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Abstract 

Previous genetic association studies have failed to identify loci robustly associated with 

sepsis, and there have been no published genetic association studies or polygenic risk score 

analyses of patients with septic shock, despite evidence suggesting genetic factors may be 

involved. We systematically collected genotype and clinical outcome data in the context of a 

randomized controlled trial from patients with septic shock to enrich the presence of disease 

associated genetic variants. We performed genome-wide association studies of susceptibility 

and mortality in septic shock using 493 patients with septic shock and 2442 population 

controls, and polygenic risk score analysis to assess genetic overlap between septic shock 

risk/mortality with clinically relevant traits. One variant, rs9489328, located in AL589740.1 

non-coding RNA, was significantly associated with septic shock (p = 1.05 x 10-10), however is 

likely a false- positive. We were unable to replicate variants previously reported to be 

associated (p < 1.00 x 10-6 in previous scans) with susceptibility to, and mortality from sepsis. 

Polygenic risk scores for hematocrit and granulocyte count were negatively associated with 

28-day mortality (p = 3.04 x 10-3; p = 2.29 x 10-3), and scores for C-reactive protein levels 

were positively associated with susceptibility to septic shock respectively (p = 1.44 x 10-3). 

Results suggest common variants of large effect do not influence septic shock susceptibility, 

mortality, and resolution, however genetic predispositions to clinically relevant traits are 

significantly associated with increased susceptibility and mortality in septic individuals. 
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Background 

Sepsis is an abnormal host response to infection, resulting in organ and tissue damage (Singer 

et al., 2016). Septic shock is the most severe form of sepsis, with a significantly higher 

mortality rate due to profound circulatory and metabolic abnormalities (Singer et al., 2016). 

The annual worldwide incidence of sepsis in adults has been estimated at 31.5 million cases 

per year, of which 5.3 million instances are fatal (Fleischmann et al., 2016). Sepsis poses a 

high financial burden on the economy, with United States in-hospital costs for each episode 

averaging US$22,100 (Angus et al., 2001). 

Individuals vary widely in terms of their susceptibility to sepsis and their prognosis, and this 

heterogeneity is thought to be in part due to host genetic factors (Sørensen et al., 1988). A 

genetic basis for susceptibility to sepsis has long been suspected since epidemiological studies 

found that adopted individuals had markedly increased risk of mortality from infection when 

a biological parent had died prematurely from infection, but no corresponding increase risk in 

mortality when an adoptive parent had died from infection (Sørensen et al., 1988). However, 

previous candidate gene and genome-wide association studies (GWAS) of sepsis have had 

limited success in identifying genetic loci robustly associated with the disease and outcomes 

(Rautanen et al., 2015; Scherag et al., 2016; Srinivasan et al., 2017). This is possibly due to 

lack of statistical power caused by a combination of small sample sizes and heterogeneity of 

both the patient population and of the phenotype (Rautanen et al., 2015; Scherag et al., 2016; 

Srinivasan et al., 2017). 

We designed the ADRENAL Genome-Wide Association Study (ADRENAL-GWAS) to 

investigate the genetic influences on susceptibility to, resolution of, and mortality from septic 

shock. We performed GWAS on a cohort of critically ill patients who were enrolled into a 

randomized controlled trial into the efficacy of corticosteroid therapy in septic shock 
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(ADRENAL) (Venkatesh et al., 2018). We sampled individuals suffering from septic shock, 

as opposed to sepsis, on the rationale that focusing on extreme cases will increase statistical 

power to detect genetic associations as has been done successfully in the case of many other 

diseases and complex traits (Barnett et al., 2013). 

To improve our understanding of genetic basis of sepsis, we performed additional analyses 

with increased power to complement the knowledge gained from GWAS. These include gene 

and pathway based analysis and evaluation of polygenic risk scores. To our knowledge these 

approaches have not been used in the evaluation of sepsis or septic shock.   

Methods 

Study Participants 

The ADRENAL Genome-Wide Association Study (ADRENAL-GWAS) is a sub-study 

within the main ADRENAL trial (ClinicalTrials.gov number, NCT01448109) designed to 

investigate the genetics and genomics of septic shock. All ADRENAL participants who were 

admitted to 27 participating hospital sites in three countries (Australia, New Zealand, and the 

United Kingdom) were eligible for the ADRENAL-GWAS substudy. The inclusion/exclusion 

criteria were similar to the original ADRENAL study and summarised in Supplementary 

Methods S1 (Venkatesh et al., 2018). Blood samples from ADRENAL-GWAS participants (n 

= 578) were collected at the time of randomisation, prior to administration of 

corticosteroids/placebo. Blood was collected into 2 x 2.5 mL EDTA, 2 x 2.5 mL serum blood 

collection vacuettes (Interpath; Cat. No. 455071), and 1 x 2.5 mL PAXgene RNA Vacutainer 

(Becton Dickinson; Cat. No. 762165). 

An unpublished genotyped cohort consisting of 3624 individuals collected at the QIMR 

Berghofer Medical Research Institute (QIMRB) was used as a control group in the case- 

control GWAS analyses. These unselected controls were drawn from the controls (i.e. 
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‘healthy’ individuals) used in studies of reproductive health or melanoma risk factors. DNA 

was extracted from either blood or saliva samples. Notably, the controls, while drawn from an 

unselected cohort, were deliberately chosen as they were genotyped using the same array, and 

had similar underlying ancestries to the ADRENAL participants.  

