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Abstract

Human action recognition in challenging video data is becoming an increas-
ingly important research area. Given the growing number of cameras and robots
pointing their lenses at humans, the need for automatic recognition of human
actions arises, promising Google-style video search and automatic video sum-
marisation/description. Furthermore, for any autonomous robotic system to
interact with humans, it must first be able to understand and quickly react to
human actions.

Although the best action classification methods aggregate features from the
entire video clip in which the action unfolds, this global representation may
include irrelevant scene context and movements which are shared amongst mul-
tiple action classes. For example, a waving action may be performed whilst
walking, however if the walking movement appears in distinct action classes,
then it should not be included in training a waving movement classifier. For
this reason, we propose an action classification framework in which more dis-
criminative action subvolumes are learned in a weakly supervised setting, owing
to the difficulty of manually labelling massive video datasets. The learned
models are used to simultaneously classify video clips and to localise
actions to a given space-time subvolume. Each subvolume is cast as a
bag-of-features (BoF') instance in a multiple-instance-learning framework, which
in turn is used to learn its class membership. We demonstrate quantitatively
that even with single fixed-sized subvolumes, the classification performance of
our proposed algorithm is superior to our BoF baseline on the majority of per-
formance measures, and shows promise for space-time action localisation on the
most challenging video datasets.

Exploiting spatio-temporal structure in the video should also improve results,
just as deformable part models have proven highly successful in object recogni-
tion. However, whereas objects have clear boundaries which means we can easily
define a ground truth for initialisation, 3D space-time actions are inherently am-
biguous and expensive to annotate in large datasets. Thus, it is desirable to
adapt pictorial star models to action datasets without location annotation, and
to features invariant to changes in pose such as bag-of-feature and Fisher vectors,
rather than low-level HoG. Thus, we propose local deformable spatial bag-
of-features (LDSBoF') in which local discriminative regions are split
into a fixed grid of parts that are allowed to deform in both space

and time at test-time. In our experimental evaluation we demonstrate that
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by using local, deformable space-time action parts, we are able to achieve very
competitive classification performance, whilst being able to localise actions even
in the most challenging video datasets.

A recent trend in action recognition is towards larger and more challenging
datasets, an increasing number of action classes and larger visual vocabularies.
For the global classification of human action video clips, the bag-of-visual-words
pipeline is currently the best performing. However, the strategies chosen to
sample features and construct a visual vocabulary are critical to performance, in
fact often dominating performance. Thus, we provide a critical evaluation
of various approaches to building a vocabulary and show that good
practises do have a significant impact. By subsampling and partitioning
features strategically, we are able to achieve state-of-the-art results on 5 major
action recognition datasets using relatively small visual vocabularies.

Another promising approach to recognise human actions first encodes the
action sequence via a generative dynamical model. However, using classical dis-
tances for their classification does not necessarily deliver good results. Therefore
we propose a general framework for learning distance functions be-
tween dynamical models, given a training set of labelled videos. The
optimal distance function is selected among a family of ‘pullback’ ones, induced
by a parametrised mapping of the space of models. We focus here on hidden
Markov models and their model space, and show how pullback distance learning
greatly improves action recognition performances with respect to base distances.

Finally, the action classification systems that use a single global representa-
tion for each video clip are tailored for offline batch classification benchmarks.
For human-robot interaction however, current systems fall short, either because
they can only detect one human action per video frame, or because they assume
the video is available ahead of time. In this work we propose an online hu-
man action detection system that can incrementally detect multiple
concurrent space-time actions. In this way, it becomes possible to learn new
action classes on-the-fly, allowing multiple people to actively teach and interact

with a robot.
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Chapter 1
Introduction

If you've sat down on a comfortable chair and picked up this dissertation, you've
already performed a couple of actions, as indicated by the verbs in the opening
phrase. If a computer was to detect actions from sentences, then detecting verbs
would be a good place to start. What if, however, the computer only has a
sequence of images to form a video? What would it look for? Why is this even

a good idea?

1.1 Motivating applications of human action recog-

nition from videos

Human action recognition from video is becoming an increasingly prominent re-
search area in computer vision, with far-reaching applications. On the Internet,
the recognition of human actions will allow the organisation, search, description,
and retrieval of information from the massive amounts of video data uploaded
each day [1-3]. In every day life, human action recognition may provide a natu-
ral way to communicate with robots, and provide novel ways of interacting with
computer games and virtual environments [4-6]. These applications fall natu-
rally into two groups. On the one hand, those which afford offline processing,
and on the other, those for which online and real-time processing is critical.
Consider a security application where one needs to search through or sum-
marise hundreds of hours of recorded CCTV footage automatically in the after-
math of a theft, as illustrated in Fig.1.1(a). Here, the video has been recorded
some time in the past, and the entire video, from beginning to end, is available.
The speed at which the result of the search is reached, and the ordering with

which possible matches are checked, are not critical to its operation. Therefore



> CCTV
Database

(a) Offline processing (b) Online processing

Figure 1.1: (a) Search and retrieval applications in massive video collections afford
offline batch processing, since videos have been recorded in the past. Moreover, speed
is mot critical to the search performance. (b) Human robot interaction applications,
in contrast, require instantaneous feedback to the interacting agents. A robot only has
access to present and past video frames, and computation needs to be real-time for
natural interaction.

this kind of search affords offline batch processing. In contrast, for robots in
human environments such as ASIMO [7] and Baxter [8], both the robot and the
person interacting with it need instantaneous feedback, as seen in Fig.1.1(b).
The robot must process one frame at a time and update the knowledge of its en-
vironment immediately after each frame. As opposed to offline batch processing,
only the present and past frames are available, and the frame processing needs
to be quick for natural interaction with humans to take place. The greater part
of this dissertation is devoted to applications affording offline batch processing,
whilst the last chapter changes direction towards challenging online scenarios.
Before moving on, we must first address a most important question: What is an

action?

1.2 What is an action?

This question may be answered from two perspectives, depending on whether
you ask a computer or a human. From a computer’s perspective, an action
needs to have a specific definition in order for it to be explicitly programmed.
However, due to the difficulty of defining an action down to small details, and the
difficulty of programming a well thought out definition, researches are usually
content with their own definition, tailored for their application. In this way, an
action is simply what you defined it to be.

For the purpose of our human understanding, previous researchers have de-



Chapter 1. Introduction 3

Figure 1.2: One reason why human action recognition is such a hard problem is that
within the same class of actions, for example ‘jumping’, there is a huge variability over
the person’s appearance, clothing, and motion, which an action model must generalise
over. This can be seen in the above images, where three different events in the London
2012 Summer Olympics all involve a quite different jumping action.

fined an action to be the “intentional bodily movement of biological agents inter-
acting with their environment for a specific purpose” [1,9], though they quickly
disregard any notion of movement, intention, and agent in what followed. In the
gap between what computers and humans understand by an action, lie many

open and challenging problems.

1.3 Why is human action recognition hard?

Although actions may be trivial for humans to understand, achieving this ca-
pability on machines poses considerable challenges. In addition to the classical
difficulties in computer vision [10] of dealing with objects in the world with
variations in illumination, viewpoint, background and part occlusions, human
actions inherently possess a high degree of geometric and topological variabil-
ity!. For instance, a jumping motion may vary in height, frequency and style,
yet this is still the same action, as shown in Fig.1.2. Additional ambiguity arises
when trying to define the start and end of an action. Querying unconstrained
video data introduces other nuisance factors since the recording is often of low
quality, and affected by camera motion, zooming and image blur from shaking.
It is therefore critical for an action recognition system to generalise over a wide
group of actions in the same class, and yet to discriminate between actions in
different classes [11].

Despite these difficulties, significant progress has been made in learning and

recognising human actions from videos [11,12]. Whereas early action recognition

IThe ability of humans to appear as figures which may deform into topologically non-
equivalent surfaces, such as a sphere and a torus.
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Figure 1.3: A sample of images from popular action classification datasets. Whereas
early action recognition datasets like the KTH [13] included videos with single, staged
human actions against homogeneous backgrounds, more recently challenging uncon-
trolled movie data from the Hollywood?2 dataset [17] and amateur video clips available
on the Internet seen in the YouTube [16] and HMDB51 [3] datasets are being used
to evaluate action recognition algorithms. These challenging datasets contain human
actions which exhibit significant variations in appearance, style, viewpoint, background
clutter and camera motion, as seen in the real world.

datasets included videos with single, staged human actions against simple, ho-
mogeneous backgrounds [13, 14], more recently, challenging uncontrolled movie
data [15] and amateur video clips available on the Internet [3,16] have been
used to evaluate action recognition algorithms. These datasets contain human
actions with large variations in appearance, style, viewpoint, background clutter
and camera motion, common in the real world. A sample of images from four
popular action classification datasets is shown in Fig. 1.3, in order of increasing
difficulty, from KTH [13] to the more challenging HMDB51 [3] dataset. In the
next section, we present the outline of this dissertation, together with the ac-
tion recognition tasks explored; these vary in difficulty, but can all be explicitly

programmed for a computer to solve automatically.
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1.4 Dissertation outline

First and foremost, we present the human action recognition datasets used
throughout this work in Chapter 3. Next, we formulate the problem of local,
weakly-supervised action clip classification in Chapter 4, where in addition to
predicting the global action clip label, the computer must also predict the action
location in space and time, without having location annotation during training.
An extension of this work to include pictorial structure models and more general

subvolume shapes is presented in Chapter 5.

In chapters 6 & 7 we consider the problem of global, supervised, action clip
classification, where the task is to assign an action label to an unknown video
clip, given a training dataset of videos with ground truth labels. Note that the
video clips are of predefined length and it is assumed that one video belongs to
a single action class. Whereas in chapter 6 videos are represented globally as a

bag-of-visual-words, a global hidden Markov model is used in chapter 7.

Lastly, in Chapter 8 we address the problem of online multiple human action
detection, which is the task of associating a local 3D-subvolume/tube that may
be growing in time with an action category. Notice that both action clip clas-
sification with localisation, as well as multiple action detection pose a greater
challenge to a computer than global action clip classification. This is because
for a classification task, a video may take only one of C class labels, giving a
random guess a % chance of choosing the right label. In order to localise the
action, one must also predict where, out of millions of possible locations, the
action is happening, giving a randomly guessed location a very small chance of

being correct.

1.5 Avenues of investigation

Effective data representations are key to the success of machine learning algo-
rithms, since they make explicit the underlying factors of variation in the data
which are important for discrimination [10, 18] (cf. Section A.8). Effective ac-
tion representations are also key to the success of human action recognition
algorithms. In the following subsections we introduce the action representations
used in this work, as well as the original techniques developed to address the

action recognition problems set out in Section 1.4.



1.5.1 Learning with sets of local histograms

One highly successful approach to represent an action video has been in the
form of a single ‘bag-of-visual-words’, also known as ‘bag-of-features’ (BoF'), his-
togram (cf. Section A.5), and its extensions to VLAD/Fisher vectors [19]. The
surprising success of BoF may be attributed to its ability to summarise local
features as a simple histogram, without regard for human detection, pose esti-
mation or the location of body-parts, which so far cannot be extracted reliably
in unconstrained action videos [20]. Moreover, the histograms provide a fixed
length representation for a variable number of features per video, which is ideal
for traditional learning algorithms [21].

A drawback arising from a single global representation per action video is that
no local information may be derived to tell more specifically where the action of
interest is taking place. To overcome this limitation, we explored the possibility
of representing an action video with a set of local representations (cf. Chapters 4
& 5). Moreover, current space-time human action classification methods [22-25]
derive an action’s representation from an entire video clip, even though this
representation may contain motion and scene patterns pertaining to multiple
action classes. For instance, in the state-of-the-art BoF approach [26], dense
space-time features are aggregated globally into a single histogram representa-
tion per video. This histogram is generated from features extracted from the
whole video and so includes visual word counts originating from irrelevant scene
background (see Fig. 1.4(a) & 1.4(b)), or from motion patterns shared amongst
multiple action classes. For example the action classes ‘trampoline jumping’ and
‘volleyball spiking’ from the YouTube dataset [16] both involve jumping actions,
and have a similar scene context, as shown in Fig. 1.4(c) & 1.4(d). Therefore in
order to discriminate between them, it is desirable to automatically select those
video parts which tell them apart, such as the presence of a moving ball, multiple
actors and other action-specific characteristics.

This motivates a framework in which action models are derived from smaller
portions of the video volume, subvolumes, which are used as learning primitives
rather than the entire space-time video. Since large action classification datasets
only have labels for the global video clip, and not the label of each individual
video subvolume, we propose to cast action classification in a weakly labelled
framework. In this way, action models may be derived from automatically se-
lected video parts which are most discriminative of the action. An example
illustrating the result of learning the discriminative fixed-size action cubes from

which action models are derived is shown in Fig. 1.5. Even though features were
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(a) boxing (b) running (c) trampoline jump (d) volleyball spiking

Figure 1.4: The disadvantages of using global information to represent action clips.
Firstly, global histograms contain irrelevant background information as can be seen in
the (a) Boxing and (b) Running action videos of the KTH dataset [13]. Secondly, the
histograms may contain frequency counts from similar motions occurring in different
action classes, such as the (c¢) trampoline jumping and (d) volleyball spiking actions
in the YouTube dataset [16]. In Chapter 4, we propose a framework in which action
models can be derived from local video subvolumes which are more discriminative of the
action. Thus important differences such as the moving ball, the presence of multiple
people and other action-specific characteristics may be captured.

extracted over the entire video (as marked by the black dots in Fig. 1.5), only
regions where the action is taking place were selected during training, since the
background is found in other action classes of the dataset, and therefore not

discriminative of the action.

1.5.2 Adding deformable action structure, general sub-

volume shapes and saliency maps

In addition to discriminative local action models, we propose to incorporate
deformable structure by learning a pictorial structure model for each action
class. In the absence of ground truth location annotation, we use automatically
selected video regions to learn a ‘root’ action model. Action part models are
subsequently learnt from the root location after dividing it into a fixed grid of
regions, which are allowed to deform at test-time. This extends spatial-BoF
models [27] to incorporate deformable structure. The result of testing a 3-part
handwaving model is shown in Fig. 1.6.

As another extension to Section 1.5.1 in which only fixed size cubes were
used, we aggregate local histograms over subvolumes of varying cuboidial sizes.
Moreover, in contrast to localising actions via bounding cuboids (see Fig. 1.5 &
Fig. 1.6), we propose to build an action-specific saliency map by aggregating the
predicted detection scores from all subvolume shapes. An example illustrating
the result of using general subvolume shapes visualised as a saliency map is

shown in Fig. 1.7.
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Figure 1.5: A boxing video sequence taken from the KTH dataset [13] plotted in
space and time. Black dots denote the mean position from where features have been
extracted. Notice that in this particular video, the camera zoom is varying with time,
and features (black dots) were extracted from areas of motion caused by camera zoom.
Owerlaid on the video are discriminative cubic action subvolumes learned in a mazx-
margin multiple instance learning framework (cf. Section 4.1), with colour indicating
their class membership strength. Since the scene context of the KTH dataset is not
discriminative of the particular action, only subvolumes around the actor were selected
as positive instances (best viewed in colour).

50

By extending global mid-level representations (e.g. BoF, Fisher vectors) to
deformable part-models and general video subvolumes, we aim to both improve
classification results, as compared to the global baseline, and capture location

information.

1.5.3 Evaluating global bag-of-feature pipeline variations

Since a local bag-of-visual-words representation was used in the previous two
sections to describe video parts, it is important to ensure that the visual word
vocabulary pipeline is tuned to give maximum performance. Despite extensive
work showing various aspects in which the BoF pipeline may be improved to
squeeze out additional performance [21,28-33], there remains interesting ques-
tions yet to be evaluated empirically, particularly when considering huge action
classification datasets with a large number of classes [3,34]. For example, the
recent UCF101 dataset [34] contains 101 action classes and ~13,000 video clips.
Using the state-of-the-art ‘dense trajectory’ features, this generates ~679GB of
features. Therefore one cannot easily load all the training features into mem-

ory. Furthermore, randomly subsampling the features generates a bias towards
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Figure 1.6: A handwaving video sequence taken from the KTH dataset [13] plotted in
space-time. The action is localised in space and time by a pictorial structure model,
despite the latter being trained in a weakly supervised framework (in which no action
location annotation is available). Overlaid on the video are the root filter detections,
drawn as red cubes, and part filters (shown in green and blue respectively), linked to
the root by green and blue segments. The star model for the handwaving action (above)
is detected at multiple steps in time, and thus well suited to detect actions of unknown
duration (best viewed in colour).

action classes associated with a greater share of videos, or disproportionately
longer video sequences?.

Secondly, state-of-the-art space-time descriptors are typically formed by a
number of components. The issue arises of whether it is best to learn a single
visual vocabulary over the whole, joint feature space, or whether to learn a
vocabulary for each feature component separately. Finally, visual vocabularies
may also be learnt separately for each action category [21]. Although it generates
redundant visual words which are shared among multiple action classes, such a
strategy is worth exploring for the dimensionality of the representation increases
linearly with the number of classes C'. Thus learning multiple dictionaries per-
category, each with a small number of clusters K, may still produce large vector
representations (key to the success of Fisher vectors [2]) since the final dictionary
size will be K x C.

An exploration into various ways of generating visual vocabularies for action

classification is laid out in Chapter 6, where the following unanswered questions

2 Note that the issue of having a large discrepancy in the number of features per video
sample is not usually encountered when using image datasets.
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Figure 1.7: A handwaving video sequence taken from the KTH dataset [13] plotted in
space and time. Notice that in this particular video, the handwaving motion is repeated
continuously and the camera zoom is varying with time. Owverlaid on the video is a
dense handwaving-action location map, where each pixel is associated with a score
indicating its class-specific saliency. This dense map was generated by aggregating
detection scores from gemeral subvolumes sizes, and is displayed sparsely for clarity,
where the colour, from blue to red, and sparsity of the plotted points indicate the
action class membership strength. Since the scene context of the KTH dataset is not
discriminative for this particular action, only the movement in the upper body of the
actor is detected as salient (best viewed in colour).

are addressed: i) What is the best way to randomly subsample features to build
a vocabulary for human action recognition? ii) What are the effects of learning
separate rather than joint visual vocabularies when considering multiple feature

components or multiple action classes?

1.5.4 Encoding action dynamics & learning distances be-

tween models

Due to the sequential nature in which human actions unfold, another popular
way of initially representing action clips has been in the form of a time-series of
features extracted from video frames, or adjacent blocks of frames [35-37]. For
encoding these time-varying observations into a single, global representation,
generative dynamical models have been employed since they possess a number
of desirable properties for action recognition. First, they are effective in coping
with observation sequences of the same category which vary in time or speed,
also known as time warping [37]. Secondly, they are able to describe the causal
relationships in activity patterns [38]. Indeed, many researchers have explored

the idea of encoding time-varying features via linear, nonlinear [39], and chaotic
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[36] dynamical models. Hidden Markov models [40], in particular, have been
widely employed [37]. They are typically classified by learning a new model for
each test sequence, measuring its distance from the old models, and attributing
to it the label of the closest model(s) [35].

A number of distance functions for comparing dynamical models (e.g. Cauchy
kernels [39]) and HMMs (e.g. KL-divergence [41]) have been introduced. Nev-
ertheless, no single distance function can possibly outperform all the others in
every classification problem, as the same models can be endowed with different
class labellings. Therefore, a sensible approach when training data are available
consists in learning in a supervised fashion the ‘best’ distance function from the
data, for example, by maximising the classification performance on a validation
set. This approach is widely supported by the literature, particularly in linear
spaces® [42]. However, generative dynamical models live in non-linear spaces?,
and thus the need for a principled way of learning distances in general metric
spaces arises.

An interesting tool is provided by pullback metrics (cf. Section A.1). If
the models belong to a Riemannian manifold® M, any automorphism® of M
onto itself induces such a metric on M. By designing a suitable family of au-
tomorphisms we obtain a family of pullback metrics we can optimise upon (cf.
Section A.3). A strong rationale for pullback metric learning comes from the
fact that, as we argue here for M = R" (Euclidean space is a special case of
a manifold with only one coordinate chart), any differentiable, invertible (with
no self-intersections) non-closed hypersurface can be made linear by stretching
the data domain via an appropriate automorphism; ideal for a linear classifier.
Moreover, for a non-linear classifier such as nearest neighbour, the automor-
phism may move points of the same class closer together, and further away from
points of distinct classes (cf. Section A.3). Therefore, in general, we only need to
explore the functional space of all automorphisms to find those able to produce

the desired separation between classes.

3A linear or vector space V is a set that is closed under vector addition and scalar multi-
plication.

4 A linear combination of models does not necessarily result in another valid model.

® A topological space M locally isomorphic to a Euclidean space, equipped with a Rieman-
nian metric g : TM x TM — R which takes as input a pair of tangent vectors v,w € T M
and returns a scalar g(v,w), in a way which generalises the properties of the dot product of
vectors in a Euclidean space.

6 An isomorphism is a transformation which preserves a structure, in our case, the structure
of smooth manifold.
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1.5.5 Real-time and online multiple action detection

The aforementioned action recognition propositions (cf. Sections 1.5.1 - 1.5.4)
are aimed at massive databases of videos processed offline. A potentially much
larger source of visual data however will arise from future robotic platforms, with
cameras operating continuously. Whereas pre-recorded video search and retrieval
is aimed ultimately for human viewing, robotic systems need not record the raw
visual data for later playback. Rather, robots will process the visual information
as it arrives, and store only discriminative data in a representation useful for it to
immediately understand its surroundings. Here we focus on the latter scenario
in which a robot asks the questions:

i) Are there any relevant human actions happening now?

ii) If so, what kind of actions are they?
iii) How many are there?
iv) Where are they?

These questions may be answered by space-time human action detection,
which we define as the task of associating a 3D subvolume that may be growing
in time with an action category. The immediacy of the information required for
human-robot interaction may be addressed by processing the data in an online
fashion. We use the term ‘online’ to denote the incremental fashion by which
the entire action recognition pipeline operates; that is, the space-time region-
proposal generation, feature extraction, and learner are updated as soon as a
video frame becomes available. Note that only current and past data is available
to the robot [43].

Consider the following description of an ‘open door’ action: “A human stands
in front of a door!, moves his arm towards the keyhole?, inserts a key?, turns the
key?, pulls down on a handle®, extends his arm to open the door®, and enters the
building”. Tt is tempting to approach the detection of the ‘open-door’ action [44]
in a bottom-up, fully supervised fashion, requiring the detection of humans, the
surrounding environment, interacting objects, and their movement in time. At
some point during this process, it may be inferred that a person intended to open

2-4) would

a lock, for the purpose of entering a building. Note that phrases
remain identical if a person was starting a car [1]. This approach, however,
is plight with difficulty, as each individual sub-action =7 requires a suite of
detectors and a deluge of training data in order to generalise to a wide variety
of scenarios.

In order to circumvent this problem, previous works [1] have treated human

actions as ‘space-time objects’, and used video descriptors which capture the
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object’s appearance, motion, and environment context into an unordered col-
lection of visual words [25]. However, state-of-the-art bag-of-visual-word action
recognition systems are currently offline, since features are extracted and en-
coded assuming the entire video volume is available [20,26]. Thus, a class label
is assigned to a video sequence only after a sufficient number of frames have been
processed [45]. Therefore, we propose to bridge a gap in the action recognition
literature by including an online action recognition system capable of learning

and detecting multiple space-time actions in a video stream.

1.6 Contributions

Firstly, I cast the conventionally supervised BoF action clip classification ap-
proach into a weakly supervised setting, where clips are represented as bags of
histogram instances with latent class variables. In order to learn the subvolume
class labels, I applied a multiple instance learning framework to 3D space-time
videos (cf. Section 4.1), as actions may be better defined within a subvolume of
a video clip rather than the whole video clip itself. Further, I proposed a map-
ping from instance decisions learned in the ‘mi-SVM’ approach to bag decisions
(cf. Section 4.2), as a more robust alternative to the current bag margin MIL
approach of taking the sign of the maximum margin in each bag. This allows
our MIL-BoF approach to learn the labels of each individual subvolume in an
action clip, as well as the label of the action clip as a whole. The resulting action
recognition system is suitable for both clip classification and localisation in chal-
lenging video datasets, without requiring the labelling of action locations [46].

Secondly, I proposed to add deformable structure to local mid-level action
representations (e.g BoF, Fisher vectors). This extended Spatial-BoF to allow
the deformation of the rigid template at test-time (cf. Section 5.1). I also demon-
strated quantitatively that our SVM-map strategy for mapping instance scores
to global clip classification scores outperforms taking the argument of the max-
imum instance score in each video. Moreover, in Section 5.5 I show qualitative
localisation results using a combination of classification and detection to out-
put action-specific saliency maps; I was the first to show qualitative localisation
results on challenging movie data such as the HMDBb51 dataset.

Next, as my third contribution, when videos are represented as global bags
of visual words, I demonstrated various design choices that lead to an improved
classification performance across 5 action recognition datasets and 3 performance

measures (cf. Chapter 6). I proposed a simple and effective feature sampling
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strategy used to scale the vocabulary generation to a large number of classes and
thousands of videos (cf. Algorithm 6.1). The outcomes of this evaluation sug-
gested that i) sampling a balanced set of features per class gives minor improve-
ments compared to uniform sampling, ii) generating separate visual vocabularies
per feature component gives major improvements in performance, and iii) BoF
per-category gives very competitive performance for a small number of visual
words, achieving state-of-the-art on KTH with only 32 clusters per category,

although Fisher vectors won out on the rest.

In fourth, when videos are represented as a time-series of observations, we
proposed a general framework for learning optimal pullback distances given
a training set of generative dynamical models, identified from a collection of
labelled observation sequences (cf. Chapter 7). The parameters of the pull-
back distance which optimises classification performance were found by cross-
validation [47]. We applied this framework to hidden Markov models in Sec-
tion 7.3. We studied their product space structure and design there appropriate
automorphisms. In Section 7.5 I conducted proof-of-concept tests, as well as
experiments on the KTH and YouTube datasets which demonstrated the signif-
icant improvement in action classification rates (with respect to the chosen base

distance) delivered by pullback learning under challenging conditions.

Finally, we outline an action detection framework which may learn new action
categories online. My main contribution is a proposal based on local space-time
tubes, formed by incrementally connecting region proposals in time.  Along
the way, I made algorithmic adaptations which will be crucial for incremental
online learning and detection of multiple actions, including i) selective search
ranking of region proposals, ii) selective search region correspondence in time,
and iii) a variant of batch stochastic gradient descent with hard example mining
and long-term class memory to support the inclusion of new categories online.
An end-to-end system implementation and experimental evaluation is however

left as future work.

