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Abstract 

The aim of this research programme was to design and develop novel voltage

followerslbuffers, suitable for radio frequency (RF) applications. The emphases 

throughout has been on improving key characteristics, in particular distortion, 

operating bandwidth, input and output impedances, offset-voltage and power supply 

demands of the design. The majority of the results of this work have been reported by 

the author in the technical literature (I] to (6). 

Initially this research focuses on the investigation of the underlying operating 

principles of the voltage-follower to provide an in-depth understanding of its 

operation. This study concentrates on establishing reasons for the poor distortion, low 

input and high output impedances and increased offset-voltage and confirmed that 

these designs have inherently poor performance in these parameters. The analysis is 

carried out using both theoretical modelling and computer simulation, using the well

established software package ORCAD PSpice. Despite the availability of high 

performance computer simulation tools, it becomes apparent that 'hand' calculations 

in the design process, generally based on DC and small-signal transistor parameters, 

are essential. Therefore a detailed analysis of the transistor-models used throughout 

this research is carried out with PSpice data. 

Using the analytical results of the conventional voltage-follower as a 

benchmark, various novel circuit techniques investigated. Several new circuits are 

proposed with respect to improving the previously mentioned key characteristics. The 

first technique comprises local feedback and single-valued current biasing and 
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consists of emitter-followers exclusively throughout the signal path, keeping the 

distortion of the input signal to low levels [1 J, (2). The second technique is based on 

local feedback with double-valued current biasing, increasing somewhat the power 

dissipation but reducing, notably, the distortion of the configuration [3J, [4J, [5J, [6J. 

The final technique employs the emitter-followers throughout the signal path in 

combination with global feedback and double-valued current biasing, which presents 

significantly better results, on certain parameters, than conventional and existing 

configurations. It is anticipated that this work will be published in the near future. 
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1.1 The voltage-follower 

The subject of this thesis is voltage-follower (V F) design. VFs are one of the 

most commonly encountered building blocks, found in almost all analogue systems. 

An ideal voltage-follower is a unity-gain voltage amplifier with infinite bandwidth, 

infinite input impedance and zero output impedance, which implies infinite current 

gain, as well as offset voltage and zero input bias current [1-1). Functionally, it is an 

analogue buffer able to transfer an input voltage from a signal source to a lower 

impedance load, without taking any current from the input source. In reality the 

bandwidth will be limited and as, also, will be the desired input and output impedance 

levels. The focus of this research is on the design and development of novel 

voltage-follower architectures with the goal of achieving high-frequency bandwidth 

and low distortion performance. 

1.2 Historical perspective of the voltage-follower 

The voltage-follower is a configuration that has been in use for over 100 years. 

The original voltage-follower in vacuum or valve technology is the cathode-follower, 

the second most common electron-tube circuit in use after the common-cathode 

amplifier. This circuit dates back to the early days of the thermionic valve or electron 

tube, to the beginning of the last century [1-2 to 1-5), after which developments of the 

bipolar transistor in the early 1950s led to the replacement of the electron tube mainly, 

due to the lower cost, size and improved reliability. 
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feedback was 

significant because it reduces distortion level. The principal application of the circuit 

was to isolate amplifying stages from each other due to the very high input impedance 

and very low output impedance inherent features of the cathode-follower. It was 

widely used in the radio-transmitters [1-6] at 1920s, TV sets at 1930s [1-5], and 

several biomedical applications at 1950s [1-7], [1-8]. 

Later, at early 1950s, the bipolar transistor was born, using semiconductor 

material [1-9], replacing gradually the majority of electron-tube based configurations 

with transistor-based circuits. The need for buffering between amplifier stages was 

greater in bipolar circuit design than electron-tube design due to the lower input 

impedance of the common-emitter stage. Voltage-followers, the bipolar equivalent of 

the cathode-follower, were useful as input and output stages and they were integrated 

into the chip. In order to optimize performance, companies like National 

Semiconductors created dedicated integrated circuits specially designed as voltage-

followers, such as the LM102, in 1967 [1-10]. 

Nowadays, several voltage-follower configurations exist in an integrated 

circuit form and others have been presented recently, claming they exhibit superior 

performance to existent configurations [I-ll to 1-30]. Nevertheless, in almost every 

case there is a trade-off between operating bandwidth, signal distortion, slew rate and 

power dissipation. The inter-dependence of these parameters is complex and 

optimisation of any voltage-follower design to maximise performance is a major 

challenge. 
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1.3 Negative feedback I local and global 

Although a thorough review of negative feedback is inappropriate here, a brief 

reference is necessary to provide a basis for the design and development of the 

voltage-follower. The work presented here is divided into two main circuit 

categories; the local feedback and the global feedback. 

Negative feedback has been used for many years mainly for amplifier 

linearization, (1-31 to 1-33]. It is a process whereby a linear proportion of the output 

signal is subtracted from the input. That results in an effectively constant gain, 

independent of the signal level, thereby improving the overall distortion of the circuit. 

Additionally, using negative feedback the designer has the flexibility to increase the 

input impedance and decrease the output impedance of the circuit, desirable 

characteristics of voltage-follower designs. Furthermore, using a negative feedback, 

the operating bandwidth of a circuit can be increased, at the expense of the overall 

gain. Finally, the gain of an active device can be precisely controlled becoming less 

sensitive to the variations of active device parameters and the tolerances of circuit 

components, as well as such factors as the ambient operating temperature. 

On the other hand, there are two significant drawbacks when using negative 

feedback. Firstly, limitation in the maximum gain that can be achieved, which is 

unavoidable since it is directly related to the benefits achieved. Secondly, the 

tendency of the circuit to oscillate if, under certain conditions, the feedback changes 

from negative to positive (1-34], (1-35]. 
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Negative feedback is divided by the author into two main categories, local 

feedback and global feedback. The first is concerned with Iinearising an individual 

stage, improving the distortion and reliability of the circuit [1-36). It provides gain 

stabilisation and is preferred in configurations with small number of cascaded stages. 

Nevertheless, under specific operating conditions, each feedback loop modifies the 

signal and generates distortion which is additive when multiple stages used. 

However, global feedback is considered to give much better results than 

several small local feedback loops, but only if the amplifier has a high open-loop gain. 

Global feedback contributes to the removal of significant amount of distortion from 

all stages at once, overcoming the effect of additive distortion from each cascaded 

stage [1-37], [1-38). The main drawback of this type of feedback is the requirement 

for a dominant-pole capacitor, to prevent sustained circuit oscillations. Consequently, 

the bandwidth of the circuit will reduce as well as the open-loop gain at higher 

frequencies. 

1.4 Thesis outline 

The thesis is divided into eight main chapters, and to make the reading of it 

more straightforward, only the results of longer mathematical derivations are included 

in the relevant text, with the full working given in the appendix linked directly to the 

end of each chapter. In addition, chapter references are laid out at the end of each 

chapter as well as in a complete alphabetical order at the end of the thesis. 

1-5 
Mr. Nikolaos Charalampidis Chapter 1 



Novel approaches in voltage-follower design 

Following this introductory chapter, Chapter 2 concentrates 

OXFORD 

BROOKES 
UNIVERSITY 

on the 

fundamentals of the voltage-follower and its ideal and practical properties. A review 

of voltage-follower classifications is presented, together with the specifications to be 

met in this thesis. The chapter finishes with several popular application examples of 

the voltage-follower. 

A detailed analysis of the transistor-models used throughout this research, is 

presented in Chapter 3. The process of developing a new circuit is supported by 

theoretical analysis. Unfortunately analytical device model parameters are not easily 

obtained directly from PSpice parameters. A key part of this chapter is extraction of 

these model parameters from PSpice device characteristics, at the particular operating 

conditions required for each design. It will be shown that a thorough analysis of 

these parameters is necessary for accurate design, based on 'hand-calculations' and 

that without them, in a number of cases, the simulation results do not match the 

theoretical analysis. In the same chapter, a review of biasing techniques is included 

together with an introduction to current-biasing circuitry that has been chosen for use 

because of its superior performance compared with other similar configurations. 

Chapter 4 is a critical review of the conventional emitter-follower, including 

analysis of both DC and small-signal conditions. Comparatively, the treatment of the 

emitter-follower given in textbooks is not as extensive as that undertaken by the 

author, consequently the analysis presented in this chapter is quite thorough and 

thought to be original in some respects. Also, Chapter 4 sets the benchmarks for this 

research. All the proposed configurations are investigated, analysed and compared 

with the conventional circuit, in order to give the reader clear insight into the 
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over the 

In Chapter 5, a novel voltage-follower, using local feedback and single-valued 

current biasing is presented. The circuit idea is based on the on the original 'LH0002' 

type buffers developed in the 1970s by National Semiconductors [1-39], more 

recently referred to as the 'Diamond' circuit [1-40] which is very commonly used as 

the input or output stage of a current feedback op-amp (CFOA) [1-41], [1-42) and a 

current conveyer (1-43). After the analysis and the simulation of the 'Diamond' 

circuit, according to the benchmarks set in the previous chapter, progressive 

modifications are presented, up to the proposed circuit, which is again analysed and 

simulated in a similar manner. 

Chapter 6 presents two more novel voltage-follower designs, again with local 

feedback, but this time with double-valued current biasing. The analysis and 

simulation of both designs, similar to the previous circuit, showed that even better 

results, as far as the input and output impedance as well as distortion, can be achieved, 

compromising slightly the power dissipation of the circuit. Their performance 

parameters have been tabulated and compared at the final chapter with all the rest 

circuits, for the convenience of the reader. 

A further novel voltage-follower design is developed in Chapter 7. This time, 

the circuit uses global feedback to achieve low signal distortion and even lower output 

impedance than the previous designs described. As described in the previous section, 

under certain conditions, the negative feedback can cause oscillations to a circuit 
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A good example of that is the circuit presented in this 

chapter. Consequently, in addition to the analysis of the new circuit, a compensation 

technique is presented which provides stable operation for the circuit. Finally, this 

chapter presents a comparative assessment of the most important parameters of the 

VFs investigated in this work. The assessment shows that the best voltage-follower is 

subject to trade-offs. 

The last chapter, Chapter 8, is entitled Conclusions and future work. This 

contains an overview and reflection on the main body of work on the voltage-follower 

designs investigated. Finally, comments on implementing some of the designs in 

BiCMOS technology are included, and future development possibilities are described. 

Some of the work reported in this thesis has been published and it is a 

recommendation/regulation of Oxford Brookes University that these papers are 

included in the thesis as they appeared in the publication. They can be found at the 

end of this thesis, after the list of references. 

1.5 The original contribution of this work 

The outcome of this work is four new designs which exhibit better 

performance parameters than similar in the market or recently presented circuits [1-11 

to 1-30). All four circuits, in addition to the overall good performance, present a 

strong point, and the decision for the most suitable design is subject to the application. 
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The first novel voltage-follower presented (Type A) is a circuit with very low 

offset voltage (64uV), wide bandwidth (2.7GHz), low power dissipation (34.6mW) 

and low signal distortion. The second and third novel circuits (Type B, VFB/I and 

VFB/2) have been designed to provide fast operation, low distortion and wide voltage 

swing in addition to the good overall performance. In particular, the VFB/I follower 

presents a very high slew-rate (481OV/us), low distortion (-70dB at 250MHz) and 

increased, compared to the Type A, voltage swing (±2V on a ±3.3V supply), while the 

VFB/2 combines the good performance of the VFB/I with even higher voltage swing 

(±4.5V on a ±5V supply), low output impedance (2.40) and small, in size, core (six 

devices). Finally, the fourth novel design (Type C) combines high input (15.lMO) 

and low output (0.0360) impedance, high Gain flatness (170MHz to within 0.1 dB), 

low offset voltage (228u V) and good output swing. 
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2.1 Introduction 

This chapter considers some of the basic features of voltage-followers (VFs). 

Initially, a definition of the ideal VF together with its symbolic and system 

representation is given combined with graphic illustrations of its practical properties. 

In addition, practical terminal parameters required by a VF are listed followed by the 

performance parameters required to be met in this work. Finally, the classification 

system of VF designs adopted in this work is presented, followed by some typical VF 

applications. 
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2.2 The ideal and non-ideal voltage-follower and its properties 

An ideal VF r2-1 to 2-3J may be defined as a module that senses, at its input, 

the instantaneous value of a signal voltage, without loading it in any way, and 

produces at its output a replica (i.e. exact copy) of that signal irrespective of the 

output loading or environmental conditions. Consequently, it should provide uruty 

gain for any type of input signals, it should have an infinite input inlpedance and zero 

output impedance under any operating conditions as well as infinite slew rate. 

Nevertheless, it is not possible to produce an ideal voltage-follower. Figures 2.1 and 

2.2, respectively show the symbolic and system representation of the ideal voltage-

follower. Figure 2.3 shows graphically some ofthe properties of a non-ideal VF. 

v Vo 

ec 

Fig. 2.1 Symbolic representation 

• 

--. 
Zi(jro ) 

r Vo ~ GVs ~ Vs .-
Zo{jro ) 

Fig. 2.2 System representation 
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Fig. 2.3 Graphical illustration of some non-ideal VF properties 
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2.3 Practical terminal parameters 

For specific rail supplies, the practical characteristics of a voltage-follower are 

given below: 

2.3.1 DC characteristics 

DC input current with V s=O 

Quiescent power dissipation PD with Vs=O 

2.3.2 Loading characteristics 

Small-signal voltage gain characteristic, (~: ) vs f 

Incremental input impedance (IZil and LZi) 

Incremental output impedance (IZol and LZo) 

2.3.3 Total harmonic distortion (THO) and intermodulation distortion (IMD) 

2.3.4 Noise performance 

This is expressed in terms of equivalent input noise, due to the limitation it 

introduces on the smallest input signals that the circuit can handle without 

distortion [2-7]. 

2.3.5 Large signal output parameters 

DC loading 

Large signal voltage step response 
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2.4 Specifications to be met in this thesis 

Important parameters (specifications) adopted in this work is given in Table 2.1 

Parameters Values 

IVeel • I Vee I ~SV 

Po ~3SmW 

IZil >SMO 

IZol <100 

VS(min) 2Vp_p 

IGI (1- E). where E < 0.1 up to 2S0MHz 

THO ~ -80dB at SMHz 

THO ~ -60dB at 2S0MHz 

IMO ~-SSdB 

Temperature range _20DC up to lOODC 

Table 2.1 Specifications to be met in this work 
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2.5 A classification of voltage-follower designs 

2.5.1 Type A, using local feedback and single-valued current bias 

A single stage feedback rather than a complete multistage configuration is used. 

In addition, only one value of current bias is used. Two elementary examples ofthls, 

discussed in detail later, are shown in Figure 2.4. 

Vee 

Vee 

Vs 
Q1 Vs 

Vo 

ZL 

-Vee 

(a) 

-Vee 

(b) 

Fig.2.4 Elementary examples of voltage-followers Type A: 

(a) cOllventional emitter-follower, and 

(b) two-stage emitter-follower 
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2.5.2 Type B, using local feedback and double-valued current bias 

An example of Type B is shown in Figure 2.5. 

Vee 

Vs Vo 
Q1 

ZL 

21 

-Vee 

Fig. 2.5 A circuit diagram of VF Type B 
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2.5.3 Type C, using global feedback 

An example of Type C is shown in Figure 2.6. This design happens to use two 

values of current bias but that is not a necessary feature of this classification. 

Vee 

Q3 

Vo 
Q1 

ZL 

I 

-Vee 

Fig. 2.6 A circui t diagram of VF Type C 
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2.6 Applications 

• Instrumentation amplifiers with high input and low output-impedance [2-8] 

• Active filters [2-8] 

• Boot-strapped linear sweep [2-8] 

• Peak detectors [2-8] 

• Analogue signal multiplexing circuits [2-8] 

• Video switches (T -switches) [2-9] 

• LCD display buffers [2-10], [2-11], [2-12] 

• Multiplexed converter drivers [2-13] 

• Single-ended input ADC drivers (2-14] 

• Sample and hold circuits (2-15] 
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2.7 Summary of Chapter 2 

This chapter considered an introduction to the basic voltage-follower, 

presenting pictorially some of its basic perfonnance parameters.. Practical parameters 

that will be used to evaluate both the conventional and the proposed configurations 

have been presented together with a list of the tenninal characteristics required by a 

voltage-follower that meets the specifications required for the circuits in this thesis. 

Finally, a wide range of typical applications using voltage-followers, has been 

presented with examples from recent publications by leading semiconductor 

manufacturers. 
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3.1 Introduction 

This chapter is divided into two main parts. The first part presents a detailed 

analysis of the transistor-models used throughout this research, pointing out some of 

the parameters that are either not explicitly listed in SPICE transistor parameter set or 

whose values are not appropriate to the operating conditions envisaged. Presenting, at 

first, the methodology of measurement and, secondly, the results obtained it will be 

shown that a detailed investigation of these parameters is necessary for accurate 

design based on hand-calculations and that without them simulated results do not, in 

some cases, agree with the theoretical analysis. The second part of this chapter 

presents the analysis of two current-biasing configurations, which have been used to 

provide the DC supply to conventional and proposed designs. These bias schemes use 

current-mirrors, so the analysis is concentrated mainly on current-transfer from the 

input to the output, as well as the output impedance at low frequencies. This section 

finishes with a reference to several well-established current mirrors and their 

performances compared with the ones chosen. 

It is worthy of mention that the operating current of the proposed designs will 

be either ImA or O.7mA, as is used in subsequent chapters. For that reason, most of 

the simulations, including current-mirrors and transistor-model characteristics, have 

been accomplished using both these currents. Furthermore, a wide temperature range 

is covered during simulations. 
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3.2 Device characterisation 

The main objective of the following paragraphs is to provide an insight to the 

performance of the transistor models used throughout this research. It will be shown 

that, for both NPN and PNP devices, some of the transistor parameters supplied by the 

manufacturer were not appropriate, thus resulting in a considerable difference 

between hand-calculation and simulated results, when the SPICE values were used. 

The measurement of transistor parameters is divided into two parts, DC and AC. 

3.2.1 DC parameters 

3.2.1.1 DC current gain measurement 

It is well-known that the transistor DC current gain, PF' depends on transistor 

operating conditions (3-1], such as the collector current, Ic ' the collector-base 

voltage, VCB ' and the operating temperature, T. The variation of PF with T has been 

attributed to the extremely high doping density level in the emitter region. This 

variation, with Ie and T is indicated in Figure 3.1. 
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'------------ Collector current Ie (A) ------------' 

Fig. 3.1 Variation of ~ F with temperature and collector current (3-1( 

In order to proceed with the detailed analysis of the conventional and novel 

configurations, throughout this thesis, the exact values of PF should be specified, for 

all values of T and Ie, for DC and AC operation. The simple circuits adopted for 

testing ~F of the NPN and PNP transistors are shown in Figures 3.2 and 3.3, 

respectively. In those Figures ignoring initially the AC current sources, a DC current 

is applied to the base of the transistor, so that the collector current is 0.1 rnA, 0.2mA, 

0.3rnA etc. The two current probes, one in the base and the other in the collector of 

the transistor indicate the value of the current in each branch. The testing covers a 

temperature range from -20oe up to 100oe, and collector currents from 100llA up to 

ImA. 
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by the following 

(3 .1) 

Fig. 3.3 Current gain testing circuit for PNP devices 

Fig. 3.2 Current gain testing circuit for NPN devices 

Table 3.1 , shows the DC current gain of the NPN transistor for the whole 

current and temperature range and similarly, Table 3.2 shows the DC current gain for 

the PNP device. As mentioned earlier, with increase in operating temperature, the 

current gain of the device increases due to the increase in the emitter injection 

efficiency y . It is apparent that a low operating temperature offers more constant 

current gain, for variable collector current, although the current gain is not as great as 

at higher temperatures. 
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Collector current I3F 
(rnA) -20°C 27°C 100°C 

0.1 49.3 64.9 92.5 

0.2 48.4 63.4 89.6 

0.3 47.5 62.0 87.1 
0.4 46.8 60.8 84.7 
0.5 46.0 59.5 82.6 
0.6 45.3 58.4 80.6 
0.7 44.6 57.3 78.7 

0.8 43.9 56.2 76.8 

0.9 43.2 55.2 75.2 

1 42.6 54.2 73.5 

Table 3.1 DC current gain of the NPN devices used 

Collector current I3F 
(rnA) -20°C 27°C 100°C 

0.1 44.4 56.4 77.1 

0.2 42.8 53.9 73 

0.3 41.4 51.9 69.6 

0.4 40.1 50 66.6 

0.5 38.9 48.3 64 

0.6 37.8 46.7 61.5 

0.7 36.6 45.2 59.2 

0.8 35.7 43.8 57.1 
0.9 34.7 42.4 55.1 

1 33.8 41.2 53.3 

Table 3.2 DC current gain ofthe PNP devices used 

A similar conclusion can be made regarding the current gain of the PNP 

devices. In addition, it can be seen that the current gain of the PNP devices is lower, 

although both devices are supposed to be complementary. This is an important point, 

considered again later. 
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The variation of ~ F with the collector current obtained above, shows that the 

transistor operates somewhere between the Region II and the beginning of Region III. 

Ideally, of course, PF should be constant. Apart from that, it was proved that the DC 

current gain of the transistors used was much less than the figure given by the 

manufacturer ~NPN = 74 and PPNP = 84 at room temperature. The values obtained 

are used later, in the analysis of the basic emitter-follower and other circuits. 
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3.2.1.2 Early-Voltage measurement 

The Early-Voltage ( VA) of a transistor is an important parameter in analogue 

circuit analysis. VA determined is used later in this chapter as well as in the 

following chapters for the calculation of circuit incremental output resistance. VA 

measurement has been carried out using the circuit shown in Figure 3.4(a) for NPN 

devices, and Figure 3.4(b) for PNP devices, over a range of temperatures. 

(a) (b) 

Fig. 3.4 VA measurement set up ; 

(a) NPN, and (b) P P 
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VA is given by: 

Ie 03+1) 
-=---- (3.2) 

where, r!!, is the collector-base internal resistance, which measured [3-2) 32.5Mn for 

the NPN and worked out at 6M!l for the PNP devices used, P is the transistor current 

gain and Ro the output resistance of the transistor. Full details of the analysis are 

given in Appendix 3.1. 

For a particular operating current Ie, all parameters are known apart from 

the output resistance. Ro can be found by means of simulation. 

In the circuits of Figures 3.4(a) and 3.4(b), the output current is controlled by 

the current source I B , and it was set for Ie = lmA. The small AC voltage applied at 

the output of the circuit facilitated the measurement of Ro. Figure 3.5 shows the 

output impedance of the circuit of Figure 3.4(a), for Ie = lmA, over a temperature 

range. Following the same procedure, Figure 3.6 shows the output impedance of the 

circuit of Figure 3.4(b), for lmA operating current, over a temperature range. Tables 

3.3 and 3.4 present the Early-Voltage obtained after the calculations, for both NPN 

and PNP devices. 
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Fig. 3.5 Output impedance of the NPN transistor over the temperature range 

for Ie = ImA , Vee = 5V 

Output current 10 (mA) 1 

Operating Temperature COc) -20 27 100 

Early Voltage (V) 86.1 89.61 97.57 

Table 3.3 Measured VA (i.e. VAN) of the NPN devices used 
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Fig. 3.6 Output impedance of the PNP transistor over the temperature range 

for Ie = lmA , Vee = 5V 

Output current 10 (rnA) 1 

Operating Temperature (0C) -20 27 100 

Early Voltage (V) 21.2 22.8 26.1 

Table 3.4 Measured V A (i.e. V AP) of the PNP devices used 
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3.2.2 AC parameters 

3.2.2.1 AC current gain measurement 

Following the same procedure as in section 3.2.1 an AC signal with current 

less than 10% of the magnitude of DC current was applied to the base of the 

transistor, and the resultant AC collector current ie noted. The AC current gain is 

given by: 

(3.3) 

Tables 3.5 and 3.6 illustrate the measured AC current gain for both NPN and 

PNP devices, respectively, as well as their dependence on Ic and T. 

Collector current PF( AC) 

(rnA) -20°C 27°C 100°C 

0.1 48.3 63.3 89.4 
0.2 46.7 60.7 84.5 
0.3 45.3 58.3 80.2 
0.4 43.9 56.2 76.5 
0.5 42.6 54.2 73.1 
0.6 41.4 52.3 70 
0.7 40.3 50.6 67.2 
0.8 39.2 49 64.6 
0.9 38.1 47.5 62.2 
1 37.1 46 60 

Table 3.5 AC current-gain of the NPN devices used 
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The current gain increases with T but is then less constant with variation in 

IC' Another interesting result is that the AC current gain only tends to be almost the 

same as the DC one for low collector currents. It can be seen that for currents above 

O.SrnA the difference between the AC and DC values of 13 F is significant. 