Genotyping and Quality Control 

ADRENAL-GWAS genomic DNA extractions were performed on 200 μl of whole blood 

using the QIAsymphony SP instrument according to the manufacturer’s protocol 

(QIAsymphony DSP DNA Mini Kit, Cat. No. 937236). Genomic DNA was eluted in 100 μl 

of Buffer ATE and quantified using the Trinean Dropsense 96. Samples were genotyped on 

the Illumina Infinium Global Screening Array-24+ v1.0 (20005136). The arrays were scanned 

on an Illumina iScan system and the raw fluorescence intensity data was normalized and 

clustered for each sample using Illumina Genome Studio (v 2.0.3). Genotypes were called 

using the standard Illumina GSA-24v1-0_A6 Cluster File. 

In the QIMRB cohort, DNA was extracted from either blood or saliva samples, and genotyped 

using the Illumina Infinium Global Screening Array-24+ v1.0. Genotype data were screened 

for genotyping quality (GenCall < 0.7), single nucleotide polymorphism (SNP) and individual 

call rates (< 0.95), Hardy Weinberg Equilibrium (HWE) failure (P < 10-6), and minor allele 

frequency (MAF < 0.01). As these samples were genotyped in the context of a larger project, 

the data were integrated with the larger QIMRB genotype project and the data were checked 

for pedigree, sex and Mendelian errors, and for non-European ancestry. 

The PLINK v1.90b3.31 software package was used to carry out a number of standard quality 

control (QC) procedures (Chang et al., 2015). A detailed breakdown of QC procedures can be 

found in the Supplementary Methods S3. 
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Outcomes 

The primary outcome was death from any cause at 90 days, and the secondary outcomes were 

death at 28 days, shock resolution, and susceptibility to septic shock. For diagnostic criteria 

and definitions of these outcomes see Supplementary Methods S1 and Supplementary 

Methods S2.  

Statistical Power Analyses 

We investigated power to detect variants at genome-wide levels of significance (α = 5 x 10-8) 

and also power to replicate variants reported in previous genome-wide association studies of 

susceptibility to sepsis and 28-day mortality (α = 0.05) using the Genetic Association Study 

Power Calculator (Johnson & Abecasis, 2017). The relationship between heterozygous 

relative risk (RR; a measure of genetic effect size) and statistical power is presented in the 

Supplementary Methods S4. We assumed a lifetime risk of septic shock of 1%, a 

multiplicative model of disease risk (on the odds scale), that the risk locus had been 

genotyped (r2 = 1), and we matched the GWAS sample sizes (see Supplementary Methods 

S4). 

The susceptibility to septic shock GWAS had the most statistical power of all the GWAS, 

where for genome-wide association analyses (α = 5 x 10-8), we expect 80% power to detect 

variants with a heterozygous RR of 1.55 and 2.52 for a risk allele frequency of 0.50 and 0.05 

respectively. For replication of previous findings (α = 0.05), there is 80% power to detect 

variants with a heterozygous RR of 1.22 and 1254 for a risk allele frequency of 0.50 and 0.05 

respectively. Power calculations for the other analyses are presented in Supplementary Figure 

S3.  
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Genome-Wide Association Analyses 

We performed logistic regression analysis assuming an underlying additive genetic model (on 

the log scale) as implemented in PLINK across the genome on septic shock patients 

(ADRENAL-GWAS) and healthy controls (QIMRB). The first five principal components 

(PCs) from a PC analysis of the cleaned merged GWAS dataset were used as covariates. 

Further, we performed logistic regression analysis, on ADRENAL-GWAS participants only 

(no controls), assuming an underlying additive genetic model using PLINK for 28-day 

mortality, 90-day mortality, and shock resolution. Covariates included sex and the first five 

PCs.  

Look Up of Previously Reported Variants  

Suggestive associations (p ≤ 1 x 10-5) reported in analyses of 28-day survival/mortality in 

sepsis (Rautanen et al. survivors = 1194, non-survivors = 359; Scherag et al. survivors = 

2803, non-survivors = 667) were queried in our 28-day mortality GWAS summary statistics 

(Rautanen et al., 2015; Scherag et al., 2016). Likewise, SNPs that reached suggestive 

significance in a susceptibility GWAS of premature infants (Srinivasan et al. cases = 351, 

controls = 406) and two GWAS from the UK Biobank (UKBB) were also queried in our 

susceptibility to septic shock GWAS summary statistics (Sudlow et al., 2015; Srinivasan et 

al., 2017; Neale, 2018). The UKBB analyses were originally performed on cohorts defined as 

having 'other septicaemia’ (Phecode_A41, cases = 1096, controls = 360,098) and 

‘septicaemia/sepsis’ (Phecode_20002_1657, cases = 238, controls = 360,956). 
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Gene- and Pathway-Based Analyses 

A number of gene-/pathway-based analyses were performed on the GWAS data for each 

outcome to identify genes or pathways which were enriched through combining statistical 

information across many markers within a gene, or within multiple genes in a pathway, and 

testing for association with the outcome. The Complex-Traits Genetics Virtual Lab (CTG-

VL) implemented version of FastBAT was used to perform gene-based association analyses 

on the summary level results (Bakshi et al., 2016; Cuéllar-Partida et al., 2019). Data-Driven 

Expression-Prioritized Integration for Complex Traits (DEPICT v.1 beta) was used to identify 

enriched genes, gene-sets/pathways, and cell/tissue types from independent lead variants (r2 = 

0.2, MAF > 0.05, clump-kb 1000), which reached suggestive significance (p ≤ 1 x 10-5) (Pers 

et al., 2015). 

