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Abstract 

Clutches are devices for disengaging the connection between the driveshafts and 

power units, and hence transferring rotational energy. Two inertias travelling with 

different angular velocities are brought to the same speed by engaging the clutch. 

The dissipation of energy during the operation results in a rise in temperature. 

When considering the parameters which contribute to the effectiveness of clutches, 

the properties of carbon fibre reinforced carbon (known as carbon-carbon) 

composites are considered to be superior to any other candidate materials 

available. The cost of devices made from such materials has precluded their use in 

“everyday” applications and limited them to “high end” motor sport use such as 

Formula 1.  

This work considers the frictional properties of carbon-carbon composites in race 

clutch applications when combined with launch control systems, and how by 

improving the modelling of the co-efficient of friction of the material would lead to 

improved race starts. The work investigates the causes of frictional instability and 

how to promote more consistent coefficient of friction values through both bedding 

analysis and mathematical modelling.  

Physical testing was undertaken using a clutch dynamometer to explore the effects 

of temperature, input speed and clamp loads upon the friction coefficient. Using 

infra-red sensors, a novel method was developed for the direct measurement of 

surface temperature of the plates. Banding of the clutches was also investigated. 

Materials testing was undertaken on the carbon-carbon clutch material to 

characterise its properties for thermal expansion, emissivity, specific heat and 

thermal conduction and this was novel in its contribution to the access of this data 

to the wider research community. The influence of carbon structure, physical, 

thermal, mechanical and chemical properties, as well as friction films, on the 

performance of carbon-carbon friction materials were modelled using MATLAB®. 

This was novel in the incorporation of surface behaviours into the full model. This 

model was then used to replicate clutch dynamometer data and predict coefficient 

of friction values.  Results gave good predictions, with small errors in comparison 

with experimental data.  
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Chapter 1 

Introduction 

 

The success of a F1 launch is determined by many factors like driver response 

time, the grip of the tyres (and in turn, wheel spin), the torque of the engine and 

how that torque is transmitted through the drive train onto the track. Part of that 

drive train is the clutch, which is used to transmit the torque from the engine to 

the gearbox. The clutch is made up of a series of carbon-carbon plates; 4 driven 

plates and 3 drive plates, that when clamped together, transmit the torque from 

the engine to the gearbox. Due to the nature of its mechanism, the friction 

characteristics of the clutch plates play a large part in the overall efficiency of the 

clutch, and in turn, the race start. However, the friction co-efficient of the carbon-

carbon material not only changes with the material temperature, but is also found 

to be inconsistent from launch to launch. 

 

The thesis describes why carbon-carbon (C-C) composites are used as friction 

materials.  It discusses the frictional properties of C-C composites as related to 

their use in race clutch applications when combined with launch control systems, 

and how improving the calculation of the friction co-efficient of the material 

would lead to improved race launches. This work investigates the causes of the 

frictional (mu) instability, differences in the friction coefficient caused by different 

bedding procedures and how to enable the clutch material to be subject to more 

consistent coefficient of friction values through both bedding analysis and 

mathematical modelling. Physical testing is undertaken to explore a range of 

variables whilst the friction and wear mechanisms of carbon and the influence of 

carbon structure, physical, thermal, mechanical and chemical properties, as well 

as friction films, on the performance of C-C friction materials are described and 

modelled and then compared to real car data to assess the suitability of the 

model for the calculation of friction co-efficient in a launch control program. 
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1.1 General Background  

The Oxford English Dictionary defines a clutch as: ‘A mechanism for connecting 

and disconnecting the engine and the transmission system in a vehicle.’ [1] 

A race car clutch is generally made up of two sets of plates, a driving plate set; 

which is connected to the engine, and a driven plate set; which is connected to 

the gearbox. At most times the two sets of clutch plates are held in contact with 

each other by a spring. A clutch is needed because the engine spins all of the time, 

but the wheels don’t. The clutch allows the spinning engine and the stationary 

wheels to engage smoothly by controlling the slippage between them during a 

gear change or when the car ‘pulls away’. 

 

 

Figure 1.1a – A Multi-plate Clutch Arrangement, as used in F1 Applications 

 

Race clutches are much smaller than normal road use clutches. In motorsport, 

everything is kept to a minimum due to the weight and performance restrictions 

placed upon the designs meaning that a typical Formula One clutch assembly will 

be in the region of 97mm diameter and 1.5kg and be capable of transferring up to 

1000bhp, whilst its road car counterpart will be approximately 250mm in 

diameter and weigh 4kg, whilst only transmitting a fraction of the horse power 

[2]. These extreme conditions mean that race clutches are changed often, so 

where a clutch on a road car may have a serviceable life of up to 100,000 miles in 



 

its lifetime, a race clutch will have a maximum of 1500 miles life. The space 

restrictions placed upon a race clutch mean that multi plate clutches have been 

developed to allow for a smaller diameter to be used whilst maintaining the same 

friction area. The smaller diameter is also a key design factor in aiding the inertia 

as the larger the diameter, the larger the turning moment acting upon the clutch, 

and therefore, the larger amount of energy is required to change its angular 

velocity.  

 

In race clutch applications carbon-carbon composites fulfil three functions 

including: 

a) Heat sink - The C-C composite friction material acts as the heat sink to convert 

the kinetic energy of the slipping plates into heat.  Carbon is an attractive material 

because the heat capacity of carbon is 2.5 times greater than that of steel. 

b) Friction - Sufficient friction must also be generated by the friction plate 

material to transmit the torque in a smooth, controlled manner under different 

kinetic energy conditions (launches and gear changes). 

c)  Structural member - High mechanical strength is also required at elevated 

temperatures since the friction material also acts as the structural member and 

transfers the frictional torque to the gearbox during normal driving.  The strength 

of carbon at normal atmospheric temperatures is comparable to that of steel, 

while at high temperatures, carbon is nearly twice as strong. 

 

Overall, carbon race clutches are highly tuned components, which are specified 

and manufactured for use with one specific set of parameters. An F1 clutch is very 

different to that of a production sports car, which is turn, is different to that of a 

Formula 3. However, one thing remains; that the increased predictability of the 

carbon-carbon friction characteristic means that the clutch can be further 

optimised for more efficient race starts and launches. 

 

 

1.2 Aims and Objectives 

The overall aim of the project was to produce and validate, a working clutch 

model which accounts for surface characteristics and frictional, thermal and wear 

affects. This was achieved through a series of objectives:  
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 Analysing a series of race starts and observing the accuracy of the current 

methods of carbon-carbon clutch friction prediction 

 Investigating into current methods of friction stabilisation 

 Research into the Tribological behaviours of the carbon-carbon materials  

 Undertaking physical testing of the clutch on a dynamometer to directly measure 

the inter plate temperatures over a range of conditions 

 Conducting materials testing to understand thermal effects 

 Developing a mathematical model of the clutch; separating it into two separate 

models for bulk and surface 

 Correlating the mathematical model to results obtained through experimental 

testing 

 Drawing conclusions and making recommendations based on the outcomes of the 

work 

 

 

1.3 Original Contributions as Outcomes from the Project 

Three main original contributions have been established as a result of this work, 

the first being an addition to the general understanding of carbon-carbon 

materials within the scientific and engineering community. A suite of materials 

testing was undertaken and has experimentally determined values for a variety of 

thermal properties of carbon-carbon clutch material. The work has also 

investigated and proposed theories regarding the destruction and formation of 

transfer films that act between the two mating carbon-carbon clutch faces, as well 

as investigating and experimentally determining and mathematically modelling 

the effects of thermal decomposition within the clutch.  

 

 

The second original contribution of this project is the development of a proven 

novel method of  direct clutch plate surface temperature measurements using 

infra-red sensors. This could be further adapted for installation on a race car for 

testing purposes and more accurate temperature readings, enabling more 

accurate friction calculations and better race starts. Presently, there is no other 

method of clutch plate surface temperature measurement that has the capability 

to be utilised in this way.  



 

 

In conjunction to with the two main original contributions, the Formula One 

industry has also benefitted from the work undertaken as part of this project by 

significantly aiding the prediction of the coefficient of the clutch before a race 

start. Moving on from this work, procedures have been able to be developed and 

used to condition the clutch during the formation sequence to an optimal state 

for a race launch, resulting in faster acceleration from the line and improved race 

starts.  
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Chapter 2 

Clutches and Control Systems; History, Development 

and Design 

 

This chapter looks into clutches; how they work, their development and design.   

 

 

2.1 What is a Clutch?  

A clutch is a mechanism which is used for ‘holding apart’ two components which 

are rotating at different speeds, and then bringing them together to rotate at the 

same speed.  

 

The main focus of this work is upon clutches for automotive, and more 

specifically, motorsport use. Within a motor vehicle motion of the wheels from 

the power source is delivered via the drive train. The drivetrain (sometimes 

known as the powertrain) consists of the engine, flywheel, clutch, gearbox, output 

shaft, differential, drive shafts, hubs and finally the wheels. This configuration can 

change depending on whether the vehicle is front wheel drive, rear wheel drive of 

four wheel drive, but the principle remains the same: to transfer the power from 

the engine, to the wheels. This can be observed in figure 2.1a [3]. The clutch is a 

very important part of this system, as it is the only part that can be used to 

disconnect the drive train at the demand of the driver (or electronics system). The 

ability to disconnect the drive train is a crucial one, as the engine is spinning all 

the time and producing an output movement. It is necessary to connect a 

stationary object to the spinning engine to allow the drive train to become 

complete and for the vehicle to move. 

 

 



 

 

 

Figure 2.1a – Drivetrain Schematic – with the engine (orange), transmission (green) and exhaust 

systems (blue) 

 

A typical race car engine will turn at speeds of up to 20,000 rpm (revolutions per 

minute) and its peak power will generally fall at about 18,500 rpm. At this peak 

power, the torque is around 285Nm. Torque is produced by the pressure from the 

crankshaft on the pistons and tends to be low at idle speeds, but as the engine 

speed increases so does the torque (as shown in figure 2.1b) until it reaches a 

peak and then decreases as the engine speed continues to increase. Because of 

this gears are used, so that regardless of wheel speed the engine is always kept 

within the optimum revs range.  

 

Figure 2.1b – A typical torque (red) / power (blue) curve 

 

The clutch is housed 

between the gearbox 

and engine 

18,500rpm 

285Nm torque 

Approx 800bhp 
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This is done in order to utilise the optimum torque band (that is, where the engine 

speeds are such that peak torque is produced) to its full extent and to prevent 

damage the engine. When the engine is revving at a high speed and the gear 

needs to be changed the clutch is first disengaged, separating the engine from the 

gearbox. This allows the engine to continue moving and the car to ‘free wheel’ 

with drive no longer being transmitted from the engine to the gearbox and 

wheels. When the clutch is re-engaged, the gearbox and the engine will now be 

rotating at different speeds, so the two friction plates within the clutch (one is 

connected to the flywheel, and the other connected to the gearbox) will slip over 

each other and the friction between them creates heat. This friction allows the 

engine to lose some of its speed through heat dissipation, and it also allows the 

other friction plate to begin moving.  

 

A development within F1 in the past 10 years is the introduction of ‘Zeroshift’ 

systems – which is almost identical to the standard shift system described as 

above, except that the system uses a series of bullets to essentially hold the car in 

two gears at once, and is seen in figure 2.1c below courtesy of Zeroshift Systems 

[4].  

 

 

Figure 2.1c – Zeroshift System 

Both gears float on the output shaft shown and are driven via mating gears 

connected to the input shaft with 1st gear on the left (a) and 2nd gear on the right 

(b). Drive is taken up when the drive ring on the right (c) moves left and connects 

with 1st gear. Overrun backlash is taken up when the drive ring on the left (d) 

moves left and connects with 1st gear. To change into gear, the unloaded drive 

A B 

C 

D 



 

ring on the left is shifted through into 2nd gear, while still driving in 1st. As 2nd 

gear is rotating faster, drive is only handed over when the drive faces connect. At 

this instant, drive is relieved from 1st gear and to complete the shift, the now 

unloaded drive ring on the right is shifted through to take up overrun backlash in 

2nd gear. 

 

When two shafts are rotating at different speeds, and need to move to a speed 

differential (Δv)  of zero either one of two methods can be used. Either the slower 

of the two shafts needs to speed up or the faster of the two shafts needs to lose 

speed. Making the slower shaft speed up would require extra energy to be 

introduced into the system, which is not practical in a vehicle, as it is usually the 

gearbox shaft that is the slower shaft of the two and has no means of being 

powered. The other option of slowing down the faster of the shafts is far more 

practical and energy is lost by the formation of heat, generated by slippage due to 

the friction of the clutch, which is converted into heat.  

 

 

2.2 History of Development of Race Clutches 

For racing applications, direct push clutches are the actuation method of choice. 

Direct push clutches (DPC’s) allow for more controlled operation. The direct push 

mechanism makes it easier to map and program the exact position of the clutch 

engagement, which is of particular importance under launch conditions.  

 

During the early 1980’s carbon-carbon clutches for F1 applications were first 

investigated but this material had already been in use for more than thirty years. 

Carbon composites were used as the fins of Second World War German rockets in 

the form of polygranular synthetic graphite [10], for the materials superior 

retention of mechanical properties at high temperatures. However, fibres were 

not introduced to the material until the late 1950’s when fibre technology had 

advanced to a stage where their potential for addition to structural components 

was fully understood. 

 

Carbon-carbon had begun to emerge as a major new genre of materials by the 

late 1960’s and by the 1970’s, was being developed on both sides of the Atlantic, 
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primarily for military use. Mainly used in rocket nozzles and re-entry parts, early 

carbon-carbon was produced using low modulus rayon fibre weaves in a 

pyrolysed (decomposed by heat) resin, such as phenolic. 

Carbon-Carbon brakes inspired by those used in aircraft, were introduced into 

Formula One by the Brabham team in conjunction with Dunlop in 1976. Carbon-

Carbon braking is now used in most top-level motorsport worldwide, reducing un-

sprung weight and giving better frictional performance compared to cast iron.  

In 1982, AP Racing first began to look at carbon-carbon clutches as a potential 

option by substituting the conventional sintered material with carbon plates. 

These investigations were halted due to the discovery of the very low co-efficient 

of friction at cold temperatures. After further investigations by Tilton race 

engineering [5] in 1984, a modified drive hub was used to distribute the 800bhp 

engine power into the clutch.  

By the mid 80’s high boost, high torque 1.5 litre engines took over from their 3.0 

litre atmospheric counterparts. Pressure plates thickened up to cope with the 

increased torque input, double bolt fixings (12 from the usual 6) were introduced 

and weight increased from 4.15 kg to 4.45 kg. However, the addition of a cross 

drilled intermediate plate and an aluminium end cover subsequently reduced the 

weight to 3.85kg.  

In 1986, AP Racing was nearing the completion of the development of their 

140mm race clutch, which was lug drive, rather than gear drive. Outer plates were 

driven by the lugs that were protruding from the end cover, whilst the integral 

cover and lug assembly was machined from a solid billet of aluminium, with a bolt 

passed through each of the lugs to attach the assembly to the flywheel.  

1987 was the year that Honda began using a quadruple plate version of the 

140mm AP clutch with its turbocharged F1 engine. By using the smaller diameter 

plate, the weight of the clutch was concentrated towards the centre, significantly 

reducing the inertia. This permitted the use of a lighter crankshaft, allowing for a 

quicker uptake of the engine and quicker gearshifts. In the same year, AP started 

http://www.answers.com/topic/formula-one


using carbon-carbon clutch plates with the 140mm clutch which again reduced 

the weight and inertia. The carbon-carbon material didn’t warp, offering cleaner 

engagement than its sintered counterpart, and the friction (µ) value of the plates 

increased with temperature (0.15 cold to 0.55 hot), allowing for a better 

withstanding of the extreme heat increases seen at a standing start. By 1988, this 

clutch configuration was standard equipment in AP’s range. In 1989, Tilton [5] 

patented the first carbon racing clutch, which was the first carbon clutch to be 

used [6], and the first to win in F1, soon after this virtually all F1 teams began 

using carbon-carbon clutches. 

In 1991 a gear drive for the 140mm clutch was introduced, after discovering that 

the lug drive type, was producing an area of high stress where the lug joined the 

end cover. The gear drive teeth were machined into the carbon plate, and meshed 

with the teeth machined onto the aluminium adaptor ring. By switching the drive 

type, the clutch weight was dramatically reduced, as was the overall diameter, 

which went from 165mm (known as the 140mm clutch due to its effective radius) 

to 159.5mm in 1994.  

In 1996 AP reverted to running a lug drive type clutch, when the diameter was 

reduced further to 115mm. Metal matrix composite (MMC) was used as the 

materials cover, but this offered too much thermal resistance, so in 1997 the 

switch to a machined billet of titanium was made.  

Figure 2.3a – AP Racing’s first 140mm and most recent 97mm carbon-carbon clutches 
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The most important factors in the carbon-carbon clutch materials are the stability 

of µ (friction co-efficient) with the rising temperature, the wear rate and the 

tensile strength. The 2D material which AP racing had been using up until 1999 

was merely a material based on structural fibres of carbon embedded in a carbon 

matrix. This material was simply laminated in sheets to the required thickness. 

The construction of the material meant that under extreme temperature loading 

situations, the clutch face material could become saturated. The introduction of 

3D weave carbon-carbon, developed by McLaren Racing and Allied Signal, meant 

that the heat could be conducted away from the face of the material and into its 

core. 

In 2000, the 97.5mm triple plate clutch was introduced, of which, only 13.5mm 

wasn’t friction surface diameter. By 2003, the diameter had shrunk even further 

to 87mm (3.43 inch), of which only 12mm was non friction diameter. This tiny 

clutch was a 4 plate configuration, so whilst it was a smaller diameter, it was 

actually longer. As a consequence of their reduced diameter a multi-plate clutch is 

much harder to control, as described by Race Car Engineering’s ‘Insight’ article [7]. 

Despite weighing the same as its 97.5mm counterpart, the 87mm clutch offered 

lower inertia, due to its decreased diameter.  

However, “With each decrease in clutch diameter, comes an increase in the 

difficulty of controlling it” – Jon Grant, Head of Clutch Design, AP Racing.  



 

2.3 Clutch Design Process 

Initially clutch size is determined by its required torque carrying ability. The 

remaining system parameters are optimised with regards to functional 

requirements, such as pedal effort and gear shifts.  

 

When starting to develop a clutch for a new application, an essential place to start 

is by estimating the largest clutch size possible by considering the flywheel bolt 

circle diameter and the attaching bolt size. This information can then be used as a 

reference point in estimating the clutch diameter. 

 

The next step is to establish the specific heat stress, which is defined as ‘the ratio 

of friction work lost due to launching the car, to the friction material area’, Shaver 

[8] pp 65. There are no industry standards regarding heat stress limits, but it can 

be calculated using equations (2.3a) and (2.3b); 

  

Heat Stress = Wlost Equation(2.3a) 

  

n x (π/4) (OD2-

ID2)  

 

Where; 

W 

lost 
= Wt = Wengine = (π) Te Nrpm tslip  Equation (2.4b) 

    2  60  

 

Where: 

Wlost Energy lost during start up 

Wt Energy Transmitted 

n Number of friction surfaces 

OD Outer diameter of the friction surface 

ID Inner diameter of the friction surface 

Wengine Energy of engine 

Te Maximum engine torque 

Nrpm Rpm of engine 

tslip Slip time 



14 

Assuming that; 

 The engine speed is constant under launch

 The torque transmitted during launch is constant and causes constant

acceleration

 Resistance torque is a constant

 Start up occurs from Vi (initial angular velocity) = 0

 Elasticity of the drivetrain is disregarded

 Thermal influences are disregarded

 Energy absorbed by the clutch system is assumed to be half of the expected

energy during start up

These equations may be used to determine the amount of heat energy dissipated 

through the clutch during a launch, which is dependant upon the rolling 

resistance, engine torque and rpm, elasticity of the drivetrain, clutch housing 

temperature, thermal transfer, vehicle mass, gearbox ratios and drivetrain losses, 

but many of these elements are factored out using the assumptions above, to 

allow for consistency in the calculations. 

Once the outside diameter of the clutch has been established, and the inside 

diameter determined by the specific heat stress, it is possible to calculate the 

clamp load using equation (2.3c): 

F = Tc Equation (2.3c) 

n x Rg x μ 

Where; 

Rg = 


  2

0

0r

ri

r dA dr 
= (OD3 – ID3) x 1000    Equation (2.3d) 

3 (OD2 – ID2) 

Where; 

Tc Clutch Torque Capacity (Nm) 

n Number of friction surfaces 

Rg Radius of Gyration 

μ Co-efficient of Friction 



Once the clamp load is determined, the diaphragm spring needs to be specified. 

This utilises the clamp load, along with the bearing travel to specify the basic 

dimensions for the spring. By using a diaphragm spring high clamp loads can be 

achieved with relatively little deflection. The spring is simply a stamped steel ring, 

with multiple fingers, or levers, which is heat treated to achieve the required 

stiffness. The spring features can be determined using equation (2.3e).  

F = 

(
4E 

) (
s t3 

) [ 
(ho – s) (ho – 0.5s) 

+1 ]
Equation 

(2.3e) 
1 – μ2 K1 De

2 h h 

Where; 

E Modulus of elasticity 

μ Coefficient of friction 

s Deflection of diaphragm spring 

t Thickness of diaphragm spring 

K1 Constant dependant upon the ratio of De / Di 

De Outer diameter of diaphragm spring 

ho Free height of diaphragm spring 

h Thickness of diaphragm spring 

As detailed by ZF Sachs [9], in 2004 launch control was banned in F1, having an 

effect upon clutch design. With launch control, the clutch disposes of surplus 

power as slip, resulting in extremely high loads for up to 2 seconds (or in 

exceptional circumstances, up to 10 seconds) and is heated to temperatures well 

in excess of 1000°C. Theoretically the change in regulations means that the clutch 

will not undergo such harsh conditions, because unlike a normal road car the 

paddle clutch in an F1 car doesn’t experience a pressure point. Instead, the driver 

must remember in which paddle position the clutch is engaged. Even some of the 

world’s best drivers can only slip the clutch for a maximum of half a second to 

help them pull away, which is only a quarter of the time that launch control would 

slip the clutch for. However, clutches are still as robust today as they were pre-

launch control ban. This is due to the element of human error; 
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“If a driver misses the pressure point and realises that the engine could stall, he 

disengages the clutch, lets the engine revs skyrocket and tries to re-engage the 

clutch again. Often the whole game is repeated several times. As a result even 

higher loads can arise than pulling away with launch control” – Thomas Rudolf, 

Engineer for Clutch Systems; ZF Sachs Race Engineering. 

Even if such mistakes are the exception, rather than the rule – most race clutch 

manufacturers have opted to make provision for them by refraining from utilising 

the reserves released by the banning (and subsequent reinstatement then re-

banning) of launch control. 

2.4 Control Systems 

The race start is controlled by a mathematical program (sometimes known as 

launch control) that has been written by the teams control systems engineers. 

This program uses a calculated friction co-efficient of the clutch, determined from 

the formation start to establish the required torque for an efficient and successful 

launch. However, the friction co-efficient can often be inconsistent, leading to 

poor calculations and in turn, a poor getaway.  

Calculation of race start friction (µ) 

µ = T / (n x P x r) Equation (2.4a) 

Where: T = input torque to the clutch 

n = number of working surfaces,  

P = clamp load (using cylinder area, pressure and lever ratio) 

r = mean effective friction radius  

A typical race start (RS) coefficient of friction is calculated using a control system 

similar to that shown below in SimuLink.  



Figure 2.4b – A typical SimuLink model for F1 clutch Mu calculation [10] 

The coefficient of friction is calculated only when all of the following criteria are 

met: 

 First gear is selected 

 RS flag is set to logical argument 1 (ie, the program knows that it is about 

to perform a race start) 

 Clutch paddle demand is less than threshold value of 90% 

 Car speed is greater than 3kph but less than 60kph 

 Engine speed is greater than 6000rpm 

 The difference in engine and gearbox input shaft speed is greater than 

1500rpm (that is, the engine is running and under load, but the gear is not 

fully engaged) 

 Monitoring subject to a debounce time of 0.2s (If improper debouncing is 

employed then the dirty input could cause an unwanted state change) 

These criteria have been selected in order to state the conditions that define the 

race start and to eliminate any anomalous friction characteristics, particularly 

seen at the start and the end of the clutch engagement period. 
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The model uses the following conditions for µ monitoring; 

Figure 2.4c – Mu calculation control conditions. [11] 

The kinetic energy of the two faces rotating at different speeds is transformed 

into thermal energy, caused by the friction of the plates. Where the kinetic energy 

is represented by: 

E = ½ mv2 Equation (2.4d) 

Where:  m = mass of the clutch plate 

 v= angular velocity of the plate 

All of the kinetic energy within the clutch system needs to be dissipated by heat, 

which is a by-product of the friction of the plates, so the friction co-efficient of the 

plate plays a very important role.   

The clutch mechanism works on two different levels of friction: static and sliding. 

Static friction co-efficient values are generally much higher than their sliding 

counterparts, and it is this type of friction that acts as the mechanism to ‘hold’ an 

object in place. The clutch clamp load also plays a large part in the static friction 

characteristic of the clutch, due to the fact that the friction force is calculated as; 

F = µr Equation (2.4e) 

Where: F = force required to initiate sliding of the plates over each other 

µ = static friction co-efficient 

r = clamping force 

Amonton’s 2nd Law states that the friction force is independent of the area of 

contact, and this is important to note.  In multi-plate clutches, the main purpose 



of the design is to increase the contact area between the driving and driven 

plates, and although this has little bearing in the friction of the clutch, it does have 

a bearing upon the ability of the clutch to transmit the high torque forces and 

dissipate the generated heat effectively whilst maintaining a low inertia. 

The most important quality of the clutch design is that the clutch must effectively 

transmit the torque from the engine to the gearbox, and for this to happen the 

plates must not slide in relation to each other: 

F < µr Equation (2.4f) 

This is achieved by using high clamping loads. Sliding friction (μk) comes into effect 

when the two plates slide over each other (known as ‘slipping the clutch’) and it is 

this frictional characteristic that we are investigating in the following work. This 

type of friction occurs when two objects are moving relative to each other and rub 

together, in this case, the two friction plates within the clutch. According to 

Coulomb’s Law of Friction; the sliding friction is independent of the velocity at 

which the faces pass over each other.  

Fluid friction is also a sub-category of sliding friction and this plays an important 

role in the overall friction properties of the clutch. As the clutch wears, its dust 

creates a layer on the face of the clutch that acts very similarly to a fluid. Fluid 

friction is the interaction between a solid object and a fluid as an object moves in 

relation to that fluid, two examples of which are the skin friction of air on an 

planes wing or water over a dolphin. This type of friction is not only due to 

rubbing (which creates a force normal to the surface of the object: as seen in 

equation 2.4e) but it also creates forces that are orthogonal to the surface of the 

object, and it is these forces that significantly contribute to fluid friction.  

It is universally acknowledged that the frictional characteristics are closely related 

to the temperature of the clutch, but this relationship has yet to be quantified. As 

the temperature of the clutch plates increase the friction co-efficient decreases. 

This is due to many factors, including the method of manufacture of the carbon, 

the bedding process and the material properties of the plates themselves. 
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Therefore, the main aim of this work is to create a mathematical model in Matlab 

and SimuLink that will be able to give a prediction of the friction coefficient of the 

clutch pack that will be able to be used and incorporated within the launch 

control program currently employed by F1 teams.  



Chapter 3 

Literature Review

This chapter looks at the works of others in the field of carbon-carbon composites. 

Clutch design and carbon-carbon manufacture are used as a starting point before 

taking a look at the microstructure and how this affects the material and surface 

properties. Factors affecting the wear and behaviour of the friction surface are 

also considered, before finally exploring surface treatments and what has been 

done in this field to improve the carbon-carbon material. Additionally, testing 

methodology and mathematical modelling are also reviewed in order to consider 

earlier work relevant to this thesis. 

At initial the time of writing (2009), much research was on going into the 

tribological mechanisms and performance of carbon-carbon composites. It is clear 

from the large number of research papers available that a complete understanding 

is still being sought; however several fundamental theories appear to have been 

settled on by the tribological community. It is important to remember that the 

information presented within the investigated research papers is obtained from 

the testing of materials of a different specification, geometry and setup from 

those usually encountered in motorsport applications. Most of the existing 

research has been focussed on aircraft braking systems. Whilst the underlying 

principles can be assumed to be similar across all carbon-carbon composites, care 

must be taken when comparing numerical data. 

This chapter finishes with an analysis of papers that have been published in the 

field between 2009 and 2013, including those which lie in a very similar field to the 

work undertake in this thesis.  

3.1 Clutch Design and Carbon-Carbon Manufacture  

On July 20th 1937 FC Stanley first patented the friction clutch [12], and although 

very primitive by today’s standards this design began a long line of research and 

development into clutch mechanisms and friction materials.  In 1991 patents were 

still being filed for clutch designs with items such as the groove patterns in the 
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plates. The work of Payver [13] highlighted a groove pattern for the friction facings 

of a wet clutch which was used to equalise the face temperature, thus increasing 

thermal capacity of the clutch.  Following this in 1995 Sievers [14] submitted his 

design to the US patent office for a high performance clutch assembly with a 

refractory metal carbide thermal spray coating on the clutch disk engagement 

surfaces and the manufacturing.   

The work of Tripathi and Agrowal [15] in 2007 looks at the design optimisation of 

the friction clutch; their paper claims that the friction clutch must be designed for 

minimal axial force between the pressure and clutch plates whilst satisfying the 

constraints of the peripheral velocity of the outer diameter of the friction surfaces. 

The parameters are grouped into : pre specified parameters (frictional torque and 

engine RPM), performance parameters (axial force and peripheral velocity), and 

design parameters (inside and outside diameters of friction plates, face width , 

normal pressure and co efficient of friction).  A mathematical model which is very 

basic is proposed, and runs on the assumptions of constant axial force and clamp 

load. It does not account for any frictional variation within the clutch plate 

material.  The 2005 work by Albers, Arsian and Mitariu [16] considers the use of 

engineering ceramics and carbons as friction materials. Although these offer 

dramatic improvements over traditional sintered metal facings, they bring about 

the difficulties of a varying coefficient of friction with temperature.  This in turn 

means that the specific energy dissipation of the materials can vary significantly.  

Their work investigated the use of different friction pairs and looks at the friction 

coefficient as a function of sliding speed which they found to be inversely 

proportional to the friction co efficient.   

In 2004 Christopher Byrne [17] began to investigate the use of lower cost 

precursor fibres and processing methodologies as a result of the increased use of 

carbon composite materials within the aerospace sector.  However, after much 

investigation he determined that any changes in the current methods of carbon–

carbon manufacture significantly affected the wear and friction mechanisms, 

causing mechanical and thermo chemical degradation and thermal gradients 

within the material.  Earlier work was carried out by Gary Savage [18] of McLaren 

Racing, and published in 1992. This  indicates that the level of material complexity 



 

(and hence inconsistency) arises in the production of carbon-carbon composites in 

the variation of the structure of the matrix.  The carbon matrix phase may consist 

of a glassy isotropic carbon through to a highly crystalline graphite with almost 

limitless variations in between, and the paper warns not to consider carbon-

carbon as a single entity but rather as whole family of materials whose structure 

and properties maybe tailored to suit a large number of specialist applications. 

Savage outlines specific fabrication techniques regarding the densification of 

carbon-carbon, which involves filling the voids between the carbon fibres by either 

gas or liquid phase impregnation or a combination of both. 

 

In his1993 book, Carbon-Carbon Composites, Savage [19] outlines the commercial 

fibres used and processes, and states that all commercial carbon fibres are 

developed from one of three processes: 

 Low Modulus Polyacrylonitrile (LM PAN); 

 Cellulose Rayon; and 

 Mesophase Petroleum Pitch. 

 

LM PAN based fibres account for 90% of all commercial carbon fibres and are 

typically 93 – 95% acrylonitrile. Acrylonitrile is used principally as a monomer in 

the manufacture of synthetic polymers, especially polyacrylonitrile which 

comprises of acrylic fibres, which were a precursor of carbon fibres. True melt is 

not possible for PAN, as it decomposes below its melt temperature and this means 

that the PAN is instead extruded into filament form.  

 

The LM PAN processing method begins with the copolymer that is first dissolved in 

a suitable solvent, for example dimethylacetamide, and will result in 15 -30% 

polymer by weight. This is then extruded through a spinneret with a large number 

of capillary holes, of approximately 100μm diameter, and followed by wet spinning 

in a coagulating bath with a hot gas environment, as shown in figure 3.1a. After 

this the fibres undergo one or two further stages of further stretching which aligns 

the polymer molecules parallel to the fibre axis and locks the molecular 

orientation into place; this will affect the final mechanical properties of the carbon 

fibre.  
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Figure 3.1a. The PAN Precursor Fibre Process [19] 

 

The wet spinning stage of PAN has important considerations to take into account; 

this stage requires excessive amounts of solvent which necessitates its removal 

from the fibre. The solvent is very expensive and trace impurities in the solvent 

can limit the final mechanical properties of the fibres.  

 

Cellulose rayon fibres have a typical low modulus of approximately 4x106 psi. The 

first low-temperature treatment takes place at approximately 300˚C and converts 

the structure of the rayon to a form that is more stable to higher processing 

temperatures. This process involves polymerization and the formation of cross-

links. Before the first stage of oxidation exposure the rayon may be subjected to a 

chemical bath of either aqueous ammonium chloride solution or a dilute solution 

of phosphoric acid in a denatured ethanol, as seen in figure 3.1b. This chemical 

process reduces the time for the low temperature step from several hours to 

approximately 5 minutes. Of the fibre mass, approximately 50-60% is lost due to 

decomposition during oxidation.  

 

 

Figure 3.1b. Basic Elements Required to Produce Carbon Fibres from Rayon [19] 

 

The mechanical properties of rayon are mediocre, due to the poor alignment of 

the graphene layers. 

 



 

Isotropic pitch based fibres are manufactured from by products obtained in coal-

tar and petroleum processing. They are relatively easy to spin into fibres from the 

melt but unfortunately, the way that they are formed also means that they have a 

low modulus and strength due to their isotropic structure. They are manufactured 

using the same general process as PAN, except that a melt spin is used, as unlike 

PAN, they do not decompose below their true melt temperature. As they are melt 

span, this also eliminates the requirement for the stretching process required in 

the PAN fibres to maintain the preferred alignment.  

 

 

Figure 3.1c. The Processing Sequence for PAN and Mesophase Pitch-based Precursor Carbon Fibres 

[19] 

 

Figure 3.1c shows the processing sequence for PAN and mesophase pitch-based 

precursor carbon fibres and the similarity of the two processes. The PAN process 

obtains highly orientated carbon chains by hot stretching of the polymer chains 

prior to carburisation, while the high degree of orientation in pitch is a natural 

consequence of the mesophase (liquid crystal). 

 

There are three main ways of processing carbon-carbon composites;  

 Chemical vapour deposition (CVD)  

 Multiple impregnation-pyrolysis using thermosets (eg. Phenolic) 

 Multiple impregnation-pyrolysis using thermoplastics (eg. Pitch) 

 

As outlined by Savage [19], the CVD (chemical vapour deposition) process is one in 

which a solid product nucleates and grows on a substrate, and this is where the 
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second carbon in ‘carbon-carbon’ comes from. This involves the heating of the 

matting to approximately 1200°C in a gaseous (usually methane) environment so 

that the carbon matrix is deposited from the gas phase into the matting. The rate 

of deposition is very slow and requires large material and energy inputs, which 

results in high production costs. For a strong dense composite to arise, the matrix 

must be deposited throughout the pore structure. Closed porosity is highly 

undesirable, as this means that ‘pockets’ of the matting go un-carburised, as seen 

in figure 3.1d 

 

 

Figure 3.1d – The balance of diffusion and surface kinetics [19]: idealized depictions:  

(a) surface reaction rate is greater than diffusion rate; (b) diffusion rate is greater than the reaction 

rate. 

 

The reactants need to diffuse through the boundary layer of laminar flow, around 

the matting, diffuse into its pores, absorb and then react. The products from the 

reaction must then be released and diffuse back out along the same route. If the 

surface chemical reaction happens quickly in relation to the diffusion rate, then 

the deposition will occur near the mouth of the pore, and it will leave an empty 

un-reacted pocket further in. To combat this, the diffusion rate needs to be higher 

than that of the reaction rate – which will allow the pore to be filled in from the 

inside of the pore, outwards.  

 

Honeywell International [20] have carried out further research into the area of 

carbon-carbon composite manufacture. They have patented a method which 



 

involved a robotic selection of fibres that ensures that the shorter fibres are 

towards the exterior edges of the disc, while the longer fibres are towards the 

middle. This aids carburisation, and helps to ensure that no air pockets are left.  

 

Thermosetting resins (such as phenolic) are used as matrix precursors in carbon-

carbon composites because they are relatively easy to use to impregnate fibre. 

When selecting a thermosetting resin for densification processing of carbon-

carbon, consideration needs to be paid to the following: 

 Yields are in the range of 50 - 70% by weight. Experimental data indicates 

that carbon yields are not increased by the application of pressure during 

carbonisation; 

 Carbon matrix structures are glassy, and do not graphitize at temperatures 

up to 3000˚C;  

 Stresses applied or induced during the heat treatment can lead to a 

graphitic microstructure; and  

 In order to attain usable densities and properties, components formed by 

this route must be re-impregnated to minimise the porosity produced 

during the pyrolysis. 

 

Along with a high carbon yield and ease of impregnation of the fibres, there are 

three further requirements for a suitable matrix precursor. Firstly the 

carbonisation shrinkage of the matrix should not damage the carbon and secondly, 

the porosity formed during the pyrolysis of the resin must be open and accessible 

for further impregnation.  

 

Carbon-carbon composites formed by the thermoset resin technique are made by 

pyrolysing a laminated structure in an inert atmosphere to approximately 1000˚C. 

The resulting carbon fibre reinforced isotropic carbon matrix composites may be 

subsequently heat treated to higher temperatures of approximately 2500˚C in 

order to graphitize the matrix. This process is extremely inefficient as up to half of 

the matrix is lost during the carbonisation. However, this process is considerably 

quicker and cheaper than the CVD process. As this method is an ambient pressure 

fabrication method, the equipment required is not limited by size or a large capital 

investment, as it would be for the CVD process. Additionally, high quality 
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precursors may be produced by exploiting the technology developed for the 

‘conventional’ composites industry.  

 

In the liquid densification method, the component is generally vacuum 

impregnated with a resin or pitch and then re-carbonised. To aid penetration into 

the bulk of the sample, the resins are often diluted with a solvent to lower the 

viscosity but the solvent must be evaporated prior to curing and carbonisation. 

 

The first stage of multiple impregnation-pyrolysis using thermoplastics is for the 

pitch to be converted to carbon by the process of pyrolysis. Pyrolysis is the 

chemical decomposition of organic materials by heating in the absence of oxygen 

or any other reagents. Extreme pyrolysis, which leaves only carbon as the residue 

is known as carbonisation. The carbon yield of the pitch depends very much on the 

composition of the precursor pitch and the conditions of the pyrolysis. Decreasing 

the heating rate, the application of pressure or the use of chemical additives prior 

to the thermal decomposition of the pitch will all increase its carbon yield.  

 

Forest [20] claims that it has been shown that hot isostatic pressing (HIP) is 

capable of converting thermoplastic resin matrix composites to carbon-carbon. 

The HIP process uses high isostatic inert gas pressure to impregnate and densify 

carbon-carbon composites during the melting and carbonisation stages of the 

pyrolysis cycle.   

 

Furthermore, the materials so formed have generally exhibited superior properties 

to those developed in phenolic precursors. Properties such as density, strength 

and stiffness are all increased by comparison with the phenolic precursors, as well 

as retaining a good deal of their polymeric characteristics, such as low porosity. 

 

This work is reinforced by the earlier works of Marinkovic and Dimitrijevic [21] in 

their paper of 1985 which considers carbon-carbon composites prepared by 

chemical vapour deposition. This work is particularly relevant because of the size 

and shape of open pores within the substrate. It concludes that the kinetics of 

infiltration are highly dependant on the size and shape of open pores. 



 

Consideration is also given to the effects of various post-formation heat treatment 

(HT) and geometric factors on the fundamental composite properties. 

 

It is shown that the effects of heat treatment can be explained primarily by the 

structural changes in the substrate and the matrix as well as the relaxation of 

stresses existing within the composite. X-ray diffraction is used to show that HT 

composites display definite structural ordering of the substrate carbon. Substrates 

display a decrease in inter-layer spacing and an increase in crystallite dimensions 

although there is only a negligible three-dimensional ordering even at the highest 

HT used of 2400°C.  

 

Increased HT of a c-c composite is accompanied by a decreased fibre strength and 

increased modulus. A certain effect of radial shrinkage is also observed. It is 

suggested by the authors that 1800°C is the optimum HT regarding material 

properties, as although the tensile strength of the fibres is reduced after 

treatment to this temperature, the reduction is significantly sizeable beyond this 

temperature. At 1800°C there is already a certain amount of radial shrinkage that 

is assumed by the author to be responsible in part for the separation of the fibres 

from the matrix. The HT weakens the strong bonds between the fibres and the 

matrix, making delamination possible and providing a subsequent increase in 

frictional performance. Heat treatment also provides a ‘smoothing’ of the surface, 

a consequence of two factors. Firstly, structural ordering means fewer crystallite 

edges on the surface owing to an increase in crystallite dimensions and preferred 

crystallite orientation. Secondly, there is a partial or complete removal of surface 

groups. It is stated that HT also provides an increased stability to air oxidation. In 

addition to crystallite growth and alignment, relaxation of stresses can be 

considered as a factor responsible for the observed dimensional changes of the 

composites upon HT. 

 

Manocha [22] compares the carbon-carbon composites processes, as illustrated in 

Figure 3.1e 
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Figure 3.1e – The Carbon – Carbon Manufacturing Process [22] 

 

Prime factors of importance in achieving tough and high thermal conductive 

carbon-carbon composites are proper choice of reinforcing carbon fibres carbon 

matrix microstructure density and macrostructure of the composites.  Processing 

routes and choice of carbon precursor greatly influence the density 

macrostructure (type, size and quantities of defects such as pores and cracks) and 

matrix microstructure (orientation of carbon planes). The voids and macrocracks 

are normally fewer in carbon-carbon composites process through HIP route than 

those made by CVD. Manocha states that the strength and fracture of carbon-

carbon composites are governed by the Cook -Gordon theory (23) of 

strengthening brittle solids. This states that;  

 

“If the ratio of the adhesive strength of the interface to the cohesive strength of 

the solid is in the right range, a large increase in strength and toughness of 

otherwise brittle material is achieved”. 

 

Composites with strong fibre – matrix bonding fail catastrophically without fibre 

pull-out while those with control interfaces fail in a mixed tensile combined shear 

mode exhibiting high strength [24], [25].  

 



 

Keith Williams of Dunlop Aerospace [26] highlights that there is an approximately 

6 week manufacturing lead time from when an aircraft brake disk begins 

manufacture as chopped carbon fibres through to  their being woven into a carbon 

mat, being trimmed, and going through the CVD process through to final layup and 

the long pressure baking process.  Although the manufacture of these parts must 

be as swift as possible every step in the process needs to be 100% accurate to 

ensure continuity of material properties, and as such a strict quality control 

program is imperative at each stage of manufacture. 

 

Spokas [27] outlines test procedures for friction material evaluation as used by 

Rockford clutch component manufacturers.   He describes four specific tests used 

in carbon-carbon materials: a burst test to determine the safe operating speed of 

the material, a wear test to determine the ability to withstand mating surface 

abrasion (data from this is also used to determine the engagement characteristics 

of the carbon clutch), a fade test to determine the effect of excessive heat, and a 

stick test to measure the tendency of the facing material to react to contaminates.  

Whilst basic in terms of the range of characteristics being scrutinised these tests 

are a satisfactory starting point in the quality control procedure and can be used 

as an initial overview of the material batch before deciding if more comprehensive 

testing is required.   

 

Much work has been done to develop the processes used to ensure for more 

accurate and mechanically stable materials. In 1999, Walker et al. [28] filed for US 

Patent for an invention used to improve the Carbon – Carbon (C-C) material 

through the use of improved CVI techniques. These findings are reinforced by the 

later work of Gurin et al. [29], whose studies were aimed at developing carbon-

carbon discs using thermal gradient gas phase methods for compaction. The paper 

proposes an equation to calculate the maximum final density of the carbon-carbon 

composite materials prepared by these methods in relation to the specific content 

and density of the filler.  This equation is given as: 

  

ρf
m = 

( 
1 -  Cf 

) 
Ρyc x η + Cf Equation 3.1f 

   ρf    
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Where: 

ρf
m   =  theoretical final density in g/cm3 

Cf     = specific content of perform filler in g/cm3 

ρf     = pyncnometric density of the filler in g/cm3 

Ρyc   = pyncnometric density of the pyrocarbon matrix in g/cm3 

 

By utilising this equation, it is possible to accurately predict the density of the laid 

up disc, on the assumption that there are no discrepancies within the 

manufacturing process. However, what this work does not predict is the 

microstructure of the resulting ‘perfectly densified’ carbon – carbon composite, 

and how predictable its thermal and mechanical properties are.  

 

 

3.2 Microstructures of Carbon 

The element Carbon can exist in many different states. These are called allotropes. 

Eight possible allotropes of Carbon are highlighted in Figure 3.2a [19]. 

 

 

Figure 3.2a – Eight allotropes of Carbon [19] 

 

Top, l-r:  Diamond, graphite, Lonsdaleiate 

Middle l-r: Buckyball (spherical Fullerene), C540, C70 

Bottom l-r: Amorphous Carbon, single walled Carbon nanotube (cylindrical 

Fullerene) 



The allotropes important to the study of Carbon-Carbon morphology are 

amorphous carbon and graphite:  

 Amorphous carbon is the state where short-range order is observed, but

there is no long-range crystal structure. Amorphous carbon can contain

graphite structures;

 Non-graphitic carbon is any variety of substance containing the element

carbon with two-dimensional long-range order atoms in planar hexagonal

networks but without any measurable order in the perpendicular

direction.

A non-graphitic carbon can be transformed into graphitic carbon via thermal 

activation. This process is called graphitization. The degree of graphitization is 

dependent on the duration, pressure and temperature attained. 

Kimura at al [30] investigated the friction and wear of carbon-carbon composites 

in 1983. Here they investigated six different carbon-carbon composites all with 

different microstructures; carbon fibres were woven in plane, specimens with 

tows woven in a satin structure and specimens made of random chopped carbon 

fibre. One of each of these different structures was heat treated at 1500 °C, while 

the other heat treated at 2500°C. Each new specimen, when added with thermo 

setting resin, saw the formation of a graphite structure after the heat treatment at 

above 2000°C, at approximately 2600°C the entire matrix transforms to graphite. 

The author compares his work to that of Weaver [31] who reported that the 

polycrystalline carbon showed an increase in torque at the initial period before 

attaining a stable state (this principle later became the basis for bedding as 

described in chapter 5). 

Further extensive work into the microstructure of CVI carbon-carbon composites 

has been undertaken by Ju and Murdie [32].  The paper on the microstructure of 

pitch fibre-phenolic/CVI matrix carbon-carbon composites uses scan electron 

microscopy (SEM) transmission electron microscopy (TEM) and convectional light 

microscopy to examine the microstructure of a two D mesophase pitch fibre 

composite.  Their work concludes that each individual fibre within a bundle is 
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surrounded by two distinctive CVI carbon layers and that a major portion of the 

interface between the fibre and the first CVI layer is physically separated, 

however, the interfaces between the two CVI layers are much better bonded as is 

the layers of the CVI and resin char, and that most resin char exists as pockets 

among fibre bundles.   

The work of Luo and Li [33] looks into three different kinds of C-C composites, 

prepared using CVI and densified to the same density. The samples are; one of 

whose matrix carbon has a rough laminar microstructure heat-treated under 

2300° C; one whose matrix carbon has a smooth laminar microstructure and heat 

treated at 2500°C and one whose matrix carbon has a rough laminar 

microstructure and is heat-treated to 2500°C. The relationship between brake 

moment and velocity, and the effects of factors on these relationships for the 

three materials were investigated and indicated that the micro structures of the 

matrix carbon heat treatment technology and braking conditions have a strong 

effect on both the initial braking moment heat values and the initial brake 

moment heat ratio values.  These values can be reduced by increasing heat 

treatment temperatures and thus controlling the formation of the rough laminar 

matrix carbon in the preparation process.  This is because there not only exists 

stronger bonds between the carbon fibres and matrix carbon but also the matrix 

carbon tends not to be prone to delamination.  After braking starts, a large 

amount of powder debris with poor lubricating properties forms initially on the 

sliding surface, which is responsible for the biggest heat values.  By analysing the 

same matrix carbons with the different treatment temperatures, it is indicated 

that that carbon with the increased treatment temperature has a decreased 

interlayer spacing of the matrix carbon and an increase in crystallite height leading 

to an increase of lubricating debris and thus a decrease in the peak values.  This is 

particularly relevant to this thesis. 

The works of Kimura [30] and Luo and Li [33], highlight the critical effects of heat 

treatment to the carbon-carbon material, and how it alters its chemical make-up 

and behaviour dramatically. The temperatures at which the carbon-carbon is heat 

treated to is in the same region as that predicted at the face of the clutch during a 

high energy slip. This heat treatment is essentially the same as putting the carbon-



 

carbon disks through the bedding process and, in particular, the work of Luo and Li 

offers evidence to support the scientific principles behind the bedding process.  

 

 

3.3 Material Properties and Behaviour of Carbon-Carbon 

In 1989 Gibson and Taccini [6] of Hitco, California, presented a paper to the SAE on 

carbon-carbon friction materials for clutch applications.  Hitco are an established 

carbon-carbon material supplier to the motorsport industry.  This paper outlines 

general material practice of carbon-carbon in dry and wet brake and clutch 

applications.  Wear characteristics have shown that c-c can last several times 

longer than conventional brake and clutch materials when properly designed. This 

is reinforced by the later work of Krenkel, Heidenreich and Renz [34] in their 2002 

article.  In this paper the authors outline the advanced structural properties of 

carbon-carbon silicon-carbide composites with specific focus on fibre content and 

density with relation to the thermal conductivity.  The thermal conductivity greatly 

decreases by as much as 30% for a 50% increase in fibre content and on increase 

in density of 50% yields and almost 400% increase in thermal conductivity.  This 

highlights the importance of consistent material manufacturing processes.  Their 

paper also outlined the coefficient of friction and wear resistance of the carbon-

carbon.  Their paper indicates a loose inverse relationship between the average 

sliding speed (ranging between 0 and 15 m/s) and the coefficient of friction 

(ranging between 0.8 and 0.4). 

 

The work of Luo et al [35] on the static friction properties of carbon-carbon 

composites looked at the influence of high temperature heat treatment and test 

temperatures with results showing that the high temperature heat treatment 

process plays an important factor of the static friction behaviour.  With raising the 

treatment temperature, the interlayer spacing of the matrix carbon becomes 

small, and the crystallite width and height increases.  Composites treated at 2000° 

owe their static friction coefficients to the absorption of less water and difficult 

delimitation of the matrix carbon. 

In 2008 Krkosa and Filip [36] investigated the influence of humidity upon the 

frictional characteristics of aircraft brakes at low landing energy conditions.  Disc-

on-disc configurations are used to simulate several different energy braking events 
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(taxi and landing conditions for aeroplanes). A kinetic energy of 128.8kJ is taken as 

100% normal landing energy (NLE) dissipation within the brake, although the mass 

of the specimen is unfortunately not given. However, the 2D c-c composite used is 

pitch fibre reinforced carbon with charred resin matrix, densified by carbon vapour 

infiltration. Experience suggests that this will typically have a density of 

approximately 1.75gcm-3. 

Three relative humidity environments are used in the frictional tests – 2, 50 and 

90% RH, controllable to within ±1% of the desired value. Each testing sequence 

comprised 50 landings and 150 taxi stops (a taxi stop always being 4.5% NLE). 

After each sequence, the surface roughness of the friction surfaces was analysed 

to help evaluate evolution of roughness with energy and humidity. 

It is shown that coefficient of friction is stable at all humidity levels for low energy 

input (12.5% NLE), with the average value being slightly higher for dry conditions 

than humid conditions. However, as the energy input is increased to 25% NLE, 

changes in the coefficient of friction are registered in humid conditions. The dry 

humidity still remained constant. The effects are exasperated as energy input 

increases further.  

At 100% NLE, two friction transients (sudden changes) are observed, one at the 

beginning of the stop and one at the end of the stop. It is shown that the surface 

temperature of the discs increases rapidly at the time of the first transient. 

It is shown that for 2D c-c composites (referring to the fibre orientation, as 

opposed to 3D), the thermal conductivity is low in the z-direction (perpendicular 

to the friction surface). Consequently, these composites have a higher surface 

temperature throughout the event than a 3D composite, and this higher 

temperature facilitates the release of chemisorbed and physisorbed species.     

It is also shown that for 2D c-c composites, the average coefficient of friction 

detected at different landing conditions is very sensitive to the energy level 

applied during braking. There is a rapid reduction in friction coefficient as the 

energy increases from 50% towards 100% NLE. However, the coefficient of friction 



for taxi stops after landings are similar for all energy levels from 12.5% to 200% 

NLE. 

Krkosa and Filip note that all research on the subject of carbon-carbon friction is 

based fundamentally on the effects of frictional debris or a lubricating friction 

layer. In this study, friction layers were observed. The friction surfaces at low NLE 

have a darker appearance than those performed at high NLE. This is said to 

indicate that at low NLE, abrasive wear dominates. The scanned friction surfaces 

after high NLE friction are polished, indicating non-abrasive wear. Thus it is stated 

that at higher energy, a stable and sizable friction layer is generated and prevents 

the friction surface from wearing.  

Krkosa and Filip attempt to correlate surface roughness with frictional 

performance, based upon fractal theory being used as a characterisation of the 

rubbed surfaces. This can be characterised by parameters D and G from the use of 

Hurst analysis (D = measure of the amount of roughness, G = measure of the 

surface waviness). However, this method did not yield any direct correlation.  

Finally, TEM studies are performed on the friction surface [36]. TEM samples are 

taken at termination of braking for low energy, and at extreme mu values for high 

energy. The microstructure of the friction layer at low energy exhibit amorphous 

nature. At high energy, when the first friction transition to high coefficient of 

friction is observed, the friction surface is found to be highly crystalline. The 

subsequent reduction in friction is due to the release of chemisorbed moisture. 

The second transition is the highest measured surface temperature and 

demonstrates amorphous characteristic. This surprised the authors as based on 

previous studies they anticipated high energy and high temperature would 

correspond to graphite carbon states. 

Further to this last point, the observations of Krkosa and Filip could be explained 

by the fact that at the end of the stop, the sliding speeds are such that the highly 

compact lubricating friction film cannot be maintained, and is disrupted back into 

powdery debris. It is recognised from other studies that powdery debris (typical of 

Type II surface morphology) provides a high coefficient of friction. It is interesting 
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to note that the authors suggest neural network modelling to provide a better 

correlation. The paper is co-authored by Peter Filip, who was later part of the 

project “Neural network modelling of wear in Formula One race car brakes” for 

Toyota Motorsport Group in 2004. 

Further works by Blanco et al [37] [38] present summaries of several previous 

carbon-carbon studies and to introduce the fundamental carbon science 

associated with carbon-carbon brake performance. Real life aircraft brake 

performance is then analysed with the results related to relevant chemical and 

physical properties of carbon materials. 

It is stated that the friction coefficient of carbonaceous material does not increase 

linearly with increasing degree of graphitisation. As the heat treatment 

temperature of the carbon increases, so the surfaces become more graphitic and 

hence the friction properties of the surface improve. However, there is a 

maximum benefit as increased graphitisation brings easier surface disintegration 

as grapheme layers can be pulled out from the surface with greater ease. 

The concept of surface oxygen complexes is introduced. Not all of the oxygen 

molecules approaching the carbon surface return to the gas phase as carbon 

dioxide or carbon monoxide. Some atoms remain chemically bonded to the 

carbon surface in a variety of bondings. These constitute surface oxygen 

complexes, and include for example Hydroxyls, Ethers and Lactones. Surface 

oxygen complexes can only occur at temperatures below 1000°C (above this, 

direct gasification only occurs). 

It is stated that as the degree of graphitisation increases, the extent of surface 

oxygen complex formation decreases. The reasons for this are put forward by the 

authors as a decrease in surface area of the friction material, and secondly the 

graphene constituents become more perfect in terms of structure and planarity. 

The clustering effect of water molecules on carbon surfaces is also discussed. 

Water isotherms indicate the variation in the amount of absorbate (water vapour) 

on the surface of the absorbent (in this case, the carbon-carbon friction surface). 



Although initially water molecules are not attracted to the surface, the surface 

contains enough defective sites with sufficient energy to attract individual 

molecules. Once a molecule is attracted, the water molecule attracts other water 

molecules, and a clustering effect occurs seeing an almost exponential rise seen in 

the isotherm.  

Finally, the role of wear dust during the braking operation is discussed. Fragments 

of carbon break away from the friction surfaces are remain between the surfaces 

in the irregularities and cavities or porosity of the surfaces. SEM and TEM studies 

of the wear particles indicate they are essentially lamellar, are very thin and are of 

size 100nm to 10µm. Examination of the edges indicates significant serration, 

indicative of gasification or ablation from the edges. This means adequate facility 

for formation of surface oxygen complexes, the relevance of which is highlighted 

above. 

The friction and temperature characteristics for a wet clutch were studied and 

reported by Holgerson [39].  He concluded that dynamic friction decreased with 

velocity, torque and inertia possibly due to a rise in temperature. Zagrodski [40] 

investigated the temperatures and thermal stresses in multiple disk clutches and 

drew conclusions on how the normal pressure distributions on the friction 

surfaces were affected.  When the pressure distributions were non uniform the 

distributions of heat flux was also non uniform resulting in high local 

temperatures and thermal stresses, known as hot spots.   

3.4 Factors Affecting Carbon – Carbon Material Behaviour 

The work of Scott and Suntiwattana in 1995 [41] investigated the effects of 

extreme pressure and the use of lubricating oil additives to change viscosity 

indices on the frictional characteristics of the sintered frictional material.  The 

lubricant additives tested showed that with the viscosity additive, there was an 

increased friction reduced lock up time and lowered static to dynamic coefficient 

of friction ratio. Wear of the friction material was also marginally less.  This is 

interesting to note for future developments of this project. 
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Audebert, Barber and Zagrodzki [42] looked at the plates of an automatic 

transmission clutch and examined buckling due to thermo elastic/plastic residual 

stresses.  Axisymmetric and non-axisymmetric modes resulted from in-plane 

axisymmetric residual bending moments and the critical value for each mode is 

found.  Whilst this work focuses mainly upon metallic plates this work is of interest 

as it highlights the possibility that this may be occurring within the carbon-carbon 

multiplate clutch used within F1 systems.  Susceptibility to buckling increases by a 

factor to the radial thickness of the clutch  

In 1999 the effects of post curing on frictional behaviour of phenolic composites in 

clutches were investigated by Jafari et al [43].  Phenolic friction composite (PFC) 

was made from whole asbestos yarn by dipping in M-phenol based formaldehyde 

resin.  When tested the PFC showed a decrease in friction coefficient between the 

third and forth cycles and gravimetric analysis showed some weight loss when the 

un-post-cured PFC was exposed to 300°c.  This was attributed to the presence of 

moisture and volatile materials formed from the decomposed ingredients.  It was 

shown that extending the post curing time by 100% helped in the elimination of 

slipping behaviours and marginally improved many desirable properties as it was 

shown that the moisture increased the coefficient of friction where the volatiles 

decreased it, and even helped to prevent the effect of moisture.  Later on in 2002 

Venkataraman and Sundararajan [44] looked at the influence of sample geometry 

on friction behaviour of carbon-carbon composites. This work led on from that of 

Audebert and extended upon this by studying the influence of sample geometry 

on the transition value to dusting wear, and by characterising the transition from 

normal to dusting wear on the basis of interfacial temperature measurement by 

utilising an eroding thermocouple.  This is a standard way of measuring interfacial 

temperature and has been implemented for many years on industrial test rigs.  

This work concluded that carbon-carbon composites undergo a transition from a 

low friction coefficient normal wear regime to a high friction coefficient dusting 

wear regime when the interface temperature exceeds a critical value (usually in 

the range of 330 - 400°c).  It was also noted that the sample geometry had a 

dramatic influence to the critical value of the transition to normal dusting wear 

and is essentially due to the fact that the extent to which the heat generated at 

the sliding interface partitions to the stationary sample is dependent on the 



sample geometry.  However, this paper did not give many numerical values and 

did not provide any significant information regarding the thermal profile of the 

clutch in order to make such claims as to the effect of sample geometry. 

The variation in nature of organic fibres was investigated in the 2004 works by 

Satapathy and Bijwe [45]. Their work looked at brake fade and recovery with 

regards to the influence of four selected organic fibres.  What is of specific interest 

is that one of these fibres was CF (carbon fibre).  It was observed that the carbon 

fibre showed the highest resistance to brake fading recovery and demonstrated 

more overall stable effectiveness.   It also demonstrated the least wear under fade 

recovery conditions.  Although values were given for the brake fade and recovery 

what was not explained in this paper was the reasoning behind this. 

Works on the effects of densification cycles on continuous friction behaviour of 

carbon-carbon composites were published in 2004 by Lee et al [46] and studied 

the continuous friction behaviour of c-c.  In the densification process different 

numbers of densification cycle were adopted to investigate the influence upon its 

properties and concluded that as the number of densification cycles increased the 

number of open pores within the structure decreased giving a dense and smooth 

surface morphology.  In addition to this a smooth adherent lubricating film was 

formed on the sliding surface during wear tests and thus had lower wear rates and 

average friction coefficients.  This work is of particular significance as it highlights 

the requirement for consistent and uniform materials, especially as the main 

mechanism of sliding friction is due to the lubricating film formed on the surface. 

As an addition to the earlier 1999 works of Jafari [43] Yuan et al [47] investigated 

the influence of high temperature heat treatment on the friction properties of 

carbon-carbon composites under wet conditions.   

Their results show that the frictional behaviours were strongly affected by 

environmental wetness and friction coefficients in the wet decreased with a brake 

pressure increase for all samples.  Composites treated at 2000°c kept a high 

friction coefficient.  This work is of interest because with over work of clutches 

within an F1 application the carbon-carbon material within the clutch stack would 
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quite possibly see these temperatures, thus changing the material properties of 

said stack. 

 

Later that year J Li continued his work [47] by collaborating on a further paper into 

the friction behaviours of c-c composites with different pyrolytic carbon textures 

[48].  This work used a homemade dyno to simulate airplane landing conditions 

with the morphology of the worn surfaces for three different composite laminar 

textures.  Using an SEM to observe the surface morphology and using the results 

from the dyno it was concluded that the c-c composites with a medium textured 

rough laminar makeup had nearly consistent friction coefficients and stable 

friction curves whilst its smooth laminate counterpart experienced intensely 

decreasing friction coefficients and high oxidation loses under medium to high 

energy conditions.   This was due to the properties of the rough laminar structure 

which tends to lead to a uniform friction film forming on the friction surface.  

During an F1 launch, the clutch will see its highest energy loads and so the work of 

Li et al is useful in the context of this thesis, even though this is different material 

to that used in F1.   

 

One of the most recent works on the subject of carbon-carbon material properties 

was written by Li and Crosky [49] and their work investigated the effect of carbon 

fabric treatment on the de-lamination of two dimensional carbon-carbon 

composites.  The properties including inter laminar shear stress density and open 

porosity were tested and de-lamination effects were characterised and it was 

found that the concentration of surface oxygen decreases whilst the carbon 

increases after high temperature treatments.  The c-c treated with carbon fabric 

are non-de-laminable whilst the non-treated carbon fibre reinforced composites 

are de-laminable during carbonisation which is largely attributed to interfacial 

strength of the polymer matrix composites.   

 

 

3.5 Surface Properties of Carbon – Carbon 

Chen and Ju [50] in their paper outlining the effects of sliding speed on the 

tribological behaviour of a PAN-Pitch c-c composite report on the behaviour of a 

2D matrix.  When the composite was slid at 800 and 1100 rpm no transition was 



 

observed and a thick smooth lubricative film was formed on the warmer surfaces 

with friction wear remaining relatively low.  However, at 1400 rpm and higher the 

composite experienced simultaneous transitions in friction wear and surface 

morphology. When the frictional transition occurs the temperature rises abruptly 

and this was due to a debris film which became unstable and suddenly disrupted 

causing the friction and wear to rise abruptly. 

 

In the further research paper written by Chen, Chern Lin and Ju [51] details an 

investigation into the effect of humidity on wear and frictional behaviour of 

certain types of c-c composite, namely 2D PAN/pitch, PAN/CVI and 

pitch/resin/CVI. The test setup was typical of tribological c-c studies, utilising disc-

on-disc friction via means of a lab dynamometer operating at different sliding 

speeds for a fixed load. The influence of humidity was assessed by conducting the 

investigation within a sealed steel chamber. Three relative humidity levels were 

studied. High relative humidity levels (HRH, >90%) were attained through 

continuous evaporation of water within the chamber, medium relative humidity 

(MRH, 50-60%) was an unaltered internal environment, and low relative humidity 

(LRH, 20-30%) were obtained by blowing powdered dry air into the chamber 

through a silica glass tube, whilst operating an electric desicator inside the 

chamber for further drying.  

 

The authors detail the three types of debris morphology and their associated 

characteristics, both physical and tribological. These are denoted Type I, Type II 

and Type III as is widely accepted. 

 

It was found that relative humidity had a strong effect on the tribological 

behaviour of all tested c-c composites. High humidity generally lowered the 

coefficient of friction and the wear rate, and delayed the transition from Type I to 

Type II debris morphology. It was also found that high humidity enhanced the 

formation of Type III debris, particularly at high speeds. 

 

It is stated that the exact mechanisms for transitions, particularly Type I to Type II, 

are not understood at the time of writing. However, the authors suggest that 

discussion of water vapour theory may be helpful. Savage and Rowe both suggest 
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that a small amount of adsorbed water vapour is necessary for a bulk carbon-

graphite material to exhibit good friction and wear properties when sliding against 

metals. Without this water vapour, a high friction and wear process (dusting) 

takes place. Earlier studies show that surface temperature increases with sliding 

distance and that temperature rise also exhibits transition. Small amounts of 

water vapour are generally adsorbed on c-c composite surfaces. As temperature 

rises with sliding speed/distance, water content decreases as a result of 

desorption. The authors assume, based upon this observation, that when surface 

temperature approaches some critical level, water content in the c-c surfaces 

becomes low enough for the dusting process (Type I to Type II) to begin. It is said 

that this may help to explain the obtained result showing that for all tests 

undertaken, transition occurred earlier at higher sliding speeds and/or in lower 

humidity environments. 

 

 

 

Figure 3.5a – Diagramatic representation of graphene layers [19] 

 

Figure 3.5a highlights the hexagonal structure of graphite, and the graphene 

layers. The black dots represent carbon atoms, the solid lines represent the 

covalent bond between atoms and the dashed lines represent the weak van der 

Waals bonds between layers. 

 

Bond strength is very closely linked to bond length. In a graphite hexagonal ring, 

each C-C bond length is 1.42 A°, whilst inter-layer C-C bond length is 3.35 A°. This 

would indicate that the inter-planar bond strength is more than twice the strength 

of the inter-layer bond strength. 

 



 

Applying this theory to the shearing of a graphite structure, it is clear that inter-

layer bonds will be broken before the inter-planar bonds, and hence slip between 

the graphene layers in induced. This phenomenon provides an explanation for the 

widely observed self-lubricating properties of graphite. 

 

It should also be clear that the highly anisotropic thermal nature of graphitic 

carbon can now be explained, as phonons travel quickly across tightly bound 

planes. Hence, thermal conductivity parallel to the surface will be relatively high, 

however through-thickness thermal conductivity will be relatively low as phonons 

are slow to traverse the weakly bound planes from one graphene layer to the next. 

 

The classification ‘Type II’ is given to the surface morphology consisting of thick, 

powdery debris of small dimensions. On a macroscopic level, this will appear dull 

and unpolished.  

 

The classification ‘Type III’ is given to the surface morphology where there is a 

smooth compacted layer. High resolution analysis may show this to be consisted of 

extensive flat platelet (as opposed to the small particles seen in Type II). It appears 

as though the thick powdery debris has been transformed into this friction film as 

a result of high energy input. 



46 

 

Table 3.5b – Descriptions of the surface morphology classifications as suggested by Ju et al [51]. 

Classification Macroscopic 

appearance 

Description of wear 

debris or surface 
µ 

High resolution SEM 

(illustrative purpose only) 

Low resolution SEM  

(illustrative purpose only) 

XRD spectra of wear debris 

(illustrative purpose only) 

Type I 
Machined and 

polished 

Negligible amount of 

wear debris present 

on surface.  

 

Surface has large 

pores present. 

Low 

 

 

 

 

n/a 

  

Type II 

Dull, 

unpolished 

surface 

Thick layer of 

powdery wear debris, 

loosely attached 

particles, all less than 

5µm in dimension. 

Many of the pores 

are filled in with 

debris. 

High 

  
 



 

Type III 

Smooth, 

polished 

surface 

Extensive flat 

platelets that are 

detached from the 

bulk surface. 

 

Surface wear debris 

has been 

transformed into a 

smooth friction film. 

Low 
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Further work by Chen, Chern Lin and Ju followed in 1996 with their work on the 

effect of load on the tribological behaviour of carbon-carbon [52].  This work was 

merely an extension of their previous work [50] and [51] and concluded that for 

all composites a higher load can accelerate the transition from type i to type ii but 

impedes the transition from type ii to type iii.  This work was further continued by 

the trio in their investigation on the surface effects of braking behaviour [53] 

which concluded that specimens braked from higher speeds always suffered 

higher wear due to either higher friction coefficients or longer braking times.  This 

led on to their works on the effects of surface condition on tribological behaviour 

[52]. Two specimen groups are used, defining the initial surface condition. AP 

specimens are mechanically polished at the friction surface to 1200 grit level, 

leaving an average surface roughness of 1.8µm, whilst BI specimens are AP 

specimens that undergo subsequent break-in treatment (1.7MPa, 1800 cycles at 

1400rpm) resulting in an average surface roughness of 3.7µm. 

 

For a braking test of initial speed 1400rpm, neither the AP or BI specimens 

underwent any tribological transition – the friction coefficient remained relatively 

consistent throughout at 0.22 and 0.25 respectively. However at a higher initial 

speed of 2000rpm, both specimens experienced tribological transition. For the AP 

sample, coefficient of friction started around 0.25, reduced to 0.13 and then 

immediately rose to 0.88. After this transition, the massive wear debris started to 

be compacted into a lubricating film, causing a reduction in coefficient of friction 

mu. Around 15s, mu began to increase again. A possible explanation put forward 

by the authors for this v-shaped mu characteristic after transition is the repeated 

formation and disruption of the debris film. The BI sample at 200rpm initial speed 

displayed similar mu characteristics, but with earlier transition. 

 

Three types of surface film are introduced. Type I morphology is the initial smooth 

surface film seen pre-tribological transition. Type II morphology is a rough 

powdery layer of debris formed when Type I is suddenly disrupted at transition, 

accompanied by an increase in friction coefficient. Type III morphology is a 

smoother denser lubricative film formed when the powdery debris is compacted 

under certain conditions, causing a reduction in friction coefficient. 
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Surface morphology analysis shows that the post-transition BI 2000 sample 

displays mixed type II-III morphology, indicative of the repeated formation and 

disruption of the lubricating surface film. 

Type III debris is stated to be more lubrictive than type II, and with the former 

evolving from the powdery type II that was compacted and piled up layer by layer 

during sliding. However, as the mechanical bonding among these individual layers 

is weak, delamination occurs easily to the type III film, causing fragments to break 

off. These fragments are subsequently transformed back into type II powder. 

Whilst some debris escapes and some fills holes and pores within the structure, 

the remained is compacted back into type III debris. This continual formation-

disruption cycle explains the undulating friction coefficient observed from after 

transition to just prior to the end of the braking manoeuvre. The final jump in mu 

is because at low sliding speed (<500rpm), there was insufficient energy present to 

re-develop a stable lubrictive debris film [53].  

Although Chen, Churn Lin and Ju had produced significant works upon the 

tribological behaviour of carbon-carbon composites a paper written by Hou et al 

[54] on the internal friction behaviour of carbon-carbon composites expanded on 

this even further. This paper proposes two internal friction mechanisms; a thermo-

elastic mechanism and a static hysteresis mechanism.  It was concluded that as 

with graphite materials internal friction in carbon-carbon composites increases 

with increasing frequency and amplitude.  More interestingly a unique internal 

friction phenomena was observed in the carbon-carbon composites as generally 

the internal friction decreases and the dynamic modulus increases with rising 

temperature. This can be attributed to the effects of the internal friction produced 

by the mismatching of the coefficient of thermal expansion at the fibre matrix 

interface. 

These friction and wear mechanisms were investigated further in the paper by 

Gomes et al [55] whose work looks into the sliding speed and temperature on the 

tribological behaviour of carbon-carbon composites.  Sliding experiments were 

performed in a pin-on-disc tribometer applying a 100N load in the temperature 

range of ambient temperature to 600°c at sliding speeds of 0.5 to 2.0 and 3.5m/s.  



50 

 

At room temperature and low sliding speed the wear coefficient was extremely 

low, however, the wear values increased by three orders of magnitude for the 

highest sliding speed tested.  The same trend was observed when comparing 

results at RT and 300°c or above.  Concluding that carbon-carbon composites show 

unique properties as wear resistant materials at RT and moderate sliding speeds. 

However direct or frictional heating may deteriorate the response of the 

materials.  Although this work is well researched it does not offer any new 

information into the wear characteristics of c-c as its results had been previously 

reported in far more detail by many of the other researchers in this field, 

especially Chen, Churn Lin and Ju [50] [51] [52] [53]. 

 

In the paper “Effect of heat treatment on the tribological behaviour of 2D 

carbon/carbon composites” by Luo et al [56], it is stated that in ambient 

temperature conditions, water from the atmosphere is absorbed on the friction 

surfaces of specimens, forming the surface oxygen complex. Additionally, the 

presence of moisture lowers the shear resistance of the matrix carbon along the 

basal plane.  

 

The authors suggest that specimens with higher interlayer spacing and smaller 

crystalline dimensions (i.e. the least perfect structure in terms of planarity and 

structure) will have the capability to absorb larger amounts of water and will have 

a greater extent of surface oxygen complex existing on the friction surfaces. This 

results in low static friction coefficient. It thus follows that those specimens with 

smaller interlayer spacing and larger crystalline dimensions will absorb less 

moisture. The result is that carbon/carbon composites that undergo high heat 

treatment temperature (HTT) will absorb little moisture over a given period of 

time. 

 

It is also stated that a limit to the friction gain exists. Increasing HTT produces a 

corresponding delamination tendency at the friction surface, which reduces the 

static friction coefficient, indicating that a compromise between the two factors 

will yield the greatest friction benefits. 
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Static friction is found to reduce with increasing brake specific pressure regardless 

of the braking condition applied, which is attributed to increasing delamination. 

However, above a certain threshold, static friction is the same for all composite 

samples. 

 

In a separate research project, Hutton et al. [57] performed microstructural 

studies of the wear debris generated from friction of carbon-carbon composite 

discs. One of the tests conducted was comparison of wear debris XRD spectra from 

events of different energies. The results are presented in Table 3.5c. 

 

 

Table 3.5c – XRD analysis of wear debris by Hutton et al[57]. 

 

They concluded that after high energy events, a surface morphology indicative of 

Type III is formed, probably due to the combination of high interfacial 

temperatures and high power density. The Type II morphology of particulate 

powdered debris was observed after low power events. Samples of this wear 

debris were found to be of a very disordered carbon phase (i.e. amorphous), as a 

result of the shear deformation of the graphitic CVI matrix. The high energy 

friction film debris showed a more ordered state, indicating partial graphitization 

of the amorphous particulate wear debris. Increasing the energy further resulted 

in a XRD spectra similar to that of the parent material. 

 

The authors begin with the introduction of the widely-acknowledged surface-

morphology classifications, and a review of recent (at the time of writing) 

research relevant to tribological performance of c-c composites. 

