
RADAR
Research Archive and Digital Asset Repository

Recognising and localising human actions

Michael Sapienza (2014)

https://radar.brookes.ac.uk/radar/items/8c520676-aef0-4b67-a160-b6dd8e6a3e58/1/

Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can
be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis
cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright
holder(s). The content must not be changed in any way or sold commercially in any format or medium without the
formal permission of the copyright holders.

When referring to this work, the full bibliographic details must be given as follows:

Sapienza, M (2014) Recognising and localising human actions PhD, Oxford Brookes University

WWW.BROOKES.AC.UK/GO/RADAR

Removed figs 1.1 and 1.2, pp.2-3

https://radar.brookes.ac.uk/radar/items/8c520676-aef0-4b67-a160-b6dd8e6a3e58/1/

Recognising and localising human actions

Michael Sapienza

Department of Computing and Communications Technology

Faculty of Technology, Design and Environment

Oxford Brookes University

A dissertation submitted to the Faculty of Technology in partial fulfilment

of the requirements of the award of Doctor of Philosophy.

September 2014

ii

Abstract

Human action recognition in challenging video data is becoming an increas-

ingly important research area. Given the growing number of cameras and robots

pointing their lenses at humans, the need for automatic recognition of human

actions arises, promising Google-style video search and automatic video sum-

marisation/description. Furthermore, for any autonomous robotic system to

interact with humans, it must first be able to understand and quickly react to

human actions.

Although the best action classification methods aggregate features from the

entire video clip in which the action unfolds, this global representation may

include irrelevant scene context and movements which are shared amongst mul-

tiple action classes. For example, a waving action may be performed whilst

walking, however if the walking movement appears in distinct action classes,

then it should not be included in training a waving movement classifier. For

this reason, we propose an action classification framework in which more dis-

criminative action subvolumes are learned in a weakly supervised setting, owing

to the difficulty of manually labelling massive video datasets. The learned

models are used to simultaneously classify video clips and to localise

actions to a given space-time subvolume. Each subvolume is cast as a

bag-of-features (BoF) instance in a multiple-instance-learning framework, which

in turn is used to learn its class membership. We demonstrate quantitatively

that even with single fixed-sized subvolumes, the classification performance of

our proposed algorithm is superior to our BoF baseline on the majority of per-

formance measures, and shows promise for space-time action localisation on the

most challenging video datasets.

Exploiting spatio-temporal structure in the video should also improve results,

just as deformable part models have proven highly successful in object recogni-

tion. However, whereas objects have clear boundaries which means we can easily

define a ground truth for initialisation, 3D space-time actions are inherently am-

biguous and expensive to annotate in large datasets. Thus, it is desirable to

adapt pictorial star models to action datasets without location annotation, and

to features invariant to changes in pose such as bag-of-feature and Fisher vectors,

rather than low-level HoG. Thus, we propose local deformable spatial bag-

of-features (LDSBoF) in which local discriminative regions are split

into a fixed grid of parts that are allowed to deform in both space

and time at test-time. In our experimental evaluation we demonstrate that

iii

by using local, deformable space-time action parts, we are able to achieve very

competitive classification performance, whilst being able to localise actions even

in the most challenging video datasets.

A recent trend in action recognition is towards larger and more challenging

datasets, an increasing number of action classes and larger visual vocabularies.

For the global classification of human action video clips, the bag-of-visual-words

pipeline is currently the best performing. However, the strategies chosen to

sample features and construct a visual vocabulary are critical to performance, in

fact often dominating performance. Thus, we provide a critical evaluation

of various approaches to building a vocabulary and show that good

practises do have a significant impact. By subsampling and partitioning

features strategically, we are able to achieve state-of-the-art results on 5 major

action recognition datasets using relatively small visual vocabularies.

Another promising approach to recognise human actions first encodes the

action sequence via a generative dynamical model. However, using classical dis-

tances for their classification does not necessarily deliver good results. Therefore

we propose a general framework for learning distance functions be-

tween dynamical models, given a training set of labelled videos. The

optimal distance function is selected among a family of ‘pullback’ ones, induced

by a parametrised mapping of the space of models. We focus here on hidden

Markov models and their model space, and show how pullback distance learning

greatly improves action recognition performances with respect to base distances.

Finally, the action classification systems that use a single global representa-

tion for each video clip are tailored for offline batch classification benchmarks.

For human-robot interaction however, current systems fall short, either because

they can only detect one human action per video frame, or because they assume

the video is available ahead of time. In this work we propose an online hu-

man action detection system that can incrementally detect multiple

concurrent space-time actions. In this way, it becomes possible to learn new

action classes on-the-fly, allowing multiple people to actively teach and interact

with a robot.

iv

Acknowledgements

First and foremost I would like to thank my supervisors Dr. Fabio Cuzzolin

and Prof. Philip H.S. Torr, for providing the opportunity for me to pursue a

doctorate in Computer Vision - how cool is that?! I also thank my supervisors

for their time, advice, for pushing me out of my comfort zone and criticising

my work; under their supervision I have learned enormously. During my studies

I also discovered ‘learning through osmosis’ - the natural flow of information

across a concentration gradient!

I was fortunate enough to share the lab, and pub, with several friends who

helped me along the way - Paul Sturgess, Sunando Sengupta, Vibhav Vineet,

Lubor Ladicky, Shuai Zheng, Marco Cecotti, Cristian Roman, and Bassel Yousef.

Sharon Howard provided tip-top administration, whilst Khaled Hayatleh and

Cigdem Sengul kindly gave their time as postgraduate tutors. Nigel Crook kept

a friendly and enthusiastic eye over the department.

I am grateful to my family in Malta, and my sister in London, for their

generosity; and to Sophie for her unlimited patience.

v

vi

Contents

Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xv

Nomenclature xvii

1 Introduction 1

1.1 Motivating applications of human action recognition from videos . 1

1.2 What is an action? . 2

1.3 Why is human action recognition hard? 3

1.4 Dissertation outline . 5

1.5 Avenues of investigation . 5

1.5.1 Learning with sets of local histograms 6

1.5.2 Adding deformable action structure, general subvolume

shapes and saliency maps 7

1.5.3 Evaluating global bag-of-feature pipeline variations 8

1.5.4 Encoding action dynamics & learning distances between

models . 10

1.5.5 Real-time and online multiple action detection 12

1.6 Contributions . 13

1.7 Resulting publications and impact 14

2 Related work 17

2.1 Interest point detection . 17

2.2 Descriptors . 17

2.3 Mid-level representations . 18

vii

2.4 Learning the discriminative parts of an action video 19

2.5 Discriminative video part extensions 21

2.5.1 Incorporating mid-level pictorial structures 21

2.5.2 General subvolume shapes and action saliency 23

2.6 Design choices in the bag-of-visual-words pipeline for video data . 24

2.7 Pullback distances for time-series classification 26

2.8 Online multiple action detection 29

2.8.1 Multiple action detection in space and time 29

2.8.2 Online video stream-processing 30

2.8.3 Proposed online multiple action detection system 31

3 Datasets and performance indicators 35

3.1 Action classification . 35

3.1.1 KTH . 35

3.1.2 YouTube . 36

3.1.3 Hollywood2 . 37

3.1.4 HMDB51 . 37

3.1.5 UCF101 . 38

3.1.6 Performance indicators . 38

3.2 Action detection . 42

3.2.1 Performance indicators . 43

4 Learning discriminative actions from weakly labelled videos 49

4.1 MIL-BoF action models . 49

4.2 A learnt mapping from instance to bag labels 52

4.3 Experimental Evaluation . 54

4.3.1 Baseline BoF algorithm 54

4.3.2 MIL-BoF experimental setup 55

4.4 Results and discussion . 55

5 Towards adding local structure and general subvolume shapes 59

5.1 Local Deformable SBoF models (LDSBoF) 59

5.2 Experimental setup . 62

5.2.1 Experiments . 65

5.3 Quantitative results and discussion 66

5.3.1 Experiment 1 - adding structure 66

5.3.2 Experiment 2 - general subvolume shapes 66

5.4 Computational timings . 70

viii

5.5 Qualitative localisation discussion 71

5.5.1 Bounding box detection with LDSBoF 71

5.5.2 Class-specific saliency . 71

6 Feature sampling and partitioning for visual vocabulary gener-

ation on large action classification datasets 79

6.1 Constant experimental settings 80

6.2 Variable components of the experiments 82

6.3 Results and discussion . 82

7 Learning pullback distances for dynamical action models 91

7.1 Pullback metrics in Riemannian geometry 91

7.2 Pullback distance learning framework 92

7.3 Pullback distances for HMMs . 93

7.3.1 The space H of hidden Markov models 93

7.3.2 The space of transition matrices 94

7.3.3 Learning an approximate observation space 94

7.3.4 An automorphism of H . 95

7.3.5 Sampling the parameter space of the automorphism 97

7.4 A proof of concept . 98

7.4.1 Synthetic HMM sequences 99

7.4.2 Experimental setup . 100

7.4.3 Preliminary results & discussion 100

7.5 Experiments on human action recognition 102

7.5.1 Implementation details . 102

7.5.2 Results and discussion . 104

7.5.3 Other nonlinear automorphisms 106

7.5.4 Beyond HMMs . 108

7.5.5 Close-form optimisation by volume element matching . . . 108

8 Online learning of multiple concurrent space-time actions 111

8.1 Fast region proposal generation 111

8.2 Selective tubes . 113

8.3 Feature extraction . 114

8.4 Action category learning . 115

8.4.1 Class specific feature cache 115

8.4.2 Growing the learner set . 115

ix

8.4.3 Solving an SVM with batch stochastic gradient descent

and hard example mining 116

8.4.4 Life-long learning . 117

8.5 Preliminary tests . 118

8.5.1 Selective tubes . 118

8.5.2 Learning of multiple categories streamed online 119

9 Conclusions and future directions 121

Appendices 127

A Supporting ideas 129

A.1 Pullback metric . 130

A.2 Rectifying a non-linear boundary 132

A.3 Improving classification: automorphisms on a simplex 133

A.4 Bag of visual words pipeline . 136

A.5 Visualising visual words for inspiration 139

A.6 Pictorial structure matching . 142

A.7 Distance transforms . 144

A.8 Representation, representation, representation 145

A.8.1 How to assess the quality of a representation? 146

References 149

x

List of Figures

1.1 Human action recognition applications: online and offline. 2

1.2 The large intra-class variation in human action recognition. 3

1.3 A sample of images from popular action classification datasets. . . 4

1.4 The disadvantages of using global information to represent action

clips. 7

1.5 A sample result showing fixed-size cubic action subvolumes learned

in a max-margin multiple instance learning framework. 8

1.6 A video plotted in space and time showing root and part filter

detections from a handwaving action pictorial structure model. . . 9

1.7 A sample result showing a dense handwaving-action location map,

where each pixel is associated with a score indicating its class-

specific saliency . 10

2.1 Illustration of the dense trajectory feature extraction process. . . 18

3.1 Action recognition state-of-the-art performance over time. 36

3.2 Image samples from the KTH dataset. 37

3.3 Image samples from the YouTube dataset. 38

3.4 Image samples from the Hollywood2 dataset. 39

3.5 Example precision-recall curve. 41

3.6 A plot of the classification performance against the number of

classes. 43

3.7 A graph showing the classification performance against the im-

balance in examples per class. 44

3.8 Image samples from the HMDB51 dataset. 46

3.9 Image samples from the UCF101 dataset. 47

3.10 A sample image from the LIRIS human activities dataset used to

benchmark action detection systems. 48

xi

4.1 An action is defined as a collection of space-time action parts

contained in subvolumes shapes of cube/cuboidial shape. 50

4.2 Action localisation results on two challenging videos from the Hol-

lywood2 dataset. 58

5.1 Action recognition with a local deformable spatial bag-of-features

model (LDSBoF). 60

5.2 Local space-time subvolumes of different sizes are drawn in two

videos of varying length at random locations. 64

5.3 Quantitative graphs for learning local discriminative subvolume

models via multiple-instance learning. 68

5.4 Top, and side views from a test boxing video sequence in the KTH

dataset. 72

5.5 Detected LDSBoF configurations in the challenging Hollywood2

dataset. 73

5.6 Action classification and localisation on the KTH dataset. 75

5.7 Action localisation results on the HMDB51 dataset. 76

5.8 Misclassifications in the HMDB51 dataset. 77

6.1 KTH dataset classification accuracy using a global video repre-

sentation. 85

6.2 Comparing YouTube dataset classification results. 86

6.3 The classification accuracy versus K cluster centres and represen-

tation dimensionality on the Hollywood2 dataset. 87

6.4 The classification accuracy versus K cluster centres and represen-

tation dimensionality for the HMDB dataset. 88

7.1 Encoding videos as dynamical models. 92

7.2 The space of transition matrices. 95

7.3 Fitting a mixture of Gaussians (MoG) to the LLE embeddings

of the state output matrix columns, and mapping observation

vectors in the embedded space via a MoG. 96

7.4 Transition matrices A> based on fictional weather patterns from

each country. 99

7.5 State-output probability matrices C> based on fictional snacking

patterns for each country under different weather conditions. . . . 100

7.6 The % Accuracy plotted against the sampling density. 102

7.7 The % Accuracy plotted against the number of states in the HMM.103

xii

7.8 Performance plots comparing the Frobenius ‘base’ distance to the

pullback-Frobenius distance. 105

7.9 Confusion matrices for KTH dataset. 106

7.10 Confusion matrices for the YouTube dataset. 107

7.11 Comparing the performance measures achieved by different base

and pullback distances. 107

7.12 Automorphisms which preserve lines and others mapping lines to

curves. 108

8.1 Multiple action detection in a video stream using tubes. 112

8.2 A sequence of images showing the propagation of region proposal

labels in time via Hungarian assignment. 118

8.3 A depiction of the SVM learning 10 categories (1-vs-rest) streamed

online after 2000 iterations. 120

A.1 Illustration of a pullback distance. 131

A.2 Illustration of an automorphism rectifying a classification boundary.132

A.3 Improving classification on a simplex by line-preserving automor-

phisms. 134

A.4 Improving classification on a simplex by other nonlinear automor-

phisms. 135

A.5 Training and testing examples for a toy example plotted in R2. . 136

A.6 Plotting the normalised histograms in R3. 137

A.7 Precision recall curves per action class for three competing classi-

fiers. 138

A.8 Visual words from four action classes in the KTH dataset side-by-

side. 139

A.9 Visual words from a running class action video plotted in space

and time. 140

A.10 Visual words from a handwaving class action. 140

A.11 Visual words from a walking class action. 141

A.12 Visual words from a boxing class action. 141

A.13 A 3-part pictorial structure model and its optimal configuration. . 142

A.14 Cost function measuring how well each part matches the image. . 143

A.15 Transformed and offset responses. 143

A.16 An illustration of a distance transformed image. 144

A.17 An example illustrating a description of an image, its histogram

representation, and one of its nearest neighbours. 146

xiii

xiv

List of Tables

2.1 Statistics on the amount of dense trajectory features extracted

per video for various datasets. 26

3.1 A typical confusion matrix for an action classification task with

K = 3 classes. 40

4.1 Quantitative results from the state-of-the-art (S-o-t-a), our BoF

baseline, and our MIL-BoF method for various fixed-size subvol-

umes. 56

5.1 A table showing the results for using our local deformable spa-

tial bag-of-features (LDSBoF) with Fisher vectors generated using

K = 32 Gaussians. 67

5.2 A table showing the state-of-the-art results, and our results using

Fisher vectors with K = 32 Gaussians (F32). 70

6.1 The current state-of-the-art results compared to our best results

obtained with the global bag-of-features pipeline. 89

8.1 Quantitative results showing the performance of various online

linear SVM variations. 119

xv

xvi

“and the life which is unexamined is not worth living”

[Plato’s Apology, (38a)]

xvii

xviii

Chapter 1

Introduction

If you’ve sat down on a comfortable chair and picked up this dissertation, you’ve

already performed a couple of actions, as indicated by the verbs in the opening

phrase. If a computer was to detect actions from sentences, then detecting verbs

would be a good place to start. What if, however, the computer only has a

sequence of images to form a video? What would it look for? Why is this even

a good idea?

1.1 Motivating applications of human action recog-

nition from videos

Human action recognition from video is becoming an increasingly prominent re-

search area in computer vision, with far-reaching applications. On the Internet,

the recognition of human actions will allow the organisation, search, description,

and retrieval of information from the massive amounts of video data uploaded

each day [1–3]. In every day life, human action recognition may provide a natu-

ral way to communicate with robots, and provide novel ways of interacting with

computer games and virtual environments [4–6]. These applications fall natu-

rally into two groups. On the one hand, those which afford offline processing,

and on the other, those for which online and real-time processing is critical.

Consider a security application where one needs to search through or sum-

marise hundreds of hours of recorded CCTV footage automatically in the after-

math of a theft, as illustrated in Fig.1.1(a). Here, the video has been recorded

some time in the past, and the entire video, from beginning to end, is available.

The speed at which the result of the search is reached, and the ordering with

which possible matches are checked, are not critical to its operation. Therefore

1

2

(a) Offline processing (b) Online processing

Figure 1.1: (a) Search and retrieval applications in massive video collections afford
offline batch processing, since videos have been recorded in the past. Moreover, speed
is not critical to the search performance. (b) Human robot interaction applications,
in contrast, require instantaneous feedback to the interacting agents. A robot only has
access to present and past video frames, and computation needs to be real-time for
natural interaction.

this kind of search affords offline batch processing. In contrast, for robots in

human environments such as ASIMO [7] and Baxter [8], both the robot and the

person interacting with it need instantaneous feedback, as seen in Fig.1.1(b).

The robot must process one frame at a time and update the knowledge of its en-

vironment immediately after each frame. As opposed to offline batch processing,

only the present and past frames are available, and the frame processing needs

to be quick for natural interaction with humans to take place. The greater part

of this dissertation is devoted to applications affording offline batch processing,

whilst the last chapter changes direction towards challenging online scenarios.

Before moving on, we must first address a most important question: What is an

action?

1.2 What is an action?

This question may be answered from two perspectives, depending on whether

you ask a computer or a human. From a computer’s perspective, an action

needs to have a specific definition in order for it to be explicitly programmed.

However, due to the difficulty of defining an action down to small details, and the

difficulty of programming a well thought out definition, researches are usually

content with their own definition, tailored for their application. In this way, an

action is simply what you defined it to be.

For the purpose of our human understanding, previous researchers have de-

Chapter 1. Introduction 3

Figure 1.2: One reason why human action recognition is such a hard problem is that
within the same class of actions, for example ‘jumping’, there is a huge variability over
the person’s appearance, clothing, and motion, which an action model must generalise
over. This can be seen in the above images, where three different events in the London
2012 Summer Olympics all involve a quite different jumping action.

fined an action to be the “intentional bodily movement of biological agents inter-

acting with their environment for a specific purpose” [1,9], though they quickly

disregard any notion of movement, intention, and agent in what followed. In the

gap between what computers and humans understand by an action, lie many

open and challenging problems.

1.3 Why is human action recognition hard?

Although actions may be trivial for humans to understand, achieving this ca-

pability on machines poses considerable challenges. In addition to the classical

difficulties in computer vision [10] of dealing with objects in the world with

variations in illumination, viewpoint, background and part occlusions, human

actions inherently possess a high degree of geometric and topological variabil-

ity1. For instance, a jumping motion may vary in height, frequency and style,

yet this is still the same action, as shown in Fig.1.2. Additional ambiguity arises

when trying to define the start and end of an action. Querying unconstrained

video data introduces other nuisance factors since the recording is often of low

quality, and affected by camera motion, zooming and image blur from shaking.

It is therefore critical for an action recognition system to generalise over a wide

group of actions in the same class, and yet to discriminate between actions in

different classes [11].

Despite these difficulties, significant progress has been made in learning and

recognising human actions from videos [11,12]. Whereas early action recognition

1The ability of humans to appear as figures which may deform into topologically non-
equivalent surfaces, such as a sphere and a torus.

4

Figure 1.3: A sample of images from popular action classification datasets. Whereas
early action recognition datasets like the KTH [13] included videos with single, staged
human actions against homogeneous backgrounds, more recently challenging uncon-
trolled movie data from the Hollywood2 dataset [17] and amateur video clips available
on the Internet seen in the YouTube [16] and HMDB51 [3] datasets are being used
to evaluate action recognition algorithms. These challenging datasets contain human
actions which exhibit significant variations in appearance, style, viewpoint, background
clutter and camera motion, as seen in the real world.

datasets included videos with single, staged human actions against simple, ho-

mogeneous backgrounds [13, 14], more recently, challenging uncontrolled movie

data [15] and amateur video clips available on the Internet [3, 16] have been

used to evaluate action recognition algorithms. These datasets contain human

actions with large variations in appearance, style, viewpoint, background clutter

and camera motion, common in the real world. A sample of images from four

popular action classification datasets is shown in Fig. 1.3, in order of increasing

difficulty, from KTH [13] to the more challenging HMDB51 [3] dataset. In the

next section, we present the outline of this dissertation, together with the ac-

tion recognition tasks explored; these vary in difficulty, but can all be explicitly

programmed for a computer to solve automatically.

Chapter 1. Introduction 5

1.4 Dissertation outline

First and foremost, we present the human action recognition datasets used

throughout this work in Chapter 3. Next, we formulate the problem of local,

weakly-supervised action clip classification in Chapter 4, where in addition to

predicting the global action clip label, the computer must also predict the action

location in space and time, without having location annotation during training.

An extension of this work to include pictorial structure models and more general

subvolume shapes is presented in Chapter 5.

In chapters 6 & 7 we consider the problem of global, supervised, action clip

classification, where the task is to assign an action label to an unknown video

clip, given a training dataset of videos with ground truth labels. Note that the

video clips are of predefined length and it is assumed that one video belongs to

a single action class. Whereas in chapter 6 videos are represented globally as a

bag-of-visual-words, a global hidden Markov model is used in chapter 7.

Lastly, in Chapter 8 we address the problem of online multiple human action

detection, which is the task of associating a local 3D-subvolume/tube that may

be growing in time with an action category. Notice that both action clip clas-

sification with localisation, as well as multiple action detection pose a greater

challenge to a computer than global action clip classification. This is because

for a classification task, a video may take only one of C class labels, giving a

random guess a 1
C

chance of choosing the right label. In order to localise the

action, one must also predict where, out of millions of possible locations, the

action is happening, giving a randomly guessed location a very small chance of

being correct.

1.5 Avenues of investigation

Effective data representations are key to the success of machine learning algo-

rithms, since they make explicit the underlying factors of variation in the data

which are important for discrimination [10, 18] (cf. Section A.8). Effective ac-

tion representations are also key to the success of human action recognition

algorithms. In the following subsections we introduce the action representations

used in this work, as well as the original techniques developed to address the

action recognition problems set out in Section 1.4.

6

1.5.1 Learning with sets of local histograms

One highly successful approach to represent an action video has been in the

form of a single ‘bag-of-visual-words’, also known as ‘bag-of-features’ (BoF), his-

togram (cf. Section A.5), and its extensions to VLAD/Fisher vectors [19]. The

surprising success of BoF may be attributed to its ability to summarise local

features as a simple histogram, without regard for human detection, pose esti-

mation or the location of body-parts, which so far cannot be extracted reliably

in unconstrained action videos [20]. Moreover, the histograms provide a fixed

length representation for a variable number of features per video, which is ideal

for traditional learning algorithms [21].

A drawback arising from a single global representation per action video is that

no local information may be derived to tell more specifically where the action of

interest is taking place. To overcome this limitation, we explored the possibility

of representing an action video with a set of local representations (cf. Chapters 4

& 5). Moreover, current space-time human action classification methods [22–25]

derive an action’s representation from an entire video clip, even though this

representation may contain motion and scene patterns pertaining to multiple

action classes. For instance, in the state-of-the-art BoF approach [26], dense

space-time features are aggregated globally into a single histogram representa-

tion per video. This histogram is generated from features extracted from the

whole video and so includes visual word counts originating from irrelevant scene

background (see Fig. 1.4(a) & 1.4(b)), or from motion patterns shared amongst

multiple action classes. For example the action classes ‘trampoline jumping’ and

‘volleyball spiking’ from the YouTube dataset [16] both involve jumping actions,

and have a similar scene context, as shown in Fig. 1.4(c) & 1.4(d). Therefore in

order to discriminate between them, it is desirable to automatically select those

video parts which tell them apart, such as the presence of a moving ball, multiple

actors and other action-specific characteristics.

This motivates a framework in which action models are derived from smaller

portions of the video volume, subvolumes, which are used as learning primitives

rather than the entire space-time video. Since large action classification datasets

only have labels for the global video clip, and not the label of each individual

video subvolume, we propose to cast action classification in a weakly labelled

framework. In this way, action models may be derived from automatically se-

lected video parts which are most discriminative of the action. An example

illustrating the result of learning the discriminative fixed-size action cubes from

which action models are derived is shown in Fig. 1.5. Even though features were

Chapter 1. Introduction 7

(a) boxing (b) running (c) trampoline jump (d) volleyball spiking

Figure 1.4: The disadvantages of using global information to represent action clips.
Firstly, global histograms contain irrelevant background information as can be seen in
the (a) Boxing and (b) Running action videos of the KTH dataset [13]. Secondly, the
histograms may contain frequency counts from similar motions occurring in different
action classes, such as the (c) trampoline jumping and (d) volleyball spiking actions
in the YouTube dataset [16]. In Chapter 4, we propose a framework in which action
models can be derived from local video subvolumes which are more discriminative of the
action. Thus important differences such as the moving ball, the presence of multiple
people and other action-specific characteristics may be captured.

extracted over the entire video (as marked by the black dots in Fig. 1.5), only

regions where the action is taking place were selected during training, since the

background is found in other action classes of the dataset, and therefore not

discriminative of the action.

1.5.2 Adding deformable action structure, general sub-

volume shapes and saliency maps

In addition to discriminative local action models, we propose to incorporate

deformable structure by learning a pictorial structure model for each action

class. In the absence of ground truth location annotation, we use automatically

selected video regions to learn a ‘root’ action model. Action part models are

subsequently learnt from the root location after dividing it into a fixed grid of

regions, which are allowed to deform at test-time. This extends spatial-BoF

models [27] to incorporate deformable structure. The result of testing a 3-part

handwaving model is shown in Fig. 1.6.

As another extension to Section 1.5.1 in which only fixed size cubes were

used, we aggregate local histograms over subvolumes of varying cuboidial sizes.

Moreover, in contrast to localising actions via bounding cuboids (see Fig. 1.5 &

Fig. 1.6), we propose to build an action-specific saliency map by aggregating the

predicted detection scores from all subvolume shapes. An example illustrating

the result of using general subvolume shapes visualised as a saliency map is

shown in Fig. 1.7.

8

Figure 1.5: A boxing video sequence taken from the KTH dataset [13] plotted in
space and time. Black dots denote the mean position from where features have been
extracted. Notice that in this particular video, the camera zoom is varying with time,
and features (black dots) were extracted from areas of motion caused by camera zoom.
Overlaid on the video are discriminative cubic action subvolumes learned in a max-
margin multiple instance learning framework (cf. Section 4.1), with colour indicating
their class membership strength. Since the scene context of the KTH dataset is not
discriminative of the particular action, only subvolumes around the actor were selected
as positive instances (best viewed in colour).

By extending global mid-level representations (e.g. BoF, Fisher vectors) to

deformable part-models and general video subvolumes, we aim to both improve

classification results, as compared to the global baseline, and capture location

information.

1.5.3 Evaluating global bag-of-feature pipeline variations

Since a local bag-of-visual-words representation was used in the previous two

sections to describe video parts, it is important to ensure that the visual word

vocabulary pipeline is tuned to give maximum performance. Despite extensive

work showing various aspects in which the BoF pipeline may be improved to

squeeze out additional performance [21, 28–33], there remains interesting ques-

tions yet to be evaluated empirically, particularly when considering huge action

classification datasets with a large number of classes [3, 34]. For example, the

recent UCF101 dataset [34] contains 101 action classes and ∼13, 000 video clips.

Using the state-of-the-art ‘dense trajectory’ features, this generates ∼679GB of

features. Therefore one cannot easily load all the training features into mem-

ory. Furthermore, randomly subsampling the features generates a bias towards

Chapter 1. Introduction 9

Figure 1.6: A handwaving video sequence taken from the KTH dataset [13] plotted in
space-time. The action is localised in space and time by a pictorial structure model,
despite the latter being trained in a weakly supervised framework (in which no action
location annotation is available). Overlaid on the video are the root filter detections,
drawn as red cubes, and part filters (shown in green and blue respectively), linked to
the root by green and blue segments. The star model for the handwaving action (above)
is detected at multiple steps in time, and thus well suited to detect actions of unknown
duration (best viewed in colour).

action classes associated with a greater share of videos, or disproportionately

longer video sequences2.

Secondly, state-of-the-art space-time descriptors are typically formed by a

number of components. The issue arises of whether it is best to learn a single

visual vocabulary over the whole, joint feature space, or whether to learn a

vocabulary for each feature component separately. Finally, visual vocabularies

may also be learnt separately for each action category [21]. Although it generates

redundant visual words which are shared among multiple action classes, such a

strategy is worth exploring for the dimensionality of the representation increases

linearly with the number of classes C. Thus learning multiple dictionaries per-

category, each with a small number of clusters K, may still produce large vector

representations (key to the success of Fisher vectors [2]) since the final dictionary

size will be K × C.

An exploration into various ways of generating visual vocabularies for action

classification is laid out in Chapter 6, where the following unanswered questions

2 Note that the issue of having a large discrepancy in the number of features per video
sample is not usually encountered when using image datasets.

10

Figure 1.7: A handwaving video sequence taken from the KTH dataset [13] plotted in
space and time. Notice that in this particular video, the handwaving motion is repeated
continuously and the camera zoom is varying with time. Overlaid on the video is a
dense handwaving-action location map, where each pixel is associated with a score
indicating its class-specific saliency. This dense map was generated by aggregating
detection scores from general subvolumes sizes, and is displayed sparsely for clarity,
where the colour, from blue to red, and sparsity of the plotted points indicate the
action class membership strength. Since the scene context of the KTH dataset is not
discriminative for this particular action, only the movement in the upper body of the
actor is detected as salient (best viewed in colour).

are addressed: i) What is the best way to randomly subsample features to build

a vocabulary for human action recognition? ii) What are the effects of learning

separate rather than joint visual vocabularies when considering multiple feature

components or multiple action classes?

1.5.4 Encoding action dynamics & learning distances be-

tween models

Due to the sequential nature in which human actions unfold, another popular

way of initially representing action clips has been in the form of a time-series of

features extracted from video frames, or adjacent blocks of frames [35–37]. For

encoding these time-varying observations into a single, global representation,

generative dynamical models have been employed since they possess a number

of desirable properties for action recognition. First, they are effective in coping

with observation sequences of the same category which vary in time or speed,

also known as time warping [37]. Secondly, they are able to describe the causal

relationships in activity patterns [38]. Indeed, many researchers have explored

the idea of encoding time-varying features via linear, nonlinear [39], and chaotic

Chapter 1. Introduction 11

[36] dynamical models. Hidden Markov models [40], in particular, have been

widely employed [37]. They are typically classified by learning a new model for

each test sequence, measuring its distance from the old models, and attributing

to it the label of the closest model(s) [35].

A number of distance functions for comparing dynamical models (e.g. Cauchy

kernels [39]) and HMMs (e.g. KL-divergence [41]) have been introduced. Nev-

ertheless, no single distance function can possibly outperform all the others in

every classification problem, as the same models can be endowed with different

class labellings. Therefore, a sensible approach when training data are available

consists in learning in a supervised fashion the ‘best’ distance function from the

data, for example, by maximising the classification performance on a validation

set. This approach is widely supported by the literature, particularly in linear

spaces3 [42]. However, generative dynamical models live in non-linear spaces4,

and thus the need for a principled way of learning distances in general metric

spaces arises.

An interesting tool is provided by pullback metrics (cf. Section A.1). If

the models belong to a Riemannian manifold5 M, any automorphism6 of M
onto itself induces such a metric on M. By designing a suitable family of au-

tomorphisms we obtain a family of pullback metrics we can optimise upon (cf.

Section A.3). A strong rationale for pullback metric learning comes from the

fact that, as we argue here for M = Rn (Euclidean space is a special case of

a manifold with only one coordinate chart), any differentiable, invertible (with

no self-intersections) non-closed hypersurface can be made linear by stretching

the data domain via an appropriate automorphism; ideal for a linear classifier.

Moreover, for a non-linear classifier such as nearest neighbour, the automor-

phism may move points of the same class closer together, and further away from

points of distinct classes (cf. Section A.3). Therefore, in general, we only need to

explore the functional space of all automorphisms to find those able to produce

the desired separation between classes.

3A linear or vector space V is a set that is closed under vector addition and scalar multi-
plication.

4 A linear combination of models does not necessarily result in another valid model.
5A topological spaceM locally isomorphic to a Euclidean space, equipped with a Rieman-

nian metric g : TM× TM → R which takes as input a pair of tangent vectors v,w ∈ TM
and returns a scalar g(v,w), in a way which generalises the properties of the dot product of
vectors in a Euclidean space.

6An isomorphism is a transformation which preserves a structure, in our case, the structure
of smooth manifold.

12

1.5.5 Real-time and online multiple action detection

The aforementioned action recognition propositions (cf. Sections 1.5.1 - 1.5.4)

are aimed at massive databases of videos processed offline. A potentially much

larger source of visual data however will arise from future robotic platforms, with

cameras operating continuously. Whereas pre-recorded video search and retrieval

is aimed ultimately for human viewing, robotic systems need not record the raw

visual data for later playback. Rather, robots will process the visual information

as it arrives, and store only discriminative data in a representation useful for it to

immediately understand its surroundings. Here we focus on the latter scenario

in which a robot asks the questions:

i) Are there any relevant human actions happening now?

ii) If so, what kind of actions are they?

iii) How many are there?

iv) Where are they?

