
WWW.BROOKES.AC.UK/GO/RADAR

RADAR

Research Archive and Digital Asset Repository

Efficient Object Detection via Structured Learning and Local Classifiers

Ziming Zhang (2013)

https://radar.brookes.ac.uk/radar/items/420cfbee-bf00-4d53-be8b-04f83389994f/1/

Note if anything has been removed from thesis.

FIGURE 1.1 (PAGE 2)

FIGURE 1.2 (PAGE 3)

FIGURE 1.4 (PAGE 7)

FIGURE 1.5 (PAGE 9)

Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can
be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis
cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright
holder(s). The content must not be changed in any way or sold commercially in any format or medium without the
formal permission of the copyright holders.

When referring to this work, the full bibliographic details must be given as follows:

Zhang, Z (2013) Efficient Object Detection via Structured Learning and Local Classifiers PhD, Oxford Brookes
University

https://radar.brookes.ac.uk/radar/items/420cfbee-bf00-4d53-be8b-04f83389994f/1/

Efficient Object Detection
via Structured Learning and Local Classifiers

Ziming Zhang

Thesis submitted in partial fulfillment of the requirements of the award of

Doctor of Philosophy

Oxford Brookes University

2013

.. "

IMAGING SERVICES NORTH
Boston Spa, Wetherby
West Yorkshire, LS23 7BQ
www.bl.uk

THE FOLLOWING FIGURES HAVE BEEN
EXCLUDED AT THE REQUEST OF THE
UNIVERSITY:

FIGURE 1.1 (PAGE 2)

FIGURE 1.2 (PAGE 3)

. FIGURE 1.4 (PAGE 7)

FIGURE 1.5 (PAGE 9)

Abstract

Object detection has made great strides recently. However, it is still facing two

big challenges: detection accuracy and computational efficiency. In this thesis,

we present an automatic efficient object detection frarnework to detect object

instances ·in images using bounding boxes, which can be trained and tested eas-

ily on current personal computers. Our framework is a sliding-window based

approach, and consists of two major components: (1) efficient object proposal

generation, predicting possible object bounding boxes, and (2) efficient object

proposal verification, classifying each bounding box in a multiclass manner.

For object proposal generation, we formulate this problem as a structured

learning problem and investigate structural support vector machines (SSVMs)

with our proposed scale/aspect-ratio quantization scheme and ranking constraints.

A general ranking-order decomposition algorithm is developed for solving the for-

mulation efficiently, and applied to generate proposals using a two-stage cascade.

Using image gradients as features, our object proposal generation met~od achieves

state-of-the-art results in terms Df object recall at a low cost in computation.

For object proposal verification, we propose two locally linear and one lo-

cally nonlinear classifiers to approximate the nonlinear decision boundaries in

the feature space efficiently. Inspired by the kernel trick, these classifiers map

the original features into another feature space explicitly where linear classifiers

are employed for classification, and thus have linear computational complexity in

both training and testing, similar to that of linear classifiers. Therefore, in gen-

eral, our classifiers can achieve comparable accuracy to kernel based classifiers at

the cost of lower computational time.

To demonstrate its efficiency and generality, our framework is applied to four

different object detection tasks: VOC detection challenges, traffic sign detection,

pedestrian detection, and face detection. In each task, it can perform reasonably

well with acceptable detection accuracy and good comput?-tional efficiency. For

instance, on VOC datasets with 20 object classes, our method achieved about

"' 0.1 mean average precision (AP) within 2 hours of training and 0.05 second of

testing a 500 x 300 pixel image using a mixture of MATLAB and C++ code on
n'

.. a current personal computer.

...

Acknow ledgements

I would like to take this opportunity to thank my supervisor, Prof. Philip

H.S. Torr, for guiding me through my PhD studies at Oxford Brookes University

and always being there with useful advices and suggestions.

Meanwhile, I would like to thank my colleagues Mr. Paul Sturgess, Mr.

Sunando Sengupta, Mr. Morten Lidegaard, Mr. Ondrej Miksik, Dr. Lubor

Ladicky, Dr. Amir Saffari, Dr. Mingming Cheng, and many others in the Oxford

Brookes Vision Group for their great discussion and care.

Also, I would like to thank Prof. Andrew Zisserman and all the members in

his Visual Geometry Group, University of Oxford, from whom I have learned a

lot.

It is my honor to have Dr. Mark Bishop (University of London), Dr. Andrea

Vedaldi (University of Oxford), and Dr. David Duce (Oxford Brookes University)

as my examiners. Thank them for their very useful suggestions, encouraging

words, thoughtful criticism, and time on my thesis.

Special thanks to the 1ST Programme of the European Community, under the

PASCAL2 Network of Excellence, for the financial support.

Finally, I would like to thank my family for their understanding and support,

especially my wife, Dr. Cong Geng .

-
Contents

1 Introduction
1.1 Motivation

1.2 Challenges

1.2.1 Localization.

1.2.2 Recognition.
.........................
.........................

1

2

5

5

8
1.3 Contributions

1.4 Outline

1.5 Publications

10

12

12

2 Literature Review

2.1 Sliding Window Based Object Detection

2.2 Localization using Object Proposals

2.3 Recognition using Local Classifiers

"

14
15

20

22

3 Object Proposal Generation: Structured Learning 26
3.1 Formulation: Structural SVMs

3.1.1 SSVMs and LSE-SSVMs
27

28

3.1.2 LSE-SSVMs with Quantized Scales/Aspect-ratios (Q-LSE-SSVMs) 30

3.1.3 Q-LSE-SSVMs with Ranking Constraints (QR-LSE-SSVMs) 32

3.2 Optimization: Ranking-Order Decomposition . 33

3.2.1 General Algorithm .. 34

3.2.2 A Two-Stage Cascaded Model for Object Proposal Generation. 37

3.2.3 Computational Complexity 41

3.3 Experiments

3.3.1 Specific Object Proposal Generation

3.3.2 Generic Object Proposal Generation

3.4 Conclusion

...............

...............

41

41

49

53

iii

Contents

4 Object Proposal Verification: Local Classifiers 63

4.1 Learning Orthogonal Coordinate Coding

4.1.1 Introduction

4.1.2 Orthogonal Coordinate Coding

65

65

67

4.1.3 Modeling Classification Decision Boundary in Locally Linear

SVMs .. 74

4.2 Learning Locally Linear Classifiers via Truncated Marginal

Features

4.2.1 Introduction

4.2.2

4.2.3

Joint Learning of Classifiers and Features

Nonlinear Kernel Approximation

74

75

76

81

4.3 From Linear to Nonlinear: Parametric Nearest Neighbor Clas-

sifiers

4.3.1 Introduction
4.3.2 Parametric Nearest Neighbor Classifiers

4.3.3 Ensemble of Parametric Nearest Neighbor Classifiers

4.3.4 Implementation.................·····

4.4 Computational Complexity

4.5

4.4.1 Orthogonal Coordinate Coding with LL-SVMs. .

4.4.2 Thuncated Marginal Features with Linear SVMs .

4.4.3 Parametric Nearest Neighbor Classifiers

Experiments

4.5.1 Datasets '
4.5.2 Tuning Parameters in Local Classifiers ...

4.5.3

4.5.4

Comparison on Classification Performance

Comparison on Computational Time

4.6 Conclusion

5 Efficient Object Detection Framework

5.1 System Design

5.1.1 Object Proposal Generation Module

82

83

84

89

90

91

92

92

93

93

93

94

99

99

99

104

105

105

iv

Contents

5.1.2

5.1.3

Feature Representation Module

Object Proposal Verification Module

5.2 Applications

5.2.1 VOC Challenges

5.2.2 Traffic Sign Detection

5.2.3 Pedestrian Detection.

5.2.4 Face Detection

6 Conlusions and Perspectives

Bibliography

106

107

107

108

115

117

119

122

127

v

•

List of Figures

1.1 An example of object detection in an image 2

1.2 Illustration of some real-world applications using object detection 3

1.3 Explanation of how to calculate the overlap score between two

bounding boxes sand t using Eq. 1.2.1

1.4 Illustration of some cases that non-maximum suppression (NMS)

fails. _. . . .

1.5 Some sample images from the categories of sofa (top), bicycle

(middle), and motorbike (bottom) in VOC2007 [42] to illustrate

6

7

the challenges in object recognition 9

1.6 Work flow of our efficient object detection framework in both

training and testing. .. 11

2.1 Illustration of comparison between RBF-kernel SVMs and lo-

cally linear classifiers .. 24

3.1 Illustration of differences of Structural SVMs (SSVMs), LSE-

SSVMs, Q-LSE-SSVMs, and QR-LSE-SSVMs, respectively. 29

3.2 Our scale/aspect-ratio quantization scheme can be represented
f

hierarchically. .. 30

3.3 Illustration of ranking-order decomposition for optimizing QR-

LSE-SSVMs. 35

3.4 Summary of our cascaded method for generating proposals. 38

3.5

3.6

3.7

3.8

3.9

Cascade design evaluation: "d1, d2 ••••••••

Quantization and feature evaluation: 'I}, W, H, R .

Recall-overlap evaluation for VOC2006.

Recall-proposal evaluation

Recall-overlap evaluation for VOC2010 . .

3.10 Comparison of different cascade settings (Stage I + Stage II) on

VOC2007 using K E {36, 121, 196} and d2 E {I, 10, 100, 1000},

43

44

45

55

56

respectively . " 57

3 .11 Comparison of recall-overlap curves using different lnethods and

d2 on (top) VOC2007 and (bottom) VOC2012 58

vi

List of Figures

...

3.12 Comparison of recall-proposal curves using different methods on

(a) VOC2007 and (b) VOC2012, respectively 58

3.13 Comparison of recall-overlap curves using different methods on

each class in the test dataset of VOC2007 59

3.14 Comparison of recall-proposal curves using different methods

and 'rJ = 0.5 on each class in the test dataset of VOC2007 60

3.15 Comparison of recall-overlap curves using different methods on

each class in the training/validation dataset of VOC2012 61

3.16 Comparison of recall-proposal curves using different methods

and 'rJ = 0.5 on each class in the training/validation dataset

of VOC2012. 62

4.1 Comparison of the geometric views on LCC and OCC, respectively 69

4.2 Illustration of learning OCC using (a) the closest point to the

data on each anchor plane, or equivalently (b) basis vectors as

anchor points in the feature space. 70

4.3 Example of encoding a data point in a 3D feature space using 6
It

anchor points .. 72

4.4 Illustration of our truncated marginal features (TMFs) for learn-

ing locally linear classifiers. 75

4.5 Illustration of the differences between the nonparametric near-

est neighbor classifier (i. e. 1-NN) and our parametric near.est

neighbor classifier (P-NN) .. 84

4.6 Performanc~ comparison among the four different settings of

OCC with LL-SVM on MNIST (left), USPS (middle), and LET-

TER (right) using different nurnbers of orthogonal basis vectors. 94

4.7 Illustration of the effect of learning parameter B in TMFs on

classification with different projection dimensions and t = 0

using USPS (left), LETTER (middle), and MNIST (:ight), re-

spectively.'. .. 95

p'

vii

List of Figures

....

4.8 Illustration of the effect of learning parameter t in TMFs on

sparseness (top) and error rate (bottom) with different lower

bounds (y-axis: t lb) and upper bounds (x-axis: tub) using USPS

(left), LETTER (middle), and MNIST (right), respectively. .. 96

4.9 Some examples of the jointly learned prototypes by our classifiers

on (a) MNIST and (b) USPS, 20 prototypes per class. 97

4.10 Performance of EP-NN: classification error v.s. the number of

5.1

base learners

Illustration of our efficient object detection framework.

98

105

5.2 Work flow of our efficient object detection framework in both

training and testing. . . . '. 106

5.3 Performance comparison using different K and numbers of pro-

posals on VOC2007 test dataset in terms of (a) mean average

precision (AP), (b) training time, and (c) testing time per image. 109

5.4 Performance comparison using different numbers of cells in HOG

on VOC2007 test dataset in terms of (a) mean average precision

(AP), (b) training time, and (c) testing time per image. 110

5.5 Performance comparison using HOG, LBP, and HOG+LBP on

VOC2007 test dataset in terms of (a) mean average precision

(AP), (b) training time, and (c) testing time per image. 110·

5.6 Performance comparison by varying the average number of pos-

itive data points per cluster on VOC2007 test dataset in terms

of (a) mean .. average precision (AP), (b) training time, and (c)

testing time per image. 111

5.7 Performance cornparison using different numbers of anchor points

in truncated marginal features (TMFs) on VOC2007 test dataset

in terms of (a) mean average precision (AP), (b) training time,

and (c) testing time per image. 111

5.8 AP comparison per class on different VOC train/validation datasetsl14

5.9 Sample images in the German 'fraffic Sign Detection Benchmark

(GTSDB) dataset with the detection outputs using our method 115
",0

viii

List of Figures

.'.

5.10 Precision-recall curves of the 10-fold cross validation on the cat-

egories of "prohibitory", "mandatory", "danger", and "other"

in GTSDB, respectively 116

5.11 Sample images in the Penn-Fudan Pedestrian Detection dataset

with the detection outputs using our method 117

5.12 Precision-recall curves over the 10-fold cross validation on the

Penn-Fudan Pedestrian Detection dataset 118

5.13 Sample images in the Face Detection Data Set and Benchmark

(FDDB) dataset with the detection outputs using our method . 119

5.14 Precision-recall curves over the 10-fold cross validation on the

FDDB dataset ' 120

5.15 Performance comparison with some other methods on the FDDB

dataset 121

,,'

ix

List of Tables

2.1 Module comparison in some popular detection methods. 19

3.1 Some notations used in the explanation of our cascaded model

for object proposal generation. 39

3.2 Comparing the speed of our method in seconds (mean ± stan-

dard deviation) at various parameter settings 47

3.3 Comparing the performance of our method in terms of AUC (%)

with that of [77] 48

3.4 Comparing the performance of our method in terms of AUC

(%) when no scale/aspect-ratio information is included during

learning the classifiers (i. e. single classifier), when only aspect

ratio information is included, and when both scale and aspect

ratio are included. 49

3.5 AUC comparison on VOC2007 using 1000 proposals in Fig. 3.11

and Fig. 3.13.'. 51

3.6 Object recall comparison on VOC2007 using 1000 proposals as

shown in Fig. 3.12 and Fig. 3.14. 52

3.7 Object recall comparison on VOC2007 using different numbers

of proposals 52'

3.8 Computational time comparison on VOC2007 in second per i~-

age with 1000 proposals 53

3.9 AUC comparison on VOC2012 using 1000 proposals 53

3.10 Object recall comparison on VOC2012 using 1000 proposals 54

4.1 Some notation used in LCC and OCC. 67
4.2

4.3

4.4

Classification error rate comparison (%) between our methods

and others on MNIST, USPS, and LETTER. 102

!raining time (/s) comparison between our methods an? others

on MNIST, USPS, and LETTER 103

Testing time (/ J-Ls) comparison. per data between our methods

. and others on MNIST, USPS, and LETTER 103
".

x

List of Tables

5.1 Performance comparison with other methods on VOC2007 test

dataset in terms of average precision (AP) (%), training time

Ttr , and testing time per image Ite. 112

5.2 Performance comparison on different vac train/validation datasets

in terms of average precision (AP) (%), training time Itr, and

testing time per image Tte • • • • • • . . • . . • 113

o·

xi

Chapter 1

Introd uction

,,"

,',

,(a) ,~:i~inal imag~ (b) Image with some obj~ct detetion results

Figure 1.1: An example of object detection in an image.

Object detection in computer vision arms to provide a general method to localize

and recognize object instances of interest within different categories silnultane-

ously in images or videos [32,38,99,104,115,129,145]. For instance, given Fig.

1.1 (a), we would like to find the light pole, buses, pedestrians, and even buildings. ,

An object detection method may return some results like Fig. 1.1{b).

Since object detection is a huge research area, in this thesis we would like to

restrict our object detection problem to the following task:

Wefocus on develop·lng a sliding window based efficient object detection frame-

work, which can be applied to different detection tasks with little modification and

effort, and run easily on current personal computers, so that it can detect object

instances of interest within different categories automatically and simultaneously

in 2D images, and output bounding boxes (i. e. rectangles) surrounding each object

instance. In our framework, computational efficiency in both training and testing

and detection generality are considered as important as detection accuracy .

.. -

2

1.1. l\1otivation

(a) Automatic navigation (b) Surveillance (c) Robotics , (d) Medical applications

Figure 1.2: Illustration of some real-world applications involving object detection.

1.1 Motivation

The ultimate goal of computer vision is to build an automatic system which can

,dupHc~te the ability of 4~xnan vision, to ,fully gnderstand the Gonte~t~ of images,., "

e.g. things and stuff [64], and reason about the high-level relations between thenl,

e.g. object geometry and activity [65, 79], with the aid of geonletry, physics,

statistics, and learning theory [55]. Towards this goal, object detection plays

a very important role, because it answers two essential questions in computer

vision: object localization, answering where the object instances of interest are

with respect to the images, and object recognition, answering what categories the

object instances of interest belong to.

With the help of localization and recognition, object detection can ,benefit

many other research areas in computer vision, such as image classification [111],

image segmentation [139], object tracking [62], etc. For instance, in the recent

Visual Object Classes Challenge 2012 (V{)C2012) [47], for the ilnage classification

conlpetition (i.e. "comp1"), the winning method introduced object detection

techniques into their recognition framework to inlprove performance. Not only

for research purposes, many real-world applications involve object detection as

one of the key techniques as well, such as automatic navigation [41], surveillance

[100], robotics [60,69], and medical applications [152]. Fig. 1.2 illustrates these

applications using object detection.
,',

Obviously detection accuracy is very important as every detection method

wishes to, achieve as high accuracy as pos~ible. In an automatic navigation sys-
,'.

3

1.1. Motivation

tern, for instance, it is desired that every person in front of the car should be

detected. What other factors should really matter in real-world applications?

Computational Efficiency. Following the example of automatic navigation,

the systems are expected to detect alt"possible persons as fast as possible by

allowing incorrect detections to a certain degree, so that the drivers (or other parts

of the systems) have sufficient time to react. Take the surveillance application

in Fig. 1.2(b) for another example. As the shop owner, it is definitely expected

that any movement of human beings involving violence can be detected, or even

predicted, as early as possible, so that he can better protect himself and his

property. With the development of IT hardware, mobile computing has become

more and more popular. It is reported by Silicon India that the number of active

cell phones will reach 7.3 billion by 2014. What a huge potential market for object

detection applications! However, whether a detection system can be applied

successfully on these mobile phones is highly dependent on its computational

efficiency and requirement on the hardware, since mobile phones can only offer

very limited computing power due to their usage.

All such applications suggest that for many real-world applications, the com-

putational efficiency of detection is another major concern, which may be as

important as detection accuracy.

Detection Generality. Recently the commercial product, Kinect [119,148],

from Microsoft has achieved a big success, and Kinect itself can be considered

as a milestone in the history of computer vision. Besides the hardware, the al-

gorithm [119] used in Kinect makes it possible to recognize hundreds of different

human poses in real-time with high accuracy, which contributes significantly to

its success. Besides Kinect, many other applications require to handle ~bject

instances of interest within different categories (in Kinect, each human pose is

categorized to a class for recognition). As we illustrate in Fig. 1.2(a), an auto-

matic navigation system should detect multiple. objects with different categories ..

Therefo~e, a good object detection system should be able to handle multiclass

object .9.etection problems inherently at a low cost of computation (otherwise, in
....

4

1.1. Motivation

tern, for instance, it is desired that every person in front of the car should be

detected. What other factors should really matter in real-world applications?

Computational Efficiency. Following the example of automatic navigation,

the systems are expected to detect all possible persons as fast as possible by

allowing incorrect detections to a certain degree, so that the drivers (or other parts

of the systems) have sufficient time to react. Take the surveillance application

in Fig. 1.2(b) for another example. As the shop owner, it is definitely expected

that any movement of human beings involving violence can be detected, or even

predicted, as early as possible, so that he can better protect himself and his

property. With the development of IT hardware, mobile computing has become

more and more popular. It is reported by Silicon India that the number of active

cell phones will reach 7.3 billion by 2014. What a huge potential market for object

detection applications! However, whether a detection system can be applied

successfully on these mobile phones is highly dependent on its computational

efficiency and requirement on the hardware, since mobile phones can only offer

very limited computing power due to their usage.

All such applications suggest that for many real-world applications, the com-

putational efficiency of detection is another major concern, which may be as

important as detection accuracy.

Detection Generality. Recently the commercial prod,uct, Kinect [119,148]'

from Microsoft has achieved a big success, and Kinect itself can be considered

as a milestone in the history of computer vision. 'Besides the hardware, the al- .

. gorithrn [119] used in Kinect makes it possible to recognize hundreds of different

human poses in real-time with high accuracy, which contributes significantly to

its success. Besides Kinect, many other applications require to handle object

instances of interest within different categories (in Kinect, each human pose is

categorized to a class for recognition). As we illustrate in Fig. 1.2(a), an auto-

matic navigation system should detect multiple objects with different categories.

Therefore, a good object detection system should be able to handle multi class

object detection problems inherently at a low cost of computation (otherwise, in

4

1.2. Challenges

contradiction to the computational efficiency requirement). Meanwhile, it should

be applicable for different detection tasks with little modification and effort.

In this thesis we aim to develop an efficient object detection framework, which

performs multiclass object detection simultaneously and efficiently for different

detection tasks, and can run easily on current personal computers for real-world

applications.

1.2 Challenges

The essence of every object detection method is to localize and recognize object

instances of interest. A sliding window based object detector takes every pixel in

images as a potential location for an object, and every patch centered at the pixel

as a potential object which needs to be recognized or discarded. Therefore, we here

explain the challenges in object localization and object recognition separately for

sliding window based object detection methods in general.

1.2.1 Lbcalization

For the bounding box based detection methods, the goal of object localization

is to put a bounding box around each object instance as close to the object's

boundary as possible. To better explain the challenges in localization, we first

introduce some definitions for measuring the localization quality.

Definition 1.1 (Bounding Box Overlap Score). The overlap score between a'

bounding box s and a ground-truth bounding box of an object t, o(s, t), is defined

as their intersection area, A3(S, t), divided by their union area, A1(s, t)+A2(s, t)+

A3(S, t), as illustrated in Fig. 1.3, and calculated using Eq. 1.2.1 below:

(1.2.1)

Clearly, 0 ::; o(s, t) ::; 1, and the higher 0(8, t) is, the better the detection with the

bounding box sis.

5

1.2. Challenges

,

~
? t

I'

S, t)
A2 (S, t)

Figure 1.3: Explanation of how to calculate the overlap score between two bound-
ing boxes 8 and t using Eq. 1.2.1, where A], A2 and A3 denote three areas,
respectively.

D efinition 1.2 ('fJ-Accuracy) . A window 8 E S can be localized by another

window t E T to 7]-accuracy if 0(8, t) ~ 7] (0 ::; 7] ::; 1).

Definition 1.3 (Correct D etection). Given an overlap threshold 7], a detection

bounding box 8 is considered as a correct detection for detecting object t if and

only if 8 can localize t to 7]-accuracy.

Then we list some challenges in localization as follows:

1. The parameter search space for finding correct bounding boxes

is huge. In an image, each window can be represented by 4 paraln tel's:

the coordinate of its top-left corner (x , y) and its ~idth and height (w, h) .

Suppose there are no spatial and scale/aspect-ratio priors for objects, which

means that objects can be uniformly distributed at any position in an ilnage

with any reasonable scale/aspect-ratio, then given an image with width and

height (W, H), the nun1ber of possible bounding boxes is:

W H W - xH- y 1 2:= 2:= 2:= 2:= = 4W H(W - l) (H - 1) = O(W2 H2) (1 .2.2)
x= l y= l w= O h= O

That is, the number of possible bounding boxes is quadratically proportional

to the size of the image. Thus, given an image with a common resolution

256 x 256 pixels, this number will be about 230 ~ 109 ! Therefore, how to

6

1.2. Challenges

Figure 1.4: Illustration of some cases that non-nlaximunl suppression (Nl\1S) fails.

'search for the correct· bounding boxes in this"huge space'efficientlY'becomes " .. ,"

challenging.

2. The correct' detection for a single object instance of interest may

be multiple. For an arbitrary object instance, any detection satisfying Def.

1.3 is a correct detection. However, since there is only one object, more
I

than one correct detections become redundant, and harm the precision-

recall score, which is used to measure the detection nlethods. A well-knowl1

method to handle this problem is non-l11aximunl suppression (NMS) [22].

For instance, in the VOC detection challenges [47], given two correct detec-

tion bounding boxes 81 and 82 w. r. t. an object, with detection confidence

scores C1 and C2 (indicating the possibility of a bounding box containing an

object, and higher scores, higher possibilities), respectively, Nl\1S will re-
'f d -() A 3(Sl,S2) > 0 5 tl' '11 move 82 1 C1 > C2 an 0 81,82 = A2(S1.82)+A3(Sl.S2) _ . ; 0 lerwIse, 82 WI

be kept and considered as another detection. However, using this NMS rule

there are still nlany cases that cannot be handled correctly, as illustrated

in Fig. 1.4. Therefore, how to remove the redundancy of nlultiple correct

detections to a single object still remains challenging.

7

1.2. Challenges

1.2.2 Recognition

Generic object recognition (also called object categorization) in images has a

long history in computer vision, and it is still unsolved [33]. The goal of object

recognition is to classify each object instance using certain features and models.

Features are used to represent each object instance based on low level image

information lik~ pixels, and they can be hand-crafted such as Scale-Invariant

Feature Transform (SIFT) [91] and Histogram of Oriented Gradients (HOG) [32],

or learned using, for instance, deep learning [S1]. Object models are used to

verify the category of each object instance. These models typically represent

high level properties of object categories, which are presumed to be shared by

all the instances belonging to each category, such as statistical information of

visual words (e.g. the Bag-of-Words model (BoW) [31] and its derivatives such

as the spatial pyramid BoW model [SO]), attribute based models [50], and part

based models [53]. Usually some machine learning techniques are involved to

learn these object models, such as support vector machines (SVMs) [39], multiple

kernel learning [136], and graphical models [122].

In object categorization, there are still many challenges such as:

1. Imaging factors, e.g. lighting, occlusion, truncation, clutter, pose.

These factors affect the quality and content complexity of images a lot, and

make it very difficult to represent each object instance properly using low

level information.

2. Intra-class variation v.s. inter-class variation. Intra-class variation

in object instances makes the learning of object models difficult, because'

the models need to deal with "all" possible variabilities in objects. And

inter-class variation determines the discriminability between different object

classes. Therefore, a good object representation should have low intra-class

variation and high inter-class variation.

3. Many object categories. There are approximately 104 - 3 X 104 object

categories [11] in the world that humans can recognize. Considering the

variation challenge above, in order to make computer vision comparable

S

1.2. Challenges

Figure 1.5: Some sample inlages from the categories of sofa (top), bicycle (rnid-
dIe), and motorbike (bottom) in VOC2007 [42] to illustrate the challenges in
object recognition.

with the visual capability of human being, we still need to do nlassive work

to help machines recognize them.

Fig. 1.5 gives some examples of these challenges above. For object detection,

there exist some other extra challenges in recognition such as:

4. Very large-scale and extremely imbalanced correct and wrong de-

tection bounding boxes for both learning and testing. A natural

image would usually only contain aJew objects of interest. However, as we

describe above, the search space for correct bounding boxes in inlages is

huge. This makes the training windows extremely imbalanced, with very

9

1.3. Contributions

small portion of positives and massive negatives, which is problematic for

learning in both computer vision and machine learning.

1.3 Contributions

The major contributions introduced within this thesis for object detection are

concerned with the development of efficient methods for:

1. Searching the possibly correct bounding boxes for object instances (i. e.

object proposals). This problem can be denoted as the object proposal

generation problem;

2. Learning multiclass nonlinear classifiers (i. e. object models) for recognition,

which can handle large-scale imbalanced data. This problem can be denoted

as the object proposal verification probleln;

and

3. Presenting an efficient object detection framework using the developed

methods! in object proposal generation and verification, as shown in Fig.

1.6, with good cOlnputational efficiency, detection generality, and accept-

able detection accuracy.

For object proposal generation, we formulate this problem as a structured

learning problem and investigate structural support vector machines (SSVMs)

with our proposed scale/aspect-ratio quantization scheme and ranking constraints.

A general ranking-order decomposition algorithm is developed for solving the for- .

mulation efficiently, and applied to generate proposals using a two-stage cascade.

Using image gradients as features, our object proposal generation method achieves

state-of-the-art results in terms of object recall at a low cost in computation.

For object proposal verification, we propose two locally linear and one lo-

cally nonlinear classifiers to approximate the nonlinear decision boundaries in

the feature space efficiently. Inspired by the kernel trick, these classifiers map

the original features into another feature space explicitly where linear classifiers

are employed for cla:ssification, and thus have linear computational complexity in

10

1.3. Contributions

Object
proposal

generation
module {

Feature {
representation

module

Object
proposal

verification
module {

Training data

Learning a gradient
filter per quantized
scale/aspect-ratio

Score calibration
across different

scales

Describing each
proposal

Dimension
reduction

Clustering positives
per scale, and then
mapping negatives

to clusters

Learning a locally
linear classifier per

cluster via TMFs

, , , , , , , , " ",,,,,,,
filter~ ",,,,,,,

, '"
...... " filters.& weights

'" ~
weights', ",'" .., '" "' ,' ~.,

----... ~-----1 1 1 1
1 1 1 1
1 1 1 1
1 1 Save to disk 1 1
1 1 1 1
1 1 1 1
L.l __ -if'; -_.1_1

'I , , 1 ,
" 1 , ,,,

, 1 '
, 1 '

. ' 1 "
cluster " Cluster centers & classifiers
centers 1 "

" " " ", " " , classifiers "

" 1 ' , 1

1
1

1
1

1

1
1

1

I

1
1

Generating generic
object proposals

Describing each
proposal

Dimension
reduction

Categorizing each
proposal using
locally linear

classifiers

Detection results
(with non-maximum

suppression)

Figurt, 1.6: Work flow of our cfficiE,nt object detection frarnework in both training
and testing.

both training and testing, similar to that of linear classifiers. Therefore, in gen-

eral, our classifiers can achieve comparable accuracy to kernel based classifiers at

the cost of lower computational time.

We demonstrated the efficiency and generality of our detection fran1ework

by applying it to four different object detection tasks, that is , VOC detection

challenges, traffic sign detection, pedestrian detection, and face detection. HOG

features are used for representing each object proposal in our framework. In

each task, our method can perform reasonably well with acceptable detection

accuracy and good computational efficiency. For instance, on VOC datasets with

20 object classes, our method achieved about 0.1 mean average precision (AP)

11

1.5. Publications

within 2 hours of training and 0.05 second of testing a 500 x 300-pixel image, on

average, using a mixture of MATLAB and C++ code on a computer equipped

with Xeon W3680@3.33GHz and 24GB 1333MHz memory. Our framework can be

easily parallelized using a multi-thread CPU or GPU, which makes it potentially

suitable for real-time applications.

1.4 Outline

The outline of the thesis is organized as follows: In Chapter 2, we review the

literature of object detection, object proposal generation, and local classifiers,

respectively. In Chapter 3, we explain the details of our object proposal gen-

eration method using structural learning, including the intuition, formulation,

efficient solving algorithm, computational complexity analysis, and experiments

with comparison to other approaches. In Chapter 4, we propose three efficient

local classifiers, all of which approximate the nonlinear decision boundaries in the

feature space with similar accuracy to kernel based classifier but having linear

computational complexity in both training and testing. In Chapter 5, we present

our efficient obdect detection framework using the techniques above, and show our

experimental results on the four different detection tasks. We finally conclude the

thesis in Chapter 6 and give some perspectives for future work.

1.5 Publications

Part of the work described here has previously appeared as the following publi- .

cations .

• Chapter 3

- [151] Ziming Zhang, Jonathan Warrell, and Philip H. S. Torr. Pro-'

posal Generation for Object Detection using Cascaded Ranking SVMs.

In proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1497-1504, 2011.

• Chapter 4 .

12

1.5. Publications

- [149] Ziming Zhang, Lubor Ladicky, Philip H. S. Torr, and Amir

Saffari. Learning Anchor Planes for Classification. In proceedings

of Advances in Neural Information Processing Systems (NIPS), pages

1611-1619, 2011.

[150] Ziming Zhang, Paul Sturgess, Sunando Sengupta, Nigel Crook,

and Philip H. S. Torr. Efficient Discriminative Learning of Parametric

Nearest Neighbor Classifiers. In proceedings of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 2232-2239,

2012.

For each of the above papers, I contributed the key ideas and wrote the first

drafts.

13

Chapter 2

Literature Review

Sliding window based object detection has a long history in computer vision

[8,32,37,51,56,85,86,95,114,120,127,129]. In this chapter, we first review

several types of sliding window based object detection methods. In general all

of these methods contain two major modules, object proposal generation and

verification, respectively, which is also the case with ours. Therefore, we further

review some related work on object proposal generation and verification in our

detection framework.

2.1 Sliding Window Based Object Detection

In this section, we review several types of sliding window based object detection

methods chronologically from shape-based to appearance-based methods. Notice

that a method may contain some techniques from different types of approaches,

and we simply categorize it to one type without repeating it in the others.

Interest point matching [90,91]. Geometric information of interest points

on objects is a good cue to recognize rigid objects because it has a certain toler-

ance to image translation, rotation, and scaling. In this context, object detection

problems can be considered as an alignment problem [98] where two sets of points

from the template and target, respectively, are aligned based on certain measures.

A famous example of such approaches is matching Scale Invariant Feature Trans-

form (SIFT) [90,91] points for object detection. The computational time of such

methods is relatively low, and can be applied for specific rigid object detection

with good performance.

Shape/Contour matching using distance measures [4,56,89,92,120]

or shape descriptors [7,8,9]. The shape or contour of an object is a set of

points that enclose the object as tightly as possible. Typically, these shapes are·

represented using edges, on top of which different distance measures can be used

for detection, such as Chamfer distance [89,92], Hausdorff distance [120], or even

self-defined distance [4]. Calculating the distance between a tenlplate shape and a

patch in a target image is very fast, especially using distance transforms [56], and

15

2.1. Sliding Window Based Object Detection

for some objects with distinct shapes the detection accuracy is good. However, as
a global shape, such methods suffer from being sensitive to noisy points, highly

dependent on detected edges, and hardly handling occlusion.

To resolve such problems, point distributions along the edges are captured

to summarize geometric information of shapes. These points can be quantized

like Shape Context [7], or can be soft-assigned like Geometric Blur [8,9]. Then

matching can be'done among these shape descriptors. Such methods are less sen-

sitive to noisy points and can handle occlusion partially, but still they are heavily

dependent on edge detection algorithms.

Implicit Shape Models (ISMs) [85,86,103, 118J. An ISM for a given ob-

ject category learns a class-specific codebook, where each codeword can be used

to predict the existence of an object instance with a spatial probability distri-

bution. Codewords can be local appearance features detected by interest point

detectors [85,86], or contour fragments [103, 118], which are learned discrimina-

tively using some machine learning techniques like boosting. Usually, the spatial

probability distributions are assumed to be Gaussian, and each object instance

is represented as a star model. That is, the prediction of each codeword is in-
t

dependent with each other, and all the codewords lying on an object instance

are connected with the center of the object. Final detections can be made by

voting [85,86] or classification [103, 118]. Compared with those shape matching

methods, ISMs allow the shape models deformable to better fit the object in-

stances. However, the computational time of such methods may be much longer,

and their performances are highly dependent on the existence of the codewords.

Viola-Jones object detection framework (i.e. simple features with

fast cascaded classifiers) [37,87,129,147]. The basic idea behind the Viola-

Jones framework [129] is to use' Haar-like features to capture the mean of the

pixel intensities in images at different locations with varying scales/aspect-ratios,

and evaluate these distributions with fast cascaded classifiers, which are learned

supervisedly using boosting. Because Haar-like features are translation and scale

invariant, integral images can be utilized for fast calculation of the responses of

16

2.1. Sliding Window Based Object Detection

Haar-like features without constructing image pyramids. An integral image for a

given image is a matrix whose entry at an arbitrary location (x, y) is the sum of

the pixel values above and to the left of (x, y), inclusive, in the original image.

This framework has been demonstrated to succeed in face detection [129] and

some other kinds of rigid object detection such as cars and pedestrians [97].

Inspired by the nice property of the translation and scale invariance of Haar-

like features, Dollar et. al. [37] proposed approximating the feature responses

in an image pyramid using a feature pyramid as long as the features satisfy the

translation and scale invariance property. In this way, the computational time is

reduced dramatically, and they showed good performance of such a method on

pedestrian detection.

Meanwhile, fast cascaded classifiers began to be widely used in object detec-

tion to prune the window searching space [147]. Recently Li et. al. [87] proposed

a Speeded Up Robust Features (SURF) cascaded classifier with much less weak

classifiers and stages in the cascade, which leads to faster training and testing

speed as well as better performance on face detection. Vedaldi et. al. [127] pro-

posed another cascaded classifier for object detection and demonstrated its power

on VOC2009 [44]. In this method, the cornputational cOlnplcxity of the classifier ,
is still very high, even in a cascaded manner from the bottom stage (linear classi-

fiers) to the top stage (kernel SVMs). Also many different features are employed

to build multiple kernels for final decision, which increases the computational

time as well.

HOG features with linear classifiers [32,63, 95, 96]. In [32], Dalal and

Triggs proposed Histogram of Oriented Gradients (HOG) features with linear

SVMs as classifiers for pedestrian detection, and achieved very good performance

in terms of accuracy and computational efficiency. The idea behind HOG is to

divide images (or windows) into smaller cells, compute a histogram of oriented .

gradient in each cell, and then renormalize the histograms in the cells by looking

into adjacent larger blocks. To better understand how and why HOG works,

recently Vondrick et. al. [130] proposed several feature visualization algorithms

that help humans see the visual world as a computer might see it.