 

A study of the influence of carbon-fibre orientation at the wear face on the 

tribological behaviour of a carbon-carbon composite is reported. The samples are 

manufactured from polyacrylonitrile-based fibres (PAN) in a chemical vapour 

infiltrated (CVI) matrix derived from methane. The materials are cut to expose 
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four fibre orientations at the contact surface, these being top face, front face, side 

face and diagonal face. The normal orientation of the contact surface is the base 

composite, top face, with continuous fibres oriented parallel to the contact 

surface. The front face has alternate lamellae of the felt and fibres exposed, with 

the fibres oriented parallel to the contact surface. The side orientation is similar to 

the front, except that the continuous fibre bundles are perpendicular to the 

contact surface. The diagonal faces at the ends of the fibres intersect the contact 

surface face at 45°. 

 

A typical disc-on-disc experimental procedure is carried out using a lab 

dynamometer. Testing takes place at speeds of 1800, 4200, 6000 and 8000rpm, 

with each test consisting of 20 cycles of 1 minute on and 1 minute off, making a 

total test time of 40 minutes. During the tests, pressure and bulk temperature are 

recorded with the former being sued to calculate the coefficient of friction 

between rotor and stator. 

 

SEM analysis of the base test composite shows that a friction film is absent for 

1800rpm test speed. The surface finish of the tested composite is dull, and the 

surface contained fine particles signifying Type I debris. At 4200rpm, a mixture of 

Type I and Type II debris is observed. Low wear rates and friction are measured 

for high rotational speeds and are attributed to the formation of a bright 

reflective friction film (Type II debris), which partly covered the continuous fibre 

lamellae and to a lesser extent the felt lamellae. High wear rates are associated 

with abrasive wear by the particulate debris, and the use of differential 

interference contrast microscopy reveals wear tracks in the sliding direction, in 

the form of shallow grooves in the friction film. 

 

The preferential formation of friction film in the continuous fibre regions may be 

due to the favourable orientation of the CVI carbon sheath around fibres at the 

wear face. The CVI carbon is highly graphitised and therefore easily deformed by 

shear forces, whilst the PAN fibres resist this shear. 
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At 1800rpm the author concluded that the shear forces and surface temperatures 

are too low to form the friction film, and that bulk temperatures in excess of 

140°C are required before friction film can be generated. 

 

Tests were carried out where stator and rotor both use the same orientation (e.g. 

Side-side, diagonal-diagonal), and also using different stators and rotors (e.g. Top-

side, Side-Diagonal), in order to analyse the effect of orientation of tribological 

performance. Results more than two standard deviations larger and smaller than 

the mean base value are highlighted for investigation. It is shown that the 

different fibre orientations do not change the qualitative features of the wear 

mechanism, although they do affect the extent to which the friction film develops. 

Fibre orientations parallel to the wear face favour friction film formation through 

easier shear deformation of the graphitic CVI matrix formed around the fibres. 

The film also orientates preferentially around the fibres. Fibre orientations 

perpendicular to the wear surface inhibit friction film formation and results in 

high wear rates but low friction at low speed. Hutton suggests this is because 

microfracture of the fibre ends emerging at the wear surface creates Type I 

particulate debris, which would account for heavy wear, and also low friction 

specifically at low speed as the particulate debris rolls between the surfaces. At 

high speeds, temperatures and shear forces are great enough to overcome 

unfavourable fibre orientations and friction films are generated. 

 

The process of transforming disordered (amorphous) carbon material into an 

ordered (graphitic) state is depicted in Figure 3. When starting with an initial 

disordered, isotropic carbon, it can be seen that as temperature increases, the 

disordered phase is gradually transformed into a more ordered, anisotropic state. 
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Figure 3.5d – Schematic diagram of changes in the lamellar structure of a graphitizing carbon with 

increasing HTT [19] 

 

Luo et al. [58] conducted an investigation into the effect of heat treatment on the 

tribological behaviour of 2D c-c composites. Table 3.5e below presents the results 

of their XRD analysis. 

 

 

Table 3.5e – XRD analysis of HTT specimens by Luo et al [58]. 

Specimen A = 1800°C at 1hr 

Specimen B = 1800°C at 1hr, then 2000°C at 1hr 

Specimen C = 2000°C at 1hr 

Specimen D = 2300°C at 1hr 

 

Observation of specimen A, C and D shows that increased HTT yields smaller 

interlayer spacing and larger crystallite dimensions. This is characteristic of an 

increased degree of graphitization i.e. becoming more ordered. 
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A separate HTT study by Byrne [17] provides similar results to those obtained by 

Luo et al [59]. Figure 3.5f shows the XRD spectra of a c-c sample before and after 

high temperature heat treatment is applied. The sample after heat treatment 

shows a higher ordered crystal structure.  

 

 

 

Figure 3.5f – XRD spectra of CVI-densified carbon-carbon composite before and after HTT (intensity 

on log scale) [59] 

 

Table 3.5f shows the influence of HTT on the measured brake moment (torque) 

peak ratio value. Caution should be exercised when comparing this data to 

HRF/HGT data as the experimental setup is very different (plate-on-plate, different 

plate dimensions, long stopping duration, etc). However, the data shows that for 

higher energy events, increased HTT reduces the measured brake peak moment 

value. This would potentially indicate that if clutch plates undergo HTT prior to 

bedding, the number of events required for a consistent state to be attained will 

be reduced.  

 

 

Table 3.5g – Experimental data from testing of HTT specimens by Luo et al [59]. 
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The effects of material properties on the thermo elastic stability of sliding systems 

was investigated in 2001 by Decuzzi and Demelio [60]. They concluded that the 

influence of the material properties on the thermo elastic stability of a multi 

layered sliding system could easily be found via a relationship held between the 

sliding velocity or rotating critical speed and the arbitrary material parameter ξ.  

This can be employed in estimating the optimum set of material properties for 

sliding systems. 

 

Xiong, Huang, Li and Xu [61] consequently investigated the friction and wear 

properties of c-c composites with different surface textures – smooth laminar 

structure (SL), rough laminar structure (RL), and a hybrid displaying a mixture of 

these two characteristics. 

 

A home-made intertia-type laboratory dynamometer was used to simulate 

braking between a stator and rotor ring specimen, of inner and outer diameters 

53mm and 75mm, thickness 15mm. The samples were CVI densified carbon-

carbon, with final densities of 1.83-1.85g/cm3, Vf of 33-35% and were heat treated 

at 2300°C. 

 

Three c-c samples are produced – A, B and C with degree of graphitisation 35.5, 

49.0 and 87.2% respectively. Microstructure analysis shows sample A to be of SL 

characteristic, sample B to be hybrid SL-RL, and sample C to be RL. As has 

previously been stated, it is observed that increased graphitisation results in 

increased crystalline height (Lc). 

 

Three energy levels were selected for the investigation based upon aeronautical 

application – normal landing (NL), overload landing (OL) and rejected take-off 

(RTO) in ascending order or energy dissipation. 

 

The experimental results show that the friction coefficients for the three 

specimens are almost the same at NL braking level (lowest energy). As the braking 

energy increases to OL and RTO, specimen A (SL) sees coefficient of friction values 
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drop to 0.25 and 0.19 respectively, whilst the mu for samples B and C remains at 

the same level observed for low energy input. 

 

SEM morphology of the worn surfaces for different energy levels shows that a 

uniform compacted film forms on the surface of B and C at different braking 

levels, whilst specimen A displays a coarser friction surface.  

 

The Xiong et al conclude that the process of friction-film formation on specimens 

is a dynamic state of balance. Carbon layers at the friction surface deform at high 

temperature and pressure during a braking event. Specimens with high 

graphitisation will inherently be of low hardness characteristic, and hence the 

carbon layers in their friction surfaces are easy to deform. This allows the 

formation of the uniform compacted film. The compacted films will be smashed to 

wear debris driven by the frictional shear force in the following braking. Some 

wear debris will escape from the friction surface by eccentric force, while others 

will be compacted again to restore the film. This will reach a dynamic balance 

state until the braking energy is changed. 

 

Concluding, c-c composites with a high and medium texture pyrolytic carbon have 

stable friction coefficients, friction curves and reasonable wear loss at various 

braking energy levels. These positive points are due to the characteristics of the 

RL, which leads to a uniform friction film formed on the friction surfaces. 

 

 

3.6 Friction Film and Wear Mechanisms 

In the early 1990s, understanding of the surface degradation in carbon-carbon was 

still very limited,. However, work was continuing into the clutch wear mechanisms 

of its sintered plate predecessor and this led the way for later c-c testing. One such 

work was that carried out by Osnani et al [62] which details an experimental and 

theoretical analysis of the heat transfer at the sliding interface between a paper 

disc and a sapphire plate in oil, and by using these two methods, a degradation 

curve for the wet friction paper was proposed. Due to the early time of this paper, 

the modelling and testing methods are quite primitive, although the principles of 

the paper are useful to this thesis. 
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Another group of researchers who were investigating the carbon-carbon material 

in the early 1990’s was Murdie, Ju, Don and Fotruno [63]. Friction and wear 

properties were tested under different energy conditions and using optical, 

scanning and scanning electron microscopy, the structure of the composites was 

characterised. Results agreed with the work of others in the field; that under low 

energy conditions, the type I wear debris predominates the friction surface, whilst 

at higher energies, the type II was predominant. Later work following on from this 

was presented by Hutton et al [57] in a paper presenting studies of the wear 

surfaces and the generated wear debris from a carbon-carbon composite under 

low energy, high energy and very high energy landing conditions. These energy 

parameters are defined as aircraft taxiing, aircraft landing and rejected take-off 

respectively. Data is provided from an unpublished study by the authors, 

estimating that rejected take-off generates a power density of 2.0 MWm-2 with 

interface temperatures within the range 1300 to 1500°C. Normal landing is said to 

generate 1.0 MWm-2 power density and circa 950°C interface temperatures, with 

cold taxiing generating 0.2 MWm-2 and 100°C. 

 

The carbon-carbon composite was made from PAN fibres in a CVI matrix. 

Dynamometers are used to simulate the braking events, with full scale brakes 

used for the higher energy events. For low energy and high energy events, wear 

debris was collected underneath the dyno for analysis, whilst for the rejected 

take-off event wear debris had to be brushed off the surface for analysis, due to 

experimental setup constraints. 

 

The wear surfaces and wear debris were analysed using a multitude of techniques 

- Scanning Electron Microscopy, X-Ray Diffraction, and density gradient 

separation. The results provided from the different analysis techniques showed 

consistent results throughout the test methods and hence the discrepancy 

introduced when collecting wear debris was not deemed to be significant. 

 

The results show that under simulated cold-taxi conditions, particulate wear 

debris comprising of a disordered carbon phase containing fibre fragments is 

formed. This is provided mainly by the shear deformation of the graphitic CVI 
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matrix, whilst the fibre fragments are from small fractures of the PAN-fibres. The 

shear modulus of well-graphitised materials is low (a value of 4.5GPa is quoted) 

whilst PAN-based carbon fibre is quoted as having shear modulus in the range of 

40-80GPa. Hence, the CVI matrix is more susceptible to shear deformation and 

thus contributes the majority of the wear debris. The fibres fracture in response 

to shear stresses generated during braking because they have a low transverse 

modulus (5-25GPa). 

 

Under the estimated conditions for landing braking, the particulate debris 

described above is partly transformed by shear processes into a friction film. 

Although the platelet morphology is different to the particulate morphology of 

the taxiing wear debris, the microstructures are similar, comprising the disordered 

carbon phase incorporating fibre fragments. 

 

Under extreme temperature and power density as witnessed in the simulated 

rejected take-off, the disordered friction film is partially re-ordered by shear-

stress assisted graphitisation. It is possible that wear debris undergoes 

graphitisation if the interface surface temperature exceeds 1300°C. 

 

A further paper, written by Filip, Weiss and Rafaja [64] concerns polymer matrix 

composites (PMCs) and hence the experimental data cannot be directly compared 

with c-c, but is directly relevant. In order to characterise the friction surface and 

developed friction layers, glancing angle X-Ray diffraction, scanning electron 

microscopy and transmission electron microscopy were used.  

 

To investigate and characterise the friction layer in the perpendicular direction 

with respect to the friction surface, selected samples were nickel-plated, 

embedded in a moulding resin, cut using a diamond saw in the perpendicular 

direction, and finally ground and polished using standard materialographical 

procedures. Examples obtained using this method are presented below. 
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Figure 3.6a The SEM cross-sectional profile of carbon-carbon material. The scales are found at the 

bottom right hand corner of each figure [64]. 

 

Filip et al then proceed to analyse the thickness of friction film generated at 

different temperatures by taking measurements at 80 random locations across 

cross-sectional profiles of samples where friction commenced at various initial 

temperatures. It is shown that for higher initial temperatures, friction film 

thickness increases. 

 

An equivalent testing situation is set up where an ‘equivalent’ apparent 

temperature and compressive loading is applied to a sample in order to 

investigate the effects of mechano-chemical interaction due to frictional 

operation, and it is shown that there is significant difference in phase stability and 

the kinetics of interactions for ‘friction’ and ‘equivalent non-friction’ operating 

conditions. 

 

Further work on the interfacial morphologies of the c-c composite was undertaken 

by Lee [65]. His work used SEM, PLM (polarised light microscopy) and TEM 

techniques to characterise the microstructure of the CVI matrix C-C composite. 

SEM results indicated that the deposit consists of two structures; an isotropic 

phase is present in the fibre bundle junctions, and a highly orientated lamellar 

structure is present in the intra-bundle matrix. TEM shows that matrix platelets 

are highly parallel to the fibre axis and the crystallites of the matrix near the fibre 

exhibit better alignment than those farther away. This work is of particular 

significance as it provides theoretically sound evidence of how much the CVI 

process affects the material properties, especially at the surface.  

 



61 

 

It is well documented that in order to achieve and maintain the required friction 

within a clutch, the correct combination of surface properties and additives is 

required. In the paper written by Oldfield and Watts [66], the impact of different 

additive chemistries on the friction of carbon fibre clutch plates was investigated. 

When comparing three carbon fibre materials to Kevlar and cellulose based 

materials, it was observed that increases in dynamic friction of up to 40% could be 

observed via the addition of surface additives. This work is certainly of great 

interest to the project, as the effect of additives could be utilised within the F1 

clutch for more stable and predictable friction characteristics.  

 

Saito et al of Honda R&D [67] completed studies of the wear history of plate 

facings in multi plate clutches concluding correlations between the initial wear and 

disk contact pressure, and between steady wear and temperature, claiming that it 

was possible to determine the wear condition of the clutch independently of other 

components by determining the wear property of the facing material.  

 

In 2005, Oczan and Filip continued their work in the field of Carbon-Carbon 

composites with a paper on microstructure and wear mechanisms [68]. In this 

paper, they proposed that as a result of different wear mechanisms, different 

friction layers are formed on the surface. This work supports the work by so many 

of the other authors discussed as part of this literature survey. However, what is 

different about this particular paper is that it also introduces the formation and 

propagation of microcracks. Results showed that intensive cracking occurred 

within the highly anisotropic material, with less frequent cracking seen in medium 

textured carbons. It was also concluded that whilst the mechanical properties of 

the carbon fibre do not have an effect on the micromechanisms of crack and wear, 

the deviation of the advancing crack lied mainly in the CVI carbon. They also stated 

that whilst the effects of Oxidation on the carbon-carbon were not investigated as 

part of their work, it was apparent that this had a major effect upon the materials 

at higher energies where the plate saw temperatures great than 1000°C  
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3.7 Surface Tribological Behaviour and Oxidation 

Early works into the oxidation of clutch facing materials were carried out by 

Bunda et al [69] and Metricaru [70].  The papers written by both authors describe 

the wear and friction behaviour of pre carbon-carbon clutch materials with 

regards to clutch drag and judder. However, neither paper proves oxidation to be 

a contributing factor towards this.  At the same time, similar works carried out by 

Chang [71] upon carbon-carbon composites indicated that wear rates in terms of 

weight loss are always greater than those in terms of thickness reduction over a 

wide range of braking conditions, and suggests that the reason for this is oxidative 

weight loss through the diffusion of oxygen through the pores.  This work, 

although undertaken over 25 years ago is still considered to be relevant. 

 

Yen and Ishihara [72] undertook work on the surface morphology and structure of 

carbon-carbon composites in high energy sliding contact in 1994 and concluded 

that there exist two types of surface morphology due to different energy events in 

the clutch.  However, what Yen and Ishihara offer in regards to new information 

are results indicating non-uniform friction heat generation, which causes unequal 

thermal expansion of the contact surface, hinting at the existence of banding.  

Their paper also touches upon the subject of oxidation although this in only 

hinted at and not proven at this stage. A further paper by the same authors [73] 

does however research into the effects of nitrogen and air on the friction and 

wear mechanisms of c-c composites.  The aim of this work was to establish and 

quantify the existence of oxidation using nitrogen as an ‘inert’ reference. During 

their experiments the specimen was allowed to reach 700°c by frictional heating 

and in line with the work of Murdi et al [63] demonstrated that c-c composite 

materials undergo and abrupt transition from normal wear to dusting wear 

regime as a result of the desorption of physisorbed water vapour from the 

rubbing surface.  However, in nitrogen materials undergo dusting wear only owing 

to lack of lubrication vapour meaning that for the same applied loads a clutch in a 

nitrogen environment will have a higher coefficient of friction than for the same 

clutch in ambient air.  

 

Further works by Yen and Ishihara [74] investigated the temperature dependent 

triboligical regimes and oxidation of carbon-carbon composites up to 1800°c.  This 
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was a follow on of their previous work and built upon it with the inclusion of wear 

loss at the rubbing surface and oxidation loss at the exterior of the specimen. The 

friction and wear of the carbon-carbon composite material s in ambient air up to 

1800°c was characterised by three temperature dependant triboligical regimes; 

normal wear, water- desorption dusting wear and  oxygen – desorption dusting 

wear. In normal wear the friction is low because water vapour in the air acts like a 

lubricant to inhibit the dusting wear. Above 150-200°c the desorption of water 

vapour from the carbon surface initiates this dusting wear regime and an increase 

in friction can be seen.  The next transition at 650-700°c corresponds to the 

desorption of chemisorbed oxygen on the carbon surface leading to this dusting 

wear regime. In addition the pair reported that the exterior of the specimen 

experience sever oxidation losses when the maximum temperature exceeded the  

failure temperature of the oxidation inhibitor at 1050°c hence they concluded 

that the maximum operation temperature of c-c is limited by oxidation.  Further 

work upon oxidation inhibitors is discussed in section 3.8. 

 

Weaver [75] performed a heat transfer analysis of a clutch plate in order to 

determine the transient response of a disk due to the time varying heat flux 

boundary condition.  For two disks in sliding contact without cooling a measure of 

the fraction of the heat generated at the interface that transfers into each disk 

was determined and used in determining the maximum material temperature 

limits for disk of specific dimensions and material properties. He also proposed 

that the maximum and minimum cyclic temperatures could be useful in 

determining high cycle fatigue due to thermal stress.  Chen and Ju [76] also 

imparted their continued research on carbon-carbon composites by publishing a 

paper on the low energy tribological behaviour of carbon-carbon composites. 

Referring back to the works of Murdie et al [63] and Ju et al [50] [53] the paper 

presents further information into type i and type ii wear and reported upon the 

fact that for a pitch resin CVI the friction coefficient slightly increased after an 

initial period of sliding but this increase was not reflected in the weight loss curve 

indicating that wear rate was consistent after a stable debris film was generated 

and began to lubricate the disks. 
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Following on from this paper, Ju collaborated with Lee and Chern Lin [77] to 

investigate the braking behaviour of carbon-carbon composites by performing 

simulated stops using a home-made disc-on-disc sliding wear tester. The 

specimen is a 2D pitch-resin CVI hybrid matrix, with density of  

1.74 gcm-3   and Vf of approximately 50%.  

 

Two sliding speeds are investigated, 1400rpm and 2000rpm, as well as two initial 

surface morphologies. The first group of specimens are designated AP (as-

polished) with surface roughness 0.9µm, whilst the second group are BI (broken-

in) and have surface roughness 2.0µm. 

 

Testing of both surfaces was carried out at both initial sliding speeds. It was found 

that the initial surface condition had a significant influence on the braking 

performance of the sample, and the stopping time was more dependent on this 

than on initial speed. The polished sample at 1400rpm did not undergo a frictional 

transition, and examination of the surface morphology showed the surface was 

covered in a smooth thin debris film, which had filled small pores. Larger pores 

were still recognisable. Frictional transitions were shown by the authors to be a 

consequence of a change in the frictional film properties. 

 

Under the same test conditions, broken-in (BI) specimens are shown to display 

higher friction coefficients than those of as-polished samples. The highest 

temperature rise (measured via a thermocouple inserted 1mm beneath the 

friction surface) was observed in the BI 2000rpm test. 

V shape variations are observed in the post-transitional friction coefficients after 

Type I to Type II transition had occurred. It is suggested that severe structural 

damage during the final stage of the braking event (where differential speed is 

low) is responsible for this final increase, as the friction film delaminates and 

cannot be recovered. 

 

This work is further expanded upon by Samah et al [78], whose work investigated 

the damage of carbon-carbon composites surfaces under high pressure and sheer 

strain in 2D and 3D construction.  Using SEM and EDS (energy, dispersive x-ray 

spectroscopy) the authors research the friction track properties and describe the 
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role of the transferred layers in friction and wear. Patches of scattered wear debris 

and worn fibres with longitudinally oriented structure were clearly visible on the 

contact surface of the 2D surfaces. The friction track of the 3D carbon-carbon is 

covered with a layer of film like structure debris leading to a lower wear rate.   

 

Ju, Chern Lin, Lee and Kuo continued their extended carbon-carbon work in the 

investigation of the coefficient of friction between two c-c discs over repeated 

simulated braking manoeuvres [79]. A lab dynamometer is used to engage a rotor 

at 1400rpm with the stator, via a constant pressure of 1.7MPa until the rotor is 

completely stopped. This process is repeated 45 times. The discs are allowed to 

cool before each event is recommenced. 

 

The coefficient of friction during each event is recorded, and a photograph of the 

rotor friction surface is taken after each event. 

 

For PAN-CVI and PAN-pitch composite, it is shown that coefficient of friction 

varies significantly over the course of the 45 events. Definite transitions are 

observed, with pre-transitional coefficient of friction around 0.2, and post-

transitional coefficient of friction in the region of 0.4 to 0.8. The corresponding 

worn surface morphology (from the photographs of the friction surfaces) shows 

that pre-transitional, low friction coefficients are associated with smooth uniform 

surfaces. Post-transitional coefficients usually corresponded to rough non-uniform 

morphology. When severe structural damage is observed, the coefficient of 

friction is upwards of 0.8. It is seen that as the surface morphology recovers from 

damaged and non-uniform back to smooth and uniform, the coefficient of friction 

also drops. 

 

Pitch-resin-CVI composite is shown to perform differently in tribological terms, in 

that transition from low-friction to high-friction occurred very quickly. However, 

the coefficient of friction over the duration of the 40 events (by event 40, the 

surface had degraded so much that the experiment could not reach the 45 event 

conclusion) was still seen to fluctuate between those typical of Type II and Type III 

surface morphology. Whilst the speeds and pressures used in this investigation do 

not compare to those required by this work, the method and technique is 
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interesting and it would be of value to perform a similar study using typical RS 

operating conditions. 

 

Shin et al followed on from this work with their paper on the tribological 

properties of 2D C-C composites [80]. They concluded that the exposure of the 

fabric filler at the friction surface was found to have a dominant effect on the 

increase of friction coefficient and wear rate, but also that the friction coefficient 

decreases and wear rate increases when the kinetic energy loading is increased.   

 

A small amount of research was also done in this field by Mäki, who produced two 

papers on wet clutch tribology [81], and the influence of surface topography on 

the friction characteristics in wet clutch applications [82]. In these papers, he looks 

at sintered materials, and whilst not directly relevant to the work in this project, 

he outlines some interesting proposals regarding clutch wear. By using scanning 

interferometry, the topography can be measured, and results from this showed 

that the changes in the topography influence the friction characteristics of the 

clutch. So, this opens up the possibility of research upon this area within the field 

of C-C clutches. By looking at the worn clutch plates, it may be possible to 

determine what friction characteristics that stack of plates would have, and in 

turn, be able to more accurately predict the mu value for its future uses.  

 

Another team to research into the surface roughness and topography was Yuan et 

al [83]. However, rather than carbon-carbon material, they looked into the wear 

conditions of general machinery, and so their findings were very generalised.  By 

collecting and analysing the wear particles generated during the ‘running in’ and 

‘steady state’ wear stages, the team enhanced the general understanding of wear 

mechanisms, and also used this data in the prediction of the future wear 

characteristics of the machinery in question. Currently this is done routinely with 

race clutches, with the stack analysed after each run.  

 

In the paper ‘Oxidation Kinetics and Mechanisms of 2D C-C Composites’ [84] Guo, 

Xiao, Yasuda and Cheng tested a series of c-c samples under different energy 

conditions. Although actual energy values are presented, comparison with data 

presented within other scientific reports and with data possessed by ourselves is 
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difficult as specimen dimensions (such as mass and friction surface area) are not 

included. This is an annoying oversight, although the observed trends can be 

compared against those from other data. 

 

Examination of the specimens by hand showed that the worn surfaces of the 

composite consisted of several bands with different reflectivities. In general, high 

energy dyno-test conditions resulted in a greater extent of bright bands on the 

wear surface. Those bright bands are believed by the author to represent areas of 

high contact during sliding.  

 

Wear debris in dull bands is generally found to be particulate in nature, 

comprising particles of fibre, CVI and resin. The particulate type debris causes 

abrasive wear and increase both the friction coefficient and wear rate. 

 

It was observed that a wear-induced amorphous film, around 1µm in size, was 

non-uniformly distributed across the entire friction surface. The high energy 

samples are found to yield lower friction coefficient than the low energy samples. 

This finding is linked by the author to the smooth friction film generated from 

ground and compacted wear debris. The effect of energy formation on the 

formation of a friction film is two-fold. Firstly, under a higher energy braking 

event, a higher pressure is applied to the friction surfaces, which can assist the 

deformation of wear particles to form a debris film. Secondly, a higher surface 

temperature is induced under high energy conditions, which enhances plastic 

deformation of the wear particles to form the film. 

 

Under low energy conditions however, the particulate-type debris observed in 

this study dominates the worn surface. These worn particles may cause abrasive 

wear, which is the most damaging mode in terms of the wear of c-c brakes. This 

surface wear has been evidenced by the presence of surfaces scratches/grooves 

that run parallel to the sliding direction, as well as the fact that the majority of 

weight loss actually occurs during low energy braking. The author highlights that 

the temperature of rubbing surfaces can exceed 1000°C, which has significant 

consequences as oxidation can occur at these temperature levels. 
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The effects of Oxidation were further observed in the pin-on-disk experiments of 

Gouider et al [85]. The friction of the c-c was studied using a pin-on-disk tester 

equipped with a mass spectrometer, allowing for gas exchange analysis on the 

contact spot. Oxidation of regions or particles is detected by a release of CO2, and 

generally begins when the transmission from the low to high friction and dusting 

regime occurs, after this point, oxidation is maintained as long as friction and wear 

remain high.  

 

 

3.8 Surface and Heat Treatments 

As stated in previous papers mentioned in this literature survey, clutch plate 

surface treatments have been investigated and reported upon favourably. Their 

use is based on the fact that the surface treatments alter the thermomechanical 

properties of the material by inhibiting factors such as oxidation. In 1992, work 

was published by Yesnik and Lam on surface treatments that would improve the 

frictional characteristics of the clutch [86]. Their paper outlines an experiment in 

which a separator plate with a titanium nitride coating was used in a sintered 

clutch to increase the friction of the plate, whilst not affecting the wear rate. The 

conclusions of the work were that friction coefficients were enhanced by up to 

25%, and also remained at a stable level throughout the course of the event. 

Following on from this early work, Liu et al [87] investigated the relationship 

between graphitisation and frictional behaviour of DLC coatings. Although, like 

the work of Yesnik and Lam, their work was not directly related to C-C materials, 

the theories promoted in the paper were of interest. The authors state that the 

application of DLC (diamond like coatings) to various metallic substrates reduces 

the steady state friction coefficient due to the formation of a low friction 

tribolayer caused by the enhancement of shear deformation and transformation 

of the DLC structure into graphite at higher loading cases. In this case, it was not 

the surface treatment itself that was the friction modulator, it was the breakdown 

of the treatment.  

 

Carbon-carbon was tested with an oxidation inhibitor at low energies by Park, Seo 

and Lee [88].  In this study, the C-C composites were impregnated with different 

amounts of MoSi2, which was used as an oxidation inhibitor. When compared to a 
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control plate with no oxidation inhibitors, the MoSi2 plates showed an 

improvement in activation energies for wear resistance owing to the reduction of 

cracked interfaces and the formation of a lubrative powdery debris film and were 

less sensitive to the frictional transition at approximately 150 - 180°C that the non 

treated plates underwent. The author placed these findings down to the effect of 

the MoSi2 filler, which increased the adherent surface areas between the 

fibres/matrix/inorganic powders and/or decreased the porosity between the fibre 

and matrix, leading to an increased abrasion resistance. 

 

The effect of heat treatment was investigated by Luo et al [56] and in their 

investigation preforms are fabricated from layers of carbon cloth, Vf of 40%, and 

densified using the rapid directional diffusion chemical vapour infiltration (RDD 

CVI) process. The average density of the specimens was 1.75 g/cm3. The 

specimens are divided into groups A,B,C and D (each group having a stator and a 

rotor disc), with each group heat treated at 1800°C, 1800°C then 2000°C, 2000°C 

and 2300°C respectively. The maximum temperature was always reached at a 

time of 1 hour. The preforms are finally machined into discs of 8mm thickness, 

55mm internal diameter and 77mm outer diameter. 

 

The preforms are tested on a dynamometer in dry conditions and allowing specific 

pressure, angular velocity and brake moment inertia to be changed. For each 

tested condition, seven stops were performed to ensure the friction surface 

contact area exceeded 80%. Following satisfaction of this condition, no less than 

five stops were performed for each condition. 

 

The results of x-ray diffraction analysis showed that increasing heat treatment 

temperature (HTT) led to an increase in crystallite height and width, and a 

reduction in the interlayer spacing of the matrix carbon and this results in less 

cross-linking coupled with a more preferential orientation of the infiltration 

carbon crystallites. A consequence of this is an increased delamination tendency 

of the matrix, forming a lubricating debris film on the friction surfaces which 

remained present throughout the entire braking process. 
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Increased HTT also causes a substantial weakening of the fibre/matrix bond and a 

relaxation of the stresses within the as-deposited composites, making 

delamination during braking easier. Friction surface temperature during a braking 

manoeuvre is reduced when the material has undergone higher HTT. This 

indicates that the thermal conductivity increases with HTT.  The effect of specific 

pressure upon the friction surface temperature for constant energy dissipation 

was shown to be negligible. Increased pressure did not lead to an increased 

temperature. 

 

It has been previously explained that higher HTT results in an increased 

delamination characteristic. For a specimen with high HTT, the initial plate contact 

generates powdery debris. It was found that for a low energy braking manoeuvre, 

the debris generated initially did not form a compact lubricating film. However, 

when the manoeuvre was of normal and high energy, the debris densifies into a 

lubricating debris film and hence the friction coefficient is lower. 

 

Most recently, research into the durability prediction technology has been 

undertaken on behalf of Honda by Saito et al [89]. The team outlines a series of 

tests and measurements that confirm the correlation between initial wear and disc 

contact pressure when the clutch is engaged, and also between the steady wear 

and the plate temperature.  

Enzl, a researcher working on behalf of Skoda under the supervision of Honner, 

undertook extensive research into the area of brake system coatings [90], [91]. By 

looking into the area of machine parts, Enzl researched into the possibility of using 

coatings on brake discs to alter their surface properties, whilst allowing the bulk 

requirements for strength, weight and costs to be chosen independently of their 

wear resistance or other surface properties. Although this paper was merely a 

research one, with no obvious conclusions, this work was of significance to the 

project, as it focused specifically on surface properties of a component and their 

interaction with the base material. Modelling techniques used and results analysis 

of thermal barrier coatings have highlighted that regardless of the desire to limit 

the analysis to the surface, its interaction with the bulk of the material will always 

determine the outcome of the analysis. With regards to the specific application of 

race clutch plates, this was particularly important as the plates use ‘z fibres’ which 
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transmit the energy through the thickness of the disc, away from the surface, 

which helps to eliminate saturation.  

 

In a 2006 paper, Lam, Chavdar and Newcomb [92] describe new generation 

friction materials and technologies. Similar to the works of Enzl and Honner [93] 

[94], Lam et al investigate the desired characteristics for material facings with 

respect to high energy transfer, high coefficient of friction and durability. The 

paper draws together basic principles of clutch material manufacture and 

describes how the properties can be optimized to prevent the occurrence of ‘hot 

spots’ and clutch shudder in wet clutch applications. Clutch shudder in wet 

clutches is also addressed by Berglund et al [95] in their paper on clutch 

degradation monitored by lubricant analysis.  

 

 

3.9 Heat Measurement Sensors 

Following on from the work of Enzl and Honner, much has been done on the field 

of high performance brakes by the University of West Bohemia’s New 

Technologies Research Centre. A paper written by M Honner and J Kunes of the 

University [94] detailed the development of a system for fast non-contact 

measurement of temperature distribution on a brake disc surface during a braking 

event, which lead on to a further investigation of phenomena connected to 

extreme braking, including ‘hot spots’. By using one channel two colour infrared, 

Honner had enabled an accurate representation of the brake disc to be mapped, 

with surprising results and has proved the existence of ‘hotspots’ on a cast iron 

brake disc, despite no apparent reason for them to be there. This work 

highlighted how infrared can be effectively used to draw an illustration of the heat 

variation over a complete disc, and also describes the methods used.  

 

Honner has taken the work of this paper further in his paper entitled ‘Origination 

and Consequences of Thermo-mechanical Instabilities in Brake Systems’ [95]. The 

work focuses hot spots, their causes and effects. It is interesting to note that the 

hot spots result in frictional heating, thermo elastic distortion and elastic contact 

– which are experienced by the driver as brake judder. Thermal judder causing the 

hot spots can also cause permanent distortions and cracking to the disc as well as 
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brake fade and excessive wear. By looking at the macro and micro scale of the 

thermo-mechanical instabilities, Honner derived and verified experimental 

methods and instruments for the prediction, early diagnosis and control of the 

thermal instabilities. By measuring the temperatures and vibrations on brake 

dynamometers and on cars, and coupling this with computer simulation of the 

thermo elastic instability origination it was possible to characterise the effects, 

and to minimise them. This work was of particular interest to the work 

undertaken with the clutch, especially as it featured how to account for the hot 

spot phenomena when creating a mathematical model, indicating that if hot 

spotting was found within the clutch, then it would be possible to emulate the 

results within a mathematical model, using the brake data.  

 

The nature of the environment in which the clutch plate is enclosed means that 

normal methods of temperature measurement are difficult to utilise. Not only are 

the plate faces entirely covered by other clutch components, but these 

components are also moving in relation to the plate. The plate is also susceptible 

to wear, which is a contributing difficulty with any possible temperature 

measurement methods.  

 

Dr. Fritz Brunner [96] presented a paper to the construction industry, giving an 

overview of fibre optic sensors that could be used within the industry. His work 

highlights that the use of fibre optics can result in misleading outcomes when 

being used in environments where the optical fibre is likely to be susceptible to 

pressure and deformation, as these qualities result in a loss of intensity. The rest 

of his paper continues to discuss how fibre optics can be used to measure strain, a 

property that will have little effect upon the friction – temperature relationship of 

the clutch plate material. Because of his construction background, Brunner 

perhaps may not provide further useful direction to this work. However, his proof 

and quantification of the effects of pressure and deformation could prove useful.  

 

Engine combustion chamber temperature measurement is a field very akin to the 

problem that is faced with the clutch plate temperature measurement. Infrared 

imaging has been utilised and in 1993, a high speed spectral imaging system was 

used by the Ford Motor Co, in association with Jiang, Kent, McComiskey, Qian and 
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Rhee [97] to create a thermal image within the combustion chamber of an engine. 

Poorman, Xia and Wlodarczyk of Optrand Inc [98] report upon the use of fibre 

optic combustion pressure sensors for engine control and monitoring. Again, like 

the Brunner paper, this work highlights how fibre optics can be used for pressure 

sensing. Although this may not appear to be of significant relevance to the field of 

clutch plate temperature measurement, the principles applied to getting the fibre 

optic cabling into the chamber can be transposed onto the same difficulties of 

getting a cable into the spinning clutch. Special measurement spark plugs were 

used, with an off axis, small diameter central electrode, and are a compromise of 

either durability or performance. This work could be applicable when it comes to 

considering the possibility of routing fibre optic cables into the clutch assembly.  

 

The work of Poorman [98] et al was closely followed by research into measuring 

fuel film dynamics of a port injected engine using optical sensors by Timothy 

Coste of Control Devices Inc, and Lawrence Evers of the Michigan Technological 

University [99]. The measurement system presented was designed specifically to 

allow for the constraints of measuring fuel film in an intake port. The sensing face 

is small and mounted flush with the surface of the intake port. This concept could 

be very useful if there were a way to mount the sensing face flush with the edge 

of the clutch plate face. Depending on the wear, this concept could prove 

adaptable to the project, and further investigations into the wear characteristics 

of the plate were undertaken.  

 

In 2000, Hall and Zuzek of the University of Texas [100] developed a fibre optic 

spectroscopic sensor to measure the time-resolved concentration of exhaust gas 

recirculated into an intake manifold of an engine. More relevant engine 

measurement work was published by the SAE in 2002. Wilson et al [101] reported 

upon the ‘High Bandwidth Heat Transfer and Optical Measurements in an 

Instrumented Spark Ignition Internal Combustion Engine’. By using a combination 

of three different methods, combustion within a single cylinder four stroke engine 

was investigated. Thin film gauges, fibre optic instrumentation and high speed 

video were all used. The high speed video method is of particular interest to the 

project, as it is highly dependant upon the speed of the engine and the frame rate 

of the camera. In this instance, with an engine speed of 2000rpm and a frame rate 
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of 500 frames per second, it was possible to record one frame for every 24° of 

crank angle. This is an interesting concept to note, as the clutch will be spinning 

and the work of Wilson et al highlights the limitations of temperature recording at 

high speeds, and how little data is to be gained per revolution of the component. 

With reference to the clutch, which spins at up to 20,000rpm, the same frame 

rate would mean that only one recording is taken every 240° or 2/3rds of a 

revolution. 

 

Fibre optics were also used in conjunction with laser absorption thermometry by 

Levick and Edwards of the National Physical Laboratory in the UK [102]. Laser 

absorption radiation thermometry is a non contact technique based on photo 

thermal radiometry, which effectively allows the temperature to be measured 

regardless of the emissivity of the target, reflected background radiation, or 

absorptions from the atmosphere. However useful this technique may seem, it is 

of minor significance to the work of clutch plate temperature measurement, as 

the process requires modulation of the surface temperature. Due to this 

modulation, it is a comparatively slow process, and would be of very little use to 

the project.  

 

A laser interferometry system was also utilised to measure the temperature of 

unburned gas in a spark ignition engine. The Yamaha Motor Company, in 

conjunction with Okayama University in Japan [103] used a polarization-

preserving fibre and metal mirror to deliver the test beam into the engine, and to 

measure the temperature of the unburned gas before knocking [104]. This 

method is limited to only measuring within its line of sight due to the very 

restricted nature of the engine cylinder. Heterodyne interferometry was used due 

to its insensitivity to the fluctuations in signal intensity caused by mechanical 

vibration. This work is particularly applicable to clutch temperature measurement 

and the properties of the heterodyne interferometry may be of use further on in 

the investigation. 

 

Possibly the most significant work is that of Litos, Lang and Kunes [105], who have 

used both fibre optic and infrared detectors in dynamic temperature field 

measurements. The paper discusses the limiting factors associated with using 
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infrared, and highlights that operating temperature is a paramount consideration, 

and cooling is required. Litos et al used a two colour infrared detector with an 

InSb layer to measure the shorter wavelengths and an HgCdTe detector to 

measure the longer ones, while using the fibre optics to conduct the light from 

the brake disc to the detector. The team concluded that by using the two colour 

detector, the emissivity problem is greatly reduced, which will be if high 

significance to the issue that carbon clutch discs are almost entirely absorbent to 

radiation. Two colour detection would allow for this absorbance and still give 

accurate results [106].  

 

Jones, Gardiner and Richards identified a need for the measurement of aluminium 

whilst moving along on a conveyor belt during processing [107]. By using a two 

colour infrared system, with Ge and PbS and then using each band separately as a 

one colour brightness detector, a range of 250°C to 600°C was measured. The trio 

conclude that there is no significant advantage between the one colour or two 

colour method. Reynolds [108] suggests that by using a two colour ratio method, 

significantly lower errors than that of a brightness pyrometer would not be 

present. In fact, if the emissivity value was incorrectly measured, not obtainable 

or constantly changing (as with the carbon clutch face) then the ratio method 

would prove to be more accurate. Ratio infrared thermometry has also been used 

in the exhaust system in the works of Kong and Shih [109], who used the 

technique to measure the temperature distribution of diesel particulate filters. A 

two colour sensor using PbS and PbSe was used for this application and was used 

at temperatures ranging to 400°C. By 2005, two colour infrared was second only 

to pressure measurement in its use as an in-cylinder diagnostic tool. Associates of 

the Brigham Young University [110] have used the two colour infrared application 

to analyse the optical thickness of soot. Soot is of a very similar absorbance to 

carbon dust, and thus this work can be considered to be comparable. If it is 

possible to measure the thickness of such soot through infrared means, then it 

would also indicate that carbon dust could also be accounted for.  

 

The European Space Agency [111] [112] has undertaken work on the development 

of infrared sensors for space applications which are to be used on future earth 

observation satellites. Using short wavelengths and a one colour application, the 
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aim is to observe very low frequencies of light which have travelled a long way. 

This calls for a photon amplifier which allows the signals to be multiplied and 

accurately read. This is a stark contrast to the application of clutch temperature 

measurement, as the light emitted is very bright and this could actually saturate a 

detector if it was not selected properly, rendering the results highly inaccurate. 

This highlights the need for the selection of the correct type of infrared detector, 

to allow for maximum accuracy.  

 

Using two colour infrared, Howe [113] looks at the thermal imaging aspect of the 

infra red uses in respect to ‘night vision’. Although still infra red, this uses a 

different wavelength of IR in its application when compared to sensors used for 

measuring the clutch temperature. This is because the temperatures being 

analysed are in a much lower range for the night vision application.  

 

 

3.10 Experimental Testing 

In 2009, Ivanovic, Herold and Deur, in collaboration with Jaguar Cars Ltd. [114] 

experimentally characterised wet clutch friction using a rig. They concluded that it 

was possible to effectively use a quasi-static test procedure for identifying the co-

efficient of friction with respect to clutch slip speed, applied force and interface 

temperature. Following on from this in 2012, the same three authors, this time in 

collaboration with the Ford Motor Co. [115] describe the design of test rigs for a 

dry clutch and its electromechanical actuator. The first rig (the actuation system 

rig) being an actuation system test rig, provides identification of the actuation 

system parameters and characterises the overall system behavior, and includes a 

built in sensor for force measurement normal to the clutch plate faces.  The 

second of these rigs (the transmission test rig) provides more comprehensive 

characterisation of the actuation system, and of the clutch torque transfer 

dynamics, as well as the friction coefficient, wear and thermal dynamic properties. 

The transmission test rig is very similar to that used by AP racing, except for the 

inclusion of a gearbox within the system. This is a standard set up for many 

gearbox test rigs used by many F1 teams including Lotus, McLaren and Mercedes.  
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The Ford Motor Co, along with LuK USA conducted a study into thermal properties 

and the development of a durability test profile in wet clutch launches, with a 

particular focus onshudder durability [116]. Using a configuration of clutch plates, 

including radial bands, the heat transfer was measured. Testing concluded that the 

radial plate was one of those with the better heat transfer characteristics, 

compared to waffle-parallel patterns.  

 

Roger and Gregori [117] also investigated judder, using a methodology to 

determine the clutch facing sensitivity. A bench test was developed specifically to 

measure the judder sensitivity of various clutch materials, and this was split down 

into two parts; firstly a numerical simulation to narrow the test materials down to 

three main candidates, and then the second part, where the practical comparison 

was performed and used to validate the efficiency of the numerical simulations, as 

well as to classify the judder sensitivity of the three materials in question.  

 

In 2013 Hoic, Herold, Kranjcevic and Duer, in association with Ivanovic of Ford 

Motor Co. [118] followed on from their 2012 work on the design of test rigs for a 

dry clutch and its electromechanical actuator [119] by experimentally 

characterising and modelling the thermal expansion effects of a dry dual clutch. 

With the earlier demonstration of the torque of a electromechanically actuated 

clutch depending largely on the temperature-dependence of the clutch friction 

coefficient and / or the thermal expansion of the clutch, the 2013 paper looks into 

this second element and presents results of experimental characterisation and 

mathematical modelling of the thermal effects on torque control accuracy.  

 

Experimental characterisation was conducted by recording the torque vs 

temperature curves during the clutch cooling phase from 200 degrees celcius to 40 

degrees, in steps of 10 degrees C. In each recording, the clutch was actuated in a 

sinusoidal manner for three periods, whilst the clutch was slipped at a constant 

speed. The results from this experimental element of the testing clearly concluded 

that there is considerable influence on both the clearance and torque transfer due 

to thermal expansion. The mathematical model was then developed to calculate 

the thermal clearance and this was then used to ‘correct’ the actuator position. 

This paper supports the theory put forward in this thesis in Chapter 14 – Further 
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work, where thermal expansion testing is outlined as the next logical step in this 

body of work.  

 

 

3.11 Mathematical Modelling and Prediction 

Sacks and Joskowicz [119] present an analysis program for rigid part mechanisms, 

such as brakes using MATLAB [120]. The program performs a kinematic simulation 

of the driving motions and part contacts, with a very limited simulation of gravity, 

springs and friction. This is a very wide ranging model, as it claims that its 

algorithm captures the workings of up to 2500 mechanisms. This program is made 

up within a CAD package. MATLAB has been integrated into the McLaren 

Electronic Systems  ATLAS (Advanced Telemetry Linked Acquisition System) 

software used in powertrain test cells, and this work highlights that it may be 

possible that a MATLAB model could be integrated within the software running 

the clutch dynamometer. This would save valuable time, and enable for more 

accurate results, as the process of data transfer between the two programs would 

no longer be of any issue. Blunsdon et al [121] used CFD to explore the suitability 

of infrared emission as a combustion diagnostic. This work could be applicable to 

the project, as a CFD model of the flow of the heat within the clutch would enable 

an accurate thermal map to be determined, and to investigate the areas where 

the heat dissipates faster. 

 

In the works of J and P Padovan [122], the wear of intermittently slipping high 

speed interfaces was modelled using finite element analysis. The paper develops a 

methodology and associated algorithms to model the wearing process in areas of 

intermittent slipping in mechanical parts. This model included modelling material 

degradation and its effects on the progressive wear of the surface and was 

presented within the example of an aircraft tyre model. This model was of interest 

to the project as it was the first paper to mention the effects of the material 

degradation and its consequent effect upon the further wear. The wear model is 

self adaptive and has a ‘death’ option which kills the mesh nodes that have 

satisfied the wear criteria and an ongoing re-mesh and concomitant interpolation 

onto new nodes.  
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Lebedev and Belyaev [123] presented a paper in 1984 regarding the 

determination of the temperature field of a multidisc clutch. Although not carbon-

carbon, this work was interest due to the modelling of the temperature field 

during and after the slipping event. The initial / boundary value for the heat 

conduction is formulated for the model in terms of generalised functions, and 

offers only a weak solution to the problem. However, a year later, Zagrodzki [124] 

offered a further insight into this by using the finite element method to determine 

the temperature field in a similar steel / friction lining clutch, only this time, it was 

in wet conditions. In his paper, Zagrodzki uses an unsteady heat conduction model 

to account for the non homogeneity of the materials, states initial boundary 

conditions and derives the heat conduction equations. Thermal stresses are also 

modelled and calculations for these were performed under normal clutch loading 

conditions. The results from this paper mainly focused upon the determination of 

the factors permitting in a reduction of thermal stress. Yang et al [125] also 

studied this same line of work a year later after Zagrodski published his paper. 

Their mathematical model also used FEA to describe the heat transfer during the 

engagement cycles of a wet clutch and their model was compared to 

experimental measurements. What this paper offers in addition its predecessors 

is that it considers the effects of the fluid hydrodynamics and further heat transfer 

factors during the engagement period. The model proved to have a good level of 

accuracy when compared to the experimentally determined results, and gives 

guidelines regarding the important factors that need to be included when 

thermally modelling a clutch. These previous works, and especially this one [125] 

offer a unique starting point when considering a mathematical model for F1 

applications.  

 

Wet clutch thermal characteristics continued to be modelled throughout the late 

1990s and early 2000s, with further papers being presented by Yang et al [126], 

Jang [127] [128], Tatara and Payvar [129], and Gao and Barber [1230]. However, 

none of these papers seemed to offer any new contributions to the field, and 

simply re-instated the theories and models put across by the earlier papers. 

 

One of the first papers to model driveline systems without the use of FEA was 

Denery [131] who developed motion control in SimuLink [132]. Whilst using 
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SimuLink to primarily develop an embedded control system for a hovercraft, the 

author places significant emphasis upon the modelling of the powertrain and the 

clutch. This is done using SimDriveline [133], an add-on to the original SimuLink 

package. SimDriveline enables efficient modelling of 1 dimensional rotational 

mechanical systems, and includes block sets for all of the major driveline 

components. Denery [131] describes the advantages and disadvantages of using 

such a modelling package and concludes that the efficiency of the physics based 

methods used by SimDriveline in delivering a model makes the use of this method 

of modelling highly desirable when compared to traditional FEA methods for the 

majority of modelling tasks. He also notes that by including mathematical and 

data driven approaches (such as look up tables or using real data), it would be 

possible to deliver ‘the most accurate, complete, computationally efficient and 

easily built models’.  An important factor to note regarding the author however is 

that he is an employee, and writing on behalf of, The Mathworks, who are the 

manufacturer of the SimuLink and SimDriveline products. This makes his 

conclusions seem a little biased towards the functionality and accuracy of the 

product in question.  

 

Satapathy and Bijwe [134] used multiple criteria decision modelling (MCDM) to 

optimise several conflicting criteria dependent systems. Their paper outlines a 

model built around the performance defining attributes of mu fade, coefficient of 

friction recovery, performance mu, wear and temperature rise which was used to 

rank five non-asbestos fibre reinforced organic friction materials. By using an out-

ranking matrix, triangularised to obtain an implicit ordering of options, a pair-wise 

comparison of the five options was used to determine the suitability of each 

material for certain applications. This work is more decision modelling than 

mathematical modelling, but its theories remain of interest to this project. 

Another paper with a non-direct mathematical modelling is the one presented by 

Zhang et al [1357]. Their paper outlines the modelling of the electronic systems 

used in the optimal control of automatic clutch systems. Again, although this is 

not of direct use to the project, the concept of optimising the clutch engagement 

through the electronic control system would be a logical next step after the 

thermal / friction model is created, and with this in mind, such a possibility should 
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be accounted for within any future mathematical model created for the F1 launch 

system.  

 

In 2003, Khamlichi et al [136] presented their paper on optimising the thermal 

properties of clutch facings. Here they modelled the thermal properties of general 

organic clutch facings. Starting with the material formulation the team use the 

‘rule of mixtures’ approach to determine the local thermal properties of the plate 

using the assumption that the material acts homogenously. Although this paper 

omits any difference in surface states, it does mention spot temperature rises. 

This is the first paper to mention the possibility of non-complete and uniform 

contact between the two faces, but does not offer much information regarding 

the prediction and modelling of such an occurrence unless the spots are 

considered to be long term and stable.  

 

In 2003, Kovrov, Koshkina and Moshev [137] presented an article outlining the 

study of interfacial friction in filled polymers. They undertook experiments on 

physical models which represented an elastic matrix contacting with the friction 

surface. The friction law obtained experimentally was then used to develop 

algorithms describing the processes of cyclic loading and relaxation in filled 

polymers in the event of permanent contact between the matrix and a hard 

inclusion.  The problems of modelling in such a way is that any experimental 

errors that may have occurred, either through anomalous results, rounding errors 

or sensor discrepancies, will have been transferred through into the model.  

 

Liu and Bamba [138] used an analytical model to obtain results of sliding friction 

in an overrunning CVT clutch. By beginning with the relatively simple equations 

for sliding friction of dry contacts, the pair then moved on to modelling the sliding 

friction of lubricated contacts by using the Reynolds equation in describing the 

lubrication. Elastic deformation of the lubricant was then modelled, along with 

the film thickness and density – pressure relationship. This was of future use 

when modelling the effects of the clutch wear particles, which have a lubrication 

effect upon the clutch, as described earlier in this literature survey 
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With more than half of the world’s carbon-carbon material used in aircraft braking 

systems, this is an excellent source of carbon-carbon research information. 

Aircraft brakes are very much like a clutch, in that the friction faces are entirely 

covered. Therefore, the paper by Marx et al [139], entitled ‘Measurement of 

Interfacial Temperatures during Testing of a Subscale Aircraft Brake’ is of 

particular relevance to the project. The work focuses upon a dynamometer test 

using fibre optic inserts within the stationary brake ring, and highlights how the 

temperature distribution varies with the dynamometer test conditions. Although 

this work is very similar, it is a simplified example of the clutch, as one of the two 

components is stationary. On a clutch dynamometer both parts are spinning, 

which complicates the condition.  

 

The work of Marx et al goes on to present a 2D axis-symmetric finite element 

model and incorporates the measured temperature dependence of the thermal 

diffusivity and specific heat capacity. The initial calculations are specifically 

relevant, as they provide some good grounding for a mathematical model for this 

type of configuration, so can be applied to a clutch model.  

 

Similar to clutches in their mechanical requirements, Mace [14-] of AP Racing has 

done work in the area of thermally mapping the temperature profile of a brake 

disc using the Geostar COSMOS computer simulation package [141] [142]. The 

model was based on a lot of practical dynamometer work, which had measured 

the temperature of the brake disc directly, before then going on to be modelled. 

This sort of modelling is heavily reliant upon ensuring that the model is 100% 

representative of the practical situation which it is modelling, otherwise large 

errors could occur. This work can be directly compared to the modelling situation 

within the clutch plate stack due to similarities within the materials used and the 

nature of the heat kinetics. If the same methods were to be used, then a method 

of accurately measuring the temperature of the clutch whilst it is under load 

would need to be determined. Once again, however, this level of modelling is 

based on FEA.  

 

Possibly the closest research found to the requirement of an F1 fiction model is 

presented in a paper written by Zhao et al [143]. Their work outlines the 
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behaviour of a composite multidisc clutch subjected to a mechanically and 

frictionally excited thermal load. The team uses a 2D axisymmetric finite element 

model to simulate the thermo-mechanical behaviour of the clutch by using 

temperature – displacement coupled four node bilinear axisymmetric elements. 

Since the gradient of localised temperature near the friction surface was more 

prevalent, a finer mesh was applied here to better capture the thermo-

mechanical behaviour. Using ABAQUS [144], contact pairs were set up between 

the friction surfaces. Within ABAQUS, a sub-routine was written in FORTRAN to 

define the frictional behaviour between the contacting surfaces, and this was only 

called upon when the clutch stack was clamped up. In this sub routine, the heat 

generated by friction was simply defined as: 

 

Δq = µ r ω P Δt Equation 3.10a 

 

Where; 

Δq  = the heat flux increment 

µ = the friction coefficient 

r = mean effective radius 

ω = angular velocity 

P = contact pressure 

Δt  = the time increment 

 

The team concluded that the friction surface closest to the back plate of the multi-

plate clutch experiences the highest temperature (probably due to its location 

near the basket and incapability to easily disperse heat), and that the highest 

temperature was noted approximately 2s into a 4s slip event, under normal 

operating conditions. They also state that the large variation during operation 

induces high thermal stress in the system, and that the increase of clutch disk 

thickness decreases the peak temperatures. Although this model would not be 

suitable for use in the high energy F1 applications, due to its approximations and 

lack of surface type inclusions, this work could provide an excellent platform to 

work from in the development of a high energy, fast response, accurate 

mathematical model, which takes into account surface lubrication types.  
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Much work has been undertaken recently in the area of modelling the clutch itself, 

in respect to both the dynamics and the thermal properties. The works of 

Madhavan et al [145], Cameron et al [146] [147], and Duque and Augusto [148], all 

focus in on the clutch as a part of a driveline and use it in specific applications such 

as driveline damping and stability of limited slip differentials. Whilst all of these 

papers contain an element of modelling, none use carbon-carbon materials, and 

so the relevance to this work is limited only to the drive line system, and simple 

clutch mechanics.  

 

A combined simulation approach for dry clutch systems was undertaken by 

Przybilla et al [149], and studies into the substitution of road and lab tests with 

analysis software. Using an iterative process for the model, the paper was 

inconclusive in its outcomes. A more conclusive paper on this subject was written 

by Liu et al [150] on clutch torque formulation and calibration for dry dual clutch 

transmissions. This model is based on constant friction and clutch actuator 

parameters and uses a wheel speed data input in an algorithm to create a 

correlation between the clutch torque and actuator. This is similar to the work 

undertaken in this thesis and described in Chapter 9 – Modelling the Rig.  

 

Tarasow and Bohn of Clausthal University et al [151] developed a method for 

identifying the ‘kiss point’ (referred to in this work as the ‘bite point’) of a 

hydraulically actuated friction clutch. This method is developed for wet clutches 

and primarily developed for one system only, although it does have the potential 

to be expanded out into further clutch systems.  

 

Cameron et al, following on from their earlier works [146] [1470], produced a 

paper investigating the modelling of the flash temperature in clutches [152]. This is 

of particular relevance to this work as the flash temperature is one of the hardest 

to account for within the model. Two models were created; one for a large 

thermal mass with a good conduction path and the second for a small thermal 

mass without a good conduction path. The models were used to predict surface 

flash temperatures for specific experimental cases with model 1 predicting the 

lower boundary temperature, and model two predicting the upper boundary. The 
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limitations of this paper are that it only supplies a range within which the flash 

temperature occurs, and not a fixed value with a level of confidence or error.  

 

Thermal analysis at a constant energy engagement was investigated by Jen and 

Nemecek [153], and used combined experimental and thermal analysis on one 

clutch engagement of a single sintered plate wet clutch arrangement. This model 

produced ‘idealised’ data, which did not replicate the non-linear variations of a 

clutch engagement, caused by factors such as non-uniform fluid flow and plate 

variations. 

 

In 2012 Chen et al [154] defined a model for a rotating clutch temperature using 

rapid prototype controllers with the primary objective of detecting surface 

overheating and enhanced shift quality. The model was developed and compared 

to experimental data obtained on a rig. The authors employed the use of wireless 

sensors to detect the clutch temperature, but do not specifically give further 

information into this. The mathematical model was created in SimuLink and 

processed through a dSpace RPC box which was also used to process the data form 

the rig. The clutch is not carbon, and therefore the model is more simplistic, 

nevertheless, after optimization the model produced results with good correlation.  

 

Two further papers have been written regarding modelling the clutch under 

launching conditions; the first by Duque, Barreto and Fleury in 2009 [155], who 

have created a model to simulate the energy during the vehicles launch. Based 

heavily on the works of Shaver [7], the authors use a simplified approach to 

modelling total clutch energy dissipation and assumptions of partial engine torque 

loading. This paper is more biased towards the automotive industry and states its 

application to be aimed at emissions and reliability. The modelling of the behavior 

of the clutch itself is only a very small element of the work in this paper and is 

based around the cushion spring force, with a clutch torque calculation being a 

product of the vehicle, transmission and driveline models and assumes that the 

clutch friction is constant. The second of these two papers, by Sun et al published 

in 2013 [156] studies the analysis of the thermal load for a dry clutch under 

frequent launch conditions. A dynamic model of the powertrain was created and 

friction work generated during the launch process was simulated and calculated. 
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Using a simple twin plate clutch and three different clutch materials (copper based 

powder metallurgy, paper based and resin based asbestos), ANSYS was used to 

draw temperature profiles of the clutch after 10 full load launch events. The initial 

findings report that the surface of the clutch remains the hottest and that this 

temperature ‘steps’ over the course of a number of slip events. Additionally, the 

investigations deduce that the resin based asbestos friction material (which is the 

one most similar to carbon-carbon material), had the lowest temperature profile 

for the same given inputs. Conclusions drawn are mainly limited to road car 

applications and include advice on the consequences of overloading, the 

importance of limited slip time, and methods of cooling which could be employed.  

 

 

3.12 Control System Development 

In their two papers of 2009 and 2010, Nissan Motor Co Ltd., in collaboration with 

the National Defense Academy of Japan [157] and Utsunomiya University [158], 

developed a slip speed control system for a lock-up clutch. Part II focuses on anti 

stall, and the ability of using the control system to prevent the engine from stalling 

at a hard braking event on a low friction road, whilst Part III investigates using a 

control system to prevent unnecessary revving of the engine by controlling the slip 

speed of the clutch.  In 2011, the Nissan Motor Co Ltd. [159] went on to develop a 

slip control system for rear wheel drive hybrid vehicles using integrated motor-

clutch control. Bench and driving tests were conducted to evaluate the 

effectiveness of the control system, which used a feedback loop to estimate the 

driving torque.  

 

In an application closer to motorsport, Adhitya et al of IAE, TU Braunschweig [160] 

developed a new control strategy of wet clutch dual transmission clutch and 

synchronizer for seamless gear preselect. As discussed in Chapter 2, seamless shift 

is now commonplace in F1 transmissions. Pre-selection of gears is the industry 

standard for shifting, known as Type III shifts, where the new gear is preselected 

before drive is disengaged from the old gear. In their 2013 paper the model that 

the authors are using is a dated version of that already in use in F1 where 

drivetrain models are compartmentalised into smaller models, such as a 



87 

 

synchroniser model and an electrohydraulic model, to optimize the trigger time 

and torque values.  

 

 

3.13 Motorsport Applications 

Three confidential race reports written in 2012 by Lawrence [161] [162] [163] 

discuss the implementation of the clutch bite point learn procedure to preheat the 

clutch before the formation start; evoking similar clutch temperatures between 

formation and race launches. Tests were conducted over three race events 

(Silverstone 2012, Nurbergring 2012 and Budapest 2012) and conclusively 

highlight the benefits of running such a procedure with respect to selecting the 

final bite point for the race start. The benefits of this could be seen numerically 

through an increased distance travelled in the initial four seconds after the start in 

comparison to the ‘control subject’. This work built directly upon the studies 

undertaken in this thesis.  

 

 

3.14 Summary 

The literature review has considered the manufacture of carbon-carbon materials 

and its effects upon the material properties of the final product by looking at the 

microstructure of carbon-carbon materials and the material properties and 

behaviour and the factors affecting these.  

 

The surface properties of carbon-carbon have been researched and investigated in 

depth in order to further understand the wear mechanisms involved. Friction film 

formation mechanisms have been researched experimentally by several 

collaborative teams, with standout research being conducted by Chen et al in their 

proposals of Type I, II and III wear mechanisms and the dynamic relationships 

between them.  

 

Further surface properties have been investigated focusing on surface behaviours 

and oxidation, with a specific consideration for the temperatures for 

approximately 1000 degrees Celsius seen on a carbon-carbon clutch during a race 
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launch and as a result of this, heat treatment of the materials has also been 

thoroughly researched to determine any implications of this high instantaneous 

launch temperature.  

 

Methods and sensors for heat measurement have been researched with the 

suitability of each one being assessed for its application for the measurement of 

the inter-facial temperatures of the clutch plates. Investigations into experimental 

testing methods followed on from this and critical analysis was undertaken 

regarding using elements of these works within the experimental testing of this 

project.  

 

A large proportion of the research was done into the area of mathematical 

modelling, with works being highlighted by others as either bulk thermal property 

modelling, or surface thermal modelling. There were no papers in the public 

domain which combined the two models. From this it was clear that no model had 

been successfully created which was able to predict the dynamic changes of 

surface state and consequently the friction coefficient of the clutch surface for the 

nth time step of a clutch slip.  

 

Following on from the modelling, clutch control systems were identified and 

reviewed. With the research being concluded with race reports from Marussia F1 

Team highlighting procedures used to condition and create a ‘base line’ condition 

for the clutch to enable better prediction of clutch surface friction coefficient 

values at a Formula One race start.  

 

 

3.15 Gaps Identified in Previous Research 

There is a great deal of work that has been undertaken on carbon-carbon 

materials, especially regarding its surface morphology. However, a lot of the work 

is replicated by others, whilst several papers are simply extensions of previous 

work. The literature survey has revealed that although extensive work has been 

done regarding the observation and recording of the surface changes, very limited 

mathematical modelling has been carried out to predict when critical surface 
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changes will occur. In order for the model in this project to be successful, it must 

be able to accurately predict when the surface changes happen, and on the basis 

of the existing literature this would provide an original contribution to the field.  

 

Of all of the sensors and test methods researched, none of them offers a way of 

directly measuring the closed friction face of the clutch. Many used 

thermocouples, but none of the methods proposed were capable of being adapted 

for direct measurement of the surface temperature. Therefore, for the 

experimental testing of the clutch element of this work to be successful and offer 

direct results of the plate face temperature during a slip, a new measurement 

method is also required.  Based on existing literature, this element of the work 

also involves a novel concept in the application of infrared thermometry to closed 

faces.  

 

Although there has been a lot of work done in the area of modelling clutches, 

none of this considers applications which are as high energy and for as shorter 

period of time as is required for this project. The existing models also only 

consider temperature, and there is no consideration of the friction co-efficient or 

its dependency on type I, type II and type III wear modes. Also, there are no 

models which have the adaptability to be transferred from a simulated condition 

to a ‘real life one’ i.e. to work as part of a car model. Carbon-carbon is a complex 

material to model, due to its inherent unpredictability, and so far in literature, only 

a handful of papers have managed to successfully do this [131], [132], [133] [157], 

[159] and [160]. The work proposed here is to take elements from these models, 

to develop a more complex MATLAB model that is suitable for the high energy slip 

events of an F1 launch.  

 

Overall the literature review has conclusively proven that there is a requirement 

for a new mathematical model to be developed which can accurately predict the 

temperature (and in turn, the friction) of a carbon-carbon composite whilst 

including the prediction of wear rates, failure modes and surface morphologies 

under high energy conditions.  
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Chapter 4 

Race Start Analysis 

 

This chapter explores race start analysis from a mathematical point of view, and 

examines the success of each race start from two cars over the 2006 Formula One 

season. Each start is analysed with respect to several different parameters and 

conclusions are drawn as to how this could be improved by mathematical 

modelling. Before analysing a number of race starts from the 2006 season, a 

sample race start is described and the parameters and variables that need to be 

considered are explained, along with their importance and how they are 

measured or estimated. 

 

 

4.1 Background 

 

Figure 4.1a A Typical F1 Steering Wheel.  

 

At a race start the driver is required to follow a set procedure (the relevant 

switches are illustrated in figure 4.1a above);  

• Select the clutch trim as instructed by the Race Engineer using the 'CLU' rotary. 

Clutch Paddle Clutch Paddle 
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• Select the start torque map as instructed by the Race Engineer using the 'TRQ' 

rotary. 

• Pull either clutch paddle fully, and hold in this position (this is referred to as 

the “first paddle”) and pull the upshift paddle to select 1st gear. 

• Position the 2nd clutch paddle (referred to as the “second paddle”) to 

approximately 50% of its stroke. 

• All of the green lights on the dash display will come on when you reach 50% 

and stay on for anything above 50%. 

• Apply the throttle pedal until all of the red lights come on. If you go too far a 

blue light will come on. 

• Hold this throttle position (it should be around 35-45%) the engine will now be 

held at the pre-start revs (~15,600rpm for a dry start. The throttle pedal position 

may be adjusted for a wet start; this will be discussed prior to attempting a wet 

start).  

• To perform the start, release the first clutch paddle completely. 

• After a period of approximately 1 second, a tone indicates when to release the 

second paddle. At the same time as releasing the second paddle, increase the 

throttle pedal to 75%, or more if there is no wheel slip. 

• A second tone will indicate when to upshift to 2nd gear – it is important to 

react quickly to this in order to avoid time loss caused by running into the rev 

limiter. 

• Once in 2nd gear, increase to full throttle. 

 

A race start data trace will typically look like the one in figure 4.1b  
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Figure 4.1b. Typical Race Start Trace (units removed for confidentiality) 

 

It can be seen in figure 4.1b that as clutch paddle 1 is released, the input shaft 

torque sharply increases and the engine speed decreases. The layshaft speed 

begins to increase and this drives the wheels (seen at the bottom of the screen 

shot). During this initial phase the clutch is slipping and this can be seen by the 

difference in engine and layshaft speeds. After the 2nd paddle is released the 

clutch is fully engaged and transmits the full engine torque through the gearbox. 

At this time it can be seen that there is wheelspin, as the tyres break traction with 

the full torque of the engine being transmitted through them (this can be seen on 

the plot of vCar /vRaerWheels, where the rear wheel speed is greater than that of 

the car speed),. This is not an optimal start and ideally the 2nd Paddle would have 

been released a little later so that the difference in engine and layshaft speeds did 

not create a torque spike through the input shaft.  

 

When getting the power from the engine to the track, there is a path that it 

follows; 

 Engine Output Shaft (including any internal frictions, oils etc) 

 Clutch (what we are investigating) 

 Gearbox (including any internal friction caused by oils, gear couplings etc) 

 Driveshafts (including and torsional inefficiencies and losses in the CV joint 

bearings) 

 Hubs (bearing losses can be accounted for here) 



93 

 

 Tyres (pressure, temperature, elastic deformation and friction coefficient) 

 Track (temperature and friction coefficient) 

 

When analysing a race start, it is very difficult to measure items such as the 

torsional inefficiency of the driveshafts or the losses in hub bearings and while 

sensors are available to monitor these parameters directly, running them during a 

race weekend is against the FIA regulations. The most important properties to 

record are the fuel load, clutch position, engine speed, gearbox input shaft speed, 

tyre temperatures, throttle position and car speed. 

 

During any car running, the data acquisition system on the car will monitor and 

record a number of parameters for use in later analysis and development. As part 

of this wheel speed, air temperature and engine speed are all directly monitored. 

There are also other channels known as ‘maths channels’, which take the 

information supplied from sensors on the car and manipulate it in a way such that 

other properties can be determined. Examples of maths channels include 

oversteer/ understeer gradients (determined from steering angles and the g 

sensor along with chassis constants such as wheelbase), wheel spin (determined 

from gearbox output speed and wheel speed) and clutch friction (determined 

from gearbox input speed, engine output speed and clutch actuation pressure).  

 

When looking at the data with regards to the start performance the main 

parameters for analysis are; 

 

4.1.1   Qualifying Position 

This is where the car qualified but is not always necessarily where the car starts 

the race from. This could be due to grid penalties taken by drivers for an engine 

change or unsporting driving during qualifying, meaning that the drivers behind 

them would move up the grid for the race. 

 

4.1.2   Grid Position (R/D) 

This is the grid position from where the car started the race. The ‘R/D’ denotes 

whether that grid position lies on the racing line of the track, or the dirty side. The 

‘clean’ side is that which lies on the racing line, and the ‘dirty’ side of the grid is 
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not on this racing line, and is instead where much of the debris from the racing 

line gets swept to throughout running. Usually, the odd numbered grid slots are 

on the racing line, as pole position is placed so as to allow the car to be on the 

inside at the entry point to the first corner. However, there are some instances 

where this is not the case; for example in Monaco, where due to the layout of the 

track and the racing lines mean that although pole position is still placed for an 

inside line to the first corner it is actually on the dirty side of the track.  

 

4.1.3   0 – 100kph Time 

This is the time that it takes the car to accelerate from 0kph up to 100kph. It is 

important to note that this parameter, although used for determining the clutches 

performance, also needs to be used in conjunction with the throttle trace of the 

car. Traffic may cause the driver to lift off, and thus increase the 0-100kph time. 

On the surface this would appear as a ‘bad’ launch, but to assume this without 

careful inspection of other parameters would be a misleading assumption. 

 

4.1.4   Position Change 

This is the number of places that the driver gains or loses between leaving his grid 

slot, to entry into the first corner and is ultimately the only true parameter that 

the success of the start is based upon. 

 

4.1.5   Time on Grid 

This is the time from when the car arrives at its grid slot, to when it launches. The 

cars towards the front of the grid have a longer time on the grid, due to waiting 

for the cars at the rear to enter their grid slots and form up. This factor is 

important because it gives a good indication of general heat soak in the car, and 

especially the clutch (as it is located in a very warm area inside the gearbox, with 

little air flow around it).  

 

4.1.6   Race start (RS) Fuel 

This is the fuel on board the car at the time of the launch, and takes into account 

fuel that has been burnt during the journey to the grid and for the formation lap. 

This parameter is essential, as it allows an exact weight of the car to be given at 

the time of launch. The minimum weight of car plus a driver in 2006 was 605kg, so 
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with the knowledge of the fuel weight, it is simple to calculate how much mass 

was launched from the grid. 

 

4.1.7   Tyre Temperatures; Initial & Race Start 

Although the tyres are preheated before they go on the car, they lose heat during 

the green flag (formation) lap as the tyres are not being worked to their optimum. 

Most teams will factor this into their race strategies and perform a number of 

short sharp ‘burnouts’ as the car approaches the grid slot. If the day is cool, this 

temperature loss will be greater than if on a warm day (as stated by the laws of 

thermal equilibrium) and due to the ideal gas law (equation 4.1a) this also means 

that the tyre pressure will also drop (as V, n and R all remain constant). 

 

pV = n R T Equation (4.1b) 

Where: 

p Pressure (bar) 

V Volume in m3 

n Number of moles of gas 

R Gas constant = 0.821 m3 bar mol-1 K-1 

T Temperature in °K 

 

The importance of tyre pressure on the race start is that if the tyre has less 

pressure, then it sits flatter on the ground, and thus has more contact area with 

the track than a tyre with higher pressure, theoretically meaning that more power 

can be transmitted through it. However, factors such as the increased elastic 

deformation along the longitudinal axis, mean that transmitting that power 

equally and smoothly is a complex issue. The tyre temperature is again one that is 

affects the race start mode (clutch bite point) that is selected, and is occasionally 

the reason why the race start mode is altered between the formation and race 

starts. 

 

4.1.8   Clutch Mode; Formation Start and Race Start 

The clutch modes are a simply the bite point which the clutch will drop to at the 

race start. This is determined from a mid-point, and then trimmed in and out 

using the clutch bite point map. This mode is determined by the controls engineer 
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before the formation and race starts and is based on the assumption that engine 

revs, clutch pressure and throttle position remain the same for each start. The 

formation RS mode number is determined from data accumulated from end of pit 

lane race starts, and pit box pull aways over the race weekend, with the race start 

clutch mode determined from data obtained at the formation start. If after the 

formation start, the engineers feel that the mode could be optimised, they radio 

instruction to the driver to change the mode for an optimised race start.  

 

4.1.9   Clutch Friction; Formation Start, Race Start and Delta 

This is determined from the energy dissipation, gearbox input, engine output and 

clutch actuation pressure at the race start and the formation start. The delta is 

also a very useful property to understand as it highlights the consistency / 

inconsistency of the clutch materials friction.  

 

4.1.10   Energy; Formation start, Formation Lap and Race Start 

This is the energy dissipated through the clutch during the launch at the formation 

start, during the formation lap and again at the race start, and is used as an 

indicator as to how hot the clutch is getting, and therefore, assists in determining 

the friction characteristics.  

 

4.1.11   Number of Clutch Events for Stack 

This is the number of launches that the clutch stack has undertaken since new, 

and includes formation starts, race starts, pit lane practice starts and pull aways 

from the pit box. It is used as a general indicator of wear, and how many heat 

cycles the clutch material has been through. 

 

Other external factors that have been included in the clutch performance analysis 

are;  

 

4.1.12   Number of Race Starts 

Occasionally (and usually for reasons of safety) the race director deems it 

necessary to red flag the start of the race and restart the race. This could happen 

for many reasons, such as a dangerous first lap incident, which was the case in 
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Melbourne 2006. When this occurs then the data from the first start is the one 

that is recorded and analysed in this work.   

 

4.1.13   Weather 

Whether the car is starting the race on wet or slick tyres will have an effect upon 

the overall view of the race start. The reduced grip caused by the wet track 

requires the power from the engine to the tyres to have to be delivered more 

gently to limit wheelspin, and so a greater amount of clutch slip and a reduced 

initial engine revs input are required. If the clutch engaged immediately and the 

revs were too high, the result would simply be wheelspin. The weather factors are 

taken into account by utilising a different race start mode. 

