecting varying-size TF regions and isolated TF

bins due to dynamic MS assumption over relatively large analysis window-size compared

to DPD, which is based on the SS assumption over a small analysis window-size.



5.4 MSEC Experimental Verification using Real-world Data 96

Figure 5.10: TF bins with top P = 25% strongest (a) DBSCAN-MSEC weights, (b)
DPD weights and (c) ≤ 10◦ DOA error for (Ns,4φ) = (3, 90◦).

5.4 MSEC Experimental Verification using Real-world Data

In this section the performance of each method is evaluated using real recordings in a

reverberant room introduced in Section 2.11.3. Figure 5.11 shows the normalized smoothed

histograms for uniform weighting using all DOA estimates, DPD and DBSCAN-MSEC

using P = 25% of the DOA estimates with the strongest weights, where DOA estimates are

obtained using PIVs [16]. Due to only approximate knowledge of the ground-truth position

of sources and array in the physical room, accurate numerical estimation error cannot be

obtained. The approximate mean estimation error for all methods is 4◦. All methods

successfully estimate peaks corresponding to all four sources due to wide separation of

sources. Therefore the measure of ‘peak strength’ as introduced in 2.10 is used. Table 5.1

presents the peak strength of each peak for all methods.
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Figure 5.11: Zoomed normalized smoothed histograms for uniform weighting (all DOA
estimates), DPD and DBSAN-MSEC (both based on P = 25%) using real recording.
The black dot represents the approximate true DOA.

Peak Uniform Weight DPD MSEC

1 2.08 2.94 6.04

2 1.96 2.59 6.03

3 1.82 1.75 4.97

4 0.99 0.67 4.31

Mean 1.71 1.99 5.33

Table 5.1: Peak Strength of each peak for all methods

The smoothed histograms in Fig. 5.11 and the peak strengths in Table 5.1 show that

MSEC metric significantly outperforms DPD and uniform weighting using real recordings

and serves towards validation of the evaluation results based on simulation in the previous

section.

5.5 MSEC metric Conclusion

A confidence metric for validity of SS assumption in a TF bin has been proposed using

spatial consistency of initial DOA estimates. It employs adaptive K-means based on AIC

or noise-robust DBSCAN clusterings to group spatially consistent initial DOA estimates,

which are derived by a SS-based DOA estimator. Each DOA estimate is weighted using its

distance-to-centroid and cluster’s spread and finally the ones with the strongest weights

are selected to be used in source counting and source direction estimation. The proposed

metric is based on MS assumption over a relatively large TF region compared to conven-

tional metrics, which are based on SS assumption over a small-size TF region. A novel use

of density-based DBSCAN clustering in the context of source localization has also been
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used to propose an autonomous evolutionary method for source counting and final source

direction estimation. The evaluations using simulations and real recordings show that our

proposed metric significantly improves the performance of source counting, compared to

the baseline and the state-of-the-art metrics, and provides at least the same accuracy as

the state-of-the-art for source direction estimation.

5.6 MSEC-MUSIC

In DPD-MUSIC, the covariance matrix is calculated over a local TF region centred on

a bin which indicates the SS-assumption over a local TF region. Unlike DPD, MSEC

provides an estimate of the SS-bins assigned to each speaker across the entire TF domain.

The idea in this work is to remove the TF-domain regional limitation in DPD-MUSIC by

replacing DPD with MSEC as the pre-processing stage to improve the quality of covariance

matrix used in the MUSIC algorithm, particularly for the case of multiple simultaneously

active speech sources.

Having obtained the selected DOA estimates using MSEC, for the purpose of robust

clustering, the potential outlier DOAs are removed if the average cardinality over a spatial

window of 1 × 1 degree (azimuth × inclination) centred on DOA estimate is below a

threshold γ. Applying K-means with K = N on DOA estimates after outlier removal, we

obtain the clusters {Cn}Nn=1 and the centroids unit vectors {ĉn}Nn=1. The MSEC covariance

matrix for source n is formed using the SS-bins across all TF domain that are assigned to

source n

Rn
MSEC =

1

|Cn|
∑

(τ,k)∈Cn

alm(τ, k)alm
H(τ, k), (5.11)

where |Cn| indicates the number of members in cluster Cn. Using SVD on Rn
MSEC as in

(2.22), the MSEC-MUSIC spectrum for each source is given as

PnMSEC−MUSIC(Ω) =
1

‖ (Uv
n)H Ylm

∗(Ω)‖2
, (5.12)

in which the global peak indicates the estimated DOA for that source.
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5.7 MSEC-MUSIC Evaluations

An evaluation of methods was conducted using simulation with the same testbed materials

as in Section 2.11.2. MSEC was performed on initial DOA estimates obtained by the PIV

[16] DOA estimator. We empirically chose Kmax = 4, T = 4 frames, γ = 0.3 for the

average cardinality threshold in outlier removal. DPD test had Jτ = 6 and Jk = 4 as

the size of its averaging window in the TF domain in (2.21). We empirically chose the

threshold in (2.28) as ε = 6 which also matches the recommended value in the original

paper [14]. The MUSIC spectrum in (2.30) and (5.12) was calculated with 1◦ resolution

across azimuth and inclination (360 × 181). Incoherent DPD-MUSIC was excluded from

our evaluation since studies in [49] show that incoherent DPD-MUSIC fails in the case of

low angular separation of sources as the two peaks associated with two adjacent sources

can be merged into one peak over summation of MUSIC spectra which causes the second

highest peak to be detected far from the sources.

The original DPD test is based on absolute selection due to comparison of SVR

with a fixed threshold. This results in reduction of selected TF bins as the number of

sources increases for DPD unlike MSEC which is based on relative selection of top M%

best DOA estimates. For the purpose of fairness in the selection process in our evaluation,

we also include an alternative DPD-MUSIC based on relative selection which selects the

TF bins with the top M% SVR, ηDPD.

5.7.1 Effect of selection percentage

In this section, we evaluate the effect of selection percentage for MSEC and DPD-MUSIC

with relative selection in order to find the optimum M for both methods.

Figure 5.12 shows the mean estimation error as a function of selection percentage

M for N = {2, 3, 4, 5} and 4φ = 45◦. As we can see in Fig. 5.12, low (≤ 10%) and high

(> 50%) values of M respectively cause underestimation and overestimation of number of

bins which both result in high estimation error. As expected, the optimum M increases

with increasing N . We can also observe that the average performance of MSEC, compared
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to DPD, is more dependent on the M since the value of M directly affects the quality

of the covariance matrix in (5.11) which is the input to SVD of MUSIC unlike DPD in

which the covariance matrix calculation in (2.21) is independent of M . According to these

findings, the value M = 25% is selected for both MSEC and relative-DPD.

