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Abstract 

The Common blue butterfly, Polyommatus icarus (Rott,) , is 

widespread throughout its Palaearctic distribution and persists in areas 

with differing climatic conditions. It is known to be a highly variable 

butterfly with marked within and between population variation in 

morphology, thermal biology, and voltinism. These traits together with 
allozymes and a neutral DNA marker (AFLP) variation are studied here 

to understand how geographic trait variation is related to 

environmental variation. The approach adopted here is to study this 

along a latitudinal cline of temperature and photoperiod, using four 

populations from south to north within mainland Britain. 

AFLP differences, but not allozyme variation, indicate genetic 

structuring, with an isolation by distance effect. Enzyme diversity of P. 

icarus butterflies in the British Isles is lower than on mainland Europe, 
indicative of a past bottleneck. This, combined with selection on, or drift 

in, the allozymes could cause for a lack of population structure in this 

marker. Despite high levels of gene flow between populations, local 

adaptation is possible, as differentiation in certain allozyme loci was 

found (PGM and PGI). Populations differed in their response to 

developmental cues. Northern populations have an obligate diapause 

strategy and southern populations' development times differ in response 

to temperature, indicating local variation in response to environmental 

conditions. 
Populations differed in wing morphology (size, shape and 

melanisation) but this was not related to latitude. Experimental 

determination of heating rates in different basking positions and 

thoracic temperature at take-off revealed no strong relationships of the 

morphological characteristics with heating or cooling rates and an 

indication of relationship with PGI alleles. It is suggested that m 

comparison to larger butterflies morphological variation IS 

unconstrained by thermal requirements. 

The persistence and widespread occurrence of this butterfly may 

be a consequence of the variability of traits within this butterfly. 
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Chapter 1 Background 

1.1 INTRODUCTION 

The distribution and persistence of organisms depends on a number of 

interacting biological and environmental factors which operate over a 

range of spatial and temporal scales (Bunnell & Huggard, 1999; Maurer 

& Taper, 2002; Dennis et ai., 2003). Variation in these factors can result 

in within and between population variation. The nature of this variation 

can be used to infer past evolutionary events and colonisation history 

(Hewitt, 1996; Hoffmann & Merila, 1999; Thompson, 1999), but it is also 

of fundamental importance to organismal responses to future 

environmental changes (Skelly et 81., 2007; Bolnick et 81., 2011). Within 

a location, developmental responses to environmental conditions, 

physiological, morphological and behavioural tolerances of individuals 

and the overall variation within populations underlies how individuals 

respond and have responded to varying environments (Gordon, 1991; 

Lande & Shannon, 1996; Kelly et 81., 2011; Thomassen et a1., 2011). 
Specifically for adult butterflies, those traits that influence searching 

for food, mates and oviposition sites and the ability to evade or escape 

predators are important (Shreeve, 1992) and are the ones upon which 

selection could operate. Butterflies are ectotherms and their activities 

depend on the accumulation of heat from external sources in order to 

reach a suitable body temperature (Watt, 1968). Trait variation in these 

animals is therefore very likely to be tightly correlated with latitude 

(and habitat temperature). Organisms can track climate change and 

expand their distribution accordingly as a response (Davis, 1986; 

Graham & Grimm, 1990; Hewitt, 1996; Hill et a1., 2002). Increasing 

habitat fragmentation however, makes movements between fragments 

more difficult and the ability of species to express an evolutionary 

response to changing environments will become more important in the 

future persistence of a species (Opdam & Wascher, 2004; Chevin et 81., 
2010). 

1 
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Currently many butterfly species are in decline (Channell & Lomolino, 

2000; Ceballos & Ehrlich, 2002; Thomas et al., 2004; Fox et al., 2011) 
and the focus of much species related ecological research is on the 

conservation of declining and/or vulnerable species (Warren, 1991; 

Brereton et ai., 2008; Thomas et ai., 2009; Smee et ai., 2011). However, 

there are many widespread species that are also in decline (Conrad et 
ai., 2006; Van Dyck et ai., 2009; Kadlec et al., 2010) and the status of 

species can change from abundant to rare and vice-versa (e.g. Shreeve 

et a1., 1996). At issue is the response of individual populations to past 

extinction-colonisation dynamics on the one hand and to the threats of 

current and future environmental change on the other. For many 

species the spatial scale of a population unit is not well defined, even 

though these may operate as independent evolutionary units and an 

understanding of the way that these units respond to change and the 

causal mechanisms of these responses is essential in order to maintain 

biodiversity. 

The focus of this thesis is on the variation in a common butterfly species 

Polyommatus icarus (Rott.) (Common blue) within the British Isles . 

This species is used to investigate genetic, morphological, enzyme and 

life-cycle variation over a latitudinal (=climatic) gradient to describe a 

species' response to past and future environmental changes. Current 

latitudinal patterns are the results of past selection pressures and it is 

in this respect that this information can be used to reflect the post-

glacial history of this butterfly. Analysis of within and between 

population variation may be an indication of the potential for future 

persistence of this butterfly over the British Isles. 

Polyommatus icarus is widespread in the British Isles and is univoltine 

in its northern range (NW Scotland: one generation per year) and 

multivoltine south of Yorkshire (Emmet & Heath, 1989; Asher et ai., 
2001). The voltinism pattern is the product of development rate and the 

timing of diapause, but it is uncertain which factor is regulating this 

pattern and whether this is completely plastic trait or not. Previous 

quantitative work on variation in P. icarus within the British Isles has 

2 



characterised differences In morphology, behaviour and 

thermoregulation between a single central"southern England population 

and a population in northwest Scotland (Howe, 2004; Howe et aJ., 2007). 

These differences have been related to selection in relation to mate" 

attraction, requirements for flight capacity and potentially predator 

avoidance (Howe, 2004). This research builds on this earlier work by 

examining the nature of variability along an environmental gradient 

within the British Isles. This allows for an interpretation in terms of 

adaptation and variation in morphology and enzyme variation against a 

background of differences between populations using neutral molecular 

markers. 

3 



1.2 MORPHOLOGY 
The size and shape of butterfly wings may influence flight performance, 

and hence the general capability to find mates, egg-laying sites, other 

adult resources and to escape from predators (Betts & Wootton, 1988; 

Chai & Srygley, 1990; Kingsolver, 1995; Dudley, 2000)_ The degree of 

wing melanisation can affect rates of heat gain and have an important 

function in thermoregulation and therefore in activity patterns (Watt, 

1968; Kingsolver, 1996; Clusella-Trullas et a1., 2007). In some species, 

the wings may also have complex colour patterning on the upper- or 

underside and this pattern influences mate signalling and/or 

conspicuousness to predators (Dennis & Shreeve, 1989; Brakefield & 
Shreeve, 1992). 

1.2.1 Butterfly wings in thermoregulation 

Most butterflies have to elevate their body temperature above ambient 

temperature before they can become active (Watt, 1968; Roland, 1982; 

Kingsolver, 1983). Although achieving a suitable body temperature can 

be greatly influenced by butterfly behaviour, including posture and 

selection of specific microclimatic conditions, between-individual 

variation in melanisation of the wings has been related to differences of 

activity because of the effects of melanisation on heating rates (Watt, 

1968; Kingsolver, 1996; Clusella-Trullas et a1., 2007). The wings are too 

thin to conduct heat to the body over large distances, therefore 

melanisation of the basal wing part (i.e. closest to the body) is most 

important in heat absorption (Wasserthal, 1975). Three main basking 

mechanisms for butterflies have been described: dorsal basking, in 

which the dorsal wing surfaces are exposed to the sun and heat 

absorbed by the wings is conducted to the body; lateral or ventral 

basking in which the wing undersides are exposed to the sun and heat is 

conducted to the body (Clench, 1966; Kingsolver, 1985a; Heinrich, 

1986b) and reflectance basking in which solar radiation is reflected onto 

the body from the open dorsal wing surfaces (Kingsolver 1985a; 

Kingsolver 1985b). Butterflies that adopt a dorsal basking strategy 

4 



(opened wings) can absorb more heat with darker basal upper forewings 

(Wasserthal, 1975; Kingsolver, 1987; Van Dyck et al., 1997b), whereas 

lateral baskers (wings closed) benefit most from a higher degree of 

underside hindwing melanisation (Watt, 1968; Roland, 1982; 

Kingsolver, 1996; Stoehr & Goux, 2008). In those species that use the 

third mechanism (reflectance basking) the colour of the whole upper 

wing surface is of importance and a brighter coloured wing will provide 

faster heating (Kingsolver, 1985b). 

In several butterfly species a relationship between melanisation of the 

wings and temperature is found along latitudinal or altitudinal 

gradients (Watt, 1968; Guppy, 1986; Ellers & Boggs, 2002; Ellers & 

Boggs, 2004; Roland, 2006; Clusella-Trullas et aI., 2007). The general 

pattern for absorbance baskers is that, in colder climates, butterflies 

with darker coloured wings will have an advantage, as they can reach a 

suitable body temperature faster. Alternatively, in warmer locations, 

more lightly coloured wings might help in avoiding overheating. For 

multivoltine species occurring in locations with seasonally varying 

temperatures, cues during development have to be interpreted in order 
for an appropriate adult phenotype to appear (seasonal polyphenism; 

Shapiro, 1976). Butterflies ec10sing in spring, when temperatures are 

low, benefit from darker coloured wings, whereas in summer, lighter 

coloured individuals have an advantage in avoiding overheating 

(Kingsolver & Wiernasz, 1991; Kingsolver, 1995; Stoehr & Goux, 2008). 

For reflectance baskers the pattern is generally reversed. The 

melanisation of the adult wings is usually determined by the 

developmental conditions in the larval stage (Brakefield, 1996; Nijhout, 

1999). The majority of studies on wing colouration have been conducted 

on large or moderate sized species of the butterflies from the Pieridae 

and Nymphalidae. For smaller species, such as P. icarus, the thermal 

consequences of variation in melanisation are relatively understudied. 

Polyommatus icarus is mainly a dorsal basker, but is also suspected of 

adopting a reflectance basking strategy (Shreeve, 1992). It is therefore 

expected that this butterfly will have darker basal wing parts in colder 
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locations (i.e. going further north, or at high elevation) or colder seasons 

(i.e. spring generation). 

Compared to females, males have more active flight and are more prone 

to convective cooling and consequently may spend a larger part of the 
day basking (Gilchrist, 1990). Absorbed heat is more readily conserved 

in individuals with a larger body (Heinrich, 1986a), but they have a 

longer response time than small bodied individuals to both heating and 

cooling (Kemp & Krockenberger, 2004). In most butterfly species males 

are usually the smaller sex and will exchange heat with the 

environment faster than females. It is therefore not surprising that 

sexual differences in the plastic response for melanisation have been 

found for several butterfly species (Pivnick & McNeil, 1986; Van Dyck & 

Wiklund, 2002; Davis et ai., 2005; Stoehr & Goux, 2008). 

1.2.2 Body size, wing size and wing shape 

The size of a butterfly is usually dependent on developmental conditions 

in the larval stage {e.g. temperature, daylength, host plant quality 

(Gotthard 2008; Leimar 1996; Nylin 1992)) and a longer development 

time usually allows growth to a larger size (see Chapter 6). 

Development time is inversely related to temperature and in cool 

conditions individuals are therefore expected to grow larger than under 

warm conditions (Stearns & Koella, 1986; Nylin & Gotthard, 1998). This 

is true for some species in seasonal systems, where warm temperatures 

in spring allow for a faster development and smaller summer butterflies 

(Van Dyck & Wiklund, 2002). Similarly, the relationship between 

developmental temperature and final size serves as an explanation for 

the commonly observed Bergmann clines with latitude (Atkinson & 

Sibly, 1997; Blackenhorn & Demont, 2004). Higher latitudes imply 

colder temperatures, where the size of ectotherms can be larger. 

However, size can also decrease along a latitudinal or altitudinal cline 

(converse Bergmann rule) (Mousseau, 1997; Blackenhorn & Demont, 

2004). This indicates that there is another important factor, namely 

season length, which determines development time and final adult size 
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(Nylin & Svard, 1991). For species with a shift in voltinism (see section 

1.5 - Voltinism), the graph of development time or size with latitude 

will show a "saw-tooth-pattern" (Figure 1.1), because development time 

(and therefore size) per generation is limited at the northern limit of the 

bivoltine strategy, but less constrained by time at the southern edge of 

the univoltine strategy (Roff, 1980; Roff, 1983). At lower latitudes or 

altitudes, the favourable season is longer, and this allows for a longer 

development time. 
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Figure 1.1 Schematic representation of a "saw tooth" cline for insecta with a 
shift in voltinism. Modified from Roff (1983). 

As larger adults generally have a higher fecundity (Wiklund & 

Karlsson, 1988; Karlsson & Wickman, 1990), the available time IS 

readily used for development. However, for males the pattern is not 

always this straightforward. In butterflies with discrete generations, 

males can increase the probability of mating by emerging before virgin 

females eclose, resulting in a smaller size. In some species, emerging 

early can also assist in establishing a territory before other males. This 

results in a trade-off between emerging early (i.e. before females = 
protandry) and being large (Wiklund et ai., 1991; Zonneveld, 1996). This 

trade-off is influenced by the mating system: generally there is positive 

correlation between selection for large size and female polygamy 

(Wiklund & Forsberg, 1991). If females only mate once, early male 

emergence will increase the likelihood of more matings for a male. 

However, if females are polygamous, the size of the males will influence 
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how many matings they can secure. Selection will therefore be in favour 

of large size for males in species with polygamous females and vice 
versa. Polyommatus icarus females are thought to only mate once 

(Drummond, 1984), and are therefore expected to be the larger sex. 

Differences between male and female wing morphology have been 

related to the different needs of the sexes (Dudley, 2000; Norberg & 

Leimar, 2002; Berwaerts et ai., 2006; Breuker et ai., 2007; DeVries et 
ai., 2011). Females often mate soon after eclosing and once mated the 

primary function of females is to find suitable egg-laying sites (Shreeve, 

1992). Males usually spend more time in flight than females and have a 

higher investment in flight related traits. They can adopt a sit-and-wait 

strategy (perching) or fly around searching for females (patrolling), or a 

combination of both. These different mate locating strategies of males 

have been associated with differences of flight morphology (Betts & 

Wootton, 1988; Wickman, 1992; Van Dyck et ai., 1997a; Berwaerts et 
al., 2008; Kemp, 2011). Perching males adopt a more aggressive, agile 

flight to defend a territory or to fly up to investigate a passing female. 

This is enhanced by relatively more pointed wings. Patrolling butterflies 

benefit from more rounded wings, which allow for an energetically less 

costly, more aerodynamic flight (Betts & Wootton, 1988). Polyommatus 
icarus butterflies in Scotland generally have more rounded wings 

compared to butterflies in the south of England (Howe, 2004). The 

former shape is associated with slower, more prolonged flight in 

comparison with angular wings (Chai & Srygley, 1990) and supports the 

idea (Howe, 2004) that more rounded wings facilitate flight in Scotland 

where higher wind speeds prevail. 

Variation in wing morphology in P. icarus has been identified before in 

two populations at the extremes of a cline within the UK (Howe, 2004; 

Howe et ai., 2007). The environmental conditions (mainly temperature) 

vary along a south-north cline within the UK and, because of the 

importance of flight, variation in wing size and shape is expected. Both 

males and females in Scotland are larger than butterflies in south-
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central England. Additionally, in museum specimens of P. icarus in 

. Sweden, a negative size cline with latitude has been found (Nygren et 
a1., 2008). This cline exhibits a "saw' tooth" pattern where the butterfly 

shifts from bivoltine to univoltine. However, this study pooled the 

individuals across generations and years at each latitude, possibly 

excluding important environmentally fluctuating parameters. 

1.2.3 Signalling 

Butterfly wings are not just for flight and thermoregulation, the colour 

and pattern of wings can also have a signalling function towards 

potential mates and competitors, or influence detection by, and escape 

from, predators (Nijhout, 1991; Breuker & Brakefield, 2002; Lyytinen et 
a1., 2003; Robertson & Monteiro, 2005; Stevens, 2005; Breuker et a1., 
2006; Oliver et a1., 2009). In many lycaenid butterflies, the colour on the 

dorsal or ventral side of the wings has a function in male mate 

attraction and species recognition (Wago & Unno, 1976; Pellmyr, 1982; 

Knuttel & Fiedler, 2001; Fordyce et a1., 2002). For example, male 

P1ebejus (Lycaeides) idas will readily approach any blue object for 

inspection (Pellmyr, 1982), Females that have just emerged, often rest 

on high parts of vegetation, exposing the ventral hindwing (or the dorsal 

forewing while basking), Males of P. icarus for example, prefer females 

with a relatively high ultraviolet (UV) absorbance of the ventral wing 

area (Burghardt et a1., 2000; Knuttel & Fiedler, 2001). This intraspecific 

communication via UV reflectance was also found in Bicyclus anynana 
(Robertson & Monteiro, 2005) and in some pierid butterflies (Brunton & 

Majerus, 1995). At least for lycaenids, the UV'absorbance of the wings 

is dependent on the uptake of flavonoid plant components in the 

caterpillar stage and it can therefore act as an indication of individual 

quality (Burghardt et a1., 2000; Knuttel & Fiedler, 2001). 

In order to avoid being detected by a predator (i.e. primary defence), 

butterflies can mimic an inedible prey item . Batesian (Bates, 1862) or 

Mullerian (Miiller, 1879) mimicry' or they can camouflage (crypsis) 

(Endler, 1978) (see also review by Mallet & Joron (1999). Once detected, 
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some speCIes deflect predator attacks from the body by means of 

deflective wing markings (secondary defence) (Wourms & Wasserman, 

1985; Lyytinen et aI., 2004; Stevens, 2005; Stevens et al., 2008) of which 

the success rate is dependent on the environmental conditions (Olofsson 

et aI., 2010; Vallin et aI., 2011). Cryptic lepidoptera that can "surprise" 

predators with an appearing eyespot (e.g. Inachis id. Smerinthus 
ocellatus) may, by startling the predator, gain time to escape (Blest, 

1957; Vallin et aI., 2005). A few studies showed that the "surprise effect" 

or the conspicuousness, rather than mimicking an actual vertebrate eye, 

is more important than specific resemblance in escaping a predator 

(Vallin et al., 2006; Stevens et aI., 2008). The situation is different for 

butterflies with marginal eyespots, a pattern very commonly seen in 

satyrine butterflies, which deflect predator attacks away from the body. 

The forewings of a butterfly are the most important for flying (Dennis et 
aI., 1984) and the hind wings are fragile, therefore an attack directed to 

the hindwing will give butterflies a higher chance of escape and future 

flight capacity (DeVries, 2002). In seasonal systems variation in 

butterfly activity levels and colour of the vegetation may be a driver of 

seasonal wing pattern variation related to predation (Brakefield & 
Larsen, 1984; Wiklund & Tullberg, 2004; Joiris et aI., 2010; Vallin et al., 
2011). For example, in the wet season when Bicyclus anynana is most 

active, it has large eyespots on the underside of the wings to deflect 

predator attacks but in the dry season, which the butterfly tries to 

bridge in a more cryptic state, the eyespots are very small (Brakefield & 

Larsen, 1984; Brakefield & Reitsma, 1991; Brakefield, 1998). However, 

in both seasons, this butterfly shows large eyespots on the dorsal side of 

the wings as the size of these influences mating success (Breuker & 

Brakefield, 2002; Robertson & Monteiro, 2005). A slightly different 

strategy is used in severallycaenid butterflies. The combination of wing 

markings and wing shape resembles in a "false head" at the end of the 

body, again directing predators towards the hindwings, rather than the 

head, increasing chances for survival (Robbins, 1980; Robbins, 1981; 

Wourms & Wasserman, 1985). 

10 



Generally, the ventral side is primarily devoted to primary and 

secondary· defence mechanisms and the dorsal side can have the 

additional function of intra-specific communication. However, the 

underside pattern in Lycaenidae can also function as a species 

recognition signal (Fordyce et a1, 2002). Because the formation of the 

different wing elements (e.g. lunules, eyespots, major pattern elements, 

dorsal and ventral elements) can in some cases be developmentally 

uncoupled, conflicting selection pressures can act on each element 

separately (Schwanwitsch, 1948; Nijhout, 1985; Beldade et a1., 2002; 

Oliver et a1., 2009). 
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1.3 THERMOREGULATION 

Insects are ectotherms and mainly rely on external heat sources to 

accumulate heat in order to reach a body temperature suitable for 

activity (Watt, 1968). This body temperature of active or potentially 
active individuals is limited around a narrow optimal range and 

thermoregulation helps an individual to reach and maintain this 

temperature. 

1 "Optimal" temperature 
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Figure 1.2 Thermai performance curve (Huey & Stevenson, 1979). The relative 
performance of an individual is highest at the optimal temperature and will 
decrease with the body temperature moving away from the optimum. 

This process is a balance between heating up till a suitable temperature 

is reached and avoiding overheating. The performance of an individual 

will be highest at the thermal optimum and will decrease at higher and 

lower body temperatures (Figure 1.2). Individuals that are able to 

regulate their body temperatures more efficiently within close range of 

the optimum will have higher activity levels, which may eventually 

translate to higher fitness (e.g. more efficient search for food, for mates 

and oviposition sites and higher abilities to escape predators (Shreeve, 

1992». Activity levels under varying temperatures can be maintained 
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by 1) allocating a greater fraction of the resources to a physiological 

function at the expense of another, 2) spending more time gathering 

resources with increased risk of predation or 3) specialising for 

temperatures that are most often encountered (Angilletta et a1., 2003). 

In small insects, wing-beat frequency, and hence flight performance, is 

directly related to ambient temperature (Unwin & Corbet, 1984). In 

cooler conditions butterflies need to invest relatively more energy in 

flight performance. Hence, flight performance for butterflies in cool 

conditions - expressed as lift capacity - could be improved by increasing 

relative flight muscle mass (Berrigan, 1991), increased wing loading and 

increased wing aspect ratio (Betts & Wootton, 1988). The explanation 

for the latter is that longer wings can move air with a larger relative 

speed and generate higher aerodynamic forces per area-unit. It is now 

known that for some species (e.g. Colias sp., Lycaena tityrus) the 

interaction between glycolytic enzyme types (principally PGI) and 

temperature influences metabolic efficiency at different thoracic 

temperatures (Watt, 1977; Karl et al., 2008; Kallioniemi & Hanski, 

2011). Different enzymes have different thermal properties and 

stabilities and the genotype of individuals may influence the 

temperature range at which they are maximally efficient (Watt, 1977; 

Watt, 1983; Wheat et al, 2005; Karl et al., 2008). 

1.3.1 Behavioural mechanisms 

Butterflies achieve their body temperature by appropriate microhabitat 

usage, basking postures and orientation relative to the sun (Kammer & 

Bracchi, 1973; Kingsolver, 1985a; Dennis & Shreeve, 1989; Shreeve, 

1992). In general, these behavioural mechanisms will be balanced by 

the associated costs (time and energy) or risks (predation) of 

temperature regulation (Huey & Slatkin, 1976; Huey & Stevenson, 

1979). 