Collector current 13 F{AC) 

(rnA) -20°C 27°C 100°C 

0.1 54.3 68.8 94.2 
0.2 51 .1 64.8 88.9 

0.3 48.4 61 .5 84.3 

0.4 46 58.4 80.3 

0.5 43.8 55.7 76.6 

0.6 41 .8 53.1 73.2 

0.7 39.9 50.8 70.1 

0.8 38.2 48.7 67.3 

0.9 36.6 46.7 64.6 

1 35.1 44.8 62 

Table 3.6 AC current gains of the PNP devices used 

The results show a grater variation of the current-gain with the collector 

current (compared to the P devices) and a noticeably lower current amplification, 

especially for collector currents above O.SmA. 
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3.2.2.2 Frequency response 

For rugh frequency circuit operation, high fT devices are required. To test the 

frequency response of the devices used, the following technique was used. In the 

circuit of Figure 3.7, a DC current of 1 rnA is applied to the emitter of the device 

under test. In parallel with the DC current source is an AC current source, with a 

signal amplitude less than 10% of the magnjtude of the DC current. The ratio, a of 

AC coJlector current to AC emitter current, over the frequency range, gives the 

common-base frequency response. The fT of the transistor is almost equal to the 

-3dB frequency [3-3]. Figure 3.8 shows the frequency response for the NPN device 

used. 

- Vee - Vee 

Fig. 3.7 Circuit for the frequency response testing ofNPN devices 
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Fig. 3.8 Frequency response of the NP transistors used ( l C = LrnA; YCB = 5V ) 

For NPN devices, 

fT ~ 4.7GHz 

Following the same procedure, for Figure 3.9, the frequency response of the 

PNP device is shown in Figure 3.10. 

- Vee 

Fig. 3.9 Circuit for frequency-response testing of PNP devices 
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Fig. 3. 10 Frequency response of the PNP transistor used ( r C = IrnA ; V CB = 5V ) 

Note that for PNP, 

fT "" 2.70Hz 

3-16 

Mr. Nikolaos Charalampidi Chapter 3 



Novel approaches in voltage-follower design OXFORD 

BROOKES 
UNIVERSITY 

3.2.2.3 The collector-base capacitance ell 

It will be seen later in this chapter, in the investigation of the input impedance 

of the emitter follower, that the cut off frequency is lower than expected. It was 

suspected that the collector-base capacitance of the transistor c
ll 

was mainly 

responsible for that. In order to investigate this further, the fo llowing tests were 

made. The circuit of Figure 3.11 , which shows an NP transistor collector-base 

junction, was used to investigate the impedance, the graph of which is shown in 

Figure 3.13 (green line). The impedance at f = IMHz was 4.8589MQ. The value of 

c
ll 

is calculated as follows, 

1 1 
c = -- = = 32.75tF 

11 2nlZIf 2n. 4.8589 .106 . 1. 106 

Vee 

Fig. 3.11 Circuit used to measure the c
ll 

for NPN devi e 
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In order to check that the measurement of c
ll 

is correct, in paralJel with the 

base-collector junction another, identical one, was added. Theoretically this should 

double the c
ll 

and half the impedance. In a similar manner, a third junction was 

added in parallel with the other two with the expectation of reducing the impedance 

to one third of the first value. 

The test has been carried out using the circuits of Figure 3.12. 

Vee 

(a) 

(b) 

Fig. 3.12 Circuits used to measure the effect of extra c
ll 

on the impedance 

(a) Circuit with an extra added c
ll

' and (b) Circuit with two extra added c
ll 

s 
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The responses obtained, together with the original one, are illustrated m 

Figure 3.13. Note that here, and elsewhere, the dB reference level for IZol is In. 
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--+ - - - .... r 
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I~ 
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I 1--
40+-~--+_~--~~--~--~-+--~_+--~~----~~----~~--+_--~ 
I,OHz 10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0HHz 10MH%. 

• Da11V12l0) I IIValOO))) • DBlv 2)0) I IIVaSOO)) • DBIVI2l0) IIIVa900)) 
frequency 

t OOMHz 1 .OGH? lOGHz 

Fig. 3.13 Nonnalised impedance bandwidth with c'" changes, for NPN device 

c
ll 

for the circuits of Figures (a) and (b) are 65.51fF and 98.26fF, respectively. Note 

that IZI is obtained from Figure 3.13. 

The measurement of the collector-base capacitance could also be carried out 

using a common-base configuration. In that case, the collector-substrate capacitance 

would be in parallel with c
ll

. For evaluation purposes, measuring c
ll 

using the 

common-base stage, obtained identical results . Following the same procedure, the 

collector-base capacitance of the PNP device used was calculated, using Figure 3.14. 

The impedance at f = IMI-Iz was 4.0638Mn. Consequently, c
ll 

is equal to 39.16fF. 
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-Vee 

Fig. 3.14 Circuit used to measure the c
ll 

for PNP 

To check that the measurement of cJ.l is correct, same procedure was followed 

as for the NPN transistor. The impedance at IMHz was measured, and the new 

values of cJ.l calculated using the graphs shown in Figure 3.15 . 
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10MHz lOOMHz 

Fig.3.IS Impedance bandwidth with c J.l changes, for PNP device 

1.0GHz lOGHz 

The cJ.l is equal to 78.32fF and 117.49fF for two and three collector-base junctions in 

parallel, respectively. 
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3.3 A review of current biasing techniques, using current-mirrors 

Throughout this research, two types of current-mirrors are used to provide 

biasing for the conventional and the proposed designs. The analysis that follows 

concentrates mainly on the low-frequency characteristics of the current-mirrors, as 

they are not used, directly, in the signal paths. 

The characteristics that will define which current-mirror is the most desirable 

are, primarily, the output impedance, which should be as large as possible as well as 

the current-mirror's current transfer ratio, A. Apart from the analysis of the two 

current mirrors, a detailed simulation of several other current mirrors has been carried 

out. Tabulated results are presented in a comparison table at the end of this section. 
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3.3.1 Common-base biasing [3-4] 

The common-base stage is a well-established configuration that is described in 

text-books. It is discussed here because of its high output impedance when used in 

the cascode configuration, as it will be shown later. The common-base stage is 

illustrated in Figure 3.16. It has been shown in [3-2], that when the operating current 

is supplied from an ideal current sink (for the NPN model), the output resistance of 

the stage is: 

(3.4) 

V ~Ic 
where r =~ and r =r --o I I! o~I c B 

Substituting the values from section 3.2 for lmA current in the collector of the 

transistor at 27°C, 

89.61V 
Ro = (46+1) II 32.5Mn = 3.728Mn. 

ImA 

Similarly, if the collector current is 0.7mA, supplied by an ideal current sink, 

the output impedance at 27°C will be, 

89.61V 
R o =(50.6+1) II 32.5MO= 5.490Mn. 

0.7mA 
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-Vee 

Fig. 3.16 Common-base stage with ideal current sink 

Simulation results for IZo 1 for three different operating temperatures and Ie 

of lmA for Figure 3.16 is shown in Figure 3.17. The output impedance of 3.82Mn is 

observed, at 27°C, which is close to the predicted value of 3. 728Mn, see Figure 3.17. 

Similarly, for Ie = O.7rnA IZol is 5.996Mn which is comparable to the predicted 

value of 5.490Mn, see Figure 3.18. 
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Fig. 3.17 Output impedance of circuit of Figure 3. 16, for Ie = lmA 
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Fig. 3.18 Output impedance of circuit of Figure 3.16, fo r Ie = O.7mA 
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3.3.2 Buffered current-mirror with cascoded output, biasing 

[3-5], [3-6] 

This is a simple current-mirror with buffered input and cas coded output, as 

shown is Figure 3.19. 

Q1 

I _ I(n + I) 
B4 - 13(13+ 1) 

nl 
I BI =-

13 

10 = r 

Q2 

Fig. 3.19 Buffered simple current-mirror with cascoded output 

Analysing initially the buffered current mirror, (see Appendix A3.2), the 

current ratio, A, defines as, 

(3.5) 

where 10 is the output current, lIN is the input current, VT is the thermal voltage and 

Vas is the offset voltage, which relates to the matching of QI and Q2' 
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Consequently, cascoding the output with transistor Q 3' IS, 

(3.6) 

In practice, the term which dominates, making A slightly greater or smaller 

than unity, depends on the matching of the two transistors, Q , and Q 2' Simulating 

the circuit, for Ie = lmAand Ie = 0.7mA produced the current transfer ratios shown 

in Figure 3.20. A. , was almost the same for both operating currents, with that of 

0.7mA closer to unity. 
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Fig. 3.20 Current transfer ratio, A., of the buffered NPN mirror with cascoded output 

Since Vos = 0 in PSICE simulation ( identical devices assumed), the reason for A ':f; I 

is shown below, 
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for Ie = lmA , 

and for Ie = 0.7mA , 

A~-~-= 54.2 = 0.981 
(~+1) 54.2 + 1 

A ~ -~_ = 57.3 = 0.982 
(~ + l) 57.3+1 

where ~ is the DC current gain of the devises used, investigated in section 3.3.1 .1. 

UNIVERSITY 

Changing the operating current, results in a change in the DC current gain of 

the transistors, as shown earlier in this Chapter. Consequently, the current transfer 

ratio for Ie = O.7mA is closer to unity, since ~ is greater than at Ie = lmA . In 

addition, according to (3.6), A. depends on the operating temperature, too, because of 

the temperature dependence of ~ . Figure 3.21 shows A. , over the temperature range 

-20°C to + 100°C, with Ie = lmA . 
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Fig.3.21 Current transfer ratio, A. , of the buffered NPN mirror with cascoded output 
over the temperature range 
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The output resistance of the buffered current-mirror is 

VA R =r = -
o ce I (3 .7) 

c 

and substituting with the values obtained in the previous paragraphs, for Ie = lmA 

and Ie = 0.7mA , at 27°C 

R = 89.61 1::l 89.6KO and 
o ImA 

R = 89.61 1::l 128Kn 
o 0.7mA 

The simulation (Figure 3.22) of the buffered current-mirror gave an output 

resistance of 83 .8K.O, for Ie = lmA and 117.2Kn, Ie = O.7rnA , results within 10% 

of hand-calculations. 
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Fig. 3.22 Output impedance of the buffered NPN current mirror 

Cascoding the output with transistor Q3' the output resistance increases at the 

expense of a current transfer ratio which is reduced by a factor of _P- . 
P + l 
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The new output resistance is, 

(3.8) 

For Ie = lmA , 

V 89.61 
Ro = (1 + p)ro Il rll = (1 + p)~/1 rll = (1 + 46)--11 32.5M ~ 3.73MQ 

Ie 1mA 

and for Ie = O.7mA , 

assuming that the colJector-base resistance rll is 32.SMn for both Ie = 1mA and 

Ie = O.7rnA. 

The simulation of the cascoded output buffered current mirror gave an output 

resistance of 3.44Mn, at Ie = lmA and S.4Mn at Ie = O.7mA , indicating fair 

agreement between theoretical analysis and practical results . The simulated output 

impedance for Ie = ImAand for Ie = O.7mA is hown in Figure 3.23. 
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Fig. 3.23 Output impedance of the buffered NPN mirror, with cascaded output, 
for ImA and O.7mA 
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3.3.3 Precise, multiple-output current-mirror ('6-pack') biasing 

The precise multiple-output current-mirror, which will be called the '6-pack' 

onwards, is a current-mirror that combines high output resistance and excellent 

current transfer ratio, as well as expandability [3-7], [3-8]. The '6-pack' schematic, 

including the DC currents used for the analysis of the circuit, is shown in Figure 3.24. 

Fig. 3.24 The '6-pack ' precise current mirror 
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It is shown in Appendix 3.3 that the current transfer ratio is, 

(3.9) 

where P6 is the common-emitter current gain of Q 6' which is different from the other 

transistors because it operates at lower Ie . 

Equation (3.9) is obtained by making the simplifications P6 = p, P» 1, and 

expressing n in terms of Vos . For Vos =t= 0 the third term again dominates, as in the 

case of the buffered current mirror with cas coded output. 

Simulation of the ' 6-pack' mirror, using Ie = lrnA and Ie = O.7rnA at 27°C, 

gave the transfer ratios illustrated in Figure 3.25. 
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Fig. 3.25 Current transfer ratio, A, of the '6-pack' for I e = O.7mA and Ie = IrnA 
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Figure 3.26 shows the A. as a function of T. The very small increase in A. 

with T is attributable to the increase in transistor' s current gain p with T. 
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Fig. 3.26 Cun'eot transfer ratio, A, of the ' 6-pack' for variable T 

As mentioned earlier, an advantage of the '6-pack ' mirror over conventional 

designs is its expandability. Thus, the outputs of the circuit can be increased by 

adding two transistors in parallel with transistors Q2 and Q3 as shown In 

Figure 3.27 without a significant change in A.. It is then technically an '8-pack' . 
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Input Outputs 

/ 
Q6 

Q4 

Q5 

Q1 

Fig. 3.27 ' 8-pack' current-mirror 

In this case, 

(3.10) 

The output resistance of the ' 6-pack' mirror can be estimated as shown in 

Appendix 3.3. Due to the fact that the emitter of tran istor Q6 is connected to a low 

impedance point, the output resistance is close to that of the common-base stage. 

Using an infinite impedance current source as the input to the mirror, the output 

resistance, Ro , is approximated by, 

(3.11 ) 
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If the finite output resistance of the current source is taken into account, the 

output resistance will be 

(3.12) 

where y is the ratio between the output resistance of the current source and the 

1 
resistance seen looking into the base of transistor Q 6' The term -- cannot always 

aP6Y 

be neglected. Simulation of the '6-pack' current mirror at 27°C for Ie = O.7mA and 

Ie = lmAfor an infinite output impedance current source drive, gave the output 

graphs shown in Figure 3.28. 
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\, J _ ImA current 
I 

-'~ -- . r-

0, 3.5399MI I I 

I I ~ 
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I --- i I i I , i 

I ...... ! 

4. OM 

Iz.1 
(0) 

2. OM 

1. OHz 10Hz 100Hz 1. OKHz 10KHz 100KHz 1. OMHz 10MHz 100MHz 1. OGHz 10GHz 
o V(S66) / I (VaS2) • v(66) / I(Va2 

Frequency 

Fig. 3.28 Output impedance of the '6-pack' for I e = O.7mA and Ie = ImA 

A comparison of the output impedance of the common-base stage, the 

buffered current mirror, with cascoded output, and the precise '6-pack ' current mirror 
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is facilitated by Figure 3.29. The current source used had infinite output resistance, 

the operation current was 1 rnA and the temperature 27°e. 

4. OM 
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'""'--- '- -'---

Iz.1 
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~.--\~ "" I 
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J ! 

P~3. 5399MI i I I , , 
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I ~ (LOOOO, . 442IMI I I 

i I 1 \ I I 
I 

J ! I 

~ 
I 

; -- -~:- - - - i i 1 ; , 
"-i 

3.0M 

2. OM 

l.OM 

l.OHz 10Hz 100Hz l.OKHz 10KHz 100KHz l. OMHz IOHHz IOOHHz 

• V(9661 I I(Va92) • V(22) I ICIQl) • V(87) IIC(Q83 ) 
Frequency 

Fig. 3.29 Output impedance for common-base stage, '6-pack' 

and bulTered mirror with cascoded output 

! 

! 
[ 

i 
! ---
I 

1.0GHz IOGHz 

Apart from the current mirrors analysed above, several other well-established 

current mirrors [3-5 to 3-8] have been simulated, for research, reference and 

comparison purposes. The testing was carried out for both output impedance and 

current transfer ratio, for 1 rnA input current fed from an infinite output impedance 

current source, at 27°C. It can be concluded that the buffered mirror with cascoded 

output as well as the precise current mirror, presented the best results, in both output 

resistance and current transfer ratio, which is the rea on why they are used later 

throughout the analysis and investigation of conventional and novel voltage-follower 

designs. The results are shown in Table 3.7. 
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Configuration 
Output current over Output )mpedance 

Input current ratio, A, 
with lmA current (Q) for lmA current 

Simple current mirror 1.02 85.9K 

Buffered current mirror 1.039 83.77K 

Cascoded current mirror 0.929 2.073M 

Buffered mirror with 0.992 3.442M 
cascoded output 

Wilson current mirror 0.991 1.835M 

Modified Wilson current mirror 1.00] 1.804M 

Preci ion '6pack' 0.999 3.539M 

Table 3.7 A comparison of several well-established current mirrors 

and those analysed in the test 

3-36 

Mr. ikolaos Charalampidis Chapter 3 



Novel approaches in voltage-follower design OXFORD 

BROOKES 
UNIVERSITY 

3.4 Summary of Chapter 3 

This chapter considered a detailed investigation of the transistor-models used 

throughout this research. It has been identified that some of their parameters listed in 

SPICE data, were either not appropriate for the operating conditions envisaged or did 

not correspond to the Spice data at all. Also, other parameters that were not explicitly 

listed in SPICE parameters obtained, necessary for accurate design based on hand-

calculations. Those parameters obtained for a range of different biasing currents and 

operating temperatures, to allow easier analysis of the proposed designs in the 

following chapters. 

The second part of this chapter considered the analysis of the current-biasing 

configurations using current mirrors that will be used in the following chapters, for 

the biasing of the conventional and the proposed voltage-followers. The main criteria 

for their evaluation were their current-transfer ratio from the input to the output as 

well as their output impedance at low frequencies. A comparison chart at the end of 

this chapter justified their performance superiority over several well-established 

current mirrors. 
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APPENDIX 3 

AP3.1 Calculation of the Early-Voltage of the devices used 

AP3.2 Analysis of the buffered current mirror with cascoded output 

AP3.3 Analysis of the precision mUltiple-output current-mirror 
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Appendix A3.1 

Calculation of the Early-Voltage of the devices used 

Fig. A3.1 Early-Voltage inve tigation ci rcuit 

Ri rl' I I' 10 
+- +-

lu' 

gmUl! 

r l! ro U o 

Fig. A3 .2 Small-signal low-frequency equivalent model of the tTansistor Q, 

Figure A3.1 shows the circuit used to calculate the Early-Voltage of the devices used 

and Figure A3 .2 shows the small signal low frequency equjvalent circuit of the 
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transistor 0 1 , By inspection, 

where 

and 

Substituting in (A3.1), 

and, 

. uo 
1 =
Il r 

Il 

(p + 1) 
-=----

OXFORD 

BROOKES 
UNIVERSITY 

(A3.1) 

(A3.2) 

(A3.3) 

(A3.4) 

(A3.5) 

(A3.6) 

(A3.7) 

The collector-emitter small signal resistance, ro ' is equal to VA . Thus, the 
Ie 

Early-Voltage for a specific operating current can be calculated, since all the rest of 

the parameters, in (A3.7), are known. 

(A3.8) 
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Analy of thc buffcred current-mirror 

I _ I{n I) 
B4 - ~ (~ + I) 

Q4 1 0111 = I 

11' 4 = ~(n+l) 

nl 
1 81 =-

~ 

02 

Fig. A3.3 Analysis orlhe currenlS orlhe buITered current-mirror 

By in pc tion, fI r ideall y matched devices, 

I nul = I C2 = I 

' in e. 

and 
I - 21... J 1 - 2 
r '2 
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if ~ called n, then, 
IS2 -

Also, 

I - IC2 
B2 -

13 

hence, 

and, 

I 

13 

The input current is, 

nI 

~ (n + 1) 
I B 4 = -,-13 __ _ 

13 + 1 

I 
--(n+l) 
13 (n + 1) ) I IN = ICJ + I B4 = 1+ = I 1 + In ) 

13+1 13\1-'+1 

The current transfer ratio, A, is given by 

(n + 1) 
n+---

13(13+1) 

Since, 

and, 
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(A3.11) 

(A3.12) 

(A3.I3) 

(A3.l4) 

(A3.IS) 

(A3.16) 

(A3.17) 
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Expressing the n in terms of offset voltage, Vos, ( the base-emitter voltage difference 

for the same collector reference current I R ) , will be 

or 

Rearranging the above equation, 

Vas = VBE1 - VBE2 

Vus 
IS2 V -=e T 

lSI n 

For n=l, Vos =0 , and for n close to 1, Vos «VT 

(A3.18) 

(A3.19) 

(A3.20) 

Since we can have either of the conditions lSI> IS2 or IS2 > lSI' Vas can 

have a positive or negative sign 

(A3.21) 

Hence, the final current transfer ratio is 

(A3.22) 
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Appendix A3.3 

Analysis of the precision mUltiple-output current-mirror 

' 66= fJ3I ](n+I{I+~) p 6 + 1 a. 

lin 
I OUI = J 

... 
I C3 = T 

Q6 

I C4 = nI I nl 1 ( ) I E6 = -+-+- n+1 p p a.p 
Q4 Q3 

nI~ I IB4 = - I B3 = -
~ ~ J 

nl I E3 =-JE4 =- Q5 ex ex 
I 

I ES = -(n+1) 
Q1 

exp Q2 

nl I 
IBI = - IB 2 = -exp exp 

Fig. A3.4 Analysis of the currents of the ' 6-pack ' 

By inspection, and using (A3- II), 

By inspection, the currents in each branch of the circuit is, 
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IC4 = nI, 

nI 
IE4 =

a. 

nI 
IBI = -,and 

a./3 

I E5 =_I_+~=_I_(n+l) 
a./3 a./3 a./3 

Hence, 

nI I I I ( 1 n) IE6 = IB4 +IB3 +IE5 = -+-+-(n+ 1) = - n +1 +-+-
/3 /3 a./3 /3 a. a. 

and, 

IE6 I ( { 1 ) I B6 = --= ( ) n + 1 1 + -
/36+1/3/36+1 a. 

/36 "# /3 due to the much lower collector current of transistor Q 6 

3-47 

Mr. Nikolaos Charalampidis 

OXFORD 

BROOKES 
UNIVERSITY 

(A3.23) 

Chapter 3 



Novel approaches in voltage-follower design OXFORD 

BROOKE~ 
UNIVERSITY 

The input current is, 

(A3.24) 

and the A is given by, 

(A3.2S) 

. 1 13+1 
smce -=--

a 13' 

(A3.26) 

For 13 »1 and (136 + 1) ~ 13, 

(A3.27) 

For n = 1, 

(A3.28) 

Assuming for simplicity that 136 = 13, 
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(A3.29) 

If n * 1, 'A, can expressed in terms of Vos 

Then, 

(A3.30) 

The final expression of the current ratio is then, 

(A3.31) 
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Fig. A3.5 SmaU signal low-frequency equivalent circuit of3.41 for infmite impedance current drive 

Ignoring initially the ree of all the transistors apart from Q3' which in the 

schematic is named ro ' All the betas apart from ~6 are equal assuming that the 

transistors work under the same collector current loads. The collector current of 

transistor Q6 is much less than the other transistors so the beta of that transistor is not 

the same as the rest. 

At point X , 

(A3.32) 
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Since a13136 is larger than the sum of the other terms in the bracket, 

(A3.33) 

and, 

(A3.34) 

The current in the ro is 

(A3.35) 

substituting for i b , 

(A3.36) 

1 
But --«1 

a136 

(A3.37) 

and 

(A3.38) 

and because u y ~ 0 the output resistance is 

(A3.39) 
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If the output resistance of the current source feeding the current mirror is not 

infinite, which is usually the case, some current will pass from the collector of 

transistor Q 4 to the current source instead of going to the base of Q 6' If the fraction 

of Q 4 's collector current appearing in the base of Q 6 is y then, 

and 

neglecting u y if compared with U o 

and Ro is 

In this case, the term _I - cannot necessarily be neglected. 
af36Y 
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CHAPTER 4 

The conventional emitter-follower / a critical review 

4.1 Introduction 

4.2 DC conditions 

4.3 Small-signal voltage-gain with zero source resistance 

4.4 Small-signal voltage-gain with finite source resistance 

4.5 Input Impedance 

4.5.1 Theoretical background 

4.5.2 Simulation results 

4.6 Output Impedance 

4.7 Emitter-follower distortion 

4.7.1 Total harmonic distortion (THO) 

4.7.2 Intermodulation distortion (IMO) 

4.8 Noise performance 

4.9 Pulse response 

4.10 Summary of Chapter 4 

References for Chapter 4 
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4.1 Introduction 

The emitter-follower (EF), is at the root of all voltage-follower designs. 