5.7.2 Overall Evaluation

In this section, we evaluate the best performing approaches of MSEC-MUSIC (M = 25%),

absolute (ε = 6) and relative (M = 25%) coherent DPD-MUSIC for N = {2, 3, 4, 5} and

widely varying 4φ.

As can be seen in Fig. 5.13, in all cases of N for all methods the performance of

DOA estimation improves as 4φ decreases below 30◦. Since the spatial resolution of Ylm

depends on the maximum SH order L, below a certain 4φ multiple sources active in a TF

bin are considered as a single source spatially between the true sources and therefore that

bin is selected as a SS-bin. In such cases, the lower the angular separation of sources is, the

lower the estimation error will be. For separation of4φ ≥ 30◦, both DPD-MUSIC methods

in our experiments lose accuracy and robustness to N and4φ unlike MSEC-MUSIC which

shows relatively strong robustness. As expected, relative DPD shows higher robustness

to N as it uses a dynamic selection process unlike absolute DPD with static selection. In
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Figure 5.12: Mean estimation error as a function of M for MSEC- and relative DPD-
MUSIC for varying N and 4φ = 45◦.
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Figure 5.13: Mean error of MSEC-MUSIC, relative and absolute DPD-MUSIC for
varying N and 4φ.

overall MSEC-MUSIC, due to global consideration of SS-bins, shows stronger robustness

to source separation and number of sources as it varies from 2.4◦ to 6.5◦ compared to

DPD-MUSIC which is based on local consideration of SS-bin and changes from 2.2◦ to 15◦

mean estimation error.

The results for (d) 5 sources with 45◦ separation are used for inferential statistical

analysis. There was a statistically significant difference between groups as determined

by one-way ANOVA (F (2, 297) = 16.99, p < 0.001). A Tukey post hoc test revealed

that the mean estimation error was statistically significantly lower for MSEC-MUSIC

(7.00◦ ± 0.91◦, p < 0.001) compared to relative DPD-MUSIC (11.94◦ ± 0.91◦).

5.8 MSEC-MUSIC Conclusions

A DOA estimation method has been proposed for multiple active sources. The method

exploits a variant of multi-source clustering of speaker-dominant time frequency bins to

make an improvement on the computation of the spatial covariance matrix used in the

MUSIC algorithm. The effectiveness of this approach has been tested for multiple simulta-

neously active speech sources in a simulated acoustic environment with 0.4 s reverberation

time, and using a spherical microphone array. The simulation shows that our technique

MSEC-MUSIC significantly outperforms the state-of-the-art DPD-MUSIC with less than

6.5◦ mean estimation error, 4◦ and 2.5◦ robustness to number of sources and source sep-

aration respectively for up to 5 sources with widely varying source separations in the

presence of realistic reverberation and sensor noise. As a conclusion, our work indicates

that estimation of a global covariance matrix per speaker, compared to clustering of local



5.9 MSEC conclusions 102

signal spaces derived from local covariance matrices, leads to a more accurate global signal

space per speaker.

5.9 MSEC conclusions

As an overall conclusion, this Chapter employs spatial consistency of the initial narrow-

band DOA estimates over time and frequency to weight the reliability of each DOA. This

metric can be used to select the reliable initial DOAs from which final DOAs are extracted.

In addition, an alternative approach is also proposed in which the reliable TF bins selected

using the proposed metric are clustered and grouped per source and a MUSIC algorithm

is applied for each source individually. MSEC metric outperforms the baseline and the

state-of-the-art metrics with accuracy of < 4◦ for DOA estimation and improvement from

20% to > 70% on source detection compared to the state-of-the-art metric. The MSEC-

MUSIC also outperforms the state-of-the-art DPD-MUSIC with < 6.5◦ accuracy, 4◦ and

2.5◦ robustness to number of sources and source separation.
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Chapter 6

Dual-Intensity Vectors (DIVs)

T
HE degradation factors for the performance of DOA estimators are typically re-

verberation, sensor/environmental noises and sources’ activity, loudness and move-

ment. In this chapter we are mainly interested in challenging scenarios in which the sources

are stationary and simultaneously active with different average loudness where one source

is mostly and significantly masked by others. This is an often-occurring scenario where

the number of sources exceeds two and one or more sources are at further distance than

others.

The narrowband DOA estimation methods either provide analytical closed-form

solution or are based on steering vectors (open-form). In analytical-based methods, the

DOA is directly calculated from the signals whereas the steering-based methods combine

the signals with the steering vector of the array for all the possible directions to find the

direction with the most reliable outcome. PIV can be named as a well-known analytical-

based method. Although analytical approaches such as PIV are computationally fast

due to avoiding many possible directions and estimating the DOA directly instead, they

suffer from a limitation, due to using low-order eigenbeams, which results in low spatial

resolution.

On the other hand, steering-based methods such as SRP and MUSIC benefit from

their formulation’s extendibility to high order spatial information and so high spatial

accuracy but they can be computationally expensive if they are applied as a narrowband
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estimator per TF bin.

SS-based narrowband DOA estimators only result in accurate DOA if the WDO

assumption is valid at the bin. For narrowband MS scenarios where multiple sources

are simultaneously active in a bin, SS-based DOA estimator fails due to violation of this

assumption. In the most optimistic cases where subspace decomposition is used, the SS-

based methods estimate the DOA of the most dominant source and still fail in detecting

a quiet source if the source rarely has the chance of domination in a bin as shown later in

this chapter.

A solution to this problem is the use of MS narrowband DOA estimation. A

well-known example of it, is MSMUSIC [25, 23] where the noise subspace is defined by

the eigenvectors excluding the first N such vectors which represent the signal subspace,

assuming the presence of N simultaneously active sources in the bin. The DOAs per bin

are obtained as the top N peaks in the MUSIC spectrum. This approach suffers from

high computational cost of steering and multi-peak detection per TF bin. The single peak

detection in the SS-based approaches is relatively fast as it aims for the global maximum

in a wrapped space whereas multi-peak detection requires multiple 2D-neighbouring check

for peak detection, which is significantly more computationally expensive than the single

peak detection.

The motivation behind this chapter is to study and propose a relatively low-

computational and analytical narrowband MS DOA estimation algorithm which uses low-

order spatial information to directly estimate single, two or more DOAs per TF bin.