Not all butterflies solely rely on ectothermic mechanisms to elevate body 

temperature. Some species are known to produce endothermic heat by 
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shivering (rapid contraction of the flight muscles; Clench, 1966), 

although this· process is more common within moths (Kingsolver, 

1985a), which is probably an energetically expensive mechanism for 

rapid warming. A few butterflies in which shivering has been observed 

are Danaus plexippus, Papilio poiyxenes, Aglais urticae, Pararge 

aegeria, Lasiommata megera, Hipparchia semeie, Vanessa cardui, 
Inachis io, Vanessa atalanta (Kammer & Bracchi, 1973; Rawlins, 1980; 

Shreeve, 1992; Maier & Shreeve, 1996). In addition, temperature 

acclimation can allow butterflies to fly at lower body temperatures than 

preferred (Heinrich, 1986b), but possibly with a high energetic cost. 

1.3.2 Enzymes 

The temperature required by flight muscles can be influenced 

physiologically by enzyme systems with different thermal optima (Watt, 

1977). Variation in thermal characteristics of glycolytic enzymes is 

therefore likely to be of importance as flying insects have the highest 

known mass-specific rates of energy consumption (Suarez, 2000). 

Enzymes with a lower thermal optimum can confer an advantage in 

colder environments by allowing for a longer time span for activity or 

can have a direct influence on survival, for instance in escaping a 

predator attack early in the day (Watt, 1977). However, while these 

cold-optimum enzymes function more effectively at lower temperatures, 

they unfold more readily at high temperatures and may thus be 

disadvantageous on warm conditions (Watt, 1977; Watt, 1983; Dahlhoff 

& Somero, 1993). Variation in allelic frequencies in Colias butterflies at 

the PGI-Iocus has previously been related to habitat temperature (Watt, 

1977; Watt, 1983), suggesting possible selection pressures on this 

enzyme (Dahlhoff & Rank, 2000; Wheat et ai., 2005). Variation in 

glycolytic enzymes has been identified in several other butterfly species 

(Goulson, 1993; Haag et a1., 2005; Hanski & Saccheri, 2006; 

Saastamoinen, 2007; Karl et a1., 2008; Saastamoinen & Hanski, 2008; 

Vandewoestijne & Van Dyck, 2010; Kallioniemi & Hanski, 2011) and 

most of the variable enzymes are located at the top of the glycolytic 

pathway (Eanes, 2011). However, at least for some enzymes the effects 

of the variation are not entirely understood. For example, even at 
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activity levels as low as 17% for PGI or PGM, no reduction in flight 

activity was· found in Drosophila melanogaster (Eanes ·et a1., 2006). An 

additional problem is the multiple functions that (glycolytic) enzymes 

can fulfil in the body (Sun et a1., 1999; Kim & Dang, 2005) complicating 

investigation of selective responses on enzyme variation. A first step to 

identify candidate loci on which selection can act is to compare the 

allozyme pattern with the population genetic structure. Further 

experimental tests should then aim to identify the fitness response of 

enzyme variation. 
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1.4 POPULATION GENETIC STRUCTURE 

Population structure can be defined as the way different population 

units are distributed over a geographic or temporal scale. It is the result 

of a balance between the forces that increase genetic differentiation 

(mutation, drift, selection) and those that tend to produce genetic 
homogeneity (gene flow) (Slatkin, 1987; Frankham et al., 2002). Only 

few species exist as a large panmictic population, and therefore most 

species are genetically structured (Beebee & Rowe, 2004). This can be as 

a consequence of barriers restricting gene flow between groups of 

individuals, but even without barriers differentiation can occur as a 

consequence of isolation by distance (Wright, 1943). This is a pattern 

commonly found in widespread species in which the geographic range is 

larger than the distance one individual can cover during its lifetime 

(Peterson & Denno, 1998). The genetic distance between two 

populations can thus indirectly give information about the dispersal 

abilities of a species, a characteristic which is often difficult to study in 

the field. Regardless of the possible difficulties in interpretation of the 

data within analyses of genetic distances, they are very useful as 

indirect measures of dispersal (Bohonak, 1999; Miller et al., 2002; 

Schmitt et ai., 2002; Schmitt et al., 2003; Vandewoestijne & Baguette, 

2004). Genetic information will only give information about successful 

dispersal (i.e. reproduction after dispersal), and it is thus mainly of use 

for studies of population structure, but selection may introduce a bias if 

the marker(s) used to characterise differentiation are not neutral to 

selection. 

Intricately linked to population structuring IS the concept of 

metapopulations (Levins, 1970; Hanski, 1998) in which individual 

population units are geographically isolated, but connected by 

infrequent movements of individuals between population units and 

where extinction and colonization of the different populations OCcur 

regularly over time. The most common approach to investigating how 
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populations are structured is to quantify the genetic diversity within 

populations and compare this between populations (see section 1.4.3.1). 

1.4.1 Mutation, drift and selection 

All genetic variation is originally caused by mutations (gene mutations and 

chromosome mutations), and variation is essential in order for evolution to 

take place (Stearns & Hoekstra, 2005). Most mutations have no effect 

(neutral mutations) because they do not result in a phenotypic change (no 

change in amino acid or the amino acid substitution does not alter the 

protein function; Beebee & Rowe, 2004). Furthermore, eukaryote organisms 

possess a repair mechanism to correct for mutations in the coding DNA 

(Friedberg et al., 1995). The increase of variation by mutation is 

counterbalanced by drift, a stochastic process that leads to fixation of 

random alleles (and hence the loss of variation). Without influx from 

neighbouring populations, this process of allelic extinction is irreversible 

and will impoverish the gene pool of that population (Saccheri et al., 1998; 
Nieminen et al., 200 I). As a result of mutation and drift, populations which 

are isolated may diverge and it is more likely that individuals within 

populations have more similar DNA compared to individuals of other 

populations, because the variation will be inherited and there is lower 

exchange of DNA (low gene flow) between populations than within 

populations. 

Population differentiation through selection can occur when selection 

pressures differ between populations (Mayr, 1963; Maynard Smith, 
1966). This may be the result of continuous different selection regimes 
or the result of intense transient selection pressures. In these 

situations, different sets of genes will provide a higher fitness in each 
location and will be relatively more represented in the next generation. 
Higher fitness will result from traits that improve reproduction in the 
broad sense (e.g. higher survival rate of adults through more efficient 
feeding or escape from predators, or higher reproductive output). In 
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order for (local) adaptation through selection to take place, these 

phenotypic traits must have a heritable basis (Darwin, 1859). In 

combination with isolation, selection can cause rapid microevolution 

(e.g. pesticide resistance in arthropods e.g. Labbe et al., 2007; Jansen et 
ai., 2011). High gene flow can be an impediment for local adaptation 

(Mayr, 1963), but complete lack of gene flow will make populations 

isolated and more vulnerable. Intermediate levels of gene flow will 

increase and maintain high levels of genetic variance, allowing for 

adaptation (Wright, 1931; Endler, 1973; Bossart & Scriber, 1995; 

Gomulkiewicz et al., 1999; Lenormand, 2002). 

1. 4.2 Gene flow 

Gene flow (the movement of genes between populations) can homogenise 

the genetic composition of populations (Mayr, 1963; Lenormand, 2002). 

If gene flow is high, populations will be prevented from becoming 

genetically distinct. Theoretical models predict that only one individual 

per generation can be sufficient to impede population differentiation 

(Hartl & Clark, 2007), although if different strong selection pressures 

exist in two populations, the effects of gene flow can be overcome and 

adaptive genetic differences can still be maintained (Endler, 1973; 

Karhu et ai., 1996; Freeland et al., 2010). A high genetic similarity of 

two populations (short genetic· distance) can therefore have three 

different explanations: populations are connected by dispersing 

individuals, they have only recently separated or they experience 

similar selection pressures. 

1.4.3 Measuring population differentiation 

Estimations of genetic differentiation are most commonly conducted 

using F-statistics, particularly Fat (Wright, 1951) and Gat (Nei, 1973) 

which are measures of population differentiation. These values range 

from 1 (complete fixation of different alleles in two populations) to 0 

(homogenous population). Usually, the pattern of genetic differentiation 

is measured by comparing the genetic variation within sites with the 

variation between sites. In differences between populations there is an 
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expectation for between"site variation to be larger than within"site 

variation and that the further away two sites are· In geographic 

distance, the bigger their between"site variation will be. 

1.4.3.1 Wrights FST& Neis GST 

Wright's F"statistics (Wright, 1951) are fixation indices which measure 

the partitioning of total genetic variation within (FIS) and among (FST) 

subpopulations. It is estimated using: 

FST= (HT" Hs)/ HT, 

where Hs is the mean expected heterozygosity of an individual in a 

subpopulation and HT the expected heterozygosity of an individual in 

the total population. High values (FST > 0.15) indicate high population 

differentiation and low migration rates between populations. Because of 

the strong relationship between FST and gene flow, the migration rate 

can be estimated as follows: 

Nm:::: ~ (11 FST "I) 

(Slatkin, 1993) 

with m the migration rate and Nthe effective population size. 

This model however, assumes there is no selection, there is no mutation, 

all populations host the same number of individuals and contribute 

equally to the migration pool, migration is random (i.e. irrespective of 

the distance between populations) and the system is at equilibrium 

(Whitlock & McCauley, 1999). In natural populations these assumptions 

will usually be violated, but FST values are robust enough to compare 

among population migration within and between species (Bohonak, 

1999). Nei (1973) suggested a variation on the F"statistic that is less 

sensitive to selection and the reproductive method and is independent of 

the number of alleles. This measure, GST, is the coefficient of gene 

variation and measures the proportion of total genetic variation 

distributed among and within populations (Nei, 1973). With two alleles 

at a locus this measure, GST, is essentially the same as Wright's FST. 
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1.4.3.2 Analytical methods 

Different techniques have been developed to study genetic distances 

between populations, each with their advantages and disadvantages. 

The most frequently used methods are protein electrophoresis (Hubby & 

Lewontin, 1966; Lewontin & Hubby, 1966), mitochondrial DNA 

sequencing (Anderson et a1., 1981), Random Amplified Polymorphic 

DNA (RAPD) (Williams et a1., 1990) and Amplified Fragment Length 

Polymorphism (AFLP) (Vos et a1., 1995), and micro satellites (Litt & 

Luty, 1989). 

Protein electrophoresis is probably the oldest method and relies on the 

different forms of a protein (allozymes) migrating at different rates , 
dependent on their size and charges along an electrical charge gradient, 

usually on a starch or cellulose acetate plate or polyacrylamide gel. As a 

result, the separated allozymes can be visualised as individual bands on 

the gel. If the enzyme composition of two populations differs, the 

banding pattern will show these differences. Although this method is a 

relatively cheap and easy method, it has a major drawback for 

estimating genetic distance as proteins have functions and can be under 

selection pressures so that the result of a protein electrophoresis will 

not necessarily reflect a species' true population structure (Bohonak, 

1999). Additionally the estimate of divergence between populations may 

be dependent on the relationship between the number of enzyme 

systems studied and the strength of selection on these different systems. 

To avoid the uncertainties of allozyme electrophoresis, more neutral 

DNA markers can be used. All eukaryote organisms possess 

mitochondria and thus mitochondrial DNA (mtDNA). MtDNA is a 

small, circular (or linear for lower eukaryotes), extra"chromosomal, 

double"stranded DNA molecule that has an equal or higher mutation 

rate than nuclear DNA (Brown et a1., 1979). The most studied parts of 

the mitochondrial DNA are the control region (CR) and cytochrome 

oxidase lor II (COl and COli). The selected region can be amplified by 

PCR and the pattern can then be compared between individuals. In this 
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method it is also assumed that mtDNA is not subject to selection, but 

according to Gerber· et a1. (2001) this is not always the case. 

One big advantage of the next two methods, Randomly Amplified 

Polymorphic DNA (RAPD) and Amplified Fragment Length 

Polymorphism (AFLP) , is that they do not require a priori information 

about the DNA sequence of the organism under study. The short 

primers (ca. 10 bp) consist of a random sequence of nucleotides and they 

are commercially available in 'RAPD' kits. These primers are short 

enough to anneal to a matching sequence on the DNA purely by chance 

and are long enough not to amplify too many fragments. The primer and 

the DNA together undergo a PCR and the resulting banding pattern can 

differ between individuals due to mutations in the primer sites, causing 

presence or absence of bands. A major drawback is that the results of 

RAPD are very sensitive to laboratory conditions and contamination. 

To avoid the drawbacks of RAPD, AFLP has been developed (Vos et al., 
1995; Figure 1.3). In this process, sample DNA is first digested with two 

restriction enzymes producing different sticky ends (Miiller & 

Wolfenbarger, 1999). After adding double-stranded 'linkers' with 

compatible sticky ends, a PCR is run with primers corresponding to the 

linkers' sequences. A series of bands are then produced of the amplified 

DNA regions. This method is slightly more laborious than RAPD, but 

has a major advantage of being more reproducible. 
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Restriction fragment 
AAnccAc------TcGT 

GGTG AGCAAT 

Adapter + Adapter 
'-C~T~CG:T~A~G~A~C~T~G~C~GT~A~C~C~AA~n~AC::::::::::::TC~~A~C~T~CA~G~G~A~C~T~C~AT=---~ 

CATCTGACGCATGGTTAA TG AG TGAGTCCTGAGTAGCAG 

AFLP Primer Selective nucleotides + GACTGCGTACCAAn~ 
GAGCATCTGACGCATGGnAA~f------AGCAATGAGTCCTGAGTAGCAG 

CTCGTAGACTGCGTACCAAnCCAC ~ACTCAGGACTCATCGAC + ~TGAGTCCTGAGTAG 
Selective nucleotides AFLP Primer 

Amplification 

Figure 1.3 Schematic representation of the AFLP technique. Top: fragment 
with sticky ends produced by restriction enzymes. Centre: the same fragment 
with the corresponding 'linkers'. Bottom: the two strands both with their AFLP 
primers. Mter Vos et sJ. (1995). 

Another technique frequently used in population genetic studies is 

microsatellite analysis. Microsatellites are neutral markers that consist 

of short tandem repeats (i.e. 1 to 4 bp motifs), such as ACACACAC. 

These micro satellite loci can be found in all eukaryotes, most commonly 

in non-coding DNA and are less likely to be subject to selection. They 

have high mutation rates that change the repeating array length, 

causing high polymorphism. This makes this marker a successful tool in 

population genetics although its neutrality is not always guaranteed: 

microsatellites can hitch-hike to a gene under selection or sometimes 

they are even under selection themselves (Estoup & Cornuet, 1999). 

Microsatellite analysis is also a PCR-based method and requires 

primers that are complementary to the two flanking regions of the 

microsatellite locus. Identification of the micro satellite and the design of 

the primers are the most time-consuming tasks and have to be repeated 

for every new species. However, primers of closely related species can be 

used as a starting point for developing species specific microsatellite 

primers and this has been done with varying success. A drawback of 

this method is the possible occurrence of "null-alleles" which arise from 

mutations in the flanking regions, causing a lack of amplification of this 

allele. Nevertheless, if time and money to develop the primers is not an 

issue, this is the preferred technique for population genetic studies. 
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1.4.3.3 Recent developments 

Recently, the geographic pattern of allozymes has been used to detect 

loci under selection (Goulson, 1993; Dhuyvetter et aI., 2004; Haag et a1., 
2005; Karl et aI., 2009; Vandewoestijne & Van Dyck, 2010). Candidate 

loci can be discovered if their pattern deviates from the general 

allozyme pattern, which is then assumed to be neutral. Alternatively 

the allozyme pattern can be compared with that of a more neutral DNA 

marker to detect candidate loci. Both these approaches assume that 

deviations from the 'neutral' pattern are the result of selection. Once 

such a locus is discovered, experiments can then further investigate the 

selective value of the allelic variants (Watt et aI., 1983; Watt et aI., 
1985; Goulson, 1993; Hanski & Saccheri, 2006; Wheat et a1., 2006; 
Dahlhoff et aI., 2008; Saastamoinen & Hanski, 2008; Niitep6ld et aI., 
2009; Orsini et a1., 2009; Karl et aI., 2010). 
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1.5 VOLTINISM 

In seasonal systems, suitable times for growth, development and 

reproduction are followed by unfavourable periods that are often 

bridged with a diapause stage (Danilevskii, 1965; Roff, 1983; Stearns, 

1992). For insects living in such systems it is therefore necessary for 
them to regulate their life cycle and use reliable cues about the 

environment and translate them into a development strategy (Gotthard 

& Nylin, 1995). There often is a relationship between the length of the 

favourable period and the number of generations (= voltinism) (Roff, 

1983; Stearns, 1992). In such temperate climates, butterflies can 

overwinter either as larvae, pupae or adults, and the stage adopted is 

usually species specific, so it is important to ensure that the appropriate 

development stage coincides with the beginning of winter (Roff, 1983). 

Developing larvae are therefore expected to use reliable environmental 

predictors to 'calculate' the time left until the unfavourable season and 

'choose' between direct development to yield a new generation or to 

spend the unfavourable season in a resting state, diapause (Danilevskii, 

1965). The most reliable end-of-season cue for butterflies in seasonal 

environments resulting in faster development or diapause is 

photoperiod (Nylin et al., 1989; Leimar, 1996; Burke et aJ., 2005). Often 

a combination of photoperiod and temperature signals will induce 

diapause: short photoperiods and low temperatures generally induce 

diapause and long photoperiods and high temperatures promote direct 

development (Danilevskii, 1965; Burke et aJ., 2005). 

The northernmost and southernmost part of a species range will differ 

in daylength and temperatures and thus in seasonal length. Cues for 

development speed and timing of diapause are therefore expected to 

differ within a species' range, with direct consequences for voltinism 

with a tendency for two or more generations in the south and only one 

generation in the north. This is a consequence of a decrease in season 

length with latitude, only allowing for one generation in the more 

northern latitudes. Generally there will then be a decrease in 
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development time (speeded development) with latitude, resulting in a 

decrease in size (Roff, 1980; Roff, 1983). However, because of a shift in 

voltinism, at latitudes where a second generation is only just possible, 

the available time for only a single generation is much higher. As a 

consequence, a plot of development time along a gradient of season 

length from south to north will, corresponding to life-history models, 

produce a 'saw-tooth' pattern (Roff, 1983; Nylin & Svard, 1991). The 

generally strong correlation between development time and body size 

results in a similar pattern when size is plotted against latitude (see 

1.2.2). This theory has some support from studies of butterflies (Nylin & 

Svard, 1991; Burke et ai., 2005) and crickets (Masaki, 1978; Mousseau 

& Roff, 1989b). 

The Common blue (p. icarus) occurs with more than one generation 

(multi-voltine) over its whole range, except for the northernmost part, 

where it is univoltine (Emmet & Heath, 1989; Asher et ai., 2001). In the 

southern border of their distribution, Common blue butterflies are at 

least trivoltine where a large proportion bridge the hot periods of the 

year in a diapause state as eggs or larvae (aestivation) (Tolman & 
Lewington, 1997). These voltinism patterns are not fixed however, as in 

climatically favourable years, P. icarus can produce a partial third 

generation in the south of its distribution within the British Isles and 

up to two in the north (Brakefield & Shreeve, 1992). This suggests that 

voltinism is plastic rather than being genetically determined, in which 

case the transition zone for single and double brooded populations may 

shift northwards in response to climate change (Asher et ai., 2001). 
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1.6 SUMMARY AND GENERAL AIMS 

Current trait variation in organisms is the result of past selection 

pressures and colonisation events. Using a common and widespread 

butterfly species, Polyommatus icarus, allows for investigating general 

patterns of species' responses to environmental change. This species is 

generally very common, but their numbers can locally fluctuate from 

year to year (pers. obs.). Whether or not a species is common can 

therefore quickly change (Shreeve et ai., 1996), and multiple bottlenecks 

could leave a very common species genetically quite impoverished. In an 

increasingly fragmented landscape, organisms will have more 

difficulties tracking environmental change and the amount of variation 

(evolutionary potential.) becomes more important. Maintenance of 

(genetic) variation therefore determines a species' persistence in the 

light of current environmental change. 

Polyommatus icarus is an extremely variable species which occurs in a 

large variety of environments and is distributed across most of the 

Palaearctic (Frohawk, 1934; Emmet & Heath, 1989; Asher et ai., 2001). 
The importance of morphology, thermoregulation and interpretation of 

developmental cues means that these traits are expected to vary 

between populations. Within the British Isles, variation between two 

populations on the extremes of a latitudinal cline has previously been 

identified and related to selection in relation to mate-attraction, 

requirements for flight and potentially predator avoidance (Howe, 2004; 

Howe et ai., 2007). However, with only two populations the 

interpretation of these differences is rather uncertain. Studying 

variation in traits along a latitudinal cline allows for an interpretation 

in relation to environment (Kraushaar et ai., 2002; Demont & 

Blanckenhorn, 2008; Nygren et ai., 2008). Further experimental work 

on the variation in these traits allows for a functional interpretation 

and can place the field variation in context. The recent finding of strong 

selection on allozymes in several butterfly species (Watt et ai., 1985; 

Carter & Watt, 1988; Goulson, 1993; Hanski & Saccheri, 2006; Karl et 
ai., 2008; Vandewoestijne & Van Dyck, 2010) and the high level of 
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enzyme polymorphisms in Common blue butterflies (Schmitt et ai., 
2003), indicates -that there are possibilities for dinal variation in 

allozyme loci in P. icarus. 

This project will therefore investigate for P. icarus in the British Isles: 

• Clinal variation in wing morphology in the field, with 

special attention to size, shape and melanisation (Chapter 

3). 

• Influence of wing characteristics, behavioural traits and 

allozyme variation on thermal characteristics (i.e. heating 

and cooling rate; take-off temperature) (Chapter 4). 

• Latitudinal variation in allozymes along with a DNA 

marker to detect candidate loci for selection (Chapter 5). 

• Variation in developmental response to photoperiod and 
temperature cues between populations (Chapter 6). 
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Chapter 2 General ~ethods 

2.1 THE COMMON BLUE BUTTERFLY 

Polyommatus icarus (Rott.) 
The Common blue butterfly was first described by Rottenburg (1775) as 

Papilio icarus, a grassland butterfly with a pronounced sexual 

dimorphism. Nearly thirty years later Papilio icarus was added to the 

Polyommatinae and renamed Polyommatus icarus by Latreille (1802). 

In 1973, Elliot proposed, on the basis of the male genitalia, to add the 

Polyommatus section in his higher classification of the Lycaenidae. 

Balint and Johnson (1997) made the classification of the Polyommatus 

genus more stable by integrating female genitalia and shared wing 

characters (Figure 2.1). 

Figure 2.1 Phylogeny of butterflies and skippers with indication of the 
Polyommstusgenus (blue) {Redrawn from Wahlberg et m., 2005). 
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The most typical of these shared wing characteristics is the amount of 

blue wing colouring, which occurs in all Lycaenid butterflies except for 

Aricia and Agrodiaetus species. The species under study, Polyommatus 
icarus, shows considerable variation within and between populations. 
This variation has led to descriptions of two subspecies within the 

British Isles: P. icarus icarus in most of Britain and subsp. marsicolore 
in Ireland (Kane 1893), but the latter also being described as occurring 

in northern and western Scotland (Thomson, 1980). This distinction is 

not, however, generally accepted (Higgins & Riley, 1980) and its basis is 

poorly defined. 

Male P. icarus generally have a blue upperside wing colouring while the 

upper wing colour of females can vary from deep dusky-brown to 

completely blue (Frohawk, 1934; Figure 2.2). The spotting pattern on 

the underside of the wings is subject to extreme variation, with some 

individuals totally lacking spots except for the outer marginal spots. 

This pattern seems to act as a species recognition signal (Fordyce et aI, 
2002) and the enormous variation probably has influenced the species-

richness of the group of the Lycaenidae (Robbins, 1982). 