Dating, as it does, from the earliest days of transistor circuit design and in view of its 

subsequent ubiquitous use in semiconductor electronics, it might seem that its 

performance required little discussion beyond a brief reference to textbooks and the 

technical literature. However, such is not the case. Its treatment in most textbooks is, 

from a circuit-designer viewpoint, superficial. Most attention seems to be focused on 

low-frequency small-signal performance with a resistive load. This chapter presents a 

critical review of emitter-follower operation, with particular reference to high-

frequency performance, distortion, and large signal behaviour. Simulated 

performance results are obtained for specific BJT types and operating conditions. 

The analysis of the conventional emitter-follower will be carried out using 

both ideal and practical current biasing. The precise current-mirror '6-pack', analysed 

in Chapter 3, will be used as a practical biasing scheme, due to its superiority over 

similar designs. The same configuration will be used for the biasing of the novel 

voltage-followers, in the forthcoming chapters. The circuit, using an ideal and a 

practical current sink, is illustrated in Figures 4.1 and 4.2, respectively. 
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\ 'cc 

Vs 
Q1 

\0 

-\ ce 

Fig, 4.1 The conventional emitter-follower with ideal current biasing 

Vee 

Vs 

o 

Ralnk 

Q2 

-Vee 

Fig. 4.2 The conventional emitter-follower with '6-pack ' current biasing 
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4.2 DC conditions 

Consider the circuit of Figure 4 .3, in which the emitter-follower transistor, Q, 

is biased with a constant current 10 and drives a resistive load RL . 

Vee 

Vs 
Q 

Vo 

10 

-Vrc 

Fig. 4.3 General biasing scheme for a conventional emitter-follower 

Two expressions [4-1] can be written for the collector current Ie : 

(4.1) 

and, 

(4.2) 

The output voltage Yo is given by, 

(4.3) 
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V
BE 

can be found by equating (4.1) and (4.2) 

Thus, 

(4.4) 

Substituting (V CC - Vs ) for V CB , transposing and using the resulting V BE in (4.3) 

(4.5) 

Figure 4.4 shows a graphical interpretation ofthls condition for Vs = 0 , for 

whlch Y o = -YBE(O) 

Ie 
(rnA) 

o ~--~~~------------------ --~-+ 

Fig. 4.4 Graphical construction of the operating point for V = 0 

This assumes the source supplying 10 does not saturate. 
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As Vs changes from zero, the emitter load line slides parallel to itself to the 

right, for Vs > 0, or to the left, for Vs < O. The variation of Vo with Vs can be 

found from (4.5), when rewritten as, 

Since a and Is are not functions of Vs ' 

(
dVo ) = 1- V 
dV T 

S 

(4.7) 

Transposing and writing G for the slope (dV 0 ) of the transfer characteristic in the 
dVs 

linear region, 

(4.8) 

Since VT(~ 25mV) « VAN' 10RL (or, Vo if 10 = 0), G, though not strictly constant 

is close to unity over a linear range. 
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A sketch of the theoretical transfer characteristic, not to scale, is shown ill 

Figure 4.5, in which Vy is the base-emitter threshold of conduction voltage for Q. 

J 0 source does 

not saturate 
'& _--+--",? 

Vo 

Input offset voltage 

- VBE(O) 
---j--~---I 

Fig. 4.5 Transfer characteristic for circuit of Figure 4. 1 

Vs 

Figure 4.6 shows simulation plots for the circuit of Figure 4.1 , for r 0 == lmA, and 

RL == ex) for three different temperatures (-20°C, 27°C and lOO°C). 
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Fig_ 4.6 Simulated transfer characteristic for circuit of Figure 4.1 : Vee = VEE = 5V; 10 = ImA; RL = co 
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These confirm the main conclusion of the foregoing analysis. G is sensibly 

constant and near to unity (for 10 and R independent of T) over the linear range 

because VT' although temperature dependent, is always small compared with the 

terms with which it is associated. Furthermore, the small shift in the characteristic 

parallel to itself with change in temperature is due to the approx 2mV/oC decrease in 

VBE , in (4.3), for each degree of temperature rise. 

The input current is I B , 

20uA 

16uA 

12uA 

I s 
(AI 
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4uA 

OA 

- 4UA 

j 
I 

-t 
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i 
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I 2 . 99~9 \. , 722 ) 
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I I, 
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Fig. 4.7 Input current of the circuit of Figure 4. 1 for 10 = I rnA ; R L = CXJ 
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For fixed 10 , IB still varies with T because of the temp-dependence of Vo and p. 

Thus, for Figure 4.7, by logarithmic differentiation, 

_1 (dI B ) ~ _!(dP) 
IB dT P dT 

(4.10) 

The variation of IB for 5V > Vs > -3V is due to the variation of p with VeB · 

But, VeB = Vee - Vs 

However, 

Mr. Nikolaos Charalampidis 

dVeB --=-1 
dVs 

VAN 
--=r I 0 c 
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Thus, 

(4.15) 

or, 

(4.16) 

This analysis ignores the existence of r
ll 

but the expre sion approximates the 

incremental input resistance. 

The power supplied by V cc to the collector of Q, and hence the collector 

power dissipation Pc' is given by, 

(4.17) 

The power Ps supplied by the source Vs to the base of Q is, 

(4.18) 

Table 4.1 shows the quiescent power dissipation measured for both circuits 

Power dissipation (m W) 

Operating temperature 
-20 27 100 (0C) .. - .. _ .. _ .. _ .. _ .. - -_ . . _."_ .. _ .. _."_. _ .. _ .. _ .. _ .... - . . _ .. 

Circuit of Fig. 4.1 9.93 9.94 9.96 

Circuit of Fig. 4.2 19.7 20.2 21.1 

Table 4. 1 Power dissipation with ideal and real biasing 
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4.3 Small-signal voltage-gain with zero source resistance 

Figure 4.8 shows the full small-signal equivalent circuit a conventional 

emitter-follower (EF) driven by an ideal sinusoidal voltage source and driving a 

parallel RECL load, where R E is the parallel equivalent of rCE( = ~:N ). the 

incremental resistance of current bias circuit, and any external load. 

u B 
rx UB· Ib 

Zlt 
, 

ul 
z~ 

cn 
gmun 

u lt 

rl' cl' z lt 

, , 

u~r 
.. 

, , , , 
Z E 

Cu 

-=-

Fig. 4.8 small-signal equivalent circuit of the conventional emitter-follower 

lt is shown in Appendix 4.1 that jf rx' cl" rl' are neglected, for reasons 

discussed later, then the frequency response of this EF configuration is given, in terms 

of the complex frequency variable's' by, 
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(4.19) 

This has a zero, 

(4.20) 

and a pole, 

(4.21) 

For the usual case gmRE »1, 

(4.22) 

dominates the frequency response. From previous work (Chapter 3) on common-base 

response at lmA, fT =4.72GHz, Cll = 32.7fF and c" =1.277pF. Substituting for 

Ie ImA 

O>p:::O gm = __ V..:..T_ 
CL+c" CL+c" 

25.8m V = 6.174rad / s 
5.10-12 + 1.27.10-12 

Which corresponds to, 

fB = 983MHz 
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For Ie = 0.7mA , 

Ie 0.7mA 
---

= V, = 25.8mV =4.609rad/s 
CL + en 5 ·lO-12 + 0.886 ·lO-12 

which corresponds to, 

fs = 734MHz 

Similarly, for CL = lOpF, ffip is given by, 

ImA 

25.8m V = 3.439rad / s 
lO ·lO-12 + 1.27 ·lO-12 

Which corresponds to, 

fB = 548MHz 

and for Ie = 0.7mA , 

fB = 397MHz 

Figure 4.9 shows IGI, in dB, over the frequency range for three loading 

conditions: CL = 0; C L = 5pF; C L = 1 OpF. The curves apply for both ideal current 

bias of tmA and for '6-pack' current biasing. The results show the practical bias 

scheme did not result in a poorer frequency response. As predicted by the foregoing 

analysis, f B decreases with capacitive loading. The comparable figures, both 

simulated and predicted, are as follows for the case of CL = 5pF and C L = lOpF. 
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The bracketed figures refer to the predicted values 

f s = l.OSlGHz{983MHz) f s = SSlMHz{S48MHz) 

Some difference between predicted and simulated results is to be expected 

because rx and c
ll 

have been neglected to simplify the analysis. For ideal voltage 

drive this is a plausible because the product rxc
ll 

implies a pole frequency greater 

than that expected for the capacitive load conditions. 

10.-----.------.-----.------.-----.------.-----.------r-----~----, 

- _ 110 . 000G. 1.81\ 

p) --~. no load 

/ l " I _ -10 

- - 1-

_ V / \ ... \ 5
pr load 

-20+----+---4--+---+--4--+/-+---+----,1-+-\-T-r\f->I/'-----i 
G (551.070M . 3.000;, / j\~ 
(dB) 1---- - (1.0521 .-io0811 I--

-30+------+------t-----+------+------+------t-----+----- 10pF load 

'\ - --
-4 0+-----+------+-----+------+-----+------+-----+------+------+------1 

-
-50+-----+------+-----+------+-----+------+-----+------+------+------1 

100KHz 300KHz 1.0MHz 3.0MHz 10MHz 30MH, 100MHz 300MHz 1. OGHz 3 . OGHz 10GHz 
• OB(VI41 / V(2)) • 081V(841 / V(211 • 08(V1941 / V(2 1 

Frequency 

Fig. 4.9 Frequency response for the magnitude of small signal gain G 
of the conventional emitter-follower with different loads 

4-14 

Mr. Nikolaos Charalampidis Chapter 4 



Novel approaches in voltage-follower design OXFORD 

BROOKES 
UNIVERSITY 

4.4 Small-signal voltage-gain with finite source resistance 

The previous section dealt with the case of the EF with ideal voltage drive. 

That is an idealisation not encountered in practise but it does produce the best results 

for frequency response against wruch the results for other types of drive can be 

compared. Thus it was claimed that for an ideal voltage drive the effect of c
ll 

could 

be ignored. That claim will now be examine, on follow. 

Consider the general circuit of Figure 4.10, whjch is the circuit of Figure 4.8 

with the addition of a source resistance R s 

ll , r r" 

Us 

Til 
C

Il 

RE CL ) u, 

Fig. 4.10 EF with finite source resistance drive and an R Eel load 

For an arbitrary value of Rs it docs not follow that c
ll 

can be ignored . 

Because of the presence of three capacitors, an accurate expression for G(s )obscures 
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physical insight. An approximate method to find the cut-off frequency, assuming that 

a dominant pole exists, is the open-circuit time constant technique [4-2). Thus, 

suppose the effective resistance rltO seen looking between the terminals of c lt ' with c ll 

and C L removed. Then the effect of c lt on the frequency response is governed by 

rltOc n . Similarly, with CIl and c" removed the effective resistance appearing across 

the terminal of C L is rLo and the effect of C L accounted for by the product RI-OC L , 

The product rlloc ll takes care of the effect of c ll . 

The dominant frequency pole in this circuit is given by, 

1 
(Op = --------

r"oc" + RLoC L + rlloc ll 
(4.23) 

where, 

(4.24) 

(4.25) 

(4.26) 

For Rs = 0, rllOc ll ~ rxcl' , which can be ignored compared with either r"oc" 
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Taking the case (Rs + rx) = 0 then, 

(4.27) 

This agrees with the expression derived in the previous section. 

For Rs in the KQ range the effect of rl!o cl! might not be negligible. 

However, results were obtained (Figure 4.11) for CL = 5pF and CL = lOpF with 

Rs = 0, R s = 25Q, R s = lOOn . These show a small decrease in bandwidth with 

the small values of Rs indicated. 

10 

-20 

G 
(dB) 

- 40 

-60 

I 

--- +--
I 

--l ---

I 
- - -

: 

-- -- -

-- - -->------

I 

I 
"I -

I 

-

-

II FOR CL = SpF II 
-- Rs=O 

- -- Rs = 2sn 

... ... . Rs= loon ........ 

~ ~o~ ". - - ,. 

~ . ~ " -°0 '0. " 
J lOp!' Ie ~d ••..• " .. .... ~, 

I .... :~ -. . 
II FOR C L = 10pF II ~'~ ' .... " .... ~, 

•••• '" '0. 

-- Rs = O I '"'' "', .... 
- -- Rs = 2Sn 

Rs = loon 
~ ......... 

i I 1 

1.0HHz lOMHz 100HHz 1. OGHz lOCHz 
• 08(V(241/V(20011 • 08(V(5 ' I/V(20011 • 08(V(84)/V(200t) .08(V(34)/V(20011 • 08(V(6')/V(20011 , 08(V(941/V(200t) 

Frequency 

Fig.4.11 The effect of the finite source resistance on fTequency response of the EF 
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4.5 Input impedance 

4.5.1 Theoretical background 

.. 
b b b 

u·r Cll 
fll 

gmull 

fl' 
Cl' 

-+ -+ -+ 
Zbe Z . I Z .. 

be I be 

C L 

Fig. 4.12 Small-signal equivalent circuit, of the EF, for finding Zbc 

Figure 4.12 shows a small-signal equivalent circuit of the EF with a capacitive 

load. The treatment of this circuit in textbooks, seems to have been ignored. The 

analysis presented here is thought to be original. 

Under normal operating conditions it is shown in Appendix AP4.2 that, 

(4.28) 
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where, 

1 
ro ---p2 - C R 

L E 

Hence, 

For ro «~roPI(j)p2 «roz it follows that, 

[r" + RE (1 + I3Jl 
zb"e(jro) ~ [1+ jro(c"r" +CLR E )] 

OXFORD 

BROOKES 
UNIVERSITY 

(4.29) 

(4.30) 

(4.31 ) 

(4.32) 

(4.33) 

The numerator is the input impedance as ro ~ 0 is the incremental input 

resistance called here R' . 

Thus, 

(4.34) 
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The approximation holds for the normal condition Po »1. This is, of course, the 

value obtained for input resistance by treating the EF from a feedback viewpoint : 

gmRE is the loop-gain. 

Re-arranging (4.33), 

R 
(4.35) 

or, 

R 
(4.36) 

where, 

(4.37) 

The mid-band gain a(o) is given by, 

( 4.38) 

Hence, 

(4.39) 

Consequently, 

(4.40) 
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Thus, zb"e is given by Figure 4.13 , 

Fig. 4.13 Equivalent circuit for Zb"e 

For the particular case C L = 0 , 

(4.41) 

Tills demonstrates that the reduction in c,,' as seen between the terminals boo and e, is 

due to the EF bootstrap effect. 

Incorporating c
ll 

[4-3J, a circuit representation of zb'e is given by Figure 4.14. 

---+ 
Z , 

b e 

Fig. 4.14 Equivalent circuit for zb'e including cll 
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Allowing now for rx' zbe can be obtained, 

R 
Z - r + In 

be(joo) - x (1 . C. R. ) + Jm In In 

(4.43) 

or, 

(4.44) 

Thus, 

(4.45) 
Zbe(joo)= (1' C. R.) + Jm In In 

It is clear that the effect of rx can be ignored for the case of ideal voltage drive 

Driving it from a non-ideal voltage source, with output resistance Rs ' the impedance 

seen by the source is not significantly different from zbe(joo) provided 

(4.46) 
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(4.47) 

The equivalent circuit for zbe(jro) is shown in Figure 4.15. 

b 

e 

Fig. 4.15 Equivalent circuit for zbe 
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4.5.2 Simulation results 

Extensive simulation tests were made to test the applicability of the equations 

derived for the above practical EF. In the fi rst set of tests C L = 0 and R L was made 

infinity, 5KQ and lKn for both the conditions Ie = O.7mA and Ie = 1 rnA . The test 

results for Ie = lmA , only, are discussed here for the case of an NPN BJT. Further 

results, for Ie = O.7mA are given in Appendix AP4.3 together with similar results for 

a PNP device. 

80 

I I I I I 
10.CC~K' J 1. 89p 

I \ I 0.22 6M, laS. 891 + IT I I I "<f I 
-1 

I 

I -1 V-!:'l t1 '" (l .379' 10'.~64 dk--
~~ 

no load 
I- /~Knload I I 

I f. ~' -I 1 1 r 1 ---1 I\: IKn load 
--t --- \ -- --+---

I 

+ I \ 
.878) I 1. 623 .~ ~ 110. 00K , 9 

~ -- - --- -
I '" I I I ! I I 

! I~ I , h I r- : I -I -r ---I 

140 

120 

100 

Iz," 
(dB) 

60 

'0 
I.OH..: 10Hz 100Hz 1 . 0KHz 10KHz 100KHz 1 . 0HHz 10MHz 100HHz 1. DGHz IOGHz 

• o81V15) / IIV.2)) • o81V185) I IIV.82)) • OBI V195) IIIV092)) 
Frequency 

Fig. 4.16 Bode plot for IZ inl for I e = I rnA and an NPN BJT (T=27°C) 

The predicted value of R in for R L = 00, based on the use of the formula 

Rio = [r" + (~ o + l)R E ] // r~ , is within 5% of the value, 3.919Mn found by simulation, 

as shown in Figure 4.16. There is a similar agreement for the ca e R L = 5K.O and 
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R L = lKn. In all cases, the roll-off in IZin (jro)1 above the associated cut-off 

frequency corresponds to -20dB/decade, implying that Zin can be represented by a 

parallel resistor-capacitor combination up to about 1 GHz. This is further confirmed 

by the shape of the phase shift graph in Figure 4.17. 

ISO 

80 

~ --t- -:- -L -'- L I ~ 

t I 

,~- ~~ ~ --t-T 
.. 

I 1. aOOK; 131. 8 91l I " I 

J 1 ~ 1 + 
(1. 2iliM\2 

.... 
~ .- . 89( --

I I I 
;POO. 46.7j2UI ---1- --t-~ ~ ~ t --+ 

i I 

120 

40 

IZ"I 
(dB) 

I· 
I 

~ 
l.y,., .OOI J 1-I - - - t --

L ~ 
I I 

r r I , I ..,. 
I ! I -I 

·40 

·80 

1.0Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0HHz IOHHz 100HH% 1.OGH z IOGHz 

• «Vp(210) - Ip(VaJOO»)) a D8(V(210) I I(ValOO») 

Frequency 

Fig. 4. 17 Magnitude (upper curve) and input phase (lower curve) of Z in 

Spot values of !Zin !, for future reference, for R L = 00 and R L = 5K.O as a 

function of f and T are given in Tables 4.2 and 4.3 , respectively. 

Conditions !Zin ! (.Q) 

Operating 
-20 27 100 -20 27 100 temperature (0C) -------- -_. - - -----_. _- -- -- - -- --- --- - -----_._---- ------ -- -- - _._._---_.- . 

f = 312.5KHz 2.91M 3.8M 5.3M 2.9M 3.7M 5M 

f = 31.25MHz 156K 153K 154K 141K 139K 140K 

f = 250MHz 19.5K 19.2K 19.2K 17.5K 17.4K 17.6K 

Current source used Ideal current source/sink '6-pack ' current source/sink 

Table 4.2 IZ in 1 of the EF, with R L = <Xl , as a function of f and T, for Ie = I rnA 
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Conditions /Zin / (n) 

Operating -20 27 100 -20 27 100 
temperature COc) 

------------ ------- ----- ------------ ------.----- ----------- ------------

f = 312.5KHz 184K 241K 343K 175K 227K 318K 

f = 31.25MHz lO6K 112K 11SK 98K I04K 109K 

f= 250MHz 16.1K 15.SK 15.7K 14.SK 14.6K 14.7K 

Current source used Ideal current source/sink ' 6-pack' current source/sink 

Table4.3 IZin l oftheEF, with R L = 5Kn , asa function off and T for Ie = lmA 

The increase of IZin I with temperature is due to the increase of P with T. 

Consider, now, in more detail the frequency response for C L = 0 . 

Theoretically_ 

(4.4S) 

Previous measurements (Chapter 3) gave ciJ = 32.75fF. Cx is bigger than cl-l 

but gmR E ~ ~AN ~ 3500 , it follows that CIl dominates C in . Consequently, the 
T 

cut-off frequency for /Z in / should be given, approximately, by, 

1 
f B = = = ] .24MHz 

2nRinCI-l 2n· 3.919MQ · 32.75fF 
(4.49) 

This is very close to the simulation figure of 1 .2206MHz. 
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To prove further that c!, was the primary cause in the fall-off in IZin I, further 

tests were carried out in which c!' was artificially increased by adding extra collector-

base capacitance in parallel (see Figure 4.18). 

Vee 

vs 

\0 

vs 

1 \0 

An EF with an extra c!' added 

-V~C 

An EF with two extra c!' s added 

Fig. 4.18 Emitter-followers with added collector-base capacitance 

With one added c!' fB should be half and with two extra c!' s, f B should be 

reduced to one third of the value for no added c!'. 
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Fig. 4,19 Showing the effect on bandwidth of added c
ll

' with R L = 00, C L = 0 

UNIVERSITY 

Cll 

The simulation results, displayed in Figure 4. L 9, validate these predictions. At 

613KHz and 408KHz, fBS are within less than 1% of being exact sub-multiplies of 

1.2206MHz. 

In a second set of tests the effect of C L (» c rr ) on fB was investigated for the 

case of R L = 00 and C L = 5pF . It is clear from Figure 4.15 that fB should be 

reduced by a factor m where, 

(4.50) 

Thus, for C L = 5pF (= 5000fF) , ~ o = 46 and e ll = 32.75fF , m ~ 4.4 

Hence, the new value of f B sbould be 277KHz. 
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In Figure 4.20, showing simulation results for the NPN BJT, for Ie = lmA . 

Curve (i) applies for C L = ° , and curve (ii) applies for CL = 5pF . 
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Fig. 4.20 Showing the effect of added C L on bandwidth 

fs , at approximately 293KHz is just over 5% more than the predicted value. Curve 

(iii) shows the small effect of the addition an extra c~ , with C L = 5pF . Further 

results, for Ie = 0.7mA are shown in Appendix 4.4 together with similar results for 

the PNP device. 

It is worth noting that in a textbook by Wilmshurst [4-41 f s for CL = 0 is 

given as equal to f~ which is clearly not the case, because oftbe dominating effect of 

c ll ' ignored in Wilmshurst's graphical display. 
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4.6 Output Impedance 

Figure 4.21 shows a small-signal equivalent circuit for the calculation of the 

output impedance Zo of the emitter-follower: ( rll is ignored because of its magnitude 

compared with other resistors in the circuit). 

Fig.4.21 Circuit for calculation of Zo 

For generality, a base source resistance R s is included. The connections to 

c
ll 

are shown dotted because c
ll 

is ignored in an initial analysis. However, its effect 

is considered later. The externally applied test voltage U o gives rise to an output 

By inspection, 

(4.51) 
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Also, 

. gmzn 

12 = Zn + (Rs + rx ) 
(4.52) 

(4.53) 

Thus, 

(4.54) 

But, 

(4.55) 

(4.56) 

or, 

[ 
J'roc r (R ' + r )]( ) 1+ . n_lt Sx rn +RS +r

x (rn + RS + r,J 
(4.57) 

and, 

(4.58) 
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A linearised Bode magnitude plot for this, shown in Figure 4.22, has a zero at 0} = O} Z 

and a pole at 0} = O}pl . 

Rs + rx + r1t 
(I +1.\) 

~~------------------~ 

t t t 0} (log scale) 

Fig. 4.22 Linearised Bode plot for Izo I 

(r1t + Rs + rJ 
o} z = clt rlt (Rs + rx) 

(4.59) 

At frequencies higher than CUT ' the effect of c
ll 

comes into play and there is 

an additional pole at 0} = cu p2 ' where O}p2 is dependent on the product c
ll 

(R + rx). 

The details are not given here because this effect occurs at frequencies well above 

those of interest (It is also questionable whether the simple hybrid-n model, used so 

4-32 

Mr. Nikolaos haraJampidis Chapter 4 



Novel approaches in voltage-follower design OXFORD 

BROOKES 
UNIVERSITY 

far, is applicable at these frequencies). What is certain is that, because of cJ.l' Zo ~ 0 

as(O~oo 

For frequencies below (Op , equation 7.60 in [4-5] can be re-cast, in the form, 

(4.60) 

where, 

(4.61) 

and, 

(4.62) 

But, 

(4.63) 

(4.64) 

For Rs = 0, 

(4.65) 

L =~=8.4nH (4.66) 
(OT 

4-33 

Mr. Nikolaos Charalarnpidis Chapter 4 



Novel approaches in voltage-follower des ign OXFORD 

BROOKES 

44 

IZol40 
(dB) 

36 

32 

SEL» 
28 

45.0d 

Phase 
(d) 

22 . 5d 

Od 

----r- I TelJp 27 lc +- -koo OM , 3tmT 

I I I \ I I ~ 
t- T~mp -20°C \ I Temp 100 °C ' 

'\ 
I i ; Jil 

• I 

i I I 

Q • • DB(VI8210) II(Va8100» 

I I I I 
I I 

I I I i 
1 

i 
I 

I 
I 

i I I ! I I 
! I 

! I i I 

j-1-1-1-1 I i --"I If 
111. 00 OM 311.249) 1 ! Y 
I / II. 0 ~ QOH , lO. 290 I J , 

""- II / I U 
I -....., i./ , ~f' ! - I 

! ! 