17

2.1. Sliding Window Based Object Detection

Recently, exemplar SVMs [95] were proposed for object detection based on

HOG and linear SVMs. The basic idea is to train a linear SVM for every individ-

ual positive data using massive negative data to produce a rank list, where higher

ranks are given to the data points which are more likely objects, and objects are

detected using the calibrated scores of the classifier responses by logistic regres-

sion. Obviously the computational complexity of this method is very high. To

reduce the computational time in training, Hariharan et. al. [63] demonstrated

that by replacing linear SVMs in exemplar SVMs with Linear Discriminative

Analysis (LDA), it can achieve very similar accuracies but much faster training

speed. Gharbi et. al. [96] proposed a more general method to train exemplar

SVMs, which approximates the high dimensional feature space using a simple

Gaussian distribution, and computes the normal to the Gaussian at each positive

data. However, the long computational time in testing for such methods is not

reduced, as we can see in [96]. Also, as claimed in [61], training a linear SVM per

positive data may lead to poor generalization of classifiers. Instead, [61] proposed

learning a classifier using a subset of positive data, and demonstrated that the

classifiers learned in this way are better than exemplar SVMs with faster training

and testing speed. ,
In such methods, linear classifiers such as linear SVMs are employed because

of their good computational efficiency, and good accuracy when the feature di-

mension is relatively high. To extend this type of detection methods, other fea-

tures can be used with linear classifiers rather than HOG, such as contour frag-

ments [54].

Deformable Part Models (DPMs) [51]. Similar to ISMs, DPMs [51] al-

low the parts of the object models to be movable within a local region so that

the object models fit the data better than rigid HOG features. In other words,

D PMs learn the local appearance (i. e. parts) and pairwise geometry among the

parts to model objects. Typically, in such models at coarse scales, HOG features

with linear classifiers is applied to shrink the search space for objects, and at

finer scales, DPMs are applied just to the local regions that may contain ob-

jects. Limited by the computational complexity, DPMs usually predefine only

18

2.1. Sliding Window Based Object Detection

Table 2.1: Module comparison in some popular detection methods.
I Method II Proposal generation module I Proposal verification module

Shape matching [89] all possible bounding boxes distance comparison
ISMs [86] interest point detection and probabilistic voting

codeword matching
Viola-Jones [129] all possible bounding boxes cascaded classifiers with boosting
HOG with linear all possible bounding boxes linear SVMs
SVMs [32]
Exemplar SVMs [95] all possible bounding boxes linear SVMs
MKL [127] jumping windows cascaded kernel SVMs with MKL
DPMs [51] linear filters latent SVMs

several models per object category, each of which consists of a few parts (e.g.

6 parts). The object parts are usually represented using HOG, and their corre-

sponding part models are learned supervisedly and carefully using clustering and

linear SYMs, because the quality of learned part models has a great impact on

the detection accuracy. Using the learned part models, latent SYMs (i. e. linear

SYMs with multiple instance learning) are utilized to learn the object models

with the star spatial configurations of different part models on the objects by

fitting thern to the positive data, sirnilar to ISMs. Sorne work has been done to

improve the computational complexity of DPMs, such as using cascaded detec-

tion [52], coarse-to-fine search [107], sparselet models [121], and steerable part
t

models [108]. Meanwhile, there are some other work on enriching the flexibility

of DPMs, such as mixtures of parts [140], tree-structure DPMs [154], and visual

phrases [112] or relational phraselets [34].

Discussions. To summarize, all of these object detection models contain two

major modules, object proposal generation and verification, respectively. Table

2.1 lists the module comparison between some popular object detection methods.

From the aspect of computational complexity, however, all the methods in Ta-

ble 2.1 are category-dependent, which means that the computational complexity

of each module in each method above will be linearly proportional to the num-

ber of object categories. Therefore, with the increase of the number of object

categories, the computational time will be longer and longer for all the listed

methods.

Currently, linear SYMs [95], kernel SYMs [127] and latent SYMs [51] are the

19

2.2. Localization using Object Proposals

most popular classifiers in object detection. During testing, the computational

complexity of linear SVMs is only linear to the number of object categories, but its

accuracy is lower than kernel SVMs and latent SVMs in general. The complexity

of kernel SVMs in testing is linear to the number of object categories, and in some

cases especially for large-scale datasets, it may increase linearly with the size of

training data [28]. However, the support vectors in kernel SVMs can capture the

intra-class and inter-class variability of objects implicitly, which are learned by

kernels. The complexity of latent SVMs in DPMs is linear to the total number

of parts in all the object models, but not the size of training data. However, it

is still an open question that how many object models per object category, and

how lnany parts per lnodcl will be sufficient for detection.

In order to achieve good computational efficiency and detection generality

with acceptable detection accuracy, we would like to make our object models

shared with each other as much as possible to reduce the computational complex-

ity. We believe that this is a correct way for object detection, just as suggested

by Torralba et. al. [123]:

We believe the computation of shared features will be an essential

component of object recognition algorithms as we scale up to large

numbers of objects.

In the rest of this chapter, we will review some work on object proposal

generation and verification, respectively.

2.2 Localization using Object Proposals

In object detection, we are interested in localizing instances of an object within an

image, typically providing as output a set of windows (i. e. bounding boxes) con-

taining object instances. Object detection can be treated directly as a regression

problem [13], where the task is to predict the location and scale of a single object

frorn an irnage (or its absence), or a classification problem [32,51,95,127,129],

where the task is to classify every window in an image as either containing an

object or not. With the help of nonlinear kernels, more training data, more

20

2.2. Localization using Object Proposals

features, etc., these methods have achieved better and better detection perfor-

mances on the public datasets (e.g. the detection tasks in the PASCAL VOC

challenges), but unfortunately with longer and longer computational time. For

instance, DPMs requires computational time linearly proportional to the numbers

of object categories and bounding boxes that the classifiers need to verify.

Therefore, the need to accelerate the evaluation process without hurting detec-

tion accuracy is thus becoming more important for a successful object detection

system. Typically, we do not want to evaluate a complex classifier at all possible

positions, scales and aspect ratios in an image, but only a limited number. We

specifically address this problem as the problem of generating proposals of bound-

ing boxes for object localization. Recently the object proposal generation problem

has attracted much attention [1,27,52, 77, 78, 84,109].

Various methods have been proposed to handle the specific object proposal

generation problem for object detection. Branch-and-bound techniques [77,78]

for instance limit the number of windows that must be evaluated by pruning sets

of windows whose response can be bounded. The efficiency of such methods is

highly dependent on the strength of the bound, and the ease with which it can

be evaluated, which can cause the method to offer lirnited speed up for nonlinear
t

classifiers, even for kernelized branch-and-bound algorithms [2,3]. To relax the

bound constraint, Lehmann et. al. [84] proposed a branch-and-rank algorithm,

which introduced the ranking constraint into branch-and-bound to replace the

bound constraint.

Alternatively, cascaded approaches use weaker but faster classifiers in the

initial stages to prune out negative examples. With the increase of the number

.of stages in the cascade, more powerful but slower nonlinear· classifiers can be

used for final decision. In [127] the jumping window approach [27] was utilized to

build an initial linear classifier by selecting pairs of discriminative visual words

from their associated rectangle regions, which indicate the existence of an object

instance, then followed by quasi-linear SVMs and nonlinear SVMs.

Felzenszwalb et. al. [51] proposed a deformable part model (DPM) based on

latent SVMs in which part filters are only evaluated if a sufficient response is ob-

tained from a global "root" filter, and further [52] proposed a cascaded algorithm

21

2.3. Recognition using Local Classifiers

for DPMs. Such approaches have been proved to be efficient, and have generated

state-of-the-art results [51]. However, the fact that in [52] the decision scores for

detections must be compared across the training data may limit the efficiency of

the early cascade stages, where we only need to COInpare the scores of a classifier

at any level of the cascade locally within a single image. Further, such approaches

learn a single model which is applied at varying resolutions, while [106] strongly

suggests that we should explicitly learn different detectors for different scales.

Also, some other work has been done to improve the computational complexity

of DPMs, such as coarse-to-fine search [107] and branch-and-bound for DPMs

with Dual-Trees data structure [72].

In contrast with specific object proposal generation, there is SOIne recent in-

teresting work [1,40,109] targeting at generic object proposal generation, that is,

generating object· proposals regardless of the object categories (i. e. the object/non-

object binary setting). Though for object segmentation initially, the method

proposed in [40] can be also used for object detection, which produces a bag

of category-independent regions (not bounding boxes) using many different vi-

sual cues and structured learning for ranking the regions. The candidate regions

for ranking are generated by certain segmentation algorithms. Objectness mea-
I

sure [1] combined multiple visual cues to score the windows, and then produced

the object proposals by sampling windows with high scores. Based on [1], Rahtu

et. al. [109] proposed another category-independent cascaded method for pro-

posal generation, where the proposal candidates are sampled from superpixels,

which are generated using a segmentation method, according to a prior object

localization distribution and then ranked using structured learning with learned

features.

2.3 Recognition using Local Classifiers

As we discussed in Section 2.1, all the three widely used SVM based classifiers

have their own advantages and drawbacks. To balance classification accuracy

and computational efficiency of the classifiers for object proposal verification, we

are particularly interested in local classifiers as an alternative, which in general

22

2.3. Recognition using Local Classifiers

can have low computational complexity and high classification accuracy for many

recognition tasks (e.g. the winning method for image classification in VOC2009

[44]). In [71] Kecman and Brooks proved that the stability bounds for local SVMs

are tighter than the ones for traditional, global, SVMs. In order to develop an

efficient object detection framework, local classifiers are hence suitable.

Before introducing local classifiers, let us revisit binary SVMs first. The basic

idea in binary SVMs is to maximize the margin between positive data and nega-

tive data. Given a set of training data {Xi,Yih=l, ... ,N, where Vi,xi E lRd denotes

a d-dimensional feature vector and Yi E {±1} denotes its associated label, with

the help of slack variables, a binary SVM is mathematically defined as follows:

min -211Iwll~ + c L: ei
w,b,e .

'l

s.t. Vi, Yi (wTXi + b) ~ 1 - ei,

ei ~ 0,

(2.3.1)

where (w, b) denote the model parameters for the SVM, e denotes the slack

variable, C ~ 0 denotes a predefined regularization parameter, and . T denotes

the vector transpose operator. ,
By introducing the kernel tricks into Eq. 2.3.1, we can derive the dual form

of kernel based binary SVMs as below:

(2.3.2)
i=l j=l i=l

'where Q denotes the Lagrange multipliers and ¢(.) denotes the kernel mapping

function. A kernel SVM tries to select a subset of data points (i. e. support

vectors) from the entire training data and give them positive weights to construct

its decision function N

f(x) = L: O!iYi¢(Xi)T ¢(x) (2.3.3)
i=l

for a given test data point x.
On the contrary, the local classifiers we mentioned here are learned using local

23

2.3. Recognition using Local Classifiers

".;-- RBF kernel SVMs
locally linear r---""',

I' .. " 1'\ classifiers , ,
I .. ,

~
, ,

~
,

I II II \
,. , ,.)

A I I .. ,
I

\ II , ,
I

\ .. I I '" I , ,. I' ,. I I " '---; ,---- I ---..J

Figure 2.1 : Ill~stration of comparison between RBF-kernel SVMs and locally
lincar classifiers, where red rectangles and blue triangles represent two classes
of data, and the dashed circle and lines denote the decision boundaries of RBF
kernel SVMs and the locally lineal' classifiers, respectively.

context information of each training data point, and classify each test data point

based on its local context as well. Fonnally, we define our binary local classifiers

as follows :

Definiti~n '2:{ (Binary Local cI~~~ificrs) . We con8'ideT a 1'ich fam/tty of cla88i:/ie1'/)

as binary local classifiers, whose decision functions for a given data point x satisfy

the following formula:
Nz

f(x) = L ~i'ljJ(Zi' x) (2.3.4)
i= l

where Vi = 1,'·· · ,Nz , Zi E JRd is an arbitrary point in the same feature space

as x lies in, ni E JR is its associated weight, and 'if) (', .) : JRd x JRd -t JR is a

data-dependent similarity measure function.

By comparing Eq. 2.3.4 with Eq. 2.3.3, we can see that kernel SVMs can be

considered as special cases of our local classifiers, where N~ = N, Vi, Zi = Xi, and

'ljJ(Zi ' x) = Yi¢(Xi)T ¢(x). Fig. 2.1 shows an example of conlparing RBF k rnel

SVMs with locally linear classifiers, a type of widely used local clas ifier , in a

2D case. As we see, the decision boundaries of RBF kernel SVM fornl a regular

circle shape in contrast to the irregular shape for locally linear classifiers, becaus

kernel SVMs have prior assumptions on the shapes of decision boundaries, while

locally linear classificrs are data-drivcn.

One of the major problems in kernel SVMs is that they are too COluputa-

tionally intensive for applications with large-scale data sets. With the help of

local classifiers, some kernels can be approximated very well using explicit fea-

ture maps (i.e. constructing the function ¢(.) in Eq. 2.3.3 directly), and the

24

2.3. Recognition using Local Classifiers

mapped features are used to train linear SVMs to reduce the computational time

dramatically. Maji et. al. [94J proposed a fast piecewise linearization approach

to approximate the intersection kernel with significant savings in computational

time and memory. Vedaldi and Zisserman [128J proposed a more general explicit

feature mapping method to approximate the homogeneous additive kernels (e.g.

the intersection kernel and the X2 kernel) based on the Fourier sampling theorem.

However, the 'optimal decision boundary for a classification problem does not

necessarily behave as defined by a kernel. In fact, it could be an arbitrary nonlin-

ear function in the feature space. In such cases, it is still possible to approximate

an optimal decision boundary locally using linear functions according to Taylor's

theorern. Following this thought, several locally linear classifiers have recently

been proposed and successfully applied to object recognition. Zhang et. al. [146J

proposed an SVM-KNN classifier, where for each test data point, its K near-

est neighbors in the training data are found and used to train multi-class linear

SVMs. Similar ideas appeared in [137]. In SVM-KNN, searching for K nearest

neighbors for each point can be considered as a coding process, and a few coding

methods (e.g. local coordinate coding (LCC) [143J, improved LCC [142], locality-

constrained linear coding (LLC) [131], deep coding network [88]) have been pro-
t

posed for approximating the nonlinear optimal decision boundaries, which are

assumed to be Lipschitz smooth functions in order to guarantee theoretical up-

per bounds of the approximation error. Ladicky and Torr [76] proposed a method

for learning locally linear SVMs using encoded data.

Nearest neighbor classifiers [6,15,125,134] have been widely used in computer

vision, and they fall in the definition of our local classifiers as well. In [15] Boiman

.et. al. proposed a Naive Bayes Nearest Neighbor classifier (NnNN) based on the

nonparametric nearest neighbors for image classification, and achieved good re-

sults on some benchmark datasets. Behmo et. al. [6] parameterized NBNN by

max-margin methods for both image classification and object detection. Thyte-

laars et. al. [125] built a kernel for SVMs by generating image representations

using NBNN. Weinberger and Saul [134] proposed a large-margin nearest neigh-

bor classifier (LMNN) which improves the K-nearest-neighbor (KNN) classifier

by learning the Mahalanobis distance metric from labeled examples.

25

Chapter 3

Object Proposal Generation:

Structured Learning

In this chapter, we formulate the object proposal generation problem as a struc~

tured learning problem, since we need to predict the object proposals with lo-

cations and scales / aspect-ratios (i. e. structural information). Particular ly, we

investigate structural support vector machines (SSVMs) [124] with our proposed

scale/aspect-ratio quantization scheme and ranking constraints. Considering

the computational efficiency of training and testing our method, we propose a

ranking-order decomposition algorithm to solve our SSVMs formulation approx-

imately and efficiently, which can bound the total loss of our formulation under

certain conditions. Further we propose a specific two-stage cascade approach

for the object proposal generation problem, which we allow to utilize different

regularizers, constraints, even features in each stage.

The major differences between our method and the previous related work on

object proposal generation [1,40,109] are:

• From the view of features, our method only takes simple image gradients as

features for learning and testing, while all of the related work above utilize

multiple visual cues in images;

• From the view of ranking for proposals, our method utilizes the classifi-
t

cation scores (i. e. margins) generated by the learned linear classifiers for

ranking, rather than some scores from superpixels [40], prior object localiza-

tion distributions [109], or the combination of multiple visual cues [1,109];

• From the view of learning, our method formulates the problem into a super-

vised structured learning framework, while the others involve much more

heuristics.

As a result, our method can run much faster than all the other three methods

wi th similar or even better performance.

3.1 Formulation: Structural SVMs

We start with introducing the normal structural SVMs (SSVMs) and one of its

variants in Section 3.1.1, then we introduce our scale/aspect-ratio quantization

27

3.1. Formulation: Structural SVMs

scheme into SSVMs in Section 3.1.2, and finally by further adding ranking con~

straints into SSVMs, we propose our own SSVMs for the object proposal gener-

ation problem in Section 3.1.3. In contrast to previous work on object detection

using structural learning such as [13], where each image associates one loss, our

formulation allows every pair of compared patches in an image to have a loss,

which essentially makes our method suitable for multi-scale multi-object detec-

tion. Besides, ari efficient optimization algorithm has been developed for our

formulation to handle large-scale data easily (see Section 3.2 for details).

3.1.1 SSVMs and LSE-SSVMs

Structural SVMs (SSVMs) [124] are tools for predicting structured outputs which

extend the traditional SVMs. Given a set of training data (Xi, Yi)i=l , ... ,N where

Yi E Y denotes a structure and \lI(Xi' Yi) denotes the feature vector associated

with data Xi under the structure Yi, SSVMs 1 can be formulated in the following

way [124]:

min ~llwll~ + c L: max{f{w· (\lI(Xi' Yi) - \lI(Xi' y)) - D.(Yi, Y)}},
W P f i Y

(3.1.1)

where w denotes the model parameters, f{-} denotes an arbitrary loss function

(e.g. 0/1 loss, hinge loss), D.(Yi, y) denotes a loss measuring the difference be-

tween an arbitrary structure Y E Y and the structure Yi, and Li(Yi, y) = 0 if

Yi = y, otherwise D.(Yi, y) ~ 0; c ~ 0 is the predefined regularization parame-

ter; "." denotes the dot product operator between h,yo vectors; P E {1,2}. During

testing, the structure of a test data point X* is predicted as:

y* = argmax {w· \lJ(x*, y)}.
yEY

(3.1.2)

To explain how to use SSVMs to formulate the object proposal generation

problem, let us take Fig. 3.1(a) for example. Each pixel in the image, denoted by

the blue cross, can be considered as an arbitrary data point Xi in Eq. 3.1.1, an

arbitrary window centered at the pixel, denoted by the yellow dashed rectangles,

1 In the thesis, we consider both i 1- and i 2-norm SSVMs without specific explanation.

28

3.1. Forn1ulation: Structural SVMs

(a) SSVMs and LSE-SSVMs (b) Q-LSE-SSVMs (c) QR-LSE-SSVMs

Figure 3.1: Illustration of differences of Structural SVrv1s (SSVMs), LSE-SSVMs,
Q-LSE-SSVMs, and QR-LSE-SSVMs, respectively. Given a pixel, denoted as
a blue cross, the windows (i. e. yellow dashed rectangles) centered at the pixel
in (a) could be many. Using our scale / aspect-ratio quantization schen1e, those
windows in (a) can be represented by the red solid window centered at the pixel
in (b). By relaxation, in (c) windows at different pixels with different quantized
scales/aspect-ratios can be compared.

can be taken as the structure variable y, and \lJ(Xi' y) is the feature within the

window y (e.g. the gradient patch, HOG or SIFT). Letting the slack variable

~i = maxy{f{w. (\lJ(Xi' Yi) - W(Xi' y)) - ~(Yi' Y)}}, it is only associated with the

pixel Xi. Therefore, in our case SSVMs ain1 to learn a model w so that at any

pixel Xi in a given image, the margin between the feature defin d by the window
f

Yi and the feature defined by any arbitrary window Y should be no less than th

loss ~(Yi' y) with the help of slack variables. When generating object proposals,

SSVMs search for the bounding box y* at a pixel X* which maximizes the margin.

In [105], another type of SSVMs with linear summed error (LSE-SSVMs) was

proposed. Different fron1 [124], in LSE-SSVMs the slack variables are dep ndent

on not only data points but also structures, that is,

(3.1.3)

To understand LSE-SSVMs in the context of proposal generation, letting the slack

variable ~i (y) = f{ w . (\lJ (Xi, Yi) - W (Xi, y)) - ~(Yi' y)}, now it is associated with

not only the pixel Xi but also the structure y. In other words, a slack variable

is assigned to each window in an image for optimization, which gives us n10re

flexibility for learning lTIodels.

29

3.1. Formulation: Structural SVMs

Figure 3.2: Our scale/aspect-ratio quantization schenle can be represented hierar-
chically. (a) superimposes the four window scales in a mini-quantization scheme
with rJ = 0.5, and (b) unfolds the scales into a tree structure. The relative widths
and heights of the windows are represented by the (w, h) pairs. Such a hierarchy
can represent all windows to 0.5-accuracy.

3.1.2 LSE-SSVMs with Quantized Scales/ Aspect-

ratios (Q-LSE-SSVMs)

The Inajor difficulty of applying SSVMs to our proposal generation problem is the

huge structural'search space for localizing bounding boxes, which is quadratically

proportional to image sizes as addressed in Section 1.2.1. To tackle this challenge,

we propose quantizing the scales / aspect-ratios of all the windows in images into

several discrete scales/aspect-ratios to shrink the search space for localization.

Based on Definition 1.2 in Section 1.2, which is the definition of rJ-accuracy, we

propose the following scale/aspect-ratio quantization scheme:

Definition 3.1 (Quantized Scale/Aspect-ratio). Given an overlap threshold

rJ ~ 0, a window s in an image can be quantized into a quantized scale/aspect-

ratio T if and only if::lt E T such that s can be localized to 'IJ-accuracy, where t

is a window with the quantized scale/aspect-ratio.

Fig. 3.2 illustrates our scale/aspect-ratio quantization scheme for a 0.5-

accuracy case in a hierarchy. Given a minimum size of objects (wo, ho) that

can be found in images, our quantization schenle can be easily represented by a

ternary tree. Another example is shown in Fig. 3.1 (b), where the bigger dotted

30

3.1. Formulation: Structural SVMs

yellow rectangle can be quantized (or represented) by the red solid rectangle to

0.5-accuracy, because their overlap score is over 0.5.

Proposition 3.1 (Existence of Quantization Scheme). Given an overlap

threshold'rJo and a minimum size of objects (wo, ho) that can be found in images,

any window s with window size (ws, hs) can be localized to 'rJo-accuracy by at

least one window t in our scale/aspect-ratio quantization scheme with parameter

'rJ ~ 'rJo·

Proof. According to Fig. 3.2, we can construct a subset of windows in our quan-

tized scheme by com pu ting a E { llog~ ~ j, f1og~ ~ 1 } and b E {110g~ ~ j, f1og~ ~ 1 },
where l·J and r'l denote the floor and ceiling operations, respectively. Letting

t(Wt, ht) be a window with quantized window size (Wt, ht), the overlap between s

and t can be calculated as follows:

3a, b, 0 (s, t (wo'rJa
, hO'rJb

)) -
min {ws, wo'rJa } • min {hs, hO'rJb }

max {ws, wo'rJa } • max {hs, ho'rJb}

That is, s can be localized to 'rJo-accuracy by t.

(3.1.4)

o
Proposition 3.2 (Minimum Number of Quantized Scales/Aspect-ratios).

Given an overlap threshold 'rJ ~ 0, a minimum size (wo, ho) and a maximum size

(w, h) of objects that can be found in images, the minimum nu.mber of quan-

tized scales/aspect-rntios that is sufficient to localize any object is bottnded by

fIogTJ ~ 1 fIogTJ 'T 1·
Proof. According to the construction of our scale/aspect-ratio quantization scheme, .

the numbers of quantized scales that will cover the maximum size of objects W

and hare flogTJ ~ 1 and flogTJ 'T 1, respectively. Therefore, the maximum num-

ber of quantized scales that is needed to cover all possible objects in images is

o

Proposition 3.3 (Search Space for Localization using Quantization Scheme).

Given an overlap threshold 0 < 'rJ < 1, the minimum size of quantized scales/aspect-

ratio (wo, ho), and the maximum image size (W, H), the search space for localizing

bounding boxes using ~ur quantization scheme is 0 (W . flog ~ : 1 . H . flog ~ ~ 1) .

31

3.1. Formulation: Structural SVMs

Proof. According to Proposition 3.2, the search space for quantized scales is re-

duced to flog~: 1 flog~ ~ 1, while the search space for positions of proposals

keeps the same O(W . H). Therefore, the search space for localization using

. qu~ntization scheme is 0 (W . flOgl W 1 . H . flOgl hH 1) . 0
11 wo '1", 0

Now by introducing our scale/aspect-ratio quantization scheme into LSE-

SSVMs, we can formulate our Q-LSE-SSVMs as follows:

(3.1.5)

where ,Y, y, and Yi denote the quantized scale/aspect-ratio space, a quantized

scale/aspect-ratio in this space, and the quantized ground-truth scale/aspect-

ratio for the pixel Xi, respectively. As illustrated in Fig. 3.1 (b), the yellow

dashed windows can be quantized into a red solid window centered at the pixel.

3.1.3 Q-LSE-SSVMs with Ranking Constraints

(QR-LSE-SSVMs)

Notice that in Q-LSE-SSVMs, only the windows centered at the same location

in an image can be compared, which is the same case in LSE-SVMs. However,

for proposal generation, all the windows within an image should be comparable

with each other without any limit on location or scale/aspect-ratio. Therefore,

in order to gain more flexibility on window comparison, we introduce the ranking

.. constraints into Q-LSE-SSVMs, as illustrated in Fig. 3.1(c), and rewrite it in Eq.

3.1.6 below:

min
w

where ~ij(Ymi' Ymj) 2:: 0 denotes a loss measuring the difference between a win-

dow centered at Xi with size Ymi and a window centered at Xj with size Ymjl and

r(xi' YmJ and r(xj, Ymj) denote their corresponding ranks, respectively. Ideally
,,'

32

3.2. Optimization: Ranking-Order Decomposition

the data with higher ranks should have larger margins. Clearly, if the ranking list

is defined as Vi, y E ,Y, r(xi' Yi) ~ r(xi' y), Eq. 3.1.6 turns into Eq. 3.1.5. Letting

the slack variable ~ij (y mi , Y mj) = f { w . (w (Xi, Y mi) - W (Xj, Y mj)) - ~ij (y mi , Y mj) },

now it is associated with any pair of location and window size in images, which

leads to much more variables for learning.

Definition 3.2 (Maximum Overlap). Given an image I and the ground-truth·

bounding boxes of multiple objects 91 ... m] in I, the maximum overlap of a window

8 in I is defined as

Os = max 0(8,9i).
iE{l, ... ,m]}

where 0(8,9i) denotes the overlap score between 8 and 9i.

(3.1.7)

Definition 3.3 (Correct Object Proposals). Given an overlap threshold 'rJ ~

0, a window 8 is considered as a correct object proposal in an image if and only

if Os ~ 'rJ.

For object proposal generation, we can construct the ranking list for a training

image based on the maximum overlap scores of windows for learning models, the
II

higher the scores, the higher the ranks. During testing, the proposals with larger

margins should have better chances of localizing object instances to 'rJ-accuracy .

. Notice that in Eq. 3.1.6, the model w is enforced to be the same for all

the quantized scales/aspect-ratios, which limits the discriminative power of the

model. By relaxing this condition, eventually we propose our SSVMs formulation

for proposal generation, QR-LSE-SSVMs, as follows:

min
w

(3.1.8)

where IYI denotes the number of quantized scales/aspect-ratios.

33

3.2. Optimization: Ranking-Order Decomposition

3.2 Optimization: Ranking-Order

Decomposition

Basically Eq. 3.1.8 can be considered as a multi-task learning problem which

contains millions of constraints and thousands of model parameters w's for op-

timization. This will be a big challenge for solving this problem efficiently using.

general optimization algorithms, such as cutting-plane methods [70, 105, 153],

projected sub-gradient methods [153] and even stochastic gradient descent meth-

ods [105]. Therefore, we propose a ranking-order decomposition algorithm for

solving Eq. 3.1.8 approximately and efficiently.

3.2.1 General Algorithm

Our algorithm is inspired by the dual decomposition method for learning Markov

Random Fields (MRF) [73,74]' where an MRF (i.e. master problem) is decom-

posed into smaller sub-graphs (i.e. slave problems) using dual decomposition,
..

which can be solved Ipore efficiently based on the current master model and later

their solutions are used for updating the master model. This process is repeated

until it converges.

The basic idea of our algorithm is to decompose the original problem in Eq.

3.1.8 into slave problems with much fewer constraints and model parameters

inside, each of which can be solved independently and much more efficiently.

Then the solutions of these slave problems are passed to the master problem

.. for updating its parameters. This process is repeated. Fig. 3.3 illustrates our

ranking-order decomposition algorithm using data points associated with two

structures.

In order to apply this algorithm to solve the original problem in Eq. 3.1.8,

we introduce two variables wand z such that Vm, Wm = wmzm. Then the

34

3.2. Optimization: Ranking-Order Dcconlposition

Structure i

Structure i Structure j

Figure 3.3: Illustration of ranking-order decomposition for optimizing QR-LSE-
SSVMs given two structures i and ,j, where each circle denotes a data point,
each directed solid edge denotes a ranking order fronl data with a highe~ rank
to data with a lower rank, each directed dotted edge denotes the message (pa-
ranleter) passed along the direction, and the' circles h'ceach row share the 'same
structure. Using the ternlinology in Dual Decomposition, the top model is the
master problem, and the two bottom models are the slave problenls.

It

optimization problem in Eq. 3.1.8 can be rewritten as follows:

min
w,z

1 IYI
P L IZmlPllwmll~ + C .. L f{Zmi [wm . W(Xi' Ym)] - Zmj [wm" W(Xj,Ym)]

m=l 't,J,mi,mj
'-~ij(Ymil Ymj)} (3.2.1)

s.t.

It· turns out that the optimization problenl in Eq. 3.2.1 can be considered as

a biconvex optimization problem. To solve it using our ranking-order decompo-

sition algorithm, we can decompose it into the following optinlization problem,

where Eq. 3.2.2 defines the slave probleills, and Eq. 3.2.3 defines the master

problem:

1 IYI . .
n~n - L IZmlPllwmll~ + C L f{zm [wm' W(Xi,Ym) - wm' W(Xj,Ym)] - ~ij(Ym)}

p m=l . i,j,m

S. t. Vi, j, m, r(xi' Y m) ~ r(xj, Y m), Y m E Y; (3.2.2)
, ..

35

3.2. Optimization: Ranking-Order Decomposition

min
z

-D,.ij(Ymi' Ymj)} (3.2.3)

Solving Eq. 3.2.2 is equivalent to solving IYI independent much smaller

minimization problems, each of which learns only a model Vim using the data

with structure Ym' This can be done efficiently using cutting-plane methods

[70, 105, 153] or stochastic gradient descent methods [105] in a parallelized man-

ner. The optimization in Eq. 3.2.2 enforces the learned ranking orders of data

within each structure to fit the predefined ranking list in Eq. 3.2.2 as well as pos-

sible, regardless of the ranking orders between the data with different struc~ures.

Solving Eq. 3.2.3 is rather easy using cutting-plane methods or stochastic gra-

dient descent methods as well, with very small number of parameters in z though

the number of constraints in Eq. 3.2.3 is the same as that in Eq. 3.2.1. The slack

variables will disappear in the dual form of Eq. 3.2.3. This optimization enforces

the learned ranking orders among data points to fit the predefined ranking list in
It

the original problem in Eq. 3.2.1 as well as possible.

Overall, solving Eq. 3.2.2 and Eq. 3.2.3 sequentially and repeatedly gives us

the solution which can be used to solve QR-LSE-SSVMs approximately. Unfor-

tunately, unlike Dual Decomposition, our ranking-order decomposition algorithm

cannot guarantee the convergence in each iteration. However, under some con-

ditions, our algorithm can provide the lower and upper bounds of the minimum

.. loss i~. the original problem.

Theorem 3.1 (Minimum Loss Bounds for Solving QR-LSE-SSVMs). Let

f be an arbitrary loss function and C = +00 in Eq. 3.1.8, Eq. 3.2.2 and Eq.

3.2.3, respectively. Suppose in each iteration the minimum losses in Eq. 3.2.2

and Eq. 3.2.3 are equal to £1 and £2, then the minimum loss in Eq. 3.1.8 is

lower-bounded by £1 and upper-bounded by £2.

Proof. Let w, VI, and z be the optimal solutions in Eq. 3.1.8, Eq. 3.2.2, and

Eq. 3.2.3, respectively, and \1m, VIm = Zm Vim, denoted by VI for the correspond-

ing solution. Because of C = +00, the objective function in each optimization

36

3.2. Optimization: Ranking-Order Decomposition

problem above is equivalent to computing the total loss in the data. We denote

the objective functions above as 11, 12, and 13, respectively, then 12(W) = Ll and

13(W) = L2.
'.' w minimizes Eq. 3.2.2,

:. 12(W) :::; 12(W) .
. : w minimizes Eq. 3.1.8,

.'. Based on our ranking-order decomposition algorithm, we have 11 (w) :::; 11 (w) =
13(W) .
. : The constraint set in Eq. 3.2.2 is a subset of that in Eq. 3.1.8,

:. 12(W) :::; 11(W).
:. Ll = 12(W) :::; 12(W) :::; 11(W) :::; 11(W) = 13(W) = L2. o

3.2.2 A Two-Stage Cascaded Model for Object

Proposal Generation

In this section, we explain how to apply our ranking-order decomposition algo-

rithm to generate object proposals. We will use the hinge loss function in the

optimization, and repeat the iteration between the master problem and the slave

problems only once.

Cascaded classifiers are good tools for handling extremely imbalanced data,

that is, too many negatives and too few positives. Object detection is one of the

applications with extremely imbalanced data, where th~ objects of interest in an

image are very few but the non-object are many, considering the huge structural

search'space of windows. In the cascade, only "positives" are passed on as outputs

of each stage, which have higher ranks than those "negatives".

In our training data, each image is annotated with the bounding boxes of

objects of interest. Our goal is to give higher ranks to the correct object proposals

than the wrong ones within each image in a very efficient way, such that the

windows at the top of the ranking list can be ta~en as our final object proposals.

Fig. 3.4 summarizes our cascaded method for generating proposals.

For ease of explanation of our cascaded approach, we list the main notations

used in the following sections in Table 3.1.

37

3.2. Optimization: Ranking-Order Decomposition

Table 3.1: Some notations used in the explanation of our cascaded model for
object proposal generation.

Notation Definition
T The set of all possible windows in an image.
S The set of all possible windows in our window quantization scheme.
S(w, h) The set of all the windows in an image with width wand height h.
o(t, s) The overlap between window t E T and window s E S.

°t The maximum overlap for window t E T in an image.
1]E[O,l] Over lap threshold for proposal generation.
k A given scale/aspect-ratio in our quantization scheme.
Sk The set of all the windows which can be represented to 1]-accuracy

at quantized scale/aspect-ratio k.
Wk , Zk Learned linear classifiers for quantized scale/aspect-ratio k at Stage

I and II, respectively.
v A channel response feature vector used in Stage II for learning z.

3.2.2.1 Stage I: Scale/Aspect-ratio Specific Ranking

The first stage of our cascade aims to pass on a number of object proposals based

on different sliding windows at each of a set of quantized scales and aspect ratios

to the next stage. This is done by learning a linear classifier for each quantized

scale / aspect-ratio separately.
II

Individual Classifier Learning

Given rJ and a set of quantized scales/aspect-ratios, for each scale k 2 we wish

to learn a linear classifier fl(Xs;Wk) = Wk' X S , as suggested in [106], to rank a

window S E Sk, where Xs denotes its feature vector, among all the windows in

Ideally, we expect that the ranking score for any window Si E Sk n TJ with

OSi 2:: rJ is always higher than that of any window Sj E T with OSj < rJ, where

n denotes the intersection between two sets. That is, for Wk we require that

within the image I all the corresponding positive training windows It = {Si E

Sk n TJ IOsi ~ 1]} should be ranked above all the training negatives]- = {Sj E

TJlosj < rJ}. This leads us to formulate the problem as a ranking SVM, which

2In the following sections, we refer to scale k as quantized scale/aspect-ratio k for short.

38

3.2. Optimization: Ranking-Order Decomposition

IJ
l

~
(a) (b) (c) (d)

•

• • •
(e)

Figure 3.4: Summary of our cascaded method for generating proposals. An image
(a) is first convolved with a set of linear classifiers at varying scales/ aspect-ratios
(b) producing response images (c). Local maxima are extracted from each re-
sponse image, and the corresponding windows with top ranking scores are for-
warded to the second stage of the cascade. Each proposed window is associated
wi th a feature vector (d), and a second round of ranking orders these prop'osals
(e) so that the true positives (marked as black) are pushed towards the top. Our
method outputs the top ranking windows in this final ordering.

can be expressed as below 3:

II

~IIWkll~ + CL~0 p . .
t,J,n

s.t. Vn, i E Itn'.i E I;:, Wk . (xi - xj) ~ 1 - ~&,

~& ~ o.

(3.2.4)

Here, xi and xj are the feature vectors associated with positive window i and

negative window j in training image In, respectively, e are the slack variables,

and C1 ~ 0 is a predefined regularization parameter. We set the loss .6 in Eq.

3.2.2 to 1.

Recall that the purpose of learning the individual classifiers is to build the

proposal pool for further usage, so the constraints in Eq. 3.2.4 are restricted to one

quantized scale in one image. Therefore, the ranking scores from each classifier

are incompatible across scales/aspect-ratios, necessitating the second stage in the

3If taking 0 as the dummy feature whose rank is higher than negatives but lower than
positives, then only comparing data with the dummy feature turns Eq. 3.2.4 into a standard
SVM. We denote the solution of Eq. 3.2.4 as "ip-w Ir", and the solution of Eq. 3.2.4 with the
dummy feature as "ip-o/r".

39

3.2. Optimization: Ranking-Order Decomposition

cascade.