 

4.1.14   Air Temperature 

This is used to assist with the tyre and general running properties of the car. If it’s 

a cooler day, tyre pressures will take longer to raise, but the engine will be 

noticeably more powerful then on a warmer day. 

 

4.1.15   Track Temperature 

This is a tyre related property relating to the surface properties. The higher the 

track temperature, the quicker the surface of the tyre will heat up, and the stickier 

(higher coefficient of friction) that it will be, meaning the more power can be 

transmitted through it. 

 

4.1.16   Friction Co-efficient of the Grid 

This related to the track temperature, and is the other half of the friction couple 

between the ‘sticky’ tyre and the road and the friction co-efficient of the grid 

makes up the very last piece on the path of the power from the engine to the 

track.  
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4.2 Race Start Data1 

A series of race start data collected by the Honda Racing F1 Team throughout the 

2006 season was analysed with respect to the criteria listed in sections 4.1.1 to 

4.1.16 above.  All data plots can be found in Appendix A, with a selection shown 

here in the following sections.  The race starts are graphically represented on the 

following pages, with figure 4.2a giving guideline to a typical race start plot from 

these events. All of the units for the starts are on the same axis, and are as listed 

in the key below: 
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Figure 4.2a. Typical Race Start Graph with Plot Explanations 

 

                                                           
1
 Since this data has been analysed, the start procedure of an F1 car has significantly changed. Throttles are now 

required to be held at approximately 50% (as described in Chapter 4.1), whist a two paddle system on the 
steering wheel means that the first paddle release will drop the clutch to its set bite point, whilst a gentle release 

of the 2nd paddle will then fully engage the clutch. 
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4.2.1   Melbourne  

Date: 2nd April 2006    Circuit Length:  5.30km 

Race Distance: 302.271km (57 laps)  Number of Race Starts: 2 (red flag 

on first lap) 

Weather: Dry      

Air Temp:  17°C      Track Temp: 24°C 
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Figure 4.2.1a. Race Start, Car One, Melbourne Circuit 
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Figure 4.2.1b. Race Start, Car Two, Melbourne Circuit 
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4.2.2   Barcelona 

Date: 14th May 2006    Circuit Length:  4.627km 

Race Distance: 305.382km (66 laps)  Number of Race Starts: 1 

Weather: Dry      

Air Temp: 26°C     Track Temp: 37°C 
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Figure 4.2.2a. Race Start, Car One, Catalunya Circuit 
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Figure 4.2.2b. Race Start, Car Two, Catalunya Circuit 
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4.2.3   Budapest 

Date: 6th August  2006    Circuit Length:  4.381km 

Race Distance: 306.67km (70 laps)  Number of Race Starts: 1 

Weather: Wet      

Air Temp: 18°C     Track Temp: 21°C 
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Figure 4.2.3a. Race Start, Car One, Hungaroring 
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Figure 4.2.3b. Race Start, Car Two, Hungaroring 
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4.3 Analysis of Starts 

The three starts of interest are those from Melbourne, Barcelona and Budapest; 

Melbourne as there were two race starts, as the initial start was red flagged due 

to an incident. Barcelona is of particular interest because despite the two cars 

starting on two sides of the grid (one dirty and one clean), both have a 0-100kph 

time within 0.03 seconds of each other. Budapest was a wet start and this can be 

seen by the sporadic clutch mu and input shaft speeds, where the drivers are 

struggling to control the wheel spin brought about by the low grip surface.  

 

By looking at results from previous race starts shown in Appendix A, it is possible 

to build up a picture of how successfully the existing coefficient of friction (µ) 

calculation program works. This is done by correlating several of the key elements 

of the start with each other, and determining how much of an effect each 

element has upon the others.   

 

The key areas of information are: 

Qualifying Position; where the car qualified on the grid for the race. Not 

particularly useful by itself, but provides important information when provided 

with the (R/D) information and the position change. 

 

Grid Position (R/D); if the car started the race from the racing line, or the ‘dirty’ 

side of the track where the dust settles and there is inherently less traction. 

 

Position Change; how many places were made up or lost from the grid to the 

braking point for the first corner, this is one of the primary indicators of a 

successful launch. 

 

0 – 100kph Time; this is the other primary indicator of a successful launch, a low 

times means a quick getaway.  

 

Number of clutch events during the Formation Lap; this gives a general indication 

as to how much work the clutch has done between the formation start and the 

race start, and when combined with the property ‘change in friction between 

starts’ can be a useful indicator to the consistency of the carbon-carbon material.  
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Energy, Formation Start; this is the energy dissipated through the clutch on the 

formation start, and will not be as high as that dissipated during the actual launch, 

as the launch duration is much longer. 

 

Energy Formation Lap; this is the energy dissipated over the duration of the 

formation lap, and will usually correlate closely to the number of clutch events 

during the formation lap, as more events will sum more energy.  

 

Energy Race Start; this is the energy dissipated during the launch of the car at the 

start of the race. 

 

Clutch Mode, Formation Start; this is simply a number stating which mode the 

clutch control program is running in, based on its mu calculation. 

 

Clutch Mode, Race Start; this is again, simply a number stating the clutch control 

program mode, but it is very useful when compared to that of the mode used in 

the formation start, as this indicates that a change in mu has been detected, and 

so a mode change is required for a successful launch. 

 

Clutch Friction, Formation Start; this is the calculated actual mu value of the 

friction plates of the clutch during the formation start. 

 

Clutch Friction, Race Start; this is the calculated actual mu value of the friction 

plates of the clutch during the race start. 

 

Change in Friction between Starts; this is an important factor to note, as the mu 

calculation program works by determining the clutches friction at the formation 

start. So if this value is high and the two mu values are dissimilar then the clutch 

mode will not be suited for the friction co-efficient that was actually being seen 

during the launch, and this will generally result in a poor start.  

 

The comparisons between each of the parameters were done by using the 

correlation coefficient function within MATLAB [112]. This correlation coefficient 

calculates the Pearson correlation [164], and is defined as in equation 4.2a: 
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Equation 4.3a 

 

Where; 

r = correlation co-efficient 

x = time in seconds 

y = temperature in degrees 

 

Pearson’s correlation reflects the degree of linear relationship between two sets 

of variables, ranging from -1 to +1. A correlation of +1 means that there is a 

perfect positive linear relationship, a correlation of -1 meaning that there is a 

perfect negative linear relationship, and a correlation of 0 meaning that there is 

no linear relationship at all. However, correlations are rarely -1 or +1 due to the 

fact that this would indicate a perfect relationship and such a perfect relationship 

is never obtainable in real life; even the smallest of outside influences will affect 

every test from which the data is acquisitioned. Equally a correlation of 0 is just as 

unobtainable; despite the fact that tests may render completely different sets of 

results, there is always a correlation between them, even if it is very small.  

Whilst the Pearson correlation indicates the strength of a linear relationship 

between two variables, its value alone may not be sufficient enough to evaluate 

the relationship. For example, figure 4.3b [46] which shows scatter plots of 

‘Anscombes Quartet’; a collection of four different sets of variables created by 

Francis Anscombe [164]which have the same mean (7.5), standard deviation 

(4.12), correlation (0.81) and trend line (y= 3+0.5x).  
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Figure 4.3b. Anscombes Quartet [164] 

 

The first (top left) is normally distributed, the second (top right) is not normally 

distributed, although an obvious relationship can be observed. The third (bottom 

left) shows that the linear relationship is perfect, except for one anomaly which 

exerts enough influence to change the correlation coefficient from 1 to 0.81. The 

fourth example (bottom right) shows the opposite of the third case, where the 

variables are not linear at all, but the anomaly result is enough to produce the 

high correlation coefficient. These examples highlight that as a summary statistic, 

the correlation coefficient cannot replace the simple examination of data by eye.  

The MATLAB code that was written to extract and tabulate this data can be seen 

in appendix B. 

 

 

4.4 Results Analysis 

Each race start presented in Appendix A is analysed in depth, and a summaries of 

each of the four key areas of investigation are drawn. These key areas of 

investigation are: 

 Race Start 0-100kph 

 Number of clutch events during the formation lap 

 Race start energy 

 Race start clutch coefficient of friction, µ 
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The 0-100kph race time is important because how quickly the car accelerates 

away from the start is the single thing that indicates the success of the launch. A 

high time will mean that the cars around will have passed into the first corner, 

whilst a low time will hopefully mean that a few places will be made up before the 

first corner.  

 

The number of clutch events during the formation lap is an important factor to 

note, as theoretically the more of these events that occur, the more energy will 

have passed through the clutch during the formation lap, meaning the bulk 

temperature should be higher at the launch.  

 

The race start energy is a principle factor in the analysis, as it is this that gives an 

indication of how much work the clutch is doing, how much slip is occurring and 

how effective the clutch material is at turning the excess kinetic energy (from the 

difference in engine input speed to the output speed to the gearbox) into thermal 

energy.  

 

The race start mu is an important factor to correlate with the race start energy, as 

it is this that forms the basis of the entire thesis work.  

 

The tables are organised by the parameter that is being observed, and is ordered 

by the highest to the lowest. Within these tables, the 6 ‘best’ occurrences of any 

particular parameter are highlighted green (for example the 6 best qualifying 

positions are those with the lowest numbers, but the 6 best energies are those 

with the highest values), whilst the 6 ‘worst’ occurrences are highlighted red. This 

further aids a visual reference as to whether any parameters have an effect on 

each other. 
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4.4.1   Race Start 0-100kph 

 

Figure 4.4.1a – Mu calculation control conditions - Race Start 0 – 100kph. 

 

The 0-100kph comparison can often be a misleading one, as the driver 

occasionally needs to come off of the throttle in order to avoid an accident going 

down into the first corner. To combat this, the car speed was extrapolated along 

from the point where the driver lifts off of the throttle and this theoretical 
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acceleration was used to determine the time at which the car speed would have 

reached 100kph.  

 

When comparing the 0-100kph time for each race, the number of formation lap 

slip events appears to have very little bearing and this is most likely due to the 

fact that the clutch stack wear is constantly monitored and the clutch stack is 

replaced before the race if needed, meaning that each carbon stack would easily 

have sufficient ‘life’ in it to perform an RS efficiently. Due to the nature of the 

carbon-carbon material, whilst the stack is within life, the material characteristics 

are very consistent. 

 

The race start energy has a loose negative correlation when compared to the 0-

100kph time; generally, the higher the energy, the faster the RS. This is an obvious 

correlation  

 

Over the 2006 season,  a strong negative correlation between µ and 0-100kph 

time was observed. A higher RS µ tends to give lower RS time. The higher friction 

coefficient means that less time is spent with the clutch slipping, and a higher 

percentage of the energy being transferred from the engine directly into the 

gearbox, rather than being lost through heat.  
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4.4.2   Number of Clutch Events Performed during Formation Lap 

 

Figure 4.4.2a – Mu calculation control conditions – Number of Events 

The number of formation lap clutch events that take place appear to have 

absolutely no bearing upon the 0-100kph time, the race start energy or the race 

start friction. This indicates consistency of the clutch material to provide similar 

launches regardless of the number of events that it undertakes.  
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However, there is a loose connection between the number of events and 

formation lap energy, which would naturally be case as more individual events 

clutch event energies would naturally imply more total energy. 
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4.4.3   Race Start Energy 

 

Figure 4.4.3a – Mu calculation control conditions - Race Start Energy. 

•  

By analysing the race start energy, very few of the obvious correlations have been 

seen. The amount of dissipated energy at the race start has a very loose 

correlation with the clutch’s mu value, despite the implication that one should go 

in hand with the other, due to the energy being a function of the clutch 

temperature, which is a function of the friction. However, this also highlights the 
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requirement for further investigation into this area through experimentation and 

modelling. 

 

There is a strong correlation between the race start energy dissipation and the 

total energy dissipation, but this is due to the fact that the race start actually 

accounts for most of the value of the total energy dissipation.  

 

Other factors including the race start time and the number of clutch events 

appear to have little bearing on the race start dissipated energy.  
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4.4.4   Race Start Coefficient of Friction 

 

Figure 4.4.4a – Mu calculation control conditions - Race Start Friction. 

 

Relating clutch friction co-efficient (µ) to total energy dissipation over entire 

formation period does not yield any conclusive information as results do not 

appear to follow and type of pattern. However, during the race start there is a 

rather strong correlation between the dissipated energy and the clutch mu but 

interestingly, this relationship does not hold true for the formation start. This 
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could be explained by the fact that the formation start is only a fraction of the 

race start; that is, in the race start, the driver is going as fast as he can all the way 

down to the first corner, however, in the formation start, the driver is only trying 

to do the first few seconds of the practice launch and so a complete launch from 

0-100kph is not completed. This will imply that the energy dissipation will be 

lower than that for an actual race start.  

 

The 0 – 100 time is inversely proportional to the clutch mu; the higher the mu, the 

quicker the car will accelerate from 0-100kph. This is quite an obvious statement 

to make as the increased friction will naturally lead to a better ‘bite’ in the clutch 

and therefore better traction through the drive train. There is the obvious danger 

that the friction could be so high that the engine would stall, but the drivers and 

software account for this and adjust accordingly. 

 

When looking at the number of clutch events that the stack has undergone during 

the formation lap, there is no real and clear relationship. This is once again due to 

the fact that the carbon stacks are closely monitored for wear and are replaced if 

deemed to be near to out of life. This should mean that each and every start is 

exactly the same throughout the duration of the carbon stacks lifetime.   

 

The change in clutch mu between the formation and race starts does not appear 

to be affected by the clutch friction at the race start. If the mu is higher during the 

race start that does not necessarily mean that there is a large difference between 

the race start mu and the formation start mu.  

 

It is interesting to note that differences in clutch mu between the formation and 

race starts are usually in the region of 10%, but by looking at the values 

highlighted in green, it is also possible to see that on occasion, they can fluctuate 

by up to 30 – 50%. Although, interestingly, the three main occasions when the 

variation is high (Car One, BUT in Imola, Car One, BUT at Silverstone, and Car Two, 

BAR in Interlagos) the cars have not lost any places from their grid positions and in 

the case of Car One in Imola, a place is actually gained. 
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4.5 Conclusions from the Race Start Analysis 

This race start analysis has shown; 

• A strong negative correlation observed between the clutch friction co-

efficient (µ) and 0-100kph time where a higher µ tends to give lower race 

start time. 

• The race start µ is independent of the number of starts (and the life) of the 

carbon clutch stack. 

• Relating clutch µ to total energy dissipation over entire formation period 

does not yield the strong results expected at the outset of this 

investigation. 

 

The analysis has also shown the requirement for a better method for friction 

prediction than was currently available, this would give the launch control system 

a capability for more accurate mu calculations, which could translate into better 

race starts.  

 

The follow on step from this work was to look at the dynamics of the friction / 

heat properties within a carbon-carbon race clutch to further understand the 

heating mechanisms, and to determine whether it was possible to experimentally 

obtain realistic data that is comparable to that seen on the race track.  



116 

 

Chapter 5 

Clutch Bedding 

 

This chapter looks at bedding of race clutches; what it is, why it’s important and 

how it is done. This is important to understand before the undertaking of any 

experimental or mathematical work, as bedding can completely change the 

characteristics of the carbon-carbon material. If bedding is incomplete or 

executed incorrectly, then the predictability of the material rapidly decreases, 

meaning reduced probability of gaining meaningful results from modelling and 

experimentation.  The importance of bedding is presented by explanation of 

techniques employed by teams and manufacturers and detailed mathematically 

and graphically in this chapter. This is fundamental in underpinning some of the 

pre-requisites and assumptions that were made during the experimentation and 

modelling section of the work. 

 

 

5.1 What is Clutch Bedding?  

Bedding is the single most important factor in establishing a stable friction 

coefficient between any two carbon-carbon material faces. With a correct 

bedding procedure in place, it is possible to narrow the friction co-efficient range 

and thus assist the predictability of the clutch unit. 

 

Advantages of bedding in are that it: 

 Gradually heat treats the clutch plates and eliminates any thermal shock in 

the rotor;  

 Burns off volatiles and moisture from the resin that is near the surface. This 

will eliminate "green fade"(where the friction characteristics of the clutch 

appear to change dramatically as the volatiles burn off);  

 Mates the two surfaces to a near perfect geometrical match, so that the 

contact area is optimum and therefore the torque that can be transmitted 

over the surface is maximised;  
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 Establishes a layer of transfer film about a few microns thick on the plate 

surface. Shearing of the film during friction is an effective source of friction 

force. Otherwise, when using a freshly ground rotor without the transfer 

film, the main friction force would come from cutting, ploughing, or scoring 

the asperities on the clutch plate surface. This leads to inconsistent clutch-

clutch slip characteristics and overall effectiveness.  

  

If the bedding in procedure is not applied, a stable transfer film may not be 

established for a long time. In other words, the rotor surface would have to be 

constantly regenerating a film that is not stable for a prolonged period of time. 

This effect would reduce the performance and increase the wear.  

For optimal use of any given clutch system, the clutch plate faces have to be 

compatible with each other and the bedding-in procedure establishes that 

compatibility between them. This is achieved by a combination of rubbing speed, 

temperature, line pressure, and inertia. Bedding-in is also influenced by the 

material chemistries of the carbon–carbon clutch material.  

 

5.1.1 Friction Mechanism During Bedding 

To understand the bedding-in process more clearly, it is important to consider the 

friction mechanism in operation. There are two basic types of clutch plate friction 

mechanisms: abrasive friction and adherent friction. Typically the abrasive 

mechanisms predominantly act within the lower temperature ranges while 

adherent mechanisms are more prevalent at higher surface temperatures. Both 

mechanisms allow for friction or the conversion of kinetic energy to thermal 

energy by the breaking of molecular bonds, but this occurs in two very different 

ways:  

a) The abrasive mechanism generates friction or energy conversion by the 

mechanical rubbing of the material of the clutch plates over each other. This 

causes the weaker of the bonds in the material to become broken down and 

results in mechanical wear of the clutch stack; 

b) In an adherent system, a thin layer of clutch plate material actually transfers 

and sticks (adheres) on the opposite face. This layer of carbon-carbon material, 

once evenly established on the plate, is what actually rubs between the two 

mating faces of the clutch. The bonds that are broken, for the conversion of 
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kinetic to thermal energy, are formed instantaneously before being broken 

again. It is this ‘clutch plate-on-transferred clutch plate’ material interaction at 

a molecular level that yields the conversion process.  Wear is significantly 

reduced in comparison to the abrasive mechanism. 

 

5.1.2 Problems Created by Little or No Bedding in 

Uneven deposits of carbon material dust on the clutch face are the primary cause 

of ‘snatching’ or vibration. It only takes a small amount of thickness (a few 

microns) variation in the transfer layer to initiate clutch vibration. The problem 

starts very small and is un-noticeable at first, but as the clutch plates begin to ride 

the high and low spots, more and more material is generated until the vibration 

begins to become noticeable. With prolonged exposure, the high spots can 

become hot spots and can actually change the metallurgy of the plate in those 

areas, creating “hard” spots on face that are virtually impossible to remove. This 

significantly limits the torque that can be transmitted.  

 

5.1.3 Effect of Bedding Process on Actual Clutch Behaviour. 

The target of a clutch bedding process is for the coefficient of clutch friction (Mu) 

to become more stable whereby the coefficient of friction is repeatable to a set 

tolerance over a series of clutch events. This is illustrated by Figure 5.1.3a [164] 

which plots data taken from the bedding rig at Honda for the coefficient of friction 

as the clutch goes through a number of bedding cycles (illustrated on the X-axis of 

the plot). The coefficient of friction was measured as a function of output torque. 

The points shown as blue circles represent the coefficient of friction just after 

engagement at the start of a clutch event, the points shown as red triangles 

represent the coefficient of friction at the end of a clutch event, just before the 

clutch is disengaged, and the points shown as black spots represent the average 

coefficient of clutch friction during that clutch event. 
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Figure 5.1.3a – Peak coefficient of friction values for a typical new F1 clutch at the start and end of 

clutch engagement [164]. 

 

As seen in figure 5.1.3a, the initial, final and average coefficient of friction are all 

very different values during the early stages of bedding, as can be seen in the left 

hand blue circle at the early number of cycles. This is due to the insufficient build 

up of a transfer layer, causing the two plates to ‘grab’ and ‘snatch’ each time that 

they come into contact with each other. If the clutch were to be used during a 

race start in this condition the resulting torque trace of such an event would be 

similar to that seen in Figure 5.1.3b [164] where the green trace is clutch friction, 

seen here as a function of torque (blue)  at the input shaft to the gearbox. 

Coefficient of friction at 

start, end and average of 

event are all within a wide 

range 

Coefficient of friction at 

start, end and average of 

event are all much closer in 

value as more bedding 

cycles are completed 
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Figure 5.1.3b – Peak coefficient of friction values at the start and end of a clamping event after 

approximately 20 bedding cycles [164] 

 

As the bedding cycle progresses, the coefficient of friction becomes more stable 

throughout the clutch slip event, with much smaller peaks (green), signifying less 

‘grabbing’ of the clutch and giving a much smoother and more predictable torque 

transfer and hence feel, as seen on the blue trace.  This is illustrated in Figure 

5.1.3c [164], 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.3c – Peak coefficient of friction values at the start and end of a clamping event after 

approximately 70 bedding cycles[164]. 

 

This is a clear illustration of how important it is that a clutch is properly bedded-in 

before use. Without proper bedding-in, the unpredictable coefficient of friction 
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causing ‘grabbing’ and slip of the clutch does not provide a smooth torque 

transfer to the input shaft and this would consequently cause the car to either 

jump the start or stall – both of which would be catastrophic to the driver and 

team in terms of race progress.  

 

 

5.2 How are Clutches Bedded? 

In general, bedding-in in practice is carried out by heating the system to its 

adherent temperature to allow the formation of a transfer layer. The ‘adherent’ 

temperature is the one at which the bonds of the structure break down and 

permit type III wear. In carbon-carbon this is typically around 600 o C. The clutch is 

then allowed to cool whilst still rotating and without coming to rest, resulting in 

an even transfer layer deposition around the plate face. This procedure is typically 

repeated two or three times in order to ensure that the entire rotor face is evenly 

covered with clutch plate material. Too little heat during bedding-in stops the 

material from transferring to the plate face, while overheating the system can 

generate uneven deposits due to the material breaking down and depositing 

randomly on to the plate face.  

 

The bedding-in process of a race clutch is a highly accurate process that has been 

refined over years of development.  Each team has their own way of bedding in a 

clutch, and sometimes, even between the team and engine supplier, variations on 

the process can be found.  Generally, a clutch pack is said to be ‘consistent’ when 

the change in torque transfer through the clutch over a slip event is less than 

120Nm (a good race start typically yields a torque transmission of 120-140Nm). 

This condition is usually reached between the 60th and 70th event. 

 

The bedding program used for race clutches has the following main steps: 

1. Disk baking / heating (to eliminate any surface volatiles): 300 o C for 1 hour in 

a baking oven. 

2. On the clutch dynamometer, with initial delta speed (the difference in speed 

between the engine and the gearbox, through the unclamped clutch): 

8000(rpm), and disk temperature, approximately 200 o C  



122 

 

3. Clutch pressure: 407050706070(bar) is one cycle. It is repeated 

10 to 12 times which gives a total of 60 to 72 clutch slips. This is known as 

one event (as seen on the x-axis of Figure 5.1.3a. 

4. This is repeated 64 times. Interval between repetitions: 6 minutes (6 minutes 

is a time interval determined by pre-testing to keep the clutch disk 

temperature condition stabilized around 200 degrees). 

 

Figure 5.2a [164] shows a typical dynamometer bedding cycle for the Sachs 3297 

clutch and it can be seen that even after the 64th event, the average coefficient of 

friction appears to still have some variation, but upon closer inspection, it can be 

observed that the peak initial and peak final values are actually within a closer 

range to the average value over the whole event, meaning less ‘grabbing’ and a 

smoother clutch slip and subsequent transfer of torque. The values also 

demonstrate the cyclic variation characteristics of the bedding cycle, with the 

lower energy slips (at the lower clutch pressures during the initial part of the 

event) consistently returning lower values for the coefficient of friction.  

 

 

Figure 5.2a. Bedding cycle for Sachs 3209 clutch: Friction Co-Efficient [164] 

 

 

The peak values for friction are calculated as the peak friction value during the 

first 0.1s of the event, and the last 0.1s of the event, as highlighted in the red 

circles  in Figure 5.2b [164]. 
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Figure 5.2b. Calculation of Peak Friction Values [164] 

 

With the peak friction coefficients in mind, the following equation is used to 

calculate the instantaneous coefficient of friction: 

LPrn

T

e 
                                 Equation 5.2c 

Where n = number of working surfaces = 6 

 re = mean effective radius of the clutch plates [m] 

 P = clamp load [N] (the load that is used to clamp the driving and driven 

faces of the clutch) 

 T = Torque [Nm] 

µ = Coefficient of friction 

L = Lever ratio = 4.73 (for this test rig)(This is clutch design dependant, and is the 

ratio of the distance from the fulcrum to the actuation point of the force from the 

dynamometer or car to the distance of the fulcrum to the point at which the force 

is applied to the clutch plates) 

 

There are three methods to calculate the mean effective radius (the distance from 

the theoretical centre of the friction plate to the centre of the friction face). 

With  ro = Outer radius of friction surface  = 48.5mm 

ri = Inner radius of friction surface = 32.5mm; 
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Constant Wear Method   )(
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Equation 5.2d 
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  = 41.03 mm             

Equation 5.2e 

 

Equal Area Method   
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  = 41.28 mm              

Equation 5.2f 

 

The generally accepted industry method for this calculation is the constant 

pressure method, which gives re = 41.03mm in this case. This is adopted due to 

the fact that the clutch dynamometer is able to maintain a constant pressure on 

the clutch. 

 

5.2.1   Variation of Kinetic Energy through the Bedding Process 

The initial kinetic energy is calculated for each event and is a direct function of the 

engagement speed. Due to the conservation of energy, where energy in = energy 

out, the only energy source into the clutch is the rotational speed delta and so 

when the clutch is engaged, the initial kinetic energy is a function of this with 

respect to the coefficient of friction of the clutch. The maximum kinetic energy is 

found to be 78kJ and the minimum kinetic energy is found to be 74kJ, calculated 

to be a difference of 5.3%. This range of difference is due to the inconsistent 

coefficient of friction characteristic of the clutch disc but is considered to be well 

within acceptable limits. After approximately 28 slips, the kinetic energy value 

becomes higher and more consistent, and it is here that the effects of bedding can 

begin to be observed. Kinetic energy is a good indication of the degree of bedding 

due to the consistency of the coefficient of friction that it highlights. For the 

average energy input (initial speed of engagement) the only factor that can affect 

the initial kinetic energy of the clutch is the coefficient of friction and therefore a 

stable initial kinetic energy indicates a stable initial coefficient of friction. With a 

better bedding cycle and good mathematical modelling it would be possible to 
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reduce the range of values even further, and to obtain more accurate figures for 

the friction coefficient of the clutches and hence perform more predictable 

torque transmissions at race starts.  

 

 

Figure 5.2.1a. Bedding cycle for Sachs 3207 clutch – Initial Kinetic Energy [164] 

 

 

5.2.2   Variation of Bedding across Different Clutch Packs 

It is useful to consider the variation of friction characteristics between clutch 

packs of the same material specification and bedding process. Figure 5.2.2ai 

below shows a range of clutch friction values obtained from dynamometer testing 

of 6 post-bedding slip events for each of 12 different clutch packs. 

 

C lutch pack μ in bedding in process
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Figure 5.2.2a – Measured friction coefficient  for 12 selected clutch packs over 6 post bedding clutch 

slips [164] 
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It can be observed that the coefficient of friction for the clutch packs after 

bedding is in the range 0.30 to 0.35 for the majority of cases. This indicates a 

consistency in the clutch friction, which is the definitive reason for bedding. But 

this value was also a cause of interest, as good clutch performance at a race start 

generally results from a measured/desired coefficient of friction in the range of 

0.40 to 0.45 (as described in Chapter 4.3). The reason for this discrepancy will be 

investigated later in the thesis. 

 

 

5.2.3   Clutch Bedding and Bite Point Learns at the Track 

At the track, a method is used to calibrate the clutch to determine the clutch trim 

position (also known as RS mode) that should be used at the start of the 

formation lap. The RS mode is also known as the clutch mode and is a set of 

parameters, including engine rotational speed, clutch pressure and throttle 

position which are set for a launch event. Each group of parameters is assigned to 

an RS mode number, and from data accumulated over the race weekend, an initial 

RS mode is chosen for the formation start.  The actual race start clutch mode is 

determined from the formation start clutch mode. If after the formation start, the 

engineers feel that the mode could be optimised further, they radio instruction to 

the driver to change the mode for an optimised race start.  

 

Within the ECU there is a set program for procedures such as launch control, 

sensor calibration and clutch calibration, these programs vary from team to team 

but most are very similar. The clutch calibration is carried out  while the car is on 

the stands in the garage before the race, using a set program known as a ‘bite 

point learn’. This consists of three cycles, lasting a total of just 2 seconds. The 

engine is started and ran to approximately 12,000rpm (nominal pre start revs 

determined by the engine torque map) before the clutch is engaged. Once a 

certain torque transmission is achieved (nominally 80Nm, which is an aggressive 

enough torque to give a representative value for the bite point, and yet not so 

aggressive that the car falls off its stands when performing this procedure in the 

garage) or the engine revs drop to a certain level (usually approximately 8,000 

rpm), the clutch releases and then  the cycle begins again. After the three 

repetitions, the average clutch engagement in mm is determined to meet this 
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80Nm torque transmission demand, and it is determines the RS mode for the 

formation start.   

 

Another clutch program within the ECU is for a ‘clutch scrub’. This is a very simple 

program designed to clean the surface of the clutch from moisture and volatiles 

by slipping the clutch at a set torque transmission for approximately one second. 

It is important to do this before the clutch calibration program is undertaken, as if 

surface impurities are present during this calibration, the characteristics could 

change, and the clutch trim position calculation will be incorrect.  

 

Even though bedding takes place on the dyno before installation in the car, there 

are occasions when the clutch friction coefficient behaves irregularly. Figure 

5.2.3a taken from the Honda Bedding procedure [164] illustrates this: 

 

 

Figure 5.2.3a – Pi Toolbox screen grab highlighting the varying clutch friction (black) despite constant 

torque input (pink) of single event from a bedded Sachs 3556 clutch [164] 

 

The clutch is subject to constant clamp load (seen in pink) during the running in 

process, but clutch friction coefficient (shown in black) does not follow the same 
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characteristic. This anomaly could be put down to many factors, including a ‘bad 

spot’ in the clutch material or a surface impurity caused by external 

contamination such as a hydraulic fluid leak, or mishandling of the clutch plates 

during installation onto the car.. This highlights that although bedding aids the 

consistency of the clutch, it cannot guarantee it and as such, there will always be 

an element of uncertainty when predicting the friction characteristic of the 

carbon-carbon material for any given clutch slip event.   
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Chapter 6 

Design of Experiments and Instrumentation 

 

This chapter explores the initial design of experiments and instrumentation for 

the testing that was to be used for the creation of a mathematical model. This 

section covers an introduction into the test dynamometer, the sensor selection 

process, rig adaptation and validation through FEA modelling, along with test 

planning through to results analysis and recommendations for changes prior to 

the final test.  This stage of the work was particularly important in the 

understanding the friction versus temperature relationship for the clutch material 

as it allowed external factors (such as residual heat from the engine / gearbox) to 

be quantified and for the further tests to be conducted with this knowledge.  

 

The specific aims of the initial test work were to explore the various options with 

regards to the suitability of sensors, rig construction and apparatus and to 

validate these choices before moving on to use them within a more extensive and 

comprehensive test plan.  

 

 

6.1 Overview of the Clutch Dynamometer and Current Test 

Procedures 

The clutch dynamometer is a device that is designed to be as accurately 

representative of real life conditions for a race clutch as possible. Each part of the 

dynamometer corresponds to a part of the car. The drive motor represents the 

engine with the clutch between it and the gearbox, which is represented as a load 

applied onto a disc by a brake caliper. Between the motor and the clutch are 

several gears which increase the speed and inertia of the load that is to be applied 

to the clutch. A schematic of the dynamometer used in this work is shown in 

Figure 6.1a, with a photograph of the actual rig used in Figure 6.1b… 
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Figure 6.1a – Representation of the Clutch Dynamometer at AP Racing 

 

 

Figure 6.1b. The Clutch Dynamometer at AP Racing, Coventry 

 

 

6.1.1   Temperature Measurement of the Clutch on the Dynamometer 

To measure the temperature of the clutch whilst it is being tested on the 

dynamometer, a thermocouple is placed inside each clutch drive plate, inside a 

drilled hole at approximately halfway through its thickness, as shown in figure 

6.6.1a. All of the thermocouples are plugged into a permanent fixture on the 

rotating head of the clutch dynamometer. The danger of this arrangement is that 

the centrifugal force acting upon the thermocouple connectors often means that 

they come flying off at high speed – which could be hazardous.  

 

Brake 
Clutch 

Gear Sets 

ENGINE 

TORQUE 
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Figure 6.1.1a. Thermocouple Mountings on the clutch in the dynamometer 

 

This method does not accurately measure interfacial temperature, but instead 

measures the bulk temperature of the clutch plate. Due to dissipation throughout 

the material and thermal energy losses to the surrounding atmosphere, and 

hence time taken for heat transfer, the temperature readings are delayed and 

significantly lower than the interface would be experiencing. Although this can be 

compensated for by using the thermal properties of the carbon clutch plate 

material, there is inaccuracy in being unable to measure the temperature directly. 

Because of this it is also difficult to observe how the temperature changes with 

the friction of the clutch plate. The interfacial temperature actually increases at a 

very high rate, which means that calculation of the interface temperature at any 

given point in time would be highly inaccurate, as even the slightest 

inconsistencies in material would mean that any temperature were to be 

extrapolated from the thermocouple to the interface using the material 

properties could contain a large margin of error. 

 

Another method that has been used to measure the temperature of the clutch 

plates is to place an infra red temperature sensing gun at the edge of the clutch 

plate interface and measuring the heat by the infra red energy that is being 

emitted from the face (see figure 6.1.1b). The nature of the clutch means that the 

faces that get the hottest are in constant contact with each other implicating that 
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a simple infra red sensor will not suffice as it cannot measure the temperature at 

these close faces. The temperature on the faces of the clutch needs to be 

measured precisely and by using an IR detector at the edge of the clutch heat that 

has already been dissipated into the bulk of the plates or the surrounding 

assembly has been lost. 

 

 

Figure 6.1.1b Heat Dissipated by a Clutch Whilst Slipping (taken during initial clutch testing) 

 

 

6.2 IR versus Fibre Optic Measurement of Temperature  

From the literature review it became apparent that for direct thermal energy 

measurement there were two clear choices: fibre optic measurement and infra 

red. This section compares both methods for their suitability for directly 

measuring the temperature of the closed faces of the clutch.  

 

Fibre optics work by transmitting the light signal (in this instance the infrared light 

emitted by the clutch during a slip) along its length to a converter which is used, 

along with look up tables, to determine the temperature of the specimen at this 

hard to access area of the clutch stack. 

 

For the use of fibre optics, one of the biggest problems in the installation is how 

to convert the signal received from the plate face. There are two ways to do this: 
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by converting the signal at the clutch end of the fibre optic cable or to convert the 

signal remotely from the clutch. The advantage of converting the signal at the 

clutch means that an electrical signal can then be sent from the signal converter 

via a slip ring, which is already in use by AP Racing. The signal converters 

(approximately 0.5kg) are bulky and if attached at the clutch would be spinning at 

up to 20,000 rpm, which would add a large eccentric load, and could be very 

hazardous.  

 

By installing the system so that the signal is converted away from the clutch there 

are still problems because the fibre optic cable will be spinning at up to 20,000 

rpm, whilst the converter remains stationary. One way of tackling this may be to 

design a signal converter head that would replace the current slip ring 

arrangement on the clutch dynamometer as shown in Figure 6.2a. 

 

 

 

 

 

Figure 6.2a Possible Fibre Optic Signal Converter Mounting Point 
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As the clutch spins, the head and converter would remain stationary. Although 

this idea is feasible in theory, in practice, it would be very difficult to use 

effectively due to the fact that outside light radiation could permeate the 

converter through the cut-out in the head. With such high speeds, it would be 

impossible to ensure that the only radiation received by the signal converter is 

from the clutch face, and this would make the results unrepresentative of the 

actual situation.  

 

When determining the location of the sensor head there are many considerations 

to take into account. It is easily possible to position many sensors which will be 

able to read the plate face nearest to the basket end of the clutch. This can be 

done by drilling a hole straight through the basket and the bottom ‘stationary’ 

plate (this is one of the plates which does not move in relation to the basket) – 

see figure 6.2b.  

 

Figure 6.2b. Proposed Sensor Exit Location. 

 

With a small amount of adaptation of the basket, it is also possible to use this 

method for the top stationary plate to read the temperature at interface 6 (where 

the Interface numbers are measured at the point where a stationary plate mates 
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to a spinning plate, and are numbered from the basket end of the clutch). 

However, due to the movement of the spinning plates, it is not be possible to 

measure the temperature at interfaces 2, 3, 4 and 5.  

 

The method of drilling holes can also be used in the application of infrared to the 

clutch arrangement. By drilling a series of holes at the bottom of the clutch basket 

and through the first stationary plate to interface number 1 it is possible to aim 

the IR beam so that it can read the temperature at interface 1. It would also be 

possible to connect the data processor for the IR beam so that data is acquired at 

the same frequency as the clutch rotation, so that the IR beam would sample only 

when the viewing hole is in line with it. This would mean that the IR beam would 

only ever acquire the temperature data when it was aiming at the interface and 

not when it is aimed at the spinning basket.  

 

Due to the data accuracy, ease of transferability and ease of installation, it was 

decided that the initial practical testing should use the method of IR detection for 

the measurement of inter-facial clutch temperature on the dynamometer. The 

sensor, produced as a special order from Raytek (a subsidiary of Radir in Milton 

Keynes, UK) was a result of a working relationship between Radir and the author, 

and was configured with this specific purpose in mind. The sensor is designed to 

read temperatures within the range of 200 ºC to 1200 ºC with a response time of 

150ms. This working range was determined through previous thermocouple 

measurements obtained with the dynamometer running, with the response time 

chosen to be the lowest possible for the temperature and price range constraints. 

Figures 6.2c, 6.2d and 6.2e below shows the selected sensor and its technical 

specifications.  
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Figure 6.2c. The infrared sensor, as used in the dynamometer testing 

 

 

 

Figure 6.2d. The mirrored head, used in the infrared sensor 

 

 

 

Figure 6.2e. The Infrared sensor dimensions, as supplied by Radir.  
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6.3 Determination of the Emissivity of the Carbon Material 

The radiated Infrared energy of the clutch is a function of temperatures multiplied 

by the emissivity of the sample, and so to utilise the IR equipment to its full 

ability, the emissivity of the carbon – carbon material needed to be accurately 

determined. Emissivity is the ratio of the radiation intensity of a non-black body to 

the radiation intensity of a black body and characterises the radiation or 

absorption quality of non-black bodies. The ratio is always less than, or equal to 

one, with only true black bodies having an emissivity of 1. A spectral emissivity of 

zero means that the heat radiator emits no radiation at this wavelength. 

 

The emissivity depends on factors such as temperature, emission angle, and 

energy wavelength. Emissivity testing was undertaken over a 3.5 – 4.0 µm range, 

to coincide with the wavelength range of the infrared detector that was being 

used. 

 

6.3.1   Emissivity Materials Testing 

The leading standard regarding emissivity testing is ASTM E-423-71 (2002) [165] 

(Standard Test Method for Normal Spectral Emittance at Elevated Temperatures 

of Nonconducting Specimens). This test method describes an accurate technique 

for measuring the normal spectral emittance of electrically conducting materials 

or materials with electrically conducting substrates, in the temperature range 

from 600 to 1400K, and at wavelengths from 1 to 35μm. The method produces 

data that are accurate to within a few percent. It is suitable for research 

laboratories where the highest precision and accuracy are desired, but because of 

cost, it is not recommended for routine production or acceptance testing. 

However, because of its high accuracy this test method can be used as a reference 

for other methods for production and acceptance testing. 

 

Using the methods stated in ASTM E-423-71 [165] a sample of used carbon-

carbon clutch material from an F1 clutch was tested for its emissivity at the 

National Physical Laboratory facilities in Teddington, London, UK. The procedure 

was undertaken using the NPL absolute emissometer shown in Figure 6.3.1a. 
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Figure 6.3.1a. Emissivity Test Apparatus at the National Physical Laboratory Teddington UK 

 

The main component of the emissometer consists of an electronically heated 

tantalum furnace with a graphite block mounted in the central region, as 

observed in figure 6.3.1b This graphite block has two holes on its upper face; one 

is 6mm diameter by 30mm deep and forms a blackbody cavity, the other hole is 

10mm diameter by 10mm deep and houses the specimen. 

 

 

Figure 6.3.1b. Close up of the Graphite Block Used to Hold the Sample (taken at the National 

Physical Laboratory – Teddington) 
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A specimen of nominal dimensions of 10.0mm diameter and 6.00mm thickness 

was taken from a used, bedded clutch plate (this is because new plate material 

has a ‘shiny’ appearance which would affect the emissive values obtained) and 

placed into the specimen cavity. Tantalum radiation shields are used at either end 

of the furnace and help to produce an approximately isothermal condition in the 

central region of the furnace, meaning that the blackbody and specimen samples 

are assumed identical in temperature. The radiation shields above the graphite 

block are supported on a shutter mechanism that moves via the use of a stepper 

motor. This stepper motor means that the shutter can move very quickly, to allow 

for it to be pulled away from the sample and measurements to be taken as soon 

as possible to ensure that the reading is as accurate as possible by reducing the 

time for heat loss to occur. A periscope, comprising of a parabolic mirror and two 

flat mirrors, is used to accumulate and direct radiation from the target area 

towards the detection system.   

 

The whole assembly is enclosed in a vacuum chamber with a calcium fluoride 

window in its side through which the thermal radiation is detected and this is 

shown in Figure 6.3.1c.  

 

 

Figure 6.3.1c. The Emissivity Vacuum Chamber and Window  (taken at the National Physical 

Laboratory – Teddington) 
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A Fourier-transform spectrometer (shown in Figure 6.3.1d) with a photovoltaic 

mercury indium antimonide (InSb) detector is used to measure radiation over the 

wavelength 5.5 µm with a spectral resolution of 16cm-1.  

 

 

Figure 6.3.1d. The Emissivity Spectrometer / Detector (taken at the National Physical Laboratory – 

Teddington) 

 

During an emissivity measurement, a zero value reading of emissivity (I0) is 

required to determine signal values and for this purpose initial readings are 

recorded with a white card placed over the vacuum chamber window. After the 

card is removed, the shutter signal is recorded while the furnace is lowered, 

before the shutter withdraws at speed to expose the sample surface for 

measurements. For measuring the blackbody hole, the procedure is similar, 

except that the periscope is re-aligned to target the blackbody cavity. 

 

At each wavelength the signal versus time data can be fitted by a polynomial 

equation to find the signal I(λ, t) at t = 0, corresponding to the moment 

immediately before the removal of the shutter when the target was isothermal 

and at a known temperature, T0, as measured by thermocouples planted inside 

Detector 
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the graphite block. The spectral emissivity value is then given by the ratio of 

specimen signal, Is(λ, 0) to a blackbody signal, IB(λ, 0) by; 

 

ε(λ) = 
Is(λ, 0) – I0 Equation 6.3.1e 

IB(λ, 0) – I0  

 

Where; 

ε(λ) Emissivity (at wavelength) 

Is Specimen signal 

IB Blackbody signal 

I0 Signal at T0 

T0 Known temperature 

 

Using Planck’s Law, the calculated emissivity can be adjusted as necessary to 

compensate for any initial temperature difference between the specimen and 

blackbody.  

 

Emissivity tests were undertaken at a range of temperatures from 300ºC to 

1200ºC, at 150ºC intervals. This range and these interval steps were chosen 

because of the operating range of the carbon determined through the literature 

review and the previous testing knowledge of AP Racing.   
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6.3.2   Results from Emissivity Materials Testing 

The results from the emissivity testing of the F1 carbon-carbon clutch material 

sample are summarized as follows:  

 

Wavelength / 

µm 

Temperature / °C 

300  450  600  750  900  1050  1200  

3.3 0.842 0.837 0.841 0.840 0.846 0.840 0.835 

3.4 0.827 0.835 0.840 0.839 0.845 0.839 0.833 

3.5 0.834 0.836 0.838 0.838 0.844 0.837 0.832 

3.6 0.832 0.835 0.838 0.838 0.843 0.837 0.830 

3.7 0.825 0.833 0.834 0.838 0.842 0.836 0.829 

3.8 0.825 0.833 0.833 0.837 0.841 0.836 0.828 

3.9 0.829 0.832 0.832 0.836 0.840 0.834 0.826 

4.0 0.828 0.830 0.829 0.835 0.839 0.834 0.825 

4.1 0.826 0.828 0.827 0.835 0.838 0.833 0.824 

4.2 0.820 0.830 0.840 0.816 0.836 0.833 0.819 

Table 6.3.2a. Normal Spectral Emissivity Results  Obtained from Emissivity Testing at NPL, Teddington UK 

 

As the emissometer operated through its range, the percentage uncertainty of the 

results obtained fluctuated. This is a calculated value from a look up table 

determined by the NPL at calibration of the emissometer, and is summarised in 

table 6.3.2b 
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Wavelength / 

µm 

Temperature / °C 

300  450  600  750  900  1050  1200  

3.3 4.2 4.5 4.1 3.6 3.1 3.1 3.4 

3.4 4.2 4.5 4.0 3.6 3.1 3.1 3.4 

3.5 4.1 4.4 4.0 3.6 3.1 3.1 3.4 

3.6 4.1 4.3 3.9 3.6 3.1 3.1 3.4 

3.7 4.0 4.3 3.9 3.5 3.1 3.1 3.4 

3.8 4.0 4.2 3.8 3.5 3.1 3.1 3.4 

3.9 3.9 4.2 3.8 3.5 3.1 3.1 3.3 

4.0 3.9 4.1 3.8 3.5 3.1 3.1 3.3 

4.1 3.8 4.1 3.7 3.4 3.1 3.1 3.3 

4.2 3.8 4.0 3.7 3.4 3.1 3.1 3.3 

Table 6.3.2b Emissivity Measurement Uncertainty (Percent) 

 

Usually the Radir IR sensor selected for the application of measuring the clutch 

temperature on the dynamometer is set up to provide results for perfect black 

bodies with an emissive value of 1. Even though carbon is considered to be very 

emissive, it is not perfectly so. From the emissivity test undertaken at the NPL at a 

range of temperatures from 300ºC to 1200ºC at 150ºC intervals,it was determined 

that for these low temperature applications, an average emissivity was calculated 

to be 0.85 and using this value would allow the sensor to deliver accurate results 

for the face temperature of the plate.  

 

 

6.4 Dynamometer Adaptation for Accommodation of the Infrared 

Sensor 

The clutch dynamometer is usually used with both the driving and driven 

assemblies being free to rotate about their axis. The basket is mounted to the 

clutch motor and is driven at speeds which simulate actual engine speed.  The 

actuation spring is engaged and disengaged using a pusher connected to the 
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braking assembly of the clutch, which calculates the output torque by measuring 

the resistance to the braking. 

 

To enable the infrared sensor access to the plate faces,  the two options were: 

 Drill a hole through the clutch assembly to the face that is required to be 

measured. 

 Using a variable acquisition detector and timing it to sample data when a 

set of holes are all aligned it would be possible to allow the temperature 

to be read on every set of interfaces. 

 

Using the first method, it would only allow for the first interface from the basket 

end to be analysed. Due to the complexity of correlating the dynamometer speed 

with the data acquisition speed, and given the errors involved,  it was decided to 

use the drilling method for the initial testing.    

 

The method of drilling a hole in the back of the clutch has difficulties which 

needed to be overcome. Due to cabling issues and the relatively large size of the 

detector when compared to a thermocouple, it is required that the detector 

remains stationary. Previously there had been problems with small 

thermocouples becoming detached from the rig at high velocity. It was imperative 

that the infrared detector (which weighs and costs a lot more than a small 

thermocouple) was not allowed to come loose from its fixings and be able to 

cause damage to surrounding components.  

 

For the sensor to remain stationary, there were two options: 

 The sensor would capture clutch data at set intervals, where the 

acquisition rate is correlated with the speed of the clutch rotation.  

 The basket of the clutch would also remain stationary. 

 

The first option only allows for one clutch speed to be used due to the fixed 

acquisition speed sensor, so the option of holding the basket stationary became 

the best choice if a full range of delta speed results were to be obtained. As a 

result of these requirements the clutch dynamometer had to undergo adaptations 
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including the re-designing of fixtures, alternative modes of operation and the 

modification of the clutch itself. Each of these items is now explained in turn.  

 

 

6.5 Dynamometer Rig Modifications  

As discussed earlier in this chapter, the clutch rig works by spinning the basket 

end to the required speed, applying a load to the spring via an actuator, clamping 

up the stack of carbon and transmitting a load from the driven to the driving 

plates. This method of clutch actuation means that the basket is spinning, and the 

internal drive plates are stationary until slip begins between the two sets of 

plates.  By inverting the clutch on the rig, and mounting the basket so that it is 

stationary, it is possible to drill a slot in the back of the basket and the first 

pressure plate to provide an optical route through onto the first plate interface, as 

shown in figure 6.5a.  

 

.  

Figure 6.5a. Infrared sensor configuration on the adaptor plate for the clutch on the dynamometer 

(taken during initial testing) 

 

An overall view of the final adapted test configuration is shown in figure 6.5b. In 

normal test conditions, the clutch (c) is mounted directly onto the drive torque 

motor (a), and spins with it. The intermediate plates (those which are driven by 

the lugs of the clutch) remain stationary in relation to the drive plates, with the 
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actuator (d) engaging and disengaging the clutch by pulling and pushing on an 

actuating spring. The output torque is measured using the resistance to a brake 

connected to an output shaft mounted on the  drive hub. As the clutch begins to 

engage, the intermediate plates move, and a torque is transmitted and measured 

at the brake.  

 

 

Figure 6.5b. a. Drive torque motor, b. Body of infrared sensor, with right angled mirror attached, c. 

Clutch assembly, d. Actuator (taken during initial testing). 

 

In the adapted test, the basket and drive plates remained stationary and the 

intermediate plates were driven, using an output shaft driven by the drive torque 

motor. The clutch was actuated using the actuator (d) acting upon a plate (seen 

on the right hand side of the clutch (c) in figure 6.5b), which compressed the 

carbon stack together, and eliminated the use for the traditional use for the 

actuating spring and fulcrum ring on which it can pivot.  

 

However, the actuating spring was used in a different manner; this was placed 

between the actuator plate and actuator (as seen in figures 6.5c and 6.5d), and a 

small level of cushioning between the plate and the actuator was provided. 

Without the spring, when the actuator was used to clamp up the carbon stack it 

a 

b c 

d 
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moved and came to an instant halt when the stack clamped up. The sensor and 

software feedback loop is programmed to protect the equipment, so when a solid 

resistance is met the actuator will automatically back away as it believes that it 

has hit a solid object and that continuing with the force will only cause damage. 

This could have been overcome by changing the protection parameters within the 

rig software, but the addition of a spring meant that resistance was gradually met 

as the actuator moved and the clamp load was applied. 

 

 

Figure 6.5c. Spring Cushioning between Actuator Plate and Actuator 

 

 

Figure 6.5d. Overview of Spring Cushioning between Actuator Plate and Actuator 

 

By using the fulcrum spring to cushion the pressure, it allowed the clutch to be 

gradually clamped up, and with the majority of the clutch assembly held 

Diaphragm Spring 
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stationary it was imperative that the clutch did not completely lock up and 

transmit the full torque, as this could have resulted in a catastrophic failure.  

To allow thermocouple data and IR data to be captured at the same rate, the IR 

sensor was connected to the dynamometer using K-type thermocouple fittings. K-

Type thermocouples are a standard type of thermocouple, and have a range of -

200˚C to 1250˚C with a 0.75% or 2.2˚C error (whichever is the greater of the two). 

This allowed the data from the IR to be seen by the dynamometer software 

package as though it were a thermocouple.   

 

A selection of drawings for the test apparatus and parts can be found in Appendix 

C. 

 

6.6 Structural FEA modelling of the adapted dynamometer test rig 

To ensure that the adapted parts were of a safe and durable standard, FEA 

analysis of these parts was undertaken. Structural modelling was carried out 

because it was important to validate the design of the rig adaptation components. 

By using FEA, it was possible to check that the designs were going to withstand 

the loads that it would be exposed to. Applied loads are illustrated by the purple 

arrows, while the constraints are indicated by the green arrows, as seen in Figures 

6.6a to 6.6e.  

 

The main test plate was analysed using the FEA package Cosmos in SolidWorks. 

The material properties for the aluminium were set from the database within the 

package. The base was fixed, as illustrated by the green arrows in figure 6.6a, and 

a rotational force was applied to the bolt holes where the clutch would affix to the 

plate. The magnitude of the force was calculated by using the ‘worst case’ 

scenario of complete lock up at 20,000 rpm with a clamp load of 3,500N. 

 

A range of FEA analysis was undertaken to ensure that the proposed plate design 

was capable of safely constraining the clutch under the test conditions. These 

analyses included; 

 Test plate deformation  

 Test plate displacement,  
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 Factor of safety.  

 Von Mises Stress  

 

This series of FEA analyses gave confidence that the design of the adapted rig 

components was adequate, with maximum displacement of 0.5mm, a minimum 

factor of safety of 5 and maximum Von Mices Stress of 112 MPa  In the event that 

the worst should have happened and total lock up and torque transfer occur at 

the highest speed and clamp load, then the component would have been able to 

withstand this event and protect the clutch and clutch dynamometer. 

 

 

6.7 Clutch Adaptation 

This section focuses on the adaption of the clutch itself for the purposes of the 

experimentation. An F1 clutch is very small, and contains several interfaces, and it 

is impossible to measure the face temperatures on all of the faces simultaneously. 

Due to this, the clutch to be measured and the rig on which it was measured had 

to be significantly modified in order to gain access to the plate faces for the 

infrared detector to take readings.  

 

 

Figure 6.7a. A typical AP Racing multi plate clutch arrangement (Solidworks screen grab) . 

 

For the initial testing, a larger 140mm diameter, clutch with the same friction 

material as the F1 clutch was used. Technical information on this clutch is given in 

Appendix D. The purpose of this was to allow for a bigger radius over which a 
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temperature could be observed in order to obtain more radial data, to enable a 

more accurate heat profile to be determined. This increased diameter also 

allowed for more flexible designs for rig adaptation, and an increase in surface 

area of the clutch. This enabled expansion of the available surrounding area 

allowing for more sensors and components to be utilised.  

 

Due to the unique method of drive and actuation, the clutch assembly itself had 

to be adapted. The new clutch required spacers between the clutch basket bolting 

points (as shown in Figure 6.7c) and the backing plate of the clutch installation 

assembly to allow for a completely flat contact between the clutch and the rig. 

The springs and fulcrum ring were also removed and replaced with a spacer. 

These components were no longer needed as the new configuration clutch was to 

be actuated away from the basket end. Figure 6.7b and figure 6.7c show exploded 

diagrams of how the clutch was adapted. In figure 6.7b, it can be seen that most 

of the components rotate (as indicated by the red dot), but the modifications to 

the clutch configuration seen in clutch 6,7c mean that far less of the components 

rotate, therefore allowing the basket to be held stationary.  

 

 

Figure 6.7b. The Old Clutch Configuration prior to modification (parts with a red dot rotate) 
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Figure 6.7c. The New Clutch Configuration after modification (parts with a red dot rotate) 

 

 

6.8 Experimental Validation of Initial Set Up 

One of the biggest difficulties of testing the clutch ‘back-to-front’ was to 

determine whether it would be possible to accurately determine the torque 

output, as this is normally measured using the resistance against a braking device. 

As the output shaft would not be spinning with the revised clutch arrangement, 

there would be no resistance and effectively no torque output.  

 

To overcome this, a torque sensor was mounted on the input shaft. To test this, 

the input torque was measured along with the output torque during a range of 

dynamometer tests. The results showed that the two data traces were 

comparable and that the input torque trace was suitably accurate to use in 

testing.  

 

6.8.1   Analysis of Validation Test Data 

Using the proposed test configuration, a A graph (figure 6.8.1a) was plotted of the 

drive torque compared with the output torque against time. From this graph, a 

number of observations can be made: 

Carbon Stack Basket 

Spacer Spacer 
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1. The output torque does not commence zero at the beginning of the test – 

this implies that there is a small error in the sensor calibration. 

2. Once the clamping load has been set, the two data traces follow the same 

path, although the output torque trace was very noisy. 
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Figure 6.8.1a. Drive Torque Vs. Output Torque. 

 

A closer inspection of the clamping event from graph shown in Figure 6.8.1a 

showed that the noisy output torque trace follows that same path as the drive 

torque trace, apart from that it is offset, as seen in Figure 6.8.1b. This implied that 

the output torque is higher than the input torque, which is not possible in the 

configuration that is being tested. This can be explained by inaccurate calibration, 

a theory which is reinforced by the first graph, which showed that the output 

torque sensor did not appear to have been set to zero before the test. By 

offsetting the input graph by the torque value at T=0, the two graphs then 

matched. This also highlighted the importance of calibrating and zero-ing the 

sensors before each test run.  
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Drive Torque Vs. Output Torque During Clamping
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Figure 6.8.1b. Drive Torque Vs. Output Torque During Clamping. 

 

Initially there were a few installation problems with the two torque devices, and 

the output torque was reading marginally higher than the input torque, and was 

also very ‘noisy’. By back-checking the instrumentation, and through observation 

of the red trace on Figure 6.8.1a (which reads an offset before the clutch is even 

clamped) it was possible to observe that the output sensor had not been properly 

calibrated, and was reading an offset value of 6Nm. The noisy data was filtered 

using averaging over ten data points, representing 0.1 seconds, and once this had 

taken place the two data traces were similar enough to construe that the output 

torque trace could be used in place of the input torque trace.  

 

A particular hazard of filtering is that certain samples are effectively ‘wiped out’ in 

a phenomenon known as ‘aliasing’. This is where the filter applied is a multiple of 

a frequency of occurrence within the data, and thus the samples are either always 

only seen, always never seen, or seen at a rate of multiples of its true existence.  

This was accounted for in this particular application by the comparison of the 

original data to the filtered data, but can never be ruled out from the initial data 

sampling from the sensor itself.  
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6.9 Test Plan 

The aim of this initial test was to gain a profile of how the infrared sensor 

compared to the thermocouple over a range of temperatures, clamp loads and 

input speeds, as well as to gain data of how the surface temperature changes. This 

could then be compared to the output torque and a relationship between the two 

can be determined. 

 

During the tests, the initial temperature soaking of clutch plates allowed for rate 

of thermal conductivity to be observed and gave an insight into the rate of change 

of the surface temperature with relation to the core temperature. The energy rate 

was varied by changing the torque, so that its effects could be determined. The 

test matrix used for this can be observed in Table 6.9a. 

 

Clamp Load ► 

1500N 2500N 3500N Temp ▼ 

100ºc 
3000rpm 3000rpm 3000rpm 

7000rpm 7000rpm 7000rpm 

200ºc 
3000rpm 3000rpm 3000rpm 

7000rpm 7000rpm 7000rpm 

Table 6.9a. Test Plan for varying initial temperatures, clamp loads and input speeds 

 

A range of slips at a constant torque and speed deltas were completed from a 

range of initial temperatures. Torque, input speed, release bearing position, 

thermocouple temperature and IR sensor temperature were to be recorded. Each 

test was terminated by temperature trip at a 500 ºc thermocouple reading. 

Thermocouple temperatures were used as ‘trip’ temperatures as it was uncertain 

what surface temperatures would be seen during the test situation. A 500ºC 

thermocouple trip temperature was known from historical clutch data to be a 

‘safe’ temperature which would have not allow the clutch to overheat, but still 

permitted a wide range of data to be accumulated. 

 

Using varying thermocouple radii on the pressure plate allowed for the effects of 

heat travel to be observed through the carbon radius and for its effects to be 



155 

 

logged. Thermocouples were embedded at radii of 54mm (thermocouple 1), 

56mm (thermocouple 2), 58mm (thermocouple 3), 60mm (thermocouple 4), 

62mm (thermocouple 5), 64mm (thermocouple 6) and 66mm (thermocouple 7) ( 

figure 6.9b). 

 

 

Figure 6.9b. Thermocouple Radial Depth Locations 

 

The infrared camera was initially placed at the minimum radius of 54mm and a 

slot was drilled so that the infrared camera could read a range of radii up to 

66mm in preparation for the next round of testing. 

 

 

6.10 Results 

Graphs from all initial test runs can be seen in appendix E. 

 

The purpose of the initial test work was to determine the equipment and test 

mehod, and so the results of this initial work were used to ensure that all the 

equipment was functioning as expected. There were still problems which had to 

be solved in terms of both the  temperature and torque analysis and each turnoff 

these will be considered in turn. 
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6.10.1  Temperature Analysis 

During the tests, thermocouple two malfunctioned and did not give any readings. 

However, the remainder of the thermocouples yielded some interesting results. 

Thermocouple 4, which was at the mid radii of the plate, consistently experienced 

the highest temperatures, with thermocouples 3 and 5 showing the next highest 

temperatures, with 1 and 7 showing the lowest readings. It is also suspected that 

thermocouple 6 was defective, as it consistently exhibited substantially lower 

temperatures than the others. Graph 6.10.1a is taken from a 7000rpm test with a 

soaked temperature of 200ºC and applied force of 3500N. This graph highlights 

the patterns of heat flow throughout the radius of the clutch plate as it undergoes 

a slip.  

 

 

Figure 6.10.1a. Thermocouple Profile 

 

It is also interesting to note from graph 6.10.1a that the infrared camera does not 

yield results of temperatures higher than those for thermocouple 4. This was not 

necessarily the case for all of the slips and graphs 6.10.1b and 6.10.1c show how 

the infrared readings compare to the highest thermocouple readings at 100ºC and 

200ºC respectively. Starting from the left, the bars represent the following 

conditions: 

 1500N applied force, 3000rpm (red) 

 1500N applied force, 7000rpm (orange) 
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 2500N applied force, 3000rpm (yellow) 

 2500N applied force, 7000rpm (green) 

 3500N applied force, 3000rpm (blue) 

 3500N applied force, 7000rpm (purple) 

 

 

Figure 6.10.1b. Infrared vs. Thermocouples at initial temperature of 100ºC 

 

 

 

Figure 6.10c. Infrared vs. Thermocouples at initial temperature of 200ºC 

 

The infrared camera works by taking an average temperature over a spot. This 

spot converges to 2.5mm at a distance of 76mm, before increasing to 4.6m at 

92mm, and beyond. These results infer that the sensor may have been taking an 

average of the carbon temperature and the temperature of any tooling upon 
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which the beam came into contact with. This would have simply caused the infra 

red camera to read lower temperatures than the carbon was experiencing, but it 

would have affected all of the infrared results in the same manner which, as 

shown by figures 6.10.1b and 6.10.1c, is clearly seen to not be true. 

 

Conversely, the apparent ‘randomness’ in the differences in the readings between 

the highest thermocouple reading and the infrared camera could be explained by 

the occurrence of banding. As banding itself is a randomly occurring act, it is 

impossible to predict at what radius it will occur next, and how thick the band will 

be. If the IR camera were pointing at a hot band, then the temperature reading 

would be significantly higher than the reading for the thermocouple. When the IR 

sensor was directed far away from a band, the IR temperature would appear 

lower than that for a thermocouple; especially of the thermocouple was located 

directly underneath the band.  

 

Banding is a known phenomenon that occurs on the surface of a brake disc, 

during a braking event. This happens due to the fact that the discs and the pads 

are never 100% flat and have slightly raised areas which stand proud from the 

surface. At the first braking event (stop one) these areas will make contact first 

and so will get hotter than the rest of the disc, causing the banding effect seen in 

figure 6.10.1d. As the material gets hotter, it expands and so these areas will 

continue to take the full energy loading during this braking event. After the first 

stop when these areas are allowed to cool, they contract and cause a valley on 

the surface of the disc as the loading of this initial event has worn away some of 

the disc material.  This means that at the next stop the material that was in the 

hot band at the first stop is now in the cool band in the second braking event, 

because it sits lower than material which was in the cool band during the first 

stop. 
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Figure 6.10.1d. Brake Banding Taken on the brakes dynamometer. (Courtesy of AP Racing) 

 

It has been suggested that banding occurs on the surface of a clutch plate, in a 

very similar way to how it occurs on a brake disc, and this may go part way into 

explaining the apparent ‘random’ characteristics that are seen when comparing 

the IR temperatures to those of the thermocouples. 

 

6.10.2 Torque Analysis 

 

Figure 6.10.2a. Torque analysis at initial temperature of 100ºC 

 

Figure 6.10e shows how the maximum torque output varied for each condition of 

a 100ºC start temperature slip. Starting from the left, the bars represent the 

following conditions: 

 1500N applied force, 3000rpm (red) 
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 1500N applied force, 7000rpm (orange) 

 2500N applied force, 3000rpm (yellow) 

 2500N applied force, 7000rpm (green) 

 3500N applied force, 3000rpm (blue) 

 3500N applied force, 7000rpm (purple) 

 

The torque values appear as a negative, due to the reversed configuration of the 

clutch on the rig, as described earlier. 

 

The torque output increases with the applied load, at 3000rpm, a 75.7% increase 

in transmitted torque was observed when increasing the applied force from 

1500N to 3500N. At 7000rpm, this was much higher, with an increase of 110.5% 

between the two applied loads.  

 

What is also interesting to note is how much the torque varies with the increased 

speed. For the 1500N applied force, this difference is only 3%, but for the higher 

loads the difference caused by the 133% increase in speed is a 19% increase in 

torque.    

 

The torque was observed to ‘spike’ upon initiation, which is a natural effect of the 

initial bite of the clutch material. This ‘bite’ varies from clutch to clutch and relies 

heavily on the material and method of load initiation. 

 

6.10.3 Torque vs. Temperature Analysis 

Using data from a variety of test parameters and plotting the temperature against 

the torque, it is possible to observe the relationship between the two. Data from 

the highest reading thermocouple (4) was compared to torque data gained from 

the motor. 

 

Figure 6.10.3a shows how the torque varies with the temperature over a range of 

slips from a start temperature of 100ºC. The numbers on the graph indicate the 

slips as follows: 

 1 = 1500N applied force, 3000rpm 

 2 = 1500N applied force, 7000rpm 
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 3 = 2500N applied force, 3000rpm 

 4 = 2500N applied force, 7000rpm 

 5 = 3500N applied force, 3000rpm 

 6 = 3500N applied force, 7000rpm 

 

Figure 6.10.3a. Torque vs. temperature analysis from initial temperature of 100ºC 

 

For the period of the slip, it can be observed that both the applied force and the 

clutch speed have an effect upon how much torque is transmitted at what 

temperature. It is not easily observed if there are any effects upon the torque that 

are as a result of this rapid increase in temperature. 

 

On the cool down period after the slip has taken place, the relationship becomes 

clearer. Figure 6.10.3b indicates the presence of the effects of temperature upon 

the output torque in the cool down period from a slip at 7000 rpm, with an 

applied load of 3500N and initial soak temperature of 100˚C. As the heat within 

the clutch plate dissipates from approximately 850˚C to 180˚C, it can be observed 

that the output torque reduces from 340 Nm to 300 Nm.  
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Figure 6.10.3b. Torque vs. temperature analysis during the ‘cool down’ phase from a 7000rpm, 

3500N slip with initial soak of 100ºC 

 

This trend continues throughout the data sets for all speeds giving an average of 

an 11.45% decline in torque for a 39.19% decline in temperature, and can be seen 

in table 6.10.3c, which illustrates how the torque was affected with the heat 

decline for the runs performed in the initial testing.  

 

 

  

High 

Temp 

High 

Torque 

Low 

Temp 

Low 

Torque % heat diff 

% torque 

diff 

1500N_3000rpm 535.8 128.6 372.9 111.6 -43.68463 -15.232975 

1500N_7000rpm 710.6 330.3 504.5 318 -40.85233 -3.8679245 

2500N_3000rpm 523.4 125.8 501.9 103.3 -4.283722 -21.78122 

2500N_7000rpm 636.48 324.7 457.2 304.9 -39.2126 -6.4939324 

3500N_3000rpm 657 132.7 532.5 119.4 -23.38028 -11.139028 

3500N_7000rpm 1119.6 337 609.3 305.8 -83.75185 -10.202747 

Table 6.10.3c. Percentage heat reduction and its effects on the reduction in torque from initial 

testing. 
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6.10.4 Infrared Sensor Alignment 

During the initial testing the IR readings were observed to be sporadic and 

inconsistent. After further investigation it was understood that the IR beam was 

misaligned and too far away from the clutch plate area that it was trying to 

measure. This meant that the target spot emitted by the IR wasn’t only ‘seeing’ 

carbon but also had some of the (relatively cold) mild steel bracket in its field of 

view. As the IR detector takes an average reading of the temperature seen in its 

field of view, the increased distance meant that this field of view was larger than 

it should have been and was also including areas of mild steel causing the average 

IR readings to be lower than expected.  

 

The IR detector used was of a converging / diverging type, meaning that it focused 

to a spot size of 3.5mm at a distance of 76mm from the sensor lens. This 76mm 

path length did not necessarily need to be in one straight line and mirrors could 

be used to reflect the beam at an angle so the IR sensor did not necessarily need 

to be in the direct line of sight from the target. The bracket that held the IR sensor 

was modified as a result of the first round of testing with more secure fixing 

points and was made to tighter tolerances to ensure that the sensor remained 

aligned throughout testing. This ensured that the target spot was exactly the 

correct distance from the sensor to allow for only carbon to be seen in the sensors 

field of view.  

 

Once the distance was correctly set, the beam was then aligned using a mirror, a 

laser pen and a smoke machine. The smoke machine generated smoke so that 

once the laser pen was switched on the laser path could clearly be seen. Using a 

mirror positioned at 90 degrees to the clutch mounting plate to reflect the beam 

back on itself, the sensor was aligned. To ensure that the sensor stayed correctly 

aligned, score marks were placed on the sensor and bracket, for a quick visual 

reference to ensure that the sensor had not been knocked or moved and so that it 

could be accurately realigned very quickly. 
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6.11 Conclusions and Recommendations for Further Experimental 

Work 

In the middle of the plate, there is more radial distance for the heat to dissipate 

through. When comparing thermocouple pairs, for instance 7 and 1 - which are at 

equal distances from the outer and inner radii respectively, temperatures always 

showed that the thermocouple that is on the outer radius is lower in temperature. 

This is partly due to the inclusion of the titanium spline hub, which is located at 

the inner radius of the plate. This hub retains heat, and also blocks the airflow to 

the inner radius, meaning that heat build-up occurs.  

 

Testing also hinted that banding does occur within the clutch, due to the 

unpredictability of the relationship between the maximum thermocouple 

temperature and the infrared temperature readings despite the consistent 

positioning of both the IR sensor and the thermocouples. This strongly suggests 

that banding is occurring, although at this point further testing was required to 

determine the extent to which this happens. IR sensor alignment appeared to be 

inaccurate due to inconsistent readings from the infrared sensor. It is imperative 

that the infrared beam is at the optimal distance and can read the plate 

temperature clearly. The initial testing highlighted the requirement for an 

accurate method of alignment which could be relied upon to give an accurate 

result 

 

The initial soak temperature did not appear to have an effect upon the output 

torque of the clutch, and in turn, the friction. At low energy slips, there was 

approximately 0.294 percent change in the torque for every percent change in 

temperature. It must not be assumed that this relationship is completely linear 

and this was explored further in the next stage of testing. Further investigations 

into high energy slips would add supplementary clarification to the relationship.  

More testing need was needed to determine further effects of increasing the 

clutch speed as F1 engines can rotate at up to 20,000rpm, it is critical that this 

effect is understood.  
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Although it is acknowledged throughout the industry that the temperature does 

have an effect upon the output torque (and hence the friction) of a carbon clutch, 

it is hard to put an exact figure on how much this occurs. Phenomena such as 

banding and material wear characteristics will always have an influence upon how 

the carbon heats and cools and will consequently also have an effect upon the 

overall friction co-efficient.   

 

By collecting and using the thermocouple readings in addition to the infrared 

camera during the experiment meant that it was possible to relate the 

thermocouple data back comparing it to archived results and looking up its 

respective surface temperature. In theory, this allows a very broad collection of 

historical data to also be used for analysis, should a predictable relationship 

between the thermocouple and surface temperatures be determined in the next 

round of testing. 
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 Chapter 7 

Experimental Testing 

 

This chapter discusses the experimental work and conclusions upon the 

effectiveness of the solution and results obtained. 

 

The objective of this experimental work was to build upon the information 

gathered from the initial testing, and to develop the results so that they could be 

used, along with the material properties, as a starting point for developing and 

then validating the mathematical model. During the initial testing it was also 

hinted that banding may have played a part in the unusual results pattern and so 

an experiment to account for this was also introduced with the intention of using 

the information to gain a greater understanding of how much of an effect that 

banding really plays within the clutch, and its role within the friction / 

temperature relationship.  

 

 

7.1 Adaptations from the Initial Testing 

N.B All part drawings can be found in Appendix C. 

 

7.1.1   Experimental Investigation into the Effects of Banding 

During the initial testing it was hinted that banding may have played a part in the 

unusual results pattern and so an experiment to account for this was also 

introduced. By using ‘enforced banding’ through a series of machined plates, it 

was possible to ensure that the contact between plates was in this enforced 

banded area only. With this addition of ‘banding’ analysis to the testing, it was 

required that a quick and repeatable way be designed so that when the infrared 

sensor was moved radially, it was accurately aligned with the band which it was 

trying to measure. Using a nominal band width of 4mm (the IR detector spot size) 

band radii were selected, with reference to the bands inner radius (IR) and outer 

radius (OR) being 2mm either side of the mid radius. A series of marks was scored 

onto the back of the plate (see part number ct1207-101 in Appendix B) to 

measure predetermined mid-point radial locations of:  
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Plate Internal Radius Mid Radius Outside Radius 

A 52mm 54mm 56mm 

B 54mm 56mm 58mm 

C 56mm 58mm 60mm 

D 58mm 60mm 62mm 

E 60mm 62mm 64mm 

F 62mm 64mm 66mm 

G 64mm 66mm 68mm 

Table 7.1.1a. Radial locations of the enforced bands 

 

These radial locations were determined by the inside and outside radii of the 

friction surface of each plate, coupled with the 4mm wide band (determined from 

the focal spot size given by the IR sensor). By simply putting the inner radius of 

one band immediately next to the outer radius of the previous band would have 

given only 4 different band widths. However, by using a 2mm overlap seven band 

radii were established, which would give a larger spread of results. By machining 

4mm wide bands onto the face of the plate at different diameters, it was possible 

to observe the effects of banding. An example of a plate with enforced banding  is 

shown in figures 7.1.1b and 7.1.1b.  

 

 

Figure 7.1.1b. SolidWorks Model of a Typical Banded Plate 
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As each band was located at a different effective radius, it was hoped that it 

would be possible to analyse the results from each banded test to give a profile of 

where banding was occurring in the ‘normal’ flat plate of a race clutch, as used  

for the initial testing.  

 

 

Figure 7.1.1c. A Typical Plate with enforced banding as used in testing 

 

An extensive installation run was undertaken with one sample of the banded plate 

and this highlighted a minor design problem; initially the banding was only 

enforced on one side of the plate, and this had detrimental effects. Due to the 

elasticity of the plates and the pressure that was being applied to the carbon 

stack, the 1mm raised band cut away a groove in the carbon on the drive plate 

with a mirrored profile of that seen on the driven plate, as seen in figure 7.1.1d. 

This then meant that the temperature measured by the IR sensor was not 

representative of that observed on the band alone, because  a) the band was cut 

out anyway, causing all of the plate area to remain in contact and b) the non-

banded face (i.e. on the back) of the driven plate was still experiencing ‘random 

banding’, as would be seen on a standard driven plate, so effectively the banding 

was not being controlled in any way.  
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Figure 7.1.1d. Damage Caused by the Cutting out of the Material by the Enforced Banding Plate 

 

As a result of this more drive plates were ordered to allow for replacement should 

any possible grooves be worn into them during the slipping process. Using three 

different sets of drive plates, the banded areas which would be in contact with 

them were staggered so that they did not interfere with each other. This was 

considered to be sufficient for the tests as the reduced amount of time that each 

banded driven plate would come into contact with the drive plate in comparison 

to the installation run meant that minimal (if any) grooves would be worn into the 

drive plate. Drive plate set 1 was used for plates with band radii of 54mm 60mm 

and 66mm, set 2 was used for band radii 56mm and 64mm, and set 3 was used 

for band radii 58mm and 66mm.  