Polyommatus icarus IS a relatively small butterfly species with a 

wingspan between 29 and 36mm (Emmet & Heath, 1989). First 

generation butterflies tend to be larger than second generation 

butterflies (Tolman & Lewington, 1997) and within the British Isles, the 

more northern populations in Scotland and Ireland comprise larger 

individuals compared to the south (Frohawk, 1934). 
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Figure 2.2 Polyommstus icarus: a) male; b) female; c) male underside; d) 
larvae 

Larvae of P. icarus (Figure 2.2) feed on different plants of the Fabaceae 

family with Bird's-foot trefoil Lotus cornicuiatus being the major food 

plant (Emmet & Heath, 1989). The eggs are circular, only 0.6 mm in 

diameter and are laid singularly on young shoots of the chosen food 

plant (Frohawk, 1934) or on or close to the flowers (Janz et ai., 2005). 

Directly developing larvae reach pupation within about 45 days, while 

those that overwinter live for 270 days (Frohawk, 1934). Overwintering 

larvae hibernate on the lower stems of their food plants or at ground 

level amongst litter (Frohawk, 1934; Asher et ai., 2001). 

The distribution of P. icarus covers nearly the whole of the Palaearctic 

region from sea level to up to 2700m (Tolman & Lewington, 1997; 

Figure 2.3), where it usually occurs in rough, flowery grasslands 

(Frohawk, 1934). It tends to live in discrete colonies that can locally 

reach high numbers (Emmet & Heath, 1989; Asher et ai., 2001). Like 

most butterflies, P. icarus is in decline (Fox et ai., 2006), mainly caused 
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by a disappearance of semi-improved grassland and transformation of 

coastal dune areas to other uses (Leon-Cortes et ai., 1999). 

Figure 2.3 Distribution of Polyommatus icarus in the Pale arctic region 
(redrawn from Artem'eva, 2006). The phylogeography of P. icarus and close 
relatives is unresolved and different subspecies have been described across the 
whole range based on morphology (for details see Artem'eva, 2006). Indicated 
in grey is the area were the subspecies icarus occurs. 
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2.2 MAIN STUDY SITES 

Most field sampling was conducted in four sites (Figure 2.4). 

MALlAIG • 

GREENHOW • 

BERNWOOD 

• 
FROG FIRLE • 

o 75 150 300 450 600 
- - Kilometres 

Figure 2.4 The location of the four major field sites used in this project. 

2.2.1 Frog Firle Farm (LatlLong: 50.7910.14; National grid: TQ 

508014) 

Frog Fide Farm is a National Trust site of 50 ha located in East Sussex 

on the South Downs. This is part of the large chalk ridge that stretches 

from Eastbourne to Winchester and is characterised by typical chalk 

grassland vegetation including Musk orchid (Herminium monorchis), 

Honeysuckle (Lonicera caprifolium) and Marjoram (Origanum 

majorana) (Figure 2.5a). Key Lepidoptera species on this site are 

Silver-spotted skipper (Hesperia comma), Adonis blue (Polyommatus 

bellargus) and Chalk carpet moth (Scotopteryx bipunctaria) (Kemp, 

2006). 
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2.2.2 Bernwood Meadows (LatILong: 51.80/-1.12; National grid: 

SP606111) 

Bernwood Meadows make up a BBOWT (Berkshire, Buckinghamshire 

and Oxfordshire Wildlife Trust) nature reserve managed as traditional 

ridge-and-furrow fields. It is an SSSI (Site of Special Scientific Interest). 

The vegetation is flower-rich including Green-winged orchid 

CAnacamptis morio), Oxeye daisy (Leucanthemum vulgare), Yellow 

rattle (Rhinanthus minor), Knapweeds (Centaurea sp.) and Lady's 

bedstraw (Galium verum) and the meadows are surrounded by hedges 

(Figure 2.5b). The sampled meadows cover 3.5 ha. Key Lepidoptera 

species include Meadow brown (Maniola jurtina) , Common blue (p. 

icarus), and Six-spot burnet moth (Zygaena filipendulae). 

2.2.3 Greenhow - Duck Street Quarry (LatILong: 54.07/-1.83; 

National grid: SE 113639) 

Duck Street Quarry in Greenhow is a former limestone quarry and is an 

SSSI, mainly because of its geology. This is a relatively small site (5 ha), 

located in North-Yorkshire at a high altitude (at it highest point it is 

428 m above sea level) and is characterised by typical limestone 

vegetation with Sheep's fescue (Festuca ovina) and Spring sandwort 

(Afinuartia verna) (Figure 2.5c). Key Lepidoptera species include 

Common blue (p. icarus), Meadow brown (Maniola jurtina) and Ringlet 

(Aphantopus hyperantus) (Barnham, 2006). 

2.2.4 Afallaig - Camusdarach dunes (LatILong: 56.96/-5.85; 

National grid: NAf 661916) 

These dunes are located on the west coast of north Scotland and are 

characterised by a dense vegetation of Marram grass (Ammophila 
arenaria) including also Harebell (Campanula rotundifolia) and Gorse 

(Ulex europaeus) (Figure 2.5d). The part of the dunes that was sampled 

for this study was a short narrow stretch of ca. 1.5 ha. Key lepidoptera 

species include Scotch argus (Erebia a ethiops) , Grayling (Hipparchia 
semele) and Speckled wood (Pararge aegeria). 
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Figure 2.5 The main field sites: a) Frog irlc rm, b) B rnwood 
Greenhow Duck Street Quarry, d) Mallaig amu dar ch un . 

dow, c) 
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2.3 COLLECTING 

INDIVIDUALS 

AND REARING OF 

Most of the experimental work presented in this thesis uses individuals 

reared from females collected in the field and a standard protocol was 

developed for this procedure. 

Live female butterflies collected in the field were stored in small boxes 

(17.5 em x 12.0 em x 6.2 em) lined with damp tissue and ample host 

plant and access to honey solution. Nets were used as lids to prevent 

build up of moisture (Figure 2.6). Boxes were placed in the field in the 

sun and small cardboard lids provided a shaded shelter place. One 

female was placed in each box and the butterflies were allowed 2 days to 

lay eggs on the available host plant, which was collected after this 

period. Females were then frozen at -BO°C for further enzyme analysis. 

The eggs were isolated from the majority of plant material and stored in 

petri dishes with a damp filter paper to avoid desiccation of the eggs. 

Figure 2.6 Egg-laying boxes with female P. icarus butterflies in one of the field 
sites. 

As soon as the eggs hatched, the first instar larvae were transferred 

with a tiny paintbrush onto a single potted Lotus corniculatus host 

plant. Rearing temperature and photoperiod were specific for each 

experiment and details are given in the relevant chapters. Plants were 

checked regularly and replaced when necessary to provide ample food 

for the larvae. 
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The precise methods and data analysis procedures for the different 

experiments are detailed in the respective chapters. 

37 



38 



Chapter 3 . Morphological variation· of 
Polyomma.tu8 ica.rus butterflies in the British 
Isles 

3.1 INTRODUCTION 

Wing shape, size and colour are key characteristics that influence 

apparency to conspecifics, conspicuousness to predators and 

thermoregulation in butterflies (Dennis & Shreeve, 1989; Brakefield & 

Shreeve, 1992). Variation in wing size and shape can influence flight 

characteristics (Betts & Wootton, 1988; Dudley, 2000) and the degree of 

wing melanisation strongly influences rates of heat gain and loss (Watt, 

1968; Kingsolver, 1996; Clusella-Trullas et a1., 2007). Morphological 

variation in these wing characteristics is therefore expected between 

different (selective) environments. Reactions to these environmental 

selection pressures can be genetic (local adaptation) or flexible 

(plasticity) (Via & Lande, 1985). Plasticity in traits would be promoted 

in variable environments; fixed environmental conditions could lead to 

local adaptation. 

Rounder wmgs may provide more sustained and faster flight than 

angular wings, with the latter providing greater acceleration, but more 

energy expensive flight (Betts & Wootton, 1988). The study species, 

Po1yommatus icarus, has more rounded wings in Scotland than in the 

south of England (Howe, 2004). These differences were described by 

Howe (2004) as being consistent with the need for more prolonged 

flights for mate location and resource finding in lower density 

populations and/or cooler conditions in the north. Po1yommatus icarus 

butterflies also show a negative size cline with latitude in Sweden 

(Nygren et aI., 2008) presumably as a result of shortening seasons with 

latitude (Nylin & Svard, 1991; Blackenhorn & Demont, 2004). Shorter 

seasons reduce the available development time often resulting in 

smaller individuals (Atkinson et a1., 1994; Davidowitz & Nijhout, 2004). 
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Where there is a shift from a bivoltine to univoltine strategy there is an 

increase in size according to a "saw"tooth"pattern" because development 

time per generation is limited at the northern limit of the bivoltine 

strategy, but less constrained by time at the southern edge of the 

univoltine strategy (Roff, 1980; Roff, 1983). At their most northern 

latitudes in both the British Isles and Sweden, P. icarus is significantly 

larger than in more southern populations (Howe, 2004; Nygren et a1., 

2008). It has also been suggested that this increase in size in the north 

may also be the result of a two"year life cycle (Johansson, 2003; Wipking 

& Mengelkoch, 1994; Nygren et a1., 2008). 

As well as latitudinal differences in size, there are often size differences 

between generations in bivoltine populations. Higher temperatures 

usually promote faster development and smaller adults (Atkinson et a1., 
1994; Atkinson & Sibly, 1997; Kingsolver et a1., 2004), which explains 

why second generation butterflies, which develop over the warm 

summer period are often smaller than spring butterflies which develop 

during the autumn"spring period. However, in some species the opposite 

pattern has been found and the differences have been related to 

different dispersal strategies between generations (Windig & Lammar, 

1999; Fric & Konvicka, 2002; Fric et a1., 2006). Second generation P. 

icarus butterflies are usually smaller than those of the spring 

generation (Howe, 2004). 

The degree of wing melanisation can affect rates of heat gain and have 

an important function in thermoregulation and therefore in the activity 

patterns of butterflies (Watt, 1968; Kingsolver, 1996; Clusella"Trullas et 

a1., 2007). Previously, patterns in wing melanisation have been related 

to latitudinal and seasonal thermal differences in several butterfly 

species and are related to the basking strategy (see Chapter 1). 

Po1yommatus icarus uses a combination of basking strategies (Shreeve, 

1992) and the influence of melanisation on thermal characteristics is 

therefore not entirely clear. 
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Male P. icarus generally have a blue upperside wing colouring while the 

upper wing· colour of females can vary from deep dusky"brown to 

completely blue (Frohawk, 1934). In colder locations and seasons 

females, but not males, of this butterfly generally have brighter 

coloured wings (Howe, 2004), which was interpreted as an indication 

that this butterfly is a reflectance basker, with cooler northern 

conditions selecting for traits that increase heating rates (Howe, 2004). 

In the Lycaenidae there are two scale types, basal scales and cover 

scales which are responsible for their colour, which is the total reflected 

light spectrum (Ingram & Parker, 2008). Cover scales can give rise to 

iridescent colours, which is often referred to as a structural colour. 

Basal scales are melanised and lack the physical structure to reflect 

blue light and over time this melanin degrades due to exposure to UV. 

Thus the visible colour of Lycaenids appears to become less intense over 

time as the capacity of the basal scales to prevent back reflection of light 

of a range of wavelengths decreases over time (Ghiradella, 1998); 

therefore the colour reflected by newly emerged specimens is of 

narrower wavelength range than that produced by older specimens (i.e. 
it is purer). 

Cover scales are also variable in Lyceanids and they differ in their 

nano'structure. Cover scales have ridges, and cross members between 

the ridges and can have a complex internal structure, often termed a 

pepper-pot structure, which may be multilayered, acting as a photonic 

crystal which can reflect short wavelength light (e.g. blue) (Balint et al., 
2004; Kertesz et al., 2006). The size of the holes and the architecture of 

the pepper-pot structure determine which wavelengths are reflected -

this can vary from orange/red to uvlblue across the Lycaenids. Those 

scales that lack the pepper-pot structure do not reflect blue light and 

light is absorbed by melanin within the scales (Balint et a1., 2004). 

Increased proportions of scales lacking this pepper"pot structure is of 

thermoregulatory significance, with the proportion of scales lacking this 

pepper-pot structure increasing in some Lycaenids with altitude and 

latitude (Biro et a1., 2003). 
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When examined under a light microscope the wings of P. icarus are 

covered by 'blue' cover scales and 'brown' basal scales and the proportion 

of these varies between individuals and the sexes (Howe, 2004). To date 

there has been no detailed study of variation in the architecture of 

scales in P. icarus and there is no available information on variation in 

melanin deposition within scales, but for the sake of argument 

increasing proportions of brown scales is termed melanisation within 

this study. This terminology is the same as that adopted by Watt (1968) 

who termed an increase in the proportion of dark scales in Colias 
butterflies as melanisation. 

Polyommatus icarus is geographically and seasonally variable in wing 

shape, colouration and size and it is sexually dimorphic (Frohawk, 1934; 

Emmet & Heath, 1989; Asher et aI., 2001; Howe, 2004). Studies of wing 

morphology on other species have related such differences to the 

environment experienced during development and to selection pressures 

(Watt, 1968: Guppy, 1986; Ellers & Boggs, 2002; Ellers & Boggs, 2004; 

Roland, 2006; Clusella-Trullas et aI., 2007; Kingsolver & Wiernasz, 

1991; Kingsolver, 1995; Atkinson & Sibly, 1997; Blackenhorn & 

Demont, 2004; Stoehr & Goux, 2008). Morphological variation in P. 

icarus has been identified before in two populations at the extremes of a 

cline within the UK (Howe, 2004; Howe et al., 2007). The environmental 

conditions vary along a south-north cline and seasonally within the UK 

and therefore, because of the importance of flight, variation in wing size, 

shape and melanisation is expected (see below). Further rearing 

experiments (Chapter 6) will investigate plastic responses and a study 

of the population genetic structure (Chapter 5) will identify the degree 

of isolation of the different populations and thus the potential for local 

adaptation. 
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This chapter will therefore investigate in P. icarus 

(1) whether latitudinal variation in size is in accordance with the 

predictions of a saw"tooth cline for a species with a 

latitudinal shift in voltinism. 

(2) whether shape differences vary along a latitudinal cline and 
whether these differences can be related to variation in 

environmental parameters along this cline 

(3) whether there is an increase in melanisation along a 

latitudinal cline in accordance with the butterfly being an 

absorbance basker 

(4) seasonal variation: Are summer butterflies smaller because of 

the shorter development time? Are spring butterflies more 

melanised because of colder temperatures? Do the more 

active summer butterflies have more pointed wings for more 

agile flight? 
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3.2 MATERIAL & METHODS 

3.2.1 Sample collection and preparation 

Field samples were collected during the flight peaks of P. icarus in each 

of four locations (Table 3.1). The four main study sites were used (see 

Chapter 2) and in the sites with bivoltine populations (Frog Firle and 

Bernwood) samples were taken both in spring and summer, to enable a 

comparison between these two generations. During each sampling 

period butterflies were collected in a range of weather conditions and 

times of day to encompass variation in the population and reduce the 

chance of sampling being biased towards specific phenotypes if weather 

related activity is linked to phenotype. Individuals were kept alive in 

envelopes until they were transferred to a freezer (-80°C). Subsequently, 

wings were removed (bodies were retained for molecular studies: see 

Chapter 5) and photographed in a dark room with the specimen 

illuminated with a fibre optic ring light (90 Watt). Images were taken 

with a Nikon Dl (ISO 200, F8, exp: 1I320s) at a fixed focal length of 58 

cm. All samples were photographed on a black and white background to 

allow for standardising colour measurements. 

Table 3.1 Sample sites, latitudes, acronyms, sampled dates and sample sizes 
(n). 
Site Latitude Acronym Date collected n (males} n (females} 
Frog Firle 50.791 FROG1 7-9 June 2010 34 24 

FROG2 9 August 2010 39 25 
Bernwaad 51.795 BERN1 14-16 June 2010 36 22 

BERN2 5-8 August 2010 56 31 
Greenhaw 54.071 GREE1 13-14 July 2010 30 22 
Mallaig 56.958 MALL1 22-25 July 2010 19 15 
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3.2.2 Quantifying shape and siz.e variation and meJanisation in 
butterfly wings 

Shape and size 
Differences in shape were quantified using geometric morphometries 

(Goodall, 1991; Klingenberg & McIntyre, 1998; Breuker et al., 2010). 

The advantage of this method is that wing shape is treated as a 

multivariate trait, rather than a univariate trait such as wing length or 

aspect ratio. This allows for the detection of all aspects of shape 

variation. Centroid size was used as a measure for wing size and this is 

calculated as the square root of the sum of squared distances from a set 

of landmarks to the centroid (i.e. mean x and y coordinate of a set of 

landmarks per individual; see Klingenberg & McIntyre, 1998). As 

asymmetry per se is not of interest in this study, both wing size and 

shape were determined as the average of the left and right wing. 

Eight landmarks were digitised on the ventral wing surface (see Figure 

3.1) in ImageJ v 1.43 (Rasband, 1997-2011). Landmarks were chosen in 

such a way that an overall outline of the wing shape could be obtained 

(Breuker et al., 2010). To remove all non-shape variation, the landmark 

configurations of several individuals were then superimposed. This was 

done in four steps to remove all non-shape variation as follows: 1) 

reflection of either left or right configurations (i.e. so left and right were 

orientated the same way), 2) scaling to unit centroid size (to remove size 

and shape associations), 3) superimposing the centroids of all 

configurations, and finally 4) rotation of the configurations around their 

centroid to obtain the optimal alignment. 
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Figure 3.1 Schematic representation of the positions of the 8 landmarks on 
forewings 

Basal melanisation 
The brightness of the basal part of both upper forewings was used as a 

measure for basal melanisation (Talloen et ai., 2004; Figure 3.2), as this 

area is most likely to be important in thermoregulation (Wasserthal , 
1975). The grey value (the sum of the grey values of all the pixels in the 

selection divided by the number of pixels) of an area of 100 pixels was 

measured. To standardise between the photos, the colour (RGB) was 

first rescaled in Adobe Photoshop (CS5) using the "match colour" 

command (which does not affect brightness), adjusting the colour of 

samples by matching to a standard area of background. To further 

standardise brightness values between samples, a melanisation index 

was calculated as: 

l -(Wing - Black)/(White - Black) 

with Wing = wing measurement, Black = measurement of the black 

background, White = measurement of the white background. All 

measurements were on brightness scale of 0 (black) to 255 (white). 

This adjustment converts absolute values to a proportionate value of the 

total brightness scale for each image and reduces the chance of any 

small changes in lighting conditions affecting brightness estimates of 

wing melanisation. The average index value of left and right wing was 

then taken as a melanisation value for the individual. 
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Figure 3.2 Schematic representation of the forewing of a male P. icarus. The 
colour of the basal part of the wing is measured as the mean grey value of the 
area in the yellow circle (selection brush size 100 pixels). 

Error estimation 

To estimate measurement error the left and right wings of 31 

individuals were photographed and digitised twice (resulting in 4 photos 

or 8 measurements per individual). Measurement error was negligible 

a s the variation between individuals is much larger than between 

imaging or digitising (P < 0.0001; Table 3.2). 

Table 3.2 Error analysis for centroid size, shape and melanisation for 31 
repeated individuals. Imaging error is the error of photographing the wings 
and residual error is the error due to digitising the landmarks. 

SIZE 

Source SS MS (xl02) df F-ratios P-values 
Individual 116.953 389.84 30 67.21 <0.0001 
Imaging error 1.798 5.8 31 5.76 <0.0001 
Residual 1.873 1.01 186 
SHAPE 

Source SS MS (xl06) df F-ratios P-values 
Individual 0.1326 368.27 360 43.52 <0.0001 
Imaging error 0.0032 8.46 372 0.7 1 
Residual 0.0269 12.05 2232 
MELANISATION 

Source SS MS (xl03) df F-ratios P-values 
Individual 3.45963 115.32 30 31.488 <0.0001 
Imaging error 0.16117 5.2 31 1.42 0.082 
Residual 0.6812 3.66 186 
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3.2.3 Analyses 

In order to investigate latitudinal patterns, only butterflies' that had 

experienced larval diapause were used. These are the first generation 

individuals from bivoltine populations (Frog Firle and Bernwood) or 

single generation individuals from univoltine populations (Greenhow 

and Mallaig). Seasonal differences were investigated with the two 
bivoltine populations that were sampled in spring and in summer (Frog 

Firle and Bernwood). Where the butterflies from the two populations 

were not significantly different, they were pooled per generation. 

The factors explaining variation in forewing size and melanisation were 

analysed using general linear models (GLM). Population, generation 

and sex were used as fixed factors. Significant effects were further 

examined with Tukey post hoc tests. To investigate the expected 

latitudinal trends, the analyses were repeated with latitude treated as a 

continuous predictor. For example, at the northern latitudes a smaller 

size and a higher degree of melanisation were expected. All data were 

checked for normality using the Shapiro'Wilk's normality test in R 

2.11.1 (R Development Core Team, 2010). 

Wing shape differences between populations, generations and sexes 

were quantified with Procrustes Distances. This measure is calculated 

as the square root of the sum of squared distances between 

corresponding landmarks of two wing shapes (Klingenberg & McIntyre, 

1998). Discriminant Function (DFA) and Canonical Variate Analyses 

(CV.A) were performed in MophoJ v 1.02d (Klingenberg, 2011) to 

investigate differences in wing shape between the sexes, populations 

and seasons. There is often a relationship between size and shape of 

body parts in animals (Huxley, 1932; Gould, 1966), therefore analyses 

were executed with the residuals of the regression of shape on centroid 

size to remove effects of allometry (Monteiro, 1999). 
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3.3 RESULTS 

3.3.1 Latitudinal variation (overwintering butterflies) 

Size 

Forewing size of overwintering butterflies differed between populations 

and sexes (Population: F3,170 = 8.40, P < 0.0001; Sex: F3,170 = 34.89, P < 

0.0001), but the interaction between population and sex was not 

significant (F3,170 = 2.17, P = 0.094). Without the interaction term both 

population (F3,173 = 7.08, P = 0.0002) and sex (Fu73 = 38.02, P < 0.0001) 

remained significant. Post hoc tests for pairwise differences between the 

populations showed that butterflies from Mallaig had significantly 

larger forewings compared to butterflies from the other three 

populations (Tukey HSD: Bernwood: P = 0.0003; Frog Firle: P = 0.0019; 

Greenhow: P = 0.01; Figure 3.3a), but all other populations did not differ 

(p> 0.5). With latitude treated as a continuous variable, the interaction 

effect between sex and latitude was significant (Fl,174 = 4.33; P = 0.039) 

as well as the main effects oflatitude (F1,174 = 18.78, P < 0.0001) and sex 

(Fl,174 = 5.46, P < 0.021). Females within populations were smaller than 

males (Frog Firle: FUll = 14.22, P < 0.0004; Bernwood: Fl,43 = 17.92, P = 
0.0001; Greenhow: Fl,46 = 8.84, P = 0.0047), apart from Mallaig (Fl,30 = 
1.07, P = 0.308). There was a general increase in size with latitude (r = 
0.063, P = 0.0007, Figure 3.3a), but with the sexes separated (Figure 

3.3b), there was no significant relationship for males (r2 = 0.029, P = 
0.0777), but there was for females (r = 0.196, P = 0.0001). 
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Figure 3.3 Relationship between size and latitude with (A) the sexes together 
and (B) separated. Plot shows means and standard errors for males (blue) and 
females (red). Populations are (from south to north): Frog Firle (LIlt: 50. 7~, 
Bernwood (LIlt: 51. 8m, Greenhow (Lat: 54.0'/), Mallaig (Lat: 56.96). 

