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ABSTRACT

Computers now pervade the field of medicine extensively; one recent innovation is the

development of intelligent decision support systems for inexperienced or non-specialist

pbysicians, or in some cases for use by patients. In this thesis a critical review of computer

systems in medicine, with special reference to decision support systems, is followed by a

detailed description of the development and evaluation of two new, interacting, intelligent

decision support systems in the domain of diabetes.

Since the discovery of insulin in 1922, insulin replacement therapy for the treatment of diabetes

mellitus bas evolved into a complex process; there are many different formulations of insulin

and much more information about the factors which affect patient management (e.g. diet,

exercise and progression of complications) are recognised. Physicians have to decide on the

most appropriate anti-diabetic therapy to prescribe to their patients. Insulin-treated patients also

bave to monitor their blood glucose and decide how much insulin to inject and when to inject iL

In order to help patients determine the most appropriate dose of insulin to take, a simple-to-use,

hand-held decision support system has been developed. Algorithms for insulin adjustment have

been elicited and combined with general rules of therapy to offer advice for every dose. The

utility of the system has been evaluated by clinical trials and simulation studies.

In order to aid physician management, a clinic-based decision support system has also been

developed. The system provides wide-ranging advice on all aspects of diabetes care and

advises an appropriate therapy regimen according to individual patient circumstances.

Decisions advised by the pbysician-related system have been evaluated by a panel of expert

physicians and the system has undergone informal primary evaluation within the clinic setting.

An interesting aspect of both systems is their ability to provide advice even in cases where

information is lacking or uncertain.
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CHAPTER 1 · DECISIONS AND DIABETES

INTRODUCTION

This thesis addresses a difficult and critical domain of medical decision making - diabetes care.

Diabetes is one of the most common chronic diseases; it is an unusual medical problem in that

patients make many of the decisions about how to manage the disease themselves. The role of

the diabetes health care team, which includes general practitioners, nurses, diabetes specialists

and various other medical specialities is to support patients and to educate both them and their

families in this management process in order to alleviate the many potential problems of the

disease.

It is known that both physicians and patients experience problems with decisions of anti-

diabetic therapy adjustment and it is thus a fertile area for decision support. Expert physicians

have traditionally been consulted on a regular basis and help is almost invariably available by

telephone. However, a cheaper, less obtrusive and more easily accessible form of decision

support would be distinctly advantageous to patients and physicians. The growth of "Artificial

Intelligence" (AI) and the increases in computer power and availability over the last decade has

provided the platform for the development of practical intelligent decision support systems.

Physicians have to decide on an appropriate initial therapy and make decisions about the long

term management of patients and individual problems (complications, metabolic disturbances

etc.) as they arise. Patients, however, have to make decisions on a day to day basis in relation

to their glycaemic control. The two different ..ales suggests a divide in the therapy decision-

making equipment Two systems are needed and two decision support systems are presented in

this thesis; the first is a portable, hand-held system appropriate for use by patients and the

second is a conventional microcomputer-based system for use by physicians. It should be plain

from the title "decision support" that the systems are provided in order to help make decisions,

they are augmented by good health care and, if used properly, augment that health care. The

use of such systems is a move towards a more hopeful outlook for diabetes in the next decade.



Outline of Tbesk Structure

• In chapter one, the nature of decision making is discussed and some background on

diabetes is given.

• In chapter two, a discussion of intelligent computer systems is presented, with particular

attention to the role of decision support systems.

• Chapter three summarises existing computer systems in diabetes care.

• Chapter four describes the development and evaluation of the hand-held decision support

system aimed at patients (poIRO)

• Chapter five covers research, development and evaluation of the physician-related decision

support system (PRESTO).

• Chapter six contains the Conclusion.

DIFFICULTIES IN CHOOSING AND ADJUSTING ANTIDIABETIC THERAPY

People with diabetes bave to make difficult daily decisions about their therapy. In many cases,

every meal and corresponding insulin injection bave to be calculated to maintain the blood

glucose level of their bodies within reasonable upper and lower limits. The knowledge which

enables them to make these decisions comes from their health care team and from their own

knowledge gained from experience. There is thus a learning process, which may be quick and

easy for some people, but is more often a painful process of trial and error. Learning the

techniques of insulin use comes at the same time as patients are trying to come to terms with

their diagnosis; therapy adjustment is thus often not given as mucb consideration as it deserves.

Along with insulin therapy come possible unpleasant side-effects: too much insulin leads to

very low blood glucose - a condition known as bypoglycaemia (see later). Patients are

therefore often reluctant to alter insulin doses for fear of bypoglycaemic reactions and

2



consequently blood glucose values remain unacceptably high. Algorithms for adjustment oC

insulin dosage became available more than ten years ago (Skyler et al1979), but the number oC

factors involved, and the effort required to follow the algorithms, make it difficult for all but

the most dedicated and well-motivated patient to apply them for each and every insulin dose

successfully, (patients typically have to administer three or four insulin injections per day).

A major step forward came with the development of miniature blood glucose sensors. Patients

now have the capability to carry out accurate blood glucose monitonng at home. The advent oC

home blood glucose monitoring was not however a solution to the problems of calculation of

the optimal insulin dose and further work was needed to provide patients with the information

of how to use their monitoring effectively.

Computers provide an answer to the problem of calculating the correct insulin dose for patients.

In order to be acceptable to patients and their physicians the computer should be reliable and

able to adapt to the individual requirements of each patient. In addition, for ease of use,

portability is an important requirement Portable insulin dosage computers have been in

existence now for over six years (see chapters 3 & 4). Early systems had many drawbacks, they

had small memory size, keyboards and display. Consequently, their use was restricted to the

dedicated few who were willing to carry out regular, four times per day blood glucose

measurements and stick rigidly to a regular diet and activity plan.

POIRO and PRESTO. Two new lnteUigent decision support systems

This thesis describes the development oC a new decision support system- the Patient Oriented

Insulin Regimen Optimiser (poIRO) which has been designed to calculate and advise insulin

doses to insulin-requiring diabetics based on a) the information they supply and b) the response

to previous advice, assessed by home blood glucose monitoring. The device is designed to

adjust insulin doses on an individual basis with the minimum of impact on lifestyle. Simple,

relative methods of entering information have been incorporated which mean that no

complicated dietary analysis or weighing oC food is necessary. The insulin doses prescribed by

the physician are adjusted from day to day depending on the response to previous doses;
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prospective adjustment is also made for cases of non-standard factors. such as ill health or a

large or small meal. POIRO is described. along with its reasoning and algorithms, in chapter 4.

Diabetes "mini-clinics" are currently a popular development in general practice. It has been

documented, however, that many GPs often experience uncertainty. even with fairly

commonplace decisions (Rector et al1989); in particular less than a quarter of GPs are

confident about initialisation and management of insulin therapy for patients. This thesis looks

at decision making and especially medical decision making with emphasis on diabetes. A

system which offers expert advice to physicians about control and management of both type I

and type II diabetes has been designed and implemented as a research prototype. The

Physician-Related Expert System for Therapy Optimisation (PRESTO) covers all factors

relevant to the different types of diabetes therapy: diet, tablet and insulin replacement. Wide

ranging advice concerning factors such as the amount of monitoring. diagnosis and treatment of

complications is also incorporated. As there are many different levels of expertise among GPs

(both medical and computer) the system has been designed to permit different levels of

abstraction for data entry. This enables its use by physicians at all levels for informed, co-

operative decision support. The highest abstraction level represents management and control

information as fuzzy symbolic quantifiers entered directly by the physician, for instance level

of glucose before breakfast (the fasting glucose) may be entered as "low". "normal". "high" or

"very high". The system is rule-based, uses structural representation techniques and

incorporates a degree of default reasoning in cases of missing data.

It is hoped that with further resources the two systems could be integrated to provide a

comprehensive system for the management of diabetes care. At present, PRESTO has a facility

for initialisation of POIRO but no further data transfer capabilities have been utilised. POIRO

has been assessed in clinical trials and is now relatively stable in format and level of advice. It

is hoped that commercial backing will promote more widespread availability of the system at a

realistic cost. PRESTO bas undergone informal evaluation in the clinical setting and with a

panel of physicians. Validation and evaluation of intelligent systems forms a central role in

..



their eventual acceptance and new techniques are examined and recommendations made for

further evaluation and validation of the system at the end of chapter S.

It is thought that some of the techniques used in the abstraction of data may be applied in other

medical domains, particularly in the management by medical protocols of other chronic

diseases which require regular assessment and therapy adjustment Such is the modular design

of the system that it would be possible to employ the basic facilities for data management and

apply the system to other chronic conditions, for example asthma, which require long term

monitoring and decision making.

DECISION MAKING

Decisions have to be made in all walks of life in various situations. Usually the consequences

of decisions are not crucial but sometimes critical decisions have to be made. People develop

general decision making skills from childhood, their ability to pick up knowledge about the

environment and to learn from experience is phenomenal. At the other end of the scale, there

now exist expert decision makers; they have studied a small field of knowledge and practised

decision making in that field for many years.