 

Only the drive plates at the basket end interface (interface 1) were banded, with 

the rest of the clutch remaining in a standard configuration. To combat the 

random banding effect on the other side of the driven plate, the drive plates were 

sent away for the re-machining of an additional corresponding band on the back. 

This was to further force the banding on both sides, to allow for further 

predictability of the system, and to aid in the clarity of results and possible trends.  

 

 

7.2 Test Plan 

The data set range was extended from the initial testing to include a wider range 

of variables for the input speed, clamp load and initial soak temperature in order 

to capture a wider range of information and for more conclusive trends to be 

Worn Band in 

Drive Plate 
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observed. The input speed is the speed at which the dynamometer spins the 

driven plates before the clutch is engaged, the clamp load is the load which is 

applied by the dynamometer to engage the clutch and the initial soak 

temperature is the temperature at which the test begins, which is set to emulate 

different ambient operating conditions of the clutch. 

 

The initial temperature soaking of clutch plates allowed for the effects of the 

different rates of thermal conductivity to be explored through the data obtained 

from the thermocouples and gave an insight into the rate of change of the face 

temperature with relation to the core temperature. The energy rate that was 

input into the clutch was varied by changing both the speed and clamp load so 

that the effects of this could be determined.  

 

Table 7.2a give the values of the clamp load, input speed and initial soak 

temperature at which the various tests were carried out. 
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Clamp Load ► 
1500N 2500N 3500N 

Initial Soak Temp ▼ 

100ºc 

3000rpm 3000rpm 3000rpm 

5000rpm 5000rpm 5000rpm 

7000rpm 7000rpm 7000rpm 

200ºc 

3000rpm 3000rpm 3000rpm 

5000rpm 5000rpm 5000rpm 

7000rpm 7000rpm 7000rpm 

300ºc 

3000rpm 3000rpm 3000rpm 

5000rpm 5000rpm 5000rpm 

7000rpm 7000rpm 7000rpm 

Table 7.2a.  Variables Showing the Clamp Load, Input Speed and Initial Soak Temperature for all 

tests 

 

For the plates with enforced banding, seven different 4mm thick by 2mm high 

bands arranged at the following mid band radii; 54mm (plate A), 56mm (plate B), 

58mm (plate C), 60mm (plate D), 62mm (plate E), 64mm (plate F) and 66mm 

(plate G), along with a standard non-banded plate as previously mentioned in 

section 7.1.1 

 

This meant that a total of 216 tests (three temperatures x three input torques x 

three input speeds x eight plates) were required. Each test was predicted to take 

anywhere from 3 to 8 minutes each, and allowing for swap over times and 

reinstallation for each new set of plates, a period of 7 days was allocated for 

dynamometer testing.  However, this time allocation meant that each test could 

be run only once (unless there was deemed to have been an issue with the 

dynamometer). As the clutch dynamometer is extensively used for customer tests 

and gets booked up well ahead of time, this, coupled with the fact that the clutch 

dyno was already running behind on its schedule due to software updates and 

hardware maintenance, meant that time allocation was restricted. As a result of 

this, it was only possible to get one data set, as opposed to the seven sets that the 
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author would have ideally like to have obtained, which would have allowed for 

more conclusive results. 

 

By using varying thermocouple radii on the pressure plate, it allowed for the 

effects of heat travel to be observed through the carbon and for its effects to be 

logged. Thermocouples were embedded at the mid band radius of plates A to G, 

as described in table 7.1.1a and this can be seen in figures 7.2c and 7.2d. These 

thermocouple radii were set to correlate with the outside radius, mid radius and 

inside radius of the enforced bands, to allow for the heat profile of the effects of 

the band to be observed. Thermocouple port 8 was used to take data from the 

infrared sensor into the dynamometer interface. This enabled the IR data and the 

thermocouple data to be sampled at the same rate, eliminating the need to splice 

data files at a later stage.  

 

 

Figure 7.2c. The Configuration of enforced banding plate D 
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Figure 7.2d. Thermocouple Arrangements on Driving Plate 

 

Testing was conducted using both the enforced banding plates A to G and a 

standard flat non banded plate. As with the initial testing; torque, input speed, 

release bearing position, thermocouple temperature and IR sensor temperature 

were to be recorded, with the test being terminated by a temperature limit at 

800ºc from the first thermocouple reading to reach this temperature. This figure 

of 800ºc was revised as a result of the initial experimental design where a 

termination temperature of 500ºc was used. This was considered at the time to 

be a conservative termination temperature estimate and analysis of the data from 

these validation runs highlighted that an increased termination temperature of 

800 ºc was still within the boundaries of safety, and also allowed for more data to 

be collected at the higher energy end of the slip. 

 

 

7.3 Initial Result Observations 

During the testing, initial observation requirements were done to check the 

quality of the data to ensure that the thermocouples were giving readings that 

were within expected limits and to observe the alignment of the infrared 

detector. This was done immediately after testing whilst the apparatus was still 

set up on the dynamometer, so that any repeat experiments could have been 

easily conducted if required. However as all data files were observed to have good 

temperature data readings with no thermocouple dropouts or signal losses, this 

was not necessary.  

Thermocouples 
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However, the temperature curves at lower clamp loads were inconsistent. They 

demonstrated quite severe fluctuations and this could be observed particularly 

clearly on the thermocouple 8 (infrared) trace at a low start temperature (as this 

slip takes longer to reach 800ºc) and low speeds (again, this slip takes the longest 

to reach 800ºc). This could be explained by the fact that there may be insufficient 

applied clamp load to maintain a constant clamp load. This effect is illustrated in 

figures 7.3a and 7.3b, where the thermocouple traces (shown in the solid plots) 

are fluctuating in the lower energy slip configuration shown in figure 7.3a, and are 

more consistent in figure 7.3b, where more clamp load has been applied. 

 

 

Figure 7.3a. Plate A at 3000rpm, 1500N Clamp Load at 100˚C (red), 200˚C (green) and 300˚C (blue) 

soak temperatures 

 

Figure 7.3b Plate A at 5000rpm, 3500N Clamp Load at 100˚C (red), 200˚C (green) and 300˚C (blue) 

soak temperatures 
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Generally the values of thermocouple port 8 (which was where the infrared 

sensor was wired into) are significantly higher than those of the other 

thermocouples, indicating good alignment of the infrared sensor. When analysed, 

the thermocouples consistently gave higher readings at the internal diameter of 

the clutch bands, than at the outside diameter of the clutch bands.  

 

As a way to quickly view any obvious trends, each output value was plotted across 

all the bands,  and these are shown in illustrative graphs (figures 7.3.1 to 7.3.8 for 

each banded plate are given for the following variables: mid speed (5000rpm), 

mid start temperature (200˚C) and mid input torque (2500Nm) in figure 7.3d, to 

7.3k respectively. Each graph is a plot of drive speed against input torque, 

temperature ˚C and coefficient of friction. Each trace is colour coded as described 

in table 5.4c 

 

Thermocouple Number Loaction Mid Band Radius Colour on Plot 

Thermocouple 1 (under band A) 54mm  

Thermocouple 2 (under band B) 56mm  

Thermocouple 3 (under band C) 58mm  

Thermocouple 4 (under band D) 60mm  

Thermocouple 5 (under band E) 62mm  

Thermocouple 6 (under band F) 64mm  

Thermocouple 7 (under band G) 66mm  

Thermocouple 8 (Infrared) 68mm  

Table 7.3c Thermocouple Legend for use in Graphs in Section 7.3 

 

All graphs in section 7.3 can also be found on a larger scale in Appendix F.



176 

 

7.3.1   Results for Enforced Banding Plate A 

 

Figure 7.3.1a. Graph of drive speed (rpm) against input torque  (Nm), temperature (˚C ), and 

coefficient of friction  for Plate A at an input speed of 5000rpm, clamp load of 2500N and an initial 

soak temperature of 200˚C 

 

Thermocouple 1 was located directly under the band, with thermocouple 2 on the 

outside diameter. Infrared readings were consistently higher than all of the 

thermocouple readings – indicating good alignment.  When observing the 

temperature against time traces for plate A, thermocouple 1 was always the 

highest reading, with thermocouples 2, 3, 4, 5, 6 and 7 in descending order. This 

follows the predicted trend that the temperature would be higher in the locality 

of the band. 

 

Thermocouple peak temperature order (hottest to coldest);  
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 Thermocouple 1 Under Band 

Thermocouple 2 OD Edge 

Thermocouple 3  

Thermocouple 4  

Thermocouple 5  

Thermocouple 6  

Thermocouple 7  
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7.3.2   Results for Enforced Banding Plate B 

 

Figure 7.3.2a. Graph of drive speed  (rpm) against input torque  (Nm), temperature (˚C ), and 

coefficient of friction  for Plate B at an input speed of 5000rpm, clamp load of 2500N and an initial 

soak temperature of 200˚C 

 

Thermocouple 2 was directly under the band, with thermocouple 3 on the outside 

diameter and thermocouple 1 on its inside diameter. Infrared readings were 

slightly higher than the thermocouple readings, suggesting that the alignment is 

good, but could perhaps be better. When observing the temperature vs. time 

plot, thermocouple 1 was consistently the highest reading, with thermocouples 2, 

3, 4, 5, 6 and 7 following in descending order. This follows the predicted trend. 

 

Thermocouple peak temperature order (hottest to coldest); 
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 Thermocouple 1 ID Edge 

Thermocouple 2 Under Band 

Thermocouple 3 OD Edge 

Thermocouple 4  

Thermocouple 5  

Thermocouple 6  

Thermocouple 7  
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7.3.3   Results for Enforced Banding Plate C 

 

Figure 7.3.3a. Graph of drive speed  (rpm) against input torque  (Nm), temperature (˚C ), and 

coefficient of friction  for Plate C at an input speed of 5000rpm, clamp load of 2500N and an initial 

soak temperature of 200˚C 

 

Thermocouple 3 was directly under the band, with thermocouple 2 on its inside 

diameter edge, and thermocouple 4 on the outside diameter edge. Infrared 

readings were consistently higher than all thermocouple readings – indicating 

good alignment.  Thermocouple 1 was generally the highest of the thermocouple 

values, with thermocouple 2 reading only slightly lower values. However, as the 

input load got higher, the tendency was for thermocouple 2 to read higher values 

than thermocouple 1. Thermocouples 3 and 4 appeared to be reading consistently 

similar temperatures, with thermocouple 3 tending to read hotter.  

 

Thermocouple peak temperature order (hottest to coldest); 
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 Thermocouple 1  

Thermocouple 2 ID Edge 

Thermocouple 3 Under Band 

Thermocouple 4 OD Edge 

Thermocouple 5  

Thermocouple 6  

Thermocouple 7  
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7.3.4   Results for Enforced Banding Plate D 

 

Figure 7.3.4a. Graph of drive speed  (rpm) against input torque  (Nm), temperature (˚C ), and 

coefficient of friction  for Plate D at an input speed of 5000rpm, clamp load of 2500N and an initial 

soak temperature of 200˚C 

 

Thermocouple 4 was directly under the band, with thermocouple 3 on its internal 

diameter edge, and thermocouple 5 on the outside diameter edge. Infrared 

readings seemed particularly low throughout the testing of this plate, suggesting 

that perhaps the sensor may have been misaligned. This is also supported by the 

inconsistencies in the curve of the graph from approximately midway through the 

slip event. Thermocouple 3 was consistently higher that all other thermocouples, 

with thermocouple 2 consistently seeing the second highest readings. 

Thermocouple 4 was reading slightly lower than thermocouple 2, followed by 

thermocouples 1, 5, 6 and 7.  

 

Thermocouple peak temperature order (hottest to coldest); 
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 Thermocouple 3 ID Edge 

Thermocouple 4 Under Band 

Thermocouple 2  

Thermocouple 1  

Thermocouple 5 OD Edge 

Thermocouple 6  

Thermocouple 7  
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7.3.5   Results for Enforced Banding Plate E 

 

Figure 7.3.5a. Graph of drive speed  (rpm) against input torque  (Nm), temperature (˚C ), and 

coefficient of friction  for Plate E at an input speed of 5000rpm, clamp load of 2500N and an initial 

soak temperature of 200˚C 

 

Thermocouple 5 was directly under the band, with thermocouple 4 on its internal 

diameter edge, and thermocouple 6 on the outside diameter edge. Infrared 

readings were consistently higher than all IR readings – indicating good alignment.  

Thermocouple 2 was consistently higher that all other thermocouples, with 

thermocouple 4 consistently seeing the second highest readings. Thermocouples 

1, 3, 5 and 6 were all reading the third highest values throughout the varying slips 

on plate E. At the highest speeds and loads thermocouple 3 showed 

comparatively high values, whereas at the lower energy slips thermocouple 1 

showed the highest values of the four.  

 

Thermocouple Peak Temperature Order; 
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 Thermocouple 2  

Thermocouple 4 ID Edge 

Thermocouple 3  

Thermocouple 1  

Thermocouple 5 Under Band 

Thermocouple 6 OD Edge 

Thermocouple 7  
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7.3.6   Results for Enforced Banding Plate F 

 

Figure 7.3.6a. Graph of drive speed  (rpm) against input torque  (Nm), temperature (˚C ), and 

coefficient of friction  for Plate F at an input speed of 5000rpm, clamp load of 2500N and an initial 

soak temperature of 200˚C 

 

Thermocouple 6 was directly under the band, with thermocouple 5 on its internal 

diameter edge, and thermocouple 7 on the outside diameter edge. Infrared 

readings seemed particularly low throughout the testing of this plate, indicating 

perhaps some misalignment. This theory is also supported by the inconsistencies 

in the curve of the graph from approximately midway through the slip. 

Thermocouple 4 is consistently higher that all other thermocouples, followed by 

thermocouples 6, 5, 3, 2, 7 and 1. 

 

Thermocouple peak temperature order (hottest to coolest); 
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 Thermocouple 6 Mid Band 

Thermocouple 5 ID Edge 

Thermocouple 3  

Thermocouple 4  

Thermocouple 2  

Thermocouple 7 OD Edge 

Thermocouple 1  
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7.3.7   Results for Enforced Banding Plate G 

 

Figure 7.3.7a. Graph of drive speed  (rpm) against input torque  (Nm), temperature (˚C ), and 

coefficient of friction  for Plate G at an input speed of 5000rpm, clamp load of 2500N and an initial 

soak temperature of 200˚C 

 

Thermocouple 7 was located directly under the band, with thermocouple 6 on its 

internal diameter edge. Infrared readings were observed to be consistently higher 

than all thermocouple readings, indicating good alignment of the sensor. 

Thermocouple 6 is consistently higher, followed by thermocouple 7, and then 

thermocouples 5, 4, 3, 2 and 1 respectively 

 

Thermocouple Peak temperature order (hottest to coolest); 
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 Thermocouple 6 ID Edge 

Thermocouple 7 Mid Band 

Thermocouple 5  

Thermocouple 4  

Thermocouple 3  

Thermocouple 2  

Thermocouple 1  
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7.3.8   Results for Standard Plate with no Enforced Banding 

 

Figure 7.3.8a. Graph of drive speed  (rpm) against input torque  (Nm), temperature (˚C ), and 

coefficient of friction  for a Standard Clutch Plate with no enforced banding at an input speed of 

5000rpm, clamp load of 2500N and an initial soak temperature of 200˚C 

 

The infrared readings on the standard plate were rather unpredictable. This 

perhaps indicates the presence of banding produced by the clutch event, as at 

times the infrared sensor readings are higher than those of the thermocouple, but 

at others the sensor is reading significantly lower than thermocouple readings. 

This fluctuation of readings indicates that the sensor is not always aligned with 

the hottest part of the clutch plate. The thermocouple readings also followed no 

logical pattern in their order, and this also supports the suggestion that banding 

was occurring on the flat plate.  
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Chapter 8 

Experimental Results Analysis 

 

During testing the variables of input speed, clamp load and initial temperature 

soak were investigated for a series of clutch plates in both the standard flat 

configuration and with enforced banding. Due to the number of variables being 

investigated, the final testing produced a large volume of data. This was analysed 

to determine the effects that initial temperature, clamp load and input speed all 

had upon the temperature and the friction of the plate. Using MATLAB® the data 

was extracted and plotted. This chapter will cover the assessment of the data for 

accuracy, with experimental errors evaluated, and relationships analysed with 

respect to the effects of input speed, clamp load and start temperature on the 

overall friction versus temperature relationship.  

 

Further analysis into the occurrence of banding was undertaken and conclusions 

as to the reliability of the data and subsequent possible theories were made.  

 

 

8.1 Constraints of the Experimental Programme 

The clutch dynamometer operates within a commercial environment with each 

day of testing costing approximately £1000. An ideal scenario would have been to 

repeat each set of data tests 7 times to ensure repeatability and to consolidate 

any trends but this would have amounted to 10 weeks of testing at a cost of 

£50,000, making it uneconomical for both the project and the sponsoring 

company. 

 

As a result of this a reduced programme of testing was constructed. By using the 

design of experiments and required mathematical model inputs, the testing was 

prioritised and streamlined to enable the required outcomes of the testing to be 

effectively met. 
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8.2 Estimation of Experimental Error  

There were a number of experimental errors to account for in this work and they 

fell into three main categories; sensors, test apparatus and post-processing. These 

are now taken in turn and explained further. 

 

8.2.1 Sensor Errors 

Sensor errors  are generated by errors in: the sensors themselves (thermocouple, 

IR, torque sensor and speed sensor), the sensor connections (wires and hardware 

connections), and sensor set up parameters (PC setup of the sensors on the rig, 

which include sampling rates and calibration tables).  

 

Thermocouple Accuracy:  

K-type thermocouples offer a wide temperature range of -200°C to 1250°C and a 

relatively low error value compared to other thermocouple types. The sensitivity 

of the thermocouples used in this work is approximately 41µV/°C and typically, 

errors are within the range of ±1.5°C at temperatures up to 250°C and ±2.2°C at 

temperatures higher than this. Thermal shunting is often a cause of error with 

thermocouples. This is because thermocouples have mass and heating that mass 

takes energy. In addition, in this application, the thermocouple was protruding 

from the top of the clutch plate and so energy from the heated wire was being 

dissipated to the atmosphere, and so it is hard to quantify an absolute value for 

this heat loss. 

 

IR Accuracy: 

The temperature reading can be affected by the atmosphere and surrounding 

objects, such as reflected temperature from ambient surroundings and dust / 

steam and particles. Whilst the greatest care was taken to avoid these types of 

atmospheric inaccuracies, one factor that could not be eliminated was carbon 

dust. The presence of carbon dust in the air between the specimen and the sensor 

will have undoubtedly had some effect upon the results but this is very hard to 

quantify. The specified percentage error for the IR sensor in ‘perfect’ conditions is 

said to be ± 1%, but the manufacturer has suggested that perhaps a value of ± 2%, 

would be more applicable in the ‘dirty’ surroundings of the clutch dyno lab. 
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Torque Sensor: 

The sensor is made up of two main components: A stainless steel shaft, 

dimensioned for the appropriate torque, and a second metal ring, which fits 

tightly on the shaft (see figure 8.2.1a), manufactured of titanium-nickel material, 

which has the property of being magneto-elastic.  

 

 

Figure 8.2.1a Torque Sensor (Courtesy of Variohm Sensors – Daventry UK) 

 

Magneto-elastic materials are commonly known as ‘pseudo magnets’. When at 

rest, they produce no external magnetic fields, but as soon as their form 

experiences a change in shape through applied stress, their magnetic 

characteristics change to give a field whose strength is directly proportional to the 

applied stress. The ring of magneto-elastic material is magnetized 

circumferentially. Without an applied torque, the magnetic field is contained 

wholly within the ring. However, as torque is applied to the shaft, the magnetic 

field twists within the ring and field lines intersect with the surface of the ring in 

proportion to the amount of torque applied. 

 

This type of sensor typically has a ±1% accuracy in torque, due to the fact that it is 

calculated directly from a current. The torque has a consequential effect on the 

results though, as it is directly used to calculate the friction, using equation 8.2.1b 

 

Friction = -1 ( Output Torque ) Equation 8.2.1b 

   ( Clamp force x 0.05925 x 2 )  
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Where 0.05925m is the mean effective radius of the test piece and 2 is the 

number of interfaces (the whole equation is multiplied by -1 because the direction 

in which the force is acting is opposite to the input torque, which is a preset 

positive number within the dynamometer’s configuration). This means that a ±1% 

accuracy in torque, will not offer a large variance to the value of friction, as it is 

divided through by the clamp force (in the magnitude of a 1000N) multiplied by 

two relatively small constants.  

 

Speed Sensor: 

The speed of the rotation is based upon the speed of the dyno head, which is 

detected by a Hall Effect sensor. This is a simple transducer that varies its output 

voltage in response to changes in the magnetic field. By using a series of small 

metal teeth on the rotating input shaft, combined with a Hall Effect sensor, it is 

possible to predict the speed (and the rate of change of speed) by counting the 

number of times that the teeth pass through the sensor in a given time. This type 

of sensor generally has an accuracy of approximately 1%.  

 

Sensor Connections: 

Lead resistance is a common problem when using thermocouples and occurs 

when an extension lead is constructed of a different material to the 

thermocouple. This causes a change in the voltage resistance with the sensing 

software translating this resisted voltage to determine a temperature value that is 

not representative of that indicated by the voltage seen at the sensor. Lead 

resistance was overcome by using the appropriate extension cables specifically 

designed for the k-type thermocouple that was being used. This is also applicable 

for the IR sensor, but again, the appropriate manufacturer supplied lead was used 

and so any error caused by this can be negated.  

 

Hardware Setup: 

Data was set up to be captured at a rate of 10Hz – that is, 10 samples per second 

are collected. The calibration tables used for the IR and thermocouples are usually 

given as a list of set points (with the value obtained from the experiment 

extrapolated along lines drawn between these set points), not as an equation 
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(which would be far more accurate in any type of calibration curve beyond that of 

a 1st order relationship). However, these calibration curves (and the errors caused 

by them) are accounted for in the declared error values for the sensor itself and 

so the hardware aspect of this error can be negated.  

 

8.2.2 Apparatus Errors  

Test apparatus errors were the physical anomalies that could occur within the 

test, such as slight misalignment of the clutch (which would cause eccentricity and 

‘hot spots’), changes in airflow or ambient temperature around the rig, surface 

contaminants that may have come into contact with the clutch or any other 

simple ‘human error’ factor. Whilst these were obviously taken into 

consideration, apparatus errors are the hardest to quantify.   

 

8.2.3 Post Processing Errors 

Rounding Errors in Data Analysis 

This is caused by data in the Excel spreadsheet being rounded up or down to the 

nearest 0.01 and was simply overcome by expanding the rounding error from 0.01 

to 0.0001, giving very minor errors in respect to the other possible sources of 

error. 

 

IR Emissivity Value Accuracy 

Normally this would come within ‘sensor errors’, however, the factor of emissivity 

(determined through testing at NPL and described in Chapter 6) was applied to 

the raw data during the post processing stage of the results and played no part in 

thedata collected from the sensor. Emissivity is not simply a linear relationship 

that is followed; it is actually a curve. By using an approximation for emissivity of 

0.85, data at the extremes of the temperature range is less accurate than that 

obtained from the middle of the range. Figure 8.2.3a shows the typical 

temperature errors due to uncertainty of the emissivity.   
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Figure 8.2.3a. Temperatures due to Emissivity Uncertainty [166] 

 

The obvious solution was to use the shortest wavelength IR for the application, 

however, there were many factors governing wavelength selection, such as 

material type and transmission. Generally the shortest wavelength at which 

transmission is close to zero is the best one to use for infra red, as this is this 

wavelength at which low emissivity or low background radiation are best 

compensated for. Figure 8.2.3b shows the typical transmittance plot for 

polyethylene. Here, it is possible to observe that in this case the most appropriate 

wavelength to use would be 3 microns.  

 

 

Figure 8.2.3b. IR Transmission Spectra of Polyethylene [166] 
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It was suggested by the manufacturers of the IR sensor, that a typical value of 10% 

error in emissivity be used for this application.  

 

 

8.3 Processing of Raw Experimental Data 

When analysing the results for the friction vs. temperature relationship, the 

infrared temperature was the only temperature used. This is because the 

thermocouples were embedded and not at the surface where the friction was 

acting, whereas the infrared sensor gives a reading of on the face of the friction 

surface .  

 

 The MATLAB® was used for the data extraction, and the code for this can be 

found in Appendix F. Each main test variable will now be considered in turn and 

analysed with respect to other variables.  

 

 

8.4 Experimental Data Results 

8.4.1 Experimental results for the Effects of Initial Heat Soak 

All of the processed data and results generated by the MATLAB® code can be 

found in Appendix H, which contains a series of graphs for each plate. Each sub 

graph plots the different initial soak temperatures on axes of temperature versus 

time for  set clamp loads and input speeds. 

 

As the clamp load was released at a thermocouple temperature trip of 800˚C, it 

was possible to use the time which the clamp load was applied to determine the 

amount of time that it took for the plates to heat up to 800˚C. After this point, 

once the load had been released, the temperature began to decrease. As it was 

only the heating phase that was of interest then clamp load trip was assumed to 

be a good value to use as it was at this point when at least one point within the 

plate had reached the 800˚C trip value. As used later in the mathematical 

modelling, the cut off value for the clamp force was 50N. This meant that 

whenever the clamp force value rose above 50N the clamp force was considered 
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to be on and once it dropped below the 50N threshold again then the clamping 

event was deemed to have ceased.   

  Time above 50N (s) 

Run 

Plate 

Standard 

Plate 

A 

Plate 

B 

Plate 

C 

Plate 

D 

Plate 

E 

Plate 

F 

Plate 

G 

3000rpm1500NData 100 17.3 17.85 12.35 14.69 8.72 16.91 8.8 16.16 

3000rpm1500NData 200 9.38 12.6 11.24 9.74 8.41 12.43 8.33 14 

3000rpm1500NData 300 8.04 11.8 9.21 8.89 6.43 11.83 7.33 13.09 

                  

3000rpm2500NData 100 7.99 10.34 7.68 8.82 7.14 12.83 2.93 8.29 

3000rpm2500NData 200 5.81 9.31 6.63 6.3 6.02 9.48 2.35 8.08 

3000rpm2500NData 300 4.4 7.96 5.51 5.31 5.33 7.94 1.57 6.68 

                  

3000rpm3500NData 100 8.6 6.94 5.37 6.72 6.87 8.26 1.83 6.8 

3000rpm3500NData 200 4.72 6.22 5.17 5.83 5.93 6.34 1.69 5.25 

3000rpm3500NData 300 6.82 5.43 4.32 4.87 5.42 5.44 1.23 4.31 

                  

5000rpm1500NData 100 4.15 8.23 5.9 6.65 4.41 8.12 2.93 6.56 

5000rpm1500NData 200 3.31 7.24 5.83 4.87 4.35 11.66 2.23 5 

5000rpm1500NData 300 4.11 7.14 5.21 7.81 3.72 5.03 1.51 10.71 

                  

5000rpm2500NData 100 2.86 5.55 4.08 4.13 4.12 5.31 1.44 3.42 

5000rpm2500NData 200 2.6 4.89 4.01 3.58 3.13 4.62 1.24 3.32 

5000rpm2500NData 300 3.89 4.19 3.52 2.92 3.31 4.26 1.2 3.02 

                  

5000rpm3500NData 100 4.81 4.11 3.25 3.23 3.52 3.64 0.83 3.12 

5000rpm3500NData 200 4.18 3.74 2.99 3.03 3.41 3.43 0.96 2.73 

5000rpm3500NData 300 2.12 3.24 2.72 2.64 2.93 3.01 0.94 2.52 

                  

7000rpm1500NData 100 4.53 6.61 4.1 4.08 3.83 5.82 1.41 3.02 

7000rpm1500NData 200 7.1 5.05 5.2 3.92 3.77 4.43 1 7.48 

7000rpm1500NData 300 3.53 5.68 3.13 4.49 3.21 4.9 1.11 3.09 

                  

7000rpm2500NData 100 2.41 3.51 3.13 2.84 2.09 3.12 0.92 2.52 

7000rpm2500NData 200 6.83 3.54 2.9 2.93 2.8 3.11 0.71 2.62 
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7000rpm2500NData 300 2.5 2.93 2.61 2.4 2.74 3 0.74 2.4 

                  

7000rpm3500NData 100 3.81 2.92 2.43 3.23 2.33 2.43 1.03 2.34 

7000rpm3500NData 200 4.33 2.52 2.23 3.03 2.44 2.51 1.23 1.93 

7000rpm3500NData 300 3.61 2.33 2.03 2.64 2.03 2.15 0.99 1.88 

Table 8.4.1a. Clamp Load Duration for all Variable Plates at Temperatures of 100˚C, 200˚C and 300˚C, 

Grouped by Input Speed and Clamp Load 

 

Table 8.4.1a shows the clamping period in seconds for each different temperature 

for a set of different speeds and clamp loads.  When plotting the data, as seen in 

figure 8.4.1b (also in Appendix H), on the large scale the clamp load was on the x-

axis and the decreasing speed was on the y-axis, with each smaller graph having a 

scale of temperature vs. clamp load application time. 

 

 

Figure 8.4.1b. Example of plots created for different initial soak temperatures with respect to time 

versus temperature on a scale of initial speed versus clamp load for enforced banding Plate A 

 

To determine the effect of the initial soak temperature upon the slip period (the 

time that the clamp loads were over 50Nm until the thermocouple limit value of 

800 ˚C ), start temperature was plotted against slip period for enforced banding 

plates B. D and F, along with the standard flat non banded plate as seen in figure 

8.4.1c 
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Figure 8.4.1c. Graph of Initial Soak Temperature against Time to reach 800˚C (temperature limit for 

the slip period) for the Standard Plate, Plate B, Plate D and Plate F 

 

As seen from figure 8.4.1c, although the plots loosely follow the general trend 

that higher initial soak temperatures imply shorter heating times, it is difficult to 

predict the extent of this relationship, as the rates of change are not clearly 

defined due to the lack of data points. The standard plate graphs did not show a 

consistent relationship between the initial soak temperatures and slip duration, 

while the banded plate plots were far more predictable and more likely to follow 

the rule that the higher initial soak temperature implies a shorter heating time. 

This may be due to the concentrated nature of the heat acting upon the banded 

area.  

 

Appendix I is a collection of further plots for the same data, illustrating the friction 

properties for each plate, organised in a matrix of input speed by clamp load. Each 

sub graph plots the different initial soak temperatures on a friction vs. 

temperature axis for a set clamp load and input speed, as seen in Figure 8.4.1d.  
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Figure 8.4.1d. Example of plots created for different initial soak temperatures with respect to 

coefficient of friction versus temperature on a scale of initial speed versus clamp load for forced 

banding Plate A 

 

As the friction is a surface property the IR data was used for the temperature 

variable as this reading gives the surface temperature which is a snapshot of 

exactly what is occurring on the surface at any given time.  

 

8.4.2  Experimental results for the Effects of Clamp Load  

Data and result plots for the effect of the clamp load, input speeds and initial soak 

temperatures on the slip duration can be found in Appendix J, which contains a 

series of graphs plotting time versus temperature on a scale of initial speed versus 

clamp load for each plate, along with a matrix of input speed against initial soak 

temperature. Each sub plot shows the different clamp loads on temperature vs. 

time axes for a set of initial soak temperature and input speed. 

 

The slip period over 50Nm data was once again used with time data for each set 

of conditions grouped by different speeds and initial heat soaks, and then ordered 

by clamp load to judge the effect of these variables upon the slip period . 
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  Time above 50N (s) 

Run 

Plate 

Std 

Plate 

A 

Plate 

B 

Plate 

C 

Plate 

D 

Plate 

E 

Plate 

F 

Plate 

G 

3000rpm1500NData 100 17.3 17.85 12.35 14.69 8.72 16.91 8.8 16.16 

3000rpm2500NData 100 7.99 10.34 7.68 8.82 7.14 12.83 2.93 8.29 

3000rpm3500NData 100 8.6 6.94 5.37 6.72 6.87 8.26 1.83 6.8 

                  

3000rpm1500NData 200 9.38 12.6 11.24 9.74 8.41 12.43 8.33 14 

3000rpm2500NData 200 5.81 9.31 6.63 6.3 6.02 9.48 2.35 8.08 

3000rpm3500NData 200 4.72 6.22 5.17 5.83 5.93 6.34 1.69 5.25 

                  

3000rpm1500NData 300 8.04 11.8 9.21 8.89 6.43 11.83 7.33 13.09 

3000rpm2500NData 300 4.4 7.96 5.51 5.31 5.33 7.94 1.57 6.68 

3000rpm3500NData 300 6.82 5.43 4.32 4.87 5.42 5.44 1.23 4.31 

                  

5000rpm1500NData 100 4.15 8.23 5.9 6.65 4.41 8.12 2.93 6.56 

5000rpm2500NData 100 2.86 5.55 4.08 4.13 4.12 5.31 1.44 3.42 

5000rpm3500NData 100 4.81 4.11 3.25 3.23 3.52 3.64 0.83 3.12 

                  

5000rpm1500NData 200 3.31 7.24 5.83 4.87 4.35 11.66 2.23 5 

5000rpm2500NData 200 2.6 4.89 4.01 3.58 3.13 4.62 1.24 3.32 

5000rpm3500NData 200 4.18 3.74 2.99 3.03 3.41 3.43 0.96 2.73 

                  

5000rpm1500NData 300 4.11 7.14 5.21 7.81 3.72 5.03 1.51 10.71 

5000rpm2500NData 300 3.89 4.19 3.52 2.92 3.31 4.26 1.2 3.02 

5000rpm3500NData 300 2.12 3.24 2.72 2.64 2.93 3.01 0.94 2.52 

                  

7000rpm1500NData 100 4.53 6.61 4.1 4.08 3.83 5.82 1.41 3.02 

7000rpm2500NData 100 2.41 3.51 3.13 2.84 2.09 3.12 0.92 2.52 

7000rpm3500NData 100 3.81 2.92 2.43 3.23 2.33 2.43 1.03 2.34 

                  

7000rpm1500NData 200 7.1 5.05 5.2 3.92 3.77 4.43 1 7.48 

7000rpm2500NData 200 6.83 3.54 2.9 2.93 2.8 3.11 0.71 2.62 

7000rpm3500NData 200 4.33 2.52 2.23 3.03 2.44 2.51 1.23 1.93 
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7000rpm1500NData 300 3.53 5.68 3.13 4.49 3.21 4.9 1.11 3.09 

7000rpm2500NData 300 2.5 2.93 2.61 2.4 2.74 3 0.74 2.4 

7000rpm3500NData 300 3.61 2.33 2.03 2.64 2.03 2.15 0.99 1.88 

8.4.2a. Clamp Load Time for all Variable Plates for Clamp Loads of 1500N, 2500N and 3500N, 

Grouped by Input Speed and Temperature 

 

The information displayed in table 8.4.2a gives the clamping period in seconds for 

each different temperature grouped by a single set of input speeds and clamp 

loads.  MATLAB® was used to create a graph from this data, consisting of three 

further graphs as seen in Figure 8.4.2b (further plots for all plates can be seen in 

Appendix J). 

 

Figure 8.4.2b. Example of plots created for different clamp loads with respect to temperature versus 

time on a scale of initial speed versus initial soak temperature for forced banding Plate A 

 

Plotting the temperature versus clamp load in respect to clamp load against 

speed. Points for the values for the standard plate and banded plates B, D and F 

are plotted, in Figure 8.4.2c 
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Figure 8.4.2c. Graph of Initial Clamp Load against Time to reach 800˚C (temperature limit for the slip 

period) for the Standard Plate, Plate B, Plate D and Plate F 

 

Appendix K is a further series of graphs illustrating the friction properties for each 

plate, organised in a matrix of input speed by initial soak temperature. Each sub 

graph plots the different initial soak temperatures on a friction vs. temperature 

axis for a initial soak temperature and input speed, as seen in Figure 8.4.2d.  

 

 

Figure 8.4.2d. Example of plots created for clamp load with respect to coefficient of friction versus 

temperature on a scale of initial speed versus initial soak temperature for forced banding Plate A 
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Each sub graph plots the different clamp loads on a friction vs. temperature axis 

for a set initial soak temperature and input speed. As the friction is a surface 

property, the IR data was used for the temperature variable, as this also gave a 

surface property reading. 

 

8.4.3 Experimental results for the Effects of Initial Speed 

Data and results generated by the MATLAB® code can be found in Appendix K, 

which contains a series of graphs for each plate, organised in a matrix of clamp 

load by initial soak temperature. Each sub  plot illustrate the different input 

speeds on a temperature vs. time axis for a set clamp load and initial soak 

temperature. 

 

  Time Above 50N (s) 

Run 

Plate 

Std 

Plate 

A 

Plate 

B 

Plate 

C 

Plate 

D 

Plate 

E 

Plate 

F 

Plate 

G 

3000rpm1500NData 100 17.3 17.85 12.35 14.69 8.72 16.91 8.8 16.16 

5000rpm1500NData 100 4.15 8.23 5.9 6.65 4.41 8.12 2.93 6.56 

7000rpm1500NData 100 4.53 6.61 4.1 4.08 3.83 5.82 1.41 3.02 

                  

3000rpm2500NData 100 7.99 10.34 7.68 8.82 7.14 12.83 2.93 8.29 

5000rpm2500NData 100 2.86 5.55 4.08 4.13 4.12 5.31 1.44 3.42 

7000rpm2500NData 100 2.41 3.51 3.13 2.84 2.09 3.12 0.92 2.52 

                  

3000rpm3500NData 100 8.6 6.94 5.37 6.72 6.87 8.26 1.83 6.8 

5000rpm3500NData 100 4.81 4.11 3.25 3.23 3.52 3.64 0.83 3.12 

7000rpm3500NData 100 3.81 2.92 2.43 3.23 2.33 2.43 1.03 2.34 

                  

3000rpm1500NData 200 9.38 12.6 11.24 9.74 8.41 12.43 8.33 14 

5000rpm1500NData 200 3.31 7.24 5.83 4.87 4.35 11.66 2.23 5 

7000rpm1500NData 200 7.1 5.05 5.2 3.92 3.77 4.43 1 7.48 

                  

3000rpm2500NData 200 5.81 9.31 6.63 6.3 6.02 9.48 2.35 8.08 

5000rpm2500NData 200 2.6 4.89 4.01 3.58 3.13 4.62 1.24 3.32 

7000rpm2500NData 200 6.83 3.54 2.9 2.93 2.8 3.11 0.71 2.62 
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3000rpm2500NData 300 4.4 7.96 5.51 5.31 5.33 7.94 1.57 6.68 

5000rpm2500NData 300 3.89 4.19 3.52 2.92 3.31 4.26 1.2 3.02 

7000rpm2500NData 300 2.5 2.93 2.61 2.4 2.74 3 0.74 2.4 

                  

3000rpm3500NData 100 8.6 6.94 5.37 6.72 6.87 8.26 1.83 6.8 

5000rpm3500NData 100 4.81 4.11 3.25 3.23 3.52 3.64 0.83 3.12 

7000rpm3500NData 100 3.81 2.92 2.43 3.23 2.33 2.43 1.03 2.34 

                  

3000rpm3500NData 200 4.72 6.22 5.17 5.83 5.93 6.34 1.69 5.25 

5000rpm3500NData 200 4.18 3.74 2.99 3.03 3.41 3.43 0.96 2.73 

7000rpm3500NData 200 4.33 2.52 2.23 3.03 2.44 2.51 1.23 1.93 

                  

3000rpm3500NData 300 6.82 5.43 4.32 4.87 5.42 5.44 1.23 4.31 

5000rpm3500NData 300 2.12 3.24 2.72 2.64 2.93 3.01 0.94 2.52 

7000rpm3500NData 300 3.61 2.33 2.03 2.64 2.03 2.15 0.99 1.88 

Table 8.4.3a. Clamp Load Time for all Variable Plates for Speeds of 3000rpm, 5000rpm and 7000rpm, 

Grouped by Temperature and Clamp Load 

 

The information displayed in Table 8.4.3a shows the clamping period in seconds 

for each different temperature grouped by a single set of input speeds and clamp 

loads. Data and result plots for the effect of the clamp load, slip duration and 

initial soak temperatures on the slip duration can be found in Appendix L, which 

contains a series of graphs plotting time versus temperature on a scale of initial 

speed versus clamp load for each plate, along with a matrix of input speed against 

initial soak temperature, an example of which can be seen in Figure 8.4.3b 
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Figure 8.4.3b. Example of plots created for different initial input speeds with respect to temperature 

versus time on a scale of initial clamp load versus soak temperature for forced banding Plate A 

 

Plotting the initial input speed versus clamp load in respect to clamp load against 

speed. Points for the values for the standard plate and banded plates B, D and F 

were all plotted, and were as seen in figure 8.4.3c 
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Figure 8.4.3c. Graph of Input Speed against Time to reach 800˚C (temperature limit for the slip 

period) for the Standard Plate, Plate B, Plate D and Plate F 

 

Figure 8.4.3d illustrates a further series of graphs illustrating the friction 

coefficient variation for each plate, organised in a matrix of clamp load by initial 
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soak temperature. Each sub graph plots the different clamp loads on a friction vs. 

temperature axis for a set clamp load and initial soak temperature. Full sets of 

graphs for all plates can be found in Appendix M   

 

 

 

Figure 8.4.3d. Example of plots created for initial input speeds with respect to coefficient of friction 

versus temperature on a scale of clamp load versus initial soak temperature for forced banding Plate 

A 

 

 

8.5 Discussion of Results Obtained from Experimental Testing 

The graphs shown in section 8.3 (and in appendices I, K and M) imply that friction 

is decreasing with the increase in temperature after 500˚C (figure 8.4a). 

Conventional carbon-carbon understanding contradicts this theory and so further 

investigation was required to understand this occurrence.  

 

As the friction is a function of the output torque, further investigations into the 

torque curve data showed that this was also experiencing a reduction in value. 

The torque value is in relation to the clamp load and when this was investigated, it 

too was shown to decrease slightly over the duration of the slip. This happened 

through all slips and an example plot can be seen in figure 8.5a.  

 

0 500 1000 1500
0

100

200

300

400

500
Plate A 100 Deg 1500N

Temperature (Deg C)

M
u

0 500 1000 1500
0

100

200

300

400

500
Plate A 200 Deg 1500N

Temperature (Deg C)
M

u
0 500 1000 1500

0

100

200

300

400

500
Plate A 300 Deg 1500N

Temperature (Deg C)

M
u

0 500 1000 1500
0

100

200

300

400

500
Plate A 100 Deg 2500N

Temperature (Deg C)

M
u

0 500 1000 1500
0

100

200

300

400

500
Plate A 200 Deg 2500N

Temperature (Deg C)

M
u

0 500 1000 1500
0

100

200

300

400

500
Plate A 300 Deg 2500N

Temperature (Deg C)

M
u

0 500 1000 1500
0

100

200

300

400

500
Plate A 100 Deg 3500N

Temperature (Deg C)

M
u

0 500 1000 1500
0

100

200

300

400

500
Plate A 200 Deg 3500N

Temperature (Deg C)

M
u

0 500 1000 1500
0

100

200

300

400

500
Plate A 300 Deg 3500N

Temperature (Deg C)

M
u

 

 

3000 rpm

5000 rpm

7000 rpm



202 

 

 

 

Figure 8.5a. Graph of Clamp Load vs. Log Number (time) for Plate B at 5000rpm, 2500N and 200˚C 

 

During the dyno testing, the hydraulic system was malfunctioning. The hydraulic 

system was leaking slightly and losing pressure, and at the time of the testing it 

was considered to have been rectified, but because the clamp load can be seen to 

be decreasing, rather than remaining constant, this implies that it is not the case. 

 

Ideally, the clutch dynamometer would have been pressure controlled (as used on 

most race cars), as this would have compensated for the hydraulic malfunction. 

The combination of the loss of hydraulic pressure and the fact that the clamp load 

was controlled by a position sensor, and not a pressure sensor, it can be 

concluded that this is the reason that the drop in clamp load arose.  Despite the 

clamp load decreasing, because this fault remained throughout the duration of 

the testing, the results still provide a valid set of data. 

 

The region of 0 - 500˚C was of particular interest when looking at the friction vs. 

temperature relationship, because the prediction is that the friction coefficient 

increases with the temperature. Figures 8.5b & 8.5c illustrate the friction 

coefficient properties for each plate against temperature, with individual curves 

for the different temperatures for a set clamp load and initial speed. 

 

Clamp 
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Figure 8.5b. Graph of Friction Coefficient vs. Temperature up to 400˚C for Plate A at 5000rpm and 

3500N Clamp Load 

 

 

Figure 8.5c. Graph of Friction Coefficient vs. Temperature up to 1500˚C for Plate A at 5000rpm and 

3500N Clamp Load 

 

As seen by the non linear relationship followed by the 300˚C soak IR trace uo to 

the 400˚C generated by the plate slip in figure 8.5d above, at surface 

temperatures in excess of 300˚C (as measured  using the IR sensor) there is no 

clear relationship between the friction and the temperature. However, once the 

surface temperature increases past this 400˚C, as seen in figure 8.5c, the three 

initial soak temperatures all follow the same linear trend. This observation could 

be due to thermal saturation; in the thermal decomposition testing (outlined in 

Chapter 14), the onset of the decomposition was at approximately 500˚C.  
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By conducting further tests, it would be possible to determine whether the 

thermal decomposition was a contributing factor to the decline of the friction at 

temperatures about that of the thermal decomposition and beyond. To observe 

this experimentally, a clutch plate could be heated (via thermal energy generated 

by slipping the clutch plates over each other) to surface temperatures of  250˚C 

(below the thermal decomposition temperature), 300˚C and 600˚C and observe 

the curves for each. Assuming that the oxidation is a surface property and that the 

oxidised part of the clutch face caused by the previous slip is worn away during 

the early part of the following slip, it would be possible to observe the effects of 

whether the clutch plate face is thermally decomposing at 300˚C. By comparing 

the friction vs. temperature plots of all three plates, the effects of the oxidation 

could be determined. 

 

8.5.1 The Use of Scanning Electron Microscopy to Determine Oxidisation 

The use of a scanning electron microscope (SEM) may also offer some illustrative 

picture of the change in the surface properties of the different plates. Figures 

8.5.1a, 8.5.1b and 8.5.1c give an illustrative overview of the surface state of the 

carbon clutches using SEM images. 

 

 

Figure 8.5.1a. SEM Photo Showing a Dull Banded, Oxidised Area, Moving Into an Un-oxidised Area of 

a Carbon-Carbon Clutch Disc (taken using the SEM at Honda Racing F1) 
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Figure 8.5.1b. SEM Photo of an Oxidised Area of a Carbon-Carbon Clutch Disc  (taken using the SEM 

at Honda Racing F1) 

 

 

Figure 8.5.1c. SEM Photo of an Un-oxidised Area of a Carbon-Carbon Clutch Disc  (taken using the 

SEM at Honda Racing F1) 

 

Figure 8.5.1d is an SEM scan of a pore in a carbon-carbon clutch. The oxidation 

can clearly be seen in the white areas around the pore. This type of graphical 
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analysis would conclusively determine the presence of oxidation, which may be 

leading to the decrease in the friction coefficient above 500˚C. 

 

 

Figure 8.5.1d. SEM Photo of a Pore in an Oxidised Area of a Carbon-Carbon Clutch Disc (taken using 

the SEM at Honda Racing F1) 

 

It could also be possible to see the effects of oxidation by conducting tests at the 

three temperatures (pre oxidation, oxidation and post oxidation) on the clutch 

dynamometer, whilst in an inert environment. If an air-tight chamber were 

constructed that could contain the clutch, this could be filled with an inert gas, 

such as argon or helium. From slipping the clutch in this environment, it would be 

possible to see whether the downwards friction vs. temperature relationship was 

due to oxidation or not. Argon and helium are inert gases, and so this would mean 

that oxidation would not take place. Conversely, the air-tight chamber could also 

be filled with oxygen to determine further the effects of oxidation, and to observe 

whether the onset temperature of this is reduced in a more oxygen-rich 

environment. 
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8.6 Processing of ‘Banding’ Raw Data 

As the presence of banding was implied during the initial design of experiments, 

the experimental testing was designed to investigate this further.  

 

A MATLAB script was required to compare the temperature of the non-banded 

plate to that of the corresponding slip for the banded plates. The aim of this script 

was to calculate a correlation coefficient to be used to determine which bands are 

acting upon the standard plate for any given slip and was done using the 

temperature versus time curve produced during the slip period for each banded 

and the standard flat plate, as described in section 8.4 The slip period is defined as 

the time during which the clutch is subjected to a clamp load and has the two sets 

of faces engaged.   

 

Using the plots obtained in section 8.4 a comparison of the traces from the 

standard plate with those produced by the banded plates, led to observations as 

to how closely these curves matched, and from this it was possible to infer 

whether that particular band was active on the face of the plate for that particular 

slip. For example, if the temperature against time plots for the same input 

conditions between the standard plate and Plate A for thermocouple 1 

(underneath band A at a radius of 54mm on the banded plate, and at a radius of 

54mm on the flat plate) were identical, it could be inferred that this radius on the 

flat plate was experiencing the same energy input as the deliberately banded 

plate A, and so this band was also acting upon the flat plate during this slip.  

 

These curve comparisons were done by using the correlation coefficient function 

within MATLAB. This correlation coefficient calculates the Pearson [166] 

correlation, and is defined as in equation 8.6a: 

 

 

Equation 8.6a 
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Where; 

r = correlation co-efficient 

x = time in seconds 

y = temperature in degrees 

 

Pearson’s correlation reflects the degree of linear relationship between two sets 

of variables, ranging from -1 to +1.  

.  

Within MATLAB, there are two ways to measure the correlation coefficient, using 

the functions corr(x) and corrcoef. The difference between the two functions is 

that while the corrcoef function calculates the Pearson’s correlation alone, the 

corr(x) function calculates the Pearson’s correlation and the corresponding p-

value  

By using this function, it also greatly sped up the calculation time by reducing the 

processing capacity required by the model to determine the results.  

The correlation coefficient results were returned from the MATLAB® script in a 

tabulated form and were displayed in the table format and illustrated in Table 

8.6b.  

 

  Plate A Plate B ……….. 

  

3000rpm_1500N_100degrees xx xx xx 

3000rpm_1500N_200degrees Xx xx Xx 

………….. xx Xx xx 

Table 8.6b. Table illustrating the correlation coefficients required for each set of test parameters and 

each banded test plate 

 

The thermocouple temperatures were used as opposed to the infrared 

temperatures as the infrared sensor was placed at the mid radius of the standard 

flat plate, meaning that the sensor was not necessarily always viewing the hottest 

part of the friction surface. When comparing the temperatures of those seen on 

the plate and those seen in the bands, the most accurate temperature to use was 
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that of the corresponding thermocouple which lies underneath the particular 

band, a list of which is shown in table 8.6c: 

 

Plate Number Thermocouple under Band 

A 1 

B 2 

C 3 

D 4 

E 5 

F 6 

G 7 

Table 8.6c. Banded Plates and Their Corresponding Thermocouples 

 

Before the script was created, it was important to ensure that all of the data was 

of a good quality with regards to noise, robustness and the general trends 

displayed, and also that there were no thermocouple drop outs (where the 

thermocouple ceases reading temperature) or other anomalies in the data. The 

data cut off points were at the beginning and end of the clamp loading stage. This 

was because the banding effect only occurs when the clutch is engaged and 

subject to loading.  

 

Using the thermocouple that is under the band which is being correlated (e.g. 

thermocouple 1 for plate A correlation), and comparing it to the same 

thermocouple in the standard plate, it was possible to get a comparison between 

the two curves and the coefficient of how closely they compare. This co-efficient 

was then used in a table to determine which bands were acting upon the flat plate 

by looking at the correlation values. 

 

When comparing the data from the banded plate to that from the standard plate 

it was essential that the data traces were of the same length, as any over run in 

one trace compared to the other would mean that the correlation would be 

inaccurate, as there would be no data to compare after the plate with the 

shortest vector had ceased to plot a trace. As each data trace was a different 

length, the MATLAB® script was programmed to set to cut the data down so that 
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the time trace began when the clamp load reached 50N, whilst it was increasing; 

and the time trace ended when clamp load again reached 50N, but this time, 

whilst it was decreasing. The shortest time trace of the two plates that were being 

compared was used as t=end. The larger of the data traces was cropped rather 

than stretching the shorter of the traces as this would have distorted the rate of 

change the temperature data. 

 

Some data traces were observed to have ‘noisy’ temperature plots, but this was 

generally found at lower clamp loads, an issue that has been described in Chapter 

6. As these ‘noisy’ traces are parts of the data, and are not thermocouple 

anomalies, the data could be used in the correlation script without any 

modification.  If any thermocouple dropouts were found, the plan to overcome 

this would have been to extrapolate the results either side of the drop out, to 

make the data spike ‘disappear’. 

 

The script was then set to determine a correlation coefficient based upon the two 

equal data traces from the standard flat plate and the enforced banding plate to 

which it was being compared and to tabulate these results for each given set of 

slip parameters, comparing the standard non-banded plate to each different 

banded plate in turn.  

 

 

8.7 ‘Banding’ Data Results 

Table 8.7a shows the results for the correlation coefficients, as determined by the 

MATLAB® script. Each value given in the cells is the correlation coefficient of the 

standard plate to the plate, and hence the band, which is identified as column 

headings in table 8.5d, at the test conditions listed in the row headings in the 

table. 

 

  Plate A Plate B Plate C Plate D Plate E Plate F Plate G 

 3000rpm1500NData 

100 0.883827 0.959786 0.949134 0.989659 0.983143 0.9982 0.961879 

 3000rpm1500NData 0.889939 0.940862 0.937457 0.962105 0.982817 0.986834 0.969948 
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200 

 3000rpm1500NData 

300 0.866131 0.917749 0.892479 0.92164 0.966917 0.97897 0.964982 

 3000rpm2500NData 

100 0.933144 0.931681 0.953955 0.961687 0.992527 0.957868 0.992136 

 3000rpm2500NData 

200 0.889033 0.919629 0.919538 0.929631 0.9953 0.971834 0.995489 

 3000rpm2500NData 

300 0.890265 0.930719 0.927703 0.9258 0.995718 0.995952 0.992053 

 3000rpm3500NData 

100 0.954003 0.976926 0.990015 0.987195 0.993493 0.9954 0.998611 

 3000rpm3500NData 

200 0.897858 0.937071 0.939699 0.929175 0.986129 0.947222 0.994236 

 3000rpm3500NData 

300 0.920968 0.938076 0.959049 0.953613 0.991065 0.985404 0.997981 

 5000rpm1500NData 

100 0.860004 0.942118 0.951496 0.96299 0.995177 0.992897 0.99737 

 5000rpm1500NData 

200 0.914264 0.967523 0.949446 0.873994 0.974908 0.993927 0.996441 

 5000rpm1500NData 

300 0.777278 0.865694 0.811647 0.930373 0.985965 0.967096 0.9926 

 5000rpm2500NData 

100 0.888319 0.934123 0.941149 0.945702 0.993871 0.995993 0.991549 

 5000rpm2500NData 

200 0.92576 0.951902 0.944946 0.892664 0.998576 0.994872 0.993933 

 5000rpm2500NData 

300 0.90438 0.959581 0.939703 0.929084 0.986389 0.985818 0.996196 

 5000rpm3500NData 

100 0.886809 0.935324 0.953536 0.949153 0.998503 0.981573 0.996762 

 5000rpm3500NData 

200 0.876015 0.933111 0.964587 0.909092 0.988369 0.97685 0.997843 

 5000rpm3500NData 

300 0.944535 0.988642 0.994746 0.818361 0.980065 0.978301 0.994979 

 7000rpm1500NData 

100 0.864969 0.889796 0.950718 0.963886 0.993993 0.987568 0.99275 

 7000rpm1500NData 0.899091 0.915562 0.839547 0.961765 0.997905 0.96025 0.979732 
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200 

 7000rpm1500NData 

300 0.841909 0.8859 0.950866 0.925379 0.998133 0.959907 0.987594 

 7000rpm2500NData 

100 0.924317 0.959985 0.984174 0.947304 0.982454 0.997276 0.997778 

 7000rpm2500NData 

200 0.843506 0.904917 0.935151 0.920949 0.99249 0.965315 0.999626 

 7000rpm2500NData 

300 0.846863 0.919706 0.957024 0.967253 0.992223 0.965531 0.977246 

 7000rpm3500NData 

100 0.883295 0.951199 0.965086 0.934778 0.995417 0.99858 0.990834 

 7000rpm3500NData 

200 0.815167 0.892158 0.94333 0.930475 0.985814 0.999182 0.998868 

 7000rpm3500NData 

300 0.739099 0.735176 0.916329 0.940436 0.98264 0.999634 0.997706 

Table 8.7a. Correlation Coefficients of the Banded Plates Compared to the Standard Flat Plate 

 

After the correlation between the flat plate and the banded plates had been 

tabulated, the highest correlating figure for each slip was transposed into a bar 

graph, with the order in which the slips took place along the X axis and the 

correlation factor on the Y axis in order to provide a simple visual comparison.  

Each plate was colour coded so that the bars in the graph could easily illustrate if 

any relationships were occurring with regards to the order in which the bands 

activate.  

 

The graph was created as follows; 

 The data was imported into MATLAB in array form from its excel 

spreadsheet (which was automatically generated by the clutch 

dynamometer control software) 

 Give each slip a unique ID number (as shown in table 8.7b) 

 Plot a bar chart for each set of slip parameters, for each plate on the x 

axis, against the correlation coefficient on the y-axis. 
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Run 

Number Run Details 

1  3000rpm1500NData 100 

2  3000rpm1500NData 200 

3  3000rpm1500NData 300 

4  3000rpm2500NData 100 

5  3000rpm2500NData 200 

6  3000rpm2500NData 300 

7  3000rpm3500NData 100 

8  3000rpm3500NData 200 

9  3000rpm3500NData 300 

0  5000rpm1500NData 100 

11  5000rpm1500NData 200 

12  5000rpm1500NData 300 

13  5000rpm2500NData 100 

14  5000rpm2500NData 200 

15  5000rpm2500NData 300 

16  5000rpm3500NData 100 

17  5000rpm3500NData 200 

18  5000rpm3500NData 300 

19  7000rpm1500NData 100 

20  7000rpm1500NData 200 

21  7000rpm1500NData 300 

22  7000rpm2500NData 100 

23  7000rpm2500NData 200 

24  7000rpm2500NData 300 

25  7000rpm3500NData 100 

26  7000rpm3500NData 200 

27  7000rpm3500NData 300 

 

Table 8.7b. Slip ID Numbers, as used by the MATLAB® Model.  
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After the correlation between the flat plate and the banded plates had been 

tabulated, the correlation values for each slip were transposed into a bar graph 

(also seen in Appendix P), with the order in which the slips took place, i.e. the run 

number (see table 8.7b) along the X axis and the correlation factor on the Y axis.  
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Figure 8.7c. Bar Chart Illustrating the Correlation Coefficients of All Banded Plates 

 

Considering again the correlation coefficients given in table 8.7a, these have a 

very small range over which they acted, with the maximum correlation coefficient 
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being 0.999626 (Plate G) and the minimum being 0.735176 (Plate B). Table 8.7e 

illustrates the maximum (red) and minimum (green) correlation coefficients for 

each given set of slip conditions  and is listed by run number as declared in Table 

8.7b.  

 

  Plate A Plate B Plate C Plate D Plate E Plate F Plate G 

 3000rpm1500NData 100 0.883827 0.959786 0.949134 0.989659 0.983143 0.9982 0.961879 

 3000rpm1500NData 200 0.889939 0.940862 0.937457 0.962105 0.982817 0.986834 0.969948 

 3000rpm1500NData 300 0.866131 0.917749 0.892479 0.92164 0.966917 0.97897 0.964982 

 3000rpm2500NData 100 0.933144 0.931681 0.953955 0.961687 0.992527 0.957868 0.992136 

 3000rpm2500NData 200 0.889033 0.919629 0.919538 0.929631 0.9953 0.971834 0.995489 

 3000rpm2500NData 300 0.890265 0.930719 0.927703 0.9258 0.995718 0.995952 0.992053 

 3000rpm3500NData 100 0.954003 0.976926 0.990015 0.987195 0.993493 0.9954 0.998611 

 3000rpm3500NData 200 0.897858 0.937071 0.939699 0.929175 0.986129 0.947222 0.994236 

 3000rpm3500NData 300 0.920968 0.938076 0.959049 0.953613 0.991065 0.985404 0.997981 

 5000rpm1500NData 100 0.860004 0.942118 0.951496 0.96299 0.995177 0.992897 0.99737 

 5000rpm1500NData 200 0.914264 0.967523 0.949446 0.873994 0.974908 0.993927 0.996441 

 5000rpm1500NData 300 0.777278 0.865694 0.811647 0.930373 0.985965 0.967096 0.9926 

 5000rpm2500NData 100 0.888319 0.934123 0.941149 0.945702 0.993871 0.995993 0.991549 

 5000rpm2500NData 200 0.92576 0.951902 0.944946 0.892664 0.998576 0.994872 0.993933 

 5000rpm2500NData 300 0.90438 0.959581 0.939703 0.929084 0.986389 0.985818 0.996196 

 5000rpm3500NData 100 0.886809 0.935324 0.953536 0.949153 0.998503 0.981573 0.996762 

 5000rpm3500NData 200 0.876015 0.933111 0.964587 0.909092 0.988369 0.97685 0.997843 

 5000rpm3500NData 300 0.944535 0.988642 0.994746 0.818361 0.980065 0.978301 0.994979 

 7000rpm1500NData 100 0.864969 0.889796 0.950718 0.963886 0.993993 0.987568 0.99275 

 7000rpm1500NData 200 0.899091 0.915562 0.839547 0.961765 0.997905 0.96025 0.979732 

 7000rpm1500NData 300 0.841909 0.8859 0.950866 0.925379 0.998133 0.959907 0.987594 

 7000rpm2500NData 100 0.924317 0.959985 0.984174 0.947304 0.982454 0.997276 0.997778 

 7000rpm2500NData 200 0.843506 0.904917 0.935151 0.920949 0.99249 0.965315 0.999626 

 7000rpm2500NData 300 0.846863 0.919706 0.957024 0.967253 0.992223 0.965531 0.977246 

 7000rpm3500NData 100 0.883295 0.951199 0.965086 0.934778 0.995417 0.99858 0.990834 

 7000rpm3500NData 200 0.815167 0.892158 0.94333 0.930475 0.985814 0.999182 0.998868 

 7000rpm3500NData 300 0.739099 0.735176 0.916329 0.940436 0.98264 0.999634 0.997706 

Table 8.7d. Correlation Coefficients of the Banded Plates Compared to the Standard Flat Plate 
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Each maximum and minimum correlating plate was taken for each run and 

tabulated.  

 

  

Maximum 

Correlating 

Plate 

Minimum 

Correlating 

Plate 

 3000rpm1500NData 100 A F 

 3000rpm1500NData 200 A F 

 3000rpm1500NData 300 A F 

 3000rpm2500NData 100 B E 

 3000rpm2500NData 200 A G 

 3000rpm2500NData 300 A F 

 3000rpm3500NData 100 A G 

 3000rpm3500NData 200 A G 

 3000rpm3500NData 300 A G 

 5000rpm1500NData 100 A G 

 5000rpm1500NData 200 D G 

 5000rpm1500NData 300 A G 

 5000rpm2500NData 100 A F 

 5000rpm2500NData 200 D E 

 5000rpm2500NData 300 A G 

 5000rpm3500NData 100 A E 

 5000rpm3500NData 200 A G 

 5000rpm3500NData 300 D G 

 7000rpm1500NData 100 A E 

 7000rpm1500NData 200 C E 

 7000rpm1500NData 300 A E 

 7000rpm2500NData 100 A G 

 7000rpm2500NData 200 A G 

 7000rpm2500NData 300 A E 

 7000rpm3500NData 100 A F 

 7000rpm3500NData 200 A F 

 7000rpm3500NData 300 B F 

Table 8.7e. Maximum and Minimum Correlation Coefficients of the Banded Plates Compared to the 

Standard Plate 

 

Table 8.7b illustrates the order in which the test slips took place. This was 

imperative to understand, as the order in which the tests were run may have held 

some information regarding the pattern of the banding occurrence. Table 8.7b 
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was used in conjunction with figure 8.7f, in order to provide a clearer visualisation 

of the banding occurrence. 

 

The graphical representation figure 8.7c gave the correlation coefficient for all 

plates and all variable slips. However, for clarity, in figure 8.7f, the graph was 

reduced to only include just the two highest correlation coefficients for each plate 

and was colour coded to aid clarity. Figure 8.5m shows the correlation coefficients 

of the two highest correlations for the slips in a run. All graphs are reproduced in 

Appendix Q as full sized versions.  

 

0 5 10 15 20 25 30

0.97

0.975

0.98

0.985

0.99

0.995

1

Run Number

C
o
rr

e
la

ti
o
n
 C

o
e
ff

ic
ie

n
t

Two Highest Plate Correlation Coefficients Per Slip

 

 
Plate A

Plate B

Plate C

Plate D

Plate E

Plate F

Plate G

 

Figure 8.7f. Bar Chart illustrating the two Highest Correlation Coefficients of Standard Plate 

Compared to the Banded Plates 

 

As seen in figure 8.7f, the two highest acting bands usually come from the outer 

radii of the clutch plate. By observing only the highest correlation coefficient 

(figure 8.7g), it was possible to further observe this effect. The closest correlation 

coefficient was the band that was on the outside radius of the plate. 
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Figure 8.7g. Bar Chart Illustrating the Highest Correlation Coefficients of Standard Plate Compared to 

the Banded Plates 

 

An important factor to note is that the friction coefficient of the carbon-carbon 

material is unpredictable. Due to the variability of the material the value for the 

friction / temperature relationship tends to vary. As Carbon-Carbon is a 

statistically complex material, it is vital to use a number of slips for the same set of 

variables, and to take an average, maximum, minimum and standard deviation of 

the data obtained, and to use this in calculations to obtain a range of values for 

which the friction temperature relationship is predictable.  

 

Observing the two plates with the highest correlation coefficient it became 

apparent that the two highest correlations tend to appear on adjacent banded 

plates. This could suggest that perhaps the naturally occurring band is wider than 

the 4mm induced band that was used in the dynamometer tests.  

 

The most important fact to note as a result of the ‘banding analysis’ is simply that 

the amount of information gained, the lack of repeatability and the similarity of 

the results from each set of banded plates mean that the application of the 

experimental errors from the thermocouples, infra red, rig and spreadsheet 

rounding would quite easily turn any hypothesis round. If the results had been 
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demonstrated an obvious trend, then a more detailed banding analysis with 

errors included could have been taken into account. However, as a clear banding 

theory could not be determined using the results obtained, this element of the 

work was abandoned at this point, with focus shifting to the mathematical model, 

based on the assumption of full face contact between the faces of the clutch 

plates. 

 

 

8.8 Conclusions from Experimental Testing 

In retrospect it would have been more beneficial to have sacrificed some of the 

testing of the banded plates in order to obtain more repeated data sets. At the 

time of developing the testing, the initial experimentation had hinted at the 

possibility of banding as an important behaviour to investigate, and it was felt by 

both the author and the industrial partner that this should have been explored in 

depth.  But with the hindsight the presence, predictability and effects of banding 

were all inconclusive in the tests undertaken.  

 

In conclusion, the experimental element of the work did provide an important  

understanding of the frictional and temperature behaviour of the carbon-carbon 

material within the clutch.  
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Chapter 9 

Input Modelling 

This chapter outlines the three main components of the mathematical model, and 

describes in detail the first of these three: the input model of the clutch 

dynamometer.  

 

From the experimental element of the testing, it was determined that the 

mathematical model account for complete face-to-face contact, and discount any 

banding theories. To accurately replicate a ‘real life’ situation, the model was split 

down into three logical elements (seen in Figure 9a; surface modelling, thermal 

modelling and modelling of the test rig, and was done this way for two reasons; 

1) To allow for greater future flexibility for model development 

2) To split up the two main thermodynamic heat transfer mechanisms 

(surface and thermal heat transfer) and the input parameters of the rig. 

 

 

 

Figure 9a.Initial Schematic of the Mathematical Model. 

 

Each element was considered in turn and independently modelled, before being 

put together into one final model that was used to determine the clutch friction 

for any given race start.  The rig model was modelled to obtain profiles equivalent 

to those of a bedding cycle (to ensure its accuracy), the thermal model was used 

to generate surface temperature, whilst the friction model converts power and 

temperature profiles into deformation and reformation of the surface friction 

film, then using this current surface state to obtain the instantaneous value of the 

coefficient of friction.  
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A free body diagram of the system is shown below in figure 9b.  

 

 

Figure 9b Free body diagram of the system to be mathematically modelled. 

 

In this chapter, an overview of clutch dynamometers is given as background, and 

then the clutch dynamometer is split down into its component parts with the 

modelling process described in relation to these parts.  

 

 

9.1 Rig Model Overview 

Figure 9.1a highlights the rig model and where it resides in relation to the overall 

mathematical model.  

 

Figure 9.1a. The model schematic and where the rig model fits into it. 
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An important factor to note is that although the rig model is used to establish the 

power that will be transmitted through the clutch on the rig, this model could be 

adapted to be more generic, and could simply be an engine power input model. 

However, as data from the clutch dynamometer rig was used to validate the final 

model, it was essential that the model be as accurate and representative of the 

validation data as possible. More information on how this model could be 

changed to account for an on-car situation can be found in Chapter 13 – Critical 

Assessment. 

 

 

9.2 Clutch Dynamometers:  Overview 

The clutch dynamometer is a device that is designed to simulate as closely as 

possible the real life conditions experienced by a clutch in all aspects of its 

operation. Each part of the dynamometer corresponds to a part of the car; the 

drive motor represents the engine, and provides the engine torque. In a car, the 

clutch is positioned between the drive motor and the gearbox, in the application 

on the rig the gearbox  is represented as a load applied by the brake. Between the 

motor and the clutch are several gears which increase the speed and inertia of the 

load that is to be applied to the clutch.  

 

 

Figure 9.2a – Diagrammatic Representation of the Clutch Dynamometer at AP Racing 

   

Figure 9.2b shows a clutch dynamometer used by HGT (a division of Honda 

Motorsport) 

Brake Clutch Gear Sets 

ENGINE 

TORQUE 
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Figure 9.2b – The Clutch Dynamometer at HGT (Japan) [164] 

 

There are two motors on the dyno at HGT; a 75kW motor, which is primarily used 

for inertial absorption tests, and a smaller 55kW motor, which is used for constant 

slip tests. Whilst the 75kW motor is capable of the higher input speeds, which are 

in the region of those typically seen on an F1 car during launch, the 55kw motor is 

capable of a higher input torque, as given in Table 9.2c and so is more suited for 

analysing the constant slip phase of the clutch by applying a constant torque to it.  

 

Motor 75kW 55Kw 

Input 

Speed 
～25,000rpm 5000～15,000rpm 1～150rpm 2.5～300rpm 

Input 

Torque 
- - ～3,000Nm ～1,600Nm 

Total Inertia = 0.2362～1.0629kgm2 (Variable some level) 

Table 9.2c – Motor specifications for the clutch dynamometer at HGT (Japan) [164] 

 

 

9.3 Schematic of the Clutch Dynamometer  

In order to accurately model the dynamometer, it was split up into its main parts 

of: motor, reduction gear, flywheel, speed increasing gears and finally the clutch 

(which will be further split down into a surface model and a bulk material model 

in Chapter 10 – Thermal Modelling and Chapter 11 – Surface Modelling).  
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Figure 9.3a shows a schematic of the clutch dynamometer at HGT, and how it is 

split down into its base components. Gears are highlighted in pink, motors in blue, 

fly wheels in yellow and the clutch specimen in purple.  

 

 

Figure 9.3a – Schematic diagram of the  HGT Clutch Dynamometer [164] 

 

A more detailed drawing of the dynamometer in figure 9.3a, and individual 

component drawings, can be found in Appendix R. 

 

Figure 9.3b shows this in a more simplified manner; 

 

Figure 9.3b – Block Diagram of the Clutch Dynamometer at HGT 

 

There are two main methods of operation for the clutch dynamometer; inertial 

absorption and constant slip. Inertial absorption is where the dynamometer is 

sped up to a set speed and inertia (as set by the motor and flywheels), and then 

the clutch is engaged either partially or fully (this can be set using the clamp load). 

The output signal of temperature and torque are observed as the clutch absorbs 

the inertia and transmits this energy into heat through friction. This method is of 

particular use when characterising a set amount of power that needs to be 

dissipated through the clutch in a set time, and can also help characterise the 

initial ‘bite’ of the clutch when it is first engaged. Figure 9.3c illustrates how the 
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power and inertia transmit through the dynamometer in the inertial absorption 

scenario. As in Figures 9.2a and 9.2b, gears are highlighted in pink, motors in blue, 

fly wheels in yellow and the clutch specimen in purple, with the orange lines 

indicating the transmission of power. 

 

 

Figure 9.3c – Block diagram of the clutch dynamometer at HGT in  inertial absorption configuration 

 

Constant slip is different; here the motor is used to slip the clutch, much as an 

engine would do during a race start. The clutch is subject to a constant slip, the 

severity of which would be determined by the clamp load and the input torque of 

the motor. This method is used when trying to emulate the conditions of a clutch 

under launch conditions, as a constant power is being supplied to it and the clutch 

is required to slip until a set time when the clamp load would be increased and 

the clutch becomes fully engaged. This is the method of operation that is defined 

exclusively in the modelling in this project, due to its similarities to the ‘real life’ 

situation on the track. Figure 9.2d illustrates how the power and inertia transmit 

through the dynamometer in this scenario. 

 

 

Figure 9.3d – Block diagram of the clutch dynamometer at HGT in constant slip configuration 
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9.4 Clutch Dynamometer Modelling  

Using the blocks in section 9.3 as the main starting point for building the code in 

MATLAB. Initial constants were first to be defined; first for the clutch itself, and 

then for the dynamometer.  

A flow outline of the code is shown in this section and full code can be found in 

Appendix S 

 

Flow Steps Description 

 

Define ‘ClutchModel_RigModel’ (where input data 

from the actual clutch rig is stored, and used as an 

input to the model) 

 

Iterative time steps were built and populated with 

input values of time (Time_s), clutch evaluation data 

(sCluData), Time differential (dt_s), initial friction 

co-efficient (CluMuPrev), and the speed differential 

of the clutch plates (CluSpeedDiffPrev_rpm).  

 

Define Clutch Constants, rig constants and initial 

condition (including ambient) conatants 

 

Calculate further information from the initial 

constants 

Build iterative time 

steps 

Define initial 

constants 

Use constants to 

calculate other 

parameters 

Use 

‘ClutchModel_RigMo

del’ as input data 
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Using the data from ‘ClutchModel_RigModel’, 

functions were created for the initial clutch pressure 

(CluPressurePrev_bar) and clamp load 

(CluClampLoadPrev_N) 

 

Using the data from ‘ClutchModel_RigModel’, the 

functions were created for output torque 

(CluTorqueNew_Nm), speed differential of the 

clutch plates (CluSpeedDiffNew_rpm) and power 

output (CluPowerNew_W); 

 

The evaluation of each time step was initiated, 

starting with an ‘if’ statement to determine if the 

clutch was clamped, or in the process of being 

clamped. 

 

Clutch clamp loads, torques and speed differences 

were then calculated; 

 

Using the speed difference in RPM and function for 

the new torque, along with the value for the rigs 

inertia the new clutch speed was defined; 

 

Then the power dissipation was calculated using the 

torque and angular velocity and the speed 

difference was converted back to rpm; 

Create functions for 

inputs clutch 

pressure and clamp 

load, 

Calculate clamp 

load, transmitted 

torque and delta 

speed 

Determine new 

clutch speed 

 

Calculate power 

dissipation 

Is the clutch 

clamped or not? 

Create functions for 

outputs of torque, 

speed and power  
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Save the values to the array  

 

 Finally, clear the un-needed variables, ready for the 

next iteration; 

 

Increment time until n = t end 

 

 

 

 

 

9.5 Model Code Validation 

To validate the method used and the system being modelled, a measured torque 

trace from the actual dyno was input into the simulation in order to predict the 

clutch speed difference (the difference between the driving and driven plates) 

profile as an output. This simulation output was compared against the actual 

measured speed profile from the dynamometer at different actuation pressure 

profiles of 40, 50, 60 and 70 bar. The results are displayed in Figure 9.5a.  