Shap e 
The differences in forewing shape between males and females in each 

population are smail, but significant (DFA for each population: P < 0.01 
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after 1000 permutation runs) . Differences are mainly associated with 

landmark 1 and 8, with males having a slightly shorter and pointier 

wing than females (Figure 3.4). 

6 

-----5 

Figure 3.4 Shape differences between males and females. The light-blue shape 
is the average female wing and the dark blue is the average male wing. 
Differences in the internal vein structure are not entirely accurate as no 
internal landmarks were digitised. 

The results of the eVA indicate that there are consistent differences in 

forewing shape between most populations, but that there was no 

difference between butterflies from Mallaig and Frog Fide (Table 3.3). 

The CVA was run with the sexes separately. For both sexes the 

differences between populations were small (Figure 3.5 and 3.6), but 

most pairs were significantly different (Table 3.3). For both Canonical 

Variates, most of the variation in shape was in the wing base and wing 

tip (landmarks 1 and 8; Figure 3.7). The extremes of the shape variation 

along each CV-axis are visualised in Figure 3.7. 
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Table 3.3 Procrustes distances of forewing shape between populations for males 
and females sampled only in spring. The P'values were calculated using 10000 
random permutations: 

BERN FROG GREE 
a Both sexes combined 

FROG 0.0092** 
GREE 0.0100** 0.0069* 
MALL 0.0128"*" 0.0068 0.0080" 

b Males 
FROG 0.0110 ...... 
GREE 0.0086" 0.0087* 
MALL 0.0136**" 0.0083 0.0068 

c Females 
FROG 0.0131" 
GREE 0.0162 ...... 0.009 
MALL 0.0149** 0.0127* 0.0122" 
*P < 0.05, **P < 0.005, .... p < 0.001 

.4+----r--~r_--~---.----r_--~--~ 

-3.0 -2.0 ·1 .0 0.0 1.0 2.0 3.0 4.0 

Canonical variate 1 
Figure 3.5 Scatterplot (CV1 versus CV2) from CVA of forewing shape of first 
generation males from the four sampled populations. 
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Figure 3.6 Scatterplot (CVl versus CV2) from CVA of forewing shape of first 
generation females from the four sampled populations. 
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Figure 3.7 Differences in forewing shape associated with CVl (a and c) and 
CV2 (b and d) for the four populations sampled in spring for males (a and b) 
and females (c and d). The difference between the light-blue and dark-blue 
shape indicate the shape differences along the CV. 
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Basal melanisation 
The forewing basal melanisation of overwintering butterflies differed 

between populations and sexes (Population: F3,179 = 5.22, P = 0.0018; 

Sex: Fl,179 = 493.00, P < 0.0001), and the pattern differed between males 

and females as shown by a significant interaction between population 

and sex (F3,179 = 3.31, P = 0.021). In each population forewings of male 

butterflies were lighter than those of females (Tukey HSD for all pairs: 

P < 0.0001). Male butterflies from Mallaig differed in basal forewing 

melanisation from all other populations (Tukey HSD: Bernwood: P < 

0.0001; Frog Firle: P = 0.008; Greenhow: P = 0.0093). In female 

butterflies there was only a significant difference between Greenhow 

and both Bernwood and Frog Firle (Tukey HSD: Bernwood: P = 0.0374; 

Frog Firle: P = 0.0026). With latitude treated as a continuous variable , 
the interaction with sex was not significant (Fl,183 = 0.192, P = 0.662). 

With the interaction removed, both sex and latitude were highly 

significant (Sex: Fl,184 = 514.57, P < O.OOOI; Latitude: Fl,184 = 12.60, P = 
0.0005; Figure 3.8). Male forewing basal melanisation was weakly 

correlated with latitude (r2 = 0.089, P = 0.0019), but for females this 

relationship was not significant (r2 = 0.043, P = 0.065). 
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Figure 3.8 Variation in melanisation of forewings along a latitudinal cline. The 
mean melanisation index for both males (blue) and females (red) is shown with 
standard errors. Populations are (from south to north): Frog Firle (Ln.t: 50. 7~, 
Bernwood (Ln.t: 51.8{}), Greenhow (Ln.t: 54.01), Mallaig (Ln.t: 56.96). 
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3.3.2 Between generations 

Size 

Between generations, forewing size did not differ between populations 

for either sex and these populations were pooled per generation for 

subsequent analysis. Both male and female butterflies were 

significantly bigger in spring compared to summer (one-way ANOVA, 

Males: Fl.147 = 84.16, P < 0.0001; Females: FI,88 = 27.35, P < 0.0001; 

Figure 3.9). 
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Figure 3.9 Boxplot representing the differences in forewing size between spring 
and summer generations. Boxplots show median, quartiles and extreme values 
for each generation. 

Shape 

Discriminant analyses showed that within generations, shape varied 

significantly between populations for both sexes (Table 3.4a). Therefore, 

the analysis was done for the two populations separately. Differences 

were very small, but significant (Table 3.4b). Although the differences 

are not large, in every generation and location males had slightly more 

angular wings than females, this angularity being most pronounced at 

the wing apex. At the two sites individuals of each sex also had 

narrower wings in the first generation than the second. Individuals of 
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both sexes from Bernwood also had slightly more angular wings than 

corresponding individuals from Frog Firle (Figure 3.10). 

Table 3.4 Forewing shape differences for spring and summer generation 
butterflies as expressed by Procrustes distances. The P-values were calculated 
using 10000 random permutations. 

Pair Procrustes distance P 
a Differences within a generation between populations 

FROG1 , F-BERN1 , F 0.0126 * 
FROG2, F - BERN2, F 0.0077 0.075 
FROG1 , M - BERN1, M 0.011 *** 
FROG2, M - BERN2, M 0.0083 **** 

b Differences between generations within a population 
BERN 1, F - BERN2, F 0.0139 **** 
FROG1 , F - FROG2, F 0.01 • 
BERN1 , M - BERN2, M 0.0166 **** 
FROG1 , M - FROG2, M 0.0131 **** 
*P < 0.05, **P < 0.01, ***P < 0.005, **** P < 0.0001 

a c 

b d 

Figure 3.10 Differences in forewing shape for the DFA analysis between first 
and second generation males (a and b) and females (c and d) for Frog Firle (a 
and c) and Bernwood (b and d). The dark-blue shape is the average shape of 
spring generation butterflies; the light-blue shape represents the average 
shape of summer generation butterflies. 
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Melanisation 

There was a significant effect of sex, but not of population, . on basal 

melanisation (Two-way ANOVA, Sex: Fl,240 = 581.06, P < 0.0001; 

Population: F3,24o = 0.38, P = 0.765). In both generations and populations 

males were lighter than females (Tukey HSD: P < 0.0001, Figure 3.11) . 

Spring males from Bernwood had lower forewing basal melanisation 

(brighter) compared to summer males (Tukey HSD: P < 0.05), but this 

difference was not found in Frog Firle or for females from either 

population (p > 0.05). There was no difference in melanisation between 

the populations within a generation, and therefore populations were 

pooled per generation. A two-way ANOVA with Generation as a factor 

showed no difference in forewing melanisation between generations 

(Generation: Fl,240 = 0.091, P = 0.764; Sex: Fl,240 = 585.51, P < 0.0001; 

Figure 3.11). 
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Figure 3.11 Boxplot representing the differences in melanisation between the 
generations for two populations sampled in spring and summer. Boxplots show 
median, quartiles and extreme values for each generation. 
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3.4 DISCUSSION 

There were different patterns for males and females in the latitudinal 

variation of size and melanisation. Despite the small number of 

populations, the latitudinal "saw-tooth" pattern in size (See Figure 1.1 

from Roff, 1983) was found for females, but not for males. However, in 

the most northern latitudes, in Scotland, butterflies were larger than in 

any of the more southern populations. Males were the overall larger sex 

and butterflies that have experienced larval diapause are larger than 

directly developing butterflies, which agrees with earlier observations 

(Tolman & Lewington, 1997). There was a trend of increasing basal 

melanisation of the forewings with latitude for males, with Scottish 

male butterflies being darker than the other populations, but not 

females. Females in a north-English population (Greenhow) were 

darker than the two southern populations. Overall, there were no 

seasonal patterns in basal melanisation of the forewings. Males had 

slightly shorter and more pointed wings than females, combining 

efficient flight with high manoeuvrability (Betts & Wootton, 1988). 

There were small but consistent differences in wing shape between 

populations and generations but whether this variation has functional 
implications is yet to be investigated. 

3.4.1 Size 

Forewing size of P. icarus varied largely in accordance with what was 

expected from theoretical models with respect to latitude and generation 

number. Despite the low number of sampling sites, the saw-tooth 

pattern, as predicted by Roff (1983), can be seen in females, but not in 

males. The shift from a bivoltine to a univoltine life-cycle in the British 

Isles is located around Greenhow (latitude: 54°), where this species is 

univoltine above 300 m and bivoltine in an adjacent valley below 60 m. 

For logistic reasons, the lowland bivoltine populations could not be 

sampled. The pattern found in this study is similar to that found by 

Nygren et a1. (2008), but the shift in voltinism in Britain is a few 

degrees in latitude lower than in Sweden, where it is around 60°. This 
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shift might be related to overall energy inputs. The British Isles have a 

more cloudy Atlantic climate- than Sweden and thus at any given 

latitude average solar radiation loads will be lower in the former. This 

could reduce overall temperature and effectively shift latitudinal 

gradients southwards. As a result of the negative relationship of season 

length with latitude (see Chapter 1), butterflies in the most northern 

population (the shortest season) were expected to be the smallest. 

However, female butterflies were much larger than those in the other 

three populations and for males there was a non· significant trend for 

larger size in Scotland (Figure 3.3). This increase in size in extreme 

northern latitudes was also found by Nygren et a1. (2008). In line with 

the saw-tooth pattern, this could be the result of a 2-year life-cycle 

(Nylin & Svard, 1991; Wipking & Mengelkoch, 1994; Johansson, 2003). 

Another possibility is that the warm gulfstream in NW Scotland 

produces a longer growing season. 

Male butterflies usually emerge before females (protandry), a strategy 

which usually follows from a shorter development time and hence 

smaller size (Wiklund et ai., 1991; Zonneveld, 1996). Males in this 

study, however, were all larger than females, apart from those from 

Mallaig (Figure 3.3). The lack of a trade-off between development time 

and size might be explained by an early break from diapause by males, 

resulting in equal (or even longer) development times compared to 

females. It is remarkable that the sizellatitude relationship is much 

stronger for females than for males resulting in females growing almost 

as large as males in the most northern latitudes. This pattern of sexual 

size dimorphism is not unusual for this species. Leimar (1996), using 

laboratory stocks of this species reared in different photoperiods, found 

that males, not females, were the more variable sex. Males grew to a 

smaller size with shorter development times, but females had no 

variation in their final adult size. In female butterflies there is usually a 

strong relationship between size and fecundity (Karlsson & Wickman, 

1990), therefore it can be expected that there might be selection against 

rapid female development. This study is based on field samples, where 
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different environmental factors interplay. The fact that females are 

smaller and more variable in their size suggests that they are less 

capable of dealing with the interaction of photoperiod, temperature and 

other environmental variables compared to males. However, body size 

(or weight) was not taken into account in this study. In the case that 

there is no allometric relationship between wing size and body weight 

and female butterflies develop similar body sizes throughout the British 

Isles, then the increase in wing size implies a lower wing loading. This 

could mean an advantage in colder climates, as a lower wing-beat 

frequency is needed with a lower wing loading and this allows for a 

more efficient flight at low temperatures (Casey & Joos, 1983). 

Seasonal variation in size was considerable. Both males and females 

were smaller in summer, compared to butterflies of the first generation 

(Figure 3.9), a pattern previously found in this and other species 

(Tolman & Lewington, 1997; Van Dyck & Wiklund, 2002; Fric et a1., 
2006). This pattern could be a consequence of the combination of end-of-

season cues (Leimar, 1996) and higher development temperatures, 

promoting a faster growth and therefore a smaller size of summer 

emerging butterflies (Stearns & Koella, 1986; Nylin & Gotthard, 1998). 

Alternatively, larger spring butterflies could be linked with a relatively 

more important dispersal strategy of the first generation butterflies 

(Windig & Lammar, 1999; Fric & Konvicka, 2002; Fric et a1., 2006). In 

Araschnia levana for instance, summer generation butterflies are 

heavier and have larger wings and this has been linked experimentally 

with dispersal (Fric & Konvicka, 2002). Although P. icarus is not 

generally described as a mobile species (Emmet & Heath, 1989; Asher et 

ai., 2001), it quickly colonises newly created habitat. If flight capacity is 

related to size, then in bivoltine populations it may be the spring 

emerging butterflies which play the greatest role in dispersal. 

3.4.2 Shape 

The differences in forewing shape between males and females across all 

sites most probably are linked to general sexual differences in 
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behaviour. Males are more active and the shorter, more pointed wings 

. allow for a more agile flight combined with high efficiency (Betts & 

Wootton, 1988). Females usually fly more steadily with longer flights, 

looking for suitable egg-laying sites (Berwaerts et al., 2008). This kind 

of flight is promoted by longer, less pointed wings, as was found for 

females in this study. Similar wing shape differences between sexes 

have previously been linked with behaviour in other butterfly species 

(e.g. Van Dyck & Wiklund, 2002 for P. aegeria; Breuker et a1., 2007 for 
M cinxia). 

Spring generation butterflies had slightly narrower wings, which are 

generally associated with butterflies that fly longer distances, a 

behaviour often termed 'patrolling' (Betts & Wootton, 1988; Van Dyck et 
a1., 1997a). In a previous study, P. icarus was found to fly in longer 

flight bouts in spring compared to summer butterflies (Howe, 2004). 

This study now demonstrates that these behavioural differences might 

be related to wing morphological differences. However, the wing shape 

differences found in this study are extremely small and the theoretical 

interpretations of wing shape variation do not always translate very 

easily to differences in mobility in the field (Baguette et al., 2000; 
Merckx & Van Dyck, 2002). Whether small wing shape variation in P. 

icarus can influence its flight still remains to be experimentally tested. 

3.4.3 Melanisation 

The basal melanisation of females is always greater than of males 

because of the colour dimorphism in this butterfly (males are blue, most 

females are brown). An increase in melanisation with latitude was as 

expected on the basis of previous studies (Watt, 1968; Guppy, 1986; 

Ellers & Boggs, 2002; Ellers & Boggs, 2004; Roland, 2006; Clusella o 

Trullas et a1., 2007). This relationship was found for males, but was 

weak. In the most northern population (Mallaig), there was a 

significantly higher degree of basal melanisation compared to the more 

southern populations. This population is close to the coast, which 

implies stronger winds and potentially more convective cooling than 

inland. Additionally the higher activity levels of males may cause even 
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more convective cooling and therefore males may spend a large 

proportion of.the day basking (Gilchrist, 1990). Darker coloured wings 

can be an advantage in these situations, because of the faster heating 

rate of individuals with greater wing melanisation (Watt, 1968; 

Kingsolver, 1996; Clusella-Trullas et ai., 2007). However, because P. 
icarus may also adopt a reflectance basking strategy (Shreeve, 1992) 

and because of the relatively weak relationship of basal melanisation 
with latitude for both males and females, the function of melanisation in 

this butterfly is not entirely clear. Mechanistic studies of heating rates 

(see Chapter 4) suggest that basal melanisation is not important for 

thermoregulation in P. icarus. 

The seasonal pattern does not follow the general trend known for other 

butterflies (Kingsolver & Wiernasz, 1991; Kingsolver, 1995; Stoehr & 

Goux, 2008). There was no difference in wing melanisation between 

spring and summer generation butterflies. This is surprising 

considering the predictable weather differences between spring and 

summer (Howe, 2004; Howe et al., 2007). It is possible that other factors 

that have not been measured vary seasonally in this butterfly. The 

number of hairs for insulation or the colour of the thorax for instance 

has previously been linked to thermoregulation (Van Dyck et ai., 1998) 

and these traits could vary seasonally. Another possibility again is that, 

because of the small size of the butterfly, variation in melanisation does 

not have a major effect on heating rates (see Chapter 4). 
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3.5 INTEGRATION . 

Polyommatus icarus shows considerable variation within and between 

populations in wing size, shape and colour. There is a sexual 

dimorphism in the three traits measured: females are usually smaller 

than males, have longer wings and a higher degree of basal 

melanisation compared to male butterflies. This could be related to 

behavioural differences between the sexes: males usually bask for 

shorter periods than females and spend longer times on the wing (Howe, 

2004). Large bright wings could facilitate reflectance basking for males; 

a smaller size and darker colour is beneficial for fast heating in dorsal 

basking females. However, because of the lack of seasonal variation in 

basal melanisation it is possible that in a small butterfly, like P. icarus, 

basal wing colour is not extremely important for thermoregulation (see 

Chapter 4). Butterflies from the Lycaenidae have previously also been 

described as body baskers (Kingsolver, 1985a), and this also could 

explain the relatively weak geographic pattern in melanisation. The 

wings then merely serve as a means to minimise convective cooling by 

shielding the body from the wind (Heinrich, 1990). 
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Chapter 4 . Thermal characteristics of 

Poiyommatus icarus butterflies 

4.1 INTRODUCTION 

Butterflies in temperate climates usually have to elevate their body 

temperatures above ambient temperature in order to become active (e.g. 

flying to search for food, mates and escape predators; Clench, 1966; 

Kingsolver, 1983; Roland, 1982; Watt, 1968). The suitable body 

temperature is usually limited around a narrow optimal range and 

usually lies between 30°C and 40°C (e.g. Kingsolver, 1983; Shreeve, 

1984; Kingsolver, 1985b; Rutowski et 81., 1994) and thermoregulation 

helps an individual to reach and maintain this temperature (Huey & 

Stevenson, 1979). This suitable temperature is often lower for male 

butterflies than for females (Gilchrist, 1990; Berwaerts & Van Dyck, 

2004; Merckx et al., 2006), which is probably related to sexual 

differences in flight behaviour: males usually show a more active flight 

than females and whether they perch or patrol for flight their chance of 

finding a mate will be enhanced if flight ability is maximised. One way 

of achieving this is to have a low optimal temperature. 

Butterflies can achieve their required body temperature by selecting a 

sunlit patch and orienting the body in a particular direction to the sun 

while adopting a specific wing posture (basking) (Kammer & Bracchi, 

1973; Kingsolver, 1985a; Dennis & Shreeve, 1989). Basking posture is 

related to basking method (see Chapter 1). Heating and cooling 

processes can further be influenced by the physical properties of the 

wings (Wasserthal, 1975; Van Dyck & Matthysen, 1998; Ellers & Boggs, 

2004; Roland, 2006 and also see Chapter 1). Generally, absorbance 

basking (dorsal and lateraD benefits from darker coloured wings to heat 

up faster; reflectance baskers heat up faster with lighter coloured wings. 

Darker coloured males of Pararge aegeria heat up faster than lighter 

coloured individuals, but their take-off temperature does not differ (Van 

Dyck & Matthysen, 1998). This suggests that adaptations in terms of 
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heating and cooling only help obtaining or maintaining the optimal body 

temperature, but do not necessarily influence the activity threshold 

temperature. Within the Lycaenidae dorsal basking is the most 

dominant strategy, but reflectance basking (Shreeve, 1992) and also 
body basking (Kingsolver, 1985a) have been described. 

The maximum temperature reached is a balance between heat gained 
from basking and endothermic heat production and heat loss through 

convection (Kingsolver, 1985a). Because of the lower surface to volume 

ratio, larger bodies will suffer less from convective cooling and can reach 

a higher body temperature. Smaller butterflies on the other hand, can 

heat up faster, but they are less thermally stable (Heinrich, 1986a; 

Kemp & Krockenberger, 2004). This means that small butterflies have 

to build up a heat"reserve in order to prolong flight duration (Heinrich , 
1986b). However, by choosing appropriate microclimate sites and 

behavioural strategies, the constraints of body size on activity and body 

temperature can be minimised (Angilletta et ai., 2003; Gilchrist, 1990; 

Heinrich, 1986b; Howe et a1., 2007). 

Common blue (Po1yommatus icarus) butterflies differ in the body 

temperature they need in order to become active. Populations in a colder 
climate (northern Scotland) initiate flight when their body temperature 

reaches on average 25.6°C (Howe et aI., 2007). These body temperatures 

at flight initiation are much lower than for individuals from a more 

southern population (i.e. 30°C - 32°C; central England) (Howe et a1., 
2007). However, these differences are strongly correlated with the 

temperature at the basking site (Howe, 2004), suggesting that this 

variation might be the consequence of the available ambient 

temperatures. 

This chapter investigates whether basking position, wing colour 

differences and body size (weight) influence heating and cooling. 

Investigating the effects of basking postures and physical properties in 

this butterfly on the heating and cooling processes will then allow 
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placing the behavioural (Howe, 2004) and morphological (Chapter 3; 

Howe, 2004) variation of P. icarus in the field in an ecological context. 

Behavioural and morphological mechanisms to reduce cooling can help 

an individual to maintain a suitable body temperature during cloudy 

spells. To investigate whether butterflies have additional mechanisms 

(e.g. physiological mechanisms, not determined by the physical 

properties) to enhance heating or reduce cooling, heating and cooling 

rates of live and dead specimens are compared. The take"off 

temperature of an individual is defined here as the body temperature at 

which an individual voluntarily takes off (Howe, 2004). This is an 

important trait as it determines how long an individual needs to bask 

for before this temperature is reached. 

This chapter tests three specific hypotheses: 

(1) Individuals of P. icarus with an open wing basking posture will 

heat up faster than individuals with the wings closed. Cooling 

rates on the other hand will be fastest in individuals with open 

wings as they may be the most liable to convective cooling. 

(2) Individuals with darker coloured wings will heat faster than 

lighter coloured individuals. Because of the sexual colour 

dimorphism, females are expected to have a faster heating rate 

than males. 

(3) Males will take"off with a lower body temperature than females, 

because the suitable body temperature for activity is generally 

lower in male butterflies. 
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4.2 MATERIAL & METHODS 

4.2.1 Heating and cooling with dead specimens 

Butterflies were reared in the lab from eggs collected in different field 

sites in the UK (Frog Firle, Bernwood, Greenhow and Mallaig; see 

Chapter 2 for details of the sites and of rearing conditions). Because 

there is no behavioural or genetic component in this experiment, 

butterflies were treated as originating from one large population. 

Freshly thawed dead individuals (killed after wing drying on eclosion) 

were weighed to the nearest 0.001 g prior to testing (HR-120-EC, A&D 

Instruments). Heating and cooling rates were measured by inserting 

specimens in a frame in which the butterfly body could be held in place 

with nylon lines (Figure 4.2a). This frame allowed manipulation of 

different basking positions (basking position1: 0° = closed wings, 

representing non-basking; basking position 2: 90° = partially opened 

wings representing 'reflectance basking'; basking position 3: 180° = fully 

opened wings, representing dorsal basking; Figure 4.2b). 

a b 

BP1 

BP2 

----;0....--- BP3 

Figure 4.1 Frame with Common blue male with partially opened wings 
(basking position 2). The thermoprobe (front) is inserted in the thorax and held 
in place by a strap (a). Schematic representation of the three basking positions 
(b). 