1.7 Resulting publications and impact

Our work on ‘learning discriminative space-time actions from weakly labelled
videos” [48] won a poster prize at the INRIA Visual Recognition & Machine
Learning (VRML) Summer School 2012. The corresponding paper [48] was soon
after accepted for publication at the British Machine Vision Conference (BMVC
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2012), for which it was accepted as an oral”. Later, we were invited to submit an
extended version of the paper to the International Journal of Computer Vision
(IJCV), an indication that it was among the top papers at BMVC. One of our
original Figures (cf. Fig. 1.5) also appeared on the cover of the conference pro-
ceedings. An extended version of our BMVC paper including pictorial structures
and more general subvolume shapes was later accepted at IJCV [20] (IF 3.62).

Our evaluation on feature subsampling and partitioning strategies for global
bag-of-feature generation was archived as a technical report [49] with code avail-
able online®. The software used to generate the experiments was also used ex-
tensively in the following publications [20,48, 50-52].

The results of our work on ‘learning pullback-HMM distances” with applica-
tion in human action recognition have been published in the IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI, IF 4.8) [51]. We recently
submitted a journal paper applying pullback distance learning to the recognition

of disease conditions from inertial measurement unit readings [52].

"http://videolectures.net/bmvc2012_sapienza_labelled_videos/
8https://sites.google.com/site/mikesapi/downloads/
global-video-representation


http://videolectures.net/bmvc2012_sapienza_labelled_videos/
https://sites.google.com/site/mikesapi/downloads/global-video-representation
https://sites.google.com/site/mikesapi/downloads/global-video-representation
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Chapter 2

Related work

2.1 Interest point detection

In recent state-of-the-art methods, space-time feature extraction is initially per-
formed in order to convert a video to a vectorial representation. Features are
extracted around local points in each video, which are either determined by a
dense fixed grid, or by a variety of Interest Point Detectors (IPDs) [26]. Whereas
IPDs such as Harris3D [53], Cuboid [54] and Hessian [55] allow features to be
extracted sparsely, saving computational time and memory storage, IPDs are
not designed to capture smooth motions associated with human actions, and
tend to fire on highlights, shadows, and video frame boundaries [56,57]. Fur-
thermore, [26] demonstrated that dense sampling outperformed IPDs in real
video settings such as the Hollywood2 dataset [17], implying that interest point

detection for action recognition is still an open problem.

2.2 Descriptors

A plethora of video features have been proposed to describe space-time patches,
mainly derived from their 2D counterparts: Cuboid [54], 3D-SIFT [58], HoG-
HoF [15], Local Trinary Patterns [59], HOG3D [60], extended SURF [55], and
C2-shape features [61]. More recently [25] proposed ‘dense trajectory’ features
which, when combined with the standard BoF pipeline [26], outperformed the
recent ‘learned hierarchical invariant’ features [23,62]. Therefore, even though
this framework is independent from the choice of features, we used the dense
trajectory features [25] to describe space-time video blocks.

Dense trajectory features are formed by the sequence of displacement vec-
tors in an optical flow field, together with the HoG-HoF descriptor [15] and the

17



18

Tracking in each spatial scale separately Trajectory description

Dense sampling
in each spatial scale
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Figure 2.1: Dense trajectory feature extraction starts with a dense sampling of points
at a discrete set of scales (left). FEach point is subsequently tracked by mean filter-
ing a dense optical flow [64] field, for a mazimum of L frames (typically L = 15).
Descriptors are calculated around the trajectory (right). Some structure is captured
by splitting the trajectory volume into a fized grid (Figure reproduced with permission

from [25]).

motion boundary histogram (MBH) descriptor [63] computed over a local neigh-
bourhood along the trajectory. The MBH descriptor represents the gradient
of the optical flow, and captures changes in the optical flow field, suppressing
constant motions such as camera panning. Thus, dense trajectories capture a
trajectory’s shape, appearance, and motion information. These features are ex-
tracted densely from each video at multiple spatial scales, and a pruning stage
eliminates static trajectories such as those found on homogeneous backgrounds,
or spurious trajectories which may have drifted [25]. The dense trajectory feature

extraction process is illustrated in Fig. 2.1.

2.3 Mid-level representations

Many highly successful action recognition systems transform the aforementioned
low-level descriptors [15,25,58,60] into more invariant representations of ‘inter-
mediate’, or ‘mid-level’ complexity [65]. One such mid-level representation is
the bag-of-visual-words/bag-of-features (BoF) representation (cf. Section A.4),
which represents a collection of low-level descriptors as an unordered collection of
‘visual words’, i.e., a histogram. A dictionary of visual words is usually generated
by partitioning the descriptor space into a number K of clusters by k-means.
Each video descriptor is then assigned to the nearest cluster in the visual vocab-
ulary using the Euclidean distance (cf. Section A.5). A bag-of-feature histogram
is defined by a vector h = (hy, ..., hg)", where hy is the frequency of occurrence
of visual word ‘k’ in h.

Another successful mid-level representation is the Fisher vector [2]. Instead
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of creating a visual vocabulary by clustering the feature space into K centroids
by k-means, as done in the BoF approach, for Fisher vectors it is assumed that
the features are distributed according to a Gaussian Mixture Model (GMM) with
K components. Whereas in BoF, the feature quantisation step is a lossy process
[66], a Fisher vector is formed through the soft assignment of each feature point
to each Gaussian in the visual vocabulary. Therefore, instead of being limited
by a hard assignment, it encodes additional information about the distribution
of each feature. Let D = {dy, t = 1,...,T} be the set of dense trajectories
extracted from part or the entirety of a video, and let the GMM have parameters
I'={w,p;, 3}, 1 =1,..., K, where the w;’s are mixture weights that satisfy
Zi}il w; = 1; p; is a mean vector, and 3 is a covariance matrix with diagonal
covariance; the variance vector along the diagonal of 3; will be denoted as o;.
Let v:(i) = p(i|d;) be the soft assignment of descriptor d; to the i" Gaussian:

wipi(dy)

’Yt(i) = K

—_— 2.1
Zj:l w;p;(de) 21

Let D denote the dimensionality of descriptors dy, and g be the D-dimensional
gradient with respect to the mean p; of Gaussian ‘i’. Mathematical derivations
lead to:

g = T\l/ﬁi ET: (1) (%) : (2.2)

t=1
The final gradient vector gP is the concatenation of the gP vectors, and therefore
each Fisher vector is of dimensions K x D, where K is the number of probabilistic

visual words, and D is the dimensionality of each feature type [67,68].

2.4 Learning the discriminative parts of an ac-

tion video

As mentioned in the previous chapter, the current state-of-the-art algorithms
for the classification of challenging human action data are based on the bag-of-
features (BoF') on spatio-temporal volumes approach [15,26]. However, its rep-
resentational power diminishes with dataset difficulty (e.g. Hollywood2 dataset
[17]) and an increased number of action classes (e.g. HMDB dataset [3]). This
may be partly due to the fact that current BoF approaches represent entire video
clips [25] or subsequences defined in a fixed grid [15]. Thus, many similar action

parts, and background noise are also included in the histogram representation.
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By splitting up the video clip into overlapping subvolumes, a video clip is in-
stead represented as a bag of histograms, some of which are discriminative of the
action at hand (‘positive’ subvolumes) while others (‘negative’ ones) may hinder
correct classification. A more robust action model can therefore be learned based
on these ‘positive’ subvolumes in the space-time video. Moreover, the classifi-
cation of local subvolumes has the additional advantage of indicating where the

action is happening within the video.

The BoF approach has been coupled with single frame person/action detec-
tion to gain more robust performance, and to estimate the action location [1,69].
In contrast, by learning discriminative action subvolumes from weakly-labelled
videos, the method we propose allows action localisation without using any train-
ing ground truth information, in a similar spirit to [16,56]. Unlike previous work,
however, we select discriminative feature histograms and not the explicit features
themselves. Moreover, instead of using a generative approach such as pLSA [70],
we use a max-margin multiple instance learning (mi-SVM) framework to handle

the latent class variables associated with each space-time action part.

In many machine learning applications such as molecular activity, document
categorisation and image/video detection, gathering detailed labels for the pur-
pose of supervised training is prohibitively expensive. This makes weakly su-
pervised algorithms such as multiple instance learning (MIL) very attractive, as
only groups of examples need to be labelled. In MIL, examples or ‘instances’ are
grouped together in positive and negatively labelled ‘bags’, without knowledge
of the instance labels. However, it is assumed that a negatively labelled bag
only contains negative instances, and that a positive bag must contain at least
one positive instance [71,72]. The aim is to learn a model which is able to cate-
gorise bags, its instances, or both [20,48], after training on such weakly labelled
data.  Gaidon et al.. [73] also leveraged weakly labelled video datasets, this
time for learning a higher-level global activity representation. In [73], a video is
decomposed into an unordered binary tree of mid-level BoFs encoding related
space-time motion patterns. Instead of using human annotated labels to split

each video into motion-related parts, a clustering algorithm is employed.

Some insight to MIL comes from its use in the context of face detection [74].
Despite the availability of ground truth bounding box annotation, the improve-
ment in detection results when compared to those of a fully supervised framework
suggested that there existed a more discriminative set of ground truth bounding
boxes than those labelled by human observers. The difficulty in manual labelling

arises from the inherent ambiguity in labelling objects or actions (bounding box
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scale, position) and the judgement, for each image/video, of whether the context
is important for that particular example or not. A similar MIL approach was
employed by Felzenszwalb and Huttenlocher [75] for object detection in which
possible object part bounding box locations were cast as latent variables. This
allowed the self-adjustment of the positive ground truth data, better aligning the
learned object filters during training. In action detection, Hu et al. used an MIL
learning framework called SMILE-SVM [76]; however, this focused on the detec-
tion of 2D action boxes, and required the approximate labelling of the frames
and human heads in which the actions occur. In contrast, we propose casting
the space-time subvolumes of cubic/cuboidial structure as latent variables, with
the aim to capture salient action patches relevant to the human action.

In action clip classification only the label of each action clip is known, and not
the labels of individual parts of the action clip. Thus, this problem is inherently
weakly-labelled, since no approximate locations of the actions or ground truth
action bounding boxes are available. That is why we propose to learn action
subvolumes in a weakly-labelled, multiple instance learning (MIL) framework.
At test time, human action classification is then achieved by the recognition of
action instances in the query video, after devising a sensible mapping from in-
stance scores to the final clip classification decision. To this end, we use multiple
instance learning (MIL), in which the recovery of both the instance labels and
bag labels is desired, without using two separate iterative algorithms [71]. Our
proposed SVM-map strategy provides a mapping from instance scores to bag-
scores which quantitatively outperforms taking the argument of the maximum

score in each bag.

2.5 Discriminative video part extensions

Following on from the previous section (§ 2.4), we propose to use the discrim-
inatively learned action video parts to initialise a pictorial structure model for
each action class (§ 2.5.1), and to expand the subvolumes to more general shapes
rather than just fixed sized cubes, with application in space-time action saliency
(§ 2.5.2).

2.5.1 Incorporating mid-level pictorial structures

Attempts to incorporate structure into the BoF representation for video classi-

fication have been based on the spatial pyramid approach [15]; here a spatio-
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temporal grid was tuned for each dataset and action class. Although spatial
pyramids have been successful in scene classification [77], in which parts of the
scene consistently appear in the same relative locations across images, it is un-
clear whether they are useful for difficult clips such as those captured from mobile

devices, in which the same action can appear in any location of the video.

In order to model human actions at a finer scale, it is desirable to localise the
spatial and temporal extent of an action. Initial work by [1] learnt a boosted cas-
cade of classifiers from spatio-temporal features. To improve space-time interest
point detectors for actions such as ‘drinking’, the authors incorporated single
frame detection from state-of-the-art methods in object detection. It is however
desirable to remove the laborious and ambiguous task of annotating keyframes,

especially when considering huge online video datasets.

In another approach, [69] split the task into two: firstly by detecting and
tracking humans to determine the action location in space, and secondly by using
a space-time descriptor and sliding window classifier to temporally locate two
actions (phoning, standing up). In a similar spirit, our goal is to localise actions
in space and time, rather than time alone [78-80]. However, instead of resorting
to detecting humans in every frame using a sliding window approach [69], we
localise actions directly in space-time, either with 3D bounding box detection
windows (Fig. 1.6), or by aggregating detection scores to form a saliency map
(Fig. 1.7).

To incorporate temporal structure into the BoF framework, Gaidon et al..
[79,80] proposed to model actions as a sequence of key atomic action units or
‘actoms’. Their actom sequence models enforce a soft ordering between temporal
parts of an action in a particular category, and need to be annotated manually
during training. In video event detection, [57] used a search strategy in which
oversegmented space-time video regions were matched to manually constructed
volumetric action templates. Inspired by the pictorial structures framework [81],
which has been successful at modelling object part deformations [75], [57] split
their action templates into deformable parts making them more robust to spa-
tial and temporal action variability. Despite these efforts, the action localisation
techniques described [1,57,69] require manual labelling of the spatial and/or
temporal [79,80] extent of the actions/parts in a training set. In contrast, we
propose to localise human actions via a pictorial structure model automatically
from weakly labelled observations, without human location annotation. More-
over, unlike previous work [16, 56], we select local discriminative subvolumes

represented by mid-level features [65] such as BoF and Fisher vectors, and not
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the low-level space-time features themselves (e.g. HoG, HoF).

In order to incorporate object structure, [75] used a star-structured part-
based model, defined by a ‘root’ filter, a set of ‘parts’, and a structure model.
However, the objects considered had a clear boundary which was annotated by
ground truth bounding boxes. During training, the ground truth boxes were
critical for finding a good initialisation of the object model, and also constrained
the plausible position of object parts. Furthermore, the aspect ratio of the
bounding box was indicative of the viewpoint it was imaged from, and was used
to split each object class into a mixture of models [75]. In contrast, for the
action classification task, the spatial location, the temporal duration and the
number of action instances are not known beforehand. Therefore we propose
an alternative approach in which part models are learnt by splitting the ‘root’
filter into a grid of fixed regions, as done in spatial pyramids [27,77]. Unlike the
rigid global grid regions of spatial pyramids [77] or spatial-BoF [27], our rigid
template used during training is local, not global, and is allowed to deform at

test-time to better capture the action warping in space and time.

2.5.2 General subvolume shapes and action saliency

Recent work by [23] used saliency models to prune features and build discrimina-
tive histograms for the Hollywood2 action classification dataset [17]. Amongst
various automatic approaches to estimate action saliency, such as tensor decom-
position, the best approach selected features according to their spatial distance
to the video centre; a central mask. This approach is ideal for Hollywood movies
in which actors are often centred by the cameraman, but less well suited for
general videos captured ‘in the wild’. Furthermore, the saliency masks in [23]
were precomputed for each video individually, without considering the dataset’s
context. For example, in a dataset of general sports actions, the presence of
a swimming pool is highly discriminative of the action ‘diving’. Less so in a
dataset which contains only different types of diving action categories. Thus, in
our view, action saliency should also depend on the differences between actions
in distinct classes. Learning the discriminative parts of a video (cf. Section 2.4)
may be used to address this issue and highlight salient parts of the video specific
to an action class.

Whereas in the previous section, only fixed-sized subvolumes were used, we
propose to extend the set to include a variety of subvolume shapes, since different
actions may be better captured by a different-sized subvolumes. Moreover, since

actions may not be well bounded inside cubic/cuboidial shapes, we experiment
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with aggregating the scores from a set of subvolume shapes to generate a saliency

map (cf. Section 5.5), with promising qualitative results.

2.6 Design choices in the bag-of-visual-words

pipeline for video data

Current state-of-the-art human action classification systems rely on the global
aggregation of local space-time features [19], to form a bag-of-features repre-
sentation (cf. Section 2.3). The areas in which BoF may be improved were
broadly outlined by Nowak et al. [30] and Jiang et al. [31]. These include the
patch sampling strategy, for which uniform random sampling of the image space
was shown to outperform interest point-based samplers such as Harris-Laplace
and Laplacian of Gaussian [30]. Previous action recognition BoF evaluation [26]
focused on comparing a variety of local spatio-temporal features, and also found
that dense sampling consistently outperformed interest point detection in real-
istic video settings. Later, the authors of [26] proposed a new wvisual descriptor
called ‘dense trajectories’ which achieved the state-of-the-art in action classifi-
cation [25]. Further areas of improvement were the feature-space partitioning
algorithm, for which Nister et al. [32] extended k-means to produce vocabu-
lary trees, and Farquhar et al. [21] used a Gaussian mixture model instead of
k-means; the visual vocabulary size also improved performance, though it satu-
rated at some data-dependent size [30]. Another area of improvement was the
weighting of frequency components in a histogram (tf-idf) [33], and the use of
sets of bipartite histograms representing universal and class-specific vocabular-
ies [29]. More recently, Fisher and VLAD vectors achieved excellent results by
using small vocabularies and soft quantisation, instead of a hard assignment to
form high dimensional vectors [67,68]. A comprehensive evaluation of various
feature encoding techniques on image classification datasets was provided by
Chatfield et al. [82]. Finally the choice of classification algorithm has largely
been dominated by support vector machines [15,25,28]. In contrast to previous
work [26,30,82], here we focus on feature subsampling and partitioning after fea-
ture extraction has taken place but prior to encoding, with the aim of improving
the subsequent dictionaries learned for encoding features.

For earlier systems which used BoF for object retrieval in videos [33], building
a visual vocabulary from all the training descriptors was known to be a “gar-

gantuan task” [33]. Thus researchers tended to select subsets of the features,
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dedicating only a sentence to this process. For example, quoting [33], “a subset
of 48 shots is selected covering about 10k frames which represent about 10% of
all frames in the movie”, amounting to 200k 128-D vectors for learning the vi-
sual vocabulary. Csurka et al. trained a vocabulary with “600k descriptors” [28],
whilst Nister et al. used a “large set of representative descriptor vectors” [32]. In
order to construct visual vocabularies, Jiang et al. used all the training keypoint
features in the PASCAL dataset, and subsampled 80k features in the TRECVID
dataset [31]. In the evaluation proposed in Chapter 6, we clarify this process by
comparing two specific methods to sample features from the smallest to largest
action recognition datasets available. The sheer volume of features extracted
from each dataset used here is listed in Table 2.1.

It is clear that with thousands of videos in the training set, in practice one
cannot use all of the features to build a vocabulary. Also note that in video
classification datasets, longer sequences have disproportionately more features
than shorter ones, in contrast to image datasets. Moreover, some action classes
also have many more videos associated with them than others®. To see the extent
by which the number of features per video varies in action recognition, check the
difference between the ‘Maximum’ and ‘Minimum’ rows of Table 2.1. Thus, in
general, sampling uniformly at random may result in a pool of features which is
biased towards a particular class. For example in the Hollywood2 dataset [17],
‘driving’ action clips are typically much longer than ‘standing up’ clips. We
hypothesise that the subsampling strategy may have a significant impact on the
classification performance especially when dealing with a large number of action
classes and videos.

The selection of good partitioning clusters to form a visual vocabulary is also
important, as they form the basic units of the histogram representation on which
a classifier will base its decision [21]. Thus, for a categorisation task, having clus-
ters which represent feature patches that distinguish the classes is most likely
to make classification easier. This motivates per-category clustering, to preserve
discriminative information that may be lost by a universal vocabulary [21], espe-
cially when distinct categories are very similar. The downside is that learning a
separate visual vocabulary per class may also generate many redundant clusters
when features are shared amongst multiple categories. On the other hand, since
the complexity of building visual vocabularies depends on the number of cluster

centres K, clustering features independently allows to reduce the number of K

IBias in the number of examples per class is common in many areas of computer vision, for
example, the semantic segmentation of road scenes where 70% of the image pixels are labelled
as road.
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Table 2.1: Various statistics on the amount of dense trajectory features extracted
per video from the KTH, Hollywood2 (HOHAZ2), HMDB and UCF101 datasets. The
number of action categories are denoted within parenthesis. The ‘Memory’ and ‘Sum’
are calculated over the whole dataset assuming 32-bit floating point. Following these
are the mean, standard deviation, median, mazimum, and minimum number of features

per video in each dataset.

KTH (6) | HOHA2 (12) | HMDB (51) | UCF-101
Memory (GB) 6 45 160 679
Sum 4,000,000 28,000,000 99,000,000 421,000,000
Mean 9,000 34,000 16,000 32,000
Std Dev 9,000 44 o000 14 000 30,000
Median 8,000 20,000 13,000 22,000
Maximum 36,000 405,000 138,000 410,000
Minimum 967 438 287 358

whilst keeping the representation dimensionality high (K x C'), and makes the
vocabulary learning easily parallelisable. So far, per-category training has seen
promise on a single dataset with a small number of classes [21]; it is therefore
to be seen how it performs on challenging action classification data with a large

number of action classes.

2.7 Pullback distances for time-series classifica-
tion

When representing an action video as a sequence of ‘mid-level’ observations, its
recognition becomes a problem of time series classification [83] which is applied,
among others, to stock market predictions, electric motor fault diagnosis [84] and
EEG analysis [85]. A number of techniques have been proposed for time series
classification, including SVMs and boosting of interval-based predicates [86].
Neural networks have been widely employed, often to first and second order
statistics [87], or in combination with MAP estimation [88].

While most of the literature analyses times series without recurring to an in-
termediate representation, the use of dynamical models has also been explored.
State-space analysis has indeed been widely proposed for modelling and regres-
sion with time series. A first example is [89], where a metric for ARIMA models
based on their autoregressive representation was introduced. Lyapunov expo-

nents have been used as features for classifying speech signals [90]. In [91] the
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authors perform maximum likelihood classification based on a Gaussian Mix-
ture Model (GMM) representation in the Reconstructed Phase Space (RPS), a
topological embedding of the original time series.

Dynamical models provide a compact representation for time series which
can mitigate the related dimensionality issue?, but cannot be naively classified.
Metric learning is a natural answer. The various forms of Mahalanobis distance
learning such as Relevant Component Analysis (RCA) [42] assume an Lo distance
on the original data space M = R™ and a linear mapping between M and a
transformed space A/ = R". This is a special case of pullback learning, in which
both the original and the transformed space are linear and the map linking them
is also linear: y = Ax. Indeed, in the pullback paradigm the automorphism
F : M — N can map the model space to a different metric space [92] (cf.
Section A.1).

Pullback metrics’ adoption has been recently proposed by Lebanon for doc-
ument retrieval. In [92], however, rather than classification rates, the inverse
volume of the pullback manifold is maximised in an unsupervised setting. More-
over, for hidden or variable length [93] Markov models, a proper Riemannian
metric is difficult to identify. For this reason, we need to relax the constraint of
having a proper manifold structure, by considering mere distance functions in a
metric space?.

Thus, in Chapter 7, we propose to maximise classification performance con-
sidering models for which a Riemannian structure is not known. In contrast,
Jaakkola and Haussler’s Fisher kernels [94] are purely geometrical (they make
use of the Fisher geometry of families of distributions). Lafferty and Lebanon’s
‘heat’ kernels [95] are also purely geometric, and require a Riemannian structure
on the data. Unlike geodesic distances, they are Mercer kernels that can be used
in an SVM directly.

A strong rationale for pullback metric learning comes from its consequences
on class separation. In kernel approaches [96], classes that cannot be linearly
separated in the original domain are more likely to be so in a higher-dimensional
‘feature space’. In the pullback setup, instead of looking for better separation
in a higher-dimensional feature space, we seek to stretch the original space to

maximise classification performance. For instance, if a linear separator is used,

2 The curse of dimensionality, which broadly refers to the volume of space increasing
exponentially as the dimensionality of your data representation increases. In machine learning
this usually necessitates an exponential increase in the number of samples used for training to
avoid overfitting the data.

3A set for which distances between all members of the set are defined and satisfy all
properties of a metric (c.f Section A.1).
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it can be proven that for any differentiable, invertible non-closed hypersurface
(separating data points of two different classes) in M = R" there exists an
automorphism of R” that maps it to a hyperplane (cf. Section A.2). Note that
this does not hold for closed boundaries (e.g. a circle in R?). Consequently, we
only need to thoroughly explore the functional space of all automorphisms to
find the ‘right’ one, able to produce the desired class separation.

The design of a specific parametrised family of automorphisms provides a
more limited search space which makes this search feasible in practice, recalling
parametrised families of kernels [97], limiting at the same time overfitting issues
that would arise when searching for arbitrary automorphisms to perfectly fit the
available training data. When the dataset of models is labelled, we can determine
the optimal distance function in a supervised setting. From the above argument
on rectifying nonlinear boundaries (also cf. Section A.2) it follows that, in our
pullback framework, we should seek a max-margin separation approach in a
SVM-inspired fashion. However, this is not trivial in the nonlinear case treated
here?.

A variety of objective functions were introduced in the metric learning liter-
ature, such as the ratio between inter class and intra class covariance [98], and
mutual information [42]. To be able to use them in our framework we need to
express them as a function of the metric. When the training set is unlabelled,
distance function learning has to be based on purely geometrical considerations.
Lebanon [92] has suggested to maximise in closed form the inverse of the vol-
ume element or Gramian ‘det g’ associated with a metric g around the given
training set of points. When the dataset of models is labelled, we can determine
the optimal metric/distance function in a supervised setting. In the linear case
analytical solutions can be achieved by convex optimisation [99]. In fact, just
as in the case of [42] and [92], we can imagine an objective function which al-
lows optimisation in closed form, so that no numerical optimisation is necessary.
Some proposals in this direction are formulated in Section 7.5.5.

For the nonlinear case considered here, we use cross-validation [47] to opti-
mise the classification performance of the pullback distance. We extract samples
from the automorphism’s parameter space and pick those with maximal perfor-
mance on the validation folds. Although the samples’ density may be a limiting
factor, it is related to the dimensionality of the automorphism’s parameter space.

Thus in general, with careful design of a family of automorphisms, its parameter

4 The space of HMM models is nonlinear since addition and scalar multiplication of models
does not in general produce another valid HMM.



Chapter 2. Related work 29

space need not be a function of the dimensionality of the model space or the
features. It is up to us to design a family of automorphisms powerful enough
to generate performance gains, while being computationally feasible and able to
limit overfitting issues. As the original distance function is obtained under the
identity automorphism, the optimal pullback distance is guaranteed to improve
performance on the validation folds. The results obtained in Section 7.5 indicate

that this typically generalises to the test data as well.