Polygenic Risk Score Analyses 

We downloaded GWAS summary-statistics for phenotypes with suspected shared genetic 

aetiology with sepsis, or requested the data from the authors (Sudlow et al., 2015; Zheng et 

al., 2017; Neale, 2019). These included large-scale GWAS meta-analyses for hematocrit, 

diastolic blood pressure (DBP), granulocyte count, white blood cell count (WBC), coronary 

artery disease, type-2 diabetes (T2D), C-reactive protein levels (CRP), ‘septicaemia/sepsis’ 

(Phecode_20002_1657), and ‘other septicaemia’ (Phecode_A41) (International Consortium 

for Blood Pressure Genome-Wide Association Studies et al., 2011; Sudlow et al., 2015; Astle 

et al., 2016; Scott et al., 2017; Ligthart et al., 2018). Polygenic risk scores (PRS) for height 

were also constructed as a negative control (Yengo et al., 2018). Independent SNP signals 

from each set of summary statistics were identified using PLINK (r2 = 0.1, clump-kb = 1000). 

Genome-wide PRS for each of the above diseases/traits were generated for the 493 septic 

shock cases as well as for the 2442 control individuals that passed QC. Individuals were 
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scored on the number of risk alleles they carried for each variant (at the thresholds p < 5 x 10-

8, 5 x 10-6, 0.01, 0.5, 1), weighted by regression coefficients from the respective GWAS 

(Evans et al., 2013). To investigate relationships between septic shock and the various traits, 

28-day mortality was regressed on the PRS generated for each septic shock individual using 

logistic regression, with age, sex, and the first five PCs from the GWAS as covariates. 

Disease status (logistic regression) was regressed against the scores generated for the 

case/control cohort, with the first five PCs used as covariates.  

Results 

From May 2014 through April 2017, 578 patients were enrolled into the GWAS sub-study at 

27 hospital sites. The Intensive care units were in Australia (18 sites), New Zealand (4), and 

the United Kingdom (5). Of the 578 patients enrolled, 300 were assigned to receive 

hydrocortisone and 278 to receive placebo. A total of 493 septic shock cases passed QC, and 

of the 3624 QIMRB controls, 2442 individuals passed (Supplementary Methods S3). All 

individuals passing QC were of European descent (Supplementary Figure S1). A breakdown 

of the outcomes, sample sizes, and characteristics in ADRENAL-GWAS cases and QIMRB 

controls can be found in Error! Reference source not found.. Treatment had no significant 

effect on 90-day mortality, 28-day mortality or shock resolution (p = 0.35, 0.62, 0.09) and 

therefore had no confounding effect on the GWAS. GWAS were performed for all outcomes, 

however we focussed the latter analyses on 28-day mortality and susceptibility to septic shock 

to replicate past GWAS of sepsis, to be consistent, and reduce the burden of multiple testing 

correction. 

 

{TABLE 1 ABOUT HERE} 
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Genome-Wide Association Studies 

GWAS were performed for susceptibility to shock (493 cases, 2442 controls), 28-day 

mortality (90 non-survivors, 403 survivors), 90-day mortality (112 non-survivors, 381 

survivors) and shock resolution (34 unresolved, 459 resolved). The Manhattan plots for each 

GWAS are presented in Figure 1. The T allele of the genotyped SNP rs9489328, was the only 

genetic variant to be significantly associated with any of the outcomes. This SNP sits within a 

non-coding RNA gene AL589740.1 (Supplementary Figure S4), and was associated with 

decreased risk of septic shock (p = 1.05 x 10-10) (Table 2). Three genetic variants, 

rs11167801, rs7698838, and rs17128291, were associated with shock resolution at suggestive 

levels of significance (p < 1 x 10-6). Quantile-Quantile plots (Supplementary Figure S5) and 

genomic inflation factors (Supplementary Table S2) suggest that the GWAS results were not 

systematically inflated. 

{TABLE 2 ABOUT HERE} 

[INSERT FIG 1 HERE] 

Figure 1. Manhattan plots for (A) Susceptibility to Septic Shock, (B) 28-Day Mortality, (C) 

90-Day Mortality, and (D) Resolution of Shock Genome-Wide Association Studies. Plots 

were generated using the Complex-Traits Genetics Virtual Lab (Cuéllar-Partida et al., 2019). 

The blue dotted line denotes the ‘suggestive significance’ threshold of p < 1 x 10-6, and the 

red line denotes the ‘genome-wide significance’ threshold of p < 5 x 10-8, and the lead single 

nucleotide polymorphisms surpassing these thresholds are annotated. Only genetic variants 

with a minor allele frequency greater than 5% are shown. 
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Replication studies 

This study failed to replicate (p < 0.05) any SNPs previously associated (p ≤ 1 x 10-5) with 

28-day sepsis mortality/survival and susceptibility to sepsis (Supplementary Table S3 and 

Supplementary Table S4). SNPs that reached suggestive significance (p ≤ 1 x 10-5) from the 

UKBB sepsis related phenotypes also failed to replicate in the present septic shock GWAS 

(Supplementary Table S4) (Rautanen et al., 2015;  Scherag et al., 2016; Srinivasan et al., 

2017; Neale, 2018). 