Proposal Selection with Non-Max Suppression

To decide which proposals to forward from the first stage to the second of the

cascade, we look for the local maxima in the response image of classifier Wk, and

set a threshold on the maximum number of windows to be passed on. The first

stage thus has two controlling parameters. The first, , E [0, 2], specifies the ratio

between the size of the neighborhood over which we search for the local maxima,

and the reference window size for each classifier. This is the non-Inax suppression

parameter. The second, d1 , specifies the maximum number of windows, which

are the top d1 ranked local maxima, that can be passed on from any scale.

3.2.2.2 Stage II: Ranking Score Calibration

The first stage of the cascade generates a number of proposal windows at each

scale k for image I. The second stage then re-ranks these globally, so that the

best proposals across scales are forwarded. To achieve th~s, we introduce a new

feature vector for each window, v, which consists of the channel responses of the

classifier at the first stage. This is a relaxation of linear scalability in Eq. 3.2.3

in the general algorithm. For instance, v could be a 4-dimensional feature vector

if feature x is divided into 4 segments without overlaps, each of which gives a

response to the corresponding classifier. The reason for splitting x into different

segments is that we could make full use of information in different segments to

improve the calibration performance.

Based on v, we can re-rank each window i by the decision function !(Vi) =
Zki • Vi + ekp where ki denotes the quantized scale/aspect-ratio associated with

window i, Zki is a set of coefficients for scale ki that we would like to learn, and

eki is the corresponding bias term. Similarly, we formulate this learning problem

40

3.3. Experiments

as a multiclass ranking SVM as shown in Eq. 3.2.5 4:

s. t. \In, i E i:, j E i;;, Zki • vi - Zkj • vj + eki - ekj 2:: 1 - ~Ij,

~Ij 2:: O.

(3.2.5)

Here, i: and I;; denote the positive and negative windows in image In forwarded

from the first stage of the cascade across different quantized scales/aspect-ratios.

Similarly, the loss ~ in Eq. 3.2.3 is set to 1. We ignore the weights for Z in the

original formula in Eq. 3.2.3 and just focus on re-ranking the object proposals,

since the ranking error will dominate the objective function in Eq. 3.2.3.

In this way, all the proposal candidates in each image can be ranked, and the

top d2 windows are then considered as the final object proposals.

3.2.3 Computational Complexity

Our method involves the application of simple linear chtssifiers to the images,
II

and as such is dominated by the complexity of 2D convolution with linear kernel

which must be applied to each image. The complexity can thus be approximated

as 0(1(x R x (W x H) X (WI X HI)), where K denotes the number of indi-

vidual classifiers learned in Stage I, R denotes the number of segments used in

Stage II, (W, H) denotes the filter size, and (WI, HI) denotes the resized image

size. We note that our complexity is therefore (largely) independent of

the number of potential proposals let through at each stage (db d2),

unlike methods which include non-linear classifiers [77, 127J, and the

number of object categories for generating object proposals. Also, our

algorithm is quite suitable for parallel computing, which will reduce the running

time dramatically.

4Similar to Eq. 3.2.4 with the dummy feature, we c~ntinue to use the same notations for
the solution of Eq. 3.2.5.

41

3.3. Experiments

3.3 Experiments

We test our method in two tasks: specific object proposal generation and generic

object proposal generation, respectively.

3.3.1 Specific Object Proposal Generation

We design a comprehensive set of experiments to assess the impact of various

parameters and design choices in our model. We also compare our performance

against a state-of-the-art method [77] and show substantial improvement. We

measure our performance in terms of recall-overlap curves [77,127]' which pro-

vides a means of assessing the potential information preserved for further pro-

cessing, and the speed of our method. We test on PASCAL VaC2006 [48] and

VOC2010 [45] datasets. VOC2006 consists of 10 object categories, 5304 images of

natural scenes, with object labels and their corresponding ground-truth bound-

ing boxes released for training, validation and test sets. VaC2010 consists of

20 object categories, 21738 natura:l images, and object labels and their corre-

sponding ground-trut'b. bounding boxes are available for training and validation

sets only. For training and testing, we split VOC2006 into train/validation and

(train+validation)/test, and VOC2010 into train/validation, respectively.

3.3.1.1 Implementation

For this task, we simply employ "£2 - w/r" and "£1: w/r" for Eq. 3.2.4 and

.. Eq. 3.2.5, respectively, to explore the impacts of different parameters on the

performance in terms of object recall and running time. We assume that in

images the minimum and maximum sizes of objects can be localized by 16 x 16

and 512 x 512 pixel patches to 1]-accuracy, respectively. These two sizes are

decided based on the statistics of object and image sizes in vac challenges.

We use simple zero-mean gradient features to learn each classifier Wk at the

first stage. In detail, we first convert all the images into gray scale, and represent

all the object ground-truth bounding boxes to 1]-accuracy using our scale/aspect-

ratio quantization scheme to provide positive windows. After randomly selecting

42

3.3. Experiments

negatives across scales, all windows are resized to a fixed feature window size

(W, H), and then for each pixel, the magnitude and orientation of its gradient is

calculated. Orientation weights are then calculated in a fixed set of R orientation

channels for assigning the gradients to build sub-features Xr (r E {l,··· ,R})

separately. Finally, by concatenating all X r , a (W x H x R)-dimensional vector is

generated consisting of spatial and gradient information. To handle the different

illumination contrasts in images, we subtract the mean value to produce a feature

vector Xi for window i, and the learned classifiers are thus guaranteed to be zero-

mean vectors (avoiding the need for a bias in Eq. 3.2.4). The features used at the

second stage, v, are produced by concatenating the classifier responses from each

orientation channel at the first stage, producing an R-dimensional vector where

Vr = Wk,r • X r • At test time, to generate features X, we simply resize the irpage

for each scale k by the ratio of its reference window to (W, H), and then apply

the learned classifier Wk by 2D convolution.

The remaining global parameters of the cascade are " d1 and d2 , which affect

the trade-off between the number of positive windows we retain at each stage,

and the amount of noise we allow through. We investigate the effects of these
It

parameters in the following sections.

3.3.1.2 VOC2006

Cascade Design: "d1 , d2

We first evaluate the effects of the following cascade parameters: the neighbor-.

hood size for finding local rnaxiIna 'Y in the first stage, and the nUlnber of windows

to be passed on at the first and second stages, d1 and d2 • Fig. 3.5 shows the per-

formance of various parameter settings in terms of the area under curve (AUC)

(i. e. recall-overlap curve) for the class bicycle in VOC2006. We can see that as

we move from left to right (increasing d2) the area with highest AUC scores shifts

from bottom right to top left. This implies that more candidates selected from

the first cascade stage (high d1) and a higher ''Y are appropriate for I ow-recall

regimes (low d2), while the opposite is true for high-recall (high d2). For further

experiments we choose values d1 = 50 and 'Y = 0.6, which work well across the

d2 settings.

43

3.3. Experiments

VOC2006 val idation dataset (bicycle, d2=1) VOC2006 validation dataset (bicycle, d2=10)

0.4

~0 .5 « ,..-~

100Q -. '50~0~ . " ",~. 2 0
00 5020 - , ., .. ,,~ ·~ 121 .41 .61.8 .

10 5 , _ ' 060,81 .0 .
. 2 1 0.00.2 0.4 .

detections (d1) relative ratio (y)

100Q -
'50~0n. · . . ' .,,-' 2 0

,00 50 ' . , . ~ , ~' 1 4 1.6 1.8 .
20 10 5 ' 2" .' ... • 0 " 0.6 0.8 1.0 1.2 .

. 1 0.00.2 .
detections (d1) relative ratio (y)

VOC2006 validation dataset (bicycle, d2=100) VOC2006 validation dataset (bicycle, d2=1000)

100~0n..· " , ."
-.lO~00 ·50 " -" '41 .61 .82.0

20 10 5 " 2 - . ' -' - 0'4'0.60.81 .01 .2 .
. 1 0.00.2 .

detections (d1) relative ratio (y)

100~0n..' ""~, . ., .•• -
~0~00 ' .-' 16182.0

50 2010 , ",, __ . ~'<" Oii ·1 .01 .21 .4 ' .
. 5 2 l ' 0.00.20.40.6 .

detections (d1) relative ratio (y)

Figure 3.5: Cascad~ des~~n evaluation: "(, d1 , d2 . Higher area 'l1:nd~.:. . ~urve (AUC)
scores are represented by warmer color. The effects of varying , (neighborhood
size) and d1 (number of candidates selected from the first cascade stage) are tested
under various recall regimes by varying d2 (number of candidates selected from
the second cascade stage). See Section 3.3.1.2 for commentary.

I

Quantization and Features: 1(, lV, H, R

We next assess the effects on the perforn1ance of the features we use (i. e. the

size of the classifier, (W f1) and the number of orientations R), and th maxi-

mum numb r of classifiers learned at th fir t stage K (determined by the overlap

threshold 'TJ). Fig. 3.6 summarizes the r suIts, considering 4 different recall regimes

by varying the number of output proposals d2 E {I, 10, 100, 1000}, and comparing

them against the b st results of [77] in these regin1es. Perforn1ance is n1easured

again in term of AUC (averaged across classes). We can see that, as xpected,

perforn1ance incr ases both as th size of th classifiers and number of orienta-

tions increase (ltV H, R), and as 1(increases. However, both of these factors

imply longer computational time as discussed in Section 3.2.3. We see though

that even with the smallest feature size, 2 x 2 with 1 orientation (i. e. only 4-

dimensional features), we improve substantially on [77] in most cases and achieve

comparable performance otherwise. We will offer further comparison which takes

computational time into account.

44

3.3. Experiments

VOC2006 lest dotasel (K-36) . . VOC2OO6 I.&I dat.sel (K- 121) VOC2006 tnt dataset (K-196)
0.8 • 0.8

Feelln. rw · R)

Figure 3.6: Quantization and feature evaluation: 'f7, W, H, R. The dimensions
of the features are represented as W x R (the classifier width x the number
of orientations, and we assume the classifier height H = W). Performance is
measured in terms of average area under recall-overlap curve (i.e. mean AUC),
and given under 4 recall regimes, d2 E {I, 10, 100, 1000}. From left to right, the
maximum nU111ber of classifiers at the first stage K is increased. In general we
outperform [77] significantly (also plotted).

Recall-Overlap Evaluation

Fig. 3.7 breaks the VOC2006 results down by class, and displays the recall-overlap

curves that were used to calculate Fig. 3.6 for the case of (W, H R) = (16,16, 4).

We can see here the movenlent of the curves towards the top-right both as we

allow more output proposals (d2 E {I , 10, 100, 1000}) and as we increase K =
,.

{36, 121, 196}. We recall that our quantized scales/aspect-ratios are designed to

cover bounding boxes to a particular overlap threshold of 'f7, so K E {36, 121, 196}

corresponds to 'f7 E {0.5, 0.67, 0.75} respectively. This affects the performance

observed, and on the K = 36 graph for instance, we see that the curves are high

for ''7 :::; 0.5, but then drop quickly. Similar drops can be observed in the K = 121

and K = 196 graphs for the corresponding later points in the curves, 'f7 = 0.67

and 0.75, implying our quantization is capturing the desired information. The

average recalls when d2 = 1000 and 'f7 = 0.5 are 95.8%, 97.1%, 96.0% for

K E {36, 121, 196} respectively.

Recall-Proposal Evaluation

As a pre-process step for object detection, the object recall with a certain 'f7 using

a fixed number of proposals is more important, because this recall determines the

best performance that an object detection system can achieve.

In Fig. 3.8(a)-(b) we show how the recall is effected as we increase the nUlnber

45

3.3. Experiments

VOC2006 test dataset (K=36. d1=1)
1

02

Ib ° 2 ° 4 0.5 0.8 1
overlap threshold ('1)

-bicycle (42.0)
bus (27.5)

- car (24.4)
-cat (36.1)
- cow (22.9)
"'dog (29.5)
' ''horse (19.4)
' ''motorblke (32.8)1
'''person (10.4)
"'sheep (17.5)

VOC2006test dataset (K=36. d2=10)
1

-bicycle (59.8)
08 - bus (57.5)

- car (41 .9)
= 06 -cat (70.9)

~04
02

Ib 0.2 0.4 0.5 0.8
overlap threshold ('1)

1

- cow (52.1)
"'dog (68.3)
' ''horse (59.3)
" 'motorbike (70.4)
' ''person (36.9)
''' sheep (45.7)

VOC2006 test dataset (K=36. d2=100)

1 ""1111iiiii:;:::!~~
08

0.2

Ib 0.2 0:4 0.5 0.8
overlap threshold (11)

1

-bicycle (85.9)
bus (84.5)

- car (676)
-cat (95.1)
- cow (85.1)
"'dog (91.0)
'''horse (91.4)
" 'motorbike (92.3)1
' ''person (70.7)
''' sheep (80.8)

VOC2006test dataset (K=36. d1" 1000) 1- __ _

0.8

= 0.5
~
i!! 04

02

0.2 0'4 0.5 0.8
overlap threshold ('1)

-bicycle (96.0)
bus (96.5)

- car (90.2)
-cat (98.8)
- cow (96.8)
'''dog (98.1)
" ' horse (98 5)
'''motorblke (98.9)
"'person (89.5)
"'sheep (94.1)

1 I

VOC2006 test dataset (K=121 . d1=1)
1

0.2

Ib ° 2 ° 4 0.6 0.8 1
overlap threshold ('1)

-bicycle (42.3)
bus (22.7)

- car (18.7)
-cat (39.9)
- cow (15.2)
"'dog (32.4)
'''horse (15.1)
" 'motorbike (38.0)1
" 'person (12.7)
" 'sheep (15.5)

VOC2006 test dataset (K=121 . d2=10)
1

02

Ib 0.2 0:4 0:6 0:8 1
overlap threshold ('1)

-bicycle (56.4)
bus (52 4)

- car (36.4)
-cat (70.2)
- cow (45.3)
'''dog (60.3)
" 'horse (52.5)
' ''motorbike (84.8)1
" 'person (34.0)
"'sheep (40.8)

VOC2006 test dataset (K" 121 . d2=100)

1 ~~~~ -bicycle (BO.7)
0.8

= 0.5

~0.4
0.2

bus (79.8)
- car (60.7)
-cat (91 .8)
- cow (76.5)
"'dog (87.9)
"'horse (88 0)
' ''motorblke (88.7)
" 'person (85.0)

. _ "'sheep (71 .1)
0.2 0.4 0.5 0.8 1
overlap threshold ('1) • •• • •

VOC2006 test dataset (K=121 . d2=1000)

l r--_IIII!!!!I'l~1lI.

0.8

0:2 0~4 0.5 0]
overlap threshold (11)

1

-bicycle (97.9)
- bus (983)
- car (90.5)
-cat (99.8)
- cow (97.5)
'''dog (99.3)
' - horse (99.4)
"'motorbike (100 0)
"'person (92.9)
'''sheep 196.0)

VOC2006 test dataset (K=I96. ~=1)

1

02

1

-bicycle (45.7)
bus (28 8)

- car (12.5)
- cat (3B.0)
- cow (19.7)
'''dog (28.4)
" ' horse (21 .3)
"'motorbike (40.9)1
" 'person (7.5)
" 'sheep (15.4)

VOC2006 test dataset (K=I96. ~=10)

1

08

= 0.6

~0.4
02

0.2 0:4 0.5 0.8
overlap threshold (11)

1

-bicycle (58.0)
bus (47.2)

- car (35.8)
-cat (66.9)
- cow (41 .5)
'''dog (60.8)
• .. horse (51 .2)
"'motorbike (53.5)1
" 'person (32.0)
"'sheep (36.7)

VOC2006 test dataset (K=I96. d2=100)

1 ~~ii;;;;;:::---._
08

0.2

Ib 0.2 0.4 0.5 0.8
overlap !hrll!\llO\Il (11)

1
I

bicYcle (77.3)
bus (77.7)

- car (58.1)
-cat (90.0)
- cow (70.5)
" 'dog (84.9)
"'horse (84 3)
'''motorbike (83.9)
"'person (St.4)
"'sheep (59.7)

VOC2006 test dataset (K=I96. d2=1000)

l r-_:r;!!!.I~""

0.8

= 0.5
!'l
i!!0.4

0~2 0.4 0:5 0.8
overlap threshold ('1)

1

-bicycle (96.0)
- bus (97.4)
- car (66.9)
-cat (99.5)
- cow (95.9)
"'dog (99.1)
" ' horse (99.1)
"'motorblke (100,0)
- person (91 .0)
" 'sheep (95.3)

Figure 3.7: Recall-overlap evaluation for VOC2006. Recall-overlap curves are
plotted for individual classes using d2 E {I, 10, 100, 1000} from left to right, and
K E {36, 121, 196} from top to bottom. All curves are plotted using (W, H, R) =
(16, 16,4). The numbers shown in the legends are the recall perc ntages when
the overlap threshold 'TJ is set to 0.5.

of output proposals d2 from 1 to 1000 on the validation and test sets of VOC2006.

We fix (W, H, R, K) = (16,16,4,36). We can see that on both validation and test

datasets when d2 is beyond 400, the curves hardly change, which means the AUC

for d2 = 400 and d2 = 1000 will be very similar. We believe that this property of

our approach is useful for detection tasks, becaus it narrows down significantly

the total number of windows that classifiers need to check while losing few correct

detections. In fact, some categories need far fewer proposals to achieve good

performance. For instance, for the cat category, 100 output proposals saturates

performance. Since the behaviors of our approach on both validation and test

46

3.3. Experiments

Table 3.2: Comparing the speed of our method in seconds (mean ± standard
deviation) at various parameter settings.

K=36, (W,H)=
(2,2) (4,4) (8,8) (16,16)

R=l 0.073±0.017 0.080±0.020 0.113±0.031 0.249±0.066
2 0.078±0.017 0.090±0.020 0.142±0.038 0.341±0.089
4 0.078±0.020 0.099±0.025 0.185±0.051 0.541±0.135

K=121, (W,H)=
(2,2) (4,4) (8,8) (16,16)

R=l 0.157±0.037 0.184±0.051 0.322±0.089 0.844±0.242
2 0.162±0.043 0.210±0.058 0.429±0.119 1.194±0.338
4 0.182±0.043 0.260±0.073 0.610±0.170 1.954±0.549

K=196, (W,H)=
(2,2) (4,4) (8,8) (16,16)

R=l 0.241±0.056 0.273±0.073 0.437±0.120 1.024±0.294
2 0.247±0.062 0.301±0.080 0.549±0.150 1.456±0.411
4 0.270±0.062 0.351±0.090 0.786±0.216 2.397±0.680

sets are quite similar, in practice we can utilize the former to choose a sufficiently

small number of output proposals for good performance.

Computational Time.
It

Details of our computational time are shown in Table 3.2. Our implementation is

a mixture of Matlab and C++ code, and is run on a single thread of Intel Xeon

W3680@3.33GHz. The computational time shown here includes all the steps at

the test stage, i. e. calculating features, 2D convolution, proposal selection, and

ranking score calibration. The computational time in [T7] is 0.47 ± 0.01 5.

As we see, with increase in the size of the feature windows (W, H), the number

of orientation channels R, and the maximum number of classifiers learned at

the first stage K, computational time grows roughly linearly in the log-scale.

This demonstrates that the computational complexity of our approach can be

approximated by the complexity of 2D convolution.

5In [77], the computational time is only for training models without considering the time for
feature extraction based on a 2.8 GHz PC.

'i'

47

3.3. Experiments

Table 3.3: Comparing the performance of our method in terms of AUC (%)
with that of [77]. We show our performance at two settings, the fastest setting
(W, H, R, K) = (2,2,1,36) and the best setting (W, H, R, K) = (16,16,4,121).
Both settings improve on [77] substantially. On average, for testing time per
image, the fastest setting needs about 0.07(s) and the best setting needs about
2.0(s).

bicycle bus
Method d2 =1 10 100 1000 d2 =1 10 100 1000

best in [77] 25.0 38.5 50.7 62.4 19.4 28.0 41.9 58.8
(W,H,R,K)=(2,2,1,36) 34.7 46.7 56.3 58.8 20.0 35.8 54.9 57.9

(W,H,R,K)=(16,16,4,121) 35.0 51.0 65.4 71.4 29.7 49.2 65.5 72.0
car cat cow

d2 =1 10 100 1000 d2 =1 10 100 1000 d2 =1 10 100 1000
25.2 31.6 39.4 49.6 44.7 56.7 67.9 76.7 15.8 24.6 36.9 52.5
10.1 23.0 44.8 53.1 40.2 54.5 61.4 62.1 19.4 34.1 48.8 53.9
16.8 33.4 51.2 67.4 39.8 58.1 70.3 73.9 21.6 40.6 59.1 69.9

dog horse motorbike
d2 =1 10 100 1000 d2 =1 10 100 1000 d2 =1 10 100 1000
37.7 49.0 61.2 71.8 21.5 31.7 47.5 63.7 24.7 36.1 49.8 63.4
33.1 51.1 58.9 60.6 25.8 46.4 56.4 58.1 26.4 36.2 60.5 61.8
33.2 53.4 67.4 72.3 27.8 49.8 65.9 72.4 35.8 55.2 69.3 74.3

person sheep average
d2 =1 10 100 1000 d2 =1 10 100 1000 d2 =1 10 100 1000

7.9 14.4 24.7 41.7 12.0 18.4 28.4 44.2 23.4 32.9 44.8 58.5
11.9 30.3 46.3 53.5 12.0 28.6 46.6 52.6 23.4 38.7 53.5 57.2
13.4 32.9 52.5 67.4 17.6 37.5 57.6 69.7 27.i 46.1 62.4 71.1

AUC Comparison

We can see on Fig. 3.6 that these all offer further substantial improvements,

and we make a closer comparison in Table 3.3 by comparing AUC values of [77]

with our results at our fastest or best settings. Averaging across the four output

settings (d2 E {I, 10, 100, 1000}), [77] achieves 39.9%, 'while we achieve 43.2%'

.. using pur fastest setting (W, H, R, K) = (2,2, 1,36), and 51.7% using our best

setting (W, H, R, K) = (16,16,4,121). Our approach is thus quicker, and offers

a substantial improvement in output quality to [77].

Contribution of Scale and Aspect Ratio

To verify our two-stage cascade, involving separate ranking of scales and aspect

ratios followed by a calibration, is contributing to our performance, we give further

results in Table 3.4 where during learning the individual classifiers we compare

our full system against restricted cases where we (a) use only one quantization
I·' .

48 .

3.3. Experiments

Table 3.4: Comparing the performance of our method in terms of AVC (%) when
no scale/aspect-ratio information is included during learning the classifiers (i. e.
single classifier), when only aspect ratio information is included, and when both
scale and aspect ratio are included.

bicycle bus
Method d2 =1 10 100 1000 d2 =1 10 100 1000
single 29.1 50.3 62.7 66.5 20.6 43.2 58.8 65.3
ratio 31.7 50.2 61.7 65.0 22.2 44.6 59.8 65.6

scale & ratio 35.5 49.9 62.8 65.7 30.5 50.3 62.9 66.8
car cat cow

d2 =1 10 100 1000 d2 =1 10 100 1000 d2 =1 10 100 1000
23.9 38.0 52.7 63.2 40.1 60.0 67.0 69.1 26.8 48.0 61.6 65.8
23.0 40.1 55.5 64.7 38.6 59.8 67.2 68.6 26.8 49.1 61.9 66.2
22.5 36.9 53.9 63.8 39.4 59.2 68.1 69.5 22.3 43.1 59.1 64.9

dog horse motorbike
d2 =1 10 100 1000 d2 =1 10 100 1000 d2 =1 10 100 1000
32.4 55.8 65.8 67.2 24.7 47.0 62.8 65.3 34.5 52.3 65.3 67.9
32.1 54.9 64.9 66.9 22.0 46.0 63.0 66.1 32.4 52.5 66.0 67.7
30.8 54.6 65.4 68.1 27.1 51.2 64.0 66.6 35.8 55.7 66.4 68.2

person sheep average
d2 =1 10 100 1000 d2 =1 10 100 1000 d2 =1 10 100 1000
15.2 37.0 55.4 61.9 19.3 43.5 58.8 64.4 26.7 47.5 61.1 65.7
13.8 35.2 54.9 61.9 22.1 44.3 59.5 65.0 26.5 47.7 61.4 65.8
14.4 36.0 54.2 62.1 19.0 40.0 57.8 64.5 27.7 47.7 61.5 66.0

level, and so do not use. scale and' aspect ratio information (thus learning only
~ .

one classifier), and (b) usc only aspect ratio information (learning one classifier

per aspect ratio). In each case, the feature size is set to (W, H, R) = (16,16,4)

and I{ = 36. As shown, we have an average gain in performance as scale and

aspect ratio information is added (although in certain classes the effect is less

pronounced, and aspect ratio plays a more important role than scale in some) .

.. 3.3.1.3 VOC2010

We repeat our recall-overlap and recall-proposal evaluations on VOC2010. In

Fig. 3.8(c) we see a similar pattern across classes to the VOC2006 validation and

test sets, implying that thresholds can be generalized (even for individual classes)

across these datasets. In Fig. 3.9 we see a similar pattern of results to Fig. 3.7 (also

using the setting (W, H, R) = (16,16,4)). The. average recalls when d2 = 1000

and 'TJ = 0.5 are 86.2%, 92.7%, 91.0% for K E {36, 121, 196} respectively,

which are comparable to those in Section 3.3.1.2. We therefore believe that our

approach is robust and efficient across datasets.
,. ..

49 .

3.3. Experiments

3.3.2 Generic Object Proposal Generation

For this task, we learn only one object model per quantized scale/aspect-ratio by

using all the object instances in the training data as positives to train a single

binary object/non-object filter and output object proposals per image during

testing, no matter what classes the object instances belong to. This is our default

learn and testing procedure without specific mention.

We test our method on PASCAL VOC2007 [42] and VOC2012 [47], respec-

tively. Both VOC2007 and VOC2012 contain 20 object categories. VOC2007

consists of 9963 natural images with object labels and their corresponding ground-

truth bounding boxes released for training, validation and test sets. VOC2012

consists of 17125 natural images, and object labels and their corresponding ground-

truth bounding boxes are available for training and validation sets only.

Based on the experimental results in Section 3.3.1 and considering the com-

putational efficiency as well, we set 'Y = 0.6, d1 = 50, (W, H, R) = (16,16,1),

'TJ = 0.5 without specific explanation.

3.3.2.1 VOC2007

We first test different cascade settings on this data using different combinations

of]{ and £ in Eq. 3.2.4 and Eq. 3.2.5, and then compare our method with [1] 6

and [109] 7, respectively. We use the training/validation dataset, consisting of

5011 images, to train our model, and test it on the test dataset, comprising 4952

images.

Cascade Setting Comparison

Fig. 3.10 summarizes the comparison results, where we run our implementation

for three times, and report the mean and standard deviation of our results. From

the top 3 settings in each sub-figure, we can see that (1) In general, the perfor-

mances using different settings are close to each other; (2) In Stage I, the method

£1 - olr seems to work best, which trains £1-norm SVMs, rather than ranking

6We downloaded their public code and precomputed windows for VOC2007 from http:
//groups.inf.ed.ac.uk/calvin/objectness/. _

7We downloaded their public code and precomputed windows for VOC2007 from http:
//www.cse.oulu.fi/CMV/Downloads/ObjectDetection.

50

3.3. Experiments

Table 3.5: AUC comparison on VOC2007 using 1000 proposals in Fig. 3.11 and
Fig. 3.13.

Method I AUC (objects)
Ours (£t - olr + £t - olr) I 64.5%

[1]
[109]

64.9%
67.4%

AUC (classes)
(65.1±2.2)%
(66.8±4.2)%

(70.8±8.3)%

SVMs; (3) In Stage II, both methods it - olr and i2 - wlr seem to work bet-

ter than others, the first training irnorm SVMs and the second training ranking

SVMs; (4) With a larger K, the AUe under 1000 proposals becomes larger, while

the AUe under a fewer proposals (i.e. 1, 10, 100) becomes smaller.

It surprises us that the it - olr SVMs work so well in our cascade, because

usually i 2-norm SVMs work better than it-norm SVMs for the classification tasks

[49]. We believe that it-norm SVMs actually select the discriminant features and

suppress non-discriminant ones between objects and non-objects.

Recall-Overlap Evaluation

Fig. 3.11 shows our comparison results on VOe2007 (top) and VOC2012 (bot-
II

tom), respectively. From the curves, we can see that our method has a similar

behavior to [1], and their AUe values are close to each other, and at 'TJ = 0.5, in

most cases our method and [1] achieve higher object recall than [109]. However, in

terms of quantity of proposals, [109] is the best among these methods, because its

curves drop quickly when 'TJ is larger than around 0.75, while the curves of ours

and [109] drop when 'TJ is larger than around 0.55. This observation indicates'

.. that cQmpared to our method and [1], the correct detection proposals outputted

by [109] are closer to the ground-truth bounding boxes of objects.

Fig. 3.13 breaks the VOC2007 results in Fig. 3.11 down by class using 1000

proposals, and displays the recall-overlap curves. Similar observation to Fig. 3.11

can be made. Table 3.5 summarizes the AUC comparison on VOC2007.

Recall-Proposal Evaluation

In Fig. 3.12(left) we show how the recalls of different methods are effected as we

increase the number of output proposals d2 from 1 to 1000 on VaC·2007. We

51

3.3. Experiments

Table 3.6: Object recall comparison on VOC2007 using 1000 proposals as shown
in Fig. 3.12 and Fig. 3.14.

Method I Recall (objects)
Ours (£1 - o/r + £1 - o/r) I 93.8%

[1] 88.6%
[109] 77.7%

Recall (classes)
(95.1±3.5)%
(92.0±6.7)%
(82.8±12.8)%

Table 3.7: Object recall comparison on VOC2007 using different numbers of .
proposals.

Method 110 Prop.
Ours (£1 - o/r + £1 - o/r) 46.4%

[1] 41.0%

100 Prop.
78.7%
71.0%

1000 Prop.
93.1%
91.0%

can see that when d2 is ,beyond 200, the curves become flatter and flatter, similar

to Fig. 3.8. From the comparison of the 4 cascade settings, £1 - o/r + £1 ~ o/r
performs best. Compared with [1,109], our method has a similar behavior to [1],

and both are better than [109] significantly.

Similarly, Fig. 3.14 breaks the VOC2007 results in Fig. 3.12 down by class

and displays the recall-proposal curves. As we see, again some categories need

far fewer proposals t6 achieve good performance. For instance, for the dog cate-

gory, 100 output proposals saturate performance. Table 3.6 lists the object recall

comparison on VOC2007.

Especially, here we also perform a same experiment used in objectness [1].

We divide the 20 object categories into two sets. Same as [II, we use the 14

categories (i.e. aeroplane, bicycle, boat, bottle, bus, chair, diningtable, horse,

motorbike, person, pottedplant, sofa, train, tvmonitor) as testing categories, and

the rest as training categories, which means that these 14 categories are unseen

during training. The images containing objects within the training categories

in the training/validation dataset are utilized as the training data for learning

our models, and the images containing objects within the testing categories in

the test dataset are utilized as the test data for evaluating our models. This

experiment is designed for exploring the generality of the proposal methods. Table

3.7 lists our comparison results between ours and objectness [1]. Still our method

outperforms [1] in terms of object recall given the number of proposals.

".

52

3.4. Conclusion

Table 3.8: Computational time comparison on VOC2007 in second per image
with 1000 proposals.

Method I Computational time
Ours I O.25±O.07

[1] I
[109]

3.58±0.25
2.22±0.42

Table 3.9: AUC comparison on VOC2012 using 1000 proposals as shown in Fig.
3.11 and Fig. 3.15.

Method I AUC (objects)
Ours (1\ - o/r + £1 - o/r) I 64.2%

[1] 64.6%
[109] 60.5%

Computational Time

AUC (classes)
(64.9±3.4)%

(65.9±5.2)%
(63.1±10.4)%

The computational time comparison of the three methods is listed in Table 3.8.

Our implementation is a mixture of Matlab and C++ code, just like [1,109]'

and all the codes are run on a single thread of Intel Xeon W3680@3.33GHz. The

computational time shown here incl:udes all the steps during testing, starting from

loading images. Clea~ly, our method is 10 times faster than [1,109].

3.3.2.2 VOC2012

We repeat our recall-overlap and recall-proposal evaluations on the VOC2012

training/validation dataset, as shown in Fig. 3.11, Fig. 3. 12(right) , Fig. 3.15

and Fig. 3.16. We did not re-train the model for each method. Instead, we

.. simply applied the models learned from VOC2007 training/validation dataset

directly to the training/validation dataset in VOC2012. Similar patterns can be

observed to VOC2007.

Particularly, by comparing Table 3.5, Table 3.6, Table 3.9 and Table 3.10, we

can see that our method is quite robust across the datasets, and the most stable

among the three methods across different categories with the minimum standard

deviation.

,,"

53

3.4. Conclusion

Table 3.10: Object recall comparison on VOC2012 using 1000 proposals as shown
in Fig. 3.12 and Fig. 3.16.

Method I Recall (objects)
Ours (£1 - o/r + £1 - o/r) I 91.7%

[1]
[109]

3.4 Conclusion

87.8%
68.3%

Recall (classes)
(92.5±5.6)%
(89.9±9.1)%
(71.7±15.3)%

We have introduced structural SVMs with our proposed scale/aspect-ratio quanti-

zation scheme and ranking constraints (QR-LSE-SSVMs) for the object proposal

generation problem. A general ranking-order decomposition algorithm was pro-

posed to solve QR-LSE-SSVMs efficiently and approximately with theoretically

guaranteed lower and upper bounds of the total loss in QR-LSE-SSVMs.

Particularly, for our proposal problem, we further proposed a two-stage cas-

caded model, whose computational complexity per image is largely dependent on

only the sizes of images and filters, but not the numbers of proposals and object

categories. We envisage that the cascaded model can be used as the initial stages

of a complete object detection pipeline, even for real-time object detection. Our

method naturally incorporates scale and aspect ratio information about objects,
\

which are treated separately in the first stage of the cascade, and w~ emphasize

the flexibility of the method, where different types of features could easily be

incorporated at this stage. At the second stage, all the proposal candidates are

re-ranked by calibrating their ranking scores from the first stage to generate our,

final object proposals, which are among the top of the ranking list.

Our method is both fast and efficient, and we have shown a substantial im-

provement in speed and recall over recent related work [1,77,109]. Besides object

detection, we believe that our method will contribute to many other research

areas, such as segmentation [23] and stereo matching [14].

54

3.4. Conclusion

VOC200S validation dataset (K=3S)

.d~!!~~~~~~~~~ -bicycle
0.8 - bus

=o.S
~
~0.4

0.2

200 400 SOO 800
detections (d2)

(a)

- car
-cat
- cow
···dog
···horse
···motorbike
···person
···shee

1000

0.2

VOC200S test dataset (K=3S)

~2~~~~~~==~!!!~I-biCyCle

200 400 600 800
detections (d2)

(b)

- bus
- car
-cat
- cow
···dog
···horse
···motorbike
···person
···shee

1000

VOC2010 validation dataset (K=36)

_· - ... ··· 0.9

0.8

0.7

0.6

~ 0.5
~

0.4

0.3

0.2

0.1

100

·T ····· ' ·· , . .

., , , :.

200 300 400 500 600
detections (d2)

(c)

.. "~" : ... " .. " ~." ..

• • ,~ •• o ••••• 0.. ,~. * ••••••••••••••• ~ •••••••••• '.

bus
- car
---cat
--- chair
---cow
---diningtable
---dog
- horse
-_. motorbike
- '-"person
- ,." potted plant
- '-"sheep
· '· " sofa
· '-"train

700 800
- - tvmonitor

900 1000

Figure 3.8: Recall-proposal evaluation. (a) VOC2006 validation set, (b) VOC2006
test set, (c) VOC2010 validation set. Recall is n1easured against increasing num-
bers of output proposals, d2 . Other parameters are fixed at (M/, H, R, K) =
(16,16,4,36). Notice that the curves are silnilar for different classes in all cases,
implying we can generalize thresholds from one case to another.