These questions may be answered by space-time human action detection,

which we define as the task of associating a 3D subvolume that may be growing

in time with an action category. The immediacy of the information required for

human-robot interaction may be addressed by processing the data in an online

fashion. We use the term ‘online’ to denote the incremental fashion by which

the entire action recognition pipeline operates; that is, the space-time region-

proposal generation, feature extraction, and learner are updated as soon as a

video frame becomes available. Note that only current and past data is available

to the robot [43].

Consider the following description of an ‘open door’ action: “A human stands

in front of a door1, moves his arm towards the keyhole2, inserts a key3, turns the

key4, pulls down on a handle5, extends his arm to open the door6, and enters the

building7”. It is tempting to approach the detection of the ‘open-door’ action [44]

in a bottom-up, fully supervised fashion, requiring the detection of humans, the

surrounding environment, interacting objects, and their movement in time. At

some point during this process, it may be inferred that a person intended to open

a lock, for the purpose of entering a building. Note that phrases (2−4) would

remain identical if a person was starting a car [1]. This approach, however,

is plight with difficulty, as each individual sub-action (1−7) requires a suite of

detectors and a deluge of training data in order to generalise to a wide variety

of scenarios.

In order to circumvent this problem, previous works [1] have treated human

actions as ‘space-time objects’, and used video descriptors which capture the

Chapter 1. Introduction 13

object’s appearance, motion, and environment context into an unordered col-

lection of visual words [25]. However, state-of-the-art bag-of-visual-word action

recognition systems are currently offline, since features are extracted and en-

coded assuming the entire video volume is available [20, 26]. Thus, a class label

is assigned to a video sequence only after a sufficient number of frames have been

processed [45]. Therefore, we propose to bridge a gap in the action recognition

literature by including an online action recognition system capable of learning

and detecting multiple space-time actions in a video stream.

1.6 Contributions

Firstly, I cast the conventionally supervised BoF action clip classification ap-

proach into a weakly supervised setting, where clips are represented as bags of

histogram instances with latent class variables. In order to learn the subvolume

class labels, I applied a multiple instance learning framework to 3D space-time

videos (cf. Section 4.1), as actions may be better defined within a subvolume of

a video clip rather than the whole video clip itself. Further, I proposed a map-

ping from instance decisions learned in the ‘mi-SVM’ approach to bag decisions

(cf. Section 4.2), as a more robust alternative to the current bag margin MIL

approach of taking the sign of the maximum margin in each bag. This allows

our MIL-BoF approach to learn the labels of each individual subvolume in an

action clip, as well as the label of the action clip as a whole. The resulting action

recognition system is suitable for both clip classification and localisation in chal-

lenging video datasets, without requiring the labelling of action locations [46].

Secondly, I proposed to add deformable structure to local mid-level action

representations (e.g BoF, Fisher vectors). This extended Spatial-BoF to allow

the deformation of the rigid template at test-time (cf. Section 5.1). I also demon-

strated quantitatively that our SVM-map strategy for mapping instance scores

to global clip classification scores outperforms taking the argument of the max-

imum instance score in each video. Moreover, in Section 5.5 I show qualitative

localisation results using a combination of classification and detection to out-

put action-specific saliency maps; I was the first to show qualitative localisation

results on challenging movie data such as the HMDB51 dataset.

Next, as my third contribution, when videos are represented as global bags

of visual words, I demonstrated various design choices that lead to an improved

classification performance across 5 action recognition datasets and 3 performance

measures (cf. Chapter 6). I proposed a simple and effective feature sampling

14

strategy used to scale the vocabulary generation to a large number of classes and

thousands of videos (cf. Algorithm 6.1). The outcomes of this evaluation sug-

gested that i) sampling a balanced set of features per class gives minor improve-

ments compared to uniform sampling, ii) generating separate visual vocabularies

per feature component gives major improvements in performance, and iii) BoF

per-category gives very competitive performance for a small number of visual

words, achieving state-of-the-art on KTH with only 32 clusters per category,

although Fisher vectors won out on the rest.

In fourth, when videos are represented as a time-series of observations, we

proposed a general framework for learning optimal pullback distances given

a training set of generative dynamical models, identified from a collection of

labelled observation sequences (cf. Chapter 7). The parameters of the pull-

back distance which optimises classification performance were found by cross-

validation [47]. We applied this framework to hidden Markov models in Sec-

tion 7.3. We studied their product space structure and design there appropriate

automorphisms. In Section 7.5 I conducted proof-of-concept tests, as well as

experiments on the KTH and YouTube datasets which demonstrated the signif-

icant improvement in action classification rates (with respect to the chosen base

distance) delivered by pullback learning under challenging conditions.

Finally, we outline an action detection framework which may learn new action

categories online. My main contribution is a proposal based on local space-time

tubes, formed by incrementally connecting region proposals in time. Along

the way, I made algorithmic adaptations which will be crucial for incremental

online learning and detection of multiple actions, including i) selective search

ranking of region proposals, ii) selective search region correspondence in time,

and iii) a variant of batch stochastic gradient descent with hard example mining

and long-term class memory to support the inclusion of new categories online.

An end-to-end system implementation and experimental evaluation is however

left as future work.

1.7 Resulting publications and impact

Our work on ‘learning discriminative space-time actions from weakly labelled

videos’ [48] won a poster prize at the INRIA Visual Recognition & Machine

Learning (VRML) Summer School 2012. The corresponding paper [48] was soon

after accepted for publication at the British Machine Vision Conference (BMVC

Chapter 1. Introduction 15

2012), for which it was accepted as an oral7. Later, we were invited to submit an

extended version of the paper to the International Journal of Computer Vision

(IJCV), an indication that it was among the top papers at BMVC. One of our

original Figures (cf. Fig. 1.5) also appeared on the cover of the conference pro-

ceedings. An extended version of our BMVC paper including pictorial structures

and more general subvolume shapes was later accepted at IJCV [20] (IF 3.62).

Our evaluation on feature subsampling and partitioning strategies for global

bag-of-feature generation was archived as a technical report [49] with code avail-

able online8. The software used to generate the experiments was also used ex-

tensively in the following publications [20,48,50–52].

The results of our work on ‘learning pullback-HMM distances’ with applica-

tion in human action recognition have been published in the IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI, IF 4.8) [51]. We recently

submitted a journal paper applying pullback distance learning to the recognition

of disease conditions from inertial measurement unit readings [52].

7http://videolectures.net/bmvc2012_sapienza_labelled_videos/
8https://sites.google.com/site/mikesapi/downloads/

global-video-representation

http://videolectures.net/bmvc2012_sapienza_labelled_videos/
https://sites.google.com/site/mikesapi/downloads/global-video-representation
https://sites.google.com/site/mikesapi/downloads/global-video-representation

16

Chapter 2

Related work

2.1 Interest point detection

In recent state-of-the-art methods, space-time feature extraction is initially per-

formed in order to convert a video to a vectorial representation. Features are

extracted around local points in each video, which are either determined by a

dense fixed grid, or by a variety of Interest Point Detectors (IPDs) [26]. Whereas

IPDs such as Harris3D [53], Cuboid [54] and Hessian [55] allow features to be

extracted sparsely, saving computational time and memory storage, IPDs are

not designed to capture smooth motions associated with human actions, and

tend to fire on highlights, shadows, and video frame boundaries [56, 57]. Fur-

thermore, [26] demonstrated that dense sampling outperformed IPDs in real

video settings such as the Hollywood2 dataset [17], implying that interest point

detection for action recognition is still an open problem.

2.2 Descriptors

A plethora of video features have been proposed to describe space-time patches,

mainly derived from their 2D counterparts: Cuboid [54], 3D-SIFT [58], HoG-

HoF [15], Local Trinary Patterns [59], HOG3D [60], extended SURF [55], and

C2-shape features [61]. More recently [25] proposed ‘dense trajectory’ features

which, when combined with the standard BoF pipeline [26], outperformed the

recent ‘learned hierarchical invariant’ features [23, 62]. Therefore, even though

this framework is independent from the choice of features, we used the dense

trajectory features [25] to describe space-time video blocks.

Dense trajectory features are formed by the sequence of displacement vec-

tors in an optical flow field, together with the HoG-HoF descriptor [15] and the

17

18

Trajectory description

HOG MBHHOF

Tracking in each spatial scale separately

Dense sampling
in each spatial scale

Figure 2.1: Dense trajectory feature extraction starts with a dense sampling of points
at a discrete set of scales (left). Each point is subsequently tracked by mean filter-
ing a dense optical flow [64] field, for a maximum of L frames (typically L = 15).
Descriptors are calculated around the trajectory (right). Some structure is captured
by splitting the trajectory volume into a fixed grid (Figure reproduced with permission
from [25]).

motion boundary histogram (MBH) descriptor [63] computed over a local neigh-

bourhood along the trajectory. The MBH descriptor represents the gradient

of the optical flow, and captures changes in the optical flow field, suppressing

constant motions such as camera panning. Thus, dense trajectories capture a

trajectory’s shape, appearance, and motion information. These features are ex-

tracted densely from each video at multiple spatial scales, and a pruning stage

eliminates static trajectories such as those found on homogeneous backgrounds,

or spurious trajectories which may have drifted [25]. The dense trajectory feature

extraction process is illustrated in Fig. 2.1.

2.3 Mid-level representations

Many highly successful action recognition systems transform the aforementioned

low-level descriptors [15, 25, 58, 60] into more invariant representations of ‘inter-

mediate’, or ‘mid-level’ complexity [65]. One such mid-level representation is

the bag-of-visual-words/bag-of-features (BoF) representation (cf. Section A.4),

which represents a collection of low-level descriptors as an unordered collection of

‘visual words’, i.e., a histogram. A dictionary of visual words is usually generated

by partitioning the descriptor space into a number K of clusters by k-means.

Each video descriptor is then assigned to the nearest cluster in the visual vocab-

ulary using the Euclidean distance (cf. Section A.5). A bag-of-feature histogram

is defined by a vector h = (h1, . . . , hK)>, where hk is the frequency of occurrence

of visual word ‘k’ in h.

Another successful mid-level representation is the Fisher vector [2]. Instead

Chapter 2. Related work 19

of creating a visual vocabulary by clustering the feature space into K centroids

by k-means, as done in the BoF approach, for Fisher vectors it is assumed that

the features are distributed according to a Gaussian Mixture Model (GMM) with

K components. Whereas in BoF, the feature quantisation step is a lossy process

[66], a Fisher vector is formed through the soft assignment of each feature point

to each Gaussian in the visual vocabulary. Therefore, instead of being limited

by a hard assignment, it encodes additional information about the distribution

of each feature. Let D = {dt, t = 1, . . . , T} be the set of dense trajectories

extracted from part or the entirety of a video, and let the GMM have parameters

Γ = {wi,µi,Σi}, i = 1, . . . , K, where the wi’s are mixture weights that satisfy∑K
i=1 wi = 1; µi is a mean vector, and Σi is a covariance matrix with diagonal

covariance; the variance vector along the diagonal of Σi will be denoted as σi.

Let γt(i) = p(i|dt) be the soft assignment of descriptor dt to the ith Gaussian:

γt(i) =
wipi(dt)∑K
j=1 wjpj(dt)

. (2.1)

Let D denote the dimensionality of descriptors dt, and gDi be the D-dimensional

gradient with respect to the mean µi of Gaussian ‘i’. Mathematical derivations

lead to:

gDµ,i =
1

T
√

wi

T∑
t=1

γt(i)

(
dt − µi

σi

)
. (2.2)

The final gradient vector gDΓ is the concatenation of the gDi vectors, and therefore

each Fisher vector is of dimensions K×D, where K is the number of probabilistic

visual words, and D is the dimensionality of each feature type [67,68].

2.4 Learning the discriminative parts of an ac-

tion video

As mentioned in the previous chapter, the current state-of-the-art algorithms

for the classification of challenging human action data are based on the bag-of-

features (BoF) on spatio-temporal volumes approach [15, 26]. However, its rep-

resentational power diminishes with dataset difficulty (e.g. Hollywood2 dataset

[17]) and an increased number of action classes (e.g. HMDB dataset [3]). This

may be partly due to the fact that current BoF approaches represent entire video

clips [25] or subsequences defined in a fixed grid [15]. Thus, many similar action

parts, and background noise are also included in the histogram representation.

20

By splitting up the video clip into overlapping subvolumes, a video clip is in-

stead represented as a bag of histograms, some of which are discriminative of the

action at hand (‘positive’ subvolumes) while others (‘negative’ ones) may hinder

correct classification. A more robust action model can therefore be learned based

on these ‘positive’ subvolumes in the space-time video. Moreover, the classifi-

cation of local subvolumes has the additional advantage of indicating where the

action is happening within the video.

The BoF approach has been coupled with single frame person/action detec-

tion to gain more robust performance, and to estimate the action location [1,69].

In contrast, by learning discriminative action subvolumes from weakly-labelled

videos, the method we propose allows action localisation without using any train-

ing ground truth information, in a similar spirit to [16,56]. Unlike previous work,

however, we select discriminative feature histograms and not the explicit features

themselves. Moreover, instead of using a generative approach such as pLSA [70],

we use a max-margin multiple instance learning (mi-SVM) framework to handle

the latent class variables associated with each space-time action part.

In many machine learning applications such as molecular activity, document

categorisation and image/video detection, gathering detailed labels for the pur-

pose of supervised training is prohibitively expensive. This makes weakly su-

pervised algorithms such as multiple instance learning (MIL) very attractive, as

only groups of examples need to be labelled. In MIL, examples or ‘instances’ are

grouped together in positive and negatively labelled ‘bags’, without knowledge

of the instance labels. However, it is assumed that a negatively labelled bag

only contains negative instances, and that a positive bag must contain at least

one positive instance [71,72]. The aim is to learn a model which is able to cate-

gorise bags, its instances, or both [20,48], after training on such weakly labelled

data. Gaidon et al.. [73] also leveraged weakly labelled video datasets, this

time for learning a higher-level global activity representation. In [73], a video is

decomposed into an unordered binary tree of mid-level BoFs encoding related

space-time motion patterns. Instead of using human annotated labels to split

each video into motion-related parts, a clustering algorithm is employed.

Some insight to MIL comes from its use in the context of face detection [74].

Despite the availability of ground truth bounding box annotation, the improve-

ment in detection results when compared to those of a fully supervised framework

suggested that there existed a more discriminative set of ground truth bounding

boxes than those labelled by human observers. The difficulty in manual labelling

arises from the inherent ambiguity in labelling objects or actions (bounding box

Chapter 2. Related work 21

scale, position) and the judgement, for each image/video, of whether the context

is important for that particular example or not. A similar MIL approach was

employed by Felzenszwalb and Huttenlocher [75] for object detection in which

possible object part bounding box locations were cast as latent variables. This

allowed the self-adjustment of the positive ground truth data, better aligning the

learned object filters during training. In action detection, Hu et al. used an MIL

learning framework called SMILE-SVM [76]; however, this focused on the detec-

tion of 2D action boxes, and required the approximate labelling of the frames

and human heads in which the actions occur. In contrast, we propose casting

the space-time subvolumes of cubic/cuboidial structure as latent variables, with

the aim to capture salient action patches relevant to the human action.

In action clip classification only the label of each action clip is known, and not

the labels of individual parts of the action clip. Thus, this problem is inherently

weakly-labelled, since no approximate locations of the actions or ground truth

action bounding boxes are available. That is why we propose to learn action

subvolumes in a weakly-labelled, multiple instance learning (MIL) framework.

At test time, human action classification is then achieved by the recognition of

action instances in the query video, after devising a sensible mapping from in-

stance scores to the final clip classification decision. To this end, we use multiple

instance learning (MIL), in which the recovery of both the instance labels and

bag labels is desired, without using two separate iterative algorithms [71]. Our

proposed SVM-map strategy provides a mapping from instance scores to bag-

scores which quantitatively outperforms taking the argument of the maximum

score in each bag.

2.5 Discriminative video part extensions

Following on from the previous section (§ 2.4), we propose to use the discrim-

inatively learned action video parts to initialise a pictorial structure model for

each action class (§ 2.5.1), and to expand the subvolumes to more general shapes

rather than just fixed sized cubes, with application in space-time action saliency

(§ 2.5.2).

2.5.1 Incorporating mid-level pictorial structures

Attempts to incorporate structure into the BoF representation for video classi-

fication have been based on the spatial pyramid approach [15]; here a spatio-

22

temporal grid was tuned for each dataset and action class. Although spatial

pyramids have been successful in scene classification [77], in which parts of the

scene consistently appear in the same relative locations across images, it is un-

clear whether they are useful for difficult clips such as those captured from mobile

devices, in which the same action can appear in any location of the video.

In order to model human actions at a finer scale, it is desirable to localise the

spatial and temporal extent of an action. Initial work by [1] learnt a boosted cas-

cade of classifiers from spatio-temporal features. To improve space-time interest

point detectors for actions such as ‘drinking’, the authors incorporated single

frame detection from state-of-the-art methods in object detection. It is however

desirable to remove the laborious and ambiguous task of annotating keyframes,

especially when considering huge online video datasets.

In another approach, [69] split the task into two: firstly by detecting and

tracking humans to determine the action location in space, and secondly by using

a space-time descriptor and sliding window classifier to temporally locate two

actions (phoning, standing up). In a similar spirit, our goal is to localise actions

in space and time, rather than time alone [78–80]. However, instead of resorting

to detecting humans in every frame using a sliding window approach [69], we

localise actions directly in space-time, either with 3D bounding box detection

windows (Fig. 1.6), or by aggregating detection scores to form a saliency map

(Fig. 1.7).

To incorporate temporal structure into the BoF framework, Gaidon et al..

[79, 80] proposed to model actions as a sequence of key atomic action units or

‘actoms’. Their actom sequence models enforce a soft ordering between temporal

parts of an action in a particular category, and need to be annotated manually

during training. In video event detection, [57] used a search strategy in which

oversegmented space-time video regions were matched to manually constructed

volumetric action templates. Inspired by the pictorial structures framework [81],

which has been successful at modelling object part deformations [75], [57] split

their action templates into deformable parts making them more robust to spa-

tial and temporal action variability. Despite these efforts, the action localisation

techniques described [1, 57, 69] require manual labelling of the spatial and/or

temporal [79, 80] extent of the actions/parts in a training set. In contrast, we

propose to localise human actions via a pictorial structure model automatically

from weakly labelled observations, without human location annotation. More-

over, unlike previous work [16, 56], we select local discriminative subvolumes

represented by mid-level features [65] such as BoF and Fisher vectors, and not

Chapter 2. Related work 23

the low-level space-time features themselves (e.g. HoG, HoF).

In order to incorporate object structure, [75] used a star-structured part-

based model, defined by a ‘root’ filter, a set of ‘parts’, and a structure model.

However, the objects considered had a clear boundary which was annotated by

ground truth bounding boxes. During training, the ground truth boxes were

critical for finding a good initialisation of the object model, and also constrained

the plausible position of object parts. Furthermore, the aspect ratio of the

bounding box was indicative of the viewpoint it was imaged from, and was used

to split each object class into a mixture of models [75]. In contrast, for the

action classification task, the spatial location, the temporal duration and the

number of action instances are not known beforehand. Therefore we propose

an alternative approach in which part models are learnt by splitting the ‘root’

filter into a grid of fixed regions, as done in spatial pyramids [27,77]. Unlike the

rigid global grid regions of spatial pyramids [77] or spatial-BoF [27], our rigid

template used during training is local, not global, and is allowed to deform at

test-time to better capture the action warping in space and time.

2.5.2 General subvolume shapes and action saliency

Recent work by [23] used saliency models to prune features and build discrimina-

tive histograms for the Hollywood2 action classification dataset [17]. Amongst

various automatic approaches to estimate action saliency, such as tensor decom-

position, the best approach selected features according to their spatial distance

to the video centre; a central mask. This approach is ideal for Hollywood movies

in which actors are often centred by the cameraman, but less well suited for

general videos captured ‘in the wild’. Furthermore, the saliency masks in [23]

were precomputed for each video individually, without considering the dataset’s

context. For example, in a dataset of general sports actions, the presence of

a swimming pool is highly discriminative of the action ‘diving’. Less so in a

dataset which contains only different types of diving action categories. Thus, in

our view, action saliency should also depend on the differences between actions

in distinct classes. Learning the discriminative parts of a video (cf. Section 2.4)

may be used to address this issue and highlight salient parts of the video specific

to an action class.

Whereas in the previous section, only fixed-sized subvolumes were used, we

propose to extend the set to include a variety of subvolume shapes, since different

actions may be better captured by a different-sized subvolumes. Moreover, since

actions may not be well bounded inside cubic/cuboidial shapes, we experiment

24

with aggregating the scores from a set of subvolume shapes to generate a saliency

map (cf. Section 5.5), with promising qualitative results.

2.6 Design choices in the bag-of-visual-words

pipeline for video data

Current state-of-the-art human action classification systems rely on the global

aggregation of local space-time features [19], to form a bag-of-features repre-

sentation (cf. Section 2.3). The areas in which BoF may be improved were

broadly outlined by Nowak et al. [30] and Jiang et al. [31]. These include the

patch sampling strategy, for which uniform random sampling of the image space

was shown to outperform interest point-based samplers such as Harris-Laplace

and Laplacian of Gaussian [30]. Previous action recognition BoF evaluation [26]

focused on comparing a variety of local spatio-temporal features, and also found

that dense sampling consistently outperformed interest point detection in real-

istic video settings. Later, the authors of [26] proposed a new visual descriptor

called ‘dense trajectories’ which achieved the state-of-the-art in action classifi-

cation [25]. Further areas of improvement were the feature-space partitioning

algorithm, for which Nister et al. [32] extended k-means to produce vocabu-

lary trees, and Farquhar et al. [21] used a Gaussian mixture model instead of

k-means; the visual vocabulary size also improved performance, though it satu-

rated at some data-dependent size [30]. Another area of improvement was the

weighting of frequency components in a histogram (tf-idf) [33], and the use of

sets of bipartite histograms representing universal and class-specific vocabular-

ies [29]. More recently, Fisher and VLAD vectors achieved excellent results by

using small vocabularies and soft quantisation, instead of a hard assignment to

form high dimensional vectors [67, 68]. A comprehensive evaluation of various

feature encoding techniques on image classification datasets was provided by

Chatfield et al. [82]. Finally the choice of classification algorithm has largely

been dominated by support vector machines [15,25,28]. In contrast to previous

work [26,30,82], here we focus on feature subsampling and partitioning after fea-

ture extraction has taken place but prior to encoding, with the aim of improving

the subsequent dictionaries learned for encoding features.

For earlier systems which used BoF for object retrieval in videos [33], building

a visual vocabulary from all the training descriptors was known to be a “gar-

gantuan task” [33]. Thus researchers tended to select subsets of the features,

Chapter 2. Related work 25

dedicating only a sentence to this process. For example, quoting [33], “a subset

of 48 shots is selected covering about 10k frames which represent about 10% of

all frames in the movie”, amounting to 200k 128-D vectors for learning the vi-

sual vocabulary. Csurka et al. trained a vocabulary with “600k descriptors” [28],

whilst Nister et al. used a “large set of representative descriptor vectors” [32]. In

order to construct visual vocabularies, Jiang et al. used all the training keypoint

features in the PASCAL dataset, and subsampled 80k features in the TRECVID

dataset [31]. In the evaluation proposed in Chapter 6, we clarify this process by

comparing two specific methods to sample features from the smallest to largest

action recognition datasets available. The sheer volume of features extracted

from each dataset used here is listed in Table 2.1.

It is clear that with thousands of videos in the training set, in practice one

cannot use all of the features to build a vocabulary. Also note that in video

classification datasets, longer sequences have disproportionately more features

than shorter ones, in contrast to image datasets. Moreover, some action classes

also have many more videos associated with them than others1. To see the extent

by which the number of features per video varies in action recognition, check the

difference between the ‘Maximum’ and ‘Minimum’ rows of Table 2.1. Thus, in

general, sampling uniformly at random may result in a pool of features which is

biased towards a particular class. For example in the Hollywood2 dataset [17],

‘driving’ action clips are typically much longer than ‘standing up’ clips. We

hypothesise that the subsampling strategy may have a significant impact on the

classification performance especially when dealing with a large number of action

classes and videos.

The selection of good partitioning clusters to form a visual vocabulary is also

important, as they form the basic units of the histogram representation on which

a classifier will base its decision [21]. Thus, for a categorisation task, having clus-

ters which represent feature patches that distinguish the classes is most likely

to make classification easier. This motivates per-category clustering, to preserve

discriminative information that may be lost by a universal vocabulary [21], espe-

cially when distinct categories are very similar. The downside is that learning a

separate visual vocabulary per class may also generate many redundant clusters

when features are shared amongst multiple categories. On the other hand, since

the complexity of building visual vocabularies depends on the number of cluster

centres K, clustering features independently allows to reduce the number of K

1Bias in the number of examples per class is common in many areas of computer vision, for
example, the semantic segmentation of road scenes where 70% of the image pixels are labelled
as road.

26

Table 2.1: Various statistics on the amount of dense trajectory features extracted
per video from the KTH, Hollywood2 (HOHA2), HMDB and UCF101 datasets. The
number of action categories are denoted within parenthesis. The ‘Memory’ and ‘Sum’
are calculated over the whole dataset assuming 32-bit floating point. Following these
are the mean, standard deviation, median, maximum, and minimum number of features
per video in each dataset.

KTH (6) HOHA2 (12) HMDB (51) UCF-101
Memory (GB) 6 45 160 679
Sum 4,000,000 28,000,000 99,000,000 421,000,000

Mean 9,000 34,000 16,000 32,000

Std Dev 5,000 44,000 14,000 30,000

Median 8,000 20,000 13,000 22,000

Maximum 36,000 405,000 138,000 410,000

Minimum 967 438 287 358

whilst keeping the representation dimensionality high (K × C), and makes the

vocabulary learning easily parallelisable. So far, per-category training has seen

promise on a single dataset with a small number of classes [21]; it is therefore

to be seen how it performs on challenging action classification data with a large

number of action classes.

2.7 Pullback distances for time-series classifica-

tion

When representing an action video as a sequence of ‘mid-level’ observations, its

recognition becomes a problem of time series classification [83] which is applied,

among others, to stock market predictions, electric motor fault diagnosis [84] and

EEG analysis [85]. A number of techniques have been proposed for time series

classification, including SVMs and boosting of interval-based predicates [86].

Neural networks have been widely employed, often to first and second order

statistics [87], or in combination with MAP estimation [88].

While most of the literature analyses times series without recurring to an in-

termediate representation, the use of dynamical models has also been explored.

State-space analysis has indeed been widely proposed for modelling and regres-

sion with time series. A first example is [89], where a metric for ARIMA models

based on their autoregressive representation was introduced. Lyapunov expo-

nents have been used as features for classifying speech signals [90]. In [91] the

Chapter 2. Related work 27

authors perform maximum likelihood classification based on a Gaussian Mix-

ture Model (GMM) representation in the Reconstructed Phase Space (RPS), a

topological embedding of the original time series.

Dynamical models provide a compact representation for time series which

can mitigate the related dimensionality issue2, but cannot be naively classified.

Metric learning is a natural answer. The various forms of Mahalanobis distance

learning such as Relevant Component Analysis (RCA) [42] assume an L2 distance

on the original data space M = Rm and a linear mapping between M and a

transformed space N = Rn. This is a special case of pullback learning, in which

both the original and the transformed space are linear and the map linking them

is also linear: y = Ax. Indeed, in the pullback paradigm the automorphism

F : M → N can map the model space to a different metric space [92] (cf.

Section A.1).

Pullback metrics’ adoption has been recently proposed by Lebanon for doc-

ument retrieval. In [92], however, rather than classification rates, the inverse

volume of the pullback manifold is maximised in an unsupervised setting. More-

over, for hidden or variable length [93] Markov models, a proper Riemannian

metric is difficult to identify. For this reason, we need to relax the constraint of

having a proper manifold structure, by considering mere distance functions in a

metric space3.

Thus, in Chapter 7, we propose to maximise classification performance con-

sidering models for which a Riemannian structure is not known. In contrast,

Jaakkola and Haussler’s Fisher kernels [94] are purely geometrical (they make

use of the Fisher geometry of families of distributions). Lafferty and Lebanon’s

‘heat’ kernels [95] are also purely geometric, and require a Riemannian structure

on the data. Unlike geodesic distances, they are Mercer kernels that can be used

in an SVM directly.

A strong rationale for pullback metric learning comes from its consequences

on class separation. In kernel approaches [96], classes that cannot be linearly

separated in the original domain are more likely to be so in a higher-dimensional

‘feature space’. In the pullback setup, instead of looking for better separation

in a higher-dimensional feature space, we seek to stretch the original space to

maximise classification performance. For instance, if a linear separator is used,

2 The curse of dimensionality, which broadly refers to the volume of space increasing
exponentially as the dimensionality of your data representation increases. In machine learning
this usually necessitates an exponential increase in the number of samples used for training to
avoid overfitting the data.

3A set for which distances between all members of the set are defined and satisfy all
properties of a metric (c.f Section A.1).

28

it can be proven that for any differentiable, invertible non-closed hypersurface

(separating data points of two different classes) in M = Rn there exists an

automorphism of Rn that maps it to a hyperplane (cf. Section A.2). Note that

this does not hold for closed boundaries (e.g. a circle in R2). Consequently, we

only need to thoroughly explore the functional space of all automorphisms to

find the ‘right’ one, able to produce the desired class separation.

The design of a specific parametrised family of automorphisms provides a

more limited search space which makes this search feasible in practice, recalling

parametrised families of kernels [97], limiting at the same time overfitting issues

that would arise when searching for arbitrary automorphisms to perfectly fit the

available training data. When the dataset of models is labelled, we can determine

the optimal distance function in a supervised setting. From the above argument

on rectifying nonlinear boundaries (also cf. Section A.2) it follows that, in our

pullback framework, we should seek a max-margin separation approach in a

SVM-inspired fashion. However, this is not trivial in the nonlinear case treated

here4.

A variety of objective functions were introduced in the metric learning liter-

ature, such as the ratio between inter class and intra class covariance [98], and

mutual information [42]. To be able to use them in our framework we need to

express them as a function of the metric. When the training set is unlabelled,

distance function learning has to be based on purely geometrical considerations.

Lebanon [92] has suggested to maximise in closed form the inverse of the vol-

ume element or Gramian ‘det g’ associated with a metric g around the given

training set of points. When the dataset of models is labelled, we can determine

the optimal metric/distance function in a supervised setting. In the linear case

analytical solutions can be achieved by convex optimisation [99]. In fact, just

as in the case of [42] and [92], we can imagine an objective function which al-

lows optimisation in closed form, so that no numerical optimisation is necessary.

Some proposals in this direction are formulated in Section 7.5.5.

For the nonlinear case considered here, we use cross-validation [47] to opti-

mise the classification performance of the pullback distance. We extract samples

from the automorphism’s parameter space and pick those with maximal perfor-

mance on the validation folds. Although the samples’ density may be a limiting

factor, it is related to the dimensionality of the automorphism’s parameter space.

Thus in general, with careful design of a family of automorphisms, its parameter

4 The space of HMM models is nonlinear since addition and scalar multiplication of models
does not in general produce another valid HMM.

Chapter 2. Related work 29

space need not be a function of the dimensionality of the model space or the

features. It is up to us to design a family of automorphisms powerful enough

to generate performance gains, while being computationally feasible and able to

limit overfitting issues. As the original distance function is obtained under the

identity automorphism, the optimal pullback distance is guaranteed to improve

performance on the validation folds. The results obtained in Section 7.5 indicate

that this typically generalises to the test data as well.

2.8 Online multiple action detection

Motivated by the potential of humans to teach robots and interact with them,

the need for online multiple human action detection arises. However, to the best

of our knowledge, action recognition systems have not yet crossed this milestone.

One reason being that current action detection systems do not incorporate all

of the following necessary components:

i) video-stream processing,

ii) space-time region proposals and features,

iii) online learning, and

iv) multiple action detection5.

In what follows, we will describe the current state-of-the-art in order to make

clear our contributions.

2.8.1 Multiple action detection in space and time

Several works attempt to localise actions in space alone using a single-frame de-

tector [100,101], or in time alone [78,79]. Here we focus on space-time detection,

defined by either a 3D cuboid, or a set of 2D windows associated in time to form

a ‘tube’, ‘subvolume’, or ‘track’, with one window in each frame and forming a

continuous segment without holes [44].

Laptev et al. pioneered one of the first works on action detection in realistic

scenarios [1], with a boosted 3D space-time window classifier combined with a

single frame action detector. Multiple action detection may incur an expensive

exhaustive search in space and time; this was alleviated in [1] by restricting the

search space around detected 2D ‘keyframes’. Since the action detection system

was developed for video indexing applications, all video processing was carried

5We use the term ‘localisation’ for cases in which it is assumed that an action is always
present in a video clip, and the task is to locate it. For ‘detection’, there may not be any
action in the video, and therefore another class is needed to denote the absence of an action.

30

out offline. Another offline method by Willems et al. [102] extended an exemplar

based object detection to action recognition. In order to alleviate an expensive

search over space-time and scales, discriminative visual words extracted during

training were stored with ground truth annotation, and used as a prior for pos-

sible detection locations. A greedy grouping procedure was used to form 3D

detection windows from overlapping space-time hypothesis.

In order to reduce the action search space, Klaser et al. [69] first generated

action hypothesis by detecting and tracking humans, and subsequently classified

the space-time ‘tracks’. Frame-by-frame detections were generated by training

an upper human body histogram-of-oriented-gradient (HoG) detector [103], and

associating the detected windows in time using KLT-tracked features. Interpo-

lation and smoothing was needed to reduce noise and fill in gaps, whilst an

additional classifier was necessary to prune erroneous tracks. Note that using

trained detectors for a particular human body position like the upper body is

restrictive to a class of actions in which the upper body is discriminative of

the action. An efficient decision tree approach was adopted by Mikolajczyk

et al. [104], in which multiple action detection was achieved by accumulating

scores for local features on each frame along the decision tree path. However,

unlike [69], localisation of actions was only performed over scale-space, and thus

without association in time. In this case, a robot would be unable to recog-

nise that a walking action over multiple frames is in fact a single action6. In

order to associate the 2D detection windows in time, Xie et al. [105] used the

L1 distance between colour histograms over detections in neighbouring frames.