I -L remp27 °C d 
~ J -L- ~ ~ 

I Temp-20c· D~ :\ : 

; 

I I [t.mpL i 
I 
! i 

~ I I ; 
1.0Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz 1. OMHz 10MHz 100MHz 1. OGHz 10GHz 

Q • • Vp(8210) - Ip(Va8100) +360 
Frequency 

Fig. 4.23 Magnitude (upper curve) and phase (lower curve) of Zo as a function of f and T 

Conditions IZol (n ) 

Operating temperature 
-20 27 100 -20 27 100 

UNIVERSITY 

(0C) 
------------- ------------ --- ----- ---- ----- - - - .---- . ----------- ------------

f = 312.5KHz 32.6 36.5 42.9 33.3 36.5 41.5 

f= 3] .25MHz 32.6 36.5 42.9 33.3 36.5 41.5 

f= 250MHz 33.3 37.1 43 .5 34 37.2 42.1 

Current source used Ideal current source/sink ' 6-pack ' current source/s ink 

Table 4.41Zol ofthe EF, at Ie = I rnA , as a function of fand T 

The significance of L is appreciated if the emitter-follower drives another EF with a 

capacitive load 14-61, as in Figure 4.24. 

4-34 

Mr. Nikolaos Charalampidis Chapter 4 



Novel approaches in voltage-follower design 

, cc 

Ql 

-Vee 

(a) 

QI 

\'0 

Fig.4.24 (a) An EF driving another with capacitive load C L , and, 

(b) equivalent circuit to find v x 

Using earlier results, 

and, 

(I3 ) V AN R · ~ +1 --
In I 

E 

OXFORD 

BROOKES 
UNIVERSITY 

- - 1 

__ J 

(b) 

(4.67) 

(4.68) 

1 
For ill » , R in can be neglected : (that is why the connections to it are 

CinR in 

shown dotted in Figure 4.24(b). The series circujt remairung has a resonant frequency 

at ill = illr where, 
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1 
co =--=== 

r ~LCin 
(4.69) 

The Quality Factor Q [4-7] is given by, 

(4.70) 

There is no peak in the small signal frequency for u x , and no overshoot in the 

associated small signal step-response at the output of Q2' if Q<0.5 . 

Figure 4.25 shows the small signal step response, for the circuit of Figure 4.24(a), 

with C L = 5pF, for which L (calculated) ~ 8.4nH 

50mV,---,--..,----;-----r------,---;---,---;---,---;---,------, 

-1-+-I 
L=20nll 

40mV+--+---I---,----,..Lj 

+-~--j-----t. -I--t--+--
30mV+---7-----\:-I--H:7"f--+---,~~-+----I----+-----t-----i 

vo 
(V) 

20mVt---:--+-............ -t+f---=!-----I--.,..--+---:---I-----i 

IOmV+--+---t-lI---1---+--+--+----1i--- I---'--+--.....---t---i---i 

OV+-__ ~ __ ~_--1-_-+_~_-+_~ __ I-_~_+-___ +-_~_~ 
9ns 10ns llns 12n5 

D V(4) • V(S4) • V(94) • V(717 

Time 

Fig. 4.25 Transient simulation result when a step input is applied 
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4.7 Emitter-follower distortion 

Any difference between the shape of the output signal and input signal in a 

nominally linear system is considered to be distortion. This may be due to an 

inadequate frequency response of the system, causing the Fourier frequency 

components of the input signal waveform to be processed differently from one 

another. This can be minimised by maximising the bandwidth. 

It may also be due to the non-linear nature of the transfer characteristic of the 

active device(s) in the signal path, in which case it is called non-linear distortion 

[4-8] . Examining, for instance, a typical ic - u 13 6 characteristic of a transistor as 

shown in Figure 4.26, it can be seen that applying a sinusoidal signal in the input of 

the transistor, will cause a sharpening on the top part and a flattening on the bottom 

part, which results in generation of distortion. 

TCEQ 

Fig. 4.26 The nonlinear ic - U BE characteristic 
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Harmonic distortion (HD) characterises the distortion that arises through the 

generation of hannonics of the input signal frequency when a single sinusoidal signal 

is applied to a non-linear device. Intennodulation distortion (1M D) characterises the 

distortion that rises when two equal in amplitude sinusoidal of frequency (Ot ,(02 are 

applied to a non-linear device, giving rise to output signal components of all 

combinations of (01' (02 and their multiples. IMD is related to HD, as it will be seen 

later. 
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4.7.1 Total harmonic distortion (THD) 

When a small signal low frequency voltage, V be' is applied to the base-emitter 

junction of a BJT in which the current is I, then the output current is given by, 

vbe 
i = Ie VT 

If V be is a sinusoidal with peak value "be then, 

i ~ {[ ~~ }inrot +M ~~ r sin' rot +M ~~ r sin
3 

rot + ... ] 

By definition (4-8) for weak inversion, 

HD2 = amplitude of the 2nd harmonic / amplitude of fundamental 

Hence, 

HD = !["be) ~ ![~) 
2 4 V

T 
4 I 

Similarly, 

HD) = amplitude of the 3nd harmonic / amplitude of fundamental 

Hence, 

HD = _1 ["be)2 ~ _1 [~)2 
) 24 VT 24 I 
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For standard feedback theory the distortion is reduced by a factor (1+T), T(= gmRE) 

being the loop-gain factor associated with the EF [4-8). So, 

HO ~~'!CPk) 
2 T 4 I 

(4.76) 

and 

HO ~~._I C'k r 
3 T 24 I 

(4.77) 

The total harmonic distortion, THO is then given by, 

THO = ~H02 2 +H03
2 + .... (4.78) 

Simulation measurements were made and the results are recorded below, in 

Table 4.5. The calculations show the general agreement between the theory above 

and the simulated results. 

For Ie =lmA, Vin =IVp and RL =5KQ, substituting in (4.76) and (4.77) 

respectively, 

and 

H0
2 
~~.!(ipk)=_I_.!(ipk)=_1 .!(0.2)=-71.8dB 

T 4 I gmRE 4 I 194 4 1 

H0
3 
~ ~._1 (ipk)2 = _1_._1 (ipk)2 = _1_._1 (0.2)2 = -lOldB 

T 24 I g m R E 24 I 194 24 1 
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Combining HD 2 and lID3 by the following formula gives the THD 

The simulation results indicated THD of -72.5dB, in fair agreement with the hand 

calculations, of -71.77dB. 

Conditions THD ( dB ) at 3125KHz 

Operating temperature 
-20 27 100 

COC) _____ _ a_ -----_ .. - .. -------- --------- -.------ ,-----_.-
Current source used Ideal '6-pack' Ideal ' 6-pack ' Ideal ' 6-pack ' 

ZL=5KO -74.1 -73.4 -72.6 -72.5 -71 -70.6 

ZL = SKOff 5pF -72.3 -64.3 -72.5 -64.5 -69.7 -64.2 

Conditions THD ( dB ) at 31.25MHz 

Operating temperature 
-20 27 100 

COC) 
------- .. ----- _._ - -------- - -- --_ ... --- _ .. _ .. _. , .. _ .. _ .. 

Current source used Ideal ' 6-pack ' Ideal ' 6-pack ' Ideal ' 6-pack' 

ZL =5KO -73.3 -72.8 -71.9 -71.9 -70.5 -70.2 

ZL = 5KD. II 5pF -54.5 -53.3 -53.4 -52.7 -51.8 -51.1 
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Conditions THD ( dB ) at 250MHz 

Operating temperature 
-20 27 100 (0C) .. _ ... _-- --------- -------- -_ ..... _ .. _- -------- ~--------

Current source used Ideal '6-pack' Ideal '6-pack' Ideal '6-pack' 

ZL =5KQ -51.4 -43 -48.6 -42.7 -45.9 -39 .1 

ZL =5KQIISpF -37.7 -35.6 -36.8 -35.2 -35 .2 -35 .1 

Table 4.5 THD results for the simple EF as a function offand T 

It is worth noting that at high frequencies, the THO reduces notably, due to the 

transistor internal capacitances, as well as the output capaci tance of the current si nk. 
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4.7.2 Intermodulation distortion (IMD) 

The intermodulation distortion is another way of examining the nonlinear 

distortion of a buffer stage. It has been shown (4-9], that under low-distortion 

conditions, there is a one-to-one correspondence between the intermodulation 

distortion and the harmonic distortion, such as, 

(4.79) 

and, 

(4.80) 

Similar to the case of THO, a local feedback loop can decrease the distortion 

of the design. For a loop-gain greater than 10, the intermodulation components can be 

written as, 

2 1 CPk ) IM02 i:::< T'4 -}- (4.81 ) 

and, 

2 1 Ipk 

C r IM0 3 i:::< T . 24 -}- (4.82) 

where ip is the relative current swing as described in the previous paragraph and T is 

the loop-gain which is equal to gmRE or gmro' respectively, for a resistive load or a 

transistor current sink as a load. 
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For Ie = lmA , Vin1 ,2 = 1Vp and R L = 5K.n, substitution ill (4.81) and (4.82) 

respectively, gives, 

and 

IMD2 ~_2_ .!(ipkJ=~.~( 0.2)=-65.7dB 
g m R E 4 I I 94 4 1 

IMD3 ~_3_._1 (~J2 =~._1 ( 0.2 )2 =-91.7dB 
gmRE 24 I 194 24 1 

The simulation results, shown in Table 4.6, indicated IMD of -62.6dB, in fair 

agreement with the hand calculations, only when ideal current sink used. The non-

ideal sink ('6-pack') deteriorates notably the perfom1ance of the configuration due to 

the output capacitance, especially at higher frequencies. 

Conditions IMD ( dB ) 

Operating temperature 
-20 27 100 (0C) 

... _ .. __ .. - - - -- - --- -- ------- _ . .. --- _ .. r -- ------ ---------
Current source used Ideal '6-pack' Ideal ' 6-pack' Ideal ' 6-pack' 

f= 312.5KHz -62.5 -52.3 -62.6 -52.1 -62.5 -51.4 

f= 31.25MHz -58.8 -54.1 -57.3 -54.6 -55.4 -55.5 

f= 250MHz -54.4 -49.4 -52.6 -48.3 -50 -48.3 

Table 4.7 IMD results for the imple EF as a function offand T. 
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4.8 Noise performance 

A nOise specification was not given for this thesis but for the sake of 

completeness measurements were made to indicate the level of noise likely to occur in 

the circuits investigated. This section considers the noise performance of the 

emitter-follower but detailed comments are not made for subsequent circuits. 

Internally and externally generated spurious signals define the mInImum 

amplitude signal that can be used in a circuit. The external noise, which is created 

from supply ripple, cross-talk, etc, can be modelled by voltage or current sources, in 

an equivalent circuit. The internal noise, which consists primarily of thermal, shot 

and flicker noise can be represented as input referred voltage (4-10). Since the 

follower output is taken from the emitter, which is a low impedance point, the noise 

due to the output load is attenuated compared with the rest of the noise sources (4-11), 

and can be omitted. Thermal noise is caused by the mobility of the charge-carriers in 

the transistor and is proportional to the operating temperature. The shot noise 

depends on the operating current and is generated in the junctions of the transistor. 

Flicker noise is caused by surface defects in the semiconductor which arise during the 

construction process and mainly affect the transistor at low frequencies. 
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When a transistor is voltage driven, the input noise is given by, 

du~ = 4kT(rb + _l_t[ 
2g m! 

where du~ is a representation of all noise sources of the transistor 

OXFORD 

BROOKES 
UNIVERSITY 

(4.83) 

Substituting the values for lmA operating current, at 27°C, the equivalent 

input noise is, 

which corresponds to, 

At -20°C the equivalent input noise is, 

At 100°C the equivalent input noise is, 

Simulation of the conventional emitter-follower gave the input noise results, 

shown in Figure 4.27, in good agreement with the calculations. 
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Fig, 4,27 Input noise of the circuit of Figure 4, I 
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4.9 Pulse response 

An approximate analysis of the transient response of an EF, often ignored in 

textbooks, can be carried out using the charge-control approach pioneered by Beaufoy 

and Sparkes in ] 957 [4-12] . A starting point for the charge-control model of a BJT is 

shown in Figure 4.28. 

B c 

E 
Fig. 4.28 Core of the charge-control model ofa BJT 

In this SB is a store for the minority carrier charge q B in transit across the 

base region. SB requires a current (dqB Idt) to change the collector current but there 

is no potential drop across it: q B 1"[ B is the component of base current due to base 

current recombination and the current injected from the base bulk into the emitter 

region: (qB h e ) it the resulting collector current. 

Thus, 

(4.84) 
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and, 

(4.85) 

Under DC conditions (dqB / dt) = 0 so, 

(4.86) 

In Laplace transform symbolism, 

(4.87) 

The base-emitter drop is modelled by the diode D which is 'ideal' in that it has 

no other properties than its I-V characteristic. For most practical purposes it can be 

modelled by a battery since a doubling in collector current is produced by a V BE 

change of some 18mV which is negligible compared with the voltage change, 

associated with large signal operation. In an equivalent circuit for changes in circuit 

conditions batteries are replaced by short-circuits. 

Hence, an appropriate circuit for calculating the transient response of circuit of 

Figure 4.29(a) is shown in Figure 4.29(b) in which rx is the extrinsic base resistance 

and cJ.l is the collector-base capacitance. 
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Vee 

-\ee 

(a) 

By inspection, 

c).t 

Fig. 4.29 (a) The basic EF with a capacitive load, and 

(b) an equivalent circuit of Figure (a) 
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(b) 

(4.88) 

To simplify matters it is assumed that the collector current is always much greater 

than the base current, i. 

Then, the current charging C L is p{s)i, 

Hence, 

(4.89) 

Substituting for p(s) from (4.90) and i from (4.91) results in, 

(4.90) 

4-50 

Mr. Nikolaos Charalampidi hapter 4 



Novel approaches in voltage-follower design OXFORD 

BROOKES 
UNIVERSITY 

Rearranging this, 

(4.91) 

Let, 

Then, 

(4.92) 

or, 

(4.93) 

Now, if U o has a dominant pole (and associated dominant time constant) it is 

given by ignoring the S2 tenn in the denominator of (4.93). The validity of this 

assumption must be examined later. Hence, 

(4.94) 

To proceed further it is necessary to decide on the nature of u b • Suppose it 

has the fonn of a truncated ramp voltage as shown in Figure 4.30(a). The component 

parts of the leading edge are shown in Figure 4.30(b). 
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, ' •• ---- td . ' 
VB - :- ....,.'---------""\' 

t = O 

Fig. 4.30 (a) Assumed input voltage signal , and 

(b) components of the leading edge 

Consider, first, the rising edge. For this, 

In the ' s' domain, 

V Bt 1 u =-.-
b t 2 

r S 

Substituting this into (4.93), 

Using a table of Laplace Transforms, this gives, 
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U b = U{t-tJ ~B (t - t r ) 

r 

(4.95) 

(4.96) 

(4.97) 

(4.98) 
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o 

Fig.4.31 (a) Showing ub, uo, for t r~t~ O , and 

(b) Showing ic for tr ~ t ~ 0 

BROOKES 
UNIVERSITY 

For tr > t » Ckrx , U o has the form of a ramp delayed by a time interval 

Ckrx with respect to the input ramp. For (t r + td ) > t > tr U o changes with a time 

constant Ckfx , till it reaches a steady value V B. 

The collector current charging C L is given by, 

(4.99) 

Hence, from (4.96) 

(4.100) 

for which, 
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for tr > t > 0, 

For t > t r , 

(I-I,) 

ic{t)= c~ VB . u{t _ tr)e - Ckr. 
r 

where u{t - t r ) is the delayed Heaviside input step function (4-13) 

For tr > t > 0, u{t - t r) = 0 

For t> tf' u{t - t r) = 1 

UNIVERSITY 

(4.101) 

(4.102) 

Integrating (4.101) w.r.t. t for the interval t = 0 to t = t r • bearing in mind that. 

tr »5C k rx , and adding the result to the integral of (4. 102) for the time range t = tr 

to t = 00 gives the charge Q. shown shaded in Figure 4.31 (b). This is in the 

assumption that i «ic at all times. 

The simulated waveforms of Figure 4.32. were obtained to test the 

applicability of the theory just presented. The base-line for u B was offset so that the 

base-line for U o was zero: tr = t f = Ins; td = 3ns; VB = 0.5V. For the input edge 

of u B the waveform for U o has the general shape predicted. the ramp delay being in 

the order of 0.2nS. The waveforms for ie' capacitor current and i B' are all similar in 

shape and appear to have exponential changes associated with them. An estimate of 

the area under the curve for capacitor current (equal to the sum of areas under the 
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curves for collector current and base current), found by the squares in Figure 4.32, is 

1 nS x 2.SmA = 2.SpC 

corresponding to the charge accumulated by the SpF load capacitor when its voltage 

changes by O.SV. 
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Fig. 4.32 Waveforms for the circuit of Figure 4.29 for I n input edges 

(a) u B ; (b) U 0 ; (c) ic ; (d) in and (e) Capacitor current 
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Since ie reaches its peak value in about InS it means that SCkrx = InS, i.e, 

Ckrx = O.2nS, in agreement with the delay for U o in (b): the theoretical value for 

Ck rx' using the values rx ~ 16S0, c
ll 

= 30t}', CL = SpF and Po = SO, is 0.21 nS. 

The agreement is unexpectedly good because: c
ll 

varies with Ves ' during the rise 

edge; Po is not the same at Ie = 3.SmA as at Ie = ImA; rx has a different value, 

from its DC value, under pulse conditions. Safe engineering calculations would 

assume a maximum value of ell and a minimum value of 130. 

At t = (t. + t d), the transistor cuts off if, 

(4.103) 

This is the case for the 5pF load shown in Figure 4.32(a). As indicated in Figure 

4.32(c), ie falls to zero and 10 discharges CL so that, for t > (t. + td)' 

(4.104) 

The discharge time for C L is approximately 2.5ns, as expected from calculation. 

For (t. + td + t f ) > t > (t. + td)' the base current reverses as the base charge 

store (10 'te) is discharged. However, when (us - u o ) is equal to the base-emitter 

threshold-of-conduction voltage the transistor commences conduction. This is not a 

sudden process because the collector current is shared between the transistor and C L • 
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That accounts for the non-linearity of the curves for I B and Ie before the transistor 

reaches its initial d.c. state. 
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Fig. 4.33 Waveforms for the circuit of Figure 4.29 

but, here, for 0.1 nS input waveform edges 

15.5ns 16 . 50' 

Figure 4.33 , which should be compared with Figure 4.32, shows transient 

responses for O.InS waveform edges. In this case t p t f < 5Ck rx 0 there is no flat 
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top to the waveforms for the capacitor current and i B • 

Accurate prediction of rise and fall times and current maximum amplitudes is 

not simple. (In practice, it is necessary to ensure from the simulation plots that the 

transistor does not exceed its iC(max) and PC(max) in the event of small values of 

tp t f and large values of Cd. However, as an approximation, it might be 

considered that u B had ideal step edges in which case U o shows an exponential rise 

for the leading edge of u B' It is significant that u B does, in fact, reach its maximum 

value in about Ins, corresponding to the value given by 5Ckrx ' 

Before leaving the topic of large signal response, it follows that the Slew Rate, 

which determines the maximum sinusoidal output voltage at a given frequency, is 

limited by the product Ckrx or the ratio 10 IC L , whichever give the greater value for 

rise and fall times for uo ' 
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4.10 Summary of Chapter 4 

In this chapter the author has analysed the conventional EF in terms of DC 

performance as well as low-frequency and high-frequency small-signal performance. 

The treatment undertaken was extensive, compared to the treatment given in 

textbooks, therefore the analysis presented in this chapter is thought to be original. 

The attention paid in the investigation of the conventional EF is essential for the 

analysis of the proposed designs, presented in the following chapters, since it 

comprises the root of each novel circuit. In addition, this chapter set the benchmark 

for the analysis of the proposed circuits. The following chapters have been structured 

in a similar manner to allow a clear insight into the performance of each proposed 

design and their relative superiority over the conventional EF. 
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APPENDIX 4 

AP4.1 Calculation of the frequency response of the EF 

AP4.2 Analysis of the input impedance 

AP4.3 Input impedance simulation results 

AP4.4 Investigation of the effect of CL on fB - Simulation results 
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Appendix AP4.1 

Calculation of the frequency response of the EF 

U B UB Ib 

rx Z" 

. u.j 
C" 

gm u" , 

zl! -=-

u" 
r
ll 

C
ll Z" 

u.J 
ZE 

CL 

-=-

Fig. A4.1 Small-signal equivalent circuit of the EF 

By inspection of Figure A4.1 

(A4. L) 

where, 

(A4.2) 

Thus, 
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u ( 1 +g )z. It m E 

G = ~ = __ "--Z--;lt __ '----:,--

U
B 

U lt + U lt (zl
lt 

+ gm )ZE 

(A4.3) 

(A4.4) 

or, 

(A4.5) 

For low frequencies, s ---+ 0 

(A4.6) 

or, 

(A4.7) 

In general, (A4.8) 
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( 
1 ) sC 1t R 

gm +~ 1+-(-·-1)- E 

gm+
f1t 

G(s) = --------'=---;,:----=----::;: 

This means a zero at, 

and a pole at, 

But, 

hence, 
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(A4.9) 

(A4.10) 

(A4.11) 

(A4.12) 

(A4.13) 
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Appendix AP4.2 

Analysis of the input impedance 

In the circuit of Figure 4.10, in the text, 

(A4.14) 

where, 

(A4.1S) 

and, 

(A4.16) 

Zb·'e (s) = ;: = (1 + :: + grnzE }1t = z1t + ZE + grn zEz 1t (A4.17) 

zlt 

Substituting for ZE and z" 

(A4.18) 

or, 

Z ,. (s)= rll(l+SCERE)+RE(l+scllrll)+grnREr" 
be (l+scltrltXl+sCER E) 

Z .. (S) = rll +RE(l+gmr,,)+s(CERErll +REcllrll ) 
be (1 + scllrll XI +sCER E) 
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and, 

(A4.19) 

As gmr It= 130 » 1, where 130 is the 1.f. ac current gain of the transistor, 

Hence, 

sRErlt(CE +c lt ) srlt(C E +c,J 

rlt+RE(l+gmr,J~ (l+13J 
(A4.20) 

and, 

(A4.21) 

In the frequency domain, 

(A4.22) 
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(A4.23) 

where, 

(A4.24) 

(A4.25) 

and, 

(A4.26) 

.. 
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Appendix AP4.3 

Input impedance simulation results 

It will be seen in the corning chapters that the operating current of the 

proposed circuits is either lmA or O.7mA. Both the NPN and PNP versions ofEF are 

simulated at these operating currents as the results are vital in the analysis of the new 

circuits in the following chapters. 

Figure A4.2 shows the input impedance of the EF using an NP BJT, with 

Ie = O.7mA. The output was initially unloaded and later made to drive 5KO and 

1 KO resistive loads, respectively. 
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Fig. A4.2 Bode plot for IZin I for [ c = O.7mA and an NPN BJT (T=27°C) 
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Identical tests were made for the PNP version of the EF ( Figure A4.3 ). The 

input impedance for Ie = lmA and Ie = 0.7mA , is shown in Figures A4.4 and A4.5 

respectively. Initially CL = 0 and R L is infinite and then R L = 5KQ and 

Vee 

Vo 

Vs 1 
1 

-Vee 

Fig. A4.3 PNP Version of the EF 
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Fig. A4.4 Bode plot for JZinJ for Ie = IrnA and a PNP BJT (T=27°C) 
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Spot values of IZin l, for the PNP version ofEF, for R L =00 and RL =5KQ 

as a function of f and T are given in Table A4.I. 

Conditions IZinl (U) 

Operating 
-20 27 ]00 -20 27 100 temperature (DC) 

------ ------ ----- - ------ - ---- - --- - - - ---_.- ------ - ----- - - --- - ------ . _ ---

f = 312.5KHz 758K 978K I.38M 171K 2l5K 29IK 

f = 31.25MHz 126K 127K 128K 88.1K 91.6K 95.3K 

f= 250MHz 16.3K 16K 16K 12.8K 12.6K 12.6K 

Current source used Unloaded output 5KQ load 

Ta bleA4.1 !Zin ! oftheEFwith R L = CXl and RL = 5Kn as a fu nction offand T 
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Investigation of the effect of CL on fB - Simulation results 

In this section, the simulation results for the bandwidth of the EF, when using 

a capacitive load, are presented mainly for reference reasons. It has been shown in 

section 4.5 that when the EF drives a capacitive load, that load will determine the 

bandwidth of the circuit. Furthermore, simulation results presented only for 

Ie = lrnA and for an NPN EF. Figure A4.6 shows the f B for the NPN BJT, for 

Ie =0.7rnAandfor C L = 0 , CL =5pF and CL = 5pF with an extra c
ll 

. 