Two alternative methods for an analytical narrowband MS DOA estimation, named as

Multi-Source Pseudointensity Vectors (MSPIVs) and Dual-Intensity Vectors (DIVs), are

proposed.

The first method, MSPIV, is based on de-mixing a mixture of N sources into a

multiple SS scenario on each of which PIV is performed. The second method DIV is based

on a two-source assumption and analytically derives up to two DOAs from the mixture

signals. A subspace version of the second method is also proposed in order to improve its

robustness to noise and scenarios with more than two sources.
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6.1 Multi-Source PIVs

The idea for the first proposed method is to extend the concept of SSPIV to multi-source

in a TF bin rather than the dominant source only. Assuming N active sources in a bin,

MSPIV for each source n ∈ {1...N} is

I
(n)
mspiv(τ, k) =

1

2
<

a00(τ, k)∗


D−x(τ, k,Un)

D−y(τ, k,Un)

D−z(τ, k,Un)


 , (6.1)

where Un is the nth column of the matrix U obtained in (2.22). Note that I
(1)
mspiv is

equivalent to Isspiv in (2.25). The MSPIV DOAs are obtained using (2.19) for each

I
(n)
mspiv.

6.2 DIVs

So far all variations of PIV either take the input assuming as a single source scenario

(PIV) or decompose the input into multiple single source scenarios (SSPIV and MSPIV).

In DIV the input is assumed to be the mixture of two sources and then both DOAs are

analytically derived as shown in Appendix C.

6.3 Narrowband illustrative validation

Consider two simultaneously active sources in a TF bin with DOAs (ϕ1, θ1) = (30, 30)◦

and (ϕ2, θ2) = (120, 70)◦ and no reverberation. Let the Sources Ratio (SR) denote the

ratio of their amplitudes (10 log10( |S1|
|S2|)) in decibels. The phases of S1 and S2 are random.

Figure 6.1 illustrates the SRP spectra and the DOAs estimated by PIV, SRP and

the proposed method for such a scenario with varying SR={10, 5, 0} dB and additive white

Gaussian sensor noise giving SNR={30, 20, 10} dB. Table 6.1 presents the associated mean

errors for PIV and DIV. It can be seen that the decrease of SR (through the columns per

each row), due to the increase in the violation of WDO assumption, results in more error
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Figure 6.1: The SRP spectra for two sources with varying sources ratio of
SR={10, 5, 0}dB (columns) and SNR={30, 20, 10}dB (rows). The true DOAs are
marked as red cross (×) and the estimates by PIV, SRP and the proposed method
are marked as black plus (+), circle (◦) and triangle (4) respectively.

PIV , DIV SR = 10 dB SR = 5 dB SR = 0 dB

SNR = 30 dB 8.2◦ , 1.4◦ 18.5◦ , 1.0◦ 35.9◦ , 1.0◦

SNR = 20 dB 9.4◦ , 4.0◦ 19.7◦ , 3.2◦ 35.1◦ , 3.1◦

SNR = 10 dB 13.6◦ , 10.3◦ 23.7◦ , 8.8◦ 32.1◦ , 8.7◦

Table 6.1: Mean error of narrowband PIV and DIV, in black and red respectively, for
varying SNR and SR as shown in Figure 6.1.

for PIV and SRP estimates whereas the proposed method shows strong robustness to SR

due to the dual source assumption.

Across all cases, the proposed method also maintains the relatively high accuracy of

1◦ to 10◦ mean error (with respect to the closest true DOA) compared to PIV whose mean

error dramatically varies between 8◦ to 36◦. However, as the SNR reduces from 30 dB to

10 dB, through the rows per each column, PIV estimates have approximately 5◦ change

of mean error while the proposed method shows an approximate 9◦ increase in the mean

error. The proposed method shows less robustness to noise as it estimates twice number

of parameters from noisy observations compared to PIV and therefore its estimates are

more affected by the change of SNR.
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6.4 Subspace DIVs

In order to improve DIV’s robustness to noise, the mixture of signal subspaces U1 and

U2, obtained using EVD in (2.22), are formed as

U1,2 = U1 + U2, (6.2)

which represents the de-noised eigenbeams mixture of the two most dominant sources.

Instead of {alm}1l=0, the first four elements of the vector U1,2 are treated as the inputs to

DIV formulation to give SSDIV.

6.5 Wideband illustrative validation

Consider three simultaneously active male talkers for a duration of 2 s with DOAs

(ϕ1, θ1) = (190, 70)◦, (ϕ2, θ2) = (290, 110)◦ and (ϕ3, θ3) = (30, 150)◦ all 1 m away from

the array in an anechoic environment. Random white Gaussian noise with SNR= 10 dB

is added to the sensors. The sources 1 and 3 have an equal average loudness level while

source 2 has SIR=−26 dB (10% of the loudness of sources 1 and 3).

Figure 6.2 illustrates |a00| for each source in isolation before the mixing (a,b and

c) and for the mixture of sources (d) in the STFT domain. Figure 6.2(e) displays the ID

of the dominant source in the STFT domain where dominance is defined as the maximum

contribution of |a00| in the mixture. It can be seen that source 2 is rarely dominant

compared to the other sources due to its low-level loudness and overlap with others.

Hence very few bins, compared to other sources, with accurate DOA estimates belonging

to source 2 are expected from PIV and SSPIV.

Figure 6.3 illustrates the smoothed 2D histograms of DOAs estimated by PIV,

SSPIV, MSPIV, SSDIV and MSMUSIC. Both MSPIV and MSMUSIC were applied using

N = 3. Note that PIV and SSPIV estimate a single DOA per TF bin whereas MSPIV

estimates three DOAs per bin. SSDIV and MSMUSIC respectively estimate up to two

and three DOAs per bin. As expected, PIV and SSPIV almost fail to localize source 2
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Figure 6.2: Magnitude of the omnidirectional (zeroth order) eigenbeam for (a) S1, (b)
S2, (c) S3 and (d) the mixture of three sources. Part (e) shows the ID of the dominant
source where dominance is defined as the maximum magnitude contribution in the
mixture.

since there are relatively very few bins where source 2 is dominant as shown in Fig. 6.2(e).

On the other hand, both proposed methods estimate enough DOAs belonging to source

2, which form a significant peak around it in the histogram. This is due to successful

estimation of DOAs belonging to source 2 even in TF bins where it is not dominant.

MSMUSIC shows slightly better localization of source 2 compared to PIV and SSPIV as

it is based on a multi-source assumption but is outperformed by our two proposed methods.