Save values to array 

 

END 

t = n +1 

Save values to array 
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Figure 9.5a Dynamometer data versus. Modelled data for clutch speed difference for different 

values of clutch actuation pressure 

 

From Figure9.5a it can be  seen that for all pressure profiles, the simulation 

output matches the measured profiles to an acceptable level of accuracy. Using a 

sample of 5 independent runs at constant speed input and a variation of clamp 

loads, each consisting of 500 – 800 data points (obtained from the testing 

outlined in Chapter 7). Using the speed (or velocity) data output from both the rig 

and the model and assuming that the mass of the clutch is equal in both 

representations, it was established that the model had an approximate kinetic 

energy accuracy of 2 – 5 %. This was done using equation 9.5b  

 

Kinetic Energy (KE) = ½ * m v2 Equation 9.5b 

 

Where:  

m = mass of the clutch that is moving 

v = speed (in this instance it is the speed delta from maximum to minimum to 

obtain the KE delta) 

 

This simple validation of the rig modelling code gave confidence that the values 

obtained as an output of this model would be accurately represented as input 

data when being carried forward into the clutch thermal and surface models.  
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Chapter 10 

Thermal Modelling 

This chapter focuses on the modelling of thermal behaviour within the   final 

model (Figure 10a below) and the incorporation of bulk material characteristics of 

the carbon – carbon material. A range of material characteristics are identified 

and quantified, along with the output values for speed and torque from the rig 

model to determine the bulk and theoretical surface temperatures. Due to the 

complexity of the surface morphology of the clutch material, further work is 

undertaken on the surface characteristics using the theoretical surface 

temperature outlined in this chapter. 

 

 
Figure 10a. The model schematic and where the thermal model fits into it. 

 

This section of the work begins by focusing on the main material properties 

required for  thermal modelling, and the determination of these through 

materials testing. The model is then described in terms of these characteristics 

and built up from thermal equations and known values.  

 

 

10.1 Thermal Modelling Background 

As described in Chapter 3: Literature Review, there has been extensive work done 

in the area of thermal profiling of carbon–carbon. However the reliability of 

achieving the thermal profiling relies heavily upon the quality control procedure 

within the manufacture of the carbon-carbon plates. The thermal model 
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presented here is based on the main assumption that the material used within the 

clutch stack has been manufactured to a high quality, and has consistent material 

properties, as obtained from the samples used in materials testing. It is also 

assumed that the mechanical and thermal values will remain the same.  

 

 

10.2 Materials Characterisation  

To understand how heat travels through the clutch plate, it was essential to know 

which thermal properties have an effect upon the dimensional and frictional 

properties of the clutch and to what extent this occurs. The most important of 

these in relation to the bulk thermal properties and the thermal behaviour of the 

carbon-carbon material are: 

 Thermal conductivity,  

 Specific heat at constant pressure, and 

 Density.  

 

One approach to obtain these values was to approach manufacturers themselves. 

The two main carbon friction material suppliers, Carbone Industrie and Hitco, are 

very reluctant to give detailed information on the exact material properties due to 

the highly competitive nature of their industry, and values vary at each time of 

enquiry. Dunlop Aerospace, a manufacturer of aircraft brakes, have also supplied 

information regarding the thermal properties of carbon plates, but this 

information is not specific to the carbon material being used in F1 clutch 

applications, so although this information can be used as a reference point, it 

cannot be relied upon for the thermal model of the clutch.  

 

 An alternative would be to use a generic property value made up from values 

given by various sources ranging from the internet to values supplied by the 

manufacturers themselves, but this would only provide an approximation. It was 

therefore decided that the best approach, to ensure that the material properties 

represented in the model were as representative as possible, was that samples of 

carbon from the same batch as the plates used in the testing on the 

dynamometer were independently tested by a specialist materials analysis lab. 
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Each of these material properties and their subsequent testing will now be 

described in turn.  

 

10.2.1   Specific Heat 

Specific heat of a substance is the amount of energy required to raise 1 unit of 

mass of that substance by 1˚C, and is more commonly described as the ability to 

absorb and communicate large quantities of heat. This thermal property is very 

important factor in the design and optimisation of a carbon clutch. The speed at 

which heat is lost from the plates to their surroundings is one of the key factors in 

the performance of a clutch, as it is by this mechanism that the kinetic energy 

arising from the speed difference between the driving and driven plates of the 

clutch is lost during slipping.  

 

Using ASTM E 1269-05 (2005) Standard Test Method Determining Specific Heat 

Capacity by Differential Scanning Calorimetry [167]. This test method standard 

covers the determination of specific heat capacity by differential scanning 

calorimetry and is generally applicable to thermally stable solids and liquids. A 

differential scanning calorimeter (or DSC) measures the amount of energy (heat) 

absorbed or released by a sample as it is heated cooled or held at a constant 

(isothermal) temperature. Two samples are heated; one with a known specific 

heat capacity, and the unknown sample. By measuring the difference in required 

energy to heat the samples to the same temperature, the DSC calculates the 

differences between the two samples and hence gives the value for the specific 

heat capacity of the unknown sample.  

 

A specimen of 6mm diameter by 1.4mm thick was used for the specific heat 

measurement testing. This measurement were takenover a temperature range of 

50°C to 1000°C using a Netzsch DSC404 high temperature heat flux calorimeter. 

The temperature measurements were taken using 10% RhPt/Pt (Rhodium, 

Platinum / Platinum) (type S) thermocouples. These thermocouples are capable of 

reading temperatures within the range of 0°C to 1450°C to an accuracy of ±0.5°C 

to 1100°C and ±3.0°C to 1450°C.  The test specimen was measured whilst heating 

at 10°C a minute from 50°C to 1000°C under an argon purge flowing at 

approximately 60ml per minute to prevent oxidation.  
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Two specific heat measurements were made on the carbon-carbon clutch 

material and the data from both runs is very similar and suggests that the material 

had not been changed by being heated up to 1000ºC on the first run.  

 

A cubic polynomial was fitted to the measured data and was then used to 

interpolate the specific heat values given in Appendix T. 

 

10.2.2 Thermal Diffusivity / Conductivity 

Thermal conductivity is defined as the quantity of heat transmitted in a unit of 

time through one unit of thickness in a direction that is normal to the surface, due 

to the temperature difference. 

 

Thermal conductivity is impossible to measure by itself, however, thermal 

diffusivity is straightforward to measure and can be used to determine thermal 

conductivity using the relationship described in the equation below; 

 

K = hd ρ Cp    Equation 10.2.2a 

         

Where; 

K Thermal conductivity 

hd Thermal diffusivity 

ρ Density 

Cp Specific heat 

 

 

The following standards outline the test procedure for thermal diffusivity to 

ensure accurate and repeatable tests; 

 BS EN821-2:1997 Advanced Technical Ceramics – Monolithic Ceramics – 

Thermo-physical Properties – part 2: determination of thermal diffusivity 

by the laser flash (or heat pulse) method [168].. This part of the standard 

specifies the method for the determination of thermal diffusivity of 

advanced monolithic technical ceramics, to an accuracy of approximately 

±5%. It is suitable for the range 0.1mm2/s to 1000mm2/s at temperatures 

greater that -180ºC.  



235 

 

 BS EN1159-2:2003 Advanced Technical Ceramics – Ceramic Composites – 

Thermo-physical Properties – part 2: determination of thermal diffusivity 

[169]. This part of the standard describes the laser flash method for 

determination of thermal diffusivity of ceramic matrix composites with 

continuous fibre reinforcement. The experimental conditions are such 

that the material behaves in a homogeneous manner for each of its axes 

of anisotropy and that the heat transfer occurs only by thermal 

conduction. The method is applicable to materials which are physically 

and chemically stable during the measurement, and covers the range of 

temperature between 100K and 2800K. It is suitable for the measurement 

of thermal diffusivity values in the range between 10-4m2s-1 and 10-7m2s-1.  

 

One side of a plane and parallel test piece is exposed to a uniformly distributed 

energy laser pulse emitted from a controlled source that is of very short duration 

(approximately 0.1s) in comparison to the transient half time. The transient 

temperature on the opposite face is recorded as a function of time, as shown in 

figure 10.2.2b. 

 

         

Figure 10.2.2b Thermal Diffusivity Test Signal 

 

The difference between these two values, along with the material density and 

thickness are used to calculate how quickly the thermal energy has travelled 

through the specimen, and hence to calculate the thermal conductivity. Following 

the testing of the carbon-carbon specimen, a control specimen with a known 

thermal conductivity was tested to enable the conductivity of the specimen 

holder to be eliminated. The specimen is placed in a holder (figure 10.2.2cd) and 

then placed in the vacuum chamber. This is done so as to eliminate the thermal 
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conductivity of the air around the specimen, which would carry heat away from it 

and not give true values. 

 

 

Figure 10.2.2c Thermal Diffusivity Sample Holder 

 

The energy source is a laser built specifically to heat the surface of the specimen 

in a uniform manner. A photograph of the apparatus is given in figure 10.2.2d.  

 

 

Figure 10.2.2d Thermal Diffusivity Test Apparatus  

 

Two measurements were made on the material and the data from both tests 

were very similar, which again suggests that the material has not been changed by 

being heated up to 1000ºC in the first test. Raw data obtained from the thermal 

diffusivity and thermal conductivity testing is given in the table in Appendix T. 

 

Figure 10.2.2e shows a plot of the thermal diffusivity against temperature for the 

clutch plate material during the heating and cooling phases.  

Laser Unit 

Signal Processing 

Rack 

Control PC 

Vacuum Chamber 
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Figure 10.2.2e. Thermal Diffusivity of a Carbon Clutch Plate Material 

 

Figure 10.2f shows the thermal conductivity of the clutch plate material at the 

different temperatures tested.  

 

Figure 10.2f. Thermal Conductivity of a Carbon Clutch Plate Material 

 

Data from the thermal conductivity / diffusivity and the specific heat experiments 

were placed into Excel look up tables, to be used in the MATLAB model.  
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10.3 Thermal Model Code Generation and Structure 

A flow outline of the code is shown in this section and full code can be found in 

Appendix U 

 

Flow Steps Description 

 

Initial constants were named and defined; 

 

Ambient conditions were also defined 

 

Constants were used to determine further 

parameters, such as area and total volume of 

material. 

 

 

 

Time step was set to 1 for the first data pass.  

 

 

The initial conditions were specified for the thermal 

data obtained from the materials testing for; 

Density of material [kg/m^3] 

Emissivity of c-c  

Specific Heat Capacity at 27degC [J/kg*K] 

Specific Heat Capacity at 1000degC [J/kg*K] 

Thermal conductivity perpendicular to friction 

surface at room temp [W/m.K] 

 

Define initial 

constants 

Use constants to 

calculate other 

parameters 

Set initial thermal 

data constants 

t = n = 1 
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Populated iterative timesteps using functions and 

created using data from the program, 

‘ClutchModel_ThermalModelSimple’ with input 

values of clutch evaluation data (sCluData), Air 

temperature (TempAirPrev_degC), bulk temperature 

(TempBulkPrev_degC), surface temperature  

TempSurfacePrev_degC, clutch power determined 

from the rig model (CluPowerNew_W) and time 

incrementation (dt_s). And this was written in the 

code as; 

 

 

Next the specific heat capacity lookup was created 

for both the bulk and surface, using the materials 

testing data and a series of ‘if’ functions: 

If the previous surface temperature is less than 27 

degrees, then assume that the heat capacity is equal 

to the heat capacity at 27 degrees.  

If it’s more than 1000 degrees, then assume the 

specific heat to be equal to that at 1000 degrees.  

If between 27 and 1000 degrees then perform a 

linear interpolation of the results obtained from the 

materials testing. 

 

 

An assumption was written that the entire energy 

dissipated is absorbed into the friction surface as 

heat and that there are zero losses. 

 

 

Next the heat transfer calculations were written for; 

 Heat flux from surface to bulk conduction 

 Heat flux from surface to bulk convection 

 Heat flux due to radiation 

 Total flux for surface, bulk and ambient 

 

Create specific heat 

look up table 

 

Assume zero losses 

Declare heat 

transfer calculations 

 

Populate the 

iterative timesteps 
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Finally the temperatures were converted back to 

degrees; 

 

 

 

 Save the values to the array 

 

Increment time step until n = t end 

 

 

 

The subsequent output data of this model is the temperature of the clutch for the 

power output given by the model created in Chapter 9, at any defined time-step 

during its engagement. However, despite the model also giving a value for the 

temperature of the surface of the clutch, this is an approximation . Hence the 

model is developed further in Chapter 11, where surface characteristics such as 

different wear modes and different surface roughness values are accounted for.  

 

 

10.4 Validation of the Thermal Model  

When creating the thermal model code, it was written in such a way as to 

minimise the required changes to the code to be able to adapt it for 

representation of the car data. This was specifically done because the overall aim 

Convert 

temperatures into 

degrees 

END 

t = n +1 

Save values to array 
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of the project was to obtain a model that can be used to determine the coefficient 

of friction of the clutch on the car during the formation lap.   

 

Due to the difficulty of measuring this thermal effect part of the process 

experimentally, it was impossible to devise a method to accurately determine the 

validity of this thermal component of the model alone. One suggestion would 

have been to use the thermocouple values from the experimental dynamometer 

testing carried out in Chapter 7, and the input power from the rig. There are 

inaccuracies in the model at this stage, because the effects upon the coefficient of 

friction due to the surface characteristics of the carbon-carbon material have not 

been included in the model. These would have a significant effect on the 

temperature gradient of the clutch plates.. Because the model presented in this 

chapter was to be part of a much larger overall model, as will be described in 

Chapters 12, it was decided to leave the validations which took into account 

surface characteristics until the validation of the final model  
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Chapter 11  

Surface Modelling 

 

When modelling the clutch as a whole the surface sub- model is undoubtedly the 

one that requires the most accuracy, as it is this that predicts the contact 

characteristics between the two material faces. The surface model is also the 

most complicated model to create due to the complexities of the surface wear 

mechanisms. The model requires factors for the surface morphology, the chemical 

bonding of the carbon-carbon material and the dust produced by the material 

contact (which acts as a lubricant for subsequent slip events). This chapter goes 

into depth regarding the background to surface modelling, the surface 

characteristics of the carbon-carbon material and how these characteristics are 

modelled within the model, along with the modelling of other affecting factors. 

Thermal decomposition testing is also undertaken to obtain material specific 

information for the lookup table used in the model.  

 

The surface model is structured into three sub models, as shown in Figure 11a. 

 

 

Figure 11a. The model schematic and where the surface model fits into it. 
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11.1 Surface Characteristics 

As discussed in the literature review, there are three types of carbon-carbon 

surface morphology [50]:  

 Type I, which has a machined or polished appearance and a negligible 

amount of surface debris. This has a low coefficient of friction. 

 Type II, which has a dull unpolished surface and a thick layer of powdery 

wear debris with particles all less than 5 microns in diameter. This has a high 

friction coefficient.  

 Type III, which has a smooth polished surface with surface wear debris that 

has been transformed into a smooth friction film. This has a low coefficient of 

friction. 

 

Figures 11.1 a, b and c show SEM photos of carbon – carbon discs with each of the 

three morphologies.  

 

 

Figure 11.1a. SEM highlighting the surface morphology of as-polished disc (Type I) [50] 

 

Type I. This type of wear happens at low energy conditions. At these conditions, 

particulate powdery wear debris is formed. The worn particles cause abrasive 

wear which is the most damaging mode in terms of carbon-carbon wear, very 

much like applying a sand paper over the surface of the clutch plate. These 

particles are mostly formed by carbon matrix, not carbon fibres. 
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Figure 11.1b. SEM highlighting the surface morphology of bedded material (Type II/Type III 

transition) [51] 

 

Type II.  This type of wear happens at high energy conditions. The difference 

between this and type I is that at these conditions, a smooth friction film is 

formed on the surface of the clutch which serves as a solid self-lubricant. This film 

protects the material, therefore it wears less. This is because under higher braking 

energy conditions, higher pressure and temperature assist deformation of wear 

particles to form a debris film. The particles do not melt though, but plastically 

deform. However, this ‘lubricant’ means that the efficiency of the clutch suffers as 

the friction coefficient is lower once the material has formed such a film.  

 

 

Figure 11.1c. SEM highlighting Type III surface morphology (lubricating friction film) [50] 

 

Type III. If temperature and braking energy rise even higher, the friction film 

would break into chunks due to shear stresses and the wear rate would increase 
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again. The other undesirable thing that could happen at extremely high energy 

clutch slips is oxidation of the materials.  

 

Proper carbon-carbon tribological performance is highly dependent on the 

formation and destruction of the friction layer. Under certain conditions the high 

coefficient of friction, type II morphology is worked into a smooth and dense 

compacted layer of carbon that acts as a lubricating film; this yields low 

coefficient of friction type III morphology. The disruption and reformation of this 

layer is a continual dynamic process: disruption of the film being driven by 

shearing due to high power dissipation, with reformation tending to occur at 

higher temperatures in the materials working range.  

 

 

11.2 Materials Characterisation 

As described in the literature review, oxidation is a process of thermal 

decomposition that greatly affects the surface properties of the carbon–carbon 

material. It is important to understand where the carbon clutch plate material 

begins to decompose by oxidation, as this has a large effect upon the frictional 

properties of the clutch plate materials. This was investigated experimentally by 

using a Thermo-Gravimetric Analysis (TGA) machine which can be used to 

measure the rate of thermal decomposition of a small sample. 

 

To determine the rate of thermal decomposition profile of the carbon-carbon 

clutch material, 4 small samples of approximately 20mg of the carbon clutch plate 

material were decomposed through heating at a rate of 200ºC per minute from 

100ºC to 400ºC and then holding isothermally at 400ºC for 2 minutes, then 

heating from 400ºC to 800ºC at 10ºC per minute. The weight of the platinum 

crucible was recorded beforehand, the sample was then added and the 

temperature taken to 100ºC. The weight was then sampled and recorded 

throughout the test.  The test chamber was purged with compressed 

atmospherically composed air at a rate of 30ml per minute in order to aid the 

oxidation process.  
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To ensure complete accuracy and reliability of results, the following standards 

were adhered to; 

 ISO 11358 (1997). Plastics – Thermogravity (TG) of Polymers – General 

Principles [170]. This standard specifies a method for the determination of 

the activation energy in the Arrhenius equation for the decomposition of 

polymers using a thermogravimetric technique.This method is applicable 

only if the reaction proceeds by a single mechanism. It is applicable to 

multistage reactions if they consist of clearly separated single stage steps.  

 ISO 11288-2 (2005). Plastics – Thermogravimetry (TG) of Polymers – Part2: 

Determination of Activation Energy [171]. This part of the standard 

specifies a method for the determination of the activation energy, Ea, in 

the Arrhenius equation for the decomposition of polymers using a 

thermogravimetric technique. The method is applicable only if the 

reaction proceeds by a single mechanism. It is applicable to multistage 

reactions only if they consist of clearly separated single stage steps.  

 

A plot of sample weight against temperature is shown in Figure 11.2a.This shows 

that thermal decomposition of the samples began at approximately 400˚C, with 

the full effects being seen after 550˚C – 600˚C By approximately 850˚C, thermal 

decomposition had a clear effect on the weight of the sample,, and there is then a 

rapidly decreasing sample weight after this temperature. This oxidation changes 

the surface properties of the carbon-carbon and so these results were used to 

create a look up table for use within the model, to account for the effects of the 

thermal decomposition.  

 

Individual sample graphs can be found in Appendix V 
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Figure 11.2a. Sample Decomposition Summary 

 

Although this testing was effective in understanding the thermal decomposition, 

and was used to account for this within the mathematical model, further 

investigations into the effects on the linear thermal expansion at very fast 

temperature ramp rates could have provided more accurate representations of 

the behaviour during a clutch slip event. The temperature ramp rate of 1˚C per 

minute used by the thermo gravimetric analyser is very low and allows for heat 

soak to occur, giving a steady and uniform relationship between the 

decomposition of the material and the increase in the temperature. A very fast 

rate of temperature increase, of approximately 18,000˚C per minute (which 

comes from the suspected approximate plate face temperature of 1500˚C is seen 

to occur within 0.5 seconds of slip for a typical F1 race clutch) would yield results 

more applicable to the project; however, test apparatus that would be able to do 

this is not available at the present time.  

 

 

11.3 Modelling of the Surface  

The first part of the surface model needed to determine which state the surface is 

in at any given point in time ie , and therefore a surface state model was first to 

be constructed. The purpose of the surface state model was to determine which 

surface state mode the friction face was experiencing at that given time and to 

generate the coefficient of friction values for the surface.  
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Deformation / reformation / ability to deform / reform and the friction coefficient 

curves (determined later in the program, but set to an initial value at the start of 

the iterative process), coordinates were defined. 

 xDeformation1 - x co-ordinate of knee in deformation coefficient curve 

 yDeformation2 - y co-ordinate of final point of deformation coefficient 

curve 

 yDeformation1 - y co-ordinate of knee in deformation coefficient curve 

 xReformation1 - x co-ordinate of knee in reformation coefficient curve 

 yReformation2 - y co-ordinate of final point of reformation coefficient 

curve 

 yReformation1 - y co-ordinate of knee in reformation coefficient curve 

 xAbilityDeform1 - x co-ordinate of knee in deformation ability curve 

 xAbilityReform1 - x co-ordinate of knee in reformation ability curve 

 xFriction1 - x co-ordinate of first knee in coefficient of friction curve 

 xFriction2 - x co-ordinate of second knee in coefficient of friction curve 

 

The power lookup table was used to determine the power at which deformation 

and reformation of the surface layers occurred. Originally all of these variables 

were set to 1 but after several runs the following values were decided upon as 

more suitable starting points.  

 

% POWER LOOKUP TABLE 

xDeformation1 = 1       % x co-ordinate of the deformation knee 

yDeformation1 = 0.5     % y co-ordinate of the deformation knee 

xReformation1 = 1.4     % x co-ordinate of the reformation knee 

yReformation1 = 0.6     % y co-ordinate of the reformation knee 

  

A graph was then plotted of the power against the coefficient of deformation / 

reformation and an ability to deform / reform lookup table was generated. This 

was used to determine the ability of the surface to deform / reform, that is, 

whether the surface was likely to deform or reform its bonds and change state 

types.  
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% ABILITY LOOKUP TABLE 

xAbilityDeform1 = 0.1 

yAbilityDeform1 = 0.95 

xAbilityReform1 = 0.9 

yAbilityReform1 = 0.95 

 

A graph was then plotted of the surface state against the ability to deform / 

reform the surface and friction lookup table was generated.  

 

xFriction1 = 0.4; 

xFriction2 = 0.6; 

yFriction1 = 0.55; 

yFriction2 = 0.35; 

  

aLookup_xFriction = [0,xFriction1,xFriction2,1]; 

aLookup_yFriction = [0.6,0.6,0.3,0.3]; 

 

Structures were created for the cycle values of cycle deformation, reformation, 

deformation ability, reformation ability, surface state change and surface state. 

The cycle friction co-efficient was determined through linear interpolation of the 

XFriction (x), and YFriction (y) at the point‘s Cycle.SurfaceState. 

The outputs of this model are the array of average coefficient of friction for each 

event, and the array of the coefficient of friction for the first time-step of each 

event (in this case, 0.1s).  

 

 

11.4 Surface State Look Up Table Generation 

Before the main model could be created, the deformation and reformation of the 

surface lubricating film had to also be defined in a look up table. Along with this, a 

look up table for the friction values and normalising values was required.  

 

To enable the simulation of clutch frictional performance, the surface morphology 

at any given instant has to be defined as a function of power density and 

interfacial temperature. The coefficient of friction is a function of the surface 
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state. At each discrete time step the model calculates a new surface state based 

upon the net change from reformation and deformation of the friction layer. 

 

 Reformation is driven by interfacial temperature, and causes a shift 

towards Type III 

 Deformation is driven by power density, and causes a shift towards Type II 

 

Using Chen’s type I, II and III surface states [50], the clutch plate was modelled 

using the following assumptions: 

 

•Reformation is driven by interfacial temperature, and causes a shift towards 

Type III 

•Deformation is driven by power density, and causes a shift towards Type II 

 

•The surface state coefficient is used to characterise the state of the friction layer 

at any given time step 

•Surface state coefficient = 0:  purely type II (high-friction characteristic, with 

thick layer of powdery wear debris) 

•Surface state coefficient = 1:  purely type III (low-friction characteristic, with 

smooth friction film) 

   Between 0 and 1 indicates a mixture of type II and type III 

 

•Surface deformation = 0; Type III and equates to zero deformation of surface 

•Surface deformation = 1; Type III but at end of time step all friction layer reverts 

to purely type II 

   Deformation: Type III  ->  Type II 

 

•Surface reformation = 0; Type II and equates to zero reformation of surface 

•Surface reformation = 1; Type II but at end of time step all friction layer reverts 

to purely type III     

   Reformation: Type II  ->  Type III 
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The following symbols have been assigned to the following parameters. The 

extreme limits of the parameters are also presented. 

 

α = Coefficient of surface deformation  0 ≤ α ≤ 1 

β = Coefficient of surface reformation  0 ≤ β ≤ 1 

ζ = Coefficient of surface state   0 ≤ ζ ≤ 1 

P/Pmax  = Normalised power    0 ≤ P/Pmax ≤ 1 

T/Tmax  = Normalised temperature   0 ≤ T/Tmax ≤ 1 

 

 

The model oscillates between type I and type II surface states; with the lower 

surface state coefficient (more type II) indicating a higher coefficient of friction (as 

the type II morphology has a higher friction coefficient than type III) and the 

boundaries of the look up table were set using these known fixed values.  

 

Using data obtained form dynamometer testing, the values of coefficient of 

friction were populated within the look up table, and then interpolated to create 

a 3D look-up table.  

 

The 3D lookup table of coefficient of deformation versus surface state versus 

normalised power is illustrated by plot shown in Figure 11.4b and is used to 

calculate the surface state coefficient based on the interfacial temperature and 

power density  where: 

 

P/A=Txω/A.       (Equation 11.4a) 
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Figure 11.4b – Generation of 3D lookup table with defined points highlighted (known = red, 

generated = green) 

 

The deformation lookup table in Figure 11.4c was generated by the routine, 

however it clearly will produce a flawed result as the relationships it describes are 

not logical.  

 

 

Figure 11.4c – Example of a poorly generated lookup table 

 

 Multiple inflexions in the power axis; despite the defined points adhering 

to the statements defined previously the interpolation does not. The 
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gradient of this section should never be negative. A zero gradient and 

thus single inflexion may be possible.  

Solution: check z values at discrete points, if gradient is negative the 

reject entire dataset. 

 

 Large area of maximum z value; despite the defined points all lying within 

the limits defined previously, the interpolation generates areas of the 

curve lying outside the limits. Whilst these can be set equal to the 

maximum/minimum value, it clearly will generate a poor result. 

Solution: find number of z values equal to max and min values, if either 

greater than a specified threshold then reject entire dataset. 

 

Routines were included in the lookup table generator that ensures that the 

defined statements and relationships mentioned above are adhered to at all 

discrete points.  

 

A graphical representation of the lookup table for changes in surface state 

coefficient versus normalised temperature versus normalised power can be seen 

below in figure 11.4d 

 

 

Figure 11.4d Change in Surface State Coefficient Due to Normalised Power and Normalised 

Temperature 
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11.5 Surface Model Code Generation  

A flow outline of the code is shown in this section and full code can be found in 

Appendix W 

 

Flow Steps Description 

 

Write a matrix to store the data in as it is calculated; 

All of the functions created are determined through 

the program ClutchModel_SurfaceModel, with input 

values of input generation (iGen), clutch evaluation 

data (sCluData), clutch power was determined from 

the rig model (CluPowerNew_W), surface 

temperature determined by the thermal model 

(TempSurfaceNew_degC), co-efficient of surface state; 

whether it is a type I, II or II (CoefSurfaceStatePre) 

and the structure co-ordinates for the current 

iteration (sCoordsCurrent).   

 

Initial constants were named and defined for 

geometric, thermal and ambient conditions. 

 

The initial calculations were performed in terms of 

the constants and known inputs. For example, 

inner diameter, outer diameter and number of 

plates was used to calculate the total working area 

of carbon within the clutch. 

 

Create first timestep t= n = 1  

Write data storage 

matrix 

Define initial 

constants 

Use constants to 

calculate other 

parameters 

t = n = 1 
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The power density (power per square metre of 

carbon surface) was defined using the 

sCoordsCurrent function. An ‘if’ function was also 

created to say that if the calculation for the power 

density co-efficient was more than 1, then make 

the power density equal to one.  

 

Surface temperature was defined using the look-up 

table.  

 

The coefficient of power density was defined (that 

is, what percentage of the maximum power density 

the clutch is experiencing in relation to the 

maximum power density at that particular time 

step); 

 

Temperatures were converted to degrees into 

Kelvin (the standard SI unit) and the coefficient of 

temperature was defined (that is, what percentage 

of the maximum temperature the clutch is 

experiencing in relation to the maximum 

temperature at that particular time step); 

 

The coefficients of deformation and reformation 

were determined by bicubic interpolation, using 

the known points  in the look up table and the 

input parameter points at which the deformation / 

reformation needed to be determined.  

Determine power 

density at initial 

conditions from look 

up table 

Co-efficient of 

power density = % 

age of max power 

density 

Co-efficient of 

temperature = % 

age of max surface 

temp  

 

Determine co-

efficients of 

deformation and 

reformation 

Determine surface 

temperature from 

look up table 
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The coefficients of the ability of the deformation 

and reformation were determined by ‘pchip’ 

interpolation, using the known values and the 

values of coefficient of deformation which the 

deformation / reformation needed to be 

determined. Pchip interpolation is a third-degree 

spline with each polynomial of the spline in 

Hermite form. The Hermite form consists of two 

control points and two control tangents for each 

polynomial. 

 

The difference in surface state was then 

determined (using the coefficients of reformation 

and deformation) and the new coefficient of 

surface state was also determined.  

 

An ‘if’ statement was then written stating the if the 

coefficient of surface state was above 1, then it 

should be made equal to 1, and if it were below 0, 

then it should be made to zero. This was done 

because the coefficient of surface state is a 

percentage value of the surface state therefore was 

a value between 0 and 1.  

 

The new clutch friction coefficient was determined 

by cubic interpolation, using the known values of 

coefficient of surface state and the values of 

coefficient of deformation at which the 

deformation / reformation needed to be 

determined  

 

Finally, an ‘if’ function was also created to say that 

if the calculation for the friction co-efficient was 

more than 1, then make it equal to one. This was 

done so as to stop any errors occurring from the 

program in the event that anomalous data was 

Determine co-

efficients of ability 

to deform and 

reform 

 

Determine surface 

state characteristics 

Determine friction 

co-efficient 

IF  > 1 then  

 = 0 

IF co_surf_stat > 1 

then co_surf_state =1 

IF co_surf_state <0 

then co_surf_state =0

  

http://en.wikipedia.org/wiki/Spline_(mathematics)
http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Hermite_form
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present. 

 

Save values to the array and carry calculate; 

(iGen), clutch evaluation data  

(sCluData), clutch power determined from the rig 

model  

(CluPowerNew_W), surface temperature determined 

by the thermal model  

(TempSurfaceNew_degC), co-efficient of surface state;  

(CoefSurfaceStatePre) whether it is a type I, II or II  

(sCoordsCurrent).   the structure co-ordinates for the 

current iteration  

 

Increment time step and begin again until t = total 

time steps determined by initial conditions. 

 

The end result of this model is at each time step, a 

new clutch surface state and a new clutch co-

efficient of friction is given.  

 

 

 

11.6 Model Validation 

Due to the difficulty of operating this section of the model in isolation, it was 

impossible to devise a method to experimentally determine the validity of the 

model to any degree of accuracy. One suggestion would have been to use the 

thermocouple and infra-red values from the experimental testing, and the input 

power from the rig, but due to the experimental errors seen within the rig testing 

it was decided that the values would not have offered enough accuracy to 

determine a level of confidence with the model.  

END 

t = n +1 

Save values to array 



258 

 

Chapter 12 

Final Model 

This chapter outlines the final model created through the rig model, thermal 

model and surface models outlined in Chapters 9, 10 and 11 respectively., as 

shown in Figure 12a 

 

 

 

 
Figure 12a - The overall model schematic 

 

 

12.1  Final Model Overview 

The final model was split into 9 parts; 

 Initial Conditions Program 

 Random Number Generator 

 Surface State Model 

 Look up Table Generator 

 Confidence Update Program 

 Current Data Storage Array 

 Input Model 

 Thermal Model 

 Surface Model 
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12.2 Final Model Code for Thermal Characteristic Generation 

The final code is illustrated and described here, but due it its length, can be found 

in full in Appendix X.   

 

Flow Steps Description 

 

First general clearing and re-population of the 

workspace took place, before loading the required 

data.  

 

 

An ‘if’ statement was then introduced so that if the 

random number generator was being used (i.e. if 

the program was being used for iterative purposes) 

then the program was required to load the lookup 

table and define how many runs were to be 

performed from by the length of the sCoordsLoad 

structure.  

 

Next parameters were set for the time parameters 

and lookup table datasets to test, then the numbers 

were set to i=1 (the first set of data).  

 

 

The lookup table was then specified and an if 

statement was written to say that if the program 

was going through the first iteration then all 

variable confidence values were set to be equal to 

aConfidenceInitial and stored in the array 

sConfidence.  

Clear data space 

Is the model using a 

random generator 

or real data? 

Set time parameters 

and make i=1 

If i=1 then 

aConfidance = 

aConfidanceInitial   
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The function CoordGen was used to return the 

lookup table coordinate matrices for each of the 

variables for this iteration of the look up tables. The 

generated co-ordinates were then stored into the 

structure sCoords.  

 

 

A further structure was then generated, known as 

sCoordsCurrent where the current coordinates of 

the matrices for each variable could be stored. This 

was done to make it easier to pass the coordinates 

of the matrices forward to future functions.   

 

A function was created declaring that if the lookup 

table optimisation is not being used (for instance, in 

car data once the model has been proven), then 

load the lookup table coordinates from the 

structure sCoordsCurrent. 

 

With i still set to 1 (the first set of event data), for 

iEvent = 1:nEvents (for each event from the first to 

the last), the clutch pressure needed to be 

determined. As the clutch pressure was not 

consistent throughout the bedding process (and it 

was this that was being used to validate the data), 

the data had to be filtered to account for this, so 

that for each event the correct pressure was used. A 

failsafe was written in, for the event that no 

actuation data was provided, and this was set to be 

150bar. A small value would have tended the clutch 

event to last longer, so by using a high value 

subsequent events are sped up.  Time steps were 

written and set to 1 (first data set) and the clutch 

speed was set to equal the initial conditions, and 

while above a lower limit of 300rpm, the time steps 

would continue to carry on at a rate of dt_s (as 

Use CoordGen to 

look up variable 

location then store 

coordinates 

Generate structure 

to store current 

coordinates 

Determine the 

clutch pressure 

Is optimisation being 

used? If no, 

coordinates from 

sCoordsCurrent 
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defined in the initial conditions). 

 

For the rig model, at each time step the model was 

written to calculate the new rig clamp pressure, the 

new clutch differential speed, the new clutch torque 

and the power dissipated over the time step.  

 

 

The thermal model was written so that at each time 

step, the new clutch surface temperature, then new 

clutch bulk temperature and the new ambient 

temperature were calculated.  

 

 

And for the surface model, at each time step, the 

new clutch surface state and coefficient of friction 

were to be calculated. At the first time step, all 

known values were set to their initial values as 

defined in the initial conditions model.   

 

 

The measurements were obtained for the purposes 

of correlation to check the accuracy of the 

simulation output against the measured output. The 

total event duration was determined, and the mu 

was checked at set intervals of 10, 30, 50, 70 and 

90% of the way through the simulation. The peak 

and mean friction co-efficients were determined for 

the event, and also checked with the dyno data. 

 

nAnalyseBestPercentage was then set to a nominal 

value of 5, meaning that the best 5% of the results 

were analysed (meaning that any results generated 

during the early stages of the iterative process were 

not included in the final analysis).  

Run the rig model 

Run the thermal 

model 

Correlate to dyno 

data 

nAnalyseBestPercen

tage = 5 

Run the surface 

model 



262 

 

 

Plot settings were then defined for the model. 

 

The timestep was moved on and the iterative 

process re-cycled 

 

 

 

 

 

 

 

Define plotting 

settings 

END 

t = n +1 



263 

 

Chapter 13 

Model Results and Discussion 

After the mathematical model had been created, it was validated against a 

specific set of validation data from the clutch bedding process performed on the 

clutch dynamometer. When being analysed, the model was split down into two 

parts; the input model of the rig, and the final model as a whole. This chapter 

presents the final results of this validation, and provides a discussion of these 

results, and the robustness of the model that has been generated.  

 

13.1 Input Model Results  

For the purposes of analysing the validity of the data the model was split down 

into its three main components; the input model, the look up tables and the final 

model as a whole. The input model was analysed separately due to the fact that it 

was an ‘add on’ model that could be removed, and replaced with an adapted 

version of the program that would instead, simulate the running of the clutch on 

the car.  

 

Using a sample of historic bedding data from the HGT clutch dynamometer [172], 

the simulation output was compared against the measured speed profile for the 

actuation pressure profiles for the 40, 50, 70 and 70 bar bedding procedures. 

Figure 13.1a illustrates the results from this analysis. 
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Figure 13.1a – Actual and Simulation Clutch Speed Difference for various Bedding Pressures 

 

13.1.1   Input Model Results Discussion 

As can be clearly seen, for all pressure profiles the simulation output matches the 

measured profiles. This is a good indication to the validity of the model; with the 

input parameters of the model being set to the same as those on the rig, the 

model accurately replicates the data trace that is observed from the rig when the 

clutch is actuated from a speed of approximately 850 rad/s (8000rpm) at the 

different clamping pressures used in the bedding process.   

 

Following this, the model was used to generate a plot for a clamping event from 

8000rpm to stopping. This can be observed in figure 13.1.1a. 
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Figure 13.1.1a – Simulated Rig Speed / Torque curves 

 

When compared to the torque and speed profile for the actual clutch 

dynamometer (figure 13.1c), it can be observed that the profile of the simulation 

matches that of the clutch dynamometer almost perfectly, with the characteristic 

torque spikes at the start and end of the clamping period (torque not shown in 

figure 13.1.1b).  
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Figure 13.1.1b – Actual Rig Speed / Clamp Load Profile 
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13.2 Final Model Results and Assessment 

The main validation was of the complete model. To do this a comparison was ran 

between the model, and a version of itself where the look up table was removed 

from the model and all profiles were generated from the measured clutch 

coefficient of friction input. This is how the model would work if it were used as a 

car based model.  Figure 13.2a illustrates the results of the actual and simulated 

clutch speed difference for the four different pressures used in the bedding 

process.  

 

 

Figure 13.2a – Actual and Simulation Clutch Speed Differences during a clamping event from 

8000rpm at varying clamp loads.  

 

 

These simulated results were obtained through a rolling iterative process, which 

was set to stop iterating once 1000 results had been obtained which fell within a 

set range for the error in the average, start and end coefficient of friction, and 

these 1000 data points were obtained after approximately 44,000 look up table 

iterations. Figure 13.2b shows a scatter plot of the errors in coefficient of friction 

for each of the iterations. The s1 axis is for the coefficient of friction average 

value, s2 for the start coefficient of friction and s3 for the end coefficient of 

friction values seen over the simulated slip., The 1000 results which fell into the 

set values required between these three coefficient of friction results  are 

highlighted in green.   
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Figure 13.2b – Error in average coefficient of friction (s1), Start coefficient of friction (s2) and End 

coefficient of friction (s3) for a Single Event Using 44,000 different look up table iterations.  

 

When compared with a rig profile from the clutch dynamometer (figure 13.2d), it 

can be clearly observed that the predicted co-efficient of friction plot (figure 

13.2c) from the model closely matches this, including the initial ‘snatching’ of the 

clutch, where the peak coefficient of friction can be seen. 
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Figure 13.2c – A  Simulation Result for Clutch Friction from the full model 
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Figure 13.2d – Rig Data for Clutch Friction 

 

13.3 Discussion, Discrepancies and Errors  

There were a number of assumptions made in the model, namely the changes in 

the coefficient of clutch surface friction due to the surface morphology, which was 

obtained by guessing the interaction of the power dissipation with the 

deformation and reformation. This could be improved by further experimental 

analysis  

 

Further categorisation could be by performing extensive SEM analysis of race 

clutches that have undergone differering conditions. By doing this it may be 

possible to create a classification scheme, based on Chen’s [50] type I, type II 

classification. This would enable definition of the approximate initial coefficient of 

surface state, prior to bedding, mid bedding, prior to instillation on the car and at 

set points after this. This would enable a comparison of current surface state, 

event history and the measured coefficient of friction.  A further aid to this 

characterisation would be to perform an XRD analysis on the wear debris created 

to determine the degree of graphitisation that has taken place, as (according to 

the works of Chen) this can also be used as a determination of surface state and 

future wear and friction properties.  
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Presently, the interfacial flash (that is, the initial flash of light that can be observed 

at the instant that the two surfaces come into contact) temperature of the clutch 

at the beginning of the slip is not modelled. This fundamental aspect would be 

important in future models as this sudden rise in heat causes thermal stresses, 

instant changes in surface morphologies and temperature gradients throughout 

the clutch stack. This would permit for a more accurate thermal model, and could 

be achieved through further experimental testing on the clutch dynamometer 

with the infra red sensor.  

 

The model is currently limited in its capacity as it is only set to perform analysis for 

a single clutch event, due to time constraints and computational power.  



270 

 

Chapter 14 

Further Work 

 

This work has opened up the possibility of many other research opportunities. The 

first and most significant of which is; the effects of an electric current on the 

carbon-carbon material. When undertaking research for the literature review, this 

topic continually came up in searches. When looking further into this, it was 

highlighted that by passing a current through the plates, significant changes could 

be observed in both the friction and wear properties. This could open up research 

into the field of electromagnetically actuated carbon-carbon clutches.  

 

Further research opportunities arising as a result of the work carried out in this 

project, include further investigations into the carbon-carbon manufacturing 

process, the dimensions of the clutch and oxidation temperatures, as well as 

follow on work from the mathematical model.  

 

 

14.1 Follow-On Work as a Result of the Literature Review 

Whilst undertaking the literature survey, many of the papers reviewed highlighted 

that if a small electrical current (in the region of 10A/cm2) is passed through the 

carbon-carbon material, its friction characteristics change dramatically. Carbon is 

an electrical conductor and when passing a charge through it the friction co-

efficient increases.  

 

Work has been undertaken in the main following areas:  

 Thеrmal propеrtiеѕ on friction pеrformancе of carbon compoѕitеѕ 

 Еffеctѕ of currеnt on thе friction coеfficiеnt of compoѕitеѕ 

 Еffеctѕ of currеnt on thе wеar volumе of compoѕitеѕ 

 Contact voltagе drop of compoѕitеѕ 

 Еffеct of carbon nanotubеѕ on thе friction and wеar propеrtiеѕ of 

compoѕitеѕ 
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General trends show that thе wеar volumе loѕѕ of compoѕitеѕ with currеnt waѕ 

grеatеr than that without currеnt, cauѕеd the incrеaѕе in thе roughnеѕѕ and 

intеnѕification. Bеcauѕе of oxidation rеaction and wеakеning of thе bonds a 

continuouѕ lubrication film was formed, and so giving samples with the current 

passed through them, a higher friction coefficient.  

 

This would be an area of interest when looking forward to development of clutch 

systems and could possibly be integrated as part of the KERS package that has 

been running on F1 cars in 2009 – 2010 and again since 2012. 

 

 

14.2 Recommendations for Further Experimental Work 

14.2.1   Plate Profile 

In conducting dynamometer testing, and observing the order that the plates heat 

up, it may be possible to see if a pattern occurs through a testing a number of 

slips with the same parameters, and then conducting the same number of slips 

with slightly altered parameters. This may give an insight into the apparent 

‘randomness’ of the order in which the plates heat up.  

 

It may also be of note to undertake further studies into the concept that perhaps 

the first driven plate to bite actually takes most of the load. The theory behind 

this works on the principle that the biting driven plate transmits the load through 

into the hub, on which all of the driven plates are located. This means that as the 

biting driven plate transmits the load into the hub, the hub then transmits the 

load into the non biting plates and essentially ‘drags’ them round. 

 

14.2.2   Saturation and Oxidation Temperature Investigation 

By conducting further tests into the saturation and oxidation properties of the 

material, it would be possible to determine whether this was a contributing factor 

to the decline in friction at temperatures where thermal decomposition was 

present. To do this, a clutch plate could be heated (and also slipped) up to 400˚C 

(below the thermal decomposition temperature), 500˚C and 600˚C and observe 
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the curves for each. The use of a scanning electron microscope may also render 

offer some illustrative picture of the change in the surface properties  

 

Although the materials testing was useful in understanding the effects of thermal 

decomposition, and was accounted for within the mathematical model, further 

investigations into the effects on the linear thermal expansion at very fast ramp 

rates could be undertaken. At present a ramp rate of 1˚C per minute, as 

measured, is very low. A very fast rate of temperature increase, that is at a rate of 

approximately 18,000˚C per minute (which comes from the suspected 

approximate plate face temperature of 1500˚C seen to occur within 0.5 seconds 

of slip) would provide results more applicable to this work but test apparatus that 

would be able to do this is not available at the present time.  

 

14.3 Recommendations for Further Modelling Work 

14.3.1   Improvements that could be made to the Existing Model 

During the material properties experimental work, an additional test was 

undertaken for the linear co-efficient of thermal expansion. This was originally 

hoped to be used within the mathematical model, but its addition proved 

complicated when in conjunction with the clamping load acting upon the carbon 

stack. The coefficient of linear thermal expansion is ratio of change in length per 

degree K to the length at 273K (0ºC). 

 

α = 1δL  Equation 14.3.1a 

  LδT   

 

Where; 

α Thermal expansion 

δL Change in length 

δT Change in temperature 

L Initial length 

 

ISO 11359-1 (1999). Plastics – Thermomechanical Analysis (TMA). Part 1 – General 

Principles [168]. This part specifies the general conditions for the 
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thermomechanical analysis of thermoplastics and thermosetting materials, filled 

or unfilled, in the form of sheet or moulded parts. 

 

ISO 11359-2 (1999). Plastics – Thermomechanical Analysis (TMA), Part 2 – 

Determination of Coefficient of Linear Thermal Expansion and Glass Transition 

Temperature [169].  This part specifies a test method using thermodilatometry, 

for the determination of the coefficient of linear thermal expansion of plastics in a 

solid state by thermomechanical analysis (TMA). This part of the standard also 

specifies the determination of the glass transition temperature using TMA. 

 

A Perkin Elmer DMA (Dynamic Mechanical Analysis) machine was used for the 

testing. The displacement of the sample is measured as it expands or contracts as 

a function of temperature. By plotting the displacement against the temperature, 

the expansion coefficient can be calculated. The machine is used for measuring 

several thermal dynamic properties, and for thermal expansion, the sample is 

placed on a quartz plate with a quartz probe sat on top of it. The fact that the 

plate and the probe are both quartz is very important, as quartz is considered to 

not expand or contract and this means that only the expansion or contraction of 

the samples alone will be seen and not a combination of the sample and the 

surrounding apparatus. As the sample expands and contracts, the probe sensor 

determines how much it has moved, and from this, gives the thermal expansion.  

 

 

Figure 14.3.1b. DMA Sample and Sample Holder 

 

Quartz Probe 

Quartz Specimen 

Holder 

Sample 
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Figure 14.3.1c. Perkin Elmer DMA Machine 

 

Tests were carried out from 0˚C to 500˚C at a rate of 1˚C per minute with a hold 

for ten minutes at 0˚C and again at 500˚C. This was to allow for a heat soak and to 

ensure that the specimen was uniformly heated before the heat ramps took place. 

A static force of 10mN was applied by the probe to keep it in contact with the 

sample without putting on too much force and pushing it down, and hence, 

restricting its expansion.  
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Figure 14.3.1d. Perkin Elmer DMA Test Program 

 

 

 

Figure 14.3.1e. Thermal Expansion Graph 

 

 

14.3.2   Further Investigation of Surface Behaviour 

Further categorisation could be done by using race clutches, and performing 

extensive SEM analysis of clutches that have undergone differing conditions. By 

doing this, it may be possible for the team to create their own classification 

scheme, based on Chen’s type I, type II classification. This would enable definition 

of the approximate initial coefficient of surface state, prior to bedding, midway 

bedding, and prior to instillation on the car and at set points after this. This would 

enable a comparison of current surface state, event history and the measured 

coefficient of friction.  A further aid to this characterisation would be to perform 

an XRD analysis on the wear debris created to determine the degree of 

graphitisation that has taken place, as (according to the works of Chen) this can 

also be used as a determination of surface state and future wear and friction 

properties.  
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Chapter 15 

Conclusions 

 

A novel method for  measuring the interfacial temperatures within a race clutch 

was developed. By using the reversed layout on the clutch dynamometer it was 

possible to use the infrared detector to view the thermal profile of the surfaces. 

This method of clutch temperature measurement has not been recorded in 

literature prior to the work of the SAE paper published by Lawrence et al in 2006 

[173] , This method of temperature measurement could be developed further and 

used on an engine with a gearbox dynamometer, and the car. This could lead to 

the possibility of even more accurate predictions of the friction coefficient in the 

future. 

 

Because the model was created and built upon in a methodical manner, it went 

through several stages before becoming the final model that is presented here in 

this document. Due to this, extra items were added, tolerances tightened and the 

introduction of new equations, laws and theories were added at every stage of 

development. When the model became the final version that is presented here, 

the use of confidence and error values meant that the model would continue with 

the iterative process until it reached a set level of accuracy, ensuring that the 

model could be as exact as possible.  

Three main original contributions have been established as a result of this work 

withan addition to the general understanding of carbon-carbon behaviour within 

the scientific and engineering community. The work has investigated and put 

across theories regarding the destruction and formation of transfer films that act 

between the two mating carbon-carbon clutch faces, as well as investigating and 

experimentally determining and mathematically modelling the effects of thermal 

decomposition within the clutch.  

 

The first main contribution is the thermal testing of the carbon-carbon material. 

Due to the sensitive and competitive nature of the race clutch designs, properties 

for the materials used are not available in the public domain. A suite of materials 

testing was undertaken and has experimentally determined values for a variety of 
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thermal properties of carbon-carbon clutch material using industry standard and 

independent test laboratories. The properties obtained are for the thermal 

decomposition, specific heat, thermal diffusivity, emissivity and thermal 

expansion for the S6 carbon-carbon clutch material used in race clutches. 

 

In addition to the general understanding and materials testing, a more motorsport 

specific contribution has been ascertained; that is a method of accurately 

predicting the clutch’s frictional mu value at the instant before a race start, and to 

use that prediction within a launch control program to ensure a successful race 

start. This work has conclusively and unquestionably provided a significant piece 

of the jigsaw needed to obtain the best start strategy in F1. 

 

This project has not only developed a proven method of optimising a race start, 

but in achieving this, a consistent and reliable method for direct clutch plate 

surface temperature measurements has also been developed. This could be 

further adapted for installation on a race car for testing purposes or even for 

more accurate temperature readings, which would allow for even more accurate 

friction calculations and even better race starts. Presently, there is no other 

method of clutch plate surface temperature measurement that has the capability 

to be developed in this way.  

 

In addition to these original contributions, this work has also delved a little deeper 

into existing theories and contributions made by others; the presence of banding 

within a race clutch has been suggested by the results of the experimental work 

carried out by the collaborating establishment, AP Racing, but as explained in 

Chapter 3 (Literature Review) banding has already been investigated extensively 

in carbon brakes, and touched upon in carbon clutches. The experimental results 

have taken this work on a step further by using an infra red sensor in conjunction 

with embedded thermocouples to obtain a thermal profile from the surface, 

through the thickness of the clutch. However, further work needs to be 

undertaken on this to make conclusions regarding the size, location, any radial 

patterns of the bands and how the bands interact with each other in the multi-

plate clutch arrangement.  
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LII 

Appendix A - 2006 Race Starts Data Plots 

Bahrain International Circuit 

Date: 12th March 2006  Circuit Length:  5.411km 

Race Distance: 308.238km (57 laps) Number of Race Starts: 1 

Weather: Dry  Air Temp: 22°C  Track 

Temp: 34°C 
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Clutch Actuation Pressure [MPa]

Clutch mu x 10

Car Speed [m/s]

Circuit : BAH  (12-03-2006)

Chassis : BAR08-04  BUT

Qualified : 3  (R)

RS 0-100 kph [s] : 3.37

Positions +/- : -3

Time on grid [s] : 42.13

RS Fuel [kg] : 110   47   97

Tyre Temps [C]: Initial 

RS  

Delta  

= 68.02

= 76.52

= 8.5

Start Info - FS: 

RS: 

Mode = 8

Mode = 3

Mu = 0.2

Mu = 0.16

Energy Dissipation [MJ]: FS

FL

RS

= 0.106

= 0.045

= 0.058

Clutch RS Analysis:    BAH  12-03-2006  BAR08-04  BUT

Figure 4.1a-i. Race Start, Car One, Bahrain Circuit 
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Clutch mu x 10

Car Speed [m/s]

Circuit : BAH  (12-03-2006)
Chassis : BAR08-03  BAR

Qualified : 6  (D)
RS 0-100 kph [s] : 2.78
Positions +/- : +1
Time on grid [s] : 34.65
RS Fuel [kg] : 47.6

Tyre Temps [C]: Initial 
RS  
Delta 

= 69.43
= 72.84
= 3.41

Start Info - FS: 
RS: 

Mode = 8
Mode = 4

Mu = 0.43
Mu = 0.41

Energy Dissipation [MJ]: FS
FL
RS

= 0.092
= 0.024
= 0.086

Clutch RS Analysis:    BAH  12-03-2006  BAR08-03  BAR

Figure 4.1a-ii. Race Start, Car Two, Bahrain Circuit 



LIII 

Sepang International Circuit  

Date: 19th March 2006  Circuit Length:  5.54km 

Race Distance: 310.408km (56 laps) Number of Race Starts: 1 

Weather: Dry  Air Temp: 32°C  

Track Temp: 39°C 
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Car Speed [m/s]

Circuit : SEP  (19-03-2006)
Chassis : BAR08-04  BUT

Qualified : 2  (D)
RS 0-100 kph [s] : 2.79
Positions +/- : 0
Time on grid [s] : 48.26
RS Fuel [kg] : 47.8

Tyre Temps [C]: Initial 
RS  
Delta 

= 77.35
= 82.15
= 4.8

Start Info - FS: 
RS: 

Mode = 4
Mode = 2

Mu = 0.47
Mu = 0.46

Energy Dissipation [MJ]: FS
FL
RS

= 0.101
= 0.017
= 0.068

Clutch RS Analysis:    SEP  19-03-2006  BAR08-04  BUT

Figure 4.1b-i. Race Start, Car One, Sepang Circuit 
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Car Speed [m/s]

Circuit : SEP  (19-03-2006)
Chassis : BAR08-01  BAR

Qualified : 12  (D)
RS 0-100 kph [s] : 2.77
Positions +/- : +2
Time on grid [s] : 10.86
RS Fuel [kg] : 87.4

Tyre Temps [C]: Initial 
RS  
Delta 

= 74.18
= 83.62
= 9.44

Start Info - FS: 
RS: 

Mode = 4
Mode = 2

Mu = 0.4
Mu = 0.43

Energy Dissipation [MJ]: FS
FL
RS

= 0.113
= 0.01
= 0.077

Clutch RS Analysis:    SEP  19-03-2006  BAR08-01  BAR

Figure 4.1b-ii. Race Start, Car Two, Sepang Circuit 



LIV 

Melbourne Grand Prix Circuit  

Date: 2nd April 2006 Circuit Length:  5.30km 

Race Distance: 302.271km (57 laps) Number of Race Starts: 2 (red flag 

on first lap) 

Weather: Dry  Air Temp:  17°C Track 

Temp: 24°C 
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Car Speed [m/s]

Circuit : MEL  (02-04-2006)
Chassis : BAR08-04  BUT

Qualified : 1  (R)
RS 0-100 kph [s] : 2.77
Positions +/- : 0
Time on grid [s] : 44.66
RS Fuel [kg] : 49.5

Tyre Temps [C]: Initial 
RS  
Delta 

= 77.77
= 79.09
= 1.32

Start Info - FS: 
RS: 

Mode = 5
Mode = 4

Mu = 0.46
Mu = 0.43

Energy Dissipation [MJ]: FS
FL
RS

= 0.098
= 0.022
= 0.092

Clutch RS Analysis:    MEL  02-04-2006  BAR08-04  BUT

Figure 4.1c-i. Race Start, Car One, Melbourne Circuit 
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Car Speed [m/s]

Circuit : MEL  (02-04-2006)
Chassis : BAR08-01  BAR

Qualified : 17  (R)
RS 0-100 kph [s] : 3.37
Positions +/- : -1
Time on grid [s] : 22.68
RS Fuel [kg] : 89.6

Tyre Temps [C]: Initial 
RS  
Delta 

= 65.43
= 78.46
= 13.03

Start Info - FS: 
RS: 

Mode = 4
Mode = 3

Mu = 0.36
Mu = 0.32

Energy Dissipation [MJ]: FS
FL
RS

= 0.101
= 0.017
= 0.107

Clutch RS Analysis:    MEL  02-04-2006  BAR08-01  BAR

Figure 4.1c-ii. Race Start, Car Two, Melbourne Circuit 



LV 

Autodromo Enzo e Dino Ferrari, Imola Circuit 

Date: 23rd April 2006  Circuit Length:  4.933km 

Race Distance: 305.609km (62 laps) Number of Race Starts: 1 

Weather:  Dry  Air Temp: 26°C  Track 

Temp: 37°C 

Figure 4.1d-i. Race Start, Car One, Imola Circuit 
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Circuit : IMO  (23-04-2006)
Chassis : BAR08-01  BAR

Qualified : 3  (R)
RS 0-100 kph [s] : 2.92
Positions +/- : -2
Time on grid [s] : 40.19
RS Fuel [kg] : 40.5

Tyre Temps [C]: Initial 
RS  
Delta 

= 69.38
= 69.87
= 0.49

Start Info - FS: 
RS: 

Mode = 5
Mode = 4

Mu = 0.48
Mu = 0.47

Energy Dissipation [MJ]: FS
FL
RS

= 0.108
= 0.035
= 0.108

Clutch RS Analysis:    IMO  23-04-2006  BAR08-01  BAR

Figure 4.1d-ii. Race Start, Car Two, Imola Circuit 



LVI 

Nurburgring Circuit  

Date: 7th May 2006 Circuit Length:  5.148km 

Race Distance: 308.88km (60 laps) Number of Race Starts: 1 

Weather: Dry  Air Temp: 20°C  Track 

Temp: 30°C 
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Circuit : NUR  (07-05-2006)
Chassis : BAR08-04  BUT

Qualified : 6  (D)
RS 0-100 kph [s] : 2.58
Positions +/- : +1
Time on grid [s] : 35.01
RS Fuel [kg] : 7.6

Tyre Temps [C]: Initial 
RS  
Delta 

= 68.06
= 70.12
= 2.06

Start Info - FS: 
RS: 

Mode = 5
Mode = 5

Mu = 0.55
Mu = 0.61

Energy Dissipation [MJ]: FS
FL
RS

= 0.073
= 0.043
= 0.108

Clutch RS Analysis:    NUR  07-05-2006  BAR08-04  BUT

Figure 4.1e-i. Race Start, Car One, Nurburgring Circuit 
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Car Speed [m/s]

Circuit : NUR  (07-05-2006)
Chassis : BAR08-01  BAR

Qualified : 4  (D)
RS 0-100 kph [s] : 2.81
Positions +/- : -2
Time on grid [s] : 37.12
RS Fuel [kg] : 49.6

Tyre Temps [C]: Initial 
RS  
Delta 

= 64.31
= 62.59
= -1.72

Start Info - FS: 
RS: 

Mode = 5
Mode = 6

Mu = 0.48
Mu = 0.48

Energy Dissipation [MJ]: FS
FL
RS

= 0.071
= 0.022
= 0.108

Clutch RS Analysis:    NUR  07-05-2006  BAR08-01  BAR

Figure 4.1e-ii. Race Start, Car Two, Nurburgring Circuit 



LVII 

Circuit de Catalunya  

Date: 14th May 2006  Circuit Length:  4.627km 

Race Distance: 305.382km (66 laps) Number of Race Starts: 1 

Weather: Dry  Air Temp: 26°C  Track 

Temp: 37°C 
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Circuit : BCN  (14-05-2006)
Chassis : BAR08-04  BUT

Qualified : 8  (D)
RS 0-100 kph [s] : 2.85
Positions +/- : -1
Time on grid [s] : 31.73
RS Fuel [kg] : 57.4

Tyre Temps [C]: Initial 
RS  
Delta 

= 73
= 77.22
= 4.22

Start Info - FS: 
RS: 

Mode = 3
Mode = 3

Mu = 0.48
Mu = 0.52

Energy Dissipation [MJ]: FS
FL
RS

= 0.081
= 0.013
= 0.111

Clutch RS Analysis:    BCN  14-05-2006  BAR08-04  BUT

Figure 4.1f-i. Race Start, Car One, Catalunya Circuit 
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Circuit : BCN  (14-05-2006)
Chassis : BAR08-01  BAR

Qualified : 5  (R)
RS 0-100 kph [s] : 2.82
Positions +/- : -1
Time on grid [s] : 34.63
RS Fuel [kg] : 54.1

Tyre Temps [C]: Initial 
RS  
Delta 

= 83.27
= 75.7
= -7.57

Start Info - FS: 
RS: 

Mode = 3
Mode = 4

Mu = 0.5
Mu = 0.49

Energy Dissipation [MJ]: FS
FL
RS

= 0.111
= 0.017
= 0.121

Clutch RS Analysis:    BCN  14-05-2006  BAR08-01  BAR

Figure 4.1f-ii. Race Start, Car Two, Catalunya Circuit 



LVIII 

Circuit de Monaco 

Date: 28th May 2006  Circuit Length:  4.627km 

Race Distance: 260.52km (70 laps) Number of Race Starts: 1 

Weather: Dry  Air Temp: 24°C  Track 

Temp: 41°C 
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Circuit : MCO  (28-05-2006)
Chassis : BAR08-04  BUT

Qualified : 13  (D)
RS 0-100 kph [s] : 2.81
Positions +/- : +1
Time on grid [s] : 22.46
RS Fuel [kg] : 95.5

Tyre Temps [C]: Initial 
RS  
Delta 

= 72.61
= 68.6
= -4.01

Start Info - FS: 
RS: 

Mode = 3
Mode = 5

Mu = 0.37
Mu = 0.36

Energy Dissipation [MJ]: FS
FL
RS

= 0.118
= 0.034
= 0.118

Clutch RS Analysis:    MCO  28-05-2006  BAR08-04  BUT

Figure 4.1g-i. Race Start, Car One, Monaco Circuit 
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Circuit : MCO  (28-05-2006)
Chassis : BAR08-01  BAR

Qualified : 5  (D)
RS 0-100 kph [s] : 2.65
Positions +/- : 0
Time on grid [s] : 39.1
RS Fuel [kg] : 86.5

Tyre Temps [C]: Initial 
RS  
Delta 

= 78.75
= 69.56
= -9.19

Start Info - FS: 
RS: 

Mode = 3
Mode = 5

Mu = 0.44
Mu = 0.42

Energy Dissipation [MJ]: FS
FL
RS

= 0.124
= 0.013
= 0.13

Clutch RS Analysis:    MCO  28-05-2006  BAR08-01  BAR

Figure 4.1g-ii. Race Start, Car Two, Monaco Circuit 



LIX 

Silverstone Circuit  

Date: 11th June 2006  Circuit Length:  5.141km 

Race Distance: 308.355km (60 laps) Number of Race Starts: 1 

Weather: Dry  Air Temp: 26°C  Track 

Temp: 36°C 

251.5 252 252.5 253
0

2

4

6

8

10

12

14

16

18

20

Mu averaging

Relevant PDS Channel data against Time

Time in run [s]

KEY

Throttle Posn [%/10]

Gbx IPS Speed [rpm]

Engine Speed [rpm]

Clutch Actuation Pressure [MPa]

Clutch mu x 10

Car Speed [m/s]

Circuit : SIL  (11-06-2006)
Chassis : BAR08-04  BUT

Qualified : 19  (R)
RS 0-100 kph [s] : 2.53
Positions +/- : 0
Time on grid [s] : 16.93
RS Fuel [kg] : 48.8

Tyre Temps [C]: Initial 
RS  
Delta 

= 68.16
= 78.46
= 10.3

Start Info - FS: 
RS: 

Mode = 4
Mode = 4

Mu = 0.38
Mu = 0.51

Energy Dissipation [MJ]: FS
FL
RS

= 0.059
= 0.024
= 0.11

Clutch RS Analysis:    SIL  11-06-2006  BAR08-04  BUT

Figure 4.1h-i. Race Start, Car One, Silverstone Circuit 
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Circuit : SIL  (11-06-2006)
Chassis : BAR08-01  BAR

Qualified : 6  (D)
RS 0-100 kph [s] : 2.75
Positions +/- : -1
Time on grid [s] : 36.95
RS Fuel [kg] : 45.1

Tyre Temps [C]: Initial 
RS  
Delta 

= 75.79
= 72.03
= -3.76

Start Info - FS: 
RS: 

Mode = 4
Mode = 4

Mu = 0.57
Mu = 0.54

Energy Dissipation [MJ]: FS
FL
RS

= 0.124
= 0.01
= 0.133

Clutch RS Analysis:    SIL  11-06-2006  BAR08-01  BAR

Figure 4.1h-ii. Race Start, Car Two, Silverstone Circuit 



LX 

Circuit Gilles Villeneuve, Montreal 

Date: 25th June 2006  Circuit Length:  4.361km 

Race Distance: 305.27km (70 laps) Number of Race Starts: 1 

Weather: Dry  Air Temp: 28°C  

Track Temp: 43°C 
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Circuit : MTL  (25-06-2006)
Chassis : BAR08-05  BUT

Qualified : 8  (D)
RS 0-100 kph [s] : 2.91
Positions +/- : -2
Time on grid [s] : 35.16
RS Fuel [kg] : 55.4

Tyre Temps [C]: Initial 
RS  
Delta 

= 76.39
= 81.56
= 5.17

Start Info - FS: 
RS: 

Mode = 4
Mode = 4

Mu = 0.36
Mu = 0.46

Energy Dissipation [MJ]: FS
FL
RS

= 0.065
= 0.049
= 0.139

Clutch RS Analysis:    MTL  25-06-2006  BAR08-05  BUT

Figure 4.1i-i. Race Start, Car One, Montreal Circuit 
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Circuit : MTL  (25-06-2006)
Chassis : BAR08-01  BAR

Qualified : 9  (R)
RS 0-100 kph [s] : 2.87
Positions +/- : -1
Time on grid [s] : 32.99
RS Fuel [kg] : 61.7

Tyre Temps [C]: Initial 
RS  
Delta 

= 70.91
= 72.97
= 2.06

Start Info - FS: 
RS: 

Mode = 4
Mode = 4

Mu = 0.35
Mu = 0.36

Energy Dissipation [MJ]: FS
FL
RS

= 0.066
= 0.019
= 0.11

Clutch RS Analysis:    MTL  25-06-2006  BAR08-01  BAR

Figure 4.1i-ii. Race Start, Car Two, Montreal Circuit 



LXI 

Indianapolis Motor Speedway  

Date: 2nd July 2006 Circuit Length:  4.195km 

Race Distance: 306.016km (73 laps) Number of Race Starts: 1 

Weather: Dry  Air Temp: 35°C  

Track Temp: 46°C 
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Circuit : IND  (02-07-2006)
Chassis : BAR08-05  BUT

Qualified : 7  (R)
RS 0-100 kph [s] : 3.09
Positions +/- : +1
Time on grid [s] : 40.73
RS Fuel [kg] : 59.9

Tyre Temps [C]: Initial 
RS  
Delta 

= 79.62
= 85.25
= 5.63

Start Info - FS: 
RS: 

Mode = 5
Mode = 7

Mu = 0.37
Mu = 0

Energy Dissipation [MJ]: FS
FL
RS

= 0.133
= 0.011
= 0.063

Clutch RS Analysis:    IND  02-07-2006  BAR08-05  BUT

Figure 4.1j-i. Race Start, Car One, Indianapolis Motor Speedway 
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Circuit : IND  (02-07-2006)
Chassis : BAR08-01  BAR

Qualified : 4  (D)
RS 0-100 kph [s] : 3.29
Positions +/- : -1
Time on grid [s] : 48.49
RS Fuel [kg] : 46

Tyre Temps [C]: Initial 
RS  
Delta 

= 76.04
= 78.54
= 2.5

Start Info - FS: 
RS: 

Mode = 4
Mode = 6

Mu = 0.35
Mu = 0

Energy Dissipation [MJ]: FS
FL
RS

= 0.08
= 0.012
= 0.038

Clutch RS Analysis:    IND  02-07-2006  BAR08-01  BAR

Figure 4.1j-ii. Race Start, Car Two, Indianapolis Motor Speedway 



LXII 
 

Circuit de Nevers Magny-Cours  

Date: 16th July 2006    Circuit Length:  4.411km 

Race Distance: 308.77km (70 laps)  Number of Race Starts: 1 

Weather: Dry     Air Temp: 34°C  

 Track Temp: 48°C 
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Circuit : MGC  (16-07-2006)
Chassis : BAR08-05  BUT

Qualified : 17  (R)
RS 0-100 kph [s] : 2.8
Positions +/- : +1
Time on grid [s] : 17.54
RS Fuel [kg] : 54.1

Tyre Temps [C]: Initial 
RS      
Delta   

= 76.2
= 83.2
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RS: 

Mode = 5
Mode = 5

Mu = 0.44
Mu = 0.41

Energy Dissipation [MJ]: FS
FL
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= 0.056
= 0.017
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Clutch RS Analysis:    MGC  16-07-2006  BAR08-05  BUT

 

Figure 4.1k-i. Race Start, Car One, Magny-Cours Circuit 
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Figure 4.1k-ii. Race Start, Car Two, Magny-Cours Circuit 
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Hockenheimring  

Date: 30th July 2006    Circuit Length:  4.574km 

Race Distance: 306.458km (67 laps)  Number of Race Starts: 1 

Weather: Dry     Air Temp: 32°C  

 Track Temp: 45°C 
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Figure 4.1l-i. Race Start, Car One, Hockenheimring 
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Figure 4.1l-ii. Race Start, Car Two, Hockenheimring 
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Hungaroring  

Date: 6th August  2006    Circuit Length:  4.381km 

Race Distance: 306.67km (70 laps)  Number of Race Starts: 1 

Weather: Wet     Air Temp: 18°C  

 Track Temp: 21°C 
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RS 0-100 kph [s] : 3.16
Positions +/- : -2
Time on grid [s] : 21.73
RS Fuel [kg] : 34.2

Tyre Temps [C]: Initial 
RS      
Delta   

= 62
= 34.46
= -27.54

Start Info - FS: 
RS: 

Mode = 4
Mode = 3

Mu = 0.36
Mu = 0

Energy Dissipation [MJ]: FS
FL
RS

= 0.061
= 0.028
= 0.049

Clutch RS Analysis:    BUD  06-08-2006  BAR08-05  BUT

 

Figure 4.1m-i. Race Start, Car One, Hungaroring 
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Figure 4.1m-ii. Race Start, Car Two, Hungaroring 
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Istanbul Circuit  

Date: 27th August  2006    Circuit Length:  5.34km 

Race Distance: 309.72km (58 laps)  Number of Race Starts: 1 

Weather: Dry     Air Temp: 35°C  

 Track Temp: 50°C 
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Figure 4.1n-i. Race Start, Car One, Istanbul Circuit 
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Figure 4.1n-ii. Race Start, Car Two, Istanbul Circuit 
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Autodromo Nazionale Monza  

Date: 10th September  2006   Circuit Length:  5.793km 

Race Distance: 309.029km (53 laps)  Number of Race Starts: 1 

Weather: Dry     Air Temp: 27°C  

 Track Temp: 40°C 
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Clutch RS Analysis:    MZA  10-09-2006  BAR08-05  BUT

 

Figure 4.1o-i. Race Start, Car One, Monza Circuit 
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Figure 4.1o-ii. Race Start, Car Two, Monza Circuit 
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Shanghai International Circuit  

Date: 1st October  2006    Circuit Length:  5.451km 

Race Distance: 305.066km (56 laps)  Number of Race Starts: 1 

Weather: Rain at start for 60mins, then drying  Air Temp: 21°C  

 Track Temp: 22°C 
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Clutch RS Analysis:    SHA  01-10-2006  BAR08-05  BUT

 

Figure 4.1p-i. Race Start, Car One, Shanghai Circuit 
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Figure 4.1p-ii. Race Start, Car Two, Shanghai Circuit 
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Suzuka Circuit  

Date: 8th October  2006    Circuit Length:  5.807km 

Race Distance: 307.573km (53 laps)  Number of Race Starts: 1 

Weather: Dry      Air Temp: 24°C  

 Track Temp: 31°C 
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Circuit : SUZ  (08-10-2006)
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Qualified : 7  (R)
RS 0-100 kph [s] : 2.54
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Clutch RS Analysis:    SUZ  08-10-2006  BAR08-05  BUT

 

Figure 4.1.q-i. Race Start, Car One, Suzuka Circuit 
 
 

294 294.5 295 295.5 296
0

2

4

6

8

10

12

14

16

18

20

Mu averaging

Relevant PDS Channel data against Time

Time in run [s]

KEY

Throttle Posn [%/10]

Gbx IPS Speed [rpm]

Engine Speed [rpm]

Clutch Actuation Pressure [MPa]

Clutch mu x 10

Car Speed [m/s]

Circuit : SUZ  (08-10-2006)
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Figure 4.1q-ii. Race Start, Car Two, Suzuka Circuit 
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Sao Paulo Circuit  

Date: 22nd October  2006   Circuit Length:  4.309km 

Race Distance: 305.909km (71 laps)  Number of Race Starts: 1 

Weather: Dry      Air Temp: 25°C  

 Track Temp: 42°C 
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Figure 4.1r-i. Race Start, Car One, Sao Paulo Circuit 
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Figure 4.1r-ii. Race Start, Car Two, Sao Paulo Circuit 



LXX 
 

Appendix B - Race Start Analysis MATLAB Code 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% CLUTCHSTARTANALYSIS_2006 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  
clear all; 
close all; 
  
% Define set of global constants 
% Sets order in which parameters are saved into sData file 
scriptSetGlobalConstants; 
  
strDisplayLap = '1'; % Lap number or fastest 
strDisplayCorner = '1'; 
  
% Define file path for storage of run history 
strSavePath = C:\Users\Gem\Documents\PhD 
  
% Define current version of script 
% If no match or old version, V6load will be run 
% If match found, .mat file loaded directly to save time 
CurrentDataVersionNo = 1.26; 
  
% Set data collation freq (Hz) 
iSampleRate_Hz = 100; 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% PLOT SETUP 
% Boolean operators: 0 = NO, 1 = YES 
% 
bIndivRSPlot = 1;       % PLOT TELEMTETRY FOR EACH INDIVIDUAL RS 
bCorrelationPlot = 0;   % PLOT A TABLE OF RESULTS WITH CORRELATIONS 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  
% sJenson and sRubens structure 
%  - All externally looked-up data for drivers stored in this structure 
%  - i.e. data in here hasnt come from a .pds file 
%  - Data here is stored in event order e.g. Mco = 7th entry, Ist = 14th entry 
% sJenson 
sJenson.Round = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]; 
sJenson.FuelFS_kg = 
[0,50,51.7,0,10,59.5,97,51,57.6,61.5,56,38,36.3,49.5,53.3,55.7,53.2,49.2]; 
sJenson.QualPosn = [3,2,1,2,6,8,13,19,8,7,17,4,14,6,5,4,7,14]; 
sJenson.QualSide = ['R','D','R','D','D','D','D','R','D','R','R','D','D','D','R','D','R','D']; 
sJenson.PosnChange = [-3,0,0,+1,+1,-1,+1,0,-2,1,1,-2,-2,0,-1,0,1,0]; 
% sRubens 
sRubens.Round = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]; 
sRubens.FuelFS_kg = 
[49.8,89.6,92,42.4,51.8,56,88.1,47,63.6,47.6,56.3,0,30,67.5,82.4,50.1,52.1,41.0]; 
sRubens.QualPosn = [6,20,16,3,4,5,5,6,9,4,13,6,3,13,8,3,8,5]; 
sRubens.QualSide = ['D','D','R','R','D','R','D','D','R','D','R','D','R','R','D','R','D','R']; 
sRubens.PosnChange = [+1,+3,0,-2,-2,-1,0,-1,-1,-1,1,-2,1,-1,-2,0,-1,0]; 
  