I 1 
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o DB(V(5) / I(Va2» • DB(V(95) / 1 (Va92)) .. OB(VPS) I I(Va12 J ) 

Frequency 

Fig. A4.6 Showing the effect of added C L on bandwidth for an NPN EF with Ie = O.7mA 

Similarly, the PNP version of EF was simulated, using I = lmA and 

Ie = O.7mA for the same load conditions as before. Figures A4.7 and A4.8 show the 

effect on the bandwidth, when driving capacitive load. 
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5.1 Introduction 

Following on from the detailed discussion of the emitter-follower in the 

previous chapter this chapter describes the evolution and performance of a so-called 

'Super-follower' in which emitter followers are extensively used. This Super-

follower is, in fact, a class AB high frequency VF based on the original 'LH0002' 

type buffers developed in the 1970s by National Semiconductors [5-1], [5-2]. This 

circuit has been previously used in the design of Ie voltage op-amp output stages, 

current conveyers and current feedback operational amplifiers. More recently it has 

been referred to as the 'Diamond' circuit [5-3], a convenient shorthand description 

that will be used from now on when referring to it. 
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5.2 The 'Diamond' circuit / DC conditions 

The starting point of the proposed design is the circuit shown in Figure 5.1. 

This is a class AB high frequency VF which has, in the past, been used in the design 

of current-feedback [5-3] operational amplifiers as well as in the first IC current 

conveyer [5-4]. However some features of its operational characteristics (e.g. , input 

impedance) do not appear to have been dealt with in detail in the literature. Since it is 

the core of the proposed design, the 'Diamond' circuit is considered, critically, first. 

The simulation results refer to ' 6-pack' biasing (Figure 5.2), except where indicated. 

Vee 

10 ~ In ~ I (J 

Q3 

+h 
Vo -

-Vee 

Fig.S.1 The ' Diamond' circuit 
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Vee 

Q3 

Vs Vo 

-Vee 

Fig.S.2 The ' Diamond ' circuit with '6-pack ' bias ing 

By inspection of Figure 5.1, 

Vs + Y EB1 - Y OE3 = Vs - V OE2 + Y E04 = Yo (5.1 ) 

(5.2) 
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Hence, 

(5.3) 

For well matched BJTs, l SI = I S4 and I S2 = IS3 so for that case, I C3 I 4 = I I I 2· 

To obtain the main properties of the output stage base currents can be ignored, in 

which case, I CI = 10 , I C3 = l x, etc. 

So, 

Tangen! for 1 L = 0 

(a) 

Fig.5.3 IlIuslrating DC cond itions for Figure 5.1 : () = 45° 

(a) IL = Oand (b) IL ~ O 
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condition IL = 0, for which IC3 = IC4 = 10 is shown. Figure 5.3(b) shows DC 

conditions for IL :;:. 0 and the arbitrarily chosen condition IC3 > Ic4 ' It is apparent 

from this graph that if IL is large compared with 10 then IC3 = Ix ~ II. and IC4 ~ O. 

However, neither IC3 nor IC4 ever falls completely to zero. Now because 

log l c3 +loglc4 =21og I o 

Differentiating with respect to IC3 , 

Hence, 

dl C3 = _ IC3 

dlc4 IC4 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

Hence if IL «10 _ the changes in IC3 ,lc4 due to a finite IL are equal and opposite. 

Thus, 

(5.9) 

(5.10) 

This feature of output behaviour is used in the calculations of small signal input and 

output impedance. 
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The linear input voltage range depends on the compliances of the current 

source and sink. Over that range the input current, I B' is principally determined by 

QJ and Q2' if IL «10' and is given by 

(5.11) 

or, for the usual case Po ,P p »1 

(5.12) 

If IL » 10 , then from the discussion above, 

Consequently, 

(5.13) 

(5.14) 

The offset voltage, Vos, arises from Is and Ie mismatches and is given by, 
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or, 

(5.l5) 

The circuit design ensures that the condition leI = In is closely satisfied but 

IS3 "# lSI because of the different polarities of Q I and Q3. It is this difference that 

contributes most to Vos. If IS3 and lSI differ by, say, as little as 20% then 

Vos ~5mV. 

The simulated transfer characteristic (Figure 5.4) of the 'Diamond' circuit 

appears to have a slope of unity. This is to be expected because, for the case 

considered, leI =I C2 (=0.7mA)and RL =00, 

Hence, 

dVo = +1 
dVs 

(S.16) 

(5.17) 

This is not quite true because of the small effect of finite Early voltages. This 

characteristic does not show the extent of the linear input range (considered below). 

Because of the scales employed the finite Vos does not show up in Figure 5.4. 

However it is evident in Figure 5.5 which illustrates behaviour in the vicinity of the 

origin. 
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Fig,5.4 Simulated transfer characteristic for the ' Diamond ' circuit 
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Fig_ 5.5 Expanded view of Figure 5.4 in vicinity of Vs = OV 

Apparently, Vos R::14.4mVatT=27°C. 
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The plots for T=-20°C and T=100°C are parallel to that for T=27°C because of the 

effective constancy of (dVo / dT). 

The linear input voltage range is set by the VESI (VSE2 ) of Q I (Q2) ' and the 

minimum allowable voltage V K , say, across the current bias circuits. 

Thus, 

(5.18) 

From Figure 5.6, + 3V ~ Vs ~ -3V. The increase in I)3 with Vs in Figure 5.6 is 

attributed to the temperature-variation of f3n ,f3 p ' 

lOuAi-;---i--f----+-+-----+--+--+--r-, Tcmp27 "C ' III~~' . 
J - ,:c--If--,....-+--i- ~ -~ '~ ~VI-/ ---~ ~ 

I
. 1 ...... ..- -'0 I ! 

OA j! , I ' i' I I' TemPI 100 "C, ,I. 
In 

CA) 
-L i I n~ : 

I 1----1--tj--l'-,/ri/-Ij' ~j_-- -i - 1- -,- -I 

: I I j 

-lOUA-r--:--+--+--:----tf--H -+--+--+---:----t---ir--t--.--+--+-- --t--;--j-- -j 

I .-rVII I I I I I 
-+n::::H---~-t --i-r-+-~I'--'--r---: + 

-20uA n ! I ' I 
-7 . 0V -6 . 0V -5 . 0V ·4 . 0V -3 . 0V -2.0V 1.0V ov 1.0V 2 . 0V 3. 0V 4. 0V 5 . 0V 6. 0V 7 . 0V 

o • , IIVaJO, 
vs 

Fig. 5.6 D.C. input characteristic for the circuit of Figure 5.2 

Vee = 5V; 10 = O.7mA; R L = 00 
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The quiescent power dissipation of the circuit is, 

(5.19) 

where n is the number of vertical conduction paths between the two rail supplies. 

Biasing the circuit with ideal sources, at 27°C , PQ = (5V + 5V) . 0.7mA · 3 = 21mW . 

Using the '6-pack' for biasing, at 27°C , PQ = (5V + 5V)· 0.7rnA· 4 = 28mW . 

Simulation of the circuit with both ideal and ' 6-pack' biasing produced the 

figures shown in Table 5.1 . These show good agreement with the calculated values. 

Quiescent power dissipation PQ(mW) 

Operating temperature (0C) -20 27 100 
- -- - - - -- -- - -- - -- - - -- - -- - - -- -- ----- - r-- -- -- ------- -- - -

Circuit with ideal biasing 20.3 20.4 20.5 

Circuit with ' 6-pack' biasing 25.7 28 31.6 

Ta ble 5.1 Power dissipation with ideal and '6-pack ' biasing 
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5.3 Small-signal voltage-gain 

An analysis of the small-signal low-frequency voltage-gain, G, of the 

' Diamond' circuit has not, as far as the author is aware, been presented in the 

literature. The approach presented here is based on a general property of linear 

voltage amplifier circuits. 

A general schematic of such an amplifier is shown in Figure 5.7. 

G 

Fig. 5.7 A linear voltage amplifier 

where, 

G = open circuit voltage-gain, 

ro = incremental output resistance, and 

io =incremental output current 

By inspection, 

(5.20) 

If the output is incrementally short-circuited, Vo = 0 and io = is 

Hence, 

(5 .2 1) 
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Thus, 

(5.22) 

For example, with the conventional emitter-follower, the short-circuit output 

current and the output resistance can be found as follows. (In this analysis base 

extrinsic resistance rx is omitted) 

+ Vee 

Vi i rlt gm Vi 
--+ rr= 

Vi f :> 
r" ! 

lv' --:-+ 
R lsc 

R 

AC common 

- V EE 

(a) (b) 

Fig. 5.8 (a) A conventional EF, and 

(b) the mall signal circuit with incrementally short-circuited output 

By inspection of Figure 5.8(b), 

(5.23) 

To find the output resistance f O a small AC signal is applied in the output of 

the circuit, with the input potential fixed, as shown below. 
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R 

I\Ccommon 

Fig. 5.9 Circuit for finding the output resistance of the EF 

By inspection of Figure 5.9, 

. u U 
I = - + - +g u 

R 
m 

r" 
(5.24) 

Thus, the output impedance is, 

(5.25) 

Consequently, the voltage-gain of the EF can be calculated as follows, 

(gmf" + 1) (p + 1) 

r.[gm{: +~)l [P+l+;] 
(5.26) 

Thus, the voltage-gain is, 

(5.27) 

where, r is O.7mA and R represents the sink output resistance in parallel with the 

collector-emitter resistance of the transistor, and the binomial expression has been 

used since r" «(p + l)R in the normal case. 
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hown in Figure 5.10, 

. V 
the voltage-gams ~ 

Vs 

VC2 of transistors QI and Q2, respectively, are calcuJated 
Vs 

individually and used to derive isc . 

Vee 

Ix 

Vel 
Q3 

rxl Iro I IIrrr3 
Vs Vo 

Q4 

(b) 

-Vee 

(a) 

Fig. S.IO (a)The ' Diamond ' circuit, and 

(b) the load seen ITom the emitter of QI with the emitter of Q3 incrementally earthed 

The parameter data of Chapter 3 gives, 

V II I) = 22.8 ,pp = 50.8 , V A = 89.61 , andP = 50.6 
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For transistor QI, the gain with the emitter OfQ3 at a.c. earth potential is. 

(5.28) 

where, 

in which: rx = output resistance of current source; rOi = collector-emitter resistance 

ofQI; rl!3 = input resistance OfQ3. 

The output impedance of the current biasing circuit used has been calculated in 

Chapter 3, at some 3.5Mn. Thus, 

R = 3.5M// 22.8// 50.6 25.8 = I.77Kn 
0.7 0.7 

Consequently, 

50.8~5.8 
G ~1- 0.7 =0.979 

01 51.8.1.77K 

Following the same procedure, the voltage-gain of transistor Q2 is given by, 

50.6 25.8 

G ~1- 0.7 =0.98 
02 51.6.1.84K 

where. 

R=r Ilr I/r =r I/VAN/IA VT =3.5MI189.611150.825.8=1.84Kn 
y 02 l!4 x I PP I 0.7 0.7 
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Considering the upper part of the 'Diamond' circuit, the output current is calculated as 

follows, 

(5.29) 

Similarly, for the lower part of the circuit, 

Combining these two parallel contributions, 

(5.30) 

The calculation of the output resistance is carried out separately, first for the 

upper part, then for the lower part. By inspection in Figure 5.10, for the upper half of 

the circuit, 

(5.31) 

For the lower half of the circuit, 

The total resistance is given by rol in parallel with r02. Thus, 

(5.32) 
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resistance, the 

voltage-gain of the circuit is then calculated, 

G = isc ro f'::j 2g m ·O.98u s . _ 1_ f'::j 0.98 
U j U s 2g m 

The frequency response for small signal voltage-gain is illustrated in F igure 5.11. 

0 : I I i I I I 
I I ! i i ! i 

I no load , 

/; --i- ---t-- -,- -. .,-, 
I I ; 

I , 
~ I ! -0 1 

-10 

I I , 
I 1 if I I 

~ ~ - ! 1---I- I i , I I I 

\ : ! : I 

i i j 
-1 07 .3{4m) 

! -::. / \\ (l .jOOOOM 1851 . 554M! - 3.01 9) IGI(dB) 

I I 

I 
i ! ! I / \\ I I I I ; I : i 

i I I ] ! 
! 5G .- ~0168) I 

J 

I 

1 '1 1. 47 1 ! ; --, i 

I 
; ; i 1 , ! , i IOpF load 

-20 

- 30 

i I , 
I I I I I i I I I I I 

1 I 
I 

j I 
I ; , I -4 0 

1. OHz 10Hz 100Hz 1. OKHz 10KHz 100KHz 1. 0MHz 10MHz 100MHZ 1. OGHz 10GHz 
, DBIVI6) / VI3)) • DBIVI86) / VI3)) , DBIVI96) / VI3) 

Frequency 

Fig. 5. t I Frequency response for the magnitude of the small signal gain G 

of the 'Diamond ' circuit with ' 6-pack' bias ing, 10 = O.7mA and different loads 
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5.4 Incremental input impedance 

A recently presented expression [5-5] for the incremental input resistance of 

the 'Diamond' circuit ignored the finite Early-voltages of the transistors used and, to 

that extent, must be regarded as inaccurate. A more accurate expression is derived 

here and shown to be validated by simulation results. It was shown in Section 5.2 that 

for IL «1o • changes in lC3,lc4 are equal in magnitude at lL 12 but opposite in 

sign. This means that the circuit of Figure 5.1 can be split into two parts, an upper 

half shown by the full line in Figure 5.12 and a lower half shown by the broken line 

section, each feeding a load that is now 2R L . 

Looking into the base ofQ3, the input resistance Rj3 is given by, 

(5.33) 

The effective emitter load ofQI is REI where, 

(5.34) 
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Vee 

I 

Q3 

J 

-Vee 

Fig.5.12 Partition of Figure 5.1 for the calculation of R, 

Hence, the input resistance, R UH ' of the upper half circuit is given by, 

(5.35) 

An equivalent circuit for R UII shown in Figure 5.13. 

Fig.S.13 The graphical interpretation of R UH 
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Fig.S.14 The graphical interpretation of R LH 

Similarly, an equivalent circuit for R Lli , the input resistance of the lower part of the 

circuit is shown in Figure 5.14. Combining the upper and lower parts, Figure 5.15 is 

obtained, showing R j for the complete circuit. 

, / , / 
, / , / 

/ , 
_--+~---!.~>--__ ~"":""":'~Il........:....:..c..:..4-__ --+.LJL---!'Cl!l!...----<~_'.:..-~_n_+_f )---.Jron (l3p + I X~n + I )ron 

Fig.S.1S Showing The origin of R; excluding rflpofQI and rj.ln ofQ2 

The two elements on the right of Figure 5.15 are shown eros ed becau e their 

magnitudes mean that they can be ignored compared with the other elements. 

Incorporating, now, the rj.lpofQI and rl-l" OfQ2 the final equivalent circuit is 

obtained, as shown in Figure 5.16. 

---+ 
R· I 

_--4-_r~lfl_---<L-r_j.lp_----J_(f3_n_+_l )_R_n --4._(~_n _+ _1 )r_on--4.-{J3--.:p_+_ I_)R-,:,p---.4_{J3:...,:p:.-.+_'.:....-} o..!-p ----! (l3p + I Xf3 n + I)R L 

Fig.5.16 A modification of Figure 5.15 that includes rpp and r~,n 
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Substitution of parameter data from Chapter 3, for the case of ideal biasing 

(i .e., Rp = R n = 00 ) , R L = 00 and 10 = O.7mA , gives R j = 1.063MQ compared 

with a simulated value of 1.12MO, a difference of some 6%. For ' 6-pack ' biasing 

R j falls to 1.08Mn because of the finite values of Rp ,R n . The agreement between 

the simulated and calculated values of R j (as a function of R L at 27°C) shown for 

comparison in Figure 5.17, justifies the applicability of the equivalent circuit of 

Figure 5.16. 

Rj=1.025MO Ri=1.070MO Ri(KQ) 
1200 

1000 Measured lRJ · '\~~=t=P=t 
800 RL (KO) R j (KO) R j (KO) 

calculated measured 
0.1 214 253 

600 T-------+-~~~~~~~~~~_H~--- ~--0~.2~-+~3~5~6--+_~39~9__1 
0.5 592 632 
1 760 780 

400 2 886 900 
4 966 1000 
5 984 1025 

200 -r--+--+ 10 1021 1070 
50 1054 1110 
100 1058 1115 

o +-----~~--~~----------~~_r------~~~~ 
0.1 1 

RL(Kn) 
10 100 

Fig. 5.17 Showing R, as a function of R L for ideal biasing and 10 = O.7rnA 

It is apparent that R j IS not significantly affected by the magnitude of R L for 

R L > 10Kn. 
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To find the incremental input impedance Zj , rather than input resi tance R j , 

it is necessary to measure the effective input capacitance. From the work of Chapter 4 

it follows that, 

Substituting data from Chapter 3, C jn ~ 72fF . 

14 0 

12 0 

100 

(dB) 

80 

60 

40 

I I I 
I Temp\OO 0C 
"--~~ 

Temp 27"-C ! 
J Temp -~O °C 

110 . 000 

I 
J 

I 
_l. - -' - --

I 

! 
I I - r 
I 

J ; 
I 

I I 

I 

~'26 ) I 110. 

=' 

.1.: .~ 
.119.913) 

I --- -

I I 

I 

I I I 

! , I 
I I 

(5.36) 

I 

I 119.180) i-17 
~ --I 

=-'\ V IO .6391 I 

,-

I\. 
I ~ 7~b'b 

I) 

----t-

1 \. 

\ -L I 

T -
\. 

I 
j ~ J I ! 

I. OHz 10Hz 100Hz 1. OKHz 10KHz 100KHz 1. OMHz 10KHz 100MHz 1.0GHz 10GHz 
• • , OBIIV(3) IIIVaIOO))) 

Frequency 

Fig. 5.18 IZ.l vs f for ideal biasing, 10 = O. 7mA , and three different temperatures 

Figure 5.18 shows a 20dB/decade roll -off of Iz;j with frequency . 

From this, 

where f B is the -3dB frequency. 

1 
C· = - -

In 2nfBRj 
(5.37) 

Substituting data for R j , fu obtained from the graph, C jn ~ 78.9pF , within 10% of 

the calculated value. 
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The variation of IZj I with T at low frequencie is due, principally, to the 

temperature dependence of Pn 'Pp . Temperature has little effect above about 3MHz 

because in this region IZj I is dominated by C jn which is not significantly 

tem perature-dependent. 

Some spot figures for the frequency and temperature dependence of IZj I are 

shown in Table 5.2. 

Conditions IZin l (fi) 

Operating 
-20 27 100 -20 27 100 

temperature (0C) 
---- -- -- -- -- ------------ - ---- -- .- --- -- --- - ---- -- ---- ----- - - -._--- - ----. 

f = 312.5KHz O.98M 1.12M l.77M 1.05M 1.10M 1.49M 

f = 31.25MHz 67.3K 66.6K 67.1K 65 .6K 65.4K 66.4K 

f = 250MHz 8.7K 8.6K 8.5K 8.2K 8.1K 8.2K 

ClUTent source used Ideal current source/sink ' 6-pack' current source/sink 

Tab leS.2 /Zjn / of the ' Diamond ' circuit with [ 0 = O.7mA and R L = 00 asa function offandT 
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5.5 Incremental output impedance 

Taking into consideration that, in the small-signal analysis, the upper part of 

the circuit is effectively in parallel with the lower part, from a signa l standpo int, the 

incremental output resistance can be calculated using the upper half circuit. 

Furthermore, since (from Chapter 3) ~n ~ ~p it can be written ~n = ~p = ~ , where ~ 

is the arithmetic average of ~p and ~n in an approximate treatment. Tn Figure 5. 19 

r!i and ro of QI and Q3 are ignored, as are base and emitter bu lk resistances of QI. 

These resistances are, however, included for Q3 because of the larger current that they 

pass. 

QI --------------------, 
~ . -,-_1 _::-

2 (j3+IY 

BI n 1 IL a. 
I 2 ([3 + I) 

..... .J 

~ 
.. .. .. .. .. .. .. .. 

.... ; ..... IL I 

: 2' (r3 + I) 

EI 1 1 rx 11 L _ ________ _ _ .J 

rn [ L 

~ 
r IO I E2 I 

a.c. earth 

I I L ___________________ I vo 

Fig. 5.1 9 Approximate small-signal circuit for calcu lating the output resistance, ro 

(5.38) 
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Hence, sUbstituting a for ~ /(~ + 1) and ~ V T II ° for r E ' 

(5.39) 

ubstituting for J3 = 50.7 (Chapter 3), and rx = 260n, rE = 5.2n fTom SPI E data, 

In Table 5.3 , displaying some spot values of /Zo/, ro the low frequency value of /Zo / 

is shown as 23.6!1, Jess than 2% lower than the calculated value at T=27° . 

Conditions /Zo / (n) 

Operating temperature 
-20 27 100 -20 27 ]00 (0C) 

- - - ----- - --- - - ------- - --- --- - ------- - -- -- -- --- - --- -- - - - - --- - -- -- - - --------

f = 312.5KHz 23.1 23.6 27.7 25.7 24 22.7 

f = 31.25MHz 23.1 23.6 27.7 25.7 24 22.7 

f = 250MHz 21.9 24.5 28.7 23.5 25 26.7 

Current source used Ideal current source/sink ' 6-pack ' current source/sink 

Table 5.3 IZol of the 'Diamond ' circuit as a function of f and T for ideal and practical biasing 

ro changes only slightly with T via its dependence on VT , ~ and, in the ca e of 

' 6-paek' current biasing, on 10 which increases slightly with T. The curv 111 

Figure 5.20, showing Zo as a function of f and T, for ' 6-pack ' biasing, have the 

characteristic shape dealt with in detail in Chapter 4. 
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10KHz 100KHz 1. OMHz IOMHz 

Frequency 

Fig.S.20 Zo as a function of frequency for '6-pack' biasing 

(a) IZo I, and (b) L Zo 
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5.6 Total harmonic distortion (THD) 

Tables 5.4, 5.5, 5.6 show, respectively, THD under specified conditions at 

312.5KHz, 31.2SMHz and 2S0MHz. 

Conditions THD ( dB ) 

Operating temperature 
-20 27 100 C°C) 

.. - .. _-- 00_00_00- .. ----- .. _- ----- -- -- _00_00_'1""00_00_00 

Current source used 

Z L =SKO 

Z L = SKO ff 5pF 

Conditions 

Operating temperature 
COC) 

Current source used 

ZL = SKO 

Z L = SKO ff 5pF 

Conditions 

Operating temperature 
C°C) 

Current source used 

ZL = 5KO 

Z L = 5KO If 5pF 

Ideal '6-pack' Ideal ' 6-pack' 

-88.1 -86.4 -86 -85.8 

-86.9 -88.4 -86.2 -86.7 

Table 5.4 THO at 3 12.5 KH z 

THD ( dB ) 

-20 27 
------ .. - 00 _ 00_00- .. --- --- -- ---------
Ideal ' 6-pack ' Ideal ' 6-pack ' 

-80.8 -71.9 -77.8 -71.9 

-70.1 -61.6 -70.8 -63 

Table 5.5 THO at 31.25MHz 

THD (dB) 

-20 27 
-- _ ... _-- " _'._ 00 - .. - -.. - ... - .- ---_ .. _-
Ideal '6-pack' Ideal '6-pack' 

-47.3 -36.6 -53.7 -40 

-46.9 -40.2 -47.2 -45 .5 

Table 5.6 THO at 250MH z 
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Ideal ' 6-pack ' 

-85.4 -85 .1 

-89.1 -85.1 

100 
__ ' _00_' 1""00_00_00 

Ideal ' 6-pack ' 

-74.8 -72 

-80.5 -57.9 

100 
_ 00_00_',00_00_--

Jdeal ' 6-pack ' 

-50 -41.8 

-46.3 -37.5 
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The figures for 312.5KHz and 31.25MHz are better than tho e for the single 

emitter follower, presented in Chapter 4, because the load current taken by each 

output transistor is only one half that of a single emitter follower operating at same 

current. The poorer THO for '6-pack' biasing compared with ideal biasing is 

attributed to the reduced effective emitter load resistances for the input tran istors. 