It can also be seen that MSMUSIC results in extra peaks at the opposite directions of

true DOAs. Considering MUSIC as equivalent to beamforming since it provides spatial

selectivity, this phenomenon is the result of estimating a peak at the main lobe and a

second peak at the rear lobe of the beam pattern in the MUSIC spectrum in the TF bins

where only a single source is present or significantly dominant.
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Figure 6.3: Corner view (top row) and the side view (bottom row) of the normalized
smoothed 2D histograms of DOAs estimated by (a) PIV, (b) SSPIV, (c) MSPIV, (d)
SSDIV and (e) MSMUSIC. The true DOAs are marked by red cross (×)

6.6 Evaluations

The performance of the proposed (MSPIV and SSDIV) and comparative (PIV, SSPIV and

MSMUSIC) methods is evaluated using the dataset introduced in Section 2.11.5. Some

segments (with overall duration of 1 second) of source 2 were cut off in time to make

inconsistency of activity as illustrated in Figure 6.4(b). Note that the sources were mixed

with a mixing coefficient of 1 for sources 1, 3 and 4 and 0.2 (SIR=−24 dB) for source 2 so

that source 2 is strongly masked by others. A sampling frequency of 8 kHz was used with

50% overlapping time-frames of 8 ms duration. The sample covariance matrix in (2.21)

had Jτ = 6 and Jk = 4 as the size (number of bins) of the averaging windows over time

and frequency respectively. This gives 32 ms and 500 Hz window-size in the TF domain

based on our time and frequency resolution. MSMUISC and MSPIV assume N = Ns = 4

active sources per bin. Hence MSMUSIC and MSPIV estimate four DOAs whereas PIV

and SSPIV estimate one DOA and SSDIV estimates up to two DOAs per bin. Only the

eigenbeams for up to SH order L = 1 (first four eigenbeams) are used for each method in

order to exclude the impact of high-order (l > 1) harmonics in the performance since PIV

and SSPIV only use up to the first SH order.

Figure 6.4 illustrates the STFT representation of each source in isolation, (a) to
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Figure 6.4: Magnitude of the omnidirectional (zeroth order) eigenbeam for (a) S1, (b)
S2, (c) S3, (d) S4 and (e) the mixture of four sources. Part (f) shows the ID of the
dominant source where dominance is defined as the maximum magnitude contribution
in the mixture.

(d), the mixture (e) as well as the ID of the dominant source in each TF bin (f). It can

be seen from Fig 6.4(f) that source 2 is rarely dominant which makes this situation a

challenging scenario for SS-based DOA estimators.

In each trial, the top Ns = 4 peaks in the smoothed histogram were selected as the

estimated DOAs. In order to avoid any ambiguity due to data association uncertainty in

our results, best case data association was used to obtain the mean estimation error using

(2.31).

Figure 6.5 presents the mean error of each method for SNR={10, 20, 30, Inf} dB.

MSMUSIC fails with high error due to the presence of erroneous peaks of the rear lobe,

as explained before. This is caused as a fixed number of peaks are selected per bin for

each method. Other techniques do not suffer from the rear lobe problem since they are
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Figure 6.5: The mean error of PIV, SSPIV, MSMUSIC, MSPIV and SSDIV for
varying SNR.

not steering-based. Note that DIV (and SSDIV) estimate two identical DOAs in case

of a SS scenario, which makes it a robust algorithm for a SS scenario although it is a

MS DOA estimator. The proposed MSPIV and SSDIV both significantly outperform the

baseline techniques PIV and SSPIV with almost double accuracy due to the utilization

of the narrowband MS assumption. MSPIV shows 1◦ to 4◦ better accuracy than SSDIV

since it assumes more accurate number of sources per bin. Note that although some

MSPIV estimates can be erroneous in TF bins with < 4 active sources, the irregular

directions of the errors avoid the formation of a prominent peak in the histogram. The

same phenomenon happens for SSDIV in TF bins with < 2 active sources.

The results for SNR=20 dB are used for inferential statistical analysis. There was

a statistically significant difference between groups as determined by one-way ANOVA

(F (4, 383) = 36.19, p < 0.001). A Tukey post hoc test revealed that the mean estimation

error was statistically significantly lower for MSPIV (5.73◦± 1.45◦, p < 0.001) and SSDIV

(6.63◦ ± 1.46◦, p < 0.001) compared to PIV method (15.09◦ ± 1.46◦).

6.7 Computational Complexity

This section evaluates the computational complexity of each technique. Table 6.2 presents

the approximate number of real multiplications and MATLABTM average running time

(evaluated for comparison purposes all on the same computer, MacBook Pro with 2.6 GHz
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PIV SSPIV MSMUSIC MSPIV SSDIV

Approx. # real × 50 50 106 50N 100

Average running time (s) 0.203 1.024 329.738 1.682 1.241

Table 6.2: Computationality of each method

Intel Core i5 processor and 8 GB 1600 MHz DDR3 memory) for each method. Note that

the number of real multiplications were calculated per bin for narrowband DOA estimator

only excluding the covariance matrix calculation, EVD operation and peak picking.

The PIV and MSMUSIC have the lowest and the highest computational complexity

respectively as expected. SSDIV has approximately double the number of real multipli-

cations than PIV and SSPIV while MSPIV has N times more multiplications than PIV

as it performs PIV N times where N is the assumed number of active sources per bin.

MSMUSIC has extremely high computational cost due to steering to all directions per bin

(180 × 360 directions) excluding even the high computational cost of multi-peak picking

per bin.

6.8 Conclusions

Two narrowband analytical DOA estimators based on the MS assumption have been pro-

posed. Using EVD, MSPIV decomposes a MS scenario into multiple SS scenarios and

SSDIV decomposes the MS scenario into a mixture of the two most dominant sources.

The first approach performs SS-based PIV on each SS scenario whereas the second one

directly estimates two DOAs from a two-source scenario. An evaluation was performed for

a challenging scenario of one source being strongly masked by three other simultaneously

active sources in an anechoic environment with noisy sensors. The results show an im-

provement of almost double the accuracy on average at the cost of double computational

complexity compared to the conventional SS-based DOA estimators. They also signif-

icantly outperform the steering-based and MS-based DOA estimator, MSMUSIC with

much less computational complexity.
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Chapter 7

Thesis Conclusions

I
N this chapter a summary and conclusions of the thesis are presented. Section 7.1

highlights its main achievements and Section 7.3 outlines some suggestions for future

research.