2.8 Online multiple action detection

Motivated by the potential of humans to teach robots and interact with them,
the need for online multiple human action detection arises. However, to the best
of our knowledge, action recognition systems have not yet crossed this milestone.
One reason being that current action detection systems do not incorporate all
of the following necessary components:

i) video-stream processing,

ii) space-time region proposals and features,

iii) online learning, and

iv) multiple action detection®.
In what follows, we will describe the current state-of-the-art in order to make

clear our contributions.

2.8.1 Multiple action detection in space and time

Several works attempt to localise actions in space alone using a single-frame de-
tector [100,101], or in time alone [78,79]. Here we focus on space-time detection,
defined by either a 3D cuboid, or a set of 2D windows associated in time to form
a ‘tube’, ‘subvolume’; or ‘track’, with one window in each frame and forming a
continuous segment without holes [44].

Laptev et al. pioneered one of the first works on action detection in realistic
scenarios [1], with a boosted 3D space-time window classifier combined with a
single frame action detector. Multiple action detection may incur an expensive
exhaustive search in space and time; this was alleviated in [1] by restricting the
search space around detected 2D ‘keyframes’. Since the action detection system

was developed for video indexing applications, all video processing was carried

SWe use the term ‘localisation’ for cases in which it is assumed that an action is always
present in a video clip, and the task is to locate it. For ‘detection’, there may not be any
action in the video, and therefore another class is needed to denote the absence of an action.
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out offline. Another offline method by Willems et al. [102] extended an exemplar
based object detection to action recognition. In order to alleviate an expensive
search over space-time and scales, discriminative visual words extracted during
training were stored with ground truth annotation, and used as a prior for pos-
sible detection locations. A greedy grouping procedure was used to form 3D
detection windows from overlapping space-time hypothesis.

In order to reduce the action search space, Klaser et al. [69] first generated
action hypothesis by detecting and tracking humans, and subsequently classified
the space-time ‘tracks’. Frame-by-frame detections were generated by training
an upper human body histogram-of-oriented-gradient (HoG) detector [103], and
associating the detected windows in time using KLT-tracked features. Interpo-
lation and smoothing was needed to reduce noise and fill in gaps, whilst an
additional classifier was necessary to prune erroneous tracks. Note that using
trained detectors for a particular human body position like the upper body is
restrictive to a class of actions in which the upper body is discriminative of
the action. An efficient decision tree approach was adopted by Mikolajczyk
et al. [104], in which multiple action detection was achieved by accumulating
scores for local features on each frame along the decision tree path. However,
unlike [69], localisation of actions was only performed over scale-space, and thus
without association in time. In this case, a robot would be unable to recog-
nise that a walking action over multiple frames is in fact a single action®. In
order to associate the 2D detection windows in time, Xie et al. [105] used the
L1 distance between colour histograms over detections in neighbouring frames.
In [105], actions were represented by a fixed-length sub-sequence of deformable
part model (DPM [75]) scores over a segment of video frames. It is not clear
how well this approach performs however, since it was not tested on publicly

available detection benchmarks.

2.8.2 Online video stream-processing

Despite recent advances in online action recognition [45,59], current systems are
only tailored for the recognition of a single action class per video frame. For
example, Yeffet et al. [59] proposed an online action recognition system inspired
by local binary patterns, in which grid based video regions were represented as a

histogram of Trinary strings, encoded by comparing pixel regions in neighbouring

6 Note that it is not easy for us humans to determine whether an action detection system
is connecting actions in time from a video with bounding box annotations, since we perform
the data association effortlessly whilst watching.
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frames. A video segment descriptor is formed from the concatenation of these
histograms over the grid. Whilst this approach is fast and online, it only encodes
motion information, and crucially is limited to recognise a single action category
per frame.

Yu et al. [45] designed a very fast action recognition system based on ensem-
bles of random decision trees that quickly translate interest points into visual
codewords for classification. The downside is that it also only allows single ac-
tion classification per group of frames. Moreover, the use of fast interest point
detectors makes it sensitive to image pixel noise, and may fire on salient video

regions which are not relevant to the human action [20,57].

2.8.3 Proposed online multiple action detection system

A person or object may potentially be seen in any location of an image and
may be small or large depending on its distance form the camera. Thus previ-
ous researchers [75] explored the entire image space exhaustively using a sliding
window at multiple scales. Due to the computational load of an exhaustive
search, however, various methods were proposed to select image regions which
have a high chance of containing an object of interest [106-109]. Whereas ‘ob-
jectness’ [107] style classifiers depend on the data they were trained on, the
‘selective search’ [109] algorithm uses a graph-based unsupervised segmentation
algorithm [110] to generate object proposals from the image structure. Since
selective search is category independent, it is ideal for the online learning of
new categories. However, the full selective search method [109] combined with,
for instance, CNN features [111] may still take tens of seconds per image [112].
Therefore, we propose to augment the selective search algorithm [109] by learn-
ing incrementally the region proposal action relevance, and only pass a small
subset for expensive feature extraction.

Actions may be detected by bounding them in cubes/cuboids [1,20,48], how-
ever in this case a more flexible enclosing structure is provided by a connected
set of windows in time, commonly called tracks [69] or tubes [113]. Building
upon recent work on temporally consistent superpixels [114, 115] may provide a
mechanism to extract region proposals in 3D without resorting to an exhaustive
search [20]. Grundmann et al. [115] achieved temporally coherent superpixels
by casting a video as a 3D graph for segmentation, however this assumes that
the entire video is known apriori, making online recognition impractical. In con-
trast, Chang et al. [114] find temporal correspondence between superpixels in

time. The upside is that superpixel correspondences may be found even when
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the pixel regions are not connected in time, as is often the case for quick move-
ments [114]. However, with the generative probabilistic model used in [114],
inference takes tens of seconds per video frame, too slow for practical online
applications. Instead we propose to augment the selective search strategy once
more, this time by associating region proposals in time via combinatorial optimi-
sation. Connecting region proposals in time to form tubes allows the extraction

of motion vectors, which may subsequently be used as discriminative features.

For representation learning and classification, the field of Neural Networks
is back to the forefront of machine-learning research, with an increased depth
of network layers and more effective learning strategies [18,116]. The increased
depth of the network layers enables it to learn multiple levels of representation
corresponding to different levels of feature abstraction, rather than resorting to
hand-crafted features. These deep networks have recently achieved state-of-the-
art performance on tasks such as speech recognition, character recognition [117],
and image classification where Krizhevsky et al. [111] reduced the error rate
on ImageNet from 26.1% to 15.3%. Recently, Girshick et al. also pushed the
best performance on the PASCAL object detection challenge [118] from a mean
average precision of 34% to 48%; a massive leap forward. For this reason, we
propose to use the CNN network architecture as [111] trained on the ImageNet,
and observe whether the network output transfers to the task of action detection.
Thus we use the output of the network as highly non-linear mapping from the

raw image pixels, to features suitable for classification.

The CNN features, after being aggregated and normalised to action tube
proposals, may then be classified using an online linear SVM with hard negative
mining [75]. In contrast to the stochastic gradient descent algorithm described
by Felzenszwalb and Huttenlocher [75], which sampled training examples from
a large offline dataset of images, here we design a batch variant which samples
examples from the current set of action tubes. Note that there will only be
a subset of the classes appearing in the video at any one time, and we found
that without keeping a ‘previously seen’ action example cache, the incremental

learner begins to ‘forget’ the action categories which appeared in the past.

Previous works [20,75,112] used online learning to tackle large static datasets.

In contrast, in this work:

i) examples are received incrementally in time;
ii) the number of action categories grows incrementally;
ii) action categories that appear for a short duration in time need to be re-

membered, and respective models updated when new classes appear later
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on in time;
iii) convergence of the learner over time is not desirable, since if a new class
appears, all other models need to be updated.
With these differences in mind, we designed a multi-class incremental online
learning algorithm (Algorithm 8.2), and tailor a classical stochastic gradient
descent algorithm for learning SVM models (Algorithm 8.3).

In the following proposed methodology we do not assume any training has
been done beforehand on the dataset in use, for instance, to detect possible action
locations [1,9], to detect humans [69], to refine features [112], or bootstrap the
learning [75]. We assume that at the first frame of training the recognition
system has never seen the dataset before. We believe that an online incremental
learner should learn as it views the world from one frame to the next, using only
information it has seen in the past and the present [43]. This is a paradigm shift
which separates our work from [1,45,59,69,105], and is key to evaluate how well
new action classes may be learned ‘on the fly’. A detailed methodology of the
proposed online multiple action detection framework is laid out in Chapter 8. In
the next Chapter, we review the datasets and performance measures we used to

evaluate action classification and detection methods.
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Chapter 3

Datasets and performance

indicators

The datasets in this chapter fall into two groups: those designed to evaluate ac-

tion clip classification algorithms (§ 3.1), and those designed for action detection

(5 3.2).

3.1 Action classification

Amongst many action classification datasets, we chose a subset from the rela-
tively easy to the most challenging, suitable to benchmark and compare various
action recognition algorithms. The task here is to automatically assign the cor-
rect action label to each video, on a so called ‘test’ set; a set of videos previously
unknown to the computer/learner. A variety of performance indicators/metrics
are commonly used to quantify how well a computer was able to perform clas-
sification (cf. Section 3.1.6). A graph showing the state-of-the-art accuracy
for various action classification datasets' in chronological order can be seen in
Fig. 3.1.

3.1.1 KTH

The KTH dataset? [13] contains 6 action classes, 25 actors, and four scenarios.
The actors perform repetitive actions at different speeds and orientations. Se-
quences are longer when compared to those in the YouTube [16] or the HMDB51

[3] datasets, and contain clips in which the actors move in and out of the scene

'Results reported from March 2012.
’http://www.nada.kth.se/cvap/actions/
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Figure 3.1: State-of-the-art results plotted for a number of datasets in date-of-release
order (older - newer). One may see a general decrease in performance as the number of
action classes increases. Note that the difficulty of each dataset does not only depend on
the number of classes, it also much depends on the differences between videos of distinct
classes (similar classes makes classification harder), and the differences between videos
used in training and testing (similar videos makes classification easier).

during the same sequence. In our experiments, we split the video samples into
training and test sets as in [13], and considered each video clip in the dataset to
be a single action sequence. Sample images from the KTH dataset are shown in
Fig. 3.2.

3.1.2 YouTube

The YouTube dataset® [16] contains videos collected online from 11 action classes.
The data is challenging due to camera motion, cluttered backgrounds, and a high
variation in action appearance, scale and viewpoint. In our tests, 1600 video
sequences were split into 25 groups, following the author’s evaluation procedure
of 25-fold, leave-one-out cross validation. An image sample from each action

class of the YouTube dataset is shown in Fig. 3.3.

3http://www.cs.ucf.edu/~1liujg/YouTube_Action_dataset.html
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Figure 3.2: Image samples from the KTH dataset. Rows (i-iv) show four different
scenarios: (1) outdoors, (ii) outdoors with scale variation, (iii) outdoors with different
clothes, and (iv) indoors. Columns (a-f) show the siz action classes: (a) walking,
(b) jogging, (c) running, (d) boxing, (e) handwaving, and (f) handclapping.

(b) (c)

3.1.3 Hollywood2

The Hollywood?2 dataset? [17] contains instances of 12 action classes collected
from 69 different Hollywood movies. There are a total of 1707 action samples
each 5-25 seconds long, depicting realistic, unconstrained human motion, al-
though the cameras often have their view centred on the actor. The dataset
was divided into 823 training and 884 testing sequences, as in [17]. Note that
all videos in this dataset were initially downsampled to half their size; a mod-
ification to be taken into account when comparing results. This downsampling
procedure was also done in [62], due to high video resolutions, and the huge
amount of features that would be subsequently extracted. Samples of images

from each action class are presented in Fig. 3.4.

3.1.4 HMDB51

The HMDB dataset® [3] contains 51 action classes, with a total of 6849 video clips
collected from movies, the Prelinger archive, YouTube and Google videos. Each
action category has a minimum of 101 clips. We used the non-stabilised videos
with the same three train-test splits proposed by the authors [3]. A collection of

image samples is shown in Fig. 3.8, where each action class is denoted directly

‘http://www.di.ens.fr/~laptev/actions/hollywood2/
Shttp://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
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Figure 3.3: Image samples from the YouTube dataset. From top left down to bottom
right the action classes are: basketball shooting, trampoline jumping, soccer juggling,
walking with a dog, biking/cycling, golf swinging, volleyball spiking, tennis swinging,
diving, horse back riding and swinging. Note that many of the YouTube actions were
captured from low quality cameras, and contain significant camera movement.

below each image.

3.1.5 UCF101

The UCF101 dataset [34] contains 101 action classes, approximately 13,000
clips and 27 hours of video data. This is currently the largest video classification
dataset to date. The sheer volume of data, high number of action classes and
unconstrained videos make this a very hard dataset. We used the recommended
three train-test splits proposed by the authors [34]. Image samples from each
action class in the dataset are shown in Fig. 3.9. A complete list of action

categories can be found online®.

3.1.6 Performance indicators

Previous authors (e.g. [1,26]) have evaluated action classification performance
through a single measure, such as the accuracy or average precision. In our
experimental evaluation, we used three performance measures for each dataset,

in order to present a more complete picture of each algorithm’s performance, as

Shttp://crcv.ucf.edu/data/UCF101.php
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Figure 3.4: Image samples from the Hollywood?2 dataset. Can you guess what the

action classes are from the sample images? Answers below’. This exercise is intended

to show the reader that it is not always easy for us to recognise an action class from a
single still image.

presented in the following subsections.

Accuracy

The classification Accuracy (Acc) is calculated as the #correctly classified testing
clips /#total testing clips. Typically, for a multi-class classification task with
k € {l,...,K} classes, and i € {1,..., N} examples, a K x K confusion
matrix C is first constructed by incrementing the element of the matrix at indices
C'lgt(i), pred(i)], for each pair of ground truth and predicted labels. A typical
confusion matrix is presented in Table. 3.1. The accuracy is then the trace of

C, divided by the total sum of its elements:

a+e+1
Acc = ———— 3.1
where a, e and 7 are the diagonal elements of the 3 x 3 confusion matrix shown

in Table. 3.1.

"UOSIOJSNH ‘SSIY ‘OeUYSPURH ‘YR ‘UOSIOJIYSIA ‘UMO(IHS
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Table 3.1: A typical confusion matriz for an action classification task with K = 3
classes.

Predicted label

Run Box Hop Total
Run a b c a+b+c
Ground truth label Box i o Ji d+e+f
Hop g h ? g+h+1

Total a+d+g b+e+h c+ f+i N

F1-score

The Fl-score is found by weighting the ‘Recall’ and ‘Precision’ of a classifier

equally and is calculated as the ratio:

- 2 x Recall x Precision

3.2
Recall + Precision (3:2)

The Recall measures the fraction of correctly classified examples from one class,
to the total number of examples of that class in the ground truth. The Recall

was calculated separately for each class as:

Clk, k]
V=K Clk, b)

C(k, k)

Recall(k) = sun(C(k )

, orin MATLAB: (3.3)

The Precision is the fraction of correctly classified examples from a particular

class, in the total number of examples predicted as being of that particular class:

Clk, k] orin MATLAB: C(k k)

S Ch smcem 69

Precision(k) =
To report a single number quantifying the classification performance, the F1

score for each class may be averaged as follows:

FI
mF1 = % (3.5)

Average Precision

The Average precision (AP), is a score which considers the ordering in which
the results are presented, and is best used for retrieval /ranking tasks. Neverthe-
less, it has been widely used to benchmark classification problems in the action
recognition literature, and is presented here to allow comparison to other works.

To calculate the average precision, it is first necessary to sort the results by

their classification score, and consider what the values of precision and recall
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Figure 3.5: An example of a precision-recall curve generated from random example
scores to illustrate the difference between the strict average precision (area under blue
curve), and the 11-point interpolated average precision (area under red curve).

would be had the retrieved examples been in the top ‘i’, where ‘i’ varies from
1,...,N. It is now possible to plot a graph with the /N values of precision and
recall as points, joined by straight lines, as shown by the blue precision-recall

curve in Fig. 3.5.

The average precision value, which is strictly equal to the precision averaged
over all values of recall, equates to taking the area under the precision-recall
curve. However, to follow convention, in this work we use the 11-point interpo-
lated average precision, in which the precision p, at a certain recall level ‘v’ is
defined as the maximum precision recorded for any recall level r’ > r:

Pr = WAX pr. (3.6)
A thorough analysis and justification for this measure can be found in [122]. In
practice the 11-point interpolated average precision in most cases overestimates
the area under the precision recall curve, as illustrated by the red lines in Fig. 3.5.

In a similar fashion to the F1 score, the mean average precision (mAP) is used

to give a single performance indicator for a multi-class classification problem.
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Comparison and discussion

In order to compare each performance measure, we conducted two experiments
from randomly generated classifier scores. In the first experiment, we compared
the performance obtained when classifying scores generated uniformly at random
over a varying number of classes. We expect the outcome of a random classifier
to be on average 1/K for a K class problem. The averaged results over 1000 runs
is displayed in Fig. 3.6. Note that each class has the same number of examples.

In the second experiment, we benchmarked the performance of a random
classifier against an increasing imbalance in the number of examples per class.
The number of classes was fixed at 2, with one class having 20 examples and the
other having 20" — 20 more examples, where n was varied from 1 to 4, as shown
in Fig. 3.7. Again, results were averaged over 1000 runs.

Notice in Fig. 3.6 that the Acc and mF1 are exactly the same given the
same number of examples per class, and diverge with a class imbalance (see
Fig. 3.7). This demonstrates the importance of using the F1 score when working
with datasets in which there can be dominating and rare classes; for example if a
dataset had 100 examples of a walking action and only 10 examples of a cartwheel
action, then if all 110 examples were predicted as walking, the accuracy would
still be 91%, whilst the F1 score drops to 48%.

For a multi-class classification problem with an imbalance in the number of
samples per class, the accuracy may be normalised by dividing each row of the
confusion matrix by the sum of the elements in each row. The normalisation
ensures that each class receives the same weight in the accuracy calculation.
Since the 11-point average precision overestimates the area under the precision
recall curve, the exact area under the curve is also used as a performance mea-
sure (see the PASCAL VOC challenge [118]). Stating the performance measure
being used is thus essential when comparing different algorithms, and still not

commonplace.

3.2 Action detection

In order to evaluate our online multiple action detection algorithm, we selected
the challenging LIRIS human activities dataset [44]. The LIRIS dataset is attrac-
tive because it contains image sequences containing multiple actions annotated
in space and time, some of which occur simultaneously, as shown in Fig.3.10.
Moreover, it contains scenes with human actions amidst other irrelevant human

motion (other people performing irrelevant actions). The LIRIS dataset contains
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Figure 3.6: A plot of the classification performance (accuracy, 11-point mean average
precision, and mean F1 score) against the number of classes. Since the classifier
scores are generated randomly we expect to see the curve 1/K, followed accurately by
the accuracy and mF1 score, and slightly overestimated by the mAP.

10 action categories, which include human-human interactions and human-object
interactions, for example, ‘discussion of two or several people’, and ‘a person
types on a keyboard’. A full list of categories may be found on the dataset’s
website®. In particular, we used the D2 sequences shot with a Sony camcorder

with a resolution of 720 x 576, and captured at 25 frames per second.

3.2.1 Performance indicators

The quantitative performance was calculated with the evaluation tool provided
for the LIRIS-HARL competition [44]. First, a detected action tube is assigned
to the closest ground truth tube based on the normalised overlap over all frames.

Second, a detected action tube is accepted as positive if the tubes have the same
class, and

i) if there is sufficient overlap with respect to thresholds on spatial pizel-wise

recall tg., and temporal frame-wise recall t,,,

8http://liris.cnrs.fr/voir /activities-dataset
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Figure 3.7: A graph showing the classification performance against the imbalance in
examples per class, for a two class problem. The accuracy hugs the 0.5 line irrespective
of the number of examples per class, whilst the mAP initially overestimates and then
converges to 0.5 when the imbalance is over 8000 examples. The mF'1 score decreases
gradually as the imbalance increases, demonstrating that it is a more reliable metric
to use when there is a disproportionate number of action/object classes in a dataset.

ii) if the excess duration is sufficiently small with respect to thresholds for

spatial pizel-wise precision ts,, and temporal frame-wise precision ty,.

By fixing the four thresholds that need to be satisfied, the recall and precision

may be calculated as:

#correctly found actions

Recall = 3.7
eea #actions in ground truth (3.7)
Precision — #correctly found acti?ns (3.8)
#number of found actions
The Fl-score combines these measures as defined in Equation 3.2. A final

performance measure may be obtained by integrating the F1-score measure over
the range of possible threshold values. First four integrated Fl-score values
(Isr, Isp, Itr, I1p) are calculated by varying one threshold and keeping the others
fixed at a small value (n = 0.1). Finally an averaged score is obtained by

averaging the four values:

Isr + Isp + Itr + Itp
4

Integrated Performance = (3.9)
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The final score is advantageous to use because it is independent of arbitrary

thresholds on the spatial or temporal overlap [123].
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brush cartwheel catch

shoot sit situp smile smoke somersault

stand

sword sword talk
exercise

walk

Figure 3.8: Image samples from the HMDB51 dataset. The 51 action categories
may be grouped into the following categories: general facial actions (e.g. chew), facial
actions with object manipulations (e.g. drink), general body movements (e.g. somer-
sault), body movements with object interaction (e.g. brush hair), and bodily movements
with human interaction (e.g. shake hands).
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Uneven Bars [Volleyball Spiking

Figure 3.9: Image samples from the UCF101 dataset. The authors [34] claim that
the UCF101 dataset contains the largest collection of diverse actions, with large vari-
ations in camera motion, object appearance, pose, object scale, viewpoint, cluttered
background and illumination conditions. The action categories can be divided into five
types: human-object interaction, body-motion only, human-human interaction, playing
mustcal instruments and sports.
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Figure 3.10: A sample image from the LIRIS human activities dataset used to bench-
mark action detection systems. The image show two different actions occurring si-
multaneously; the red tube numbered 8 has a label ‘a person gives an item to a second

person’, whilst the blue action tube numbered 5 has a label ‘a person typing on a key-
board’.



Chapter 4

Learning discriminative actions

from weakly labelled videos

This chapter is motivated by two main ideas:
e an action model should be learned from those parts of the video which are
relevant to the action class, and
e local action models may be used to locate discriminative video patches of
human actions in large video datasets.
Since in many large datasets, collecting the locations of actions in videos by
human annotators for training is prohibitively expensive, we propose an ac-
tion recognition system that leverages weakly labelled videos. In the following
sections, we present the three main building blocks making up our approach,
namely:

i) the description of space-time videos via histograms of dense trajectory
features [25] (cf. Section 2.2);

ii) the representation of a video clip as a ‘bag of subvolumes’, and the learning
of positive subvolumes from weakly labelled training sequences within a
max-margin multiple instance learning framework (cf. Section 4.1), and

iii) the mapping of instance/subvolume scores to bag/clip scores by learning

a hyperplane on instance score features (cf. Section 4.2).

4.1 MIL-BoF action models

In this work, when using BoF, we define an instance to be an individual his-
togram obtained by aggregating the dense trajectory features within a local
subvolume, and a bag is defined as a set of instances originating from a single

space-time video. Since we perform multi-class classification with a one-vs-all

49
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Figure 4.1: Instead of defining an action as a space-time pattern in an entire video
clip (a), an action is defined as a collection of space-time action parts contained in
subvolumes shapes of cube/cuboidial shape (b). One ground-truth action label is as-
signed to the entire space-time video or ‘bag’, while the labels of each action subvolume
or ‘instance’ are initially unknown. Multiple instance learning is used to learn which
instances are particularly discriminative of the action (solid-line cubes), and which are
not (dotted-line cubes).

approach, we present the following methodology as a binary classification prob-
lem.

In action classification datasets, each video clip is assigned to a single action
class label. By decomposing each video into multiple instances, now only the
class of the originating video is known and not those of the individual instances.
This makes the classification task weakly labelled, where it is known that positive
examples of the action exist within the video clip, but their exact location is
unknown. If the label of the bag is positive, then it is assumed that one or more
instances in the bag will also be positive. If the bag has a negative label, then
all the instances in the bag must retain a negative label [71]. The task here is to
learn the class membership of each instance, and an action model to represent
each class, as illustrated in Fig. 4.1.

The learning task may be cast in a max-margin multiple instance learning
framework (MIL), of which two methods were proposed in [71]; a ‘bag-margin’
and an ‘instance-margin’ formulation, the former designed to estimate ‘bag-
labels” and the latter to estimate ‘instance-labels’. Since we are interested in both
the bag and instance labels, we first adopted the instance-margin formulation and
subsequently proposed a mapping from instance scores to bag-labels, presented
in the following section (§ 4.2).

Let the training set D = ((X1,Y7),..., (X n,Yy)) consist of a set of bags,
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where X; = {xj1,...,xips,} of different length M;, with corresponding ground
truth labels Y; € {—1,+1}. The range of the indices arei € Z = {1,..., N}, and
j€J ={1,...,M;}. Each instance x;; € R" represents the j"® BoF histogram
in the i™" bag, and has an associated latent class label y; € {—1,+1} which is
initially unknown for the positive bags (Y; = +1). The class label for each bag

Y; is positive if there exists at least one positive instance in the bag, that is,
¥; = max{y;}- (4.1)

Therefore the task of the mi-MIL is to recover the latent class variable y;; of every
instance in the positive bags, and to simultaneously learn an SVM instance model

(w, b) to represent each action class.

The max-margin mi-SVM learning problem results in a semi-convex optimi-
sation problem, for which [71] proposed a heuristic approach. In mi-SVM, each
instance label is unobserved, and we maximise the usual soft-margin jointly over

hidden variables and discriminant function:

1 2
in min - cS & 42
min min - S|w]*+ iZjEJ (4.2)

subject to : (W' xi; +b) > 1 — &, Wi, ]
v € {—1,+1}, & >0,
and Z(l +y;)/2>1 st Y= +1,
jeJ
yij = —1 Vjeg s.t. Yy = —1,

where w is the normal to the separating hyperplane, b is the offset, and &; are
slack variables for each instance x;;. The heuristic algorithm proposed by [71] to

solve the resulting mixed integer problem is laid out in Algorithm 4.1.

Consider training a classifier for a walking class action from the bags of
training instances in a video dataset. Initially all the instances are assumed to
have the class label of their parent bag/video (STEP 1). Next, a walking action
model estimate (w, b) is found using the imputed labels y; (STEP 2), and scores

T

fi=w xj+0, (4.3)

for each instance in the bag are estimated with the current model (STEP 3).
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Algorithm 4.1 Heuristic algorithm proposed by [71] for solving mi-SVM.