In [105], actions were represented by a fixed-length sub-sequence of deformable

part model (DPM [75]) scores over a segment of video frames. It is not clear

how well this approach performs however, since it was not tested on publicly

available detection benchmarks.

2.8.2 Online video stream-processing

Despite recent advances in online action recognition [45,59], current systems are

only tailored for the recognition of a single action class per video frame. For

example, Yeffet et al. [59] proposed an online action recognition system inspired

by local binary patterns, in which grid based video regions were represented as a

histogram of Trinary strings, encoded by comparing pixel regions in neighbouring

6 Note that it is not easy for us humans to determine whether an action detection system
is connecting actions in time from a video with bounding box annotations, since we perform
the data association effortlessly whilst watching.

Chapter 2. Related work 31

frames. A video segment descriptor is formed from the concatenation of these

histograms over the grid. Whilst this approach is fast and online, it only encodes

motion information, and crucially is limited to recognise a single action category

per frame.

Yu et al. [45] designed a very fast action recognition system based on ensem-

bles of random decision trees that quickly translate interest points into visual

codewords for classification. The downside is that it also only allows single ac-

tion classification per group of frames. Moreover, the use of fast interest point

detectors makes it sensitive to image pixel noise, and may fire on salient video

regions which are not relevant to the human action [20,57].

2.8.3 Proposed online multiple action detection system

A person or object may potentially be seen in any location of an image and

may be small or large depending on its distance form the camera. Thus previ-

ous researchers [75] explored the entire image space exhaustively using a sliding

window at multiple scales. Due to the computational load of an exhaustive

search, however, various methods were proposed to select image regions which

have a high chance of containing an object of interest [106–109]. Whereas ‘ob-

jectness’ [107] style classifiers depend on the data they were trained on, the

‘selective search’ [109] algorithm uses a graph-based unsupervised segmentation

algorithm [110] to generate object proposals from the image structure. Since

selective search is category independent, it is ideal for the online learning of

new categories. However, the full selective search method [109] combined with,

for instance, CNN features [111] may still take tens of seconds per image [112].

Therefore, we propose to augment the selective search algorithm [109] by learn-

ing incrementally the region proposal action relevance, and only pass a small

subset for expensive feature extraction.

Actions may be detected by bounding them in cubes/cuboids [1,20,48], how-

ever in this case a more flexible enclosing structure is provided by a connected

set of windows in time, commonly called tracks [69] or tubes [113]. Building

upon recent work on temporally consistent superpixels [114,115] may provide a

mechanism to extract region proposals in 3D without resorting to an exhaustive

search [20]. Grundmann et al. [115] achieved temporally coherent superpixels

by casting a video as a 3D graph for segmentation, however this assumes that

the entire video is known apriori, making online recognition impractical. In con-

trast, Chang et al. [114] find temporal correspondence between superpixels in

time. The upside is that superpixel correspondences may be found even when

32

the pixel regions are not connected in time, as is often the case for quick move-

ments [114]. However, with the generative probabilistic model used in [114],

inference takes tens of seconds per video frame, too slow for practical online

applications. Instead we propose to augment the selective search strategy once

more, this time by associating region proposals in time via combinatorial optimi-

sation. Connecting region proposals in time to form tubes allows the extraction

of motion vectors, which may subsequently be used as discriminative features.

For representation learning and classification, the field of Neural Networks

is back to the forefront of machine-learning research, with an increased depth

of network layers and more effective learning strategies [18, 116]. The increased

depth of the network layers enables it to learn multiple levels of representation

corresponding to different levels of feature abstraction, rather than resorting to

hand-crafted features. These deep networks have recently achieved state-of-the-

art performance on tasks such as speech recognition, character recognition [117],

and image classification where Krizhevsky et al. [111] reduced the error rate

on ImageNet from 26.1% to 15.3%. Recently, Girshick et al. also pushed the

best performance on the PASCAL object detection challenge [118] from a mean

average precision of 34% to 48%; a massive leap forward. For this reason, we

propose to use the CNN network architecture as [111] trained on the ImageNet,

and observe whether the network output transfers to the task of action detection.

Thus we use the output of the network as highly non-linear mapping from the

raw image pixels, to features suitable for classification.

The CNN features, after being aggregated and normalised to action tube

proposals, may then be classified using an online linear SVM with hard negative

mining [75]. In contrast to the stochastic gradient descent algorithm described

by Felzenszwalb and Huttenlocher [75], which sampled training examples from

a large offline dataset of images, here we design a batch variant which samples

examples from the current set of action tubes. Note that there will only be

a subset of the classes appearing in the video at any one time, and we found

that without keeping a ‘previously seen’ action example cache, the incremental

learner begins to ‘forget’ the action categories which appeared in the past.

Previous works [20,75,112] used online learning to tackle large static datasets.

In contrast, in this work:

i) examples are received incrementally in time;

ii) the number of action categories grows incrementally;

ii) action categories that appear for a short duration in time need to be re-

membered, and respective models updated when new classes appear later

Chapter 2. Related work 33

on in time;

iii) convergence of the learner over time is not desirable, since if a new class

appears, all other models need to be updated.

With these differences in mind, we designed a multi-class incremental online

learning algorithm (Algorithm 8.2), and tailor a classical stochastic gradient

descent algorithm for learning SVM models (Algorithm 8.3).

In the following proposed methodology we do not assume any training has

been done beforehand on the dataset in use, for instance, to detect possible action

locations [1, 9], to detect humans [69], to refine features [112], or bootstrap the

learning [75]. We assume that at the first frame of training the recognition

system has never seen the dataset before. We believe that an online incremental

learner should learn as it views the world from one frame to the next, using only

information it has seen in the past and the present [43]. This is a paradigm shift

which separates our work from [1,45,59,69,105], and is key to evaluate how well

new action classes may be learned ‘on the fly’. A detailed methodology of the

proposed online multiple action detection framework is laid out in Chapter 8. In

the next Chapter, we review the datasets and performance measures we used to

evaluate action classification and detection methods.

34

Chapter 3

Datasets and performance

indicators

The datasets in this chapter fall into two groups: those designed to evaluate ac-

tion clip classification algorithms (§ 3.1), and those designed for action detection

(§ 3.2).

3.1 Action classification

Amongst many action classification datasets, we chose a subset from the rela-

tively easy to the most challenging, suitable to benchmark and compare various

action recognition algorithms. The task here is to automatically assign the cor-

rect action label to each video, on a so called ‘test’ set; a set of videos previously

unknown to the computer/learner. A variety of performance indicators/metrics

are commonly used to quantify how well a computer was able to perform clas-

sification (cf. Section 3.1.6). A graph showing the state-of-the-art accuracy

for various action classification datasets1 in chronological order can be seen in

Fig. 3.1.

3.1.1 KTH

The KTH dataset2 [13] contains 6 action classes, 25 actors, and four scenarios.

The actors perform repetitive actions at different speeds and orientations. Se-

quences are longer when compared to those in the YouTube [16] or the HMDB51

[3] datasets, and contain clips in which the actors move in and out of the scene

1Results reported from March 2012.
2http://www.nada.kth.se/cvap/actions/

35

http://www.nada.kth.se/cvap/actions/

36

-

6

10

20

30

40

50

60

70

80

90

100

%

#action classes 6 10 10 8 11 12 50 51

#datasets KTH [13]

Weizmann [14]

Sports [119]

HOHA1 [15]

YouTube [16]

HOHA2 [17]

UCF50

HMDB51 [3]

#year 2004 2005 2008 2008 2009 2009 2010 2011

s s
s

s

s
s s

s

94.5% [120]

100% [14, 59,121]

88.2% [25]

53.5% [56]

84.2% [25]

58.3% [25]

47.9% [3]

23.18% [3]

Figure 3.1: State-of-the-art results plotted for a number of datasets in date-of-release
order (older - newer). One may see a general decrease in performance as the number of
action classes increases. Note that the difficulty of each dataset does not only depend on
the number of classes, it also much depends on the differences between videos of distinct
classes (similar classes makes classification harder), and the differences between videos
used in training and testing (similar videos makes classification easier).

during the same sequence. In our experiments, we split the video samples into

training and test sets as in [13], and considered each video clip in the dataset to

be a single action sequence. Sample images from the KTH dataset are shown in

Fig. 3.2.

3.1.2 YouTube

The YouTube dataset3 [16] contains videos collected online from 11 action classes.

The data is challenging due to camera motion, cluttered backgrounds, and a high

variation in action appearance, scale and viewpoint. In our tests, 1600 video

sequences were split into 25 groups, following the author’s evaluation procedure

of 25-fold, leave-one-out cross validation. An image sample from each action

class of the YouTube dataset is shown in Fig. 3.3.

3http://www.cs.ucf.edu/~liujg/YouTube_Action_dataset.html

http://www.cs.ucf.edu/~liujg/YouTube_Action_dataset.html

Chapter 3. Datasets and performance indicators 37

Figure 3.2: Image samples from the KTH dataset. Rows (i-iv) show four different
scenarios: (i) outdoors, (ii) outdoors with scale variation, (iii) outdoors with different
clothes, and (iv) indoors. Columns (a-f) show the six action classes: (a) walking,
(b) jogging, (c) running, (d) boxing, (e) handwaving, and (f) handclapping.

3.1.3 Hollywood2

The Hollywood2 dataset4 [17] contains instances of 12 action classes collected

from 69 different Hollywood movies. There are a total of 1707 action samples

each 5-25 seconds long, depicting realistic, unconstrained human motion, al-

though the cameras often have their view centred on the actor. The dataset

was divided into 823 training and 884 testing sequences, as in [17]. Note that

all videos in this dataset were initially downsampled to half their size; a mod-

ification to be taken into account when comparing results. This downsampling

procedure was also done in [62], due to high video resolutions, and the huge

amount of features that would be subsequently extracted. Samples of images

from each action class are presented in Fig. 3.4.

3.1.4 HMDB51

The HMDB dataset5 [3] contains 51 action classes, with a total of 6849 video clips

collected from movies, the Prelinger archive, YouTube and Google videos. Each

action category has a minimum of 101 clips. We used the non-stabilised videos

with the same three train-test splits proposed by the authors [3]. A collection of

image samples is shown in Fig. 3.8, where each action class is denoted directly

4http://www.di.ens.fr/~laptev/actions/hollywood2/
5http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/

http://www.di.ens.fr/~laptev/actions/hollywood2/
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/

38

Figure 3.3: Image samples from the YouTube dataset. From top left down to bottom
right the action classes are: basketball shooting, trampoline jumping, soccer juggling,
walking with a dog, biking/cycling, golf swinging, volleyball spiking, tennis swinging,
diving, horse back riding and swinging. Note that many of the YouTube actions were
captured from low quality cameras, and contain significant camera movement.

below each image.

3.1.5 UCF101

The UCF101 dataset [34] contains 101 action classes, approximately 13, 000

clips and 27 hours of video data. This is currently the largest video classification

dataset to date. The sheer volume of data, high number of action classes and

unconstrained videos make this a very hard dataset. We used the recommended

three train-test splits proposed by the authors [34]. Image samples from each

action class in the dataset are shown in Fig. 3.9. A complete list of action

categories can be found online6.

3.1.6 Performance indicators

Previous authors (e.g. [1, 26]) have evaluated action classification performance

through a single measure, such as the accuracy or average precision. In our

experimental evaluation, we used three performance measures for each dataset,

in order to present a more complete picture of each algorithm’s performance, as

6http://crcv.ucf.edu/data/UCF101.php

http://crcv.ucf.edu/data/UCF101.php

Chapter 3. Datasets and performance indicators 39

Figure 3.4: Image samples from the Hollywood2 dataset. Can you guess what the
action classes are from the sample images? Answers below7. This exercise is intended
to show the reader that it is not always easy for us to recognise an action class from a
single still image.

presented in the following subsections.

Accuracy

The classification Accuracy (Acc) is calculated as the #correctly classified testing

clips /#total testing clips. Typically, for a multi-class classification task with

k ∈ {1, . . . , K} classes, and i ∈ {1, . . . , N} examples, a K × K confusion

matrixC is first constructed by incrementing the element of the matrix at indices

C[gt(i), pred(i)], for each pair of ground truth and predicted labels. A typical

confusion matrix is presented in Table. 3.1. The accuracy is then the trace of

C, divided by the total sum of its elements:

Acc =
a+ e+ i

N
, (3.1)

where a, e and i are the diagonal elements of the 3× 3 confusion matrix shown

in Table. 3.1.

7

SitDown,FightPerson,Eat,HandShake,Kiss,HugPerson.
Fromtoplefttobottomright:GetOutCar,Run,SitUp,DriveCar,StandUp,AnswerPhone,

40

Table 3.1: A typical confusion matrix for an action classification task with K = 3
classes.

Predicted label
Run Box Hop Total

Ground truth label
Run a b c a+ b+ c
Box d e f d+ e+ f
Hop g h i g + h+ i
Total a+ d+ g b+ e+ h c+ f + i N

F1-score

The F1-score is found by weighting the ‘Recall’ and ‘Precision’ of a classifier

equally and is calculated as the ratio:

F1 =
2× Recall× Precision

Recall + Precision
. (3.2)

The Recall measures the fraction of correctly classified examples from one class,

to the total number of examples of that class in the ground truth. The Recall

was calculated separately for each class as:

Recall(k) =
C[k, k]∑b=K

b=1 C[k, b]
, or in MATLAB:

C(k, k)

sum(C(k, :))
. (3.3)

The Precision is the fraction of correctly classified examples from a particular

class, in the total number of examples predicted as being of that particular class:

Precision(k) =
C[k, k]∑a=K

a=1 C[a, k]
, or in MATLAB:

C(k, k)

sum(C(:, k))
. (3.4)

To report a single number quantifying the classification performance, the F1

score for each class may be averaged as follows:

mF1 =

∑
k F1 k

K
. (3.5)

Average Precision

The Average precision (AP), is a score which considers the ordering in which

the results are presented, and is best used for retrieval/ranking tasks. Neverthe-

less, it has been widely used to benchmark classification problems in the action

recognition literature, and is presented here to allow comparison to other works.

To calculate the average precision, it is first necessary to sort the results by

their classification score, and consider what the values of precision and recall

Chapter 3. Datasets and performance indicators 41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
11−pt interp. AP = 0.702

Figure 3.5: An example of a precision-recall curve generated from random example
scores to illustrate the difference between the strict average precision (area under blue
curve), and the 11-point interpolated average precision (area under red curve).

would be had the retrieved examples been in the top ‘i’, where ‘i’ varies from

1, . . . , N . It is now possible to plot a graph with the N values of precision and

recall as points, joined by straight lines, as shown by the blue precision-recall

curve in Fig. 3.5.

The average precision value, which is strictly equal to the precision averaged

over all values of recall, equates to taking the area under the precision-recall

curve. However, to follow convention, in this work we use the 11-point interpo-

lated average precision, in which the precision pr at a certain recall level ‘r’ is

defined as the maximum precision recorded for any recall level r′ ≥ r:

pr = max
r′≥r

pr′ . (3.6)

A thorough analysis and justification for this measure can be found in [122]. In

practice the 11-point interpolated average precision in most cases overestimates

the area under the precision recall curve, as illustrated by the red lines in Fig. 3.5.

In a similar fashion to the F1 score, the mean average precision (mAP) is used

to give a single performance indicator for a multi-class classification problem.

42

Comparison and discussion

In order to compare each performance measure, we conducted two experiments

from randomly generated classifier scores. In the first experiment, we compared

the performance obtained when classifying scores generated uniformly at random

over a varying number of classes. We expect the outcome of a random classifier

to be on average 1/K for a K class problem. The averaged results over 1000 runs

is displayed in Fig. 3.6. Note that each class has the same number of examples.

In the second experiment, we benchmarked the performance of a random

classifier against an increasing imbalance in the number of examples per class.

The number of classes was fixed at 2, with one class having 20 examples and the

other having 20n− 20 more examples, where n was varied from 1 to 4, as shown

in Fig. 3.7. Again, results were averaged over 1000 runs.

Notice in Fig. 3.6 that the Acc and mF1 are exactly the same given the

same number of examples per class, and diverge with a class imbalance (see

Fig. 3.7). This demonstrates the importance of using the F1 score when working

with datasets in which there can be dominating and rare classes; for example if a

dataset had 100 examples of a walking action and only 10 examples of a cartwheel

action, then if all 110 examples were predicted as walking, the accuracy would

still be 91%, whilst the F1 score drops to 48%.

For a multi-class classification problem with an imbalance in the number of

samples per class, the accuracy may be normalised by dividing each row of the

confusion matrix by the sum of the elements in each row. The normalisation

ensures that each class receives the same weight in the accuracy calculation.

Since the 11-point average precision overestimates the area under the precision

recall curve, the exact area under the curve is also used as a performance mea-

sure (see the PASCAL VOC challenge [118]). Stating the performance measure

being used is thus essential when comparing different algorithms, and still not

commonplace.

3.2 Action detection

In order to evaluate our online multiple action detection algorithm, we selected

the challenging LIRIS human activities dataset [44]. The LIRIS dataset is attrac-

tive because it contains image sequences containing multiple actions annotated

in space and time, some of which occur simultaneously, as shown in Fig.3.10.

Moreover, it contains scenes with human actions amidst other irrelevant human

motion (other people performing irrelevant actions). The LIRIS dataset contains

Chapter 3. Datasets and performance indicators 43

2 4 6 8 10 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

acc
map
mf1

Figure 3.6: A plot of the classification performance (accuracy, 11-point mean average
precision, and mean F1 score) against the number of classes. Since the classifier
scores are generated randomly we expect to see the curve 1/K, followed accurately by
the accuracy and mF1 score, and slightly overestimated by the mAP.

10 action categories, which include human-human interactions and human-object

interactions, for example, ‘discussion of two or several people’, and ‘a person

types on a keyboard’. A full list of categories may be found on the dataset’s

website8. In particular, we used the D2 sequences shot with a Sony camcorder

with a resolution of 720× 576, and captured at 25 frames per second.

3.2.1 Performance indicators

The quantitative performance was calculated with the evaluation tool provided

for the LIRIS-HARL competition [44]. First, a detected action tube is assigned

to the closest ground truth tube based on the normalised overlap over all frames.

Second, a detected action tube is accepted as positive if the tubes have the same

class, and

i) if there is sufficient overlap with respect to thresholds on spatial pixel-wise

recall tsr, and temporal frame-wise recall ttr,

8http://liris.cnrs.fr/voir/activities-dataset

44

1 2 3 4

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

acc
map
mf1

Figure 3.7: A graph showing the classification performance against the imbalance in
examples per class, for a two class problem. The accuracy hugs the 0.5 line irrespective
of the number of examples per class, whilst the mAP initially overestimates and then
converges to 0.5 when the imbalance is over 8000 examples. The mF1 score decreases
gradually as the imbalance increases, demonstrating that it is a more reliable metric
to use when there is a disproportionate number of action/object classes in a dataset.

ii) if the excess duration is sufficiently small with respect to thresholds for

spatial pixel-wise precision tsp, and temporal frame-wise precision ttp.

By fixing the four thresholds that need to be satisfied, the recall and precision

may be calculated as:

Recall =
#correctly found actions

#actions in ground truth
(3.7)

Precision =
#correctly found actions

#number of found actions
(3.8)

The F1-score combines these measures as defined in Equation 3.2. A final

performance measure may be obtained by integrating the F1-score measure over

the range of possible threshold values. First four integrated F1-score values

(Isr, Isp, Itr, Itp) are calculated by varying one threshold and keeping the others

fixed at a small value (η = 0.1). Finally an averaged score is obtained by

averaging the four values:

Integrated Performance =
Isr + Isp + Itr + Itp

4
(3.9)

Chapter 3. Datasets and performance indicators 45

The final score is advantageous to use because it is independent of arbitrary

thresholds on the spatial or temporal overlap [123].

46

Figure 3.8: Image samples from the HMDB51 dataset. The 51 action categories
may be grouped into the following categories: general facial actions (e.g. chew), facial
actions with object manipulations (e.g. drink), general body movements (e.g. somer-
sault), body movements with object interaction (e.g. brush hair), and bodily movements
with human interaction (e.g. shake hands).

Chapter 3. Datasets and performance indicators 47

Figure 3.9: Image samples from the UCF101 dataset. The authors [34] claim that
the UCF101 dataset contains the largest collection of diverse actions, with large vari-
ations in camera motion, object appearance, pose, object scale, viewpoint, cluttered
background and illumination conditions. The action categories can be divided into five
types: human-object interaction, body-motion only, human-human interaction, playing
musical instruments and sports.

48

Figure 3.10: A sample image from the LIRIS human activities dataset used to bench-
mark action detection systems. The image show two different actions occurring si-
multaneously; the red tube numbered 8 has a label ‘a person gives an item to a second
person’, whilst the blue action tube numbered 5 has a label ‘a person typing on a key-
board’.

Chapter 4

Learning discriminative actions

from weakly labelled videos

This chapter is motivated by two main ideas:

• an action model should be learned from those parts of the video which are

relevant to the action class, and

• local action models may be used to locate discriminative video patches of

human actions in large video datasets.

Since in many large datasets, collecting the locations of actions in videos by

human annotators for training is prohibitively expensive, we propose an ac-

tion recognition system that leverages weakly labelled videos. In the following

sections, we present the three main building blocks making up our approach,

namely:

i) the description of space-time videos via histograms of dense trajectory

features [25] (cf. Section 2.2);

ii) the representation of a video clip as a ‘bag of subvolumes’, and the learning

of positive subvolumes from weakly labelled training sequences within a

max-margin multiple instance learning framework (cf. Section 4.1), and

iii) the mapping of instance/subvolume scores to bag/clip scores by learning

a hyperplane on instance score features (cf. Section 4.2).

4.1 MIL-BoF action models

In this work, when using BoF, we define an instance to be an individual his-

togram obtained by aggregating the dense trajectory features within a local

subvolume, and a bag is defined as a set of instances originating from a single

space-time video. Since we perform multi-class classification with a one-vs-all

49

50

(a) Global space-time volume (b) Bag of general local subvolumes

Figure 4.1: Instead of defining an action as a space-time pattern in an entire video
clip (a), an action is defined as a collection of space-time action parts contained in
subvolumes shapes of cube/cuboidial shape (b). One ground-truth action label is as-
signed to the entire space-time video or ‘bag’, while the labels of each action subvolume
or ‘instance’ are initially unknown. Multiple instance learning is used to learn which
instances are particularly discriminative of the action (solid-line cubes), and which are
not (dotted-line cubes).

approach, we present the following methodology as a binary classification prob-

lem.

In action classification datasets, each video clip is assigned to a single action

class label. By decomposing each video into multiple instances, now only the

class of the originating video is known and not those of the individual instances.

This makes the classification task weakly labelled, where it is known that positive

examples of the action exist within the video clip, but their exact location is

unknown. If the label of the bag is positive, then it is assumed that one or more

instances in the bag will also be positive. If the bag has a negative label, then

all the instances in the bag must retain a negative label [71]. The task here is to

learn the class membership of each instance, and an action model to represent

each class, as illustrated in Fig. 4.1.

The learning task may be cast in a max-margin multiple instance learning

framework (MIL), of which two methods were proposed in [71]; a ‘bag-margin’

and an ‘instance-margin’ formulation, the former designed to estimate ‘bag-

labels’ and the latter to estimate ‘instance-labels’. Since we are interested in both

the bag and instance labels, we first adopted the instance-margin formulation and

subsequently proposed a mapping from instance scores to bag-labels, presented

in the following section (§ 4.2).

Let the training set D = (〈X1, Y1〉, . . . , 〈XN , YN〉) consist of a set of bags,

Chapter 4. Learning discriminative actions from weakly labelled videos 51

where X i = {xi1, ...,xiMi
} of different length Mi, with corresponding ground

truth labels Yi ∈ {−1,+1}. The range of the indices are i ∈ I = {1, . . . , N}, and

j ∈ J = {1, . . . ,Mi}. Each instance xij ∈ Rn represents the jth BoF histogram

in the ith bag, and has an associated latent class label yij ∈ {−1,+1} which is

initially unknown for the positive bags (Yi = +1). The class label for each bag

Yi is positive if there exists at least one positive instance in the bag, that is,

Yi = max
j
{yij}. (4.1)

Therefore the task of the mi-MIL is to recover the latent class variable yij of every

instance in the positive bags, and to simultaneously learn an SVM instance model

〈w, b〉 to represent each action class.

The max-margin mi-SVM learning problem results in a semi-convex optimi-

sation problem, for which [71] proposed a heuristic approach. In mi-SVM, each

instance label is unobserved, and we maximise the usual soft-margin jointly over

hidden variables and discriminant function:

min
yij

min
w,b,ξ

1

2
‖w‖2 + C

∑
ij

ξij, (4.2)

subject to : yij(w
>xij + b) ≥ 1− ξij, ∀i, j

yij ∈ {−1,+1}, ξij ≥ 0,

and
∑
j∈J

(1 + yij)/2 ≥ 1 s.t. Yi = +1,

yij = −1 ∀j∈J s.t. Yi = −1,

where w is the normal to the separating hyperplane, b is the offset, and ξij are

slack variables for each instance xij. The heuristic algorithm proposed by [71] to

solve the resulting mixed integer problem is laid out in Algorithm 4.1.

Consider training a classifier for a walking class action from the bags of

training instances in a video dataset. Initially all the instances are assumed to

have the class label of their parent bag/video (STEP 1). Next, a walking action

model estimate 〈w, b〉 is found using the imputed labels yij (STEP 2), and scores

fij = w>xij + b, (4.3)

for each instance in the bag are estimated with the current model (STEP 3).

52

Algorithm 4.1 Heuristic algorithm proposed by [71] for solving mi-SVM.

STEP 1. Assign positive labels to instances in positive bags: yij := Yi for
j ∈ J
repeat

STEP 2. Compute SVM solution 〈w, b〉 for instances with estimated la-
bels yij.
STEP 3. Compute scores fij := w>xij + b for all xij in positive bags.
STEP 4. Set yij := sgn(fij) for all j ∈ J , where Yi = +1.
for all positive bags X i do

if
∑

j(1 + yij)/2 = 0 then

STEP 5. Find j∗ := argmax
j∈J

fij, set y∗ij = +1

end if
end for

until class labels do not change
Output w, b

Whilst the negative labels remain strictly negative, the positive labels may retain

their current label, or switch to a negative label (STEP 4). If, however, all

instances in a positive bag become negative, then the least negative instance in

the bag is set to have a positive label (STEP 5), thus ensuring that there exists

at least one positive example in each positive bag.

Now consider walking video instances whose feature distribution is similar to

those originating from bags in distinct action classes. The video instances origi-

nating from the walking videos will have a positive label, whilst those from the

other action classes will have a negative label (assuming a 1-vs-all classification

approach). This corresponds to a situation where points in the high dimen-

sional instance space are near to each other. Thus, when these positive walking

instances are reclassified in a future iteration, it is likely that their class label

will switch to negative. As the class labels are updated in an iterative process,

eventually only the discriminative instances in each positive bag are retained as

positive.

4.2 A learnt mapping from instance to bag la-

bels

So far the focus has been on learning instance-level models for detection. How-

ever in order to make a classification decision, the video class label as a whole

also needs to be estimated.

Chapter 4. Learning discriminative actions from weakly labelled videos 53

The instance margin MIL formulation detailed in section 4.1 aims at recov-

ering the latent variables of all instances in each positive bag. When recovering

the optimal labelling yij and the optimal hyperplane 〈w, b〉 (4.2), all the positive

and negative instances in a positive bag are considered. Thus, only the query

instance labels may be predicted:

ŷij = sgn(w>xij + b). (4.4)

An alternative MIL approach called the ‘bag margin’ formulation is typically

adopted to predict the bag labels. The ‘bag-margin’ approach adopts a similar

iterative procedure as the ‘instance margin’ formulation, but only considers the

‘most positive’ and ‘most negative’ instance in each bag. Therefore predictions

take the form:

Ŷi = sgn max
j∈J

(w̄Txij + b̄), (4.5)

where 〈w̄, b̄〉 are the model parameters learnt from the ‘bag-margin’ formulation

[71].

In order to avoid this iterative procedure for retrieving the bag labels, we

propose a simple and robust alternative method in which bag scores are directly

estimated from the instance scores fij (4.3). One solution is to use the same max

decision rule in (4.5) with the instance scores: Ŷi = sgn maxj(fij). However, the

scores from the max may be incomparable, requiring calibration on a validation

set to increase performance [124,125]. Moreover, better cues may exist to predict

the bag label. Cross-validation can be used to select a threshold on the number

of positive instances in each bag, or a threshold on the mean instance score in

each bag. The downside is that the number of instances in each bag may vary

significantly between videos, making values such as the mean instance score

between bags incomparable. For example, in a long video clip in which a neatly

performed action only occupies a small part, there would be large scores for

instances containing the action, and low scores elsewhere. Clearly, the mean

instance score would be very low, even though there was a valid action in the

clip.

As a more robust solution we propose to construct a feature vector by combin-

ing multiple cues from the instance scores fij in each bag, including the number

of positive instances, the mean instance scores, and the maximum instance score

in each bag. The feature vector vi is constructed as follows:

vi =
(

#p, #n,
#p

#n
,

1

Mi

∑
j(fij), max

j∈J
(fij), min

j∈J
(fij)

)
, (4.6)

54

where #p and #n are the number of positive and negative instances in each

bag respectively. In this way, the variable number of instance scores in each

bag are represented by a six-dimensional feature vector f i 7→ vi, and a linear

SVM decision boundary, 〈w′, b′〉, is learnt from the supervised training set D′ =
(〈v1, Y1〉, . . . , 〈vN , YN〉), in this constant dimensional space. Now predictions

take the form:

Ŷi = sgn(w′
>
vi + b′). (4.7)

Apart from mapping multiple instance scores to single bag scores, this SVM-

map strategy generates comparable bag scores for various action classes, thus

avoiding any instance score calibration [124].

4.3 Experimental Evaluation

In order to validate our action recognition system, we evaluated its performance

on four challenging action datasets, namely the KTH, YouTube, Hollywood2 and

HMDB datasets, as detailed in Chapter 3. Next we present the baseline pipeline

(§ 4.3.1), followed by the details of our MIL-BoF experimental setup (§ 4.3.2),

and an ensuing discussion (§ 4.4).

In order to make the comparison across different datasets fairer, all clips were

down-sampled to a common 160× 120 resolution. For each dataset, we present

both the state-of-the-art result as reported in the literature, and the baseline BoF

results in our own implementation, to which we compare our MIL-BoF on sub-

volumes framework. As performance measures, we report the accuracy (mAcc),

the average precision (mAP), and the mF1-score, defined in Chapter 3. Unlike

previous work, we are the first to report all three performance measures for each

dataset, to give a more complete picture of the overall algorithm performance.

4.3.1 Baseline BoF algorithm

We implemented the baseline BoF approach described in [26] to ensure a fair

comparison between BoF and MIL-BoF. A codebook was generated by randomly

sampling 100,000 features and clustering them into K = 4000 visual words

by k-means. Descriptors were assigned to their closest vocabulary word using

the Euclidean distance, and the resulting histograms of visual words were used

to represent each video clip. We reported the performance achieved using a

χ2-kernel SVM [26], and performed multi-class classification using the one-vs-

all approach. We fixed the histogram normalisation to the L1-norm, and kept

Chapter 4. Learning discriminative actions from weakly labelled videos 55

the SVM regularisation constant C = 100 throughout, the same value used

by [26,62].

4.3.2 MIL-BoF experimental setup

The same BoF setup as the baseline has been used for the MIL-BoF approach.

Subvolumes were extracted from a regular grid with a grid spacing of 20 pixels

in space and time. Results were reported for a number of different MIL-BoF

models, each characterised by different cube-[60-60-60], [80-80-80], [100-100-100]

or cuboid-[80-80-160], [80-160-80], [160-80-80] shaped subvolumes, where [x-y-t]

denotes the dimensions of the subvolume. In addition, we also allowed for a

certain type of cuboid to stretch along the total time duration of the clip [80-80-

end], in a similar spirit to the spatial grid (with no division in time) used by [15]

for adding weak geometrical information to the video’s representation.

The decomposition of a video into multiple subvolumes, each with the same

histogram dimensionality as used in the baseline, makes the learning problem

at hand large-scale. Typical values for the number of instances generated from

the KTH dataset range between 100,000-200,000. In practice calculating the full

χ2-kernel takes a prohibitively long time to compute. Recent work by Vedaldi

and Zisserman on the homogeneous kernel map [126] demonstrates the feasibility

of large scale learning with non-linear SVMs based on additive kernels, such as

the χ2-kernel. The map provides an approximate, finite dimensional feature

representation in closed form, which gives a good approximation of the desired

kernel in a compact linear representation. The map parameters were set to

N = 2, and γ = 0.5, which gives a K×(2N +1) dimensional approximated kernel

map for the χ2-kernel. Similarly to the baseline, we keep the SVM parameters

constant across all datasets at C=0.1, which has proven to give good results in

practice. The quantitative results are shown in Table 4.1.

4.4 Results and discussion

On the KTH dataset the MIL-BoF approach surpassed the baseline BoF in all

three performance measures, demonstrating a clear advantage of representing

videos with subvolumes on this dataset. Common scene and motion elements

were pruned by the multiple-instance learning as shown in Fig. 1.5, resulting in a

stronger action classifier per class. Contrary to our expectations, both the BoF

and MIL-BoF surpassed the state-of-the-art accuracy, which may be attributed

56

Table 4.1: Quantitative results from the state-of-the-art (S-o-t-a), our BoF baseline,
and our MIL-BoF method for various fixed-size subvolumes.