% 2006 FIA Formula One World Championship Race Calendar 
%  - Round numbers stored in structure sRound 
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%  - This will allow import of quali data etc regardless of the order the .pds files are 
imported 
%  - e.g. Import 05_07Nur BAR08-01-BAR first, we can see this is Rubens at 
Nurburgring (Round 5) so it will import the 5th column of all relevant data from 
sRubens 
sRound.BAH = 1; 
sRound.SEP = 2; 
sRound.MEL = 3; 
sRound.IMO = 4; 
sRound.NUR = 5; 
sRound.BCN = 6; 
sRound.MCO = 7; 
sRound.SIL = 8; 
sRound.MTL = 9; 
sRound.IND = 10; 
sRound.MGC = 11; 
sRound.HOK = 12; 
sRound.BUD = 13; 
sRound.IST = 14; 
sRound.MZA = 15; 
sRound.SHA = 16; 
sRound.SUZ = 17; 
sRound.INT = 18; 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% LIST OF .PDS FILES FOR ANALYSIS 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% .pds files are described by two cell string arrays 
%  - acstrDataPath = the folder location of the file 
%  - acstrFilenames = the name of the specific file within the folder 
% From these the full filepath is constructed 
  
acstrDataPath{1} = 'R:\Race\2006\03_12Bah\BAR08-04\Data\'; % Bahrain: Jenson 
Race 
acstrDataPath{2} = 'R:\Race\2006\03_12Bah\BAR08-03\Data\'; % Bahrain: Rubens 
Race 
acstrDataPath{3} = 'R:\Race\2006\03_19Sep\BAR08-04\Data\'; % Sepang: Jenson 
Race 
acstrDataPath{4} = 'R:\Race\2006\03_19Sep\BAR08-01\Data\'; % Sepang: Rubens 
Race 
acstrDataPath{5} = 'R:\Race\2006\04_02Mel\BAR08-04\Data\'; % Melbourne: 
Jenson Race 
acstrDataPath{6} = 'R:\Race\2006\04_02Mel\BAR08-01\Data\'; % Melbourne: 
Rubens Race 
acstrDataPath{7} = 'R:\Race\2006\04_23Imo\BAR08-04\Data\'; % Imola: Jenson 
Race 
acstrDataPath{8} = 'R:\Race\2006\04_23Imo\BAR08-01\Data\'; % Imola: Rubens 
Race 
acstrDataPath{9} = 'R:\Race\2006\05_07Nur\BAR08-04\Data\'; % Nurburgring: 
Jenson Race 
acstrDataPath{10} = 'R:\Race\2006\05_07Nur\BAR08-01\Data\'; % Nurburgring: 
Rubens Race 
acstrDataPath{11} = 'R:\Race\2006\05_14Bcn\BAR08-04\Data\'; % Barcelona: 
Jenson Race 
acstrDataPath{12} = 'R:\Race\2006\05_14Bcn\BAR08-01\Data\'; % Barcelona: 
Rubens Race 
acstrDataPath{13} = 'R:\Race\2006\05_28Mco\BAR08-04\Data\'; % Monaco: Jenson 
Race 
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acstrDataPath{14} = 'R:\Race\2006\05_28Mco\BAR08-01\Data\'; % Monaco: Rubens 
Race 
acstrDataPath{15} = 'R:\Race\2006\06_11Sil\BAR08-04\Data\'; % Silverstone: 
Jenson Race 
acstrDataPath{16} = 'R:\Race\2006\06_11Sil\BAR08-01\Data\'; % Silverstone: 
Rubens Race 
acstrDataPath{17} = 'R:\Race\2006\06_25Mtl\BAR08-05\Data\'; % Montreal: Jenson 
Race 
acstrDataPath{18} = 'R:\Race\2006\06_25Mtl\BAR08-01\Data\'; % Montreal: 
Rubens Race 
acstrDataPath{19} = 'R:\Race\2006\07_02Ind\BAR08-05\Data\'; % Indy: Jenson 
Race 
acstrDataPath{20} = 'R:\Race\2006\07_02Ind\BAR08-01\Data\'; % Indy: Rubens 
Race 
acstrDataPath{21} = 'R:\Race\2006\07_16Mgc\BAR08-05\Data\'; % Magny Cours: 
Jenson Race 
acstrDataPath{22} = 'R:\Race\2006\07_16Mgc\BAR08-01\Data\'; % Magny Cours: 
Rubens Race 
acstrDataPath{23} = 'R:\Race\2006\07_30Hok\BAR08-05\Data\'; % Hockenheim: 
Jenson Race 
acstrDataPath{24} = 'R:\Race\2006\07_30Hok\BAR08-01\Data\'; % Hockenheim: 
Rubens Race 
acstrDataPath{25} = 'R:\Race\2006\08_06Bud\BAR08-05\Data\'; % Budapest: 
Jenson Race 
acstrDataPath{26} = 'R:\Race\2006\08_06Bud\BAR08-01\Data\'; % Budapest: 
Rubens Race 
acstrDataPath{27} = 'R:\Race\2006\08_27Ist\BAR08-05\Data\'; % Istanbul: Jenson 
Race 
acstrDataPath{28} = 'R:\Race\2006\08_27Ist\BAR08-01\Data\'; % Istanbul: Rubens 
Race 
acstrDataPath{29} = 'R:\Race\2006\09_10Mza\BAR08-05\Data\'; % Monza: Jenson 
Race 
acstrDataPath{30} = 'R:\Race\2006\09_10Mza\BAR08-01\Data\'; % Monza: Rubens 
Race 
acstrDataPath{31} = 'R:\Race\2006\10_01Sha\BAR08-05\Data\'; % Shanghai: Jenson 
Race 
acstrDataPath{32} = 'R:\Race\2006\10_01Sha\BAR08-01\Data\'; % Shanghai: 
Rubens Race 
acstrDataPath{33} = 'R:\Race\2006\10_08Suz\BAR08-05\Data\'; % Suzuka: Jenson 
Race 
acstrDataPath{34} = 'R:\Race\2006\10_08Suz\BAR08-03\Data\'; % Suzuka: Rubens 
Race 
acstrDataPath{35} = 'R:\Race\2006\10_22Int\BAR08-05\Data\'; % Interlagos: 
Jenson Race 
acstrDataPath{36} = 'R:\Race\2006\10_22Int\BAR08-03\Data\'; % Interlagos: 
Rubens Race 
  
% End time selected to be prior to braking into the first corner after RS 
acstrFilenames{1} = 'BAR08-04-BUT.03-12.19-34.pds'; afEndTime(1) = 299.800; 
acstrFilenames{2} = 'BAR08-03-BAR.03-12.19-27.pds'; afEndTime(2) = 299.800; 
acstrFilenames{3} = 'BAR08-04-BUT.03-19.20-22.pds'; afEndTime(3) = 289.100; 
acstrFilenames{4} = 'BAR08-01-BAR.03-19.20-05.pds'; afEndTime(4) = 291.269; 
acstrFilenames{5} = 'BAR08-04-BUT.04-02.18-41.pds'; afEndTime(5) = 274.899; 
acstrFilenames{6} = 'BAR08-01-BAR.04-02.16-53.pds'; afEndTime(6) = 294.930; 
acstrFilenames{7} = 'BAR08-04-BUT.04-23.18-12.pds'; afEndTime(7) = 268.614; 
acstrFilenames{8} = 'BAR08-01-BAR.04-23.18-08.pds'; afEndTime(8) = 268.007; 
acstrFilenames{9} = 'BAR08-04-BUT.05-07.16-15.pds'; afEndTime(9) = 287.640; 
acstrFilenames{10} = 'BAR08-01-BAR.05-07.18-10.pds'; afEndTime(10) = 290.730; 
acstrFilenames{11} = 'BAR08-04-BUT.05-14.18-10.pds'; afEndTime(11) = 280.850; 
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acstrFilenames{12} = 'BAR08-01-BAR.05-14.18-04.pds'; afEndTime(12) = 292.350; 
acstrFilenames{13} = 'BAR08-04-BUT.05-28.18-23.pds'; afEndTime(13) = 251.700; 
acstrFilenames{14} = 'BAR08-01-BAR.05-28.18-26.pds'; afEndTime(14) = 251.840; 
acstrFilenames{15} = 'BAR08-04-BUT.06-11.14-33.pds'; afEndTime(15) = 258.100; 
acstrFilenames{16} = 'BAR08-01-BAR.06-11.16-12.pds'; afEndTime(16) = 277.190; 
acstrFilenames{17} = 'BAR08-05-BUT.06-25.16-47.pds'; afEndTime(17) = 280.490; 
acstrFilenames{18} = 'BAR08-01-BAR.06-25.13-23.pds'; afEndTime(18) = 282.450; 
acstrFilenames{19} = 'BAR08-05-BUT.07-02.13-14.pds'; afEndTime(19) = 280.410; 
acstrFilenames{20} = 'BAR08-01-BAR.07-02.16-44.pds'; afEndTime(20) = 278.100; 
acstrFilenames{21} = 'BAR08-05-BUT.07-16.15-27.pds'; afEndTime(21) = 251.410; 
acstrFilenames{22} = 'BAR08-01-BAR.07-16.16-02.pds'; afEndTime(22) = 253.680; 
acstrFilenames{23} = 'BAR08-05-BUT.07-30.18-23.pds'; afEndTime(23) = 261.910; 
acstrFilenames{24} = 'BAR08-01-BAR.07-30.16-37.pds'; afEndTime(24) = 261.110; 
acstrFilenames{25} = 'BAR08-05-BUT.08-08.19-11.pds'; afEndTime(25) = 250.000; 
acstrFilenames{26} = 'BAR08-01-BAR.08-08.20-13.pds'; afEndTime(26) = 260.205; 
acstrFilenames{27} = 'BAR08-05-BUT.08-27.18-41.pds'; afEndTime(27) = 277.688; 
acstrFilenames{28} = 'BAR08-01-BAR.08-27.18-42.pds'; afEndTime(28) = 281.740; 
acstrFilenames{29} = 'BAR08-05-BUT.09-10.17-57.pds'; afEndTime(29) = 301.010; 
acstrFilenames{30} = 'BAR08-01-BAR.09-10.18-01.pds'; afEndTime(30) = 304.010; 
acstrFilenames{31} = 'BAR08-05-BUT.10-01.18-23.pds'; afEndTime(31) = 281.600; 
acstrFilenames{32} = 'BAR08-01-BAR.10-01.18-08.pds'; afEndTime(32) = 278.600; 
acstrFilenames{33} = 'BAR08-05-BUT.10-08.18-02.pds'; afEndTime(33) = 288.700; 
acstrFilenames{34} = 'BAR08-03-BAR.10-08.17-58.pds'; afEndTime(34) = 301.600; 
acstrFilenames{35} = 'BAR08-05-BUT.10-22.17-53.pds'; afEndTime(35) = 260.200; 
acstrFilenames{36} = 'BAR08-03-BAR.10-22.17-49.pds'; afEndTime(36) = 275.300; 
  
for iRunCnt = 1:length(acstrFilenames) 
    strDataPath = acstrDataPath{iRunCnt}; 
    % Build full file path of .pds file to be accessed 
    acstrFullFilenames{iRunCnt} = [strDataPath char(acstrFilenames{iRunCnt})]; 
end 
  
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% LIST OF .PDS CHANNELS TO BE IMPORTED 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Channel names to be imported will be held in an array of cell strings 
acstrV6ChannelList = [... 
    {'LapDistance'} {'Lap Number'} {'Distance'} ... 
    {'Pit Limit Armed'} {'Fuel Flap Active'}... 
    {'Clu Act Pres'} {'Clu BP Wear Comp'} {'Drv RS Mode'}... 
    {'Eng Speed'} {'Gbx IPS Speed'} ... 
    {'Eng Thr Trq Max'} {'Eng Thr Trq'} {'Gbx IPS Trq'} {'Gbx IPS Trq Gain'} {'Gbx IPS 
Trq Offset'}... 
    {'Gbx Position'} {'Eng Thr Pos'} {'Eng Fuel Total'}... 
    {'Car Speed'} {'Speed FL'} {'Speed FR'} {'Speed RL'} {'Speed RR'}... 
    {'Car Accel Long'} {'Car Drag Force'} ... 
    {'Tyre Temp RL1'} {'Tyre Temp RL2'} {'Tyre Temp RL3'} {'Tyre Temp RL4'} {'Tyre 
Temp RL5'} {'Tyre Temp RL6'}... 
    {'Tyre Temp RR1'} {'Tyre Temp RR2'} {'Tyre Temp RR3'} {'Tyre Temp RR4'} {'Tyre 
Temp RR5'} {'Tyre Temp RR6'} ... 
    {'Gbx Teeth Input 1'} {'Gbx Teeth Input 2'} {'Gbx Teeth Input 3'} {'Gbx Teeth Input 
4'} {'Gbx Teeth Input 5'} {'Gbx Teeth Input 6'} {'Gbx Teeth Input 7'} {'Gbx Teeth Input 
Bevel'} {'Gbx Teeth Input Diff'} ... 
    {'Gbx Teeth Output 1'} {'Gbx Teeth Output 2'} {'Gbx Teeth Output 3'} {'Gbx Teeth 
Output 4'} {'Gbx Teeth Output 5'} {'Gbx Teeth Output 6'} {'Gbx Teeth Output 7'} {'Gbx 
Teeth Output Bevel'} {'Gbx Teeth Output Diff'} ... 
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    {'Car Tyre Radius R'} {'Tyre Pres FL'} {'Tyre Pres RL'} ... 
    ]; 
  
  
  
  
  
[sData] = GetFileData_V5(acstrFullFilenames... 
    ,'SavePath', strSavePath... 
    ,'currentdataversionno', CurrentDataVersionNo... 
    ,'v6channellist', acstrV6ChannelList... 
    ,'samplerate', iSampleRate_Hz... 
    ,'end_time', afEndTime... 
    ,'alllaps'... 
    ); 
  
sData = rmfield(sData,'aTime'); 
  
  
% Add the driver-specific information to relevant structure entry 
for iCnt = 1:length(acstrFilenames) 
    % Find the driver name 
    DriverName = upper(sData(iCnt).CarName(10:12)); 
    Race = ['sRound.',upper(sData(iCnt).Track(6:8))]; 
  
    % SWITCH - used because file import order might not be consistent 
    %  - if driver = BUT, load info from sJenson 
    %  - if driver = BAR, load info from sRubens 
    switch DriverName 
  
        case 'BUT' 
            sData(iCnt).FuelFS_kg = sJenson.FuelFS_kg(eval(Race)); 
            sData(iCnt).QualPosn = sJenson.QualPosn(eval(Race)); 
            sData(iCnt).QualSide = sJenson.QualSide(eval(Race)); 
            sData(iCnt).PosnChange = sJenson.PosnChange(eval(Race)); 
        case 'BAR' 
            sData(iCnt).FuelFS_kg = sRubens.FuelFS_kg(eval(Race)); 
            sData(iCnt).QualPosn = sRubens.QualPosn(eval(Race)); 
            sData(iCnt).QualSide = sRubens.QualSide(eval(Race)); 
            sData(iCnt).PosnChange = sRubens.PosnChange(eval(Race)); 
        otherwise 
            error('Unknown Driver and/or Event') 
            break 
    end 
end 
  
clear sJenson sRubens sRound strSavePath strDisplayLap strDisplayCorner 
strDataPath acstrFullFilenames acstrDataPath acstrV6ChannelList 
CurrentDataVersionNo DriverName Race afEndTime 
  
  
for iRunCnt = 1:length(acstrFilenames) 
  
 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% CLUTCH DATA 
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% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Define clutch data (RA106 data) 
CluSinglePistonDiameter_mm = 10.5; 
CluSinglePistonArea_mm2 = 0.25*pi*CluSinglePistonDiameter_mm^2; 
CluNumberOfPistons = 2; 
CluTotalPistonArea_mm2 = CluNumberOfPistons * CluSinglePistonArea_mm2; 
CluDiamInner_mm = 65; 
CluDiamOuter_mm = 97; 
Clu_NumWorkingSurfaces = 6; 
Clu_LeverRatio = 3.46; 
% Calculate clutch mean friction diameter 
CluMeanFrictionRad_mm = (2/3)*( (((0.5*CluDiamOuter_mm)^3)-
((0.5*CluDiamInner_mm)^3)) / (((0.5*CluDiamOuter_mm)^2)-
((0.5*CluDiamInner_mm)^2))); 
CluDebounceTime_s = 0.2; 
  
 
    % -------------------- 
    % CLUTCH CALCUATIONS 
  
    % Define threshold for a clutch event assuming DPC 
    % A clutch event is said to occur when clutch actuation pressure drops below 
nCluEventThreshold_bar 
    %  - Nb. This value is just based on past experience to capture the required clutch 
events 
    nCluEventThreshold_bar = 150; 
  
    % Find the clutch disengagement points 
    %  - DPC is disengaged when the actuation pressure drops below the threshold 
    aCluDisengaged = find((sData(iRunCnt).Clu_Act_Pres) < nCluEventThreshold_bar); 
  
    % A new clutch event can start when the threshold engagement pressure has been 
exceeded for more than 0.05s 
    aBelowCluThresholdStarts = [aCluDisengaged(1); 
aCluDisengaged(find(aCluDisengaged(2:end)-aCluDisengaged(1:end-1) > 5)+1)]; 
    % Locate the associated times 
    aCluEventStartTime = sData(iRunCnt).Time(aBelowCluThresholdStarts); 
  
    % Clutch event end points are where the next disengagement point is more than 5 
time steps ahead 
    %  - Nb. Again, this value is used simply to capture the required events 
    aBelowCluThresholdEnds = [aCluDisengaged(find(aCluDisengaged(2:end)-
aCluDisengaged(1:end-1) > 5)); aCluDisengaged(end)]; 
    % Locate the associated times 
    aCluEventEndTime = sData(iRunCnt).Time(aBelowCluThresholdEnds); 
  
    sData(iRunCnt).aBelowCluThresholdStarts = aBelowCluThresholdStarts; 
    sData(iRunCnt).aBelowCluThresholdEnds = aBelowCluThresholdEnds; 
  
    clear aCluDisengaged 
     
    % Number of times clutch manouvers occur throughout duration of data in question 
    %  - Number of times used = number of times an event starts 
    sData(iRunCnt).iNumUse = length(aBelowCluThresholdStarts); 
  
    % Clutch speed difference   = input speed - output speed 
    %                           = engine speed - gearbox input shaft speed 
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    sData(iRunCnt).aCluSpeedDiff_rpm = (sData(iRunCnt).Eng_Speed - 
sData(iRunCnt).Gbx_IPS_Speed); 
    sData(iRunCnt).aCluSpeedDiff_radpers = sData(iRunCnt).aCluSpeedDiff_rpm * 
(2*pi/60); 
  
    % Force acting on clutch i.e. Clamp Force 
    %  - P = F / A hence F = P x A 
    %  - SI units preferable hence conversion from mm and bar 
    Clu_Act_Pres_Pa = sData(iRunCnt).Clu_Act_Pres.*100000; 
    Clu_BP_Wear_Comp_Pa = sData(iRunCnt).Clu_BP_Wear_Comp.*100000; 
    Clu_Pres_Effective_Pa = (Clu_Act_Pres_Pa - Clu_BP_Wear_Comp_Pa); 
    Clu_TotalPistonArea_m2 = CluTotalPistonArea_mm2./1000000; 
    %  - Final force must account for the lever ratio 
    sData(iRunCnt).aCluForce_N = Clu_Pres_Effective_Pa .* Clu_TotalPistonArea_m2 
.*Clu_LeverRatio; 
  
    clear Clu_TotalPistonArea_m2 Clu_Pres_Effective_Pa Clu_BP_Wear_Comp_Pa 
Clu_Act_Pres_Pa 
  
    % Clutch power 
    %  - Power = Torque x Angular Velocity 
    sData(iRunCnt).aCluPower_W = abs((sData(iRunCnt).Gbx_IPS_Trq) .* 
sData(iRunCnt).aCluSpeedDiff_radpers); 
  
    % Clutch Energy Dissipated 
    %  - Energy = Power x Time 
    dt = 1/sData(iRunCnt).iScanRate_pers; 
    sData(iRunCnt).TotalKEClu_J = cumsum(abs(sData(iRunCnt).aCluPower_W).*dt); 
  
    % Find the maximum clutch power for the set of events on the run 
    sData(iRunCnt).CluPower_MW_max = 
(max(sData(iRunCnt).aCluPower_W))./1000000; 
    % Find the maximum clutch energy for the set of events on the run 
    sData(iRunCnt).TotalKEClu_MJ_max = 
(max(sData(iRunCnt).TotalKEClu_J))./1000000; 
  
    % Clutch Mu Calculation 
    %  - Coefficient of friction = Torque / (num working surfaces x Force x mean friction 
rad) 
    %  - Nb. Mu calculated for entire dataset - relevant range will be calculated later 
  
    aCluMuValid = 
find((sData(iRunCnt).aCluSpeedDiff_rpm>1500)&(sData(iRunCnt).Eng_Speed>6000)
&(sData(iRunCnt).Car_Speed>3)&(sData(iRunCnt).Car_Speed<60)); 
  
    sData(iRunCnt).aCluMu = zeros(1,length(sData(iRunCnt).Time)); 
    sData(iRunCnt).aCluMu(aCluMuValid) = abs( 
(sData(iRunCnt).Gbx_IPS_Trq(aCluMuValid))./ (Clu_NumWorkingSurfaces * 
sData(iRunCnt).aCluForce_N(aCluMuValid) * (CluMeanFrictionRad_mm*(1/1000))) ); 
  
  
  
  
    % Determine start locations 
    aStarts = find((sData(iRunCnt).Car_Speed(2:end-
199)>=2)&(sData(iRunCnt).Car_Speed(1:end-
200)<2)&(sData(iRunCnt).Car_Speed(201:end)>10)); 
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    sData(iRunCnt).FormationStart = aStarts(1); 
  
    RaceStart = aStarts(end); 
  
    RaceStart2 = find((sData(iRunCnt).Car_Accel_Long(RaceStart-
199:RaceStart)>=0.50)&(sData(iRunCnt).Car_Accel_Long(RaceStart-200:RaceStart-
1)<0.50)); 
    sData(iRunCnt).RaceStart = RaceStart2(1)+RaceStart-201; 
  
    clear aStarts RaceStart2 RaceStart 
  
    sData(iRunCnt).TimeOnGrid_s = 
length(find(sData(iRunCnt).Car_Speed(sData(iRunCnt).RaceStart-
6000:sData(iRunCnt).RaceStart+100)<2))./iSampleRate_Hz; 
  
    % Find the 0 to 100 kph time for the RS 
    sData(iRunCnt).f100kphTime_s = 
(min(find(sData(iRunCnt).Car_Speed(sData(iRunCnt).RaceStart:end) >= 100))-2)*dt; 
  
    for iCluEvent = 1:1:sData(iRunCnt).iNumUse 
  
        % Use all the clutch event data by looking at the data before the event for the last 
time the pressure was above the lower threshold 
        CluOff = aBelowCluThresholdStarts(iCluEvent); 
        sData(iRunCnt).aCluEvent(iCluEvent,EVENTSTARTTIME) = CluOff; 
        % Use all the brake event data by looking at the data after the event for the first 
time the pressure was above the lower threshold 
        CluOn = aBelowCluThresholdEnds(iCluEvent); 
        sData(iRunCnt).aCluEvent(iCluEvent,EVENTENDTIME) = CluOn; 
  
        % Duration of clutch event 
        sData(iRunCnt).aCluEvent(iCluEvent,CLUTCHDURATION) = (CluOn - CluOff)*dt; 
  
        % Save clutch start and end times 
        sData(iRunCnt).aCluEvent(iCluEvent,CLUTCHSTART) = 
aCluEventStartTime(iCluEvent); 
        sData(iRunCnt).aCluEvent(iCluEvent,CLUTCHEND) = 
aCluEventEndTime(iCluEvent); 
  
        % Max clutch power in event is largest clutch power value between start and end 
of clutch event 
        sData(iRunCnt).aCluEvent(iCluEvent,MAXPOWER)   = 
max(sData(iRunCnt).aCluPower_W(CluOff:CluOn)); 
  
        % Energy = Power x Time 
        sData(iRunCnt).aCluEvent(iCluEvent,EVENTENERGY) = 
sum(sData(iRunCnt).aCluPower_W(CluOff:CluOn)*dt); 
  
        aCluEventEnergy = 
sData(iRunCnt).aCluPower_W(CluOff:CluOn)./iSampleRate_Hz; 
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        sData(iRunCnt).aCluEventTotalEnergy(iCluEvent,:) = 
max(cumsum(aCluEventEnergy)); 
  
        % Determine the instantaneous time at which the clutch event can be said to 
occur 
        sData(iRunCnt).aCluEvent(iCluEvent,EVENTMEANTIME) = 
0.5*(sData(iRunCnt).aCluEvent(iCluEvent,EVENTSTARTTIME) + 
sData(iRunCnt).aCluEvent(iCluEvent,EVENTENDTIME)); 
  
        %sData(iRunCnt).aCluEvent(iCluEvent,CLUMUVALID) = 
find((sData(iRunCnt).aCluSpeedDiff_rpm(CluOn:CluOff)>1500)&(sData(iRunCnt).Eng_
Speed(CluOn:CluOff)>6000)&(sData(iRunCnt).Car_Speed(CluOn:CluOff)>3)&(sData(iR
unCnt).Car_Speed(CluOn:CluOff)<60)) 
  
        % Clear un-needed variables 
        clear CluOff CluOn iCluEvent 
  
    end 
  
    clear aBelowCluThresholdStarts aBelowCluThresholdEnds dt 
nCluEventThreshold_bar aCluEventEndTime aCluEventStartTime aCluEventEnergy 
     
    % Find the clutch event corresponding to the race start 
    
RaceStartEvent=find(((sData(iRunCnt).aCluEvent(:,EVENTENDTIME))>sData(iRunCnt
).RaceStart) & 
((sData(iRunCnt).aCluEvent(:,EVENTSTARTTIME))<sData(iRunCnt).RaceStart)); 
  
    % Find the maximum power at the race start 
    sData(iRunCnt).RaceStartPowerMax_MW = 
sData(iRunCnt).aCluEvent(RaceStartEvent,MAXPOWER)/1000000; 
    sData(iRunCnt).CluEnergyRS_MJ = 
sData(iRunCnt).aCluEvent(RaceStartEvent,EVENTENERGY)./1000000; 
  
    % Find the clutch event corresponding to the formation start 
    
FormationStartEvent=find(((sData(iRunCnt).aCluEvent(:,EVENTENDTIME))>sData(iR
unCnt).FormationStart) & 
((sData(iRunCnt).aCluEvent(:,EVENTSTARTTIME))<sData(iRunCnt).FormationStart)); 
    % Find the maximum power at the formation start 
    sData(iRunCnt).FormationStartPowerMax_MW = 
sData(iRunCnt).aCluEvent(FormationStartEvent,MAXPOWER)/1000000; 
    sData(iRunCnt).CluEnergyFS_MJ = 
sData(iRunCnt).aCluEvent(FormationStartEvent,EVENTENERGY)./1000000; 
  
    % Clutch energy on formation lap is sum of energies for all events between FS and 
RS 
    sData(iRunCnt).CluEnergyFL_MJ = 
sum(sData(iRunCnt).aCluEvent(FormationStartEvent+1:RaceStartEvent-
1,EVENTENERGY))/1000000; 
  
    % Total energy of interest = Energy at FS + Energy over FL + Energy at RS 
    % i.e. we are not interested in the energy dissipated during gear changes up to the 
first corner 
    sData(iRunCnt).CluEnergyFSFLRS_MJ = sum(sData(iRunCnt).CluEnergyFL_MJ + 
sData(iRunCnt).CluEnergyFS_MJ + sData(iRunCnt).CluEnergyRS_MJ); 
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    % FS Clutch Mode 
    DrvRSModeFS = 
round(mean(sData(iRunCnt).Drv_RS_Mode(sData(iRunCnt).FormationStart-
200:sData(iRunCnt).FormationStart))); 
    % RS Clutch Mode 
    DrvRSModeRS = 
round(mean(sData(iRunCnt).Drv_RS_Mode(sData(iRunCnt).RaceStart-
200:sData(iRunCnt).RaceStart))); 
  
    sData(iRunCnt).DrvRSModes = [DrvRSModeFS,DrvRSModeRS]; 
  
    clear DrvRSModeFS DrvRSModeRS 
  
    FuelUsedFL_kg = (mean(sData(iRunCnt).Eng_Fuel_Total(sData(iRunCnt).RaceStart-
100:sData(iRunCnt).RaceStart))-mean(sData(iRunCnt).Eng_Fuel_Total(100:200))); 
    sData(iRunCnt).FuelRS_kg = sData(iRunCnt).FuelFS_kg - FuelUsedFL_kg; 
    clear FuelUsedFL_kg 
  
    if sData(iRunCnt).FuelRS_kg <= 0 
        sData(iRunCnt).FuelRS_kg = 'n/a'; 
    end 
  
    sData(iRunCnt).iNumUse_FSFLRS = (RaceStartEvent - FormationStartEvent) +1; 
  
  
    sData(iRunCnt).FSTyreTemp_R = 
mean(sData(iRunCnt).Tyre_Temp_R(sData(iRunCnt).FormationStart-
300:sData(iRunCnt).FormationStart-250)); 
    sData(iRunCnt).RSTyreTemp_R = 
mean(sData(iRunCnt).Tyre_Temp_R(sData(iRunCnt).RaceStart-
50:sData(iRunCnt).RaceStart)); 
    sData(iRunCnt).DeltaTyreTemp_R = sData(iRunCnt).RSTyreTemp_R-
sData(iRunCnt).FSTyreTemp_R; 
  
    % Eng_Fuel_Total no longer required - remove from loop until structure can be 
cleared 
    sData(iRunCnt).Eng_Fuel_Total = {'Cleared'}; 
  
    RSStart = sData(iRunCnt).aCluEvent(RaceStartEvent,9); 
    RSEnd = sData(iRunCnt).aCluEvent(RaceStartEvent,10); 
  
    aCluMuValidRS = 
RSStart+find((sData(iRunCnt).aCluSpeedDiff_rpm(RSStart:RSEnd)>1500)&(sData(iRu
nCnt).Eng_Speed(RSStart:RSEnd)>6000)&(sData(iRunCnt).Car_Speed(RSStart:RSEnd)
>3)&(sData(iRunCnt).Car_Speed(RSStart:RSEnd)<60)); 
  
    % Check that the slip is not broken, i.e. we only want the first engagement slip 
    % Check that there is no gap greater than 10 timesteps (0.1s) between valid 
timesteps 
    aCluMuValidContinuous = find((aCluMuValidRS(2:end)-aCluMuValidRS(1:end-
1))>10); 
  
    % If aCluMuValidContinuous is not empty, then there is a break 
    if isempty(aCluMuValidContinuous) == 0 
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        aCluMuValidRS = aCluMuValidRS(1:aCluMuValidContinuous(1)); 
    end 
  
    % Add the debounce time to the calculation 
    aCluMuValidRS = aCluMuValidRS(CluDebounceTime_s*iSampleRate_Hz:end); 
  
    % Clutch mu at RS is the mean of all valid mu values 
    sData(iRunCnt).CluMuRS = mean(sData(iRunCnt).aCluMu(aCluMuValidRS)); 
  
  
  
  
    FSStart = sData(iRunCnt).aCluEvent(FormationStartEvent,9); 
    FSEnd = sData(iRunCnt).aCluEvent(FormationStartEvent,10); 
  
    sData(iRunCnt).FSStart = FSStart; 
    sData(iRunCnt).FSEnd = FSEnd; 
    sData(iRunCnt).aCluMuValidFS = FSStart + 
find((sData(iRunCnt).aCluSpeedDiff_rpm(FSStart:FSEnd)>1500)&(sData(iRunCnt).En
g_Speed(FSStart:FSEnd)>6000)&(sData(iRunCnt).Car_Speed(FSStart:FSEnd)>3)&(sDa
ta(iRunCnt).Car_Speed(FSStart:FSEnd)<60)); 
    sData(iRunCnt).aCluMuValidFS = 
sData(iRunCnt).aCluMuValidFS(CluDebounceTime_s*iSampleRate_Hz:end); 
    sData(iRunCnt).CluMuFS = 
mean(sData(iRunCnt).aCluMu(sData(iRunCnt).aCluMuValidFS)); 
  
  
  
    % Find location of clutch plate speed matching 
    sData(iRunCnt).CluSpeedMatched = 
RSStart+min(find((sData(iRunCnt).Eng_Speed(RSStart:RSEnd)-
sData(iRunCnt).Gbx_IPS_Speed(RSStart:RSEnd))<100)); 
  
    clear aCluMuValid aCluMuValidContinuous FSStart FSEnd aCluMuValidRS 
RaceStartEvent FormationStartEvent 
  
end 
  
  
  
acstrIndividualChannels = 
{'Drv_RS_Mode','aCluSpeedDiff_radpers','aCluForce_N','aCluSpeedDiff_rpm','aBelowCl
uThresholdStarts','aBelowCluThresholdEnds','iNumUse','FuelFS_kg','Eng_Fuel_Total','
Track','Driver','CarName'}; 
sData = rmfield(sData,acstrIndividualChannels); 
clear acstrIndividualChannels  
  
%acstrNewOrder = 
{'Date','Circuit','Chassis','Drv','OriginalFilePath','OriginalFileName','iScanRate_pers','Ti
me','LapDistance','Lap_Number','Distance','Pit_Limit_Armed','Fuel_Flap_Active','Clu_Ac
t_Pres','Clu_BP_Wear_Comp','Eng_Speed','Gbx_IPS_Speed','Eng_Thr_Trq','Gbx_IPS_Trq',
'Gbx_IPS_Trq_Gain','Gbx_IPS_Trq_Offset','Gbx_Position','Eng_Thr_Pos','Car_Speed','Spe
ed_FL','Speed_FR','Speed_RL','Speed_RR','Accel_Long_R','Car_Drag_Force','Tyre_Pres_F
L','Tyre_Pres_RL','Tyre_Temp_R','aCluMu','QualPosn','QualSide','PosnChange','GbxRati
os','GbxRatioBevel','GbxRatioDiff','GbxOverallRatioSelected','TyreRollingRadiusR_m','
FormationStart','RaceStart','FSTyreTemp_R','RSTyreTemp_R','DeltaTyreTemp_R','aClu
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Power_W','TotalKEClu_J','CluPower_MW_max','TotalKEClu_MJ_max','TimeOnGrid_s','f1
00kphTime_s','aCluEvent','aCluEventTotalEnergy','RaceStartPowerMax_MW','CluEner
gyRS_MJ','FormationStartPowerMax_MW','CluEnergyFS_MJ','CluEnergyFL_MJ','CluEne
rgyFSFLRS_MJ','DrvRSModes','FuelRS_kg','iNumUse_FSFLRS','CluMuRS'} 
%sData = orderfields(sData,acstrNewOrder) 
  
  
for iRunCnt = 1:length(acstrFilenames) 
    sData(iRunCnt).CluMuRS = (round((sData(iRunCnt).CluMuRS)*100))/100; 
    sData(iRunCnt).CluMuFS = (round((sData(iRunCnt).CluMuFS)*100))/100; 
    sData(iRunCnt).RSTyreTemp_R = 
(round((sData(iRunCnt).RSTyreTemp_R)*100))/100; 
    sData(iRunCnt).FSTyreTemp_R = 
(round((sData(iRunCnt).FSTyreTemp_R)*100))/100; 
    sData(iRunCnt).FuelRS_kg = (round((sData(iRunCnt).FuelRS_kg)*10))/10; 
  
    sData(iRunCnt).DeltaTyreTemp_R = sData(iRunCnt).RSTyreTemp_R-
sData(iRunCnt).FSTyreTemp_R; 
  
    sData(iRunCnt).CluEnergyFS_MJ = 
(round(sData(iRunCnt).CluEnergyFS_MJ*1000))/1000; 
    sData(iRunCnt).CluEnergyFL_MJ = 
(round(sData(iRunCnt).CluEnergyFL_MJ*1000))/1000; 
    sData(iRunCnt).CluEnergyRS_MJ = 
(round(sData(iRunCnt).CluEnergyRS_MJ*1000))/1000; 
  
    PosnChange = num2str(sData(iRunCnt).PosnChange); 
    if PosnChange(1) == '-' 
        sData(iRunCnt).PosnChange = PosnChange; 
    elseif PosnChange(1) == '0' 
        sData(iRunCnt).PosnChange = PosnChange; 
    elseif PosnChange(1) == '+' 
        sData(iRunCnt).PosnChange = PosnChange; 
    else 
        sData(iRunCnt).PosnChange = ['+',PosnChange]; 
    end 
  
  
  
end 
  
  
close all 
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% PLOT INDIVIDUAL RS TELEMETRY TRACES 
% 
  
if bIndivRSPlot == 1 
    for iRunCnt = 1:length(acstrFilenames) 
  
        if isnan(sData(iRunCnt).CluMuRS) == 1 
            sData(iRunCnt).CluMuRS = 0; 
        end 
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        RSStart = sData(iRunCnt).RaceStart-25; 
        RSEnd = sData(iRunCnt).RaceStart+200; 
        a = RSStart+find(sData(iRunCnt).aCluMu(RSStart:RSEnd)>0.05); 
        CluMuStart = (a(1)-1)/100; 
        CluMuEnd = (a(end)-1)/100; 
        figure 
        set(gcf,'Position',[500 500 800 500]); 
        h4 = axes('position',[0.05,0.05,0.5,0.85],'OuterPosition',[0,0,0.6,0.9]); 
  
        
%plot(sData(iRunCnt).Time(RSStart:RSEnd),sData(iRunCnt).Car_Speed(RSStart:RSEn
d)./3.6); 
        
plot(sData(iRunCnt).Time(RSStart:RSEnd),sData(iRunCnt).Speed_FL(RSStart:RSEnd).
/3.6,'color',[0.2,0.35,1]); 
        hold on 
        
plot(sData(iRunCnt).Time(RSStart:RSEnd),sData(iRunCnt).Speed_FR(RSStart:RSEnd).
/3.6,'color',[0.2,0.35,1]); 
        
plot(sData(iRunCnt).Time(RSStart:RSEnd),sData(iRunCnt).Speed_RL(RSStart:RSEnd).
/3.6,'color',[0,0.1,1]); 
        
plot(sData(iRunCnt).Time(RSStart:RSEnd),sData(iRunCnt).Speed_RR(RSStart:RSEnd).
/3.6,'color',[0,0.1,1]); 
  
        
plot(sData(iRunCnt).Time(RSStart:RSEnd),sData(iRunCnt).aCluMu(RSStart:RSEnd)*1
0,'color','k'); 
        
plot(sData(iRunCnt).Time(RSStart:RSEnd),sData(iRunCnt).Clu_Act_Pres(RSStart:RSEn
d)./10,'color','m'); 
        
plot(sData(iRunCnt).Time(RSStart:RSEnd),sData(iRunCnt).Eng_Speed(RSStart:RSEnd)
./1000,'color',[1,0.3,0]); 
        
plot(sData(iRunCnt).Time(RSStart:RSEnd),sData(iRunCnt).Gbx_IPS_Speed(RSStart:RS
End)./1000,'color',[1,0.8,0]); 
        
plot(sData(iRunCnt).Time(RSStart:RSEnd),sData(iRunCnt).Eng_Thr_Pos(RSStart:RSEn
d)/10,'color',[0,0.5,0]); 
  
        
line([sData(iRunCnt).RaceStart/100,sData(iRunCnt).RaceStart/100],[0,20],'LineWidth
',2,'Color','g') 
        line([CluMuStart,CluMuStart],[0,20],'LineWidth',2,'Color','k') 
        line([CluMuEnd,CluMuEnd],[0,20],'LineWidth',2,'Color','k') 
        line([CluMuStart,CluMuEnd],[14,14],'LineWidth',1,'Color','k') 
        
plot(CluMuStart+0.03,14,'Marker','<','MarkerFaceColor','k','markerEdgeColor','k','Mar
kerSize',8) 
        plot(CluMuEnd-
0.032,14,'Marker','>','MarkerFaceColor','k','markerEdgeColor','k','MarkerSize',8) 
        text((CluMuStart+CluMuEnd)/2,15,'Mu 
averaging','FontWeight','Bold','FontName','Arial','HorizontalAlignment','center') 
        axis([RSStart/100 RSEnd/100 0 20]) 
        set(h4,'color',[1,1,1]) 
        title('Relevant PDS Channel data against Time','FontWeight','Bold'); 
        xlabel('Time in run [s]') 
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        %legend('Car Speed [m/s]'',Clutch Mu x 10','Clutch Act Pres [MPa]','Engine Speed 
[1000rpm]','Gbx IPS Speed [1000rpm]','Location','NorthWest') 
  
  
        h1 = 
axes('Position',[0.6,0.05,0.35,0.25],'Visible','on','XLim',[0,1],'YLim',[0,10],'color',[1,1,1]
,'YTick', [0,10], 'YTickLabel', ['',''], 'XTick', [0,1], 'XTickLabel', ['',''], 'Box', 'On'); 
        axes(h1); 
  
        set(gca,'color',[1,1,1],'YTick', [0,10], 'YTickLabel', ['',''], 'XTick', [0,1], 'XTickLabel', 
['',''], 'Box', 'On', 'XLim',[0,1],'YLim',[0,7]); 
        set(gcf,'color',[0.9,0.9,0.9]); 
        text(0.1,6.5,'KEY','FontWeight','Bold'); 
  
        
%plot(0.1,7,'Marker','s','MarkerFaceColor','r','MarkerEdgeColor','k','MarkerSize',10) 
        
%plot(0.1,6,'Marker','s','MarkerFaceColor','r','MarkerEdgeColor','k','MarkerSize',10) 
  
        text(0.1,0.5,'Throttle Posn [%/10]','FontWeight','Bold','Color',[0,0.5,0]); 
        text(0.1,1.5,'Gbx IPS Speed [rpm]','FontWeight','Bold','Color',[1,0.8,0]); 
        text(0.1,2.5,'Engine Speed [rpm]','FontWeight','Bold','Color',[1,0.3,0]); 
        text(0.1,3.5,'Clutch Actuation Pressure [MPa]','FontWeight','Bold','Color','m'); 
        text(0.1,4.5,'Clutch mu x 10','FontWeight','Bold','Color','k'); 
        text(0.1,5.5,'Wheel Speeds [m/s]','FontWeight','Bold','Color','b'); 
  
        %axis([0,1,0,10]); 
        %set(h1,'XLim',[0,1],'YLim',[0,10],'color',[1,1,1],'YTick', [0,10], 'YTickLabel', ['',''], 
'XTick', [0,1], 'XTickLabel', ['',''], 'Box', 'On') 
        set(gcf,'color',[0.9,0.9,0.9]); 
  
  
  
  
        h2 = axes('Position',[0.6,0.35,0.35,0.55],'Visible','on'); 
        axes(h2); 
        set(gca,'color',[1,1,1],'YTick', [0,10], 'YTickLabel', ['',''], 'XTick', [0,1], 'XTickLabel', 
['',''], 'Box', 'On'); 
        set(gcf,'color',[0.9,0.9,0.9]); 
        axis([0,1,0,10]); 
  
        text(0.05,9.5,'Circuit : ', 'FontWeight','Bold') 
        text(0.5,9.5,[sData(iRunCnt).Circuit,'  (',sData(iRunCnt).Date,')'], 
'FontWeight','Bold'); 
        text(0.05,9.0,'Chassis : ', 'FontWeight','Bold') 
        text(0.5,9.0,[sData(iRunCnt).Chassis,'  ',sData(iRunCnt).Drv], 'FontWeight','Bold') 
        text(0.05,8.0,'Qualified : ', 'FontWeight','Bold') 
        text(0.5,8.0,[num2str(sData(iRunCnt).QualPosn),'  
(',sData(iRunCnt).QualSide,')'],'FontWeight','Bold'); 
        text(0.05,7.5,'RS 0-100 kph [s] : ', 'FontWeight','Bold') 
        text(0.5,7.5,[num2str(sData(iRunCnt).f100kphTime_s)],'FontWeight','Bold'); 
        text(0.05,7.0,'Positions +/- : ', 'FontWeight','Bold') 
        text(0.5,7.0,[num2str(sData(iRunCnt).PosnChange)],'FontWeight','Bold'); 
        text(0.05,6.5,['Time on grid [s] : '],'FontWeight','Bold'); 
        text(0.5,6.5,[num2str(sData(iRunCnt).TimeOnGrid_s)],'FontWeight','Bold'); 
        text(0.05,6.0,['RS Fuel [kg] : '],'FontWeight','Bold'); 
        text(0.5,6.0,[num2str(sData(iRunCnt).FuelRS_kg)],'FontWeight','Bold'); 
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        text(0.05,5.0,'Tyre Temps [C]: ', 'FontWeight','Bold') 
        text(0.5,5.0,['Initial '],'FontWeight','Bold'); 
        text(0.5,4.5,['RS      '],'FontWeight','Bold'); 
        text(0.5,4.0,['Delta   '],'FontWeight','Bold'); 
        text(0.7,5.0,['= ',num2str(sData(iRunCnt).FSTyreTemp_R)],'FontWeight','Bold'); 
        text(0.7,4.5,['= ',num2str(sData(iRunCnt).RSTyreTemp_R)],'FontWeight','Bold'); 
        text(0.7,4.0,['= 
',num2str(sData(iRunCnt).DeltaTyreTemp_R)],'FontWeight','Bold'); 
  
  
  
        text(0.05,3.0,['Start Info - '],'FontWeight','Bold'); 
        text(0.3,3.0,['FS: '],'FontWeight','Bold'); 
        text(0.3,2.5,['RS: '],'FontWeight','Bold'); 
        text(0.45,3.0,['Mode = 
',num2str(sData(iRunCnt).DrvRSModes(1))],'FontWeight','Bold'); 
        text(0.45,2.5,['Mode = 
',num2str(sData(iRunCnt).DrvRSModes(end))],'FontWeight','Bold'); 
        text(0.7,3.0,['Mu = ',num2str(sData(iRunCnt).CluMuFS)],'FontWeight','Bold'); 
        text(0.7,2.5,['Mu = ',num2str(sData(iRunCnt).CluMuRS)],'FontWeight','Bold'); 
  
        text(0.05,1.5,['Energy Dissipation [MJ]:'],'FontWeight','Bold'); 
        text(0.6,1.5,['FS'],'FontWeight','Bold'); 
        text(0.6,1.0,['FL'],'FontWeight','Bold'); 
        text(0.6,0.5,['RS'],'FontWeight','Bold'); 
        text(0.7,1.5,['= ',num2str(sData(iRunCnt).CluEnergyFS_MJ)],'FontWeight','Bold'); 
        text(0.7,1.0,['= ',num2str(sData(iRunCnt).CluEnergyFL_MJ)],'FontWeight','Bold'); 
        text(0.7,0.5,['= ',num2str(sData(iRunCnt).CluEnergyRS_MJ)],'FontWeight','Bold'); 
  
  
        h3 = axes('Position',[0.05,0.92,0.9,0.06],'Visible','on'); 
        axes(h3); 
        set(gca,'color',[1,1,1],'YTick', [0,10], 'YTickLabel', ['',''], 'XTick', [0,1], 'XTickLabel', 
['',''], 'Box', 'On','XLim',[0,1],'YLim',[0,1]); 
        text(0.1,0.5,['Clutch RS Analysis:    ',sData(iRunCnt).Circuit,'  
',sData(iRunCnt).Date,'  ',sData(iRunCnt).Chassis,'  
',sData(iRunCnt).Drv],'FontWeight','Bold'); 
  
    end 
end 
  
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% PLOT TABLE OF RESULTS 
% Will plot a table with all results in 
% Sorts data according to input parameter 
% Calculates correlations between all fields and sort parameter 
  
if bCorrelationPlot == 1 
    nSortParameter = input('------------------------------\nParameter to sort data by? \n----
--------------------------\nQualifying Position:    1\nQualifying Side [R/D]:  2\nPositions 
+/- off grid: 3\nRS 0-100kph time:       4\nClutch Mu FS:      12\nClutch Mu FS:      
13\nDelta Clutch Mu (RS-FS):      14\n------------------------------'); 
    if nSortParameter == 0 
    else 
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        nSortParameter = nSortParameter+2; 
    end 
  
    sTable.Width_px = 1200; 
    sTable.Height_px = 800; 
    sTable.RowHeaderHeight_px = 150; 
    sTable.RowGenericHeight_rows = 1; 
    sTable.RowFooterHeight_px = 50; 
    sTable.NumRows = 1+length(acstrFilenames)*sTable.RowGenericHeight_rows+1; 
    sTable.Headers = {'Track/Driver','Energy Graph', 'Quali Posn', 'Grid Posn [R/D]', 
'Posn Change', 'RS 0-100 kph [s]', 'Num Clutch Events','Energy FS [MJ]','Energy FL 
[MJ]','Energy RS [MJ]','Energy Total [MJ]','Clutch Mode FS','Clutch Mode RS','Clutch Mu 
FS','Clutch Mu RS','Delta Clutch Mu'}; 
    sTable.NumCols = length(sTable.Headers); 
  
    sTable.ColWidth1_px = 100; 
    sTable.ColWidth2_px = 200; 
    sTable.ColWidthGeneric_px = (sTable.Width_px-sTable.ColWidth1_px-
sTable.ColWidth2_px)/(sTable.NumCols-2); 
  
  
    sTable.RowHeightGeneric_px = (sTable.Height_px-sTable.RowHeaderHeight_px-
sTable.RowFooterHeight_px)/length(acstrFilenames); 
  
    sTable.RowPosnTop = 
[sTable.RowFooterHeight_px,sTable.RowFooterHeight_px+([1:sTable.NumRows-
2].*sTable.RowHeightGeneric_px),sTable.Height_px]; 
    sTable.RowPosnMid = 
[sTable.RowFooterHeight_px*0.5,sTable.RowFooterHeight_px+(([1:length(acstrFilena
mes)]-0.5).*sTable.RowHeightGeneric_px),sTable.Height_px-
0.5*sTable.RowHeaderHeight_px]; 
  
    sTable.aColPosnRight_px = 
[sTable.ColWidth1_px,(sTable.ColWidth1_px+sTable.ColWidth2_px),(sTable.ColWidth
1_px+sTable.ColWidth2_px)+[1:sTable.NumCols-2].*sTable.ColWidthGeneric_px]; 
    sTable.aColPosnMid_px = 
[sTable.ColWidth1_px*0.5,(sTable.ColWidth1_px+sTable.ColWidth2_px*0.5),(sTable.C
olWidth1_px+sTable.ColWidth2_px)+([1:sTable.NumCols-2]-
0.5).*sTable.ColWidthGeneric_px]; 
  
  
  
  
    aData = zeros(length(acstrFilenames),length(sTable.Headers)); 
  
  
    for iRunCnt = 1:length(acstrFilenames); 
        aData(iRunCnt,3) = sData(iRunCnt).QualPosn; 
  
  
        aData(iRunCnt,6) = sData(iRunCnt).f100kphTime_s; 
        aData(iRunCnt,7) = sData(iRunCnt).iNumUse_FSFLRS; 
        aData(iRunCnt,8) = sData(iRunCnt).CluEnergyFS_MJ; 
        aData(iRunCnt,9) = sData(iRunCnt).CluEnergyFL_MJ; 
        aData(iRunCnt,10) = sData(iRunCnt).CluEnergyRS_MJ; 
        aData(iRunCnt,11) = sData(iRunCnt).CluEnergyFSFLRS_MJ; 
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        aData(iRunCnt,12) = sData(iRunCnt).DrvRSModes(1); 
        aData(iRunCnt,13) = sData(iRunCnt).DrvRSModes(2); 
        aData(iRunCnt,14) = sData(iRunCnt).CluMuFS; 
        aData(iRunCnt,15) = sData(iRunCnt).CluMuRS; 
        aData(iRunCnt,16) = sData(iRunCnt).CluMuRS-sData(iRunCnt).CluMuFS; 
  
        acstrTableData{iRunCnt,1} = [sData(iRunCnt).Circuit,': ',sData(iRunCnt).Drv]; 
        acstrTableData{iRunCnt,2} = sData(iRunCnt).QualSide; 
        acstrTableData{iRunCnt,3} = sData(iRunCnt).PosnChange; 
    end 
  
    [aDataSortResult_Indiv(:,3),aDataSortIndex_Indiv(:,3)] = sort(aData(:,3),'descend'); 
    [aDataSortResult_Indiv(:,6),aDataSortIndex_Indiv(:,6)] = sort(aData(:,6),'descend'); 
    [aDataSortResult_Indiv(:,7),aDataSortIndex_Indiv(:,7)] = sort(aData(:,7),'descend'); 
    [aDataSortResult_Indiv(:,8),aDataSortIndex_Indiv(:,8)] = sort(aData(:,8),'descend'); 
    [aDataSortResult_Indiv(:,9),aDataSortIndex_Indiv(:,9)] = sort(aData(:,9),'descend'); 
    [aDataSortResult_Indiv(:,10),aDataSortIndex_Indiv(:,10)] = 
sort(aData(:,10),'descend'); 
    [aDataSortResult_Indiv(:,11),aDataSortIndex_Indiv(:,11)] = 
sort(aData(:,11),'descend'); 
    [aDataSortResult_Indiv(:,12),aDataSortIndex_Indiv(:,12)] = 
sort(aData(:,12),'descend'); 
    [aDataSortResult_Indiv(:,13),aDataSortIndex_Indiv(:,13)] = 
sort(aData(:,13),'descend'); 
    [aDataSortResult_Indiv(:,14),aDataSortIndex_Indiv(:,14)] = 
sort(aData(:,14),'descend'); 
    [aDataSortResult_Indiv(:,15),aDataSortIndex_Indiv(:,15)] = 
sort(aData(:,15),'descend'); 
    [aDataSortResult_Indiv(:,16),aDataSortIndex_Indiv(:,16)] = 
sort(aData(:,16),'descend'); 
  
    aDataSortResult_Indiv(:,3) = flipud(aDataSortResult_Indiv(:,3)); 
    aDataSortIndex_Indiv(:,3) = flipud(aDataSortIndex_Indiv(:,3)); 
    aDataSortResult_Indiv(:,6) = flipud(aDataSortResult_Indiv(:,6)); 
    aDataSortIndex_Indiv(:,6) = flipud(aDataSortIndex_Indiv(:,6)); 
  
    nSortThreshold = 9; % Highlight the five best and five worst results 
  
    for iSortLimit = [3,6:16] 
        aDataSortLimits(1,iSortLimit) = 
aData(aDataSortIndex_Indiv(nSortThreshold,iSortLimit),iSortLimit); 
        aDataSortLimits(2,iSortLimit) = 
aData(aDataSortIndex_Indiv(length(acstrFilenames)-
nSortThreshold+1,iSortLimit),iSortLimit); 
    end 
  
    if nSortParameter ~= 0 
        [aDataSortResult_Param,aDataSortIndex_Param] = 
sort(aData(:,nSortParameter),'ascend'); 
    end 
  
    for iDataSort = 1:length(sTable.Headers) 
        if nSortParameter == 0 
            aDataSorted_Param(:,iDataSort) = aData(:,iDataSort); 
        else 
            aDataSorted_Param(:,iDataSort) = aData(aDataSortIndex_Param,iDataSort); 
        end 
    end 
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    % ------------------- 
    % CORRELATION COEFFICIENT CALCULATION 
    % r is a matrix of correlation coefficients 
    % p is a matrix of p-values for testing the hypothesis of no correlation 
    [r,p] = corrcoef(aDataSorted_Param); 
  
    % We are interested in the correlation between the sorted parameter and all the 
other parameters 
    aCorrelation(1,:) = r(nSortParameter,:); 
    aCorrelation(2,:) = p(nSortParameter,:); 
  
    aCorrelation = (round(aCorrelation.*100))./100; 
  
    % Clear un-needed variables 
    clear r p 
  
  
    
%line([0,sTable.Width_px],[0.5*sTable.RowFooterHeight_px,0.5*sTable.RowFooterHe
ight_px],'Color','k','LineWidth',1); 
    
line([0,sTable.Width_px],[sTable.RowFooterHeight_px,sTable.RowFooterHeight_px],'C
olor','k','LineWidth',2); 
    text(sTable.aColPosnRight_px(2)-10,0.5*sTable.RowFooterHeight_px,'Correlation 
Coefficient: ','HorizontalAlignment','right','FontWeight','bold'); 
  
    hTable1 = 
figure('Color',[1,1,1],'Position',[100,100,100+sTable.Width_px+10,100+sTable.Height_
px+10]); 
    hTable1Axes = axes('position',[0.025,0.025,0.95,0.95],'Visible','off'); 
    set(gca,'color',[1,1,1],'YTick', [0,10], 'YTickLabel', ['',''], 'XTick', [0,1], 'XTickLabel', 
['',''], 'Box', 'On'); 
  
    rectangle('Position',[sTable.aColPosnRight_px(nSortParameter-
1),0,sTable.ColWidthGeneric_px,sTable.Height_px],'FaceColor',[0.75,0.75,1],'EdgeColor
',[0,0,0]); 
  
    line([0,sTable.Width_px],[0,0],'color','k','LineWidth',2); 
    for iDrawRow = 1:sTable.NumRows-1 
        
line([0,sTable.Width_px],[sTable.RowPosnTop(iDrawRow),sTable.RowPosnTop(iDra
wRow)],'color','k','LineWidth',1); 
    end 
    
line([0,sTable.Width_px],[sTable.RowPosnTop(end),sTable.RowPosnTop(end)],'color',
'k','LineWidth',2); 
    line([0,sTable.Width_px],[sTable.RowPosnTop(end-1),sTable.RowPosnTop(end-
1)],'color','k','LineWidth',2); 
  
    line([0,0],[0,sTable.Height_px],'color','k','LineWidth',2); 
    
line([sTable.aColPosnRight_px(1),sTable.aColPosnRight_px(1)],[0,sTable.Height_px],'c
olor','k','LineWidth',1); 
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line([sTable.aColPosnRight_px(2),sTable.aColPosnRight_px(2)],[0,sTable.Height_px],'c
olor','k','LineWidth',1); 
    for iDrawCol = 2:sTable.NumCols 
        
line([sTable.aColPosnRight_px(iDrawCol),sTable.aColPosnRight_px(iDrawCol)],[0,sTa
ble.Height_px],'color','k','LineWidth',1); 
    end 
    
line([sTable.aColPosnRight_px(end),sTable.aColPosnRight_px(end)],[0,sTable.Height_
px],'color','k','LineWidth',2); 
  
    
line([sTable.aColPosnRight_px(1),sTable.aColPosnRight_px(1)],[0,sTable.Height_px],'c
olor','k','LineWidth',2); 
    
line([sTable.aColPosnRight_px(2),sTable.aColPosnRight_px(2)],[0,sTable.Height_px],'c
olor','k','LineWidth',2); 
    
line([sTable.aColPosnRight_px(6),sTable.aColPosnRight_px(6)],[0,sTable.Height_px],'c
olor','k','LineWidth',2); 
    
line([sTable.aColPosnRight_px(11),sTable.aColPosnRight_px(11)],[0,sTable.Height_px
],'color','k','LineWidth',2); 
    
line([sTable.aColPosnRight_px(13),sTable.aColPosnRight_px(13)],[0,sTable.Height_px
],'color','k','LineWidth',2); 
  
    for iWriteHeaders = 1:sTable.NumCols 
        
text(sTable.aColPosnMid_px(iWriteHeaders),sTable.RowPosnMid(end),sTable.Header
s(iWriteHeaders),'Rotation',[90],'HorizontalAlignment','center','VerticalAlignment','m
iddle','FontWeight','Bold','FontSize',[12]); 
    end 
  
    GraphNormalise = max(aDataSorted_Param(:,11)); 
  
    text(sTable.aColPosnRight_px(2)-10,sTable.RowFooterHeight_px*0.5,'Correlation 
Coefficient','HorizontalAlignment','right','FontWeight','bold') 
    for iWriteDataCol = [3,6:length(sTable.Headers)]; 
        
text(sTable.aColPosnMid_px(iWriteDataCol),0.5*sTable.RowFooterHeight_px,num2str
(aCorrelation(1,iWriteDataCol)),'FontWeight','bold','HorizontalAlignment','center'); 
    end 
  
    for iWriteDataRow = 2:sTable.NumRows-1 
        iGetData = iWriteDataRow-1; 
  
        CluEnergyFSFLRS = aDataSorted_Param(iGetData,11); 
        CluEnergyRS = aDataSorted_Param(iGetData,10); 
        CluEnergyFL = aDataSorted_Param(iGetData,9); 
        CluEnergyFS = aDataSorted_Param(iGetData,8); 
        aCluEnergy = [CluEnergyFS,CluEnergyFL,CluEnergyRS,CluEnergyFSFLRS]; 
        [aCluEnergySort,aCluEnergyIndex] = sort(aCluEnergy,'descend'); 
        acstrCluEnergyColors = {[1,0.55,0],[1,1,0],[1,0,0],[0.2,0.2,0.2]}; 
  
        % Plot energy bar graphs for FS,FL,RS and FSFLRS 
        %  - Rectangles, length is normalised against max encountered value over season 
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rectangle('Position',[sTable.aColPosnRight_px(1)+0.05*sTable.ColWidth2_px,sTable.R
owPosnTop(iGetData)+0.1*sTable.RowHeightGeneric_px,0.9*sTable.ColWidth2_px*(a
CluEnergy(aCluEnergyIndex(1))/GraphNormalise),0.5*sTable.RowHeightGeneric_px],
'FaceColor',acstrCluEnergyColors{aCluEnergyIndex(1)},'EdgeColor','k'); 
        
rectangle('Position',[sTable.aColPosnRight_px(1)+0.05*sTable.ColWidth2_px,sTable.R
owPosnTop(iGetData)+0.2*sTable.RowHeightGeneric_px,0.9*sTable.ColWidth2_px*(a
CluEnergy(aCluEnergyIndex(2))/GraphNormalise),0.5*sTable.RowHeightGeneric_px],
'FaceColor',acstrCluEnergyColors{aCluEnergyIndex(2)},'EdgeColor','k'); 
        
rectangle('Position',[sTable.aColPosnRight_px(1)+0.05*sTable.ColWidth2_px,sTable.R
owPosnTop(iGetData)+0.3*sTable.RowHeightGeneric_px,0.9*sTable.ColWidth2_px*(a
CluEnergy(aCluEnergyIndex(3))/GraphNormalise),0.5*sTable.RowHeightGeneric_px],
'FaceColor',acstrCluEnergyColors{aCluEnergyIndex(3)},'EdgeColor','k'); 
        
rectangle('Position',[sTable.aColPosnRight_px(1)+0.05*sTable.ColWidth2_px,sTable.R
owPosnTop(iGetData)+0.4*sTable.RowHeightGeneric_px,0.9*sTable.ColWidth2_px*(a
CluEnergy(aCluEnergyIndex(4))/GraphNormalise),0.5*sTable.RowHeightGeneric_px],
'FaceColor',acstrCluEnergyColors{aCluEnergyIndex(4)},'EdgeColor','k'); 
  
        for iWriteDataCol = 1:length(sTable.Headers) 
            %[iGetData,iWriteDataCol] 
            if iWriteDataCol == 1 
                
text(sTable.aColPosnMid_px(iWriteDataCol),sTable.RowPosnMid(iWriteDataRow),acs
trTableData{aDataSortIndex_Param(iGetData),1},'HorizontalAlignment','center','Font
Weight','Bold'); 
            elseif iWriteDataCol ==2 
                % Do nothing 
            elseif iWriteDataCol == 4 
                
text(sTable.aColPosnMid_px(iWriteDataCol),sTable.RowPosnMid(iWriteDataRow),acs
trTableData{aDataSortIndex_Param(iGetData),2},'HorizontalAlignment','center','Font
Weight','bold'); 
            elseif iWriteDataCol == 5 
                
text(sTable.aColPosnMid_px(iWriteDataCol),sTable.RowPosnMid(iWriteDataRow),acs
trTableData{aDataSortIndex_Param(iGetData),3},'HorizontalAlignment','center','Font
Weight','bold'); 
            else 
                data = aDataSorted_Param(iGetData,iWriteDataCol); 
                aColor = [0,0,0]; 
                if iWriteDataCol >6 & iWriteDataCol~=12 & iWriteDataCol~=13 
  
                    %data = aData(iGetData,iWriteDataCol); 
                    if data > aDataSortLimits(1,iWriteDataCol); 
                        aColor = [0,0.75,0]; 
                    elseif data < aDataSortLimits(2,iWriteDataCol) 
                        aColor = [1,0,0]; 
                    else 
                        aColor = [0,0,0]; 
                    end 
  
                elseif iWriteDataCol == 3 | iWriteDataCol == 6 
  
                    if data <= aDataSortLimits(1,iWriteDataCol); 
                        aColor = [0,0.75,0]; 
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                    elseif data >= aDataSortLimits(2,iWriteDataCol) 
                        aColor = [1,0,0]; 
                    else 
                        aColor = [0,0,0]; 
                    end 
  
  
  
                end 
                
text(sTable.aColPosnMid_px(iWriteDataCol),sTable.RowPosnMid(iWriteDataRow),nu
m2str(data),'HorizontalAlignment','center','color',aColor,'FontWeight','bold'); 
            end 
  
  
        end 
    end 
    clear PosnChange 
end 
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Appendix C - Rig Part Drawings. 
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Appendix D - 140mm Clutch Technical Information 
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Appendix E - Initial Testing Graphs. 

 

Sensor Comparisons at 100˚C 
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Torque Comparisons at 100˚C 
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Sensor Comparisons at 200˚C 
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Torque Comparisons at 200˚C 
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 Appendix F - Initial Testing Graphs 
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Appendix G - MATLAB® Code for Data Extraction 

 

For plotting the clamp loads on the temperature vs time axis 

 

tic 

RowNum = 0; 

 

%% IMPORT FROM EXCEL 

 

PlateIndex = [{'Plate Std'} {'Plate A'} {'Plate B'} {'Plate 

C'} {'Plate D'} {'Plate E'} {'Plate F'} {'Plate G'}]; 

ExcelIndex = [{'Q3:Q30000'} {'J3:J30000'} {'K3:K30000'} 

{'L3:L30000'} {'M3:M30000'} {'N3:N30000'} {'O3:O30000'} 

{'P3:P30000'}]; 

 

%% FOR EACH PLATE A - G: 

 

for iPlateNum = 1:length(PlateIndex); 

 

    RowNum = 0 

 

    CurrentExcelColumn = ExcelIndex{iPlateNum}; 

    CurrentPlateID = PlateIndex{iPlateNum}; 

    CurrentPlateIDNoSpaces = CurrentPlateID(1:5); 

    CurrentPlateIDNoSpaces(6) = CurrentPlateID(7); 

 

    display(['Processing ' CurrentPlateID]) 

 

    SpeedList = [{' 3000rpm'},{' 5000rpm'},{' 7000rpm'}]; 

    SpeedListNoSpaces = 

[{'3000rpm'},{'5000rpm'},{'7000rpm'}]; 

 

    ClampList = [{'1500N'},{'2500N'},{'3500N'}]; 

 

    WorkSheetList = [{'Data 100'},{'Data 200'},{'Data 300'}]; 

  

    scrsz = get(0,'ScreenSize'); 

    figure('Position',[1 scrsz(4) scrsz(3) scrsz(4)]) 

  

%% FOR EACH SPEED: 

 

    for iSpeedNum = 1:3 

 

        CurrentSpeed = SpeedList{iSpeedNum}; 

        SpeedNoSpaces = 'RPM'; 
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        SpeedNoSpaces(4:7) = CurrentSpeed(2:5); 

        SpeedNoSpacesTime = SpeedNoSpaces; 

        SpeedNoSpacesTime(8) = 'T'; %RPM3000T 

         

%% FOR EACH START TEMP:        

             

           for iStartTemp = 1:3 

 

                WorkSheet = WorkSheetList{iStartTemp}; 

                TempNoSpaces = strcat('Deg',WorkSheet(6:8)); 

                TempNameForPlot = WorkSheet(6:8); 

                TempNameForPlot(4:7) = ' Deg'; 

                    

         

%% FOR EACH CLAMP FORCE: 

 

        for iClampNum = 1:3 

            CurrentClamp = ClampList{iClampNum};                

            ClampNoSpaces = 'N'; 

            ClampNoSpaces(2:5) = CurrentClamp(1:4); %e.g 

N1500 

            ClampNoSpacesTime = ClampNoSpaces; 

            ClampNoSpacesTime(6) = 'T'; %e.g. N1500T 

        

         StructureName = strcat(TempNoSpaces,SpeedNoSpaces); 

     

          BandedFilePath = 

strcat('G:\R_D\Public\Gem\Tests\Test 2\DC0024 

Gem\',CurrentPlateID,'\',CurrentPlateID,' 

',CurrentSpeed,'_',CurrentClamp,'.xls'); 

            MasterFilePath = 

strcat('G:\R_D\Public\Gem\Tests\Test 2\DC0024 Gem\Plate 

Std\Plate Std',' ',CurrentSpeed,'_',CurrentClamp,'.xls'); 

%                 StartTemp = WorkSheet(1:4);  

%                 StartTemp(5:7) = WorkSheet(6:8); %e.g. 