The finite output capacitance of the non-ideal current bias circuit becomes 

increasingly important with increasing frequency because it introduces some 

frequency distortion. This presumably accounts for the poorer performance in the 

case of non-ideal biasing at 250MHz. 

5.7 Intermodulation distortion (IMD) 

IMD as a function of operating frequency and temperature is shown In 

Table 5.7. Similar to the THD comments apply. 

Conditions IMD (dB) 

Operating temperature 
-20 27 100 (0C) 

_._-. _ .- - -------- -- -- - -- - - ----- -_ ... 1-- ------- ----- ----
Current source used Ideal ' 6-pack' Ideal '6-pack Ideal ' 6-pack 

f = 312.5KHz -1 00.4 -94 -108.1 -99 -102.2 -97.9 

f = 31.25MHz -94.6 -83 .2 -94 -88.6 -92.8 -86.7 

f = 250MHz -65.8 -48.5 -64.4 -50.3 -63 .5 -52.2 

Table 5.7 IMD as a function of f , T and biasing conditions 
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5.8 Noise performance 

The noise performance of the ' Diamond ' for ideal and ' 6-pack ' current biasing 

is shown in Figures 5.21 and 5.22 respectively, for the sake of completeness. 
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Fig. 5.21 Input noise with ideal bias ing for three di fferent temperatures 
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5.9 Pulse response 

The pulse response of the circuit (see Figures 5.23, 5.24) is understandable in 

the light of the discussion on the pulse response of the conventional EF in Chapter 4. 
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5.10 Progressive modifications up to the final circuit 

The deficiencies of the 'Diamond' circuit are overcome successively in the 

circuit modifications shown in Figures 5.25 to Figure 5.29 inclusive. Modification I 

(Figure 5.25) shows the addition of diode-strapped voltage-level-shifting transistors 

Q 2 ' Q4' Q 6 and Q7. These are incorporated with the aim of reducing the overall 

offset voltage to a level closer to zero than as obtained in the 'Diamond' circuit. The 

offset voltage reduction comes about because the base-emitter voltage drop of Q6 

matches that of Q, and that of Q 2 matches that of Q5. Similar considerations apply 

to Q 7 and Q 3 and to Q 4 and Q8. Note though that the penalty for a reduced offset 

voltage is an increased output resistance. 

Modification 2 (Figure 5.26) now includes the added emitter-follower 

transistors Q 9 and QIO operating with the same base potential as Q 2 and Q4' 

respectively. These bootstrap the collector voltages of input transistors Q, and Q3 

and ensure that the collector-base voltage of these devices are effectively zero, over 

the linear input voltage range and over the ambient temperature range and the power 

dissipation in these transistors is minimised. However the main reason for doing this 

is to increase the incremental input impedance. 

Modification 3 (Figure 5.27) shows the addition of two more emitter-follower 

transistors Q II ' Q'2 which reduce the loading effect of Q2' Q9 and Q 5 in the 

current source and QIO' Q 4 and Q8 in the current sink. 
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Modification 4 (Figure 5.28) includes two further devices, QI3 and QI4 which 

bootstrap the collectors of Q5 and Qs respectively with the aim of achieving even 

better linearity. However, the penalty is a higher loading on the current source and 

sink. 

Modification 5 (Figure 5.29) shows the final circuit, what is termed here the 

'Voltage Super-follower'. The devices paralleling in the output stage halve the output 

resistance and reduce the signal distortion but in the expense of an increase in 

quiescent power dissipation of some 30%. 
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Fig. 5.25 Modification I of Figure 5.1 Fig. 5.26 Modification 2 of Figurc 5.1 
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Fig. S.27 Modification 3 of Figure 5.1 -Vee 

Fig. 5.28 Modification 4 of Figure 5.1 
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Fig. 5.29 Modification 5 of Figure 5.1: The final circuit, the ' Voltage Super-follower' 
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5.11 The 'Super-follower' / DC conditions 

Figure 5.30 is a DC transfer characteristic of the Super-follower showing an 

apparent DC gain of unity. The enlarged plot of Figure 5.31 confirms the expected 

very small dependence of the offset voltage on temperature. This arise because, 

although V BE is dependant on T, V BE difference is only weakly dependent on T. 
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Fig.5_31 Expanded view Figure 5.30 in the vicinity of the origin 
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Figure 5.32 shows the DC input characteristic of the Super-follower when the 

Vs is varied over the range -5V to +5V. Figure 5.33 shows an expanded view of this 

for the range -3V to + 3V. The input current J B is effectively constant (for a given 

temperature) for lV>Vs>-lV, because this is the range for which the current sink and 

source operate in the linear range (i.e., -(VEE -5VBE» Vs > (Vee -5VBE)) and QI ' 

Q3 operate with constant (zero) collector-base voltages. 

Theoretically, 

(5.40) 

Consequently, IB will be zero if both npn and pnp devices have identical current gain. 

In practice, the difference in the transistors' current gain results the input current 

offset shown in Figure 5.32. 
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Fig. 5.32 Input current of the circuit for Vee = VEE = 5V; 10 = O.7mA; R L = co 
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Fig. 5.33 Input current of the circuit, in vicinity of the origin 
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UNIVERSITY 

The quiescent power dissipation of the circuit is increased, compared to the 

'Diamond circuit, due to the increased number of vertical conduction paths between 

the two rail supplies. Consequently, substituting to (5.19) for V c = VEE = 5V and 

PQ =35mW 

This shows good agreement with the simulated values shown in Table 5.8. 

Quiescent power dissipation PQ (mW) 

Operating temperature (0C) -20 27 100 
-_ .... _ ... _ ... _ .. -_ .... _ .. f--- - '- - ------'--- - ----------------

31.7 34.6 39.2 

Table 5.8 Quiescent power dissipation 
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5.12 Small-signal voltage-gain of the 'Super-follower' 

The smaJl signal voltage-gain of the 'Super-follower' is shown in Figure 5.34 

over a wide frequency range. This is to be expected from configuration comprising a 

parallel pair of series connected emitter-followers, for reasons described in Chapter 4. 

V 
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Fig. 5.34 Frequency response for the small signal voltage-gain G with different load 
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5.13 Incremental input impedance of the 'Super-follower' 

The increased incremental input impedance of the ' Super-follower' compared 

with the ' Diamond' circuit comes about via bootstrapping of the input stage. The 

input capacitance, derived from the -3dB frequency (1 .05MHz) in Figure 5.35, is 

C in = 1 I.3fF compared with 78fF for the ' Diamond' circuit. Spot values for Iz;j as a 

function off and T are shown in Table 5.9. 
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Fig. 5.35 Bode amplitude plot for three operating temperatures 

Conditions IZ; I (12) 

Operating 
-20 27 100 temperature CeC) --- ... _--- ... __ .. _- .. - -_ ... _ ... _ ... - .... - .. _ ... .... _. __ ... _-. _._- -

f = 312.5KHz 
8.6M 12.8M 21.1M 

f = 3I.25MHz 
344K 419K 530K 

f = 250MHz 
12.7K 12.6K 12.7K 

Table 5.9 IZj I for 1= O.7mA and R L == ex) as a function of f and T 
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5.14 Incremental output impedance oftbe 'Super-follower' 

Figure 5.36 shows Zo and L Zo as a function of frequency. This is resistive 

over a wide frequency range but exhibits inductive behaviour, the common feature of 

emitter follower output stages, at high frequencies. Spot values for Zo as a function 

of f and T are shown in Table 5.10. Zo is resistive at low frequencies and 

theoretically its magnitude is, 

(5.4 1) 

where, R EX, rx represent, respectively, transistor bulk emitter and base resistance. 

Substituting data from Chapter 3 and PSI E transistor parameters, 

Which is some 9% lower than the simulated value . 
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Fig. 5.36 Magnltuoe (upper curve) and phase (lower curve) for Zo as a function ofT 

Condition JZoJ (n) 

Operating 
-20 27 100 

temperature (0C) ---- --- .-- .. ------- -- ----------------- -----------------
f = 312.5KHz 24.8 26 27.9 

f = 31.25MHz 24.8 26 27.9 

f = 250MHz 24.8 25 .6 26.9 

Table 5.]0 IZol of the ' uper-follower ' as a function ofrand T 
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5.15 Total harmonic distortion (THD) of the 'Super-follower' 

Tables 5.11 , 5.12 and 5.13 show, respectively, THD under specified 

cond itions at 312.5KHz, 3 1.25MHz and 250MHz. This is understandable in the light 

of the discussion of emitter fo llower THD in Chapter 4 and previous section and 

need no further concern. 

Conditions 

Operating temperature 
(eC) 

Z L =5KQ 

ZL = 5KQ // 5pF 

Conditions 

Operating temperature 
(eC) 

ZL= 5KQ 

Z L = 5KQ // 5pF 

Conditions 

Operating temperature 
(eC) 

Z L =5KQ 

Z L = 5KQ // 5pF 

THD ( dB ) 

-20 27 
. _ ... _----- - --- -- -- - -- - -- - -- - -- _ .. -_ .. . 

-89.9 -93 .9 

-89.6 -89.2 

Ta ble 5_ 11 THD at 3 12.5KJ-1z 

THD (dB ) 

-20 27 
-- -.. ---- --_ .... _-- -- - -- _ .... _ .. -- _ .. -- -- --

-76.8 -75 .6 

-82 -84.4 

Ta ble 5.12 THO at 3 1.25MHz 

THO (dB ) 

-20 27 
-_ ... _-.. _--- -.. _---- _ . .. - .. .. - ----- - --- --

-60.4 -57.4 

-47 -47.7 

Table 5. 13 THO at 250M Hz 
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5.16 Intermodulation distortion (IMD) of the 'Super-follower' 

IMD as a function of operating frequency and temperature IS shown ill 

Table 5.14. 

Conditions IMD (dB) 

Operating 
-20 27 100 temperature (0C) .. _- ._ .. _ . .. _ ... _ .. - _ ... _ .. _ .... _ .. _ .. - .. f- •• _ •• - •. - •• _ • • _ •• -

f= 312.5KHz -93.4 -93.9 -89.9 

f= 31.25MHz -80 -75.6 -76.8 

f= 250MHz -60.4 -57.4 -57 

Table 5.14 Simulated IMD results of the circuit as a function of f and T 
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5.17 Noise performance of the 'Super-follower' 

The noise perfonnance of the proposed circuit is shown in Figures 5.37. That 

is increased by some 60% compared with the ' Diamond ' circuit due to the added 

devices. 
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Fig.5.37 Input noise for three different temperatures 
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5.18 Pulse response of the 'Super-follower' 

The waveforms when a positive going input pulse of amplitude O.5V and 

specified nse and fall time that are shown In Figures 5.38 and 5.39, are 

understandable in the light of the discussion of emitter follower pulse response in 

Chapter 4 and need no further concern. 
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Fig. 5.38 Waveforms for the circuit of Figure 5.29 for I nS rise and fall times of input pulse 

(a) U B; (b) Uo . (c) ic ; (d) i s and e) Capacitor current 
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Fig. 5.39 Waveforms for the circuit of Figure 5.29 for 0.1 n rise and fall times of input pulse 

(a) u B ; (b) U o : (c) ic ; (d) iB and e) Capacitor current 
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As an extra test the input amplitude was increased to 1 V as shown in Figure 

5.40. The resultant output took some 1.5nS to settle. 
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D& 111.1 In, 9~2. 405 ) , 
i 

~ ~ 1 
~- -t-- -t----- ---+-- ---t--
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51Ul1/Spl load 

(10. 604n , 991 . 2a) V I 
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(IS 752ni 111. E-18; 

1/ 1115
. rLiI1.0 
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I 1.219n, 11 

i ;y-.OE-18) I 
I I 
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1-4 I I I ' " \ v I 1,_ I I~-L 5Kfl loa _ 
~ f---+ - I ----r-I 5K, "

p
r loat 

19.670n -64.024u) 

OV 

- O,4V 
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Fig. 5.40 Pulse response for an input signal with J ns ri e and fall times of input pulse 
and increased amplitude (I V) 
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5.19 Summary of Chapter 5 

This chapter has considered the analysis and progressive modification of the 

so-called 'Diamond' circuit up to the proposed voltage-follower, named 'Super-

follower'. The new design improved many of the performance parameters of the 

original class AB high frequency VF, introduced by National Semiconductors, at the 

expense of increased power supply levels. The simulation results showed superior 

performance over several recently published VFs [5-5 to 5-9] as far as bandwidth, 

distortion, input impedance and offset voltage are concerned. Its performance, in 

some aspects, was comparable, at the worse case, to similar designs currently 

available in the market [5-10 to 5-13] as far as the distortion and the pulse response 

are concerned. The new VF has been reported by the author in the technical literature 

(5-14], (5-15). 
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6.1 Introduction 

This chapter considers the evolution and operating characteristics of two 

related types of voltage-follower, VFBIl and VFB/2, that depend on the use of two 

levels of current bias, one being the basic bias current and the other double that. 

Emitter followers are extensively used and the matching in the base-emitter voltage of 

two, or more, BJTs of the same polarity and operated at the same collector current 

level is exploited. The analysis is carried out in a similar, to the previous chapters, 

way investigating initially on the basic circuit and introducing the modifications that 

improve its performance. The precise current-mirror '6-pack', analysed in Chapter 3, 

is used as a practical biasing scheme. 
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6.2 Half-circuit of the VFB/I 

The upper half-circuit of Figure 6.1 serves to show the starting point in the 

design ofVFB/l. It shows an enhanced EF. If base currents are ignored the feedback 

action ensures that I] = 12 = I. The matched V BE drops of Q], Q 2 ' Q 3' Q 4 and the 

action of the cascode transistor Q2 see to it that over the linear input voltage range, 

Vo depends on the base-emitter voltage of Q5 : if the load current, I L , is equal to I 

then Vo = Vs. In practice I] and 12 are not precisely equal to I because of base 

currents. Thus, if the load current in R L is I L , 

I I 1=1 + __ 2_+_L_ 
] (l+p) (l+p) 

(6.1) 

(6.2) 

These yield, 

I] = -I L (I+P)+I(I+p2) 
1+p+p2 

(6.3) 

and, 

I, ~f(I+p)+IL 1 
1 +P+ p2 

(6.4) 
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and 12 , as well as the difference between the base-emitter 

voltages of Qs and Q3' leads to a ftnite off: et voltage. 

Bootstrapping [6-1) the collector of Q, increases the input impedance above 

that obtained with the conventional EF. However, the circuit is not, as it stands, 

suitable for use with fast negative-going input transitions for the reasons discussed in 

Chapter 4, for the conventional EF. This is generally true even if the lower end of 

R L is connected to - Vee. This difficulty is overcome in the full circuit o[the VFBII 

shown in Figure 6.2. 

21 

-Vee 

Fig. 6.1 Upper half-circuit of proposed VFBII 
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6.3 The VFB/I I DC Conditions 

Figure 6.2 shows the full circuit of the proposed VFBIl. The shaded region 

shows the upper half circuit of Figure 6.1 and a complementary vers ion of this. On 

this way the current can respond equally well to input signal of both polarities. DC 

conditions are shown in Figures 6.3 and 6.4. 

-------
" ", U pper half-circuit of" ... \ 

I Figure 6. I is within the I 

\ ... broken line contour "," .. .. -----r--, , , , , 
I __________ ! ___ _ 

Vee 

I 
Q8 I 

I 

l' Q3 r I r---- ____ J 

R1 

I 
I 

I L_ +-- ..... 
L _ _ ___ _ _ _ 

Q71 ..r--'--+---+---Q=n~Cj-----=+----t 
Q75 

Q70 ..r- - -+----+-- - Q=7:-3 -=::::j--4 ---r 
Q77 

Q12 

~--------~----~----~--------------~-----~ 
~\n' 

Fig. 6.2 Full circuit ofVFB/ 1 
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is shown in Figure 6.3 and 

has a slope of unity as expected. Figure 6.4 shows that the linear input range IS 

approximatel y ± 1 V. This corresponds to : (Vee - 3V BE) > v. > -(VEE - 3V BE) if 

substitute Vee = VEE = 3.3V , VBE = O.7SV . 

2.0V+------+--_ __ ~-__l_--+----~----__:~~~~~~ 
I 

--+---- - -~~-

1.0Vt-----'---+----:----1f-----+--~-....",."---~--t_----_j 

(0 . 000 . -~ . )640m) 

VO 

(V) ov 

-+ 

-I. ovt--:-f-:-:-:-:---:-:-Jf------7IfL-----+- - i-' --+---;--+ ---:----1 

~ -+- - --
-2. ov+-:+----.f--....,...~-

- 3 . 0V -2.0v -1.0V OV I. ov 2.0V 3.0V 
D • • V1J2) 

Vinl 

Fig. 6.3 Simulated transfer characteristic for circuit of Figure 6.2: Vee = 3.3V; 10 = ImA; RL = <Xl 

ZOUA,r--~---r--~-_,r_-~--,---~-~~-r__r-._-~-__, 

10UAt----;---+--,----f---i--- Temp -20·C 

1. 

(A) 

j 

--1-

-IOuAt----:----+--~f_-fI__I-----+-----_+----__jI_-__:-__1 ----;---r-----f--J-
-20UAt---...:.--+-....L......./..-J-f __ -.!.... __ +-_-.! __ + ____ --j ____ --j 

-3 . OV -2.0V -l.Ov OV 1.0V 2.0V 3.0V 
• • , I (Va30) 

Vin] 

F ig. 6.4 Input current orthe circuit of Figure 6.2 for Vee = 3.3V; 10 = ImA; RL = <Xl 
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The quiescent power dissipation of the circuit is, 

(6.5) 

where n is the number of vertical conduction paths between the two rail supplies. 

Substituting on (6.5) for 27°C, 

PQ = (3.3V +3.3V)·1mA·8 = 52.8mW 

Table 6.1 shows the simulated quiescent power dissipation of Figure 6.2 for three 

different operating temperatures. This shows good agreement with the ca lculated 

value at T=27°C. Increasing/decreasing the operating temperature affects the current 

gain of the transistors, resulting different operating currents, consequently different 

power dissipation. 

Quiescent power dissipation PQ (mW) 

Operating temperature (0C) -20 27 100 
._ .. _--_ .... _._-_._- r----------------- r-----------------

47.8 53.6 62.8 

Table 6.1 Quiescent power dissipation of the circuit 
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The frequency response fo r the voltage-gain shows peaking even with no load . 

This is attributed to feedback in the half-circuits and the cascade of the emitter-

followers. 

0 

- - -- ---- __ 5pFlo~ 

~ no joad 
0 / 

IOpF load 

~ ~ - t- - --
0 

.--- i\~ 0 

-2 

- --.- - - - - ~' 0 

/G/(dB) 

r- - - --- -'- - ~ 0 - 3 

-- -- - -- -- - -- -
-40 

- t-

- so 

- t- -
- 00 

100KHz 300KHz 1.0MHz 3. 0MH7 10HHz lOMHz 100MHz lOOMHz 1. OGHz 3. DGHz 
• DB(V(832) I V(820» • DB(V 932) I V(920» D DB(V(32) I V(20» 

Frequency 

Fig. 6.S Frequency response for the small-signal voltage-gain IGI 
of VFBII, with d i fTerent loads 
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6.5 Incremental input impedance 

The incremental input impedance of the VFB/ I IS shown ill Figure 6.6. 

Theoretically, its magnjtude i gi en by. 

Substituting data from Chapter 3, sections 3.2.2 and 3.3.3, the theoretical input 

impedance is, 

Zj ~2.96Mn 

which is in good agreement with the simulated value at T=27°C as shown in Table 6.2 

whjch displays spot values for /Zj / as a function of f and T. 
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Fig. 6.6 Bode plot for /Zd and LZ j for Ie == I mA for several loads 
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The input capacitance, derived from the -3dB frequency (2 .069MHz), is now 

Cin ~ 35fF , due to the bootstrapping of the input transistors. 

Conditions IZi l (Q) 

Operating 
-20 27 100 -20 27 100 temperature (OC) 

------------ ------------ ----------- - .----------- -- -_. - --- - - ------------
f = 312.5KHz 2.06M 2.94M 4.62M 1.67M 2.45M 4.02M 

f = 31.25MHz 150K 181K 222K 150K 180K 220K 

f = 250MHz 6.6K 6.5K 6K 6.5K 6.4K 5.9K 

Output load R L=ao RL = 5KQ 

Table 6.2 Iz,l of the VFB/ I ; Vee == VEE == 3.3V ; R L == CXl; R L == 5Kn , as a function of fand T 

6-10 

Mr. Nikolaos Charalampidis hapter 6 



Novel approaches in voltage-follower de ign OXFORD 

BROOKES 
UNIVERSITY 

6.6 Incremental output impedance 

Figure 6.7 shows Zo and LZo as a function of frequency. Due to the emitter-

follower output stage, the behaviour of the output is resistive at low frequencies and 

inductive at high frequencie . Spot values for Zo as a function of f and T are shown 

in Table 6.3. 

32r------.--~-.--~--~~--~----_.------r_~--._----_,--~_. 

28t-~--~-----+------~----~--~_t--~--r__T--i_--~_,~~~ 

(dB) 14 +------+---:----+------=::'k---+--+------+------t---'-----'--------t----'Hf-1 

(d) ,--T 
4Sdt--;.--+--.;--+--+--~_+--~--~_t--...I.---r__t_---+--.l---+---+f__j 

SEL. > 
Od+-----~--~-4------+_----~--~_+--~--~~~~~=-~~~~ 
I.OH7 , nOH" I. OKHz 10KHz 100KHz !. OMHz IOMHz IOOHHz 1.0GHz 

Frequency 

Fig. 6.7 Magnitude (upper curve) and phase (lower curve) for Zo 

Condition IZol (n ) 

Operating 
-20 27 100 temperature C°C) .. _ -- _ .. _- ----- -- -- --- .. --- - _ .. - -- - -- _ .. .. ------------ . _- --

f= 312.5KHz 10.7 10.8 10.9 

[= 31.25MHz 10.7 10.8 10.9 

f= 250MHz 12 12.2 12.4 

Table 6.3 IZol of Ule YFBI I as a function of f and T 
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6.7 Total harmonic distortion and intermodulation distortion 

Tables 6.4 to 6.6 show, respectively, THD under specified conditions at 

312.SKHz, 31.2SMHz and 2S0MHz. The perfonnance is superior to the 'Super-

follower' circuit, considered in the previous chapter. It can be observed that the 

circuit perfonnance is poorer at higher frequencies mainly due to the finite output 

capacitance of the bias circuits which increase with the operating frequency. IMD 

perfonnance results for the VFBII , as a function of operating frequency and 

temperature, are shown in Table 6.7. 

Conditions THD ( dB ) 

Operating temperature 
-20 27 100 (oq 

---------.---- -.-- -- ------- - -------- ------------------
ZL =SKQ -92.1 -91.2 -90.2 

ZL = SKQ // SpF -91 -86.8 -84.2 

Ta ble 6.4 THD at 312.5KHz 

Conditions THD (dB) 

Operating temperature 
-20 27 100 COq 

----------------- - ------_ .. -- -------- ._-- -- --------- ---
Zt=SKQ -73 .3 -72.7 -76.9 

ZL = SKQ /f SpF -73.4 -7S.8 -73 .3 

Ta ble 6.5 THD at 31 .2SMHz 
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Condition THD (dB) 

Operating temperature 
-20 27 100 (0C) 

-_ .. _ .. _ ... _ .. _ . . _ - - -- ----- .. ------_ .. . ------------------
ZL=5KQ -66.6 -67 -67.6 

ZL = 5KQ II 5pF -69.3 -70 -69.6 

Table 6.6 THD at 250MHz 

Conditions IMD (dB) 

Operating 
-20 27 100 

temperature 1°C} 
------------------ .. _ .. ---- -_ .. _------_. 1-------------------

f= 312.5KHz -64.4 -64.4 -64.3 

f= 31.25MHz -67.8 -67.3 -67.7 

f= 250MHz -60.1 -61.3 -62.1 

Table 6.7 IMD re ults for the VFB/] , as a function of f and T. 
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The noise performance of the VFBIl is shown in Figure 6.8. It is worth noting 

that the input referred noise is considerably low, compared to the input signa l. 
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6.9 Pulse response 

Figures 6.9 and 6.1 0 show, respectively, the pulse response of the VFB/ l , for 

InS and O.lnS rise and fall times. The circuit performance is understandable in the 

light of the discussion on the pulse res pan e of the conventional EF in Chapter 4. The 

horizontal scale used to present the pulse response for 0.1 nS ri e and fall times 

(Figure 6.10) is half of that for Ins rise and fall times for the convenknce of the 

reader. 
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6.10 Basis of the VFB/2 

The starting point for the design of the VFB/2 is shown in Figure 6. 11 . This 

differs from the circuit in Figure 6.1 in that the collector of QI is not bootstrapped. 