7.1 Summary of thesis achievements

The aim of this thesis was to propose a number of techniques addressing three challenges:

(1) Computationally efficient DOA estimation with maintained accuracy as high-order

steering-based methods. (2) Successful source detection and DOA estimation for violated

WDO assumption where sources are masked due to either increasing number of sources

(covered in Chapter 5) or short/quiet activity (covered in Chapter 6). (3) Autonomous

source counting method that is also reliable for extreme conditions of DOAs spatial dis-

tribution. Each proposed technique belongs to a block in the chain of wideband MS DOA

estimation system shown in Figure 1.2. The main achievements are as follows:

AIV: A narrowband DOA estimation technique has been proposed which improves

the accuracy and robustness to noise, reverberation and multi-source of PIV by utilization

of high order harmonics and an efficient optimization of a cost function. The evaluations

using simulation and real recordings prove that the proposed method outperforms the

baseline and performs multi-thousand times faster than the state-of-the-art with less than
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1.5◦ accuracy loss. This technique can be utilized in the narrowband DOA estimation

block in Figure 1.2. (Chapter 3)

Evolutive DBSCAN: A source counting method has been proposed which em-

ploys density-based noise-robust DBSCAN clustering in an evolutionary framework. The

results using generated and estimated DOAs show that the proposed technique outper-

forms the conventional histogram peak picking as well as the original DBSCAN and adap-

tive Kmeans based on AIC and BIC with ≤ 4◦ accuracy and more than 30% improvement

in source counting. This technique can be employed in the last block in Figure 1.2. (Chap-

ter 4)

MSEC: A SS-validity confidence metric for detection and selection of SS bins

is proposed which uses the estimation consistency of initial DOA estimates based on

adaptive MS assumption per time frame. The evaluations using simulations and real

recordings validate the high accuracy of < 4◦ for DOA estimation and improvement from

20% to > 70% on source detection for our proposed metric compared to the state-of-the-art

metric. Using the proposed metric, a variation of MUSIC DOA estimator is proposed. It is

shown that the proposed MSEC-MUSIC improves the quality of the covariance matrix for

the subspace decomposition and consequently the DOA accuracy in a MS scenario. The

MSEC confidence metric can be used in the post-processing block in Figure 1.2. (Chapter

5)

SSDIV and MSPIV: Two narrowband DOA estimators are proposed based on

multi-source and two-source assumption. The first one decomposes a MS scenario into

multiple SS scenarios and performs a fast analytical SS DOA estimator. The second one

directly and efficiently estimates up to two DOAs per bin using low-order harmonics.

The evaluation and illustrative validation show a double accuracy improvement compared

to the baseline SS and MS DOA estimators. These techniques can be utilized in the

narrowband DOA estimation block in Figure 1.2. (Chapter 6)

As a conclusion, this thesis addresses the problem of wideband MS DOA estimation

using SMAs and proposes multiple solutions, each for an operating block in the system

of solution shown in Figure 1.2. Three narrowband DOA estimators (AIV, MSPIV and
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SSDIV) are proposed for the narrowband DOA estimation operating block based on single-

, two- or multi-source assumption. A metric (MSEC) for selection of the reliable initial

narrowband DOA estimates is proposed for the DOA selection operating block. And

finally an autonomous source counting and source DOA extraction (Evolutive DBSCAN)

is proposed for the final operating block in the chain. For each block, the evaluation

results show that the proposed methods outperform the baseline and the state-of-the-art

techniques in accuracy and/or computationality.

7.2 Impact and applications

Chapter 3 provides a computationally efficient narrowband DOA estimator with high

accuracy and robustness close to computationally expensive state-of-the-art. The outcome

method can be applied in scenarios where both accuracy and computation are important

such as real-time robot audition or teleconferencing. Although with the advances in CPU

and GPU processing times computationally expensive methods will eventually find their

ways into real-time applications, there will be a need and preference for computationally

low cost methods in some areas such as hearing aids, due to limitation on the device size

and processing capabilities.

Chapter 4 presents an autonomous source counting method with reliable perfor-

mance even on radical conditions. This method can have a significant impact on applica-

tions where no priori knowledge of the scene or sources are available such as robots in a

battlefield or unknown environments.

Chapters 5 and 6 provide solutions for scenarios where WDO assumption is vio-

lated. For example, in teleconferencing or meeting diarization, there are often talkers with

various loudness and/or multiple talkers who are simultaneously speaking which causes

temporal and spectral masking or loss in size of TF regions with valid SS assumption.

In such scenarios, MSEC and DIV can make noticeable improvement on the accuracy of

localization and source detection.



7.3 Future research directions 116

7.3 Future research directions

The potential further improvements or contribution of each proposed technique are pre-

sented as follow:

AIV: A subspace variation of AIV can be studied in which the input is the first

set of eigenvectors obtained from the EVD of the covariance matrix. It can improve

the robustness to noise and reverberations. In addition, AIV can be extended to the

narrowband MS assumption by applying it separately on each set of eigenvectors, similar

to MSPIV.

Evolutive DBSCAN: The proposed source counting technique can be used and

evaluated in the context of source tracking. Temporal counting of the number of active

sources is a challenging task for which evolutive DBSCAN can be employed. A computa-

tionally efficient alternative of evolutive DBSCAN can also be designed using a recursive

approach. Rather than performing the entire DBSCAN at each iteration, the additional

core points in the new iteration can be detected.

DIV: The proposed DIV has been validated in an anechoic scenario. A

reverberation-robust approach for DIV can be studied in the future. In addition, DIV

can be employed and evaluated in the context of source separation as it also extracts the

sources’ signals in addition to sources DOAs from the mixture of two sources. The effect

of various combinations of two eigenvectors for the signals’ subspace can also be studied.
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Appendix A

Theoretical error of AIV

For the formulation in this Section, (τ, k) are omitted for notational simplicity. In a noise-

free scenario as in (2.10), consider ãlm = SY ∗lm(Ωu) as the clean eigenbeams of the direct

path. For an arbitrary look direction Ω, the clean eigenbeam error function is

Ẽlm (Ω) = ãlm − SY ∗lm(Ω)

= SY ∗lm(Ωu)− SY ∗lm(Ωu)g∗lm (Ωu,4Ω)

= SY ∗lm(Ωu) (1− g∗lm (Ωu,4Ω)) , (A.1)

and by using (2.2)

glm (Ωu,4Ω) =
Plm (cos (θu +4θ))

Plm (cos (θu))
eim4ϕ, (A.2)

where ∆Ω = ∠(Ω,Ωu) and ∠(.) denotes the angle between two directions in degree.