55

3.4. Conclusion

V0C2010 va"dabon dataset (K=36, d2=1)

09

- aeroplane (271)
- bicyele(223)
- bird (13.8)
- boat(61)
- bottle (22)

""5(308)
- car (126)
"'cat(44 1)
"·chair (5.8)
" ' cow(153)
"'d,n'ngtable (17.1)
"'dog (21.5)

horse (18 4)
···motorbIke (19 3)
• • 'per$On (22.4)
•• 'pottedplant (5.8)
• • 'sheep (9 2)
" 'sofa (295)

~~~fi • ..J " ' lrllin(22 4) 
, tvrnon~or .0 

00 0'2 0'4 0 6 08 
overlap threshold (~) 

V0C2010 validation dataset (K=36, d2=1(00) 

1 , r-- - a- e-ropIa-'--ne-'(90:=="::O)" 

0.9 

08 

0.7 

06 

~ 05 

0.4 

03 

0.2 

0 1 

00 0.2 0,4 0.6 0.8 
ove~ap threshold (~) 

- bicyele(90 9) 
- bird (882) 
- boat (787) 
- boUle (623) 

bus (933) 
- car (765) 
'··cat(94.2) 
···chair (81 9) 
"'cow (88.1) 
" 'dinrngtable(883) 
"'dog (97 2) 

' hor$e (94 0) 
"'motorboke(934) 
" 'person (91.6) 
··'pottedplant(73 1) 
• • 'sheep (88 0) 
• • 'sofa (88.3) 
•• 'Irllin (91 8) 

.tvmoni1or (88.5) 

VOC2010validotion dataset (1<= 121 . d2=l oo) 

1~~".......-~-~-~----, ' - aeroplane (856) 

0 7 

0 6 

105 

0.4 

0,3 

02 

0 1 

00 0,2 0 4 0 8 08 
overlap threshold (~) 

09 

08 

07 

06 

~ 05 

04 

0.3 

0 2 

0,1 

- bicyele(725) 
- bird (64 9) 
-boat (579) 
- bottle (41 .6) 

""5(75.1) 
- car (466) 
"'cat (92,6) 
"'chalr (53 1) 
"'~(725) 
"'dinrngtable (80 8) 
"'dog (88 0) 

horse (816) 
···motorboke(76.4) 
• • 'person (64.0) 
•• 'pottedplant(4Q,2) 
• • 'sheep (65 8) 
•• ,sofa (899) 
" 'lrllin(640) 

tvrnoni1or (62 8) 

- aeroplane (85 3) 
- bicyele(37.5) 
- bird (32 4) 
-boat (263) 
- bottle (1 0.3) 

""5 (534) 
- car(24 5) 
···cat (OO.8) 
"'chalr (14 6) 
"'cow(335) 
"'d,n'ngtable (46 6) 
" ' dog (58 1) 

horse (492) 
···motorbIke (47 2) 
. '. 'person (81,6) 
··'pottedplant (13.1) 
•• . sheep (23 5) 
• • ' sofa (57.3) 
··' tra ln (616) 

----..... - ... " tvrnonrtor 26 

V0C2010 validation dataset (K=36, d2=10) 

1...--,----,----,------, - aeroplane (60 2) 

09 

08 

0 4 

03 

0.2 

0.1 

VOC2010 validabon dataset (K=121, d{l) 

- bicyele (39.6) 
- bird (35.3) 
- boat(313) 
- boUle (14.0) 

""5(55.3) 
- car (30 4) 
"'cat (88 3) 
···chair(197) 
" ' cow(34 7) 
"'d,n'ngtable (46 2) 
"'dog (63.8) 

horse (54.0) 
···motorbike (47 5) 
•• 'person (62,0) 
•• 'pottedplant(17 7) 
•• 'sheep (28.9) 
" 'sofa (502) 
• • 'Irllin (620) 

tvrnon'tor (26 4J 

l r--,---r---,----,----,r--__ ~ 
- aeroplane (36 6) 

09 - bicycle (1 9.4) 
- btrd(I I .8) 
- boat (6 4) 
- bottle (3.9) 
- ""5(265) 
- car(9 1) 
···cat(45.5) 
···charr(5 0) 
"'Cow(1 4 0) 
"'d,ningtable (12 8) 
"'dog (32.3) 
• horse (27.6) 
···motorbike(22.6) 
. ,. 'person (1 6 3) 
• · 'pottedplant (5 1) 
•• 'sheep (59) 
" 'sofo (322) 
• • 'train (183) 

tvmonitor 6) 

VOC201 a vahdotion dataset (K=121 , d2=1000) 

l r-"'RII:!~ ...,;..--~- - aeroplane (96 5) 

0.9 

0,8 

0,7 

06 

~ 05 

04 

03 

02 

- bicycle (94,2) 
- bird (91.5) 
- boat (692) 
- bottle (81.3) 

bus (95.3) 
- car (64 0) 
"'cat (99 5) 
· ··chalr(898) 
"'cow (94 5) 
"'dinlngtable (93 2) 
"'dog (98.7) 

horse (97,1) 
···motorbike (96 4) 
• • 'person (96.6) 
• • 'pottedplant (81 6) 
• • -sheep (92 4) 
•• 'sofa (99.6) 01 

• • ' 1rain (966) 
tvrnoMor(909) 

%~~0~2--~0~4 --~0~6 --~0 8~" 
ove~ap threshoid (~) 

VOC201 0 validation dataset (K= 196, d2= 1 00) 
1 1 r---.,.----::--:--, 

- aeroplane (64.6) 

06 

105 

0 4 

03 

02 

01 

00 0' 2 0~4 0~6 08 
overlap threshold (~) 

- blcyele(876) 
- bird (633) 
- boat (55.8) 
- boUle (37.9) 

""5(723) 
- car (44.2) 
'··cat (91.6) 
'··chalr (48 9) 
" ' cow (65.S) 
" ' dinrngtable(786) 
" -dog (64 3) 

horse (76 2) 
···motorbike (74.4) 
"'person (61.7) 
• · -pottedplant(34 1) 
• • 'sheep (80 8) 
• • 'sofa (88.8) 
" 1rain (61.7) 

tvrnon~or 57,2 

VOC201 a validation dataset (K=36, d{ l oo) 

1 " -- a-er-opI- o-ne- (64- 0)-' 

0,8 

07 

0,6 

0.3 

0.2 

0.1 

- bicycle (77.3) 
- bird (643) 
- boat(599) 
- bottfe (42 4) ""S (715) 
- car(541) 
"'cat(787) 
···chair (61.1) 
" ' cow(627) 
' · ·diningt.lble (739) 
"'dog (67,2) 

hor$e (768) 
···motorbike(77.7) 
" "person (81 7) 
•• 'pottedplant (462) 
•• 'sheep (59 9) 
" 'sofa (722) 
•• 'Irllin (61.7) 

00 02 0'4 0.6 0'~8 ...:Ill. L---!:tvm~on~i::::tor:..J:(64~,~2)...J 
overlap threshold (~) 

VOC201 a valldabon dataset (K=121, d2=10) 

1 Pr"-~-~-,---~----, - aeroplane (65 9) 

VOC2010validabon dataset (K= I 96, d2=1) 

- blcyele (41 1) 
- bird (326) 
- boat (26.3) 
- boUle (13.8) 

bus (55 7) 
- car (25.9) 
"'cat (70.7) 
,··chair (155) 
"'cow (36.0) 
"'din'ngtable (491) 
"'dog (58 4) 
• horse (53 3) 
···motorblke (47 2) 
• • 'person (59.3) 
•• 'pottedplant (14 8) 
.. 'sheep(286) 
" 'sofa (57.7) 
•• 'train (59.3) 

~nrtor(255) 

1 '---'---~-~-r-----' - aeroplane (24.9) 

09 - bicycle (1 8 5) 
- bird (7.8) 
- boat(123) 
- bottle (14) 

""5(269) 
- car (9 0) 
"'cat (43.2) 
"'chair (4 3) 
"'cow (12 3) 
" ' dinlngtable (175) 
"'dog (319) 

horse (219) 
···motorboke (28.5) 
• • 'person (20,9) 
• • 'pot1edplant (65) 
• " sheep (9 5) 
• • . sofa (233) 
• .. train(209) 

0o!-~,::--'-;~~;;::J!I!I~~ tvmonrtor 5.9) 

VOC2010validalJon dataset (1<=196, d2=1000) 

1 l r---a-e-rop-la-ne-(9-7~,0)-' 

09 

06 

07 

0 8 

0 4 

03 

02 

0 1 

%~~0~2--~0~.4 --~0~,6--~0~8~~ 
overlap threshold (~) 

- bicycle (93 2) 
- bird (903) 
- boat(88 0) 
- bottle (799) 
- bus (925) 
- car (80 7) 
"'cat(989) 
"'chair (64 6) 
···cow(91.5) 
"'diningtable (92.7) 
"'dog (97.9) 

hOlSe(95.9) 
···motorbike (95 1) 
• ' ''person (94 3) 
• • 'pottedplant (79 4) 
' ''sheep (910) 
' ''sofa (99.6) 
• - 'train (94 3) 

tvmonitOi (69.1) 

Figure 3.9: Recall-overlap evaluation for VOC20l0. Recall-overlap curves are 
plotted for individual classes using d2 E {I, 10, 100, 1000} from left to right, and 
K E {36, 121, 196} from top to bottom. All curves are plotted using (W, I-I, R) = 
(16,16,4). The numbers shown in the legends are the recall percentages when 
the overlap threshold rJ is set to 0.5. 

56 



3.4. Conclusion 

VQC2007 , K- lS, ~- I 

0,16

1 
0.15\ 
0.14 

~0. 1 31 
0.12 

0.11 

0.3 

o 
~ 0.3

1 0.28

1 0.26 

o]~~lt~~~~~'!\\l.~~~~~~~~~~ 
,,~~·:. ~~~it~~~~~~~~li~~\l.~< • 

:::11 

0.5 

0,48 
o 
~0,46 

0.« 
0.42 

0.4 

O. ~~~~~~~.~~~~"'~~~>:!\I\.~.~I\.~>:!\I\.~.01~ 
,,-«~~;~¥~~~~I\.~i~~~~4\~< • 

VOC2007 , K- 36, d2- 1000 

0,62 

o 
~ 0.6

1 0.58 

0.56 

(a) I( = 36 

, 
0.16

1 

-----I-I.-L-1 
0.14 

0.12 

~ 01 

0.08 

0.06 

VOC2007, K- 121 , ~-100 

0.58

1 

0.54 

0

0

.

52

1 
~ 0.5 

0 .48[ 

0.46 

o .J~~~\t:\~:\~~>:!\~~~~~.~~~~~~~ 
,,-«~.~ ~~~~~~~~~~~~.~~~ ~~~~\< 

o 
:> 

0 .68 

0.67 

0.66 

« 0.65 

0.64 

VOC2007, K=121 , d2=1000 

(b) K = 121 

o 
~0, 12 

01 

O' l

l o.o~ <~~ ~~ I~:«~~~~~'!\li~~,-:<\I\.~ .... \< 
,,~~~~~~~~~~I\.~~~~~\~¥~~';\< • 

0.
35r 
0.3 

gO.25 « 

0.58 

0.54 

g 0.5 
« 

VOC2007, K-I96, ~-IO 

VOC2007 , K- l96, ~. 100 

0.48, 

0.48

1 O .\~~~~~'~~~~~:'I.~>:!\~~>:!\I\.~"'~~~"~~\< 
\,.r\~~1.~~~~\~~~~~~~~~~'~:~~I\.~< • 

0.
69r ' 

0.
68

1 

0.67 

(c) K = 196 

Figure 3.10: Comparison of different cascade setting (Stage I + Stage II) on 
VOC2007 using K E {36, 121, 196} and d2 E {I, 10, 100, 1000}, respectively. In 
each sub-figure, the cascade settings are sorted in descending order based on the 
mean of area under object recall-overlap curves (AUC), the top 3 settings are 
colored by red, green, and cyan, respectively. 

57 



3.4. Conclusion 

VOC2012 .. ~tionMlt,ct,.tO 

- It -olf t n-olr - K-)8(Ol5e1 
08 :-........ --ObtKNliMe.IUf' PJ (0407) 1.. ~ ___ :---.-'-~II"I(.:tM1 

I·' ......... , 
.21 ..... ,'-

'\) 01 02 01 0 .. 0 ' 0 1 0 7 O' O. 1 
CMHIIP ' .. nhokt(ll} 

1::1 ", 
I· 'I-110M . U-oIf • K-38 (0 542) - , \ .2--.. ... _. I1U . .... ) • 

DetKtlOnCasc.dt It ogJ (O 4314) , 
00 010.2 03 0.4 0 ' 0 1 0.1 0.' 01 I 

OverlIp h nhold('I) 

VOC2007tesCte4. d,- I 000 

.. _._.-

f~I _II'" ," ... ' K' 3e (. 1542) \ . 
0 2 - 0bfKtMw ...... 11' (0.140) 

Oetlc:tionCalCadt l' 091 tOtKY.i) 
0 1 0.2 0) O. 0 5 0 1 0 1 O. 08 1 

Ootettllp lhrnhotd(Td 

Figure 3.11: Comparison of recall-over lap curves using different methods and d2 

on (top) VOC2007 and (bottom) VOC2012. The nunlbers in the brackets are 
AUC values for the methods. From VOC2007 among the 4 cascade settings, 
our method with larger K seems to achieve better AUC using more proposals. 
Overall, on both datasets with the same number of proposals, each indiyidual 
nlethod has similar behaviors. In terms of object recall at rJ = 0.5 , ours and [1] 
perform 'ver'y similarly, and both outperform [109] ill'iriost cases. But 'in terms of 
quantity of proposals, [109] performs best. 

0.8 
ro 
~ 0.6 l , ... . 

+oJ • o t 

BO.4 
o 

0.2 

00 

VOC2007 test dataset, 11=0.5 

........ . .. .. . . 
- 11-o/r + 11-o/r + K=36 (0.938) 
- 11-o/r + 11-o/r + K=121 (0.907) 
- 11-o/r + 12-w/r + K=121 (0.901) 
- 11-o/r + 12-w/r + K=196 (0.883) 
···Objectness Measure [1] (0.886) 

Detection Cascade [109] (O.7n) 
200 400 600 800 1 000 

# Proposals 

(a) 

= 

VOC2012 training/validation dataset, 11=0.5 
1 ~--~----~--~----~---. 

0.8 
.................. 

.................. ~ ............................................. .. 

- 11-o/r + 11-o/r + K=36 (0.917) 
···Objectness Measure [1] (0.878) 

Detection Cascade [109 0.683) 
200 400 600 800 1000 

# Proposals 

(b) 

Figure 3.12: Comparison of recall-proposal curves using diff rent nlethods on 
(a) VOC2007 and (b) VOC2012, respectively. The numbers in the brackets are 
the object recalls using 1000 proposals. In (a) among the 4 cascade settings, 
£1 - o/r + £1 - o/r' performs best. Still our nlethod and [1] have sinlilar behaviors 
on both datasets, and both outperform [109] significantly. Using 1000 proposals, 
our method outperforms [1,109] by 5.2% and 16.1% on VOC2007, and 3.9% and 
23.4% on VOC2012, respectively. 

58 



3.4. Conclusion 

VOC2007 test set, aeroplane, d2=1 000 
1....,...-.... ~_ 

0.8 •••••••••••••••••••• "'\'._'''''''' 

1~6 , \ 

10.4 \ \ c3 - Ours (0.644) ] • ~ 
0.2 '''[1] (0.666) \, 

·"P 09](0.711) \ 
00 0.10:20:30.40.50.60.70.80.9 1 

Overlap threshold ('1 ) 

VOC2007 test set, bottle , d2=1 000 
l r-r--= __ -,-

VOC2007 test set, chair, d2=1000 
1 

0.8 
~ -
~ 0.6 

•.... ~::::~~::. ',; 
\. t; 

.~O.4 \:"" 
c3 - Ours (0.635)1 \ \ 

0.2 '''[1](0.641) \ \ 
... p 09J (0.608) • " 

00 0.1 0 :20~30 .40:50]; 0 .70 :80 .9 1 
Overlap threshold (I] ) 

VOC2007 test set, horse, d2=1000 
1 r----""=~ 

0.8 

VOC2007 test set, sheep, d2=1000 
1 r-n_IDr._~ 

0.8 
~ ~~ 
~0.6 '\ ' .. 

10.4 \ \ 
c3 - Ours (0.630)1 \, \ 

0.2 '''[1) (0.649) \ ... 
"'[109](0.681) '. " 

00 0:1 (1:20:30.40:50.60.70:80.9 1 
Overlap threshold (I) 

VOC2007 test set, bicycle , d2=1000 
1...--- ......:=-...... _ 

0.8 •• _ ••••••• :.\. 

10.6 , •••••• 
t> \ \ 
.~O.4 .~ \ 
c3 - Ours (0.661) ] • ~ 

0.2 "'[1](0.682) • \, 
1"'[109] (0.736) \ 

00 0.10:20:30:40:50:60.70.80.9 1 
Overlap threshold ('1 ) 

VOC2007 test set, bus, d2=1 000 
1...---rr..0;; •• 1':': .. :-... _ • • 

_ 0.8 
~ 
~ 0.6 
t; 

g0.4 - Ours (0.673) 
0.2 '''[1) (0.716) 

VOC2007 test set, cow, d2=1000 
1 ...... : ... . i\.. 

0.8 

10.6 . \\. 
t> \ 
.!!'0.4 \ 
c3 [- ours (0.646) ] ' \ 

0.2 '''[1) (0.669) \ 
"'[109J (0.714) '. 

00 0:10:20:30:40:50.60.70.80.9 1 
Overlap threshold ('1 ) 

VOC2007 test set, motorbike , d2=1 000 
1 r--~=",....-:",," 

l!. 0.8 

~ 0.6 
1) 
.!:!' 0.4 c3 - Ours (0.656) 

0.2 '''[1) (0.669) 
... 109 0.736 

00 0.10.20.30.40:50:60) 0:80.9 1 
Overlap threshold (I) 

VOC2007 test set, sofa, d2=1000 

_0.: ....... . ::\ .. \ 
1~6 \ \ 
t; \, \ 

gO.4 - Ours (0.683) ] \ \ 
0.2 "'[1) (0.740) '. \ 

Q '''pO~) (? 7~4)~ .. . 
o 0.10.20.30.40.50.60.70.80.9 1 

Overlap threshold (I) 

VOC2007 test set, bird, d2=1 000 

1 r-"n:!'~"""'_ 
0.8 •••• ::::~:::::~ "... 

10.6 , •••• 

1 0.4 \ \. 
c3 - Ours (0.632)1 \ \ 

0.2 '''[1](0.650) '. \ 
'''[109J (0.674) " 

00 0.10:20.30:40:50.60.70.80.9 1 
Overlap threshold ('1 ) 

VOC2007 test set, car, d2=1000 

1 •••••• 
_ 0.8 

~ 0.6 
t; 
~0.4 

VOC2007 test set, diningtable, d2=1 000 
1 ", ... ~ 

0.8 
.. ~\ ... 

~ ...• 
10.6 \ ' ~ . 
t; • \ .!:!'0.4 \ 
c3 [- ours (0.673) ] \ \ 

0.2 "'[1) (0.725) • 
'''[109J (0.784) 

00 0:10:20.30:40:50.60.70:80:9 1 
Overlap threshold (I]) 

VOC2007 test set, person, d2=1 000 
l r""'~~_ 

0.8 

VOC2007 test set, train, d2=1000 

_ o .:r---...r;::···:-··~· ""\'''\\ 

1::: ~ \ 
c3 [- ours (0.677)1 ~ 

0.2 "'(1) (0.699) \ 
"'[109](0 790) • 

00 0:1 0 :20'30:40:50 .60 .70:80~9 1 
Overlap threshold (I) 

VOC2007 test set, boat, d2 = 1000 
1.-......,--..... __ 

0.8 

10.6 

1 0.4 \ \ 
c3 - Ours (0.631) 1 \ 

0.2 '''[1] (0.637) \ 
'''p09J (0.683) \ 

00 0.10.20:30:40:50.60.70.80.9 1 
Overlap threshold (I]) 

VOC2007 test set, cat, d2=1000 

_ 0.8 
~ 
~ 0.6 

VOC2007 test set, dog, d2=1 000 
1 

0.8 ,'" 1 0.6 i\ t> \ 
~0.4 \ c3 - Ours (0.677) 

0.2 '''[1) (0.704) ] • \ 
'''[109J (9.792) • 

00 0:1 0:20 . 30:40~50 .60~70.80 .9 1 
Overlap threshold (I] ) 

VOC2007 test set, pottedplant, d2=1000 
l r-o"....,~ ....... 

_ 0.8 

~ 0 .6 
t; 
.!!'0.4 c3 - Ours (0.617) 

0.2 "'(1) (0.608) \ 
... 109 0.577 \, 

00 0.1 0 .20 .30 .40:50:60 :70~80.9 1 
Overlap threshold ('1) 

Overlap threshold (I) 

Figure 3.13: Comparison of recall-overlap curves using different methods on each 
class in the test dataset of VOC2007. The numbers in brackets are the AUC 
values for each method. In general, our method (i .e. f 1-o/ r+f1- o/r ) performs 
similarly to [1], and when 'TJ > 0.5 [109] seems bet ter t han ours and [1] in terms 
of quant ity of proposals. The mean and standard deviation of AUC's for our 
method, [1 ,109] are (65.1 ± 2.2)%, (66.8 ± 4.2)%, and (70.8 ± 8.3)%, respectively. 

59 



3.4. Conclusion 

VOC2007 test set, aeroplane, 1]'=0.5 
1 

VOC2007 test set, bicycle, '1'=0.5 

"iii 0.8 r;. ... -: .... ~.::: ..... ~ .......... . 
~ 0.6' 
o 
~0.4 
o 

0.2 I
- Ours (0.909) 
'''(1) (0.916) 
"'[109] (0.839) 

560 1000 
# Proposals 

0.:[ 
~ 
~ 0.6 
o 
~O .• 
o 

0.2 
[

- Ours (0.976) t 
'''(1) (0.955) 
"'[109] (0.881) 

560 1000 
# Proposals 

VOC2007 test set, bottle, '1=0.5 VOC2007 test set, bus, '1=0.5 

11 "....,::'.:::::.:.~.~.~ ........... . 
i U =U! 
~ 0.6 ~ 
o 0 0.6 
~O.4 • • ...... ~ ................... '.... ~ 

o "..-- [- ours (0.881) 0 0 4 
0.2 V· "'(1)(0.742) . 

"'(109) (0.446) 
CO 500 1000 0·70 

# Proposals 

[

- Ours (0.986) 
'''(1) (0.981) 
"'(109) (0.944) 

560 1000 
# Proposals 

VOC2007 test set, chair, '1=0.5 

11 
VOC2007 tesl set, cow, .,=0.5 

1 

B 0.8[ 

.,."......... . ...... -
08 ./ ,.,.~ ....... -= . r ,,/" .... 

~0.6/ 

VOC2007 test set, bird, '1=0.5 

1[ ........ . 
=iij .--••• .,.-~ 

0.8

1 

...... ~ .... -. 

~0.6iV o 
~0.4 , 

[

- Ours (0.939) I 
'''(1) (0.895) 
"'(109) (0.797) 

o 
0.2 

560 1000 
# Proposals 

VOC2007 test set, car, '1=0.5 

f
- ours (0.918) 
"'(1) (0.862) 
"'(109) (0.757) 

560 1000 
# Proposals 

VOC2007 test set, dlnlngtable, .,=0.5 
1[ , ........ , .................. ::::::: 

=0.8 
~ 
!! !!0.6 

' 0 
~0.4 
o 

' tr , ' 'tj·0.6 

0.2 

0·20 

VOC2007 test set, horse, '1=0.5 

...-.......... _ .. _ ..... . 

r
- ours (0.994) 
" ' (1) (0.986) 
"'(109) (0.940) 

560 1000 
# Proposals 

VOC2007 test set, sheep, '1"0.5 
1 

o . 
~O .• 
o 

0.2 

500 1000 
# Proposals 

~O .• 
o 

0.2 

VOC2007 test set, motorbike, '1=0.5 
1 

0·20 

O·il 

[

- Ours (0.969) 
'''(1) (0.951) 
"'(109) (0.871) 

560 1000 
# Proposals 

VOC2007 test set, sofa, '1"0.5 

............ ."".",..,..",. ........... _ ... .. 

[

- Ours (0.983) 
"'(1)(0.996) 
'''(109) (0.937) 

560 1000 
# Proposals 

gO.4 
O .~ 

~
-ours (0.956) 
'''(1) (0.981) 
"'[109] (0.927) 

560 1000 
# Proposals 

VOC2007 test set, person, '1=0.5 
1 

=0.8 
~ 
!! 
1:$ 0.6 

gO.4 
0.1ij 

[

- Ours (0.925) 
'''(1) (0.851) 
'''(109) (0.736) 

560 1000 
# Proposals 

VOC2007 tesl set, train, .,"0.5 

...-;.:::::::::::::::-.=::: .... 

I
- Ours (0.975) 
"'(1) (0.993) 
'''[109] (0.936) 

560 1000 
# Proposals 

VOC2007 test set, boat, .,=0.5 

1[ ._ .. ----". .. ... . 
0.8 ~-- ......... ~ •• B I ~" ...... ~ 

!! 0.6/ o . 
~O •• 
o 

0.2 r
- OUrS (0.913) · 
'''(1) (0.886) 
"'(109) (0.810) 

560 1000 
# Proposals 

VOC2007 test set, cat, '1=0.5 

, .............. -_ ...... _ ......... .. 

O.~ 

[

- Ours (0.992) 
'''(1) (0.989) 
... [1 09[ (0.955) 

500 1000 
# Proposals 

1 [ VOC2007 test ~et , dog, '1=0.5 .. ", ......... -_ ..... -:-..... . 
=0.8 /" 

~ ~ 
tfO.6 • 

gO.4 
0·20 

[

- Ours (0.982) 
"'(1) (0.978) 
'''[109] (0.959) 

500 1000 
# Proposals 

VOC2007 test set, pottedplant, '1=0.5 
1 

0.8 

[

- Ours (0.883) 
'''(1) (0.806) 
'''(109) (0.623) 

560 1000 
# Proposals 

VOC2007 test set, tvmonitor, .,,,0.5 
1 

Figure 3.14: Comparison of recall-proposal curves using different methods and 
IJ = 0.5 on each class in the test dataset of VOC2007. The numbers in brackets 
are the object recall values for each method using 1000 proposals. Still, in general 
our method (i.e. £1 - olr + £1 - olr) and [1] have similar behaviors, and both 
outperform [109] using 1000 proposals. The mean and standard deviation of the 
object recall values for our method, [1,109] are (95.1 ± 3.5)%, (92.0 ± 6.7)%, and 
(82.8 ± 12.8)%, re pectively. 

60 



3.4. Conclusion 

VOC2012 validation set, aeroplane, d2=1000 
l r"'1':':~-_-:'. 

'\ 

Bo
.
8 '~'''''' 

i:::~-ours (0.668)1 \ \ 
0.2 "'(1) (0.663) • \ 

'''p O~) (0;69~) ..... : 
00 0.1 0.20.30.40.50.60.70.60.9 I 

Overlap threshold (~) 

VOC2012 validation sel, bo1\le, d2=1000 
1 

i::I[~::3:;1':~~~~:'" . 
0.2 '''(1) (0.537) ••••• 

I .. ·p 09] (0.423) '" 
00 0.1 0:20.30:40.50.60.70.80.9 1 

Overlap threshold (~) 

VOC2012 validation set, chair, d2=1000 

1 ..... ........ . 
_ 0.8 ' •.. • "" 

~0.6 •••••••••••• ~~ 
ts 

gO··~-oUrS (0 .626) 1 ~'" 
0.2 '''(1) (0.632) • \ 

... p 09](0.560) .. 
00 0.1 0:20:30:40.50.60) 0:6 0.9 

Overlap threshold (~) 

VOC2012 validation set, horse, d2=1000 
l r-rr.:---_ .... 

1:':' 
£0 41[- ours (0 663)] 

02 "'(1)(0695) 
"'p09] (0 .712) 

00 0.1 0.20.30:40:50.6 0.7 0~6 0.9 1 
Overlap threshold (~) 

VOC2012 validation set, sheep, d2=1000 
1 . 

0.8 ••••••• 

~061 ....•.... \ 
!o'· I~_ours (0 .62~;1······ .... ··~ ••• 

02 "'(1)(0.626) . .. 
... p 09](0 482) ". 

00 0.1 0:20:30:40.50.60.70:60.9 1 
Overlap threshold (~) 

VOC2012 validation sel, bicycle, d2" 1000 
1 ....... ~ __ 00....-

! :::1 "'_ ... --,.,\\ 
.!i.0.4 \ 
<3 [- ours (0.657)1 \ 

0.2 "'[1 )(0.667) \ 
"'11 09) (0.690) • 

00 0.1 0:20:3 0:4 0~5 0:6 0) 0:6 0:9 
Overlap threshold (~) 

VOC2012 validation set, bus , d2=1000 
l r-;:".--__ _ 

1:':1 
i04[ 
<3 ~-ours (0 662)J 0.2 "'[1](0.693) 

"'11 09] (0 703) 
00 0.1 0 .20:30.40:50:60.70~80 .9 1 

Overlap threshold ('1) 

VOC2012 validation set, cow, d2" 1000 11"":"- __ _ 

J::I[~=:~:J'-" \\ 
0.2 '''(1] (0.661) '. 

,,,pO~) (0;60~) . • . . '. 
00 0.1 020.30.40.50.60.70.60.9 I 

Overlap threshold (~) 

VOC2012 validation set, motorbike. d2=1000 
1 ...... = __ -. 

i:: \\ 
gO'4 1~_OurS (0.674>J • \ 

0.2 "'(1)(0.683) \ 
"'p09 (0/33> ~'"'' 00 0~~2~30.4~5~6~7~6~9 

Overlap threshold (~) 

VOC2012 validation set, sofa , d2=1000 
I r----r.:-:--., 

BO
.
6

1 

~0.6f tl 
gO.4 - Ours (0.699) 

0.2L (I] (0.732) 1 
1I'''p09] (0.746) 

00 0.1 0:20:30~40.50 .60:70:80 :9 I 
Overlap threshold (~) 

'. '. B \, 
~06 ~. 

tl I \'" .~O ... \ \ 
<3 ~-ours (0 627) I ... .. 

02 "'(1)(0660) \ \ 
'''p09] (0593) • '. 

00 O. I 0:20: 30:. 0:50:60.70:8 0.9 1 
Overlap threshold (~) 

VOC2012 validation set, car, d2=1000 

B 0.:

1 

............. ::." .. . 

.,06 ...... . ti ' ...... \ 
.!!'0.4 ..... 
<3 [- ours (0.601)1 \ ". 

0.2 "'(1) (0.592) \, 
1",p09] (0 .510) \ 

00 0.1 0.20:30:4 0:5 0:6 0.7 0:6 0.9 1 
Overlap threshold (~) 

VOC20t2 validation sel, boal, d2" tOOO 
1....-...... --:._ 

~ .. ,. 
lij .......... ,.. .. 

!:::I~-ours (0 '6::~'1"""" \ 
0.2 "'(1) (0.620) 

"'11 09](0.541) • 
00 0.1 0:2 0:3 0~4 0.5 0:6 0.7 0:8 0.9 1 

Overlap threshold (~) 

VOC2012 validation set, cat, d2" 1000 
1~-..... ...,."" ... ,.. .. -.. __ • ' '':\.. 

0.8 '~"" 

10
.
6

1 . \ 

g
O 

4[_ ours (0 720) I \ 
0.2 "'(1) (0.730) 

"'p09] (0.793) 
00 0.10:20:3 0.4 0~5 0~6 0.70'80:9 

Overlap threshold ('1 ) 

VOC2012 validation set, diningtable , d2=1000 VOC2012 validation set, dog, d2" 1000 

0.: ....... :: .. \ _ 0.: .... ~ .. >~: . 
10.6 "'\ .. ! 0.6

1 

\"~ 
lo .• \ \~\ 9!.0. , <3 - Ours (0.658) j ,, \ B . ~-Ours(0 .687) 1 

0.2 "'(1) (0.710) •• ~ 0.2 "'(1) (0.714) 
"'p09] (0.691) "'p09] (0.733) • 

00 0.1 0:20~30:40:50-:S0) 0:60 .9 1 00 0.1 0 .20:30:40:50~6o.70 :60:9 1 
Overlap threshold (~ ) Overlap threshold (~) 

VOC2012 validation set, person, ~=1000 
1,...,_ ..... _=--

'iii ..................... . 

~ 0.6 ••• .:\ 

10.41[_ ours (0.636)1 ~:""'" 
0.2 '-{I) (0.637) \, 

1'''11 O~) to.·56~) . . • . " 00 0.1 0.20.30.40.5 0.60.70.60.9 
Overlap threshold (~) 

VOC2012 validation set, train, d2" 1000 

1 r---o..-..:: •• == .. ::-:-_.,-.. -.. -........ : •• .; 
0.8 , ••••• 

]0.6 \ \\ 
.!i.0.4 
<3 [- ours (0.663)1 • 

0.2 "'(1) (0.701) \ 
"'p09) (0.756) : 

00 0.1 0:20: 30:40:50:60:7 0:8 0~9 
Overlap Ihreshold ('1) 

VOC2012 validation set, pottedplant, d2=1000 
1 

0.8 

10.6 

10.4 • 
<3 ~-ours (0.604) I ". 

02 "'(1) (0.564) • '. 
"'1109)(0 SIS) '" \ 

00 0.1 0:20'30:40:50'60) 0~609 I 
Overlap threshold (~) 

VOC2012 validaUon set , tvmonitor, d2=1000 
1,.....,,,...._«= __ 

0.6 .......... . 
B .... 
~0.61 ••••••••••• 
.!!'0.4 
<3 ~-ours (0.642) I 

0.2 "'(1] (0.650) \ 
."p 09] (0 .552) ., 

00 0.10:20:30:40:50:60:70:60.9 I 
Overlap threshold (~l 

Figure 3.15: Comparison of recall-ov rlap curves using different methods on ach 
class in the training/validation dataset of VOC2012. The numbers in brackets 
are the AUC values for each method . Similar observations can be made to those 
in Fig. 3.13. The mean and standard deviation of AUC's for our method, [1 ,109] 
are (64.9 ± 3.4)%, (65.9 ± 5.2)%, and (63.1 ± 10.4)%, respectively. 

61 



3.4. Conclusion 

VOC2012 validation set, aeroplane, ~=0 .5 
1 

B 0.6 ("~':~='.=~~.~':':'.'~~~~~ ..... 
., ,.. 
i O.6 
'E 
°0.4 

0·20 

- Ours (0.942) 
'''(1) (0.945) 
''' (109) (0.609) 

500 1000 
# Proposals 

VOC2012 validation sel, bottle, I1EO.5 
0.6 

..... -... .-....... _ ... -.. 
• ,......... I- OUrs (0.767) 

'''(1) (0.651) 
"'(109) (0.407) 

500 1000 
, Proposals 

VOC2012 validation set, chair, ~-0 .5 
1 

0.6 C""~ ...... -~.---.... - •... -
.,.,.. ........ .--... _ ..... - .. 

,- ours (0.930) 
'''(1) (0.664) 
'''[109J (0.616) 

500 1000 
# Proposals 

VOC2012 validation set, horse, ~"0 .5 
1 

- Ours (0.973) 
"'(1) (0.970) 
'''(109) (0.646) 

SOD 1000 
, Proposals 

VOC2012 validation set, sheep, ~ EO . 5 
1 

.,.-. . .,-._ ...... . 
__ ........... [- ours (0.909) 

'''(1) (0.665) 
"'[109J (0.497) 

500 1000 
, Proposals 

VOC2012 validation set, bicycle, ~=0 .5 
1 

0·20 

- Ours (0.935) 
"'(1) (0.930) 
"'(109) (0.614) 

SOD 1000 
, Proposals 

VOC2012 validation set, bus, '1EO.5 
1 

16 0.6 .... _._._ ...... - ........ .. 
g .,.,-
i o.6 /' 
'E 
°0.4 

0·20 I
- Ours (0.961) 
"'(1) (0.949) 
'''(109) (0.623) 

500 1000 
, Proposals 

VOC2012 validation set, cow, ~ EO .5 
1 

=0.8 fi .... --.. .... . 
B I .-. .;.",;1"".- _ ••• ".. •• 
~0.6( ..--_ ..... 

10.4;r 
0.2 I

- Ours (0.944) 
'''(1) (0.925) 
"'(109)lO.694) 

SOD 1000 
, Proposals 

VOC2012 validation set, motorbike, ~EO.5 
1 

"..; ........... _ ..... : ............ _. 10.6 V .. · .. _ ... ·_· 
tl°.6 • 
:* 
°0.4 

0·20 

- Ours (0.959) 
"'(1)(0.961) 
"'(109) (0.861) 

sOD 1000 
'Proposals 

VOC2012 validation set, sofa , I1EO.5 
1 ..... _ ...................... n ....... m. 

= 0.8 .... ..-...... _._ ....... _. 

!0.6V ., . 
'E °0.4 

0·20 
[

- Ours (0.970) 
' ''(1) (0.968) 
"'(109) (0.687) 

500 1000 
, Proposals 

VOC2012 validation set, bird, ~"0 .5 
1 

0.6 ~ . ..... . 

10.6 /' ................. -_ ....... _ .. .. 
o ",...-
gO.4 / 

0.2 

0.6 

I

- Ours (0.929) 
'''(1) (0.915) 
"'(109) (0.661) 

SOD 1000 
, Proposals 

VOC2012 validation sel, car, '1,,0.5 

I
- Ours (0.617) 
'''(1) (0.757) 
"'(109) (0.545) 

500 1000 
, Proposals 

VOC2012 validation set, dinlngtable, '1"0.5 
1 _ •• ___ .:. .................... . 

= 0.8 r?- _._~.----.-.. 
B ""-" , .• •. 
~0.6 /" 
tl 
~0 .4 

r
- ours (0.938) 
"'[1J (0.964) 
"'(109) (0.616) 

° 0.2 

500 1000 
, Proposals 

VOC2012 validation set, person, ~EO .5 
1 

................ _ .. --_ ... _ .. __ ..... 

[

- Ours (0.919) 
"'(1) (0.669) 
'''(109) (0.659) 

500 1000 
, Proposals 

VOC2012 validation set, train, '1EO.5 

1 , ..... _ ._._ ••••••• '::..:::.~::.:.::::::.::. 

~ 0.8 f j/-"-'" 
ti 0.6 

gO.4 

0·20 
[

- Ours (0.960) 
" ' (1) (0.961) 
'''(109) (0.698) 

500 1000 
, Proposals 

VOC2012 validation set, boat, '1"0.5 

= 0.:[ ..... _ ... -._. __ .... 
co ~ •• 
~ 0.6 , / ..-....... _ ••••• _ ....... .. 
.~O .. ",..--...... 
c3 .~" 

[

- Ours (0.868) 
"'(1) (0.646) 
"'(109) (0.589) 

0.2 

500 1000 
# Proposals 

VOC2012 validation set, cat, '1=0.5 

.............. --....... -. 
BO.6 .• /, ... - .. 
~ r 11 • 
gO.6 

0·40 
[

- Ours (0.997) 
" ' (1) (0.996) 
''' (109) (0.935) 

500 1000 
, Proposals 

VOC2012 validation set, dQ(), '1,,0.5 
1 

.~. 
= 0.8 -""" ................ __ •• _. 
B .. ",- ' 
~0.6 .. / ., . 
"E 
00.4 

0·20 r
- ours (0.985) 
"'(1) (0.967) 
''' (109) (0.666) 

SOD 1000 
# Proposals 

VOC2012 validation set, pottedplant, '1=0.5 
1 

0.8 

[

- Ours (0.828) 
' ''(1) (0.734) 
"'(109) (0.551) 

SOD 1000 
'Proposals 

VOC2012 validation set, tvmon~or, '1-0.5 
1 

[

- Ours (0.945) 
" ' (1) (0.886) 
''' (109) (0.566) 

500 1000 
, Proposals 

Figure 3.16: Comparison of recall-proposal curves using different Inethods and 
'TJ = 0.5 on each class in the training/validation dataset of VQC2012. The num-
bers in brackets are the object recall values for each method using 1000 pro-
posals. The mean and standard deviation of the object recall values for our 
method, [1,109] are (92.5 ± 5.6)%, (89.9 ± 9.1)%, and (71.7 ± 15,3)%, respec-
tively. Similar observations can be made to those in Fig. 3.14. 

62 



Chapter 4 

Object Proposal Verification: 

Local Classifiers 



Local classifiers have attracted more and more attention recently [76,131,143,150]. 

The basic idea is to discover the data structures in low-dimensional manifolds, 

constructed by the local neighbors surrounding the data in the original feature 

space, where linear classifiers are trained. In general, due to the sparseness of 

features, these methods have low memory and storage requirement and fast speed 

of training and testing SVMs. However, such methods suffer from high compu-

tational complexity in learning sparse features in cases of using high dimensional 

data, large-scale data, or over-complete codebooks. For instance, sparse coding 

is widely used in such methods, which imposes some special regularizers (e.g. £1 

norm [82], mixed norm [75], KL-divergence [20]) on the features in the optimiza-

tion during both training and testing. 

In this chapter, we propose three methods for efficient learning of local .clas-

sifiers from locally linear to locally nonlinear. Each of our classifiers has similar 

computational complexity to that of linear SVMs, and comparable classification 

accuracy to kernel SVMs, which gives us a powerful tool for our efficient object 

detection framework. 

Firstly, we propose an orthogonal coordinate coding (aCC) based locally lin-
It 

ear classifier where each anchor point in the feature space is represented para-

metrically by an anchor plane so that every point in the feature space can be po-

tentially localized by a few anchor planes. However, the orthogonality constraint 

limits the number of anchor planes, which reduces the discriminative power of the 

coding. By relaxing the orthogonality constraint, we propose our second locally 

linear classifier based on truncated marginal features (TMFs). In this classifier,-

a simUar truncated function to that in acc for encoding is utilized. In contrast 

though, the pararnetcrs of the affine transformation in the truncated function and 

the classifier are learned jointly using a biconvex formulation. Although locally 

linear classifiers are very powerful to approximate the decision boundaries among 

data, in some cases we may need local nonlinearity in the classifier so that the 

approximation could be done better. Therefore, we propose our third locally non-

linear classifier by parameterizing the traditionai nearest neighbor (NN) classifier, 

which is actually a nonparametric locally nonlinear classifier. In this classifier, 

we learn to capture the pdor knowledge of data distribution in each class, and 

64 



4.1. Learning Orthogonal Coordinate Coding 

add this information into the NN classifier. We explain the details of our local 

classifiers in the following sections. 

4.1 Learning Orthogonal Coordinate Coding 

4.1.1 Introduction 

Our orthogonal coordinate coding (OCC) is inspired by local coordinate coding 

(LCC) [143]. LCC is a coding scheme that encodes the data locally so that any 

nonlinear (a,,B,p)-Lipschitz smooth function (see Definition 4.1 in Section 4.1.2 

for details) over the data manifold can be approximated using linear functions. 

There are two components in LCC: (1) a set of anchor points which decide the 

local coordinates, and (2) the coding for each data based on the local coordinates 

given the anchor points. Theoretically [143] suggests that under certain assump-

tions, locality is more essential than sparsity for nonlinear function approxima-

tion. LCC has been successfully applied to many appli?ations such as object 

recognition (e.g. locality-constraint linear coding (LLC) [131]) in the vac 2009 

challenge [44]. 

One big issue in LCC is that its classification performance is highly dependent 

on the number of anchor points, as observed in Yu and Zhang [142], because these 

points should be "local enough" to encode surrounding data on the data manifold 

accurately, which sometimes means that in real applicat~ons the number of anchor 

points explodes to a surprisingly huge number. This has been demonstrated 

in [143] where LCC has been tested on the MNIST dataset, using from 512 to 4096 

anchor points learned from sparse coding, the error rate decreased from 2.64% 

to 1.90%. This situation could become a serious problem when the distribution 

of the data points is sparse in the feature space, i. e. there are many "holes" 

between data points (e.g. regions of feature space that are sparsely populated by 

data). As a result of this, many redundant anch<;>r points will be distributed in the 

holes with little information. By using many anchor points, the computational 

complexity of the classifie~ at both training and test time increases significantly, 

defeating the original purpose of using LCC. 

65 



4.1. Learning Orthogonal Coordinate Coding 

So far several approaches have been proposed for problems closely related 

to anchor point learning such as dictionary learning or codebook learning. For 

instance, Lee et. al. [83] proposed learning the anchor points for sparse coding 

with the £1 norm regularizer using the Lagrange dual, while Bradley and Bagnell 

[20] advocated KL-divergence as the regularizer. Mairal et. al. [93] proposed 

an online dictionary learning algorithm using stochastic approximations. Wang 

et. al. [131] proposed locality-constraint linear coding (LLC), which is a fast 

implementation of LCC, and an online incremental codebook learning algorithm 

using coordinate descent method, whose performance is very close to that using 

K-Means. However, none of these algorithms can deal with the holes of sparse 

data as they need many anchor points. 

Alternatively, we propose a method to approximate any nonlinear (a, (j,p)-

Lipschitz smooth function using an orthogonal coordinate coding (Oee) scheme 

on a set of orthogonal basis vectors. Each basis vector v E jRd defines an an-

chor plane through the origin of the feature space, which can be considered as 

consisting of an infinite number of anchor points, and the nearest point on each 

anchor plane to a data point x E jRd is used for coding. "The data point x will 
II 

be encoded based on the margin, x T v, where (.) T denotes the matrix transpose 

operator, between x and an anchor plane defined by v. Using anchor planes, 

many anchor points can be replaced by only a few anchor planes while preserving 

similar locality of anchor points. This sparsity may lead to a better generalization 

since many anchor points will overfit the data easily. Therefore, it can deal with 

the hole problem in Lee. 

M~anwhile, the learned orthogonal basis vectors can fit naturally into locally 

linear SVMs (LL-SVMs) proposed by Ladicky and Torr [76]. They show how 

the functions defining the classifiers can be approximated using local codings and 

show how this model can be optimized in an online fashion by performing stochas-

tic gradient descent with the same convergence guarantees as standard gradient 

descent method for linear SVMs. Mathematically LL-SVMs are formulated as 

,,' 

66 



4.1. Learning Orthogonal Coordinate Coding 

follows: 

argmin ~IIWII}+ I~I L~k 
W,b ke8 

s.t. Vk E S, Yk [1';kWXk +I';kb] ~ 1- ~k' 

~k ~ 0, 

(4.1.1) 

where II . IIF denotes the Frobenius norm of a matrix, lSI denotes the number of 

training data in the training set S, \lk, Xk E IRd is a training vector, Yk E {-I, I} 

is its label, I' Xk E IRN is its local coding, A ~ 0 is a pre-defined regularization pa-

rameter, and W E jRNxd and b E jRN are the model parameters. As demonstrated 

in our experiments, the choices of the local coding methods are very important 

for LL-SVMs, and an improper choice will hurt its performance. 

4.1.2 Orthogonal Coordinate Coding 

For clarification, we sUlnmarize some notations in Table 4.1 which are used in 

LCC and OCC. 

Table 4.1: Some notation used in LCC and OCC. 

Notation Definition 
v E IRd An anchor point in LCC; 

a basis vector which defines an anchor plane through the origin 
of the feature space jRd in oee. 

e c IRd A subset in the feature space containing all the anchor points (or 
basis vectors) (\Iv, v E e) in LCC (or OCC). 

'Yv(x) E IR The local coding of a data point x E IRd using the anchor point 
(or basis vector) v. 

I'(x) E IRd The physical approximation vector of a data point x. 
'Y A map of x E jRd to the coding vector. 

('Y,C) A coordinate coding. 

4.1.2.1 Preliminary 

We first recall some definitions and lemmas in LCC based on which we develop 