STEP 1. Assign positive labels to instances in positive bags: y; = Y; for
jeJ
repeat
STEP 2. Compute SVM solution (w, b) for instances with estimated la-
bels Yij-
STEP 3. Compute scores f; := w ' x;; + b for all x;; in positive bags.
STEP 4. Set y; := sgn(f;) for all j € J, where ¥; = +1.
for all positive bags X; do
if Ej(l + yij)/2 = (0 then

STEP 5. Find j* := argmax f;, set yfg =+1

jeJ
end if
end for
until class labels do not change
Output w, b

Whilst the negative labels remain strictly negative, the positive labels may retain
their current label, or switch to a negative label (STEP 4). If, however, all
instances in a positive bag become negative, then the least negative instance in
the bag is set to have a positive label (STEP 5), thus ensuring that there exists
at least one positive example in each positive bag.

Now consider walking video instances whose feature distribution is similar to
those originating from bags in distinct action classes. The video instances origi-
nating from the walking videos will have a positive label, whilst those from the
other action classes will have a negative label (assuming a 1-vs-all classification
approach). This corresponds to a situation where points in the high dimen-
sional instance space are near to each other. Thus, when these positive walking
instances are reclassified in a future iteration, it is likely that their class label
will switch to negative. As the class labels are updated in an iterative process,
eventually only the discriminative instances in each positive bag are retained as

positive.

4.2 A learnt mapping from instance to bag la-
bels

So far the focus has been on learning instance-level models for detection. How-
ever in order to make a classification decision, the video class label as a whole

also needs to be estimated.
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The instance margin MIL formulation detailed in section 4.1 aims at recov-
ering the latent variables of all instances in each positive bag. When recovering
the optimal labelling y; and the optimal hyperplane (w, b) (4.2), all the positive
and negative instances in a positive bag are considered. Thus, only the query

instance labels may be predicted:
?jij = Sgl’l(WTXij + b) (44)

An alternative MIL approach called the ‘bag margin’ formulation is typically
adopted to predict the bag labels. The ‘bag-margin’ approach adopts a similar
iterative procedure as the ‘instance margin’ formulation, but only considers the
‘most positive’ and ‘most negative’ instance in each bag. Therefore predictions
take the form:

Y; = sgn max(w!x;; + b), (4.5)

jeJ

where (W, b) are the model parameters learnt from the ‘bag-margin’ formulation
[71].

In order to avoid this iterative procedure for retrieving the bag labels, we
propose a simple and robust alternative method in which bag scores are directly
estimated from the instance scores f;; (4.3). One solution is to use the same max
decision rule in (4.5) with the instance scores: Y; = sgn max;(f;). However, the
scores from the max may be incomparable, requiring calibration on a validation
set to increase performance [124,125]. Moreover, better cues may exist to predict
the bag label. Cross-validation can be used to select a threshold on the number
of positive instances in each bag, or a threshold on the mean instance score in
each bag. The downside is that the number of instances in each bag may vary
significantly between videos, making values such as the mean instance score
between bags incomparable. For example, in a long video clip in which a neatly
performed action only occupies a small part, there would be large scores for
instances containing the action, and low scores elsewhere. Clearly, the mean
instance score would be very low, even though there was a valid action in the
clip.

As a more robust solution we propose to construct a feature vector by combin-
ing multiple cues from the instance scores f; in each bag, including the number
of positive instances, the mean instance scores, and the maximum instance score
in each bag. The feature vector v; is constructed as follows:

vim (. #n, 2205, mah), minGh) ), (49

eJ jeJ
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where #p and #n are the number of positive and negative instances in each
bag respectively. In this way, the variable number of instance scores in each
bag are represented by a six-dimensional feature vector f; — v;, and a linear
SVM decision boundary, (w’, '), is learnt from the supervised training set D' =
((v,Y1),...,(vn,Yn)), in this constant dimensional space. Now predictions
take the form:

Vi = sgn(w' v + ). (4.7)
Apart from mapping multiple instance scores to single bag scores, this SVM-
map strategy generates comparable bag scores for various action classes, thus

avoiding any instance score calibration [124].

4.3 Experimental Evaluation

In order to validate our action recognition system, we evaluated its performance
on four challenging action datasets, namely the KTH, YouTube, Hollywood2 and
HMDB datasets, as detailed in Chapter 3. Next we present the baseline pipeline
(§ 4.3.1), followed by the details of our MIL-BoF experimental setup (§ 4.3.2),
and an ensuing discussion (§ 4.4).

In order to make the comparison across different datasets fairer, all clips were
down-sampled to a common 160 x 120 resolution. For each dataset, we present
both the state-of-the-art result as reported in the literature, and the baseline BoF
results in our own implementation, to which we compare our MIL-BoF on sub-
volumes framework. As performance measures, we report the accuracy (mAcc),
the average precision (mAP), and the mF1-score, defined in Chapter 3. Unlike
previous work, we are the first to report all three performance measures for each

dataset, to give a more complete picture of the overall algorithm performance.

4.3.1 Baseline BoF algorithm

We implemented the baseline BoF approach described in [26] to ensure a fair
comparison between BoF and MIL-BoF. A codebook was generated by randomly
sampling 100,000 features and clustering them into K = 4000 visual words
by k-means. Descriptors were assigned to their closest vocabulary word using
the Euclidean distance, and the resulting histograms of visual words were used
to represent each video clip. We reported the performance achieved using a
x%-kernel SVM [26], and performed multi-class classification using the one-vs-

all approach. We fixed the histogram normalisation to the L1-norm, and kept
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the SVM regularisation constant C' = 100 throughout, the same value used
by [26,62].

4.3.2 MIL-BoF experimental setup

The same BoF setup as the baseline has been used for the MIL-BoF approach.
Subvolumes were extracted from a regular grid with a grid spacing of 20 pixels
in space and time. Results were reported for a number of different MIL-BoF
models, each characterised by different cube-[60-60-60], [80-80-80], [100-100-100]
or cuboid-[80-80-160], [80-160-80], [160-80-80] shaped subvolumes, where [x-y-t]
denotes the dimensions of the subvolume. In addition, we also allowed for a
certain type of cuboid to stretch along the total time duration of the clip [80-80-
end], in a similar spirit to the spatial grid (with no division in time) used by [15]
for adding weak geometrical information to the video’s representation.

The decomposition of a video into multiple subvolumes, each with the same
histogram dimensionality as used in the baseline, makes the learning problem
at hand large-scale. Typical values for the number of instances generated from
the KTH dataset range between 100,000-200,000. In practice calculating the full
x2-kernel takes a prohibitively long time to compute. Recent work by Vedaldi
and Zisserman on the homogeneous kernel map [126] demonstrates the feasibility
of large scale learning with non-linear SVMs based on additive kernels, such as
the x?-kernel. The map provides an approximate, finite dimensional feature
representation in closed form, which gives a good approximation of the desired
kernel in a compact linear representation. The map parameters were set to
N =2, and v = 0.5, which gives a K x (2 +1) dimensional approximated kernel
map for the y?-kernel. Similarly to the baseline, we keep the SVM parameters
constant across all datasets at C=0.1, which has proven to give good results in

practice. The quantitative results are shown in Table 4.1.

4.4 Results and discussion

On the KTH dataset the MIL-BoF approach surpassed the baseline BoF in all
three performance measures, demonstrating a clear advantage of representing
videos with subvolumes on this dataset. Common scene and motion elements
were pruned by the multiple-instance learning as shown in Fig. 1.5, resulting in a
stronger action classifier per class. Contrary to our expectations, both the BoF

and MIL-BoF surpassed the state-of-the-art accuracy, which may be attributed
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Table 4.1: Quantitative results from the state-of-the-art (S-o-t-a), our BoF baseline,
and our MIL-BoF method for various fixed-size subvolumes.

Dataset: KTH YouTube HOHA2 HMDB
Perf: mAcc| mAP | mF1 mAcc| mAP | mF1 mAcc| mAP | mF1 mAcc| mAP | mF1
S-o-t-a: 94,5 [§6.120] | 93.77 27 | — - 63.3 9] 66.79 1271 |
BoF: 95.4 | 96.5 | 94.0 76.0 | 79.3 | 57.5 39.0 | 48.7 | 32.0 31.5 | 31.4 | 214
MIL-BoF:

60-60-60 94.9 | 96.5 | 94.2 73.4 | 81.0 | 70.0 38.5 | 43.5 | 39.4 || 27.6 | 26.3 | 23.1
80-80-80 95.4 | 97.0 | 94.8 775 | 83.9 | 73.9 37.3 | 44.2 | 37.5 28.7 | 29.0 | 25.3
100-100-100 93.5 96.5 93.7 78.6 85.3 76.3 37.4 40.7 32.3 27.5 28.6 23.9
80-80-160 96.8 | 96.7 | 95.8 80.4 | 86.1 77.4 || 37.5 | 42.0 | 33.7 28.2 | 29.6 | 25.4
160-80-80 96.3 | 96.6 | 94.4 79.1 | 85.0 | 76.1 36.9 | 42.1 | 32.1 29.0 | 30.5 | 24.8
80-160-80 95.8 | 96.6 | 94.4 783 | 84.9 | 75.7 37.8 | 42.6 | 35.3 28.7 | 28.8 | 25.3
80-80-end 96.8 | 96.9 | 96.0 || 79.3 | 86.1 | 75.9 39.6 | 43.9 | 36.0 29.7 | 30.3 | 25.2

to using the whole action videos rather than clean action slices during train-
ing. The best result was achieved using a subvolume model more extended in
time than in space [80-80-160], that achieved 96.76% accuracy. Similarly on the
YOUTUBE dataset, the MIL-BoF' framework outperformed the baseline BoF
on all performance measures, achieving a 4.36%, 6.73%, and 19.81% increase
in accuracy, average precision and F1 score respectively. This demonstrates the
MIL-BoF' ability to learn more robust action models on the challenging YouTube
data. The MIL-BoF approach did not improve the AP compared to the baseline
on the HOHA2 dataset, however, this was made up for by a 0.59% increase in
Accuracy and a 7.38% improvement on the F1 score, which weights precision and
recall equally. On the HMDB dataset, we reported a BoF baseline performance
superior to the then state-of-the-art (23.2% [3], 2012), but less than half the
accuracy of the current state-of-the-art at 66.79% [127]. Similarly to the Hol-
lywood2 dataset, our MIL-BoF approach outperforms the BoF baseline on the
F1 score, in this case by 4.05%. In accord with observations in [15], we achieve
good results with subvolume shapes in which there is no temporal subdivision
of the sequence [80-80-end], however, we show that a temporal subdivision of
the action sequence [80-80-160] can in fact result in a sizable improvement over
considering no temporal subdivision at all, as may be seen in the Fl-scores of

the YOUTUBE [80-80-160] and HOHA2 [60-60-60] dataset.

Our MIL-BoF algorithm is not guaranteed to converge to the optimal solu-
tion, and may be one reason why it did not improve over the baseline Accuracy
and AP on the HMDB dataset. However, bear in mind that the full x?-kernel is
calculated for the BoF baseline whilst the linear approximation [126] was used
in the MIL-BoF. We expect the results to improve further in the case of full res-

olution videos. Moreover, due to the large computational cost associated with
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space-time subvolumes, the full potential of our algorithm has yet to be realised,
when a more general mixture of subvolume shapes is tailored automatically for
each action class. Despite these current setbacks, the MIL-BoF method still
outperforms the baseline BoF method in all performance measures on the KTH
and YOUTUBE dataset, whilst outperforming the HOHA2 and HMDB on the
F1 score, even with fixed-sized subvolumes. Finally, in addition to clip classifica-
tion, the MIL-BoF method is able to localise challenging actions in space-time,
such as the DriveCar and GetOutOfCar actions in the HOHA2 dataset shown
in Fig. 4.2(a) & 4.2(b) respectively. The same figures are played as a video in a
supplementary multimedia attachment!.

In the next Chapter, we aim to improve results further by incorporating
pictorial structures to better generalise over the variability of space-time actions,
and include a larger set of subvolume shapes rather than fixed sized cuboids.
We also wish to compare the results we obtain using BoF to another mid-level

representation, the Fisher vector.

https://www.youtube.com/watch?v=VmragBectpo
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Figure 4.2: Action localisation results on two challenging videos from the Hollywood?2
dataset, which we encourage the reader to watch in addition to this figure. The colour
of each box indicates the positive rank score of the subvolume belonging to a particular
class (green-red). (a) Actioncliptest00032 begins with two people chatting in a car.
Half-way in, the camera shot changes to a view from the roof of the car. Finally the
shot returns to the two people, this time the steering wheel is visible and the driving
action is evident. This is reflected by the densely detected, high scoring subvolumes
towards the end of actioncliptest00032. (b) In actioncliptest00058, a woman is getting
out of her car, however, this action occurs in the middle of the video and not at the
beginning or end, as indicated by the detected subvolumes.



Chapter 5

Towards adding local structure

and general subvolume shapes

Following from the previous chapter, here we propose to use a pictorial structure
model [75,81] to locate actions in large weakly-labelled datasets. The action
recognition system is composed of three main building blocks:

i) learning discriminative local action subvolumes (§ 4.1), where the resulting
SVM model (wyg,by) will represent the ‘root’ filter in our space-time BoF
pictorial structure model;

ii) learning and matching of part models extracted from the learnt ‘root’ sub-
volumes (§ 5.1), and

iii) mapping local instance scores appropriately to global video clip scores
(§4.2).

The methodology in this chapter is presented as an extension to bag-of-features

(BoF); however the same methodology extends to other mid-level feature repre-

sentations, as shown in the experiments (§ 5.2).

5.1 Local Deformable SBoF models (LDSBoF)

In order to learn space-time part models, we first select the best scoring root
subvolumes learnt via Algorithm 4.1 (Section 4.1). The selection is performed
by first pruning overlapping detections with non-maximum suppression in space
and time, and then picking the top scoring 5%. Subvolumes are considered to
be overlapping if their intersection over the union is greater that 20%. This has
the effect of generating a more diverse sample of high scoring root subvolumes
to learn the part models from.

The part models are generated by splitting the root subvolumes using a fixed

29
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(a) A training action sequence of class jump-  (b) A test action sequence of class ‘jumping’
ing. A discriminative local action subvolume  similar to that in (a) but stretched in time.
selected via MIL is drawn as a red solid-line ~ The detected ‘root’ subvolume is drawn as a
cube. The dotted red line denotes the tem-  red solid cube, and the parts are shown as
poral grid into which the root is split in order ~ green and blue cuboids respectively.

to learn two separate part models.

Figure 5.1: Action recognition with a local deformable spatial bag-of-features model
(LDSBoF). (a) Training ‘root’ and ‘part’ action models. The method described in
section 4.1 first selects discriminative root subvolumes (red cube). To learn part filters,
the ‘root’ subvolume is divided into a grid of parts; in this case a temporal grid with
two parts as denoted by the red dotted line. (b) At test time, the root filter alone
(solid red cube) learnt from the action in (a) is not suited to detect the action in (b).
Howewver, it is better able to detect this type of action variation with the addition of
part filters (solid green and blue cuboids) loosely connected to the root.

grid, as illustrated in Fig. 5.1(a) & 5.1(b). For our experiments we split the
root into P = 2 equal-sized blocks along the time dimension (Fig. 5.1(a)), and
recalculate BoF vectors for each part. We found that with our current low-
level feature sampling density (§ 5.2), subdividing the root to generate more
parts creates subvolumes which are too small to aggregate meaningful statistics.
Finally, part models ( wy, b ), k € {1,..., P}, are individually learnt using a
standard linear SVM. The grid structure of SBoF removes the need to learn a
structure model for each action class, which simplifies training, especially since
no exact or approximate location annotation is available to constrain the part

positions [75].

In the following, an action is defined in terms of a collection of space-
time action-parts in a pictorial structure model [57,81,128], as illustrated in
Fig. 5.1(b). Let an action be represented by an undirected graph G = (V, &),
where the vertices V = {vy,...vp} represent the P parts of the action, and &
is a set of edges such that an edge set &g = {vy, vi} represents a connection
between part vy and v;. An instance of the action’s configuration is defined by
a matrix L = (I;,...1p), where 1, € Z3" specifies the location of part vy in a
3-dimensional grid. The detection score volume s(1) is associated with a feature

map ¢(1) of BoF histograms for each subvolume at position 1, and there exists for
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each action part vy, a linear BoF filter wy, which when dotted with a histogram
h, = ¢(ly), gives a score indicating the presence of the action part vi. Thus,
the dot product

wi - ¢(Lk), (5.1)

measures the correlation between a filter wy and a feature map ¢(ly) at location
1, in the video. Let the distance between action parts d(li, 1) be a cost function
measuring the degree of deformation of connected parts from a model. The

overall score for an action located at root position 1y is calculated as:

P
s(lo) = max (Zwk o(L) — Zd L, 1, ) (5.2)

=1

which optimises the appearance and configuration of the action parts simultane-
ously. The scores defined at each root location may be used to detect multiple
actions, or mapped to bag scores in order to estimate the global class label (cf.
Section 4.2). We modified the efficient algorithm described in [75] to compute
the best locations of the parts as a function of the root locations (5.2), on a

sparse grid, the reasons for which are described next.

In practice, we do not calculate an optimal root filter response (Equation 5.2)
densely for each pixel, but rather on a subsampled grid. When processing im-
ages for the task of 2D object detection, one may pad the empty grid locations
with low scores and subsample the distance transform responses [75], since high
scores are spread to nearby locations taking into consideration the deformation
costs. The computational cost of including the low-score grid locations is small.
However with video data, the difference in the number of grid locations for the
full and subsampled video is huge. For example, between a 2D image grid of size
640 x 480, and one half its size (320 x 240), there is a difference of ~23 x 10* grid
locations. In corresponding videos of sizes 640 x 480 x 1000 frames (approx. 30
seconds) and 320 x 240 x 500, the difference in the number of grid locations is
~26 x 107. Even though the efficient distance transform algorithm scales linearly
with the number of possible locations, padding empty grid locations with low
scores becomes computationally expensive. Therefore, we modified the distance
transform algorithm to compute the lower envelope of the parabolas bounding
the solution [129] at the locations defined by a sparse grid. In this way we achieve

the exact same responses with a significant speedup (cf. Section A.7).
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5.2 Experimental setup

Bag-of-Features

Dense trajectory features were computed in video blocks of size 32 x 32 pixels
for 15 frames, with a dense sampling step size of 5 pixels, as set by default [25].
Each dense trajectory feature was split into its 5 components (trajectory 30-D,
HOG 96-D, HOF 108-D, MBHx 96-D, MBHy 96-D), and for each, a separate
K-word visual vocabulary was built by k-means. In order to generate the visual
vocabulary, a random and balanced selection of videos from all action classes
were sub-sampled, and 10° features were again sampled at random from this
pool of features. The k-means algorithm was initialised 8-times and the config-
uration with the lowest error was selected. Lastly, each BoF histogram was L1
normalised separately for each feature component, and then jointly. To speed up
the histogram generation we employed a fast kd-tree forest [130,131] to quantise
each dense trajectory feature to its closest cluster centre, delivering a four times

speedup when compared to calculating the exact Euclidean distance.

x? kernel approximation

The subvolume settings (§ 5.2) generated ~3 million instances on the Hollywood2
dataset, each a high dimensional histogram, making the learning problem at
hand large-scale. Therefore we used an approximate homogeneous kernel map
[126,131] instead of the exact x? kernel, with the same settings as we used in

the previous chapter (§ 4.3.2).

Fisher vectors

Excellent classification results have been achieved using Fisher vectors and linear-
SVMs [67], which scale much more efficiently with an increasing number of train-
ing instances. Due to the high dimensionality of Fisher vectors, each of the 5
dense trajectory feature components were initially reduced to 24 dimensions
using PCA [132]. For each feature component, a separate visual vocabulary
was built with K-Gaussians each via the Expectation Maximisation (EM) algo-
rithm [133]. The features used to learn the dictionary were sampled in the exact
same manner as for BoF (§ 5.2). We follow [67] and applied power normalisation
followed by L2 normalisation to each Fisher vector component separately, before

normalising them jointly.
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Fast linear-SVM solver

In order to quickly learn linear-SVM models we employed the PEGASOS algo-
rithm [134]. This stochastic subgradient descent method for solving SVMs is
well suited for learning linear classifiers with large data, since the run-time does
not directly depend on the number of instances in the training set. We used the
batch formulation with a batch size of 100, and stopped the optimisation after
500 iterations or after reaching a lower tolerance € on the norm of the difference
between w-vectors in consecutive iterations (e = 107). Stopping the optimi-
sation early results in quicker training and helps generalisation by preventing
over-fitting. In order to address class imbalance, we sampled a balanced set of

positive and negative examples without re-weighting the objective function [135].

Multiple instance learning

Initially, all the instances in each positive bag were set to have a positive label.
At each iteration, the SVM solver was initialised with the model parameters
(w, by calculated in the previous iteration [71], as well as the previous learning
iteration number at which (w,b) were calculated. Instead of fixing the SVM
regularisation parameters to values known to work well on the test set, we per-
formed 5-fold cross validation [3] on the training set, and automatically select
the best performing models based on the validation set accuracy. Multi-class

classification is performed using the one-vs-all approach.

Local Deformable Spatial BoF

In Experiment 1 (cf. Section 5.3.1), the root model subvolumes were set to the
same size at the smallest used in the previous chapter (cf. Section 4.3 & Fig. 4.2)
(60 x 60 x 60). This will allow a direct comparison to the results in [48], and
the results generated using general subvolume shapes (§ 5.2). The part model
subvolumes were set to half the size of the resulting learnt root subvolumes,
as shown in Fig. 5.1(a) & Fig. 5.4. We modelled the relative position of each
part with respect to the root node’s centre of mass as a Gaussian with diagonal

covariance [57]:

d(lk, 11) = ﬁ/\/(lk — l], Ox, Zk) (53)

where 1, — 1, represents the distance between part vy and vy, oy is the offset and
represents the anchor points of each part with respect to the root, and ), is
the diagonal covariance. The parameter § which adjusts the weighting between

appearance and configuration scores is set to 0.01 throughout. The offset is taken
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Figure 5.2: Local space-time subvolumes of different sizes are drawn in two videos of
varying length at random locations. These subvolumes represent the regions in which
local features are aggregated to form a vectorial representation.

automatically from the geometrical configuration resulting from the splitting of
the root filter during training, and is set to the difference between the root’s and
the part’s centres of mass. The covariance of each Gaussian is set to half the

size of the root filter.

General subvolume shapes

In Experiment 2 (cf. Section 5.3.2), we extended our MIL-BoF approach (§ 4.1)
by aggregating features within local subvolumes of various cuboidial sizes scanned
densely over a regular grid within the video, as illustrated in Fig. 5.2. In practice
there is a huge number of possible subvolume shapes in videos of varying resolu-
tion and length in time. Therefore we chose a representative set of 12 subvolume
sizes and a grid spacing of 20 pixels in space and time, as a compromise between
the higher localisation and classification accuracy obtainable with higher densi-
ties, and the computational and storage cost associated with thousands of high
dimensional vectors. The subvolumes range from small cubes to larger cuboids,
allowing for two scales in width, two scales in height, and 3 scales in time, where
the largest scale stretches over the whole video (Fig. 5.2). This setup generated
a total of 2 x 2 x 3 subvolume sizes within each space-time volume. The smallest
subvolume takes a size of 60 x 60 x 60 pixels in a video of resolution 160 x 120,

and scales accordingly for videos of higher resolutions.

Typical values for the number of subvolumes extracted per video ranged from
approximately 300 to 3000, depending on the length of each video. Note that
by considering only the subvolume which corresponds to the maximum size,
the representation of each video reduces to that of the global pipeline in [25].
Only considering the smallest subvolumes corresponds to the setup used in the

previous Chapter 4.
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Baseline global algorithm

The baseline approach was set-up by using only the largest subvolume, the one
corresponding to the entire video clip. This reduces to the pipeline described
in [25], except that in our setup approximate methods are used for histogram
building (kd-tree forest [130,131]) and SVM model learning (*-kernel map [126,
131], PEGASOS linear SVM [134]).

5.2.1 Experiments

First, in Experiment 1, we employed the smallest subvolume shape with Fisher
vectors, and extended it with a 3-part pictorial structure model (c.f LDSBoF,

section 5.1). From this experiment we would like to observe:

e i) the difference in performance between using only the smallest subvolume

size [48] and using general subvolume shapes (§ 5.2),

e ii) the merits of adding local deformable structure to mid-level action mod-

els,

e iii) the performance of our SVM-map strategy with instance scores gen-
erated by the deformable part model compared to taking the label of the

maximally scored hypothesis.

The quantitative results for LDSBoF are listed in Table 5.1.
In Experiment 2, we employed our local discriminative part learning (cf. MIL-
BoF, section 4.1) with general subvolume shapes but without adding structure,

in order to:

e i) determine the local MIL-BoF performance with multiple subvolume

shapes with respect to our global baseline (§ 5.2),

e ii) assess how the dimensionality of the instance representation affected

performance,
e iii) compare BoF and Fisher representations.

Furthermore, we compared three ways of mapping instance scores to a final bag

classification score:

e a) by taking the argument of the maximum value in each bag (max),

e b) by calibrating the instance scores by fitting a sigmoid function to the
SVM outputs [124,125] before taking the max (max-platt),
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e ¢) by using our proposed SVM-map mapping strategy (cf. section 4.2).

We also address questions such as: i) What is the relative difficulty of each
dataset? and ii) How important is feature dimensionality for discriminating
between more classes? The results are presented in Fig. 5.3 and Table 5.2,
where one standard deviation from the mean was reported for those datasets

which have more than one train/test split.

5.3 Quantitative results and discussion

5.3.1 Experiment 1 - adding structure

In the first experiment we picked the smallest subvolume size and added the
pictorial structures model described in section 5.1 to the local Fisher represen-
tations with K = 32 Gaussians. The smallest subvolumes were chosen to locate
actions at a finer scale (see Fig.5.4). The results obtained using the root node
corresponds to ‘LDSBoF-1’, whilst the results obtained by incorporating parts
and structure are denoted as LDSBoF - 3(max) and LDSBoF - 3(SVM-map).