Vee 

I 

Q2 

Vo 

Q3 
RL 

-Vee 

Fig. 6. 11 Starting point for VFBI2 
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6.11 The VFB/21 DC conditions 

The full circuit of the VFB/2, shown in Figure 6.12, utilizes the circuj t of Figure 6.] 

and its complementary counterpart. 
Vee 

Q11 }---~~--------~------------~-------f~----~ 

02 Q6 

01 
o-----+-----------~~----~ ~ 

R1 Vo 

Q5 RL 

+-___ ~ Q20 

021 

022 

.Vee 

Fig. 6.12 Full circuitofVFB12 
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Fig.6.13 imulated transfer characteristic for circuit of Figure 6. 12 

Vee = VEE = 5V; 10 = ImA ;RL = (X) 

The linear input voltage range, shown in Figure 6.13 , is set by the V BEl of Q I 

(or VEB2 of Q 2 ), and the minimum allowable voltage VK , say, across the current 

bias circuits, for them to operate outside saturation. 

Thus, 

(6.7) 

Figure 6.14 shows + 3V ~ V ~ - 3V , which is in fair agreement with the theoretical 

values for VB _ R: O.75V. The increase in IB with Vs is attributed as in previous 

circuits to the temperature-variation of Pn and pp. 
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F ig. 6. 14 Input current of the circuit of Figure 6.12 for Vee = VEE = 5V ; lo = ImA ; R L = 00 

The quiescent power dissipation of the VFB/2 is, 

(6.8) 

where n is the number of vertical conduction paths between the two raj] supplies. 

Biasing the circuit with ideal sources, at 27°e, PQ = (SV + 5V)· l mA . 5 = 50mW. 

Simulated values for PQ is shown in Table 6.8. Thjs shows fai r agreement with the 

calculated values at T=27 °e. 

Quiescent power dissipation PQ (mW) 

Operating temperature (0C) -20 27 100 
------------------ 1- --- ---- -- -- ---_. t-----.--.- -- --.--

46 55.4 70.4 

Table 6.8 Quiescent power dissipation ofthe VFB12 
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6.12 Small-signal voltage-gain 

The small signal voltage-gain of the VFB/2 is shown in Figure 6.15 over the 

frequency range. The cascade of the emitter-followers results in peaking, similar to 

the VFB/ I circuit. This peaking is a typical characteristic ofvo ltage-fo llower designs. 
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Fig. 6. 15 Frequency response for the small signa l gain G 

of the VFB/2 with different loads 
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6.13 Incremental input impedance 

The incremental input impedance of the VFB/2 is shown in Figure 6.16. This 

is poor compared with the VFB/I because of the nature of the path between input and 

output. The input capacitance, derived from the -3dB freq uency (2.838MHz), j 

C jn "" 85fF , over double of VFBIl because of the absence of bootstrapping of the 

input transistors. Spot values for /Zd as a function off and T are shown in Table 6.9. 
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Fig. 6.16 Bode plots for IZ;/ and LZj for I = lOlA and several loads 
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Conditions IZd (Q) 

Operating 
-20 27 100 -20 27 100 temperature (0C) 

------ --- --- ------------ _ ._-----_._. -----_._- - -- ._._._----- --------_._. 

f= 312.5KHz 533K 637K 797K 510K 593K 721K 

f = 31.25MHz 63.6K 63.7K 64.4K 63.2K 63K 63.7K 

f = 250MHz 8K 8K 8K 8K 7.9K 7.9K 

Output load R L =00 RL = 5KQ 

Table 6.9 Iz;j of the VFB/2 with R L = <Xl as a function of f and T 
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6.14 Incremental output impedance 

Figure 6.17 shows Zo and LZo as a function of frequency. This is resistive at 

low frequencies and inductive, at higher frequencies, because of the emitter-follower 

output stage. Spot values for IZo I as a function of f and T are shown in Table 6. I O. 
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Fig. 6. 17 Magnitude (upper curve) and phase (lower curve) for Zo 

Conditions IZol (n) 

Operating 
-20 27 100 temperature (DC) 

... - .... _----------- - ------------------- -- - --------------

f= 312.5KHz 2.1 2.4 2.5 

[ = 31.25MHz 2.3 2.5 2.6 

f= 250MHz 5.5 5.3 5. 1 

Ta ble 6. 10 /Zo/ of the YFB/2 as a function offand T 
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Tables 6.11 , 6.12 and 6.13 show, respectively, THD of the VFB/2 under 

specified conditions at 312.SKHz, 31.2SMHz and 250MHz. It is worth noting that the 

distortion is kept in low levels, even at rugher frequencies, due to the wide linear input 

voltage range. Table 6.14 shows IMD performance results as a function of operating 

frequency and temperature .. 

Conditions THD ( dB ) 

Operating temperature 
-20 27 100 (0C) 

------------------ --- - -- - ----------- ._----------------
Z L =SKn -89.4 -89.9 -88 

ZL = SKQ ff 5pF -78 .3 -79.9 -79.8 

Ta ble6. 11 THDat312.5KHz 

Condition THD(dB ) 

Operating temperature 
-20 27 100 (0C) 

-- -- - --_ .. -- _ .. __ .. _- -- .. - -----_ .. ------- --- --- -- ---- _._-- -
ZL == 5Kn -80.3 -86.8 -82 

ZL == SKQ ff SpF -67.4 -63 .9 -61.2 

Table 6. 12 THO at 3 1.25 Ml-lz 
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Condition THD ( dB) 

Operating temperature 
-20 27 100 (0C) 

------------ .. _-- - - - ----------- - ----- ------------------
Z L =5KQ -74.9 -70.8 -65.6 

ZL = 5KQ II 5pF -71.1 -62 -56.4 

Table 6_13 THD at 250M Hz 

Conditions IMD (dB) 

Operating 
-20 27 100 temperature (0C) 

--- - ---- - -- - ------ --- .--- - ----- _ .. - - -- -- - -------- - ------
f = 312.5KHz -88_2 -87.6 -88.7 

f = 31.25MHz -84.4 -84.4 -84.2 

f = 250MHz -59.2 -66 -56.8 

Ta ble 6.1 4 IMD results for the VFB/2 as a function offand T. 
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6.16 Noise performance 

The input referred noise of the VFB/2 is shown in Figure 6.18. This is 

reduced, compared with the VFB/I of Figure 6.2, mainly due to the reduced amount 

of devices used throughout the signal path. 
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Fig. 6.18 Input noise of the VFB12 
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6.17 Pulse response 

Figures 6.19 and 6.20 show the pulse response of the VFB/2, for 1 nS and 

0.1 nS rise and fall times, respectively. The performance can be understood by 

reference to the discussion of the pulse response of the conventional EF in Chapter 4. 

In addition, the ringing observed is contributed to the output stage of the circuit which 

comprises two low impedance points joint together. 
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6.18 Summary of Chapter 6 

This chapter has considered the design and performance of two new types of 

voltage-followers, the VFB/I and VFB/2. The two types are similar in that they both 

use complimentary half-circuits but differ in the configuration of the half-circuit and 

the way they are connected. This accounts for their difference in their input 

impedance, output impedance and pulse response. The half circuit design, in each 

case, requires the use of two levels of current bias, one twice the other. A low offset 

voltage is achieved by matching in the base-emitter voltage drops of transistors of the 

same polarity rather than matching in the voltage drops of a diode pair comprising one 

transistor of each polarity as in the 'Super follower' of the previous chapter. Both 

new designs have been reported by the author in the technical literature (6-2 to 6-5). 
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7.1 Introduction 

The previous chapters have dealt with VFs using local feedback. This chapter 

discuss the design and development of a different type of VF, one using global 

feedback and called here, for convenience, a VF Type C or VFIC. A popular form for 

a VF with global feedback is a voltage operational amplifier ('op-amp') with 100% 

negative feedback. Unfortunately, such a scheme is unable to meet the VF 

specifications of this thesis with currently available op-amps. However a stripped-

down version of an op-amp, using a long-tailed pair input stage followed by a 

'Diamond' circuit output stage suggests itself as a possibility. It is that configuration 

that is pursued further now. 

The chapter starts with an analysis of the core of the proposed circuit, 

presenting some of its performance parameters, followed by the proposed circuit and 

the modifications adopted to improve performance. A thorough investigation of the 

stability of the proposed circuit is carried out and the final circuit is evaluated 

similarly to the circuits of the previous categories. The chapter finishes with a 

comparison of the VF designs presented in this work and comments about their 

performance and trade-offs. 
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7.2 Starting point of the proposed design / DC and AC conditions 

The starting point of the proposed design is shown in Figure 7.1. A single 

stage, long-tailed pair amplifier is followed by an emitter-follower which provides the 

required feedback /7-1], /7-2J. Relevant voltage and currents are labelled for the DC 

analysis that follows. 

Vee 

10 

~ l e i 
QJ 

~ 

I B3 ~ I E3 

Vo 
Vs 

QI 
+-

~I" l~ 
IB2 

RL 

YSEI Va E2 

210 

-Vee 

Fig. 7.1 Core circuit of the proposed follower, labelled for a DC analysi 

I E2 cannot exceed 210 because that would mean that QI is cut off. Hence, 

But, 
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210 
IB2 <-( - ) 

1+~ 
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Hence, 

(7.3) 

Assuming that V 0 is very small (checked later for consistency) and ignoring the first 

term in (7.3) compared with the second term, 

I -~ 
83 - (I + p) 

(7.4) 

Consequently, 

10 
IC2 =Io-(l+p)=alo (7.5) 

and, 

1 
IEZ = -(alo)= 10 (7.6) 

a 

(7.7) 

and, 

(7.8) 

On the basis of the approximations made ICI = IC2 

But, 

(7.9) 
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Hence, 

Vas =0 

In practise Vas "* 0 because of the approximations made but, as can be calculated 

from (7.9), it wiII approximately be of the order of ImV or less. 
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7.2.1 Small-signal low-frequency gain, input resistance and output 

resistance 

QI 

..".. 

To 
Vee 

R3 
RI t ---. 

Ql 

...J... c 
-r 

R 2 ~ -l-

V' X 

-Vee 

Fig. 7.2 Core circuit of the propo ed follower, 

labelled for a small-signal low-frequency ana lysis 

RL 

UNIVERSITY 

Figure 7.2 shows the circuit of Figure 7.1 labelled [or an analysi of 

small-signal closed-loop gai n Q(O) and frequency response. At low frequ nci all 

device, stray and any added capacitance (such as C) can be ignored. To dctermine 

the loop gain (the input is earthed) and the loop is broken at the point marked by the 

line cut. How thjs may be done in practice, or in simulation, and the precaution that 

must be taken are discussed later (See section 7.6). 
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Rl ,R 2 ,R3 represent, respectively, the incremental resistances looking into 

the collector current source for Q2, the collector of Q2, and the base of Q3. A test 

voltage V x applied at the base of Q2, and voltage generated at point x' is observed. 

By definition, the loop gain (L.G.) is given by, 

By inspection, 

LG.= Vx ' 
Vx 

LG. = -A(O)· GAo) 

in which, A(O)= l.f. differential voltage gain of the long-tailed pair 

where, 

A(o)=_gmRx 
2 

and, Gy(O)= I.f. voltage gain of the emitter-follower stage. 

Since Gy(O) is close to unity it will be taken as such, for the time being, 

Mr. Nikolaos Charalampidis 

LG.~ _gmRx 
2 
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From standard feedback theory [7.3J the low frequency gain G(O) of the feedback 

amplifier is given by, 

A(O) 
G(O) = [1 + A(O)] ~ 1 (7.15) 

It is shown in Appendices AP7.1 and AP7.2 that the input R if and output R of 

resistances with feedback in terms of the input and output resistances without 

feedback are given as, 

(7.16) 

(7.17) 
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7.2.2 Frequency response 

If C is large enough the open-loop frequency response is detennined by 

Rx and C and the cut-off frequency, fe' for small-signal gain is, 

f = 1 
c 27tRxC 

(7.18) 

This is true if fc is well below the cut-off frequency of the transistors used. 

The closed loop bandwidth is then given by, 

(7.19) 

The circuit of Figure 7.2 is not, as it stands, suitable for handling fast negative-

going pulse edges for reasons given in Chapter 4 in the discussion of the emitter-

follower response. This limitation is overcome in the proposed circuit, dealt with 

next, that incorporates a 'Diamond' output stage. 
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7.3 The proposed circuit, VF/C 

The full circuit of the proposed circuit type VFIC is shown in Figure 7.3 . The 

part within the dotted contour is the circuit core which is a development of Figure 7.1 

and the currents shown labelled in the core apply for V = O. The part outside the 

contour is the '6-pack' current biasing scheme, analysed in Chapter 3. 

Vee 

Circuit core 

/ r---------------- -----, 
: I ~ Q5 

Q8 

r------
~ r ~ 21 

R1 I 
I 

' VS 
, D 
L __ , 

+-
T 

Fig. 7.3 FuJlcircuitofYF/C(Vcc = Y
EE 

=5 Y ; 1= lmA ) 
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Comparing Figure 7.3 with Figur 7.1 , Q6 and Q9 are added to provide suitable 

biasing for the complementary output stage. With Vs = 0 , negative feedback ensures 

that Vo ~ 0 also, providing the transistors operate in the forward-active mode, with 

the DC current distribution shown. Now if Vo = 0 , then the base of Qs is 2V BE 

above earth potential. The inclu ion of the diode-strapped transistor Q3 and Q4 

ensures that the collector voltage of Q2 is zero. Connecting the collector of QI to the 

output terminal makes the collector voltage of QI zero also. Q7 and Q8 are connected 

in parallel so that their base-emitter voltage is the same as the other transistors and 

each has a collector current of 1 mAo The connections, indicated, provide 

bootstrapping for the collector of both Q I and Q2, with the intention of providing an 

increased input impedance. The proposed circujt was simulated with Vs = 0 to check 

the DC conditions. However the output revealed the presence of sustained sinusoidal 

oscillations, shown in Figure 7.4, occurring at a frequency of approximately 4.2GHz. 

200m V 

6 . "SSQn , 5V3 . 060u 
I I I 

~ - itp~ ~ --t- ~+- -ni l 
--<- - t-r, f ~ ~ ~ I ~ ~ VI 

V 100m 

I I , ... -t- - l -j f-,- - - l- N I~ I-- - i't '-- l- I I- L r- + -' J _ 

I I i ov 
(V) I 

h I- 1---' \+ 1;- - - '--+ -T' - - -:- .. - +- - -i- T - -+ 

I 
, 

-IOOmV 

I 'j.y J 
'j I 1-t'tJ - V- V 1 

,V V V I-;-v - V - V - v-
(7 0219n, ~73.~66~1 

I I I I - 200mV 

6. 5ns 7 . 0ns 7 . 5ns 8.0ns 8 . 5ns 9 . 0ns 9. Sns 
D VOl 

Time 

Fig. 7.4 Oscillations at the output of the circuit with Vs = 0 

Accordingly, it was decided to investigate the stability of the circuit by 

examining the frequency variation of the magnitude and phase of the loop-gain. 
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7.4 Investigation of stability 

Figure 7.5 shows the set-up used to plot the frequency variation of the loop-

gain magnitude and phase. 

Vs 
0-

....-----I----+------ -{. QSO 

+---f:----[QI 

aGO 

Vo 

Fig. 7.5 Circuit used for the evaluation of loop-ga in magnitude and phase 

Vee 

A cut was made between the collector of Q25 and the base of Qs but provision 

was made to ensure that the DC conditions and impedance levels at that point 

remained unaltered. This necessitated a DC voltage being app lied to the base of 5 
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and a 'dummy load ', shown shaded in Figure 7.5, being attached to the collector of 

Q25. A small test voltage V x applied at the base of Qs produces a voltage V x'. The 

loop-gain magnitude is IV x' / V x I and the loop-gain phase is LV x' / V x' 

10 

40 K i- t 12 . 77~1 
l 

"'~ 
--I.. .... 

i Z (4 . 1650G, 

I'-Gj 

(dB) 0 

-40 

~. ~ - -' _/V 
T 

-~ ~ ., 
I ' 1.16~.67 . 4 41 I (6.9~39M . 6 .4551 I I 

L_ -I- ~ 
I 

t 
"" ~ , - -- f- .... - ~ - t- ...,.. ,.. 

I I I 

-IIOd 

-270d 

I 
-~ I ~ - I -, - -- I - O . O~ I r-.. 4 . 46S0G . -3 

I 1 - I --LJ..Q -l t:sL -- -l r 1--- t 
I I -360d 

(d) 

-450d 

_I- t l ! i . \ , 
- I 1 j--t- J 

SEL» 
-540d +-H- -~- t- - "' I- I ," I 

10H, 100H, I . OKH' 10KH, 100KH, I.OHH' 10MH, 100MH, I.OGH' 10GH, 100GH, 

Frequency 

Fig. 7.6 Loop-gain magnitude (top trace) and phase (bottom trace) 

The result is shown in Figure 7.6. It is clear that /L.GI = 2.77dB (i.e.,> OdB) 

when LL.G = 0° at f = 4.46GHz (i.e., close to the figure of 4.2GHz found for the 

oscillations in Figure 7.4). 
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To achieve stability the dominant-pole' approach was adopted [7-4] . A small 

capacitor C1 was connected to the collector OfQ25 as shown in Figure 7.7 because this 

point has a comparatively high incremental resistance associated with it. 

QS 

Fig. 7.7 The 'dominant-pole' compensation technique 

C1 has the effect of reducing the bandwidth with the result that /L.G/ < OdB 

when LL.G = 0° . Trial and error revealed that C1 = 0.2pF was just enough to 

achieve this but, in order to produce a gajn and phase margin that would not only take 

account of circuit tolerances but also to provide acceptable peaking in the frequency 

response of the closed-loop gain, a value of 0.35pF was decided on. Thjs provides a 

gain margin of2.26dB as shown in Figure 7.8. 

A higher gain margin could be achieved with a larger value of 1 but that 

would be at the ex pen e of closed-loop bandwidth. Furthermore in practical design 

the smaller C1 the smaller is the IC chip area consumed. 
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80 
I I 

-2. Jel '\ - ~ 
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,/ ~ (L1188G 
40 

ILGl 

(dB) 0 

SEL» 
-40 

Od 

-90d 

LLo. 
-180d 

(d) 

-270d 

,\ -f8 - -
( 1.16~. 67. 4 41 

J 
T 

• DB(V(21 / V(20011 

I -i I 
i - -
I I 

I 1 

I--- I 
J I i 

~'4431 t 
1 -

~ J • J .. -...:. r 
J I ...!. "-, ---

I ~-+-

- ~ r- 180.0{2 
r 

(3.7,88'i.-

I - / -t I 1 y -, 

1 -;- ~--;- ~\ 
I 

I I 

j 
I ['.. i r T r -+ "1 1 - 360d 

10Hz 100Hz 1.0KHz 10KHz 100KHz 1 . OHHz IOHHz lOOHH! 1 . OGHz 
• VP(21 - l80d 

Frequency 

Fig. 7.8 Loop gain magnitude (top trace) and phase (bottom trace) 

aftcr stabilisation with C, = O.3 5pF 

IOGHz IOOCH: 

The theoretical background and justification for the choice ,= 0.35pF i as 

follows. Referring to Figure 7.5, /L.G.(O ~ , the loop-gain magnitude at very low 

frequencies, is given by, 

in which, Gv(O) = Vo , the low frequency cascaded emitter-follower gain and 
Vx 

(7.20) 

R cq = R, II R 2 1I R 3 , where R"R 2 ,R 3 are, respectively, the incremental r sistances 

looking from the collector OfQ2, the output OfQ25 and the ba e ofQs. 
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A calculation using (7.19) and theoretical values for R"R 2 ,R3 did not give 

good agreement with the simulated a1ue of 2362 for IL.G(O ~. The reason for this 

was found, principally, to be due to the values used for R" R2 . 

Theoretically R , hould be (2VA II) , which is approximately 180KQ. 

However this assumes VA to be 90V (using data from Chapter 3). In the vicinity of 

zero collector-base voltage the slope of the transistor output characteristic, Ic versus 

V CE ' is not the same as that at, say 5V, where Early-voltages are measured. A 

simulated measurement to fmd R, using the et up of Figure 7.9 gave the curve 

shown in Figure 7.10. 

Vee 

-Vee 

Fig.7.9 el up for measuring R, (IZol at 1.f.) 
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150r--'--'-~---r-----r-----.----~r-----r-----'-~---r-----r-----' 

/20/ 

(dB) 

-r -
S 

100KHz ] .OMHz 10HH, 

f'requency 

• _1-

-1-- --t-

--+ -
--- --t--

~- ~ 

~.---,-

100MH, 1. OGH, 10GHz lOOGHz 

Fig. 7.10 Collector output impedance (Q2) of the long-tailed pair of Figure 7.9 

From Figure 7.10, RI = 163KQ and CQ2 (output capacitance ofQ2)= 78.5fF . 

A similar measurement for R 2 ga e R 2 = 567KQ and CQ25 = 40fF. 

Forthe base OfQ5, R3 =3.13MQ and CQ5 = 33fF. 

Thus the total capacitance at the base of Q5 for C1 = 0.35pF in Figure 7.7 is, 

CT = 0.501pF 

and, 

R eq. = 123.7KQ 

Also from simulation, 

G y = 0.978 
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IL.G.(O~ = 2345 

in good agreement with the simulated figure of 2360. 

The calculated -3dB frequency for IL.G~ is fe, 

1 
f = = 2.569MHz 
C 21t .123. 7K!l· 0.50 IpF 

(7.21 ) 

The simulated value was 2.580MHz, a good agreement with the calculated value. 
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The final circuit, incorporating the compensation capacitor, C, , is shown in 

Figure 7.11. 

Vee 

Q8 

Vo 
R1 

-Vee 

Fig. 7. 11 Full circuit ofVF/C (including the compensation capacitor) Vc = VEE = 5V ; 1= ImA 
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7.S DC conditions oftbe VF/C 

The simulated transfer characteri stic of the VF/C circuit, shown in 

Figure 7.12, has good linearity and unity slope, a consequence of the overall feedback 

[7-5] . The enlarged plot of Figure 7.12 in the vicini ty of the origin, shown in Figure 

7.13, confirms the existence of a very smaJl offset voltage, for reasons described 

earlier in ection 7.2. 

Figure 7.14 shows a linear range extending fro m -3V to +2V. Theoretically, the 

linear input range is, 

This conftmls the simulated figures if we substitute Vee = VEE = 5V and 

V BE = 0.75V . The slope of the characteristics in this region is indicative of the high 

incremental input resistance. The slope variation with temperature is due to the 

temperature dependence of Pn ,pp
• 

400 V 
! 

~ !-- -~ -- -
l . O v 

..-'!: 
- - r--r- V\ 1 v 2. 0 

-- ~ ~ ..... .J.-

V 1.0 

Tcm
/
P 27°C -- -- _.- ~ L/ -- - --:\ - --

v 

/ L (2 .• 027, . 197i8) 
- Tcmp -20°C 

V - -r--- r I 
v I I 

11..- 3 .ll77~ ~L V J 
. - -- --r 1----- > . -/' 

I 7 \ V I - - - - ~ 

(V) 

- 1. 0 

-2 . 0V 

-3.0V 

lemp 100 °C ~. .... I 
-4 . 0V I I 

-6.0V -S.OV -LOV -3.0V -2 . 0V -1.0V ov 1.W 2.W l . W 4.W S.W 6.W 
D . , V(l1 

Vinl 

Fig. 7.1 2 Simu lated transfer characteri tic for circuit of Figure 7. II : Vc = 5V; 10 = I mA; R L = 00 
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Fig. 7. 13 Expanded vie\ of the transfer characteristic in the vicinity of the origin 
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- 4.0V - 3.0V - 2.0V -1. OV OV 1. ov 2.0V 3.0V 4.0V 
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Fig. 7.14 Input characteristic of the circuit of Figure 7.11 for Vee = VEE = 5V; [0 = IrnA ; RL = <Xl 
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(7.22) 

For Vee = VEE = 5V , IQ =lmA and n = 5, at27°C. 

PQ = (5 + 5V).lmA .S=SOmW 

Table 7.1 shows the quiescent power dissipation produced from tlle simulation 

of the circuit at three different operating temperatures. Good agr ement is shown for 

the calculated value at 27°C. 