our method. Notice that in the following sections, II . II denotes the f 2-norm 

without explicit explanation. 

67 



4.1. Learning Orthogonal Coordinate Coding 

Definition 4.1 (Lipschitz Smoothness [143]). A function f(x) on jRd is 

(a,/3,p)-Lipschitzsmooth with respect to a norm 11·11 iflf(x')-f(x)l::; allx-x'il 
and If(x') - f(x) - V f(x)T(x' - x)1 ::; ,Bllx - x'11 1+p, where we assume a,,B > 0 

and p E (0,1]. 

Definition 4.2 (Coordinate Coding [143]). A coordinate coding is a pair 

('Y, C), where C C jRd"" is a set of anchor points, and 'Y is a map of x E jRd 

to ['YV(X)]vEC E jRlcl such that I:v'Yv(x) = 1. It induces the following physical 

approximation ofx in jRd: ,(x) = I:vEC 'Yv(x)v. 

Lemma 4.1 (Linearization [143]). Let ('Y, C) be an arbitrary coordinate coding 

on jRd. Let f be an (a, /3,p)-Lipschitz smooth function. We have for all x E jRd: 

f(x) - E 'Yv(x)f(v) ::; allx -,(x)11 + /3 E l'Yv(x)lllv _,(x)111+P (4.1.2) 
vEC vEC 

As explained in [18], a good coding scheme for nonlinear function approxima-

tion should make x close to its physical approximation ,(x) (i.e. smaller data 

reconstruction error II x -, (x) II) and should be localized (i~ e. smaller localization 
II 

error I:vEC l'Yv (x) Illv - ,(x) 11 1+P). This is the basic idea of LCC. 

Definition 4.3 (Localization Measure [143]). Given a, /3, p, and coding 

('Y,C), we define 

Qa,{3,p('Y,C) = lEx [allx -,(x)11 + /3E l'Yv(X)lllv.-,(X)111+p] 
vEC 

( 4.1.3) 

4.1.2.2 Orthogonal Coordinate Coding 

We follow the notations in Table 4.1, and define our orthogonal coordinate coding 

(OCC) as below. 

Definition 4.4 (Orthogonal Coordinate Coding). An orthogonal coordinate 

coding is a pair ('Y, C), where C C jRd contains IC I basis vectors and coding 'Y is a 

map o/x E jRd to ['Yv(X)]vEC E }Rlcl, so that a subset of orthogonal basis vectors C..L 

can be selected from C for encoding x and \Iv E C..L, 'Yv(x) ~ 0, I:vEC.L 'Yv(x) = 1, 

\Iv ~ C..L, 'Yv(x) = O. 

68 



4.1. Learning Orthogonal Coordinate Coding 

locally linear 
................. 

f (X )",,, .--_ .. 

...... "" 
" -A / 

...... .... 
" " ,-----' 

(a) Local Coordinate Coding (LCG) 

. .... 
O .... .... 

anchor plane 
Xi 

(b) Orthogonal Coordinate Coding (OCC) 

Figure 4.1: Comparison of the geometric views on (a) LCC and (b) OCC, where 
the white and red dots denote the data and anchor points, respectively. In LCC, 
the anchor points are distributed among the data space and several nearest neigh-
bors around the data are selected for data reconstruction, while in OCC the an-
chor points are located on the anchor plane defined by the nonnal vector (i. e. 
coordinate, basis vector) v and only the closest point to each data point (i. e. the 
red dots) on the anchor plane is selected for coding. The figures are borrowed 
from . th~ .. s.1i.des of [141]. . ._ ...... ' .... , .. " ."'" 

Compared to Definition 4.2, we can see that acc is a special case of coordi-

nate coding where the selected coordinates are orthogonal. Figure 4.1 illustrates 
t 

the geometric views on LCC and OCC respectively. Intuitively, in both methods 

anchor points try to encode data locally. However, the ways of their arrangen1ent 

are quite different. In LCC anchor points are distributed among the whole data 

space so that each data can be covered by certain anchor points in a local region, 

and their distribution cannot be described using regular shapes. On the contrary, 

anchor points in acc are located on anchor planes defined by basis vectors. In 

fact, each anchor plane can be considered as an infinite nun1ber of anchor points, 

and for each data point only its closest point on each anchor plane is utilized 

for reconstruction and localization. Therefore, intuitively the number of anchor 

planes in OCC should be much smaller than the number of anchor points in LCC. 

Since we do not define the anchor points explicitly in the feature space, any point 

could be encoded using OCC potentially, which makes this method handle the 

"hole" problem seamlessly. 

69 



4.1. Learning Orthogonal Coordinate Coding 

t 
o Q ,'f\ I , , , , 

\ ,'~'y X 
',,' ~ 

~
)\" '\ yex) , ,"'... '. . .-""" 
,','r~}~ V ' '--. " JI' 3 "--------

x0 

V2 
~ 

yex) 

(a) (b) 

Figure 4.2: Illustration of learning OCC using (a) the closest point to the data 
on each anchor plane, or equivalently (b) basis vectors as anchor points in the 
feature space. Here Vb v2, and V3 denote the orthogonal basis vectors for defining 

...... anchor, planes) x qgn.otes a data point, .'1'.(~) denotesthephy~i~~l approximation 
of x, and 0 denotes the origin of the feature space. 

4.1.2.3 Learning and Encoding 

Instead of optimizing Definition 4.3, LCC simplifies the' localization error term 
It 

by assuming ,(x) = x and p = 1. Mathematically LCC solves the following 

optimization problem: 

(4.1.4) 

s.t. \Ix, L:vEC ')'v(x) = 1. 

They update C and')' via alternating optimization. The step of updating')' can 

be transformed into a canonical LASSO problem, and the step of updating C is 

a least squares problem. ' 

Differently, in oee we would like to minimize the total square Euclidean 

distances between the reconstructed data points and the origin, as illustrated in 

Fig. 4.2(a). Given a data point x and a orthogonal basis vector set C, the data 

point is encoded using the closest points on the anchor planes, that is \Iv E C, x -

~f v. Notice that we restrict the reconstructed point in a simplex constructed 

by the selected closest points. Intuitively the formulation for learning OCC can 

70 



4.1. Learning Orthogonal Coordinate Coding 

be shown as follows: 

min 
z,O,C ( 

xTv) 2 L L x - IIvl1 2 v zx,vBx,v + Aiel 
xEX vEC 

s.t. \Ix E X, u, vEe, u =f v=} zx,uzx,vUTv = 0, 

zx,v E {a, I}, 2:vEC zx,v = M, 

Bx,v ~ 0, 2:vEC zx,vBx,v = 1, 

( 4.1.5) 

where lei denotes the number of basis vectors, Z C Rlxlxlci denotes a binary 

matrix indicating which orthogonal basis vectors are selected to encode a data 

point, 0 C IRlxlxlcl denotes another matrix indicating the weight associated with 

each closest point for constructing the simplex, M ~ ° is a predefined constant 

controlling the number' of orthogonal basis vectors that are used for coding; and 

A ~ ° controls the trade-off between the total distance and the number of basis 

vectors. 

S· h x
T VB' E 4 h d f h k Ince t e term jfV'jfvzx,v x,V In q. .1.5 as a pro uct 0 tree un nown 

variables, we introduce a single coordinate coding variable lV(x) = ,,~i2 Bx,v' Then 

Eq. 4.1.5 can be rewfitten as follows, as illustrated in Fig. 4.2(b): 

2 

min L x - L vZx,vlv(x) + Aiel 
z,(,)"C) 

xEX vEC 

s.t. \Ix E X, u, v E C, u =f V=} zx,uzx,vuTv = 0, 

zx,v E {O, I}, 2:vEC zx,v = M, 

lV(x) ~ 0, 2:vEC zx,vlv(x) = 1, 

(4.1.6) 

Prop'osition 4.1 (Minimum Number of Basis Vectors). Assuming that data 

points are distributed uniformly in the feature space, in order to satisfy the con-

straints in Eq. 4.1.6 for any arbitrary data point x using orthogonal basis vectors, 

the number of basis vectors in C should satisfy lei ~ 2M. 

Proof. Under the assulnption, for any hyper-plane defined by v, which goes 

through the origin of the feature space, the probability of xT v ~ ° is equal to 

0.5. Letting CJ. contain M orthogonal basis vectors, and letting C = CJ. U{ -CJ.} 

where \Iv E CJ., -v E {-C.1.} , and U denotes the set union operator; then each 

data point can be encoded by the orthogonal basis vectors either from CJ. or from 

71 



4.1. Learning Orthogonal Coordinate Coding 

Vs 

Figure 4.3: Example of encoding a data point in a 3D space using 6 anchor 
points, denoted by the blue color, where VI = -V2, V3 = -V4, V5 = -V6, and 
VI ~ V3 ~ V5· The given data, denoted by the red dot, is encoded by VI, v3, 

and V5, respectively, since their codes are positive, and the codes using th.e rest 
anchor points are negative. 

-C1. to satisfy the constraints in Eq. 4.1.6. Therefore, the minimum nUluber of 

basis vectors in C is 2M. o 

Fig. 4.3 gives aLl example of using 6 anchor points to encode a given data 

point in a 3D feature space, where C = {Vb V2, V3, V4, V5, V6} = {±VI, ±V3, ±V5}' 

An arbitrary data point in this 3D feature space can be encoded by C so that the 

constraints in Eq. 4.1.6 can be satisfied for oce. 
We assume that in Eq. 4.1.6 AICI will dominate the objective function, and 

thus IC I should take its minimum value, as stated in Proposition 4.1. By con-

structing C = C 1. U { -C 1.}, we can see that the functionality of z is a sign indica-

tor. Therefore, again we can rewrite Eq. 4.1.6 as follows: 

(4.1.7) 

IC1.1 = M, 

\/x, 1l'1.xliI = 1, 

where C1. E IRdxlC.L1 denotes the orthogonal basis vector matrix with V E C1. as 

columns, '1.x E IRIC.LI denotes the coding vector of data point x containing all 

72 



4.1. Learning Orthogonal Coordinate Coding 

'Yv(X) in order l.lx = ['YV(X)]vECJ.' and II . 111 denotes the £1 norm of a vector. 

Solving Eq. 4.1.7 efficiently is very difficult, because it involves both orthog-

onality and £1 norm constraints. Thus, we decide to solve it approximately. We 

use singular value decomposition (SVD) to solve the problem without the £1 norm 

constraint first, then apply £1 normalization to l.lx' 

(I) Solving for C.l. Let the SVD of X = V~U where the singular val-

ues are positive and in descending order with respect to ~. Then we set C.l = 
V{dXM}~{MxM}, where V{dXM} denotes a sub-matrix of V containing the ele-

ments within rows from 1 to d and columns from 1 to M, similarly for ~{MxM}. 

We need only to use a few top eigenvectors as our orthogonal basis vectors for 

coding, and the search space is far smaller than generating anchor points. 

Notice that SVD can be applied in two different ways: (1) directly tQ the 

entire training data matrix, or (2) separately to the data within each category. 

We denote these two types of OCC as G-DCC (Le. Generic OCC) and C-DCC 

(Le. Class-specific aCC), respectively. 

(II) Solving for l.lx. Since we have the orthogonal basis vectors in C.l, we 

can easily derive· the formulation for calculating i .lx, the values of "Y.lx before 
II 

normalization, that is, i.lx = (CIC.l)-lCIx. Specifically, Vv E Ci, i'v(x) = 
O~f' Finally, we can calculate l.lx by normalizing i.lx using £1 norm. 

Similarly, after constructing C = C.l U{ -C.l}, we can easily encode the data 

using Eq. 4.1.8, followed by £1 normalization: 

{ 
vTx } Vv E C, x, I'v(x) ex max IIv1l 2 ' 0 . ( 4.1.8) 

In our experimental section, we simply take the codes in Eq. 4.1.7 as our 

acc by assuming that the weights learned latter in the classifiers are the same 

for the counterparts (e.g. v and -v) in the original set of basis vectors C. 

,., . 

73 



4.2. Learning Locally Linear Classifiers via 'Truncated Marginal Features 

4.1.3 Modeling Classification Decision Bound-

ary in Locally Linear SVMs 

Given a set of data {(Xi, Yi)} where Yi E {-I, I} is the label of Xi, the decision 

boundary for a binary linear SVM is f(x) = wTx + b where w is the SVM 

coefficients defining the decision hyperplane and b is a bias term. Here, we assume 

that the decision boundary is an (a, ,B,p)-Lipschitz smooth function. Since in 

LCC each data is encoded by some anchor points on the data manifold, it can 

model the decision boundary of an SVM directly using f(x) ~ LVEC I'v(x)f(v). 

Then by taking Ix as the input data of a linear SVM, f(v)'s can be learned to 

approximate the decision boundary f. 
However, acc learns a set of orthogonal basis vectors, which define anchor 

planes rather than anchor points, and are used for coding. This makes acc 
suitable to model the decision hyperplanes with LL-SVMs. Given data X and an 

OCC (I', C), the decision boundary in LL-SVMs can be formulated as follows 1. 

f(x) = W(X)T x+ b = L IV(X)w(v)T X + b = ,;WX + b 
It . 

(4.1.9) 
vEC 

where W E lRMxd is a matrix which needs to be learned for LL-SVMs. In the 

view of kernel SVMs, we actually define another kernel K based on X and I x as 

shown below, 

where < ',' > denotes the Frobenius inner product. 

Then given a test data point X E lRd , its class label is assigned by 

y(x) = argmax,;,yWyx + by, 
y 

(4.1.10) 

(4.1.11) 

where Ix,y denotes the code for X using C-OCC, while using G-OCC, Ix,y = Ix' 

1 Notice that Eq. 4.1.9 is slightly different from the original formulation in [76] by ignoring 
the different bias term for each orthogonal basis vector. 



4.2. Learning Locally Linear Classifiers via Truncated Marginal Features 

".,-- ........ , 

VI.llx,lI l = 1 

VJ. 1I8dl ~ = 1 

c::=~> 

Figure 4.4: Illustration of our truncated marginal features (TMFs) for learning 
locally linear classifiers. In both figures, circle and triangle denote 2 classes, 
different color regions denote the weight regions, and the darker the color is, the 
higher the weight is. On the left, rectangles denote anchor points and the dashed 
circles denote the boundaries of their local regions, outside which weights are 
zeros and inside which weights decrease linearly with square Euclidean distances 
between data and anchor points. Assuming data and anchor points are localized 
on tpe. unit .,hyperspherel. the .an<:h9f points w,ith thei~.Jo.cal region~ in the )~ft 
figure can be represented by the hyperplanes, denoted by the dashed lines, with 
bias terms in the right figure. Accordingly, weights in the left figure (i. e. solid 
lines) can be represented as margins in the right figure (i. e. solid lines). 

4.2 Learning Locally Linear Classifiers via 

Truncated Marginal Features 

4.2.1 Introduction 

As we see from Eq. 4.1.8, in OCC each anchor plane splits the entire feature 

space into two parts, where all the data points above the plane have the positive 

codes, indicating how far the data points are from the anchor plane, otherwise 

O. This coding process defines an explicit nonlinear feature rnap fUllction, and 

the functionality of anchor planes is actually performed as weak learners which 

collect the geometric information of data as the input for classifiers. However, the 

orthogonality constraint limits the number of learned basis vectors and non-zero 

elements in the coding, and the learned codes from OCC may not be optimal for 

the classification purpose because the coding process is independent of learning 

classifiers. 

Then the questions come out: Can we learn more basis vectors to perform 

75 



4.2. Learning Locally Linear Classifiers via Truncated Marginal Features 

the same functionality of weak learners as OCC regardless of the orthogonality 

constraint? Can we encode the data more sparsely? Can we learn the basis 

vectors, data encoding, as well as the classifiers jointly? 

Let us revisit the explicit nonlinear feature map function used in OCC. Fig. 

4.4 illustrates the functionality of basis vectors in OCO, considered as anchor 

points (left) similar to Fig. 4.2(b), or as normal vectors (right) similar to Fig. 

4.2(a). The left figure shows a very simple localization scheme for constructing 

local classifiers, where each data point can be represented based on the squared 

Euclidean distances between it and the anchor points. Particularly, when the 

data and anchor points are localized on the unit hypersphere, this distance-based 

representation can be rewritten as the truncated margin representation in the 

right figure, which is used in Eq. 4.1.8. We call the features in the right -figure 

truncated marginal features (TMFs). 

To learn our locally linear classifier as well as TMFs jointly, we formulate 

it as a biconvex minimization problem, and solve it efficiently using Adaptive 

Convex Search (ACS), where the explicit nonlinear map function is learned using 

random projection and stochastic sub-gradient descent, and the classifiers are 
II 

learned using multiclass linear SVM solvers. We further prove that our locally 

linear classifiers with TMFs can be used to approximate the decision boundaries 

of kernel SVMs using the summation of multiple nonlinear arc-cosine kernels [25] 

with equal weights. 

4.2.2 Joint Learning of Classifiers and Features 

4.2.2.1 Preliminaries 

Definition 4.5 (Truncated Functions). Given a data point x E IR and a 

threshold t E IR, we define a truncated function 'l/J as follows: 

'l/J(x; t) = max(x -.t, 0). (4.2.1) 

Definition 4.6 (Truncated Marginal Features (TMFs»). We define the 

76 



4.2. Learning Locally Linear Classifiers via Truncated Marginal Features 

TMF of a data point x E lRd, ¢(x; B, t), as follows: 

¢(x; B, t) = max (BT x - t, 0) 

S.t. tlb -< t -< tub, Vi, IIBill~ ~ 1, 

(4.2.2) 

where B E ]RdxD is the transformation matrix, Bi E ]Rd is the ith column in B, 

t E lRD is a threshold vector bounded by the predefined lower bound tlb E ]RD and 

predefined upper bound tub E lRD , max and -< are the element-wise operators of 

max and ~, respectively, and II . 112 is the f2 norm. 

Remarks: In our TMFs, the bound constraint on the threshold vector t helps 

to control the sparseness of TMFs, because the lower and upper bounds can be 

set manually and data-dependently. The other constraint on the norm of each 

column in B guarantees that the TMFs are scale invariant. Note that our TMFs 

will be equivalent to a single-layer threshold network [25] when t = O. 

Based on the definition of TMFs, we address our learning task as below. 

Problem. Given a set of training data (Xi, Yi)i=l, ... ,N where Vi, Xi E lRd is a 

feature vector and '!li E {I, ... ,C} (C E N) is its class label, we would like to 

learn a multi class classifier, so that 

{
eN e } 

min -2
1 L Ilwell~ + ~21Itll~ + rJ L L max (1 -lIyi,e (w~ ¢(Xi; B, t) + be) ,0) 

B,t,W,h 
e=l i=l e=l .' 

wher~. (B, t) is the TMF parameters shared by all the classes, (we, be) are the 

classifier parameters for class c E {I"" ,C} (we E lRD is the cth column in 

W E lRDxe , and be E lR is the cth element in b E lRe ), () ;:::: 0 and rJ ;:::: 0 are 

predefined regularizer parameters, lIyi,e is an indicator function and lIyi,e = 1 if 

Yi = c, otherwise O. 

The class label of a test data point x is predicted as 

Yx = argmax fe(x; B, t, We, be) = argmax {w~ ¢(x; B, t) + be}, ( 4.2.4) 
e e 

where fe(x; B, t, We, be) denotes the decision function for class c. 

77 



4.2. Learning Locally Linear Classifiers via Truncated Marginal Features 

4.2.2.2 Analysis 

Eq. 4.2.3 is equivalent to inserting TMFs in the formulation of multiclass linear 

SVMs. However, this problem is never convex in general, but biconvex. 

Definition 4.7 (Biconvex functions [57]). Let X ~ ]Rn and Y ~ ]Rm be two 

non-empty, convex sets, and let f be a real-valued function on X x y. f is biconvex 

if and only if for all quadruples (XI, YI), (Xl, Y2), (X2' YI), (X2' Y2) E X x Y it holds, 

that for every ()..,Il') E [0,1] x [0,1], 

f(x A, Y JL) ::; (1 - )..)(1 - JL)f(xI, yd + (1 - )")J1,f(XI, Y2) 

+..\(1 - J-l)f(X2, yd + ..\J-lf(X2, Y2), (4.2.5) 

Theorem 4.1. The minimization problem in Eq. 4.2.3 is a biconvex minimiza-

tion problem. 

Proof. By introducing slack varia~les into Eq. 4.2.3, it is ·shown that solving Eq. 

4.2.3 is equivalent to solving the following biconvex minimization problem: 

min 
B,t,W,b,e,p ~ L Ilwcll~ + ~lltll~ + 11 L 6.c + T L Ilpilh 

e i,e i 

s.t. Vi, c, llYi'~ [wr (BTXi - t + Pi) + be] ~ 1 - ~i,c, 

Vi, c, ~i,e ~ 0, 

Vi, BTXi - t + Pi >- 0, Pi >- 0, tlb -< t -< tub, 

Vj, IIBjll~ ::; 1, 

(4.2.6) 

where e and P are slack variables, Vi, Pi E ]RD is a vector, II . lit is the £1 norm, 

>- is the element-wise operator of ~, and 7(0 ::; 7 « 8) is a predefined constant. 

FroIn the first constraint in Eq. 4.2.6, we can see that this optilnization probleln 

is biconvex. o 

We can adopt Alternating Convex Search (ACS) [5] to solve Eq. 4.2.6: 

(1) (W, b, e) can be learned using any linear multiclass SVM solver such as 

"LIBLINEAR [49] while fixing (B, t, p); 

78 



4.2. Learning Locally Linear Classifiers via Truncated Marginal Features 

(2) (B, t, p, e) can be learned using quadratically constrained quadratic pro-

gramming (QCQP) [19] while fixing (W, b), because all the quadratic terms 

in the objective function and the constraints are positive semidefinite; 

(3) Repeat (1) and (2) above until converge. 

Theorem 4.2 (Convergence [59]). Given B ~ IRn x IRm, let f : 1B -+ IR be 

a biconvex function bounded from below. If the optimization problem in each 

update of A CS is solvable, then the sequence of function values generated by A CS 

converges monotonically. 

Clearly, the optimization of Eq. 4.2.6 using ACS will converge to a local 

minimum. Since learni~g classifiers while fixing Band t is simply applying l}near 

SVM solvers to Eq. 4.2.6, in the following sections, we will focus on how to learn 

Band t efficiently. 

4.2.2.3 Supervised Learning of B 
.. 

We learn B while fixing (W, b) and t. The main difficulty of learning B is 
tI 

to satisfy the quadratic constraint IIBII~ ~ 1, as it makes the problem NP-hard. 

Unfortunately, considering the huge number of variables in Eq. 4.2.6 that need to 

be learned, semidefinite programming (SDP), a widely used relaxation of QCQP, 

is inapplicable for solving our problem. 

Inspired by SOIno recent work on randoIn projection for classification [68,117], 

we propose an algorithm to search for a sub-optimal solution of Eq. 4.2.6 using 

rando~ projection and screening test [135], which is shown in Alg. 4.1. 

As we can see, Alg. 4.1 guarantees to converge to a local solution monotoni-

cally while fixing (W, b) and t, and has relatively low computational complexity. 

Sampling from a normal distribution N(O, 1) guarantees that the new entries 

satisfy the norm condition of each column in B. 

4.2.2.4 Supervised Learning of t 

Given (W, b) and B, we utilize the stochastic sub-gradient descent method to 

learn t, similar to PEGASOS [116], due to its high learning efficiency. 
I). 

79 



4.2. Learning Locally Linear Classifiers via Truncated Marginal Features 

Algorithm 4.1: Random projection screening test algorithm for learning 
B in TMFs. 

Input : (W, b), t 
Output: B 

repeat 
Randomly sample J(J E N) columns in B, denoted as Bs; 
Randomly sample J LLd. vectors from a normal distribution N(O, 1), 
normalized using £2 norm and denoted as Br; 
Replace Bs with Br in B, denoted as B'; 
if The objective value in Eq. 4.2.3 is smaller using B' than using B 
then 
I B f- B'; 

end 
until Converge; 
return B; 

Letting g(z) = max(z, O)(z E JR), the problem of learning t in Eq. 4.2.3 can 

be reformulated as follows: 

t* = arg min L(x, y; (), 1], W, h, B, tlb, tub) 
t 

= arg miD {: Iltll~ + L g(1 -lly"c!e(Xi; B, t,we, be))} 
t 7] . 

c,~ 

(4.2.7) 

where L(x, y; (), 1], W, h, B, tlb, tub) denotes the regularized loss function in Eq. 

4.2.3. 
Further, letting j E {I, ... , D} denote the jth dimension in t, the sub-gradient 

of Lover t(j) given a data point (Xi, Yi) can be calculated as follows: 

8L _ 8L. 89. 8 f _ ~ (j) '" 8g I 8g I (j) 
8t(j) - 8 at at(j) - t + L.,; az az. llYi'CWC , g 7] c z=l-nyi,c!c(XiiB,t,wc,bc) Z=B;Xi-t(J) 

(4.2.8) 
where ~ denotes the sub-gradient of g over z, and ~ = I if z > 0; otherwise, 

~ = O. We show our learning algorithm for t in Alg. 4.2. 

80 



4.2. Learning Locally Linear Classifiers via Truncated Marginal Features 

Algorithm 4.2: Stochastic sub-gradient descent method for learning t in 
TMFs. 

Input : {(Xi, Yi)}, (W, b), B, 'r], to, tlb, tub 

. Output: t 
for k +- 1 to K do 

Choose a subset Ak ~ {(Xi, Yi)}, where IAkl = Ski 
rk +- 01; 
foreach j E {I, ... ,D} do 

end 
end 
return t; 

(j) (j) rk '" 8L I . tk_~ +- t k - 1 - -;-~ Bt(j) , 
k Ak t=tk-l 

t(j) +- min {max {t(j) t(j)} t(j)}· 
k k- ~' lb· 'ub , 

4.2.3 Nonlinear Kernel Approximation 

We start with some introduction of arc-cosine kernels [25,26], and then explain 

why the linear kernel of TMFs can be used to approximate the summation of 

different arc-cosine kernels. Here, we follow the terminology in [25] for a better 

explanation. 

4.2.3.1 Arc-cosine Kernels 

In [25, 26], given two data points Xl, X2 E JRd, the nth order arc-cosine kernel 

function is defined as: 

Kn(Xl:~2) = .!.IIXll1~lIx211~ In(B) = 2 J dw e-~ 8(wT xl)8(wT X2)(WT Xlt(WT X2)n, 
~ (2~)2 

(4.2.9) 

whereB = cos-1 (IiXlilf~;211~)' In(B) = (-1)n(sinB)2n+l (si!otO)n (~~~), and 8(·) = 
~(l + sign(.)) denotes the element-wise Heaviside step function. Note that the 

n = 1 arc-cosine kernel, K1(xt,X2) = ~IIXlIl2I1x2JI2{sinB + (~- B) cosB}, is not 

translationally invariant. 

,", . 

81 



4.3. From Linear to Nonlinear: Parametric Nearest Neighbor Classifiers 

4.2.3.2 Kernel Approximation 

By comparing Eq. 4.2.2 with Eq. 4.2.9, we have the following proposition on the 

relationship between TMFs and arc-cosine kernels. 

Proposition 4.2. (1) Given a data point x E IRd, then 

Vj = 1, ... ,J, ¢(x; B j , 0) = 8(BJ x)BJ x. (4.2.10) 

(2) [25} Given two data points Xl, X2 E IRd, if each column in B is sampled 

i. i. d. from a normal distribution with zero mean and unit variance, then 

( 4 .. 2.11) 

Theorem 4.3 (Nonlinear kernel approximation). Given TMF parameters 

(B, t), suppose Band t can be divided into M segments without replacement, so 

that Vm E {I,··. ,M}, 31Lm, B~lLm = t m • Letting the number of columns in each 

segment Bm be Jm, for two data points Xl, X2 E IRd we have 

Proof· 

(4.2.13) 

Then by applying Proposition (2) into each segment, the theorem is proven. 0 

Theorem 4.3 indicates that our TMFs can be considered as the combination 

of sample dimensions from different infinite dimensional features which can be 

used to approximate arc-cosine kernels. 

82 



4.3. From Linear to Nonlinear: Parametric Nearest Neighbor Classifiers 

4.3 From Linear to Nonlinear: Parametric 

Nearest Neighbor Classifiers 

4.3.1 Introduction 

Now we have shown two methods of training locally linear classifiers: orthog-

onal coordinate coding (OCC) with LL-SVMs, or truncated marginal features 

(TMFs) with linear SVMs. Since the data distribution in the feature space is 

so complex that in some situations, even locally linear classifiers cannot separate 

data properly, or there will be too many locally linear fragments (one fragment, 

one classifier) that are ,needed for classification. This will lead to either low, clas-

sification accuracy or high cornputational cornplexity, which violates our goal of 

learning local classifiers. Therefore, to overcome these situations, the next ques-

tion comes to us: Can we go beyond locally linear classifiers to locally nonlinear 

classifiers? 

Let us look at the learning process of locally linear classifiers. Basically 

whether a classifier fs locally linear or locally nonlinear depends on the deci-

sion function, which is embedded in the margin constraint of the formulation for 

learning, such as Eq. 4.1.1 and Eq. 4.2.3. If the decision function is defined non-

linearly, then in a similar way ,we may learn a locally nonlinear classifier. To learn 

locally nonlinear classifiers, in this section, we will revisit the nearest neighbor 

classifiers, whose decision boundaries are defined based 'on the square Euclidean' 

distances. 

In tact, the vanilla nearest neighbor (NN) algorithm is one of the simplest lo-

cally linear classifiers, because all the prototypes for classification share the equal 

weight, making the decision boundary between any pair of prototypes become 

.. a line. However, the vanilla NN classifier lacks robustness due to the noise of-

ten present in real-world data. Therefore, we propose a novel max-margin based 

Parametric Nearest Neighbor classifier (P-NN),' and its extension Ensemble of , 

P-NN (EP-NN). Our method extends the nonparametric kernel estimation [12], 

and jointly learns the prototypes and their associated weights for classification, 

which ~re not the same for all the prototypes any more. Each learned prototype 

83 



4.3. From Linear to Nonlinear: Parametric Nearest Neighbor Classifiers 

(a) Nearest neighbor classifier (b) Parametric Hearest neighbor classifier 

Figure 4.5: Illustration of the differences between (a) the nonparametric nearest 
neighbor classifier (i. e. I-NN) and (b) our parametric nearest neighbor classifier 
(P-NN), where 2 classes are represented by 6 and 0, the 3 red triangles are the 
prototypes in class 6, the blue circle is the prototype in class 0, the nu~bers 
close to the prototypes are their weights, the dashed curve denotes the decision 

. ~'<?':lndary of I-NJ'f, t~~. ~olid hype~b~la~ il1:Jb) denote t~e d~cis!~? boundary. of 
P-NN, and the dotted curve denotes the optinlal decision boundary which needs 
approximation. Clearly, 1-NN makes no attempt to approximate the optimal de-
cision boundary. However, our P -NN learns not only the prototypes in each class 
but also the classifier parameters (i. e. the nonnegative weights of the prototypes 
and the bias terms for different classes), which approxilnates the optimal deci-
sion boundary locally using hyperbolas based on the weighted squared Euclidean 
distances. 

is represented by a locally linear combination of some data points. The func-

tionality of the prototypes in our method is similar to the support vectors in 

kernel-based SVMs, but fully controllable. The classification decision boundaries 

in our classifiers are built based on the Ininimunl weighted squared Euclidean 

distances between the data points and the prototypes, which is locally nonlinear. 

4.3.2 Parametric Nearest Neighbor Classifiers 

As illustrated in Fig. 4.5, in general the decision boundary of a nearest neighbor 

classifier is locally linear, but it makes no attempt to approximate the optimal 

decision boundary for classification. On the contrary, our parametric nearest 

neighbor classifier (P-NN) aims to approximate the optimal decision boundary 

locally by learning both the prototypes for each class and the classifier paralnctcrs 

84 



4.3. From Linear to Nonlinear: Parametric Nearest Neighbor Classifiers 

jointly and discriminatively. In the following sections, we will explain the details 

of P-NN in terms of formulation and optimization. 

4.3.2.1 Formulation 

Initially, nearest neighbor classifiers can be considered as nonparametric methods 

based on Gaussian kernel density estimation. Given a data point x E X C }Rd 

with class label C E C, where C denotes the class set, and a set of prototypes Ue 

within the same class, suppose that the window sizes, which are unknown, in the 

Gaussian kernels for the prototypes in each class are the same, denoted as he ~ 0, 

then the probability of the data point x belonging to a class C can be formulated 

as follows: 

(4.3.1) 

where 11·11 denotes the i 2-norm and Ze = IUel(27r)~(he)d is a normalization factor 

of the density function where IUel.denotes the number of prototypes in class c. 

Following [6], p(xlc) can be approximated by the largest term in the summation. 

Then by taking the log-likelihood, Eq. 4.3.1 can be rewritten as: 

(4.3.2) 

where We = 2(~c)2 ~ 0, be = log Ze + logp(x) -logp(c), p(x) and p(c) are the fixed. 

prior probabilities of data point x and class c, respectively. 

N onparametric nearest neighbor classifiers assume that given a test data point 

x E }Rd, all the w's and b's for all the classes are the same. This leads to the class 

label prediction rule in nearest neighbor classifiers as follows: 

c* = arg min Ilx - Uj 112. (4.3.3) 
eEC,ujEUc 

However, as· argued in [6], because both the window size he and the class 

prior probability p(c) could vary a lot for different classes, the assumption in the 

nonparametric nearest neighbor classifiers hardly holds for most cases. On the 
'" . 

85 



4.3. From Linear to Nonlinear: Parametric Nearest Neighbor Classifiers 

contrary, our P-NN estimates w's and b's for all the training classes as well as 

learning the prototypes for each class by maximizing the margins. 

Given a training data set (Xi, Yi)i=l, ... ,IXI with IXI data points, where Vi, Xi E 

X C JRd is a data point and Yi E C c N is its class label, for any class Vc E C, 

P-NN attempts to jointly learn the prototypes Uc and the class model (wc, bc), so 

that the minimum weighted Euclidean distance between each data point Xi and 

the prototypes in UYi is smaller than the minimum weighted Euclidean distance 

between Xi and any prototype in Uc = UCEC\{Yd Uc , where \ denotes the set com-

plement operator. Therefore, based on the hinge loss, P-NN can be formulated 

as the following optimization problem: 

min ~211w112 + L ~i 
u,w,b,e . 

(4.3.4) 
't 

s.t. Vi, Ci E C \ {Yi}, minci {Wci minukEuci Ilxi - ukl1 2 + bCi } 

~ wYi minujEuYi Ilxi - Uj 112 + bYi + 1 - ~i' 

Vi, ~i ~ 0, 

Vc E C, Wc ~ 0, 

where A ~ ° is a pre-defined regularization parameter, e denotes the set of slack 

variables, Uj E UYi (resp. Uk E UCi ) denotes a prototype in UYi (resp. UCi ), and 

wYi and bYi (resp. WCi and bcJ are the class model parameters for class Yi (resp. 

Ci)' We denote (w, b) as the classifier parameters, which are vectors consisting 

of all w's and b's respectively. Finally, a test data point X is labeled as: 

c* = argmin {wc min Ilx - ujl12 + bc} . cEC UjEUc (4.3.5) 

4.3.2.2 Optimization 

We adopt an alternating optimization method between learning prototypes and 

learning classifier parameters to solve the non-convex problem in Eq. 4.3.4. 

Learning Prototypes 

We updateu and e in Eq. 4.3.4 while fixing wand b using stochastic gradient 

descen~,similar to the online-lass-minimization algorithm in [29]. We say that Ci 

86 



4.3. From Linear to Nonlinear: Parametric Nearest Neighbor Classifiers 

Algorithm 4.3: Initialization of the prototypes for each class: U = 
InitializePrototypes(X, y, {IUcl}) 

Input : training data (X, Y), number of prototypes per class {IUcl}CEC 
Output: prototypes U = UCEC Uc 

foreach c E C do 
Uc f- 0; 
repeat 

I 
Randomly 'select data (x, y) E (X, Y) so that x ~ Uc and y = c; 
Uc f- Uc U{x}; 

until IUcl data points has been added; 
end 
return U = UCEC Uc ; 

Algorithm 4.4: Stochastic gradient descent for learning prototypes: U = 
LearnPrototypes(X, y, {1]i},U, w, b) 

Input : training data (X, Y), learning rate {1]i}, prototypes U, classifier 
parameters (w, b) 

Output: prototypes U = UCEC Uc 

foreach (Xi, Yi) E (X, Y) do 
if minCiEC\{Yil {WCi minukEuci IIXi - ukll 2 + bci } < 