From Table 5.1, it was observed that including parts and a structure model
consistently improved accuracy and mF1 measures across all datasets. For ex-
ample, on the Hollywood2 dataset, between the Fisher root model (LDSBoF - 1)
and the Fisher 3 - star model (LDSBoF - 3(max)), we observed a significant
5.7%, 2.44%, and 7.36% improvement in accuracy, mAP and mF1 measures re-
spectively, demonstrating the value of adding deformable parts to the model.
The mAP however, which orders the predicted detection scores, dropped con-
siderably, and mAP performance gains were only observed on the Hollywood2
dataset. Finally mapping the instance-scores to bag-scores with our SVM-map
strategy produced poor results overall compared to taking the max, indicating
that it is not well suited for instance scores produced by deformable part models
(Equation 5.2).

5.3.2 Experiment 2 - general subvolume shapes

In the second experiment, we employed discriminative part learning with gen-
eral subvolume shapes. The results are presented as graphs in Figs 5.3(a)-5.3(d),
where for each dataset, the classification accuracies of various approaches (see
Fig. 5.3(a)) were plotted for comparison. For each set of experiments, the mid-

level feature dimensionality was varied by controlling the K-centroids used to
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Table 5.1: A table showing the results for using our local deformable spatial bag-of-
features (LDSBoF) with Fisher vectors generated using K = 32 Gaussians.

KTH Acc mAP mF1
LDSBoF-1 94.44 97.65 94.45
LDSBOF-3(max) 95.83 96.97 95.84
LDSBoF-3(SVM-map) 96.76 95.27 96.76
YOUTUBE Acc mAP mF1
LDSBoF-1 73.0248.50 | 83.15+6.83 | 70.35%9.35
LDSBOF-3(max) 80.06+7.28 | 75.97+7.84 | 77.06+£8.82
LDSBoF-3(svM-map) || 068.0449.26 | 77.064+6.12 | 67.1849.26
Hollywood2 Acc mAP mF1
LDSBoF-1 51.36 43.75 36.73
LDSBoF-3(max) 57.01 46.19 44.09
LDSBoF-3(SVM-map) 50.22 43.49 48.19
HMDB51 Acc mAP mF1
LDSBoF-1 25.49+0.28 | 28.5440.56 | 23.62+0.61
LDSBOF-3(max) 31.09+0.53 | 12.674+0.50 | 29.4640.63
LDSBoF-3(svM-map) || 14.60£0.34 | 14.824+0.18 | 14.43+0.71

build each visual vocabulary. The dimensions of KBoF (approximate kernel-
mapped BoF) vectors were calculated as: K (centroids) x5 (feature compo-
nents) x3 (kernel-map). The dimensions of Fisher vectors were calculated as: 2
(Fisher vectors [67]) x K (centroids) x5 (feature components) x24 (dimensions
per feature component after PCA).

From the result plots of Fig. 5.3, a number of interesting observations emerged.
First, even with a 16 fold reduction in K and without a kernel feature mapping,
Fisher vectors outperformed KBoF, both in global and local representations. It
is even quite surprising that with only 2 clusters per dense trajectory feature
component, Fisher vectors achieved over 90% accuracy on the KTH dataset, a
sign of the dataset’s ease. The relative difficulty of each dataset is related to the

number of categories in each dataset; the classification accuracy chance levels
11 1 1
67117 127 51
into consideration the noise in the dataset labelling, or the choice of train-test

are: for Figs 5.3(a)-(d) respectively. However, this does not take
splittings. For example, the YouTube and Hollywood2 datasets both have a
similar chance level, however the lower accuracies of Fig. 5.3(c) as compared to
Fig. 5.3(b) demonstrate the increased difficulty posed by Hollywood2.

Notice that the Hollywood2 and HMDB datasets showed a steady increase in

accuracy with increasing K, which shows the benefit of learning with more model
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Figure 5.3: Quantitative graphs for learning local discriminative subvolume models
via multiple-instance learning. Here we plotted the accuracy against the mid-level
feature dimensionality, and compare i) our local MIL approach (red € black) vs. the
global baseline (blue & green), ii) the performance of kernel-BoF and Fisher vectors,
and iii) three instance to bag mapping strategies, namely: taking the argument of the
max instance, max after Platt calibration, and our SVM-map instance to bag mapping
technique. The chance level is plotted as a grey horizontal line.
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parameters and higher dimensional vectors on challenging datasets. However this
trend was not always observed with the KTH and YouTube datasets, a sign that

cross-validation over K may improve results.

The high wvariation in accuracy obtained when taking the max (red/black
dash-dotted lines), indicated that the SVM models learnt in a one-vs-all manner
often produced incomparable scores. This was demonstrated by the boost in
accuracy often observed after the scores were Platt-calibrated [124] (red/black
dotted lines). Finally, further improvement was offered by mapping the instance
scores directly to bag scores using our SVM-map approach (red/black solid lines).
For example on the Hollywood2 dataset (Fig. 5.3(c)), MIL-Fisher (SVM-map)
with K = 32 achieved an 8% boost compared to the respective Platt-calibrated

max.

The aforementioned observations also held on HMDB, the most challenging
dataset considered here with a chance level of just under 2%. It may be seen that
the accuracy of global Fisher vectors outperformed that of KBoF, despite having
a smaller number of K centroids. Again, Platt-calibration greatly improved the
results for taking the argument of the maximum instance in each bag, however
our SVM-map strategy gained further, with the local Fisher method coming out

on top.

The quantitative results obtained for the Fisher vectors with K = 32 cen-
troids per feature component are listed in Table 5.2. Comparing the results of
MIL-F32(max) to LDSBoF - 1 demonstrates the improvements in accuracy ob-

tained by using a general mixture of subvolumes as opposed to a single size [48].

Even though the KTH dataset is arguably the easiest dataset considered in
this work, with already near-saturated results, one can still observe minor im-
provements when comparing local models to the global baseline. On the YouTube
dataset however, our global baseline outperformed the current state-of-the-art
on mAP, whilst our local MIL-F32 setup outperformed the state-of-the-art on

accuracy and mF'1 measures.

Performance gains over the global baseline were observed across all perfor-
mance measures on the Hollywood2 dataset. Note that the lower mAP as com-
pared to the state-of-the-art may be a result of using half-resolution videos and
approximate methods for histogram building and learning action models, in or-
der to cope with the large instance training sets (§ 5.2). Finally the HMDB is
the most challenging action classification dataset, and we report a 4.4%, 8.7%
and 7.5% increase in accuracy, mAP and mF1 measures when compared to our

global baseline.
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Table 5.2: A table showing the state-of-the-art results, and our results using Fisher

vectors with K = 32 Gaussians (F32).

KTH Acc mAP mEF1
State-of-the-art || 96.76 [*3] 97.02 %3] 96.04 %3]
Global-F32 95.37 96.81 95.37
MIL-F32(max) 95.83 97.43 95.84
MIL-F32(max-platt) 95.83 97.43 95.82
MIL-F32(SVM-map) 96.76 97.88 96.73
YOUTUBE Acc mAP mF1
State-of-the-art || 93.77 [127] 86.10 18] 77.35 1481
Global-F32 83.64+6.43 | 87.184+3.58 | 80.41+7.90
MIL-F32(max) 81.84+6.68 | 86.53+4.65 78.5948.31
MIL-F32(max-platt) 79.22+5.88 | 86.5344.65 74.35+7.56
MIL-F32(SVM-map) 84.5245.27 86.73+5.43 | 82.43+6.33
Hollywood2 Acc mAP mF1
State-of-the-art || 39.63 [*°] 63.3 119 39.42 1481
Global-F32 33.94 40.42 12.18
MIL-F32(max) 53.96 49.25 39.11
MIL-F32(max-platt) 52.94 49.25 36.34
MIL-F32(SVM-map) 60.85 51.72 52.03
HMDB51 Acc mAP mF1
State-of-the-art || 66.79 27 40.7 2 25.41 48]
Global-F32 32.79+1.46 30.984+0.69 30.62+1.19
MIL-F32(max) 23.33+0.66 | 35.8740.56 16.684-0.40
MIL-F32(max-platt) 36.19+0.56 35.884+0.56 32.86+0.34
MIL-F32(SVM-map) 37.214+0.69 | 39.694-0.47 | 38.144-0.76

5.4 Computational timings

The experiments were carried out on a machine with 8, 2GHz CPUs and 32GB of
RAM. The timings we report here are for running the method ‘MIL-F32’ on the
HMDB dataset. Building the visual vocabulary took 4 CPU hours, whilst the
local aggregation of dense trajectory features in to Fisher vectors took 13 CPU
days. Finally, 5 CPU days were needed for learning local discriminative subvol-
umes via MIL. Since the implementation is non optimised in MATLAB, we are
convinced that the computational timings can be cut considerably. Note that the
low-level feature extraction, the local aggregation, and one-vs-all classification

are easily parallelised.



Chapter 5. Towards adding local structure and general subvolume shapes 71

5.5 Qualitative localisation discussion

In addition to action clip classification, the learnt local instance models can also
be used for action localisation, the results of which are discussed in the next

sections.

5.5.1 Bounding box detection with LDSBoF

The LDSBoF approach is able to predict the location of discriminative action
parts by selecting the top scoring ‘root” and ‘part’ configurations in each video
clip. This is clearly seen in Fig. 5.4, where the front, top and side views of a
boxing video sequence from the KTH dataset are plotted in space-time. Notice
that the parts correspond to a spatial subdivision of the root subvolume, and
have connections to the root that are deformable in both space and time.

The space-time plots of Figs. 5.5(a)-(c) show qualitative results obtained
when detecting actions with LDSBoF models on real-world movie sequences
from the Hollywood2 dataset. Due to the large variation in video clip length, we
picked the top 5% detections, which do indeed correspond to discriminative parts
of the action. A supplementary video illustrating additional LDSBoF results is

available on the Internet!.

5.5.2 Class-specific saliency

In contrast to object detection, in which the boundaries of an object are well
defined in space, the ambiguity and inherent variability of actions means that not
all actions are well captured by bounding boxes. As an alternative we propose to
use the detection scores as a measure of action location and saliency, as shown
in Fig. 5.6.

Recall that at test-time each subvolume is associated with a vector of scores
denoting the response for each action category in that region. Since in our
framework, we also map the individual instance scores to a global video clip
classification score (§ 4.2), the vector of scores associated with each subvolume
can be reduced to that of the predicted video action class. It is therefore possible
to build an action-specific saliency map by aggregating the predicted detection
scores from all instances within the space-time video. In both Fig. 5.6(a) & (b),
the saliency map is specific to the predicted global action class, and is displayed

as a sparse set of points for clarity. The sparsity and colour (from blue to red) of

'https://www.youtube.com/watch?v=jtLfUfBVibk
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Figure 5.4: (a) Top, and (b) side views from a test boxing video sequence in the KTH
dataset. Plotted are the top 5 best part configurations found in the video volume. The
simple tree-structured star models are drawn with blue and green links to the root node.

the plotted points indicate the action class membership strength. Moreover, the
saliency map indicates the action location in both space and time. In both videos
of Fig. 5.6, irrelevant scene background, common in most of the KTH classes,
was pruned by the MIL during training, and therefore the learnt action models
were able to better detect relevant action instances. Notice that the saliency

map was able to capture both the consistent motion of the boxing action in
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Figure 5.5: Detected LDSBoF configurations in the challenging Hollywood?2 dataset.
The three sequences from the Hollywood?2 dataset show the detections for the videos
classified as, (a) GetOutOfCar, (b) FightPerson, and (c) StandUp. It is seen that in
addition to class labels, each action in the video is localised via a 3-part deformable
star model.

Fig. 5.6(a), as well as the intermittent walking action of Fig. 5.6(b).

The qualitative localisation results for the HMDB dataset are shown in
Fig. 5.7 and Fig. 5.8, where the saliency maps drawn over the videos are those
corresponding to the predicted global action class. Note that such a saliency map
does not represent a general measure of saliency [23], rather it is specific to the
particular action class being considered. This has the effect of highlighting dis-
criminative parts of the action, for example, in the pushing action of Fig. 5.7(e),
the contact between the hands and vehicle is highlighted, less so the leg’s mo-
tion. Likewise in Fig. 5.7(d) the pouring action is highlighted, less so the arm’s

motion.

The videos of Fig. 5.8 show the results obtained when the clip is incorrectly
classified. In this case, higher scores are located at the borders of the video
frame, since the instance scores for the wrong predicted class are low over the
video parts where the action occurs. In the HMDB dataset, apart from dealing
with a wide range of action classes, our algorithm has to deal with significant
nuisance factors in the data, such as frames of ‘Britney Spears’ singing in between
a ‘kick_ball” action (Fig. 5.8a), and the possibility of multiple actions per video

clip such as the ‘walking’ and ‘waving’ actions in Fig. 5.8(f).

In this chapter, as well as the previous one, we demonstrated the value of
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leveraging large weakly labelled datasets to locate the discriminative parts of
a video. This entailed breaking up each video into small overlapping blocks,
making the learning problem large-scale. Due to the large amount of data,
approximate algorithms were used to encode mid-level features and learn action
models. In the next chapter, we focus on the global representation of action
videos, which allows more compact datasets for training. This means we can
afford to use exact euclidean distances for quantising features, and a kernel-
SVM solver. We will also be able to run many more experiments and evaluate

the merits of various strategies to building a bag-of-visual-words vocabulary.
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(b) walking

Figure 5.6: Action classification and localisation on the KTH dataset. (a) This
boxing video sequence has been correctly classified, and has overlaid the boxing action
saliency map to indicate the location of discriminative action parts. (b) Walking
action classification in an 850-frame video sequence. The actor walks in and out of
the camera shot, as shown by the dense red points over the locations in which the actor
was present in the shot.
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Figure 5.7: Action localisation results on the HMDB51 dataset, the most challenging
action classification dataset to date. (a) Brush hair video clip. Notice that the saliency
map in (b) is focused on the bow and not on the person’s elbow movement. (¢) Shoot
gun action. In (d), a girl is pouring liquid into a glass, and in (e) a person is pushing
a car. The push action does not fire over the person’s moving legs but rather on the
contact zone between the person and the vehicle. (f) Chew action.
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(a) dive (kick_ball) (b) climb (push) (c) catch (swing_baseball)

(d) punch (hug) (e) clap (punch) (f) walk (wave)

Figure 5.8: Misclassifications in the HMDB51 dataset. The predicted class is shown
first, followed by the ground truth class in brackets. Note that the localisation scores
shown are of the predicted class. (a) A ‘kick ball’ action that has frames of Britney
Spears singing in the middle. (b) A ‘push’ action wrongly classified as ‘climb’. (¢) The
fast swinging movement of the ‘baseball” action was classified as ‘catch’. (d) A hug was
incorrectly classified as punch, and (e) a ‘punch’ was misclassified as ‘clap’. (f) In
this case the wave action was misclassified as walk, even though President Obama was
also walking. The algorithm was unable to cope with the situation in which two actions
occur simultaneously (best viewed in colour).
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Chapter 6

Feature sampling and
partitioning for visual
vocabulary generation on large

action classification datasets

In this chapter we consider global action classification in which there is:

a huge number of features per dataset;

an imbalance in the number of samples per class;

an imbalance in the number of features per video;

and with several feature components per feature descriptor.

Therefore we detail experiments to answer the following questions set out in

section 1.5.3, namely:

i) What is the best way to randomly subsample features to build a vocabulary
for human action recognition?

ii) What are the effects of learning separate rather than joint visual vocab-
ularies when considering multiple feature components or multiple action

classes?

We keep some parameter settings constant throughout the tests (§ 6.1) and let
others vary (§ 6.2). The specifics of our vocabulary sampling and generation
strategy, designed to be robust to an imbalance in the number of videos per
category, and to an imbalance in the number of features per video, are laid out
in Algorithm 6.1.

79
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6.1 Constant experimental settings

Space-time features

Amongst the wide variety of space-time interest point detectors [53, 55] and
descriptors [15,60-62], the dense trajectory features of Wang et al. [25] gave the
state-of-the-art results in experiments with challenging action video data [25,48]
(cf. Section 2.2). These dense trajectory features were pre-computed from video
blocks of size 32 x 32 pixels for 15 frames, and a dense sampling step-size of
5 pixels, using the code made available by the authors [25]. The features were
stored as groups of 4-byte floating point numbers, each associated with a video ‘i’
in dataset d € D, wherei € {1,..., N}. With our settings the size of each feature
Scp was ((304a; + 960G + 10840p + 960 prs + I6rrpmy) X 4)/1024° GB, where
the summed integers denote the dimensionality of each feature component. The
approximate number of dense trajectory features extracted per dataset and per

video is presented in Table 2.1, together with further dataset specific statistics.

Visual vocabulary

The k-means algorithm was used to generate the visual vocabulary for BoF and
Vectors of Locally Aggregated Descriptors (VLAD) [68,136]. The greedy nature
of k-means means that it may only converge to a local optimum. Therefore
the algorithm was repeated 8-times to retain the clustering with the lowest er-
ror. The number of feature samples used to learn the vocabulary was set to a
maximum of 10,000 per cluster. We found that setting the pool of feature size
to depend on the number of clusters allows faster vocabulary computation for
small K without loss of performance. The maximum number of features was set
to a value of 1 x 10® in order to limit memory usage and computational time for

larger K.

Hardware constraints

With dense trajectory features [25], 1 x 10° features translate to ~ 1.6GB of
memory when using 32-bit floating point numbers, and may thus easily be worked

with on a modern PC or laptop. All our experiments were carried out on an
8-core, 2GHz, 32GB workstation.
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Bag-of-features

In the BoF approach, histograms are computed by quantising features to the
nearest cluster (minimum euclidean distance). Each BoF histogram was L1
normalised separately for each feature component and then jointly [20]. The
same setup was used for BoF per-category, except that separate vocabularies
were generated by clustering the features from each class and then joining them
into one universal vocabulary. For both BoF approaches the exponentiated y?2-
kernel SVM [15,26, 137] was used:

1

K
1 (hix — hi)?
Oy (b, by) exp( 24 Zk: hic + hje )’ (6.1)

where h; and h; are the histograms associated by videos i and j, K is the number
of cluster centres, and A is the mean value of all distances between training

histograms, and A is the k™ element of the histogram vector h.

VLAD and Fisher vectors

Initially, due to the high dimensionality of both VLAD and Fisher vectors (cf.
Section 2.3), the dense trajectory feature components were independently re-
duced to 24 dimensions using PCA. We used the randomised PCA algorithm
by Rokhlin et al. [132] to solve the USV' decomposition on the same 1 x 10°

subsampled features used for dictionary learning.

Both VLAD and Fisher vectors were computed using the implementations
available in the VLFeat library [131]. We followed Perronnin et al. and apply
power normalisation followed by L2 normalisation to each Fisher vector compo-
nent separately [67], before normalising them jointly. Contrarily to expectations,
it has been shown that Fisher vectors achieve top results with linear SVM clas-
sifiers [67,138].

Support vector machines

For both the y?-kernel and linear SVMs, multi-class classification was performed
using a 1-vs-all approach [139], and we keep the regularisation cost C=100 con-
stant throughout [26,62].
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6.2 Variable components of the experiments

Test 1 - comparison of uniform random sampling strategies

We compared two methods of sampling descriptors in order to learn a visual
vocabulary. Note that the sample forms the data on which the k-means algorithm
will operate, and therefore if important but rare features are missed out due to
an imbalance in the data, it may lead to a suboptimal visual vocabulary. Method
(1a) sampled a balanced random set of features from the dataset, accounting
for an unbalanced number of videos per action category, and an unbalanced
number of features per video (see Table 2.1). A uniform random selection of
features without balancing was performed for method (1b). The exact sampling
strategy is detailed in Algorithm 6.1, whilst the comparative performance will

be discussed in section 6.3.

Test 2 - comparison of joint and component-wise visual vocabulary

generation

Here we learnt a visual vocabulary separately for each feature component (2a)
such as the Trajectories, HoG, HoF, MBHx and MBHy components, and com-
pared this to grouping these features together and learning a joint vocabulary

(2b).

Test 3 - comparison of global representations

For each experimental setting, we assessed the performance of the following
four global representations: standard BoF (3a), BoF per-category (3b), VLAD
(3c) and Fisher vectors (3d). Each variation was run for 7 values of K cluster
centres, ranging from 22 to 2® in integer powers of 2. The code to reproduce our

experiments and results is available online!

6.3 Results and discussion

Our experiments consisted of 2 binary tests (la-b, 2a-b) for 7 values of K
cluster centres, 4 representation types (3a-d) and 4 datasets, for a total of
22 X Tx4x4 =112 x4 = 448 experimental runs, the results of which are shown
in Figs. 6.1-6.4. The best quantitative results were further listed in Table 6.1

'https://sites.google.com/site/mikesapi/downloads/
global-video-representation
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Algorithm 6.1 The sequence of steps used for generating a visual vocabulary for
action classification datasets. Note that our proposed method (1a) is designed
to be robust to an imbalance in the number of videos per category, and to an
imbalance in the number of features per video.

1. Extract dense trajectory features [25] from videos and store them on disk;

2. For each dataset d € D, calculate the mean number of features puq =
% Zfil n;, where n; is the total number of features extracted from clip i,
andi € Z = {1,...,N};

3. Set the maximum number of videos to sample from V,,,, based on the
mean number of features per video: V00 = Lu jﬁ%sz, where Mg is the
maximum memory available, and Sgp is the memory needed to store a

single feature;

4. Subsample ng—;””j videos uniformly at random from each class (1a, class
balancing), or (1b) V.4, videos uniformly at random from the entire set
of videos, where Cy denotes the number of action categories in dataset d;

5. Load features into memory by uniformly subsampling min(ny, pq) features
per video (1a), or by loading all the features n in each video (1b), where
1 € £ C T denotes the set of subsampled video indices;

6. Subsample min(1 x 10%, K x 10%) features (1a) at random, with a balanced
number from each class, or (1b) at random from the entire set;

7. Perform k-means with K cluster centres separately per feature component
(2a) or jointly by concatenating the feature components (2b);

8. Represent videos globally via BoF (3a), BoF per-category (3b), VLAD
vectors (3c), or Fisher vectors (3d).

in order to compare them to the current state-of-the-art. For each dataset, we

presented:
i) the classification accuracy plotted against the number of clusters K,
ii) the accuracy plotted against the final representation dimensionality D.

Note that the horizontal axis marks for Figs. 6.1-6.4 are evenly spaced, thus
encoding only the ordering of K and D. The computational time needed to
generate the results was approximately 130 CPU hours for KTH, 1290 CPU
hours for YouTube, 1164.8 CPU hours for Hollywood2, and 974 CPU hours on
the HMDB dataset.

The results for KTH are shown in Fig. 6.1. The accuracy quickly shot up

with an increasing K and associated dimensionality D and saturates at around
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95% accuracy. By looking at the curves of Fig. 6.1, one may identify the best
performing method under a value of K and representation size D. For example
the dotted line in Fig. 6.1 highlights the methods at D = 192, where several
test configurations span an accuracy gap of approximately 12%. In this case,
the BoF per-category (3b) at D = 192 (32 clusters x6 classes) surpassed the
current state-of-the-art with 97.69% accuracy, 98.08% mAP, and 97.68% mF1
score. Note that the histogram was formed by sampling the features uniformly

at random (1b) and clustering the features jointly (1b).

The results for the YouTube dataset did not follow the same pattern as of
KTH, as seen in Fig. 6.2. The accuracy peaked and then fell for the BoF and
BoF per-category, which indicated that the higher dimensional representations
combined with the x2-kernel SVM lead to overfitting. This was not so for Fisher
vectors and linear SVMs, which outperformed all the BoF results with only 4

cluster centres per feature component (see dotted line in Fig. 6.2-right).

Here one can clearly see the benefit of using separate vocabularies per feature
type (see Fisher joint (2b) vs. Fisher separate (2a)), and the advantage of
random balanced sampling as the number of classes and videos has increased
compared to KTH. Comparing the results obtained as a function of K, on the
YouTube dataset, Fisher vectors (3d) outperformed the other representation
types 96.43% of the time, generating a visual vocabulary separately per feature
was best for 85 .71% of the trials, whilst using a random and balanced feature

selection was best 66% of the time.

The Hollywood2 results of Fig. 6.3 (bottom) highlight the initially increased
performance obtained using BoF at low values of K, which were eventually
overtaken by the high dimensional Fisher and VLAD vectors with a linear SVM
at the top of the curve. In fact, at dotted line (1), BoF per-category with
joint features and balanced sampling (3b-2b-1a at D = 48) achieves 5% higher
accuracy than the equivalent Fisher vector at D = 192. Even though at the
top of the curve Fisher vectors achieve the highest accuracy, note that BoF per-
category is very close behind with a separate (2a) and balanced (1a) vocabulary

(purple circle).

The Hollywood2 dataset has the largest variance in the number of features
per video clip (see Table 2.1), making it more susceptible to randomly selecting
an imbalanced feature set for k-means. For example, the outlier for VLAD at
D =192 in Fig. 6.3 (right, dotted line 2) may be caused by the biased feature
sampling of method (1b), which has the undesirable effect of excluding discrimi-

native features from the learned vocabulary, and over-representing features which
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Figure 6.1: KTH dataset classification accuracy using a global video representation.
(top) The Accuracy is plotted against the number of cluster centres K, and (bottom)
against the representation dimensionality. Note that with a small number of cluster
centres (top), high dimensional representations may be achieved (bottom), for example
when generating vocabularies separately per feature component or per action class. In
the rightmost plot, at a relatively low representation dimensionality D = 192, there
are several competing representations within a ~12% range in accuracy. The best
representation method, however, on this dataset is BoF per-category (8b) with a single

joint visual vocabulary (2b) and features sampled at random (1b).
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Figure 6.2: YouTube dataset classification results. (top) Accuracy vs. K cluster
centres, and (bottom) accuracy vs. representation dimensionality. Notice (bottom)
the inverted ‘U’ paths traced by the x*-kernel SVM (BoF and BoF per category) as
opposed to those generated by the linear SVM (VLAD and Fisher vectors). The dotted
line indicates the group of data points at D = 960 and highlights the top performing
method, which is Fisher vectors with only 4 clusters per feature component. The error
bars over 25 cross-validation folds have been suppressed for clarity.
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Figure 6.3: The classification accuracy versus K cluster centres (top) and representa-
tion dimensionality (bottom) on the Hollywood2 dataset. For the BoF method, notice
the significant jump in performance (top) between joint (red/blue crosses) and sepa-
rate (green/black crosses) feature component vocabulary learning. It is also noteworthy
(bottom) that at low dimensionalities, the Chi-square kernel SVM far outperforms the
linear SVM, but for higher dimensional vectors, linear SVM surpasses the former.
Dotted lines (1) and (2) highlight situations in which (1) BoF-per cdtegory achieves
competitive performance for small K, and (2) random balanced sam})ling helps pre-
venting situations in which a bias in the sampled feature pool may give poor results.
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Figure 6.4: The classification accuracy versus K cluster centres (top) and represen-
tation dimensionality (bottom) for the HMDB dataset. The differences between the
random and balanced features becomes more significant at higher values of K. For
example, this is clearly seen between (1) the purple vs. green curves of separate BoF
per-category, (2) the yellow vs. pink of joint BoF per-category, and (3) the cyan vs.
brown curves of Fisher vectors. The error bars in the figure denote one standard de-
viation over the three train-test splits defined by the HMDB authors [3]. The grey
horizontal bar just under 2% marks the random chance level.