Dataset: KTH YouTube HOHA2 HMDB
Perf: mAcc mAP mF1 mAcc mAP mF1 mAcc mAP mF1 mAcc mAP mF1

S-o-t-a: 94.5 [56,120]– – 93.77 [127]– – – 63.3 [19]– 66.79 [127]– –
BoF: 95.4 96.5 94.0 76.0 79.3 57.5 39.0 48.7 32.0 31.5 31.4 21.4
MIL-BoF:
60-60-60 94.9 96.5 94.2 73.4 81.0 70.0 38.5 43.5 39.4 27.6 26.3 23.1
80-80-80 95.4 97.0 94.8 77.5 83.9 73.9 37.3 44.2 37.5 28.7 29.0 25.3
100-100-100 93.5 96.5 93.7 78.6 85.3 76.3 37.4 40.7 32.3 27.5 28.6 23.9
80-80-160 96.8 96.7 95.8 80.4 86.1 77.4 37.5 42.0 33.7 28.2 29.6 25.4
160-80-80 96.3 96.6 94.4 79.1 85.0 76.1 36.9 42.1 32.1 29.0 30.5 24.8
80-160-80 95.8 96.6 94.4 78.3 84.9 75.7 37.8 42.6 35.3 28.7 28.8 25.3
80-80-end 96.8 96.9 96.0 79.3 86.1 75.9 39.6 43.9 36.0 29.7 30.3 25.2

to using the whole action videos rather than clean action slices during train-

ing. The best result was achieved using a subvolume model more extended in

time than in space [80-80-160], that achieved 96.76% accuracy. Similarly on the

YOUTUBE dataset, the MIL-BoF framework outperformed the baseline BoF

on all performance measures, achieving a 4.36%, 6.73%, and 19.81% increase

in accuracy, average precision and F1 score respectively. This demonstrates the

MIL-BoF ability to learn more robust action models on the challenging YouTube

data. The MIL-BoF approach did not improve the AP compared to the baseline

on the HOHA2 dataset, however, this was made up for by a 0.59% increase in

Accuracy and a 7.38% improvement on the F1 score, which weights precision and

recall equally. On the HMDB dataset, we reported a BoF baseline performance

superior to the then state-of-the-art (23.2% [3], 2012), but less than half the

accuracy of the current state-of-the-art at 66.79% [127]. Similarly to the Hol-

lywood2 dataset, our MIL-BoF approach outperforms the BoF baseline on the

F1 score, in this case by 4.05%. In accord with observations in [15], we achieve

good results with subvolume shapes in which there is no temporal subdivision

of the sequence [80-80-end], however, we show that a temporal subdivision of

the action sequence [80-80-160] can in fact result in a sizable improvement over

considering no temporal subdivision at all, as may be seen in the F1-scores of

the YOUTUBE [80-80-160] and HOHA2 [60-60-60] dataset.

Our MIL-BoF algorithm is not guaranteed to converge to the optimal solu-

tion, and may be one reason why it did not improve over the baseline Accuracy

and AP on the HMDB dataset. However, bear in mind that the full χ2-kernel is

calculated for the BoF baseline whilst the linear approximation [126] was used

in the MIL-BoF. We expect the results to improve further in the case of full res-

olution videos. Moreover, due to the large computational cost associated with

Chapter 4. Learning discriminative actions from weakly labelled videos 57

space-time subvolumes, the full potential of our algorithm has yet to be realised,

when a more general mixture of subvolume shapes is tailored automatically for

each action class. Despite these current setbacks, the MIL-BoF method still

outperforms the baseline BoF method in all performance measures on the KTH

and YOUTUBE dataset, whilst outperforming the HOHA2 and HMDB on the

F1 score, even with fixed-sized subvolumes. Finally, in addition to clip classifica-

tion, the MIL-BoF method is able to localise challenging actions in space-time,

such as the DriveCar and GetOutOfCar actions in the HOHA2 dataset shown

in Fig. 4.2(a) & 4.2(b) respectively. The same figures are played as a video in a

supplementary multimedia attachment1.

In the next Chapter, we aim to improve results further by incorporating

pictorial structures to better generalise over the variability of space-time actions,

and include a larger set of subvolume shapes rather than fixed sized cuboids.

We also wish to compare the results we obtain using BoF to another mid-level

representation, the Fisher vector.

1https://www.youtube.com/watch?v=VmragBectpo

https://www.youtube.com/watch?v=VmragBectpo

58

(a) actioncliptest00032

(b) actioncliptest00058

Figure 4.2: Action localisation results on two challenging videos from the Hollywood2
dataset, which we encourage the reader to watch in addition to this figure. The colour
of each box indicates the positive rank score of the subvolume belonging to a particular
class (green-red). (a) Actioncliptest00032 begins with two people chatting in a car.
Half-way in, the camera shot changes to a view from the roof of the car. Finally the
shot returns to the two people, this time the steering wheel is visible and the driving
action is evident. This is reflected by the densely detected, high scoring subvolumes
towards the end of actioncliptest00032. (b) In actioncliptest00058, a woman is getting
out of her car, however, this action occurs in the middle of the video and not at the
beginning or end, as indicated by the detected subvolumes.

Chapter 5

Towards adding local structure

and general subvolume shapes

Following from the previous chapter, here we propose to use a pictorial structure

model [75, 81] to locate actions in large weakly-labelled datasets. The action

recognition system is composed of three main building blocks:

i) learning discriminative local action subvolumes (§ 4.1), where the resulting

SVM model 〈w0, b0〉 will represent the ‘root’ filter in our space-time BoF

pictorial structure model;

ii) learning and matching of part models extracted from the learnt ‘root’ sub-

volumes (§ 5.1), and

iii) mapping local instance scores appropriately to global video clip scores

(§ 4.2).

The methodology in this chapter is presented as an extension to bag-of-features

(BoF); however the same methodology extends to other mid-level feature repre-

sentations, as shown in the experiments (§ 5.2).

5.1 Local Deformable SBoF models (LDSBoF)

In order to learn space-time part models, we first select the best scoring root

subvolumes learnt via Algorithm 4.1 (Section 4.1). The selection is performed

by first pruning overlapping detections with non-maximum suppression in space

and time, and then picking the top scoring 5%. Subvolumes are considered to

be overlapping if their intersection over the union is greater that 20%. This has

the effect of generating a more diverse sample of high scoring root subvolumes

to learn the part models from.

The part models are generated by splitting the root subvolumes using a fixed

59

60

(a) A training action sequence of class jump-
ing. A discriminative local action subvolume
selected via MIL is drawn as a red solid-line
cube. The dotted red line denotes the tem-
poral grid into which the root is split in order
to learn two separate part models.

(b) A test action sequence of class ‘jumping’
similar to that in (a) but stretched in time.
The detected ‘root’ subvolume is drawn as a
red solid cube, and the parts are shown as
green and blue cuboids respectively.

Figure 5.1: Action recognition with a local deformable spatial bag-of-features model
(LDSBoF). (a) Training ‘root’ and ‘part’ action models. The method described in
section 4.1 first selects discriminative root subvolumes (red cube). To learn part filters,
the ‘root’ subvolume is divided into a grid of parts; in this case a temporal grid with
two parts as denoted by the red dotted line. (b) At test time, the root filter alone
(solid red cube) learnt from the action in (a) is not suited to detect the action in (b).
However, it is better able to detect this type of action variation with the addition of
part filters (solid green and blue cuboids) loosely connected to the root.

grid, as illustrated in Fig. 5.1(a) & 5.1(b). For our experiments we split the

root into P = 2 equal-sized blocks along the time dimension (Fig. 5.1(a)), and

recalculate BoF vectors for each part. We found that with our current low-

level feature sampling density (§ 5.2), subdividing the root to generate more

parts creates subvolumes which are too small to aggregate meaningful statistics.

Finally, part models 〈 wk, bk 〉, k ∈ {1, . . . , P}, are individually learnt using a

standard linear SVM. The grid structure of SBoF removes the need to learn a

structure model for each action class, which simplifies training, especially since

no exact or approximate location annotation is available to constrain the part

positions [75].

In the following, an action is defined in terms of a collection of space-

time action-parts in a pictorial structure model [57, 81, 128], as illustrated in

Fig. 5.1(b). Let an action be represented by an undirected graph G = (V , E),

where the vertices V = {v1, ...vP} represent the P parts of the action, and E
is a set of edges such that an edge set Ekl = {vk,vl} represents a connection

between part vk and vl. An instance of the action’s configuration is defined by

a matrix L = (l1, ...lP), where lk ∈ Z3+ specifies the location of part vk in a

3-dimensional grid. The detection score volume s(l) is associated with a feature

map φ(l) of BoF histograms for each subvolume at position l, and there exists for

Chapter 5. Towards adding local structure and general subvolume shapes 61

each action part vk, a linear BoF filter wk, which when dotted with a histogram

hk = φ(lk), gives a score indicating the presence of the action part vk. Thus,

the dot product

wk · φ(lk), (5.1)

measures the correlation between a filter wk and a feature map φ(lk) at location

lk in the video. Let the distance between action parts d(lk, ll) be a cost function

measuring the degree of deformation of connected parts from a model. The

overall score for an action located at root position l0 is calculated as:

s(l0) = max
l1 ,...lP

(
P∑

k=0

wk · φ(lk)−
P∑

k=1

d(lk, ll)

)
, (5.2)

which optimises the appearance and configuration of the action parts simultane-

ously. The scores defined at each root location may be used to detect multiple

actions, or mapped to bag scores in order to estimate the global class label (cf.

Section 4.2). We modified the efficient algorithm described in [75] to compute

the best locations of the parts as a function of the root locations (5.2), on a

sparse grid, the reasons for which are described next.

In practice, we do not calculate an optimal root filter response (Equation 5.2)

densely for each pixel, but rather on a subsampled grid. When processing im-

ages for the task of 2D object detection, one may pad the empty grid locations

with low scores and subsample the distance transform responses [75], since high

scores are spread to nearby locations taking into consideration the deformation

costs. The computational cost of including the low-score grid locations is small.

However with video data, the difference in the number of grid locations for the

full and subsampled video is huge. For example, between a 2D image grid of size

640×480, and one half its size (320×240), there is a difference of ∼23×104 grid

locations. In corresponding videos of sizes 640× 480× 1000 frames (approx. 30

seconds) and 320 × 240 × 500, the difference in the number of grid locations is

∼26×107. Even though the efficient distance transform algorithm scales linearly

with the number of possible locations, padding empty grid locations with low

scores becomes computationally expensive. Therefore, we modified the distance

transform algorithm to compute the lower envelope of the parabolas bounding

the solution [129] at the locations defined by a sparse grid. In this way we achieve

the exact same responses with a significant speedup (cf. Section A.7).

62

5.2 Experimental setup

Bag-of-Features

Dense trajectory features were computed in video blocks of size 32 × 32 pixels

for 15 frames, with a dense sampling step size of 5 pixels, as set by default [25].

Each dense trajectory feature was split into its 5 components (trajectory 30-D,

HOG 96-D, HOF 108-D, MBHx 96-D, MBHy 96-D), and for each, a separate

K-word visual vocabulary was built by k-means. In order to generate the visual

vocabulary, a random and balanced selection of videos from all action classes

were sub-sampled, and 106 features were again sampled at random from this

pool of features. The k-means algorithm was initialised 8-times and the config-

uration with the lowest error was selected. Lastly, each BoF histogram was L1

normalised separately for each feature component, and then jointly. To speed up

the histogram generation we employed a fast kd-tree forest [130,131] to quantise

each dense trajectory feature to its closest cluster centre, delivering a four times

speedup when compared to calculating the exact Euclidean distance.

χ2 kernel approximation

The subvolume settings (§ 5.2) generated∼3 million instances on the Hollywood2

dataset, each a high dimensional histogram, making the learning problem at

hand large-scale. Therefore we used an approximate homogeneous kernel map

[126, 131] instead of the exact χ2 kernel, with the same settings as we used in

the previous chapter (§ 4.3.2).

Fisher vectors

Excellent classification results have been achieved using Fisher vectors and linear-

SVMs [67], which scale much more efficiently with an increasing number of train-

ing instances. Due to the high dimensionality of Fisher vectors, each of the 5

dense trajectory feature components were initially reduced to 24 dimensions

using PCA [132]. For each feature component, a separate visual vocabulary

was built with K-Gaussians each via the Expectation Maximisation (EM) algo-

rithm [133]. The features used to learn the dictionary were sampled in the exact

same manner as for BoF (§ 5.2). We follow [67] and applied power normalisation

followed by L2 normalisation to each Fisher vector component separately, before

normalising them jointly.

Chapter 5. Towards adding local structure and general subvolume shapes 63

Fast linear-SVM solver

In order to quickly learn linear-SVM models we employed the PEGASOS algo-

rithm [134]. This stochastic subgradient descent method for solving SVMs is

well suited for learning linear classifiers with large data, since the run-time does

not directly depend on the number of instances in the training set. We used the

batch formulation with a batch size of 100, and stopped the optimisation after

500 iterations or after reaching a lower tolerance ε on the norm of the difference

between w-vectors in consecutive iterations (ε = 10−3). Stopping the optimi-

sation early results in quicker training and helps generalisation by preventing

over-fitting. In order to address class imbalance, we sampled a balanced set of

positive and negative examples without re-weighting the objective function [135].

Multiple instance learning

Initially, all the instances in each positive bag were set to have a positive label.

At each iteration, the SVM solver was initialised with the model parameters

〈w, b〉 calculated in the previous iteration [71], as well as the previous learning

iteration number at which 〈w, b〉 were calculated. Instead of fixing the SVM

regularisation parameters to values known to work well on the test set, we per-

formed 5-fold cross validation [3] on the training set, and automatically select

the best performing models based on the validation set accuracy. Multi-class

classification is performed using the one-vs-all approach.

Local Deformable Spatial BoF

In Experiment 1 (cf. Section 5.3.1), the root model subvolumes were set to the

same size at the smallest used in the previous chapter (cf. Section 4.3 & Fig. 4.2)

(60 × 60 × 60). This will allow a direct comparison to the results in [48], and

the results generated using general subvolume shapes (§ 5.2). The part model

subvolumes were set to half the size of the resulting learnt root subvolumes,

as shown in Fig. 5.1(a) & Fig. 5.4. We modelled the relative position of each

part with respect to the root node’s centre of mass as a Gaussian with diagonal

covariance [57]:

d(lk, ll) = βN (lk − ll,ok,
∑

k) (5.3)

where lk− ll represents the distance between part vk and vl, ok is the offset and

represents the anchor points of each part with respect to the root, and
∑

k is

the diagonal covariance. The parameter β which adjusts the weighting between

appearance and configuration scores is set to 0.01 throughout. The offset is taken

64

Figure 5.2: Local space-time subvolumes of different sizes are drawn in two videos of
varying length at random locations. These subvolumes represent the regions in which
local features are aggregated to form a vectorial representation.

automatically from the geometrical configuration resulting from the splitting of

the root filter during training, and is set to the difference between the root’s and

the part’s centres of mass. The covariance of each Gaussian is set to half the

size of the root filter.

General subvolume shapes

In Experiment 2 (cf. Section 5.3.2), we extended our MIL-BoF approach (§ 4.1)
by aggregating features within local subvolumes of various cuboidial sizes scanned

densely over a regular grid within the video, as illustrated in Fig. 5.2. In practice

there is a huge number of possible subvolume shapes in videos of varying resolu-

tion and length in time. Therefore we chose a representative set of 12 subvolume

sizes and a grid spacing of 20 pixels in space and time, as a compromise between

the higher localisation and classification accuracy obtainable with higher densi-

ties, and the computational and storage cost associated with thousands of high

dimensional vectors. The subvolumes range from small cubes to larger cuboids,

allowing for two scales in width, two scales in height, and 3 scales in time, where

the largest scale stretches over the whole video (Fig. 5.2). This setup generated

a total of 2×2×3 subvolume sizes within each space-time volume. The smallest

subvolume takes a size of 60× 60× 60 pixels in a video of resolution 160× 120,

and scales accordingly for videos of higher resolutions.

Typical values for the number of subvolumes extracted per video ranged from

approximately 300 to 3000, depending on the length of each video. Note that

by considering only the subvolume which corresponds to the maximum size,

the representation of each video reduces to that of the global pipeline in [25].

Only considering the smallest subvolumes corresponds to the setup used in the

previous Chapter 4.

Chapter 5. Towards adding local structure and general subvolume shapes 65

Baseline global algorithm

The baseline approach was set-up by using only the largest subvolume, the one

corresponding to the entire video clip. This reduces to the pipeline described

in [25], except that in our setup approximate methods are used for histogram

building (kd-tree forest [130,131]) and SVM model learning (χ2-kernel map [126,

131], PEGASOS linear SVM [134]).

5.2.1 Experiments

First, in Experiment 1, we employed the smallest subvolume shape with Fisher

vectors, and extended it with a 3-part pictorial structure model (c.f LDSBoF,

section 5.1). From this experiment we would like to observe:

• i) the difference in performance between using only the smallest subvolume

size [48] and using general subvolume shapes (§ 5.2),

• ii) the merits of adding local deformable structure to mid-level action mod-

els,

• iii) the performance of our SVM-map strategy with instance scores gen-

erated by the deformable part model compared to taking the label of the

maximally scored hypothesis.

The quantitative results for LDSBoF are listed in Table 5.1.

In Experiment 2, we employed our local discriminative part learning (cf. MIL-

BoF, section 4.1) with general subvolume shapes but without adding structure,

in order to:

• i) determine the local MIL-BoF performance with multiple subvolume

shapes with respect to our global baseline (§ 5.2),

• ii) assess how the dimensionality of the instance representation affected

performance,

• iii) compare BoF and Fisher representations.

Furthermore, we compared three ways of mapping instance scores to a final bag

classification score:

• a) by taking the argument of the maximum value in each bag (max),

• b) by calibrating the instance scores by fitting a sigmoid function to the

SVM outputs [124,125] before taking the max (max-platt),

66

• c) by using our proposed SVM-map mapping strategy (cf. section 4.2).

We also address questions such as: i) What is the relative difficulty of each

dataset? and ii) How important is feature dimensionality for discriminating

between more classes? The results are presented in Fig. 5.3 and Table 5.2,

where one standard deviation from the mean was reported for those datasets

which have more than one train/test split.

5.3 Quantitative results and discussion

5.3.1 Experiment 1 - adding structure

In the first experiment we picked the smallest subvolume size and added the

pictorial structures model described in section 5.1 to the local Fisher represen-

tations with K = 32 Gaussians. The smallest subvolumes were chosen to locate

actions at a finer scale (see Fig.5.4). The results obtained using the root node

corresponds to ‘LDSBoF-1’, whilst the results obtained by incorporating parts

and structure are denoted as LDSBoF - 3(max) and LDSBoF - 3(SVM-map).

From Table 5.1, it was observed that including parts and a structure model

consistently improved accuracy and mF1 measures across all datasets. For ex-

ample, on the Hollywood2 dataset, between the Fisher root model (LDSBoF - 1)

and the Fisher 3 - star model (LDSBoF - 3(max)), we observed a significant

5.7%, 2.44%, and 7.36% improvement in accuracy, mAP and mF1 measures re-

spectively, demonstrating the value of adding deformable parts to the model.

The mAP however, which orders the predicted detection scores, dropped con-

siderably, and mAP performance gains were only observed on the Hollywood2

dataset. Finally mapping the instance-scores to bag-scores with our SVM-map

strategy produced poor results overall compared to taking the max, indicating

that it is not well suited for instance scores produced by deformable part models

(Equation 5.2).

5.3.2 Experiment 2 - general subvolume shapes

In the second experiment, we employed discriminative part learning with gen-

eral subvolume shapes. The results are presented as graphs in Figs 5.3(a)-5.3(d),

where for each dataset, the classification accuracies of various approaches (see

Fig. 5.3(a)) were plotted for comparison. For each set of experiments, the mid-

level feature dimensionality was varied by controlling the K-centroids used to

Chapter 5. Towards adding local structure and general subvolume shapes 67

Table 5.1: A table showing the results for using our local deformable spatial bag-of-
features (LDSBoF) with Fisher vectors generated using K = 32 Gaussians.

KTH Acc mAP mF1
LDSBoF-1 94.44 97.65 94.45
LDSBoF-3(max) 95.83 96.97 95.84
LDSBoF-3(SVM-map) 96.76 95.27 96.76

YOUTUBE Acc mAP mF1
LDSBoF-1 73.02±8.50 83.15±6.83 70.35±9.35

LDSBoF-3(max) 80.06±7.28 75.97±7.84 77.06±8.82

LDSBoF-3(SVM-map) 68.04±9.26 77.06±6.12 67.18±9.26

Hollywood2 Acc mAP mF1
LDSBoF-1 51.36 43.75 36.73
LDSBoF-3(max) 57.01 46.19 44.09
LDSBoF-3(SVM-map) 50.22 43.49 48.19

HMDB51 Acc mAP mF1
LDSBoF-1 25.49±0.28 28.54±0.56 23.62±0.61

LDSBoF-3(max) 31.09±0.53 12.67±0.50 29.46±0.63

LDSBoF-3(SVM-map) 14.60±0.34 14.82±0.18 14.43±0.71

build each visual vocabulary. The dimensions of KBoF (approximate kernel-

mapped BoF) vectors were calculated as: K (centroids) ×5 (feature compo-

nents) ×3 (kernel-map). The dimensions of Fisher vectors were calculated as: 2

(Fisher vectors [67]) ×K (centroids) ×5 (feature components) ×24 (dimensions

per feature component after PCA).

From the result plots of Fig. 5.3, a number of interesting observations emerged.

First, even with a 16 fold reduction in K and without a kernel feature mapping,

Fisher vectors outperformed KBoF, both in global and local representations. It

is even quite surprising that with only 2 clusters per dense trajectory feature

component, Fisher vectors achieved over 90% accuracy on the KTH dataset, a

sign of the dataset’s ease. The relative difficulty of each dataset is related to the

number of categories in each dataset; the classification accuracy chance levels

are: 1
6
, 1

11
, 1

12
, 1

51
for Figs 5.3(a)-(d) respectively. However, this does not take

into consideration the noise in the dataset labelling, or the choice of train-test

splittings. For example, the YouTube and Hollywood2 datasets both have a

similar chance level, however the lower accuracies of Fig. 5.3(c) as compared to

Fig. 5.3(b) demonstrate the increased difficulty posed by Hollywood2.

Notice that the Hollywood2 and HMDB datasets showed a steady increase in

accuracy with increasing K, which shows the benefit of learning with more model

68

(a) KTH (b) YouTube

(c) Hollywood2 (d) HMDB51

Figure 5.3: Quantitative graphs for learning local discriminative subvolume models
via multiple-instance learning. Here we plotted the accuracy against the mid-level
feature dimensionality, and compare i) our local MIL approach (red & black) vs. the
global baseline (blue & green), ii) the performance of kernel-BoF and Fisher vectors,
and iii) three instance to bag mapping strategies, namely: taking the argument of the
max instance, max after Platt calibration, and our SVM-map instance to bag mapping
technique. The chance level is plotted as a grey horizontal line.

Chapter 5. Towards adding local structure and general subvolume shapes 69

parameters and higher dimensional vectors on challenging datasets. However this

trend was not always observed with the KTH and YouTube datasets, a sign that

cross-validation over K may improve results.

The high variation in accuracy obtained when taking the max (red/black

dash-dotted lines), indicated that the SVM models learnt in a one-vs-all manner

often produced incomparable scores. This was demonstrated by the boost in

accuracy often observed after the scores were Platt-calibrated [124] (red/black

dotted lines). Finally, further improvement was offered by mapping the instance

scores directly to bag scores using our SVM-map approach (red/black solid lines).

For example on the Hollywood2 dataset (Fig. 5.3(c)), MIL-Fisher (SVM-map)

with K = 32 achieved an 8% boost compared to the respective Platt-calibrated

max.

The aforementioned observations also held on HMDB, the most challenging

dataset considered here with a chance level of just under 2%. It may be seen that

the accuracy of global Fisher vectors outperformed that of KBoF, despite having

a smaller number of K centroids. Again, Platt-calibration greatly improved the

results for taking the argument of the maximum instance in each bag, however

our SVM-map strategy gained further, with the local Fisher method coming out

on top.

The quantitative results obtained for the Fisher vectors with K = 32 cen-

troids per feature component are listed in Table 5.2. Comparing the results of

MIL-F32(max) to LDSBoF - 1 demonstrates the improvements in accuracy ob-

tained by using a general mixture of subvolumes as opposed to a single size [48].

Even though the KTH dataset is arguably the easiest dataset considered in

this work, with already near-saturated results, one can still observe minor im-

provements when comparing local models to the global baseline. On the YouTube

dataset however, our global baseline outperformed the current state-of-the-art

on mAP, whilst our local MIL-F32 setup outperformed the state-of-the-art on

accuracy and mF1 measures.

Performance gains over the global baseline were observed across all perfor-

mance measures on the Hollywood2 dataset. Note that the lower mAP as com-

pared to the state-of-the-art may be a result of using half-resolution videos and

approximate methods for histogram building and learning action models, in or-

der to cope with the large instance training sets (§ 5.2). Finally the HMDB is

the most challenging action classification dataset, and we report a 4.4%, 8.7%

and 7.5% increase in accuracy, mAP and mF1 measures when compared to our

global baseline.

70

Table 5.2: A table showing the state-of-the-art results, and our results using Fisher
vectors with K = 32 Gaussians (F32).

KTH Acc mAP mF1

State-of-the-art 96.76 [48] 97.02 [48] 96.04 [48]

Global-F32 95.37 96.81 95.37
MIL-F32(max) 95.83 97.43 95.84
MIL-F32(max-platt) 95.83 97.43 95.82
MIL-F32(SVM-map) 96.76 97.88 96.73

YOUTUBE Acc mAP mF1

State-of-the-art 93.77 [127] 86.10 [48] 77.35 [48]

Global-F32 83.64±6.43 87.18±3.58 80.41±7.90

MIL-F32(max) 81.84±6.68 86.53±4.65 78.59±8.31

MIL-F32(max-platt) 79.22±5.88 86.53±4.65 74.35±7.56

MIL-F32(SVM-map) 84.52±5.27 86.73±5.43 82.43±6.33
Hollywood2 Acc mAP mF1

State-of-the-art 39.63 [48] 63.3 [19] 39.42 [48]

Global-F32 33.94 40.42 12.18
MIL-F32(max) 53.96 49.25 39.11
MIL-F32(max-platt) 52.94 49.25 36.34
MIL-F32(SVM-map) 60.85 51.72 52.03

HMDB51 Acc mAP mF1

State-of-the-art 66.79 [127] 40.7 [22] 25.41 [48]

Global-F32 32.79±1.46 30.98±0.69 30.62±1.19

MIL-F32(max) 23.33±0.66 35.87±0.56 16.68±0.40

MIL-F32(max-platt) 36.19±0.56 35.88±0.56 32.86±0.34

MIL-F32(SVM-map) 37.21±0.69 39.69±0.47 38.14±0.76

5.4 Computational timings

The experiments were carried out on a machine with 8, 2GHz CPUs and 32GB of

RAM. The timings we report here are for running the method ‘MIL-F32’ on the

HMDB dataset. Building the visual vocabulary took 4 CPU hours, whilst the

local aggregation of dense trajectory features in to Fisher vectors took 13 CPU

days. Finally, 5 CPU days were needed for learning local discriminative subvol-

umes via MIL. Since the implementation is non optimised in MATLAB, we are

convinced that the computational timings can be cut considerably. Note that the

low-level feature extraction, the local aggregation, and one-vs-all classification

are easily parallelised.

Chapter 5. Towards adding local structure and general subvolume shapes 71

5.5 Qualitative localisation discussion

In addition to action clip classification, the learnt local instance models can also

be used for action localisation, the results of which are discussed in the next

sections.

5.5.1 Bounding box detection with LDSBoF

The LDSBoF approach is able to predict the location of discriminative action

parts by selecting the top scoring ‘root’ and ‘part’ configurations in each video

clip. This is clearly seen in Fig. 5.4, where the front, top and side views of a

boxing video sequence from the KTH dataset are plotted in space-time. Notice

that the parts correspond to a spatial subdivision of the root subvolume, and

have connections to the root that are deformable in both space and time.

The space-time plots of Figs. 5.5(a)-(c) show qualitative results obtained

when detecting actions with LDSBoF models on real-world movie sequences

from the Hollywood2 dataset. Due to the large variation in video clip length, we

picked the top 5% detections, which do indeed correspond to discriminative parts

of the action. A supplementary video illustrating additional LDSBoF results is

available on the Internet1.

5.5.2 Class-specific saliency

In contrast to object detection, in which the boundaries of an object are well

defined in space, the ambiguity and inherent variability of actions means that not

all actions are well captured by bounding boxes. As an alternative we propose to

use the detection scores as a measure of action location and saliency, as shown

in Fig. 5.6.

Recall that at test-time each subvolume is associated with a vector of scores

denoting the response for each action category in that region. Since in our

framework, we also map the individual instance scores to a global video clip

classification score (§ 4.2), the vector of scores associated with each subvolume

can be reduced to that of the predicted video action class. It is therefore possible

to build an action-specific saliency map by aggregating the predicted detection

scores from all instances within the space-time video. In both Fig. 5.6(a) & (b),

the saliency map is specific to the predicted global action class, and is displayed

as a sparse set of points for clarity. The sparsity and colour (from blue to red) of

1https://www.youtube.com/watch?v=jtLfUfBVi5k

https://www.youtube.com/watch?v=jtLfUfBVi5k

72

Figure 5.4: (a) Top, and (b) side views from a test boxing video sequence in the KTH
dataset. Plotted are the top 5 best part configurations found in the video volume. The
simple tree-structured star models are drawn with blue and green links to the root node.

the plotted points indicate the action class membership strength. Moreover, the

saliency map indicates the action location in both space and time. In both videos

of Fig. 5.6, irrelevant scene background, common in most of the KTH classes,

was pruned by the MIL during training, and therefore the learnt action models

were able to better detect relevant action instances. Notice that the saliency

map was able to capture both the consistent motion of the boxing action in

Chapter 5. Towards adding local structure and general subvolume shapes 73

Figure 5.5: Detected LDSBoF configurations in the challenging Hollywood2 dataset.
The three sequences from the Hollywood2 dataset show the detections for the videos
classified as, (a) GetOutOfCar, (b) FightPerson, and (c) StandUp. It is seen that in
addition to class labels, each action in the video is localised via a 3-part deformable
star model.

Fig. 5.6(a), as well as the intermittent walking action of Fig. 5.6(b).

The qualitative localisation results for the HMDB dataset are shown in

Fig. 5.7 and Fig. 5.8, where the saliency maps drawn over the videos are those

corresponding to the predicted global action class. Note that such a saliency map

does not represent a general measure of saliency [23], rather it is specific to the

particular action class being considered. This has the effect of highlighting dis-

criminative parts of the action, for example, in the pushing action of Fig. 5.7(e),

the contact between the hands and vehicle is highlighted, less so the leg’s mo-

tion. Likewise in Fig. 5.7(d) the pouring action is highlighted, less so the arm’s

motion.

The videos of Fig. 5.8 show the results obtained when the clip is incorrectly

classified. In this case, higher scores are located at the borders of the video

frame, since the instance scores for the wrong predicted class are low over the

video parts where the action occurs. In the HMDB dataset, apart from dealing

with a wide range of action classes, our algorithm has to deal with significant

nuisance factors in the data, such as frames of ‘Britney Spears’ singing in between

a ‘kick ball’ action (Fig. 5.8a), and the possibility of multiple actions per video

clip such as the ‘walking’ and ‘waving’ actions in Fig. 5.8(f).

In this chapter, as well as the previous one, we demonstrated the value of

74

leveraging large weakly labelled datasets to locate the discriminative parts of

a video. This entailed breaking up each video into small overlapping blocks,

making the learning problem large-scale. Due to the large amount of data,

approximate algorithms were used to encode mid-level features and learn action

models. In the next chapter, we focus on the global representation of action

videos, which allows more compact datasets for training. This means we can

afford to use exact euclidean distances for quantising features, and a kernel-

SVM solver. We will also be able to run many more experiments and evaluate

the merits of various strategies to building a bag-of-visual-words vocabulary.

Chapter 5. Towards adding local structure and general subvolume shapes 75

Figure 5.6: Action classification and localisation on the KTH dataset. (a) This
boxing video sequence has been correctly classified, and has overlaid the boxing action
saliency map to indicate the location of discriminative action parts. (b) Walking
action classification in an 850-frame video sequence. The actor walks in and out of
the camera shot, as shown by the dense red points over the locations in which the actor
was present in the shot.

76

Figure 5.7: Action localisation results on the HMDB51 dataset, the most challenging
action classification dataset to date. (a) Brush hair video clip. Notice that the saliency
map in (b) is focused on the bow and not on the person’s elbow movement. (c) Shoot
gun action. In (d), a girl is pouring liquid into a glass, and in (e) a person is pushing
a car. The push action does not fire over the person’s moving legs but rather on the
contact zone between the person and the vehicle. (f) Chew action.

Chapter 5. Towards adding local structure and general subvolume shapes 77

Figure 5.8: Misclassifications in the HMDB51 dataset. The predicted class is shown
first, followed by the ground truth class in brackets. Note that the localisation scores
shown are of the predicted class. (a) A ‘kick ball’ action that has frames of Britney
Spears singing in the middle. (b) A ‘push’ action wrongly classified as ‘climb’. (c) The
fast swinging movement of the ‘baseball’ action was classified as ‘catch’. (d) A hug was
incorrectly classified as punch, and (e) a ‘punch’ was misclassified as ‘clap’. (f) In
this case the wave action was misclassified as walk, even though President Obama was
also walking. The algorithm was unable to cope with the situation in which two actions
occur simultaneously (best viewed in colour).