The frame with the butterfly was then placed under 2 halogen lamps 

(Halogen 500 Watt, NRl046l, Philips Lighting, 5600VB Eindhoven, The 

Netherlands) placed 0.8 m above the frame in a constant temperature 
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room kept at 20 (±1) °C. The lighting conditions resulted in an average 

radiation load of 400 Wm-2, measured at body height. Body temperature 

of the butterflies was measured by inserting a thermocouple (Type K, 

0.04 mm diameter) into the thorax, attached to a Physitemp BAT-12 

digital thermometer. The initial temperature was read and further 

readings were made every 5 seconds for a period of 5 minutes. This time 

was chosen because most basking durations in the field for this butterfly 
are between 1 and 300s (Howe, 2004). The initial body temperature was 

as close to 20°C as possible before transferring the butterfly from the 

shade to the lamp-lit area. To exclude the error caused by transferring 

the frame with the butterfly from the shaded area to the area under the 

lamp, the first temperature reading was excluded. Mter measurements 

of warming, the frame with the butterfly was placed in the shade and 

the cooling rate was measured by recording the body temperature every 

5 seconds for 5 minutes. Heating and cooling rates of 45 individuals (21 

females, 23 males) were measured in the three different wing positions 

(in random order) for every individual in one sequence in order to avoid 

increasing the measurement error and damage to the specimen caused 

by inserting the thermocouple three different times. Ambient 

temperature and light intensity was measured with a Datahog2 data 

logger (Skye Instruments Ltd.). Under the lights, temperature was 23.9 

(± O.S) °C and in the shade it was 19.8 (± 0.5) °C. Light intensity was on 

average 405.2 (± 6.7) W/m2• Mter testing, the wings of the butterflies 

were removed and photographed and the melanisation of the basal part 

of the forewing was measured. Details of the photographic techniques 

and methods of recording wing melanisation are given in Chapter 3. 

4.2.2 Heating and cooling with live specimens 

Live butterflies were used from the Frog Firle stock population reared 

at 20°C (L16DS). Within 24 hours of eclosing, adult butterflies were 

transferred to paper envelopes and weighed. The protocol is similar to 

that of dead butterflies, except that specimens were only tested in 2 

basking positions (BPI and BP3; Figure 2b) and that body temperature 

was monitored for only 2 minutes, as most of the heating process was 

found to happen in this period from studies of dead butterflies. Wing 
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measurements for these samples could not be used because of the 

relatively high degree of wing damage after testing live individuals. 17 

individuals were tested (12 females, 5 males). 

4.2.3 Take-off experiment 

Female butterflies were collected in spring in two successive years in 

Frog Firle (2009 and 2010) and Bernwood (2010) (see Chapter 2 for 

details of sites) and allowed to lay eggs on potted host plants in the lab. 

Caterpillars were reared at 20°C (±1) °c and 16:SLD in 2009 and at 

20°C (±1) °c and 19:5LD in 2010. Every morning, butterflies were 

transferred to paper envelopes and weighed within 24h of eclosing. On 

the same day, they were cooled down to 4°C for 20 minutes prior to 

testing and kept cool till the start of the experiment. The specimen was 

then transferred, without touching the butterfly itself, to a matt green 

surface (to prevent reflection from the lab bench surface) beneath 2 

halogen lamps (see above). At take-off, the butterfly was immediately 

captured with a small net and body temperature was measured by 

inserting a thermocouple (Type K, 0.04 mm diameter) through the net 

into the thorax without manual handling of the individual. For 

consistency of the results, only readings made within 3s after netting 

were retained (Heinrich, 1986a). Mter testing, 36 male butterflies were 

frozen (-SO°C) for enzyme analysis. Allozyme electrophoresis and scoring 

was performed as described in Chapter 5. Three glycolytic enzymes were 

analysed (G6PDH, PGI, PGM) and these were labelled with either 

presence or absence of each common allele. In 2010, the ambient 

temperature next to the butterfly body was also read together with the 

body temperature at take off. In 2009,31 males and 18 females from one 

population (Frog Firle) were tested. In 2010, butterflies from 2 

populations (Frog Firle (12 males, 9 females) and Bernwood (7 males, 3 

females) were tested. 

4.2.4 Analyses 

Heating and cooling rate were taken from the slope of the regression 

between log (time) and body temperature for individual butterflies (Van 
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Dyck & Matthysen 1998). Maximum body temperature, heating and 

cooling rates were analysed using -general linear models (GLM). The 

effect of sex was investigated by fitting a model including sex and 

individual nested within sex, using the latter as the error term. The 

effect of basking position was investigated by fitting a GLM model with 

sex, individual nested within sex and basking position using the 

interaction between basking position and individual as the error term. 

The influence of the measured individual traits was investigated by 

fitting a GLM with sex and basking position and either weight, wing 

size or wing melanisation as covariates. Quantitative comparison of the 

models showed whether any of these traits explained more variation 
than individual. 

Take-off temperatures were investigated using GLMs with sex, weight 

and population of origin as variables. The dataset was collected over 

different years (2009, 2010) and analyses were done on the datasets 

separately first before combining the data. In the 2010 dataset ambient 

temperature next to the butterfly was measured and incorporated as 

covariate in the model. The subset for enzyme analyses was taken 

across these two datasets and for the GLM one allele of each enzyme 
was incorporated separately together with weight. 

All data were checked for normality using the Shapiro-Wilk's normality 

test in R 2.11.1 (R Development Core Team, 2010). 
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4.3 RESULTS 

4.3.1 Maximum body temperature of dea d specimens 

Male butterflies reach a higher body temperature in all three basking 

positions than female butterflies (Fl,42 = 13.1, P = 0.04). There was a 

highly significant effect of basking position on the maximum body 

temperature butterflies could reach (F2,86 = 998.8, P < 0.0001). The 

highest maximum temperature was reached with fully opened wings 

and the lowest with closed wings (Figure 4.2). 
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Figure 4.2 Maximum body temperatures for the three different basking 
positions for males and females. Boxplots show median, quartiles and extreme 
values for each basking position. 

Three separate models with sex and basking position and each covariate 

were tested. Weight and wing size had a significant positive effect on 

maximum body temperature (weight: Fl,127 = 14.17, P = 0.005; wing size: 

FI,127 = 31.40, P < 0.0001), but not wing melanisation (Fl,127 = 0.31, P = 
0.683). 
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However, the model with only individual and basking position (model 1) 

explained significantly more variation than the model with any of the 

covariates (model 2) (Table 4.1). This means that the variation in 

maximum body temperature reached after 5 minutes is not accounted 

for by any of these three measured traits alone, but could be due to a 

combination of these factors. 

Table 4.1 Comparison of model 1 with a model including sex, basking position 
and one of the measured individual traits (weight, size or melanisation). 
Trait SS (model 1) SS (model 2) df 1 df 2 df (den.) F ditto P 
Weight 2175.5 2022.29 45 4 86 2.87 <0.0001 
Size 2175.5 2030.05 45 4 86 2.73 <0.0001 
Melanisation 2175.5 2001.21 45 4 86 3.27 <0.0001 

4.3.2 Heating rates ofdead specimens 

There were no differences between the sexes in heating rates for dead 

individuals (FI.42 = 7.41, P = 0.081). Basking position was highly 

significant (F2,86 = 414.15, P < 0.0001) with a higher heating rate the 

more opened the wings were (Figure 4.3). 
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Figure 4.3 Heating rates of butterflies in the three basking positions. Boxplots 
show median, quartiles and extreme values for each basking position. 
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Of the individual traits, only wing SIze had a significant effect on 

heating rates (FJ,127 = 4.74, P = 0.042). ·None of the three models with 

the individual traits explained more variation than the model with only 

ID (Table 4.2). This means that the variation in heating rates is not 

down to any of these three measured traits alone, but that the 

individual variation (the combination of traits) is of a larger influence. 

Table 4.2 Comparison of model 1 of heating rates (Table 5) with a model 
including sex, basking position and one of the measured individual traits 
(weight, size or melanisation). 
Trait SS (model 1) SS (model 2) df 1 df 2 
Weight 518.69 422.43 45 4 
Size 518.69 421.46 45 4 
Melanisation 518.69 415.79 45 4 

4.3.3 Cooling ra tes 

df (den.) 
86 
86 
86 

F diff. P 
3.98 <.0001 
4.02 <.0001 
4.25 <.0001 

There was no difference between the sexes in cooling rates (F1,42 = 4.37, 

P = 0.284). Wing position was significant (F2,86 = 4.74, P = 0.011). Post 

hoc Tukey tests showed that the only significant difference was between 

basking position 2 and 3 (Figure 4.4). 
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Figure 4.4 Differences in cooling rates between the three basking positions. 
Boxplots show median, quartiles and extreme values for each position. 

The comparison of the model including only individual and basking 

position with a model including the individual trait (weight, wing size or 
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melanisation) , none of these traits explained more variation than the 

model which takes all three into account (Table 4.3). This means that 

the variation in cooling rates is not due to anyone of these three 

measured traits alone. 

Table 4.3 Comparison of model 1 of cooling rates (Table 5) with a model 
including sex, basking position and one of the measured individual traits 
(weight, size or melanisation). 

Trait SS(modeI1) SS(modeI2) df1 df2 df(den.) Fdiff. P 
Weight 169.93 14.17 45 4 86 3.80 <.0001 
Size 169.93 12.72 45 4 86 3.83 <.0001 
Melanisation 169.93 20.41 45 4 86 3.65 <.0001 

4.3.4 Live and dead butterflies: comparIson - Maximum body 
temperature 

There was a significant effect of status (alive or dead) on maximum body 

temperature reached (Fl,59 = 950.85, P < 0.0001). There was no 

significant effect of sex in the complete dataset (live and dead 

individuals together) (Fl,59 = 2.72, P = 0.105). Dead butterflies reached a 

much higher temperature than live ones (Figure 4.5). 

There was a highly significant effect of basking position (F) ,6o = 1561.02, 

P < 0.0001) with both live and dead butterflies reaching the highest 

body temperatures with their wings fully spread (Figure 4.5). 
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Figure 4.5 Maximum temperatures for dead (<1) and live 0) butterflies with 
wings closed (1) and open (3). Boxplots show median, quartiles and extreme 
values for each position. 

4.3.5 Live and dead butterflies: comparison - Heating and cooling 

rates 

There was no significant effect of sex on either heating or cooling rates 

(Heating: Fl.59 = 2.56, P = 0.115; Cooling: Fl.59 = 0.67, P = 0.418) . Status 

(alive or dead) had a significant effect on heating rates (Fl.59 = 210.45, P 

< 0.0001) , but not on cooling rates (Fl.59 = 0.06, P = 0.808): dead 

butterflies heat up faster than live ones (Figure 4.6). 
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Figure 4.6 Heating rates for dead (d) and live (]) butterflies with wings closed 
(1) and open (3). Boxplots show median, quartiles and extreme values for each 
position. 

There was a significant effect of basking position on heating rates (FI ,GO 

= 494.28, P < 0.0001), but not on cooling rates (Fl ,60 = 0.46, P = 0.498) . 

Butterflies with their wings fully opened (basking position 3) had higher 

heating rates than butterflies with their wings closed (Figure 4.6). 

4.3.6 Take-offexperiment 

There was no effect of sex, weight or population on take-off temperature 

in either the 2009 or 2010 dataset when analysed separately. Butterflies 

reared in 2009 were heavier than butterflies from 2010 (Fl,lOo= 4.58, P < 

0.05; see also Chapter 6) and with the two datasets together there was a 

significant effect of weight on take-off temperature: heavier butterflies 

took off with a lower body temperature (F),IOO = 4.87, P < 0.05; R2 = 
0.046). In the 2010 dataset there was a strong positive correlation 

between take-off temperature and ambient temperature (R2 = 0.356, P < 

0.0001). This correlation differed from an isothermal correlation, i.e. 
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excesses In body temperature were lower at higher ambient 

temperature, suggesting thermoregulation before take-off (Figure 4.7). 
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Figure 4.7 Relationship between ambient temperature and take-off 
temperature for butterflies tested in 2010. 

In the subset with the enzymes there was a significant effect of both 

butterfly weight and PGI allele b (See Chapter 5 for allele details) on 

take-off temperature (weight: FI, 33 = 10.22, P < O.OL PGI b: FI, 33 = 5.51, 

P < 0.05). Individuals with allele b (4 individuals in this dataset) took 

off with a higher body temperature; heavier individuals had a lower 

take-off temperature. No other alleles had any effect on take-off 

temperature (P > 0.05 in all cases). 
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4.4 DISCUSSION 

Both male and female P. icarus can reach higher body temperatures the 

more opened the wings are, as was expected. In P. icarus there is a 

sexual colour dimorphism: males have blue upper wing colouring and 

females can vary from brown to nearly completely blue upper wing 

colouring (Emmet & Heath, 1989; Frohawk, 1934; Howe, 2004). The 

darker coloured females, which have more basal melanisation (see 

Chapter 3) were therefore expected to reach a higher body temperature 

as increased wing melanisation in butterflies generally is related to 

higher body temperatures (Kingsolver, 1996; Ellers & Boggs, 2004; 

Clusella-Trullas et ai., 2007). However, males reach a higher final body 

temperature than females. This suggests that wing melanisation does 

not playa large role in the maximum body temperature this butterfly 

can obtain. Male P. icarus butterflies generally are larger than females 

(Chapter 3; Howe, 2004) and the higher temperature reached by males 

could therefore be a mere consequence of their larger size. This is 

further confirmed by a lack of effect of wing melanisation on maximum 

temperature, but a significant effect of both weight and wing size. 

However, none of the measured traits explained more of the variation in 

maximum temperature than the model that treated the characters 
together. 

The fastest heating rates and highest maximum body temperatures 

were reached with wings fully spread. There was no influence of 

individual morphological characteristics in this basking· posture, 

suggesting that fully opening the wings is only a means to expose the 

body to solar radiation. Because of the small size of P. icarus butterflies, 

it is possible that their bodies very readily heat up without additional 

mechanisms. Indeed, previously it has been documented that body 

temperature in this species in the field is tightly correlated with the 

ambient temperature of the basking spot (Howe et al, 2007), making 

microsite choice for basking most important for reaching an optimal 
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body temperature. Because of the smaller size, these butterflies can 

heat up quickly, but will also cool down more rapidly (higher exchange 

rate of heat with environment for smaller bodies). Behavioural 

mechanisms could therefore be of more importance than the physical 

properties of P. icarus and the wings may simply serve as convection-

reducing devices in the thermoregulation process. This is further 

supported by lower cooling rates with the wings fully spread than with 
the wings closed or half-open. The most likely explanation is that 

opening the wings keeps warm air trapped between the basking 

substrate and the wings and body, thereby slowing down the cooling 

process. Trapping hot air under the wings has previously been identified 

as a thermal mechanism (Kemp & Krockenberger, 2002), and this is 

provides another explanation for the weak relationship between 

melanisation and heating rate. In order to heat up or stay warm, P. 

icarus keep their wings fully spread; to cool down or avoid overheating, 

they should rest with their wings closed. This closed wing posture has 

been observed in the field at high temperatures (Howe, 2004). 

There were no strong differences in the heating and cooling rates of live 

and dead individuals. Dead individuals had an overall faster heating 

rate and higher body temperature, which is possibly a mere 
consequence of the more dehydrated state of these specimens compared 

to live butterflies. Wasserthal (1975) observed a similar pattern in dried 

butterflies compared with fresh specimens. These results suggest that 

P. icarus butterflies do not posses additional physiological mechanisms 

to enhance heating or reduce cooling. The lack of physiolOgical 

mechanisms is further supported by the enzyme analysis: only one rare 

allele in PGI affected the take "off temperature and the presence of this 

allele in the field is not related to habitat temperature (see Chapter 5). 

Therefore, as in most butterflies, behavioural thermoregulation is the 

most important factor in reaching a suitable body temperature in this 

butterfly. 

Males are usually expected to be able to fly at lower temperatures 

because of their lower wing loading compared to females (Berwaerts & 
Van Dyck, 2004; Gilchrist, 1990; Merckx et 81., 2006). However, the 
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sexual differences in ability to fly at lower temperatures are not 

reflected in the take-off temperatures. In the field there are no sexual· 

differences in take-off temperatures in P. icarus (Howe, 2004) and they 

did not appear in this lab experiment either. There was a strong 

relationship of take-off temperature and temperature next to the body, 

again suggesting that microhabitat choice is the most important factor 

in determining the body temperature of small butterflies. The air 
temperature in the room was kept constant at 20 (± 1) oC, but 

temperature next to the butterfly reached 26.4 (± 2.5) °C. It is possible 

that in this experimental set-up, with high ambient temperatures and 

minimal airflow, individual differences in take-off temperature are 

minimised. 

The trait measured here was voluntary flight and this differs from flight 

at sub-optimal temperatures. Even if males are able to start flying at 

lower temperatures, they might not do so if there is no incentive to 

initiate flying. It is possible that sexual differences arise in other flight 

performance traits such as flight at sub-optimal temperatures or flight 

duration (Gilchrist, 1990; Merckx et a1., 2006). Butterflies reared in the 

different years differed in weight because of the difference in 

photoperiod (see Chapter 6). There was a difference in take-off 

temperature between the two years with heavier butterflies taking off 

with a lower body temperature than smaller butterflies. Small 

butterflies do not produce heat during flight and are very subjective to 

convective cooling (Heinrich, 1986a). It is therefore possible that smaller 

butterflies have to reach a higher body temperature in order to fly for a 

same period than a larger butterfly. This finding of larger individuals 

taking off with lower body temperatures provides some support for the 

observations of take off temperatures in northwest Scotland and 

southern England (Howe, 2004; Howe et a1., 2007). Lower take-off 

temperatures in Scotland may be associated with larger body size (as 

identified in Chapter 3) 
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4.5 INTEGRATION 

Reaching a suitable body temperature for activity is important for flight 

in butterflies. In most butterflies heat gain is obtained by behavioural 

basking assisted by physical adaptations of the wings or body (Heinrich, 

1986a) and several different basking mechanisms and strategies have 

been described (Kemp & Krockenberger, 2002; Kingsolver, 1985b; 

Kingsolver & Koehl, 1985). Many previous studies have found positive 

relationships between melanisation of the wings and heating rate or 

habitat temperature (Clusella-Trullas et a1., 2007; Kingsolver, 1996; 

Watt, 1968). However, the results of this study suggest that in P. icarus 
the colour and size of the wings playa minor role in thermoregulation. 

Appropriate microhabitat choice is then of prime importance for this 

species to become active. Butterflies in which a relationship of 

melanisation with thermoregulation has been found are generally much 

larger than the species under study. The minor importance of wing 

colour in P. icarus may then relax selection pressures from 

thermoregulation on wing colouring and patterning, possibly facilitating 

variation in wing morphology in response to other factors in this, and 

maybe other small butterflies. 
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Chapter 5 Enzyme variation in Polyommatus 

icarus and population genetic structure in the 
UK 

5.1 INTRODUCTION 

Allozymes have been used in many biogeographical studies to 

investigate patterns of postglacial expansion and population genetic 

structure (Hewitt, 2000; Schmitt et aI., 2002; Schmitt et a1., 2003). The 

interpretation of the results of these studies is based on the assumption 

that allozymes are selectively neutral and thus that allele frequencies in 

populations are primarily affected by drift and gene flow. However, part 

of the variation in allozyme loci frequencies can be the result of selection 

as neutrality is not always guaranteed (Eanes, 1999). One way to 

discover candidate loci under selection {and therefore not neutral} is to 

compare the geographic pattern of the allozymes with the pattern 

obtained from a more neutral marker, such as AFLPs. The AFLP 

marker (amplified fragment length polymorphism) (Vos et aI, 1995) is a 

DNA-marker and is based on restriction sites that are randomly 

distributed across the whole genome, and therefore provides excellent 

opportunities as a neutral marker (Bensch & Akesson, 2005). Deviations 

in the geographic pattern of one or several of the allozyme loci from that 

of the neutral marker suggest a possible influence of selection. 

The Common blue butterfly Po1yommatus icarus is distributed across 

the whole Pale arctic region and occurs in a wide range of environmental 

conditions (Tolman & Lewington, 1997). It is characterised by a high 

allelic diversity (Schmitt et aI, 2003), which makes it a perfect study 

organism to investigate candidate loci. Several studies on other 

butterflies have identified a relationship between allelic variation in 

glycolytic enzymes and performance (Goulson, 1993; Haag et a1., 2005; 
Hanski & Saccheri, 2006; Wheat et a1., 2006; Karl et aI., 2008; Karl et 
aI., 2009; Niitep5ld et aI., 2009; Orsini et aI., 2009; Saastamoinen et a1., 
2009; Vandewoestijne & Van Dyck, 2010). The best studied example is 
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probably the allelic variation in phosphoglucose isomerase (PGI) in 

Colias butterflies (Watt, 1977; Wheat et a1., 2006). The alleles of this 

enzyme have different thermal and kinetic optima (Watt, 1977; Watt, 

1983) and the frequency of the alleles varies with habitat temperature 

(Watt et a1., 2003). Furthermore, butterflies with an allelic variant with 

a low thermal optimum can be active at earlier times of the day and/or 

in cooler locations than those with other alleles. At high temperatures 
or in warm locations however, these cold-optimum enzymes will more 

readily unfold and may thus be disadvantageous under these conditions 

(Watt, 1977; Watt, 1983). In P. icarus butterflies there is behavioural 

variation which has previously been related to habitat temperature: 

butterflies in northwest Scotland generally start flying with a much 

lower body temperature than butterflies in the southeast of England 

(Howe et al., 2007). The mechanistic basis for these differences has not 

yet been investigated, but it is possible that this is caused by allelic 

variation in certain glycolytic enzymes. 

Despite some loci possibly being under selection, when a large number 

of loci are applied, biogeographical patterns and population genetic 

structure can be reliably inferred from allozyme data (Be sold et ai., 

2008; Habel & Schmitt, 2009; Joyce et ai., 2009). The study species P. 

icarus was probably widespread in the Mediterranean area during the 

last ice-age and has spread across Europe without a major reduction in 

genetic diversity (Schmitt et a1., 2003). The British Isles however, are 

thus far unstudied and because of its somewhat isolated position from 

mainland Europe, the genetic configuration is likely to differ 

substantially from that of the continental populations. Comparison of 

allozyme data from the British Isles with the existing dataset from 

mainland Europe allows for inferences about post-glacial colonisation 

history of P. icarus. Furthermore, this butterfly is relatively common in 

meadows in the UK and is characterised by a colonial population 

structure (Emmet & Heath, 1989; Asher et al., 2001). The population 

genetic structure of this butterfly is therefore expected to show an 

isolation-by-distance effect, as has been found for this species in 
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mainland Europe, where there was also low differentiation between 

populations (Schmitt et a1., 2003). 

In this study, data from allozymes and AFLPs of nine populations of P. 

icarus along a latitudinal cline in the UK were compared. The main 
aims were to: 

(1) investigate the population genetic structure of P. icarus within 

the British isles both with allozymes and AFLP as a marker. Is 

there an isolation-by-distance effect (Wright, 1943) across the 

UK and do the markers differ in their pattern? Are the 

populations genetically separated, allowing for local adaptation? 