wYi minujEuYi IIXi - Uj 112 + bYi + 1 then 

uj = arg minujEuYi IIXi - ,Uj 112; 
Uk = arg minukEuc' IIXi - Uk 112; , 
uj f- uj + 1]iWYi(Xi - uj); 
Uk f- Uk - 1]iW ci (Xi - Uk); 

end 
end 
return U = UCEC Uc ; 

is the closest class label to Yi for Xi if 

(4.3.6) 

Letting g(Xi' U; W, b) = ~i be the hinge loss given a data point Xi, and Ci be 

the closest class label to Yi for Xi, then the sub-gradient of 9 w.r.t. an arbitrary 

prototype u, denoted as ~, is: if ~i > 0, then ~ = 2WYi (uj - Xi) and ~ = 
2WCi (Xi - Uk), where uj = arg minujEuYi IIXi - ujl1 2 and uk = arg minukEuci IIXi -

ukll 2 ; otherwise, ~ = o . 

.... 

87 



4.3. From Linear to Nonlinear: Parametric Nearest Neighbor Classifiers 

Then we can use the following equation to update U given a data point Xi: 

(4.3.7) 

where TJt and a~ft) denote the learning rate parameter and the sub-gradient for u 

at iteration tEN, respectively, and U denotes the set union operator. 

Alg. 4.3 and Alg. 4.4 show our learning algorithms, where we use some training 

points as the initial prototypes, because at the beginning we want to guarantee 

that the data points and the prototypes are definitely in the same class, or def-

initely not. Other clustering algorithms such as K-Means could be used as well 

to initialize the prototypes. 

Learning Classifier Parameters 

.We update w, band e in Eq. 4.3.4 while fixing u. Then given data (Xi, Yi), letting 

Vi be a lei-dimensional vector consisting of O's, where lei is the number of classes, 

and ~ be the closest class label to Yi for Xi, we set Vi ( Ci) .. - minuk EU
Ci 

II Xi - Uk 112 
and Vi(Yi) = - minu/Eu

Yi 
Ilxi - uj112, where Vi(') denotes the value at a particular 

bin of vector Vi. Therefore, Eq. 4.3.4 can be rewritten as follows: 

min 
w,b,e 

s.t. Vi, w T Vi + bCi - bYi ;::: 1 - ~i' 

Vi, ~i 2:: 0, 

Ve E e, We 2:: 0, 

(4.3.8) 

where (.)T denotes the matrix transpose operator. Notice that both Ci and Vi 

arc dependent on the classifier parameters (w, b). So if the classifier paralneters 

.. are updated, Ci and Vi should be updated as well. Thus, we present an iterative 

optimization algorithm to solve Eq. 4.3.8 as shown in Alg. 4.5, where n denotes 

a set of triplets. 

Finally, based on Alg. 4.3-4.5, we can jointly learn the prototypes and the 

classifier parameters by maximizing the margin in an alternating manner, as 

presented in Alg. 4.6, where FLT ..MAX denotes the max value that we can set 
o· 

88 



4.3. From Linear to Nonlinear: Parametric Nearest Neighbor Classifiers 

Algorithm 4.5: Iterative optimization for solving Eq. 4.3.8: (w, b) = 
LearnClassifiers(X, Y,U, w, b) 

Input : training data (X, Y), prototypes U, classifier parameters (w, b) 
Output: classifier parameters (w, b) 
n~0; 
repeat 

foreach (Xi, Yi) E (X, Y) do 

I 
Calculate Ci using "Eq: 4.3.6 and Vi E IRICI; 
n ~ n U{(Vi, Yi, Ci)}, 

end 
Update w, b based on n using Eq. 4.3.8; 

until Classifier paTameter's converged; 
return w, b; 

Algorithm 4.6: Alternating optimization for solving Eq. 4.3.4 
Input : training data (X, Y), learning rate {1]i}, number of prototypes 

per class {IUe I} eEC 

Output: prototypes U, classifier parameters (w, b) 
foreach C E C do 
I We ~ FLT_MAX, be ~ 0; 

end 
U = InitializePrototypes(X, y, {IUel}); 
repeat .. .. 

I 
U = LearnPrototypes(X, y, {1]i},U, w, b); 
(w, b) = LearnClassifiers(X,Y,U, w, b); 

until Converged; 
return U, w, b; 

to w's so that Eq. 4.3.4 can be optimized from its largest value. 

4.3.3 Ensemble of Parametric Nearest Neighbor 

Classifiers 

P-NN assumes that the window sizes in the Gaussian kernel density estimation 

are the same for all the prototypes in the same class, while varying for different 

classes. However, this assumption is quite strong! because even for the prototypes 

in the same class, the window sizes may vary individually. 

In order to relax this assumption, we take advantage of the random initial-

ization of the prototypes in P-NN due to the non-convexity of Eq. 4.3.4, similar 
". 

89 



4.3. From Linear to Nonlinear: Parametric Nearest Neighbor Classifiers 

to random forest [21]. In this way, we further introduce an Ensemble of P-NN 

(EP-NN) classifier to boost the classification accuracy. We call the set of learned 

prototypes in each P-NN a base learner. Rather than learning one base learner 

with many prototypes for each class, which risks overfitting the training data, EP-

NN jointly learns multiple base learners with reasonable numbers of prototypes 

per class. 

Given a training data set (Xi, Yi)i=l, ... ,lXI, EP-NN is formulated as below to 

jointly learn 1£1 base learners and the classifier parameters, where l E £ denotes 

the lth base learner in the set £: 

u~~~e ~ L IIwc ll2 + ~€i 
cEC . ~ 

(4.3.9) 

s.t. \:Ii, Ci E C \ {Yi}, minci { L:lE.c W~i minukEu~i Ilxi - Uk 112 + bci } 

2:: L:lE.c W~i minujEuti Ilxi - Uj 112 + bYi + 1 - ~i' 

\:Ii, ~i 2:: 0, 

\:Ic E C, \:Il E .c, w~ ~ O. 

We can easily modify Alg. 4.3-4.6 to solve Eq. 4.3.9 by considering all the base 

learners together for each update. In the same way, we can easily extend EP-NN 

by taking multi-source information into account. 

4.3.4 Implementation 

In order to compare P-NN and EP-NN with other locally linear methods easily, 

especially the coding based locally linear methods, as well as making a fast im-

plementation, in practice we followed the stacked generalization framework and 

irnplernentcd our classifiers approxiInately in a two-stage way: first encoding data 

and then training multi class linear SVMs. Empirically the classification accura-

cies of this implementation are very close to those of P-NN and EP-NN based on 

Alg. 4.6, with much faster training speed and le~s care of parameter tuning. 

(I) Encoding data. We learn each base learner independently so that this 

process can be parallelized. After the first update of the prototypes in Alg. 4.6, 

we stop updating prototypes, because empirically we find that these prototypes 

90 



4.4. Computational Complexity 

are good enough for classification. 

To encode data, we map each data point into a distance based sparse vector. 

Given a data point x E X and 1£1 base learners, letting Vl E £, v~ E }Rlci be a 

vector, where ICI is the number of classes, we set the eth bin in v~ as vHe) = 
minujEu~ Ilxi - Uj 112, where e = arg mincEc {minujEu~ Ilxi - Uj 112}, and 0 to the 

rest bins. Further, we denote Vi as our encoded feature vector by concatenating 

all v~'s and normalizing it using it-norm. Notice that our distance based feature 

vectors are ICI x 1£1 dimensional, but in each vector only 1£1 bins are non-zeros. 

(II) Training multiclass linear SVMs. By taking the encoded data as 

the input, we can train the following standard multiclass linear SVMs [30] for 

classification: 

min 
w,b,e ~ L IIwc l1 2 + L~i,c; 

C i,ci 

s.t. Vi, Vei E C \ {Yi}, [W~Vi + bCi ] - [W~Vi + byi ] ~ 1 - ~i,Ci' 
~i,Ci ~ O. 

(4.3.10) 

Here we relax Eq. 4.8.8 by (1) removing the nonnegative constraints on w, and 

(2) allowing that the weights of the prototypes in the same class can be changed 

in different base learners, rather than fixed values. 

4.4 Computational Complexity 

We denote the data dimension, and the numbers of basis vectors, training data 

points, categories, and iterations in training as d, D, N, C, and K, respectively, 

and assume that the computational complexities of the unit operations +, -, 
*, :::;, and ~ are the same, denoted as 0(1). We measure the computational 

complexity by counting how many unit operations involved in training or testing. 

91 



4.4. Computational Complexity 

4.4.1 Orthogonal Coordinate Coding with LL-

SVMs 

For this method, the computational complexity during training can be divided 

into three parts: 

(1) The computational complexity of learning OCC is equivalent to that of 

SVD, which is 0(kd2 N + k' N3) where k and k' are constants [58]; 

(2) Encoding the training data requires O(dDN); 

(3) As stated in [144], the computational complexity of training a binary lin-

ear SVM solver .can be as low as O( d) per iteration, such as PEG~SOS. 

Therefore, training multiclass LL-SVMs needs O(CdDK). 

Overall, the computational complexity of training a classifier using G-OCC 

and LL-SVMs is 0(kd2 N + k' N3) + O(dDN) + O(CdDK), while using C-OCC 

and LL-SVMs it requires 0(Ckd2N + Ck' N3) + O(CdDN) + O(CdDK) . 
.. 

During testing, the computational complexity using G-OCC and LL-SVMs 
II 

per data is 0((3 + 2C)dD), while using C-OCC and LL-SVMs per data it is 

0(5CdD). 

4.4.2 Truncated· Marginal Features with Linear 

SVMs 

For this method, the computational complexity during training can be divided 

into three parts as follows: 

(1) For learning B, the computational complexity of Alg. 4.1 is O(dDNCK); 

(2) For learning t, the computational complexity of Alg. 4.2 is O(DCK); 

(3) Based on [144], training multiclass linear SVMs requires O(DCK). 

Therefore, the overall computational complexity during test is O(dDNCK) + 
O(DCK) + O(DCK). During testing, the computational complexity of this 

method is 0(2D(d + C).) per data. 

92 



4.5. Experiments 

4.4.3 Parametric Nearest Neighbor Classifiers 

In general the computational complexity of the min operator 2 is O(d). The dis-

tance between a data point x and a prototype u is Ilx - ul1 2 = IIxl12 - 2XT U + Ilu11 2 , 

where Ilx11 2 , IIul1 2 and 2u can be pre-calculated. Therefore, the computational 

complexity of calcula~ing distances is (2d + 2) ·0(1). 

Letting \lc E C, IUcl be the number of prototypes for class c, during training 

the computational complexity of this method can be divided into two parts as 

follows: 

(1) Learning prototypes using Alg. 4.4 needs 0(I«(2d + 3) L:c IUcl + 6d)) = 

0(K((2d + 3)D + 6d)), where D = L:c IUcl; 

(2) Based on [144], training multiclass linear SVMs requires O(DCK). 

So the training computational complexity ofP-NN is 0(K((2d+3)D+6d))+ 

O(DCK). During testing it is 0((2d + 3)D + 3C) per data. Notice that the 

ensemble of P-NN classifiers (EP-NN) shares similar computational complexity 

to that of P-NN. 

4.5 Experiments 

4.5.1 Datasets 

We test our local classifiers on three optical character recognition (OCR) bench-

mark aatasets for machine learning: MNIST, USPS and LETTER. We use the 

raw features provided in each dataset so that we can compare our results fairly 

with others. 

MNIST contains 40000 training and 10000 testing gray-scale images with res-

olution 28 x 28 pixels, which are normalized directly into 784 dimensional vectors. 

The label of each image is one of the 10 digits from 0 to 9. USPS contains 7291 

training and 2007 testing gray-scale images with resolution 16 x 16 pixels, directly 

stored as 256 dimensional yectors, and the label of each image still corresponds 

2In practice, the complexity of the min operator depends on the data structure. At most, it 
is O(d):' . 

93 



4.5. Experiments 

MNIST 

I
·G-OCC~LlB-LLSVM 
.G-OCC+PEG-LLSVM 
" C-OCC+LlB-LLSVM 
. C-OCC+PEG-LLSVM 

s.s! 
5.6 

USPS LETIER 

·l· G-OCC+LIB-LLSVM 
.G-OCC+PEG-LLSVM 
" C-OCC+LlB-LLSVM 
. C-OCC+PEG-LLSVM 

Figure 4.6: Performance con1parison among the four different settings of OCC 
with LL-SVM on MNIST (left), USPS (middle), and LETTER (right) using 
different numbers of orthogonal basis vectors. 

to one of the 10 digits from 0 to 9. LETTER contains 16000 training and 4000 

testing images, each of which is represented as a relatively short 16 dimensional 

vector, and the label of each image corresponds to one of the 26 letters from A 

to Z. -

4.5.2 Tuning Parameters in Local Classifiers 

4.5.2.1 Ortho'gonal Coordinate Coding with LL-SVMs 

We re-implement LL-SVM based on LIBLINEAR [49] 3 and PEGASOS [116] 4, 

respectively, and perforn1 multiclass classification using the one-vs-all strategy. 

This ailns to test the effect of either quadratic progranuning or stochastic gra-

dient based SVM solver on both accuracy and computational tin1e. We denote 

these two implementations of LL-SVM as LIB-LLSVM and PEG-LLSVM for 

short. Together with our G-OCC and C-OCC (see Section 4.1.2.3), there are 

four locally linear classifiers in total, namely, G-GCC + LIB-LLSVM, G-GCC + 
PEG-LLSVM, C-GCC + LIB-LLSVM, and C-GCC + PEG-LLSVM. The regu-

larizer in each classifier is determined using cross validation. 

Figure 4.6 shows the ccnnparison of classification error rates anlong the four 

classifiers on MNIST (left), USPS (middle), and LETTER (right), respectively, 

using different numbers of orthogonal basis vectors. With the same OCC, LIB-

LLSVM performs slightly better than PEG-LLSVM in terms of accuracy, and 

3Using LIBLINEAR, we implement LL-SVM based on Eq. 4.1.9. 
4Using PEGASOS, we implement LL-SVM based on the original formulation in [76]. 

94 



4.5. Experiments 

USPS 
6.5 --- T r....:-without learning 

I"'with learning 

4 512 10'24 20.8 40·96 8f92 
Projection dimensions 

LETIER 

r--:withoul learning 
I-'with learning 

1~4 20.8 4000 8192 
Projection dimensions 

6 , 

1 512 

MNIST 

~without learning 
I- with learning 

1~4 20.8 4~6 
Projection dimensions 

Figure 4.7: Illustration of the effect of learning parameter B in TMFs on classifica-
tion with different projection dimensions and t = ° using USPS (left), LETTER 
(middle), and MNIST (right), respectively. 

both behaves similarly with the increase of the number of orthogonal basis vectors. 

It seems that in general C-OCC is better than G-OCC. 

4.5.2.2 Truncated Marginal Features with Linear SVMs 

..... For this classiqer, .. ~e. set the par~met~~~ jn Eq. 4.2.3 a:s fqno~s: () = ~0-41] 

without further tuning, 1] is decided using cross validation, and the nun1ber of 

iterations in Alg. 4.2 is fixed to 105 without tuning. Classification performance 

is measured using mean classification error rate across all the classes. 

Effect of Learning B in TMFs 

To explore the effect of learning parameter B in TMFs on classification, we de-

sign the following experiments: we fix the threshold vector t = 0, and randomly 

sample the projection matrix B from a normal distribution N(O, 1) with £2 nor-

malization as initialization. The numbers of columns in B E lRdxD vary from 

29 = 512 to 213 = 8192. The learning process follows Alg. 4.1. 

As we can see in Fig. 4.7, with lower dimensions (e.g. 512-dim), the learn-

ing of projection matrix B does help to improve the classification performance. 

However, with the increase of dimensions, the improvement becomes marginal, or 

even counteractive. This observation is reasonable, because with higher dimen-

sions, the supervised learning of B is more likely to overfit data. Therefore, in 

the following experiments we will sample B with high dimensions once without 

further learning . 

.. ' 

95 



4.5. Experiments 

USPS (Sparsene •• ) 

~~ I~ J ~ ~ 
~ A 
~ ~ 

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 
tUb 

USPS (Error r.te .~) 

4.8 °OO~ 
6 0.15 
. 0.2 

.4 J °i,i 
0.35 

0.4 
0.45 

0.5 

LETIER (Spar.ene • • ) 

LETIER (Error rate %) • • I 

" . 
0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 

tub 

MNIST (Sparseness) 

0.0 I ~ ; 
O. 

J~ • 
U ~ 

~ A 
O. .3 

0.0 
3.8 O. 

0.1 
3.6 O. 

3.4 J 0i, 

3.2 O~ 
0.4 

O. 

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 
tUb 

MNIST (Error r.te .~) 

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 
tub 

.2 

Figure 4.8: Illustration of the effect of learning paranlCtcr t in TMFs on sparseness 
(top) and error rate (bottoln) with different lower bounds (y-axis: t lb ) and upper 
bounds (x-axis: tub) using USPS (left), LETTER (middle), and MNIST (right) , 
respectively. The projection dinlension of TMFs is fixed to 4096. 

Effect ~f ~~~~ning t i~ T~Fs .. . _ . . 

In our optimization problem, the threshold vector t is bounded by the lower 

bound t lb and the upper bound tub. Therefore, in order to explore the effect of 

learning t on classification, we need to explore the effects of different settings of 

its bounds. 

We design the experiments on classification error rate and sparseness in TrvIFs 

of test data using different ranges of lower bounds and upper bounds. Sparseness 

of a matrix is defined as the percentage of the number of zeros in the matrix. So 

the higher the sparseness is, the more percentage of zeros the matrix has. To set 

the lower bounds and the upper bounds, we assunle that the margins of the data 

follow a Gaussian distribution based on the Central Limit Theorem [110] , and use 

the cumulative distribution function (CDF) to calculate the bounds. The CDF is 

normalized from 0 to 1, and we use percentages to indicate the lower bounds and 

upper bounds. In practice, we sample the values from the training data rather 

than calculating them. Manually we set the lower bounds from 0.05 to 0.5 in 

CDF, step by 0.05, and the upper bounds from 0.95 to 0.5 in CDF, step by -0.05. 

The learning process follows Alg. 4.2. 

Fig. 4.8 shows our results. As we can see, the distributions of sparseness on 

USPS, LETTER and MNIST are very similar: the value at the bottom left corner 

is highest, the value at the top right corner is lowest, and the values between 

96 



4.5. Experiments 

mmmB~mmmB~mnBmm~g~mm ~~~OO~~~H~M~~m~~rn~~oooo 
9 D • II D D all D rJ 0 D D D D D t'J II Don II (I D n n IIII D IIII U II n 111111111111 
maDBmamm6eOBBaemmmmR ~~e~~~H~~~~~B~~D~~~~ 
DRmggD6~mgg6gDBg9 •• D ~~~gM~~~~~~~~~A~~~~~ 
mmmmDmmmmm~am. D~ Bm m m n~~~~~~n~m~~w~~~n~~~ 
gg~ • • mB~m&ggmBgmmggm R~~~~~~Mm~~~~~~~~~~H 
eg HmBmm~eaDDemm.ge.~ ~an~.nM~~H~~mB~mm~~~ 
DmHDmBmRR&&mmBR~BBem ~H~~~~W~~~HHWUWfi6~W~ 
mm.BmBmam.o ••• &mBDag ru~NUn~g~m~~~n~~~~~n~ mDmm.6D •• DaR~.am.mm. ~~~~WnU~H~~n.~~RD~~~ 

(a) MNIST (b) USPS 

Figure 4.9: Some examples of the jointly learned prototypes by our classifiers on 
(a) MNIST and (b) USPS, 20 prototypes per class. 

these two corners decrease gradually. This demonstrates that the sparseness of 

the margin matrix is controlled by the lower bound and upper bound via learning 

t. In terms of classification error rate, the distributions are not so similar to each 

other. However, the ranges of error rates are quite small, varying about 1%. 

More interestingly, all of the best performances on these three datasets occur 

with sparseness equal to around 0.65. Therefore, in the following experiments, 

we manually set the lower bound to 0.6, and the upper bound to 0.9, respectively, 

without further tuning. 

In surnrnary, this locally linear classifier is quite stable w. r. t. the changes of 

initialization points and the bounds, though its formulation is biconvex. 

4.5.2.3 Parametric Nearest Neighbor Classifiers 

In this method, in order to learn the prototypes in each base learner, we randomly 

select at most 105 data points from the training set, where each data point is al-

lowed to be selected repeatedly, and fix the learning rate to 0.1. LIBLINEAR [49] 

is employed as our multiclass SVM solver. 

We first visualize some of the learned prototypes for MNIST and USPS in 

Fig. 4.9 (a) and (b), respectively. Each prototype is represented as a linear 

combination of different training data points and plays a role of a weak classifier. 

We can roughly see the digit represented by each prototype, which demonstrates 

the good discriminability of the learned prototypes. 

Then we test the robustness of our classifiers w. r. t. dimensions of features, 

numbers of prototypes per class in each base learner, and numbers of base learners. 

97 



4.5. Experiments 

2 

MNIST 

-10 ............ 1 · ·20om.raionl ·30_ 
_oIO~ 

~·50omt!,...".. 

"' 'OIQI'l4IItw.lJI. 

0, 2 3 "4 5, 6 7 8 9 1.10 1.1, 12 "3 1. 15 16 17 18 ,19 20 
• BaH Leamer. (20 prototypes per eta .. in each) 

MNIST 

1 

0, :2 3 4 5 (, 7 8 ;; 10 ;1 1"'"2 13 1-.. 15 16 17 18 19 20 
, BaH Learners (60 proIotyp" per C;.$' In each) 

(a) 

14 , r 
USPS , , . , . "I' . , -tI'ld~ 

"'2!)drr~ " 30 _ 
_40 d~1'Ii 

• • )J~ 

"' onoMl~ruM 

4, :2 :1 .. 5 6 7 8 9 '0 11 12 13 14 15 16 , '7 18 19 20 
• 81'58 Learners (20 prototypes pel clalS In each) 

USPS 

(b) 

LETTER 
10 • 1 

21 :2 :1 .. 5 (, ., 8 9 10 11 12 13 14 15 16 17 ,'e 19 20 
• aaH l eamers 

USPS 
I , -.., ..... , • 10protOlrPel 

(c) 

" ' 20P<Otolypos 
• 3Oprololypos 

•• ",Oprolotypes 
+ SOP<Otolypo. 
"'80prololypos 
• 70procotype. 

'OOP<Otolype> 

Figure 4.10: Perforrnancc of EP-NN: classification error V.s. the number of base 
learners on ( a) MNIST and (b) USPS with different dimensions of data using 20 
(top) and 60 (bottom) prototypes per class; (c) LETTER (top) and USPS (bot-
'ion1) with different numbers of the prototypes 'per class in each base' learner fronl 
10 to 80, step by 10, using original features. When the number of base learners 
is equal to 1, EP -NN turns into P -NN. Clearly, EP -NN boosts the perfornlance 
of P -N N significantly. 

To build low-dimensional features, we directly apply singular value decomposition 

(SVD) to the original data in MNIST and USPS and take the top-K values in 

the coefficient vector of each data point. Notice that when the number of base 

learners is equal to 1, EP-NN actually turns into P-NN. Fig. 4.1.0 summarizes the 

comparison results among the three factors: 

(I) P-NN: From Fig. 4.10(a) and (b), P-NN seems a little sensitive to very 

low dimensional data (e.g. 10 or 20). However, when the feature dimension is 

higher, P-NN behaves stably within 2% difference, and perfornls best using the 

original features. From Fig. 4.10( c), we can see clearly that more prototypes per 

class does not guarantee a better perfornlance using P-NN, as we expected, but 

its performance is still reasonably stable within 3% difference. 

(II) EP-NN: From Fig. 4.10, we can see that EP-NN really boosts the clas-

sification accuracy of P-NN significantly. With only 2 base learners, EP-NN 

performs worse than P-NN, because sometimes the prototypes will disagree with 

each other, leading to weak discrimination between classes. However as we in-

crease the number of base learners, the majority will tend to agree giving better 

98 



4.6. Conclusion 

discrimination, as demonstrated by our empirical results. Also, the same phe-

nomenon has been observed in [113]. Similar to P-NN, based on the same number 

o~ base learners, reasonably higher dimensional data leads to better results but 

more prototypes have no guarantee on better results. 

4.5.3 Comparison on Classification Performance 

We compare our local classifiers with some others, and list the results in Table 

4.2. As we see, in general, TMF+ Linear SVM (8192 a.p.) performs best 

among all the listed local classifiers, and very close to kernel SVMs. This is quite 

reasonable, because this method will localize the data better. In terms of kernel 

approximation, higher projection dimension will lead to better approxirnation 

of summation of multiple kernels. Interestingly, LMNN performs significantly 

better than kernel SVMs on USPS, leading to a better average performance over 

the three datasets. This suggests that maybe we should introduce metric learning 

into local classifier learning as well. We will explore this in our future work. 

4.5.4 Comparison on Computational Time 

We compare the training time and testing time of our local classifiers with some 

other methods in Table 4.3 and Table 4.4, respectively. All of our methods are 

implemented based on a mixture of MATLAB and C++ code, and run on a single 

thread of Xeon X5550@2.67GHz CPU. The timing of our methods listed in the 

table~, are including every step for learning classifiers, such as data encoding. 

In Table 4.3, we can see that the training time for different local classifiers 

varies a lot, but in general training them is much faster than training kernel 

SVMs, and for some cases the speed-up is around 104• Similar trends can be 

observed in Table 4.4 for' testing as well. Overall, these numbers are consistent 

with our computational complexity analysis in Section 4.4. 

,,' 

99 



4.6. Conclusion 

4.6 Conclusion 

In this section, we propose two locally linear and one locally nonlinear classifiers. 

We propose orthogonal coordinate coding (OCC) to encode high dimensional 

data based on a set of anchor planes defined by a set of orthogonal basis vectors, 

which can be easily learned using SVD to minimize the data reconstruction er:-

ror. Each basis vector can be considered as a weak learner, and by feeding the 

codes of data into locally linear SVMs (LL-SVMs), OCC can help LL-SVMs to 

approximate the nonlinear decision boundary in the feature space better. 

13y extending the idea of weak learners in oce, we propose a very efficient 

algorithm for learning locally linear classifiers using truncated marginal features 

(TMFs), which are generated by an explicit nonlinear map function. This map 

function performs the data localization in a supervised manner for locally linear 

classifiers. We formulate this problem as a biconvex minimization problem. Al-

ternating convex search is utilized for solving the problem efficiently and locally, 

where random projection and stochastic sub-gradient descent are used to learn 

. the parameters in TMFs, and a linear multiclass SVM solver is used to learn the 
" 

locally linear classifiers. Our method is in favor of sparse features while improving 

the classification performance, and it can be used to approximate the summation 

of nonlinear kernels generated by arc-cosine kernels. 

Beyond the locally linear classifiers, we propose a locally. nonlinear classi-

fier, Parametric Nearest Neighbor (P-NN), and its extension Ensemble of P-NN 

(EP-NN). These classifiers extend the analysis of the Gaussian kernel density es-

tima~ion, and attempt to learn the prototypes for nearest neighbor search and 

the classifier parameters jointly and discriminatively. The decision boundary of 

our classifiers consists of a set of nonlinear functions, since we use the minimum 

weighted squared Euclidean distances between the data and the prototypes as 

the classification criterion. We implement P-NN and EP-NN by following the 

stacked generalization framework, where each data point is mapped into a very 

sparse vector based on the minimum distances across the classes in each base 

learner, and as the inputs multiclass linear SVMs are trained for classification. 

We analyze the computational complexity of our local classifiers, and com-

100 



4.6. Conclusion 

pare them in our experiments with some other methods in terms of classification 

error rate and running time in both training and testing, respectively. Overall, 

the performance of our local classifiers are stable and not sensitive to parame-

ter changes within a wide range, and their accuracies are close to those of kernel 

SVMs, but running much faster, which is consistent with our computational com-

plexityanalysis. Considering both accuracy and running time, our locally linear 

classifier T M F + LinearSV M performs best among all the local classifiers listed 

in the tables, especially for large-scale datasets. Therefore, this classifier gives 

us a better chance to handle the extremely large set of data efficiently for object 

detection in proposal verification. 

"I' 

101 



4.6. Conclusion 

Table 4.2: Classification error rate comparison (%) between our methods and 
others on MNIST, USPS, and LETTER. In general, our TMF + Linear SVM 
(8192 a.p.) performs best among all the listed local classifiers, and very close to 
kernel SVMs. 

Method I MNIST USPS LETTER AVE. I 
G-OCC+LIB-LLSVM (# bas. vec.) 1.72 (50) 4.14 (20) 6.85 (15) 4.24 
G-OCC+PEG-LLSVM (# bas. vee.) 1.81 (40) 4.38 (50) 9.83 (14) 5.34 
C-OCC+LIB-LLSVM (# bas. vee.) 1.61 (90) 3.94 (80) 7.35 (16) 4.30 

Ours C-OCC+ PEG-LLSVM (# bas. vee.) 1.74 (90) 4.09 (80) 8.30 (16) 4.71 
TMF + Linear SVM (4096 a.p.) 2.19 4.77 3.12 3.36 
TMF + Linear SVM (8192 a.p.) 1.77 3.89 2.73 2.80 
P -NN (40 prototypes per class) 3.13 7.87 6.95 5.98 
EP-NN (40 p.p.c, 20 base learners) 1.65 4.88 2.90 3.14 

Linear Linear SVM (10 passes) [16] 12.00 9.57 41.77 21.11 
SVMs LIB LINEAR [49] 8.18 8.32 30.60 15.70 

LCC + Linear SVM (512 a.p.) [143] 2.64 - - -
LCC + Linear SVM (4096 a.p.) [143] 1.90 - - -
improved LCC + Linear SVM (512 1.95 - - -Other a.p.) [142] local improved LCC + Linear SVM (4096 1.64 ~ - -classifi- a.p.) [142] II ers LLC + Linear SVM (512 a.p.) [131] 3.69 5.78 9.02 6.16 
LLC + Linear SVM (4096 a.p.) [131] 2.28 4.38 4.12 3.59 
DCN + Linear SVM (L1 = 64, L2 = 1.51 - - -
512) [88] " 

LL-SVM (100 a.p., 10 passes) [76] 1.85 5.78 5.32 4.32 
Adaptive Local Hyperplane (ALH) 2.15 4.19 2.95 3.10 
[137] 
LIBSVM (RBF kernel) [24] 1.36 - - -
LIBSVM (arc-cosine kernel) [25] 5.57 6.53 2.75 4.95 

Kernel LA-SVM (RBF kernel, 1 pass) [18] 1.42 - - -
SVMs LA-SVM (RBF kernel, 2 passes) [18] 1.36 - - -

MCSVM (RBF kernel) [30] 1.44 4.24 2.42 2.70 
SVMstruct (RBF kernel) [124] 1.40 4.38 2.40 2.73 
LA-RANK (RBF kernel, 1 pass) [17] 1.41 4.25 2.80 2.82 
BpM +MRG (Budget learning) [133] - 6.10 10.50 -
EFM + Linear SVM (Intersection 9.11 8.12 8.22 8.48 

Others kernel) [126,128] 
Nearest Neighbor (l-NN) 3.09 5.08 4.35 4.17 
K Nearest Neighbors (KNN) 2.92 4.88 4.35 4.05 
LMNN [134] 1.70 0.91 3.60 2.07 

"a.p." denotes anchor points . 

. ., . 

102 



4.6. Conclusion 

Table 4.3: Training time (/s) comparison between our methods and others on 
MNIST, USPS, and LETTER. The numbers in Row 8-15 are copied from [76]. 

Method I MNIST USPS LETTER I 
G-OCC + LIB-LLSVM 113.38 5.78 4.14 
G-OCC + PEG-LLSVM 125.03 14.50 2.02 
C-OCC +.LIB-LLSVM 224.09 25.61 1.66 

Ours C-OCC + PEG-LLSVM 273.70 23.31 0.85 
TMF + Linear SVM (4096 a.p.) 54.73 7.81 59.92 
TMF + Linear SVM (8192 a.p.) 119.59 14.01 156.75 
EP-NN (40 p.p.c, 20 base learn- 921.11 209.67 42.64 
ers) 
Linear SVM (10 passes) [16] 1.50 0.26 0.18 
LL-SVM (100 a.p., 10 passes) [76] 81.70 6.20 4.20 
LIBSVM (RBF kernel) [24] 1.75x104 - -

Others LA-SVM (RBF kernel, 1 pass) 4.90x103 - -
[18] 
LA-SVM (RBF kernel, 2 passes) 1.22x104 - -
[18] 
MCSVM (RBF kernel) [30] 2.50x104 60.00 1.20x 103 

SVMstruct (RBF kernel) [124] 2.65x105 6.30x103 2.40x 104 

LA-RANK (RBF kernel, 1 pass) 3.00x104 85.00 9.40x102 

[17] " 

Table 4.4: Testing time (IllS) comparison per data between our methods and 
others on MNIST, USPS, and LETTER. The numbers in Row 8-12 are copied 
from [76]. 

Method I MNIST USPS LETTER I 
G-OCC + LIB-LLSVM 5.51 x 10J 19.23 4.09 
G-OCC + PEG-LLSVM 302.28 23.25 3.33 

.. C-OCC + LIB-LLSVM 9.57x103 547.60 63.13 
Ours C-OCC + PEG-LLSVM 503.18 50.63 28.94 

TMF + Linear SVM (4096 a. p.) 288.93 279.13 227.27 
TMF + Linear SVM (8192 a.p.) 536.30 493.52 433.70 
EP-NN (40 p.p.c, 20 base learn- 336.00 174.00 124.00 
ers) 
Linear SVM (10 passes) [16] 8.75 - -
LL-SVM (100 a.p., 10 passes) [76] 470.00 - -

Others LIBSVM (RBF kernel) [24] 4.60x104 - -
LA-SVM (RBF kernel, 1 pass) 4.06x 104 - -
[18] 
LA-SVM (RBF kernel, 2 passes) 4.28x104 - -
[18] 

103 



Chapter 5 

Efficient Object Detection 

Framework 



In this chapter, we present our efficient object detection framework on current 

personal con1puters. Our framework simply integrates the techniques for object 

proposal generation in Chapter 3 and proposal verification in Chapter 4 using 

HOG features, implemented using a mixture of MATLAB and C++ code. We test 

this fran1ework in four applications: (1) VOC challenges, (2) traffic sign detection, 

(3) pedestrian detection, and (4) face detection. We report our performance in 

terms of accuracy and computational time in both training and testing, and 

compare them with other methods as well. 

5.1 System Design 

(al Original Image (bl Proposal generation 

' ~':-:-?2T"" - ., ---~ ----
",.yO- -,. .... ' ........ -,...---_ .... 

- ..... ~; ... ~ . 
T Q ~ 

,," '" .: :. , 

(cl Feature representation (dl Proposal verification (el Detection result 

Figure 5.1: IJlustration of our efficient object detection framework. 

Fig. 5.1 illustrates our efficient object detection framework. Basically there 

are three modules inside: (1) object proposal generation module (PGM), (2) 

feature representation module (FRM), and (3) object proposal verification module 

(PVM). Fig. 5.2 shows all the steps in the implementation of our framework 

during training and testing. 

5.1.1 Object Proposal Generation Module 

In PGM our object proposal generation method explained in Chapter 3 is applied 

to learn the model parameters during training, which are used for generating 

proposals in both training and testing. 

The major parameters in this module which impact the performance of the 

framework greatly are the overlap threshold parameter rJ (its equivalent parameter 

is the maximum number of quantized scales/aspect-ratios K, which is used in the 

105 



5.1. System Design 

Object 
proposal 

generation 
module { 

Feature { 
representation 

module 

Object 
proposal 

verification 
module { 

Training data 

Learning a gradient 
filter per quantized 
scale/aspect-ratio 

Score calibration 
across different 

scales 

Describing each 
proposal 

Dimension 
reduction 

Clustering positives 
per scale, and then 
mapping negatives 

to clusters 

Learning a locally 
linear classifier per 

cluster via TMFs 

, , , , , , , , ~ , ~ 

" ~ 
fi~e~ ~~~ , ~ 

....... " filters & weights ...., ,. 
weights', " .....' ~~ ...... ' , ----... ~-----I 1 I I 

I 1 I I 
I I I I 
I I Save to disk I I 
I I I I 
I 1 1 1 
L.J---iI';--.J -I 

,? " ,', , 
" " " , , " .' , , 

cluster " Cluster centers & classifiers 

Generating generic 
object proposals 

Describing each 
proposal 

Dimension 
reduction 

c,enters,' ','---...,......,r---' , , " 
" " " " classifiers " 

" , ' , , , , , , , ., , , , , , 

Categorizing each 
proposal using 
locally linear 

classifiers 

Detection results 
(with non-maximum 

suppression) 

Figure 5.2: Work flow of our efficient object detection fralnework in both training 
and testing. 

experiments) and the number of final proposals d2 , which are passed down to the 

next module. Other parameters are kept the same as described in Section 3.3.1.3 

without specific explanation. We will investigate these two parameters further 

for the performance of our framework in the experiments. 

5.1.2 Feature Representati~n Module 