Quiescent power dissipation PQ (mW) 

Operating temperature (0C) -20 27 100 
------------------ 1----------------- 'I- - --- - - - - -. -- - ---

48.6 52.6 59.2 

Table 7.J Quie cent power dissipation of the circuit 

7-22 

Mr. Nikolao Charalanlpidis hapter 7 



ovel approaches in voltage-follower de ign OXFORD 

BROOKES 
UNIVERSITY 

7.6 Small-signal voltage-gain of the VF/C 

Figure 7.15 hows the frequency re ponse of the VF/C circuit. Compared to 

the VFs considered in the pre ious chapter , the VFIC presents considerably reduced 

peaking, due to the feedback loop and the stability that the negative feedback offers. 

The bandwidth of the circuit is slightly reduced due to the compensation capacitor 

used for the stability of the circuit. imuJation shows that the reduction in bandwidth 

is in the range of 7-1 0%, depending on the output load. 

20~----'--.---r-----'--~-'-----'--~--r-~--~-'--'-----'-----, 
13.084G,-l.9699) no load 

IGI(dB) 

- 201i----;---+--f--+--~-+--+___+--_;____1__1~--t_-'--......:...t_......:...--t_--t__r~I_;r 

.. ----+-

- 401t-----~~--~--._-+--~_+--2-__1--~--t_----t_----~~~~----~ 
IOpI" load 

- --I 
- 60+-----4-~--~--~~----_+--~_+--~~~----t_----+_~--+_......:...~ 

1.0H. 10Hz 100Hz l.OKH7 10KHz 100KHz 1.0MHz 10MHz 100MHz 
• DBIV(811) I V,lL.J 0 JBIV.ll) I VIlO,) , DBIVI91l. I V(lOll 

Frequency 

Fig. 7.15 Frequency response ror the mall-signal gain /G/ 

of the YFIC with different loads 
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7.7 Incremental input impedance oftbe VF/C 

The incremental input impedance as a function of frequency is shown in 

Figure 7.16. Spot values are hown in Table 7.2. The high input impedance results 

from the bootstrapping of the collector of QI . 

150~-----'------.------r--~--.------r----__ r-____ -. ____ -' __ ~--, 

I' .01 

120t-~---+------+----+-+--~--~----~--7---r-----~'---~~-T~ 
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L I 
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-- -- ---
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-~ requency D T-= -i-
- - r-.... - -4-

i I 

Z 
.- f-- +---

-, .3 . 'h--45 . Q 11 
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a (Vp(lIOI - Ip{ValO'I. 

Frequency 

Fig. 7.16 Bode plots for IZin l for Vee = VEE = 5V and I e = lmA for several loads and input phase 
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Conditions IZinl (Q) 

Operating 
-20 27 100 -20 27 100 temperature COc) 

------------ --_.-------- ------------ ----------- - -------_.-. ------------

f = 312.5KHz 10.2M 15.5M 25.9M 9.8M 15.lM 25.3M 

f = 31.25MHz 309K 401K 552K 307K 398K 549K 

f = 250MHz 38.6K 49.3K 66.5K 38.4K 49.2K 66.4K 

Output load RL= oo R L = 5KQ 

Ta ble 7.2 IZinl oftheVFwith R L =00 and RL = 5Kn , asafunction offandT 
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The approach presented here, to calculate the incremental output impedance of 

the circuit, is based on a general property of linear voltage amplifier circuits. as 

described earlier in Chapter 5, and characterised by equation (5.20). If the output is 

incrementally short-circuited, Vo = 0 and io = isc . 

Hence, 

(7.23) 

By inspection in Figure 7.11, looking into the base of Qs, the incremental resistance 

is, 

(7.24) 

where rx , with appropriate second subscript, represents the transistor base bulk 

resistance. 

Although the current gain 13 of the transistor models used throughout this 

research was investigated in Chapter 3, it has been identified that an extra 

measurement of this parameter, under new operating conditions, was necessary. The 

reason was the reduced V CE across transistor Qs which, in this circuit is equal to 

Vee - VBE7 ~ 4.2V rather than the 5V of Chapter 3. Following the same 

measurement technique described there, the current gain of Qs came to 44.4. 

Substituting in (7.24), using data from Chapter 3, and for rxs = 2600 , rlts = 11460 , 

R BS ~ 34KO 
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Req. 
---"--- ~ 0.015mA 
Req. + R B5 

(7.25) 

where R eq. was defined in (7.13). 

Consequently, 

Figure 7.17 shows /Zo / and LZo as a function of frequency for three different 

operating temperatures. pot values for /Zo/ as a function of f and T are shown in 

Table 7.3 . The difference between theoretical and simulated value is partly accounted 

for the extra components of i c that have been ignored. These are the current flowing 

to the collector ofQI and the current reaching the output via the base ofQI and Q2. 
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-18 -.\ / (M . 0~-JUS8) \ L L... L J 
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Fig. 7.17 Magnitude (upper curve) and phase (lower curve) for Zo 
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Condition IZo l (n) 

Operating 
-20 27 100 

temperature (0C) 
~.- ... -.----- .. -- .... - .. _ .... _ .... _ .... _ .. -_ .... _-- r -- -- ---- - -- - -----

f = 312.5KHz 49m 36m 29m 

f= 31.25MHz 130m 131m 133m 

f= 250MHz 923m 990m 1130m 

Table 7.3 1Zol of the VF as a function off and T 

As mentioned pre iousl in connection with emjtter-follower outputs, Zo is 

inductive at high frequencies. 
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7.9 Total harmonic di tortion and intermodulatioo distortion of the 

VF/C 

Table 7.4, 7.5 and 7.6 how, respectively, THD under specified 

conditions at 31 2.5KHz. 31.25MHz and 250MHz. The perfonnance of the circuit at 

higher fr quencie as poorer than the VFBf1 and VFB/2 mainly due to the 

compensation capacitor and the collector current of the output transistor. Table 7.7 

shows the IMD performance re ult for the VFfC, a a function of operating 

frequency and temperature. 

Condition THD (dB) 

Operating temperature 
-20 0 27 100 (0 ) ._._---- -- _ .... -_ .. _- - -- - -- -_ .. _- -- -- - -- "-"-"-" -"-"-

Z L= 5KO -90.8 -90.9 -90.9 

Z L = 5KO ff 5pF -78.4 -80.9 -79.6 

Ta ble 7.4 THD at 3 12.5KHz 

Condition THD (dB) 

Operating temperature 
-20 0 27 100 (0C) 

---- - --- -- - _ .. _- -- - ---- ---- -- ---- -- -- "-"-" - " - " -"-

Zr =5KO -74.5 -72.4 -70.8 

Z L = 5KO ff 5pF -60.9 -60.7 -59.2 

Table 7.5 THD at 3 1.25MHz 
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ondition THD (dB) 

Operating temperature 
-20 0 27 100 (0 ) 

-_ .. _ .. _ .. __ ._ .. _- _.-- .. _----------- --_._-------.-----
Z L =5KQ 5" -- -' . -54.2 -54.7 

Z L = 5KQ // 5pF -49.8 -52.4 -Sl.l 

Table 7_6 THD at 250MHz 

ondition IMD (dB) 

Operating temperature 
-20 0 27 100 (0C) 

----- - -- -- --- - - -- - ----------- -- - - ---- 1-- -------------- -- -
f = 312.SK1lz -1 04.9 -108.5 -110.1 

f = 31.25MHz -87.1 -87.5 -88 .9 

f = 250MlIz -53 .7 -54.3 -6] .2 

Table 7.7 LMD results for VF/C as a functio n of f and T. 
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7.10 Noise performance of the VF/C 
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The noise perfonnance of the VF/C is hown in Figure 7.18. This is in the 

same region as the VF designs presented in Chapter 5 and Chapter 6. 

Ian v 

_0- I ! - 1 
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I \ il ~ -- - :-\ ! I 
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I --:7 I r 

1 I I~ 1 , ~ ./' 

du", 
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6nV 
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- / ~ /I \mp27.c ! o~ -- _I "-
0- / 

-j- I. OOOOK,:6.4642 ) Temp -20·e _ 
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11. 00 OK, 50 '925n) 

__ 0-

I I i I I I I 4nV 
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o • , v (INOISE) 
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Fig. 7.18 Input noise of the circuit 
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7.11 Pul ere pOD e oftbe VFI 

UNIVERSITY 

Figures 7.19 and 7.20 how the waveform when a positive going input pulse 

of amplitude 0.5V and ri e and fall time of I n and 0.1 oS. respectively, is applied. 

These are understandable in the light of the di ell sion of emitter-follower pulse 

response presented in hapter 4. 

SOOmv,----,-__ --, ___ ..,-__ --,-___ ,-__ -,-__ ---r ___ ,----;_---, 

lnpUl pulse I -j- --+-

600mvt---+--I-1'---+----+---+-\-:-:;"....c:.+----t---t--;--j 

400avt----''---+----,'--+f---l.--+---+ ___ H.--\-+ __ --t ___ +----;_--1 

200mv1-~--f---,f----.j--+_-I-----+---w=---\-+-+_-t-_:_-1--:'--1 

-200mv'+----+ ___ f----.!._+ __ -+_~_+-__ +--'-__+-_-+__-_I 
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Fig. 7. 19 Pulse response for an input signal with In rise and fall times 
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7.12 A comparison of the VF designs 
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The analysis and simulation of the conventional and the proposed circuits in 

the same way gives the reader the advantage of comparing their performance 

parameters and deciding which of the proposed designs is most suitable for the 

application. This section presents a comparative assessment of the most important 

parameters of the voltage-followers investigated. Choosing the best voltage-follower 

is subject to trade-offs between power consumption, distortion, impedance levels, 

bandwidth etc. Consequently, as an example, the Type B (VFB/2) voltage-follower 

of Chapter 6 presents low distortion at high frequencies, high voltage swing and 

bandwidth and requires less silicon area due to the six-transistor core. Nevertheless, 

its power dissipation is 63% higher than the Type A ('Super-follower') of Chapter 5, 

its output impedance is sixty times bigger than the Type C (VF/C) follower with 

global feedback of Chapter 7, while its input impedance is more than four times 

smaller than that of the Type B (VFB/I), the first proposed circuit of Chapter 6. 

Tables 7.8 and 7.9 show, respectively, the comparison of THO and IMO 

results for the conventional and the new VFs as a function of operating frequency at 

room temperature. Figures 7.21, 7.22 and 7.23 show the same comparison 

graphically. 
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Total Harmonic Distortion (THD) at 27°C (dB) 

Configuration Conv.EF VFIA VFB/ I VFB/2 YFI 
--- .. ---- ------ .-- --_ .. _------

f=312.5KHz 
---------_ .. _-- ... _--_ .... _--- -- --- --_ ... __ .. _-. 

-72.5 -93.9 -91.2 -89.9 -90.9 
ZL =5KQ 

ZL = SKQ II 5pF -64.5 -89.2 -86.8 -79.9 -80.9 

f- 31.2SMHz 

Z L =5KQ 
-71.9 -75.6 -72.7 -86.8 -72.4 

ZL = 5KQ II 5pF -52.7 -84.4 -75.8 -63.9 -60.7 

f= 2S0MHz 

-42.7 -57.4 -67 -70.8 -S4.2 
ZL =SKQ 

ZL = SKQ ff SpF 
-3S.2 -47.7 -70 -62 -52.4 

Table 7.8 Comparison of THO resu lts for the conventional and the proposed VFs as a fun ction of 

freq uency at 27°C for two different loads 

Intermodulation Distortion (IMD) at 27° (dB) 

onfiguration onv.EF VFfA YFBIl VFBf2 
----- -- -- -- --- ---- ---- ---- -- -----_.- - ----- .. -------- .. _- -

f=312.SKHz 
-64.4 -87.6 ZL=SKQ -52.1 -93.9 

f = 31.2SMHz 
Z L = 5KQ -54.6 -75.6 -67.3 -84.4 

f = 2S0MHz 
ZL = 5KQ -48.3 -57.4 -61.3 -66 

Table 7.9 omparison of I MO results for the conventiona l and the propo d VF 

as a function of frequency at 270 
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Fig. 7.21 Comparison of THO results for the conventiona l and the proposed YFs 

as a function of frequency at 27°C for resistive load (SKn) 
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Fig. 7.22 Compari on ofTHD re ults fo r the conventional and the proposed YFs 

as a fWlction of frequency at 27°C for resistive/capacitive load (SKnI/SpF) 
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Fig. 7.23 Com pari on of IMD result for the conventional and the proposed VFs 

as a function of frequency at 27°C 

UNIVERSITY 

For comparative assessment the input and output impedance of the new VFs 

tabulated and shown in Tables 7.10 and 7.] 1 respectively. In addition, Figures 7.24 

and 7.25 show, respectively, their comparison graphicaJly. 

Input Impedance at 27°C(Q) 

C onfiguration VF/A VFB/ I VFB/2 VFI 
---._------- - -----_ .. _---- --------.--- - -- ------ -- - .. --

f = 3125KHz 12.8M 2.94M 637K 15.5M 

f = 31.2SMHz 419K 181K 63 .7K 401K 

f = 2S0MHz 12.6K 6.5K 8K 49.3K 

Table 7. 10 IZj I for all types of VFs as a function of frequency at room temperature 
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Fig. 7.24 Graphical comparison of IZd for all types ofVFs 

as a function of frequency at room temperature 

Output Impedance at 27°C (.Q) 

Configuration VFIA VFBIl VFB/2 YFI 
-._----- -- --- - ------------ - ------------ --------------

f = 312.5KHz 26 10.8 2.4 0.036 

f = 31.25MHz 26 10.8 2.5 0.13 1 

f = 250MHz 25.6 12.2 5.3 0.99 

Table 7.11 IZol for all types ofVFs as a function of fiequency at room temperature 
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Fig. 7.25 Graphical comparison of JZoJ fo r all types ofYFs 

as a function of frequency at room temperature 
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A summary of the key performance parameters of all four VF designs is 

shown in Table 7.12. 

Parameter at 27°C 

Configuration VF/A VFB/ I VFB/2 VF/C 1- -- - -- -- ______________ .. _ .. _ .. -._-_. - . ------------ - - ----.-.---- - -------------
Power supply ±5V ±3.3V ±5V ±5V 

Power dissipation 34.6mW 53.6mW 55.4mW 52.6mW 

Output voltage swing ±2V ±2V E -3.2V to 
+2.6V 

Offset voltage 64j.N 5.16mV 3.07mV 228~lV 

Slew rate 4250V/~ I 481OV/"" I 4950V/~s 2015V/~s 

Small-signal E bandwidth (-3dB) 2.7GHz 2.2GHz 3.08GJ-Iz 
(SKQ Load) 

Small-signal 
bandwidth (-3dB) 1.3GHz I.4GHz 1.58GHz 1.36GHz 

(SpF Load) 

Gain-flat to within 
330MHz I 280MHz I 728MHz 184MHz O.IdB (SKQ Load) 

Gain-flat to within 
163MHz B I 84MHz 171 MIJz O.IdB (SpF Load) 

Input-Referred 
voltage noise 3.94nV2/Hz 7.34nV2/Hz 5 .56n V2/JIz 6.46n V2/IJz 
(f~lOMHz) 

Input offset 
1.63~A 1.76~A 558nA 134nA current 

No of devices used 
20 12 6 10 (core) 

Table 7. 12 Performance parameters of all fo ur new VF designs 
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Table 7.13 shows the performance parameters that met the specifications set in the 

beginning ofthis work for each new circuit. 

Configuration VF/A VFBIl VFB/2 VFI - --_ .. --- .. - ------------- .. ------ ------------- .~------------- ~------------- f-------------
/Vee / ~ 5V ./ ./ ./ ./ 

Po ~35mW ./ X X X 
(53.6mW) (55.4mW) (52.6mW) 

/Zi/ > 5Mn for f ~ 0 ./ X X ./ 
(2.96Mll) (642Kll) 

/Zo/ < IOn for f ~ 0 X ./ ./ ./ 
(26ll) 

VS(min) = 2Vp_p ./ ./ ./ ./ 

/G/ = (I-E), where E < 0.1 up 
./ ./ ./ ./ 

to 250MHz 

THD ~ -80dB at 5MHz ./ ./ ./ ./ 

TI-ID ~ -60dB at 250MHz X D ./ X 
(-57.4dB) (-54_2dB) 

IMD ~ -55dB at 250MHz ./ ./ ./ ./ 

Table 7.13 Perfonnance parameters met by each new VF 
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7.13 Summary for Chapter 7 
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This chapter has presented a voltage-follower different from those considered 

in the two previous chapters, Chapter 5 and Chapter 6. In this chapter overall 

feedback is used in addition to local feedback. This is lay to a number of 

improvements in the VF performance, notably with respect to input and output 

impedance, offset voltage and pulse response. However these improvements have, 

only, been incurred of an added capacitor to ensure Nyquist stability. In addition, this 

chapter has presented a comparative assessment of the most important parameters of 

the VFs investigated. According to that, choosing the best voltage-follower is subject 

to trade-offs. 
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APPENDIX 7 

AP7.1 Analysis of incremental input resistance of circuit of Figure 7.2 

AP7.2 Analysis of incremental output resistance of circuit of Figure 7.2 
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Appendix AP7.1 

Analysis of incremental in put resistance of circuit of Figure 7.2 

Figure A 7.1 shows the equivalent impedance seen at the input of the circuit. 

Is 
--+ 

Vs 

r
lt rlt 

I~Ro =00 

I 

Vo 

Figure A7.1 Input impedance ofthe long-tailed pair 

By inspection, 

Thus, the input impedance is, 

For Op-Amp as a V.F., 

Thus, 

G=_A_ 
(I +A) 

Consequently, the input impedance is, 

Mr. Nikolaos Charalampidis 

Rin=(I+A).2r
lt 

;::::A·2r
lt 
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Appendix AP7.2 

Analysis of incremental output resi tance of circuit of Figure 7.2 

The analysis of the output impedance can be carried out using the equivalent 

circuit in Figure A 7.2, which repre ents the output tran i tor QJ of Figure 7.2. 

Figure A 7.2 Equivalent circuit for the calculation of Zo 

If the output voltage decreases by Yo, then the voltage at the collector of Q2 increa e 

by, 

a 
Y.£.!!!..R 

o 2 x 
(A7.6) 

The base current of QJ is 

( 7.7) 

Thus, 

( 7.8) 

Thus, the output resistance is. 

Yo (R x+rJ [re +(f3~ : I)] [rC+(f3~+ I)] 
rO =~=(f3n+ l g; R<+IJ '" (g2m Rx+I) '" (A + I) 

(A7. 10 
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CHAPTER 8 

Conclusions and future work 

8.1 Conclusions 

8.2 Future work 

References for Chapter 8 
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The field of RF circuit design is currently going through a massive 

development mainly due to the exponential growth of wireless applications. The 

overall system performance is very much dependent on the high frequency front-end 

component characteristics which genemlly set the performance limits of the 

system [8-1). Maintaining low distortion levels at higher frequencies is critical for it 

sustains the quality, the dynamic range and signal-to-noise mtio of the design. 

Environmental factors, including thermal effects, need to be taken into account in 

circuit and system design to ensure the design meets the specification under all 

operating conditions. 

In a similar manner, several other factors such as power consumption, signal 

gain, input and output impedance need to be investigated as these contribute equally 

in developing a clear statement of the design requirements, before proceeding with 

detailed design. Additionally, detailed research of the market and literature also needs 

to be carried out, to investigate what is currently available and the latest techniques 

used. With this information the limitations and deficiencies of existing designs can be 

evaluated in the light of design requirements for a particular application. 

The above procedure has been followed throughout the course of this work. 

The objectives of the project were defined in Chapter 2, after a short presentation of 

the ideal voltage-follower design and its practical limitations. Three different possible 

approaches to achieve the stated goals have been identified, concerning the bias 
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Finally, some application 

examples demonstrate the reason why a high performance design is necessary and 

how it can improve the overall performance of the system. 

In Chapter 3 the author follows an investigation on the transistor models used 

throughout the research, as well as a review on the current bias schemes used to 

support the operation of the conventional and proposed voltage-follower designs. In 

the beginning of this project thorough investigation was carried out on transistor 

models. An appropriate transistor technology is required for the designs that has a 

sufficiently high operating frequency, complementary devices with similar 

characteristics and ready availability. During the investigation of any circuit in this 

project, prior to simulation being carried out, a detailed theoretical analysis was 

undertaken. During the early stages in this research simulation results did not always 

match the small-signal analysis results. It became clear that more precise small-signal 

parameter extraction needed to be undertaken. Consequently, in Chapter 3 several 

different methods are described to obtain better values of the transistor parameters at 

the appropriate operating bias voltage and current levels. These include using the AC 

and DC current gain for p, the Early-Voltage, V A' for fee' the frequency response to 

obtain transistor cut-off frequency fT' and the collector-base internal capacitance. 

This investigation proved useful as it gave values for the transistor parameters 

different from those listed by the manufacture. On re-working the analysis there was 

much closer correlation between the simulation and analytical results obtained, 

confirming the validity of this work. In the same chapter a critical review of current 

biasing techniques using current-mirrors has been carried out, heading to the scheme 

adopted for the biasing of both the conventional and proposed designs. The 
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current-mirror chosen, not only improved the current transfer ratio, A, but also offered 

higher output impedance, well above conventional mirrors such as the Wilson and the 

cascoded buffered current-mirror, justifying why it was chosen for biasing circuitry. 

Although the following chapter, Chapter 4, concerns the conventional emitter

follower, the author treats it critically and considers some of this work to be novel. In 

this chapter, a thorough and detailed analysis and review of the conventional emitter-

follower is undertaken to evaluate the circuit performance and reveal its limitations 

using both DC and AC analysis. According to the author, the treatment presented 

here is well beyond that given in textbooks, and makes a considered original 

contribution to the design and development of voltage-followers. Chapter 4 'sets a 

bench-mark' in both analysis and presentation for the next three chapters, all of which 

have the same outline and style. Consequently, the reader can appreciate the relative 

superiority of the proposed circuits over conventional designs. Also, this approach 

simplifies the decision process in selecting the most suitable of the proposed designs 

for a particular application, according to the trade-offs of each. 

Chapter 5 presents a novel voltage-follower based on the input stage of the 

current feedback operational amplifier, which is known as the 'Diamond' circuit. 

This circuit was part of the first category of circuits investigated in this project, the 

voltage-followers with local feedback and single-valued current biasing. The initial 

circuit has been thoroughly analysed theoretically, it has been simulated according to 

the benchmark set in the previous chapter, and several ways of improving its 

performance have been identified. Progressive modifications of the circuit have been 
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novel circuit has been reported by the author in the technical literature [8-2], [8-3]. 

In Chapter 6, two novel voltage-follower circuits with local feedback and 

double-valued current biasing have been presented. In common with the majority of 

the voltage-follower designs reported in this thesis, both are complementary designs, 

exhibit good load drive capability for positive or negative-going input signals, and 

low distortion is achieved. The theoretical analysis, the simulation and the transistor 

models used were identical to those used on circuits of the previous chapters, enabling 

convenient relative perfonnance comparison between the circuits to be made. Most 

of the perfonnance parameters of both new designs in this chapter are better than the 

voltage-follower described in Chapter 5, except for slightly higher power 

consumption and reduced input impedance. The work has been presented in IEEE 

proceedings [8-4], [8-5), [8-6] and [8-7]. 

Chapter 7 considers the voltage-follower using global feedback. A novel 

circuit has been designed and analysed, presenting merits and demerits of the 

technique. In general, the use of negative feedback can provide several advantages in 

a circuit, such as smaller output and higher input impedance as well as gain control, 

which are desirable parameters when designing voltage-followers. However, it has 

been shown that using negative feedback globally, can cause serious operating 

problems particularly in respect of instability and oscillation, mainly at high 

frequencies. In addition, this chapter has presented a comparative assessment of the 

most important parameters of the VFs investigated in this work. The assessment 

clearly stated that the best voltage-follower is subject to trade-offs. 
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Throughout this research on voltage-followers it emerged that the internal 

capacitances of the transistor significantly influenced the distortion of the signal at 

high frequencies. It has been found that these capacitances limit the slew-rate of the 

circuit and also affect its input impedance. On the other hand, the non-zero input 

current of a BJT limits the maximum input impedance that can be achieved in a 

voltage-follower configuration. Although the author's work, reported here, 

demonstrates that the conventional bipolar voltage-follower can be improved in 

performance, this has generally been achieved at the expense of increasing power 

consumption and also increasing power supply voltage requirements, due to use of 

additional devices with their necessary base-emitter voltage drops. 

These reasons suggest that future developments should be undertaken using a 

different high frequency-transistor technology. A suitable contender would be 

SiGelBiCMOS, which offers increased operating bandwidth with reduced supply 

voltage demands, combining the high-performance heterojunction bipolar transistors 

(HBTs) with state-of-the-art CMOS technology [8-8). Although the manufacturing 

process is more complicated, the combination of both technologies require smaller 

silicon area circuits, extending their applicability. 
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