Gene- and Pathway-Based Analyses 

The top five gene associations from FastBAT analyses for each outcome are summarised in 

Table 3. No genes reached the significance threshold (p ≤ 2.5 x 10-6). DEPICT did not identify 

any genes, pathways, cells or tissue types to be significantly enriched across all the GWAS at 

false discovery rate < 5%, however the top five genes, pathways, and tissues can be found in 

Supplementary Table S5, Supplementary Table S6 and Supplementary Table S7. 

{TABLE 3 ABOUT HERE} 

Polygenic Risk Score Analysis 

PRS derived from GWAS summary statistics for ten different traits were calculated in the 

septic shock 28 day survivors and non-survivors, as well as in all septic shock patients and 

controls (Table ). The p-value threshold for statistical significance after Bonferroni correction 

for multiple testing is 5.0 x 10-3 (ten phenotypes). There were three significantly associated 

PRS in the expected direction. PRS for higher hematocrit and granulocyte count were 

negatively associated with 28-day mortality (p = 3.04 x 10-3 and 2.29 x 10-3). PRS for higher 

CRP levels were positively associated with susceptibility to septic shock (p = 1.44 x 10-3). For 
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all significant phenotypes, PRS constructed using SNPs that reached the less conservative p-

value thresholds were more predictive than PRS constructed using only SNPs that met more 

conservative thresholds. There were no significant associations with the negative control 

height. 

{TABLE 4 ABOUT HERE} 

Discussion 

The current study presents, to our knowledge, the first report of genetic association analyses 

and the use of a polygenic risk score analytical approach in an exclusive cohort of patients 

with septic shock. The robust clinical outcome data was collected systematically in the 

context of a randomized controlled trial, and the analyses focused on patient centered 

outcomes. Comparable genetic studies consist only of small cohorts of patients with sepsis 

(Rautanen et al., 2015; Scherag et al., 2016; Srinivasan et al., 2017). We attempted to increase 

the power of the present study by focusing our efforts on the most severe form of sepsis, 

septic shock, which may involve alleles of larger effect. Additionally, we performed a suite of 

gene-based, pathway-based, and polygenic score analyses which have greater statistical 

power than single locus tests of association. 

One SNP, rs9489328, was genome-wide significantly associated with susceptibility to septic 

shock. The rs9489328 SNP lies physically within an uncharacterised non-coding RNA 

(AL589740.1), with no known biological functions. This variant has not been previously 

significantly associated with any traits. The SNPs that are in linkage disequilibrium with it are 

not associated with the phenotype (Supplementary Table S8), hence the lack of ‘peak’ typical 

of true associations. Although rs9489328 passed all QC steps, it is possible that the 

association reflects a false positive and may be a genotyping artefact or a product of batch 

effects and should be validated with methods such as minisequencing or Taqman. A 
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discussion of the four SNPs, rs368584, rs11167801, rs7698838, and rs17128291, which 

reached suggestive levels of significance can be found in the Supplementary Discussion S1. 

The results from the present GWAS have not identified common variants of large effect 

contributing to susceptibility to, mortality from, and resolution of septic shock.  

Despite being adequately powered, we failed to replicate previous SNP associations (which 

were notably rare variants; see Supplementary Table S3 and Supplementary Table S4) with 

sepsis in this study. This could be due to variability in the phenotype definitions, although 

this may be unlikely considering the variants contributing to the sepsis phenotype would 

likely be enriched in a cohort of septic shock individuals. Additionally, the previous studies 

used controls who had been exposed to sepsis risk factors, while this is ideal, we consider the 

reduction in power we experienced due to using population controls to be minimal give the 

low incidence of sepsis in the population (and likely in our controls)- and not the reason we 

were unable to replicate previous findings. Instead, the genetic variants prioritised in previous 

sepsis GWAS may be spurious associations arising from small cohort sizes.  

Gene-based analyses failed to identify any genes significantly associated with the tested 

phenotypes. However, the top results for each analysis consisted of a number of 

cardiovascular and immune related genes. Variants within KLB, NINJ2, and SS18 have been 

previously associated with cardiovascular related phenotypes (Ikram et al., 2009; Astle et al., 

2016; Kanai et al., 2018; Giri et al., 2019; Kichaev et al., 2019). Likewise, NINJ2 and 

CMTM7 have been associated with immune phenotypes(Astle et al., 2016; Jonsson et al., 

2017). Given the previous associations of variants within these genes with cardiovascular and 

immune disorders, and observed increased risk of sepsis in individuals with chronic medical 

conditions, a connection with the pathophysiology of septic shock and may be biologically 

plausible, and may provide possible therapeutic targets given replication and functional 

follow-up (Wang et al., 2012). 
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This study was the first to conduct PRS analyses in a cohort of  patients with septic shock and 

the results indicate that correlation between septic shock and a number of clinically relevant 

phenotypes are not only observed at the phenotypic level, as seen in observational studies, but 

are also reflected at the genetic level. Future Mendelian randomization analyses in larger 

genetic cohorts may help ascertain whether the PRS associations reflect a genetic overlap or a 

causal relationship (Davey Smith & Ebrahim, 2003). This may overcome confounding if the 

assumptions are met, and may provide valid targets for therapeutics. 