In FRM, each proposal is represented by certain feature descriptors, such as HOG, 

local binary pattern (LBP) [102]' etc .. In our experiments we prefer HOG since it 

is widely used in obje~t detection. Thus, there are two parameters for computing 

106 



5.2. Applications 

HOG descriptors, that is, the size and number of cells in HOG. We fix the size of 

cells to 12 pixels without further tuning, and will investigate the number of cells 

in our experiments. 

In order to handle the data noise as well as keeping the data compact, we 

further apply SVD to the feature descriptors for dimension reduction. We set 

the reduced dimension to 128 without further tuning because in [96] the effect 

of the dimension of the HOG space for separating data has been investigated. It 

turns out that this dimension reduction can also accelerate the computation of 

truncated marginal features (TMFs) for classification. 

5.1.3 Object Proposal Verification Module . 

In PVM, during training we first cluster the positive data in each quantized 

scale/aspect-ratio and map negative data to clusters based on the minimum Eu-

clidean distances between the negative data and the cluster centers in the 128-

dim feature space. Then for each cluster a locally lin~ar classifier is learned 

using TMFs as descr.ibed in Section 4.2. The- reason for clustering before learning 

classifiers is to generate better positive data for training classifiers so that the 

learned classifiers have better generalization. Similar technique has been used 

and demonstrated well for object detection in [61]. 

We utilize K-Means as our clustering method, and control the average number 

of positive data in each cluster, which is investigated .later in the experiments~ 

Another parameter that needs to be investigated is the number of anchor points 

(i.e. columns in the projection matrix B) for constructing TMFs. We simplify the 

learning process for TMFs by setting the threshold vector t to the inner product 

between the projection matrix and the mean vector of the training data points. 

5.2 Applications 

In order to demonstrate that our framework is efficient and sufficiently general 

for different detection tasks with reasonable detection accuracies, we apply our 

frame),Vork to four detection tasks: (1) VOC object detection challenges, (2) traffic 

107 



5.2. Applications 

sign detection, (3) pedestrian detection, and (4) face detection, where Task (1) 

and (2) are multiclass object detection, while Task (3) and (4) are specific object 

detection (i. e. binary classification problems). Our framework is implemented 

using a mixture of MATLAB and C++ code. 

Our default computer is: 

• Dell T3500 workstation, equipped with Xeon W3680@3.33GHz (6 cores, 12 

threads) and 24GB DDR3 1333MHz memory. 

The default parameters for investigation are: 

• In PGM, K = 121 and d2 = 100; 

• In FRM, the number of cells in HOG is set to 5; 

• In PVM, the average number of positives per cluster is set to 2000, and the 

number of anchor points for TMFs is set to 2048; 

• As our linear SVM solver, we employ LIB LINEAR as usual and set the 

parameter C = 10 for all the experiments without further tuning; 
It 

• We assume that the smallest and biggest object instances of interest in each 

dataset can be localized correctly by 16 x 16 and 512 x 512 pixel patches, 

respecti vely. 

When we investigate one parameter, the rest are kept the same as the default 

values. We report our performance in terms of average precision (AP), training 

time,_ and testing time per image, respectively. The reported timing counts for all 

the steps for detection in both training and testing, starting from loading images, 

using all the threads in the CPU (12 threads). 

5.2.1 VOC Challenges 

FromVOC2007 to VOC2012, each dataset contains 20 object categories, and the 

size of each image is around 300 x 500 (or 500 x 300) pixels. Except VOC2007, 

which consists of train/validation/test data with public annotation available, the 

rest have train/valida;tion data with public annotation available only. In this 

108 



5.2. Applications 

VOC2007 Test Dataset VOC2007 Test Dataset VOC2007 Test Dataset 
0.12 10000i 

-~ ~ ~ ~ 0.2 

1L <I) 

~ 0.1 
c 8000 gO.15 
0 <I) 

:~0.08 

I I 
E 

~ ~ 6000 

II 

~ 

III 
rz O.06 i= ~ 0.1 

'" ~ .~ 4000 

I 
E 
i= 

~0.04 .~ 

'" 

1111 
« I- ~ :a0.05 c 

!. K:36 ! 
2000 .K=36 :3 rK

=36 j :,'l0.02 . K= 121 I . K= 121 I- . K= 121 :::;: 
.K=l96 .K=196 0 .K=196 

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 
# Object Proposals # Object Proposals # Object Proposals 

(a) (b) (c) 

Figure 5.3: Perfonnallce comparison using different K and numbers of proposals 
on VOC2007 test dataset in terms of (a) mean average precision (AP), (b) training 
time, and (c) testing t ime per in1age. 

task, first we will investigate the effects of different parameters on perfonnance 

using VOC2007 and compare our results with some other methods, then list the 

results on the rest datasets from VOC2008 to VOC2012 with analysis. 

5.2.1.1 Object Proposal Generation Module 

Fig. 5.3 shows the performance comparison using different maximum numbers of 

filters K learned at the first stage of the cascaded lTIodel, and numbers of final 
~ 

object proposals d2 on VOC2007 test dataset . We can observe that: 

• Increasing K does help improve mean AP. However, when K is beyond 

121, the improvement is marginal. Moreover, it takes more t ime in both 

training and testing. We believe that with larger K, the overlap scores in 

correct proposals become larger, leading to better classifiers in the end due 

to better quality of positives. 

• Increasing d2 does little help to improve mean AP, while it costs much 

more computation in both training and testing. Recall that in Fig. 3.12 

our curves grow sub-linearly, which means the growing speed of negatives 

is larger than that of positives, when the number of proposals is beyond 

100. Taking the error rates of classifiers as constants, we expect that the 

AP values should be performed like this. 

• With increase of K or d2 , the computational time in both training and 

testing is growing linearly proportional to either K or d2 , which is consistent 

with our computational complexity analysis in Section 3.2.3. 

109 



5.2. Applications 

VOC2007 Test Dataset VOC2007 Test Dataset VOC2007 Test Dataset 
4000 0.07

1 ~ 0.2 ~006 
Q) c: ~3000 gO.05 0 ~ 

:~0. 15 Q) E 
~ E ~0. 04 
Cl. i2000

I 

a. 
& 0.1 ~ 0.03 
~ i= Q) 
> ~0.02 ~0.05 ~l00J t1l 

~0.01 Q) 
::E 

0 
4 5 6 "7 4 5 6 0 4 5 6 # Cells in HOG # Cells in HOG # Cells in HOG 

(a) (b) (c) 

Figure 5.4: Perfornlance comparison using different numbers of cells in HOG on 
VOC2007 test dataset in terms of (a) lnean average precision (AP), (b) training 
time, and (c) testing tiIne per inlage. 

iL 
~ 0.2 
l5 

:~0 . 15 
E a. 
~ 0.1 
~ 
~0.05 I . I 

~ 0 

VOC2007 Test Dataset 

! 
U3P 

(a) 

VOC2007 Test Dataset VOC2007 Test Dataset 

HOG+LBP 

(b) (c) 

Figure 5.5: Performance comparison using HOG, LBP, and HOG+LBP on 
it 

VOC2007 test dataset in ternlS of (a) mean average precision (AP), (b) train-
ing tinle, and (c) testing time per ilnage. 

Notice that using J( = 36 and d2 = 100, which is the fastest setting in Fig. 5.3, 

our method can process a test image within 0.039 second on average and achieve 

8.5% mean AP. 

5.2 ~ 1.2 Feature Representation Module 

Fig. 5.4 shows the effect of different nunlbers of cells in HOG on our performance. 

When this number is beyond 5, lnean AP and training tinle change little, while 

testing tinle increases noticeably, since computing HOG features needs more tilne. 

We also test our nlethod using HOG, LBP 1, and HOG+LBP, as shown in 

Fig. 5.5. As we see, in terms of mean AP, HOG is slightly better than LBP, and 

their combination is better than both. For training time, LBP needs much nlore 

time than HOG, and slightly more than HOG+LBP. For testing time, LBP needs 

1 We employ the VLFe~t library [126] to compute HOG and LBP, respectively. 

110 



5.2. Applications 

VOC2007 Test Dataset 

CL 0.2 ::s 
c 
0 

:~015 
~ 

Q. 

~ 0.1 
~ > 
~0.05 
ro 
Q) 
::2; -

0 
500 20'00 50'00 100 200 1000 

# Positives per Cluster 

(a) 

5000r 

4000 

i 30001 

i20001 

~'~I 
0 

VOC2007 Test Dataset 
~~-- ~.~ - -~- T -~ 0.2 

II 
100 200 500 1000 2000 5000 

# Positives per Cluster 

(b) 

~0 . 15 ro 
E 
Q) 

~ 0.1 
E 
i= 
Ol 

~0. 05 
Q) 
I-

o 

VOC2007 Test Dataset 

III •• 
100 200 500 1000 2000 5000 

# Positives per Cluster 

(c) 

Figure 5.6: Perforrnance comparison by varying the average number of positive 
data points per cluster on VOC2007 test dataset in tern1S of (a) mean average 
precision (AP), (b) training time, and (c) testing tiIne per image. 

VOC2007 Test Dataset 

a:- r ' 

r,:~1 ~ ,:' 
Q. . 
Q) , 

--------9'~-{)~1 '-.-----~(-.-,.. 

~ , 
~ 0.05

1 
::2; : 0 : . . 

2048 4096 8192 
# Anchor Points in TMFs 

(a) 

7000 

6000 

:0;5000 
Q) 

~4000 

.~3000 c 'ro 
~2000 

1000 

o 

VOC2007 Test Dataset 
.-~--. -~-

2048 4096 8192 
# Anchor Points in TMFs 

(b) 

0.1 

Ii) 
-;0.08 
Ol ro 
E 
~0.06 
Q) a. 
Q) 

~0.04 . 
Ol c 
~0. 02 
I-

o 

VOC2007 Test Dataset 

(c) 

Figure 5.7: Perforn1ance cOlnparison using different nun1bers of anchor points in 
truncated marginal features (TIVIFs) on VOC2007 test dataset in tern1S of ( a) 
mean average precision (AP), (b) training time, and (c) testing time per image. 

the least, while HOG+ LBP needs the n10st, which is very reasonable considering 

their feature calculation time. This experilnent suggests that we can potentially 

improve Inean AP by adding more different types of features into FRrv[, similar 

to [127]. Consequently it requires n10re cOlnputational time during testing. 

5.2.1.3 Object Proposal Verification Module 

Fig. 5.6 shows the performance comparison on VOC2007 by varying the average 

number of positive data points per cluster. In general, with the increase of the 

number, mean AP is changing a little, training time is growing slowly, and testing 

time is dropping significantly due to the reduction of the number of clusters. 

Fig. 5.7 shows the pcrfonnance cOlnparisoll using differcnt nurnbers of anchor 

111 



5.2. Applications 

Table 5.1: Performance comparison with other methods on VOC2007 test dataset 
in terms of average precision (AP) (%), training time ItT' and testing time per 
image Tte . 

Ours MKL DPM cas. c.tJ. E- Gau. B&R B&R 
[42]v7 [127] [51] DPM DPM SVM App. T1 T6 

[52] [107] [95] [96] [84] [84] 
aero 15.4 26.2 37.6 18.0 22.8 27.7 20.8 18.5 9.6 21.8 
bike 11.5 40.9 47.8 41.1 49.4 54.0 48.0 38.0 12.8 23.2 
bird 9.1 9.8 15.3 9.2 10.6 6.6 7.7 1.06 2.3 2.9 
boat 0.5 9.4 15.3 9.8 12.9 15.1 14.3 10.5 3.1 9.8 

bottle 9.1 21.4 21.9 24.9 27.1 14.8 13.1 12.7 1.1 9.1 
bus 12.8 . 39.3 50.7 34.9 47.4 44.2 39.7 37.0 11.4 20.3 
car 20.8 43.2 50.6 39.6 50.2 47.3 41.1 37.4 16.3 23.0 
cat 8.3 24.0 30.0 11.0 18.8 14.6 5.2 11.4 11.7 18.1 

chair 4.5 12.8 17.3 15.5 15.7 12.5 11.6 10.3 9.1 9.4 
cow 1.5 14.0 33.0 16.5 23.6 22.0 18.6 11.7 9.5 10.8 
table 8.6 9.8 22.5 11.0 10.3 24.2 11.1 7.0 5.0 10.3 
dog 5.6 16.2 ' 21.5 6.2 12.1 12.0 3.1 3.8 9.3 9.2 

horse 11.9 33.5 51.2 30.1 36.4 52.0 44.7 29.0 18.3 3"0.0 
mbike 11.1 37.5 45.5 33.7 37.1 42.0 39.4 21.7 15.7 28.9 
person 11.4 22.1 23.3 26.7 37.2 31.2 16.9 14.7 10.0 11.6 
plant 2.3 12.0 12.4 14.0 13.2 10.6 11.2 0.7 0.1 1.5 
sheep 2.7 17.5 23.9 14.1 22.6 22.9 22.6 11.3 2.3 10.3 
sofa 10.4 14.7 28.5 15.6 22.9 18.8 17.0 11.8 5.5 13.6 
train 19.3 33.4 45.3 20.6 34.7 35.3 36.9 21.5 15.4 24.9 

tv .- 13.1 28.9 48.5 33.6 40.0 31.1 30.0 27.9 10.7 15.6 
AVE. 9.5 23.3 31.2 21.3 27.3 26.9 22.7·' 17.2 9.0 15.2 
Ttr 1.0(h) - II - - - - - ~4(h) - -
Tte 0.05(s) - 67(s) 2(s) <l(s) <l(s) - ~l(h) ~20(s) ~20(s) 

points in TMFs on VOC2007 2. Increasing this number has little impact on 

mean AP, but incurs more time in both training and testing. The growing speed 

in cornputational tirne is roughly linear to the differences between the numbers, 

which is consistent with the computational complexity analysis in Section 4.4.2. 

5.2.1.4 Performance Comparison 

We compare our performance using the default computer and the default pa-

rameters with some other methods. As listed in Table 5.1, compared with other 

methods our method achieves reasonable AP on each class in VOC2007, with 

much faster training and test speed. This is exactly the purpose that our method 

would like to accomplish. However, our AP is still lower than most of the methods 

2Due to the memory limit of our default computer, we ran this experiment on a server 
equipped with 2xXeon X5560@2.80GHz (8 cores, 8 threads) and 96GB DDR3 1333MHz mem-
ory. Therefore, the timing shown in Fig. 5.7 cannot be compared with others directly. 

,'~ . 

112 



5.2. Applications 

Table 5.2: Performance comparison on different vac train/validation datasets 
in terms of average precision (AP) (%), training time Itr, and testing time per 

"image Ite. 
II VOC2008 [43] VOC2009 VOC2010 VOC2011 [46] VOC2012 I 

aero 4.6 18.2 22.5 21.5 17.2 
bike ." 3.0 12.0 13.9 12.1 13.1 
bird 3.3 1.6 2.0 4.5 9.1 
boat 3.0 0.8 4.5 6.1 6.1 

bottle 9.1 9.1 9.1 9.1 4.5 
bus 13.4 26.4 26.1 33.4 28.5 
car 9.1 11.5 13.6 13.0 12.9 
cat 4.8 12.6 20.1 17.9 17.1 

chair 0.2 0.8 3.0 9.1 9.1 
cow 0.60 0.5 3.6 1.5 1.5 
table 0.8 1.8 9.1 9.1 0.7 
dog 2.8 10.6 13.0 7.7 9.2 

horse 2.3 5.3 4.2 10.2 3.9 
mbike 9.1 7.3 13.8 14.0 14.1 
person 10.8 10.9 13.5 10.0 13.7 
plant 0.3 0.5 6.1 1.8 1.3 
sheep 0.0 1.5 9.1 9.1 9.1 
sofa 3.0 4.0 3.8 4.5 9.1 
train 8.3 16.3 15.7 ". 15.9 13.4 

tv 
" 

9.1 12.0 12.0 13.6 13.4 
AVE. 4.9 8.2 10.9 11.2 10.4 
Ttr 0.7(h) 0.9(h) 1.1(h) 1.2(h) 1.2(h) 
Tte 0.04(s) 0.05(s) 0.05(s) 0.05(s) 0.05(s) 

# Train img. 2111 3473 4998 5717 5717 
# Test img. 2221 3581 5105 5823 5823 

listed in Table 5.1, which suggests that the object proposal verification module 

still has a lot of room for improvement. The major reason for low AP is the large-

scale extremely unbalanced data generated from the object proposal generation 

module. The ratio between negatives (i.e. wrong object detection proposals) 

and positives (i. e. correct object detection proposals) in the proposal is roughly 

100:1. In this situation, our classifier tends to misclassify the positives, which 

results in the low AP. We also tested our method by r"eplacing the whole proposal 

verification module with simple linear SVMs, and we found that our current AP 

is about 1% better. Therefore, how to handle this very challenging large-scale 

extremely unbalanced data is still a big problem, and it will be in" our future 

work. 

We also ran our code on the rest vac datasets, except VaC2006, using the 

113 



5.2. Applications 

08 

.§0.6 

·~O.4 

0.2 

aeroplane 

~
VOC20081 - VOC2009 

- VOC2010 
VOC2011 

- VOC2012 

0:2 0:3 0.4 0:5 
recall 

bottle 

~
VOC2oo81 - VOC2009 

- VOC201 0 
VOC2011 

- VOC2012 

q; 0.01 0.02 0.03 0.04 
recall 

0.8 

.~0.6 

.~ 
0.0.4 

chair 

horse 

~
VOC2008 1 - VOC2009 

- VOC2010 
VOC2011 

- VOC2012 

o:~:~gg~~1 c VOC2011 
~06 - VOC2012 

~04 
02 

q; 0.05 0~1 015 012 

0.8 

.~0.6 

'2 l;.0.4 

recall 

sheep 

~
~gggg:l 

- VOC20101 
VOC2011 

- VOC2012 

0.04 
recall 

0.06 

0.4 

~ lO.2 

0.8 

.~0 .6 

lo.4 
0.2 

bus 

cow 

~
VOC20081 VOC2009 
VOC2010 
VOC2011 
VOC2012 

0.04 0:06 
recall 

motorbike 

sora 

~
VOC200] VOC2009 
VOC201 0 
VOC2011 
VOC2012 

~
VOC20081 VOC2009 

. 

VOC2010 
VOC2011 
VOC2012 

0.05 0:1 0.15 0.2 
recall 

bird 

0.8 

I
- VOC20081 - VOC2009 
- VOC2010 
- VOC2011 
- VOC2012 

0.04 0.00 
recall 

~
VOC2OO81 - VOC2009 

- VOC2010 
- VOC2011 
- VOC2012 

0.2 

<b 0.0s 0.1 0.15 0:2 

0.8 

~0.6 

lO.4 
0.2 

0.8 

0.02 

recall 

dinlngtable 

~
VOC20081 - VOC2009 

- VOC2010 
VOC2011 

- VOC2012 

0.04 0.00 0:08 
recall 

person 

~
VOC20081 - VOC2oo9 

- VOC2010 
- VOC20ll 
- VOC2012 

0~2 0:3 0:4 
recall 

train 

I
- VOC20081 - VOC2009 
- VOC2010 
- VOC2011 
- VOC2012 

08 

0.6 

0.8 

boal 

~
VOC2008'1 VOC2OO9 
VOC2010 
VOC2011 
VOC2012, 

0.02 0.04 0.00 
recall 

cat 

VOC2009 

~0.6 ~
VOC2008! 
VOC2010 
VOC2011 
VOC2012 

lO.4 .. ., .... _-z-..._ 

q; 0: 1 0.2 0.3 0.4 0.5 
recall 

.~06 ~~gg~~~ 
O:~dog t~gg~EI 

[04 • 

02 

q; 0~1 0·2 0·3 0'4 

c 
.2 

0.8 

0.6 

l°.4 
0.2 

recall 

potted plant 

~
VOC20081 VOC2oo9 
VOC2010 
VOC2011 
VOC2012 

0.005 0.01 0.015 
recall 

tvmonitor 

0.05 0: 1 0.15 0.2 
recall 

Figure 5.8: AP comparison per class on different VOC train/validation datasets. 

training data as the training set and the validation data as the test set, and list 

our results in Table 5.2. With n10re training images, it seems that our method 

performs better with more training time as well. However, the testing time per 

image changes little. In Fig. 5.8, we show the AP comparison per class between 

different VOC train/validation datasets. As we see, for each class, the curves 

have sinlilar behavior. For the difficult classes such as bird, boat and bottle, our 

recall is very low, which means that either our proposal method fails to localize 

the object instances or our classifier fails to verify the proposals correctly, or 

both. This leaves us' large room for improvement. For those relatively simple 

114 



5.2. Applications 

Figure 5.9: Sarnplc images in the German Traffic Sign Detection Benchrnark 
(GTSDB) dataset with the detection outputs using our method, where color red, 
green, blue, and magenta denote the sign categories of "prohibitory", "manda-
tory", "danger", q,nd "other", respectively. 

classes such as bus, our performance is satisfactory, considering the amount of 

computation in our method during training and testing. 

5.2.2 Thafflc Sign Detection 

For this task, we utilize the German 'fraffic Sign Detection Benchnlark (GTSDB) 

dataset [66]. This dataset has 600 training images with annotations available, 

and 300 test images without public annotations yet. The size of each ilnage is 

1360 x 800 pixels, and the sizes of traffic signs in the images vary frorn 16 x 

16 to 128 x 128. There are four different sign categories, i. e. "prohibitory", 

"mandatory", "danger", and "other". Notice that in this dataset , SOine images 

do not contain any traffic sign. 

To evaluate our method, we adopt 10-fold cross validation using the training 

data only. That is, we manually divide the training data into 10 folds in order, 

step by 10, each of which contains 60 images (i.e. Image 1, 11, 21, "', 591 are 

115 



5.2. Applications 

GTSDB, 'prohibitory' (Mean AP@.,=0.6 : 0.75) 

11 
0.8

1 50.6 
'in 
'13 
~0.4 

0.2 

0.8 

GTSDB, 'danger' (Mean AP@.,=0.6 : 0.42) 
1 C 

~04 

0.2 

q) 0:2 0.4 0.6 
recall 

-fold-1 (0.67) 
- fold-2 (0.67) 
- fold-3 (0.82) 
- fold-4 (0.75) 
- fold-5 (0.72) 
- fold-6 (0.76) 

fold-7 (0.70) 
- fold-S (0.78) 
- fold-9 (0.S1) 

, - fold-10 (0.81) 
1 

-fold-1 (0.27) 
- fold-2 (0.38) 
- fold-3 (0.64) 
- fold-4 (0.33) 
- fold-5 (0.44) 
- fold-6 (0.11) 

fold-7 (0.40) 
- fold-S (0.34) 
-fold-9 (0.54) 

, - fold-10 (0.73) 
0.8 

GTSDB, 'mandatory' (Mean AP@.,=0.6 : 0.31) 
1 

0.8 

r61 5,.0.4 

0.2 II 
q; 0.1 0.2 0.3 0.4 

recall 

GTSDB, 'other' (Mean AP@.,=0.6 : 0.30) 

-fold-1 (0.27) 
fold-2 (0.33) 
fold-3 (0.27) 

- fold-4 (0.27) 
- fold-5 (0.18) 
- fold-6 (0.51) 
. fold-7 (0.09) 

fold-S (0.55) 
-fold-9 (0.27) 

, - fold-10 (0.36) 
0.5 

-fold-1 (0.09) 
fold-2 (0.31) 
fold-3 (0.35) 

- fold-4 (0.27) 
- fold-5 (0.48) 
- fold-6 (0.27) 

fold-7 (0.30) 
fold-8 (0.20) 

-fold-9 (0.3S) 
• - fold-1 0 (0.32) 

O.S 

Figure 5.10: Precision-recall curves of the 10-fold cross validation on the cate-
gories of "prohihitory", "lTIandatory;;-; -"danger", and "other'; in GTSDB, n~spec-- -
tively. The numbers in the brackets are average precision (AP) values. 

in Fold 1, and so on). We leave one fold as test data, and use the rest 9 folds 
It 

as training data to train the lTIulticlass object detectors using our method. We 

report the 10 precision-recall curves and AP's for evaluation. 

Fig. 5.9 shows some sanlple images from the dataset, associated with the de-

tection outputs of our method. Due to the large sizes of images and the relatively 

slnall si~es of traffic signs, we lIlodify the default setting of our Incthod: For each 

image, we allow PGM to generate 5000 object proposals per image at nl0st. As 

we see, the lighting condition in the images varies a lot, and the background is 

very noisy, nlaking the detection task difficult. 

We show the precision-recall curves over the 10-fold cross validation for each 

category in Fig. 5.10. From this figure, we can see that the images containing the 

traffic signs in category "mandatory", "danger , and "other" are very few based 

ou the behaviors of their corresponding sub-figures, which rnay result in traiuing 

classifiers improperly. To give a rough view of how well our method works on this 

dataset, we simply compare each mean AP with the results on the website http: 

//benchmark.ini.rub.de/?section=gtsdb&subsection=results. For the cat-

egory "prohibitory", "mandatory", and "danger", our results outperform 24, 2, 8 

116 



5.2. Applications 

Figure 5.11: Sample images in the Penn-Fudan Pedestrian Detection dataset with 
the detection outputs using our method, where the dashed bounding boxes with 
red color denote the ground-truth of pedestrians, and the soFd bounding boxes 
with green color denote our detection outputs. 

out of 52, 34, 28 results in the lists, respectively. Notice that the overlap threshold 

for the test is set to TJ = 0.6. As for computational time, our code finishes training 

within 1.4 hours, and processes a test inlage within 20 seconds, on average. 

5.2.3 Pedestrian Detection 

For this task, we utilize the Penn-Fudan Pedestrian Detection database [132]. The 

images in the dataset are taken from scenes around campus and urban streets, 

and each image will contain at least one pedestrian. The sizes of images are 

around 500 x 500 pixels, and the heights of labeled pedestrians in this database 

fall into [180,390] pixels. All labeled pedestrians are straight up. In total there 

117 



5.2. Applications 

Penn-Fudan Pedestrian Detection database (Mean AP@11=0.5 : 0.58) 
1 

0.95 

0.9 

0.85 t- . 

r::: ; -fold-1 (0.61) 
0 0.8 - fold-2 (0.57) '00 

' (3 - fold-3 (0.67) 
~ 0.75 .. -....... . 

a.. - fold-4 (0.63) 
0.7 ., - fold-5 (0.59) 

- fold-6 (0.57) 
0.65 :- fold-7 (0.48) 

0.6 
- fold-8 (0.55) 
-fold-9 (0.50) 

0.550 
- fold-10 (0.65) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
recall 

. ' ..... . Figure .. S.12: Precision-recall·eurves over ~the· l0-fold· eross validati0n·on-47he-Fenoft.-------

Fudan Pedestrian Detection dataset . The numbers in the brackets are average 
precision (AP) values . 

are 170 images with 345 labeled pedestrians, among which 96 images are taken 

from around University of Pennsylvania, and the remaining 74 are taken frOln 

around Fudan University. 

Sinlilar to the traffic sign detection task, we adopt 10-fold cross validation to 

test our method. In detail, we manually sample the images in order, step by 17, 

to create 10 different folds, 9 of which are used as training data, and the rest as 

test data. We perform specific object detection (i. e. binary classification) using 

our method, and report the 10 precision-recall curves for evaluation. 

Fig. 5.11 shows some sample images from the dataset with the detection 

outputs using our method. The pedestrians in the dataset appear in different 

scenarios, face different directions, have partial occlusion, etc. We use the default 

setting of our code for detection. 

Fig. 5.12 shows the precision-recall curves over the 10-fold cross validation. 

The behavior of each curve is similar to each other in general, producing similar 

AP's. Training our method on this dataset needs 2 minutes, and processing a 

test image requires 0.15 second, on average. 

118 



5.2. Applications 

Figure 5.13: Sample images in the Face Detection Data Set and Benchmark 
(FDDB) dataset with the detection outputs using our method, where the red 
bounding boxes denote the ground-truth of faces, and the green bounding boxes 
denote our detection outputs. 

5.2.4 Face Detection 

For this task, we utilize the Face Detection Data Set and Benchmark (FDDB) [67] 

from University of Massachusetts, a dataset of face regions designed for studying 

the problem of unconstrained face detection. This dataset contains the annota-

tions for 5171 faces in a set of 2845 images taken from the Faces in the Wild [10] 

dataset. The sizes of images are roughly 300 x 450 (or 450 x 300) pixels. 

Each face in the dataset is annotated as an ellipse with 5 parameters. In order 

to make it suitable for our bounding box based detection method, we sample 300 

points on each ellipse uniformly, and localize the leftmost, rightmost, topmost, 

and bottommost points among these points to draw a ground-truth bounding box. 

Our evaluation is bas~d on these ground-truth bounding boxes. Still we perform 

119 



5.2. Applications 

0.95 

0.9 

§ 0.85 
·00 
T5 
<U 0. O.B 

0.75 

0.7 

FDDB (Mean AP@1l=0.5 : 0.52) 

-fold-1 (0.50) 
- fold-2 (0.47) 
- fold-3 (0.59) 

, - fold-4 (0.51) 
- fold-5 (0.48) 
- fold-6 (0.59) 
- fold-7 (0.60) 
- fold-B (0.50) 

, -fold-9 (0.51) 
L--_---L __ ----'-__ ---l-. __ ---'--__ ---'--__ -'--_----' - fold-10 (0.50) 

0.650 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
recall 

Figure.5.14: Precision-recall.curves over the.10-Jold cross validation on.the FDDB .. -. --
dataset. The numbers in the brackets are average precision (AP) values. 

specific object detection using 10-fold cross validation based on the annotation 

files in the dataset, and report the 10 precision-recall curves for evaluation. To 

get better accuracy, we allow PGM to generate 2000 proposals per image, and 

the rest parameters are set to the default values. 

Fig. 5.13 shows some sample images from the dataset with detection outputs 

using our method. These faces n1ay have different lighting conditions, expressions, 

views, sizes, angles, truncation, and occlusion, etc. Even some sketch faces are 

included. 

We show the precision-recall curves over the 10-fold cross validation using 

this dataset in Fig. 5.14. Like in the other tasks, the behaviors of the curves 

perform similarly, which demonstrates again that our method is quite robust. 

Further, we compare our performance with some other face detection methods 

and show the results in Fig. 5.15. As we see, although our method is not designed 

particularly for face detection, it still can achieve comparable performance to the 

rest. Thaining our method using this dataset needs 1 hour, and processing a test 

image requires 6 seconds, on average. 

120 



5.2. Applications 

1 

8.9 

8.8 

8.7 

~ 
~ 
fg 8.6 c.. 
~ 
~ . ..... 
~ 8.5 0.-4 
(I) 
C 
Q. 

~ 8.4 ~ c.. 
to-

8.3 

8.2 

8.1 

8 
8 

.................................... ~ ...................................... : ...................................... ~ .................................. .. · . . · . . · . . · . . · . . · . . · . . ...................................................................... , .......................................................................... .. · . . · . . 

.. .. ............................ ~ ...................................... ! ................................................................... . .. 

. . ....... ~ . . . . . . . . . . . . . . . . . ~ ... 0 u r. s ....... ~ ................. . . . . . 
(~.S9@409) ~ 

............ ~ ................... : ................... ~ ................. . · . . · . . · . . · . . · . . · . . · . . .. .. .......................... , ...................................... r ...................................... , .. .... .. .. .. ................ .. 

Li et al. -----
VJGPR -----

Subburanan et al. -----................. : ........................ ;.. Viola-Jones ----- .. 
: : Hikolajczyk et al. -----
: : Kienzle et al. -

588 1888 
False positives 

1588 2889 

Figure 5.15: Performance comparison with some other methods on the FDDB 
dataset. Over the 10-fold cross validation, our method covers 59% faces in the 
dataset, and has 409 false positives in total. The other results in the figure are 
taken from http://vis-www . CS. umass. edu/fddb/resul ts. html. 

121 



Chapter 6 

Conlusions and Perspectives 

n" 



In this thesis, we presented an efficient object detection framework based on 

the sliding window strategy, which consists of three modules: object proposal 

generation module (PGM), feature representation module (FRM), and object 

proposal verification module (PVM). We studied the influence of PGM and PVM 

on the detection performance in terms of detection accuracy and computational 

efficiency, respectively. 

First, we formulated the object proposal generation problem as a structured 

learning problem and investigated structural support vector machines (SSVMs) 

with linear kernels for this problem. In particular, a scale/aspect-ratio quanti-

zation scheme was proposed to reduce the search space of bounding boxes, and 

introduced into SSVMs with ranking constraints as well, so that the proposal 

ranking orders based on the margins can fit the expected ranking orders prede-

fined by the ranking constraints. In order to solve our structured learning problem 

efficiently with controllable classification errors, we further proposed a ranking-

order decomposition algorithm, which decomposes the original problem into some 

sub-problems,· which can be solved more easily and efficiently with much fewer 
tI 

constraints, and utilizes their solutions to approximate the solution of the origi-

nal problem. In such way, we proved that the loss of the original problem can be 

upper-bounded and lower-bounded by the losses of the sub-problems. To apply 

this general algorithm to our proposal generation problem, a two-stage cascade 

method was proposed, whose computational complexity is linearly proportional to 

the sizes of images and the sizes and number of filters, in general, but independent 

of the numbers of output object proposals and object categories. We tested our 

proposal generation method on VOC object detection challenges for specific and 

generic object proposal generation tasks. Our experiments demonstrated that 

with simple image gradients as features, our object proposal generation method 

achieves state-of-the-art results at a very low cost in computation. Compared 

with some other methods, ours can achieve slightly better object recall given a 

number of object proposals, but run 10 times faster. 

Second, we proposed two locally linear and one locally nonlinear classifiers 

for object proposal verification. Our first locally linear classifier came from or-

thogonal coordinate ~oding (OCC) with locally linear SVMs (LL-SVMs). By 

123 



encoding high dimensional data using a few anchor planes defined by orthogo-

nal basis vectors, acc can help LL-SVMs to approximate the nonlinear decision 

boundary in the feature space better. The functionality of basis vectors in acc 
can be considered as weak learners, based on which we proposed a second lo-

cally linear classifier using truncated marginal features (TMFs) and traditional 

multiclass linear SVMs. TMFs are generated by an explicit nonlinear map func-

tion which performs the data localization in a supervised manner. Learning the 

map function as well as the classifiers based on the large-margin criterion can be 

considered as a biconvex minimization problem, which can be solved efficiently 

and locally by alternating convex search where random projection and stochastic 

sub-gradient descend are used to learn the parameters in TMFs, and· a linear 

multiclass SVM solver is used to learn the locally linear classifiers. This method 

is in favor of sparse features while improving the classification performance, and 

it can be used to approximate the summation of nonlinear arc-cosine kernels. Be-

yond the locally linear classifiers, we proposed a third locally nonlinear classifier, 

Parametric Nearest Neighbor (P-NN), and its extensio"n Ensemble of P-NN (EP-
It 

NN). This method extends the analysis of Gaussian kernel density estimation, 

and attempts to learn the prototypes for nearest neighbor search and the classi-

fier parameters jointly and discriminatively. Eventually the minimum weighted 

squared Euclidean distances between the data and the prototypes are utilized to 

construct the nonlinear decision boundaries locally in the original feature space. 

The computational complexity of these three local classifiers is similar to that of 

linear SVMs in both training and testing. Therefore, they can be trained and 

tested very efficiently. Our experiments demonstrated that all of these classifiers 

can achieve classification accuracies very close to those of kernel SVMs with good 

stability and insensitivity to parameter changes within a wide range, but run 

much faster than kernel SVMs in both training and testing, which is consistent 

with our computational complexity analysis. 

Based on our proposal generation method and local classifiers, we presented 

our efficient object detection framework. Specifically we chose the locally linear 

classifier of TMFs with multiclass linear SVMs for PVM, due to its good per-

formance in terms of. accuracy and efficiency. We demonstrated the efficiency 

124 



and generality of our framework by applying it to four different object detection 

tasks, that is, VOC detection challenges, traffic sign detection, pedestrian detec-

tion, and face detection. In each task, our method can perform reasonably well 

with acceptable detection accuracy and very good computational efficiency. For 

instance, on VOC .. detection challenges, our method can achieve about 0.1 mean 

AP within 2 hours of training and 0.05 seconds of testing a 500 x 300 pixel image 

using a mixture of MATLAB and C++ code on a computer equipped with an 

Xeon W3680@3.33GHz processor and 24GB 1333MHz memory. 

Compared with state-of-the-art detection methods, our framework still has 

large room for improvement in terms of detection accuracy. In order to improve 

our framework from the view of learning models, we would like to consider the 