(2) explore patterns of colonisation of P. icarus in the UK by 

comparing the allozyme dataset with that from mainland 

Europe (Schmitt et a1., 2003). A lower allelic diversity in the UK 

than on mainland Europe would suggest a bottleneck during the 

colonisation of the British Isles. 

(3) discover candidate allozyme loci under selection which vary in 

relation to thermal gradients, by comparing the variation in 

three loci (PGI, PGM, G6PDH) with the pattern of the neutral 

marker. 
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5.2 MATERIAL & METHODS. 

5.2.1 Sample collection 

Adult butterflies were collected during the spring and summer of 2010 

in nine field sites across the UK (Table 5.1, Figure 5.1), frozen alive and 

stored at -80°C. On four locations (Frog Firle, Bernwood, Greenhow, 

Mallaig), light intensity, windspeed and three temperature measures 

(ground, vegetation, ambient) were recorded using a Datahog2 data 

logger (Skye Instruments Ltd.) together with the time of capturing of 

the insect. 17 different enzymes were studied using cellulose acetate 

electrophoresis. AFLP (amplified fragment length polymorphisms) was 

used as a neutral marker. 

Table 5.1 Details of the sample sites and codes, dates of sampling and sample 
sizes for allozyme and AFLP analyses. 

Site Latitude Acronym Date collected n n 
(males) (females) 

Friston 50.77 FRIS 09/08/2010 14 1 
Frog Firle 50.79 FROG 7 -9/06/2010 34 24 

09/08/2010 39 25 
Bedelands 50.97 BEDE 09/08/2010 19 6 Farm 
Aston 51 .66 ASTO 08/08/2010 29 
Rowant 
Grangelands 51.74 GRAN 08/08/2010 23 17 
Bernwoad 51.80 BERN 14-16/06/2010 36 22 

5-8/08/2010 56 31 
Otmaar 51 .82 OTMO 08/0512010 10 1 
Greenhaw 54.07 GREE 13-14/07/2010 30 22 
Mallaig 56.96 MALL 22-25/07/2010 19 15 
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Figure 5.1 Sample site locations for allozyme and AFLP analyses. Details of 
sites are given in Table 5.1. 

5.2.2 Enzyme electrophoresis 

Previously frozen (·SO°C) butterflies collected in the field were 

transferred to a cooled working surface (ice blocks) to prevent thawing. 

Half of the abdomens of individuals were each placed in SO JlL animal 

buffer (Harris & Hopkinson, 1976) in a 2 mL Eppendorf tube. The rest 

of the samples was transferred back to the freezer (·SO°C). Abdomens 

were homogenised with a supersonic needle (drHielscher Ultraschall 

prozessor) and then centrifuged for 3 minutes at SOOO rpm. 

The samples were then transferred onto a cellulose acetate plate 

(Hebert & Beaton, 1993) that had been saturated in the buffer 

appropriate for each enzyme (Table 3.2). The 17 enzymes studied are 6' 

phosphogluconate dehydrogenase (6PGDH), pyruvate/creatine kinase 

(PKlCK) , fumarate hydratase (FUM), glucose-6-phosphate 

dehydrogenase (G6PDH), glyceraldehyde-3-phosphate dehydrogenase 

(G3PDH), glutamate oxaloacetate transaminase (GOT1 & GOT2), 

glycerol-3-phosphate dehydrogenase (GPDH), ~-hydroxybutyrate 

dehydrogenase (HBDH), isocitrate dehydrogenase (IDH1 & IDH2), 
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malate dehydrogenase (MDHI & MDH2), malate enzyme (ME), 

phosphoglucose isomerase (PGI) ,. phosphoglucomutase (PGM) and 

peptidase with Phe-Pro substrate (pPP). For the 17 enzyme systems 

studied, 4 different buffer systems were used: Tris-citrate pH 8,2 

(Richardson et a1. 1986), Tris-glycine pH 8.5 (Hebert & Beaton, 1993), 

Tris-maleate pH 7.0 (adapted from T-M pH 7.8 (Richardson et al. 1986» 

and Tris-borate pH 89 (adapted from T-B pH 7.0 (Shaw & Prasad, 

1970» . The plate with the samples applied was then transferred onto an 

electrophoresis tank (Helena Biosciences) which contained the 

appropriate buffer. 200 V current was applied to the tank and running 

times differ for each enzyme system (Table 5.2). 

Table 5.2 Enzymes, buffers and running times for the 17 enzymes under study. 

Enzyme Buffer Running time (min) 
IDH1 TM 45 
IDH2 TM 45 
MDH1 TC 40 
MDH2 TC 40 
6PGDH TM 45 
G6PDH TC 50 
PGI TG 40 
PGM TG 40 
GOT1 TG 40 
GOT2 TG 40 
GPDH TM 45 
FUM TC 45 
ME TB 40 
PEP(Phe-Pro) TM 40 
HBDH TG 30 (reversed polarity) 
PKICK TM 45 
GAPHD TC 30 
TM: Tris-maleate; TC: Tris-citrate; 
TG: Tris-glycine; TB: Tris-borate 

After running, the plates they were stained by mixing the appropriate 

reagents with agar (1.80 gl100 mL) following the protocols of (Hebert & 

Beaton, 1993). After staining in the dark, the reagents are washed off 

the plate which was then allowed to dry for storage. The allozymes were 

scored visually and labelled by comparison with previous plates from 

European P. icarus populations (Schmitt et ai., 2003). 
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5.2.3 DNA extraction and AFLP 

DNA of frozen samples was extracted using a Qiagen kit (DNEasy Blood 

& Tissue). The head and legs of specimens were mechanically 

homogenised in 250 ilL phosphate buffered saline (PBS). 20 ilL of 

proteinase K was added to 180 ilL of this homogenised sample together 

with 200 ilL of lysis buffer (Qiagen AL) buffer. This mix was vortexed 

and then incubated in a shaker at 55°C for 1.5 hours. 200 ilL of 90% 
ethanol was then added and the mixture was centrifuged at 8000 rpm 

for 1 min and the liquid that had gone through the membrane 

discarded. 500 ilL of wash buffer (Qiagen A WI) was then added, 

centrifuged at 8000 rpm for 1 min and the liquid again discarded. 500 

ilL of wash buffer (Qiagen AW2), was then added and the sample 

centrifuged at 13000 rpm for 3 mins. The flow-through liquid was again 

discarded and the sample washed off the membrane by adding 200 ilL of 

elution buffer (Qiagen AE), and centrifuged at 8000 rpm for 1 min after 

incubation for 1 min at room temperature. 

The protocol for the AFLPs was modified from Vos et 81. (1995). Firstly, 

two adapters were prepared by incubating two oligonucleotides at 95°C 

for 5 minutes and then letting them cool down at room temperature 

(Table 3.3). The restriction of the source DNA was performed in a 40 ilL 

reaction with 250 ng of genomic DNA (the source DNA was quantified 

with a spectrophotometer (NanoDrop ND-1000», 0.5 ilL of EcoRI 

(20U/IlL), 1 ilL of MseI (lOU/ilL), 0.25 ilL bovine serum albumin (BSA), 

4 ilL lOx NEB (New England Biolabs) buffer Number 4 was added and 

the solution made up to a final volume of 40 pL with mp H20. This was 

then incubated at 37°C for 3 hours and the restriction enzymes were 

then heat-inactivated at 65°C for 20 minutes. Mter the restriction mix 

had cooled, 1 ilL of MseI-adapter and EcoRI adapter (1:10) were added 

together with 1 ilL NEB buffer Number 4 (lOx dilution), 0.5 ilL T4-

Ligase (Promega), 1 ilL ATP (10 mM), 5.5 ilL mp H20. The ligation mix 

was homogenised using a vortex and left to ligate on the bench at room 

temperature overnight (c.15 hours). 
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The digested DNA fragments were amplified using a preselective 

amplification, in which primers with just one selective nucleotide were 

added in the reaction (Table 5.3). The reaction consisted of 1 ilL of 

EcoRI-pre primer (10 pmol/IlL) and 1 ilL of MseI-pre primer (10 

pmol/IlL), 2 ilL lOx PCR buffer with MgCb (Sigma), 0.25 ilL dNTP-mix 

(25 mM each dNTP), 1 ilL of template DNA with linkers, 0.2 ilL of Taq 

polymerase (5U/IlL)(Sigma) and 14.55 ilL mp H20. The PCR conditions 

were as follows: the 3' recesses were allowed to fill in by heating to 72°C 

for 2 minutes, then the mix went through 20 cycles at 94°C for 30s, 56°C 

for 30s, and 72°C for 2 minutes. At the end, the reaction was allowed to 

clean up for 10 minutes at 72°C and was then cooled down to SoC. 

In order to reduce the amount of bands produced by the AFLP, a 

selective amplification step with primers with three selective 

nucleotides at the 3' end was performed. The EcoRI primers were 

labelled with fluorescein at the 5' end. The two combinations that gave 

the highest number of bands were used: EcoRI -AGC_F AMlMseI -CM 

and EcoRI-ACA_FAMlMseI-CAT. In this reaction 1 ilL of the 1:10 

diluted pre amplification product was added to a mix of 0.25 ilL dNTP-

mix (25mM each dNTP) , 2.5 ilL MgCb (50mM), 2 ilL lOx PCR buffer 
with MgCb (Sigma) 0,2 ilL Taq polymerase (5U/IlL)(Sigma), 1 ilL MseI-

CAA or MseI-CAT primer (10 pmol/IlL) and 1 ilL oflabelled EcoRI-ACG 

or EcoRI-ACA primer (10 pmol/IlL) and 12.05 ilL mp H20. This mix was 

placed under the following PCR conditions: 94°C for 2 min (initial 

denaturation), then 10 cycles at 94°C for 30 s, 66°C (dropping by 1°C per 

cycle) for 30 s, 72°C for 2 min, then 25 cycles at 94°C for 30 s, 56°C for 30 

s, followed by 72°C for 2 min. This mix was then cooled down to SoC. 

Table 5.3 Structure of adapters and primers. The NN at the 3' end of the 
selective primers stands for the two added extra selective nucleotides_ 

EcoRI adapter 

Msel adapter 

EcoRI - preselective primer 
Msel - preselective primer 
EcoRI - selective primer 
Msel - selective primer 

5'-CTCGTAGACTGCGTACC-3' 
3'-CATCTGACGCATGGTIAA-5' 
5'-GACGATGAGTCCTGAG-3' 
3'-TACTCAGGACTCAT -5' 
5'-GACTGCGTACCAATICA-3' 
5'-GATGAGTCCTGAGT AAC-3' 
FAM-5'-GACTGCGTACCAA TICANN-3' 
5'-GATGAGTCCTGAGT AACNN-3' 
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An internal size standard (GeneScan 1200LIZ, Applied Biosystems 

CAB!) was required for each sample. To prepare the size standard, 0.5 

pI of size standard was mixed with 9 pIs of High dye formamide CAB!). 
This mix was denatured by incubation at 95°C for 5 min. Immediately 

after this, 9.5 pI of the denatured size standards were added to 0.5 pI of 

processed sample on ice (to prevent renaturing). The samples were run 

on a DNA Analyzer (ABI 3730) with the following settings: pre-run 

voltage: 15kV, pre-run time: ISO sec, injection voltage: l.6kV, injection 

time: 15 sec, run time: 7000 seconds, run voltage: SkY, dye set: G5. 

The output was analysed with GeneMapper Software V4.0 (AB!), which 

automatically assigns bin sets to peaks between 100 and 999 base pairs 

and a cut off relative fluorescence unit (rfu) of SO. The bin sets were 

inspected visually and bins that were off-centre were manually 

corrected. Those that could not be unambiguously scored were removed. 

To investigate which loci (peaks) would provide the lowest error rates, 

an error analysis was carried out. This was done following the protocol 

of Whitlock et a1., (200S) and using the program AFLPScore v.l.4a. This 

method calculates mismatch error rates for a range of user-specified 

locus and phenotype selection thresholds. The mismatch error rate is 
the percentage of differences in phenotype (peaks pattern) amongst 

replicated samples (i.e. repeat analyses of single samples). The selection 

of thresholds was based on the lowest mismatch error percentage. 

5.2.4 Allozyme analyses 

Euclidian geographic distances between the nme populations were 

calculated in ArcGIS (ESRI, 2011). Percentage polymorphic loci, 

observed and expected heterozygosity, FIS and FST values were 

calculated and Mantel tests executed using G-stat v.3.2 (Siegismund, 

1997). The number of alleles was calculated with Popgene v.l.31 (Yeh et 
a1., 1997). Relationships between allele presence of three loci (PGI, 

PGM, G6PDH) and time of activity or any of the weather variables was 

tested with general linear models. Enzymes were labelled with either 

presence or absence of an allele for each common allele. Only data of 
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active (flying) individuals was used. Data were checked for normality 

using the Shapiro-WiTh's normality· test in R 2.11.1 (RDevelopment 

Core Team, 2010). 

5.2.5 Population genetic structure 

The resulting binary matrix was analysed using AFLPSurv v.1.0 

(Vekemans et a1., 2002). Allelic frequencies were estimated with a 
Bayesian method with non·uniform prior distribution (Zhivotovsky, 

1999). Statistics of genetic diversity and population genetic structure 

were calculated following the protocol of Lynch & Milligan (1994). The 

number of random permutations for the calculation of FST was set to 

10000. The relationships between the nine populations were visualised 

with the program PHYLIP v.3.69 (Felsenstein, 2004). The relationship 

between genetic and geographic distances (isolation-by-distance) was 

investigated with a Mantel test in G-stat v.3.2 (Siegismund, 1997). 
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5.3 RESULTS 

5.3.1 Enzyme a.na.lyses 

Across all populations 14 of the 17 enzymes studied were polymorphic. 

FUM, GPDH and IDH1 were monomorphic across all populations. True 

polymorphisms, where the commonest allele does not exceed a 

frequency of 0.95, were found in G6PDH, GOT1, GOT2, PGI, PGM and 

PEP(Phe·Pro) (Table 5.4). This means that in these enzymes the different 

alleles are not just rare ones, but that different alleles coexist. PGM had 

four different alleles that occurred in relatively high frequencies and 

this was the most polymorphic enzyme (Table 5.4). PGI had one allele 

present in a higher frequency at Mallaig compared to the other 

populations; ME had one allele that was more abundant at Bernwood 

compared to the other populations (Table 5.5). At Greenhow both PGM 

and G6PDH had allele frequencies that were slightly different from the 

other populations (Table 5.5). The percentage of polymorphic loci across 

all populations was 64.7%. Across all populations there was a tendency 

for homozygote excess (the mean observed heterozygosity (Ho) was 

12.4%; the mean expected heterozygosity (He) was 15.9%). Also, for most 

loci there was a tendency for a heterozygote deficiency, except for PGI 

(Table 5.6). The most common homozygotes in this enzyme were at 

lower frequencies than expected (Table 5.7). There were no significant 

deviations from Hardy'Weinberg equilibrium and no consistent linkage 

disequilibria were found. 
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Table 5.5 Within population allele frequencies for a selection of loci. Remarkable allele frequencies are highlighted. , _ _ r- .... .... _ _ _ _ _ _ ... _ • 

Friston Frog Firle Bedelands Farm Aston Rowant Grangelands Bernwood Otmoor Greenhow Mallaig 
PGI 
b 5 3 2 7 9 9 2 7 
c 18 50 38 57 75 76 16 68 65 
d 5 11 7 10 19 12 3 21 8 
e a 3 2 2 3 a 1 0 15 
h a 0 a 0 a a 0 0 a 
0 a a a 3 0 0 a a 0 
u 1 a a 1 0 a a 0 a 
v 1 1 a a a 0 a 0 1 
y- o a 1 a 

-----------------
0 a a a a 

PGM -
a a a a a a 1 a 0 0 
b 7 17 16 27 17 36 8 20 26 
d 15 25 24 37 51 32 11 33 44 
e a a 1 a a 0 a 0 2 
f 2 11 3 12 23 11 2 30 13 
9 1 a 0 1 0 a a 0 0 
0 5 12 6 3 7 12 1 7 1 
z a 1 a 0 0 0 a 0 0 
96e.OH 
a 8 13 2 7 35 33 4 47 14 
b 21 52 47 70 70 56 18 44 73 
c a 1 1 3 1 a a 2 0 
0 1 a a a a 1 a a 0 
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Table 5.5 continuedWithin population allele frequencies for a selection of loci 
Friston Frog Firle Bedelands Farm Aston Rowant Grangelands Bernwood Otmoor Greenhow Mallaig 

ME 
-~-

a 1 0 0 0 1 0 0 0 2 

b 28 65 50 79 105 86 22 95 88 

c 1 1 0 1 0 12 0 1 0 -GOT1 
c 1 46 13 2 16 74 3 70 41 

d 29 12 35 78 74 4 19 12 48 

GOJ 2 
a 0 0 0 0 0 0 0 0 
b 5 2 3 2 0 0 1 0 0 
c 24 60 43 70 96 87 20 83 79 
d 0 0 0 0 0 2 0 0 0 
0 1 6 3 6 8 4 1 11 9 

Y 0 0 0 0 0 0 0 2 0 
z 0 0 1 2 0 0 0 0 0 
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Table 5.6 Observed and Nei's (1973) expected heterozygosities for ail 17 loci. 

Locus 
6PGDH (86) 
CKlPK (88) 
FUM (90) 
G6PDH (88) 
GAPDH (86) 
GOT1 (90) 
GOT2 (88) 
GPDH (90) 
HBDH (70) 
IDH1 (90) 
IDH2 (90) 
MDH1 (90) 
MDH2 (90) 
ME (90) 
PGI (90) 
PGM (86) 
Pphe-pro (82) 
Mean (± St. Dev.) 

Observed Nei's (1973) expected 
heterozygosity heterozygosity 

0.000 0.045 
0.046 0.087 
0.000 0.000 
0.296 0.283 
0.070 0.067 
0.022 0.496 
0.159 0.184 
0.000 0.000 
0.057 0.056 
0.000 0.000 
0.000 0.000 
0.000 0.000 
0.067 0.064 
0.044 0.044 
0.511 0.443 
0.488 0.623 
0.171 0.160 

0.114±0.166 0.150±0.195 

Table 5.7 Observed and expected frequencies of the different PGI genotypes 
across all populations. 

Genotypes 
(b, b) 
(c, b) 
(c, c) 
(d, b) 
(d, c) 
(d , d) 
(e, c) 
(e, d) 
(h , c) 
(0, c) 
(u , c) 
(v, c) 
(y , e) 

Obs. (0) 
2 
33 
163 
9 

74 
4 
20 
5 
2 
3 
2 
3 
1 

Exp. (E) 
1.6147 

33.2262 
166.8534 
6.8892 

69.3417 
7.1139 
18.78 

3.8939 
1.4446 
2.1669 
1.4446 
2.1669 
0.0406 

2*0 *Ln(O/E) 
0.856 
-0.451 
-7.617 
4.811 
9.623 
-4.606 
2.518 
2.500 
1.301 
1.952 
1.301 
1.952 
6.410 

The nine populations are not differentiated for the enzymes studied (> 

93% similarity; Table 5.8) and there is a low FST = 0.121, which is 

slightly lower than the within population variation (FIS = 0.126) . 
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Table 5.8 Nei's (1978) unbiased measures of genetic distance and genetic 
identity. Genetic identities above diagonal, genetic distances below. 

' FRIS FROG BEDE . ASTO GRAN BERN ' OTMO GREE MALL 
FRIS **** 0.959 0.992 0.996 0.995 0.937 0.997 0.946 0.983 
FROG 0.042 **** 0.980 0.959 0.971 0.995 0.970 0.992 0.990 
BEDE 0.008 0.020 **** 0.995 0.991 0.959 0.998 0.959 0.996 
ASTO 0.004 0.042 0.005 **** 0.993 0.935 0.999 0.940 0.986 
GRAN 0.005 0.029 0.009 0.007 **** 0.955 0.997 0.964 0.991 
BERN 0.065 0.005 0.042 0.067 0.046 **** 0.952 0.994 0.977 
OTMO 0.003 0.030 0.002 0.001 0.003 0.050 *.** 0.954 0.993 
GREE 0.056 0.008 0.042 0.062 0.036 0.006 0.047 ***. 0.977 
MALL 0.017 0.010 0.004 0.014 0.009 0.024 0.007 0.023 **** 

There was no correlation between pairwise genetic and geographical 

distances (Mantel test: r = -0.184; P > 0.05). This lack of correlation 

remained when the monomorphic enzymes were removed from the 

analysis (Mantel test: r = -0.166; P > 0.05) or with only the truly 

polymorphic enzymes included (Mantel test: r = -0.131; P> 0.05) . With 

the truly polymorphic enzymes, there was again no correlation of 

genetic with geographic distance (Mantel test: PGM: r = -0.078; PGI: r = 
0.253; G6PDH: r = -0.104; GOT1: r = -0.193; GOT2: r = 0.241; all P > 

0.05). 

Only with the four populations sampled in the first generation were 

there significant relationships between latitude and some of the allele 

frequencies found (PGM allele d: R2 = 0.91, P = 0.044; PGM allele 0 R2 == 

0.98, P = 0.012; Figure 5.2). There was no difference with the time of 

capture for the different common alleles of PGI (b, d, e), PGM (d, f, g, 0) 

or G6PDH (a, b) . Only females that are heterozygous in PGM are active 

earlier in the day (Fl, llO = 4.60, P = 0.028). 
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Figure 5.2 Relationship of allele frequency with latitude for two alleles of PGM. 
Populations are (from south to north): Frog Firle (Lst: 50. 7~, Bernwood (LIlt: 
51.Sm, Greenhow (LIlt: 54.0'/), Mallaig (LIlt: 56.96J. 

Within these four populations, individuals with PGM allele g are active 

only at high solar radiation (with allele g: 983.2 (± 156.1) W/m2, without 

allele g: 543.7 (± 19.7) W/m2; FI,19o = 7.804; P = 0.0057). Individuals with 

PGM allele 0 can fly at higher windspeeds (with allele 0: 3.2 (± 0.32) 

m/s2, without allele 0: 2.2 (± 0.2) m/s2; FI,190 = 7.865; P = 0.0056). G6PDH 

heterozygotes also can be active at higher windspeeds (heterozygotes: 

2.8 (± 0.28) m/s2, homozygotes: 2.18 (± 0.2) m/s2; Fl,19I = 4.7611; P = 

0.0303). 
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These relationships were investigated for each allele separately, 

resulting in 12 tests (3 for PGI; 4 for PGM; 2 for G6PDH; heterozygotes 

for the three loci). Adjustments (e.g. Bonferroni corrections) are not 

made for multiple comparisons because both the underlying enzyme sets 

and weather variables are considered to be independent, although the 

null hypothesis is the same. Additionally reducing Type I errors will 

increase Type II errors. See Cabin & Mitchell (2000) for full discussion 

of these issues. 

5.3.2AFLP 

5.3.2.1 Error rate analysis 

202 loci were selected across the two primer combinations (132 loci from 

the AGC-CAA combination and 69 from the ACA-CAT combination). 25 

samples were replicated, starting from post-purified DNA material. A 

locus selection threshold of 1400 rfu (183.4 % of grand mean normalised 

peak height across loci) and a phenotype selection threshold of 400 rfu 

(52.4 % of grand mean normalised peak height across loci) gave the 

lowest error rates (2.8% mismatch error). Mter the error analysis, 57 of 

the 202 loci (19 from AGC-CAA and 38 from ACA-CAT combination) 

were retained for further analysis with the previously described 

selection thresholds. 