Chapter 6. Feature sampling and partitioning for visual vocabulary generation
on large action classification datasets 89

Table 6.1: The state-of-the-art ‘S-O-T-A’ results compared to our best results obtained
with the global bag-of-features pipeline (‘Global best’). The best results are marked in
bold. The ‘Method’ column indicates which of the varying techniques in Algorithm 6.1
gave the best result. The variations ‘a’ are marked in bold to distinguish them from
variations ‘b’. K — D indicates the number of clusters K and the representation
dimensionality D. For datasets with more than one train-test split (YouTube, HMDB,
USF51, cf. Section 3), we report one standard deviation around the mean.

KTH [13] S-O-T-A Global best Method K D
Acc 96.76 [20] 97.69 3b-2b-1b 32 192
mAP 97.88 [20] 98.08 3b-2a-1b 64 384
mF1 96.73 [20] 97.68 3b-2b-1b 32 192
YouTube [16] S-O-T-A Global best Method K D
Acc 93.77 [127] 89.62 £5.41 3d-2a-1b 128 | 30,720
mAD 89 [19] 94.25 £3.50 3d-2ala 128 | 30,720
mF1 82.43 [20] 87.45 £6.92 3d-2a-1b 128 30,720
Hollyw2 [17] S-O-T-A Global best Method K D
Acc 60.85 [20] 65.16 3d-2a-1a 128 30,720
mAP 63.3 [19] 99.66 3d-2a-1a 256 61,440
mF1 52.03 [20] 54.55 3d-2ala 256 | 61,440
HMDB [3] S-O-T-A Global best Method K D
Acc 66.79 [127] 50.17 £0.614 3c-2a-1a 256 61,440
mAP 54.8 [19] 50.07 £0.33 3d-2a-1a 256 61,440
mF'1 52.03 [20] 48.88 £0.94 3d-2a-1a 256 61,440
USF101 [34] S-O-T-A Global best Method K D
Acc 87.9 [140] 81.24 £1.11 3d-2a-1a 256 61,440
mAP - 82.35 £0.97 3d-2a-1a 256 61,440
mF1 - 80.57 £1.11 3d-2a-1a 256 61,440

appear more frequently in the dataset. Again on this dataset, learning vocabular-
ies separately per feature component greatly outperformed learning vocabularies
jointly, for every representation dimensionality value D. Here, the best perform-
ing approach made use of Fisher vectors (3d), with random-balanced sampling
(1a) and features clustered per component (2a), which outperformed the current
state-of-the-art by 4.32% (see Table 6.1).

Large performance differences were also observed in Fig. 6.4 for the HMDB
dataset. With an increased number of action classes, one can more easily see
the performance gained by ‘balanced’ sampling rather than uniform random
sampling. For example, see the differences between the yellow and pink curves
of BoF joint per-category (Fig. 6.4 right, dotted lines 2), or the cyan and brown
curves of Fisher vector joint random vs. random-balanced (Fig. 6.4 right, dotted
lines 3). This was only observed at higher dimensionalities though, and overall

‘balanced’ sampling outperformed random sampling just 53% of the time. Note
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however that the best accuracy, mean average precision and mean F1 scores
on the Hollywood2 and HMDB datasets were obtained using random-balanced
sampling, as shown in Table 6.1. In Fig. 6.4, one can also observe the benefit
of BoF per-category, which outperforms BoF by learning separate vocabularies
per action class.

We estimated that to run an additional 112 experiments on UCF101 dataset
would take approximately 1 CPU year, and thus report only a single run with the
best performing variable components observed in the experiments so far, namely
Fisher vectors, balanced sampling and separate vocabulary learning. UCF101 is
the largest current action recognition dataset (see Table 2.1), however it may not
be the most challenging. We achieved, 81.24%, 82.35%, 80.57% accuracy, mAP
and F1 scores respectively averaged over the three train test splits provided by
the authors [34]. Our reported accuracy is 37.34% higher than the original results
reported in [34], and 4.6% short of the result reported in [141], which additionally
used spatial pyramids and a variation of the dense trajectory features which
estimates camera motion information [142].

The computational time needed to generate this result on the UCF101 results
was 163.52 CPU hours. Interestingly, a large part of the computational time is
spent loading features from disk. Thus even though the chance level of UCF101
is just under 1%, our results indicate that the HMDB dataset remains the most
challenging action classification dataset currently available. The overall best
results are listed in Table 6.1; by using our approach (Algorithm 6.1) with an
increased number of model parameters (using a larger K, or by using spatial
pyramids [77]) may yield further improvements to the current state-of-the-art

results.
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Learning pullback distances for

dynamical action models

Suppose that each video in an a training set of S action sequences is represented
as a sequence of observations, or a sequence of features. Suppose as well that an
algorithm able to identify the parameters of the dynamical model (of a chosen
class) which best fits a given sequences of feature vectors is available. Then, the

videos can be mapped to a training set D = {m;, ..., mg} of dynamical models.

7.1 Pullback metrics in Riemannian geometry

Assume initially that the learned dynamical models live on a Riemannian man-
ifold M (Fig. 7.1). An automorphism' (invertible differentiable map F : m €
M — F(m) € M from a domain to itself) on the model manifold M is associ-

ated with a ‘push-forward’ application of tangent vectors [143]:
Fo:veTaM= F.v € TpmM, (7.1)

which maps a vector tangent to a curve to the vector tangent to the image of
this curve via F' (Fig. 7.1-right). Given a Riemannian metric g on M, F' induces

a pullback metric
g«(u,v) = g(Fu, F,v), (7.2)

such that the scalar product of two vectors u, v according to g, is equal to the
scalar product with respect to the original metric g of the push-forward vectors

F,u, F,v. The corresponding pullback distance between two points m, m’ € M

!Note that the automorphisms presented in this chapter are intended to preserve the
smooth structure of the manifold and not the metric structure.
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Figure 7.1: Encoding each training video as a dynamical model (e.qg. a HMM, left)
yields a training set of such models in the relevant space M (right). In the Riemannian
case, any automorphism of M induces a push-forward map which, given a base metric,
induces a pullback distance there. By parameterising the automorphism F we obtain
a family of distances we can optimise upon.

(e.g. two dynamical models) is the geodesic distance (length of the shortest
path) between the two points according to the obtained pullback metric.

If we define a class of such automorphisms { Fx, A € A} depending on a vector
A of parameters we get a family of pullback metrics {g}, A € A} on M, also
depending on A. We can then define an optimisation problem over such a family
in order to select an optimal metric. The nature of the resulting Riemannian

manifold depends on the chosen objective function.

7.2 Pullback distance learning framework

Although the differential geometry of some classes of linear dynamical models
has indeed been analysed [144], for many other classes used in action recognition
(and hidden Markov models in particular) a proper Riemannian metric [145] has
not been yet identified. Nevertheless, pullback distances can also be introduced

on metric spaces?, by defining
d.(m,m') = d (F(m), F(m)). (7.3)

We therefore propose the following more general framework for learning an op-
timal pullback distance from a training set of dynamical models, detailed in
Algorithm 7.1.

2Sets endowed with a distance function d meeting the triangle inequality (cf. Section A.1)
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Algorithm 7.1 A general framework for learning an optimal pullback distance
from a training set of dynamical models

1. Assume that a dataset of S observation sequences {[y,t = 1,...,T,
s = 1,...,S} is available;

2. From each sequence, a dynamical model my; of a certain set C (e.g., a HMM)
is identified, yielding a dataset of models D = {my, ..., mg}. Such models
belong to a metric space M¢ endowed with a distance function da.;

3. A family {Fx, A € A} of automorphisms from M. onto itself, parametrised
by a vector A, is designed. Such family of automorphisms induces a family
of distance functions {d2, A} on Me;

4. Optimising over this search space of pullback distances yields an optimal
distance function d,, which can eventually be used to classify previously
unseen models.

7.3 Pullback distances for HMMs

A hidden Markov model (HMM) is a finite-state stochastic dynamical model
whose states {X;} € X form a Markov chain, which linearly generates an
observation process y, € RY. By identifying its N states with unit column

vectors (simplex vertices) e; of RY [133] we can write it as:

XtJrl = AXt + W+1, (74)
yt+1 = CXt + diag(WtH)EXt, (75)

where {Vi;1} is a sequence of martingale increments and {Wy1} is a sequence
of i.i.d. Gaussian noises N (0, 1). Given a state X; = e;, the observations have a
Gaussian distribution p(y,,,|X; = e;) with mean vector ¢; = E[p(y,1|X: = €))],
the j-th column of the matrix C. The parameters of an HMM are therefore its
transition matrix A = [¢;] = P(Xi41 = ei|X; = €;), the state output matrix C
and the covariance matrix 3. Given a sequence of observations {yy, ..., yr}, the
HMM most likely to generate it can be identified via the Expectation Maximi-
sation (EM) algorithm [133].

7.3.1 The space H of hidden Markov models

In most cases the covariance matrix 3 is assumed to be fixed. This helps the

convergence of EM without jeopardising the generative power of the resulting
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model. The space H = {(A,C)} of HMMs with a fixed covariance matrix is
then the Cartesian product space H = M 4 x M, where M 4 denotes the space
of all N x N transition matrices A, while M¢ is the space of all state-output

matrices C.

7.3.2 The space of transition matrices

Transition or stochastic matrices have N (/N —1) free parameters, as their columns,

representing conditional probability distributions P(X;1|X; = €;), sum to 1:

N
Y P(Xi=e|X,=e) =1 (7.6)
i=1

Probability distributions on a finite set of N elements (the states of the Markov

model) live in an (N — 1)-dimensional simplex
Cl(pys ... Py) = {1py + ... + anpy, Zaizl}, (7.7)

having as vertices py, ..., py the probability distributions p; : X — [0, 1] such that
pi(e;) =1, pi(e;) = 0 Vj # i. Transition matrices live therefore in the Cartesian

product of N such simplices, one for each column a; of A (see Fig. 7.2):

N

Ma =[] CUP), ... pY). (7.8)

j=1

Any A € M, is identified by the collection of simplicial coordinates (a;,i =
1,...,N) of all its columns a;, j = 1,..., N in the respective simplices, i.e., the

latter’s stacked vector.

7.3.3 Learning an approximate observation space

The state-output C' matrices are instead N-plets of vectors of the observation
space ) of the Markov model. When a training set of models is available, we
can use the information it provides to learn an approximation Y of Y. It has
indeed been observed that for specific classes of motions, observations live in
a lower-dimensional manifold [146] of R®. By applying unsupervised nonlinear
embedding to the collection of columns of all the C' matrices of the training set
of HMMs, we get a cloud Y of D-dimensional embedded columns approximating

the observation space, as illustrated in Fig. 7.3. Here we use Locally Linear
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P(Xt_|_1 :e3|Xt:e1) =1 P(egle]\r):l

~ S
P(Xt+1 = egth = el) =1 P(egleN) =1 P(e1|eN) =1

Figure 7.2: The space M 4 of transition matrices with N states is the product of the
N simplices of conditional probabilities P(Xyy1 = €i|Xx = €j), j =1,...,N. My is
isomorphic to the proposed automorphism space A4, since the weights A also form
points on 2-simplices. For our tests, each simplexr of Ao was sampled along a regular
grid (right).

Embedding (LLE) [147], though other dimensionality reduction algorithms [148]
such as Kernel-PCA [149], or Neural networks [150] may be employed.

Each element of the obtained lower-dimensional observation space needs to
be associated with a vector of real numbers, its coordinates, to which an au-
tomorphism can be applied. This can be done by estimating via EM the Mix-
ture of Gaussians (MoG) {T'*,k} which best fits the approximate observation
manifold Y (cf. Fig. 7.3-left). As coordinates of each (embedded) observation
vector y we may then use the associated unique set of probability density values:
y = {T%(y),k} (cf. Fig. 7.3-right). As each C matrix is an N-tuple of observa-
tion vectors, a point C of the (approximate) space M. has as coordinates the

stacked coordinates of its embedded columns under the MoG.

7.3.4 An automorphism of H

We can now design a product automorphism:
F(h) = F((A,C)) = (Fa(A), Fe(0)), (7.9)

on the space H of HMMs, where h € H is a hidden Markov model, Fy : M4 —
Ma and Fo : Me — Mg are automorphisms of the space M4 of transition
matrices and of the approximate space M¢ of C matrices, respectively.

An automorphism of transition matrices can be derived by exploiting the
form of M 4 as the product of N simplices. Each probability distribution p
in a probability simplex P = Cl(py,...,py) With N vertices is a point whose



Ry

Figure 7.3: The LLE embeddings (here of dimension d = 3) of the columns of the C
matrices of all the HMMs identified from a training set of videos form a reasonable
approzimation Y of the unknown observation space Y. Fitting a Mixture of Gaussians
to the embedded cloud provides an atlas of coordinates charts in the approrimate ob-
servation space (left). Mapping observation vectors in the embedded space via a MoG:
a 1-D example (right).

simplicial coordinates are its probability values:
p=>_ple)p;. (7.10)

A simple automorphism there can be obtained by stretching the simplicial co-
ordinates p = (p(el), ...,p(eN))T of its points p by a set of normalised weights
A= [>\17-~-7)\n] with ZiAi == 1, )\i Z 0:

Mp(er), Aap(€s), oo Auplen))
A-p ’

Fa(p) = ( (7.11)
where A - p denotes the scalar product of the two vectors. A product automor-
phism F4 for the transition space M4 = HJJL Cl (pjl, s pJN) can be derived by

applying a simplicial stretch with parameter X' to each column a; of A:
Fa(A) = {Fy(a),j = 1,.., N} (7.12)

More general deformations are discussed in Sections 7.5.3 & A.3.

The Mixture of Gaussians approximation of ) can be exploited to work out an
automorphism of the approximate observation space itself, and as a consequence
of the space M¢ of C matrices. The rationale is the following: the space where

the observation vectors live is not analytically known (unlike M 4), but needs to
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be inferred from the training set. As a topological manifold is a space covered
by an atlas of coordinate charts, each of them providing vector coordinates for a
local neighbourhood of the manifold, the MoG {I'*, k} provides an atlas of local
charts for the (unknown) HMM observation manifold. Any global differentiable
map (automorphism) there needs then to be expressed in terms of these local
coordinates. Ample freedom, however, exists on how to design a set of local
automorphisms in each coordinate chart.

In our case, the Euclidean coordinate(s) in each chart reduce to the proba-
bility densities {I’(y),k} of each (embedded) observation vector y: any local
automorphism will then have to act on these density values. We propose here to
apply a stretching to the density value of the local dominant Gaussian compo-
nent, in analogy to what done for transition matrices. Mappings acting on the
vector of all Gaussian densities in the mixture are of course conceivable. Further
design choices are discussed in Sections 7.5.3 & A.3.

Each Gaussian I'* defines a region of the (embedded) observation space in

which T'¥ is greater than all other components’ densities,
OF = {w: I'(w) > T''(w) VI #k}. (7.13)

Consider the maximum value attained here by any other Gaussian component

Tx = MAax; 4y ,eok I'(w), and define the ‘proprietary’ region R* of I'* as:
RE = {w: T(w) > T"} (7.14)

(see Fig. 7.3 for the case of a 1-D embedded observation space and 3 Gaussian
components). We can define an automorphism F : Y — Y of the approximate
observation space ) which acts non-trivially only on embedded observation vec-
tors living in the proprietary region of a Gaussian component. The sequence of

steps necessary to compute the automorphism of C'is presented in Algorithm 7.2.

7.3.5 Sampling the parameter space of the automorphism

In order to pick the automorphism which generates the optimal pullback dis-
tance we need to sample the parameter space A of the mapping. The pull-
back distance associated with each sample is applied to a validation fold of the
dataset, and the parameter which yields the best classification performance there
is picked. The parameter space A 4 for the automorphism F4 of transition ma-

trices is the product of N simplices with N vertices (as each column of A is
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Algorithm 7.2 Computing an automorphism of the approximate observation
space.

Given y € V:

1. Select the Gaussian component with highest density value: K =
argmax ['*(y);
k

2. If y ¢ R¥ leave it unchanged: y' = Fy(y) = y;

3. If y € R¥ its density value IT'*(y) belongs to the interval [T5 T ()],
with convex coordinates p, (1 — u), u € [0,1]: T5(y) = puT* + (1 —
I E (g ), where py € Y is the mean of I'X;

4. If A € [0,1] is the parameter of the desired automorphism, map I'(y) to
the new density value in the same interval [T, T (uz)] by stretching its
convex coordinates via:

Ki~n AL K (1_)‘)(1_N) K .
PO =i -w’ Twraonaop w11

5. Within R there exists an entire level set of observation vectors with
such a density value ' (y) (the two starred points in the 1-D example of
Fig. 7.3);

6. We define as y' = Fy(y) the unique vector y' which has density value
['%(y") and lies on the half-line joining p, and the original vector y.

‘stretched’ using a normalised vector A = [\, ..., A\x] of N components), i.e., it
is isomorphic to H 4 itself. A4 is regularly sampled along a grid (see Fig. 7.2).
For example, using ny,, = 10 bins per dimension, each simplex is sampled in
Nsam = P 1oy’ ("”i"_]\i:(lN _1)) = 55 locations (where N = 3 is the number of HMM
states). The total number of samples in A 4 is then (nggm)™, where ngy is the
number of transition columns actually stretched. The map F¢ depends instead
on a single scalar parameter A\ € [0, 1]: in our tests it was sampled uniformly

with much greater density.

7.4 A proof of concept

As a first proof of concept, we defined an experiment on a toy problem with
synthetic data in order to show the merits of our pullback-HMM learning in a
controlled environment. Since our method first learns an HMM from observation

sequences, and measures distances between HMMs to make a classification deci-
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Figure 7.4: Transition matrices A" based on fictional weather patterns from each
country. Darker shades indicate higher probabilities.

sion, we must first outline a method (see Algorithm 7.3) to generate a synthetic
dataset of HMM observation sequences which can then be fed to the pullback
HMM learning pipeline.

Consider a scenario in which families or groups of friends go travelling to
L countries drawn uniformly at random, in this case: 1 € {Malta, Germany,
Russia}. Each group (20 people) records the snack they ate at 4pm on each of
the T days on holiday (the length of each observation sequence is T' = 14), and
the possible observations are drawn from a list of M snacks: m € {hot chocolate,
pretzels, ice cream, doughnut}. The overall group snacking distribution per day
is captured by a histogram, counting how many snacks of each type have been
consumed. Back home each group is instructed to learn an N-state HMM (e.g.
N = 3) from the sequence of observations they collected. The objective is to
automatically determine which country they have visited by classifying the HMM
learnt on their return home. In this case, the choice of snack is dependent on
the current state of the weather in a particular country, whilst the dynamics of

the weather depend in turn on the country.

7.4.1 Synthetic HMM sequences

In order to generate the observation sequences, L transition and state-output
matrices were predefined (see Fig. 7.4 & Fig. 7.5). The hidden states of each
HMM represent possible weather states: Rainy, Cloudy, and Sunny (the possible
states remain unknown to the travellers). The synthetic sequences’ generation

procedure is laid out in Algorithms 7.3 and 7.4.
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Figure 7.5: State-output probability matrices C" based on fictional snacking patterns
for each country under different weather conditions. The possible classes are the coun-
tries the travellers went to on holiday (Germany, Malta, Russia), the hidden states
correspond to the weather conditions (sunny, cloudy and rainy), and the discrete obser-
vations are drawn from a set of snacks, in this case: hot-chocolate, pretzel, ice-cream
and doughnut.

7.4.2 Experimental setup

To create the artificial toy dataset we generated 300 examples per class, us-
ing Algorithm 7.3. The obtained sequences were then averaged and plotted to
manually verify that the histograms indeed matched the original discrete distri-
butions they were sampled from. The HMM parameters were identified via the
EM algorithm, applied 10 times for each observation sequence in order to select
the parameters yielding the highest likelihood. The toy dataset was split into
three randomly selected sets, and for each set, 2/3 of the data was placed in the
training set, and the remainder in the test set. For each set, the parameters of
the pullback learning algorithm were optimised using 5-fold cross validation on
the training set. The results over each of the three sets were plotted using the
mean accuracy and one standard deviation from the mean, as shown in Fig. 7.6
& Fig. 7.7.

7.4.3 Preliminary results & discussion

In the first experiment, the results of which are plotted in Fig. 7.6, the sam-
pling densities of the transition automorphism F4 and output automorphism
F¢ were varied, keeping the number of HMM states fixed at 3. To calculate the
HMM approximate observation space we applied LLE with an embedding space
dimensionality of d = 3 and number of neighbours equal to 40. In Fig. 7.6 the
classification accuracy is plotted against the sampling densities in both A4 and
Ac. It can be clearly seen that the pullback-Frobenius performance improves
steadily as the sampling density in the observation automorphism’s parameter

space increases.



Chapter 7. Learning pullback distances for dynamical action models 101

Algorithm 7.3 Generate synthetic HMM observations.

STEP 1: Initialise dataset parameters:
-classes (1 € {Malta, Germany, Russia}),
-states (j € {Rainy, Cloudy, Sunny}), N := 3,
-observations (m S {hot—chocolate, pretzels, ice cream, doughnut}),
-length of trip (17" := 14),
-group size (G := 20),
-examples per class (£ := 300),
-transition matrices A (Fig. 7.4),
-state output observation matrices C (Fig. 7.5),
-initial state probabilities 7 := (%, &, % )-
STEP 2: Monte-Carlo simulation
for1:=1to L do
for e :=1to E do
j := generate-random-choice(rw),
while length(observ) < T do
observ := generate-random-histogram(c, G),
j := generate-random-choice(a] ),
end while
Output: observ, a (T x M) matrix of histograms.
end for

end for

In the second experiment (Fig. 7.7), the sampling density was kept constant
at 8 samples in A¢c and 216 samples in A4, and the learnt number of states was
varied from 2 to 4. All other parameters were kept constant. Interestingly, even
though the predefined HMMs have 3 states, the HMM-pullback method was still
able to discriminate between HMM models of 2 and 4 states, and even benefited
from an increased number of states (see the minor improvement in accuracy and

a reduced standard deviation in Fig. 7.7).

These preliminary results demonstrated the higher performance achievable

using pullback distance learning for hidden Markov models, especially when

Algorithm 7.4 generate-random-choice.
Input: q, ¢ € [0,1],i€{1,...,Q},
i:=1,
¢ :=rand(0,1) — ¢,
while (i< Q) && (¢ >0) do

i:=1i4+1,
¢ =q =g
end while

Output: i.
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Figure 7.6: The % Accuracy plotted against the sampling density in the parameter
spaces of Fa and Fo. Whereas the Accuracy of the base Frobenius distance remains
constant, the Accuracy of the pullback-learning method increases steadily as the number
of samples in F¢ increases. The sampling density in Aa has a lesser effect in this
case, with similar performances recorded for 216 or 1000 samples.

compared to that of the base distance, the positive effect of higher sampling
densities of the parameter space, and the robustness of the method to the number

of states of the models.

7.5 Experiments on human action recognition

We validated our proposal for learning optimal (classification-wise) pullback dis-
tances between HMMSs on the KTH [13] and YouTube [16] datasets, the latter
providing more challenging, real-world conditions (cf. Section 3.1.2). Instead
of having histogram sequences extracted from the snacking desires of a group
of travellers, we now consider histogram sequences extracted from features of a

video in which an action was performed.

7.5.1 Implementation details

In order to encode each video as an HMM we need to associate a feature vector
with each video frame. A ‘sliding window’ approach can be applied in which for
each time instant ¢ features are extracted from the spatio-temporal subvolume
collecting the images from ¢ to t+ ¢ and attributed to the state X; of the Markov
chain. For these tests we picked the Dense Trajectory features (c.f Section 2.2),

which demonstrated excellent performance in [25]. We kept the default parame-
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Figure 7.7: The % Accuracy plotted against the learnt number of states in the HMM.
With the baseline Frobenius distance, the accuracy decreases as the number of states
increases from 2 to 4. On the contrary, when using our pullback learning method the
accuracy increases slightly (and the standard deviation is reduced) as the number of
states increases. Also note the significant difference in accuracy in all cases.

ters: features were computed in video blocks of size 32 x 32 pixels for 15 frames,
with a dense sampling step size of 5 pixels [25]. We used the 30-dimensional
motion vectors from the Dense Trajectory features, and built a 200-word visual
vocabulary by sampling features from the training set and clustering them by
k-means. The k-means algorithm was initialised 8 times and the configuration
with the lowest error selected. We used a sliding 3D-window of width § = 30
frames and a stride of 5 pixels, the same step size used for the Dense Trajec-
tory features. For each time-slice, a 200-dimensional histogram was computed
by quantising each feature to the learned visual vocabulary. For each feature
sequence so obtained, the HMM parameters were identified via the EM algo-
rithm [133].

HMMs characterised by a different number of states N that live in principle
on different model spaces, due to the different spaces H 4 of transition matrices.
Here we set the number of states to N = 3 to make the models comparable.
Three state automata have been demonstrated to represent most simple actions
effectively. Even then, a Markov model is uniquely defined only up to a permuta-
tion of the states. Therefore, when measuring distances between two models we
looked for the state permutation minimising the Frobenius distance between the
respective C' matrices, so identifying states associated with the same ‘clusters’
in the observation space. To calculate the HMM approximate observation space

we applied LLE with an embedding space dimensionality of d = 6 and size of
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the neighbours equal to 201. A mixture of 3 Gaussian components was fitted to

the resulting embedded columns to provide coordinates.