Now assume the noisy scenario where the noisy cost function in (3.4) is decomposed

into clean Ẽlm and the noise eigenbeam nlm resulting in

Ψ (Ω) =
∑
lm

| Ẽlm (Ω)− nlm |2= Ψ̃ (Ω) + Cn

+ 2
∑
lm

| Ẽlm (Ω) || nlm | cos (Γlm (Ω)) , (A.3)

where Ψ̃ (Ω) =
∑
lm

| Ẽlm (Ω) |2 is the noise-free cost function, Cn =
∑
lm

| nlm |2 is a
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noise-based constant,
∑
lm

=
∑
l

∑l
m=−l and

Γlm (Ω) = ∠Ẽlm (Ω)− ∠nlm

= ∠S + ∠Y ∗lm(Ωu) + ∠ (1− g∗lm (Ωu,4Ω))− ∠nlm, (A.4)

where ∠(.) denotes the phase of complex number.

The derivative of the noisy cost function in (A.3) is

Ψ
′
(Ω) = Ψ̃

′
(Ω) + 2

∑
lm

| nlm | (| Ẽlm (Ω) | cos (Γlm (Ω)))
′
, (A.5)

where (.)
′

= d
dΩ (.) is the derivative operator.

For 4θ ≈ 0 in (A.2) g∗lm (Ωu,4Ω) = e−im4ϕ, which results in

(1− g∗lm (Ωu,4Ω)) = 2 sin

(
m4ϕ

2

)
ei(

π
2
−m4ϕ

2
). (A.6)

Substituting (A.6) into (A.1)

Ψ̃
′
(Ω) =

∑
lm

2m | SY ∗lm(Ω) |2 sin (m4ϕ) , (A.7)

and

(| Ẽlm (Ω) | cos (Γlm (Ω)))
′

=

m | SY ∗lm(Ω) | cos

(
Γlm (Ω)− m4ϕ

2

)
. (A.8)

At the optimal look direction Ωs, we have Ψ
′
(Ωs) = 0, which by substituting (A.7) and

(A.8) into (A.5) gives

∑
lm

| SY ∗lm(Ωu) |2 m sin (m4ϕs) =

∑
lm

| nlm || SY ∗lm(Ωu) | m sin (Λlm(S,Ωu, nlm)−m4ϕs) , (A.9)
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where Λlm(S,Ωu, nlm) = ∠S + ∠Y ∗lm(Ωu) − ∠nlm is the combined phase from the direct

path and the noise eigenbeams.

Simplifying (A.9) gives

L∑
j=0

√
A2
j +B2

j sin

(
j4ϕs − arctan

(
Bj
Aj

))
= 0, (A.10)

where

Aj =
1

µ

L∑
l=0

∑
|m|=j

| m || ãlm |2 (µ+ cos (Λlm)) , (A.11)

and

Bj =
1

µ

L∑
l=0

∑
|m|=j

m | ãlm |2 sin (Λlm) , (A.12)

where µ2 =
|SY ∗lm(Ωu)|2
|nlm|2

= |ãlm|2
|nlm|2

is the SNR for spatially white noise (equal noise level

across all microphones) and is fixed for all (l,m). Note that (S,Ωu, nlm) are omitted from

Λlm for notational simplicity.
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Appendix B

Table of Gradients for AIV
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l(m) Y ∗lm(θ, ϕ) ∇{| Y ∗lm(Ω) |2}

0(0)
√

1
4π 0

1(-1)
√

3
8π sin(θ)eiϕ ( 3

8π ) sin(2θ)θ̂

1(0)
√

3
4π cos(θ) (−3

4π ) sin(2θ)θ̂

1(1) −
√

3
8π sin(θ)e−iϕ ( 3

8π ) sin(2θ)θ̂

2(-2)
√

15
32π sin2(θ)e2iϕ ( 15

32π )4 sin3(θ) cos (θ) θ̂

2(-1)
√

15
8π

1
2 sin(2θ)eiϕ ( 15

8π ) sin(2θ) cos (2θ) θ̂

2(0)
√

5
16π (3 cos2 (θ)− 1) (−15

8π ) sin(2θ)
(
3 cos2 (θ)− 1

)
θ̂

2(1) −
√

15
8π

1
2 sin(2θ)e−iϕ ( 15

8π ) sin(2θ) cos (2θ) θ̂

2(2)
√

15
32π sin2(θ)e−2iϕ ( 15

32π )4 sin3(θ) cos (θ) θ̂

3(-3)
√

35
64π sin3(θ)e3iϕ ( 35

64π )3 sin(2θ) sin4(θ)θ̂

3(-2)

√
105

32π
sin2(θ)

× cos (θ) e2iϕ

(
105

32π
) sin(2θ) sin2(θ)

×(2− 3 sin2(θ))θ̂

3(-1)

√
21

64π
sin (θ)

×(5 cos2 (θ)− 1)eiϕ

(
21

64π
)(4− 5 sin2(θ))

×(4− 15 sin2(θ)) sin(2θ)θ̂

3(0)

√
7

16π
(5 cos3 (θ)

−3 cos (θ))

(
7

16π
)3(2− 5 sin2(θ))

×(−4 + 5 sin2(θ)) sin(2θ)θ̂

3(1)
−
√

21

64π
sin (θ)

×(5 cos2 (θ)− 1)e−iϕ

(
21

64π
)(4− 5 sin2(θ))

×(4− 15 sin2(θ)) sin(2θ)θ̂

3(2)

√
105

32π
sin2(θ)

× cos (θ) e−2iϕ

(
105

32π
) sin(2θ) sin2(θ)

×(2− 3 sin2(θ))θ̂

3(3) −
√

35
64π sin3(θ)e−3iϕ ( 35

64π )3 sin(2θ) sin4(θ)θ̂

Table B.1: Gradient of the first part of the cost function for up to the third order.
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l(m) ∇{| Y ∗lm(Ω) | cos (λlm − ∠Y ∗lm(Ω))}
0(0) 0