The complexity of some situations where decisions have to be made, for instance in urban

planning, financial budgeting and medicine has given rise to a number of tools, both theoretical

and practical, designed to aid the decision making process. Modern information gathering

equipment bas developed at a much faster rate than the development of theories and techniques

for sensibly collating and using the information supplied. Some of the developments and a

historical overview of them are given in chapter 2. This section deals more with the defmition

of decisions and how theoretical considerations may be used to make these decisions in the

most profitable way.

The processes by which humans learn to make decisions are not well understood and it is only

recently that general theories of problem solving/decision making have been developed. Recent

S



research has produced theories of decision making and some of these are outlined below, fICst

though we have to define what decisions are and how they are taken in practical situations.

What Is a Decision?

The Concise Oxford Dictionary defmes a decision as "the settlement of (question etc.),

conclusion, formal judgement, making up one's mind". The verb "to decide" comes from the

same linguistic root as the nouns scythe and scissors; it has the meaning "to cut", Essentially, a

number of options are cut down to a fmal choice. The processes involved in reaching decisions

are complex, but some generalisations may be made: an assessment of the benefit of the

potential outcomes is involved in some form but also decisions take into account the level of

cost or risk involved.

One type of analysis is known as the maximisation of expected utility (Lindley 1984). Utility

may be defined as the benefit of a possible outcome divided by its cost The method of

maximising expected utility is actually described by Lindley as the only correct approach to

decision making. It has a well-defined procedure: first, the uncertainties present in the situation

must be quantified in terms of values called probabilities. Second, the various consequences of

the courses of action must be similarly described in terms of utilities. Third, that decision must

be taken which is expected, on the basis of the calculated probabilities, to give the maximum

utility.

Experiments have been carried out for over twenty years using the numerical approach of

maximising expected utility. Some of the experiments were in domains where the extraction of

the numerical values was tractable and these produced accurate, working systems (De Dombal

1972). However, the adoption of formal decision methods was limited, in the medical domain

especially, due to the lack of clear defmitions and quantitative data on the potential courses of

action (step one of the theory). The demand for quantitative data was particularly disliked by ,

the users, in particular the assessment of the utility of outcomes in medicine is rarely objective

and subjective estimates differ between different situations for different users.
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Other important concepts involved in framing decisions are the decision maker's level of

ignorance and so-called risk attitude. The level of ignorance may be defmed within a taxonomy

of levels and affects the depths of analysis and user assessment which may be called upon in

decision making in a particular domain. The risk attitude is defmed as the decision maker's

willingness to be exposed to risk. It is intrinsically linked to medical decisions when possible

outcomes involve a risk of an unfavourable effect.

In virtually all decision situations some level of ignorance applies; the level of ignorance is

central to the level of decision support required and the potential decision contexts which may

be used. Ignorance may be classified into a taxonomy of levels (Holtzmann 1989). The highest

level (i.e. the level at which ignorance is least) is the combinatorial level; problems at this level

have an appropriate model and methods of solution but the problem is so large that the methods

cannot be applied using currently available technology. Second, the Watsonian level of

ignorance, this is the level of ignorance of Dr. Watson in relation to Sherlock Holmes. The

model is available but the solution method is incomplete, exemplified in the phrase

"..elementary my dear Watson" (never actually used by Conan Doyle, probably Originated in

Hollywood). The third level is named Gordian after the knot tied by Gordius for the future

ruler of Asia to untie. Alexander, like everyone else, could not untie the knot so he cut the rope

with his sword. At the Gordian level the model is incomplete and the problem has to be

reformed in order to be solved. The fourth level is termed the Ptolemaic level, the model is

complete but very awkward, Ptolemy's theory of planetary motion required many exception

rules in order to work. Copernicus provided a new model which led to Kepler and Newton's

formation of the accepted theory. At the next level. a model works but no one knows quite why

it works. for this reason it is called the magic level. WheD DOmodel is available, the dark level.

there is no clear method to make decisions although the problem is known. The lowest level is

the fundamental level in which the "problem" is not even realised to exist.

The statistical assessment of risk (risk analysis) is a highly specialised theory. In practical

situations, experts have to "weigh up" risks associated with certain choices, against the benefits
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of each option. The example from diabetes given earlier in this chapter is a good example of

the complexities involved in real-life medical decision making. Patients are worried by the risk

of hypoglycaemic reactions due to excess insulin and consequently do not attempt to reduce the

blood glucose to normal levels; the risks of long term problems may not be rated as important

by patients until symptoms of complications appear. The ultimate risk is to life itself, but along

the way there are considerations of quality of life which must be taken into consideration if

medical help is to be optimally employed. Individuals will form their own opinions about risk

but should be well informed of the potential risks in order to make the value judgements

necessary for the assessment

Another consideration to be taken into account in practical decision making is that decisions

should, in general, feel intuitively correct and there should be some level of justification, or

explanation at a level which may be comprehended by the user. Users frame individual decision

contexts within an overall decision model which has been previously defined, The user will be

more likely to make use of a decision support system (DSS) if a sense of "ownership" is felt for

the decision context This is especially true of the medical domain. Users will also be reluctant

to accept decisions which do not agree with intuition without clear, understandable justification

and explanation of why the decision was made.

An example from diabetes is that, in general a high blood glucose will lead to advice to raise

insulin. However, a raised fasting blood glucose may be due to excessive overnight insulin; this

has been documented in the literature and is termed the Somogyi effect (Somogyi 1959);

(although note that some evidence points against the existence of the effect (Gale 1980». In

order to convince physicians that their intuition may be wrong, a thorough explanation of the

criterion used to give the advice may be required. Problems with patients may involve their

intuitions of which insulin dose affects which blood glucose result: this is an example of the

Ptolemaic level of ignorance, although in some ways it is worse as the patient's mental model is

incorrect

8



The considerations of risk attitude, ignorance level and the inmitions of the decision maker

define the decision situation. The decision domain is defined by the problem to be solved, the

possible outcomes and the variable factors which enter into the decision. The union of the

decision domain and the decision situation is termed the decision context, the context will

include a set of constraints; these may be bard constraints which are inviolable, or soft

constraints which reflect the cost of utilising certain resources. Hard constraints may be natural.

such as the constraint on the number of bours in a day or else they may be defined on moral and

ethical grounds.

Once a decision has been framed and all the available relevant information has been collated, a .

decision may be taken. A decision is an instance of an action; it is defined as the action of

allocation of resources (Lindley ibid.). The action in turn then leads to an outcome which may

be one of the considered options or may be an unexpected outcome. If the outcome had not

been considered then the decision model was incorrect or incomplete. If the outcome may be

related to the original set of options, the model may be assessed for the quality of its decision:

however, this need not be a simple comparison of expected and acnial outcomes. It is possible

for a seemingly correct decision, based on all the available data, to result in an undesirable

outcome; the opposite is also true: a bad decision may lead to a favourable outcome; this would

involve what we normally term "luck". Remember that according to the utility model, a

decision is taken which is likely to be beneficial and minimise risk; in a single instance of a

process however, an unlikely outcome may occur. The evaluation of a decision is thus a

difficult problem, ifmany equivalent decisions have to be made, based on the same initial

criteria, then statistical analysis may be used to show that the decision is optimal more times

than not, In other cases, the decision may be compared to a "gold standard", defined by

consensus among experts in the domain as being the outcome with the highest utility.
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CLINICAL DECISION MAKING

In the past few decades there have been many improvements in clinical science due to

increased understanding of the means of relief, comfort and healing. At the beginning of the

study of medicine, knowledge was passed down by teachers; this knowledge was augmented in

stages by investigators who carried out experiments which interested them and eventually

methods were established for the dissemination of discoveries and results. In this way medicine

became established as an empirical science, based on the disciplines of anatomy, physiology

and biochemistry. The natural changes in time of the body due to degenerative processes were

distinguished from processes which were due to unnatural changes brought about by disease.

The study of diseases, with a view to finding control and future prevention became known as

epidemiology, this now forms the backbone of much practical medical practice. Epidemiology

relies on associative links which are statistically proven to exist, for example between diseases

and their signs and symptoms.

New discoveries in medicine may lead to new unanswered questions and new problems: the

discovery of insulin lifted the threat of immediate death from diabetics but introduced a whole

new set of medical problems due to the long term morbidity of the disease. The learning

process in medicine is thus continuous as medical knowledge is relatively incomplete and often

tentative. The approach to medicine is often one of model building and definition. The more

variables that are included in a model, the more complex are the decisions that have to be

handled. The rapid increase in complexity of models as the number of variables increases - the

combinatorial explosion - leads to other forms of decision making rather than solely analytical

decision making. Problem solving is often done by abductive logic, i.e. the inference of a

minor. specific premise from a major general premise and a specific conclusion. In contrast,

inductive and deductive logic rely on a more empirical approach. The detail behind complete

pathophysiological models is often forgotten in favour of the knowledge or ability to apply the

knowledge to the treatment of the "whole body". As Plato said "The wise physician is the best

solution".
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The sub-divisions of clinical medicine are: medicine, surgery, obstetrics and gynaecology and

paediatrics (Martin 1981). In their training, medical students spend a set amount of time in

each of these specialties. The most comprehensive of these four major sub-divisions is

undoubtedly medicine. The study of medicine is organised around the analysis of patients'

signs and symptoms in order to develop initial diagnosis hypotheses. The principle tasks

involved may be broken down as follows (Williams 1982): 1) acquire relevant data from the

patient appropriate to the circumstances of care and resources available; 2) use this data. in the

light of the complete medical knowledge base, to establish diagnosis or a list of problems; 3)

establish a plan for management of the problems. 4) monitor progress through iterative data

acquisition; this may lead to further investigations which in tum lead to alterations of the

monitoring and management plans. Lawrence Weed (Weed 1971) analysed medical tasks into

a problem oriented system model, he gave the final stage of the process the acronym SOAP for

Subjective evaluation- Objective evaluation - Assessment and Plan. This stage may be thought

of as iterations of the 3 prior tasks in the plan.