5.3.2.2 Population genetic structure 

The mean within population variation (analogous to Nei's gene diversity 

Hs) was 0.15 (± 0.007). The percentage polymorphic loci varied between 

sites from 40.4% to 66.7% (Table 5.9) and the expected heterozygosity 

(Hj) varied between 12.8% and 19.6% (Table 5.9). 
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Table 5.9 Population genetic data: n = number of individuals; #loc_P = number 
of polymorphic loci at the 5% level (loci with allelic frequencies lying within the 
range 0.05 - 0.95); PLP = percentage polymorphic loci at the 5% level; Hj = 
expected heterozygosity under Hardy·Weinberg proportions; S.E.(Hj) = 
standard error of Hj. 

Population 
Friston 
Frog Firle 
Bedelands Farm 
Aston Rowant 
Grangelands 
Bernwood 
Otmoor 
Greenhow 
Mallaig 

n 
11 

105 
16 
25 
25 
119 
11 
50 
29 

#Ioc. 
57 
57 
57 
57 
57 
57 
57 
57 
57 

24 
27 
23 
25 
25 
31 
24 
24 

PLP 
66.7 
42.1 
47.4 
40.4 
43.9 
43.9 
54.4 
42.1 
42.1 

Hj 
0.196 
0.135 
0.159 
0.140 
0.157 
0.128 
0.137 
0.131 
0.129 

S.E.(Hj) 
0.024 
0.020 
0.021 
0.022 
0.021 
0.020 
0.021 
0.022 
0.022 

In contrast to the allozyme pattern, the AFLP pattern showed that the 

nine populations were genetically structured (FsT = 0.024; P < 0.0001), 

with FST values for the different populations between 0 and 0.085 (Table 

5.10). The Mantel test indicated a significant relationship between 

genetic similarity and the geographic distance between the populations 

(r = 0.704; p < 0.05; Figure 5.3). 
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Table 5.10 Pairwise FST values. FRIS = Friston, FROG = Frog Firle, BEDE = 
Bedelands Farm, ASTO = Aston Rowant, GRAN = Grangelands, BERN = 
Bemwood, OTMO = Otmoor, GREE = Greenhow, MALL = Mallaig 
Population FRIS FROG BEDE ASTO GRAN BERN OTMO GREE 
FROG 0.018 
BEDE 0.000 
ASTO 0.004 
GRAN 0.000 
BERN 0.012 
OTMO 0.013 

0.017 
0.004 
0.000 
0.003 
0.003 

GREE 0.073 0.074 
MALL 0.036 0.048 

0.000 
0.006 
0.003 
0.000 
0.081 
0.035 

Greenhow 

Otmoor 
Frog Firle 

Aston Rowant 

Bedelands Farm 

0.000 
0.002 
0.000 
0.049 
0.037 

0.000 
0.006 
0.058 
0.045 

0.000 
0.085 
0.046 

0.065 
0.021 

\..... __ ----- Mallaig 

Bernwood 
Grangelands 

Friston 

0.073 

Figure 5.3 Isolation-by-distance for the nine populations. The length of the 
lines represents the distance between the populations. 
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5.4 DISCUSSION 

The allozyme analysis revealed an overall genetic diversity for P. icarus 

which is lower than that known for related species (Schmitt et a1., 

2002). It was lower (56.2% polymorphic loci) than found in previous 

studies on P. icarus in mainland Europe (77.9%; Schmitt et aI, 2003) 

and P. coridon (76.4%; Schmitt et a1., 2002). There are fewer alleles on 

the British Isles (3.41 alleles per locus) compared to the mainland 

European populations (7 alleles per locus; Schmitt et aI, 2003). This 

lower allelic diversity suggests that P. icarus has experienced a 

bottleneck, either during its colonisation of the British Isles or 

subsequent to colonization. This lower allelic diversity may have 

consequences in terms of the evolutionary potential of this species 

(Olivieri, 2009) as lower diversity can reduce the adaptability of species 

to changing environments (Hedrick, 2001). Generally a pattern of 

reduced genetic diversity with latitude is found as a consequence of 

post-glacial expansion and colonisation history (Hewitt, 2000). However, 

possibly because of the small spatial scale of the latitudinal cline in this 

study or because of the already quite impoverished genetic constitution 

of the populations this pattern was not found. Twelve of the seventeen 

studied loci were monomorphic or only had a few rare alleles. In 

comparison with Europe the genetic diversity is low, but it is not known 

whether the amount of variation found is approaching the minimum for 

persistence. 

Despite the low allelic diversity, polymorphisms In the truly 

polymorphic loci were maintained. High levels of polymorphisms in PGI, 

PGM and G6PDH have been found in previous studies on butterflies 

(Watt, 1977; Goulson, 1993; Saccheri et a1., 1998; Schmitt et a1., 2002; 

Vandewoestijne & Van Dyck, 2010) and a selective advantage of 

heterozygotes has previously been given as an explanation for the 

maintenance of such polymorphisms (Dahlhoff & Rank, 2000; Haag et 

a1., 2005; Wheat et a1., 2005). In this study too, there was a reduction in 

the frequency of the most common homozygotes for PGI within 

populations, regardless of the generally high FIS (heterozygote 
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deficiency). In most populations a different allele of PGM was 

predominant, possibly the result of different selective pressures in the 

different populations. This suggests that there is not one allele which is 

consistently superior in all populations, giving another explanation for 

the existence and maintenance of polymorphisms. One population, 

Greenhow, where P. icarus flies in one generation is located at a higher 

altitude (415m above sea level), with strong seasonal differences 

compared to the surrounding valleys at similar latitudes, where it is 

bivoltine. The frequency of the alleles of PGI, PGM and G6PDH in this 

population differs slightly from all the other populations and it seems 

likely that a lack of overlap in flight seasons of this population and the 

surrounding valley populations, allows the alleles in this location to 

drift a little further away from the other populations. 

Only in the spring generation butterflies were there correlations of 

alleles of these three enzymes with latitude (Figure 5.2). Along a 

latitudinal cline, one of the most important variable environmental 

factors for invertebrates is temperature; the pattern that was found in 

the first generation in these alleles could be the result of varying 

thermal selection pressures. Possibly because of seasonal variation in 

allele frequencies (Watt, 1977) this pattern disappears when the 

summer generation butterflies are incorporated in the analysis. The 

overwintering generation in all latitudes within the UK goes through a 

cold winter period, the severity of which varies with latitude. Thus the 

latitudinal effect may be stronger in this than the summer generation. 

The lack of relationship between genetic distance and geographic 

distance for these three enzymes further suggests that the pattern of 

allelic frequencies is a not the result of an isolation-by-distance effect, 

but that selection possibly has shaped the pattern in these three 

extremely variable glycolytic enzymes. This is further confirmed by the 

presence of the isolation-by-distance pattern in the more neutral 

AFLPs. These results are a first step towards identifying candidate loci 

(PGI, PGM, G6PDH) which vary in relation to thermal gradients in P. 

icarus. Some of the alleles of these loci varied with solar radiation, t-

windspeed or time of activity, but because of the lower frequency of 
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these less common alleles, a high sample size is not always guaranteed. 

Further functional studies are therefore needed to investigate the 

relationship between temperature and allelic variation. 

The overall level of genetic diversity but low differentiation between 

populations (mean genetic distance (Nei, 1978) = 0.0236; FST = 0.121) is 

typical for a high density or highly mobile species (Hastings & Harrison, 

1994; H~mski, 1998). However, P. icarus has previously been described 

as a species with a rather sedentary character (Emmet & Heath, 1989; 

Asher et a1., 2001). Low differentiation between populations might 

imply that P. icarus is a mobile species, but the lack of an isolation-by-

distance pattern could also be explained by extinction and recolonisation 

dynamics with recolonisation events by means of long-distance dispersal 

(Vandewoestijne et a1., 2004). The reduction in allelic diversity 

(reduction in possible variability between populations) and the non-

neutrality of the truly polymorphic enzymes (Watt, 1977; Watt, 1983; 

Haag et a1., 2005; Wheat et a1., 2005) could cause populations to be 

rather similar to each other, masking an isolation-by-distance pattern 

and reducing genetic differentiation. Careful interpretation of the 

results of phenotypic variation is therefore necessary as these 

characteristics may not be entirely neutral to selection (Watt, 1977; 

Eanes & Koehn, 1978; Watt et a1., 1983; Haag et a1., 2005), hence these 

results do not necessarily reflect population genetic structure (Goulson, 

1993; Joyce et a1., 2009). This becomes dear when the results from the 

allozyme electrophoresis are compared with those from AFLPs, a more 

neutral marker. On the basis of this marker, the nine populations do 

show an isolation-by-distance effect (Figure 5.3). This means that 

populations that are geographically close are more similar in their DNA 

composition. Even with low FST values (FsT = 0.024) AFLP can reveal 

significant population genetic structuring (Miller et a1., 2002). 

Allozymes therefore could fail to detect a population genetic structure in 

populations with high gene flow or low levels of differentiation. 

On the basis of this pattern it seems most likely that the colonisation of 

the UK by P. icarus has occurred from one southern population. The 
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presence of founder effects in PGI and ME and the strong differences in 

allelic frequencies between the populations in PGM, PGI and G6PDH 

(Table 5.5) suggest that despite the low genetic distances and low FST 

values, genetic differentiation is possible and the potential for local 

adaptation in the different populations exists. 
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5.5 INTEGRATION 

Poiyommatus icarus in the UK is genetically impoverished compared to 

where it has been studied by Schmitt et al (2003) in mainland Europe, 

most likely because of a bottleneck during its colonisation. Despite this 

impoverishment, certain important glycolytic enzymes, for which allelic 

variation has previously been related to fitness differences in other 

butterflies (Watt, 1977; Eanes & Koehn, 1978; Haag et ai., 2005), are 

polymorphic, adding to the evidence that selection and variation in 

environmental conditions is maintaining polymorphisms in these 

enzymes. This is further confirmed by the discrepancies between the 

geographic pattern in the enzymes and the AFLPs. Additionally, some 

alleles of these polymorphic enzymes vary along a thermal cline, 

indicating a potential for thermal adaptation. Specific lab studies to 

investigate a direct relationship between presence of certain alleles and 

thermal performance are now needed to improve our understanding of 

why polymorphisms in these enzymes have been maintained across so 

many species and taxa (Bijlsma, 1980; Crawford & Powers, 1989; Zamer 

& Hoffmann, 1989; Eanes et aI, 1993; Dahlhoff & Rank, 2000; Ward et 
aI, 2004; Huestis & Marshall, 2006; Cos midis et aI, 2008). 
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Chapter 6 Developmental responses to 

temperature and photoperiod 

6.1 INTRODUCTION 

The size of an adult butterfly is dependent on larval growth (Atkinson et 
aI., 1994), which is strongly influenced by temperature and photoperiod 

(Nylin et aI., 1989; Leimar, 1996; Nylin & Gotthard, 1998; Gotthard, 

2008). Thus, accumulation of resources by larvae is an important life 

history component as adult size has large consequences for fitness 

(Stearns, 1992). Higher temperatures during development generally 

allow for increased activity in ectotherms, resulting in faster growth and 

a shorter development time, but producing smaller adults. By converse, 

lower temperatures reduce growth rate and lengthen development time 

(Atkinson et aI., 1994; Atkinson & Sibly, 1997; Davidowitz & Nijhout, 

2004; Kingsolver et a1., 2004). This explains the commonly observed 

pattern of increased adult size with latitude in arthropods (Blackenhorn 

& Demont, 2004), although the opposite pattern has also been found 

(Nylin & Svard, 1991; Blackenhorn & Demont, 2004). The latter pattern 

is usually explained as a seasonal effect as season length decreases with 

latitude (Mousseau & Roff, 1989; Nylin & Svard, 1991) with short 

seasons truncating the time available for development. 

Developing larvae have to use reliable end -of-season cues to 'predict' the 

time left until periods of unsuitable weather to 'choose' whether to 

develop directly or to spend the unfavourable period in a resting state; 

diapause (Danilevskii, 1965). The main cue for butterflies in seasonal 

systems is photoperiod (Danilevskii, 1965; Leimar, 1996; Nylin & 

Gotthard, 1998; Burke et 81., 2005) and the daylength at which fifty 

percent of the population goes into diapause is termed the critical 

photoperiod (Tauber et a1., 1986). Larvae on the pathway of direct 

development have the capability to speed up their development to make 

sure they reach the desired stage before the start of the unfavourable 

period (Nylin, 1992; Leimar, 1996; Nylin et a1., 1996; Gotthard, 1998). 
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In many species there is geographical variation in diapause expression 

and the general pattern is a longer critical photoperiod with increasing 

latitude (Masaki, 1961; Tauber et ai., 1986; Mousseau & Roff, 1989a; 

Kurota & Shimada, 2003). Po1yommatus icarus has a large latitudinal 

range and the response of individuals from different latitudes to 

photoperiodic and temperature regimes is expected to differ according to 

their location if development is an adaptive response to prevailing 

environmental conditions. 

Thus, it is often the interaction between photoperiod and temperature 

cues that trigger the pathway of (speeded) direct development or 

diapause, whereas temperature directly affects development time 

through its effect on activity levels and growth rates. Adult butterflies of 

P. icarus in Britain are larger in the colder higher latitudes, i.e. 

Scotland and Northern Ireland, than in the south of England (Emmet & . 

Heath, 1989; Asher et a1., 2001), suggesting a temperature-size effect 

unconstrained by the requirement to develop quickly to fit in two 

generations a year as in the south of England. 

Besides these plastic responses to environmental cues, there is an 

additional genetic component that can influence development. For 

example, in Lycaena tityrus, variation in growth rate and ability to cope 

with food stress is dependent on PGI genotype (Karl et a1., 2010). This 

could allow for local adaptation to predictable environmental conditions, 

but whether such patterns of local adaptation in developmental traits 

are more widespread and reflect a geographical pattern is at present not 

known. The most likely allozyme candidates for selective loci in 

butterflies are PGI, PGM and G6PDH (Watt, 1977; Carter & Watt, 

1988; Goulson, 1993; Haag et ai., 2005). 

Understanding how individuals respond to reliable cues (photoperiod) 

and variable factors (temperature), and the variability of these 

responses within populations provides essential information in 
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predicting how species respond to environmental changes (e.g., climate 

change and land management change; Hill & Hodkinson, 1995; de Vries 

et a1., 2011) and the likely consequences for population stability and 

persistence. Furthermore, the possibility of allozyme adaptation adds a 

new dimension to the study of development and could shine a new light 

on the variation in developmental responses to environmental change. 

Here, the plastic response of development time and final size to the two 

main factors (temperature and photoperiod) is investigated in an 

experimental study, whereby larvae from different latitudes were 

reared at temperatures and photoperiods representative of the extremes 

of the studied cline. Additionally candidate allozyme loci are studied to 

investigate possibilities for local adaptation. Specifically, this chapter 

will test the following predictions: 

(1) Larvae reared at low temperatures will develop more slowly and 

have a larger final adult size than those reared at higher 

temperature. Butterflies from more northern populations are 

expected to better cope with cold temperatures (i.e. less 

prolonged development time). 

(2) Butterflies reared at longer photoperiods are expected to: 

a) develop more slowly or go into diapause because the 

photoperiod indicates they are at a high latitude allowing 

only one generation with no need to speed up development for 

a second generation or, 

b) develop more slowly than those at a shorter photoperiod, 

because the photoperiod suggest an earlier calendar date, 

relaxing the time pressure and allowing more time for 

development. 

(3) Both the responses to photoperiod and temperature cues and the 

degree of plasticity of the response are expected to differ between 

populations, suggesting that these are not completeiy plastic. 

This may have strong implications for adaptation to changing 

environments. 
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(4) Because variation in PGI has previously been related to 

differences in developmental traits, this study investigates 

variation in three candidate loci (PGI, PGM, G6PDH) in four 

populations and their relationship with development time. 
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6.2 MATERIAL & METHODS 

Eggs collected in Frog Firle (south east England) in the field in spring in 

two years (from 7 females (16-17106/2008) and 14 females (07-

09/06/2010)) and eggs from two northern sites (Greenhow: 14 females 

(13-14/07/2010) and Mallaig: 10 females (22-23/07/2010)) were 

transferred to a constant temperature room (20°C) and stored in small 

Petri dishes lined with damp filter paper to prevent desiccation. The 

time between collecting of the eggs and hatching of the first instars was 

on average 10 days. Total development time was calculated from the 

day of hatching of the eggs till the eclosion of the adult butterfly. On the 

day of hatching, larvae were transferred to potted Lotus cornicuJatus 
host plants that were placed in an incubator, with a 16L8D cycle, in a 

split-temperature design (14°C and 20°C). These temperatures are the 

relevant air temperatures for Scotland and England respectively and 

the photoperiod is the late-spring daylength for southern England. In 

the second part of the experiment, which was executed in the following 

year, freshly hatched caterpillars were reared at a constant 20°C but at 

a longer daylength (19L5D) to be compared with the 16L8D treatment 

at 20°C. This photoperiod corresponds to the late-spring daylength for 

Scotland. Offspring of each female were reared individually resulting in 

7 families in the first part (average n = 6.4 larvae per family) and 14 

families in the second part (average n = 1.6 larvae per family) for Frog 

Firle, 14 families for Greenhow (average n = 3.1 larvae per family) and 

10 families for Mallaig (average n = 4.1 larvae per family). Initially 

between 6 and 10 larvae per family were set up, but in order to 

maintain high family diversity and still guarantee sufficient food 

resources, the number of larvae was reduced during the experiment. On 

the day of eclosion, adult butterflies (16 females, 21 males at 14°C 

16L8D; 17 females, 29 males at 20°C16L8D; 6 females, 22 males at 20°C 

19L5D) were weighed to the nearest 0.001 g (HR-120-EC, A&D 

Instruments) and a subset was frozen for allozyme analysis (see 

Chapter 5). No two individuals from the same family were frozen for 

this analysis. The results of these three treatments could then be 

113 



analysed as a set of two contrasts (14°C v 20°C at 16L8D; 16L8D v 

19L5D at 20°C). 

6.2.1 AnaJyses 

General Linear Mixed Models (GLMMs) were fitted to explain the 

variation in the development time and final adult weight for both fixed 

effects, temperature and photoperiod treatment. Sex was used as a fixed 

effect; both site and family nested within site were used as random 

effects. During the experiment however, northern populations all 

entered diapause, essentially yielding no data. All results are therefore 

coming from one (southern) site and only the fixed effect sex and 

random effect family were used in the model. Because of limitations of 

the design, the long-photoperiod treatment was done in a different 

season than the short-photoperiod treatment, possibly confounding 

photoperiod and year. This implies that families are not repeated across 

the photoperiod treatments. However, because of the random sampling 

in the same locations and a fixed rearing protocol, with care, data can be 

compared. 

Because of the possible relationship between development time and 

final weight, time was tested as a covariate in the GLMM for final 

weight. Final model selection was done by backward elimination of the 

least significant variables starting from a full model containing all 

variables and interaction terms of interest. 

Allozymes were labelled with either presence or absence of an allele for 

each common allele. GLMs were used to explain the variation in 

development time and final weight separately, with each allele (fixed 

effect) and rearing temperature and their interaction as factors. Weight 

was again incorporated as a covariate in the analysis of development 

time and vice versa. 
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All data were tested for normality using the Shapiro-Wilk's normality 

test in R 2.11.1 (R Development Core Team, 2010). 
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6.3 RESULTS 

Irrespective of temperature or photoperiod conditions all northern 

larvae (from Mallaig and Greenhow) entered diapause in their second 

instar. Larvae stopped feeding and remained motionless on the 

underside of the Lotus plants and did not restart feeding till after 60+ 

days, when observations were ended. A subset of the caterpillars was 

subjected to a cold-shock (14 days in 4°C, 24h dark) after which they 

were transferred back to 20°C and 19L5D. No feeding was observed for 

10 days and observations were ended after this period. Thus all results 

that follow are from one site (Frog Firle in the south). 

6.3.1 Development at different temperatures 

Southern (Frog Firle) butterflies reared at 14°C developed much slower 

than at 20°C (weighted means: 14°C: 147.2 (± 2.2) days for females; 

139.4 (± 1.7) days for males; 20°C: 61.1 (± 0.8) days for females; 57.3 (± 

0.67) days for males, Figure 6.1), and there was a family effect 

(Temperature: Fl,74 = 4376.78, P < 0.0001; Sex: Fl,74 = 17.21, P < 0.0001; 

Family: F6,74 = 3.45, P = 0.0047). However, larvae that spent a longer 

time developing had a lower final weight (Temperature: Fl,75 = 6.65, P = 

0.012; Figure 6.2) and there was a family effect (F6,75 = 2.88, P = 0.014). 

In the analysis of weight there was no effect of sex (P > 0.05). The 

individuals in the low temperature treatment also displayed 

considerable variation in development time. Males developed faster 

than females, but there was no difference in the response to 

development temperature between the sexes (no significant interaction 

effect). There was a weak negative relationship between development 

time and weight (r = -0.217, P < 0.049). Development time was tested as 

a covariate for weight but was not found to be significant (p > 0.05) and 

was not retained in the final model. 
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Figure 6.1 Development time (± standard error) of males and females in 
different rearing conditions. Depicted are the standard errors of the fitted full 
model. 
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Figure 6.2 Final adult weight (± standard error) for butterflies reared under 
different temperatures. 

In the subset that was frozen for allozyme analysis, no relationship was 

found between any of the alleles of G6PDH, PGI or PGM and 

development time or final weight (Table 6.1). However, in the analysis 

of development time there was a significant interaction between 

heterozygotes of PGM and rearing temperature (Table 6.2). There was 
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no effect of weight as covariate and this was removed from the analysis. 

PGM heterozygotes develop faster than homozygotes at 20°C but slower 

at 14°C (Figure 6.3). 

Table 6.1 Results of the ANOVA of final weight and development time. F-ratios 
(with their degrees of freedom) and P-values are represented for each variable. 
Development time was used as a covariate in the analysis of weight; weight 
was a covariate in the anal sis of develo ment time. 

G6PDH 
allele a 
allele b 
heterozygote 
PGI 
allele b 
allele d 
allelee 
heterozygote 
PGM 
allele f 
allele 0 

heteroz ote 

G6PDH 
allele a 
allele b 
heterozygote 
PGI 
allele b 
allele d 
allele e 
heterozygote 
PGM 
allele f 
allele 0 

heteroz ote 

Allele 

F1.23 P 
0.036 0.852 
0.823 0.374 
0.663 0.424 

1.515 
0.13 

0.087 
0.365 

0.526 
0.02 
0.97 

0.231 
0.721 
0.771 
0.552 

0.476 
0.89 

0.335 

Res onse variable: Wei ht 

Rearing temp 

F1•23 P 
3.913 0.06 
3.746 0.065 
2.904 0.102 

2.665 
4.354 
4.309 
4.051 

4.227 
3.988 
5.021 

0.116 
0.048 
0.049 
0.056 

0.052 
0.058 
0.035 

Development 
time 

F1•23 P 
5.48 0.028 

5.166 0.033 
4.454 0.046 

4.073 
5.777 
5.686 
5.541 

5.598 
5.283 
6.606 

0.055 
0.025 
0.026 
0.027 

0.027 
0.031 
0.017 

Res onse variable: Develo ment time 
Allele 

F1•23 

0.411 
0.085 
0.832 

0.626 
2.477 
2.251 
0.022 

0.062 
1.629 
2.31 

P 
0.528 
0.773 
0.371 

0.437 
0.129 
0.147 
0.884 

0.805 
0.215 
0.143 

Rearing temp Weight 

F1.23 P F1•23 P 
1302.376 <0.0001 5.48 0.028 
1536.73 <0.0001 5.166 0.033 

1202.697 <0.0001 4.454 0.046 

1363.07 
1710.157 
1574.581 
1531.476 

1398.043 
1433.66 

1568.785 

<0.0001 
<0.0001 
<0.0001 
<0.0001 

<0.0001 
<0.0001 
<0.0001 

4.073 
5.777 
5.686 
5.541 

5.598 
5.283 
6.606 

0.055 
0.025 
0.026 
0.027 

0.027 
0.031 
0.017 

Table 6.2 Results of the ANOVA of development time and PGM Heterozygotes. 