78

Chapter 6

Feature sampling and

partitioning for visual

vocabulary generation on large

action classification datasets

In this chapter we consider global action classification in which there is:

• a huge number of features per dataset;

• an imbalance in the number of samples per class;

• an imbalance in the number of features per video;

• and with several feature components per feature descriptor.

Therefore we detail experiments to answer the following questions set out in

section 1.5.3, namely:

i) What is the best way to randomly subsample features to build a vocabulary

for human action recognition?

ii) What are the effects of learning separate rather than joint visual vocab-

ularies when considering multiple feature components or multiple action

classes?

We keep some parameter settings constant throughout the tests (§ 6.1) and let

others vary (§ 6.2). The specifics of our vocabulary sampling and generation

strategy, designed to be robust to an imbalance in the number of videos per

category, and to an imbalance in the number of features per video, are laid out

in Algorithm 6.1.

79

80

6.1 Constant experimental settings

Space-time features

Amongst the wide variety of space-time interest point detectors [53, 55] and

descriptors [15,60–62], the dense trajectory features of Wang et al. [25] gave the

state-of-the-art results in experiments with challenging action video data [25,48]

(cf. Section 2.2). These dense trajectory features were pre-computed from video

blocks of size 32 × 32 pixels for 15 frames, and a dense sampling step-size of

5 pixels, using the code made available by the authors [25]. The features were

stored as groups of 4-byte floating point numbers, each associated with a video ‘i’

in dataset d ∈ D, where i ∈ {1, ..., N}. With our settings the size of each feature

SGB was
(
(30traj + 96HoG + 108HoF + 96MBHx + 96MBHy)× 4

)
/10243 GB, where

the summed integers denote the dimensionality of each feature component. The

approximate number of dense trajectory features extracted per dataset and per

video is presented in Table 2.1, together with further dataset specific statistics.

Visual vocabulary

The k-means algorithm was used to generate the visual vocabulary for BoF and

Vectors of Locally Aggregated Descriptors (VLAD) [68,136]. The greedy nature

of k-means means that it may only converge to a local optimum. Therefore

the algorithm was repeated 8-times to retain the clustering with the lowest er-

ror. The number of feature samples used to learn the vocabulary was set to a

maximum of 10, 000 per cluster. We found that setting the pool of feature size

to depend on the number of clusters allows faster vocabulary computation for

small K without loss of performance. The maximum number of features was set

to a value of 1× 106 in order to limit memory usage and computational time for

larger K.

Hardware constraints

With dense trajectory features [25], 1 × 106 features translate to ∼ 1.6GB of

memory when using 32-bit floating point numbers, and may thus easily be worked

with on a modern PC or laptop. All our experiments were carried out on an

8-core, 2GHz, 32GB workstation.

Chapter 6. Feature sampling and partitioning for visual vocabulary generation
on large action classification datasets 81

Bag-of-features

In the BoF approach, histograms are computed by quantising features to the

nearest cluster (minimum euclidean distance). Each BoF histogram was L1

normalised separately for each feature component and then jointly [20]. The

same setup was used for BoF per-category, except that separate vocabularies

were generated by clustering the features from each class and then joining them

into one universal vocabulary. For both BoF approaches the exponentiated χ2-

kernel SVM [15,26,137] was used:

φχ2 (hi,hj) = exp

(
− 1

2A

K∑
k=1

(hik − hjk)2

hik + hjk

)
, (6.1)

where hi and hj are the histograms associated by videos i and j, K is the number

of cluster centres, and A is the mean value of all distances between training

histograms, and hk is the kth element of the histogram vector h.

VLAD and Fisher vectors

Initially, due to the high dimensionality of both VLAD and Fisher vectors (cf.

Section 2.3), the dense trajectory feature components were independently re-

duced to 24 dimensions using PCA. We used the randomised PCA algorithm

by Rokhlin et al. [132] to solve the USV ′ decomposition on the same 1 × 106

subsampled features used for dictionary learning.

Both VLAD and Fisher vectors were computed using the implementations

available in the VLFeat library [131]. We followed Perronnin et al. and apply

power normalisation followed by L2 normalisation to each Fisher vector compo-

nent separately [67], before normalising them jointly. Contrarily to expectations,

it has been shown that Fisher vectors achieve top results with linear SVM clas-

sifiers [67, 138].

Support vector machines

For both the χ2-kernel and linear SVMs, multi-class classification was performed

using a 1-vs-all approach [139], and we keep the regularisation cost C=100 con-

stant throughout [26,62].

82

6.2 Variable components of the experiments

Test 1 - comparison of uniform random sampling strategies

We compared two methods of sampling descriptors in order to learn a visual

vocabulary. Note that the sample forms the data on which the k-means algorithm

will operate, and therefore if important but rare features are missed out due to

an imbalance in the data, it may lead to a suboptimal visual vocabulary. Method

(1a) sampled a balanced random set of features from the dataset, accounting

for an unbalanced number of videos per action category, and an unbalanced

number of features per video (see Table 2.1). A uniform random selection of

features without balancing was performed for method (1b). The exact sampling

strategy is detailed in Algorithm 6.1, whilst the comparative performance will

be discussed in section 6.3.

Test 2 - comparison of joint and component-wise visual vocabulary

generation

Here we learnt a visual vocabulary separately for each feature component (2a)

such as the Trajectories, HoG, HoF, MBHx and MBHy components, and com-

pared this to grouping these features together and learning a joint vocabulary

(2b).

Test 3 - comparison of global representations

For each experimental setting, we assessed the performance of the following

four global representations: standard BoF (3a), BoF per-category (3b), VLAD

(3c) and Fisher vectors (3d). Each variation was run for 7 values of K cluster

centres, ranging from 22 to 28 in integer powers of 2. The code to reproduce our

experiments and results is available online1

6.3 Results and discussion

Our experiments consisted of 2 binary tests (1a-b, 2a-b) for 7 values of K

cluster centres, 4 representation types (3a-d) and 4 datasets, for a total of

22×7×4×4 = 112×4 = 448 experimental runs, the results of which are shown

in Figs. 6.1-6.4. The best quantitative results were further listed in Table 6.1

1https://sites.google.com/site/mikesapi/downloads/

global-video-representation

https://sites.google.com/site/mikesapi/downloads/global-video-representation
https://sites.google.com/site/mikesapi/downloads/global-video-representation

Chapter 6. Feature sampling and partitioning for visual vocabulary generation
on large action classification datasets 83

Algorithm 6.1 The sequence of steps used for generating a visual vocabulary for
action classification datasets. Note that our proposed method (1a) is designed
to be robust to an imbalance in the number of videos per category, and to an
imbalance in the number of features per video.

1. Extract dense trajectory features [25] from videos and store them on disk;

2. For each dataset d ∈ D, calculate the mean number of features µd =
1
N

∑N
i=1 ni, where ni is the total number of features extracted from clip i,

and i ∈ I = {1, . . . , N};

3. Set the maximum number of videos to sample from Vmax based on the
mean number of features per video: Vmax = b MGB

µd×SGB
c, where MGB is the

maximum memory available, and SGB is the memory needed to store a
single feature;

4. Subsample bVmax

Cd
c videos uniformly at random from each class (1a, class

balancing), or (1b) Vmax videos uniformly at random from the entire set
of videos, where Cd denotes the number of action categories in dataset d;

5. Load features into memory by uniformly subsampling min(nl, µd) features
per video (1a), or by loading all the features n in each video (1b), where
l ∈ L ⊆ I denotes the set of subsampled video indices;

6. Subsample min(1×106, K×104) features (1a) at random, with a balanced
number from each class, or (1b) at random from the entire set;

7. Perform k-means with K cluster centres separately per feature component
(2a) or jointly by concatenating the feature components (2b);

8. Represent videos globally via BoF (3a), BoF per-category (3b), VLAD
vectors (3c), or Fisher vectors (3d).

in order to compare them to the current state-of-the-art. For each dataset, we

presented:

i) the classification accuracy plotted against the number of clusters K,

ii) the accuracy plotted against the final representation dimensionality D.

Note that the horizontal axis marks for Figs. 6.1-6.4 are evenly spaced, thus

encoding only the ordering of K and D. The computational time needed to

generate the results was approximately 130 CPU hours for KTH, 1290 CPU

hours for YouTube, 1164.8 CPU hours for Hollywood2, and 974 CPU hours on

the HMDB dataset.

The results for KTH are shown in Fig. 6.1. The accuracy quickly shot up

with an increasing K and associated dimensionality D and saturates at around

84

95% accuracy. By looking at the curves of Fig. 6.1, one may identify the best

performing method under a value of K and representation size D. For example

the dotted line in Fig. 6.1 highlights the methods at D = 192, where several

test configurations span an accuracy gap of approximately 12%. In this case,

the BoF per-category (3b) at D = 192 (32 clusters ×6 classes) surpassed the

current state-of-the-art with 97.69% accuracy, 98.08% mAP, and 97.68% mF1

score. Note that the histogram was formed by sampling the features uniformly

at random (1b) and clustering the features jointly (1b).

The results for the YouTube dataset did not follow the same pattern as of

KTH, as seen in Fig. 6.2. The accuracy peaked and then fell for the BoF and

BoF per-category, which indicated that the higher dimensional representations

combined with the χ2-kernel SVM lead to overfitting. This was not so for Fisher

vectors and linear SVMs, which outperformed all the BoF results with only 4

cluster centres per feature component (see dotted line in Fig. 6.2-right).

Here one can clearly see the benefit of using separate vocabularies per feature

type (see Fisher joint (2b) vs. Fisher separate (2a)), and the advantage of

random balanced sampling as the number of classes and videos has increased

compared to KTH. Comparing the results obtained as a function of K, on the

YouTube dataset, Fisher vectors (3d) outperformed the other representation

types 96.43% of the time, generating a visual vocabulary separately per feature

was best for 85 .71% of the trials, whilst using a random and balanced feature

selection was best 66% of the time.

The Hollywood2 results of Fig. 6.3 (bottom) highlight the initially increased

performance obtained using BoF at low values of K, which were eventually

overtaken by the high dimensional Fisher and VLAD vectors with a linear SVM

at the top of the curve. In fact, at dotted line (1), BoF per-category with

joint features and balanced sampling (3b-2b-1a at D = 48) achieves 5% higher

accuracy than the equivalent Fisher vector at D = 192. Even though at the

top of the curve Fisher vectors achieve the highest accuracy, note that BoF per-

category is very close behind with a separate (2a) and balanced (1a) vocabulary

(purple circle).

The Hollywood2 dataset has the largest variance in the number of features

per video clip (see Table 2.1), making it more susceptible to randomly selecting

an imbalanced feature set for k-means. For example, the outlier for VLAD at

D = 192 in Fig. 6.3 (right, dotted line 2) may be caused by the biased feature

sampling of method (1b), which has the undesirable effect of excluding discrimi-

native features from the learned vocabulary, and over-representing features which

Chapter 6. Feature sampling and partitioning for visual vocabulary generation
on large action classification datasets 85

4 8 16 32 64 128 256
50

55

60

65

70

75

80

85

90

95

100

4 8

16 20 24 32 40 48 64 80 96
120
128
160
192
240
256
320
384
480
640
768
960
1280
1536
1920
3072
3840
6144
7680
12288
15360
30720
61440

50

55

60

65

70

75

80

85

90

95

100

Figure 6.1: KTH dataset classification accuracy using a global video representation.
(top) The Accuracy is plotted against the number of cluster centres K, and (bottom)
against the representation dimensionality. Note that with a small number of cluster
centres (top), high dimensional representations may be achieved (bottom), for example
when generating vocabularies separately per feature component or per action class. In
the rightmost plot, at a relatively low representation dimensionality D = 192, there
are several competing representations within a ∼12% range in accuracy. The best
representation method, however, on this dataset is BoF per-category (3b) with a single
joint visual vocabulary (2b) and features sampled at random (1b).

86

4 8 16 32 64 128 256
20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

4 8

16 20 32 40 44 64 80 88 96
128
160
176
192
220
256
320
352
384
440
480
640
704
768
880
960
1280
1408
1536
1760
1920
2816
3072
3520
3840
6144
7040
7680
12288
14080
15360
30720
61440

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Figure 6.2: YouTube dataset classification results. (top) Accuracy vs. K cluster
centres, and (bottom) accuracy vs. representation dimensionality. Notice (bottom)
the inverted ‘U’ paths traced by the χ2-kernel SVM (BoF and BoF per category) as
opposed to those generated by the linear SVM (VLAD and Fisher vectors). The dotted
line indicates the group of data points at D = 960 and highlights the top performing
method, which is Fisher vectors with only 4 clusters per feature component. The error
bars over 25 cross-validation folds have been suppressed for clarity.

Chapter 6. Feature sampling and partitioning for visual vocabulary generation
on large action classification datasets 87

4 8 16 32 64 128 256
15

20

25

30

35

40

45

50

55

60

65

70

4 8

16 20 32 40 48 64 80 96
128
160
192
240
256
320
384
480
640
768
960
1280
1536
1920
3072
3840
6144
7680
12288
15360
30720
61440

15

20

25

30

35

40

45

50

55

60

65

70

Figure 6.3: The classification accuracy versus K cluster centres (top) and representa-
tion dimensionality (bottom) on the Hollywood2 dataset. For the BoF method, notice
the significant jump in performance (top) between joint (red/blue crosses) and sepa-
rate (green/black crosses) feature component vocabulary learning. It is also noteworthy
(bottom) that at low dimensionalities, the Chi-square kernel SVM far outperforms the
linear SVM, but for higher dimensional vectors, linear SVM surpasses the former.
Dotted lines (1) and (2) highlight situations in which (1) BoF-per category achieves
competitive performance for small K, and (2) random balanced sampling helps pre-
venting situations in which a bias in the sampled feature pool may give poor results.

88

4 8 16 32 64 128 256
0

5

10

15

20

25

30

35

40

45

50

55

4 8

16 20 32 40 64 80 96
128
160
192
204
256
320
384
408
480
640
768
816
960
1020
1280
1536
1632
1920
2040
3072
3264
3840
4080
6144
6528
7680
8160
12288
13056
15360
16320
30720
32640
61440
65280

0

5

10

15

20

25

30

35

40

45

50

55

Figure 6.4: The classification accuracy versus K cluster centres (top) and represen-
tation dimensionality (bottom) for the HMDB dataset. The differences between the
random and balanced features becomes more significant at higher values of K. For
example, this is clearly seen between (1) the purple vs. green curves of separate BoF
per-category, (2) the yellow vs. pink of joint BoF per-category, and (3) the cyan vs.
brown curves of Fisher vectors. The error bars in the figure denote one standard de-
viation over the three train-test splits defined by the HMDB authors [3]. The grey
horizontal bar just under 2% marks the random chance level.

Chapter 6. Feature sampling and partitioning for visual vocabulary generation
on large action classification datasets 89

Table 6.1: The state-of-the-art ‘S-O-T-A’ results compared to our best results obtained
with the global bag-of-features pipeline (‘Global best’). The best results are marked in
bold. The ‘Method’ column indicates which of the varying techniques in Algorithm 6.1
gave the best result. The variations ‘a’ are marked in bold to distinguish them from
variations ‘b’. K − D indicates the number of clusters K and the representation
dimensionality D. For datasets with more than one train-test split (YouTube, HMDB,
USF51, cf. Section 3), we report one standard deviation around the mean.

KTH [13] S-O-T-A Global best Method K D
Acc 96.76 [20] 97.69 3b-2b-1b 32 192
mAP 97.88 [20] 98.08 3b-2a-1b 64 384
mF1 96.73 [20] 97.68 3b-2b-1b 32 192

YouTube [16] S-O-T-A Global best Method K D
Acc 93.77 [127] 89.62 ±5.41 3d-2a-1b 128 30,720
mAP 89 [19] 94.25 ±3.50 3d-2a-1a 128 30,720
mF1 82.43 [20] 87.45 ±6.92 3d-2a-1b 128 30,720

Hollyw2 [17] S-O-T-A Global best Method K D
Acc 60.85 [20] 65.16 3d-2a-1a 128 30,720
mAP 63.3 [19] 59.66 3d-2a-1a 256 61,440
mF1 52.03 [20] 54.55 3d-2a-1a 256 61,440

HMDB [3] S-O-T-A Global best Method K D
Acc 66.79 [127] 50.17 ±0.614 3c-2a-1a 256 61,440
mAP 54.8 [19] 50.07 ±0.33 3d-2a-1a 256 61,440
mF1 52.03 [20] 48.88 ±0.94 3d-2a-1a 256 61,440

USF101 [34] S-O-T-A Global best Method K D
Acc 87.9 [140] 81.24 ±1.11 3d-2a-1a 256 61,440
mAP – 82.35 ±0.97 3d-2a-1a 256 61,440
mF1 – 80.57 ±1.11 3d-2a-1a 256 61,440

appear more frequently in the dataset. Again on this dataset, learning vocabular-

ies separately per feature component greatly outperformed learning vocabularies

jointly, for every representation dimensionality value D. Here, the best perform-

ing approach made use of Fisher vectors (3d), with random-balanced sampling

(1a) and features clustered per component (2a), which outperformed the current

state-of-the-art by 4.32% (see Table 6.1).

Large performance differences were also observed in Fig. 6.4 for the HMDB

dataset. With an increased number of action classes, one can more easily see

the performance gained by ‘balanced’ sampling rather than uniform random

sampling. For example, see the differences between the yellow and pink curves

of BoF joint per-category (Fig. 6.4 right, dotted lines 2), or the cyan and brown

curves of Fisher vector joint random vs. random-balanced (Fig. 6.4 right, dotted

lines 3). This was only observed at higher dimensionalities though, and overall

‘balanced’ sampling outperformed random sampling just 53% of the time. Note

90

however that the best accuracy, mean average precision and mean F1 scores

on the Hollywood2 and HMDB datasets were obtained using random-balanced

sampling, as shown in Table 6.1. In Fig. 6.4, one can also observe the benefit

of BoF per-category, which outperforms BoF by learning separate vocabularies

per action class.

We estimated that to run an additional 112 experiments on UCF101 dataset

would take approximately 1 CPU year, and thus report only a single run with the

best performing variable components observed in the experiments so far, namely

Fisher vectors, balanced sampling and separate vocabulary learning. UCF101 is

the largest current action recognition dataset (see Table 2.1), however it may not

be the most challenging. We achieved, 81.24%, 82.35%, 80.57% accuracy, mAP

and F1 scores respectively averaged over the three train test splits provided by

the authors [34]. Our reported accuracy is 37.34% higher than the original results

reported in [34], and 4.6% short of the result reported in [141], which additionally

used spatial pyramids and a variation of the dense trajectory features which

estimates camera motion information [142].

The computational time needed to generate this result on the UCF101 results

was 163.52 CPU hours. Interestingly, a large part of the computational time is

spent loading features from disk. Thus even though the chance level of UCF101

is just under 1%, our results indicate that the HMDB dataset remains the most

challenging action classification dataset currently available. The overall best

results are listed in Table 6.1; by using our approach (Algorithm 6.1) with an

increased number of model parameters (using a larger K, or by using spatial

pyramids [77]) may yield further improvements to the current state-of-the-art

results.

Chapter 7

Learning pullback distances for

dynamical action models

Suppose that each video in an a training set of S action sequences is represented

as a sequence of observations, or a sequence of features. Suppose as well that an

algorithm able to identify the parameters of the dynamical model (of a chosen

class) which best fits a given sequences of feature vectors is available. Then, the

videos can be mapped to a training set D = {m1, ...,mS} of dynamical models.

7.1 Pullback metrics in Riemannian geometry

Assume initially that the learned dynamical models live on a Riemannian man-

ifold M (Fig. 7.1). An automorphism1 (invertible differentiable map F : m ∈
M 7→ F (m) ∈ M from a domain to itself) on the model manifold M is associ-

ated with a ‘push-forward’ application of tangent vectors [143]:

F∗ : v ∈ TmM 7→ F∗v ∈ TF (m)M, (7.1)

which maps a vector tangent to a curve to the vector tangent to the image of

this curve via F (Fig. 7.1-right). Given a Riemannian metric g onM, F induces

a pullback metric

g∗(u,v)
.
= g(F∗u, F∗v), (7.2)

such that the scalar product of two vectors u,v according to g∗ is equal to the

scalar product with respect to the original metric g of the push-forward vectors

F∗u, F∗v. The corresponding pullback distance between two points m, m′ ∈ M

1Note that the automorphisms presented in this chapter are intended to preserve the
smooth structure of the manifold and not the metric structure.

91

92

Figure 7.1: Encoding each training video as a dynamical model (e.g. a HMM, left)
yields a training set of such models in the relevant spaceM (right). In the Riemannian
case, any automorphism ofM induces a push-forward map which, given a base metric,
induces a pullback distance there. By parameterising the automorphism F we obtain
a family of distances we can optimise upon.

(e.g. two dynamical models) is the geodesic distance (length of the shortest

path) between the two points according to the obtained pullback metric.

If we define a class of such automorphisms {Fλ,λ ∈ Λ} depending on a vector

λ of parameters we get a family of pullback metrics {gλ∗ ,λ ∈ Λ} on M, also

depending on λ. We can then define an optimisation problem over such a family

in order to select an optimal metric. The nature of the resulting Riemannian

manifold depends on the chosen objective function.

7.2 Pullback distance learning framework

Although the differential geometry of some classes of linear dynamical models

has indeed been analysed [144], for many other classes used in action recognition

(and hidden Markov models in particular) a proper Riemannian metric [145] has

not been yet identified. Nevertheless, pullback distances can also be introduced

on metric spaces2, by defining

d∗(m,m′) = d (F (m), F (m′)) . (7.3)

We therefore propose the following more general framework for learning an op-

timal pullback distance from a training set of dynamical models, detailed in

Algorithm 7.1.

2Sets endowed with a distance function d meeting the triangle inequality (cf. Section A.1)

Chapter 7. Learning pullback distances for dynamical action models 93

Algorithm 7.1 A general framework for learning an optimal pullback distance
from a training set of dynamical models

1. Assume that a dataset of S observation sequences {[ys
t, t = 1, . . . , Ts],

s = 1, . . . , S} is available;

2. From each sequence, a dynamical model ms of a certain set C (e.g., a HMM)
is identified, yielding a dataset of models D = {m1, ...,mS}. Such models
belong to a metric space MC endowed with a distance function dMC ;

3. A family {Fλ,λ ∈ Λ} of automorphisms fromMC onto itself, parametrised
by a vector λ, is designed. Such family of automorphisms induces a family
of distance functions {dλ∗ ,λ} on MC;

4. Optimising over this search space of pullback distances yields an optimal
distance function d̂∗, which can eventually be used to classify previously
unseen models.

7.3 Pullback distances for HMMs

A hidden Markov model (HMM) is a finite-state stochastic dynamical model

whose states {Xt} ∈ X form a Markov chain, which linearly generates an

observation process yt ∈ RO. By identifying its N states with unit column

vectors (simplex vertices) ei of RN [133] we can write it as:

Xt+1 = AXt + Vt+1, (7.4)

yt+1 = CXt + diag(Wt+1)ΣXt, (7.5)

where {Vk+1} is a sequence of martingale increments and {Wk+1} is a sequence

of i.i.d. Gaussian noises N (0, 1). Given a state Xt = ej, the observations have a

Gaussian distribution p(yt+1|Xt = ej) with mean vector cj = E[p(yt+1|Xt = ej)],

the j-th column of the matrix C. The parameters of an HMM are therefore its

transition matrix A = [aij] = P (Xt+1 = ei|Xt = ej), the state output matrix C

and the covariance matrix Σ. Given a sequence of observations {y1, ...,yT}, the

HMM most likely to generate it can be identified via the Expectation Maximi-

sation (EM) algorithm [133].

7.3.1 The space H of hidden Markov models

In most cases the covariance matrix Σ is assumed to be fixed. This helps the

convergence of EM without jeopardising the generative power of the resulting

94

model. The space H = {(A,C)} of HMMs with a fixed covariance matrix is

then the Cartesian product space H =MA×MC , whereMA denotes the space

of all N × N transition matrices A, while MC is the space of all state-output

matrices C.

7.3.2 The space of transition matrices

Transition or stochastic matrices haveN(N−1) free parameters, as their columns,

representing conditional probability distributions P (Xt+1|Xt = ej), sum to 1:

N∑
i=1

P (Xt+1 = ei|Xt = ej) = 1. (7.6)

Probability distributions on a finite set of N elements (the states of the Markov

model) live in an (N − 1)-dimensional simplex

Cl(p1, ...,pN) =
{
α1p1 + ...+ αnpN ,

∑
i

αi = 1
}
, (7.7)

having as vertices p1, ...,pN the probability distributions pi : X → [0, 1] such that

pi(ei) = 1, pi(ej) = 0 ∀j 6= i. Transition matrices live therefore in the Cartesian

product of N such simplices, one for each column aj of A (see Fig. 7.2):

MA =
N∏

j=1

Cl(pj
1, ...,p

j
N). (7.8)

Any A ∈ MA is identified by the collection of simplicial coordinates (aij, i =

1, ..., N) of all its columns aj, j = 1, ..., N in the respective simplices, i.e., the

latter’s stacked vector.

7.3.3 Learning an approximate observation space

The state-output C matrices are instead N -plets of vectors of the observation

space Y of the Markov model. When a training set of models is available, we

can use the information it provides to learn an approximation Ỹ of Y . It has

indeed been observed that for specific classes of motions, observations live in

a lower-dimensional manifold [146] of RO. By applying unsupervised nonlinear

embedding to the collection of columns of all the C matrices of the training set

of HMMs, we get a cloud Ỹ of D-dimensional embedded columns approximating

the observation space, as illustrated in Fig. 7.3. Here we use Locally Linear

Chapter 7. Learning pullback distances for dynamical action models 95

Figure 7.2: The space MA of transition matrices with N states is the product of the
N simplices of conditional probabilities P (Xk+1 = ei|Xk = ej), j = 1, ..., N . MA is
isomorphic to the proposed automorphism space ΛA, since the weights λ also form
points on 2-simplices. For our tests, each simplex of ΛA was sampled along a regular
grid (right).

Embedding (LLE) [147], though other dimensionality reduction algorithms [148]

such as Kernel-PCA [149], or Neural networks [150] may be employed.

Each element of the obtained lower-dimensional observation space needs to

be associated with a vector of real numbers, its coordinates, to which an au-

tomorphism can be applied. This can be done by estimating via EM the Mix-

ture of Gaussians (MoG) {Γk, k} which best fits the approximate observation

manifold Ỹ (cf. Fig. 7.3-left). As coordinates of each (embedded) observation

vector ỹ we may then use the associated unique set of probability density values:

y �→ {Γk(y), k} (cf. Fig. 7.3-right). As each C matrix is an N -tuple of observa-

tion vectors, a point C of the (approximate) space M̃C has as coordinates the

stacked coordinates of its embedded columns under the MoG.

7.3.4 An automorphism of H
We can now design a product automorphism:

F (h) = F ((A,C)) = (FA(A), FC(C)), (7.9)

on the space H of HMMs, where h ∈ H is a hidden Markov model, FA : MA →
MA and FC : M̃C → M̃C are automorphisms of the space MA of transition

matrices and of the approximate space M̃C of C matrices, respectively.

An automorphism of transition matrices can be derived by exploiting the

form of MA as the product of N simplices. Each probability distribution p

in a probability simplex P = Cl(p1, ...,pN) with N vertices is a point whose

96

Figure 7.3: The LLE embeddings (here of dimension d = 3) of the columns of the C
matrices of all the HMMs identified from a training set of videos form a reasonable
approximation Ỹ of the unknown observation space Y. Fitting a Mixture of Gaussians
to the embedded cloud provides an atlas of coordinates charts in the approximate ob-
servation space (left). Mapping observation vectors in the embedded space via a MoG:
a 1-D example (right).

simplicial coordinates are its probability values:

p =
∑

i

p(ei)pi. (7.10)

A simple automorphism there can be obtained by stretching the simplicial co-

ordinates p =
(
p(e1), ..., p(eN)

)>
of its points p by a set of normalised weights

λ = [λ1, . . . , λn] with
∑

i λi = 1, λi ≥ 0:

Fλ(p) =

(
λ1p(e1), λ2p(e2), ..., λnp(eN)

)>
λ · p

, (7.11)

where λ · p denotes the scalar product of the two vectors. A product automor-

phism FA for the transition space MA =
∏N

j=1Cl(p
j
1, ...,p

j
N) can be derived by

applying a simplicial stretch with parameter λj to each column aj of A:

FA(A) = {Fλj(aj), j = 1, ..., N}. (7.12)

More general deformations are discussed in Sections 7.5.3 & A.3.

The Mixture of Gaussians approximation of Ỹ can be exploited to work out an

automorphism of the approximate observation space itself, and as a consequence

of the spaceMC of C matrices. The rationale is the following: the space where

the observation vectors live is not analytically known (unlikeMA), but needs to

Chapter 7. Learning pullback distances for dynamical action models 97

be inferred from the training set. As a topological manifold is a space covered

by an atlas of coordinate charts, each of them providing vector coordinates for a

local neighbourhood of the manifold, the MoG {Γk, k} provides an atlas of local

charts for the (unknown) HMM observation manifold. Any global differentiable

map (automorphism) there needs then to be expressed in terms of these local

coordinates. Ample freedom, however, exists on how to design a set of local

automorphisms in each coordinate chart.

In our case, the Euclidean coordinate(s) in each chart reduce to the proba-

bility densities {Γk(y), k} of each (embedded) observation vector y: any local

automorphism will then have to act on these density values. We propose here to

apply a stretching to the density value of the local dominant Gaussian compo-

nent, in analogy to what done for transition matrices. Mappings acting on the

vector of all Gaussian densities in the mixture are of course conceivable. Further

design choices are discussed in Sections 7.5.3 & A.3.

Each Gaussian Γk defines a region of the (embedded) observation space in

which Γk is greater than all other components’ densities,

Ok = {w : Γk(w) ≥ Γl(w) ∀l 6= k}. (7.13)

Consider the maximum value attained here by any other Gaussian component

T k = maxl 6=k,w∈Ok Γl(w), and define the ‘proprietary’ region Rk of Γk as:

Rk = {w : Γk(w) ≥ T k} (7.14)

(see Fig. 7.3 for the case of a 1-D embedded observation space and 3 Gaussian

components). We can define an automorphism FỸ : Ỹ → Ỹ of the approximate

observation space Ỹ which acts non-trivially only on embedded observation vec-

tors living in the proprietary region of a Gaussian component. The sequence of

steps necessary to compute the automorphism ofC is presented in Algorithm 7.2.

7.3.5 Sampling the parameter space of the automorphism

In order to pick the automorphism which generates the optimal pullback dis-

tance we need to sample the parameter space Λ of the mapping. The pull-

back distance associated with each sample is applied to a validation fold of the

dataset, and the parameter which yields the best classification performance there

is picked. The parameter space ΛA for the automorphism FA of transition ma-

trices is the product of N simplices with N vertices (as each column of A is

98

Algorithm 7.2 Computing an automorphism of the approximate observation
space.

Given ỹ ∈ Ỹ :

1. Select the Gaussian component with highest density value: K =
argmax

k
Γk(ỹ);

2. If ỹ 6∈ RK leave it unchanged: ỹ′
.
= FỸ(ỹ) = ỹ;

3. If ỹ ∈ RK , its density value ΓK(ỹ) belongs to the interval [TK ,ΓK(µK)],
with convex coordinates µ, (1 − µ), µ ∈ [0, 1]: ΓK(ỹ) = µTK + (1 −
µ)ΓK(µK), where µK ∈ Y is the mean of ΓK ;

4. If λ ∈ [0, 1] is the parameter of the desired automorphism, map ΓK(ỹ) to
the new density value in the same interval [TK ,ΓK(µK)] by stretching its
convex coordinates via:

ΓK(ỹ′) =
λµ

λµ+ (1− λ)(1− µ)
TK +

(1− λ)(1− µ)

λµ+ (1− λ)(1− µ)
ΓK(µK); (7.15)

5. Within RK there exists an entire level set of observation vectors with
such a density value ΓK(ỹ′) (the two starred points in the 1-D example of
Fig. 7.3);

6. We define as ỹ′ = FỸ(ỹ) the unique vector ỹ′ which has density value
ΓK(ỹ′) and lies on the half-line joining µk and the original vector ỹ.

‘stretched’ using a normalised vector λ = [λ1, ..., λN] of N components), i.e., it

is isomorphic to HA itself. ΛA is regularly sampled along a grid (see Fig. 7.2).

For example, using nbin = 10 bins per dimension, each simplex is sampled in

nsam =
∑nbin

i=1

(
nbin−i+(N−1)

N−1

)
= 55 locations (where N = 3 is the number of HMM

states). The total number of samples in ΛA is then (nsam)ncol , where ncol is the

number of transition columns actually stretched. The map FC depends instead

on a single scalar parameter λ ∈ [0, 1]: in our tests it was sampled uniformly

with much greater density.

7.4 A proof of concept

As a first proof of concept, we defined an experiment on a toy problem with

synthetic data in order to show the merits of our pullback-HMM learning in a

controlled environment. Since our method first learns an HMM from observation

sequences, and measures distances between HMMs to make a classification deci-

Chapter 7. Learning pullback distances for dynamical action models 99

0.70 0.20 0.10

0.20 0.60 0.20

0.30 0.30 0.40

0.20 0.50 0.30

0.10 0.50 0.40

0.10 0.10 0.80

0.60 0.20 0.20

0.10 0.80 0.10

0.20 0.30 0.50

Figure 7.4: Transition matrices A> based on fictional weather patterns from each
country. Darker shades indicate higher probabilities.

sion, we must first outline a method (see Algorithm 7.3) to generate a synthetic

dataset of HMM observation sequences which can then be fed to the pullback

HMM learning pipeline.