1(-1)
√

3
8π

{
cos(θ) cos

(
λ1(−1) − ϕ

)
θ̂ + sin(θ) sin

(
λ1(−1) − ϕ

)
ϕ̂
}

1(0) −1
2

√
3
π sin(θ) cos (λ10) θ̂

1(1) −
√

3
8π

{
cos(θ) cos

(
λ1(1) + ϕ

)
θ̂ − sin(θ) sin

(
λ1(1) + ϕ

)
ϕ̂
}

2(-2)
√

15
32π

{
sin(2θ) cos

(
λ2(−2) − 2ϕ

)
θ̂ + 2 sin2(θ) sin

(
λ2(−2) − 2ϕ

)
ϕ̂
}

2(-1)
√

15
8π

{
cos(2θ) cos

(
λ2(−1) − ϕ

)
θ̂ + 1

2 sin(2θ) sin
(
λ2(−1) − ϕ

)
ϕ̂
}

2(0) −
√

5
16π3 sin(2θ) cos (λ20) θ̂

2(1) −
√

15
8π

{
cos(2θ) cos

(
λ2(1) + ϕ

)
θ̂ − 1

2 sin(2θ) sin
(
λ2(1) + ϕ

)
ϕ̂
}

2(2)
√

15
32π

{
sin(2θ) cos

(
λ2(2) + 2ϕ

)
θ̂ − 2 sin2(θ) sin

(
λ2(2) + 2ϕ

)
ϕ̂
}

3(-3)

√
35

64π
{3 sin2(θ) cos(θ) cos

(
λ3(−3) − 3ϕ

)
θ̂

+3 sin3(θ) sin
(
λ3(−3) − 3ϕ

)
ϕ̂}

3(-2)

√
105

32π
{sin(θ)(2− 3 sin2(θ)) cos

(
λ3(−2) − 2ϕ

)
θ̂

+2 sin2(θ) cos (θ) sin
(
λ3(−2) − 2ϕ

)
ϕ̂}

3(-1)

√
21

64π
{cos(θ)(4− 15 sin2(θ)) cos

(
λ3(−1) − ϕ

)
θ̂

+ sin (θ) (5 cos2 (θ)− 1) sin
(
λ3(−1) − ϕ

)
ϕ̂}

3(0)

√
7

16π
3 sin(θ)(−4 + 5 sin2(θ)) cos

(
λ3(0)

)
θ̂

3(1)
−
√

21

64π
{cos(θ)(4− 15 sin2(θ)) cos

(
λ3(1) + ϕ

)
θ̂

− sin (θ) (5 cos2 (θ)− 1) sin
(
λ3(1) + ϕ

)
ϕ̂}

3(2)

√
105

32π
{sin(θ)(2− 3 sin2(θ)) cos

(
λ3(2) + 2ϕ

)
θ̂

−2 sin2(θ) cos (θ) sin
(
λ3(2) + 2ϕ

)
ϕ̂}

3(3)
−
√

35

64π
{3 sin2(θ) cos(θ) cos

(
λ3(3) + 3ϕ

)
θ̂

−3 sin3(θ) sin
(
λ3(3) + 3ϕ

)
ϕ̂}

Table B.2: Gradient of the second part of the cost function for up to the third order.
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DIV Derivation

For the formulation in this section, (τ, k) are omitted for notational simplicity. In a TF bin,

consider two simultaneously active sources with plane-wave signals S1 and S2, assuming

S1 6= −S2 (no opposite phase with equal amplitude), and their DOAs (θ1, ϕ1) and (θ2, ϕ2)

respectively. Writing (2.10) in a noise-free situation for up to L = 1 gives

ā0(0) =S1 + S2, (C.1)

ā1(−1) =S1 sin (θ1) eiϕ1 + S2 sin (θ2) eiϕ2 , (C.2)

ā1(0) =S1 cos (θ1) + S2 cos (θ2) , (C.3)

ā1(+1) =S1 sin (θ1) e−iϕ1 + S2 sin (θ2) e−iϕ2 , (C.4)

where

ālm =
alm√

(2l+1)
4π

(l−m)!
(l+m)!

(C.5)

are the eigenbeams compensated by the square root component in (2.2) for notational

simplicity.

Using (C.1) and (C.3)

S2 =ā0(0) − S1, (C.6)

S1 =
ā1(0) − ā0(0) cos (θ2)

cos (θ1)− cos (θ2)
. (C.7)
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Summing and subtracting (C.2) with (C.4) respectively gives

B+ =S1 sin (θ1) cos (ϕ1) + S2 sin (θ2) cos (ϕ2) , (C.8)

B− =S1 sin (θ1) sin (ϕ1) + S2 sin (θ2) sin (ϕ2) , (C.9)

where B+ = (ā1(−1) + ā1(+1))/2 and B− = (ā1(−1) − ā1(+1))/2i.

Using (C.6) and (C.7), substituting S1 and S2 both as a function of θ1 and θ2 into

(C.8) and (C.9) results in two complex equations with four real unknowns (θ and ϕ for

sources 1 and 2). Splitting the real and imaginary parts of the two complex equations

(C.8) and (C.9) gives four real equations which can be simplified into

 Eθ Fθ

Hθ Jθ


 cos (ϕ1)

cos (ϕ2)

 =

 Dθ

Gθ

 , (C.10)

 Eθ Fθ

Hθ Jθ


 sin (ϕ1)

sin (ϕ2)

 =

 Kθ

Lθ

 , (C.11)

where 

Eθ = sin (θ1)
(
<
{
ā1(0)

}
−<

{
ā0(0)

}
cos (θ2)

)
,

Fθ = sin (θ2)
(
<
{
ā0(0)

}
cos (θ1)−<

{
ā1(0)

})
,

Hθ = sin (θ1)
(
=
{
ā1(0)

}
−=

{
ā0(0)

}
cos (θ2)

)
,

Jθ = sin (θ2)
(
=
{
ā0(0)

}
cos (θ1)−=

{
ā1(0)

})
,

Dθ = <{B+} (cos (θ1)− cos (θ2)) ,

Gθ = ={B+} (cos (θ1)− cos (θ2)) ,

Kθ = <{B−} (cos (θ1)− cos (θ2)) ,

Lθ = ={B−} (cos (θ1)− cos (θ2)) .

(C.12)
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Using linear matrix algebra
cos (ϕ1) = JD−FG

EJ−FH

sin (ϕ1) = JK−FL
EJ−FH

, (C.13)


cos (ϕ2) = EG−HD

EJ−FH

sin (ϕ2) = EL−HK
EJ−FH

. (C.14)

Note that index (.)θ is omitted from now on for notational simplicity. Using the

Pythagorean identity (sin2(ϕ) + cos2(ϕ) = 1) for (C.13) and (C.14) gives a system of

two equations 
(JD − FG)2 + (JK − FL)2 = (EJ − FH)2 ,

(EG−HD)2 + (EL−HK)2 = (EJ − FH)2 ,

(C.15)

where unknowns are θ1 and θ2.