Rearing temp 
Heterozygote 
Weight 
Rearing temp*Heterozygote 

F1.21 P 
1889.696 <0.0001 

4.765 0.041 
5.320 0.031 

11.162 0.003 
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Figure 6.3 Relationship between rearing temperature and development time 
for PGM homozygotes (red) and heterozygotes (blue). Error bars indicate 
standard errors. 

6.3.2 Development at different photoperiods 

For the southern larvae (Frog Firle) there was a significant effect of 

photoperiod and sex on development time (Photoperiod: Fl,71 = 51.08, P 

< 0.0001; Sex: Fl,71 = 14.83, P = 0.0003; Figure 6.4). Butterflies reared in 

a 16L8D regime took longer (weighted means: males: 57.3 (± 0.6) days; 

females: 61.1 (± 0.8) days) than those reared under a 19-hour light 

regime (weighted means: males : 52.1 (±0.7) days; females: 54.0 (± 1.3)). 

In the analysis of weight, there was no effect of sex. The short-day 

butterflies all developed into heavier butterflies (16L8D: 359 (± 0.12) 

mg; 19L5D: 202 (± 0.15) mg; Fl,72 = 67.39, P < 0.0001; Figure 6.5). 

Because in this part of the experiment, butterflies were reared in two 

different years, family could not be used as a variable. Neither 

development time nor weight was significant as a covariate in the 

analyses. There was a positive relationship between development time 

and weight (r = 0.461, P < 0.0001; Figure 6.6). 
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Figure 6.4 Development time (± standard error) of males and females in 
different photoperiods. 
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Figure 6.5 Final adult weight (± standard error) of butterflies reared in 
different photoperiods. 
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Figure 6,6 Relationship between development time and adult weight on the day 
of eclosion (R2 = 0.212). 
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6.4 DISCUSSION 

6.4.1 Development at different temperatures 

As predicted, larval development from the southern population was 

significantly slower at colder than warmer temperature. However, even 

though development was prolonged, larvae reared at the colder 

temperature produced lower final weight adults, and not higher as 

expected. Generally, a longer development time allows for a longer 

feeding period and the resulting adult butterflies are expected to be 

larger (Nylin & Gotthard, 1998). It is likely that the pattern here is the 

result of a constraint because of the low temperature (Davidowitz & 

Nijhout, 2004). The temperature of 14°C was measured as the average 

air temperature in Scotland during summer (Howe, 2004; Howe et aI., 
2007). This does not necessarily mean that P. icarus butterflies in 

Scotland or at even higher latitudes are suffering from strong 

environmental constraints on development, since solar radiation 

combined with appropriate microclimate choice could allow for larvae to 

experience higher temperatures than the average air temperature 

(Howe et al., 2007). This could explain why there is a reduction in size 

in the lab and not in the field (see Chapter 3). Because larvae from the 

northern populations went into diapause, the latitudinal comparison 

could not be made. 

The higher variability of development times of bivoltine populations at 

cold temperatures may reduce the chances of sibling mating in marginal 

conditions, where population density is likely to be small (Shreeve et aI., 
1996). In more favourable conditions in southern locations, population 

densities are usually high enough so that variability in development 

times becomes less important and higher activity levels in these 

conditions will increase encounters with non-siblings. In other species 

this higher degree of variation in development times in colder conditions 

has previously been observed too (e.g. Aricia agestis (Burke et aI., 2005), 
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Pararge aegeria (Breuker, pers. comm.». The reasons for this are 

currently unexplained but warrant future investigation. 

6.4.2 Protandry 

In many butterfly species males eclose earlier than females (protandry) 

which is used as an explanation for the often observed sexual size 

dimorphism (Fagerstrom & Wiklund, 1982; Wiklund et ai., 1991; 
Zonneveld, 1996). The degree of protandry is expected to be stronger in 

systems with discrete generations (Wiklund & Forsberg, 1991; Nylin et 

ai., 1993) as is the case for this study species in the British Isles. Male 

P. icarus larvae speed up their development in their final ins tar before 

pupating in order to emerge before the females (Leimar, 1996). This 

protandry effect was also found in this study in both the temperature 

and photoperiod treatments. The shorter male development did not 

however, result in differences between the sexes in final weight of the 

adults. In P. icarus the size dimorphism is variable, but occurs at all 

conditions (Leima,r, 1996). This suggests that protandry is a trait that 

can be uncoupled from sexual size dimorphism (Nylin et ai., 1993), 
indicating that it is a trait that is actively selected for in P. icarus in 

seasonal environments. 

6.4.3 Development at different photoperiods 

The photoperiods the larvae were subjected to were those of a southern 

and a northern latitude. Poiyommatus icarus occurs within the British 

Isles in two generations in the south (bivoltine) and only one in the 

north (univoltine) with a transition zone in North-Yorkshire (around 54° 

latitude) (Emmet & Heath, 1989; Asher et ai., 2001). The expected 

response was therefore that larvae from southern populations, subjected 

to the northern photoperiods, would behave like northern individuals 

and have a slower development or enter diapause (as the result of a 

plastic univoltine strategy). However, the larvae from the southern 

population when reared at longer daylengths responded with a shorter 

development time and a lower final weight. Because the experimental 

conditions of photoperiod and temperature are not naturally 
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encountered by these butterflies, they could have misinterpreted these 

cues. It is also possible that for P. icarus from Frog Firle temperature is 

a more important cue for diapause induction and colder temperatures 

are needed before these butterflies enter diapause. The longer, northern 

photoperiod to which they were subjected indicates a shorter growing 

season and this would then make it necessary to develop faster to 

produce the next generation. Larvae from more northern populations, 

Mallaig and Greenhow, subjected to southern photoperiods, were 

expected to develop directly as to give rise to a second generation. The 

response found however, was that all larvae went straight into diapause 

under both northern and southern photoperiod treatments. This is 

indicative of an obligate diapause strategy. 

These findings suggest that the response to diapause cues is not entirely 

plastic as was also demonstrated for Pieris brassicae (Spieth et a1., 
2011) and the flexibility in voltinism in this species is not as previously 

described (Emmet & Heath, 1989; Asher et a1., 2001). In a geographic 

comparison, southern populations appear to be more plastic in their 

voltinism strategies than northern ones. Further studies subjecting 

larvae from populations along a latitudinal cline to different thermal 

and photoperiod treatments will allow for a clearer understanding of the 

variation in voltinism. 

6.4.4 Allozymes and development 

Many studies have recently investigated the relationship of allozymes 

and performance (Watt, 1977; Goulson, 1993; Haag et ai., 2005; Hanski 

& Saccheri, 2006; Niitep6ld et ai., 2009; Orsini et ai., 2009; 
Saastamoinen et a1., 2009; Vandewoestijne & Van Dyck, 2010). 

However, influence of allelic variation on development is hardly studied. 

One study has found that the PGI genotype of Lycaena tityrus can have 

an influence on growth rate, but not on total development time (Karl et 
a1., 2010). Previous studies on butterflies have found relationships 

between genotypes of PGI, PGM and G6PDH and different life history 

traits (Watt, 1977; Carter & Watt, 1988; Goulson, 1993; Haag et a1., 
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2005). However, for none of these three loci was there a direct effect on 

development time or final weight in this butterfly. Polyommatus icarus 

individuals that are heterozygote at the PGM locus could develop faster 

than homo zygotes in warm conditions (20°C), but were slower in the 

cold treatment (14°C), but there was no effect on adult size, possibly as 

a result of canalisation (Waddington, 1942). As a result, in warm 

conditions, PGM heterozygotes can spend less time as a caterpillar 

without trade-offs between size and development time. In the cold 

treatment, homozygotes have a slight advantage over heterozygotes, 

suggesting that specific allozymes confer advantage in these conditions. 

A reduction in PGM heterozygote frequency with latitude would add 

power to the explanation of canalised development. However, across the 

studied populations, no trend of either increased or decreased 

heterozygosity in PGM was found. Because only a subset of the 

experimental individuals was used in the analysis and the larvae from 

the northern populations went into diapause in all conditions, sample 

sizes are quite low and the full design could not be executed. To 

distinguish between canalised development and heterozygote advantage 

in PGM, insight in the development patterns of univoltine populations 

and their heterozygosity are needed. 

6.4.5 Implications for conservation 

Generally, there is a negative relationship between temperature and 

final adult size (Roff, 1980; Atkinson et al., 1994; Davidowitz & Nijhout, 

2004; Nijhout et a1., 2010). In this study, southern butterflies reared 

under warm temperatures were larger than those reared under colder 

temperatures and the reverse pattern was found in the field: second 

generation individuals of P. icarus butterflies are generally smaller than 

the first (spring) generation (see Chapter 3). 

The experimental procedures used here used a constant photoperiod, 

and the field and laboratory findings indicate an interaction between 

photoperiod and temperature cues on development. If this is a general 

pattern for insects, then responses of species and populations to 
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environmental change via developmental processes could be more 

complex than if they are governed by photoperiod alone. Photoperiod in 

any location is a very stable predictor, but environmental changes 

(global warming, habitat modification) can influence the thermal 

characteristics of habitats with possible important consequences on the 

development duration and size of this butterfly. Changes in phenology 

have previously been described for butterflies as a consequence of a 

modification of the physical characteristics of a habitat, with strong 

effects on species persistence and abundance (Hill et a1., 2002; de Vries 

et a1., 2011). The interaction between photoperiod and temperature on 

size warrants further investigation, in particular in the field as there 

are potential implications for egg production, activity and flight 

performance. 
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Chapter 7 Integration 

The Common blue butterfly Poiyommatus icarus has been described as 

a highly variable butterfly (Frohawk, 1934; Emmet & Heath, 1989; 

Asher et ai., 2001) and previous work has quantified within and 

between population variation in behaviour and morphology in two 

populations in the British Isles (Howe, 2004; Howe et ai., 2007). The 

main aims of this project were to build further on this work and explore 

the nature of the variability in several traits in P. icarus by studying 

morphological, physiological and behavioural traits along a latitudinal 

cline. With common-garden and split-brood experiments, the causes of 

the variability could be explored: local adaptation, plasticity or a 

combination of both. Information on the population genetic structure of 

P. icarus in the Britih Isles was collected to investigate the potential for 

local adaptation (i.e. genetic isolation). 

There were overall differences between the populations in the studied 

morphological traits (wing size, shape and melanisation), but there was 

no strong relationship with latitude as was expected (Watt, 1968; Nylin 

& Svard, 1991; Chown & Klok, 2003; Blackenhorn & Demont, 2004; 

Ellers & Boggs, 2004; Nygren et ai., 2008). The absence of this 

relationship suggests that previous functional interpretations of the 

morphological characteristics (Howe, 2004) are possibly not entirely 

correct. 

Only for females was there an increase In size with latitude, while 

males across all populations did not differ in forewing size (Chapter 3). 

Female P. icarus thus follow a Bergmann cline, which is in contrast 

with the saw-tooth pattern that was expected for ectotherms in a 

seasonal system (Mousseau, 1997; Chown & Klok, 2003; Blackenhorn & 
Demont, 2004) and on the basis of a previous Swedish study with this 

species (Nygren et ai., 2008). An increase in size with latitude could be 

the result of decreasing temperatures and thus slower development and 

larger final size at northern latitudes (Blackenhorn & Demont, 2004). 
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The opposite pattern in the Swedish study could be the result of 

combining butterflies from different generations in the analysis, which 

may have resulted in a saw-tooth pattern. The field study conducted in 

this work only used spring generation butterflies because these wouid 

all have experienced a cold overwintering stage. Directly developing 

summer generation butterflies experience a completely different set of 

environmental conditions compared to northern univoltine butterflies, 

making comparisons difficult. The choice to use only butterflies that 

have experienced larval overwintering thus would result in a more 

comparable approach. 

In the experimental stage however, the cold (northern) treatment for 

southern larvae resulted in a slower development and smaller adult 

butterflies for both males and females (Chapter 6). Southern larvae 

reared at northern photoperiods were expected to behave as a univoltine 

population, but instead they sped up their development resulting in 

smaller adults. This suggests that latitudinal variation in size is the 

result of a complex interaction of factors and that there is a strong 

genetic component influencing development time, growth rate and adult 

size. This is further confirmed by diapause induction in all northern 

(univoltine) larvae under all conditions and a strategy that can allow 

multivoltinism in southern (normally bivoltine) larvae. This means that 

even with high levels of gene flow (low FST values; Chapter 5) local 

adaptation is possible for certain developmental traits. This may be a 

result of a temporal segregation: the obligate univoltines in the north 

are temporally separated from both bivoltine generations. In the 

transition zone, both voltinism patterns can occur without overlap in 

flight period. Increasing global temperatures could therefore allow 

bivoltine populations to develop two complete generations at 

increasingly higher latitudes, effectively causing the univoltine 

populations to disappear. 

Polyommatus icarus is known for its plasticity In sexual size 

dimorphism (Leimar, 1996; Nygren et a1., 2008). In an experimental I 

treatment, adult males increase in size when reared under long 
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photoperiods while females reach an intermediate size in all conditions 

(Leimar, 1996). In a common garden situation females reared from 

southern latitudes are smaller than males, but those from more 

northern latitudes are larger (Nygren et a1., 2008). This is the first 

study to describe field variation in sexual size dimorphism along a 

latitudinal cline. This pattern could be the result of male butterflies in 

southern latitudes that compensate for the shorter development time by 

higher growth rates. Because of the added risks of high growth rates 

(Gotthard, 2000), reaching a large size for males is likely to be a trait 

that is actively selected for. Large male size generally is associated with 

territoriality and female polygamy (Wiklund & Forsberg, 1991). 

However, in the lab experiment under all circumstances, males emerge 

before females (protandry), which is associated with female monogamy 

(Wiklund & Forsberg, 1991). As these butterflies use a combination of 

perching and patrolling (Howe, 2004), both a large size (territoriality) 

and emerging early (protandry) could be of importance in this butterfly. 

Large bodies also are more thermally stable and this could be an 

important trait in colder latitudes, as the wings hardly contribute 

towards thermoregulation (Chapter 4). Another explanation for the 

lower variability in male size across latitudes is that the males are 

constrained because they do not grow larger at more northern latitudes, 

suggesting that they reach their physical maximum size across the 

British Isles. Future studies should focus on rearing larvae under 

various combinations of temperatures and photoperiods in order to 

understand the variation in development and adult size in this 

butterfly. 

Larvae from northern latitudes are genetically adapted to a univoltine 

life cycle and develop more slowly than those from more southern 

latitude, but in the lab the slower development results in smaller adults 

(Nygren et a1., 2008; this work). In order to explain the large size of P. 

icarus butterflies at northern latitudes, there are two possible 

explanations. Larvae in the field experience a combination of 

photoperiod cues and fluctuating temperatures. Furthermore, by 

appropriate microclimate choice the effective temperature experienced 
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by larvae can be much higher than the measured ambient temperature. 

This could result in higher growth rates in the field compared to the 

constant environment in the lab. Another explanation is that larvae in 

northern populations use two growing seasons (two-year life-cycle) to 

attain a large size (Kukal & Kevan, 1987; Nylin & Svard, 1991; Wipking 

& Mengelkoch, 1994; Morewood & Ring, 1998; Johansson, 2003; Nygren 

et a1., 2008). This idea needs further investigating as this could possibly 

explain the wide range of environmental conditions this species can 

thrive in. 

In several butterfly species there is an increase in butterfly wing 

melanisation with latitude or altitude (Watt, 1968; Guppy, 1986; Ellers 

& Boggs, 2002; Ellers & Boggs, 2004; Roland, 2006) and the higher 

degree of melanisation in colder environments is assumed to aid in 

thermoregulation (Clusella-Trullas et a1., 2007). The lack of a strong 

relationship between basal wing melanisation of P. icarus and latitude 

suggests a rather weak relationship with temperature. This is further 

confirmed by alack of strong effects of this butterfly's morphological 

characteristics and basking postures on heating and cooling rates 

(Chapter 4). Also, morphological variation has previously found not to 

influence thermoregulation-related behaviour in this species (Howe, 

2004). Because of its small size, solar radiation is readily absorbed by 

the body, and the wings of P. icarus butterflies possibly do not 

contribute significantly to thermoregulation. This could facilitate 

variation in wing morphology in response to other factors, such as mate 

signalling or predation. It also means that for this small butterfly 

microhabitat temperature and solar radiation are the most important 

factors determining body temperature and that climate change and 

vegetation change will directly affect its thermoregulation and thus 

activity. In larger butterflies, whose wings have a thermal function (e.g. 

Colias, Pieris) , wing variation may be more constrained because of 

thermal constraints. Further studies on other small-sized butterflies 

should clarify whether there is a general pattern of wing morphology 

being relatively unconstrained by thermoregulatory requirements in 

such species. 
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There was no strong effect of wing size and melanisation on heating 

rates as was expected. There was no increase in heating rates with 

higher melanisation, as would be expected for a dorsal basker. Higher 

temperatures and faster heating rates in a basking posture that cannot 

allow reflectance basking (wings fully spread) demonstrate that direct 

heating of the body is important in this small butterfly. In the field, 

with the wings fully spread, wind flow over the body may cause a 

convective cooling and elevating the wings into a reflectance basking 

posture could reduce convective cooling and have an advantage in 

windier conditions. In the laboratory setting used here there was 

minimal airflow and a warm ambient temperature and it will therefore 

be interesting to investigate whether the same results emerge in more 

marginal conditions, with lower temperatures. The radiation loads used 

in the experimental procedures are not representative of those of the 

brightest days, where radiation can reach 800-1000 Wm"2. In the 

conditions used the microhabitat temperature (i.e. the temperature next 
to the body) was strongly correlated with the take-off temperature of the 

butterflies. The results from the morphological studies of field collected 

specimens (Chapter 3) and the experimental setting (Chapter 4) suggest 

that, at least in ideal conditions, the thermal characteristics of P. icarus 
are mainly determined by a combination of environmental conditions 

and microsite choice. The apparent absence of physical adaptations in 

terms of thermoregulation implies a' strong association with warm 

microclimates and may be an important factor which restricts this 

butterfly to open low growing areas of vegetation with patches of 

sheltered short sward which provides warm microclimates (Howe, 

2004). Current land use and natural processes make these sites 

widespread, and thus facilitates a widespread distribution. 

The genetic diversity of P. icarus on the British Isles is considerably 

lower than on mainland Europe (Schmitt et a1., 2003; De Keyser et a1 

(submitted». Often a reduction in genetic diversity with latitude is 

found and is interpreted as being the result of post-glacial range 

expansion and colonisation history (Hewitt, 2000). Within the UK no 
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isolation-by-distance or a relationship of genetic diversity with latitude 

was found in the allozyme marker. However, based on a more neutral 

DNA marker, AFLPs, there was an isolation-by-distance pattern, but no 

reduction in genetic diversity (Chapter 5). This suggests that there is 

population structuring that can not be detected with the allozyme 

marker. The high similarity between all the populations in allozyme 

frequency most likely is the result of a combination of a restricted 

genetic constitution (twelve of the seventeen studied loci were 

monomorphic) and a maintenance of polymorphisms making 

populations more similar. At least in one enzyme, PGI, the relative 

higher frequency of heterozygotes could assist in the maintenance of 

polymorphisms. Variation in alleles of this enzyme is associated with 

fitness related traits in other butterflies (Watt, 1977; Haag et a1., 2005; 
Wheat et ai., 2006; Karl et ai., 2008; Saastamoinen et ai., 2009) and 

heterozygote excess at this locus is not uncommon (Haag et a1., 2005; 
Wheat et a1., 2005). Maintaining high allelic diversity could assist this 

species in persisting in a wide variety of environments and could help 

buffer against environmental changes. Despite high levels of gene flow, 

differentiation in PGM appears to occur (Chapter 5), but in this work I 

have not demonstrated how selection acts on the different alleles. Well 

designed field studies to determine if there are differences of activities 

of individuals with particular alleles under specific environmental 

conditions could be undertaken to demonstrate this. This was one of the 

original aims of this project, but very low population densities during 

the first study years precluded this. Frequencies of the rare alleles are 

relatively low in the field, and even though significant relationships 

were found between PGM alleles and environmental variables (Chapter 

5), they need further testing with adequate sample sizes. In the 

development experiment, PGM heterozygotes had shorter development 

times without size trade-offs (Chapter 6). This work shows potential 

non-neutrality for some allozyme loci (mainly PGM and PGl) in P. 
icarus but further studies with larger sample sizes are now needed to 

try identify how the allelic variation translates to functional properties. 
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This work has shown that the interpretation of morphological 

adaptations in P. icarus is not straightforward. Wing morphology and 

body size did not uniformly affect heating or cooling rates and it is 

suggested, from this work, that the wings of butterflies with small 

bodies may not play a large part in thermoregulation. In the face of 

increasing habitat fragmentation and higher global temperatures, it is 

important to discover how exactly these small grassland butterflies 

thermoregulate. Polyommatus icarus is a common butterfly species, but 

has shown large fluctuations in population sizes. As it is one of the more 

common and widespread grassland butterfly species, gaining a 

functional understanding of how exactly it deals with environmental 

variation, may enable us to improve conditions for the rarer, specialised 

grassland butterflies, most of which are relatively small. It is possible 

that body size is extremely important in maintaining a suitable body 

temperature in colder climates. I therefore suggest focussing attention 

in future thermoregulation related research on this butterfly on body 

size and the degree of hair cover, especially in respect to differing 

environmental development conditions. 

It is obvious that P. icarus in the British Isles is genetically strongly 

impoverished compared to the mainland European populations. Usually 

genetically poor populations are characterised by a low capacity to cope 

with changing environmental conditions and are more prone to 

extinction (Frankham, 2005). Polyommatus icarus is widespread and is 

a known coloniser which is also able to recover in abundance after large 

seasonal declines. It can also maintain high levels of polymorphisms in 

some allozyme loci. Future studies should direct their attention to PGM 

and PGI as potential candidates for loci under selection and whether 

selection maintains polymorphisms in these enzymes. High sample sizes 

of all specific alleles, could possibly be generated using lab stocks of the 

different genotypes for use in large field based enclosures to compare 

the activities and behaviours of different genotypes. The genetic 

impoverishment and the year-to-year fluctuations in population size 

could cause serious bottlenecks and even though some polymorphisms 

are maintained, most loci are monomorphic in the UK. The loss of 
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advantageous alleles or allele combinations could have serious 

consequences if they confer an advantage for different life history traits 

(Hedrick, 2001; Olivieri, 2009). Whether the variation that does exist is 

maintained by movement of individuals between population units, 

potentially counteracting any effects of small population sizes during 

unfavourable years is not known. These ideas and hypotheses remain 

open to testing. 
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