The PRS analyses found increased CRP levels were predictive of increased susceptibility to 

septic shock. CRP is an acute-phase protein synthesised predominantly by liver cells in 

response to inflammatory cytokines, mainly interlukin 6, and therefore levels rise during 

inflammation (Ligthart et al., 2018). One interpretation of a significant association between 

PRS for CRP and septic shock is that increased CRP levels are causally related to an 

increased risk of septic shock. However, we consider this explanation unlikely to be true, 

because PRS from the most strongly CRP associated SNPs (i.e. PRS consisting of only 

genome-wide significant variants for CRP) were not associated with septic shock, despite 

previous research showing genome-wide significant SNPs explain more variance in CRP 

levels than PRS including SNPs reaching less stringent thresholds (Ligthart et al., 2018; 

Evans et al., 2013). More likely, the result could reflect a genetic overlap with potential 

underlying genetic inflammatory disorders which contribute to increased circulating CRP 

levels, and also increased risk of septic shock (Muller et al., 2005; Wang et al., 2012). For 

example, individuals with a genetic predisposition to increased CRP levels (likely actually 

reflecting underlying genetic inflammatory disorders which increase CRP levels) may 

respond to a severe infection with a more pronounced inflammatory response, resulting in 

progression into shock. 
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PRS for granulocyte count were negatively associated with 28-day mortality. The direction of 

the association suggests a genetic predisposition to higher granulocyte count is associated 

with decreased patient mortality, possibly because of a better immune response and 

successful clearing of the infection, which is supported in the literature (Bermejo-Martín et 

al., 2014). 

PRS for decreased hematocrit levels were associated with increased 28-day mortality. 

Although the primary role of red blood cells is the transport of oxygen, they also mediate 

innate immunity through binding chemokines, pathogens, and nucleic acids (Anderson et al 

2018). Sepsis patients present with high hematocrit due to capillary leak syndrome, and this 

could be related to an adverse outcome (van Beest et al., 2008).  However the PRS reflect 

hematocrit in “healthy” individuals, and due to their immune role, a genetic predisposition to 

decreased red blood cell count (and thus lower hematocrit), could alter the host’s ability to 

mount an effective immune response. 

The main limitation of the present study was a lack of statistical power primarily due to small 

sample size caused by the logistical difficulty of collecting biological samples in intensive 

care settings in a timely manner from a large number of sepsis patients. Additionally, power 

may have been reduced due to disease heterogeneity and misclassification bias. As sepsis is 

triggered by an environmental cue (i.e. infection), it is possible that some controls would in 

fact have been cases had they been exposed to the relevant environment, or may have already 

survived a sepsis episode, however this reduction in power is small given the low incidence 

of sepsis. Whilst we were underpowered to detect loci of small effect at genome-wide levels 

of significance, our results show common variants of large effect (e.g. variants in the major 

histocompatibility region which are known to contribute to many immune mediated diseases) 

do not contribute to susceptibility to or mortality from septic shock (Evans et al., 2011). 
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Although extensive molecular studies into sepsis and septic shock have been performed, 

genetic analyses have been limited despite longstanding evidence of a strong genetic 

component to the disease.  

Sepsis is likely a complex trait, and hence will be influenced by many genetic variants with 

small effect. A large meta-analysis would be better powered to detect genetic variants with 

smaller effects that likely contribute to septic shock mortality/susceptibility, and may permit 

calculations using LD score regression, and place a lower bound on sepsis heritability (Bulik-

Sullivan et al., 2015). 

In conclusion, our polygenic risk score analyses identified several associations between 

genetic risk scores for clinically relevant variables and septic shock indicating shared 

underlying genetic aetiology with comorbid traits. This report in an exclusive cohort of 

patients with established septic shock represents a key step in understanding the genetic basis 

of septic shock and may inform the debate on future therapeutic targets for the condition.  

 

Supplementary Material is available on the Cambridge Core website. 
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Table 1. Characteristics of ADRENAL-GWAS Patients Prior to Randomisation and 

Administration of Corticosteroids, and QIMRB Controls.  

Outcome 
  

Total (n) 

Septic shock* 493 cases 2442 controls 2935 

90-day mortality  112 non-

survivors  

381 survivors  493 

28-day mortality 90 non-

survivors 

403 survivors 493 

Shock resolution 459 resolved 34 unresolved 493 

Dichotomous 

Characteristics 

Overall  

Ratio (%) 

90-Day  

Non-Survivors  

Ratio (%) 

90-Day 

Survivors  

Ratio (%) 

P-Value  

Treatment(steroid/placebo) 265/493 

(53.75%) 

65/112 (58.04%) 200/381 

(52.49%) 

0.35 

Re-admission (yes/no) 108/492 † 

(21.95%) 

29/112 (25.89%) 79/380 (20.79%) 0.27 

Sex (female/male) 183/493 

(37.11% ) 

45/112 (40.18%) 138/381 

(36.22%) 