Consider a scenario in which families or groups of friends go travelling to

L countries drawn uniformly at random, in this case: l ∈ {Malta, Germany,

Russia}. Each group (20 people) records the snack they ate at 4pm on each of

the T days on holiday (the length of each observation sequence is T = 14), and

the possible observations are drawn from a list of M snacks: m ∈ {hot chocolate,

pretzels, ice cream, doughnut}. The overall group snacking distribution per day

is captured by a histogram, counting how many snacks of each type have been

consumed. Back home each group is instructed to learn an N -state HMM (e.g.

N = 3) from the sequence of observations they collected. The objective is to

automatically determine which country they have visited by classifying the HMM

learnt on their return home. In this case, the choice of snack is dependent on

the current state of the weather in a particular country, whilst the dynamics of

the weather depend in turn on the country.

7.4.1 Synthetic HMM sequences

In order to generate the observation sequences, L transition and state-output

matrices were predefined (see Fig. 7.4 & Fig. 7.5). The hidden states of each

HMM represent possible weather states: Rainy, Cloudy, and Sunny (the possible

states remain unknown to the travellers). The synthetic sequences’ generation

procedure is laid out in Algorithms 7.3 and 7.4.

100

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Figure 7.5: State-output probability matrices C> based on fictional snacking patterns
for each country under different weather conditions. The possible classes are the coun-
tries the travellers went to on holiday (Germany, Malta, Russia), the hidden states
correspond to the weather conditions (sunny, cloudy and rainy), and the discrete obser-
vations are drawn from a set of snacks, in this case: hot-chocolate, pretzel, ice-cream
and doughnut.

7.4.2 Experimental setup

To create the artificial toy dataset we generated 300 examples per class, us-

ing Algorithm 7.3. The obtained sequences were then averaged and plotted to

manually verify that the histograms indeed matched the original discrete distri-

butions they were sampled from. The HMM parameters were identified via the

EM algorithm, applied 10 times for each observation sequence in order to select

the parameters yielding the highest likelihood. The toy dataset was split into

three randomly selected sets, and for each set, 2/3 of the data was placed in the

training set, and the remainder in the test set. For each set, the parameters of

the pullback learning algorithm were optimised using 5-fold cross validation on

the training set. The results over each of the three sets were plotted using the

mean accuracy and one standard deviation from the mean, as shown in Fig. 7.6

& Fig. 7.7.

7.4.3 Preliminary results & discussion

In the first experiment, the results of which are plotted in Fig. 7.6, the sam-

pling densities of the transition automorphism FA and output automorphism

FC were varied, keeping the number of HMM states fixed at 3. To calculate the

HMM approximate observation space we applied LLE with an embedding space

dimensionality of d = 3 and number of neighbours equal to 40. In Fig. 7.6 the

classification accuracy is plotted against the sampling densities in both ΛA and

ΛC . It can be clearly seen that the pullback-Frobenius performance improves

steadily as the sampling density in the observation automorphism’s parameter

space increases.

Chapter 7. Learning pullback distances for dynamical action models 101

Algorithm 7.3 Generate synthetic HMM observations.

STEP 1: Initialise dataset parameters:
-classes (l ∈ {Malta, Germany, Russia}),
-states (j ∈ {Rainy, Cloudy, Sunny}), N := 3,
-observations (m ∈ {hot-chocolate, pretzels, ice cream, doughnut}),
-length of trip (T := 14),
-group size (G := 20),
-examples per class (E := 300),
-transition matrices A (Fig. 7.4),
-state output observation matrices C (Fig. 7.5),
-initial state probabilities π := (1

N
, 1
N
, 1
N

).
STEP 2: Monte-Carlo simulation
for l := 1 to L do

for e := 1 to E do
j := generate-random-choice(π),
while length(observ) < T do
observ := generate-random-histogram(cl

j, G),
j := generate-random-choice(al

j),
end while
Output: observ , a (T ×M) matrix of histograms.

end for
end for

In the second experiment (Fig. 7.7), the sampling density was kept constant

at 8 samples in ΛC and 216 samples in ΛA, and the learnt number of states was

varied from 2 to 4. All other parameters were kept constant. Interestingly, even

though the predefined HMMs have 3 states, the HMM-pullback method was still

able to discriminate between HMM models of 2 and 4 states, and even benefited

from an increased number of states (see the minor improvement in accuracy and

a reduced standard deviation in Fig. 7.7).

These preliminary results demonstrated the higher performance achievable

using pullback distance learning for hidden Markov models, especially when

Algorithm 7.4 generate-random-choice.

Input: q, qi ∈ [0, 1], i ∈ {1, . . . , Q},
i := 1,
q′ := rand(0, 1)− qi,
while (i < Q) && (q′ > 0) do

i := i + 1,
q′ := q′ − qi,

end while
Output: i.

102

2 4 8 16 32
40

50

60

70

80

90

100

110

Figure 7.6: The % Accuracy plotted against the sampling density in the parameter
spaces of FA and FC . Whereas the Accuracy of the base Frobenius distance remains
constant, the Accuracy of the pullback-learning method increases steadily as the number
of samples in FC increases. The sampling density in ΛA has a lesser effect in this
case, with similar performances recorded for 216 or 1000 samples.

compared to that of the base distance, the positive effect of higher sampling

densities of the parameter space, and the robustness of the method to the number

of states of the models.

7.5 Experiments on human action recognition

We validated our proposal for learning optimal (classification-wise) pullback dis-

tances between HMMs on the KTH [13] and YouTube [16] datasets, the latter

providing more challenging, real-world conditions (cf. Section 3.1.2). Instead

of having histogram sequences extracted from the snacking desires of a group

of travellers, we now consider histogram sequences extracted from features of a

video in which an action was performed.

7.5.1 Implementation details

In order to encode each video as an HMM we need to associate a feature vector

with each video frame. A ‘sliding window’ approach can be applied in which for

each time instant t features are extracted from the spatio-temporal subvolume

collecting the images from t to t+δ and attributed to the state Xt of the Markov

chain. For these tests we picked the Dense Trajectory features (c.f Section 2.2),

which demonstrated excellent performance in [25]. We kept the default parame-

Chapter 7. Learning pullback distances for dynamical action models 103

2 3 4
40

50

60

70

80

90

100

Figure 7.7: The % Accuracy plotted against the learnt number of states in the HMM.
With the baseline Frobenius distance, the accuracy decreases as the number of states
increases from 2 to 4. On the contrary, when using our pullback learning method the
accuracy increases slightly (and the standard deviation is reduced) as the number of
states increases. Also note the significant difference in accuracy in all cases.

ters: features were computed in video blocks of size 32× 32 pixels for 15 frames,

with a dense sampling step size of 5 pixels [25]. We used the 30-dimensional

motion vectors from the Dense Trajectory features, and built a 200-word visual

vocabulary by sampling features from the training set and clustering them by

k-means. The k-means algorithm was initialised 8 times and the configuration

with the lowest error selected. We used a sliding 3D-window of width δ = 30

frames and a stride of 5 pixels, the same step size used for the Dense Trajec-

tory features. For each time-slice, a 200-dimensional histogram was computed

by quantising each feature to the learned visual vocabulary. For each feature

sequence so obtained, the HMM parameters were identified via the EM algo-

rithm [133].

HMMs characterised by a different number of states N that live in principle

on different model spaces, due to the different spaces HA of transition matrices.

Here we set the number of states to N = 3 to make the models comparable.

Three state automata have been demonstrated to represent most simple actions

effectively. Even then, a Markov model is uniquely defined only up to a permuta-

tion of the states. Therefore, when measuring distances between two models we

looked for the state permutation minimising the Frobenius distance between the

respective C matrices, so identifying states associated with the same ‘clusters’

in the observation space. To calculate the HMM approximate observation space

we applied LLE with an embedding space dimensionality of d = 6 and size of

104

the neighbours equal to 201. A mixture of 3 Gaussian components was fitted to

the resulting embedded columns to provide coordinates.

As a base distance on H =MA×MC we picked the product metric obtained

by applying the Frobenius norm to the A and C matrices respectively:

‖H1 −H2‖ = ‖A1 −A2‖F + ‖C1 −C2‖F , (7.16)

where ‖M −M ′‖F
.
=
√
Tr((M −M ′)(M −M ′)>), and Tr(M) =

∑
iiM [i, i]

is the trace of a matrix M . An alternative derives from the Bhattacharyya

distance between two Gaussian pdfs G1,G2 with means µ1,µ2 and covariances

Σ1,Σ2 [41]:

dbhatta(G1,G2) =
1

8
(µ1 − µ2)>(

Σ1 + Σ2

2
)−1(µ1 − µ2) +

1

2
log
|(Σ1 + Σ2)/2|
|Σ1|1/2|Σ2|1/2

.

(7.17)

Given two HMMs the average Bhattacharyya distance between pairs of emis-

sion Gaussian pdfs Γk in the two models quantifies their difference, and can be

modified to include the K-L divergence

∑
i,j=1,...,N

π(ei)A2[i, j] log

(
A1[i, j]

A2[i, j]

)
(7.18)

of the two transition matrices A1,A2 [41] (where π(ei) is the probability of state

ei).

For both benchmarks, we learned an optimal pullback distance by maximising

the classification performance on the training set via 5-fold cross validation [3].

We then measured the accuracy (Acc), average precision (AP), and F1-score

achieved by the learnt distance on the test set (cf. Section 3.1.6). For classi-

fication we used Nearest Neighbour (1-NN): each test sequence was attributed

the class of the nearest model in the training set according to the considered

distance. Having fixed a classification strategy, it is possible to fairly compare

pullback and base distances.

7.5.2 Results and discussion

Fig. 7.8(a) illustrates the effect of pullback distance function learning on the

KTH dataset. The parameter space of the HMM automorphism was sampled in

55 points for the transition matrix and 51 points for the output space (see the

above description of sampling) to optimise the performance of the pullback HMM

Chapter 7. Learning pullback distances for dynamical action models 105

Acc mAP Rec Prec F1

0
10

20
30

40
50

60
70

80
90

Acc mAP Rec Prec F1

0
10

20
30

40
50

60
70

80
90

(a) KTH

pullback−Frobenius
Frobenius

Acc mAP Rec Prec F1

0
10

20
30

40
50

60
70

80
90

Acc mAP Rec Prec F1

0
10

20
30

40
50

60
70

80
90

(b) YouTube

Figure 7.8: Performance plots comparing the Frobenius ‘base’ distance (blue square
markers) to the pullback-Frobenius distance (red circular markers) on the (a) KTH
dataset [13], and (b) YouTube [16] dataset. The chance level is plotted as a dotted
straight line in grey.

distance by cross validation. When using the pullback-Frobenius distance, we

achieved a very significant 38.3%, 29.3% and 37.9% improvement in classification

accuracy, mAP and F1 score respectively, with respect to the base one.

Fig. 7.8(b) shows instead the improvements in action recognition rates on

the YouTube dataset. Results are averaged over the 25 splits of the dataset: the

vertical bars indicate one standard deviation from the mean. The pullback dis-

tance was optimised over 55 samples in the parameter space ΛA of the transition

automorphism FA and 31 samples in that of the output automorphism FC : a

total of 55 × 31 = 1705 samples. The accuracy for the pullback-Frobenius dis-

tance was 51.7% with a standard deviation of 5.9%, which is again a significant

jump from the base distance’s poor 16.5% ± 4.8%.

Figs. 7.9 and 7.10 contrast the performances of base and pullback-Frobenius

distances over the two datasets via the associated confusion matrices. Classifi-

cation accuracy for individual classes can be appreciated. Notice that pullback

distances are able to disambiguate many classes which are confused by base ones,

such as the ‘boxing’ and ‘handwaving’ actions in the KTH dataset, or YouTube’s

‘biking’ and ‘riding’ action classes. Overall, our method proves able to cope with

the large variety of nuisance factors present in the YouTube dataset, such as high

within-class variation, unconstrained camera motion of handheld cameras, and

106

0.33 0.33 0.11 0.06 0.06 0.11

0.47 0.31 0.11 0.08 0 0.03

0.22 0.14 0.36 0.11 0.08 0.08

0.06 0.11 0 0.53 0.17 0.14

0.06 0 0.03 0.31 0.50 0.11

0.03 0.06 0 0.22 0.08 0.61

(a) Frobenius

0.96 0 0.03 0 0 0

0.42 0.58 0 0 0 0

0 0.02 0.97 0 0 0

0 0 0 0.80 0.15 0.05

0 0 0 0.25 0.71 0.04

0 0 0 0.07 0.02 0.91

(b) pullback-Frobenius

Figure 7.9: Confusion matrices, KTH tests. Notice the significant overall improve-
ment achieved by the pullback-Frobenius distance (b), as compared to the base distance
(a).

cluttered scenes.

Since the YouTube dataset contains harder action sequences and a greater

number of action classes than the KTH dataset, we present here additional

experiments to explore the pullback learning performance using Fisher vectors

and two additional distance metrics. From the plots of Fig. 7.11 it can be

seen that the pullback-Frobenius distance performs best overall with a mean

Accuracy of 44.4%, compared to pullback-Bhattacharyya’s 37.8% and modi-

fied pullback-Bhattacharyya’s 35.5%. Interestingly, the performance results were

slightly worse when using Fisher vectors rather than BoF histograms. However,

there is still an appreciable improvement between base and pullback distances,

demonstrating the effectiveness of our framework across multiple features and

metrics. The adoption of more complex classes of automorphisms and models is

discussed in the following Section.

7.5.3 Other nonlinear automorphisms

The type of automorphisms employed here, as shown in Fig. 7.12(a), map linear

boundaries to different linear boundaries. Other nonlinear automorphisms, for

example, of the form λpλ shown in Fig. 7.12(b), have the potential to extend

Chapter 7. Learning pullback distances for dynamical action models 107

0.2 0 0 0 0 0.2 0 0 0.1 0 0.1

0 0.2 0 0 0.1 0 0.1 0 0 0 0

0 0.1 0.2 0.1 0.1 0 0.1 0 0 0 0

0 0 0 0.2 0.1 0 0 0 0 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0.1 0

0.2 0 0 0 0 0.2 0 0 0.1 0 0

0 0.1 0.1 0 0 0 0.2 0.1 0 0.1 0

0 0 0.1 0 0 0 0.2 0.2 0 0.2 0

0.2 0.1 0 0 0 0.1 0 0 0.2 0.1 0

0 0 0 0 0 0.1 0.1 0.1 0 0.2 0

0.1 0 0 0.1 0 0.2 0 0 0 0 0

(a) Frobenius

0.5 0 0 0.1 0 0.2 0 0 0 0 0

0 0.7 0 0 0 0 0 0 0 0 0

0 0.1 0.6 0 0 0 0 0 0 0 0

0 0 0 0.6 0.2 0 0 0 0 0 0

0 0 0 0.2 0.6 0 0 0 0.1 0 0

0 0 0 0 0 0.7 0 0 0 0 0

0 0 0 0.1 0 0 0.2 0 0 0 0

0 0 0 0 0 0.1 0 0.5 0 0 0

0 0 0 0.1 0.1 0 0 0 0.6 0 0

0 0 0 0.2 0 0 0 0 0 0.4 0

0.1 0 0 0 0 0.3 0 0 0 0 0.3

(b) pullback-Frobenius

Figure 7.10: Confusion matrices for the YouTube dataset, made up of videos captured
‘in the wild’. (a) Using the base Frobenius distance, the results are almost close to
random (cf. Fig. 7.8(b)). (b) The significant improvement in classification accuracy
achieved by the pullback-Frobenius distance is demonstrated by the strong diagonal.
Improvements are shown in all classes except ‘shooting’.

Acc mAP Rec Prec F1

0
10

20
30

40
50

60
70

80
90

Acc mAP Rec Prec F1

0
10

20
30

40
50

60
70

80
90

pullback−Frobenius
Frobenius

(a) Frobenius

Acc mAP Rec Prec F1

0
10

20
30

40
50

60
70

80
90

Acc mAP Rec Prec F1

0
10

20
30

40
50

60
70

80
90

pullback−BHATTA
BHATTA

(b) Bhattacharyya

Acc mAP Rec Prec F1

0
10

20
30

40
50

60
70

80
90

Acc mAP Rec Prec F1

0
10

20
30

40
50

60
70

80
90

pullback−BHATTA−2
BHATTA−2

(c) Modified Bhattacharyya

Figure 7.11: Comparing the performance measures achieved by different base dis-
tances: Frobenius (a), Bhattacharyya (b) and modified Bhattacharyya (c) on the
YouTube dataset, when using the Fisher representation. Although the Frobenius dis-
tance has the worst baseline performance, its pullback version has the best one. In any
case, the pullback trick delivers significant improvements across all base distances.

108

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Line preserving automorphism

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Another arbitrary automorphism

Figure 7.12: (a) An automorphism of the form [x, y, z] 7→ 1
Z [λ1x, λ2y, λ3z] with

random values for λ maps the green points on a 2D simplex by a non-linear stretch to
the points in red. The linear decision boundary shown in black is mapped to another
linear boundary (in grey). (b) Arbitrary automorphisms (here of the form λpλ) can
generate other kinds of curved boundaries.

the search space towards unknown linearising automorphisms (Theorem A.1),

delivering superior performances when coupled with hyperplane classifiers. Ex-

tensive testing on even more challenging datasets such as the Hollywood2 [17]

and the HMDB [3] ones, employing higher-order HMMs and SVM classification,

is in order.

7.5.4 Beyond HMMs

As more sophisticated classes of graphical models able to describe complex activ-

ities live on inherently higher-dimensional manifolds, we are potentially met with

computational limitations. However, the dimensionality of the parameter space

Λ of the automorphism is distinct from that of the model spaceM (compare our

treatment of the HMM output space). Variable length HMMs [93] are in fact

equivalent to HMMs with an exponential state space 2X : the approach described

here can be straightforwardly applied to them. For hierarchical HMMs [151], de-

scribed by a set of parameters
{
{Aql}l=1,...,L, {Γq

l}l=1,...,L

}
, where ql denotes an

arbitrary state at level l, a careful design of the family of automorphisms can

much limit computational requirements.

7.5.5 Close-form optimisation by volume element match-

ing

A desirable alternative is to handle classification performance or a related quan-

tity directly in closed form. We briefly outline a proposal inspired by Lebanon’s

Chapter 7. Learning pullback distances for dynamical action models 109

treatment of the unsupervised case in [92]. There he suggested (in the original

Riemannian manifold setting) to maximise the inverse volume element associated

with a Riemannian metric around the given training set of points:

O(D) =
S∏

i=1

(det g(mi))
− 1

2∫
M

(det g(m))−
1
2 dm

, (7.19)

where g(mi) denotes the metric at the point mi ∈ D of the dataset, and det g

the associated Gramian. The latter can be computed as det g∗(m) = det(J)2 ·
det g(m), where J is the matrix collecting a basis of push-forward vectors [92].

As it is shown in [152] for the case of stable autoregressive models of order 2, this

can be done in closed form whenever the original metric is analytically available.

Using the local Gramians of the training models we can design, in a semi-

supervised setting, an objective function which aims at forcing similar points S
to live in the same region of the pullback manifold and dissimilar points S ′ to

live in different regions, by enforcing the corresponding volume elements det g

to be close for the former and different for the latter. As the volume element

is an expression of the local curvature of the manifold, a necessary (albeit not

sufficient) condition for two points to be close is that their Gramian be close.

Distinct regions of the manifold can still be locally isometric, but averaging

over all the points of all the classes mitigates the risk of the optimisation process

leading to a minimum generated by accidental isometries. In the semi-supervised

case this amounts to solving the optimisation problem

min
g∗
Osemi(D) =

∑
(mi,mj)∈S

d(G(mi), G(mj))−
∑

(mi,mj)∈S′
d(G(mi), G(mj)) (7.20)

where G(mi) = det g∗(mi), g∗ is a pullback metric, and d is a metric in R. In

the supervised case, the following variant in which volume elements are close for

training points of the same class c, c = 1, ..., C and different for pairs belonging

to different classes can be defined:

min
g∗
Osuper(D) =

C∑
c=1

∑
mi,mj∈c

d(G(mi), G(mj))−
C∑

c,c′=1

c6=c′

∑
mi∈c
mj∈c′

d(G(mi), G(mj)).

(7.21)

When the Gramian of g∗ can be computed analytically, the gradient of these

objective functions with respect to the parameters λ of the pullback metric

can also be analytically computed. Both Osuper(D) and Osemi(D) can then

110

be optimised in closed form, at a negligible computational cost. We intend to

develop this promising line of research in the future.

In the next chapter, however, we switch gears and move from the task of

global action classification to the detection of multiple action classes in space

and time. Rather than offline classification on large datasets, we now tackle an

altogether more challenging task which has application in human-robot interac-

tion.

Chapter 8

Online learning of multiple

concurrent space-time actions

The action detection system described here is composed of several steps carried

out incrementally after each frame is captured, including

i) region proposal generation,

ii) ranking of proposals,

iii) building connected space-time tubes,

iv) feature extraction,

v) multi-class online learning, and

vi) detection.

This pipeline takes inspiration from previous works (cf. Section 2.8.1), whose

ideas are extended in the following sections towards the application of action

detection, as illustrated in Fig. 8.1. Our proposed pipeline starts by generating

a set of regions which may contain an object/action of interest.

8.1 Fast region proposal generation

To generate region proposals per frame, we implemented the single strategy

selective-search algorithm [109], using HSV-transformed images. The selective-

search region-merging similarity score was based on a combination of colour (his-

togram intersection), and size properties, encouraging smaller regions to merge

early, and avoid holes in the hierarchical grouping (HSV, C+S+F). The over-

segmentation strategy initialising the hierarchical grouping was performed by

Felzenszwalb and Huttenlocher’s fast graph based segmentation algorithm [110].

The original selective-search algorithm orders its region hypothesis set ac-

cording to the order they were generated. To prioritise the regions most likely to

111

112

Figure 8.1: Multiple action detection in a video stream. First region proposals are as-
sociated in time to generate space-time tubes, with associated tube labels (1-5). During
training, tube CNN features are fed to an online learner, whilst during testing, the tube
features and learned models are used to generate action label predictions (Grey, Or-
ange, Blue). (a) In this illustration, tubes 1,4 and 5 are labelled as ‘grey’ (no-action).
(b) Tube 3 is labelled as ‘orange’, and (c) tube 2 as ‘blue’. Note that only the cur-
rent and past video frames are available to the algorithm, and the current state of the
algorithm is updated after each new frame is processed (best viewed in colour).

contain an action when working on a computational budget, we attach a score

to each hypothesis by calculating the dot product between a learned set of SVM

weights and the selective-search colour features ‘c’. Moreover, we attach a tube

label to each region to facilitate the connection of regions into tubes, detailed

in the following section. Each region proposal ri in a region set R represents a

vector of connected pixel coordinates which may correspond to an object in the

image. In our case, each region ri at time ‘t’ is associated with a score si and a

tube label li:

Rt = {(r1, s1, l1)t, . . . , (rM , sM , lM)t,Lt}, (8.1)

where ri defines a connected image region, and si = wT
s ci + bs, where ci is a

vector holding the normalised colour histogram extracted from the image region

indicated by ri. The label set Lt holds the unique tube labels in the region set,

Lt =
⋃M

i=1 li. More compactly, by arranging the region indicator vectors ri into

a matrix, and the associated scores and labels into vectors,

Rt = {Rt, st, lt,Lt}. (8.2)

When a new region set is created (see Fig. 8.1), only the members Rt, and st are

known, the labels lt need to be estimated from the pair of neighbouring regions

sets in time {Rt,Rt−1}, as detailed in the next section. The online learning of

parameters {ws, bs} is detailed in Section 8.4.

Chapter 8. Online learning of multiple concurrent space-time actions 113

8.2 Selective tubes

The region proposals Rt are generated independently for each video frame. In

order to incrementally connect the proposals into tubes:

T l = {(r1, s1)t, . . . , (rN , sN)t+N , l , y}, (8.3)

a correspondence problem must be solved to determine which regions in frame ‘t’

correspond to those in frame t′ ≡ (t− 1). From (8.3), a tube is defined by a set

of regions in time having the same tube label ‘l ’, and forms the basic bounding

structure to which a multi-class action label, or a ‘no-action’ label ‘y ’ may be

assigned.

Let the index sets of regions in frame t′ and t be denoted by U = {1, . . . ,Mt′},
and V = {1, . . . ,Mt} respectively. Let us also assume initially that there are the

same number of regions in each image, Mt′ = Mt. Now, consider a function f

which takes a pair of regions and returns a cost of assigning region i ∈ U to

region j ∈ V , written as: f : U × V 7→ R. We now wish to find a bijection

σ : U → V that minimises the following cost function:

γ∗ = min
σ

∑
i∈U

f (i, σ(i)) . (8.4)

In other words, we would like to find a permutation of the indices in U via func-

tion σ(), which minimises the total cost γ∗, from the Mt! possible permutations.

The cost for assigning a region i ∈ U to j ∈ V was chosen to be a combination

of the histogram-intersection and intersection-union scores:

f(i, j) = 1− 1

2

(∑
k

min(ck
i , c

k
j) +

(ri ∩ rj)

(ri ∪ rj)

)
. (8.5)

The optimal assignment problem described by Equations (8.4) & (8.5) may be

solved by a variety of combinatorial optimisation algorithms [153], of which

we selected the O(n3) Hungarian method by Kuhn and Yaw [154], where n =

max(Mt′ ,Mt).

In practice the Hungarian assignment algorithm is able to handle rectangu-

lar cost matrices by padding the empty locations (see Algorithm 8.1). In the

case where Mt > Mt′ , new labels are assigned to regions without a pairing.

When Mt < Mt′ , a subset of labels in Lt′ will be discarded, marking the end

of those tubes. The selective tubes correspondence algorithm is presented in

114

Algorithm 8.1 Selective tubes algorithm.

1: Input:
Regions Rt′ ,Rt

Features Ct′ = (c1, . . . , cMt′
), Ct = (c1, . . . , cMt), Note Mt′ 6= Mt in general.

2: Output: Tube label vector lt ∈ Rt

3: Define:
4: U = {1, . . . ,Mt′},V = {1, . . . ,Mt}
5: M̂ := max(Mt′ ,Mt)
6: for i := 1 to M̂, j := 1 to M̂ do

7: A[i, j] :=

{
f (i, j) : (i ∈ U) ∧ (j ∈ V), (Eq. 8.5)
0 : otherwise.

8: end for
9: Permutation matrix P := HungarianAssignment(A)

10: if (Mt′ < Mt) then
11: for q := 1 to (Mt −Mt′ + 1) do lt′ .Append(NewLabel()) end for
12: end if

13: lt := P lt′

14: if (Mt′ > Mt) then
15: for q := 1 to (Mt′ −Mt + 1) do lt.EraseLast() end for
16: end if

Algorithm 8.1.

8.3 Feature extraction

To extract features, we used the convolutional neural network (CNN) architec-

ture by [111], which gave state-of-the-art results on the ImageNet database [155].

The output of the CNN may be seen as a highly nonlinear transformation from

local image patches to a high-dimensional vector space in which discrimination

may be performed by a linear classifier. To obtain an image patch descriptor

from the region denoted by ‘r’, we first resize the minimum bounding box en-

closing the region to a image of size of 224× 224 pixels, and provide the 50, 176

vector of pixel intensities to the input of the CNN network. The network out-

put is 1000-dimensional vector xcnn, where each element denotes the score for

a particular class in the ImageNet dataset; this vector forms our image patch

descriptor. Recently Fisher vectors also provided a high dimensional feature

space in which linear classifiers were used to achieve state-of-the-art results [2].

Whereas the CNN features encode the appearance and texture of image patches,

the selective tubes provide a motion vector characterising its movement. The

CNN and motion features are aggregated in time over the length of the tube

Chapter 8. Online learning of multiple concurrent space-time actions 115

and provide a fixed-length feature ‘x’ for training an online learner, as detailed

in the following section.

8.4 Action category learning

We now consider the task of incrementally learning a model L to assign a label

y ∈ {1, 2, . . . , Ymax} to a space-time tube T l (8.3), given a vector of tube features

x ∈ Rn. Due to the success of linear SVMs when combined with CNN features

[112], and their ability to be learned online [75], we train a set of linear SVMs

(1-vs-rest) to classify action tube features, where a prediction takes the form:

ŷl = argmax
y

(
wT

y xl + by
)
. (8.6)

8.4.1 Class specific feature cache

A class specific feature cache will ensure that the learner may ‘remember’ previ-

ously seen classes y ∈ C, and update their respective models by sampling from

the feature cache. Consider an example set from a video frame,

E t = {(x1, y1), . . . , (xE, yE),Yt}, (8.7)

where E is the number of examples in the set, and Yt is the unique set of class

labels present in the example set, Yt =
⋃E

i=1 yi. A class-specific feature set of

size Fy :

Fy = {x1, . . . ,xFy}, (8.8)

is populated by sampling from the currently observed example set E t.

8.4.2 Growing the learner set

Consider a set of linear SVMs denoted by Θt = {θty
y } in which

θty
y = {w, b,H}, (8.9)

where 〈w, b〉 denotes an SVM hyperplane and bias, and H is a cache of hard

examples. Note that t 6= ty in general, since ‘t’ denotes the time relative to the

first video frame in a dataset, and ‘ty ’ the time relative to the first example in

which action category y was observed. When a new class y∗ is seen, a new SVM

learner θy∗ is simply added to the set Θt.

116

Algorithm 8.2 Multi-class incremental online learning.

1: Linear SVM set: Θ = Ø
2: Feature class cache: Fy = Ø
3: Previously seen class label set: C = Ø
4: for t := 1 to T do
5: New example set: E t = {(x1, y1), . . . , (xEt , yEt),Yt}.
6: for all y ∈ Yt do
7: Fy := Fy ∪ Sample(E t, y , sample-size)
8: end for
9: C := C ∪ Yt.

10: if |C| > 1 then
11: F t

1 := Evaluate(θt, E t)
12: for all y ∈ C do
13: E t := E t ∪ Sample(Fy , sample-size)
14: end for
15: for all y ∈ C do
16: if θy /∈ Θt then Θt := Θt ∪ θy end if
17: θt+1

y := Bsgdnm(θt
y , E t, batch-size)

18: end for
19: end if
20: end for

The online multi-class incremental learning algorithm is laid out in Algo-

rithm 8.2. Note that we also detect the absence of an action, and therefore the

total number of classes is Ymax + 1. Next, we detail the specifics of the batch

stochastic gradient descent used to learn parameters 〈wy , by〉 for each action

category.

8.4.3 Solving an SVM with batch stochastic gradient de-

scent and hard example mining

In a classical SVM setting, given an dataset set D = {(x1, y1), . . . , (xD, yD)}, y ∈
{−1,+1}, and a vector of parameters ŵ = (w, b), the following objective func-

tion is minimised:

oD(ŵ) =
1

2
‖ŵ‖2 + C

D∑
i=1

max(0, 1− yiŵ
T x̂i), (8.10)

where D is the total number of examples in the dataset, and x̂ = (x, 1) is

augmented to include a bias-multiplier. Equation (8.10) is a convex function that

may be solved by a quadratic programming solver [71]. Since the data is streamed

in time, we use batch variant of stochastic gradient descent (Algorithm 8.3),

Chapter 8. Online learning of multiple concurrent space-time actions 117

Algorithm 8.3 Bsgdnm: batch stochastic gradient descent with hard exam-
ple mining. This algorithm details a single step towards the minimum of the
objective function defined in Equation 8.10.

1: Input:
2: SVM hyperplane ŵt

3: Hard cache: Ht

4: Example set: E t = {(x1, y1), . . . , (xE, yE)}, y ∈ {−1,+1}
5: if |Ht| > 0 then
6: Ht := UpdateCache(ŵt,Ht)
7: end if
8: Ht := Ht ∪ Sample(E t, batch-size)
9: αt = max

(
1
t
,min-step

)
10: ŵt+1 := ŵt − αt

(
ŵt + C

∑
(x̂i,yi)∈H

t

h(ŵt, x̂i, yi)
)

which iteratively updates the parameter vector ŵ by taking a step in the negative

direction of the gradient, with respect to a randomised subset D′ ⊆ D of dataset

examples. The subgradient of the SVM objective in (8.10) becomes:

∇oD(ŵ) = ŵ + C
∑

(x̂j,yj)∈D′
h(ŵ, x̂j, yj), (8.11)

where

h(ŵ, x̂, y) =

{
0 : y(ŵT x̂) ≥ 1

−yx̂ : otherwise.
(8.12)

In our application, we replace the static dataset D with the set of examples per

frame E t. In order to speed up the learning, we keep a cache of hard examples

[75], which are defined with respect to the SVM margin by an indicator function:

Ihard =

{
1 : y(ŵT x̂) < 1

0 : otherwise,
(8.13)

where Ihard = 1 indicates that the feature x̂ is misclassified or within the margin

and therefore ‘hard’. The sequence of steps used to learn 〈wy , by〉 is laid out in

Algorithm 8.3.

8.4.4 Life-long learning

To the best of our knowledge, designing a step size αt for a life-long online learner

is still and open problem. In practice we found that restricting αt to a minimum

value prevents the learner from converging, allowing the SVM hyperplane to

118

(a) 202 (b) 203 (c) 204 (d) 205 (e) 206

Figure 8.2: A sequence of images showing the propagation of region proposal labels in
time via Hungarian assignment. In this sequence of frames, the head (1), torso (2),
and hand (3) of the person are correctly associated in time, although in our tests, we
observed that the tracks are not stable over long periods of time. The full sequence
may be viewed in an attached supplementary video. Note that there is no region which
encloses the whole person in this case, and indication that there is scope to improve
the superpixel generation and hierarchical merging.

update itself when a previously unseen class appears. In order to smooth the

batch stochastic gradient steps, we use a moving average filter on the gradient

updates [156]. Preliminary results of using an online learner are presented in the

following section.

8.5 Preliminary tests

In these preliminary tests we aim to analyse key parts of our proposal before

putting them together in an end-to-end system. A more extensive comparison

to competing strategies is left for future work, as outlined in the next chapter.