As a base distance on H = M 4 x M we picked the product metric obtained
by applying the Frobenius norm to the A and C' matrices respectively:

|Hy — Hs| = [[A1 — Asf[p + [|C1 — Co|p, (7.16)

where |M — M'||p = \/Tr((M — M')(M — M')T), and Tr(M) =, M[i,i]
is the trace of a matrix M. An alternative derives from the Bhattacharyya

distance between two Gaussian pdfs Gi, G, with means p,, u, and covariances
21, 22 [41]

- 113+ 3,)/2|
1
)7 = o) G log e

(7.17)

Given two HMMs the average Bhattacharyya distance between pairs of emis-

2+ 3

1
dhatta(G1,G2) = < (4 — H2)T< 5

8

sion Gaussian pdfs I'y in the two models quantifies their difference, and can be

modified to include the K-L divergence

) ma

ij=1,...,N

of the two transition matrices A;, Ay [41] (where 7(e;) is the probability of state
).

For both benchmarks, we learned an optimal pullback distance by maximising
the classification performance on the training set via 5-fold cross validation [3].
We then measured the accuracy (Acc), average precision (AP), and Fl-score
achieved by the learnt distance on the test set (cf. Section 3.1.6). For classi-
fication we used Nearest Neighbour (1-NN): each test sequence was attributed
the class of the nearest model in the training set according to the considered
distance. Having fixed a classification strategy, it is possible to fairly compare

pullback and base distances.

7.5.2 Results and discussion

Fig. 7.8(a) illustrates the effect of pullback distance function learning on the
KTH dataset. The parameter space of the HMM automorphism was sampled in
55 points for the transition matrix and 51 points for the output space (see the

above description of sampling) to optimise the performance of the pullback HMM
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Figure 7.8: Performance plots comparing the Frobenius ‘base’ distance (blue square
markers) to the pullback-Frobenius distance (red circular markers) on the (a) KTH
dataset [13], and (b) YouTube [16] dataset. The chance level is plotted as a dotted
straight line in grey.

distance by cross validation. When using the pullback-Frobenius distance, we
achieved a very significant 38.3%, 29.3% and 37.9% improvement in classification
accuracy, mAP and F1 score respectively, with respect to the base one.

Fig. 7.8(b) shows instead the improvements in action recognition rates on
the YouTube dataset. Results are averaged over the 25 splits of the dataset: the
vertical bars indicate one standard deviation from the mean. The pullback dis-
tance was optimised over 55 samples in the parameter space A 4 of the transition
automorphism F4 and 31 samples in that of the output automorphism Fg: a
total of 55 x 31 = 1705 samples. The accuracy for the pullback-Frobenius dis-
tance was 51.7% with a standard deviation of 5.9%, which is again a significant
jump from the base distance’s poor 16.5% + 4.8%.

Figs. 7.9 and 7.10 contrast the performances of base and pullback-Frobenius
distances over the two datasets via the associated confusion matrices. Classifi-
cation accuracy for individual classes can be appreciated. Notice that pullback
distances are able to disambiguate many classes which are confused by base ones,
such as the ‘boxing” and ‘handwaving’ actions in the KTH dataset, or YouTube’s
‘biking” and ‘riding’ action classes. Overall, our method proves able to cope with
the large variety of nuisance factors present in the YouTube dataset, such as high

within-class variation, unconstrained camera motion of handheld cameras, and
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Figure 7.9: Confusion matrices, KTH tests. Notice the significant overall improve-
ment achieved by the pullback-Frobenius distance (b), as compared to the base distance

(a).

cluttered scenes.

Since the YouTube dataset contains harder action sequences and a greater
number of action classes than the KTH dataset, we present here additional
experiments to explore the pullback learning performance using Fisher vectors
and two additional distance metrics. From the plots of Fig. 7.11 it can be
seen that the pullback-Frobenius distance performs best overall with a mean
Accuracy of 44.4%, compared to pullback-Bhattacharyya’s 37.8% and modi-
fied pullback-Bhattacharyya’s 35.5%. Interestingly, the performance results were
slightly worse when using Fisher vectors rather than BoF histograms. However,
there is still an appreciable improvement between base and pullback distances,
demonstrating the effectiveness of our framework across multiple features and
metrics. The adoption of more complex classes of automorphisms and models is

discussed in the following Section.

7.5.3 Other nonlinear automorphisms

The type of automorphisms employed here, as shown in Fig. 7.12(a), map linear
boundaries to different linear boundaries. Other nonlinear automorphisms, for

example, of the form Ap* shown in Fig. 7.12(b), have the potential to extend
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Figure 7.10: Confusion matrices for the YouTube dataset, made up of videos captured
“in the wild’. (a) Using the base Frobenius distance, the results are almost close to
random (cf. Fig. 7.8(b)). (b) The significant improvement in classification accuracy
achieved by the pullback-Frobenius distance is demonstrated by the strong diagonal.

Improvements are shown in all classes except ‘shooting’.
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Figure 7.11: Comparing the performance measures achieved by different base dis-
tances: Frobenius (a), Bhattacharyya (b) and modified Bhattacharyya (c) on the
YouTube dataset, when using the Fisher representation. Although the Frobenius dis-
tance has the worst baseline performance, its pullback version has the best one. In any
case, the pullback trick delivers significant improvements across all base distances.
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(a) Line preserving automorphism  (b) Another arbitrary automorphism

Figure 7.12: (a) An automorphism of the form [z,y,2] = %Mz, Aoy, Asz] with
random values for A maps the green points on a 2D simplex by a non-linear stretch to
the points in red. The linear decision boundary shown in black is mapped to another
linear boundary (in grey). (b) Arbitrary automorphisms (here of the form Ap>) can
generate other kinds of curved boundaries.

the search space towards unknown linearising automorphisms (Theorem A.1),
delivering superior performances when coupled with hyperplane classifiers. Ex-
tensive testing on even more challenging datasets such as the Hollywood2 [17]
and the HMDB [3] ones, employing higher-order HMMs and SVM classification,

is in order.

7.5.4 Beyond HMMs

As more sophisticated classes of graphical models able to describe complex activ-
ities live on inherently higher-dimensional manifolds, we are potentially met with
computational limitations. However, the dimensionality of the parameter space
A of the automorphism is distinct from that of the model space M (compare our
treatment of the HMM output space). Variable length HMMs [93] are in fact
equivalent to HMMSs with an exponential state space 2%: the approach described
here can be straightforwardly applied to them. For hierarchical HMMs [151], de-
scribed by a set of parameters {{Aql}l:LML, {Fql}lzl,”_,L}, where ¢! denotes an
arbitrary state at level [, a careful design of the family of automorphisms can

much limit computational requirements.

7.5.5 Close-form optimisation by volume element match-
ing
A desirable alternative is to handle classification performance or a related quan-

tity directly in closed form. We briefly outline a proposal inspired by Lebanon’s
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treatment of the unsupervised case in [92]. There he suggested (in the original
Riemannian manifold setting) to maximise the inverse volume element associated

with a Riemannian metric around the given training set of points:

, (7.19)

where g(m;) denotes the metric at the point m; € D of the dataset, and det g
the associated Gramian. The latter can be computed as det g,(m) = det(J)? -
det g(m), where J is the matrix collecting a basis of push-forward vectors [92].
As it is shown in [152] for the case of stable autoregressive models of order 2, this

can be done in closed form whenever the original metric is analytically available.

Using the local Gramians of the training models we can design, in a semi-
supervised setting, an objective function which aims at forcing similar points S
to live in the same region of the pullback manifold and dissimilar points S’ to
live in different regions, by enforcing the corresponding volume elements det g
to be close for the former and different for the latter. As the volume element
is an expression of the local curvature of the manifold, a necessary (albeit not
sufficient) condition for two points to be close is that their Gramian be close.
Distinct regions of the manifold can still be locally isometric, but averaging
over all the points of all the classes mitigates the risk of the optimisation process
leading to a minimum generated by accidental isometries. In the semi-supervised

case this amounts to solving the optimisation problem

min Oyeni(D) = 37 d(Glm), Glmy) — 37 d(Glmy), Glmy)) (7.20)
’ (mj,m;)€S (mj,m;)€S’

where G(m;) = det g.(m;), ¢« is a pullback metric, and d is a metric in R. In

the supervised case, the following variant in which volume elements are close for

training points of the same class ¢, ¢ = 1, ..., C and different for pairs belonging

to different classes can be defined:

c c
min Ouper(D) = Z > d(G(my), Glmy)) = Y Y d(G(my), G(my)).
=T mm o e
(7.21)
When the Gramian of g, can be computed analytically, the gradient of these
objective functions with respect to the parameters A of the pullback metric

can also be analytically computed. Both Osyper (D) and Ogeni(D) can then
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be optimised in closed form, at a negligible computational cost. We intend to
develop this promising line of research in the future.

In the next chapter, however, we switch gears and move from the task of
global action classification to the detection of multiple action classes in space
and time. Rather than offline classification on large datasets, we now tackle an
altogether more challenging task which has application in human-robot interac-

tion.



Chapter 8

Online learning of multiple

concurrent space-time actions

The action detection system described here is composed of several steps carried
out incrementally after each frame is captured, including

i) region proposal generation,
ii) ranking of proposals,

)
iii) building connected space-time tubes,
iv) feature extraction,

v) multi-class online learning, and

vi) detection.

This pipeline takes inspiration from previous works (cf. Section 2.8.1), whose
ideas are extended in the following sections towards the application of action
detection, as illustrated in Fig. 8.1. Our proposed pipeline starts by generating

a set of regions which may contain an object/action of interest.

8.1 Fast region proposal generation

To generate region proposals per frame, we implemented the single strategy
selective-search algorithm [109], using HSV-transformed images. The selective-
search region-merging similarity score was based on a combination of colour (his-
togram intersection), and size properties, encouraging smaller regions to merge
early, and avoid holes in the hierarchical grouping (HSV, C+S+F). The over-
segmentation strategy initialising the hierarchical grouping was performed by
Felzenszwalb and Huttenlocher’s fast graph based segmentation algorithm [110].

The original selective-search algorithm orders its region hypothesis set ac-

cording to the order they were generated. To prioritise the regions most likely to
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<~ Past Frames \(®) \\ <— New Frames

Figure 8.1: Multiple action detection in a video stream. First region proposals are as-
sociated in time to generate space-time tubes, with associated tube labels (1-5). During
training, tube CNN features are fed to an online learner, whilst during testing, the tube
features and learned models are used to generate action label predictions (Grey, Or-
ange, Blue). (a) In this illustration, tubes 1,4 and 5 are labelled as ‘grey’ (no-action,).
(b) Tube 3 is labelled as ‘orange’, and (c) tube 2 as ‘blue’. Note that only the cur-
rent and past video frames are available to the algorithm, and the current state of the
algorithm is updated after each new frame is processed (best viewed in colour).

contain an action when working on a computational budget, we attach a score
to each hypothesis by calculating the dot product between a learned set of SVM
weights and the selective-search colour features ‘c’. Moreover, we attach a tube
label to each region to facilitate the connection of regions into tubes, detailed
in the following section. Each region proposal r; in a region set R represents a
vector of connected pixel coordinates which may correspond to an object in the
image. In our case, each region r; at time ‘t’ is associated with a score s and a
tube label i:

RY = {(r1, s, 1) ..., (var, sar, )ty £}, (8.1)

where r; defines a connected image region, and s = w;fci + b, where c; is a
vector holding the normalised colour histogram extracted from the image region
indicated by r;. The label set £' holds the unique tube labels in the region set,
L= Uf\i 1 b More compactly, by arranging the region indicator vectors r;j into

a matrix, and the associated scores and labels into vectors,
R'={R's" 1" L'}. (8.2)

When a new region set is created (see Fig. 8.1), only the members R', and s* are
known, the labels 1' need to be estimated from the pair of neighbouring regions
sets in time {R"', R*""'}, as detailed in the next section. The online learning of

parameters {wy, bs} is detailed in Section 8.4.
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8.2 Selective tubes

The region proposals R' are generated independently for each video frame. In

order to incrementally connect the proposals into tubes:

Tl = {(rlasl)ta'"7(rNasN)t+Nalyy}; (83)

a correspondence problem must be solved to determine which regions in frame ‘t’
correspond to those in frame t' = (t — 1). From (8.3), a tube is defined by a set
of regions in time having the same tube label ‘I’ and forms the basic bounding
structure to which a multi-class action label, or a ‘no-action’ label ‘y” may be

assigned.

Let the index sets of regions in frame t" and t be denoted by U = {1, ..., My},
and V = {1,..., M} respectively. Let us also assume initially that there are the
same number of regions in each image, My = M;. Now, consider a function f
which takes a pair of regions and returns a cost of assigning region i € U to
region j € V, written as: f : U x V — R. We now wish to find a bijection

o :U — V that minimises the following cost function:

V= mUme (i,0(i)) - (8.4)

e
In other words, we would like to find a permutation of the indices in ¢/ via func-
tion o(), which minimises the total cost v*, from the M;! possible permutations.
The cost for assigning a region i € U to j € V was chosen to be a combination

of the histogram-intersection and intersection-union scores:

fi,j)=1- % <Z min(cf, ¢f) + (x: 1 rj)) . (8.5)

(r; Ury)

The optimal assignment problem described by Equations (8.4) & (8.5) may be
solved by a variety of combinatorial optimisation algorithms [153], of which
we selected the O(n?) Hungarian method by Kuhn and Yaw [154], where n =
max (M, M,).

In practice the Hungarian assignment algorithm is able to handle rectangu-
lar cost matrices by padding the empty locations (see Algorithm 8.1). In the
case where M; > M, new labels are assigned to regions without a pairing.
When M, < My, a subset of labels in £ will be discarded, marking the end

of those tubes. The selective tubes correspondence algorithm is presented in
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Algorithm 8.1 Selective tubes algorithm.

1: Input:
Regions RY, R*
Features Cy = (c1,...,cp, ), Cy = (1, ..., cpp ), Note My # M in general.

2: Output: Tube label vector I; € R*
3: Define:
4 U={1,...,My},V=A{1,..., M}
5: M := max(My, M)
6: forizzltoM,jzzltono
o fag) cGeU)Nn(GeV), (Eq.8.5)
T Al= 0 : otherwise.
8: end for

9: Permutation matrix P := HungarianAssignment(A)

10: if (My < M) then

11:  for q:=1to (M; — My + 1) do l;;.Append( NewLabel() ) end for
12: end if

13: lt = Plt/

14: if (My > M;) then

15:  for q:=1to (My — My + 1) do l;.Eraselast() end for

16: end if

Algorithm 8.1.

8.3 Feature extraction

To extract features, we used the convolutional neural network (CNN) architec-
ture by [111], which gave state-of-the-art results on the ImageNet database [155].
The output of the CNN may be seen as a highly nonlinear transformation from
local image patches to a high-dimensional vector space in which discrimination
may be performed by a linear classifier. To obtain an image patch descriptor
from the region denoted by ‘r’, we first resize the minimum bounding box en-
closing the region to a image of size of 224 x 224 pixels, and provide the 50,176
vector of pixel intensities to the input of the CNN network. The network out-
put is 1000-dimensional vector X..,, where each element denotes the score for
a particular class in the ImageNet dataset; this vector forms our image patch
descriptor. Recently Fisher vectors also provided a high dimensional feature
space in which linear classifiers were used to achieve state-of-the-art results [2].
Whereas the CNN features encode the appearance and texture of image patches,
the selective tubes provide a motion vector characterising its movement. The

CNN and motion features are aggregated in time over the length of the tube
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and provide a fixed-length feature ‘x’ for training an online learner, as detailed

in the following section.

8.4 Action category learning

We now consider the task of incrementally learning a model £ to assign a label
y € {1,2,..., Y} to aspace-time tube 7' (8.3), given a vector of tube features
x € R™. Due to the success of linear SVMs when combined with CNN features
[112], and their ability to be learned online [75], we train a set of linear SVMs

(1-vs-rest) to classify action tube features, where a prediction takes the form:

g = argmax (W, x; + b, ) . (8.6)
Yy

8.4.1 Class specific feature cache

A class specific feature cache will ensure that the learner may ‘remember’ previ-
ously seen classes y € C, and update their respective models by sampling from

the feature cache. Consider an example set from a video frame,

£ = {(Xl,yl)w"’(XE7yE)7yt}7 (8.7)

where F is the number of examples in the set, and ) is the unique set of class
labels present in the example set, ' = Uil y;. A class-specific feature set of
size F:

Fy=1{x1,...,xp,}, (8.8)

is populated by sampling from the currently observed example set £°.

8.4.2 Growing the learner set

Consider a set of linear SVMs denoted by ©' = {6;’} in which
0, ={w, b, M}, (8.9)

where (w, b) denotes an SVM hyperplane and bias, and H is a cache of hard
examples. Note that t # t, in general, since ‘t” denotes the time relative to the
first video frame in a dataset, and ‘t,’ the time relative to the first example in
which action category y was observed. When a new class y* is seen, a new SVM

learner 6, is simply added to the set O°.
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Algorithm 8.2 Multi-class incremental online learning.

1: Linear SVM set: © =0

2: Feature class cache: F, = 0

3: Previously seen class label set: C = O
4: for t :=1to T do

5. New example set: &' = {(x1,v1),. .., (Xgt,ypt), V'}.
6: for all y € V' do

7: F, := F, USample(E’, y, sample-size)

8: end for

9: C:=CuUlt.

10: if |C| > 1 then

11: F} := Evaluate(6', &)

12: for all y € C do

13: &' = £'U Sample(F,, sample-size)

14: end for

15: for all y € C do

16: if 0, ¢ O then ©' := ©' U0, end if
17: 05" .= Bsgdnm(#},, £, batch-size)

18: end for

19:  end if
20: end for

The online multi-class incremental learning algorithm is laid out in Algo-
rithm 8.2. Note that we also detect the absence of an action, and therefore the
total number of classes is Y,,.. + 1. Next, we detail the specifics of the batch
stochastic gradient descent used to learn parameters (w,, b,) for each action

category.

8.4.3 Solving an SVM with batch stochastic gradient de-
scent and hard example mining
In a classical SVM setting, given an dataset set D = {(x1,41),...,(Xp,yp)},y €

{—1,+1}, and a vector of parameters w = (w, b), the following objective func-

tion is minimised:

D
. L. A Tn
op(W) = §HWH2 +C El max(0,1 — W' %), (8.10)
where D is the total number of examples in the dataset, and X = (x,1) is

augmented to include a bias-multiplier. Equation (8.10) is a convex function that
may be solved by a quadratic programming solver [71]. Since the data is streamed

in time, we use batch variant of stochastic gradient descent (Algorithm 8.3),
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Algorithm 8.3 Bsgdnm: batch stochastic gradient descent with hard exam-
ple mining. This algorithm details a single step towards the minimum of the
objective function defined in Equation 8.10.

—_

: Input:
SVM hyperplane w*
Hard cache: H!
Example set: &' = {(x1,1%),...,(Xp,ye)},y € {—1,+1}
if [#'] > 0 then
H' := UpdateCache(Ww", H*)
end if
H' := H' U Sample(E®, batch-size)
o' = max (1, min-step)
W =W - at (WO Y AW &, )

(%,5;) €M

H
=

which iteratively updates the parameter vector w by taking a step in the negative
direction of the gradient, with respect to a randomised subset D’ C D of dataset

examples. The subgradient of the SVM objective in (8.10) becomes:

—yX  :otherwise.

Vop(W) =% +C Y h(W,%,y), (8.11)
(%j,9;) €D’
where
0 : vIx) > 1
W, %, y) — { y(W'%) 2 (8.12)

In our application, we replace the static dataset D with the set of examples per
frame £'. In order to speed up the learning, we keep a cache of hard examples

[75], which are defined with respect to the SVM margin by an indicator function:

1 y(wis) <1
Lhara = 8.13
hard { 0  :otherwise, ( )

where I,,q = 1 indicates that the feature X is misclassified or within the margin
and therefore ‘hard’. The sequence of steps used to learn (w, b,) is laid out in
Algorithm 8.3.

8.4.4 Life-long learning

To the best of our knowledge, designing a step size a4 for a life-long online learner
is still and open problem. In practice we found that restricting a; to a minimum

value prevents the learner from converging, allowing the SVM hyperplane to
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(a) 202 | (b) 203 | (c) 204 ” (d) 205 | (e) 206

Figure 8.2: A sequence of images showing the propagation of region proposal labels in
time via Hungarian assignment. In this sequence of frames, the head (1), torso (2),
and hand (3) of the person are correctly associated in time, although in our tests, we
observed that the tracks are not stable over long periods of time. The full sequence
may be viewed in an attached supplementary video. Note that there is no region which
encloses the whole person in this case, and indication that there is scope to improve
the superpizel generation and hierarchical merging.

update itself when a previously unseen class appears. In order to smooth the
batch stochastic gradient steps, we use a moving average filter on the gradient
updates [156]. Preliminary results of using an online learner are presented in the

following section.

8.5 Preliminary tests

In these preliminary tests we aim to analyse key parts of our proposal before
putting them together in an end-to-end system. A more extensive comparison

to competing strategies is left for future work, as outlined in the next chapter.

8.5.1 Selective tubes

The selective tubes algorithm described in Algorithm 8.1 was implemented in
C++, and is being tested on sequences from the LIRIS-HARL dataset [44]. In
Fig. 8.2, we show the effects of associating windows in time to form tubes via
Hungarian optimisation. By analogy with Fig. 8.1, we draw the tube label num-
ber in brackets next to a set of windows. An attached supplementary video shows
additional preliminary results. Note that by using selective tubes, our approach
is not limited to action detection, since all tubes in the scene are tracked. Thus,
this methodology extends itself easily to space-time object detection, and the

detection of scene elements without clear boundaries like ‘loor’ and ‘wall’.
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Table 8.1: Quantitative results showing the performance of various online linear SVM
variations. The mean cumulative accuracy and standard deviation were calculated over
100 experimental runs for each test. Note the significant improvement achieved by
adding a class-specific feature cache “+F’ and by setting a minimum step size +a’.

Bsgdnm | Bsgdnm + F | Bsgdnm + ' | Bsgdnm + F + o/
Cum Acc || 62.89+9.8 | 77.94+13.1 74.49+7.0 92.0148.1

Note that using the graph-based oversegmentation from [128] results in su-
perpixels whose shape and size are very sensitive to the image pixel intensities.
Thus, even the same scene imaged a millisecond later may generate a very differ-
ent set of superpixels. We observed that using SLICO [157] superpixels greatly
improved the data association via the Hungarian assignment, although it re-
mains to be seen whether they perform well for generating region proposals via

selective-search [109].

8.5.2 Learning of multiple categories streamed online

The online learner detailed in Algorithm 8.2 was tested on a toy dataset, in
order compare it to the batch stochastic gradient descent algorithm with hard
negative mining (Bsgdnm) described in [75]. The online toy dataset was randomly
generated with the following parameters:

e 10 maximum number of classes,

e 20 examples per class,

e 2000 maximum number of iterations.

At each iteration, a new example set was randomly generated as follows:

e Initially add a pair of labels to the currently visible class set C;

e every 20 iterations add a new randomly generated label to the set;

e every 40 iterations remove a randomly generated label from the set.

In order to generate random examples, we first select Y,,,. = 10 prototype
points even spread around the unit ball in R?. An example point is subsequently
generated by adding random noise to the prototype.

The results obtained in terms of the average cumulative accuracy calculated
over the 2000 rounds of learning are shown in Table 8.1, where the standard
online SVM is denoted as Bsgdnm. The addition of a class-specific feature set
F, of size F,, = 50 is denoted by ‘+-F’, and the bound on the learning rate
a' = max (%, min—step), where we set min-step = 8 x 10~* (o remains fixed after
t = 1250 iterations), is denoted by +«’. An illustration of the 2000*" iteration
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of learning for each of the method variations is shown in Fig.8.3. Moreover,
the output of the SVM learner at each iteration may be viewed in an attached

supplementary video.

(b) Bsgdnm + F

(c) Bsgdnm + o/ (d) Bsgdnm + F + o/

Figure 8.3: A depiction of the SVM learning 10 categories (1-vs-rest) streamed on-
line after 2000 iterations. (a) Bsgdnm, with a % learning rate converges over time,
and when new classes are added, older hyperplanes are not moved to reflect the new
classes. (b) The same scenario is present when including a long term feature cache of
previously seen classes F. In (c), the learning rate is capped at a minimum value, and
therefore, it is able to keep updating the hyperplanes as new classes arrive. However,
without a long term class memory, it forgets about previously seen classes that are not
currently visible. Lastly in (d), a large improvement in training accuracy is observed
by combining the feature cache F, with a cap on the learning rate o .



Chapter 9
Conclusions and future directions

In this dissertation, we proposed a variety of recognition methods for determin-
ing what action classes appear in videos. Using local video mid-level representa-
tions, we proposed a novel MIL-BoF approach to joint action clip classification
and localisation based on the recognition of local space-time subvolumes (cf.
Chapter 4). Our experiments qualitatively demonstrated that it is possible to
localise challenging actions captured ‘in the wild’, with weak annotation, whilst
achieving state-of-the-art classification results. Since in our approach the detec-
tion primitives were space-time subvolumes, there was no need to perform spatial
and temporal detection separately [16]. Rather, each subvolume was associated
with a location in the video, and a decision score for each action class.

We expect that by increasing the number of possible subvolumes and the
density at which they are extracted, we will observe further improvements in
classification and localisation accuracy. Further MIL performance gains may be
obtained by multiple random initialisations, instead of assigning each instance to
the label of their parent bag, although at higher computational cost. In addition
to MIL, competing approaches by Siva et al. [158] showed excellent performance
on weakly labelled data using strongly labelled negative examples for explaining
the data’s inter-category information. Siva et al. show improved performance to
the MI-SVM formulation of [71] by combining ‘negative mining’ with saliency
measures on object /action detection tasks. More recently, the CRANE algorithm
by Tang et al. [159] demonstrated further improvements over [71,158], whilst
being robust to noisy labels in the training data. Investigating the importance
of each cue in the SVM-map feature vector may also reveal improved mapping
strategies.

Our LDSBoF models coupled with Fisher vectors demonstrated the merits of

incorporating deformable structure into mid-level feature representations, both
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quantitatively (Table 5.1) and qualitatively (Fig. 5.5). Even though our method
is independent of the choice of mid-level feature representation, we found that
Fisher vectors performed the best when compared to kernel-mapped BoF his-
tograms. By using LDSBoF, we were able to better model the variability of
human actions in space-time, which is reflected in higher performance achieved

by a 3-part model compared to that of the root filter alone.

In the future, we will focus our attention on describing further action de-
tail, such as whether a person is walking fast or slowly, or whether a person
jumps high or low, via attribute learning. Furthermore, we plan to move to-
wards denser feature extraction to capture meaningful mid-level representations
with smaller subvolumes, extending LDSBoF to a possibly variable and higher
number of parts. Moreover we envision initialising part anchor points from the
feature distributions to improve over a fixed grid. Our encouraging localisation
results demonstrate the potential for extending this method to larger and more
challenging localisation datasets. The ability to assign multiple action labels to
a single video clip is also lacking in our framework, and needs to be addressed

in the future.