The involvement of the patient is passive during stages one and two. These stages are largely

physician-led once the original problem has been presented by the patient. The third stage

involves the patient in the decision and management process to a degree which depends on the

specific problem in question. The degree of involvement in diabetes is very high as patients

need to monitor their own progress for long periods of time between visits to their clinician.

Clinical Decision Making Paradigms

Now that some of the problems and procedures of medical decision making have been

recognised, practical and theoretical methods of actually providing automated decision support

may be defined and examined. Automation of decision making falls into three broad categories:

the first is termed the categorical approach; the second is the statistical or probabilistic

approach and the third is the symbolic reasoning or Artificial Intelligence approach.
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Within the categorical approach. clear-cut guidelines are presented, based on well defined and

understood criteria. The representation of categorical systems is often made by clinical

algorithms. An algorithm is defined as a step-by-step procedure for solving a problem that

contains conditional logic. The clinical algorithm can also be viewed as a form of practice

guideline. Formal attributes of clinical guidelines have been defined by the American Institute

of Medicine; these include reliability, validity and clarity (Margolis et al1992). One of the

main advantages of algorithms is the possibility of their representation as a flowchart - a

diagram which explicitly defines all the decision points. the criteria necessary for making the

decisions and the outcomes of those steps.

The second approach is sometimes termed the statistical theory of decision making. It has

strong theoretical and practical grounding and has been successfully employed in business and

finance over the last twenty years. "Statistics" bas as one of its definitions: "The science of

decision making". The fields of statistics associated with making decisions include point

estimation, inference, hypothesis testing. interval estimation and selection procedures

(Dudewicz & Misbra 1988). The detail of the formal decision theory will not be given here;

instead, an outline of the theory, listing the main components and the general formulation is

given.

Two main components of decision theory problems are: distribution of data (or observations)

which may be quantified by parameters or may be non-parametric, and the calculation of

expected losses or gains due to a decision. In the general formulation of decision theory a

random variable X is observed from which a distribution function F(x19) may be found (the

parameter 9 is unknown). A set of decisions D is defined from which a single decision d is

chosen which bas a loss function 1(9.d). Selecting the appropriate decision d is carried out

using decision rules of the form s(x) - d after observing x. The risk function re(s) is defined as

the average loss and is the criterion by which rules are compared; (equation E1.l), (EO denotes

expected value).

r9(s) • E(I(9.s(X))). (El.I)
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By making these defmitions, decision analysis hopes to study general properties of rules and

find the appropriate rule to apply in specific cases. ~ere have been many practical

applications of decision theory in the physical sciences, but little inroad bas been made into

medical decision making. Instead, medicine bas propagated the use ofhypothetico deductive

styles of decision making and reasoning. In particular, a statistical approach which bas proved

popular in medicine in the past bas been the application of Bayes theorem.

The well-known theorem of Bayes is given as equation El.2. It may be applied in various

decision making contexts. However, by far the most common use of the theorem is in the

diagnosis of a disease where certain probabilities of symptoms (p(ej» appearing concurrently

with the disease (II) are linked to the probability of the symptom appearing in the general

population, or the probability of the disease being present in the general population.

(E1.2)

In general, a rational decision rule is to select the disease hypothesis for which the posterior

probability P(Hilej>is highest after all items of evidence el, e2, e3 etc. (signs, symptoms, test

results and so on) have been acquired. The Bayesian approach to diagnosis was first applied by

Ledley and Lusted (1959); the major restriction to application of the method was the lack of

reliable statistics on the prevalence of disease symptoms within the general population.

Screening of the general population bas increased for some conditions, although reliable data is

still difficult to find even in those cases. The popularity of Bayes theorem for decision making

systems bas declined of late, mainly due to this lack of accurate meaningful probabilities of

events and the tedium of transcribing the data into a format suitable for a decision support

system (DSS), but also due to the increased development of symbolic decision making via

expert systems and AI and the realisation of the POWC'l'of the theories.

Incidentally, to return to the science of risk analysis and to avoid confusion, Bayes rules, as

opposed to the theorem above, are complex statistical rules for evaluation of risk probabilities

from the distribution function of an observable quantity. For more information on the use of
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these rules and some examples of statistical analysis for decision making refer to chapter 12 of

Dudewicz and Mishra (1988).

Cognitive research has shown (EIstein et al. 1979) that statistical methods employing

probabilities, the use of Bayes theorem included. are not implicitly used by human decision

makers when they reason. However, the use of probabilities is obviously much more suitable

for use in computer decision support systems and the methods can best be used to augment the

simulation of human problem solving techniques. This is the approach adopted by the POIRO

system. where heuristic reasoning-type processes are combined with the type of statistical

analysis techniques which make intuitive sense but are not in any way supposed to model a

human decision maker's mental process.

The third approach to decision making is more symbolic than numerical and is termed the

Artificial Intelligence (AI) approach. The AI approach is less mathematical in formulation but

relies on manipulation of symbols and knowledge. More recently, symbolic decision making

and argumentation has been proposed as a method which subsumes both decision making

paradigms (Krause and Fox 1991).

Most recent decision support systems in medicine have centred on a knowledge based. or

artificial intelligence (AI) approach; the approach may be termed symbolic rather than

numerical because of the use of manipulation of textual phrases or symbols in order to reason

and make decisions. Advantages of the AI approach are the relationship of the knowledge

contained in the system to real decision makers. abepossibility of a dialogue situation wiab

directed questioning rather than standard lists of questions as involved in statistical analysis and

the possibility of explanation and justification of decisions in narural language, although abe

theory of explanation still requires much improvement

A further benefit of the AI approach is that the agents which provide the decision support can

be made. to some extent, autonomous. That is they do not require to be explicitly put into

motion but may exist alongside a clinician during normal data entry and be there to be called
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upon when required. or alternatively to spontaneously advise of the detection of problems and

suggest possible solutions.

One by-product of the growth of telecommunications facilities is the huge amount of

information which may be made available. In the case of medicine, there are a huge amount of

laboratory procedures and support services which may be called upon by the practising

clinician. Alternatively, data may consist merely of straightforward clinical assessments, or

symptoms described by patients. One of the foremost functions of decision analysis is to

separate what is relevant to decision making and what is interesting to know, but not necessarily

relevant to making a decision. The PRESTO system is an example of a knowledge-based

system designed for a limited domain. Its objectives are clearly specified and its domain is

concerned with decision support for problems related solely to diabetes and. to a lesser extent,

its possible complications.

Knowledge-based systems generally contain a mixture of known facts (knowledge which is

certain) and domain heuristics (knowledge which is plausible but not certain). The terminology

associated with these systems bas grown into a complete subset of computer terminology and

methodologies and design software have been produced in order to make the development of

the systems more sound and better grounded in theory. A frequent criticism of knowledge-based

approaches is the lack of a standard guideline for their production and use; the development can

sometimes be ad hoc but even with common development methodologies developed for so

called knowledge-base "shells", the format of the knowledge may still be inconsistent and a real

problem is the degradation of such systems at the limits of the knowledge domain.

Chapter two enlarges on the nature and definitions of artificially intelligent systems and

includes a breakdown of the processes involved in the development of an intelligent system. In

relation to the general criteria of decision making described earlier, knowledge based decision

support systems would seem to fmd most use at the Watsonian level of ignorance, especially in

medicine, where the practitioner is a highly skilled knowledge elicitor but may have problems

combining the information to come to optimal decisions. Systems may also be of use at the
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Gordian level, where the introduction of unconsidered methods may be an aid to inexperienced

physicians. The considerable potential for tutorial expert systems has been realised with time

(see the discussion of NEOMYCIN in chapter 2). It may also be possible, with increases in

computing power, to provide help at the combinatorial level; more complicated problems may

become solvable by faster processors, parallel processors and improved solution algorithms,

although this will still have ultimate theoretical restrictions in mathematical terms.

The power of decision malting systems is their ability to combine different types of knowledge

and belief from various sources into a coherent model and decision: the combination of

biochemical investigations, results of clinical tests and information gleaned by direct

consultation. psychological and physical, as well as clinical observations may be combined

using models and probabilistic weighting in order to give a result

Computerised decision support systems are a subset of a much broader set of "intelligent"

computer systems. Intelligence attributed to computer systems is a topic of much philosophical

discussion because of the subjective assessment of whether computers can be considered as

intelligent - an argument which is illustrated in Yazdani (1986). For a general definition, a

system can be considered inteUigent if it provides answers to problems which are on a par with

those provided by experts. This definition may cause consternation among readers but is a

reasonable working definition for the purposes of defining a goal of AI.