8.5.1 Selective tubes

The selective tubes algorithm described in Algorithm 8.1 was implemented in

C++, and is being tested on sequences from the LIRIS-HARL dataset [44]. In

Fig. 8.2, we show the effects of associating windows in time to form tubes via

Hungarian optimisation. By analogy with Fig. 8.1, we draw the tube label num-

ber in brackets next to a set of windows. An attached supplementary video shows

additional preliminary results. Note that by using selective tubes, our approach

is not limited to action detection, since all tubes in the scene are tracked. Thus,

this methodology extends itself easily to space-time object detection, and the

detection of scene elements without clear boundaries like ‘floor’ and ‘wall’.

Chapter 8. Online learning of multiple concurrent space-time actions 119

Table 8.1: Quantitative results showing the performance of various online linear SVM
variations. The mean cumulative accuracy and standard deviation were calculated over
100 experimental runs for each test. Note the significant improvement achieved by
adding a class-specific feature cache ‘+F ’ and by setting a minimum step size +α′.

Bsgdnm Bsgdnm + F Bsgdnm + α′ Bsgdnm + F + α′

Cum Acc 62.89±9.8 77.94±13.1 74.49±7.0 92.01±8.1

Note that using the graph-based oversegmentation from [128] results in su-

perpixels whose shape and size are very sensitive to the image pixel intensities.

Thus, even the same scene imaged a millisecond later may generate a very differ-

ent set of superpixels. We observed that using SLICO [157] superpixels greatly

improved the data association via the Hungarian assignment, although it re-

mains to be seen whether they perform well for generating region proposals via

selective-search [109].

8.5.2 Learning of multiple categories streamed online

The online learner detailed in Algorithm 8.2 was tested on a toy dataset, in

order compare it to the batch stochastic gradient descent algorithm with hard

negative mining (Bsgdnm) described in [75]. The online toy dataset was randomly

generated with the following parameters:

• 10 maximum number of classes,

• 20 examples per class,

• 2000 maximum number of iterations.

At each iteration, a new example set was randomly generated as follows:

• Initially add a pair of labels to the currently visible class set C;
• every 20 iterations add a new randomly generated label to the set;

• every 40 iterations remove a randomly generated label from the set.

In order to generate random examples, we first select Ymax = 10 prototype

points even spread around the unit ball in R2. An example point is subsequently

generated by adding random noise to the prototype.

The results obtained in terms of the average cumulative accuracy calculated

over the 2000 rounds of learning are shown in Table 8.1, where the standard

online SVM is denoted as Bsgdnm. The addition of a class-specific feature set

Fy of size Fy = 50 is denoted by ‘+F ’, and the bound on the learning rate

αt = max
(

1
t
,min-step

)
, where we set min-step = 8× 10−4 (α remains fixed after

t = 1250 iterations), is denoted by +α′. An illustration of the 2000th iteration

120

of learning for each of the method variations is shown in Fig.8.3. Moreover,

the output of the SVM learner at each iteration may be viewed in an attached

supplementary video.

(a) Bsgdnm (b) Bsgdnm + F

(c) Bsgdnm + α′ (d) Bsgdnm + F + α′

Figure 8.3: A depiction of the SVM learning 10 categories (1-vs-rest) streamed on-
line after 2000 iterations. (a) Bsgdnm, with a 1

t learning rate converges over time,
and when new classes are added, older hyperplanes are not moved to reflect the new
classes. (b) The same scenario is present when including a long term feature cache of
previously seen classes F . In (c), the learning rate is capped at a minimum value, and
therefore, it is able to keep updating the hyperplanes as new classes arrive. However,
without a long term class memory, it forgets about previously seen classes that are not
currently visible. Lastly in (d), a large improvement in training accuracy is observed
by combining the feature cache F , with a cap on the learning rate α′.

Chapter 9

Conclusions and future directions

In this dissertation, we proposed a variety of recognition methods for determin-

ing what action classes appear in videos. Using local video mid-level representa-

tions, we proposed a novel MIL-BoF approach to joint action clip classification

and localisation based on the recognition of local space-time subvolumes (cf.

Chapter 4). Our experiments qualitatively demonstrated that it is possible to

localise challenging actions captured ‘in the wild’, with weak annotation, whilst

achieving state-of-the-art classification results. Since in our approach the detec-

tion primitives were space-time subvolumes, there was no need to perform spatial

and temporal detection separately [16]. Rather, each subvolume was associated

with a location in the video, and a decision score for each action class.

We expect that by increasing the number of possible subvolumes and the

density at which they are extracted, we will observe further improvements in

classification and localisation accuracy. Further MIL performance gains may be

obtained by multiple random initialisations, instead of assigning each instance to

the label of their parent bag, although at higher computational cost. In addition

to MIL, competing approaches by Siva et al. [158] showed excellent performance

on weakly labelled data using strongly labelled negative examples for explaining

the data’s inter-category information. Siva et al. show improved performance to

the MI-SVM formulation of [71] by combining ‘negative mining’ with saliency

measures on object/action detection tasks. More recently, the CRANE algorithm

by Tang et al. [159] demonstrated further improvements over [71, 158], whilst

being robust to noisy labels in the training data. Investigating the importance

of each cue in the SVM-map feature vector may also reveal improved mapping

strategies.

Our LDSBoF models coupled with Fisher vectors demonstrated the merits of

incorporating deformable structure into mid-level feature representations, both

121

122

quantitatively (Table 5.1) and qualitatively (Fig. 5.5). Even though our method

is independent of the choice of mid-level feature representation, we found that

Fisher vectors performed the best when compared to kernel-mapped BoF his-

tograms. By using LDSBoF, we were able to better model the variability of

human actions in space-time, which is reflected in higher performance achieved

by a 3-part model compared to that of the root filter alone.

In the future, we will focus our attention on describing further action de-

tail, such as whether a person is walking fast or slowly, or whether a person

jumps high or low, via attribute learning. Furthermore, we plan to move to-

wards denser feature extraction to capture meaningful mid-level representations

with smaller subvolumes, extending LDSBoF to a possibly variable and higher

number of parts. Moreover we envision initialising part anchor points from the

feature distributions to improve over a fixed grid. Our encouraging localisation

results demonstrate the potential for extending this method to larger and more

challenging localisation datasets. The ability to assign multiple action labels to

a single video clip is also lacking in our framework, and needs to be addressed

in the future.

In Chapter 6, we proposed to evaluate aspects of the bag-of-features pipeline

previously unexplored, on the largest and most challenging action recognition

benchmarks, and achieved state-of-the-art results across the board. In particu-

lar, we focused on the feature subsampling and partitioning step after features

have been extracted from videos, but prior to encoding. Since uniform ran-

dom sampling of features to create a vocabulary may be biased towards longer

videos and action classes with more data, we compared uniform random sam-

pling to sampling a random and balanced subset from each video and action

class. The best results obtained showed that the proposed sampling strategies

did yield minor performance improvements, and helped preventing poor results

that may follow from sampling an unbalanced set of features (see Fig. 6.3 dotted

line 2); other balancing strategies may provide further improvements. We also

showed that learning separate vocabularies per feature component caused very

large improvements in performance. Furthermore, learning BoF per-category

outperformed BoF, but was surpassed by Fisher vectors on the larger and more

challenging datasets. Finally, our results demonstrated that competitive results

may be achieved by using k-means with a relatively small number of cluster

centres K.

When representing videos as dynamical models (cf. Chapter 7), we proposed

a distance learning framework for a data-set of hidden Markov models, based on

Chapter 9. Conclusions and future directions 123

optimising classification performance over a family of pullback metrics induced

by automorphisms. The method is fully general, and extensible to other classes of

dynamical models and classifiers. Our results showed a large improvement from

base to pullback distances, demonstrating the effectiveness of our framework

across multiple features and metrics.

In absolute terms, the approach has room to deliver much better results,

closer to the state-of-the art. Firstly, the automorphisms’ parameter space may

be sampled at finer densities, although at a higher computational cost. Secondly,

nearest neighbour classification may be replaced by a more sophisticated method-

ology (Gaussian kernels, SVMs, etc): note that SVM classification would couple

well with our linear separation argument than 1-NN (cf. Sections 2.7 & A.2).

Better base distances for HMMs can be explored; for example the Frobenius dis-

tance is quite a general-purpose matrix norm with no special relation to Markov

models. The potentially significant advantages of using HMMs with more states

and higher-dimensional embedding spaces remain to be explored. Furthermore,

the method may be extended to other nonlinear automorphisms, and closed-form

optimisation, as discussed in section 7.5.5.

For the detection of multiple actions in space and time (c.f. Chapter 8),

we proposed an online framework based on the generation of space-time re-

gion proposals. Although promising preliminary results were observed using the

Hungarian assignment for associating region labels in time, and a long term

class memory for adding new classes incrementally, it remains to be rigorously

evaluated as an end-to-end system. The method though is general and not only

applicable to action detection. Since the space-time tubes effectively track the

whole scene in a hierarchy, at varying levels of scale/granularity, it may also be

applied to space-time object detection.

Improvements to the current proposal can be made on several fronts. Firstly,

it is still unclear whether the selective tubes algorithm we proposed will provide

bounding structures which are good enough to enclose an action. Pruning and

post-processing may be needed to remove unwanted detections, and connect dis-

joint tubes [69,160]. Variations on the cost function (Equation 8.5) may provide

longer-term association depending on the type of superpixels used, and the type

of hierarchical grouping. The selective-tubes may also be cast as Multiple Object

Tracking (MOT) [161], where the problem of associating superpixels in time is

posed as a structured learning problem, which learns a template for each super-

pixel that minimises a cost function over a network flow in time. However it is

to be seen whether it can be adapted to handle a varying number of superpixels

124

per frame, and the inclusion/removal of paths at various points throughout the

network.

Another promising approach includes an offline method for space-time ob-

ject detection proposals recently proposed by Oneata et al. [162], which works

by merging supervoxels. We also would like to investigate the possibility of

using a patch-match based algorithm [163] for establishing image region corre-

spondences in time. Van den Bergh et al. propose a real-time, online temporal

window objectness method for constructing tubes [164], which seems ideal for

our application. Furthermore, Xu et al. propose a streaming hierarchical video

segmentation algorithm [165], which may be adapted to generate online selective

tubes. We are currently investigating these routes for action tube generation, as

we believe that improvements in the tracking of scene regions will be key to the

future of action detection.

The performance of our action recognition approaches has evolved signif-

icantly over the course of 3 chapters (cf. Chapters 4- 6). For example on the

HMDB dataset we report the following accuracies over Chapters 4- 6 respectively:

29.7%, 37.2% and 50.2%. The first hike in performance may be attributed to

the improved encoding of local subvolumes (Fisher-vectors, separate vocabularies

per descriptor component), and the use of more general subvolume shapes within

which to aggregate features. In Chapter 6, we used global aggregation instead of

local aggregation, which meant that there we many more features per histogram

(at the cost of losing descriptor locality). The compact global representation per

video in Chapter 6 also meant that we could use exact quantisation and SVM

learning instead of faster approximate algorithms more suitable for large-scale

learning (cf. Chapter 5). Further improvements in accuracy will be obtained by

using the latest version of dense trajectory features [142], by further subdividing

descriptors and learning separate vocabularies per sub-descriptor (akin to prod-

uct quantisation [166]), and by stacking Fisher vectors [127, 167] to obtain very

high dimensional descriptors. Note that the hugely successful deep neural net-

works [168] have not yet surpassed the best bag-of-visual-word methods [127].

The visualisation of action saliency (cf. Figure 5.6) is also open to modifica-

tion; for example, the significance of each visual word may be plotted instead of

aggregating the detection scores per subvolume. The highly performing SVM-

map technique (cf. Section 4.2) may be adapted to pictorial structures by includ-

ing the space-time distribution in the mapping feature vector (cf. Equation 4.6).

In Chapter 6, the results may only be improved by cross-validation over the SVM

regularisation parameter C, and would also get rid of the unsatisfactory overfit-

Chapter 9. Conclusions and future directions 125

ting of the learned action models on the YouTube dataset (cf. Figure 6.2). In

Chapter 8, the cost-function scoring the association of two regions in time will

benefit from an additional term calculating the optical-flow of pixels between

regions.

126

Appendices

127

Appendix A

Supporting ideas

In this section, we describe some of the supporting ideas at the core of this

dissertation. We refer the reader to topics which already have excellent resources

available, and elaborate on those for which we feel further clarity is needed in

the context of each Chapter.

First off, the Hidden Markov model (HMM) is a generative probabilistic

dynamical model which is assumed to be a Markov process with unobserved

(hidden/latent) states [169]. Distances between HMMs may be calculated using

standard metrics, or redefined to form pullback metrics (cf. Section A.1). The

advantage of using a parametrised family of pullback metrics is that, in the case

of a linear classifier, it may rectify nonlinear class boundaries (cf. Section A.2).

In the case of a nearest neighbour classifier, it suffices that examples of the same

class are brought closer together, and further away form examples of distinct

classes. A practical demonstration of this idea is shown in Section A.3 for points

on a simplex, representing one column of an HMM’s transition matrix.

Inspired by vector space-models [170], the bag-of-visual-words/bag-of-features

pipeline [33] in computer vision represents images/videos as an un-structured col-

lection or visual words (cf. Section A.4), which can be visualised in videos by

assigning a unique colour to each visual word (c.f. Section A.5). Some structure

may be incorporated into BoF by using spatial pyramids [77], or by means of

pictorial structure models [81] (c.f. Section A.6), which got a significant boost

in computer vision thanks to Felzenszwalb and Huttenlocher’s linear time algo-

rithm for computing distance transforms (c.f. Section A.7). Last but not least,

the success of classification algorithms such as SVMs depend on the underlying

data representation (e.g. HoG [103], SIFT [171], BoF [33], CNN features [112]),

and therefore it seems apt to end with a reminder of what a representation is

(c.f. Section A.8).

129

130

A.1 Pullback metric

A metric is a function which defines a distance between elements of a set,

d : X × X 7→ R. (A.1)

For the mapping between pairs of elements to a real number to be a valid metric,

it must satisfy the following conditions for all x1, x2, and x3 ∈ X :

d(x1,x2) ≥ 0 (non-negativity)

d(x1,x2) = 0 ⇐⇒ x1 = x2 (identity of indiscernibles)

d(x1,x2) = d(x2,x1) (symmetry)

d(x1,x3) ≤ d(x1,x2) + d(x2,x3) (triangle inequality)

(A.2)

For example in one dimension, the euclidean distance between two points x1, x2 ∈
R on the real line is given by:

d(x1, x2) = ||x1 − x2||2 = |x1 − x2| (A.3)

The space X equipped with a metric d is called a metric space. By using a

bijective function, which defines a one to one mapping between elements of set

X and another set Y , a new metric on the real line may be defined. For example,

given a function f : R 7→ R2, we may define a new metric:

d∗(x1, x2) = ||f(x1)− f(x2)||2 (A.4)

where the new distance d∗ is defined as the euclidean distance between the

mapped points in R2. The metric defined in A.4 is said to pull-back the Euclidean

metric on the plane in R2.

Consider the set of real numbers x ∈ [−30 : 0.1 : 30], as shown in Fig.A.1(a).

If we define f to be:

f(x) =

(
x+ x2

1 + x2
,
x− x2

1 + x2

)
, (A.5)

then this results in mapping the real line to a (non-closed) circle in R2, as shown

in Fig.A.1(b). The respective pairwise distances between the points in set X
using distance metrics d and d∗ are shown in Figs A.1(c) & A.1(d).

Chapter A. Supporting ideas 131

(a)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

(b)

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

0

10

20

30

40

50

(c)

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

0

0.2

0.4

0.6

0.8

1

1.2

(d)

Figure A.1: (a) A set of points on the real line. (b) The set of points in (a) mapped
onto the Euclidean plane to form a (non-closed) circle. (c) Pairwise (Euclidean)
distances between points x on the real line (a). (d) Pullback distances between points
on the real line (a) using the reformulation of distance provided in Equation A.4.
Notice that the extreme points on the line in (a) (blue and green) are mapped to the
blue and green points in (b). In this case, via the pullback metric, the distance between
large numbers (positive or negative) has become very small. Note that the criteria for
a valid metric have been preserved.

132

(a) Original differentiable boundary C (black) (b) Rectified boundary C ′ after automor-
phism

Figure A.2: (a) Given any differentiable invertible boundary C in M = Rn, separat-
ing data points of two different classes (e.g. two spirals in R2, left), there exists an
automorphism of M that maps it to a linear boundary C ′ (b). Graphical illustration,
no real data.

A.2 Rectifying a non-linear boundary

Theorem A.1. (1-D case). For each differentiable bijective curve f : R→ C ⊂
M = Rn, λ ∈ R 7→ x = f(λ) ∈ C there exists an automorphism F : Rn → Rn of

M = Rn which maps f to a straight line in M (see Fig. A.2).

Proof. since f is bijective (the curve C has no self-intersections) with differen-

tiable inverse, there exists f−1 : C → R, x ∈ C 7→ λ = f−1(x) differentiable.

Now, given any versor v̂ of Rn we can design a differentiable mapping g : R →
C ′ ⊂ Rn, λ 7→ x′ = λv̂ which defines a straight line in M = Rn, and whose in-

verse g−1 : C ′ → R, x′ = λv̂ 7→ λ is also differentiable. But then g◦f−1 : C → C ′

is a differentiable bijective map (whose inverse is f ◦ g−1) that maps points of

C to points of the straight line C ′: x ∈ C 7→ x′ = λ(x)v̂. In conclusion, g ◦ f−1

is a automorphism from C ⊂ Rn to C ′ ⊂ Rn: but there exist infinitely many

automorphisms F of Rn whose restriction to C is g ◦ f−1: F |C = g ◦ f−1.

Chapter A. Supporting ideas 133

A.3 Improving classification: automorphisms on

a simplex

An automorphism is a bijective structure-preserving map from a mathematical

object to itself, and whose inverse exists due to the bijective property. For

example consider the unit 2-simplex in R3. Our ‘mathematical object’ is the

smallest convex set containing the vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1), and

forms a subset of R3. The following structure preserving map (A.6) in this case

is designed to be smooth, mapping the differentiable manifold (2-simplex) to

itself (automorphism).

Consider the automorphism which stretches the simplical coordinates by a

set of normalised weights:

Fλ(s) =
[λ1s1, λ2s2, ..., λNsN]′

λ · s
, (A.6)

where λ · s denotes the scalar/dot product between the two vectors. This simple

transformation defines a family of pullback-metrics. When the points on the

simplex are associated with class labels, we may wish to find the best distance

function which improves classification performance.

Consider the following example wherem points and associated labels (red/green)

are generated at random in the simplex (Fig. A.3i). Let the classification algo-

rithm be nearest neighbour, endowed with the Euclidean distance metric. We

now seek a distance function between the points in Fig. A.3i which encourages

neighbouring points of the same class to have a small distance, whilst neighbour-

ing points of distinct classes to have a large distance.

In this toy example we picked random samples from the parameter space of

the automorphisms, and evaluated the classification accuracy by constructing

a confusion matrix and dividing its trace by the total sum of its elements (cf.

Section 3.1.6). In this case we consider each point in turn as a ‘test’ point

and assign to it the label of the closest point in the remaining set using the

Euclidean distance after the transformation by Equation A.6. The Figures A.3a-

A.3e illustrate this process. The huge gains in classification accuracy possible

motivates the use of this technique.

Consider another nonlinear automorphism which stretches the simplical co-

ordinates by:

Fλ(s) =
1

Z
[λ1s

λ1
1 , λ2s

λ2
2 , ..., λNs

λN
N]′, (A.7)

134

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.7
0.8

0.9

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.1

0.2

0.3

0.4

0.5

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure A.3: (a-e) Examples in which classification accuracy may be improved by
stretching the simplical coordinates using normalised weights. The classification per-
formance gains for (a,b,c) are +35%, (d) +40% (45% to 85%) and (e) +50% (15% to
65%). Column (i) shows the plotted points with corresponding labels in blue/red. (ii)
shows the points after the transformation. (iii) plots the points before and after the
transformation, with lines connecting the corresponding points. (iv) shows how two
lines on the simplex would be mapped under the same transformation (best viewed in
colour).

where Z =
∑N

1 λis
λi
i . This transformation defines another family of parametrised

pullback-metrics, which when optimised upon to improve nearest neighbour clas-

sification, also gives high gains in accuracy, as shown in Figs A.4a-A.4c. Note

that in this case, lines on the simplex are mapped into curves, unlike those of

Fig. A.3.

Chapter A. Supporting ideas 135

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure A.4: (a-c) Examples in which classification accuracy may be improved by
stretching the simplical coordinates using Equation A.7. (a,c) gained +40% in clas-
sification accuracy, whilst (b) gained +35%. Note that lines on the simplex may be
mapped to curves under this class of transformations (iv). Moreover, in contrast to
Fig. A.3, the transformed points giving good classification performance were not found
close to the boundaries of the simplex.

136

−1 0 1
−2

−1

0

1

(a) Training data

−2 −1 0 1 2

−2

−1

0

1

2

(b) Test data

Figure A.5: (a) Training data from 3 ‘action’ classes foo1 (cyan), foo2 (green), and
foo3 (blue) crosses) plotted in R2. There were a total of 25 training examples, each
having 50, 2-dimensional features. Drawn as red crosses, a three visual word vocabulary
was learnt via the k-means algorithm. The data was initially drawn from a Gaussian
distribution and rotated/stretched to form a pinwheel. (b) Test data (cyan, green, and
blue circles) drawn from the same distribution as the training data with added noise.
Notice the significant overlap of the feature points in distinct classes.

A.4 Bag of visual words pipeline

To illustrate the highly successful bag of visual words pipeline in action recog-

nition, and get insight into its strength, consider the following toy example.

Features are extracted from training examples (videos) and a vocabulary of vi-

sual words is generated by clustering the features with the k-means algorithm.

These first two steps are illustrated in Fig. A.5(a).

Next, the training features from each example are quantised to the nearest

cluster centre in the vocabulary, and a histogram is built based on the frequency

of occurrence of these visual words. The histograms are normalised to become

invariant to the number of features per example. In Fig. A.6(a) the histograms

were L2 normalised and can be seen as points on the unit ball in R3. An

action model is subsequently learnt using an SVM per action class, the linear

SVM for the blue action is shown in Fig. A.6(b). At test-time, previously unseen

examples, as plotted in Fig. A.5(b), are aggregated into a histogram and classified

based on the learned model; the test histograms are shown by the hollow circles

in Fig. A.6(b).

Even with a significant amount of noise in the testing data, as compared to

training, the combination of the nonlinear transformation provided by the his-

togram, and the linear separator maximising the margin between classes, was

Chapter A. Supporting ideas 137

−0.2
0

0.2
0.4

0.6
0.8

1
1.2

0

0.5

1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) histograms plotted in R3

−0.200.20.40.60.811.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

x

y

(b) separating hyperplane

Figure A.6: Plotting the normalised histograms in R3. (a) After quantising each
feature to the closest vocabulary word, and aggregating the features from each example
to form a histogram, each example may be plotted as a point in R3 since each histogram
has three bins. Training points are denoted by ‘+’, and test points by ‘o’. Notice all
points lie on the L2 unit ball. (b) The learned SVM hyperplane for the blue class is
displayed together with the train and test data points.

enough to achieve a high classification rate, as shown in Fig. A.7b. Other clas-

sification methods are often used, including nonlinear SVMs (Fig. A.7c), and

non-parametric classifiers such as Nearest Neighbour (Fig. A.7a). An attached

MATLAB script that performs this experiment is available online1.

1https://sites.google.com/site/mikesapi/downloads/bow_svm_tutorial

https://sites.google.com/site/mikesapi/downloads/bow_svm_tutorial

138

0 0.5 1
0

0.5

1

pr
ec

is
io

n

foo1 AP = 0.834

0 0.5 1

foo2 AP = 0.883

0 0.5 1

foo3 AP = 0.847

0 0.5 1
0

0.5

1

pr
ec

is
io

n

foo1 AP = 0.848

0 0.5 1

foo2 AP = 0.883

0 0.5 1

foo3 AP = 0.825

0 0.5 1
0

0.5

1

recall

pr
ec

is
io

n

foo1 AP = 0.845

0 0.5 1
recall

foo2 AP = 0.873

0 0.5 1
recall

foo3 AP = 0.827

Figure A.7: Precision recall curves per action class (foo1, foo2, foo3) for three com-
peting classifiers. (a) Nearest Neighbour, (b) Linear SVM, and (c) χ2 kernel SVM.

Chapter A. Supporting ideas 139

A.5 Visualising visual words for inspiration

Global bag of visual word models are used to achieve state-of-the art classifica-

tion performance on challenging video data. Each element in a BoF histogram

represents the frequency of occurrence of a particular visual word2. Therefore

BoF is an unstructured representation; a random permutation on the position

of visual words will generate the same histogram.

The pattern of visual words in a video is not arbitrary, however finding a

suitable representation to capture the structure of visual words is hard. We hy-

pothesise that the relative positions of groups of visual words may hold important

information for recognition. To see why, lets have a look at the data! A video

showing four action classes side-by-side together with visual word histograms

(see Fig. A.8) is available to watch on YouTube3. In the following Figs. A.9 -

A.12 from the KTH dataset, the trajectory feature components from [25] have

been clustered into a 16-visual word vocabulary. Arrows illustrate the direction

of the person’s motion in the video. The code used to generate these plots is

made publicly available4.

Figure A.8: Visual words from four action classes in the KTH dataset side-by-side.
Each circle corresponds to mean position of a space-time feature. Each colour cor-
responds to a different ‘visual word’. The size of the circles corresponds to the scale
at which features was extracted. The histogram in top left corner of each video frame
shows the frequency of each visual word on that particular frame (un-normalised).

2A visual word represents a group of features which are similar (by some distance measure,
usually euclidean) in the feature space.

3https://www.youtube.com/watch?v=N9MeDMdi4G8
4https://sites.google.com/site/mikesapi/downloads

https://www.youtube.com/watch?v=N9MeDMdi4G8
https://sites.google.com/site/mikesapi/downloads

140

Figure A.9: Visual words from a running class action video plotted in space and time.
The frequency of visual words and the spatial arrangement is particular to this action
category. The black arrows drawn on top of the video indicate the direction of the
person’s motion in the video.

Figure A.10: Visual words from a handwaving class action video. The handwaving
motion generates a particular repetitive pattern of visual words; in this case, the upward
and downward motions of the hands are described by different coloured visual words.
The black ovals drawn over the image are there to highlight a group of brown coloured
visual words which appear periodically.

Chapter A. Supporting ideas 141

Figure A.11: Visual words from a walking class action plotted in space and time. In
this case, the visual words are the same as the ones used for running! However the
structure is different, for example the angle the direction of motion makes with the z
axis). Note that features are also extracted over irrelevant background motion caused
by the points where the grass and sky meet.

Figure A.12: Visual words from a boxing class action plotted in space and time. In
this case one cannot easily see the motion pattern of the boxing action. Most of the
visual words represent the apparent motion of the scene when the camera zooms. This
is evidence that there still is progress to be made in extracting features for action
recognition!

142

−5 0 5 10 15
−5

0

5

10

15

(a) part-1

10 20 30 40 50

5

10

15

20

25

30

35

40

(b) part-2

Figure A.13: A 3 part pictorial structure model composed of a root node (red), and
two parts (green and blue). The green and blue ‘+’ signs denote the anchor points,
the offset position of the part with respect to the root node. The optimal configuration
of the pictorial structure model overlaid on the sum of the individual cost functions
in Fig. A.14. Notice that the part placements do not coincide with the peaks of the
part matching responses, they are the best configuration based on the matching and
geometry of the original model.

A.6 Pictorial structure matching

A pictorial structure is composed of a set of geometrically related parts (see

Fig. A.13(a)) which may deform with respect to one another. Here we illustrate

the matching process, which finds the best configuration of the parts and root,

given a cost function measuring how well the part filter ‘wk’ matches the image

features φ(lk) at location lk, and a cost function measuring how well the location

of the parts agree with the original model d(lk, ll). The overall cost of placing

the root at position l0 is calculated as:

s(l0) = max
l1 ,...lP

(
P∑

k=0

wk · φ(lk)−
P∑

k=1

d(lk, ll)

)
. (A.8)

The best solution s(l0)
∗ is drawn in Fig. A.13(b), over the original filter re-

sponses
∑P

k=0 wk · φ(lk). The individual filter responses are drawn in Fig. A.14.

The ’distance-transformed’ responses with quadratic cost functions are shown in

Fig. A.15(a)&(b), whilst the final combined score for the root location is shown

in Fig. A.15(c). The final location of the root, including the part offsets from

the root is drawn in Fig. A.13(b).

Chapter A. Supporting ideas 143

10 20 30 40 50 60

5

10

15

20

25

30

35

40

(a) part-1

20

25

30

35

40
10 20 30 40 50 60

5

10

15

(b) part-2

10 20 30 40 50 60

5

10

15

20

25

30

35

40

(c) root

Figure A.14: Cost function measuring how well each part matches the image for (a)
part-1, (b) part-2, and (c) the root. To generate these plots we first picked a random
position for the root, and the generated random offsets for the parts. Here we used a
2-dimensional Gaussian distribution centred at a random position around the root to
simulate the cost function.

(a) part-1 (b) part-2 (c) root

Figure A.15: Transformed and offset responses for (a) part-1, and (b) part-2. (c)
The sum of the parts added to the root response from Fig. A.14(c). The maximum of
this function denotes the position of the root. The part positions may be worked out
by looking up the optimal part displacements from (a) and (b).

144

100 200 300

50

100

150

200

250

300

(a)

100 200 300

50

100

150

200

250

300

(b)

0 100 200 300
0

0.5

1

1.5
felzen (grid)
naiive 1 (grid)
naiive 2 (no grid)

(c)

Figure A.16: (a) A binary image showing randomly permuted letters from ‘Hello
world’, whose pixel grid positions form the set B. (b) The distance-transformed image
of (a) after solving Equation A.9 for each location z in the image grid G. (c) A time
comparison of three algorithms for computing the distance transform in (b).

A.7 Distance transforms

Given a point-set B ⊆ G, the distance transform specifies for each location z,

the distance to the closest point w ∈ G. For example, considering Fig. A.16(a),

let the point set G be the the set of points defining the image grid, and B those

points in black. Now let us define a function to calculate the distance of each

point on the grid image z, to the closest point w ∈ G as follows:

DB(z) = min
w∈G

(||z − w||+ IB(w)), (A.9)

where

I(w) =

{
0 : w ∈ B
∞ : w /∈ B.

The distance transformation defined by A.9 finds a location w which is close

to z and for which IB(w) is small. The calculated distances are illustrated as

an image in Fig. A.16(b). Now let I ′B(w) be another function, this time defined

by a filter evaluated at each pixel as commonly done in object detection. This

transformation, when applied to detection, spreads high scores to nearby loca-

tions, taking into account the distance from the peak [75]. The proliferation of

pictorial structures [128] in computer vision got a major boost by Felzenszwalb

and Huttenlocher linear-time algorithm for computing euclidean-distance trans-

forms [129]. The difference their O(n) algorithm makes in practice compared to

a naive implementation is shown in Fig. A.16(c). A MATLAB implementation

of the distance transform algorithm time comparison is available online5.

5https://sites.google.com/site/mikesapi/downloads/dt-time-complexity

https://sites.google.com/site/mikesapi/downloads/dt-time-complexity

Chapter A. Supporting ideas 145

A.8 Representation, representation, represen-

tation

Jitendra Malik has outlined three of the most important research areas in com-

puter vision, the 3 R’s: Recognition, Reconstruction, and Reorganisation. There

is also another ‘R’ thats arguably more fundamental: Representation! For this

reason it seems apt to remind ourselves what this means, and at the same time

wonder why there has not been more research to rigorously quantify the expres-

sive power of a visual representation for use by machines.

In David Marr’s seminar book ‘Vision’, he eloquently describes what a rep-

resentation is:

“A representation is a formal system for making explicit certain enti-

ties or types of information, together with a specification of how the

system does this”.

For example:

“It is quite proper to think of an image as a representation; the items

that are made explicit are the image intensity values at each point in

the array, which we can conveniently denote by I(x,y) at coordinate

(x,y)”,

and another:

“..a representation for shape would be a formal scheme for describing

some aspects of shape, together with rules to specify how the scheme

is applied to any particular shape”.

Note that a description is the result of using a representation, and describes a

given entity, for example, an instance of an image. This is not to be taken as

trivial, and pausing in wonder D. Marr continues:

“The notion that one can capture some aspect of reality by making

a description of it using a symbol and that to do so can be useful

seems to me a fascinating idea”.

Finally, a word of caution:

“The choice of which to use is important and cannot be taken lightly.

It determines what information is made explicit and hence what is

146

(a) (b) (c)

Figure A.17: (a) A description of an image representation, (b) its corresponding
description as a histogram representation, and (c) an image description that has the
exact same histogram description as the image in (a).

pushed further into the background, and it has a far-reaching effect

on the ease and difficulty with which operations may subsequently

be carried out on that information”.

It may now be appreciated that the need for a ‘good’ representation for

visual data will be crucial to the success of a computer vision system [172]. For

instance, in many applications it is desirable to find a representational space

in which descriptions of visual data can be compared by a distance metric. In

the Computer Vision community, a common way to assess the performance of a

representation is to first use it in an machine learning pipeline (e.g. classification)

and compare it on the accuracy obtained.

How then may we construct a test criteria for a successful representation,

which does not rely on a complete classification pipeline in order to asses its

quality? Would this be even useful?

A.8.1 How to assess the quality of a representation?

Since this work makes extensive use of histograms, it seems fit to perform an

initial investigation with histograms. A histogram is a simple non-parametric

density estimate, and makes explicit the relative frequency of occurring entities.

The histogram dimensionality is invariant to number of examples/features, and

is the representation of choice for many state-of-the-art classification methods.