In Chapter 6, we proposed to evaluate aspects of the bag-of-features pipeline
previously unexplored, on the largest and most challenging action recognition
benchmarks, and achieved state-of-the-art results across the board. In particu-
lar, we focused on the feature subsampling and partitioning step after features
have been extracted from videos, but prior to encoding. Since uniform ran-
dom sampling of features to create a vocabulary may be biased towards longer
videos and action classes with more data, we compared uniform random sam-
pling to sampling a random and balanced subset from each video and action
class. The best results obtained showed that the proposed sampling strategies
did yield minor performance improvements, and helped preventing poor results
that may follow from sampling an unbalanced set of features (see Fig. 6.3 dotted
line 2); other balancing strategies may provide further improvements. We also
showed that learning separate vocabularies per feature component caused very
large improvements in performance. Furthermore, learning BoF per-category
outperformed BoF, but was surpassed by Fisher vectors on the larger and more
challenging datasets. Finally, our results demonstrated that competitive results
may be achieved by using k-means with a relatively small number of cluster

centres K.

When representing videos as dynamical models (cf. Chapter 7), we proposed

a distance learning framework for a data-set of hidden Markov models, based on
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optimising classification performance over a family of pullback metrics induced
by automorphisms. The method is fully general, and extensible to other classes of
dynamical models and classifiers. Our results showed a large improvement from
base to pullback distances, demonstrating the effectiveness of our framework

across multiple features and metrics.

In absolute terms, the approach has room to deliver much better results,
closer to the state-of-the art. Firstly, the automorphisms’ parameter space may
be sampled at finer densities, although at a higher computational cost. Secondly,
nearest neighbour classification may be replaced by a more sophisticated method-
ology (Gaussian kernels, SVMs, etc): note that SVM classification would couple
well with our linear separation argument than 1-NN (cf. Sections 2.7 & A.2).
Better base distances for HMMSs can be explored; for example the Frobenius dis-
tance is quite a general-purpose matrix norm with no special relation to Markov
models. The potentially significant advantages of using HMMs with more states
and higher-dimensional embedding spaces remain to be explored. Furthermore,
the method may be extended to other nonlinear automorphisms, and closed-form

optimisation, as discussed in section 7.5.5.

For the detection of multiple actions in space and time (c.f. Chapter 8),
we proposed an online framework based on the generation of space-time re-
gion proposals. Although promising preliminary results were observed using the
Hungarian assignment for associating region labels in time, and a long term
class memory for adding new classes incrementally, it remains to be rigorously
evaluated as an end-to-end system. The method though is general and not only
applicable to action detection. Since the space-time tubes effectively track the
whole scene in a hierarchy, at varying levels of scale/granularity, it may also be

applied to space-time object detection.

Improvements to the current proposal can be made on several fronts. Firstly,
it is still unclear whether the selective tubes algorithm we proposed will provide
bounding structures which are good enough to enclose an action. Pruning and
post-processing may be needed to remove unwanted detections, and connect dis-
joint tubes [69,160]. Variations on the cost function (Equation 8.5) may provide
longer-term association depending on the type of superpixels used, and the type
of hierarchical grouping. The selective-tubes may also be cast as Multiple Object
Tracking (MOT) [161], where the problem of associating superpixels in time is
posed as a structured learning problem, which learns a template for each super-
pixel that minimises a cost function over a network flow in time. However it is

to be seen whether it can be adapted to handle a varying number of superpixels
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per frame, and the inclusion/removal of paths at various points throughout the

network.

Another promising approach includes an offline method for space-time ob-
ject detection proposals recently proposed by Oneata et al. [162], which works
by merging supervoxels. We also would like to investigate the possibility of
using a patch-match based algorithm [163] for establishing image region corre-
spondences in time. Van den Bergh et al. propose a real-time, online temporal
window objectness method for constructing tubes [164], which seems ideal for
our application. Furthermore, Xu et al. propose a streaming hierarchical video
segmentation algorithm [165], which may be adapted to generate online selective
tubes. We are currently investigating these routes for action tube generation, as
we believe that improvements in the tracking of scene regions will be key to the

future of action detection.

The performance of our action recognition approaches has evolved signif-
icantly over the course of 3 chapters (cf. Chapters 4- 6). For example on the
HMDB dataset we report the following accuracies over Chapters 4- 6 respectively:
29.7%, 37.2% and 50.2%. The first hike in performance may be attributed to
the improved encoding of local subvolumes (Fisher-vectors, separate vocabularies
per descriptor component), and the use of more general subvolume shapes within
which to aggregate features. In Chapter 6, we used global aggregation instead of
local aggregation, which meant that there we many more features per histogram
(at the cost of losing descriptor locality). The compact global representation per
video in Chapter 6 also meant that we could use exact quantisation and SVM
learning instead of faster approximate algorithms more suitable for large-scale
learning (cf. Chapter 5). Further improvements in accuracy will be obtained by
using the latest version of dense trajectory features [142], by further subdividing
descriptors and learning separate vocabularies per sub-descriptor (akin to prod-
uct quantisation [166]), and by stacking Fisher vectors [127,167] to obtain very
high dimensional descriptors. Note that the hugely successful deep neural net-

works [168] have not yet surpassed the best bag-of-visual-word methods [127].

The visualisation of action saliency (cf. Figure 5.6) is also open to modifica-
tion; for example, the significance of each visual word may be plotted instead of
aggregating the detection scores per subvolume. The highly performing SVM-
map technique (cf. Section 4.2) may be adapted to pictorial structures by includ-
ing the space-time distribution in the mapping feature vector (cf. Equation 4.6).
In Chapter 6, the results may only be improved by cross-validation over the SVM

regularisation parameter C, and would also get rid of the unsatisfactory overfit-
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ting of the learned action models on the YouTube dataset (cf. Figure 6.2). In
Chapter 8, the cost-function scoring the association of two regions in time will
benefit from an additional term calculating the optical-flow of pixels between

regions.
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Appendix A
Supporting ideas

In this section, we describe some of the supporting ideas at the core of this
dissertation. We refer the reader to topics which already have excellent resources
available, and elaborate on those for which we feel further clarity is needed in
the context of each Chapter.

First off, the Hidden Markov model (HMM) is a generative probabilistic
dynamical model which is assumed to be a Markov process with unobserved
(hidden/latent) states [169]. Distances between HMMs may be calculated using
standard metrics, or redefined to form pullback metrics (cf. Section A.1). The
advantage of using a parametrised family of pullback metrics is that, in the case
of a linear classifier, it may rectify nonlinear class boundaries (cf. Section A.2).
In the case of a nearest neighbour classifier, it suffices that examples of the same
class are brought closer together, and further away form examples of distinct
classes. A practical demonstration of this idea is shown in Section A.3 for points
on a simplex, representing one column of an HMM’s transition matrix.

Inspired by vector space-models [170], the bag-of-visual-words/bag-of-features
pipeline [33] in computer vision represents images/videos as an un-structured col-
lection or visual words (cf. Section A.4), which can be visualised in videos by
assigning a unique colour to each visual word (c.f. Section A.5). Some structure
may be incorporated into BoF by using spatial pyramids [77], or by means of
pictorial structure models [81] (c.f. Section A.6), which got a significant boost
in computer vision thanks to Felzenszwalb and Huttenlocher’s linear time algo-
rithm for computing distance transforms (c.f. Section A.7). Last but not least,
the success of classification algorithms such as SVMs depend on the underlying
data representation (e.g. HoG [103], SIFT [171], BoF [33], CNN features [112]),
and therefore it seems apt to end with a reminder of what a representation is
(c.f. Section A.8).
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A.1 Pullback metric

A metric is a function which defines a distance between elements of a set,
d: X x X +— R. (A.1)

For the mapping between pairs of elements to a real number to be a valid metric,

it must satisfy the following conditions for all x;, x5, and x3 € X:

d(x1,%x3) >0 (non-negativity)
d(x1,%2) =0 <= X1 =Xy (identity of indiscernibles) (4.2)
d(x1,Xg) = d(Xg,X1) (symmetry) '
)

d(x1,x3) < d(x1,%2) + d(x2,X3) (triangle inequality

For example in one dimension, the euclidean distance between two points x;, 25 €

R on the real line is given by:
d(z1, 1) = |[11 — ;2] = [11 — 23] (A.3)

The space X equipped with a metric d is called a metric space. By using a
bijective function, which defines a one to one mapping between elements of set
X and another set ), a new metric on the real line may be defined. For example,

given a function f: R~ R? we may define a new metric:

d*(z1, 1) = || f(71) — f(m)]l2 (A4)

where the new distance d* is defined as the euclidean distance between the
mapped points in R?. The metric defined in A.4 is said to pull-back the Euclidean
metric on the plane in R2.

Consider the set of real numbers z € [—30 : 0.1 : 30], as shown in Fig.A.1(a).
If we define f to be:

2 .2
r+a° x x)’ (A5)

€Tr) =

o) = (5555
then this results in mapping the real line to a (non-closed) circle in R?, as shown
in Fig.A.1(b). The respective pairwise distances between the points in set X

using distance metrics d and d* are shown in Figs A.1(c) & A.1(d).
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Figure A.1: (a) A set of points on the real line. (b) The set of points in (a) mapped
onto the Euclidean plane to form a (non-closed) circle. (c) Pairwise (Euclidean)
distances between points x on the real line (a). (d) Pullback distances between points
on the real line (a) using the reformulation of distance provided in Equation A.J.
Notice that the extreme points on the line in (a) (blue and green) are mapped to the
blue and green points in (b). In this case, via the pullback metric, the distance between
large numbers (positive or negative) has become very small. Note that the criteria for
a valid metric have been preserved.
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(a) Original differentiable boundary C' (black) (b) Rectified boundary C’ after automor-
phism

Figure A.2: (a) Given any differentiable invertible boundary C' in M = R", separat-
ing data points of two different classes (e.g. two spirals in R?, left), there exists an
automorphism of M that maps it to a linear boundary C' (b). Graphical illustration,
no real data.

A.2 Rectifying a non-linear boundary

Theorem A.1. (1-D case). For each differentiable bijective curve f : R — C' C
M=R" Ne R x = f(\) € C there ezists an automorphism F : R" — R" of
M =R"™ which maps [ to a straight line in M (see Fig. A.2).

Proof. since f is bijective (the curve C' has no self-intersections) with differen-
tiable inverse, there exists f™': C — R, x € C'+— X\ = f~!(z) differentiable.

Now, given any versor v of R® we can design a differentiable mapping g : R —
C" C R", A — 2/ = A0 which defines a straight line in M = R", and whose in-
verse g1 : C" — R, 2/ = M0 ~— ) is also differentiable. But then gof~!:C — '
is a differentiable bijective map (whose inverse is f o g~') that maps points of
C' to points of the straight line C': z € C' — 2’ = A(x)?. In conclusion, go f~!
is a automorphism from C C R™ to ¢/ C R™: but there exist infinitely many
automorphisms F of R™ whose restriction to C'is go f™': F|gc =go fL. O
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A.3 Improving classification: automorphisms on

a simplex

An automorphism is a bijective structure-preserving map from a mathematical
object to itself, and whose inverse exists due to the bijective property. For
example consider the unit 2-simplex in R?. Our ‘mathematical object’ is the
smallest convex set containing the vertices (1,0,0),(0,1,0) and (0,0,1), and
forms a subset of R3. The following structure preserving map (A.6) in this case
is designed to be smooth, mapping the differentiable manifold (2-simplex) to

itself (automorphism).
Consider the automorphism which stretches the simplical coordinates by a

set of normalised weights:

[A151, A2sa, .o, Ansn]
A-s ’

Fx(s) = (A.6)

where A -s denotes the scalar/dot product between the two vectors. This simple
transformation defines a family of pullback-metrics. When the points on the
simplex are associated with class labels, we may wish to find the best distance

function which improves classification performance.

Consider the following example where m points and associated labels (red/green)
are generated at random in the simplex (Fig. A.3i). Let the classification algo-
rithm be nearest neighbour, endowed with the Euclidean distance metric. We
now seek a distance function between the points in Fig. A.3i which encourages
neighbouring points of the same class to have a small distance, whilst neighbour-

ing points of distinct classes to have a large distance.

In this toy example we picked random samples from the parameter space of
the automorphisms, and evaluated the classification accuracy by constructing
a confusion matrix and dividing its trace by the total sum of its elements (cf.
Section 3.1.6). In this case we consider each point in turn as a ‘test’ point
and assign to it the label of the closest point in the remaining set using the
Euclidean distance after the transformation by Equation A.6. The Figures A.3a-
A.3e illustrate this process. The huge gains in classification accuracy possible

motivates the use of this technique.

Consider another nonlinear automorphism which stretches the simplical co-

ordinates by:

1
F)\(S> = E[}\lsi\l,AQSgQ,...,)\NS?VN]/, (A7)
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(i) (i) (i)

Figure A.3: (a-e) Ezamples in which classification accuracy may be improved by
stretching the simplical coordinates using normalised weights. The classification per-
formance gains for (a,b,c) are +35%, (d) +40% (45% to 85%) and (e) +50% (15% to
65%). Column (i) shows the plotted points with corresponding labels in blue/red. (ii)
shows the points after the transformation. (iii) plots the points before and after the
transformation, with lines connecting the corresponding points. (iv) shows how two
lines on the simplex would be mapped under the same transformation (best viewed in
colour).

where Z = S_% \is}. This transformation defines another family of parametrised
pullback-metrics, which when optimised upon to improve nearest neighbour clas-
sification, also gives high gains in accuracy, as shown in Figs A.4a-A.4c. Note
that in this case, lines on the simplex are mapped into curves, unlike those of
Fig. A.3.
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(ii) (iii)
Figure A.4: (a-c) Ezamples in which classification accuracy may be improved by
stretching the simplical coordinates using Equation A.7. (a,c) gained +40% in clas-
sification accuracy, whilst (b) gained +35%. Note that lines on the simplex may be
mapped to curves under this class of transformations (iv). Moreover, in contrast to

Fig. A.3, the transformed points giving good classification performance were not found
close to the boundaries of the simpler.
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(a) Training data (b) Test data

Figure A.5: (a) Training data from 3 ‘action’ classes fool (cyan), foo2 (green), and
foo3 (blue) crosses) plotted in R?. There were a total of 25 training examples, each
having 50, 2-dimensional features. Drawn as red crosses, a three visual word vocabulary
was learnt via the k-means algorithm. The data was initially drawn from a Gaussian
distribution and rotated/stretched to form a pinwheel. (b) Test data (cyan, green, and
blue circles) drawn from the same distribution as the training data with added noise.
Notice the significant overlap of the feature points in distinct classes.

A.4 Bag of visual words pipeline

To illustrate the highly successful bag of visual words pipeline in action recog-
nition, and get insight into its strength, consider the following toy example.
Features are extracted from training examples (videos) and a vocabulary of vi-
sual words is generated by clustering the features with the k-means algorithm.
These first two steps are illustrated in Fig. A.5(a).

Next, the training features from each example are quantised to the nearest
cluster centre in the vocabulary, and a histogram is built based on the frequency
of occurrence of these visual words. The histograms are normalised to become
invariant to the number of features per example. In Fig. A.6(a) the histograms
were L2 normalised and can be seen as points on the unit ball in R®. An
action model is subsequently learnt using an SVM per action class, the linear
SVM for the blue action is shown in Fig. A.6(b). At test-time, previously unseen
examples, as plotted in Fig. A.5(b), are aggregated into a histogram and classified
based on the learned model; the test histograms are shown by the hollow circles
in Fig. A.6(b).

Even with a significant amount of noise in the testing data, as compared to
training, the combination of the nonlinear transformation provided by the his-

togram, and the linear separator maximising the margin between classes, was
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(a) histograms plotted in R3 (b) separating hyperplane

Figure A.6: Plotting the normalised histograms in R3. (a) After quantising each
feature to the closest vocabulary word, and aggregating the features from each example
to form a histogram, each example may be plotted as a point in R? since each histogram
has three bins. Training points are denoted by ‘+°, and test points by ‘o’. Notice all
points lie on the L2 unit ball. (b) The learned SVM hyperplane for the blue class is
displayed together with the train and test data points.

enough to achieve a high classification rate, as shown in Fig. A.7b. Other clas-
sification methods are often used, including nonlinear SVMs (Fig. A.7¢), and
non-parametric classifiers such as Nearest Neighbour (Fig. A.7a). An attached

MATLAB script that performs this experiment is available online!.

lhttps://sites.google.com/site/mikesapi/downloads/bow_svm_tutorial


https://sites.google.com/site/mikesapi/downloads/bow_svm_tutorial
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Figure A.7: Precision recall curves per action class (fool, foo2, foo3) for three com-
peting classifiers. (a) Nearest Neighbour, (b) Linear SVM, and (c) x? kernel SVM.
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A.5 Visualising visual words for inspiration

Global bag of visual word models are used to achieve state-of-the art classifica-
tion performance on challenging video data. Each element in a BoF histogram
represents the frequency of occurrence of a particular visual word?. Therefore
BoF is an unstructured representation; a random permutation on the position
of visual words will generate the same histogram.

The pattern of visual words in a video is not arbitrary, however finding a
suitable representation to capture the structure of visual words is hard. We hy-
pothesise that the relative positions of groups of visual words may hold important
information for recognition. To see why, lets have a look at the data! A video
showing four action classes side-by-side together with visual word histograms
(see Fig. A.8) is available to watch on YouTube?. In the following Figs. A.9 -
A.12 from the KTH dataset, the trajectory feature components from [25] have
been clustered into a 16-visual word vocabulary. Arrows illustrate the direction
of the person’s motion in the video. The code used to generate these plots is

made publicly available?.

Figure A.8: Visual words from four action classes in the KTH dataset side-by-side.
FEach circle corresponds to mean position of a space-time feature. FEach colour cor-
responds to a different ‘visual word’. The size of the circles corresponds to the scale
at which features was extracted. The histogram in top left corner of each video frame
shows the frequency of each visual word on that particular frame (un-normalised).

2 A visual word represents a group of features which are similar (by some distance measure,
usually euclidean) in the feature space.

3https://www.youtube.com/watch?v=N9MeDMdi4G8

‘https://sites.google.com/site/mikesapi/downloads


https://www.youtube.com/watch?v=N9MeDMdi4G8
https://sites.google.com/site/mikesapi/downloads
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Video name: person-11-running-d2-uncomp
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Figure A.9: Visual words from a running class action video plotted in space and time.
The frequency of visual words and the spatial arrangement is particular to this action
category. The black arrows drawn on top of the video indicate the direction of the
person’s motion in the video.

120

Video name: person-22-handwaving-d3-uncomp

Figure A.10: Visual words from a handwaving class action video. The handwaving
motion generates a particular repetitive pattern of visual words; in this case, the upward
and downward motions of the hands are described by different coloured visual words.
The black ovals drawn over the image are there to highlight a group of brown coloured
visual words which appear periodically.
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Video name: person-22-walking-d2-uncomp

Irrelevant background motion

Figure A.11: Visual words from a walking class action plotted in space and time. In
this case, the visual words are the same as the ones used for running! However the
structure is different, for example the angle the direction of motion makes with the z
azis). Note that features are also extracted over irrelevant background motion caused
by the points where the grass and sky meet.

0 Video name: person-02-boxing-d2-uncomp

100

\ 50 100 150 200 250 300 350 400 450

camera zooms out

Figure A.12: Visual words from a boxing class action plotted in space and time. In
this case one cannot easily see the motion pattern of the boxing action. Most of the
visual words represent the apparent motion of the scene when the camera zooms. This
is evidence that there still is progress to be made in extracting features for action
recognition!
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Figure A.13: A 3 part pictorial structure model composed of a root node (red), and
two parts (green and blue). The green and blue ‘+’ signs denote the anchor points,
the offset position of the part with respect to the root node. The optimal configuration
of the pictorial structure model overlaid on the sum of the individual cost functions
in Fig. A.1/. Notice that the part placements do not coincide with the peaks of the
part matching responses, they are the best configuration based on the matching and
geometry of the original model.

A.6 Pictorial structure matching

A pictorial structure is composed of a set of geometrically related parts (see
Fig. A.13(a)) which may deform with respect to one another. Here we illustrate
the matching process, which finds the best configuration of the parts and root,
given a cost function measuring how well the part filter ‘w)’” matches the image
features ¢(ly) at location li, and a cost function measuring how well the location
of the parts agree with the original model d(ly,1;). The overall cost of placing

the root at position lj is calculated as:

s(lg) = max (Z wic- o(L) — Y d(ly, 11)) . (A.8)

k=1

The best solution s(lp)* is drawn in Fig. A.13(b), over the original filter re-
sponses 211::0 wy - ¢(li). The individual filter responses are drawn in Fig. A.14.
The ’distance-transformed’ responses with quadratic cost functions are shown in
Fig. A.15(a)&(b), whilst the final combined score for the root location is shown
in Fig. A.15(c). The final location of the root, including the part offsets from
the root is drawn in Fig. A.13(b).
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Figure A.14: Cost function measuring how well each part matches the image for (a)
part-1, (b) part-2, and (c) the root. To generate these plots we first picked a random
position for the root, and the generated random offsets for the parts. Here we used a
2-dimensional Gaussian distribution centred at a random position around the root to
simulate the cost function.

(a) part-1 (b) part-2 (¢) root

Figure A.15: Transformed and offset responses for (a) part-1, and (b) part-2. (c)
The sum of the parts added to the root response from Fig. A.14(c). The mazimum of
this function denotes the position of the root. The part positions may be worked out
by looking up the optimal part displacements from (a) and (b).
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Figure A.16: (a) A binary image showing randomly permuted letters from ‘Hello
world’, whose pizel grid positions form the set B. (b) The distance-transformed image
of (a) after solving Equation A.9 for each location z in the image grid G. (c) A time
comparison of three algorithms for computing the distance transform in (b).

A.7 Distance transforms

Given a point-set B C G, the distance transform specifies for each location z,
the distance to the closest point w € G. For example, considering Fig. A.16(a),
let the point set G be the the set of points defining the image grid, and B those
points in black. Now let us define a function to calculate the distance of each

point on the grid image z, to the closest point w € G as follows:
Dp(2) = min([[z — wl| + Is(w)), (A.9)

where

Itw) = { 20 ::;U;lf

The distance transformation defined by A.9 finds a location w which is close
to z and for which Iz(w) is small. The calculated distances are illustrated as
an image in Fig. A.16(b). Now let I;(w) be another function, this time defined
by a filter evaluated at each pixel as commonly done in object detection. This
transformation, when applied to detection, spreads high scores to nearby loca-
tions, taking into account the distance from the peak [75]. The proliferation of
pictorial structures [128] in computer vision got a major boost by Felzenszwalb
and Huttenlocher linear-time algorithm for computing euclidean-distance trans-
forms [129]. The difference their O(n) algorithm makes in practice compared to
a naive implementation is shown in Fig. A.16(c). A MATLAB implementation

of the distance transform algorithm time comparison is available online’.

Shttps://sites.google.com/site/mikesapi/downloads/dt-time-complexity


https://sites.google.com/site/mikesapi/downloads/dt-time-complexity

Chapter A. Supporting ideas 145

A.8 Representation, representation, represen-

tation

Jitendra Malik has outlined three of the most important research areas in com-
puter vision, the 3 R’s: Recognition, Reconstruction, and Reorganisation. There
is also another ‘R’ thats arguably more fundamental: Representation! For this
reason it seems apt to remind ourselves what this means, and at the same time
wonder why there has not been more research to rigorously quantify the expres-
sive power of a visual representation for use by machines.

In David Marr’s seminar book ‘Vision’, he eloquently describes what a rep-

resentation is:

“A representation is a formal system for making explicit certain enti-
ties or types of information, together with a specification of how the

system does this”.
For example:

“It is quite proper to think of an image as a representation; the items
that are made explicit are the image intensity values at each point in

the array, which we can conveniently denote by I(x,y) at coordinate

(xy)",
and another:

“..a representation for shape would be a formal scheme for describing
some aspects of shape, together with rules to specify how the scheme

is applied to any particular shape”.

Note that a description is the result of using a representation, and describes a
given entity, for example, an instance of an image. This is not to be taken as

trivial, and pausing in wonder D. Marr continues:

“The notion that one can capture some aspect of reality by making
a description of it using a symbol and that to do so can be useful

seems to me a fascinating idea”.
Finally, a word of caution:

“The choice of which to use is important and cannot be taken lightly.

It determines what information is made explicit and hence what is
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(b)

Figure A.17: (a) A description of an image representation, (b) its corresponding
description as a histogram representation, and (c) an image description that has the
exact same histogram description as the image in (a).

pushed further into the background, and it has a far-reaching effect
on the ease and difficulty with which operations may subsequently

be carried out on that information”.

It may now be appreciated that the need for a ‘good’ representation for
visual data will be crucial to the success of a computer vision system [172]. For
instance, in many applications it is desirable to find a representational space
in which descriptions of visual data can be compared by a distance metric. In
the Computer Vision community, a common way to assess the performance of a
representation is to first use it in an machine learning pipeline (e.g. classification)
and compare it on the accuracy obtained.

How then may we construct a test criteria for a successful representation,
which does not rely on a complete classification pipeline in order to asses its

quality? Would this be even useful?

A.8.1 How to assess the quality of a representation?

Since this work makes extensive use of histograms, it seems fit to perform an
initial investigation with histograms. A histogram is a simple non-parametric
density estimate, and makes explicit the relative frequency of occurring entities.
The histogram dimensionality is invariant to number of examples/features, and
is the representation of choice for many state-of-the-art classification methods.
In this section, we propose one way to assess the quality of a representation
whose descriptions are compared using distance metrics: look at the nearest
neighbours of the description! Let the image representation be denoted by Ry,
and its description by d; € R;. Similarly, let a histogram description by denoted
by dy € Ry. We propose that in this case, the nearest neighbour to dg, say d’;
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under distance metric d, should correspond to a description d}; which humans
see as being similar to d;, in this case the original image.

For example, consider the image of a cake in Fig. A.17(a), and its grey level
histogram in Fig. A.17(b): What does the the nearest neighbour of the histogram
look like? A histogram of an M x N image will have (M x N)! exact neighbours,
since a random permutation of the pixels does not change the histogram.

It follows that the only reason why histograms work in practice is because
datasets only contain natural images! Using a histogram representation, a ma-

chine cannot tell the difference between (a) and (c); they are exactly the same.
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