A specific area of knowledge based systems which deserves a mention is that of a critiquing

system. Experts can make errors in judgement A computerised "critic" can assist in the

decision making process. A critic is a narrowly focused program that uses a knowledge base to

help it recognise what human errors have occurred and what types of criticism might be useful

to the human user. Criticism-based problem solving is seen as a novel way to bridge the gap

between the knowledge rich approaches of AI and the domain-independent, theory-rich

approaches of decision analysis (Silverman 1991). In the past, knowledge-based systems have

been designed to deal with trouble-free environments. Future knowledge-based systems will

16



need to cope with, and preferably take advantage of, the human's intuitive contributions. The

critiquing approach is one method of doing just that.

Although critiquing has not been employed directly in either of the systems developed during

the work for this thesis, the educational value of the systems is exemplified by the ability of the

user, patient or physician, to over-ride any of the system's recommendations. This may then

lead to a differential analysis of whether the decision eventually taken by the user was better or

worse than the decision which was suggested by the system. Such an analysis would be possible

in an extended trial whereby the quantitative measurement of the outcome of the decision (the

measured blood glucose levels) gives a clear and comparable assessment of the quality of the

decision. This analysis has not been possible so far due to the small amounts of data collected;

however. the potential for it should not be overlooked.

The history and development of medical decision support systems will be covered in chapter

two, where a general guide to the stages in production of a system is given for the benefit of

intelligent system designers. Later, the perspective of medical decision making is examined.

with reference to the development of clinical science. However. in order to provide a context

for the discussion, some background knowledge about diabetes is appropriate; the next section

provides some background for computer scientists who know nothing about diabetes and also

provides the clinical reader with a statement of the situation as perceived by the author.

DIABETES MELLITUS

Medical and Cultural Hktory

Diabetes is one of the oldest chronic diseases. First documented by the Ebers papyrus (1500

BO, the name "diabetes" was coined by Demetrios of Apamaia in the second century BC from

diabainein, the Greek word for through-passer. The term was used in connection with a siphon

used for tapping wine and refers to the commonest symptom of the disease - a passing of large

amounts of urine (polyuria).
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The f1I"Stsystematic study of diabetes was done by Aretaios (81-138 AD), who characterised

diabetes as consisting of intolerable thirst, burning in the intestines, passage of large amounts of

urine and having two stages, chronic and acutely fatal. Galen (129-199 AD) included diabetes

in his compendium of medical knowledge but admitted he had only seen two cases; this

highlights the comparative rarity of the disease compared to today. Diabetes is described in

Chinese medical records dating from the second century AD which seem to be the first to

mention sweetness of the urine. Arab physicians of the middle ages were very familiar with the

disease, Avicenna (980-1037) named the disease Aldulab (waterwheel), because of the almost

immediate excretion of the large amounts of water drunk by sufferers. Avicenna also seems to

have distinguished harmless diuresis and severe diuresis, diabetes insipidus and diabetes

mellitus. In India, Sanskrit medical texts describe characteristics of the urine, but, as with the

Chinese and Arab observations, the knowledge did not reach Europe until much later.

The Renaissance in Europe saw Paracelsus (1493-1541) describe the syndrome of excessive

urination, thirst and wasting under the name diabetes. In 1674 Thomas Willis tasted urine and

found it to be sweet; be added the adjective mellitus, meaning boney, to describe this

observation. Matthew Dobson isolated "brown sugar" from the urine of diabetics in 1776 and in

1780 Francis Home developed a fermentation test used as a standard procedure to diagnose

diabetes mellitus.

Treatment with diets free from sugar were developed in the nineteenth century, these diets were

mostly severely reslIictive and, wbile they did have some measure of success (prolonging 'life'

for up to three years). The restrictions imposed (for example no food containing carbohydrate)

were agonising for the patients wbo undertook them; their quality of life deteriorated as they

lacked energy and became painfully thin before inevitable death.

Meanwbile, investigations of the pancreas were being carried out A Swiss physician Johann

Conrad Brunner performed an amazing experiment in 1685. He opened up a dog and tied the

connections between the pancreas and the rest of the body. Subsequently the dog developed

diabetic symptoms: polyuria, polydipsia (excessive thirst) and polyphagia (excessive eating).
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Brunner's experiment was not widely disseminated so the link between the pancreas and

diabetes remained to be discovered by von Mehring and Minkowski who carried out their

epoch-making experiments in 1889 at the Hoppe-Seyler institute in Strasbourg. They surgically

removed the pancreas of several dogs, in order, it seems, to see if the organ was necessary for

life. They observed the symptoms of diabetes and Minkowski tested the urine, found it to

contain 12% sugar, and announced the fmdings to the world.

Twenty years before Minkowski put forward the link between the pancreas and diabetes. Paul

Langerhans had reported the discovery of clusters of cells within the pancreas which were

unlike the ordinary tissue of the gland. He gave the cells the romantic name of the islets of

Langerhans. Experiments in which the pancreas was removed but the islets left intact showed

that it was these cells which bad a fundamental role in glucose metabolism. The cells make up

approximately 2% of the weight of a human pancreas and have been classified into different

cell types.

The most important discovery in the whole history of diabetes to date came in 1922 when

Banting, Best. Macleod and Collip isolated insulin and successfully used it to control glycaemia

in humans (Banting and Best 1922); Banting and Best were awarded the Nobel prize for the

discovery which heralded a new dawn in diabetes researcb. In his fascinating account of the

breakthrough Bliss (1983) quotes the great American diabetologist Elliot Joslin who compared

the 'near resurrections' brought about by insulin to the effect of the prophecies of Ezekiel in the

valley of dry bones: '•••and the breath came into them, and they lived. and stood upon their feet.

an exceeding great army.'

Diagnosis

Of the many problems associated with diabetes, diagnosis is perhaps the easiest; the symptoms

are easily recognisable and stringent criteria for interpretation of oral glucose tolerance tests

(OOm have been laid down by the World Health Organisation (WHO) for use in borderline

cases (table 1.1); the results of this test divide patients into those with diabetes mellitus (DM)

and those with impaired glucose tolerance (IOT), which mayor may not develop into diabetes.
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Diabetes Mellitus
Fasting value
2h after glucose

~6.7 ~6.7
~ 10 ~ 11.1

~7.S ~7.S
~ 11.1 ~ 12.2

Table 1.1 Interpretation of Oral Glucose Tolerance Test. diagnosis of Diabetes Mellitus or
Impaired Glucose Tolerance.
For a glucose load of 75g in 250 to 350 m1 of water for adults and 1.75g per kg body weight up
to 75g for children:

Glucose concentration (mmol/l)
(Whole blood) (Plasma)
venous capillary venous capillary

Impaired eJucose toJerance
Fasting value
2b after glucose

<6.7 <6.7
6.7-10 7.S-11.1

<7.S <7.S
7.S-11.1S.9-12.2

In addition to impaired glucose tolerance, there are two major types of diabetes defined by the

WHO: Type I, or Insulin-dependent diabetes mellitus (100M) and Type Il, or non insulin-

dependent diabetes mellitus (NIDDM).

Type IIdiabetes is the most common; it can often be controlled successfully by following a

strict diet. or by tablets, but occasionally needs insulin replacement therapy. Type IIdiabetes

may be present for a long time before the glucose level rises to a symptomatic level; many type

ndiabetics are thus detected by screening or as a secondary finding when another medical

condition is detected. Sometimes diabetes may be present alongside other diseases or

syndromes; in other cases it is detected by the diagnosis of another problem, such as

hyperlipidaemia, which is known to be a secondary development of diabetes. The susceptibility

to type IIdiabetes increases with age, which is why it is often called maturity-onset diabetes.

However, type ndiabetes may affect young people, in which case the sub-type MODY

(maturity onset diabetes of the young) may be suspected. Recent research has suggested a

strongly inherited link in diabetics of this type (0' Rahilly et al. 1987).

Type IIdiabetes often manifests itself in women during pregnancy when it is known as

gestational diabetes. Diabetes may relent once gestation is complete, only to return later in life,

either at a subsequent pregnancy or due to weight gain or old age; it is particularly important to

strive for normoglycaemia during pregnancy, in order to reduce foetal morbidity and mortality
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(Essex 1976). Other specific sub-types of type Il diabetes have been documented but most are

extremely rare and the diagnosis does not, in most cases affect the therapy to be used.

The onset of type Idiabetes is much more acute, it always requires exogenous insulin

replacement therapy, and it is invariably much more difficult to control. Type Idiabetes is often

described by the term juvenile-onset; as it has its highest incidence below the age of 20; strictly

however, the term is incorrect, as type Idiabetes may occur at any age. Detection of type I

diabetes is usually by observation of symptoms (table 1.2) although new methods of detection

are becoming available for those known to be at risk (see below).