0.52 

Use of renal replacement 

therapy  (yes/no) 

141/491 

(28.72%) 

55/111 (49.55%) 86/380 (22.63%) 6.85 x 10-8 

Bacteraemia (yes/no) 75/490 

(15.31%) 

10/111 (9.01%) 65/379 (17.15%) 0.05 

Quantitative 

Characteristics 

Overall 

Mean (%) 

90-Day  

Non-Survivors  

Mean (SD) 

90-Day 

Survivors  

Mean (SD) 

P-Value  

Age (years) 63.80 

(14.72) 

69.67 (12.85) 62.08 (14.78) 3.18 x 10-7 

APACHE (II) score 23.28 

(6.97) 

26.30 (7.37) 22.39 (6.59) 1.26 x 10-6 

Weight (kg) 89.72 

(29.04) 

87.93 (31.24) 90.25 (28.33) 0.48 

Time to resolution of 

shock (days) 

4.55 (5.12) 5.54 (5.66) 3.88 (4.89) 5.52 x 10-3 

Base temperature (°C) 37.31 

(1.02) 

36.96 (1.04) 37.41 (0.99) 8.98 x 10-5 

Base heart rate (bpm) 91.26 

(20.04) 

92.54 (19.37) 92.18 (20.24) 0.87 

Base central venous 

pressure (mm Hg) 

12.20 

(5.72) 

13.43 (6.67) 11.84 (5.36) 0.06 

Lowest mean arterial 

pressure (mm Hg) 

58.13 

(7.87) 

57.88 (9.10) 58.21  (7.47) 0.72 

Lowest Pa2:F2  165.23 

(86.11) 

155.03 (82.37) 168.20 (86.95) 0.15 

Highest arterial lactate 

(mg/dl) 

3.39 (2.66) 4.55 (3.07) 3.06 (2.43) 6.21 x 10-6 

Highest bilirubin (mg/dl) 31.49 

(38.85) 

45.01 (59.59) 27.51 (28.95) 3.48 x 10-3 

Highest creatinine (mg/dl) 174.05 191.77 (140.68) 168.83 (136.68) 0.13 
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(137.94) 

Lowest haemoglobin (g/L) 104.44 

(22.84) 

101.91 (23.75) 105.18 (22.52) 0.20 

Highest white cells (cells x 

109/L) 

17.08 

(10.69) 

16.75 (9.58) 17.17  (10.99) 0.69 

Lowest platelet count (x 

109/L) 

211.88 

(121.20) 

187.121 

(118.98) 

219.14 (120.89) 0.01 

Highest international 

normalised ratio 

1.65 (0.83) 1.93 (0.97) 1.56 (0.76) 5.95 x 10-4 

Reported is the ratio and percentage for dichotomous characteristics, and the mean and 

standard deviation (SD) for quantitative traits. Scores on the Acute Physiology and Chronic 

Health Evaluation (APACHE) II assess the severity of disease, ranging between 0 (low risk 

for death) and 71 (high risk). A Student’s t-test was used to test for differences in the mean 

quantitative traits between 90-day survivors and non-survivors. A Chi-squared Test of 

Independence was used to test for difference in dichotomous traits between 90-day survivors 

and non-survivors. * The susceptibility to septic shock analyses were the only analyses 

containing QIMRB controls. † There was some missing data. 
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Table 2. Lead SNPs with P-Value < 1 x 10-6 from the Genome-Wide Association Studies 

(GWAS). 

GWAS 

Phenotype 

SNP Chromosome: 

Base Pair 

Position 

Variant 

Type 

MA

F 

Effect

/ Non-

effect 

Allele 

Odds 

Ratio  

(SE) 

P-Value 

Septic shock rs9489328 6:98104575 Intronic 

AL589740.1 

0.10 T/G 0.37 (0.15) *1.05 x 10-10 

Shock 

resolution 

rs11167801 5:142470334 Intronic 

ARHGAP26 

0.09 T/C 0.13 (0.39) 8.77 x 10-8 

28-day 

mortality 

rs368584 13:111145073 Intronic 

COL4A2 

0.39 G/C 2.56 (0.18) 2.55 x 10-7 

Shock 

resolution 

rs7698838 4:58088682 Intergenic 0.07 C/T 0.15 (0.38) 6.11 x 10-7 

Shock 

resolution 

rs17128291 14:92882826 Intronic 

SLC24A4 

0.18 G/A 0.22 (0.30) 7.48 x 10-7 

Lead single nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) < 5% were 

removed. The MAF, odds ratio, and standard error (SE) correspond to the minor allele. The 

hg38 human genome build was used. * indicates genome-wide significance  
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Table 3. FastBAT Results for the Outcomes (A) Susceptibility to Septic shock, (B) 28-Day Mortality, (C) 90-Day Mortality, and (D) 

Shock Resolution. 