Substituting E,F,H, J,D,G,K,L from (C.12) into (C.15) and then solving them

for θ1 results in a quadratic equation

C2 cos2 (θ1)− C1 cos (θ1) + C0 = 0, (C.16)

where 
C2 = ϑRA

2
I + ϑIA

2
R − 2χAIAR + (aRAI − aIAR)2,

C1 = 2 (ϑRAIaI + ϑIARaR − χ (aRAI + aIAR)) ,

C0 = ϑRa
2
I + ϑIa

2
R − 2χaIaR − (aRAI − aIAR)2,

(C.17)

and 
ϑR = (<{B+})2

+ (<{B−})2
,

ϑI = (={B+})2
+ (={B−})2

,

χ = <{B+}={B+}+ <{B−}={B−} ,

(C.18)

where aR = <
(
ā1(0)

)
, aI = =

(
ā1(0)

)
, AR = <

(
ā0(0)

)
and AI = =

(
ā0(0)

)
.
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The two solutions for (C.16) give the inclination of sources
θ1 = arccos(C1+

√
4

2C2
),

θ2 = arccos(C1−
√
4

2C2
),

(C.19)

where

4 = C2
1 − 4C2C0. (C.20)

Note that since inclination is within [0, π] there is no sign ambiguity for θ1 and θ2.

Having calculated inclinations θ1 and θ2, then E,F,H, J,D,G,K,L are calculated

using (C.12). The tangent of azimuths are calculated using (C.13) and (C.14)
tan (ϕ1) = JK−FL

JD−FG ,

tan (ϕ2) = EL−HK
EG−HD .

(C.21)

Since the azimuths are within [0, 2π], the sign of cosine of azimuths from (C.13)

and (C.14) are used to solve the sign ambiguity of ϕ1 and ϕ2 giving
ϕ1 = arctan

(
JK−FL
JD−FG

)
+
(

1− sgn( JD−FGEJ−FH )
)
π
2 ,

ϕ2 = arctan
(
EL−HK
EG−HD

)
+
(

1− sgn(EG−HDEJ−FH )
)
π
2 ,

(C.22)

where sgn(.) denotes the sign operator.

Note that such analytical solution may have no or only one valid answer if 4 ≤ 0

in (C.20) or | cos(θ1)| > 1 in (C.16).

Special case of equal inclinations

In case of equal inclinations for both sources, θ1 = θ2, (C.7) is undefined and therefore a

different solution is required.
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Let θ1 = θ2 = θ, then (C.3) can be rewritten as

ā1(0) = cos (θ) (S1 + S2). (C.23)

Using (C.1) and (C.23)

θ = θ1 = θ2 = arccos

(
<(
ā1(0)

ā0(0)
)

)
. (C.24)

Having obtained θ, (C.8) and (C.9) can be rewritten as

B̄+ =S1 cos (ϕ1) + S2 cos (ϕ2) , (C.25)

B̄− =S1 sin (ϕ1) + S2 sin (ϕ2) , (C.26)

where B̄± = B±/ sin(θ).

From (C.25), (C.26) and (C.1)

S1 =
ā0(0) cos (ϕ2)− B̄+

cos (ϕ2)− cos (ϕ1)
, (C.27)

S2 =
B̄+ − ā0(0) cos (ϕ1)

cos (ϕ2)− cos (ϕ1)
. (C.28)

Substituting S1 and S2, from (C.27) and (C.28), into (C.26) and then simplifying

it results in

m̄Xx + n̄Yx + q̄ = Zx, (C.29)

where the known coefficients are

m̄ =
−(ā1(−1)+ā1(+1))

√
(ā0(0))

2−(ā1(0))
2

ā1(−1)ā1(+1)−(ā0(0))
2
+(ā1(0))

2 ,

n̄ =
ā1(−1)ā1(+1)+(ā0(0))

2−(ā1(0))
2

ā1(−1)ā1(+1)−(ā0(0))
2
+(ā1(0))

2 ,

q̄ =
(ā1(−1)−ā1(+1))

2

2(ā1(−1)ā1(+1)−(ā0(0))
2
+(ā1(0))

2
)
,

(C.30)
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and the unknowns are

Xx = cos (ϕ1) + cos (ϕ2) , (C.31)

Yx =1 + cos (ϕ1) cos (ϕ2) , (C.32)

Zx = sin (ϕ1) sin (ϕ2) . (C.33)

Splitting the real and imaginary parts of (C.29) result into two real equations which,

using linear matrix algebra, give

 Xx

Yx

 =

 m̄R n̄R

m̄I n̄I


−1  Zx − q̄R

−q̄I

 , (C.34)

where (.)R = < (.) and (.)I = = (.).

On the other hand Pythagorean identity (sin2(ϕ) + cos2(ϕ) = 1) for (C.31), (C.32)

and (C.33) gives

Y 2
x −X2

x = Z2
x. (C.35)

Substituting Xx and Yx as a function of Zx from (C.34) into (C.35) results in a quadratic

equation

B2(Zx − q̄R)2 +B1(Zx − q̄R) +B0 = 0, (C.36)

where 
B2 = (m̄2

I − n̄2
I)− d̄2,

B1 = q̄I(m̄Rm̄I − n̄Rn̄I)− 2q̄Rd̄
2,

B0 = q̄2
I (m̄

2
R − n̄2

R)− q̄2
Rd̄

2,

(C.37)

and d̄ = m̄Rn̄I − m̄I n̄R. Then Zx is obtained as

Zx = sin (ϕ1) sin (ϕ2) =
−B1 ±

√
4Z

2B2
+ q̄R, (C.38)

where 4Z = (B1)2 − 4B2B0. Having obtained Zx, then Xx and Yx are obtained using
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(C.34). Using (C.31) and (C.32), the cosines of the azimuths are
cos (ϕ1) = (Xx +

√
4ϕ)/2,

cos (ϕ2) = (Xx −
√
4ϕ)/2,

(C.39)

where 4ϕ = (Xx)2 − 4(Yx − 1). In order to overcome the problem of sign ambiguity of ϕ

(where ϕ ∈ (−π, π] or the ambiguity between ϕ and 2π − ϕ where ϕ ∈ [0, 2π)) having its

cosine, the following procedure can be done. Substituting the cosine of the azimuths in

(C.39) into (C.27) and (C.28) gives S1 and S2 which along with (C.26) and (C.33) can be

used to obtain the correct sign for ϕ1 and ϕ2.
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