Data100 

%                 StartTempTime = StartTemp; 

%                 StartTempTime(8) = 'T'; %Data100T 

 

                % = (iSpeedNum-1)*9+(iClampNum-

1)*3+iStartTemp 

                % display([WorkSheet ' Degrees Start Temp']) 

 

                WorkSheet = WorkSheetList{iStartTemp}; 
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                %MasterTemp = 

xlsread(MasterFilePath,WorkSheet, CurrentExcelColumn); 

                %MasterForce = 

xlsread(MasterFilePath,WorkSheet, 'G3:G30000'); 

 

                %MasterOverFifty = find(MasterForce>50); 

                %LengthMaster = length(MasterOverFifty); 

 

                %MasterStart = MasterOverFifty(1); 

                %MasterEnd = MasterOverFifty(LengthMaster); 

 

                WorkSheet = WorkSheetList{iStartTemp}; 

                BandedTemp = xlsread(BandedFilePath, 

WorkSheet, CurrentExcelColumn); 

                BandedForce = xlsread(BandedFilePath, 

WorkSheet, 'G3:G30000'); 

                BandedOverFifty = find(BandedForce>50); 

                LengthBanded = length(BandedOverFifty); 

                BandedStart = BandedOverFifty(1); 

                BandedEnd = BandedOverFifty(LengthBanded); 

 

 

                %VectorLengths(1) = LengthMaster; 

                VectorLengths(1) = LengthBanded; 

                MinVectorLength = min(VectorLengths); 

 

 

 

                BandedTempCut.(StructureName).(ClampNoSpaces) 

= BandedTemp(BandedStart:BandedStart+MinVectorLength-1); 

                

BandedTempCut.(StructureName).(ClampNoSpacesTime) = 

[0:0.01:(MinVectorLength/100)-0.01]; 

                 

                if iPlateNum == 1 

                    

BandedTempCut.(StructureName).(ClampNoSpaces) = 

BandedTempCut.(StructureName).(ClampNoSpaces)/0.85; 

                else 

                end 

                 

                 

                

%MasterTempCut.(StructureName).(ClampNoSpaces) = 

MasterTemp(MasterStart:MasterStart+MinVectorLength-1); 
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%MasterTempCut.(StructureName).(ClampNoSpacesTime) = 

[0:0.01:(MinVectorLength/100)-0.01]; 

 

                

 

                clear MinVectorLength zero 

                clear MasterTemp MasterForce MasterOverFifty 

LengthMaster MasterStart MasterEnd MasterDuration BandedTemp 

BandedForce BandedOverFifty 

                clear LengthBanded BandedStart BandedEnd 

BandedDuration InterpInterval BandedTempInterp 

MasterTempInterp CurrentCorrelation WorkSheet 

                 

                 

           end 

             

              

            

            subplot(3,3,(iSpeedNum-1)*3+iStartTemp) 

            axis([0  15  0  1200]) 

            

plot(BandedTempCut.(StructureName).N1500T,BandedTempCut.(Stru

ctureName).N1500,'r') 

            hold on 

            

plot(BandedTempCut.(StructureName).N2500T,BandedTempCut.(Stru

ctureName).N2500,'g') 

            

plot(BandedTempCut.(StructureName).N3500T,BandedTempCut.(Stru

ctureName).N3500,'b') 

%             

plot(MasterTempCut.(StructureName).Data100T,MasterTempCut.(St

ructureName).Data100,'r') 

%             

plot(MasterTempCut.(StructureName).Data200T,MasterTempCut.(St

ructureName).Data200,'g') 

%             

plot(MasterTempCut.(StructureName).Data300T,MasterTempCut.(St

ructureName).Data300,'b') 

            titlename = strcat([CurrentPlateID,' 

',TempNameForPlot,' ',CurrentSpeed]) 

             

            if iPlateNum == 1 

                    titlename = strcat([CurrentPlateID,' 

',TempNameForPlot,' via IR',CurrentSpeed]) 
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                else 

                end 

             

            title(titlename) 

            xlabel('Time (Sec)') 

        ylabel('Temperature (Deg C)') 

        axis([0  15  0  1200]) 

         

         

        end 

         

    end 

     

    legend('1500 N','2500 N','3500 

N','Location','EastOutside') 

     saveas(gcf,[CurrentPlateID ' SPEEDvsTEMP' '.emf']) 

%saves figure as a jpeg in the folderpath direc 

        close 

 clear BandedTempCut MasterTempCut  

end 

toc 

 

 

For plotting the clamp loads on the friction vs temperature axis 

 

tic 

RowNum = 0; 

 

%% IMPORT FROM EXCEL 

 

PlateIndex = [{'Plate Std'} {'Plate A'} {'Plate B'} {'Plate 

C'} {'Plate D'} {'Plate E'} {'Plate F'} {'Plate G'}]; 

ExcelIndex = [{'Q3:Q30000'} {'J3:J30000'} {'K3:K30000'} 

{'L3:L30000'} {'M3:M30000'} {'N3:N30000'} {'O3:O30000'} 

{'P3:P30000'}]; 

 

%% FOR EACH PLATE A - G: 

 

for iPlateNum = 1:length(PlateIndex); 

 

    RowNum = 0 

 

    CurrentExcelColumn = ExcelIndex{iPlateNum}; 

    CurrentPlateID = PlateIndex{iPlateNum}; 

    CurrentPlateIDNoSpaces = CurrentPlateID(1:5); 

    CurrentPlateIDNoSpaces(6) = CurrentPlateID(7); 
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    display(['Processing ' CurrentPlateID]) 

 

    SpeedList = [{' 3000rpm'},{' 5000rpm'},{' 7000rpm'}]; 

    SpeedListNoSpaces = 

[{'3000rpm'},{'5000rpm'},{'7000rpm'}]; 

 

    ClampList = [{'1500N'},{'2500N'},{'3500N'}]; 

 

    WorkSheetList = [{'Data 100'},{'Data 200'},{'Data 300'}]; 

 

    scrsz = get(0,'ScreenSize'); 

    figure('Position',[1 scrsz(4) scrsz(3) scrsz(4)]) 

 

%% FOR EACH SPEED: 

 

    for iSpeedNum = 1:3 

 

        CurrentSpeed = SpeedList{iSpeedNum}; 

        SpeedNoSpaces = 'RPM'; 

        SpeedNoSpaces(4:7) = CurrentSpeed(2:5); 

        SpeedNoSpacesTime = SpeedNoSpaces; 

        SpeedNoSpacesTime(8) = 'T'; %RPM3000T 

 

%% FOR EACH START TEMP: 

 

        for iStartTemp = 1:3 

 

            WorkSheet = WorkSheetList{iStartTemp}; 

            TempNoSpaces = strcat('Deg',WorkSheet(6:8)); 

            TempNameForPlot = WorkSheet(6:8); 

            TempNameForPlot(4:7) = ' Deg'; 

 

 

%% FOR EACH CLAMP FORCE: 

 

            for iClampNum = 1:3 

                CurrentClamp = ClampList{iClampNum}; 

                ClampNoSpaces = 'N'; 

                ClampNoSpaces(2:5) = CurrentClamp(1:4); %e.g 

N1500 

                ClampNoSpacesTime = ClampNoSpaces; 

                ClampNoSpacesTime(6) = 'T'; %e.g. N1500T 

                ClampNoSpacesFric = ClampNoSpacesTime; 

                ClampNoSpacesFric(6) = 'F';%e.g. N1500F 
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                StructureName = 

strcat(TempNoSpaces,SpeedNoSpaces); 

 

                BandedFilePath = 

strcat('G:\R_D\Public\Gem\Tests\Test 2\DC0024 

Gem\',CurrentPlateID,'\',CurrentPlateID,' 

',CurrentSpeed,'_',CurrentClamp,'.xls'); 

                MasterFilePath = 

strcat('G:\R_D\Public\Gem\Tests\Test 2\DC0024 Gem\Plate 

Std\Plate Std',' ',CurrentSpeed,'_',CurrentClamp,'.xls'); 

                %                 StartTemp = WorkSheet(1:4); 

                %                 StartTemp(5:7) = 

WorkSheet(6:8); %e.g. Data100 

                %                 StartTempTime = StartTemp; 

                %                 StartTempTime(8) = 'T'; 

%Data100T 

 

                % = (iSpeedNum-1)*9+(iClampNum-

1)*3+iStartTemp 

                % display([WorkSheet ' Degrees Start Temp']) 

 

                WorkSheet = WorkSheetList{iStartTemp}; 

 

                %MasterTemp = 

xlsread(MasterFilePath,WorkSheet, CurrentExcelColumn); 

                %MasterForce = 

xlsread(MasterFilePath,WorkSheet, 'G3:G30000'); 

 

                %MasterOverFifty = find(MasterForce>50); 

                %LengthMaster = length(MasterOverFifty); 

 

                %MasterStart = MasterOverFifty(1); 

                %MasterEnd = MasterOverFifty(LengthMaster); 

 

                WorkSheet = WorkSheetList{iStartTemp}; 

                BandedTemp = xlsread(BandedFilePath, 

WorkSheet, CurrentExcelColumn); 

                BandedForce = xlsread(BandedFilePath, 

WorkSheet, 'G3:G30000'); 

                BandedFric = xlsread(BandedFilePath, 

WorkSheet, 'Z3:Z30000'); 

                BandedOverFifty = find(BandedForce>50); 

                LengthBanded = length(BandedOverFifty); 

                BandedStart = BandedOverFifty(1); 

                BandedEnd = BandedOverFifty(LengthBanded); 
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                %VectorLengths(1) = LengthMaster; 

                VectorLengths(1) = LengthBanded; 

                MinVectorLength = min(VectorLengths); 

 

 

 

                BandedTempCut.(StructureName).(ClampNoSpaces) 

= BandedTemp(BandedStart:BandedStart+MinVectorLength-1); 

                

BandedTempCut.(StructureName).(ClampNoSpacesTime) = 

[0:0.01:(MinVectorLength/100)-0.01]; 

                

BandedTempCut.(StructureName).(ClampNoSpacesFric) = 

BandedFric(BandedStart:BandedStart+MinVectorLength-1); 

 

                if iPlateNum == 1 

                    

BandedTempCut.(StructureName).(ClampNoSpaces) = 

BandedTempCut.(StructureName).(ClampNoSpaces)/0.85; 

                else 

                end 

 

 

                

%MasterTempCut.(StructureName).(ClampNoSpaces) = 

MasterTemp(MasterStart:MasterStart+MinVectorLength-1); 

                

%MasterTempCut.(StructureName).(ClampNoSpacesTime) = 

[0:0.01:(MinVectorLength/100)-0.01]; 

 

 

 

                clear MinVectorLength zero 

                clear MasterTemp MasterForce MasterOverFifty 

LengthMaster MasterStart MasterEnd MasterDuration BandedTemp 

BandedForce BandedOverFifty 

                clear LengthBanded BandedStart BandedEnd 

BandedDuration InterpInterval BandedTempInterp 

MasterTempInterp CurrentCorrelation WorkSheet 

 

 

            end 

 

 

 



 

CXXV 
 

            subplot(3,3,(iSpeedNum-1)*3+iStartTemp) 

 

            

plot(BandedTempCut.(StructureName).N1500,BandedTempCut.(Struc

tureName).N1500F,'r') 

            hold on 

            

plot(BandedTempCut.(StructureName).N2500,BandedTempCut.(Struc

tureName).N2500F,'g') 

            

plot(BandedTempCut.(StructureName).N3500,BandedTempCut.(Struc

tureName).N3500F,'b') 

            %             

plot(MasterTempCut.(StructureName).Data100T,MasterTempCut.(St

ructureName).Data100,'r') 

            %             

plot(MasterTempCut.(StructureName).Data200T,MasterTempCut.(St

ructureName).Data200,'g') 

            %             

plot(MasterTempCut.(StructureName).Data300T,MasterTempCut.(St

ructureName).Data300,'b') 

            titlename = strcat([CurrentPlateID,' 

',TempNameForPlot,' ',CurrentSpeed]) 

 

            if iPlateNum == 1 

                titlename = strcat([CurrentPlateID,' 

',TempNameForPlot,' via IR',CurrentSpeed]) 

            else 

            end 

 

            title(titlename) 

            xlabel('Temperature (Deg C)') 

            ylabel('Friction') 

            axis([0  1500  0  500]) 

 

 

        end 

 

    end 

 

    legend('1500 N','2500 N','3500 

N','Location','EastOutside') 

    saveas(gcf,[CurrentPlateID ' SPEEDvsTEMP-Friction' 

'.emf']) %saves figure as a jpeg in the folderpath direc 

    close 

    clear BandedTempCut MasterTempCut 
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end 

toc 

 

 

For plotting the speeds on the temperature vs time axis 

 

tic 

RowNum = 0; 

 

%% IMPORT FROM EXCEL 

 

PlateIndex = [{'Plate Std'} {'Plate A'} {'Plate B'} {'Plate 

C'} {'Plate D'} {'Plate E'} {'Plate F'} {'Plate G'}]; 

ExcelIndex = [{'Q3:Q30000'} {'J3:J30000'} {'K3:K30000'} 

{'L3:L30000'} {'M3:M30000'} {'N3:N30000'} {'O3:O30000'} 

{'P3:P30000'}]; 

 

%% FOR EACH PLATE A - G: 

 

for iPlateNum = 1:length(PlateIndex); 

 

    RowNum = 0 

 

    CurrentExcelColumn = ExcelIndex{iPlateNum}; 

    CurrentPlateID = PlateIndex{iPlateNum}; 

    CurrentPlateIDNoSpaces = CurrentPlateID(1:5); 

    CurrentPlateIDNoSpaces(6) = CurrentPlateID(7); 

 

    display(['Processing ' CurrentPlateID]) 

 

    SpeedList = [{' 3000rpm'},{' 5000rpm'},{' 7000rpm'}]; 

    SpeedListNoSpaces = 

[{'3000rpm'},{'5000rpm'},{'7000rpm'}]; 

 

    ClampList = [{'1500N'},{'2500N'},{'3500N'}]; 

 

    WorkSheetList = [{'Data 100'},{'Data 200'},{'Data 300'}]; 

  

    scrsz = get(0,'ScreenSize'); 

    figure('Position',[1 scrsz(4) scrsz(3) scrsz(4)]) 

             

%% FOR EACH CLAMP FORCE: 

 

        for iClampNum = 1:3 

            CurrentClamp = ClampList{iClampNum}; 
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%% FOR EACH START TEMP:        

             

           for iStartTemp = 1:3 

 

                WorkSheet = WorkSheetList{iStartTemp}; 

                TempNoSpaces = strcat('Deg',WorkSheet(6:8)); 

                TempNameForPlot = WorkSheet(6:8); 

                TempNameForPlot(4:7) = ' Deg'; 

                    

                 

%% FOR EACH SPEED: 

 

    for iSpeedNum = 1:3 

 

        CurrentSpeed = SpeedList{iSpeedNum}; 

        SpeedNoSpaces = 'RPM'; 

        SpeedNoSpaces(4:7) = CurrentSpeed(2:5); 

        SpeedNoSpacesTime = SpeedNoSpaces; 

        SpeedNoSpacesTime(8) = 'T'; %RPM3000T 

       

        

         StructureName = strcat(TempNoSpaces,CurrentClamp); 

     

          BandedFilePath = 

strcat('G:\R_D\Public\Gem\Tests\Test 2\DC0024 

Gem\',CurrentPlateID,'\',CurrentPlateID,' 

',CurrentSpeed,'_',CurrentClamp,'.xls'); 

            MasterFilePath = 

strcat('G:\R_D\Public\Gem\Tests\Test 2\DC0024 Gem\Plate 

Std\Plate Std',' ',CurrentSpeed,'_',CurrentClamp,'.xls'); 

%                 StartTemp = WorkSheet(1:4);  

%                 StartTemp(5:7) = WorkSheet(6:8); %e.g. 

Data100 

%                 StartTempTime = StartTemp; 

%                 StartTempTime(8) = 'T'; %Data100T 

 

                % = (iSpeedNum-1)*9+(iClampNum-

1)*3+iStartTemp 

                % display([WorkSheet ' Degrees Start Temp']) 

 

 

For plotting the speeds on the friction vs temperature axis 
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tic 

RowNum = 0; 

 

%% IMPORT FROM EXCEL 

 

PlateIndex = [{'Plate Std'} {'Plate A'} {'Plate B'} {'Plate 

C'} {'Plate D'} {'Plate E'} {'Plate F'} {'Plate G'}]; 

ExcelIndex = [{'Q3:Q30000'} {'J3:J30000'} {'K3:K30000'} 

{'L3:L30000'} {'M3:M30000'} {'N3:N30000'} {'O3:O30000'} 

{'P3:P30000'}]; 

 

%% FOR EACH PLATE A - G: 

 

for iPlateNum = 1:length(PlateIndex); 

 

    RowNum = 0 

 

    CurrentExcelColumn = ExcelIndex{iPlateNum}; 

    CurrentPlateID = PlateIndex{iPlateNum}; 

    CurrentPlateIDNoSpaces = CurrentPlateID(1:5); 

    CurrentPlateIDNoSpaces(6) = CurrentPlateID(7); 

 

    display(['Processing ' CurrentPlateID]) 

 

    SpeedList = [{' 3000rpm'},{' 5000rpm'},{' 7000rpm'}]; 

    SpeedListNoSpaces = 

[{'3000rpm'},{'5000rpm'},{'7000rpm'}]; 

 

    ClampList = [{'1500N'},{'2500N'},{'3500N'}]; 

 

    WorkSheetList = [{'Data 100'},{'Data 200'},{'Data 300'}]; 

  

    scrsz = get(0,'ScreenSize'); 

    figure('Position',[1 scrsz(4) scrsz(3) scrsz(4)]) 

             

%% FOR EACH CLAMP FORCE: 

 

        for iClampNum = 1:3 

            CurrentClamp = ClampList{iClampNum}; 

 

          

 

             

%% FOR EACH START TEMP:        
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           for iStartTemp = 1:3 

 

                WorkSheet = WorkSheetList{iStartTemp}; 

                TempNoSpaces = strcat('Deg',WorkSheet(6:8)); 

                TempNameForPlot = WorkSheet(6:8); 

                TempNameForPlot(4:7) = ' Deg'; 

                    

                 

%% FOR EACH SPEED: 

 

    for iSpeedNum = 1:3 

 

        CurrentSpeed = SpeedList{iSpeedNum}; 

        SpeedNoSpaces = 'RPM'; 

        SpeedNoSpaces(4:7) = CurrentSpeed(2:5); 

        SpeedNoSpacesTime = SpeedNoSpaces; 

        SpeedNoSpacesTime(8) = 'T'; %RPM3000T 

        SpeedNoSpacesFric = SpeedNoSpacesTime; 

        SpeedNoSpacesFric(8) = 'F'; 

       

        

         StructureName = strcat(TempNoSpaces,CurrentClamp); 

     

 

 

          BandedFilePath = 

strcat('G:\R_D\Public\Gem\Tests\Test 2\DC0024 

Gem\',CurrentPlateID,'\',CurrentPlateID,' 

',CurrentSpeed,'_',CurrentClamp,'.xls'); 

            MasterFilePath = 

strcat('G:\R_D\Public\Gem\Tests\Test 2\DC0024 Gem\Plate 

Std\Plate Std',' ',CurrentSpeed,'_',CurrentClamp,'.xls'); 

%                 StartTemp = WorkSheet(1:4);  

%                 StartTemp(5:7) = WorkSheet(6:8); %e.g. 

Data100 

%                 StartTempTime = StartTemp; 

%                 StartTempTime(8) = 'T'; %Data100T 

 

                % = (iSpeedNum-1)*9+(iClampNum-

1)*3+iStartTemp 

% display([WorkSheet ' Degrees Start Temp']) 
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Appendix H - Temperature Effects of Initial 

Temperature 

 

 

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 A

 3
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 A

 3
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 A

 3
0
0
0
rp

m
 3

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 A

 5
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 A

 5
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 A

 5
0
0
0
rp

m
 3

5
0
0
N

.x
ls

1
0
0
 D

e
g
 I
R

2
0
0
 D

e
g
 I
R

3
0
0
 D

e
g
 I
R

1
0
0
 D

e
g
 B

a
n
d

2
0
0
 D

e
g
 B

a
n
d

3
0
0
 D

e
g
 B

a
n
d

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 A

 7
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 A

 7
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 A

 7
0
0
0
rp

m
 3

5
0
0
N

.x
ls



 

CXXXI 
 

 

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 B

 3
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 B

 3
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 B

 3
0
0
0
rp

m
 3

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 B

 5
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 B

 5
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 B

 5
0
0
0
rp

m
 3

5
0
0
N

.x
ls

1
0
0
 D

e
g
 I
R

2
0
0
 D

e
g
 I
R

3
0
0
 D

e
g
 I
R

1
0
0
 D

e
g
 B

a
n
d

2
0
0
 D

e
g
 B

a
n
d

3
0
0
 D

e
g
 B

a
n
d

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 B

 7
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 B

 7
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 B

 7
0
0
0
rp

m
 3

5
0
0
N

.x
ls



CXXXII 
 

 

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 C

 3
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 C

 3
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 C

 3
0
0
0
rp

m
 3

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 C

 5
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 C

 5
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 C

 5
0
0
0
rp

m
 3

5
0
0
N

.x
ls

1
0
0
 D

e
g
 I
R

2
0
0
 D

e
g
 I
R

3
0
0
 D

e
g
 I
R

1
0
0
 D

e
g
 B

a
n
d

2
0
0
 D

e
g
 B

a
n
d

3
0
0
 D

e
g
 B

a
n
d

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 C

 7
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 C

 7
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 C

 7
0
0
0
rp

m
 3

5
0
0
N

.x
ls



 

CXXXIII 
 

 

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 D

 3
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 D

 3
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 D

 3
0
0
0
rp

m
 3

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 D

 5
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 D

 5
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 D

 5
0
0
0
rp

m
 3

5
0
0
N

.x
ls

1
0
0
 D

e
g
 I
R

2
0
0
 D

e
g
 I
R

3
0
0
 D

e
g
 I
R

1
0
0
 D

e
g
 B

a
n
d

2
0
0
 D

e
g
 B

a
n
d

3
0
0
 D

e
g
 B

a
n
d

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 D

 7
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 D

 7
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 D

 7
0
0
0
rp

m
 3

5
0
0
N

.x
ls



CXXXIV 
 

 

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 E

 3
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 E

 3
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 E

 3
0
0
0
rp

m
 3

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 E

 5
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 E

 5
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 E

 5
0
0
0
rp

m
 3

5
0
0
N

.x
ls

1
0
0
 D

e
g
 I
R

2
0
0
 D

e
g
 I
R

3
0
0
 D

e
g
 I
R

1
0
0
 D

e
g
 B

a
n
d

2
0
0
 D

e
g
 B

a
n
d

3
0
0
 D

e
g
 B

a
n
d

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 E

 7
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 E

 7
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 E

 7
0
0
0
rp

m
 3

5
0
0
N

.x
ls



 

CXXXV 
 

 

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 F

 3
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 F

 3
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 F

 3
0
0
0
rp

m
 3

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 F

 5
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 F

 5
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 F

 5
0
0
0
rp

m
 3

5
0
0
N

.x
ls

1
0
0
 D

e
g
 I
R

2
0
0
 D

e
g
 I
R

3
0
0
 D

e
g
 I
R

1
0
0
 D

e
g
 B

a
n
d

2
0
0
 D

e
g
 B

a
n
d

3
0
0
 D

e
g
 B

a
n
d

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 F

 7
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 F

 7
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 F

 7
0
0
0
rp

m
 3

5
0
0
N

.x
ls



CXXXVI 
 

 

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 G

 3
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 G

 3
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 G

 3
0
0
0
rp

m
 3

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 G

 5
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 G

 5
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 G

 5
0
0
0
rp

m
 3

5
0
0
N

.x
ls

1
0
0
 D

e
g
 I
R

2
0
0
 D

e
g
 I
R

3
0
0
 D

e
g
 I
R

1
0
0
 D

e
g
 B

a
n
d

2
0
0
 D

e
g
 B

a
n
d

3
0
0
 D

e
g
 B

a
n
d

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 G

 7
0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 G

 7
0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 G

 7
0
0
0
rp

m
 3

5
0
0
N

.x
ls



 

CXXXVII 
 

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 S

td
 3

0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 S

td
 3

0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 S

td
 3

0
0
0
rp

m
 3

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 S

td
 5

0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 S

td
 5

0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 S

td
 5

0
0
0
rp

m
 3

5
0
0
N

.x
ls

1
0
0
 D

e
g
 I
R

2
0
0
 D

e
g
 I
R

3
0
0
 D

e
g
 I
R

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 S

td
 7

0
0
0
rp

m
 1

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 S

td
 7

0
0
0
rp

m
 2

5
0
0
N

.x
ls

0
5

1
0

1
5

0

5
0
0

1
0
0
0

1
5
0
0

T
im

e
 (

S
e
c
)

Temperature (Deg C)

P
la

te
 S

td
 7

0
0
0
rp

m
 3

5
0
0
N

.x
ls



CXXXVIII 
 

6
8

1
0

1
2

1
4

1
6

1
8

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

 3
0
0
0
rp

m
 1

5
0
0
N

T
im

e
 O

v
e
r 

5
0
N

Start Temperature

1
2

3
4

5
6

7
8

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

 3
0
0
0
rp

m
 2

5
0
0
N

T
im

e
 O

v
e
r 

5
0
N

Start Temperature

1
2

3
4

5
6

7
8

9
1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

 3
0
0
0
rp

m
 3

5
0
0
N

T
im

e
 O

v
e
r 

5
0
N

Start Temperature

1
2

3
4

5
6

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

 5
0
0
0
rp

m
 1

5
0
0
N

T
im

e
 O

v
e
r 

5
0
N

Start Temperature

1
1
.5

2
2
.5

3
3
.5

4
4
.5

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

 5
0
0
0
rp

m
 2

5
0
0
N

T
im

e
 O

v
e
r 

5
0
N

Start Temperature

0
1

2
3

4
5

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

 5
0
0
0
rp

m
 3

5
0
0
N

T
im

e
 O

v
e
r 

5
0
N

Start Temperature

1
2

3
4

5
6

7
8

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

 7
0
0
0
rp

m
 1

5
0
0
N

T
im

e
 O

v
e
r 

5
0
N

Start Temperature

0
1

2
3

4
5

6
7

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

 7
0
0
0
rp

m
 2

5
0
0
N

T
im

e
 O

v
e
r 

5
0
N

Start Temperature

0
1

2
3

4
5

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

 7
0
0
0
rp

m
 3

5
0
0
N

T
im

e
 O

v
e
r 

5
0
N

Start Temperature

 

 

P
la

te
 S

td

P
la

te
 B

P
la

te
 D

P
la

te
 F



 

CXXXIX 
 

Appendix I - Friction Effects of Initial Temperature 
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Appendix J - Temperature Effects of Clamp Load 
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Appendix K - Friction Effects of Clamp Load 
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Appendix L - Temperature Effects of Input Speed 
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Appendix N - Friction vs. Temperature Plots for sub 

400˚C 
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Appendix O - MATLAB® Code for Results Analysis 

Model 

 

MATLAB® Model - Initial Graph Code 
 

tic 

RowNum = 0; 

%% IMPORT FROM EXCEL 

PlateIndex = [{'Plate A'} {'Plate B'} {'Plate C'} {'Plate D'} 
{'Plate E'} {'Plate F'} {'Plate G'}]; 

ExcelIndex = [{'J3:J30000'} {'K3:K30000'} {'L3:L30000'} 
{'M3:M30000'} {'N3:N30000'} {'O3:O30000'} {'P3:P30000'}]; 

%% FOR EACH PLATE A - G: 

for iPlateNum = 1:length(PlateIndex); 

    RowNum = 0 

    CurrentExcelColumn = ExcelIndex{iPlateNum}; 

    CurrentPlateID = PlateIndex{iPlateNum}; 

    CurrentPlateIDNoSpaces = CurrentPlateID(1:5); 

    CurrentPlateIDNoSpaces(6) = CurrentPlateID(7); 

    display(['Processing ' CurrentPlateID]) 

    SpeedList = [{' 3000rpm'},{' 5000rpm'},{' 7000rpm'}]; 

    SpeedListNoSpaces = 
[{'3000rpm'},{'5000rpm'},{'7000rpm'}]; 

    ClampList = [{'1500N'},{'2500N'},{'3500N'}]; 

    WorkSheetList = [{'Data 100'},{'Data 200'},{'Data 300'}]; 

    scrsz = get(0,'ScreenSize'); 

    figure('Position',[1 scrsz(4) scrsz(3) scrsz(4)]) 
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    %% FOR EACH SPEED: 

    for iSpeedNum = 1:3 

 

        CurrentSpeed = SpeedList{iSpeedNum}; 

        SpeedNoSpaces = SpeedListNoSpaces{iSpeedNum}; 

 

        %% FOR EACH CLAMP FORCE: 

        for iClampNum = 1:3 

            CurrentClamp = ClampList{iClampNum}; 

            BandedFilePath = strcat('G:\Gem\Tests\Test 
2\DC0024 Gem\',CurrentPlateID,'\',CurrentPlateID,' 
',CurrentSpeed,'_',CurrentClamp,'.xls'); 

            MasterFilePath = strcat('G:\Gem\Tests\Test 
2\DC0024 Gem\Plate Std\Plate Std',' 
',CurrentSpeed,'_',CurrentClamp,'.xls'); 

            StructureName = 
strcat('rpm',SpeedNoSpaces(1:4),CurrentClamp); 

 

%% FOR EACH START TEMPERATURE 

           for iStartTemp = 1:3 

                WorkSheet = WorkSheetList{iStartTemp}; 

                StartTemp = WorkSheet(1:4);  

                StartTemp(5:7) = WorkSheet(6:8); %e.g. 
Data100 

                StartTempTime = StartTemp; 

                StartTempTime(8) = 'T'; %Data100T 

 

                % = (iSpeedNum-1)*9+(iClampNum-
1)*3+iStartTemp 

                % display([WorkSheet ' Degrees Start Temp']) 



 

CXCI 
 

 

                WorkSheet = WorkSheetList{iStartTemp}; 

 

                MasterTemp = 
xlsread(MasterFilePath,WorkSheet, CurrentExcelColumn); 

                MasterForce = 
xlsread(MasterFilePath,WorkSheet, 'G3:G30000'); 

 

                MasterOverFifty = find(MasterForce>50); 

                LengthMaster = length(MasterOverFifty); 

                MasterStart = MasterOverFifty(1); 

                MasterEnd = MasterOverFifty(LengthMaster); 

                WorkSheet = WorkSheetList{iStartTemp}; 

                BandedTemp = xlsread(BandedFilePath, 
WorkSheet, CurrentExcelColumn); 

                BandedForce = xlsread(BandedFilePath, 
WorkSheet, 'G3:G30000'); 

                BandedOverFifty = find(BandedForce>50); 

                LengthBanded = length(BandedOverFifty); 

                BandedStart = BandedOverFifty(1); 

                BandedEnd = BandedOverFifty(LengthBanded); 

                VectorLengths(1) = LengthMaster; 

                VectorLengths(2) = LengthBanded; 

                MinVectorLength = min(VectorLengths); 

                BandedTempCut.(StructureName).(StartTemp) = 
BandedTemp(BandedStart:BandedStart+MinVectorLength-1); 

                BandedTempCut.(StructureName).(StartTempTime) 
= [0:0.01:(MinVectorLength/100)-0.01]; 

                MasterTempCut.(StructureName).(StartTemp) = 
MasterTemp(MasterStart:MasterStart+MinVectorLength-1); 
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                MasterTempCut.(StructureName).(StartTempTime) 
= [0:0.01:(MinVectorLength/100)-0.01]; 

 

                clear MinVectorLength zero 

                clear MasterTemp MasterForce MasterOverFifty 
LengthMaster MasterStart MasterEnd MasterDuration BandedTemp 
BandedForce BandedOverFifty 

                clear LengthBanded BandedStart BandedEnd 
BandedDuration InterpInterval BandedTempInterp 
MasterTempInterp CurrentCorrelation WorkSheet     

                 

           end 

            

            subplot(3,3,(iSpeedNum-1)*3+iClampNum) 

            
plot(BandedTempCut.(StructureName).Data100T,BandedTempCut.(St
ructureName).Data100,'-.r') 

            hold on 

            
plot(BandedTempCut.(StructureName).Data200T,BandedTempCut.(St
ructureName).Data200,'-.g') 

            
plot(BandedTempCut.(StructureName).Data300T,BandedTempCut.(St
ructureName).Data300,'-.b') 

            
plot(MasterTempCut.(StructureName).Data100T,MasterTempCut.(St
ructureName).Data100,'r') 

            
plot(MasterTempCut.(StructureName).Data200T,MasterTempCut.(St
ructureName).Data200,'g') 

            
plot(MasterTempCut.(StructureName).Data300T,MasterTempCut.(St
ructureName).Data300,'b') 

            titlename = strcat([CurrentPlateID,' 
',CurrentSpeed,' ',CurrentClamp,'.xls']) 

            title(titlename) 

            xlabel('Time (Sec)') 



 

CXCIII 
 

        ylabel('Temperature (Deg C)') 

         

         

        end 

         

    end 

     

    legend('Banded 100','Banded 200','Banded 300','Std 
100','Std 200','Std 300','Location','EastOutside') 

     saveas(gcf,[CurrentPlateID '.emf']) %saves figure as a 
jpeg in the folderpath direc 

        close 

 clear BandedTempCut MasterTempCut  

end 

toc 

 

Model Code 
 

tic 

RowNum = 0; 

 

%% IMPORT FROM EXCEL 

PlateIndex = [{'Plate A'} {'Plate B'} {'Plate C'} {'Plate D'} 
{'Plate E'} {'Plate F'} {'Plate G'}]; 

ExcelIndex = [{'J3:J30000'} {'K3:K30000'} {'L3:L30000'} 
{'M3:M30000'} {'N3:N30000'} {'O3:O30000'} {'P3:P30000'}]; 

 

%% FOR EACH PLATE A - G: 
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for iPlateNum = 1:length(PlateIndex); 

    RowNum = 0 

    CurrentExcelColumn = ExcelIndex{iPlateNum} 

    CurrentPlateID = PlateIndex{iPlateNum}; 

    CurrentPlateIDNoSpaces = CurrentPlateID(1:5); 

    CurrentPlateIDNoSpaces(6) = CurrentPlateID(7); 

    display(['Processing ' CurrentPlateID]) 

    SpeedList = [{' 3000rpm'},{' 5000rpm'},{' 7000rpm'}]; 

    ClampList = [{'1500N'},{'2500N'},{'3500N'}]; 

    WorkSheetList = [{'Data 100'},{'Data 200'},{'Data 300'}]; 

 

%% FOR EACH START TEMPERATURE 

    for iStartTemp = 1:3 

        WorkSheet = WorkSheetList{iStartTemp} 

       % display([WorkSheet ' Degrees Start Temp']) 

 

%% FOR EACH SPEED: 

        for iSpeedNum = 1:3 

            CurrentSpeed = SpeedList{iSpeedNum}; 

 

%% FOR EACH CLAMP FORCE: 

            for iClampNum = 1:3 

                CurrentClamp = ClampList{iClampNum}; 

                RowNum = (iSpeedNum-1)*9+(iClampNum-
1)*3+iStartTemp 

                 



 

CXCV 
 

                BandedFilePath = strcat('G:\Gem\Tests\Test 
2\DC0024 Gem\',CurrentPlateID,'\',CurrentPlateID,' 
',CurrentSpeed,'_',CurrentClamp,'.xls'); 

                MasterFilePath = strcat('G:\Gem\Tests\Test 
2\DC0024 Gem\Plate Std\Plate Std',' 
',CurrentSpeed,'_',CurrentClamp,'.xls'); 

                WorkSheet = WorkSheetList{iStartTemp}; 

                MasterTemp = 
xlsread(MasterFilePath,WorkSheet, CurrentExcelColumn); 

                MasterForce = 
xlsread(MasterFilePath,WorkSheet, 'G3:G30000'); 

                MasterOverFifty = find(MasterForce>50); 

                LengthMaster = length(MasterOverFifty); 

                MasterStart = MasterOverFifty(1); 

                MasterEnd = MasterOverFifty(LengthMaster); 

                WorkSheet = WorkSheetList{iStartTemp}; 

                BandedTemp = xlsread(BandedFilePath, 
WorkSheet, CurrentExcelColumn); 

                BandedForce = xlsread(BandedFilePath, 
WorkSheet, 'G3:G30000'); 

                BandedOverFifty = find(BandedForce>50); 

                LengthBanded = length(BandedOverFifty); 

                BandedStart = BandedOverFifty(1); 

                BandedEnd = BandedOverFifty(LengthBanded); 

                VectorLengths(1) = LengthMaster; 

                VectorLengths(2) = LengthBanded; 

                MinVectorLength = min(VectorLengths); 

            

                BandedTempCut = 
BandedTemp(BandedStart:BandedStart+MinVectorLength-1); 

                MasterTempCut = 
MasterTemp(MasterStart:MasterStart+MinVectorLength-1); 



CXCVI 
 

                Correlation.Info{RowNum,1} = 
strcat(CurrentSpeed,CurrentClamp,WorkSheet); 

                CurrentCorrelation = 
corrcoef(BandedTempCut,MasterTempCut); 

                
Correlation.(CurrentPlateIDNoSpaces)(RowNum,1) = 
CurrentCorrelation(1,2) 

 

                clear MasterTemp MasterForce MasterOverFifty 
LengthMaster MasterStart MasterEnd MasterDuration BandedTemp 
BandedForce BandedOverFifty 

                clear LengthBanded BandedStart BandedEnd 
BandedDuration InterpInterval BandedTempInterp 
MasterTempInterp CurrentCorrelation WorkSheet 

            end 

 

        end 

    end 

 

end 

toc 

 

%% WRITE TO EXCEL 

success = xlswrite('tempdata.xls', Correlation.Info, 
'Sheet1', 'A2') 

success = xlswrite('tempdata.xls', Correlation.PlateA, 
'Sheet1', 'B2') 

success = xlswrite('tempdata.xls', Correlation.PlateB, 
'Sheet1', 'C2') 

success = xlswrite('tempdata.xls', Correlation.PlateC, 
'Sheet1', 'D2') 

success = xlswrite('tempdata.xls', Correlation.PlateD, 
'Sheet1', 'E2') 



 

CXCVII 
 

success = xlswrite('tempdata.xls', Correlation.PlateE, 
'Sheet1', 'F2') 

success = xlswrite('tempdata.xls', Correlation.PlateF, 
'Sheet1', 'G2') 

success = xlswrite('tempdata.xls', Correlation.PlateG, 
'Sheet1', 'H2') 

 

Final Graph Code 
 

load 'G:\Gem\Tests\Test 2\DC0024 Gem\Matlab and Associated 
Results\Correlation1D' 

Cor(1:27,1) = Correlation.PlateA(:) 

Cor(1:27,2) = Correlation.PlateB(:) 

Cor(1:27,3) = Correlation.PlateC(:) 

Cor(1:27,4) = Correlation.PlateD(:) 

Cor(1:27,5) = Correlation.PlateE(:) 

Cor(1:27,6) = Correlation.PlateF(:) 

Cor(1:27,7) = Correlation.PlateG(:) 

Cor(1:27,8) = max([Cor],[],2) 

Cor(1:27,1) = (Cor(1:27,1)==Cor(1:27,8)).*Cor(1:27,1) 

Cor(1:27,2) = (Cor(1:27,2)==Cor(1:27,8)).*Cor(1:27,2) 

Cor(1:27,3) = (Cor(1:27,3)==Cor(1:27,8)).*Cor(1:27,3) 

Cor(1:27,6) = (Cor(1:27,6)==Cor(1:27,8)).*Cor(1:27,6) 

Cor(1:27,5) = (Cor(1:27,5)==Cor(1:27,8)).*Cor(1:27,5) 

Cor(1:27,4) = (Cor(1:27,4)==Cor(1:27,8)).*Cor(1:27,4) 

Cor(1:27,7) = (Cor(1:27,7)==Cor(1:27,8)).*Cor(1:27,7) 

 

YAxisLowerLim = min(Cor(:,8))-0.01 



CXCVIII 
 

bar(Cor(1:27,1:7),6.8) 

colormap(lines(7)) 

set(gca,'ylim',[YAxisLowerLim 1]) 

legend('Plate A','Plate B','Plate C','Plate D','Plate 
E','Plate F','Plate G','Location','NorthEastOutside') 

Title('Maximum Correlation Coefficients') 

ylabel('Correlation Coefficient') 

xlabel('Run Number') 



 

CXCIX 
 

Appendix P - Results Analysis Model Initial Plots 
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Appendix Q - Results Analysis Model Evaluated Plots 
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Appendix R - Technical Drawings of a Clutch 

Dynamometer 
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Appendix S - Rig Modelling MATLAB® Code 

% Define functions 
function[CluPressurePrev_bar,CluClampLoadPrev_N,CluTorqueNew_Nm,CluSpeedDiff
New_rpm,CluPowerNew_W] = ClutchModel_RigModel 
 (Time_s,sCluData,dt_s,CluMuPrev,CluSpeedDiffPrev_rpm) 
 
% Define clutch data 
%  - All clutch information to be stored in structure sCluData 
  
% GEOMETRIC DATA  
sCluData.SinglePistonDiameter_mm = 10.5;                                            % --> Diameter of 
single clutch actuation piston [mm] 
sCluData.SinglePistonArea_mm2 = 0.25*pi*sCluData.SinglePistonDiameter_mm^2;         
% --> Area of single clutch actuation piston [mm^2] 
sCluData.NumberOfPistons = 2;                                                       % --> Total number of 
actuation pistons 
sCluData.TotalPistonArea_mm2 = sCluData.NumberOfPistons * 
sCluData.SinglePistonArea_mm2; 
sCluData.DiamInner_mm = 65;                                                         % --> Inner diameter of 
friction material [mm] 
sCluData.DiamOuter_mm = 97;                                                         % --> Outer diameter of 
friction material [mm] 
sCluData.NumWorkingSurfaces = 6;                                                    % --> Total number of 
working surfaces (1x plate-plate interface = 1 working surface) 
sCluData.LeverRatio = 4.73;                                                         % --> Actuation lever ratio 
HGT 
sCluData.MeanFrictionRad_mm = (2/3)*( (((0.5*sCluData.DiamOuter_mm)^3)-
((0.5*sCluData.DiamInner_mm)^3)) / (((0.5*sCluData.DiamOuter_mm)^2)-
((0.5*sCluData.DiamInner_mm)^2))); 
sCluData.SingleWorkingSurfaceArea_m2 = (pi/4)*((sCluData.DiamOuter_mm^2)-
(sCluData.DiamInner_mm^2))/1e6; 
sCluData.DiscThickness_m = 0.0045;                                                  % --> Thickness of an 
individual plate (assumed constant) [m]  
  
sCluData.fInertiaClutchOPS_kgm2 = 0.0003; 
sCluData.fInertiaClutchIPS_kgm2 = 0.0016; 
 
 
% Define rig data 
 
% GEOMETRIC DATA 
sCluData.fInertiaRig_kgm2 = 0.42;                                                   % --> Inertia added to the 
clutch rig (Inertia A + Inertia B) 
sCluData.fInertiaMotor_kgm2 = 0.2362;                                               % --> Inertia of the 
75kW driving motor and geartrain 
sCluData.fSpeedIncreasingRatio = 10.06;                                             % --> Ratio of the 
speed increasing geartrain 

 
 
% Define initial conditions 
%  - All initial condition information to be stored in structure sInitialConds 
  
sInitConds.TempAir_degC = 200;                                                      % --> Initial temperature 
of the clutch ambient environment [deg C]  
sInitConds.TempBulk_degC = 200;                                                     % --> Initial 
temperature of the clutch bulk [deg C]  
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sInitConds.TempSurface_degC = 200;                                                  % --> Initial 
temperature of the clutch surface [deg C]  
  
sInitConds.CoefSurfaceState = 0.3;                                                  % --> Initial coefficient of 
surface state  
%sInitConds.CluMu = 0.4                                                      
  
sInitConds.CluSpeedDiff_rpm = 8060; 
 
dt_s = 0.005;                                                     % --> Length of each timestep [s] 
 
% Define Functions 
function[CluPressurePrev_bar,CluClampLoadPrev_N,CluTorqueNew_Nm,CluSpeedDiff
New_rpm,CluPowerNew_W] = 
ClutchModel_RigModel(Time_s,sCluData,dt_s,CluMuPrev,CluSpeedDiffPrev_rpm,RigPr
essureDemand_bar) 
  
TimePressureRise_s = 0.025;                      % Time taken for the pressure applied by the 
rig to reach the maximum value [s] 
%RigPressureDemand_bar = 60;                        % Maximum pressure applied by the rig 
during the event [bar] 
  
% If the time at the current timestep is less than the pressure rise time: 
%  - Calculate the pressure based upon a linear interpolation 
% If the time at the current tiemstep is greater than pressure rise time; 
%  - Assume pressure is the max pressure 
if Time_s < TimePressureRise_s 
   CluPressurePrev_bar = RigPressureDemand_bar*(Time_s/TimePressureRise_s); 
else 
    CluPressurePrev_bar = RigPressureDemand_bar; 
end 
  
% Clutch clamp load calculated from: 
%  - Force = Pressure x Area 
CluClampLoadPrev_N = 
(CluPressurePrev_bar*1e5)*(sCluData.TotalPistonArea_mm2/1e6)*sCluData.LeverRat
io; 
 % Clutch torque calculated from: 
% - Torque = friction co-efficient x clamp load x number of working surfaces x mean 
effective radius 
CluTorqueNew_Nm = 
CluMuPrev*CluClampLoadPrev_N*sCluData.NumWorkingSurfaces*(sCluData.MeanFri
ctionRad_mm/1e3);  
  
% Convert the clutch speed difference from RPM to radians per second i.e. SI units 
CluSpeedDiffPrev_radpers = CluSpeedDiffPrev_rpm*(2*pi/60); 
  
% New clutch speed difference calculated from: 
%  - Torque = Inertia x angular acceleration 
%  T = I * (theta double dot) 
%  T = I * (v2 - v1)/dt 
%  v2 - v1 = T * dt/I 
%  v2 = v1 + (T*dt/I) 
CluSpeedDiffNew_radpers = CluSpeedDiffPrev_radpers + (-
CluTorqueNew_Nm*dt_s/(sCluData.fInertiaClutchOPS_kgm2+sCluData.fInertiaRig_kg
m2+(sCluData.fInertiaMotor_kgm2/(sCluData.fSpeedIncreasingRatio^2)))); 
  
% New clutch power dissipation calculated from: 
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%  - Power = Torque x Angular velocity 
CluPowerNew_W = CluTorqueNew_Nm*CluSpeedDiffNew_radpers; 
  
% Convert new speed difference back to rpm from SI unit. 
CluSpeedDiffNew_rpm = CluSpeedDiffNew_radpers*(60/(2*pi)); 
  
% Clear unneeded variables  
clear CluSpeedDiffNew_radpers CluSpeedDiffOld_radpers 
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Ends 
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Appendix T - Specific Heat and Thermal Diffisivity and 

Conductivity Test Results 

Specific Heat, Thermal Diffusivity and Thermal Conductivity Test Measurements 

 

Test 

Temperature 

Thermal Diffusivity Specific Heat Thermal Conductivity 

24 6.4 701 8.0 

24 6.4 701 8.0 

24 6.5 701 8.1 

23 6.3 698 7.9 

24 6.4 701 8.0 

24 6.4 701 8.0 

102 6.5 914 10.6 

102 6.5 914 10.7 

101 6.5 912 10.6 

201 6.0 1139 12.1 

200 6.0 1137 12.1 

199 6.0 1135 12.1 

300 5.7 1318 13.3 

301 5.6 1320 13.3 

301 5.7 1320 13.3 

400 5.3 1459 13.6 

399 5.3 1457 13.8 

398 5.3 1456 13.7 

501 5.0 1565 13.9 

501 5.0 1565 13.9 

501 5.0 1565 13.9 

599 4.9 1640 14.2 

600 4.8 1640 14.1 

601 4.8 1641 14.1 

700 4.7 1694 14.0 

700 4.7 1694 14.0 

700 4.6 1694 13.9 
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800 4.6 1730 14.2 

801 4.6 1731 14.0 

801 4.6 1731 14.1 

900 4.5 1756 14.0 

899 4.5 1756 14.0 

899 4.5 1756 14.0 

1000 4.5 1777 14.0 

1001 4.5 1777 14.2 

1001 4.4 1777 13.8 

800 4.6 1730 14.0 

800 4.6 1730 14.0 

802 4.6 1731 14.0 

600 5.0 1640 14.4 

601 4.8 1641 13.9 

599 4.8 1640 14.0 

401 5.2 1460 13.6 

402 5.3 1461 13.6 

402 5.2 1461 13.6 

200 6.0 1137 12.1 

208 5.9 1153 12.1 

208 5.9 1153 12.2 

24 6.3 701 7.9 

24 6.2 701 7.8 

25 6.4 704 8.0 
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Appendix U - Thermal Modelling MATLAB® Code 
 
function[TempAirNew_degC,TempBulkNew_degC,TempSurfaceNew_degC] = 
ClutchModel_ThermalModelSimple(sCluData,TempAirPrev_degC,TempBulkPrev_degC,
TempSurfacePrev_degC,CluPowerNew_W,dt_s) 
 
% Define clutch data 
%  - All clutch information to be stored in structure sCluData 
  
% GEOMETRIC DATA (RA106 data from Martin Kemp unless otherwise specified in 
caps) 
sCluData.SinglePistonDiameter_mm = 10.5;                                            % --> Diameter of 
single clutch actuation piston [mm] 
sCluData.SinglePistonArea_mm2 = 0.25*pi*sCluData.SinglePistonDiameter_mm^2;         
% --> Area of single clutch actuation piston [mm^2] 
sCluData.NumberOfPistons = 2;                                                       % --> Total number of 
actuation pistons 
sCluData.TotalPistonArea_mm2 = sCluData.NumberOfPistons * 
sCluData.SinglePistonArea_mm2; 
sCluData.DiamInner_mm = 65;                                                         % --> Inner diameter of 
friction material [mm] 
sCluData.DiamOuter_mm = 97;                                                         % --> Outer diameter of 
friction material [mm] 
sCluData.NumWorkingSurfaces = 6;                                                    % --> Total number of 
working surfaces (1x plate-plate interface = 1 working surface) 
sCluData.LeverRatio = 4.73;                                                         % --> Actuation lever ratio 
HGT 
sCluData.MeanFrictionRad_mm = (2/3)*( (((0.5*sCluData.DiamOuter_mm)^3)-
((0.5*sCluData.DiamInner_mm)^3)) / (((0.5*sCluData.DiamOuter_mm)^2)-
((0.5*sCluData.DiamInner_mm)^2))); 
sCluData.SingleWorkingSurfaceArea_m2 = (pi/4)*((sCluData.DiamOuter_mm^2)-
(sCluData.DiamInner_mm^2))/1e6; 
sCluData.DiscThickness_m = 0.0045;                                                  % --> Thickness of an 
individual plate (assumed constant) [m]  
  
sCluData.fInertiaClutchOPS_kgm2 = 0.0003; 
sCluData.fInertiaClutchIPS_kgm2 = 0.0016; 
  
% THERMAL DATA  
sCluData.DensityCC_kgperm3 = 1850;                                                  % --> Density of 
material [kg/m^3] 
sCluData.Emissivity = 0.8;                                                          % --> Emissivity of c-c  
sCluData.CvCCRT_JperkgK = 800;                                                      % --> Specific Heat 
Capacity at 27degC [J/kg*K] 
sCluData.CvCC1000_JperkgK = 1900;                                                   % --> Specific Heat 
Capacity at 1000degC [J/kg*K] 
sCluData.ThermalConductivityCCRT_WpermK = 10;                                       % --> Thermal 
conductivity perpendicular to friction surface at room temp [W/m.K] 
  
% Define initial conditions 
%  - All initial condition information to be stored in structure sInitialConds 
  
sInitConds.TempAir_degC = 200;                                                      % --> Initial temperature 
of the clutch ambient environment [deg C]  
sInitConds.TempBulk_degC = 200;                                                     % --> Initial 
temperature of the clutch bulk [deg C]  
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sInitConds.TempSurface_degC = 200;                                                  % --> Initial 
temperature of the clutch surface [deg C]  
 
%sInitConds.CluMu = 0.4                                                      
sInitConds.CluSpeedDiff_rpm = 8060; 
dt_s = 0.005;                                                     % --> Length of each timestep [s] 
 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% DEFINE MODEL PARAMETERS 
SurfaceThickness_m = 0.000010;                   % Thickness of the surface region [m] 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% DEFINE ENVIRONMENTAL PROPERTIES 
AirConvectiveTransferCoef = 100;                % Convective transfer coefficient for air 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% DEFINE CONSTANTS 
StefanBoltzmannConst = 5.6704e-08;              % Heat transfer constant of 
proportionality [W/m^2.K^4] 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% OTHER MODEL CALCULATIONS 
BulkThickness_m = 0.5*(sCluData.DiscThickness_m - 2*SurfaceThickness_m);                                
% Thickness of the bulk region [m] 
MassBulk_kg = 
sCluData.DensityCC_kgperm3*(BulkThickness_m*sCluData.SingleWorkingSurfaceArea
_m2);        % Mass of the bulk region [kg] 
MassSurface_kg = 
sCluData.DensityCC_kgperm3*(SurfaceThickness_m*sCluData.SingleWorkingSurfaceA
rea_m2);  % Mass of the surface region [kg] 
BulkCircumfSurfaceArea_m2 = BulkThickness_m*(sCluData.DiamOuter_mm/1e3)*pi;                                   
% Exposed radial area of the bulk material [m^2] 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% CONVERT TEMPERATURES FROM CELCIUS TO KELVIN 
TempAirPrev_K = TempAirPrev_degC + 273; 
TempBulkPrev_K = TempBulkPrev_degC + 273; 
TempSurfacePrev_K = TempSurfacePrev_degC + 273; 
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% SPECIFIC HEAT CAPACITY LOOKUP 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
aCvCC = [sCluData.CvCCRT_JperkgK,sCluData.CvCC1000_JperkgK]; 
aCvTemps_K = [27+273,1000+273]; 
  
% If previous surface temperature < 27 deg C 
%  - Assume Cv is Cv@27degC 
% If previous surface temperature > 1000 deg C 
%  - Assume Cv is Cv@1000degC 
% Else assume Cv function is linear and perform interpolation to obtain value for 
current surface temperature 
if TempSurfacePrev_K < aCvTemps_K(1) 
    CvSurface_JperkgK = aCvCC(1); 
elseif TempSurfacePrev_K > aCvTemps_K(2); 
    CvSurface_JperkgK = aCvCC(2); 
else 
    CvSurface_JperkgK = interp1(aCvTemps_K,aCvCC,TempSurfacePrev_K); 
end 
  



CCXX 
 

% Repeat above for bulk 
if TempBulkPrev_K < aCvTemps_K(1) 
    CvBulk_JperkgK = aCvCC(1); 
elseif TempBulkPrev_K > aCvTemps_K(2); 
    CvBulk_JperkgK = aCvCC(2); 
else 
    CvBulk_JperkgK = interp1(aCvTemps_K,aCvCC,TempBulkPrev_K); 
end 
  
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% HEAT TRANSFER CALCULATIONS 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  
% Assume that entire energy dissipated over the timestep is absorbed into the friction 
surface as heat 
%  - assumptions = zero surface roughness 
%                = zero losses to environment 
QSurfaceAbsorbed_J = (CluPowerNew_W/12)*dt_s;           % IMPORTANT - divide by 12 
as only considering one disc-disc interface (one working surface = two interfaces) 
  
% Heat flux due to conduction from surface to bulk 
%  - Delta Q = -k.A.(Delta T/Delta x) 
%  - assumption = uniform conduction through working surface area 
QSurfaceConducted_J = -
(sCluData.ThermalConductivityCCRT_WpermK*sCluData.SingleWorkingSurfaceArea_
m2*(TempBulkPrev_K-TempSurfacePrev_K)/BulkThickness_m)*dt_s; 
  
% Heat flux due to convection from surface to bulk 
%  - Delta Q = A.h.(Delta T) 
%  - assumption = convection from radial surface of bulk only 
QBulkConvected_J = 
AirConvectiveTransferCoef*BulkCircumfSurfaceArea_m2*(TempBulkPrev_K-
TempAirPrev_K)*dt_s; 
  
% Heat flux due to radiation 
%  - Delta Q = A.?.?.(Delta T)^4 
%  - assumption = radiation from radial surface of bulk only 
QBulkRadiated_J = 
BulkCircumfSurfaceArea_m2*StefanBoltzmannConst*sCluData.Emissivity*(TempBulk
Prev_K^4 - TempAirPrev_K^4)*dt_s; 
  
% Flux summation for surface, bulk and ambient environment 
% Delta Q = m.Cv.(Delta T) 
%  - Delta Q = (Heat flux in - heat flux out) over the timestep dt 
% For surface: 
DeltaTempSurface_K = (QSurfaceAbsorbed_J-
QSurfaceConducted_J)/(MassSurface_kg*CvSurface_JperkgK); 
TempSurfaceNew_K = TempSurfacePrev_K + DeltaTempSurface_K;                                          
% New surface temperature  = previous surface temperature plus change due to heat 
flux 
% For bulk: 
DeltaTempBulk_K = (QSurfaceConducted_J-QBulkConvected_J-
QBulkRadiated_J)/(MassBulk_kg*CvBulk_JperkgK); 
TempBulkNew_K = TempBulkPrev_K + DeltaTempBulk_K; 
% For air: 
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%  - assumption = air remains at ambient temp due to air flow i.e. scenario is not a 
closed system 
TempAirNew_K = TempAirPrev_K; 
  
% Convert back to deg C from Kelvin 
TempAirNew_degC = TempAirNew_K - 273; 
TempBulkNew_degC = TempBulkNew_K - 273; 
TempSurfaceNew_degC = TempSurfaceNew_K - 273; 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Ends 
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Appendix V - Thermal Decomposition Test Results 

 

Thermal Decomposition Sample One 

 

 

Thermal Decomposition Sample Two 
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Thermal Decomposition Sample Three 

 

 

Thermal Decomposition Sample Four 
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Thermal Decomposition Sample Five 
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Appendix W - Surface Modelling MATLAB® Code 

Surface State Model 

% SYNTAX: 
% function[MuAve,MuStart] = 
frictionfunction(xDeformation1,yDeformation1,xReformation1,yReformation1,xAbilit
yDeform1,xAbilityReform1,xFriction1,yFriction1,xFriction2,yFriction2) 
% 
% FILE: 
% frictionfunction.m 
% 
% PURPOSE: 
% Predicts the coefficient of friction for a carbon-carbon clutch 
% throughout the bedding-in process based upon a simple 'surface-state' 
% model. 
% 
% ARGUMENTS: 
% nInitialState - The initial surface state coefficient of the system 
% xDeformation1 - x co-ordinate of knee in deformation coefficient curve 
% yDeformation2 - y co-ordinate of final point of deformation coefficient curve 
% yDeformation1 - y co-ordinate of knee in deformation coefficient curve 
% xReformation1 - x co-ordinate of knee in reformation coefficient curve 
% yReformation2 - y co-ordinate of final point of reformation coefficient curve 
% yReformation1 - y co-ordinate of knee in reformation coefficient curve 
% xAbilityDeform1 - x co-ordinate of knee in deformation ability curve 
% xAbilityReform1 - x co-ordinate of knee in reformation ability curve 
% xFriction1 - x co-ordinate of first knee in coefficient of friction curve 
% xFriction2 - x co-ordinate of second knee in coefficient of friction curve 
% 
% RETURNS: 
% aMuAve   - Array of average coefficient of friction during each event 
% aMuStart - Array of coeffficient of friction during first 0.1s of each event 
% 
% GLOBALS: 
% None 
% 
 
  
function[aMuAve,aMuStart] = 
frictionfunction(nInitialState,xDeformation1,yDeformation1,yDeformation2,xReforma
tion1,yReformation1,yReformation2,xAbilityDeform1,xAbilityReform1,xFriction1,xFri
ction2) 
  
% Clutch data 
ClutchArea_m2 = 0.024429;       % Total area of all clutch working surfaces 
  
% ---------------------------------------- 
% CYCLE INFORMATION 
%  - Define the parameters required to generate clutch working cycle 
  
bSameEvents = 1;                 % Boolean "All Events The Same?" 
  
dt = 0.1;                        % Time step for the simulation [s] 
  
if bSameEvents == 1 
    nEvents = 12;                % Number of events within the cycle? 
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    nTorque_Nm = 190;             % Torque over the event (assumed constant) 
    nInputSpeed_rpm = 8000;      % Intial clutch input speed [rpm] 
    nDuration_s = 1;            % Duration of the event [s] 
    nCooling_s = 4;            % Time between events (i.e. cooling) [s] 
 

     
    eventlength = (nDuration_s + nCooling_s); 
    aEvent_Speed = zeros(1,eventlength/dt); 
    aEvent_Torque = zeros(1,eventlength/dt); 
    aEvent_Slip = zeros(1,eventlength/dt); 
    aEvent_Speed(1:1+nDuration_s/dt) = [8000:-8000/(nDuration_s/dt):0]; 
    aEvent_Torque(1:1+nDuration_s/dt) = nTorque_Nm; 
    aEvent_Slip(1:1+nDuration_s/dt) = 1; 
     
    aEvent_PowerDensity = 
aEvent_Speed.*(2*pi/60).*aEvent_Torque./(1000000*ClutchArea_m2); 
     
    aCycle_Time = [dt:dt:(eventlength*nEvents)]; 
    aCycle_Speed = aEvent_Speed; 
    aCycle_Torque = aEvent_Torque; 
    aCycle_PowerDensity = aEvent_PowerDensity; 
    aCycle_Slip = aEvent_Slip; 
     

 
    for iEventCnt = 2:nEvents 
       aCycle_Speed(length(aCycle_Speed)+1:length(aCycle_Speed)+(eventlength/dt)) = 
aEvent_Speed; 
       
aCycle_Torque(length(aCycle_Torque)+1:length(aCycle_Torque)+(eventlength/dt)) = 
aEvent_Torque; 
       
aCycle_PowerDensity(length(aCycle_PowerDensity)+1:length(aCycle_PowerDensity)+
(eventlength/dt)) = aEvent_PowerDensity; 
       aCycle_Slip(length(aCycle_Slip)+1:length(aCycle_Slip)+(eventlength/dt)) = 
aEvent_Slip; 
    end 
     
    sCycle.Time = aCycle_Time; 
    sCycle.Speed = aCycle_Speed; 
    sCycle.Torque = aCycle_Torque; 
    sCycle.PowerDensity = aCycle_PowerDensity; 
    sCycle.Slip = aCycle_Slip; 
    clear aCycle_Time aCycle_Speed aCycle_Torque aCycle_PowerDensity aCycle_Slip 
     
else 
     
     
end 
  
  
nPowerTrans = 1;             % Transition power 
nPowerMax =  3;             % Max power density considered 
  
sCycle.PowerNormalised = sCycle.PowerDensity./nPowerTrans; 
  
 
% ------------------------------ 
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% POWER LOOKUP TABLE 
  
%xDeformation1 = 1       % x co-ordinate of the deformation knee 
%yDeformation1 = 0.5     % y co-ordinate of the deformation knee 
%xReformation1 = 1.4     % x co-ordinate of the reformation knee 
%yReformation1 = 0.6     % y co-ordinate of the reformation knee 
  
aLookup_Power = [0:0.1:nPowerMax]; 
aLookup_xDeformation = [0,xDeformation1,nPowerMax]; 
aLookup_yDeformation = [0,yDeformation1,yDeformation2]; 
aLookup_xReformation = [0,xReformation1,nPowerMax]; 
aLookup_yReformation = [0,yReformation1,yReformation2]; 
  
% Plot graph of power against coefficient of deformation/reformation 
Graph_LookupTables = figure; 
subplot(3,1,1); 
plot(aLookup_xDeformation,aLookup_yDeformation,'color', 'r'); 
line(xDeformation1,yDeformation1, 'Marker', 's', 'MarkerSize', 3, 'MarkerEdgeColor', 
'r', 'MarkerFaceColor', 'r'); 
line(nPowerMax,yDeformation2, 'Marker', 's', 'MarkerSize', 3, 'MarkerEdgeColor', 'r', 
'MarkerFaceColor', 'r'); 
hold on 
grid on 
plot(aLookup_xReformation,aLookup_yReformation,'color', 'g'); 
% Add markers to clearly define the location of the knee points 
line(xReformation1,yReformation1, 'Marker', 's', 'MarkerSize', 3, 'MarkerEdgeColor', 
'g', 'MarkerFaceColor', 'g'); 
line(nPowerMax,yReformation2, 'Marker', 's', 'MarkerSize', 3, 'MarkerEdgeColor', 'g', 
'MarkerFaceColor', 'g'); 
% Add relevant descriptions to the axes 
xlabel('Power Density (MWm^-2)'); 
ylabel('Coefficient of surface reformation/deformation'); 
  
  
% ------------------------------ 
% ABILITY LOOKUP TABLE 
  
%xAbilityDeform1 = 0.1 
%yAbilityDeform1 = 0.95 
%xAbilityReform1 = 0.9 
%yAbilityReform1 = 0.95 
  
aLookup_Power = [0:0.1:3]; 
  
  
aLookup_xAbilityReform = [1,xAbilityReform1,0]; 
aLookup_yAbilityReform = [1,1,0]; 
  
aLookup_xAbilityDeform = [0,xAbilityDeform1,1]; 
aLookup_yAbilityDeform = [0,1,1]; 
  
  
% Plot graph of surface state against ability to deform/reform the surface 
subplot(3,1,2); 
plot(aLookup_xAbilityDeform,aLookup_yAbilityDeform,'color', 'r'); 
line(xAbilityDeform1,1, 'Marker', 's', 'MarkerSize', 3, 'MarkerEdgeColor', 'r', 
'MarkerFaceColor', 'r'); 



CCXXVIII 
 

hold on 
grid on 
plot(aLookup_xAbilityReform,aLookup_yAbilityDeform,'color', 'g'); 
% Add markers to clearly define the location of the knee point 
line(xAbilityReform1,1, 'Marker', 's', 'MarkerSize', 3, 'MarkerEdgeColor', 'g', 
'MarkerFaceColor', 'g'); 
% Add relevant descriptions to the axes 
xlabel('Coefficient of Surface State at i-1th timestep'); 
ylabel('Coefficient of ability to deform/reform'); 
% ------------------------------ 
% FRICTION LOOKUP TABLE 
  
%xFriction1 = 0.4; 
%xFriction2 = 0.6; 
%yFriction1 = 0.55; 
%yFriction2 = 0.35; 
  
aLookup_xFriction = [0,xFriction1,xFriction2,1]; 
aLookup_yFriction = [0.6,0.6,0.3,0.3]; 
  
subplot(3,1,3); 
plot(aLookup_xFriction,aLookup_yFriction); 
grid on 
% Add markers to clearly define the location of the knee points 
line(xFriction1,0.6, 'Marker', 's', 'MarkerSize', 3, 'MarkerEdgeColor', 'b', 
'MarkerFaceColor', 'b'); 
line(xFriction2,0.3, 'Marker', 's', 'MarkerSize', 3, 'MarkerEdgeColor', 'b', 
'MarkerFaceColor', 'b'); 
% Add relevant descriptions to the axes 
xlabel('Coefficient of Surface State'); 
ylabel('Coefficient of friction'); 
ylim([0,1]); 
  
sCycle.cDeformation(1,1) = [0]; 
sCycle.cReformation(1,1) = [0]; 
sCycle.cAbilityDeform(1,1) = [0]; 
sCycle.cAbilityReform(1,1) = [0]; 
sCycle.cChange(1,1) = [0]; 
sCycle.SurfaceState(1,1) = [nInitialState]; 
sCycle.Mu(1,1) = 
interp1(aLookup_xFriction,aLookup_yFriction,sCycle.SurfaceState(1,1),'linear'); 
  
for iTimeStep = 2:length(sCycle.Time) 
     
   PowerDensity = sCycle.PowerDensity(iTimeStep);  
    
   if PowerDensity > nPowerMax 
       PowerDensity = nPowerMax; 
   end 
    
   sCycle.cDeformation(1,iTimeStep) = 
interp1(aLookup_xDeformation,aLookup_yDeformation,PowerDensity,'linear')*dt; 
   sCycle.cReformation(1,iTimeStep) = 
interp1(aLookup_xReformation,aLookup_yReformation,PowerDensity,'linear')*dt; 
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   sCycle.cAbilityDeform(1,iTimeStep) = 
interp1(aLookup_xAbilityDeform,aLookup_yAbilityDeform,sCycle.cDeformation(1,iTi
meStep-1),'linear'); 
   sCycle.cAbilityReform(1,iTimeStep) = 
interp1(aLookup_xAbilityReform,aLookup_yAbilityReform,sCycle.cReformation(1,iTi
meStep-1),'linear');  
    
   sCycle.cChange(1,iTimeStep) = 
sCycle.cReformation(1,iTimeStep)*sCycle.cAbilityReform(1,iTimeStep) - 
sCycle.cDeformation(1,iTimeStep)*sCycle.cAbilityDeform(1,iTimeStep); 
    
   if sCycle.Slip(1,iTimeStep) == 1 
   sCycle.SurfaceState(1,iTimeStep) = sCycle.SurfaceState(1,iTimeStep-1) + 
sCycle.cChange(1,iTimeStep); 
   else 
   sCycle.SurfaceState(1,iTimeStep) = sCycle.SurfaceState(1,iTimeStep-1);   
   end 
    
   if sCycle.SurfaceState(1,iTimeStep) > 1 
       sCycle.SurfaceState(1,iTimeStep) = 1; 
   elseif sCycle.SurfaceState(1,iTimeStep) < 0 
       sCycle.SurfaceState(1,iTimeStep) = 0; 
   end 
    
   sCycle.Mu(1,iTimeStep) = 
interp1(aLookup_xFriction,aLookup_yFriction,sCycle.SurfaceState(1,iTimeStep),'linea
r'); 
   if sCycle.Mu(1,iTimeStep) < 0 
       sCycle.Mu(1,iTimeStep) = 0; 
   end 
end 
  
  
  
for iTimeStep = 2:length(sCycle.Time) 
    SlipChange(iTimeStep) = sCycle.Slip(iTimeStep)-sCycle.Slip(iTimeStep-1); 
  
end 
  
sCycle.Starts = [1,find(SlipChange == 1)]; 
sCycle.Ends = find(SlipChange == -1); 
  
for iEventCnt = 1:length(sCycle.Ends) 
sCycle.MuAve(iEventCnt) = 
mean(sCycle.Mu(sCycle.Starts(iEventCnt):sCycle.Ends(iEventCnt))); 
sCycle.MuStart(iEventCnt) = 
mean(sCycle.Mu(sCycle.Starts(iEventCnt):sCycle.Starts(iEventCnt)+1)); 
end 
  
clear SlipChange 
  
  
aMuAve = sCycle.MuAve(2:end); 
aMuStart = sCycle.MuStart(2:end); 
 



CCXXX 
 

Random Number Generator 

function[RandNum] = 
ClutchModel_RandNumGen(aConfidence,aDiscretisation,nInitialConfidence) 
  
aCumsum = cumsum(aConfidence); 
  
RandNum2 = 
interp1(aCumsum,aDiscretisation,nInitialConfidence+rand(1)*(sum(aConfidence)-
nInitialConfidence),'linear'); 
  
if isnan(RandNum2) == 1 
    while isnan(RandNum2) == 1 
        RandNum2 = 
interp1(aCumsum,aDiscretisation,nInitialConfidence+rand(1)*(sum(aConfidence)-
nInitialConfidence)); 
    end 
end 
  
RandNum = RandNum2; 
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Surface State Lookup Table Generator 

function[mxDeform,myDeform,mzDeform,mxReform,myReform,mzReform,axFriction,
ayFriction,mDeformCore,mReformCore,aAllGeneratedVals,maxDeform,maxReform] = 
CoordGen_v11(sConfidence); 
  
% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
% GENERATION OF DEFORMATION LOOKUP TABLE 
% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
  
% Define arrays containing x,y and z coordinates of known points 
axKnownVals = [(0:0.1:1),zeros(1,10)]; 
ayKnownVals = [zeros(1,11),(0.1:0.1:1)]; 
azKnownVals = zeros(1,21); 
  
OverallLogic = 0; 
  
while OverallLogic == 0 
  
logic = 0; 
aConfidence = sConfidence.zDeform55; 
while logic == 0;  
zDeform55 = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (zDeform55 > 0)&(1 > zDeform55); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.zDeform5b; 
while logic == 0;  
zDeform5b = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (1 > zDeform5b)&(zDeform5b > zDeform55); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.zDeform5a; 
while logic == 0;  
zDeform5a = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (1 > zDeform5a)&(zDeform5a > zDeform5b); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.yDeformb; 
while logic == 0;  
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yDeformb = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (yDeformb > 0)&(1 > yDeformb); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.yDeforma; 
while logic == 0;  
yDeforma = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (yDeforma > 0)&(yDeformb > yDeforma); 
end 
clear aConfidence 
  
  
  
logic = 0; 
aConfidence = sConfidence.zDeforma5; 
while logic == 0;  
zDeforma5 = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (zDeforma5 > 0)&(zDeform55 > zDeforma5); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.xDeforma; 
while logic == 0;  
xDeforma = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (xDeforma > 0)&(1 > xDeforma); 
end 
clear aConfidence 
  
  
  
xDeform1 = 0; 
xDeform2 = 0.25; 
xDeform3 = 0.5; 
xDeform4 = 0.75; 
xDeform5 = 1; 
  
yDeform1 = 0; 
yDeform2 = 0.25; 
yDeform3 = 0.5; 
yDeform4 = 0.75; 
yDeform5 = 1; 
  
axGeneratedVals = [xDeform5,xDeform5,xDeform5,xDeforma]; 
ayGeneratedVals = [yDeforma,yDeformb,yDeform5,yDeform5]; 
azGeneratedVals = [zDeform5a,zDeform5b,zDeform55,zDeforma5]; 
  



 

CCXXXIII 
 

%nRes = 25; 
nMax = 1; 
nMin = 0; 
nRes = sConfidence.nRes; 
  
[gridx,gridy] = meshgrid([nMin:nMax/nRes:nMax],[nMin:nMax/nRes:nMax]); 
  
  
gridz = 
griddata([axKnownVals,axGeneratedVals],[ayKnownVals,ayGeneratedVals],[azKnown
Vals,azGeneratedVals],gridx,gridy,'invdist'); 
  
% mDeform is what will be saved in the sCoord structure 
%  - gridz can be easily generated later from mDeformCore. 
mDeformCore = 
[[axKnownVals,axGeneratedVals];[ayKnownVals,ayGeneratedVals];[azKnownVals,azG
eneratedVals]]; 
  
zLowCnt = 0; 
zHighCnt = 1; 
for xCheck = 1:nRes+1 
     
    for yCheck = 1:nRes+1 
         
        z = gridz(xCheck,yCheck); 
         
        if z <= 0 
            z =0; 
            zLowCnt = zLowCnt+1; 
        end 
         
        if z >= 1; 
            z = 1; 
            zHighCnt = zHighCnt+1; 
        end 
         
        gridz(xCheck,yCheck) = z; 
    end 
     
end 
  
zLowCnt_Percent = (zLowCnt/((nRes+1)^2))*100; 
zHighCnt_Percent = (zHighCnt/((nRes+1)^2))*100; 
  
if zLowCnt_Percent <= 10 
    ResultCheck1 = 1; 
else 
    ResultCheck1 = 0; 
end 
  
if zHighCnt_Percent <= 10 
    ResultCheck2 = 1; 
else 
    ResultCheck2 = 0; 
end 
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clear zLowCnt_Percent zHighCnt_Percent zLowCnt zHighCnt z 
  
xGradCheck = gridx(size(gridx,1),:); 
zGradCheck = gridz(size(gridx,1),:); 
  
for iCnt = 2:length(xGradCheck) 
   GradCheck(iCnt-1) = sqrt(zGradCheck(iCnt)-zGradCheck(iCnt-1)); 
end 
  
clear xGradCheck zGradCheck 
  
ResultCheck3 = isreal(GradCheck); 
  
OverallLogic = (ResultCheck1 == 1 & ResultCheck2 == 1 & ResultCheck3 == 1); 
end 
  
  
mxDeform = gridx; 
myDeform = gridy; 
mzDeform = gridz; 
  
clear OverallLogic ResultCheck1 ResultCheck2 ResultCheck3 
clear axKnownVals axGeneratedVals ayKnownVals ayGeneratedVals azKnownVals 
azGeneratedVals 
  
  
% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
% GENERATION OF REFORMATION LOOKUP TABLE 
% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
  
% Define arrays containing x,y and z coordinates of known points 
axKnownVals = [(0:0.1:1),zeros(1,10)]; 
ayKnownVals = [ones(1,11),(0:0.1:0.9)]; 
azKnownVals = zeros(1,21); 
  
  
OverallLogic = 0; 
  
while OverallLogic == 0 
     
logic = 0; 
aConfidence = sConfidence.zReform51; 
while logic == 0;  
zReform51 = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (zReform51 > 0)&(1 > zReform51); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.zReform5a; 
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while logic == 0;  
zReform5a = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (zReform5a > 0)&(zReform51 > zReform5a); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.yReform5a; 
while logic == 0;  
yReform5a = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (yReform5a > 0)&(1 > yReform5a); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.zReforma1; 
while logic == 0;  
zReforma1 = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (zReforma1 > 0)&(zReform51 > zReforma1); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.xReforma1; 
while logic == 0;  
xReforma1 = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (xReforma1 > 0)&(1 > xReforma1); 
end 
clear aConfidence 
  
axGeneratedVals = [1,xReforma1,1]; 
ayGeneratedVals = [0,0,yReform5a]; 
azGeneratedVals = [zReform51,zReforma1,zReform5a]; 
  
nRes = 25; 
nMax = 1; 
nMin = 0; 
  
[gridx,gridy] = meshgrid([nMin:nMax/nRes:nMax],[nMin:nMax/nRes:nMax]); 
  
gridz = 
griddata([axKnownVals,axGeneratedVals],[ayKnownVals,ayGeneratedVals],[azKnown
Vals,azGeneratedVals],gridx,gridy,'invdist'); 
  
% mReformCore is what will be saved in the sCoord structure 
%  - gridz can be easily generated later from mReformCore. 
mReformCore = 
[[axKnownVals,axGeneratedVals];[ayKnownVals,ayGeneratedVals];[azKnownVals,azG
eneratedVals]]; 
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zLowCnt = 0; 
zHighCnt = 1; 
for xCheck = 1:nRes+1 
     
    for yCheck = 1:nRes+1 
         
        z = gridz(xCheck,yCheck); 
         
        if z <= 0 
            z =0; 
            zLowCnt = zLowCnt+1; 
        end 
         
        if z >= 1; 
            z = 1; 
            zHighCnt = zHighCnt+1; 
        end 
         
        gridz(xCheck,yCheck) = z; 
    end 
     
end 
  
mxReform = gridx; 
myReform = gridy; 
mzReform = gridz; 
  
  
OverallLogic = 1; 
end 
  
  
% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
% GENERATION OF FRICTION LOOKUP TABLE 
% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
  
xFriction1 = 0; 
xFriction2 = 1; 
  
logic = 0; 
while logic == 0 
    aConfidence = sConfidence.Friction1; 
    yFriction1 = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
    clear aConfidence 
  
    aConfidence = sConfidence.Friction2; 
    yFriction2 = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
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    clear aConfidence 
  
    logic = (yFriction2>0.15)&(yFriction2<0.35)&(yFriction1>0.45)&(yFriction1<0.75); 
end 
  
axFriction = [xFriction1,xFriction2]; 
ayFriction = [yFriction1,yFriction2]; 
 

 
% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
% GENERATION OF NORMALISING VALUES 
% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
  
logic = 0; 
while logic == 0 
    aConfidence = sConfidence.maxDeform; 
    maxDeform = 800000+(1300000-
800000)*ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfi
dence.nConfidenceInitial); 
    clear aConfidence 
     
    logic = (maxDeform>800000)&(1300000>maxDeform); 
end 
  
logic = 0; 
while logic == 0 
    aConfidence = sConfidence.maxReform; 
    maxReform = 1800+(3000-
1800)*ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfiden
ce.nConfidenceInitial); 
    clear aConfidence 
     
    logic = (maxReform>1800)&(3000>maxReform); 
end 
  
aAllGeneratedVals = 
[zDeform55,zDeform5b,zDeform5a,yDeformb,yDeforma,zDeforma5,xDeforma,zRefor
m51,zReform5a,yReform5a,zReforma1,xReforma1,yFriction1,yFriction2,maxDeform,
maxReform]; 
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Current Data Array Code 

function[sCoords] = NumGen(nRuns) 
  
Lower = 1; 
Upper = 2; 
  
for iCnt = 1:1:nRuns 
sLimits.yDeform1 = [0.25,0.4]; %Initially lower limits set to zero 
sLimits.yDeform2 = [0.25,0.55]; 
sLimits.yDeform3 = [0.25,0.65]; 
sLimits.yDeform4 = [0.25,0.75]; 
sLimits.yDeform5 = [0.25,0.8]; 
  
sLimits.yReform1 = [0,0.25]; 
sLimits.yReform2 = [0,0.3]; 
sLimits.yReform3 = [0,0.4]; 
sLimits.yReform4 = [0,0.9]; 
sLimits.yReform5 = [0,1]; 
  
    sLimits.xAbilityDeform1 = 'n/a'; 
    sLimits.xAbilityDeform2 = [0.4,1]; 
    sLimits.xAbilityDeform3 = 'n/a'; 
    sLimits.yAbilityDeform1 = 'n/a'; 
    sLimits.yAbilityDeform2 = [0.5,0.75]; 
    sLimits.yAbilityDeform3 = 'n/a'; 
  
    sLimits.xAbilityReform1 = 'n/a'; 
    sLimits.xAbilityReform2 = [0,0.6]; 
    sLimits.xAbilityReform3 = 'n/a'; 
    sLimits.yAbilityReform1 = 'n/a'; 
    sLimits.yAbilityReform2 = [0.5,0.75]; 
    sLimits.yAbilityReform3 = 'n/a'; 
  
    sLimits.xFriction1 = 'n/a'; 
    sLimits.xFriction2 = [0.1,0.7]; 
    sLimits.xFriction3 = [0.3,0.9]; 
    sLimits.xFriction4 = 'n/a'; 
  
    sLimits.yFriction1 = [0.5,0.7]; 
    sLimits.yFriction2 = [0.4,0.7]; 
    sLimits.yFriction3 = [0.2,0.5]; 
    sLimits.yFriction4 = [0.2,0.35]; 
  
     
    xDeform1 = 0; 
    xDeform2 = 0.25; 
    xDeform3 = 0.5; 
    xDeform4 = 0.75; 
    xDeform5 = 1.0; 
     
    xReform1 = 0; 
    xReform2 = 0.25; 
    xReform3 = 0.5; 
    xReform4 = 0.75; 
    xReform5 = 1.0; 
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    yReform1 = rand(1)*(sLimits.yReform1(2)-sLimits.yReform1(1)); 
    yReform2 = yReform1 + rand(1)*(sLimits.yReform2(2)-yReform1); 
     
    yReform3 = yReform2 + rand(1)*(sLimits.yReform3(2)-yReform2); 
        
    yDeform1 = yReform1 + rand(1)*(sLimits.yDeform1(2)-yReform1); 
    yDeform2 = max(yReform2,yDeform1) + rand(1)*(sLimits.yDeform2(2)-
max(yReform2,yDeform1)); 
    yDeform3 = max(yReform3,yDeform2) + rand(1)*(sLimits.yDeform3(2)-
max(yReform3,yDeform2)); 
    yDeform4 = yDeform3 + rand(1)*(sLimits.yDeform4(2)-yDeform3); 
    yDeform5 = yDeform4 + rand(1)*(sLimits.yDeform5(2)-yDeform4); 
     
    yReform5 = yDeform5 + rand(1)*(sLimits.yReform5(2)-yDeform5); 
    yReform4 = yReform3 + rand(1)*(yReform5-yReform3); 
     
    xAbilityDeform1 = 0; 
    xAbilityDeform2 = 
sLimits.xAbilityDeform2(Lower)+rand(1)*(sLimits.xAbilityDeform2(Upper)-
sLimits.xAbilityDeform2(Lower)); 
    xAbilityDeform3 = 1; 
    yAbilityDeform1 = 0.5; 
    yAbilityDeform2 = 
sLimits.yAbilityDeform2(Lower)+rand(1)*(sLimits.yAbilityDeform2(Upper)-
sLimits.yAbilityDeform2(Lower)); 
    yAbilityDeform3 = 1; 
     
    xAbilityReform1 = 0; 
    xAbilityReform2 = 1-xAbilityDeform2; 
    xAbilityReform3 = 1; 
    yAbilityReform1 = 1; 
    yAbilityReform2 = yAbilityDeform2; 
    yAbilityReform3 = 0.5; 
     
    xFriction1 = 0; 
    xFriction2 = sLimits.xFriction2(Lower) + rand(1)*(sLimits.xFriction2(Upper) - 
sLimits.xFriction2(Lower)); 
    xFriction3 = max(xFriction2,sLimits.xFriction3(Lower)) + 
rand(1)*(sLimits.xFriction3(Upper) - max(xFriction2,sLimits.xFriction3(Lower))); 
    xFriction4 = 1; 
  
    yFriction1 = sLimits.yFriction1(Lower)+rand(1)*(sLimits.yFriction1(Upper)-
sLimits.yFriction1(Lower)); 
    yFriction2 = sLimits.yFriction2(Lower)+rand(1)*(yFriction1-
sLimits.yFriction2(Lower)); 
    yFriction4 = sLimits.yFriction4(Lower)+rand(1)*(sLimits.yFriction4(Upper)-
sLimits.yFriction4(Lower)); 
    yFriction3 = yFriction4 + rand(1)*(min(yFriction2,sLimits.yFriction3(Upper))-
yFriction4); 
  
    sCoords.axDeform(iCnt,:) = [xDeform1,xDeform2,xDeform3,xDeform4,xDeform5]; 
    sCoords.ayDeform(iCnt,:) = [yDeform1,yDeform2,yDeform3,yDeform4,yDeform5]; 
  
    sCoords.axReform(iCnt,:) = [xReform1,xReform2,xReform3,xReform4,xReform5]; 
    sCoords.ayReform(iCnt,:) = [yReform1,yReform2,yReform3,yReform4,yReform5]; 
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    sCoords.axAbilityDeform(iCnt,:) = 
[xAbilityDeform1,xAbilityDeform2,xAbilityDeform3]; 
    sCoords.ayAbilityDeform(iCnt,:) = 
[yAbilityDeform1,yAbilityDeform2,yAbilityDeform3]; 
    sCoords.axAbilityReform(iCnt,:) = 
[xAbilityReform1,xAbilityReform2,xAbilityReform3]; 
    sCoords.ayAbilityReform(iCnt,:) = 
[yAbilityReform1,yAbilityReform2,yAbilityReform3]; 
     
    sCoords.axFriction(iCnt,:) = [xFriction1,xFriction2,xFriction3,xFriction4]; 
    sCoords.ayFriction(iCnt,:) = [yFriction1,yFriction2,yFriction3,yFriction4]; 
  
%     for intCnt = 1:51 
%  
%         x(intCnt) = (intCnt/50)-0.02; 
%          
%         y(intCnt) = interp1(axFriction(iCnt,:),ayFriction(iCnt,:),x(intCnt),'pchip'); 
%          
%         y2(intCnt) = 
interp1(axAbilityDeform(iCnt,:),ayAbilityDeform(iCnt,:),x(intCnt),'pchip'); 
%         y3(intCnt) = 
interp1(axAbilityReform(iCnt,:),ayAbilityReform(iCnt,:),x(intCnt),'pchip'); 
%  
%     end 
%  
%     figure 
%     plot(x,y); 
%      
%     figure 
%     plot(axAbilityDeform(iCnt,:),ayAbilityDeform(iCnt,:)); 
%     hold on 
%     plot(x,y2,'color','r'); 
%     plot(x,y3,'color','g'); 
%  
%     ax(iCnt,:) = x; 
%     ay(iCnt,:) = y; 
%  
%     ylim([0,1]); 
  
  
end 
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Surface Model Code 

function[CluMuNew,CoefSurfaceStateNew,CoefDeform,CoefReform] = 
ClutchModel_SurfaceModel(iGen,sCluData,CluPowerNew_W,TempSurfaceNew_degC,Coef
SurfaceStatePrev,sCoordsCurrent) 
  
% Define clutch data 
%  - All clutch information to be stored in structure sCluData 
  
% GEOMETRIC DATA  
sCluData.SinglePistonDiameter_mm = 10.5;                                            % --> Diameter of 
single clutch actuation piston [mm] 
sCluData.SinglePistonArea_mm2 = 0.25*pi*sCluData.SinglePistonDiameter_mm^2;         
% --> Area of single clutch actuation piston [mm^2] 
sCluData.NumberOfPistons = 2;                                                       % --> Total number of 
actuation pistons 
sCluData.TotalPistonArea_mm2 = sCluData.NumberOfPistons * 
sCluData.SinglePistonArea_mm2; 
sCluData.DiamInner_mm = 65;                                                         % --> Inner diameter of 
friction material [mm] 
sCluData.DiamOuter_mm = 97;                                                         % --> Outer diameter of 
friction material [mm] 
sCluData.NumWorkingSurfaces = 6;                                                    % --> Total number of 
working surfaces (1x plate-plate interface = 1 working surface) 
sCluData.LeverRatio = 4.73;                                                         % --> Actuation lever ratio 
HGT 
sCluData.MeanFrictionRad_mm = (2/3)*( (((0.5*sCluData.DiamOuter_mm)^3)-
((0.5*sCluData.DiamInner_mm)^3)) / (((0.5*sCluData.DiamOuter_mm)^2)-
((0.5*sCluData.DiamInner_mm)^2))); 
sCluData.SingleWorkingSurfaceArea_m2 = (pi/4)*((sCluData.DiamOuter_mm^2)-
(sCluData.DiamInner_mm^2))/1e6; 
sCluData.DiscThickness_m = 0.0045;                                                  % --> Thickness of an 
individual plate (assumed constant) [m]  
  
sCluData.fInertiaClutchOPS_kgm2 = 0.0003; 
sCluData.fInertiaClutchIPS_kgm2 = 0.0016; 
  
% THERMAL DATA  
sCluData.DensityCC_kgperm3 = 1850;                                                  % --> Density of Sachs 
material SCM-015 [kg/m^3] 
sCluData.Emissivity = 0.8;                                                          % --> Emissivity of c-c (i.e. 
emissive power relative to a black body)  
sCluData.CvCCRT_JperkgK = 800;                                                      % --> Specific Heat 
Capacity of SCM-015 at 27degC [J/kg*K] 
sCluData.CvCC1000_JperkgK = 1900;                                                   % --> Specific Heat 
Capacity of SCM-015 at 1000degC [J/kg*K] 
sCluData.ThermalConductivityCCRT_WpermK = 10;                                       % --> Thermal 
conductivity of SCM-015 perpendicular to friction surface at room temp [W/m.K] 
  
  
% Define initial conditions 
%  - All initial condition information to be stored in structure sInitialConds 
  
sInitConds.TempAir_degC = 200;                                                      % --> Initial temperature 
of the clutch ambient environment [deg C]  
sInitConds.TempBulk_degC = 200;                                                     % --> Initial 
temperature of the clutch bulk [deg C]  
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sInitConds.TempSurface_degC = 200;                                                  % --> Initial 
temperature of the clutch surface [deg C]  
  
sInitConds.CoefSurfaceState = 0.3;                                                  % --> Initial coefficient of 
surface state  
%sInitConds.CluMu = 0.4                                                      
  
sInitConds.CluSpeedDiff_rpm = 8060; 
  
dt_s = 0.005;                                                                       % --> Length of each timestep [s] 
 
PowerDensityMax_Wperm2 = sCoordsCurrent.maxDeform; 
TempSurfaceMax_K = sCoordsCurrent.maxReform; 
  
PowerDensity_Wperm2 = 
(CluPowerNew_W/sCluData.SingleWorkingSurfaceArea_m2)/12; 
  
CoefPowerDensity = PowerDensity_Wperm2/PowerDensityMax_Wperm2; 
  
if CoefPowerDensity >= 1 
    CoefPowerDensity = 1; 
end 
  
  
% Convert the temperature at the current time step to K 
TempSurfaceNew_K = TempSurfaceNew_degC + 273; 
 
CoefTempSurface = TempSurfaceNew_K/TempSurfaceMax_K; 
  
if CoefTempSurface >=1 
    CoefTempSurface = 1; 
end 
  
  
  
% Assume surface is only deformed and reformed when plates are in contact. 
%  - In this model, plates are in contact when slipping occurs. 
  