 Gene # of 

SNP

s 

P-Value Top SNP Top 

SNP P-

Value 

Gene Ontology Annotations Genome-Wide Significant GWAS Catalog 

Associations 

A) IPO5 154 5.06 x 

10-5 

rs34511977 2.76 x 

10-6 

Protein transporter activity - 

KLB 142 1.90 x 

10-4 

rs7685429 5.60 x 

10-5 

Hydrolase activity, hydrolyzing 

O-glycosyl compounds, 

fibroblast growth factor binding 

Alcohol consumption, blood urea nitrogen 

levels, pulse pressure 

IPO8 73 2.91 x 

10-4 

rs10771759 2.39x10-

5 

GTPase binding, protein import 

into nucleus 

Vital capacity, height, initial pursuit 

acceleration in psychotic disorders 

C9orf106 128 2.96 x 

10-4 

rs11701665

6 

1.80 x 

10-4 

- - 

CMTM7 219 3.12 x 

10-4 

rs6550132 4.53 x 

10-4 

 Cytokine activity, B-1a B cell 

differentiation, chemotaxis, 

signal transduction 

IgM levels, adolescent idiopathic scoliosis 

B) RAB20 240 2.18 x 

10-4 

rs368584 2.55 x 

10-7 

GTPase activity, endosome Acute myeloid leukemia, hair colour 

MIR1909 107 3.98 x 

10-4 

rs35202074 6.16 x 

10-5 

- - 

KTN1-AS1 68 5.26 x 

10-4 

rs10145555 8.78 x 

10-5 

- Putamen volume 

COL4A2- 228 6.15 x rs368584 2.55 x - - 
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AS1 10-4 10-7 

NINJ2 339 7.15 x 

10-4 

rs35557779 6.21 x 

10-5 

Integral component of plasma 

membrane, neuron cell-cell 

adhesion, tissue regeneration, 

nervous system development 

Platelet distribution width, platelet count, 

plateletcrit, lymphocyte counts, granulocyte 

percentage of myeloid white cells, stroke, 

monocyte count, monocyte percentage of 

white cells, white blood cell count 

C) BRSK1 161 7.64 x 

10-5 

rs10403600 6.49 x 

10-5 

Magnesium ion binding, protein 

kinase activity, protein 

serine/threonine kinase activity 

Age at menopause, age at menarche 

TMEM150

B 

156 2.34 x 

10-4 

rs10403600 6.49 x 

10-5 

Autophagy, regulation of 

autophagy,  

Age at menopause, unipolar depression 

NMUR1 79 3.29 x 

10-4 

rs72989550 5.08 x 

10-5 

Neuromedin U receptor activity, 

G protein-coupled receptor 

activity 

Height 

HSPBP1 152 3.44 x 

10-4 

rs10403600 6.49 x 

10-5 

Adenyl-nucleotide exchange 

factor activity, enzyme inhibitor 

activity, protein binding, 

ubiquitin protein ligase binding 

- 

NINJ2 340 4.84 x 

10-4 

rs10849390 9.75 x 

10-5 

Integral component of plasma 

membrane, neuron cell-cell 

adhesion, tissue regeneration, 

nervous system development 

Platelet distribution width, platelet count, 

plateletcrit, lymphocyte counts, granulocyte 

percentage of myeloid white cells, stroke, 

monocyte count, monocyte percentage of 

white cells, white blood cell count 

D) SS18 71 3.63 x 

10-5 

rs765529 3.32 x 

10-6 

Transcription coactivator 

activity, protein binding, nuclear 

receptor transcription 

Red blood cell distribution width, mean 

corpuscular haemoglobin 
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The top five genes associated with the primary outcomes are tabulated, along with the number of single nucleotide polymorphisms (SNPs) 

within the gene region, the gene-based test p-value, the most significant SNP within the region, and the respective p-value from the genome-

wide association study (GWAS), interesting gene ontology annotations, and previous associations listed within the GWAS Catalog (MacArthur 

et al., 2017). The FastBAT analyses were carried out using the Complex-Traits Genetics Virtual Lab (Bakshi et al., 2016; Cuéllar-Partida et al., 

2019). 

coactivator activity 

PSMA8 84 3.71 x 

10-5 

rs9304490 4.20 x 

10-6 

Antigen processing and 

presentation of exogenous 

peptide antigen via HLA, 

MAPK cascade, protein 

polyubiquitiation, stimulatory 

C-type lectin receptor signalling 

pathway 

- 

SLC24A4 383 2.79 x 

10-4 

rs17128291 7.48 x 

10-7 

Calcium channel activity, 

symporter activity, antiporter 

activity 

Hair colour, eye colour, suntan, Alzheimer’s 

disease  

MIR4282 58 5.06 x 

10-4 

rs12664923 3.33 x 

10-5 

- - 

NANS 82 7.37 x 

10-4 

rs4412474 3.04  x 

10-4 

CMP-N-acetylneuraminate 

biosynthetic process, 

carbohydrate biosynthetic 

process 

- 
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Table 4. Polygenic Risk Score (PRS) Analysis Results.  