Skin irritation (pruritis)

Table 1.2 Most common symptoms of Diabetes Mellitus
Excessive thirst (POlydipsia)
Frequent urination (polyuria)
Frequent night-time urination (nocturia)
Weight loss (type Ionly)
Visual disturbances

Type Idiabetes is thought to have an autoimmune pathogenesis; evidence for this includes the

finding, at diagnosis, of inflltration of the islets of Langerhans with inflammatory cells,

circulating islet cell-specific antibodies and alterations in circulating T cell subsets (Fletcher

and Barnett 1989). Studies in identical twins (Barnett et al1981) have suggested the existence

of an environmental agent that triggers diabetes in genetically predispo~ed individuals.

Genetic researcb bas centred on the In..A (or major histocompatibility complex) system

although there is growing evidence that an HLA linked predisposition does not fully explain the

genetic basis of type Idiabetes. Despite the enormous effort none of the central questions

regarding causation bas received a definitive answer. Factors to be uncovered include the

relative contributions of environmental and genetic factors and the number and identity of

genes involved.

Wilkin (1990) describes different islet cell antibody types and compares their value in

predicting diabetes using statistics of how the disease progresses in individuals screened early

for the disease; i.e. first degree relatives of diagnosed diabetics. He concluded that the
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detection of islet cell antibodies (ICA) may mean that type I diabetes can be predicted before

clinical onset,

The majority of type Idiabetics experience a temporary remission during the early stages of

diabetes. The need for exogenous insulin falls and may decrease to zero as the patient's

capability to produce endogenous insulin recovers with the introduction of insulin replacement

therapy. This is always a temporary remission and has therefore been given the name of the

"honeymoon" period. It lasts for up to about a year in some individuals but is usually shorter in

duration. There have been studies in which certain preventative drugs have been tested to see if

the honeymoon period may be extended. So far, the drugs used (for example cyclosporin) have

been only partially effective (Moncada et al1991).

The family study, undertaken jointly in Oxford and Birmingham (Barnett and Todd 1990)

concentrated on families with at least 2 diabetic siblings and examined DNA for the specific

genetic susceptibility which causes diabetes. If such studies are successful there would still be

an urgent need for a preventative drug. Cyclosporin, probably the most effective drug in

prolonging remission yet tested, is toxic and so cannot be taken long term.

Pathopbyslology

There are many examples in physiology of feedback control of body mechanisms. Many of

these systems use hormones as the messengers of control. One typical example is the control of

the amount of glucose in the blood. Glucose is the body's natural energy source; it is provided

by food and utilised by all body tissues, primarily the muscles and the brain. The liver plays a

large part in the regulation and storage of blood glucose (Homer Andrews 1979), but the most

important hormone- msulia- is secreted in the pancreas. Although the primary function of

insulin is the maintenance of homeostatic balance of serum glucose concentration, it does have

other functions (e.g. lipogenesis in adipose tissue). All hormones are chemical messengers;

they work by feedback regulation of secretion. In glucose homeostasis an elevation of glucose

is sensed by the pancreatic islet B cells, which secrete additional insulin, this results in a
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decrease in glucose concentration by promoting its transfer into cells. As glucose falls, the rate

of insulin release decreases until normal levels are regained once again.

The pancreatic islets contain four types of cell which produce four hormones (Martin et al

1981). About 25% of the cells are "A" type, these produce glucagon. Insulin is produced in the

"B" cells which make up 60% of the number; insulin forms a "bihormonal" unit with glucagon.

Insulin facilitates entry of sugars, notably glucose, into cells, where phosphorylation occurs

converting glucose into other products, including glycogen. Glycogen is stored in the liver,

adipose tissue and muscles and may be utilised, under the action of glucagon, in times of

glucose shortage. Somatostatin is produced in the 10% of cells which are known as "0" cells.

Somatostatin has the interesting property of inhibiting insulin production, although its main

function is hypothalamic. The fourth hormone, pancreatic polypeptide is present in the "P

cells; it has glucagon-like glycogenolytic activity but its functions are mainly gastrointestinal.

Insulin synthesis occurs in stages; proinsulin is synthesised in the islets as a single polypeptide

chain of 86 amino acid residues. Cleavage then occurs making a single chain C-peptide and the

dual chain insulin hormone; thus, the measurement of C-peptide in diabetics gives a measure of

insulin synthesis by residual B cell function as C-peptide is produced in equimolar proportions

to insulin. All the hormonal functions of insulin are anabolic, as opposed to most hormones

whose actions are catabolic. Its effects increase the rate of synthesis and storage of protein and

energy reserves, glycogen and lipids.

The normal physiological profIle of glucose and insulin dynamics is a remarkable control

system. During fasting, a small trickle of insulin is necessary to achieve a basal

normoglycaemic state. At meal times glucose is quickly absorbed from carbohydrates and

insulin levels increase sharply to counteract a rise in serum blood glucose. The mechanisms are

so efficient that glucose rarely rises above 6 mmolll or falls below 4 mmolll. During heavy

exercise, glucose is utilised in the muscles and blood glucose falls; in this case glucose needs to

be provided, and the liver converts glycogen back into glucose by glycolgenolysis. The drop in

insulin, accompanied by an increase in glucagon, conserves glucose for the brain and stops the
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muscles running the glucose down. The drop in insulin and the rise in adrenaline also causes fat

tissue to release fatty acids for use by the heart and skeletal muscles in cases of heavy

prolonged exercise.

Diabetes may best be described as a metabolic disorder affecting the beta cells within the islets

of Langerhans in the pancreas. The result is an absolute or relative deficiency of the hormone

insulin. When insulin is absolutely deficient (as in type I diabetes), glucose builds up in the

blood and is then wastefully excreted in the urine. The kidneys work continuously to rid the

body of the excess glucose and this leads to excessive urination and insatiable thirst In time,

the body, unable to obtain its energy in the usual way, begins to consume itself by breaking

down fat cells. This process is very inefficient and produces organic acids known as ketone

bodies; these ketone bodies provide an important alternative energy source for the brain when

present in small amounts but, if diabetes is untreated, ketone bodies accumulate in the blood

stream and pour over into the urine. Eventually the level of ketones becomes critical and

ketoacidosis occurs, followed by coma and death.

For type II diabetes, there are two processes which contribute to raised blood glucose: insulin

deficiency and insulin resistance. Insulin works on cells by binding to receptor sites (Van

Obberghan 1981). In obese people these receptor sites become more resistant to insulin uptake

and this is known as insulin resistance. However, the mechanisms whicb cause type II diabetes

are still not fully understood. Mathematical models of the relative contribution of insulin

resistance and insulin deficiency to raised glucose levels have shown that at normal weight,

glucose is not elevated until more than 80% of B cells are destroyed (Turner et alI982).

Therefore, by losing their excess weight, type II diabetics may return to normal levels of

glucose and insulin although they can never actually be cured of diabetes.

DIABETES THERAPY

There is still, as yet, no cure for diabetes but there do DOW exist at least three main treatment

options: diet therapy, oral agents and insulin replacement therapy. Initially, the control of
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blood glucose is important in order to alleviate symptoms o( the disease and to prevent diabetic

coma due to ketoacidosis. In the long term, many diabetic patients develop complications.

Among the most common are serious complications such as heart disease, renal failure and

blindness. There is an increasing body of evidence that close control of blood glucose may

prevent the progression of the diabetic tissue damage thought to be responsible for these

complications (Skyler et alI987).

The United Kingdom Prospective Diabetes Study (UKPDS) is a large-scale randomised follow

up study o( 5000 type Il (non insulin-dependent) diabetes patients which aims to provide

unbiased statistical evaluation of the optimal therapy to prevent complications and to control

the blood glucose. The Diabetes Control and Complications Trial (OCCT) in the USA is a

similar study of type Ipatients and should provide clues to the optimal management strategy in

insulin therapy. However, until such studies provide conclusive evidence, it is generally agreed

that optimal intensive insulin replacement therapy should be the aim of diabetes therapy (or

type Idiabetics alongside effective education of patients and their families and continual

medical and psychological support.

The recommended rehabilitation process in patients with diabetes (Howorka et al199O) is first

to provide information about literature, different strategies of treatment and introduce blood

glucose self-monitoring. Second, a practical and in depth discussion about diabetes and how it

affects the people involved. For insulin treated patients there may then follow a discussion of

functional insulin use and simple insulin adjusttnent algorithms may be introduced. Patients

learn (rom this how to control glycaemia through immediate correction of blood glucose

measurements which are off target levels (primary adjusttnent or insulin dosing), and how to

optimise algorithms (or insulin use (secondary insulin adjustment). This is followed by an

ongoing process of updating the patient's knowledge and practical skills.

Monitoring or Blood Glucose and Its interpretation

Up until 1976, urine glucose measurements were the only available tests carried out by

diabetics to routinely monitor their glycaemic control. However, it was well known that the
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renal threshold of most people corresponds to a blood glucose level of approximately 10

millimoles per litre (mmolll), a value which is unacceptably high compared to the normal level

of about S mmolll. Since that time, home blood glucose monitoring (HBGM) (Sonksen et al

1978) has become much more available and simple. This is due to advances in the

determination of blood glucose levels quickly and accurately, with a small sample of blood

from a finger prick. This has made daily monitoring possible for all diabetics and rules for

therapy adjustment, based on accurate blood glucose determinations, have since been published

(Skyler et al1981).