In this section, we propose one way to assess the quality of a representation

whose descriptions are compared using distance metrics: look at the nearest

neighbours of the description! Let the image representation be denoted by RI ,

and its description by dI ∈ RI . Similarly, let a histogram description by denoted

by dH ∈ RH . We propose that in this case, the nearest neighbour to dH , say d′H

Chapter A. Supporting ideas 147

under distance metric d , should correspond to a description d′I which humans

see as being similar to dI , in this case the original image.

For example, consider the image of a cake in Fig. A.17(a), and its grey level

histogram in Fig. A.17(b): What does the the nearest neighbour of the histogram

look like? A histogram of an M×N image will have (M×N)! exact neighbours,

since a random permutation of the pixels does not change the histogram.

It follows that the only reason why histograms work in practice is because

datasets only contain natural images! Using a histogram representation, a ma-

chine cannot tell the difference between (a) and (c); they are exactly the same.

148

References

[1] I. Laptev and P. Pérez, “Retrieving actions in movies,” in Proc. Int. Conf.

Computer Vision, 2007.

[2] F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier, “Large-scale image re-

trieval with compressed Fisher vectors,” in IEEE Int. Conf. on Computer

Vision and Pattern Recognition, 2010.

[3] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB: A

large video database for human motion recognition,” in Proc. Int. Conf.

Computer Vision, 2011.

[4] M. Sapienza and K. P. Camilleri, “Fasthpe: A recipe for quick head pose

estimation,” tech. rep., Department of Systems & Control, University of

Malta, 2011.

[5] M. Sapienza and K. P. Camilleri, “A generative traversability model for

monocular robot self-guidance,” in 9th Int. Conf. on Informatics in Con-

trol, Automation and Robotics, 2012.

[6] M. Sapienza, M. Hansard, and R. Horaud, “Real-time visuomotor update

of an active binocular head,” Autonomous Robots, vol. 34, no. 1-2, pp. 35–

45, 2013.

[7] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and

K. Fujimura, “The intelligent ASIMO: system overview and integration,”

in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2002.

[8] R. Brooks, L. Aryananda, A. Edsinger, P. Fitzpatrick, C. Kemp, U.-M.

OReilly, E. Torres-Jara, P. Varshavskaya, and J. Weber, “Sensing and ma-

nipulating built-for-human environments,” International Journal of Hu-

manoid Robotics, vol. 1, no. 1, pp. 1 – 28, 2004.

149

150

[9] W. Chen, C. Xiong, and J. Corso, “Actionness ranking with lattice con-

ditional ordinal random fields,” in IEEE Int. Conf. on Computer Vision

and Pattern Recognition, 2014.

[10] D. Marr, Vision. W. H. Freeman and Company, 1982.

[11] R. Poppe, “A survey on vision-based human action recognition,” Image

and Vision Computing, vol. 28, pp. 976–990, 2010.

[12] D. Weinland, R. Ronfard, and E. Boyer, “A survey of vision-based methods

for action representation, segmentation and recognition,” Computer Vision

and Image Understanding, vol. 115, no. 2, pp. 224 – 241, 2011.

[13] C. Schüldt, I. Laptev, and B. Caputo, “Recognizing human actions: A

local SVM approach,” in IEEE Int. Conf. on Pattern Recognition, 2004.

[14] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, “Actions as

space-time shapes,” in Proc. Int. Conf. Computer Vision, pp. 1395–1402,

2005.

[15] I. Laptev, M. Marsza lek, C. Schmid, and B. Rozenfeld, “Learning realistic

human actions from movies,” in IEEE Int. Conf. on Computer Vision and

Pattern Recognition, 2008.

[16] J. Liu, J. Luo, and M. Shah, “Recognising realistic actions from videos “in

the wild”,” in Proc. British Machine Vision Conference, 2009.

[17] M. Marsza lek, I. Laptev, and C. Schmid, “Actions in context,” in IEEE

Int. Conf. on Computer Vision and Pattern Recognition, 2009.

[18] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A

review and new perspectives,” Pattern Analysis and Machine Intelligence,

IEEE Transactions on, vol. 35, no. 8, pp. 1798–1828, 2013.

[19] D. Oneata, J. Verbeek, and C. Schmid, “Action and event recognition with

Fisher vectors on a compact feature set,” in Proc. Int. Conf. Computer

Vision, 2013.

[20] M. Sapienza, F. Cuzzolin, and P. H. Torr, “Learning discriminative space-

time action parts from weakly labelled videos,” International Journal of

Computer Vision, vol. 110, no. 1, pp. 30–47, 2014.

REFERENCES 151

[21] J. Farquhar, S. Szedmak, H. Meng, and J. Shawe-Taylor, “Improving “bag-

of-keypoints” image categorisation: Generative models and pdf-kernels,”

in Proc. European Conf. Computer Vision, 2005.

[22] Z. Jiang, Z. Lin, and L. S. Davis, “Recognizing human actions by learn-

ing and matching shape-motion prototype trees,” IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 34, no. 3, pp. 533–547, 2012.

[23] E. Vig, M. Dorr, and D. Cox, “Space-variant descriptor sampling for ac-

tion recognition based on saliency and eye movements,” in Proc. European

Conf. Computer Vision, 2012.

[24] O. Kliper-Gross, Y. Gurovich, T. Hassner, and L. Wolf, “Motion inter-

change patterns for action recognition in unconstrained videos,” in Proc.

European Conf. Computer Vision, 2012.

[25] H. Wang, A. Kläser, C. Schmid, and C. Liu, “Action Recognition by Dense

Trajectories,” in IEEE Int. Conf. on Computer Vision and Pattern Recog-

nition, 2011.

[26] H. Wang, M. Ullah, A. Kläser, I. Laptev, and C. Schmid, “Evaluation

of local spatio-temporal features for action recognition,” in Proc. British

Machine Vision Conference, 2009.

[27] S. N. Parizi, J. Oberlin, and P. Felzenszwalb, “Reconfigurable models for

scene recognition,” in IEEE Int. Conf. on Computer Vision and Pattern

Recognition, 2012.

[28] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual

categirization with bags of keypoints,” in Proc. European Conf. Computer

Vision, 2004.

[29] F. Perronnin, C. Dance, G. Csurka, and M. Bressan, “Adapted vocabular-

ies for generic visual categorisation,” in Proc. European Conf. Computer

Vision, 2006.

[30] E. Nowak, F. Jurie, and B. Triggs, “Sampling strategies for bag-of-features

image classification,” in Proc. European Conf. Computer Vision, 2006.

[31] Y.-G. Jiang, C.-W. Ngo, and J. Yang, “Towards optimal bag-of-features for

object categorization and semantic video retrieval,” in ACM International

Conference on Image and Video Retrieval, 2007.

152

[32] D. Nistér and H. Stewénius, “Scalable recognition with a vocabulary tree,”

in IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2006.

[33] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to

object matching in videos,” in Proc. Int. Conf. Computer Vision, 2003.

[34] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101 human

action classes from videos in the wild,” tech. rep., CRCV-TR-12-01, 2012.

[35] R. Chaudhry, A. Ravichandran, G. Jager, and R. Vidal, “Histograms of

oriented optical flow and binet-cauchy kernels on nonlinear dynamical sys-

tems for the recognition of human actions,” in Proc. Int. Conf. Computer

Vision and Pattern Recognition, 2009.

[36] S. Ali, A. Basharat, and M. Shah, “Chaotic invariants for human action

recognition,” in Proc. Int. Conf. Computer Vision, 2007.

[37] Q. Shi, L. Cheng, A. Smola, and L. Wang, “Discriminative human action

segmentation and recognition using semi-markov model,” in IEEE Int.

Conf. on Computer Vision and Pattern Recognition, 2009.

[38] A. Gupta, P. Srinivasan, J. Shi, and L. S. Davis, “Understanding videos,

constructing plots learning a visually grounded storyline model from an-

notated videos,” in IEEE Int. Conf. on Computer Vision and Pattern

Recognition, 2009.

[39] R. Chaudhry, A. Ravichandran, G. Hager, and R. Vidal, “Histograms

of oriented optical flow and binet-cauchy kernels on nonlinear dynamical

systems for the recognition of human actions,” in IEEE Int. Conf. on

Computer Vision and Pattern Recognition, 2009.

[40] R. Elliot, L. Aggoun, and J. Moore, Hidden Markov models: estimation

and control. Springer, 1995.

[41] M. Do, “Fast approximation of Kullback-Leibler distance for dependence

trees and hidden Markov models,” IEEE Signal Processing Letters, vol. 10,

no. 4, pp. 115 – 118, 2003.

[42] N. Shental, T. Hertz, D. Weinshall, and M. Pavel, “Adjustment learn-

ing and relevant component analysis,” in Proc. European Conf. Computer

Vision, 2002.

REFERENCES 153

[43] S. Paris, “Edge-preserving smoothing and mean-shift segmentation of

video streams,” in Proc. European Conf. Computer Vision, 2008.

[44] C. Wolf, J. Mille, E. Lombardi, O. Celiktutan, M. Jiu, M. Baccouche,

E. Dellandra, C.-E. Bichot, C. Garcia, and B. Sankur, “The LIRIS Human

activities dataset and the ICPR 2012 human activities recognition and

localization competition,” Tech. Rep. RR-LIRIS-2012-004, LIRIS UMR

5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Lumière Lyon 2/École Centrale de Lyon, Mar. 2012.

[45] T.-H. Yu, T.-K. Kim, and R. Cipolla, “Real-time action recognition by

spatiotemporal semantic and structural forests,” in Proc. British Machine

Vision Conference, 2010.

[46] L. Bourdev and J. Malik, “Poselets: Body part detectors trained using 3d

human pose annotations,” in Proc. Int. Conf. Computer Vision, 2009.

[47] P. Burman, “A comparative study of ordinary cross-validation, v-fold

cross-validation and the repeated learning-testing methods,” Biometrika,

vol. 76(3), pp. 503–514, 1989.

[48] M. Sapienza, F. Cuzzolin, and P. H. Torr, “Learning discriminative space-

time actions from weakly labelled videos,” in Proc. British Machine Vision

Conference, 2012.

[49] M. Sapienza, F. Cuzzolin, and P. H. Torr, “Feature sampling and par-

titioning for visual vocabulary generation on large action classification

datasets,” tech. rep., Dept. Computing and Communications Technology,

Oxford Brookes University, and Dept. Engineering Science, University of

Oxford, 2014.

[50] W. Gong, M. Sapienza, and F. Cuzzolin, “Fisher tensor decomposition for

unconstrained gait recognition,” in ECML/PKDD Workshop, 2013.

[51] F. Cuzzolin and M. Sapienza, “Learning pullback HMM distances,” IEEE

Trans. Pattern Analysis and Machine Intelligence, vol. 36, no. 7, pp. 1483–

1489, 2014.

[52] F. Cuzzolin, M. Sapienza, P. Esser, H. Dawes, J. Collett, and M. Franssen,

“Identification of parkinsonian gait by means of inertial measurements

units via metric learning algorithms,” Gait and Posture (in submission),

2014.

154

[53] I. Laptev and T. Lindeberg, “Space-time interest points,” in Proc. Int.

Conf. Computer Vision, 2003.

[54] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior recogni-

tion via sparse spatio-temporal features,” in Proc. IEEE Int. Workshop on

Visual Surveillance and Performance Evaluation of Tracking and Surveil-

lance, 2005.

[55] G. Willems, T. Tuytelaars, and L. V. Gool, “An efficient dense and scale-

invariant spatio-temporal interest point detector,” in Proc. European Conf.

Computer Vision, 2008.

[56] A. Gilbert, J. Illingworth, and R. Bowden, “Fast realistic multi-action

recognition using mined dense spatio-temporal features,” in Proc. Int.

Conf. Computer Vision, 2009.

[57] Y. Ke, R. Sukthandar, and M. Hebert, “Volumetric features for video event

detection,” Int. Journal of Computer Vision, vol. 88, no. 3, pp. 339–362,

2010.

[58] P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional SIFT descriptor and

its application to action recognition,” in Proc. ACM Multimedia, pp. 357–

360, 2007.

[59] L. Yeffet and L. Wolf, “Local trinary patterns for human action recogni-

tion,” in Proc. Int. Conf. Computer Vision, 2009.

[60] A. Kläser, M. Marsza lek, and C. Schmid, “A spatio-temporal descriptor

based on 3D-gradients,” in Proc. British Machine Vision Conference, 2008.

[61] H. Jhuang, T. Serre, L. Wolf, and T. Poggio, “A biologically inspired

system for action recognition,” in Proc. Int. Conf. Computer Vision, 2007.

[62] Q. Le, W. Zou, S. Yeung, and A. Ng, “Learning hierarchical invariant

spatio-temporal features for action recognition with independent subspace

analysis,” in IEEE Int. Conf. on Computer Vision and Pattern Recogni-

tion, 2011.

[63] N. Dalal, B. Triggs, and C. Schmid, “Human detection using oriented

histograms of flow and appearance,” in Proc. European Conf. Computer

Vision, 2006.

REFERENCES 155

[64] G. Farnebck, “Two-frame motion estimation based on polynomial expan-

sion,” Image Analysis, vol. 2749, pp. 363–370, 2003.

[65] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-level

features for recognition,” in IEEE Int. Conf. on Computer Vision and

Pattern Recognition, 2010.

[66] O. Boiman, E. Shechtman, and M. Irani, “In defense of nearest-neighbor

based image classification,” in IEEE Int. Conf. on Computer Vision and

Pattern Recognition, 2008.

[67] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel

for large-scale image classification,” in Proc. European Conf. Computer

Vision, 2010.

[68] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid,

“Aggregating local image descriptors into compact codes,” IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 34, no. 9, pp. 1704–1716,

2011.

[69] A. Kläser, M. Marsza lek, C. Schmid, and A. Zisserman, “Human focused

action localization in video,” in International Workshop on Sign, Gesture,

Activity, 2010.

[70] S. Wong, T. Kim, and R. Cipolla, “Learning motion categories using both

semantic and structural information,” in IEEE Int. Conf. on Computer

Vision and Pattern Recognition, 2007.

[71] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support vector machines

for multiple-instance learning,” in Advances in Neural Information Pro-

cessing Systems, 2003.

[72] J. Amores, “Multiple instance classification: Review, taxonomy and com-

parative study,” Artificial Intelligence, vol. 201, pp. 81 – 105, 2013.

[73] A. Gaidon, Z. Harchaoui, and C. Schmid, “Activity representation with

motion hierarchies,” Int. Journal of Computer Vision, vol. 107, no. 3,

pp. 219–238, 2014.

[74] P. Viola, J. Platt, and C. Zhang, “Multiple instance boosting for object de-

tection,” in Advances in Neural Information Processing Systems, pp. 1417–

1426, 2005.

156

[75] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Object

detection with discriminatively trained part based models,” IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627–1645,

2010.

[76] Y. Hu, L. Cao, F. Yan, Y. Gong, and T. Huang, “Action detection in

complex scenes with spatial and temporal ambiguities,” in Proc. Int. Conf.

Computer Vision, 2009.

[77] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial

pyramid matching for recognizing natural scene categories,” in IEEE Int.

Conf. on Computer Vision and Pattern Recognition, 2006.

[78] O. Duchenne, I. Laptev, J. Sivic, F. Bach, and J. Ponce, “Automatic an-

notation of human actions in video,” in Proc. Int. Conf. Computer Vision,

2009.

[79] A. Gaidon, Z. Harchaoui, and C. Schmid, “Actom sequence models for

efficient action detection,” in IEEE Int. Conf. on Computer Vision and

Pattern Recognition, 2011.

[80] A. Gaidon, Z. Harchaoui, and C. Schmid, “Temporal localization of actions

with actoms,” IEEE Trans. Pattern Analysis and Machine Intelligence,

vol. 35, no. 11, pp. 2782–2795, 2013.

[81] M. Fischler and R. Elschlager, “The representation and matching of picto-

rial structures,” IEEE Trans. Computers, vol. 22, no. 1, pp. 67–92, 1973.

[82] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman, “The devil is

in the details: an evaluation of recent feature encoding methods,” in Proc.

British Machine Vision Conference, 2011.

[83] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality

reduction for fast similarity search in large time series databases,” Knowl-

edge and Information Systems, vol. 3, no. 3, pp. 263–286, 2001.

[84] M. Benbouzid, “Bibliography on induction motors faults detection and

diagnosis,” IEEE Trans. on Energy Conversion, vol. 14, no. 4, pp. 1065–

1074, 1999.

[85] P. Sykacek and S. Roberts, “Bayesian time series classification,” in Ad-

vances in Neural Information Processing Systems, 2002.

REFERENCES 157

[86] J. J. Rodrguez, C. J. Alonso, and J. A. Maestro, “Support vector machines

of interval-based features for time series classification,” Knowledge-Based

Systems, vol. 18, no. 45, pp. 171 – 178, 2005.

[87] A. Nanopoulos, R. Alcock, and Y. Manolopoulos, “Information process-

ing and technology,” ch. Feature-based Classification of Time-series Data,

pp. 49–61, Commack, NY, USA: Nova Science Publishers, Inc., 2001.

[88] V. Petridis and A. Kehagias, “Modular neural networks for map classifi-

cation of time series and the partition algorithm,” Neural Networks, IEEE

Transactions on, vol. 7, no. 1, pp. 73–86, 1996.

[89] D. Piccolo, “A distance measure for classifying ARIMA models,” Journal

of Time Series Analysis, vol. 11, no. 2, pp. 153–164, 1990.

[90] Q. Ding, Z. Zhuang, L. Zhu, and Q. Zhang, “Application of the chaos,

fractal and wavelet theories to the feature extraction of passive acoustic

signal,” Acta Acustica, vol. 24, pp. 197–203, 1999.

[91] R. Povinelli, M. Johnson, A. Lindgren, and J. Ye, “Time series classifica-

tion using gaussian mixture models of reconstructed phase spaces,” IEEE

Trans. on Knowledge and Data Engineering, vol. 16, pp. 779–783, June

2004.

[92] G. Lebanon, “Metric learning for text documents,” IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 28, no. 4, pp. 497–508, 2006.

[93] A. Galata, N. Johnson, and D. Hogg, “Learning variable-length Markov

models of behavior,” Computer Vision and Image Understanding, vol. 81,

no. 3, pp. 398–413, 2001.

[94] T. Jaakkola and D. Haussler, “Exploiting generative models in discrimi-

native classifiers,” in Advances in Neural Information Processing Systems,

1998.

[95] J. D. Lafferty and G. Lebanon, “Diffusion kernels on statistical manifolds.,”

Journal of Machine Learning Research, vol. 6, pp. 129–163, 2005.

[96] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. Cambridge, MA,

USA: MIT Press, 2001.

158

[97] B. Scholkopf, “Statistical learning and kernel methods,” Tech. Rep. MSR-

TR-2000-23, Microsoft Research, 2000.

[98] G. Lebanon, “Learning riemannian metrics,” in Proc. of the 19th Confer-

ence on Uncertainty in Artificial Intelligence, 2003.

[99] E. Xing, A. Ng, M. Jordan, and S. Russel, “Distance metric learning with

applications to clustering with side information,” in Advances in Neural

Information Processing Systems, 2003.

[100] B. Yao and L. Fei-Fei, “Action recognition with exemplar based 2.5d graph

matching,” in Proc. European Conf. Computer Vision, 2012.

[101] C. Desai and D. Ramanan, “Detecting actions, poses, and objects with

relational phraselets,” in Proc. European Conf. Computer Vision, pp. –,

2012.

[102] G. Willems, J. H. Becker, T. Tuytelaars, and L. V. Gool, “Exemplar-based

action recognition in video,” in Proc. British Machine Vision Conference,

2009.

[103] N. Dalal and B. Triggs, “Histograms of oriented gradients for human de-

tection,” in IEEE Int. Conf. on Computer Vision and Pattern Recognition,

vol. 1, pp. 886–893 vol. 1, June 2005.

[104] K. Mikolajczyk and H. Uemura, “Action recognition with motion-

appearance vocabulary forest,” in IEEE Int. Conf. on Computer Vision

and Pattern Recognition, 2008.

[105] Y. Xie, H. Chang, Z. Li, L. Liang, X. Chen, and D. Zhao, “A unified

framework for locating and recognising human actions,” in IEEE Int. Conf.

on Computer Vision and Pattern Recognition, 2011.

[106] C. Gu, J. Lim, P. Arbelaez, and J. Malik, “Recognition using regions,” in

IEEE Int. Conf. on Computer Vision and Pattern Recognition, June 2009.

[107] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness of im-

age windows,” IEEE Trans. Pattern Analysis and Machine Intelligence,

vol. 34, pp. 2189–2202, Nov 2012.

[108] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr, “Bing: Binarized normed

gradients for objectness estimation at 300fps,” in IEEE Int. Conf. on Com-

puter Vision and Pattern Recognition, 2014.

REFERENCES 159

[109] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, “Selective

search for object recognition,” International Journal of Computer Vision,

2013.

[110] P. Felzenszwalb and D. Huttenlocher, “Efficient graph-based image seg-

mentation,” Int. Journal of Computer Vision, vol. 59, no. 2, pp. 167–181,

2004.

[111] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Informa-

tion Processing Systems, 2012.

[112] R. Girshick, J. Donahue, T. Darrel, and J. Malik, “Rich feature hierarchies

for accurate object detection and semantic segmentation,” in IEEE Int.

Conf. on Computer Vision and Pattern Recognition, 2014.

[113] A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari, “Learning

object class detectors from weakly annotated video,” in IEEE Int. Conf.

on Computer Vision and Pattern Recognition, 2012.

[114] J. Chang, D. Wei, and J. W. Fisher III, “A video representation using tem-

poral superpixels,” in IEEE Int. Conf. on Computer Vision and Pattern

Recognition, 2013.

[115] M. Grundmann, V. Kwatra, M. Han, and I. Essa, “Efficient hierarchical

graph based video segmentation,” 2010.

[116] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for

deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[117] D. C. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural

networks for image classification,” in IEEE Int. Conf. on Computer Vision

and Pattern Recognition, 2012.

[118] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-

man, “The pascal visual object classes (VOC) challenge,” International

Journal of Computer Vision, vol. 88, pp. 303–338, June 2010.

[119] M. Rodriguez, J. Ahmed, and M. Shah, “Action MACH: A spatio-temporal

maximum average correlation height filter for action recognition,” in Proc.

Int. Conf. Computer Vision and Pattern Recognition, 2008.

160

[120] A. Kovashka and K. Grauman, “Learning a hierarchy of discriminative

space-time neighborhood features for human action recognition,” in IEEE

Int. Conf. on Computer Vision and Pattern Recognition, 2010.

[121] K. Schindler and L. V. Gool, “Action snippets: How many frames does

human actioin recognition require?,” in IEEE Int. Conf. on Computer

Vision and Pattern Recognition, 2008.

[122] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information

Retrieval. New York, NY, USA: Cambridge University Press, 2008.

[123] C. Wolf, E. Lombardi, J. Mille, O. Celiktutan, M. Jiu, E. Dogan, G. Eren,

M. Baccouche, E. Dellandra, C.-E. Bichot, C. Garcia, and B. Sankur,

“Evaluation of video activity localizations integrating quality and quan-

tity measurements,” Computer Vision and Image Understanding, vol. 127,

pp. 14–30, 2014.

[124] J. Platt, “Probabilistic outputs for support vector machines and compar-

isons to regularized likelihood methods,” Advances in large margin classi-

fiers, vol. 10, no. 3, pp. 61–74, 1999.

[125] H.-T. Lin, C.-J. Lin, and R. C. Weng, “A note on platts probabilistic

outputs for support vector machines,” Machine Learning, vol. 68, no. 3,

pp. 267–276, 2007.

[126] A. Vedaldi and A. Zisserman, “Efficient additive kernels via explicit feature

maps,” in IEEE Int. Conf. on Computer Vision and Pattern Recognition,

2010.

[127] X. Peng, C. Zou, Y. Qiao, and Q. Peng, “Action recognition with stacked

fisher vectors,” in Proc. European Conf. Computer Vision, 2014.

[128] P. Felzenszwalb and D. Huttenlocher, “Pictorial structures for object

recognition,” Int. Journal of Computer Vision, vol. 61, no. 1, 2005.

[129] P. Felzenszwalb and D. Huttenlocher, “Distance transforms of sampled

functions,” tech. rep., Cornell Computing and Information Science, 2004.

[130] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with auto-

matic algorithm configuration,” in Int. Conf. on Computer Vision Theory

and Applications, 2009.

REFERENCES 161

[131] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of

computer vision algorithms.” http://www.vlfeat.org/, 2008.

[132] V. Rokhlin, A. Szlam, and M. Tygert, “A randomized algorithm for prin-

cipal component analysis,” SIAM Journal on Matrix Analysis and Appli-

cations, vol. 31, no. 3, pp. 1100–1124, 2009.

[133] R. Elliot, L. Aggoun, and J. Moore, Hidden Markov models: estimation

and control. Springer Verlag, 1995.

[134] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Pri-

mal estimated sub-gradient solver for SVM,” Mathematical Programming,

Series B, vol. 127, no. 1, pp. 3–30, 2011.

[135] F. Perronnin, Z. Akata, Z. Harchaoui, and C. Schmid, “Towards good

practice in large-scale learning for image classification,” in IEEE Int. Conf.

on Computer Vision and Pattern Recognition, 2012.

[136] R. Arandjelović and A. Zisserman, “All about VLAD,” in IEEE Conference

on Computer Vision and Pattern Recognition, 2013.

[137] J. Zhang, M. Marsza lek, S. Lazebnik, and C. Schmid, “Local features and

kernels for classification of texture and object categories: A comprehensive

study,” Int. Journal of Computer Vision, vol. 73, no. 2, pp. 213–238, 2007.

[138] R. Fan, K. Chang, C. Hsieh, X. Wang, and C.-J. Lin, “Liblinear: A

library for large linear classification,” Journal of Machine Learning Re-

search, vol. 9, pp. 1871–1874, 2008.

[139] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector ma-

chines,” ACM Transactions on Intelligent Systems and Technology, vol. 2,

pp. 27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.

tw/~cjlin/libsvm.

[140] X. Peng, L. Wang, X. Wang, and Y. Qiao, “Bag of visual words and fusion

methods for action recognition: Comprehensive study and good practice,”

CoRR, 2014.

[141] H. Wang, A. Kläser, C. Schmid, and C. Liu, “Dense trajectories and motion

boundary descriptors for action recognition,” Int. Journal of Computer

Vision, vol. 103, no. 1, pp. 60 – 79, 2013.

http://www.vlfeat.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

162

[142] H. Wang and C. Schmid, “Action recogntiion with improved trajectories,”

in Proc. Int. Conf. Computer Vision, 2013.

[143] P. Petersen, Riemannian Geometry. Berlin: Springer-Verlag.

[144] B. Hanzon and R. Peeters, “Aspects of Fisher geometry for stochastic

linear systems,” in Open Problems in Mathematical Systems and Control

Theory, 2002.

[145] J. M. Lee, Introduction to Topological Manifolds. Springer, 2011.

[146] H. Li and X. Li, “LLE based gait analysis and recognition,” in Advances in

Biometric Person Authentication, vol. 3338 of Lecture Notes in Computer

Science, pp. 671–679, Springer Berlin Heidelberg, 2005.

[147] S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally lin-

ear embedding,” Science, vol. 290(5500), pp. 2323–2326, 2000.

[148] J. A. Lee and M. Verleysen, Nonlinear Dimensionality Reduction. Springer,

2007.

[149] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analy-

sis as a kernel eigenvalue problem,” Neural Computation, vol. 10, no. 5,

pp. 1299–1319, 1998.

[150] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of

data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[151] S. Fine, Y. Singer, and N. Tishby, “The hierarchical hidden Markov model:

Analysis and applications,” Machine Learning, vol. 32, no. 1, pp. 41–62,

1998.

[152] F. Cuzzolin, “Manifold learning for multi-dimensional auto-regressive dy-

namical models,” in Machine Learning for Vision-based Motion Analysis,

Springer, 2010.

[153] J. Munkres, “Algorithms for the assignment and transportation problems,”

Journal of the Society of Industrial and Applied Mathematics, vol. 5, no. 1,

pp. 32–38, 1957.

[154] H. W. Kuhn and B. Yaw, “The hungarian method for the assignment

problem,” Naval Res. Logist. Quart, pp. 83–97, 1955.

REFERENCES 163

[155] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:

A Large-Scale Hierarchical Image Database,” in IEEE Int. Conf. on Com-

puter Vision and Pattern Recognition, 2009.

[156] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks: Tricks

of the Trade - Second Edition, pp. 421–436, 2012.

[157] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Ssstrunk,

“SLIC superpixels compared to state-of-the-art superpixel methods,”

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 34, no. 11,

pp. 2274 – 2282, 2012.

[158] P. Siva, C. Russel, and T. Xiang, “In defence of negative mining for anno-

tating weakly labelled data,” in Proc. European Conf. Computer Vision,

2012.

[159] K. Tang, R. Sukthankar, J. Yagnik, and L. Fei-Fei, “Discriminative seg-

ment annotation in weakly labeled video,” in IEEE Int. Conf. on Computer

Vision and Pattern Recognition, 2013.

[160] A. Patron-Perez, M. Marsza lek, I. D. Reid, and A. Zisserman, “Structured

learning of human interactions in tv shows,” IEEE Trans. Pattern Analysis

and Machine Intelligence, vol. 34, no. 12, pp. 2441–2453, 2012.

[161] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple object tracking

using k-shortest paths optimization,” IEEE Trans. Pattern Analysis and

Machine Intelligence, vol. 33, pp. 1806–1819, Sept 2011.

[162] D. Oneata, J. Revaud, J. Verbeek, and C. Schmid, “Spatio-temporal object

detection proposals,” in Proc. European Conf. Computer Vision, 2014.

[163] S. Gould and Y. Zhang, “Patchmatchgraph: Building a graph of dense

patch correspondences for label transfer.,” in Proc. European Conf. Com-

puter Vision, 2012.

[164] M. Van den Bergh, G. Roig, X. Boix, S. Manen, and L. Van Gool, “Online

video seeds for temporal window objectness,” in Proc. Int. Conf. Computer

Vision, 2013.

[165] C. Xu, C. Xiong, and J. J. Corso, “Streaming hierarchical video segmen-

tation,” in Proc. European Conf. Computer Vision, 2012.

164

[166] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest

neighbor search,” IEEE Trans. Pattern Analysis and Machine Intelligence,

vol. 33, no. 1, pp. 117–128, 2011.

[167] K. Simonyan, Large-scale learning of discriminative image representations.

PhD thesis, University of Oxford, 2013.

[168] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for

action recognition in videos,” in Advances in Neural Information Process-

ing Systems, 2014.

[169] L. Rabiner, “A tutorial on hidden markov models and selected applications

in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286,

1989.

[170] G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic

indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620, 1975.

[171] D. Lowe, “Object recognition from local scale-invariant features,” in Proc.

Int. Conf. Computer Vision, 1999.

[172] P. Meer, “Are we making real progress in computer vision today?,” Image

Vision Comput., vol. 30, no. 8, pp. 472–473, 2012.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivating applications of human action recognition from videos
	What is an action?
	Why is human action recognition hard?
	Dissertation outline
	Avenues of investigation
	Learning with sets of local histograms
	Adding deformable action structure, general subvolume shapes and saliency maps
	Evaluating global bag-of-feature pipeline variations
	Encoding action dynamics & learning distances between models
	Real-time and online multiple action detection

	Contributions
	Resulting publications and impact

	Related work
	Interest point detection
	Descriptors
	Mid-level representations
	Learning the discriminative parts of an action video
	Discriminative video part extensions
	Incorporating mid-level pictorial structures
	General subvolume shapes and action saliency

	Design choices in the bag-of-visual-words pipeline for video data
	Pullback distances for time-series classification
	Online multiple action detection
	Multiple action detection in space and time
	Online video stream-processing
	Proposed online multiple action detection system

	Datasets and performance indicators
	Action classification
	KTH
	YouTube
	Hollywood2
	HMDB51
	UCF101
	Performance indicators

	Action detection
	Performance indicators

	Learning discriminative actions from weakly labelled videos
	MIL-BoF action models
	A learnt mapping from instance to bag labels
	Experimental Evaluation
	Baseline BoF algorithm
	MIL-BoF experimental setup

	Results and discussion

	Towards adding local structure and general subvolume shapes
	Local Deformable SBoF models (LDSBoF)
	Experimental setup
	Experiments

	Quantitative results and discussion
	Experiment 1 - adding structure
	Experiment 2 - general subvolume shapes

	Computational timings
	Qualitative localisation discussion
	Bounding box detection with LDSBoF
	Class-specific saliency

	Feature sampling and partitioning for visual vocabulary generation on large action classification datasets
	Constant experimental settings
	Variable components of the experiments
	Results and discussion

	Learning pullback distances for dynamical action models
	Pullback metrics in Riemannian geometry
	Pullback distance learning framework
	Pullback distances for HMMs
	The space H of hidden Markov models
	The space of transition matrices
	Learning an approximate observation space
	An automorphism of H
	Sampling the parameter space of the automorphism

	A proof of concept
	Synthetic HMM sequences
	Experimental setup
	Preliminary results & discussion

	Experiments on human action recognition
	Implementation details
	Results and discussion
	Other nonlinear automorphisms
	Beyond HMMs
	Close-form optimisation by volume element matching

	Online learning of multiple concurrent space-time actions
	Fast region proposal generation
	Selective tubes
	Feature extraction
	Action category learning
	Class specific feature cache
	Growing the learner set
	Solving an SVM with batch stochastic gradient descent and hard example mining
	Life-long learning

	Preliminary tests
	Selective tubes
	Learning of multiple categories streamed online

	Conclusions and future directions
	Appendices
	Supporting ideas
	Pullback metric
	Rectifying a non-linear boundary
	Improving classification: automorphisms on a simplex
	Bag of visual words pipeline
	Visualising visual words for inspiration
	Pictorial structure matching
	Distance transforms
	Representation, representation, representation
	How to assess the quality of a representation?

	References