GWAS 

Phenotype 

P-Value 

Threshold 

N 

SNPs 

Septic Shock 28-Day Mortality 

Direction P-Value Direction P-Value 

C-Reactive 

Protein levels 

< 1 267725 + 2.23 x 10-3 - 2.78 x 10-1 

< 0.5 202435 + 1.44 x 10-3 - 3.02 x 10-1 

< 0.01 13767 + 2.22 x 10-2 + 8.53 x 10-1 

< 5.00 x 10-6 330 + 3.90 x 10-1 + 1.48 x 10-1 

< 5.00 x 10-8 167 - 9.79 x 10-1 + 1.16 x 10-1 

Granulocyte 

Count 

< 1 334324 + 5.89 x 10-1 - 2.29 x 10-3 

< 0.5 244497 + 5.29 x 10-1 - 2.61 x 10-3 

< 0.01 15157 + 8.08 x 10-1 - 1.07 x 10-1 

< 5.00 x 10-6 698 + 9.16 x 10-1 - 2.31 x 10-1 

< 5.00 x 10-8 379 - 8.11 x 10-1 - 4.40 x 10-1 

Diastolic Blood 

Pressure 

Automated 

Reading 

< 1 320701 - 7.22 x 10-2 - 7.97 x 10-1 

< 0.5 242169 - 3.70 x 10-2 - 6.33 x 10-1 

< 0.01 21859 - 2.69 x 10-2 + 2.84 x 10-2 

< 5.00 x 10-6 806 - 2.41 x 10-2 - 9.84 x 10-1 

< 5.00 x 10-8 308 - 3.51 x 10-1 - 7.48 x 10-1 

Hematocrit < 1 334250 - 9.12 x 10-1 - 3.04 x 10-3 

< 0.5 244826 + 9.54 x 10-1 - 4.27 x 10-3 

< 0.01 15278 + 8.05 x 10-1 - 1.28 x 10-1 

< 5.00 x 10-6 621 - 5.52 x 10-1 - 3.80 x 10-1 

< 5.00 x 10-8 306 - 9.34 x 10-1 - 3.57 x 10-1 

White Blood 

Cell Count 

< 1 333971 + 2.76 x 10-1 - 4.20 x 10-1 

< 0.5 244165 + 2.24 x 10-1 - 4.05 x 10-1 

< 0.01 15586 + 9.86 x 10-2 - 4.91 x 10-1 

< 5.00 x 10-6 808 + 6.68 x 10-1 + 7.14 x 10-1 

< 5.00 x 10-8 453 + 7.57 x 10-1 + 8.33 x 10-1 

Coronary Artery 

Disease 

< 1 122441 - 1.85 x 10-1 - 1.79 x 10-1 

< 0.5 93427 - 1.55 x 10-1 - 2.27 x 10-1 

< 0.01 6784 - 3.54 x 10-1 - 3.63 x 10-1 

< 5.00 x 10-6 57 - 8.67 x 10-1 - 9.34 x 10-1 

< 5.00 x 10-8 20 - 9.69 x 10-1 - 2.28 x 10-1 

Type 2 Diabetes < 1 341453 - 9.66 x 10-1 - 9.83 x 10-1 

< 0.5 252082 - 8.15 x 10-1 + 9.33 x 10-1 

< 0.01 19284 - 7.26 x 10-1 + 6.10 x 10-1 

< 5.00 x 10-6 660 - 2.27 x 10-1 + 4.48 x 10-1 
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< 5.00 x 10-8 315 - 1.80 x 10-1 + 7.77 x 10-1 

Septicaemia/Sep

sis  

(UK Biobank) 

< 1 321265 + 1.94 x 10-1 + 2.84 x 10-1 

< 0.5 235509 + 1.71 x 10-1 + 2.38 x 10-1 

< 0.01 11267 - 9.80 x 10-1 + 1.01 x 10-1 

< 5.00 x 10-6 60 + 2.02 x 10-1 + 5.91 x 10-1 

< 5.00 x 10-8 5 + 8.76 x 10-1 - 5.15 x 10-1 

Other 

Septicaemia  

(UK Biobank) 

< 1 321253 + 6.90 x 10-1 + 5.60 x 10-1 

< 0.5 235757 + 7.10 x 10-1 + 5.79 x 10-1 

< 0.01 11346 + 2.89 x 10-2 + 3.42 x 10-1 

< 5.00 x 10-6 19 - 6.72 x 10-1 - 8.10 x 10-1 

< 5.00 x 10-8 3 - 3.41 x 10-1 + 5.41 x 10-1 

Height < 1 124453 + 7.07 x 10-2 + 4.90 x 10-1 

< 0.5 102079 - 7.14 x 10-2 + 4.95 x 10-1 

< 0.01 29680 - 2.51 x 10-1 + 6.43 x 10-1 

< 5.00 x 10-6 8442 - 7.26 x 10-1 - 8.61 x 10-1 

< 5.00 x 10-8 5416 - 7.87 x 10-1 + 9.80 x 10-1 

Septic shock patients (ADRENAL-GWAS) and population controls (QIMRB) were scored on 

their genotypes at single nucleotide polymorphisms (SNPs; weighted by the reported effect 

sizes) that reached various p-value thresholds (< 5 x 10-8, 5 x 10-6, 0.01, 0.5, and 1) in nine 

genome-wide association studies (GWAS) for traits of interest. The number of SNPs (N 

SNPs) included in each analysis is tabulated. Regressions for septic shock and 28-day 

mortality were performed, with standardised PRS as a predictor, and the top five principal 

components as covariates (as well as age and sex for 28-day mortality). The direction of the 

beta coefficient is noted, where a positive coefficient indicates a positive association with the 

tested phenotype (i.e. increased propensity to septic shock and/or increased risk of mortality 

at 28 days), and vice-versa for negative coefficients. Bolded p-values indicate statistically 

significant results after Bonferroni correction for multiple testing (p ≤ 5 x 10-3). 
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