An exception to this rule may be some patients who are on minimal treanneat, A single fasting

blood glucose determination carried out at regular intervals at diabetic outpatient clinics (or by

a primary care physician or nurse) may be sufficient to ascertain overall quality of control, and

occasional checks via urine monitoring may be all that is required of the patient at home

(Holman and Turner 1988).

In addition to home blood glucose monitoring, other measurements taken at clinic visits provide

an assessment of long term control over the previous month, as well as corroboration of values

reported by patients. As stated above, a fasting blood glucose determination is usually

sufficient for non insulin treated patients, but is of limited value for type I patients due to the

common high day to day variability.

The measurement of glycosylated haemoglobin (HbAle) is widely accepted as an objective and

quantitative index of blood glucose levels during the preceding six to ten weeks1. The aim of

IFor biochemists: an explanation why glycosylated haemoglobin is important seems appropriate

at this stage. Haemoglobin may be separated by cation exchange chromatography into nine

components: HbAo HbAlal HbAta2 HbAtb HbAle HbAld HbAle HbA2 and HbF.

Normally, 90% or more is HbAo and between 4 and 6% is HbAle (glycosyIated haemoglobin);

these are the two most abundant species. However, HbAlc is increased in diabetes due to the
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therapy is to obtain a near normal value of HbAlc «6.1%) but in type I diabetics a more

realistic aim is an HbA le or less than 10%. The problem with this assessment of long term

control is that it indicates mean glucose levels, but gives no idea of the variability; a patient

with a HbAlc of 6% may appear to be well controlled but blood glucoses may be highly

variable, between say 2 and 20 mmoIll. There is also variation in the average (120 day) life

cycle of the red blood cells between patients and the cells' permeability to free glucose.

Therefore, HbAlc should be interpreted with caution.

Other proteins are also glycosylated non-enzymatically (e.g. albumin and plasma protein), and

may respond more quickly to changes in overall glycaemia. but further research of these

measurements is required before they may take their place beside Haemoglobin A lc as indices

of long term control.

Nathan et al (1984) evaluated the clinical information value of HbAlc by comparing it to

practitioners' estimates of glucose control over the preceding 10 weeks. He concluded that the.
HbA Ic assay provides information about the degree of long-term glucose control that is not

otherwise obtainable in the usual clinical setting. The linear regression equation for mean

glucose (MBG) in mgldl from HbA lc (in %) obtained in this way was:

MBG = 33.3 (HbA lc) - 86 (~ = 0.92, r = 0.958). (E1.3)

As well as the correlation to mean glucose value, HbA Ic may be a good indication of the level

of microangiopathic changes responsible for diabetic complications, especially retinopathy and

nephropathy. It is thought that thickening of basement capillary membranes may be a

contributory factor in these complications, and this thickening occurs by the same type of

mechanisms as the formation of HbA le described above.

formation of a stable ketoamine from an aldimine adduct of glucose and the terminal valine of

the beta chain of the haemoglobin, a direct result of excess blood glucose levels.
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Diet

Food is made up of four major dietary constituents: carbohydrates. fats. protein and dietary

fibre. Carbohydrates have the greatest effect on the blood glucose and, in the past, diets have

been recommended that were low in carbohydrate content, Current opinion is the opposite

however: fats should be restricted to less than 30% of the calorie intake. with as much as 50%

of calorie requirements coming from carbohydrates. Some simple, sweet sugars are allowed but

most of the carbohydrates should be from complex starches, such as those contained in

potatoes, rice or bread. Complex carbohydrates are metabolised more gradually and therefore

do not produce sharp glucose "peaks". the gradual absorption also helps to prevent

hypoglycaemia. Another consideration is the minimisation of risk factors involved in other

illnesses. particularly heart disease. It is recommended that protein intake should also not be

excessive due to the increased risks of kidney disease in diabetics.

Many newly diagnosed overweight type ITdiabetics may delay the progress of the disease by

losing weight. Patients see a specialist dietician for education concerning how to adjust their

diet, and reduce calorie intake, while maintaining a balanced diet, They may be given a list of

foods to eat, which should help them to reduce their weight. This should reduce the strain OD

their body's own insulin production mechanism, so that they may then produce enough insulin

to meet their own requirements, and no biochemical treatment is required. Regular exercise is

also desirable, as is the case for the general population. The WHO recommends a minimum of

two hours per day of mild exercise for all diabetics (Lean and James 1986).

Regular lipid measurements (triglycerides and cholesterol) should be carried out on all

diabetics, and dietary advice given accordingly. Early indications of long term trials indicate

that due to increased cardiovascular risk factors with diabetes, smoking, obesity and

hypertension should be reduced if possible.

28



A change in dietary habits may be all that is required to control type II diabetes, in which case

patients are said to be following "diet therapy". In non-ketotic, overweight patients diet therapy

is always given a trial period before drug intervention.

Oral Hypoglycaemic Therapy

When diet therapy is unsuccessful further treatment becomes necessary. Oral agents were first

put into widespread use in 1957 in the form of sulphonylureas. Sulphonylurea drugs act by

stimulating an increased release of insulin by the pancreas, and therefore require the patient to

have some functioning beta cells. Sulphonylurea tablets may therefore be used only in the

treatment of type II diabetes.

The first sulphonylurea to be used was Tolbutamide. This was later followed by

Chlorpropamide which was five times as effective as Tolbutamide in increasing insulin

production due to its chlorinated form. More potent drugs followed; they included

Glibenclamide, Glipizide and similar types; these later sulphonylureas generally had a shorter

duration of action and some have to be taken twice daily.

A second group of oral hypoglycaemic agents are the biguanides; the only commercially

available biguanide in the UK is metformin; phenformin was withdrawn in the 1980s because of

the high incidence of lactic acidosis among patients while they were taking the drug. It is not

known precisely how biguanides work to reduce blood glucose, but one theory is that they work

to enhance the utilisation of glucose by a different method than insulin (Klip and Leiter 1990).

Metformin must not be used in renal or hepatic dysfunction because of the risk of lactic

acidosis.

As weight loss is a primary therapeutic aim with many people with type n diabetes. new tablets

which aid diet are gaining in popularity. One example is dexfenfluramine (Willey et al 1991);

it is a seratonin antagonist and may be of use when metformin is contraindicated, as many

physicians suspect that sulpbonylurea and insulin cause weigbt gain. The evidence of the

UKPDS study does not back this suspicion however. A three year random study with diet,
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sulphonylurea or insulin therapy in 1592 type ndiabetic patients showed equal efficacy of

Chlorpropamide, Glibenclamide and insulin in reducing blood glucose and HbA1c, with no

significant extra weight gain over the group treated with diet alone. Based on these findings,

drugs which are designated as weight reducing agents are not included in the present work and

will not be considered further.

Insulln Replacement Therapy

Insulin replacement therapy has gradually evolved ever since the insulin hormone was fll'st

isolated in 1921. Lack of control over the action of injected insulin has always been a problem

when compared to physiological control mechanisms. The first insulin preparations developed

were absorbed quite quickly and had to be injected two or more times per day. Researchers

striving to mimic the physiological profile of insulin production mixed the acid insulin

molecule with protamine and then zinc to produce insulin formulations with slow absorption

rates to cover the basal insulin requirements. Renner (1985) describes the evolution of insulin

therapy; from the first subcutaneous injections made by Banting and Best in 1922, through

experiments with continuous intravenous infusion in the mid 1970s, to the rouline use of

continuous subcutaneous insulin infusion pumps (CSm which began in 1977.

Renner has listed seven basic rules for subcutaneous insulin replacement therapy (table 1.3)

(Renner 1985). These basic rules provide importanlprinciples although they do not in general

correspond to the classic rule defmition used in decision support system terminology. They

would perhaps better be termed axioms of insulin replacement therapy. More specific rules of

insulin adjustment for specific insulin types and regimens were required.

Table 1.3 Basic rules for subcutaneous insulin replacement therapy
1. The number of injections should increase with degree of instability,
2. The duration of action depends on the amount of injected hormone,
3. Regard should be taken of the existence of circadian rhythm of insulin requirement,
4. Day-to-day variation depends on the type of insulin,
5. The later the night-time injection the less the hypoglycaemic risk,
6. The amount of regular insulin should be increased with degree of obesity,
7. Patients should use the same area of injection at the same time of day in order to
reduce absorption variability.
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Evolution of insulin formulations followed a gradual progression as the severity of long term

diabetic complications became apparent once life was preserved. The insulin isolated in 1922

was called regular insulin; the duration of action of the injected regular insulin was (and still is)

between 6 and 8 hours, and the peak of activity is mucb later than in normal physiological

insulin secretion (fig 1.1). Injected insulin peaks at about 40 minutes after an injection,

regardless of food intake, wbereas normal insulin production peaks at about 10 minutes after a

meal begins. In 1926, the first crystallisation of insulin was carried out, and in 1934

crystallisation in the presence of zinc prolonged the action of insulin to over 12 hours, thus

cutting down the number of injections to two per day. In 1936, protamine insulin was formed,

which prolonged the duration to over 24 bours; these longer acting insulin formulations were

given the name ultralente.
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In order to eliminate the need for mixing of insulin crystals to form a dilution, zinc crystals in

suspension were created in 1951. There were many problems with insulin allergies and

impurities due to the use of unpurified beef and porcine insulins, but in 1973 purification

procedures provided much purer single peak insulin by gel chromatography. Then, in 1982,

semisynthetic human insulin, followed in 1983 by biosynthetic human insulin, became

available due to processes of enzymatic modification of porcine insulin (emp), or by

recombinant DNA biosynthesis (prb).