following aspects as our future work: 

Relational Dependency Networks (RDNs) [101]. In object proposal 

generation, we learned SSVMs with ranking constraints, and proposed a ranking-

order decomposition algorithm to solve it efficiently and approximately with guar-
II 

anteed error bounds. The ranking list is actually a special and simple relational 

dependency network (RDN), and in our proposal generation problem, it can be 

replaced with any tree-structured RDN (without loop inside). Then similar de-

composition techniques can be used to solve the structured. learning problems 

efficiently and approximately by solving the master problems with much fewer 

parameters and slave pr~blems with much fewer constraints and parameters, and 

still the losses of the original problems can be easily bounded by the losses of 

these sub-problems. Using RDNs, we can describe the contents of images with 

much richer information such as locations [35] and contexts [36] of objects, rela-

tions between parts of objects [34], etc. 

Deep Learning in Feature Representation [81]. In both PGM and PVM, 

data points are needed to be represented well. In PGM, the features should be 

general enough to cover "all" possible objects for object/non-object ranking or 

classification. In PVM, the features should be discriminative enough for distin-

guishing different obje~t classes and background. In our framework, we represent 

125 



the patches in each image independently with each other, which is not always 

true (at least not true for some neighbor patches between different layers in the 

image pyramid). Using deep learning, features can be generated automatically 

based on the learning requirement in a hierarchical way to incorporate informa-

tion in images, a~d this may be very useful in our framework for both ranking 

and classification. However, to preserve the efficiency of our framework in both 

training and testing, it will be a challenge to integrate deep learning, and how to 

apply deep learning for object detection properly is still an open issue. 

Local Classifiers with Multiple Instance Learning. Latent SVMs can 

be considered as linear SVMs with multiple instance learning. Kernelized latent 

SVMs [138] have recently been successfully applied in object recognition and lo-

calization, and their performance is better than latent SVMs. Since our local 

classifiers can approximate kernel SVMs using explicit nonlinear map functions 

and linear SVMs, intuitively we can extend our methods to learn local classifiers 

in the context of multiple instance learning to "kernelize" latent SVMs approxi-
II 

mately. We expect that the computational complexity of the new local classifiers 

should be sirnilar to that of latent SVMs. The rnajor difficulties in the extension 

are how to learn the anchor points, which should be sets of feature vectors, and 

how to design the explicit map functions. 

,-, . 

126 



Bibliography 

[1] Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari. Measuring the 

objectness of image windows. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 34(11) :2189-2202, 2012. 

[2] Senjian An, Patrick Peursum, Wanquan Liu, and Svetha Venkatesh. Effi-

cient subwindow search with submodular score functions. In Proceedings 

of IEEE Conference on Computer Vision and Pattern Recognition, pages 

1409-1416, 2011. 

[3] Senjian An, Patrick Peursum, Wanquan Liu, Svetha Venkatesh,. and Xi-

aoming Chen. Exploiting monge structures in optimum subwindow search. 

In Proceedings of IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 926-933, 2010. 

[4] Xiang Bai, Quannan Li, Longin Jan Latecki, Wenyu Liu, and Zhuowen 

Tu. Shape band: A deformable object detection approach. In Proceedings 
It 

of IEEE Conference on Computer Vision and Pattern Recognition, pages 

1335-1342, 2009. 

[5] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming 

Theory and Algorithms. John Wiley, New York, 1993. 

[6] Regis Behmo, Paul Marcombes, Arnak Dalalyan, and Veronique Prinet. 

Towards optimal naive bayes nearest neighbor. In Proceedings of European 

Conference on Computer Vision, pages 171-184, Berlin, Heidelberg, 2010. 

Springer-Verlag. 

[7] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and 

object recognition using shape contexts. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 24:5Q9-522, 2001. 

[8] Alexander C. Berg, Tamara L. Berg, and Jitendra Malik. Shape matching 

and object recognition using low distortion correspondences. In 'Proceedings 

of IEEE Conference on Computer Vision and Pattern Recognition, pages 

26-33,2005. 

127 



Bibliography 

[9] Alexander C. Berg and Jitendra Malik. Geometric blur for template match-

ing. In Proceedings of IEEE Conference on Computer Vision and Pattern 

Recognition, pages 607-614, 2001. 

[10] Tamara L. Berg, Alexander C. Berg, J aety Edwards, and David A. Forsyth. 

Who's in the picture. In Proceedings of Advances in Neural Information 

Processing Systems, pages 137-144, 2005. 

[11] 1. Biederman. Visual object recognition. An Invitation to Cognitive Science, 

2:112-165, 1995. 

[12] Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-

mation Science and Statistics). Springer-Verlag New York, Inc., Secaucus, 

NJ, USA, 2006. 

[13] M.B. Blaschko and C.H. Lampert. Learning to localize objects with struc-

tured output regression. In Proceedings of European Conference on Com-

puter Vision, pages I: 2-15, 2008. 

[14] Michael Bleyer, Christoph Rhemann, and Carsten Rother. Extracting 3d 

scene-consistent object proposals and depth from stereo images. In Proceed-

ings of the 12th European conference on Computer Vision - Volume Part V, 

Proceedings of European Conference on Computer Vision, pages 467-481, 

Berlin, Heidelberg, 2012. Springer-Verlag. 

[15] O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor 

.. based image classification. In Proceedings of IEEE Conference on Computer 

Vision and Pattern Recognition, pages 1-8, 2008. 

[16] Antoine Bordes, Leon Bottou, and Patrick Gallinari. Sgd-qn: Careful quasi-

newton stochastic 'gradient descent. Journal of Machine Learning Research, 

10: 1737-1754, December 2009. 

[17] Antoine Bordes, Leon Bottou, Patrick Gallinari,' and Jason Weston. Solving 

multiclass support vector machines with larank. In Proceedings of Interna-

tional Conference on Machine Learning, pages 89-96, 2007. 
,', . 

128 



Bibliography 

[18] Antoine Bordes, Seyda Ertekin, Jason Weston, and Leon Bottou. Fast ker-

nel classifiers with online and active learning. Journal of Machine Learning 

Research, 6:1579-1619, December 2005. 

[19J Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge 

University Press, New York, NY, USA, 2004. 

[20J David M. Bradley and J. Andrew Bagnell. Differential Sparse Coding. In 

Proceedings of Advances in Neural Information Processing Systems, pages 

113-120, 2009. 

[21J Leo Breiman. Random forests. Machine Learning, 45:5-32, October 2001. 

[22J John Canny. Finding edges and lines in images. Technical report, Cam-

bridge, MA, USA, 1983. 

[23J J. Carreira and C. Sminchisescu. CPMC: Automatic Object Segmentation 

Using Constrained Parametric Min-Cuts. IEEE. Transactions on Pattern 

Analysis an~ Machine Intelligence, pages 1312-1328, July 2012. 

[24J Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support 

vector machines. A CM Transactions on Intelligent Systems and Technology, 

2:27:1-27:27, 2011. Software available at http://www.csie.ntu.edu.tw/ 

-cj lin/libsvm. 

[25J Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. In 

.. Proceedings of Advances in Neural Information Processing Systems, pages 

342-350. 2009. 

[26J Youngmin Cho and Lawrence K. Saul. Analysis and extension of arc-cosine 

kernels for large margin classification. A CM Computing Research Reposi-

tory, abs/1112.3712, 2011. 

[27] O. Chum and A. Zisserman. An exemplar model for learning object classes. 

In Proceedings of IEEE Conference on Computer Vision and Pa~tern Recog-

nition, pages 1-8, 2007 . 
.. " 

129 



Bibliography 

[28] Andrew Cotter, Shai Shalev-Shwartz, and Nathan Srebro. Learning op-

timally sparse support vector machines. In Proceedings of International 

Conference on Machine Learning, 2013. 

[29] Koby Crammer, Ran Gilad-Bachrach, Amir Navot, and Naftali Tishby. 

Margin analysis of the LVQ algorithm. In Proceedings of Advances in Neural 

Information Processing Systems, pages 462-469, 2002. 

[30] Koby Crammer and Yoram Singer. On the algorithmic implementation 

of multiclass kernel-based . vector machines. Journal of Machine Learning 

Research, 2:265-292, March 2002. 

[31] G. Csurka, C~ Bray, C. Dance, and L. Fan. Visual categorization with bags 

of keypoints. In Proceedings of European Conference on Computer Vision 

Workshop on Statistical Learning in Computer Vision, pages 1-22, 2004. 

[32] N avneet Dalal and Bill Triggs. Histograms of oriented gradients for human 

detection. In Proceedings of IEEE Conference·on Computer Vision and 

Pattern Rec~gnition - Volume 1 - Volume 01, pages 886-893, 2005. 

[33] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A 

Large-Scale Hierarchical Image Database. In Proceedings of IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2009. 

[34] Chaitanya Desai and Deva Ramanan. Detecting actions, poses, and ob-

jects with relational phraselets. In Proceedings of European Conference on 

Computer Vision, pages 158-172, 2012. 

[35] Chaitanya Desai, Deva Ramanan, and Charless Fowlkes. Discriminative 

models for multi-class object layout. In Proceedings of International Con-

ference on Computer Vision, pages 229-236, 2009. 

[36] Santosh Kumar Divvala, Derek Hoiem, James Hays, Alexei A. Efros, and 

Martial Hebert. An empirical study of context in object detection. In Pro-

ceedings of IEEE Conference on Computer Vision and Pattern Recognition, 

pages 1271-1278, 2009. 

130 



Bibliography 

[37] Piotr Dollar, Serge Belongie, and Pietro Perona. The fastest pedestrian 

detector in the west. In Proceedings of British Machine Vision Conference, 

pages 1-11, 2010. 

[38] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian 

detection: An evaluation of the state of the art. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 34(4):743-761, 2012. 

[39] J Eichhorn and 0 Chapelle. Object categorization with SVM: kernels for 

local features. Technical Report 137, Max Planck Institute for Biological 

Cybernetics, Tiibingen, Germany, 7 2004. 

[40] Ian Endres and Derek Hoiem. Category independent object proposals. In 

Proceedings of European Conference on Computer Vision, pages 575-588, 

2010. 

[41] Andreas Ess, Konrad Schindler, Bastian Leibe, and Luc Van Gool. Ob-

ject detection and tracking for autonomous navigation in dynamic envi-

ronments. International Journal of Robotics Research, 29(14):1707-1725, 

December 2010. 

[42] M. Everingham, L. Van Gool, 

and A. Zisserman. The 

Challenge 2007 (VOC2007) 

C. K. 1. Williams, J. Winn, 

PASCAL Visual' Object Classes 

Results. http://www.pascal-

network.org/ challenges/VOC /voc2007 /workshop /index.html. 

[43] M. Everingham, L. Van Gool, C. K. 1. Williams, J. Winn, 

and A. Zisserman. The PASCAL Visual Object Classes 

Challenge 2008 (VOC2008) Results. http://www.pascal-

network.org/challenges/VOC/voc2008/workshop/index.html. 

[44] M. Everingham, L. Van Gool, C. K. 1. Williams, J. Winn, 

and A. Zisserman. The PASCAL Visual Object Classes 

Challenge 2009 (VOC2009) Results. http://www.pascal-

network.org/ challenges/VOC /voc2009 /workshop /index.html. 
," .. 

131 



Bibliography 

[45] M. Everingham, L. Van Gool, C. K. 1. Williams, J. Winn, 

and A. Zisserman. The PASCAL Visual Object Classes 

Challenge 2010 (VOC2010) Results. http://www.pascal-

network.org/ challenges/VOC /voc2010 /workshop /index.html. 

[46] M. Everin-gham, L. Van Gool, C. K. 1. Williams, J. Winn, 

and A. Zisserman. The PASCAL Visual Object Classes 

Challenge 2011 (VOC2011) Results. http://www.pascal-

network.org/ challenges/VOC /voc2011/workshop /index.html. 

[47] M. Everingham, L. Van Gool, C. K. 1. Williams, J. Winn, 

and A. Zisserman. The PASCAL Visual Object· Classes 

Challenge 2012 (VOC2012) Results. http://www.pascal-

network.org/ challenges /VOC /voc20 12 /workshop /index.html. 

[48] M. Everingham, A. Zisserman, C. K. 1. Williams, and L. Van Gool. 

The PASCAL Visual Object Classes Challenge 2006 (VOC2006) Results. 

http://www ... pascal-network.org/challenges/VOC/voc2006/results.pdf. 

[49] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-

Jen Lin. LIB LINEAR: A library for large linear classification. Journal of 

Machine Learning Research, 9:1871-1874, 2008. 

[50] Ali Farhadi, Ian Endres, Derek Hoiem, and David A. Forsyth. Describing 

objects by their attributes. In Proceedings of IEEE Conference on Computer 

._ Vision and Pattern Recognition, pages 1778-1785, 2009. 

[51] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object 

detection with discriminatively trained part based models. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 32(9):1627-1645, 2010. 

[52] Pedro F. Felzenszwalb, Ross B. Girshick, ~nd David A. McAllester. Cascade 

object detection with deformable part models. In Proceedings of IEEE 

Conference on Computer Vision and Pattern Recognition, pages2241-2248, 

2010. 
n' 

132 



Bibliography 

[53] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Pictorial structures for 

object recognition. International Journal of Computer Vision, 61(1):55-79, 

January 2005. 

[54] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of adjacent contour 

segments for object detection. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 30(1):36-51, January 2008. 

[55] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach. 

Prentice Hall Professional Technical Reference, 2002. 

[56] D. M. Gavrila and V. Philomin. Real-time object detection using distance 

transforms. In Proceedings of Intelligent Vehicles Conference, page 998, 

1998. 

[57] K. Goh, L. Thran, M. Safonov, G. Papavassilopoulos, and J. Ly. Biaffine 

matrix inequality properties and computational methods. In Proceedings of 

the American Control Conference, pages 850-855', Albuquerque, NM, June 

1994. 

[58] Gene H. Golub and Charles F. Van Loan. Matrix computations (3rd ed.). 

Johns Hopkins University Press, Baltimore, MD, USA, 1996. 

[59] Jochen Gorski, Frank Pfeuffer, and Kathrin Klamroth. Biconvex sets and 

optimization with biconvex functions - a survey' and extensions. Mathemat-

ical Methods of Operations Research, 66(3):373-407, 2007. 

[60] Stephen Gould, Paul Baumstarck, Morgan Quigley, Andrew Y. Ng, and 

Daphne Koller. Integrating visual and range data for robotic object detec-

tion. In Proceedings of European Conference on Computer Vision Workshop 

on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applica-

tions (M2SFA2), 2008. 

[61] Chunhui Gu, Pablo Andres Arbelaez, Yuanqing Lin, Kai Yu, and Jitendra 

Malik. Multi-component models for object detection. In Proceedings of 

European Conference on Computer Vision, pages 445~458, 2012. 

133 



Bibliography 

[62] Sam Hare, Amir Saffari, and Philip H. S. Torr. Struck: Structured out-

put tracking with kernels. In Proceedings of International Conference on 

Computer Vision, pages 263-270, 2011. 

[63] Bharath Hariharan, Jitendra Malik, and Deva Ramanan. Discriminative 

decorrelation for clustering and classification. In Proceedings of European 

Conference on Computer Vision, 2012. 

[64] Geremy Heitz and Daphne Koller. Learning spatial context: Using stuff to 

find things. In Proceedings of European Conference on Computer Vision, 

pages 30-43, 2008. 

[65] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Putting objects in 

perspective. International Journal of Computer Vision, 80(1):3-15, 2008. 

[66] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and 

Christian Igel. Detection of traffic signs in real-world images: The German 

Traffic Sign Detection Benchmark. In International Joint Conference on 
II 

Neural Networks (submitted), 2013. 

[67] Vidit Jain and Erik Learned-Miller. FDDB: A benchmark for face detection 

in unconstrained settings. Technical Report UM-CS-2010-009, University 

of Massachusetts, Amherst, 2010. 

[68] Vinay Jethava, Krishnan Suresh, Chiranjib Bhattacharyya, and Ramesh 

Hariharan. Randomized algorithms for large scale SVMs. A CM Computing 

Research Repository, abs/0909.3609, 2009. 

[69] Zhaoyin Jia, Ashutosh Saxena, and Tsuhan Chen. Robotic object detection: 

Learning to irnprove the classifiers using sparse graphs for path planning. 

In Proceedings of International Joint Conferences on Artificial Intelligence, 

pages 2072-2078, 2011. 

[70] Thorsten Joachims, Thomas Finley, and Chun~Nam John Yu. Cutting-

plane training of structural SVMs. Machine Learning, 77(1):27-59, October 

2009. 
,', . 

134 



Bibliography 

[71] Vojislav Kecman and J. Paul Brooks. Locally linear support vector ma-

chines and other local models. In Proceedings of International Joint Con-

ference on Neural Networks, pages 1-6, 2010. 

[72] Iasonas Kokkinos. Rapid deformable object detection using dual-tree 

branch-and~bound. In Proceedings of Advances in Neural Information Pro-

cessing Systems, pages 2681-2689, 2011. 

[73] Nikos Komodakis, Nikos Paragios, and Georgios Tziritas. Mrf optimiza-

tion via dual decomposition: Message-passing revisited. In Proceedings of 

International Conference on Computer Vision, pages 1-8, 2007. 

[74] Nikos Komodakis, Nikos Paragios, and Georgios Tziritas. Mrf energy min-

imization and beyond via dual decomposition. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 33(3):531-552, 2011. 

[75] Matthieu Kowalski. Sparse regression using mixed norms. Applied and 

Computational Harmonic .Analysis, 27(3):303-324, 2009. 

[76] Lubor Ladicky and Philip H. S. Torr. Locally linear support vector ma-

chines. In Proceedings of International Conference on Machine Learning, 

pages 985-992, 2011. 

[77] C.H. Lampert. An efficient divide-and-conquer cascade for nonlinear object 

detection. In Proceedings of IEEE Conference on Computer Vision and 

Pattern Recognition, pages 1022-1029, 2010 . 
.. 

[78] C.H. Lampert, M.B. Blaschko, and T. Hofmann. Efficient subwindow 

search: A branch and bound framework for object localization. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 31(12):2129-2142, 

December 2009. 

[79] Tian Lan, Leonid Sigal, and Greg Mori. Social roles in hierarchical models 

for human activity recognition. In Proceedings of IEEE Conference on 

Computer Vision and Pattern Recognition, 2012. 

[80] .~vetlana Lazebni.k, Cordelia Schmid, and Jean Ponce .. Beyond bags of fea-

tures: Spatial pyramid matching for recognizing natural scene categories. 

135 



Bibliography 

In Proceedings of IEEE Conference on Computer Vision and Pattern Recog-

nition - Volume 2, pages 2169-217S, 2006. 

[Sl] Quoc V. Le, Marc'Aurelio Ranzato, Rajat Monga, Matthieu Devin, Greg 

Corrado, Kai Chen, Jeffrey Dean, and Andrew Y. Ng. Building high-level 
.' 

features using large scale unsupervised learning. In Proceedings of Interna-

tional Conference on Machine Learning, 2012. 

[S2] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y. Ng. Efficient 

sparse coding algorithms. In Proceedings of Advances in Neural Information 

Processing Systems, pages SOl-S0S. 2007. 

[S3] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y. Ng. Efficient 

sparse coding algorithms. In B. Sch6lkopf, J. Platt, and T. Hoffman, editors, 

Proceedings of Advances in Neural Information Processing Systems, pages 

SOl-S0S. MIT Press, Cambridge, MA, 2007. 

[S4] Alain Lehmann, Peter V. Gehler, and Luc J. Van Gool. Branch&rank: 
II 

Non-linear object detection. In Proceedings of British Machine Vision Con-

ference, pages 1-11, 2011. 

[S5] Alain Lehmann, Bastian Leibe, and Luc van Gool. Prism: Principled im-

plicit shape model. In Proceedings of British Machine Vision Conference, 

pages 64.1-64.11, 2009. doi:10.5244/C.23.64 .. 

[S6] B. Leibe, A. Leonardis, and B. Schiele. Combined object categorization and 

segmentation with an implicit shape model. In Proceedings of the Workshop 

on Statistical Learning in Computer Vision, Prague, Czech Republic, May 

2004. 

[S7] Jianguo Li, Tao Wang, and Yimin Zhang. Face detection using surf cascade. 

In International Conference on Compllter Vision Workshops, pages 21S3-

2190, 2011. 

[SS] Yuanqing Lin, Tong Zhang, Shenghuo Zhu, and Kai Yu. Deep coding net-

works. In Proceedings of Advances in Neural Information Processing Sys-

tems, Cambridge, MA, 2010. MIT Press. 

136 



Bibliography 

[89] Ming-Yu Liu, Oncel Thzel, Ashok Veeraraghavan, and Rama Chellappa. 
Fast directional chamfer matching. In Proceedings of IEEE Conference on 

Computer Vision and Pattern Recognition, pages 1696-1703, 2010. 

[90] David G. Lowe. Object recognition from local scale-invariant features. In 

Proceedings of International Conference on Computer Vision, pages 1150-

1157, 1999. 

[91] David G. Lowe. Distinctive image features from scale-invariant keypoints. 

International Journal oj Computer Vision, 60(2):91-110, November 2004. 

[92] Tianyang Ma, Xingwei Yang, and Longin Jan Latecki. Boosti~g chamfer 

matching by learning chamfer distance normalization. In Proceedings of 

European Conference on Computer Vision: Part V, pages 450-463, Berlin, 

Heidelberg, 2010. Springer-Verlag. 

[93] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online 

dictionary learning for sparse coding. In Proceedings of the 26th Annual 
It 

International Conference on Machine Learning, pages 689-696, 2009. 

[94] S. Maji, A.C. Berg, and J. Malik. Classification using intersection kernel 

support vector machines is efficient. In Proceedings of IEEE Conference on 

Computer Vision and Pattern Recognition, pages 1-8, 2008. 

[95] Tomasz Malisiewicz, Abhinav Gupta, and Alexei A. Efros. Ensemble of 

exemplar-SVMs for object detection and beyond. In Proceedings of Inter-

national Conference on Computer Vision, pages 89-96, 2011. 

[96] Sylvain Paris Michael Gharbi, Tomasz Malisiewicz and Fredo Durand. A 

gaussian approximation of feature space for fast image similarity. Technical 

report, MIT-CSAIL-TR-2012-032, 10 2012. 

[97] Fabien Moutarde, Bogdan Stanciulescli, and Amaury Breheret. Real-time 

visual detection of vehicles and pedestrians with new efficient adaBoost 

features. In 2nd· Workshop on Planning, Perception and Navigation for 

". Intelligent Ve~icles (PPNIV), at 2008 IEEE International Conference on 

Intelligent RObots Systems (IROS 2008), Nice, France, 2008. 

137 



Bibliography 

[98] Joseph L. Mundy. Object recognition in the geometric era: A retrospective. 

In Jean Ponce, Martial Hebert, Cordelia Schmid, and Andrew Zisserman, 

editors, Toward Category-Level Object Recognition, volume 4170 of Lecture 

Notes in Computer Science, pages 3-28. Springer, 2006. 

[99] Kevin P. Murphy, Antonio Torralba, Daniel Eaton, and William T. Free-

man. Object detection and localization using local and global features. In 

Toward Category-Level Object Recognition, pages 382-400, 2006. 

[100] J. C. Nascimento and J. S. Marques. Performance evaluation of object 

detection algorithms for video surveillance. IEEE Transactions on Multi-

media, 8(4):761-774, August 2006. 

[101] Jennifer Neville and David Jensen. Relational dependency networks. Jour-

nal of Machine Learning Research, 8:653-692, May 2007. 

[102] T. Ojala, M. Pietikainen, and D. Harwood. Performance evaluation of tex-

ture measures with classification based on kullback discrimination of distri-

butions. In Proceedings of International Conference on Pattern Recognition, 

pages A:582-585, 1994. 

[103] Andreas Opelt, Axel Pinz, and Andrew Zisserman. A boundary-fragment-

model for object detection. In Proceedings of European Conference on Com-

puter Vision, pages 575-588, Berlin, Heidelberg, 2006. Springer-Verlag: 

[104] Patrick Ott and M. Everingham. Shared parts for deformable part-based 

models. In Proceedings of IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 1513-1520,2011. 

[105] Balarnurugan P., Shirish Krishnaj Shevade, and T. Ravindra Babu. Efficient 

algorithms for linear summed error structural SVMs. In Proceedings of 

International Joint Conference on Neural Networks, pages 1-8, 2012. 

[106] Dennis Park, Deva Ramanan, and Charless Fowlkes. Multiresolution models 

for object detection. In Proceedings of European Conference on Computer 

". Vision, pages ~41-254, 2010. 

138 



Bibliography 

[107] Marco Pedersoli, Andrea Vedaldi, and Jordi Gonzalez. A coarse-to-fine 

approach for fast deformable object detection. In Proceedings of IEEE 

Conference on Computer Vision and Pattern Recognition, pages 1353-1360, 

2011. 

[108] Hamed Pirsiavash and Deva Ramanan. Steerable part models. In Proceed-

ings of IEEE Conference on Computer Vision and Pattern Recognition, 

pages 3226-3233, 2012. 

[109] Esa Rahtu, Juho Kannala, and Matthew Blaschko. Learning a category 

independent object detection cascade. In Proceedings of International Con-

ference on Computer Vision, 2011. 

[110] John A. Rice. Mathematical Statistics and Data Analysis. Duxbury Press, 

Belmont, CA, 2nd edition, 1995. 

[111] Olga Russakovsky, Yuanqing Lin, Kai Yu, and Fei-Fei Li. Object-centric 

spatial pooling for image classification. In Proceedings of European Confer-
tI 

ence on Computer Vision, pages 1-15, 2012. 

[112] Mohammad Amin Sadeghi and Ali Farhadi. Recognition using visual 

phrases. In Proceedings of IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 1745-1752,2011. 

[113] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee S. Lee. Boosting 

the margin: A new explanation for the effectiveness of voting methods. The 

Annals of Statistics, 26(5):1651-1686, 1998. 

[114] Henry Schneiderman and Takeo Kanade. Object detection using the statis-

tics of parts. International Journal of Computer Vision, 56(3):151-177, 

2004. 

[115] Rae Jong Seo and Peyman Milanfar. Training-free, generic object detection 

using locally adaptive regression kernels. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 32(9):1688-1704, September 2010. 

'"' . 

139 



Bibliography 

[116] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. 

Pegasos: primal estimated sub-gradient solver for SVM. Mathematical Pro-

gramming, 127(1):3-30, 2011. 

[117] Qinfeng Shi, Chunhua Shen, Rhys Hill, and Anton van den Henge~. Is 

margin preserved after random projection? In Proceedings of International 

Conference on Machine Learning, 2012. 

[118] Jamie Shotton, Andrew Blake, and Roberto Cipolla. Contour-based learn-

ing for object detection. In Proceedings of IEEE International Conference 

on Computer Vision, pages 503-510, Washington, DC, USA, 2005. IEEE 

Computer Society. 

[119] Jamie Shotton, Andrew W. Fitzgibbon, Mat Cook, Toby Sharp, Mark 

Finocchio, Richard Moore, Alex Kipman, and Andrew Blake. Real-time 

human pose recognition in parts from single depth images. In Proceedings 

of IEEE Conference on Computer Vision and Pattern Recognition, pages 

1297-1304,112011. 

[120] Dong-Gyu Sim, Oh-Kyu Kwon, and Rae-Hong Park. Object matching 

algorithms using robust hausdorff distance measures. IEEE Transactions 

on Image Processing, 8(3):425-429, 1999. 

[121] Hyun Oh Song, Stefan Zickler, Tim Althoff, Ross B. Girshick, Mario Fritz, 

Christopher Geyer, Pedro F. Felzenszwalb, and Trevor Darrell. Sparselet 

models for efficient multiclass object detection. In Proceedings of European 

Conference on Computer Vision, pages 802-815, 2012. 

[122] Erik B. Sudderth. Graphical models for visual object recognition and track-

ing. PhD thesis, Cambridge, MA, USA, 2006. AAI0809973. 

[123] Antonio Torralba, Kevin P. Murphy, and William T. Freeman. Sharing 

features: Efficient boosting procedures for multiclass object detection. In 

Proceedings of IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 762-769, 2004. 
". 

140 



Bibliography 

[124) Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and 

Yasemin Altun. Large margin methods for structured and interdependent 

output variables. Journal of Machine Learning Research, 6:1453-1484, De-

cember 2005. 

[125) T. Thytelaars, M. Fritz, K. Saenko, and T. Darrell. The NBNN kernel. In 

Proceedings of International Conference on Computer Vision, 2011. 

[126] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of 

computer vision algorithms. http://www . vIf eat. org/, 2008. 

[127] Andrea Vedaldi, Varun Gulshan, Manik Varma, and Andrew ~isserman. 

Multiple kernels for object detection. In Proceedings of International Con-

ference on Computer Vision, pages 606-613, 2009. 

[128] Andrea Vedaldi and Andrew Zisserman. Efficient additive kernels via ex-

plicit feature maps. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 34(3):480-492, 2012. 
II 

[129] P. Viola and M. Jones. Rapid object detection using a boosted cascade of 

simple features. In Proceedings of IEEE Conference on Computer Vision 

and Pattern Recognition, 2001. 

[130] Carl Vondrick, Aditya Khosla, Tomasz Malisiewicz, and Antonio Torralba. 

Inverting and visualizing features for object detection. ACM Computing 

Research Repository, abs/1212.2278, 2012. 

[131] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas S. Huang, and 

Yihong Gong. Locality-constrained linear coding for image classification. In 

Proceedings of IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 3360-3367, 2010. 

[132] Liming. Wang, Jianbo Shi, Gang Song, and I fan Shen. Object detection 

combining recognition and segmentation. In Proceedings of Asian Confer-

ence of Computer Vision, pages 189-199, 2007. 

,., . 

141 



Bibliography 

[133] Zhuang Wang, Koby Crammer, and Slobodan Vucetic. Multi-class pega-

sos on a budget. In Proceedings of International Conference on Machine 

Learning, pages 1143-1150. Omnipress, 2010. 

[134] K.Q. Weinberger and L.K. Saul. Distance metric learning for large mar-

gin nearest neighbor classification. Journal of Machine Learning Research, 

10:207-244, 2009. 

[135] Zhen James Xiang, Hao Xu, and Peter J. Ramadge. Learning sparse repre-

sentations of high dimensional data on large scale dictionaries. In Proceed-

ings of Advances in Neural Information Processing Systems, pages 900-908, 

2011. 

[136] Jingjing Yang, YongHong Tian, Ling-Yu Duan, Tiejun Huang, and Wen 

Gao. Group-sensitive multiple kernel learning for object recognition. IEEE 

Transactions on Image Processing, 21(5):2838-2852, 2012. 
-. 

[137] Tao Yang and Vojislav Kecman. Adaptive local hyperplane classification. 
II 

Neurocomputing, 71(1315):3001 - 3004, 2008. 

[138] Weilong Yang, Yang Wang, Arash Vahdat, and Greg Mori. Kernel latent -

SVM for visual recognition. In Proceedings of Advances in Neural Informa-

tion Processing Systems, pages 818-826, 2012. 

[139] Yi Yang, Sam Hallman, Deva Ramanan, and Charless C. Fowlkes. Lay-

ered object models for image segmentation. IEEE Transactions on Pattern 

.. Analysis and Machine Intelligence, 34(9):1731-1743, 2012. 

[140] Yi Yang and Deva Ramanan. Articulated pose estimation with flexible 

mixtures-of-parts. In Proceedings of IEEE Conference on Computer Vision 

and Pattern Recognition, pages 1385-1392, 2011. 

[141] K. Yu and A. Ng. ECCV-2010 Thtorial:' Feature Learning for Image Clas-

sification. http://ufldl.stanford.edu/ eccv10-tutorial/. 

[142] Kai Yu and Tong Zhang. Improved local coordinate coding using local 

,. tangents. In Pro.ceedings of International Conference on Machine Learning, 

pages 1215-1222, 2010. 

142 



Bibliography 

[143] Kai Yu, Tong Zhang, and Yihong Gong. Nonlinear learning using local 

coordinate coding. In Proceedings of Advances in Neural Information Pro-

cessing Systems, pages 2223-2231, 2009. 

[144] Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. Recent advances of large-

scale linear classification. Proceedings of the IEEE, 100(9):2584-2603, 2012. 

[145] Cha Zhang and Zhengyou Zhang. A survey of recent advances in face 

detection. Technical report, Microsoft Research, 06 2010. 

[146] H. Zhang, A.C. Berg, M. Maire, and J. Malik. SVM-KNN: Discriminative 

nearest neighbor classification for visual category recognition. In Proceed-

ings of IEEE Conference on Computer Vision and Pattern Recognition, 

pages II: 2126-2136, 2006. 

[147] Wei Zhang, G. Zelinsky, and D. Samaras. Real-time Accurate Object Detec-

tion using Multiple Resolutions. In Proceedings of International Conference 

on Computer Vision, pages 1-8, 2007. 

[148] Zhengyou Zhang. Microsoft kinect sensor and its effect. IEEE MultiMedia, 

19(2) :4-10, April 2012. 

[149] Ziming Zhang, Lubor Ladicky, Philip H. S. Torr, and Amir Saffari. Learn-

ing anchor planes for classification. In Proceedings of Advances in Neural 

Information Processing Systems, pages 1611-1619, 2011. 

[15~] Ziming Zhang, Paul Sturgess, Sunando Sengupta, Nigel Crook, and Philip 

H. S. Torr. Efficient discriminative learning of parametric nearest neighbor 

classifiers. In Proceedings of IEEE Conference on Computer Vision and 

Pattern Recognition, pages 2232-2239, 2012. 

[151] Ziming Zhang, Jonathan Warrell, and Philip H. S. Torr. Proposal gener-

ation for object detection using cascaded ranking SVMs. In Proceedings 

of IEEE Conference on Computer Vision and Pattern Recognition, pages 

1497-1504,2011. 

[152}, ,Yefeng Zheng, ~iaoguang Lu, Bogdan Georgescu, Arne Littmann, Edgar 

Mueller, and Dorin Comaniciu. Robust object detection using marginal 

143 



Bibliography 

space learning and ranking-based multi-detector aggregation: Application 

to left ventricle detection in 2D MRI images. In Proceedings of IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 1343-1350, 

2009. 

[153] Jun Zhu, Eric P. Xing, and Bo Zhang. Primal sparse max-margin markov 

networks. In Proceedings of ACM SIGKDD international conference on 

Knowledge discovery and data mining, pages 1047-1056, New York, NY, 

USA, 2009. ACM. 

[154] Xiangxin Zhu and Deva Ramanan. Face detection, pose estimation, and 

landmark localization in the wild. In Proceedings of IEEE Conjerence on 

Computer Vision and Pattern Recognition, pages 2879-2886, 2012. 

'"' . 

144 