%CoefDeform = 
interp1(sCoords.axDeform(iGen,:),sCoords.ayDeform(iGen,:),CoefPowerDensity,'pchip
'); 
%CoefReform = 
interp1(sCoords.axReform(iGen,:),sCoords.ayReform(iGen,:),CoefTempSurface,'pchip'
);                 
  
CoefDeform = 
interp2(sCoordsCurrent.mxDeform,sCoordsCurrent.myDeform,sCoordsCurrent.mzDef
orm,CoefPowerDensity,CoefSurfaceStatePrev,'cubic'); 
CoefReform = 
interp2(sCoordsCurrent.mxReform,sCoordsCurrent.myReform,sCoordsCurrent.mzRef
orm,CoefTempSurface,CoefSurfaceStatePrev,'cubic');                 
  
%CoefAbilityDeform = 
interp1(sCoords.axAbilityDeform(iGen,:),sCoords.ayAbilityDeform(iGen,:),CoefSurface
StatePrev,'pchip'); 
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%CoefAbilityReform = 
interp1(sCoords.axAbilityReform(iGen,:),sCoords.ayAbilityReform(iGen,:),CoefSurface
StatePrev,'pchip'); 
  
%DeltaCoefSurfaceState = (CoefReform*CoefAbilityReform) - 
(CoefDeform*CoefAbilityDeform); 
DeltaCoefSurfaceState = CoefReform - CoefDeform; 
  
CoefSurfaceStateNew = CoefSurfaceStatePrev + DeltaCoefSurfaceState; 
  
if CoefSurfaceStateNew >=1 
    CoefSurfaceStateNew = 1; 
elseif CoefSurfaceStateNew <= 0 
    CoefSurfaceStateNew = 0; 
end 
  
CluMuNew = 
interp1(sCoordsCurrent.axFriction,sCoordsCurrent.ayFriction,CoefSurfaceStateNew,'c
ubic'); 
  
if CluMuNew >= 1 
    CluMuNew = 1; 
end 
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Appendix X - Final MATLAB® Model Code 

Initial Conditions Code 
 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% SYNTAX: 
%   n/a 
% 
% FILENAME: 
%   ClutchModel_Init.m 
% 
% FUNCTION: 
%   Acts as initialisation file for the Clutch Model. Adds the required  
%   geometric, material and rig data to the workspace for use by the model.  
% 
% ARGUMENTS: 
%   None 
% 
% RETURNS: 
%   None 
% 
% REQUIRED FILES: 
%   None 
% 
% REQUIRED GLOBALS: 
%   None 
% 
% COMMENTS: 
%   None 
% 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  
ON = 1; 
OFF = 0; 
  
%   ORDER OF PARAMETERS WITHIN INIT FILE: 
%   1) MODEL SETUP 
%   2) LOOKUP TABLE GENERATOR SETUP 
%   3) CLUTCH DATA 
%   4) RIG DATA 
%   5) INITIAL CONDITIONS 
%   6) PLOT OPTIONS 
  
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% 1)    MODEL SETUP 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Define all information required for model to run 
  
% DISCRETISATION 
dt_s = 0.005;                                                                       % --> Length of each timestep [s] 
  
nEvents = 5; 
  
% LOOKUP TABLE GENERATOR 
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bRandGen = ON;                                                                      % --> Define whether lookup 
table generator is ON or OFF 
nGenerate = 17000;                                                                  % --> Number of lookup tables 
to generate and test 
  
% SAVE FEATURE 
bSaveResults = OFF;                                                                  % --> Define whether save 
feature is ON or OFF 
nthResultSave = 500;                                                                 % --> If bSaveResults=ON , save 
a file every nth iteration 
acstrFilepath = 'C:\Documents and Settings\glawrence\Desktop\Clutch 
Model\Results\';  % --> Filepath location for saved files 
  
% Define filename for save - datestamp at time the code commences 
DateStamp = clock; 
Filename = ['Results_',num2str(DateStamp(1)),'-',num2str(DateStamp(2)),'-
',num2str(DateStamp(3)),'_',num2str(DateStamp(4)),'-
',num2str(DateStamp(5)),'.mat']; 
FullFilename = [acstrFilepath,Filename]; 
clear DateStamp 
iSave = 1;                                       
  
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% 2)    LOOKUP TABLE GENERATOR SETUP 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Define clutch data 
%  - All clutch information to be stored in structure sCluData 
  
bConfidenceUpdate = OFF;                                                             % --> Define whether 
confidence values are updated or remain static 
  
sConfidence.nConfidenceInitial = 40;                                                % --> Initial confidence 
weighting 
sConfidence.nDiscretisation = 25;                                                   % --> Discretisation 
resolution used 
sConfidence.nConfidenceUpper = 1;                                                   % --> Upper limit for 
discretisation 
sConfidence.nConfidenceLower = 0;                                                   % --> Lower limit for 
discretisation 
  
sConfidence.aDiscretisation = 
[sConfidence.nConfidenceLower,sConfidence.nConfidenceLower+(cumsum(ones(1,sC
onfidence.nDiscretisation)*((sConfidence.nConfidenceUpper-
sConfidence.nConfidenceLower)/sConfidence.nDiscretisation)))]; 
sConfidence.aConfidenceInitial = 
ones(1,length(sConfidence.aDiscretisation))*sConfidence.nConfidenceInitial; 
  
sConfidence.nRes = 30; 
  
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% 3)    CLUTCH DATA 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Define clutch data 
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%  - All clutch information to be stored in structure sCluData 
  
% GEOMETRIC DATA  
sCluData.SinglePistonDiameter_mm = 10.5;                                            % --> Diameter of 
single clutch actuation piston [mm] 
sCluData.SinglePistonArea_mm2 = 0.25*pi*sCluData.SinglePistonDiameter_mm^2;         
% --> Area of single clutch actuation piston [mm^2] 
sCluData.NumberOfPistons = 2;                                                       % --> Total number of 
actuation pistons 
sCluData.TotalPistonArea_mm2 = sCluData.NumberOfPistons * 
sCluData.SinglePistonArea_mm2; 
sCluData.DiamInner_mm = 65;                                                         % --> Inner diameter of 
friction material [mm] 
sCluData.DiamOuter_mm = 97;                                                         % --> Outer diameter of 
friction material [mm] 
sCluData.NumWorkingSurfaces = 6;                                                    % --> Total number of 
working surfaces (1x plate-plate interface = 1 working surface) 
sCluData.LeverRatio = 4.73;                                                         % --> Actuation lever ratio 
sCluData.MeanFrictionRad_mm = (2/3)*( (((0.5*sCluData.DiamOuter_mm)^3)-
((0.5*sCluData.DiamInner_mm)^3)) / (((0.5*sCluData.DiamOuter_mm)^2)-
((0.5*sCluData.DiamInner_mm)^2))); 
sCluData.SingleWorkingSurfaceArea_m2 = (pi/4)*((sCluData.DiamOuter_mm^2)-
(sCluData.DiamInner_mm^2))/1e6; 
sCluData.DiscThickness_m = 0.0045;                                                  % --> Thickness of an 
individual plate (assumed constant) [m]  
  
sCluData.fInertiaClutchOPS_kgm2 = 0.0003; 
sCluData.fInertiaClutchIPS_kgm2 = 0.0016; 
  
% THERMAL DATA  
sCluData.DensityCC_kgperm3 = 1850;                                                  % --> Density 
[kg/m^3] 
sCluData.Emissivity = 0.8;                                                          % --> Emissivity of c-c (i.e. 
emissive power relative to a black body)  
sCluData.CvCCRT_JperkgK = 800;                                                      % --> Specific Heat 
Capacity of at 27degC [J/kg*K] 
sCluData.CvCC1000_JperkgK = 1900;                                                   % --> Specific Heat 
Capacity at 1000degC [J/kg*K] 
sCluData.ThermalConductivityCCRT_WpermK = 10;                                       % --> Thermal 
conductivity perpendicular to friction surface at room temp [W/m.K] 
  
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% 4)    RIG DATA 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Define rig data 
%  - All clutch information to be stored in structure sCluData 
  
% GEOMETRIC DATA 
sCluData.fInertiaRig_kgm2 = 0.42;                                                   % --> Inertia added to the 
clutch rig (Inertia A + Inertia B) 
sCluData.fInertiaMotor_kgm2 = 0.2362;                                               % --> Inertia of the 
75kW driving motor and geartrain 
sCluData.fSpeedIncreasingRatio = 10.06;                                             % --> Ratio of the 
speed increasing geartrain 
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% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% 5)    INITIAL CONDITIONS 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Define initial conditions 
%  - All initial condition information to be stored in structure sInitialConds 
  
sInitConds.TempAir_degC = 200;                                                      % --> Initial temperature 
of the clutch ambient environment [deg C]  
sInitConds.TempBulk_degC = 200;                                                     % --> Initial 
temperature of the clutch bulk [deg C]  
sInitConds.TempSurface_degC = 200;                                                  % --> Initial 
temperature of the clutch surface [deg C]  
  
sInitConds.CoefSurfaceState = 0.3;                                                  % --> Initial coefficient of 
surface state %sInitConds.CluMu = 0.4                                                      
  
sInitConds.CluSpeedDiff_rpm = 8060; 
  
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% 6)    PLOT OPTIONS 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Set plot options 
  
% PLOTS 
bPlotBestResults = 1; 
 

 



CCXLVIII 
 

Random Number Generator 

function[RandNum] = 
ClutchModel_RandNumGen(aConfidence,aDiscretisation,nInitialConfidence) 
  
aCumsum = cumsum(aConfidence); 
  
RandNum2 = 
interp1(aCumsum,aDiscretisation,nInitialConfidence+rand(1)*(sum(aConfidence)-
nInitialConfidence),'linear'); 
  
if isnan(RandNum2) == 1 
    while isnan(RandNum2) == 1 
        RandNum2 = 
interp1(aCumsum,aDiscretisation,nInitialConfidence+rand(1)*(sum(aConfidence)-
nInitialConfidence)); 
    end 
end 
  
RandNum = RandNum2; 
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Surface State Lookup Table Generator 

function[mxDeform,myDeform,mzDeform,mxReform,myReform,mzReform,axFriction,
ayFriction,mDeformCore,mReformCore,aAllGeneratedVals,maxDeform,maxReform] = 
CoordGen_v11(sConfidence); 
  
% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
% GENERATION OF DEFORMATION LOOKUP TABLE 
% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
  
% Define arrays containing x,y and z coordinates of known points 
axKnownVals = [(0:0.1:1),zeros(1,10)]; 
ayKnownVals = [zeros(1,11),(0.1:0.1:1)]; 
azKnownVals = zeros(1,21); 
  
OverallLogic = 0; 
  
while OverallLogic == 0 
  
logic = 0; 
aConfidence = sConfidence.zDeform55; 
while logic == 0;  
zDeform55 = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (zDeform55 > 0)&(1 > zDeform55); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.zDeform5b; 
while logic == 0;  
zDeform5b = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (1 > zDeform5b)&(zDeform5b > zDeform55); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.zDeform5a; 
while logic == 0;  
zDeform5a = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (1 > zDeform5a)&(zDeform5a > zDeform5b); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.yDeformb; 
while logic == 0;  
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yDeformb = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (yDeformb > 0)&(1 > yDeformb); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.yDeforma; 
while logic == 0;  
yDeforma = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (yDeforma > 0)&(yDeformb > yDeforma); 
end 
clear aConfidence 
  
  
  
logic = 0; 
aConfidence = sConfidence.zDeforma5; 
while logic == 0;  
zDeforma5 = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (zDeforma5 > 0)&(zDeform55 > zDeforma5); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.xDeforma; 
while logic == 0;  
xDeforma = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (xDeforma > 0)&(1 > xDeforma); 
end 
clear aConfidence 
  
  
  
xDeform1 = 0; 
xDeform2 = 0.25; 
xDeform3 = 0.5; 
xDeform4 = 0.75; 
xDeform5 = 1; 
  
yDeform1 = 0; 
yDeform2 = 0.25; 
yDeform3 = 0.5; 
yDeform4 = 0.75; 
yDeform5 = 1; 
  
axGeneratedVals = [xDeform5,xDeform5,xDeform5,xDeforma]; 
ayGeneratedVals = [yDeforma,yDeformb,yDeform5,yDeform5]; 
azGeneratedVals = [zDeform5a,zDeform5b,zDeform55,zDeforma5]; 
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%nRes = 25; 
nMax = 1; 
nMin = 0; 
nRes = sConfidence.nRes; 
  
[gridx,gridy] = meshgrid([nMin:nMax/nRes:nMax],[nMin:nMax/nRes:nMax]); 
  
  
gridz = 
griddata([axKnownVals,axGeneratedVals],[ayKnownVals,ayGeneratedVals],[azKnown
Vals,azGeneratedVals],gridx,gridy,'invdist'); 
  
% mDeform is what will be saved in the sCoord structure 
%  - gridz can be easily generated later from mDeformCore. 
mDeformCore = 
[[axKnownVals,axGeneratedVals];[ayKnownVals,ayGeneratedVals];[azKnownVals,azG
eneratedVals]]; 
  
zLowCnt = 0; 
zHighCnt = 1; 
for xCheck = 1:nRes+1 
     
    for yCheck = 1:nRes+1 
         
        z = gridz(xCheck,yCheck); 
         
        if z <= 0 
            z =0; 
            zLowCnt = zLowCnt+1; 
        end 
         
        if z >= 1; 
            z = 1; 
            zHighCnt = zHighCnt+1; 
        end 
         
        gridz(xCheck,yCheck) = z; 
    end 
     
end 
  
zLowCnt_Percent = (zLowCnt/((nRes+1)^2))*100; 
zHighCnt_Percent = (zHighCnt/((nRes+1)^2))*100; 
  
if zLowCnt_Percent <= 10 
    ResultCheck1 = 1; 
else 
    ResultCheck1 = 0; 
end 
  
if zHighCnt_Percent <= 10 
    ResultCheck2 = 1; 
else 
    ResultCheck2 = 0; 
end 
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clear zLowCnt_Percent zHighCnt_Percent zLowCnt zHighCnt z 
  
xGradCheck = gridx(size(gridx,1),:); 
zGradCheck = gridz(size(gridx,1),:); 
  
for iCnt = 2:length(xGradCheck) 
   GradCheck(iCnt-1) = sqrt(zGradCheck(iCnt)-zGradCheck(iCnt-1)); 
end 
  
clear xGradCheck zGradCheck 
  
ResultCheck3 = isreal(GradCheck); 
  
OverallLogic = (ResultCheck1 == 1 & ResultCheck2 == 1 & ResultCheck3 == 1); 
end 
  
  
mxDeform = gridx; 
myDeform = gridy; 
mzDeform = gridz; 
  
clear OverallLogic ResultCheck1 ResultCheck2 ResultCheck3 
clear axKnownVals axGeneratedVals ayKnownVals ayGeneratedVals azKnownVals 
azGeneratedVals 
  
  
% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
% GENERATION OF REFORMATION LOOKUP TABLE 
% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
  
% Define arrays containing x,y and z coordinates of known points 
axKnownVals = [(0:0.1:1),zeros(1,10)]; 
ayKnownVals = [ones(1,11),(0:0.1:0.9)]; 
azKnownVals = zeros(1,21); 
  
  
OverallLogic = 0; 
  
while OverallLogic == 0 
     
logic = 0; 
aConfidence = sConfidence.zReform51; 
while logic == 0;  
zReform51 = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (zReform51 > 0)&(1 > zReform51); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.zReform5a; 
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while logic == 0;  
zReform5a = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (zReform5a > 0)&(zReform51 > zReform5a); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.yReform5a; 
while logic == 0;  
yReform5a = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (yReform5a > 0)&(1 > yReform5a); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.zReforma1; 
while logic == 0;  
zReforma1 = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (zReforma1 > 0)&(zReform51 > zReforma1); 
end 
clear aConfidence 
  
logic = 0; 
aConfidence = sConfidence.xReforma1; 
while logic == 0;  
xReforma1 = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
logic = (xReforma1 > 0)&(1 > xReforma1); 
end 
clear aConfidence 
  
axGeneratedVals = [1,xReforma1,1]; 
ayGeneratedVals = [0,0,yReform5a]; 
azGeneratedVals = [zReform51,zReforma1,zReform5a]; 
  
nRes = 25; 
nMax = 1; 
nMin = 0; 
  
[gridx,gridy] = meshgrid([nMin:nMax/nRes:nMax],[nMin:nMax/nRes:nMax]); 
  
gridz = 
griddata([axKnownVals,axGeneratedVals],[ayKnownVals,ayGeneratedVals],[azKnown
Vals,azGeneratedVals],gridx,gridy,'invdist'); 
  
% mReformCore is what will be saved in the sCoord structure 
%  - gridz can be easily generated later from mReformCore. 
mReformCore = 
[[axKnownVals,axGeneratedVals];[ayKnownVals,ayGeneratedVals];[azKnownVals,azG
eneratedVals]]; 
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zLowCnt = 0; 
zHighCnt = 1; 
for xCheck = 1:nRes+1 
     
    for yCheck = 1:nRes+1 
         
        z = gridz(xCheck,yCheck); 
         
        if z <= 0 
            z =0; 
            zLowCnt = zLowCnt+1; 
        end 
         
        if z >= 1; 
            z = 1; 
            zHighCnt = zHighCnt+1; 
        end 
         
        gridz(xCheck,yCheck) = z; 
    end 
     
end 
  
mxReform = gridx; 
myReform = gridy; 
mzReform = gridz; 
  
  
OverallLogic = 1; 
end 
  
  
% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
% GENERATION OF FRICTION LOOKUP TABLE 
% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
  
xFriction1 = 0; 
xFriction2 = 1; 
  
logic = 0; 
while logic == 0 
    aConfidence = sConfidence.Friction1; 
    yFriction1 = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
    clear aConfidence 
  
    aConfidence = sConfidence.Friction2; 
    yFriction2 = 
ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfidence.nCo
nfidenceInitial); 
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    clear aConfidence 
  
    logic = (yFriction2>0.15)&(yFriction2<0.35)&(yFriction1>0.45)&(yFriction1<0.75); 
end 
  
axFriction = [xFriction1,xFriction2]; 
ayFriction = [yFriction1,yFriction2]; 
 

 
% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
% GENERATION OF NORMALISING VALUES 
% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
  
logic = 0; 
while logic == 0 
    aConfidence = sConfidence.maxDeform; 
    maxDeform = 800000+(1300000-
800000)*ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfi
dence.nConfidenceInitial); 
    clear aConfidence 
     
    logic = (maxDeform>800000)&(1300000>maxDeform); 
end 
  
logic = 0; 
while logic == 0 
    aConfidence = sConfidence.maxReform; 
    maxReform = 1800+(3000-
1800)*ClutchModel_RandNumGen(aConfidence,sConfidence.aDiscretisation,sConfiden
ce.nConfidenceInitial); 
    clear aConfidence 
     
    logic = (maxReform>1800)&(3000>maxReform); 
end 
  
aAllGeneratedVals = 
[zDeform55,zDeform5b,zDeform5a,yDeformb,yDeforma,zDeforma5,xDeforma,zRefor
m51,zReform5a,yReform5a,zReforma1,xReforma1,yFriction1,yFriction2,maxDeform,
maxReform]; 
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Confidence Update 

function[sConfidence] = 
ClutchModel_ConfidenceUpdate(sConfidence,nConfidenceUpdate,aAllGeneratedVals) 
 %aAllGeneratedVals = 
%[zDeform55,zDeform5b,zDeform5a,yDeformb,yDeforma,zDeforma5,xDeforma,zRefo
rm51,zReform5a,yReform5a,zReforma1,xReforma1,yFriction1,yFriction2]; 
 aConfidenceOld = sConfidence.zDeform55; 
nCoord = aAllGeneratedVals(1); 
location = min(find(sConfidence.aDiscretisation>=nCoord)); 
aConfidenceNew = aConfidenceOld; 
aConfidenceNew(location) = aConfidenceNew(location)+nConfidenceUpdate; 
sConfidence.zDeform55 = aConfidenceNew; 
clear aConfidenceOld aConfidenceNew nCoord location 
  
aConfidenceOld = sConfidence.zDeform5b; 
nCoord = aAllGeneratedVals(2); 
location = min(find(sConfidence.aDiscretisation>=nCoord)); 
aConfidenceNew = aConfidenceOld; 
aConfidenceNew(location) = aConfidenceNew(location)+nConfidenceUpdate; 
sConfidence.zDeform5b = aConfidenceNew; 
clear aConfidenceOld aConfidenceNew nCoord location 
  
aConfidenceOld = sConfidence.zDeform5a; 
nCoord = aAllGeneratedVals(3); 
location = min(find(sConfidence.aDiscretisation>=nCoord)); 
aConfidenceNew = aConfidenceOld; 
aConfidenceNew(location) = aConfidenceNew(location)+nConfidenceUpdate; 
sConfidence.zDeform5a = aConfidenceNew; 
clear aConfidenceOld aConfidenceNew nCoord location 
  
aConfidenceOld = sConfidence.yDeformb; 
nCoord = aAllGeneratedVals(4); 
location = min(find(sConfidence.aDiscretisation>=nCoord)); 
aConfidenceNew = aConfidenceOld; 
aConfidenceNew(location) = aConfidenceNew(location)+nConfidenceUpdate; 
sConfidence.yDeformb = aConfidenceNew; 
clear aConfidenceOld aConfidenceNew nCoord location 
  
aConfidenceOld = sConfidence.yDeforma; 
nCoord = aAllGeneratedVals(5); 
location = min(find(sConfidence.aDiscretisation>=nCoord)); 
aConfidenceNew = aConfidenceOld; 
aConfidenceNew(location) = aConfidenceNew(location)+nConfidenceUpdate; 
sConfidence.yDeforma = aConfidenceNew; 
clear aConfidenceOld aConfidenceNew nCoord location 
  
aConfidenceOld = sConfidence.zDeforma5; 
nCoord = aAllGeneratedVals(6); 
location = min(find(sConfidence.aDiscretisation>=nCoord)); 
aConfidenceNew = aConfidenceOld; 
aConfidenceNew(location) = aConfidenceNew(location)+nConfidenceUpdate; 
sConfidence.zDeforma5 = aConfidenceNew; 
clear aConfidenceOld aConfidenceNew nCoord location 
  
aConfidenceOld = sConfidence.xDeforma; 
nCoord = aAllGeneratedVals(7); 
location = min(find(sConfidence.aDiscretisation>=nCoord)); 
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aConfidenceNew = aConfidenceOld; 
aConfidenceNew(location) = aConfidenceNew(location)+nConfidenceUpdate; 
sConfidence.xDeforma = aConfidenceNew; 
clear aConfidenceOld aConfidenceNew nCoord location 
  
aConfidenceOld = sConfidence.zReform51; 
nCoord = aAllGeneratedVals(8); 
location = min(find(sConfidence.aDiscretisation>=nCoord)); 
aConfidenceNew = aConfidenceOld; 
aConfidenceNew(location) = aConfidenceNew(location)+nConfidenceUpdate; 
sConfidence.zReform51 = aConfidenceNew; 
clear aConfidenceOld aConfidenceNew nCoord location 
  
aConfidenceOld = sConfidence.zReform5a; 
nCoord = aAllGeneratedVals(9); 
location = min(find(sConfidence.aDiscretisation>=nCoord)); 
aConfidenceNew = aConfidenceOld; 
aConfidenceNew(location) = aConfidenceNew(location)+nConfidenceUpdate; 
sConfidence.zReform5a = aConfidenceNew; 
clear aConfidenceOld aConfidenceNew nCoord location 
  
aConfidenceOld = sConfidence.yReform5a; 
nCoord = aAllGeneratedVals(10); 
location = min(find(sConfidence.aDiscretisation>=nCoord)); 
aConfidenceNew = aConfidenceOld; 
aConfidenceNew(location) = aConfidenceNew(location)+nConfidenceUpdate; 
sConfidence.yReform5a = aConfidenceNew; 
clear aConfidenceOld aConfidenceNew nCoord location 
  
aConfidenceOld = sConfidence.zReforma1; 
nCoord = aAllGeneratedVals(11); 
location = min(find(sConfidence.aDiscretisation>=nCoord)); 
aConfidenceNew = aConfidenceOld; 
aConfidenceNew(location) = aConfidenceNew(location)+nConfidenceUpdate; 
sConfidence.zReforma1 = aConfidenceNew; 
clear aConfidenceOld aConfidenceNew nCoord location 
  
aConfidenceOld = sConfidence.xReforma1; 
nCoord = aAllGeneratedVals(12); 
location = min(find(sConfidence.aDiscretisation>=nCoord)); 
aConfidenceNew = aConfidenceOld; 
aConfidenceNew(location) = aConfidenceNew(location)+nConfidenceUpdate; 
sConfidence.xReforma1 = aConfidenceNew; 
clear aConfidenceOld aConfidenceNew nCoord location 
  
aConfidenceOld = sConfidence.Friction1; 
nCoord = aAllGeneratedVals(13); 
location = min(find(sConfidence.aDiscretisation>=nCoord)); 
aConfidenceNew = aConfidenceOld; 
aConfidenceNew(location) = aConfidenceNew(location)+nConfidenceUpdate; 
sConfidence.Friction1 = aConfidenceNew; 
clear aConfidenceOld aConfidenceNew nCoord location 
  
aConfidenceOld = sConfidence.Friction2; 
nCoord = aAllGeneratedVals(14); 
location = min(find(sConfidence.aDiscretisation>=nCoord)); 
aConfidenceNew = aConfidenceOld; 
aConfidenceNew(location) = aConfidenceNew(location)+nConfidenceUpdate; 
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sConfidence.Friction2 = aConfidenceNew; 
clear aConfidenceOld aConfidenceNew nCoord location 
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Data Storage Array 

function[sCoords] = NumGen(nRuns) 
  
Lower = 1; 
Upper = 2; 
  
for iCnt = 1:1:nRuns 
sLimits.yDeform1 = [0.25,0.4]; %Initially lower limits set to zero 
sLimits.yDeform2 = [0.25,0.55]; 
sLimits.yDeform3 = [0.25,0.65]; 
sLimits.yDeform4 = [0.25,0.75]; 
sLimits.yDeform5 = [0.25,0.8]; 
  
sLimits.yReform1 = [0,0.25]; 
sLimits.yReform2 = [0,0.3]; 
sLimits.yReform3 = [0,0.4]; 
sLimits.yReform4 = [0,0.9]; 
sLimits.yReform5 = [0,1]; 
  
 

 
    sLimits.xAbilityDeform1 = 'n/a'; 
    sLimits.xAbilityDeform2 = [0.4,1]; 
    sLimits.xAbilityDeform3 = 'n/a'; 
    sLimits.yAbilityDeform1 = 'n/a'; 
    sLimits.yAbilityDeform2 = [0.5,0.75]; 
    sLimits.yAbilityDeform3 = 'n/a'; 
  
    sLimits.xAbilityReform1 = 'n/a'; 
    sLimits.xAbilityReform2 = [0,0.6]; 
    sLimits.xAbilityReform3 = 'n/a'; 
    sLimits.yAbilityReform1 = 'n/a'; 
    sLimits.yAbilityReform2 = [0.5,0.75]; 
    sLimits.yAbilityReform3 = 'n/a'; 
  
   
 
  sLimits.xFriction1 = 'n/a'; 
    sLimits.xFriction2 = [0.1,0.7]; 
    sLimits.xFriction3 = [0.3,0.9]; 
    sLimits.xFriction4 = 'n/a'; 
  
    sLimits.yFriction1 = [0.5,0.7]; 
    sLimits.yFriction2 = [0.4,0.7]; 
    sLimits.yFriction3 = [0.2,0.5]; 
    sLimits.yFriction4 = [0.2,0.35]; 
  
    xDeform1 = 0; 
    xDeform2 = 0.25; 
    xDeform3 = 0.5; 
    xDeform4 = 0.75; 
    xDeform5 = 1.0; 
     
    xReform1 = 0; 
    xReform2 = 0.25; 
    xReform3 = 0.5; 
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    xReform4 = 0.75; 
    xReform5 = 1.0; 
     
 
 
 
    yReform1 = rand(1)*(sLimits.yReform1(2)-sLimits.yReform1(1)); 
    yReform2 = yReform1 + rand(1)*(sLimits.yReform2(2)-yReform1); 
     
    yReform3 = yReform2 + rand(1)*(sLimits.yReform3(2)-yReform2); 
        
    yDeform1 = yReform1 + rand(1)*(sLimits.yDeform1(2)-yReform1); 
    yDeform2 = max(yReform2,yDeform1) + rand(1)*(sLimits.yDeform2(2)-
max(yReform2,yDeform1)); 
    yDeform3 = max(yReform3,yDeform2) + rand(1)*(sLimits.yDeform3(2)-
max(yReform3,yDeform2)); 
    yDeform4 = yDeform3 + rand(1)*(sLimits.yDeform4(2)-yDeform3); 
    yDeform5 = yDeform4 + rand(1)*(sLimits.yDeform5(2)-yDeform4); 
     
    yReform5 = yDeform5 + rand(1)*(sLimits.yReform5(2)-yDeform5); 
    yReform4 = yReform3 + rand(1)*(yReform5-yReform3); 
     
 
 

 
    xAbilityDeform1 = 0; 
    xAbilityDeform2 = 
sLimits.xAbilityDeform2(Lower)+rand(1)*(sLimits.xAbilityDeform2(Upper)-
sLimits.xAbilityDeform2(Lower)); 
    xAbilityDeform3 = 1; 
    yAbilityDeform1 = 0.5; 
    yAbilityDeform2 = 
sLimits.yAbilityDeform2(Lower)+rand(1)*(sLimits.yAbilityDeform2(Upper)-
sLimits.yAbilityDeform2(Lower)); 
    yAbilityDeform3 = 1; 
     
    xAbilityReform1 = 0; 
    xAbilityReform2 = 1-xAbilityDeform2; 
    xAbilityReform3 = 1; 
    yAbilityReform1 = 1; 
    yAbilityReform2 = yAbilityDeform2; 
    yAbilityReform3 = 0.5; 
     
 
 

 
    xFriction1 = 0; 
    xFriction2 = sLimits.xFriction2(Lower) + rand(1)*(sLimits.xFriction2(Upper) - 
sLimits.xFriction2(Lower)); 
    xFriction3 = max(xFriction2,sLimits.xFriction3(Lower)) + 
rand(1)*(sLimits.xFriction3(Upper) - max(xFriction2,sLimits.xFriction3(Lower))); 
    xFriction4 = 1; 
  
    yFriction1 = sLimits.yFriction1(Lower)+rand(1)*(sLimits.yFriction1(Upper)-
sLimits.yFriction1(Lower)); 
    yFriction2 = sLimits.yFriction2(Lower)+rand(1)*(yFriction1-
sLimits.yFriction2(Lower)); 
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    yFriction4 = sLimits.yFriction4(Lower)+rand(1)*(sLimits.yFriction4(Upper)-
sLimits.yFriction4(Lower)); 
    yFriction3 = yFriction4 + rand(1)*(min(yFriction2,sLimits.yFriction3(Upper))-
yFriction4); 
  
 
 
 

 
    sCoords.axDeform(iCnt,:) = [xDeform1,xDeform2,xDeform3,xDeform4,xDeform5]; 
    sCoords.ayDeform(iCnt,:) = [yDeform1,yDeform2,yDeform3,yDeform4,yDeform5]; 
  
    sCoords.axReform(iCnt,:) = [xReform1,xReform2,xReform3,xReform4,xReform5]; 
    sCoords.ayReform(iCnt,:) = [yReform1,yReform2,yReform3,yReform4,yReform5]; 
     
    sCoords.axAbilityDeform(iCnt,:) = 
[xAbilityDeform1,xAbilityDeform2,xAbilityDeform3]; 
    sCoords.ayAbilityDeform(iCnt,:) = 
[yAbilityDeform1,yAbilityDeform2,yAbilityDeform3]; 
    sCoords.axAbilityReform(iCnt,:) = 
[xAbilityReform1,xAbilityReform2,xAbilityReform3]; 
    sCoords.ayAbilityReform(iCnt,:) = 
[yAbilityReform1,yAbilityReform2,yAbilityReform3]; 
     
    sCoords.axFriction(iCnt,:) = [xFriction1,xFriction2,xFriction3,xFriction4]; 
    sCoords.ayFriction(iCnt,:) = [yFriction1,yFriction2,yFriction3,yFriction4]; 
 
 end 
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Final Input Model 

function[CluPressurePrev_bar,CluClampLoadPrev_N,CluTorqueNew_Nm,CluSpeedDiff
New_rpm,CluPowerNew_W] = 
ClutchModel_RigModel(Time_s,sCluData,dt_s,CluMuPrev,CluSpeedDiffPrev_rpm,RigPr
essureDemand_bar) 
  
TimePressureRise_s = 0.025;                      % Time taken for the pressure applied by the 
rig to reach the maximum value [s] 
%RigPressureDemand_bar = 60;                        % Maximum pressure applied by the rig 
during the event [bar] 
  
% If the time at the current timestep is less than the pressure rise time: 
%  - Calculate the pressure based upon a linear interpolation 
% If the time at the current tiemstep is greater than pressure rise time; 
%  - Assume pressure is the max pressure 
if Time_s < TimePressureRise_s 
   CluPressurePrev_bar = RigPressureDemand_bar*(Time_s/TimePressureRise_s); 
else 
    CluPressurePrev_bar = RigPressureDemand_bar; 
end 
  
% Clutch clamp load calculated from: 
%  - Force = Pressure x Area 
CluClampLoadPrev_N = 
(CluPressurePrev_bar*1e5)*(sCluData.TotalPistonArea_mm2/1e6)*sCluData.LeverRat
io; 
  
CluTorqueNew_Nm = 
CluMuPrev*CluClampLoadPrev_N*sCluData.NumWorkingSurfaces*(sCluData.MeanFri
ctionRad_mm/1e3);  
  
% Convert the clutch speed difference from RPM to radians per second i.e. SI units 
CluSpeedDiffPrev_radpers = CluSpeedDiffPrev_rpm*(2*pi/60); 
  
% New clutch speed difference calculated from: 
%  - Torque = Inertia x angular acceleration 
%  T = I * (theta double dot) 
%  T = I * (v2 - v1)/dt 
%  v2 - v1 = T * dt/I 
%  v2 = v1 + (T*dt/I) 
CluSpeedDiffNew_radpers = CluSpeedDiffPrev_radpers + (-
CluTorqueNew_Nm*dt_s/(sCluData.fInertiaClutchOPS_kgm2+sCluData.fInertiaRig_kg
m2+(sCluData.fInertiaMotor_kgm2/(sCluData.fSpeedIncreasingRatio^2)))); 
  
% New clutch power dissipation calculated from: 
%  - Power = Torque x Angular velocity 
CluPowerNew_W = CluTorqueNew_Nm*CluSpeedDiffNew_radpers; 
  
% Convert new speed difference back to rpm from SI unit. 
CluSpeedDiffNew_rpm = CluSpeedDiffNew_radpers*(60/(2*pi)); 
  
% Clear unneeded variables  
clear CluSpeedDiffNew_radpers CluSpeedDiffOld_radpers 
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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% Ends 
 

Final Thermal Model 

function[TempAirNew_degC,TempBulkNew_degC,TempSurfaceNew_degC] = 
ClutchModel_ThermalModelSimple(sCluData,TempAirPrev_degC,TempBulkPrev_degC,
TempSurfacePrev_degC,CluPowerNew_W,dt_s) 
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% DEFINE MODEL PARAMETERS 
SurfaceThickness_m = 0.000010;                   % Thickness of the surface region [m] 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  
  
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% DEFINE ENVIRONMENTAL PROPERTIES 
AirConvectiveTransferCoef = 100;                % Convective transfer coefficient for air 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% DEFINE CONSTANTS 
StefanBoltzmannConst = 5.6704e-08;              % Heat transfer constant of 
proportionality [W/m^2.K^4] 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% OTHER MODEL CALCULATIONS 
BulkThickness_m = 0.5*(sCluData.DiscThickness_m - 2*SurfaceThickness_m);                                
% Thickness of the bulk region [m] 
MassBulk_kg = 
sCluData.DensityCC_kgperm3*(BulkThickness_m*sCluData.SingleWorkingSurfaceArea
_m2);        % Mass of the bulk region [kg] 
MassSurface_kg = 
sCluData.DensityCC_kgperm3*(SurfaceThickness_m*sCluData.SingleWorkingSurfaceA
rea_m2);  % Mass of the surface region [kg] 
BulkCircumfSurfaceArea_m2 = BulkThickness_m*(sCluData.DiamOuter_mm/1e3)*pi;                                   
% Exposed radial area of the bulk material [m^2] 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  
  
  
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% CONVERT TEMPERATURES FROM CELCIUS TO KELVIN 
TempAirPrev_K = TempAirPrev_degC + 273; 
TempBulkPrev_K = TempBulkPrev_degC + 273; 
TempSurfacePrev_K = TempSurfacePrev_degC + 273; 
  
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% SPECIFIC HEAT CAPACITY LOOKUP 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
aCvCC = [sCluData.CvCCRT_JperkgK,sCluData.CvCC1000_JperkgK]; 
aCvTemps_K = [27+273,1000+273]; 



CCLXIV 
 

  
% If previous surface temperature < 27 deg C 
%  - Assume Cv is Cv@27degC 
% If previous surface temperature > 1000 deg C 
%  - Assume Cv is Cv@1000degC 
% Else assume Cv function is linear and perform interpolation to obtain value for 
current surface temperature 
if TempSurfacePrev_K < aCvTemps_K(1) 
    CvSurface_JperkgK = aCvCC(1); 
elseif TempSurfacePrev_K > aCvTemps_K(2); 
    CvSurface_JperkgK = aCvCC(2); 
else 
    CvSurface_JperkgK = interp1(aCvTemps_K,aCvCC,TempSurfacePrev_K); 
end 
  
% Repeat above for bulk 
if TempBulkPrev_K < aCvTemps_K(1) 
    CvBulk_JperkgK = aCvCC(1); 
elseif TempBulkPrev_K > aCvTemps_K(2); 
    CvBulk_JperkgK = aCvCC(2); 
else 
    CvBulk_JperkgK = interp1(aCvTemps_K,aCvCC,TempBulkPrev_K); 
end 
  
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% HEAT TRANSFER CALCULATIONS 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  
% Assume that entire energy dissipated over the timestep is absorbed into the friction 
surface as heat 
%  - assumptions = zero surface roughness 
%                = zero losses to environment 
QSurfaceAbsorbed_J = (CluPowerNew_W/12)*dt_s;           % IMPORTANT - divide by 12 
as only considering one disc-disc interface (one working surface = two interfaces) 
  
% Heat flux due to conduction from surface to bulk 
%  - Delta Q = -k.A.(Delta T/Delta x) 
%  - assumption = uniform conduction through working surface area 
QSurfaceConducted_J = -
(sCluData.ThermalConductivityCCRT_WpermK*sCluData.SingleWorkingSurfaceArea_
m2*(TempBulkPrev_K-TempSurfacePrev_K)/BulkThickness_m)*dt_s; 
  
% Heat flux due to convection from surface to bulk 
%  - Delta Q = A.h.(Delta T) 
%  - assumption = convection from radial surface of bulk only 
QBulkConvected_J = 
AirConvectiveTransferCoef*BulkCircumfSurfaceArea_m2*(TempBulkPrev_K-
TempAirPrev_K)*dt_s; 
  
% Heat flux due to radiation 
%  - Delta Q = A.?.?.(Delta T)^4 
%  - assumption = radiation from radial surface of bulk only 
QBulkRadiated_J = 
BulkCircumfSurfaceArea_m2*StefanBoltzmannConst*sCluData.Emissivity*(TempBulk
Prev_K^4 - TempAirPrev_K^4)*dt_s; 
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% Flux summation for surface, bulk and ambient environment 
% Delta Q = m.Cv.(Delta T) 
%  - Delta Q = (Heat flux in - heat flux out) over the timestep dt 
% For surface: 
DeltaTempSurface_K = (QSurfaceAbsorbed_J-
QSurfaceConducted_J)/(MassSurface_kg*CvSurface_JperkgK); 
TempSurfaceNew_K = TempSurfacePrev_K + DeltaTempSurface_K;                                          
% New surface temperature  = previous surface temperature plus change due to heat 
flux 
% For bulk: 
DeltaTempBulk_K = (QSurfaceConducted_J-QBulkConvected_J-
QBulkRadiated_J)/(MassBulk_kg*CvBulk_JperkgK); 
TempBulkNew_K = TempBulkPrev_K + DeltaTempBulk_K; 
% For air: 
%  - assumption = air remains at ambient temp due to air flow i.e. scenario is not a 
closed system 
TempAirNew_K = TempAirPrev_K; 
  
  
% Convert back to deg C from Kelvin 
TempAirNew_degC = TempAirNew_K - 273; 
TempBulkNew_degC = TempBulkNew_K - 273; 
TempSurfaceNew_degC = TempSurfaceNew_K - 273; 
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Ends 
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Final Surface Model 

function[CluMuNew,CoefSurfaceStateNew,CoefDeform,CoefReform] = 
ClutchModel_SurfaceModel(iGen,sCluData,CluPowerNew_W,TempSurfaceNew_degC,C
oefSurfaceStatePrev,sCoordsCurrent) 
  
PowerDensityMax_Wperm2 = sCoordsCurrent.maxDeform; 
TempSurfaceMax_K = sCoordsCurrent.maxReform; 
  
PowerDensity_Wperm2 = 
(CluPowerNew_W/sCluData.SingleWorkingSurfaceArea_m2)/12; 
  
CoefPowerDensity = PowerDensity_Wperm2/PowerDensityMax_Wperm2; 
  
if CoefPowerDensity >= 1 
    CoefPowerDensity = 1; 
end 
  
  
% Convert the temperature at the current time step to K 
TempSurfaceNew_K = TempSurfaceNew_degC + 273; 
  
  
CoefTempSurface = TempSurfaceNew_K/TempSurfaceMax_K; 
  
if CoefTempSurface >=1 
    CoefTempSurface = 1; 
end 
  
  
% Assume surface is only deformed and reformed when plates are in contact. 
%  - In this model, plates are in contact when slipping occurs. 
  
  
%CoefDeform = 
interp1(sCoords.axDeform(iGen,:),sCoords.ayDeform(iGen,:),CoefPowerDensity,'pchip
'); 
%CoefReform = 
interp1(sCoords.axReform(iGen,:),sCoords.ayReform(iGen,:),CoefTempSurface,'pchip'
);                 
  
CoefDeform = 
interp2(sCoordsCurrent.mxDeform,sCoordsCurrent.myDeform,sCoordsCurrent.mzDef
orm,CoefPowerDensity,CoefSurfaceStatePrev,'cubic'); 
CoefReform = 
interp2(sCoordsCurrent.mxReform,sCoordsCurrent.myReform,sCoordsCurrent.mzRef
orm,CoefTempSurface,CoefSurfaceStatePrev,'cubic');                 
  
%CoefAbilityDeform = 
interp1(sCoords.axAbilityDeform(iGen,:),sCoords.ayAbilityDeform(iGen,:),CoefSurface
StatePrev,'pchip'); 
%CoefAbilityReform = 
interp1(sCoords.axAbilityReform(iGen,:),sCoords.ayAbilityReform(iGen,:),CoefSurface
StatePrev,'pchip'); 
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%DeltaCoefSurfaceState = (CoefReform*CoefAbilityReform) - 
(CoefDeform*CoefAbilityDeform); 
DeltaCoefSurfaceState = CoefReform - CoefDeform; 
  
CoefSurfaceStateNew = CoefSurfaceStatePrev + DeltaCoefSurfaceState; 
  
if CoefSurfaceStateNew >=1 
    CoefSurfaceStateNew = 1; 
elseif CoefSurfaceStateNew <= 0 
    CoefSurfaceStateNew = 0; 
end 
  
CluMuNew = 
interp1(sCoordsCurrent.axFriction,sCoordsCurrent.ayFriction,CoefSurfaceStateNew,'c
ubic'); 
  
if CluMuNew >= 1 
    CluMuNew = 1; 
end 
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Final Model Code for Thermal Characteristic Generation 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% SYNTAX: 
%   n/a 
% 
% FILENAME: 
%   ClutchModel.m 
% 
% FUNCTION: 
%   Full clutch model to describe clutch engagement events based upon 
%   surface property lookup tables. 
% 
%   Can be used to generate and optimise the set of lookup tables, or to 
%   simulate rig testing when lookup tables are known and validated. 
% 
% ARGUMENTS: 
%   None 
% 
% RETURNS: 
%   None 
% 
% REQUIRED FILES: 
%   - ClutchModel_Init.m 
%   - ClutchModel_ThermalModelSimple.m 
%   - ClutchModel_SurfaceModel.m 
%   - ClutchModel_LookupGenerator.m 
%   - ClutchModel_RandNumGen.m 
% 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  
  
% Ensure that the workspace is cleared before use 
close all 
clear all 
  
  
% Run the initilization file to populate the workspace 
run ClutchModel_Init 
  
  
% Load the data to which the sim results will be correlated 
ClutchPack = 'clutch 1'; 
strDataPath = C:\Documents and Settings\glawrence\Desktop\Clutch Model\ 
strFullFilename = [strDataPath,ClutchPack,'\','MatlabAnalysisResults.mat']; 
load(strFullFilename,'sData'); 
sHGTData = sHGTData(1:nEvents); 
  
  
% If not using the random number generator feature, ensure nGenerate is overriden 
if bRandGen == OFF 
    % Load the lookup tables from the filename and filepath described 
    strLookupTableFilepath = 'C:\Documents and Settings\glawrence\Desktop\Clutch 
Model\Results\'; 
    strLookupTableFilename = 'sLookupTables-Results.mat'; 
    strLookupTableFullFilename = [strLookupTableFilepath,strLookupTableFilename]; 
    load(strLookupTableFullFilename); 
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    % Define how many runs to perform 
    nGenerate = length(sCoordsLoad);                                      % --> If 5 sets in structure, do 
5 runs, etc etc. 
    sCoords = sCoordsLoad; 
end 
  
  
tic 
  
for iGen = 1:1:nGenerate                                                    % --> nGenerate = Number of 
lookup table datasets to test 
  
    %iGen                                                                  % --> Unsuppress this if wanting to track 
optimisation progress 
  
    % Reset timestep to beginning 
    iTimeStep = 1; 
  
    % If lookup table optimisation has been chosen: 
    %  - Define the confidence levels for each coordinate 
    %  - Generate each coordinate based on confidence 
    if bRandGen == ON 
  
        % 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
        % LOOKUP TABLE GENERATION 
        % 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  
        % If first generation cycle, we need to set the confidence levels to the initial 
values. 
        %  - Store all confidence arrays within the structure sCondfidence 
        if iGen == 1; 
            aConfidenceInitial = sConfidence.aConfidenceInitial; 
  
            sConfidence.zDeform55 = aConfidenceInitial;                         % --> 
sConfidence.zDeform55 = Array of confidence values for the generated coordinate 
zDeform55 
            sConfidence.zDeform5b = aConfidenceInitial;                         % --> 
sConfidence.zDeform5b = Array of confidence values for the generated coordinate 
zDeform5b 
            sConfidence.zDeform5a = aConfidenceInitial;                         % --> 
sConfidence.zDeform5a = Array of confidence values for the generated coordinate 
zDeform5a 
            sConfidence.yDeformb = aConfidenceInitial;                          % --> 
sConfidence.yDeformb  = Array of confidence values for the generated coordinate 
yDeformb 
            sConfidence.yDeforma = aConfidenceInitial;                          % --> 
sConfidence.yDeforma  = Array of confidence values for the generated coordinate 
yDeforma 
            sConfidence.zDeforma5 = aConfidenceInitial;                         % --> 
sConfidence.zDeforma5 = Array of confidence values for the generated coordinate 
zDeforma5 
            sConfidence.xDeforma = aConfidenceInitial;                          % --> 
sConfidence.xDeforma  = Array of confidence values for the generated coordinate 
xDeforma 
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            sConfidence.zReform51 = aConfidenceInitial; 
            sConfidence.zReform5a = aConfidenceInitial; 
            sConfidence.zReforma1 = aConfidenceInitial; 
            sConfidence.yReform5a = aConfidenceInitial; 
            sConfidence.xReforma1 = aConfidenceInitial; 
  
            sConfidence.Friction1 = aConfidenceInitial; 
            sConfidence.Friction2 = aConfidenceInitial; 
             
            sConfidence.maxDeform = aConfidenceInitial; 
            sConfidence.maxReform = aConfidenceInitial; 
        end 
  
   
        % Use the function CoordGen to return the lookup table coordinate matrices for 
this iteration of lookup tables 
        
[mxDeform,myDeform,mzDeform,mxReform,myReform,mzReform,axFriction,ayFricti
on,mDeformCore,mReformCore,aAllGeneratedVals,maxDeform,maxReform] = 
CoordGen(sConfidence); 
  
        % Save the generated coordinates into the structure sCoords for future analysis 
        sCoords(iGen,:).mxDeform = mxDeform; 
        sCoords(iGen,:).myDeform = myDeform; 
        sCoords(iGen,:).mzDeform = mzDeform; 
        sCoords(iGen,:).mxReform = mxReform; 
        sCoords(iGen,:).myReform = myReform; 
        sCoords(iGen,:).mzReform = mzReform; 
        sCoords(iGen,:).mDeformCore = mDeformCore; 
        sCoords(iGen,:).mReformCore = mReformCore; 
        sCoords(iGen,:).axFriction = axFriction; 
        sCoords(iGen,:).ayFriction = ayFriction; 
        sCoords(iGen,:).maxDeform = maxDeform; 
        sCoords(iGen,:).maxReform = maxReform; 
         
        clear mDeformCore mReformCore 
  
        % Generate the structure sCoordsCurrent to store the current coordinates 
        %  - Reason = to make it easier to pass the coords to future functions 
        sCoordsCurrent.mxDeform = mxDeform; 
        sCoordsCurrent.myDeform = myDeform; 
        sCoordsCurrent.mzDeform = mzDeform; 
        sCoordsCurrent.mxReform = mxReform; 
        sCoordsCurrent.myReform = myReform; 
        sCoordsCurrent.mzReform = mzReform; 
        sCoordsCurrent.axFriction = axFriction; 
        sCoordsCurrent.ayFriction = ayFriction; 
        sCoordsCurrent.maxDeform = maxDeform; 
        sCoordsCurrent.maxReform = maxReform; 
  
        % Now that the current coords have been saved, we can clear the individual 
matrices 
        clear mxDeform myDeform mzDeform mxReform myReform mzReform 
axFriction ayFriction maxDeform maxReform 
  
    % If lookup table optimisation has not been chosen: 
    %  - Load the lookup table coordinates 
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    elseif bRandGen == OFF 
        sCoordsCurrent.mxDeform = sCoordsLoad(iGen).mxDeform; 
        sCoordsCurrent.myDeform = sCoordsLoad(iGen).myDeform; 
        sCoordsCurrent.mzDeform = sCoordsLoad(iGen).mzDeform; 
        sCoordsCurrent.mxReform = sCoordsLoad(iGen).mxReform; 
        sCoordsCurrent.myReform = sCoordsLoad(iGen).myReform; 
        sCoordsCurrent.mzReform = sCoordsLoad(iGen).mzReform; 
        sCoordsCurrent.axFriction = sCoordsLoad(iGen).axFriction; 
        sCoordsCurrent.ayFriction = sCoordsLoad(iGen).axFriction; 
        sCoordsCurrent.maxDeform = sCoordsLoad(iGen).maxDeform; 
        sCoordsCurrent.maxReform = sCoordsLoad(iGen).maxReform; 
    end 
  
  
  
    % Now that lookup tables have been created, perform runs in the cycle 
    %  - For each event, find the actuation pressure 
    %  -  
    for iEvent = 1:nEvents 
  
        % 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
        % CLUTCH ACTUATION PRESSURE PROFILE 
        % 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
        % Clutch actuation pressure is not constant throughout HGT events 
        %  - Events 1 and 2 are performed at 70bar 
        %  - Subsequent events follow the following cycle: 
        %      --> 40,70,50,70,60,70 bar 
        Event40bar = [3:6:123]; 
        Event50bar = [5:6:125]; 
        Event60bar = [7:6:127]; 
        Event70bar = [1,2:2:128]; 
  
        if isempty(find(iEvent == Event70bar))~=1; 
            RigPressureDemand_bar = 70; 
        elseif isempty(find(iEvent == Event40bar))~=1; 
            RigPressureDemand_bar = 40; 
        elseif isempty(find(iEvent == Event50bar))~=1; 
            RigPressureDemand_bar = 50; 
        elseif isempty(find(iEvent == Event60bar))~=1; 
            RigPressureDemand_bar = 60; 
            % If sim goes beyond limits set above, use a very high value to speed up 
subsequent events (value tending to zero will make event duration tend to infinity) 
        else 
            RigPressureDemand_bar = 150; 
        end 
  
  
        iTimeStep = 1; 
        CluSpeedDiffPrev_rpm = sInitConds.CluSpeedDiff_rpm; 
  
  
        while CluSpeedDiffPrev_rpm > 300                                    % --> Use of 300rpm for 
lower limit as HGT have a measurement error below this value 
  
            iTimeStep = iTimeStep + 1; 
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            Time_s = (iTimeStep-1)*dt_s; 
            sEvent(iEvent).aTime_s(iTimeStep,1) = Time_s; 
  
  
  
  
  
            % 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
            % CLUTCH RIG MODEL 
            % 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
            % At each time step, need to provide: 
            %  - new rig clamp pressure 
            %  - new clutch differential speed 
            %  - new clutch torque 
            %  - power dissipated over the timestep 
  
            % If we are at the first timestep, all knowns should be set to its initial value 
            if iTimeStep == 2 
  
                sEvent(iEvent).aCluSpeedDiff_rpm(1,1) = sInitConds.CluSpeedDiff_rpm; 
                sEvent(iEvent).aTempAir_degC(1,1) = sInitConds.TempAir_degC; 
                sEvent(iEvent).aTempBulk_degC(1,1) = sInitConds.TempBulk_degC; 
                sEvent(iEvent).aTempSurface_degC(1,1) = sInitConds.TempSurface_degC; 
  
                if iEvent == 1 
                    sEvent(iEvent).aCoefSurfaceState(1,1) = sInitConds.CoefSurfaceState; 
                    sEvent(iEvent).aCluMu(1,1) = 
interp1(sCoords(iGen).axFriction,sCoords(iGen).ayFriction,sEvent(iEvent).aCoefSurfa
ceState(1,1)); 
  
                else 
                    sEvent(iEvent).aCoefSurfaceState(1,1) = sEvent(iEvent-
1).aCoefSurfaceState(end); 
                    sEvent(iEvent).aCluMu(1,1) = 
interp1(sCoords(iGen).axFriction,sCoords(iGen).ayFriction,sEvent(iEvent).aCoefSurfa
ceState(1,1)); 
                end 
  
            end 
  
            CluSpeedDiffPrev_rpm = sEvent(iEvent).aCluSpeedDiff_rpm(iTimeStep-1,1); 
            CluMuPrev = sEvent(iEvent).aCluMu(iTimeStep-1,1); 
            CoefSurfaceStatePrev = sEvent(iEvent).aCoefSurfaceState(iTimeStep-1); 
  
  
  
            
[CluPressurePrev_bar,CluClampLoadPrev_N,CluTorqueNew_Nm,CluSpeedDiffNew_rp
m,CluPowerNew_W] = 
ClutchModel_RigModel(Time_s,sCluData,dt_s,CluMuPrev,CluSpeedDiffPrev_rpm,RigPr
essureDemand_bar); 
            clear Time_s CluMuPrev 
             
            sEvent(iEvent).aCluPressure_bar(iTimeStep-1,1) = CluPressurePrev_bar; 
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            sEvent(iEvent).aCluClampLoad_N(iTimeStep-1,1) = CluClampLoadPrev_N; 
            sEvent(iEvent).aCluTorque_Nm(iTimeStep,1) = CluTorqueNew_Nm; 
            sEvent(iEvent).aCluSpeedDiff_rpm(iTimeStep,1) = CluSpeedDiffNew_rpm; 
            sEvent(iEvent).aCluPower_W(iTimeStep,1) = CluPowerNew_W; 
  
  
  
  
  
            % 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
            % CLUTCH THERMAL MODEL 
            % 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
            % At each time step, need to provide: 
            %  - new clutch surface temperature 
            %  - new clutch bulk temperature 
            %  - new ambient temperature 
            TempAirPrev_degC = sEvent(iEvent).aTempAir_degC(iTimeStep-1,1); 
            TempBulkPrev_degC = sEvent(iEvent).aTempBulk_degC(iTimeStep-1,1); 
            TempSurfacePrev_degC = sEvent(iEvent).aTempSurface_degC(iTimeStep-1,1); 
  
            [TempAirNew_degC,TempBulkNew_degC,TempSurfaceNew_degC] = 
ClutchModel_ThermalModelSimple(sCluData,TempAirPrev_degC,TempBulkPrev_degC,
TempSurfacePrev_degC,CluPowerNew_W,dt_s); 
  
            sEvent(iEvent).aTempAir_degC(iTimeStep,1) = TempAirNew_degC; 
            sEvent(iEvent).aTempBulk_degC(iTimeStep,1) = TempBulkNew_degC; 
            sEvent(iEvent).aTempSurface_degC(iTimeStep,1) = TempSurfaceNew_degC; 
            clear TempSurfacePrev_degC TempBulkPrev_degC TempAirPrev_degC 
  
  
  
  
            % 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
            % CLUTCH SURFACE MODEL 
            % 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
            % At each time step, need to provide: 
            %  - new clutch surface state 
            %  - new clutch coefficient of friction 
            [CluMuNew,CoefSurfaceStateNew,CoefDeform,CoefReform] = 
ClutchModel_SurfaceModel(iGen,sCluData,CluPowerNew_W,TempSurfaceNew_degC,C
oefSurfaceStatePrev,sCoordsCurrent); 
            clear CoefSurfaceStatePrev CluPowerNew_W TempSurfaceNew_degC 
TempBulkNew_degC TempAirNew_degC 
             
            sEvent(iEvent).aCluMu(iTimeStep,1) = CluMuNew; 
            sEvent(iEvent).aCoefSurfaceState(iTimeStep,1) = CoefSurfaceStateNew; 
            sEvent(iEvent).aCoefDeform(iTimeStep,1) = CoefDeform; 
            sEvent(iEvent).aCoefReform(iTimeStep,1) = CoefReform; 
            clear CoefDeform CoefReform CluMuNew CoefSurfaceStateNew 
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            %sEvent(iEvent).aCluMu(iTimeStep,1) = sEvent(iEvent).aCluMu(iTimeStep-
1,1); 
            %sEvent(iEvent).aCoefSurfaceState(iTimeStep,1) = 
sEvent(iEvent).aCoefSurfaceState(iTimeStep-1,1); 
  
             
  
             
        end 
  
  
        % 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
        % OBTAIN MEASUREMENTS FOR CORRELATION PURPOSES 
        % 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
        % AIM: 
        % To check accuracy of simulation output against measured output 
        % 
        % MEASUREMENTS: 
        % 1) Determine total event duration 
        % 2) Grab sim mu at [10,30,50,70,90]% of event duration 
        % 3) Determine peak mu value in initial and final 0.1s of event 
        % 4) Determine mean mu for event 
  
        fDuration = length(sEvent(iEvent).aTime_s); 
        sEvent(iEvent).fDuration_s = sEvent(iEvent).aTime_s(end); 
  
        aGrabMuPoints_percent = [10,30,50,70,90]; 
        aGrabMuPoints = round(fDuration*(aGrabMuPoints_percent./100)); 
        sEvent(iEvent).aGrabMuVals = sEvent(iEvent).aCluMu(aGrabMuPoints); 
  
        sEvent(iEvent).fMuPeakInitial = max(sEvent(iEvent).aCluMu(1:(0.1/dt_s))); 
        %sEvent(iEvent).fMuPeakFinal = 
max(sEvent(iEvent).aCluMu(((sEvent(iEvent).fDuration_s-
0.1)/dt_s):(sEvent(iEvent).fDuration_s/dt_s))); 
        sEvent(iEvent).fMuAve = mean(sEvent(iEvent).aCluMu); 
  
        aDeltaTorqueRange = 
find(sEvent(iEvent).aCluSpeedDiff_rpm<=7200&sEvent(iEvent).aCluSpeedDiff_rpm>8
00)'; 
        sEvent(iEvent).fDeltaTorque = 
(max(sEvent(iEvent).aCluTorque_Nm(aDeltaTorqueRange)))-
(min(sEvent(iEvent).aCluTorque_Nm(aDeltaTorqueRange))); 
  
        sEvent(iEvent).aCorrelationData = 
[sEvent(iEvent).aGrabMuVals',sEvent(iEvent).fMuPeakInitial,sEvent(iEvent).fMuAve,s
Event(iEvent).fDeltaTorque,sEvent(iEvent).fDuration_s]; 
  
        sEvent(iEvent).aCorrelationResult = abs(sEvent(iEvent).aCorrelationData-
sHGTData(iEvent).aCorrelationData)./sHGTData(iEvent).aCorrelationData; 
        sEvent(iEvent).fCorrelationResultTotal = 
(sum(sEvent(iEvent).aCorrelationResult))/length(sEvent(iEvent).aCorrelationResult)
; 
    end 
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    sResults(iGen).sEvent = sEvent; 
    for iCnt = 1:nEvents 
        aCheck(iCnt,1) = sResults(iGen).sEvent(iCnt).fCorrelationResultTotal; 
    end 
    %sResults(iGen).CorrTot = sum(aCheck); 
    sCoords(iGen).AccuracyResult = (sum(aCheck))/nEvents; 
  
    if bRandGen == ON 
    if bConfidenceUpdate == ON 
        nConfidenceUpdate = (1-sCoords(iGen).AccuracyResult)^2; 
        [sConfidence] = 
ClutchModel_ConfidenceUpdate(sConfidence,nConfidenceUpdate,aAllGeneratedVals); 
  
    end 
    end 
    clear sEvent aCheck nConfidenceUpdate aAllGeneratedVals 
  
  
    if bSaveResults == 1 
  
        % If we are randomly generating results 
        if bRandGen == ON 
  
            if iGen == iSave*nthResultSave; 
                save(FullFilename,'sCoords','sConfidence'); 
                iSave = iSave+1; 
                SaveText = sprintf('Result saved after %5.0f iterations',iGen) 
  
  
            end 
  
        elseif bRandGen == OFF 
            save(FullFilename,'sCoords','sResults'); 
  
  
        end 
  
    end 
     
    if bRandGen == ON 
    clear sResults 
    end 
     
end 
  
toc 
  
  
  
if bRandGen == ON 
  
for iCnt = 1:length(sCoords) 
    aAccuracy(iCnt,1) = sCoords(iCnt).AccuracyResult; 
end 



CCLXXVI 

[aAccuracySortedVals,aAccuracySortedPoints] = sort(aAccuracy,'ascend'); 

nAnalyseBestPercentage = 5;    % --> Analyse the best n% of results 

nPos = ceil(length(aAccuracySortedVals)*(nAnalyseBestPercentage/100)); 

clear iCnt 

for iCnt = 1:nPos 
toget = aAccuracySortedPoints(iCnt); 
a = sCoords(toget); 
sCoordsLoad(iCnt) = a; 
clear a toget 
end 

strLookupTableSavepath = 'C:\Documents and Settings\glawrence\Desktop\Clutch 
Model\Results\'; 
strFullFilename = [strLookupTableSavepath,'sLookupTables-',Filename]; 
save(strFullFilename,'sCoordsLoad'); 
end 

if bRandGen == ON 

figure 
stairs(sConfidence.aDiscretisation,sConfidence.zDeform55,'-','color','k') 
hold on 
stairs(sConfidence.aDiscretisation,sConfidence.zDeform5a,'-','color','b') 
stairs(sConfidence.aDiscretisation,sConfidence.zDeform5b,'-','color','g') 

stairs(sConfidence.aDiscretisation,sConfidence.zReforma1,'-','color',[0,0.5,0]) 
stairs(sConfidence.aDiscretisation,sConfidence.yReform5a,'-','color','y') 
stairs(sConfidence.aDiscretisation,sConfidence.xReforma1,'-','color','c') 
stairs(sConfidence.aDiscretisation,sConfidence.Friction1,'-','color','r') 
stairs(sConfidence.aDiscretisation,sConfidence.Friction2,'-','color','m') 

a = flipud(autumn); 

for iCnt = 1:length(sConfidence.aDiscretisation) 

    sConfidencePlot(1).Color(1,iCnt) = 1+floor(64*((sConfidence.zDeform55(iCnt)-
sConfidence.nConfidenceInitial)/((sum(sConfidence.zDeform55))-
(sConfidence.nConfidenceInitial*sConfidence.nDiscretisation)))); 
    sConfidencePlot(2).Color(1,iCnt) = 1+floor(64*((sConfidence.zDeform5a(iCnt)-
sConfidence.nConfidenceInitial)/((sum(sConfidence.zDeform5a))-
(sConfidence.nConfidenceInitial*sConfidence.nDiscretisation)))); 
    sConfidencePlot(3).Color(1,iCnt) = 1+floor(64*((sConfidence.zReforma1(iCnt)-
sConfidence.nConfidenceInitial)/((sum(sConfidence.zReforma1))-
(sConfidence.nConfidenceInitial*sConfidence.nDiscretisation)))); 



CCLXXVII 

    sConfidencePlot(4).Color(1,iCnt) = 1+floor(64*((sConfidence.zDeform5b(iCnt)-
sConfidence.nConfidenceInitial)/((sum(sConfidence.zDeform5b))-
(sConfidence.nConfidenceInitial*sConfidence.nDiscretisation)))); 
    sConfidencePlot(5).Color(1,iCnt) = 1+floor(64*((sConfidence.yReform5a(iCnt)-
sConfidence.nConfidenceInitial)/((sum(sConfidence.yReform5a))-
(sConfidence.nConfidenceInitial*sConfidence.nDiscretisation)))); 
    sConfidencePlot(6).Color(1,iCnt) = 1+floor(64*((sConfidence.xReforma1(iCnt)-
sConfidence.nConfidenceInitial)/((sum(sConfidence.xReforma1))-
(sConfidence.nConfidenceInitial*sConfidence.nDiscretisation)))); 
    sConfidencePlot(7).Color(1,iCnt) = 1+floor(64*((sConfidence.Friction1(iCnt)-
sConfidence.nConfidenceInitial)/((sum(sConfidence.Friction1))-
(sConfidence.nConfidenceInitial*sConfidence.nDiscretisation)))); 
    sConfidencePlot(8).Color(1,iCnt) = 1+floor(64*((sConfidence.Friction2(iCnt)-
sConfidence.nConfidenceInitial)/((sum(sConfidence.Friction2))-
(sConfidence.nConfidenceInitial*sConfidence.nDiscretisation)))); 

end 

figure 
hold on 
for iy = 1:8 

    for ix = 1:length(sConfidence.aDiscretisation) 
 col = [a((sConfidencePlot(iy).Color(ix)),:)]; 
 plot(ix-0.5,iy,'s','Color',col,'MarkerSize',25,'MarkerFaceColor',col) 

    end 
    line([0,length(sConfidence.aDiscretisation)],[iy-0.5,iy-0.5],'Color','k','LineWidth',3) 
end 
xlim([0,length(sConfidence.aDiscretisation)]) 
ylim([0.5,8.5]) 

end 