With the use of insulin comes an increased need for dietary care. The dietician should be

considered an integral part of the health care team for all diabetics, and regular consultation (at

least once per year) is advised by diabetes authorities such as the ADA (American Diabetes

Association, ADA consensus statement 1990). The dietician should try to educate patients in

general principles of nutrition, how best to avoid complications, and most importantly, how to

balance insulin and carbohydrate intake to avoid hypoglycaemia.

Insulin Regimen.

In order to explain the basis of Renner's axioms and to see how they may be applied in practice

a closer look needs to be taken at the available insulin formulations and how they combine into

the various common insulin regimens.

As shown in fig 1.1 physiological insulin requirements for normal metabolism consist of an

underlying continuous basal need with extra requirements superimposed to cover meals. The

basic aim of insulin replacement therapy is to mimic the physiological profile, the axioms of

Renner do not mention this matching nor any relation to diet and exercise.

Although there are over thirty different insulin formulations (Chadwick 1991) they may be

categorised into four main types. The categorisation depends solely on the duration of action of

the injection, which in turn depends on the manufacturing process. The effect on duration of

action of the size of a dose is more minor (axiom 2) and may be overlooked in practice. Short

acting, intermediate acting and long acting insulin are the three simple types whilst the fourth
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type of insulin is a mixture of two of the basic types and is termed mixed insulin. To illustrate

the confusion in terminology and lack of standardisation there are thirteen common synonyms

for short acting insulin; those in common usage include: soluble insulin, regular insulin and

clear insulin (Chadwick 1991).

The most commonly prescribed insulin regimen consists of short acting and intermediate acting

insulin. The regimen is popularly known by the name "soluble isophane" after the two types of

insulin traditionally used.

As is the case with all regimens which include soluble (short acting) insulin, the short acting

insulin is given to cover meals (i.e. pre-prandially), either before all three main meals or just

before breakfast and the evening meal. This follows from Renner's first general principle as the

midday injection is only prescribed if pre-evening meal glucose test results are unstable.

It can be seen from fig 1.2 that the combination of short acting and intermediate acting insulin

given twice per day bears little resemblance to physiological insulin secretion (fig 1.1);

however, its careful combination with diet and exercise has resulted in successful control for

many patients for a very long period of time, (some for over 50 years) and its continued use can

therefore be justified.

The majority of mixed insulin formulations have a proportion of short acting and a proportion

of intermediate acting insulin; for example 30% short and 70% intermediate. These insulin

types are suitable for stable patients and those for whom intensified therapy is not appropriate.

Adjustment of one type of insulin is made by changing the prescription to a different mixture.

Adjustment of the dose must be based on a need to change both insulin types by the same

proportion.

A regimen which more closely mimics physiological secretion is the basal prandial regimen (fig

1.3). The basal requirements are met by a single daily injection of a long acting (ultralente)

insulin while meals are covered individually by short acting insulin as with the above regimen.

Often, two short acting doses- one at breakfast and one before the evening meal • are sufficient
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to provide adequate control as the duration of action of short acting insulin covers the midday

meal requirements. The option of a third dose at midday is used for those who eat a large meal

at that time or for people who are more sensitive to variations in insulin and glucose levels.

Some people refer to the two dose regimen as "conventional" therapy and the second, three

dose regimen as "intensified" or "multiple subcutaneous injection" (MSI) therapy. Why a

distinction needs to be made over one extra injection at midday is unclear, especially with the

introduction of simple insulin "jet" devices (Novopen, Accupen) for easy, discrete one-handed

injection. Patient acceptability of multiple injections is high, especially in newly diagnosed

adolescents (Tubiana-Rufi et al 1989). In fact, in comparison with continuous subcutaneous

insulin infusion (CSll) therapy the inconvenience of a midday injection is minor.

Variations on the basic basal prandial regimen include the option to split the ultralente dose;

equal amounts of long acting insulin are taken before breakfast and before the evening meal;

this may reduce variability in circulating insulin through the day and thus produce a more stable

basal level of blood glucose. Normally the long acting dose should be given at bedtime so that

any perceived peak of action OCCurringat about 6-8 hours should counteract the early morning

rise in blood glucose associated with the dawn effect This is in accord with axiom S of table

1.3.

Alternatives to Injected Insulin

Insulin injections are unpleasant to do and alternatives wbicb are less painful, more socially

acceptable and produce better blood glucose control are actively being sougbt. The problem of

matching insulin supply to the body's variable demand bas lead to the development of insulin

infusion devices, commonly known as insulin pumps. Pumps may be external to the body or

surgically implanted, usually in the cbest cavity. The first implantable pumps appeared in

1981, with developments of the artificial endocrine pancreas or Biostator first described by

Albisser (Albisser et al1974). However, the possibility of feedback-controlled, long term

infusion of insulin bas not found wide-spread pbysician or patient acceptance due to higb risks

of mechanical breakdown, infection and inconvenience. Less than 1% of diabetic patients have
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used an insulin pump at any time. The vast majority of patients do not want the inconvenience

of wearing such a device as a constant reminder of their diabetes. Even with pump treatment.

the response to rising blood glucose at meal times is insufficient to produce a close

approximation to normal physiological insulin response. Many problems exist with so called

closed loop pump systems which have implanted glucose sensors, and it will be a long time (if

ever) before such systems are in widespread use although their use in some hospital settings has

been successful (Kemstine et al 1987).

Nasal insulins are also under development The nasal route has the benefit of extremely quick

absorption, but suffers from problems of variable absorption rates, and nasal irritation problems.

Only around 10% of nasal insulin is absorbed, which necessitates very high doses, which in

itself is probably not a problem. Patients are very enthusiastic about nasal insulin use and

consider it much more acceptable than injections (Holman and Steemson 1991). The problems

of dose titration multiply with the use of nasal insulin due to the increased amount of

applications required to provide complete cover for meals and snacks. Alternatively, patients

will not need to be so regimented in their diet

Pancreas transplants are rare and expensive; they are normally only carried out at the same time

as kidney transplants. Recent interest has developed in transplanting only the insulin producing

pancreatic islet cells. However, the operation is far from perfection and will not become

common for some time yet The major problem is the autoimmune destruction of the newly

implanted cells. A possibility to overcome rejection is the use of hybrid devices, which have an

artificial semi-permeable membrane; this membrane lets glucose and insulin through. but not

the islet cell antibodies (leAs) (Friedman 1989, Sarver and Fournier 1990)

It is obvious that these new developments have problems and are unlikely to become

widespread and accepted within the next few years. Instead, intensified conventional therapy

with multiple injections of different insulin formulations has proved the test of time as the

"treatment of choice" (a remark attributed to Banting himself) and for some time to come, daily

36



(multiple) insulin injections will continue to be the only reliable safe means of treatment. Long

overdue optimisation of this method is therefore of vital importance.

Hypoglycaemia

As implied in the earlier discussion. insulin. once injected. raises plasma insulin levels for a

long period of time. during which there is little that patients can do to reduce the level. If there

is no free glucose in the blood due to ingested carbohydrate. the insulin will work on the normal

amounts of glucose present in the blood; this causes a glucose shortage and leads to a condition

known as hypoglycaemia. Hypoglycaemia may cause several unpleasant side effects such as

sweating, dizziness, hunger. trembling and finally loss of consciousness as the brain is starved

of glucose. The brain is particularly sensitive to low glucose levels as it cannot obtain energy

from many other sources. as other organs do. due to its blood-brain barrier. Other energy

sources in the blood, except for the ketone bodies. have molecules which are too large to be

transmitted to the brain.

It is vital that diabetics learn to recognise the earliest symptoms of hypoglycaemia and act to

counteract them and prevent deterioration into an unconscious state. Mild neuroglycopenia,

which occurs at blood glucose levels less than 3 mmolll, produces subtle intellectual and

psychomotor impairment; severe neuroglycopenia, which is defined by blood glucose levels

less than 1 mmolll. causes confusion. disturbed behaviour. fits and, ultimately.

unconsciousness. Permanent brain damage is unlikely after severe hypoglycaemia, although the

chance is increased after excessive alcohol intake. In addition. generalised autonomic

activation is triggered by blood glucose levels less than 2 mmolll. This causes tremor.

tachycardia, sweating. altered salivation and hunger. There are thus two distinct mechanisms

by which warning signals may be detected by patients in the body.

Some patients have reported loss of awareness of hypoglycaemia. this may be due to autonomic

neuropathy. or the effect of intensified insulin therapy. This "unawareness" is often reported

after a transfer from animal- based insulin formulations to synthetic human insulins; this is

probably due to pharmacokinetic differences or lack of care in prescription practice. However.
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Patrick et al (1991) found that when hypoglycaemia was induced in seven patients by

intravenous infusion of both human and animal-based insulin types there was no significant

difference in autonomic reaction; the debate continues. In contrast. for some patients the

classic symptoms of hypoglycaemia may occur at relatively normal blood glucose levels. This

may be due to a sudden decrease in glucose level from hyperglycaemia, or it may be due to an

altered threshold of perception of symptoms, related to a reduced rate of transport of glucose

across the blood-brain barrier, For this reason, it is advisable for patients who detect

hypoglycaemic symptoms to measure actual blood glucose, if possible, so that physicians can

assess target blood glucose levels in the light of the increased threshold of hypoglycaemia.

Alleviation ofhypoglycaemic symptoms is usually easily achieved by the ingestion of glucose,

either special glucose tablets or a food containing simple sugar. Sugar takes longer to have an

effect as it requires hydrolysis to yield glucose so the response would be slightly slower to sugar

than to pure glucose; however, this is often not important unless the onset is particularly acute.

Recovery from hypoglycaemia depends on glucose counter-regulation by catabolic hormones:

glucagon, adrenalin, cortisol, growth hormone and vasopressin. It may be delayed in long-

standing diabetes, or by beta-adrenergic blockade. Sulphonylurea may also cause

bypoglycaemia, and is particular dangerous in long acting tablets such as Chlorpropamide,

which is therefore contraindicated in the elderly. Treatment of serious prolonged

hypoglycaemia may be by an intramuscular injection of glucagon or intravenous glucose

infusion may also be required for prolonged hypoglycaemia due to long acting sulphonylureas.

Low blood glucose can be brought about by several means, such as extra exercise which uses

up the available glucose in the muscles, or due to a low carbohydrate meal which does not

provide the glucose in the first place. Ifhypoglycaemia occurs with no apparent explanation,

then insulin doses should be altered to avoid a repetition of the event the next day. While low

blood glucose, in itself, is not thought to be dangerous in the long term, a bad hypoglycaemic

reaction which occurs without warning while a patient is driving may become instantly fatal. It

is for this reason that people with diabetes mellitus are obliged under the Road Traffic Act 1974
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to report their diabetes to the licensing authority (Saunders 1992). In the UK, people who use

insulin are not permitted to hold Heavy Goods Vehicle or Public Service Vehicle licences.

Statistics show that hypoglycaemia is responsible (or 3-4% o( total deaths related to type I

diabetes; over 30% o( type I patients experience bypoglycaemic coma in their lifetime and

around 10% go into coma once per year. It is estimated that about three percent o( patients arc

incapacitated by regular, severe hypoglycaemia. It is thought thal a great number of these

consequences could be reduced by improved patient knowledge and improved insulin

adjustment decisions.

CONCLUSION

It should be apparent from this review that proper management of diabetes patients is

important, difficult and expensive. In developed countries the cost of diabetic health care may

be estimated at between 4 and 5% of total health care costs (Williams 1991) There is.

therefore, much pressure for effective management In many cases resources are stretched, so

that a policy of damage limitation is followed whicb is less than optimal. The computer

systems developed for this thesis. once they are more widely validated and tested, could provide

decision support for optimal diabetic management This thesis demonstrates that the systems

could well lead to a reduction in the real costs of the disease as well as an improvement to the

quality of life of patients.

Patients should benefit from more freedom of lifestyle, and a better understanding of their

diabetes, from the use of the band-held system POlRO. Physicians ought to benefit from

therapy adjustment suggestions, and especially insulin dose alterations suggested by the

PRESTO system.

39



CHAPTER 2 - COMPUTER AIDS TO CLINICAL
DECISIONS

INTRODUCTION

Medicine has provided the domain for much of the early research and development of

intelligent decision aids. Enthusiasm for the introduction of computerised clinical decision aids

into practice has, however, been minimal. Medical problems which are appropriate for

intelligent computer decision support technology include diagnosis, and therapy decision

making. Many diagnostic systems have proved to be successful, at least at the research stage.

although none have since moved on to general, widespread use. Even less progress has been

made in therapeutic decision support systems. This could be due to problems with validation

and evaluation of the systems, as well as purely technical problems concerned with the use of

computers in everyday medical practice. One possibility why diagnosis has been the major

focal point of development is its relatively narrow goal • a single desired outcome, and the clear

criteria for reaching that outcome. There is much more agreement on the correctness of

diagnosis than exist in decisions as to the best course of treatment to take.

In this chapter, medical decision aids are examined from three perspectives. First, the

physician's views and desires are described in relation to previous research in the area Second.

the computer scientist's perspective is examined with reference to system design and

development Finally, examples of current research systems are given. Items of specific

relevance to the research carried out for this thesis are detailed within the text as appropriate.

Physicians Acceptance of Decision Support Systems

The first problem to be overcome by any computerised decision support system is the general

apprehension of physicians towards computers (Osborne et all992). The problem appears to

be worse in junior doctors (Moidu and Wigertz 1987). However, this is a wider issue and may

be solved in time perhaps by changes in the availability of medical informatics education.



Seven recurring questions arise from physicians about medical decision support systems (table

2.1).

Table 2.1 Common questions from physicians (Shortliffe 1980)
1) Is it reliable?
2) Do I need it?
3) Is it easy to use?
4) Does it help, without being dogmatic?
5) Does it justify itself with sufficient explanation?
6) Does it fit Into my daily routine?
7) Is it designed to make me feel comfortable when I use it?

Reliability may be categorised into physical (or hardware) reliability and decision (or software)

reliability. Pbysical reliability has improved as faster and more reliable components have

become available. Quantitative estimates of reliability can now be given in terms for example

of the mean time between failures. Acceptance criteria for reliability are related to risk and

safety considerations, and standards are currently under review (Bennett 1991).

Software reliability is different to hardware reliability, in that faults are made in the design

process rather than during production or due to degradation with time. Therefore, software

reliability can be improved by good programming design practices. Conventional software

testing, based on functional requirements, has been the only assurance of correct operation of a

program. However, such testing cannot be guaranteed to locate faults, which often materialise

much later in deploymenl New standards place much emphasis on formal mathematical

methods for software testing, in particular by the defmition of formal specification languages

such as the" Z" notation (Spivey 1988). Such fonnal methods of development should increase

the soundness of safety-critical systems but are not a panacea. Formal methods considerably

increase overheads and their use was not thought appropriate for the development carried out

io this research. Instead, the software development used standard software engineering

development practice with special attention to rigorous testing by way of simulation studies and

test cases selected to check built-in safety features (such as a limitation in insulin dose

adjustment. see chapter 4).
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Physicians must make up their own mind whether or not tlley need a decision support system

and the considerations of the previous section will be affect this decision. It is, however, well

documented that physicians often experience indecision (Rector ibid.) which would appear to

indicate a need exists, whether it is admitted or not,

Ease of use depends on the user interface and the underlying design of the information-

gathering modules. Medical consultations often appear to be unstructured, the order of

questioning dynamic and chaotic. Some researchers have put forward the idea of a user model.

which adapts the system to individual users. A review of models of users is given in Green,

Schiele and Paine (1988), the most useful of which are those of Card et al (1983). The present

research has shown that the triggers which promote a particular line of Questionswithin a

consultation are not well defined and will probably differ between patients as well as between

clinicians; therefore, it may be better to avoid trying to develop a user model, but to provide a

logical, easy to use framework and belp the user to adapt to the framework. User models are

not, in any way, used in POIRO or PRESTO, but a future version of PRESTO could examine

the use of sucb models if desired.

A special case may be made for the use of user models for on-line help (Gwei and Foxley 1990)

in order to match belp to user's needs and experience; this categorisation presents more

appropriate information in context. A discussion of the critical role of display, especially menu

systems, can be found in Howes and Paine (1990).loterfaces to belp systems can be improved,

it may be possible in the future to give users freedom to use natural language by appropriate

implementation of parsing and natural language understanding.

Once physicians are happy with bow to use the system, the actual usefulness of the system

comes under scrutiny. The level of decision support wbicb a system provides depends on the

needs of the pbysician concerned. The advice offered sbould be in terms of support Dogmatic,

prescriptive advice will not be acceptable to many physicians. The possibility of two-way

dialogue between the system and the user is attractive and would provide mechanisms for a
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consensus opinion to be formed. Inparticular, users may want to offer consideration of an

alternative to the choice offered by the system. The importance of a user model in these

circumstances is in knowing what kinds of decision support are required. For instance, where

there is a choice of therapeutic options, whether the pbysician or patient has any personal

preference for one over any others. Systems sbould be flexible, and be able to respond

constructively to suggested alternatives from the user, much like experts would to a junior

questioner.

Explanation facilities have improved from the early systems' facilities for presentation of

encoded rules as they were used. The use of symbolic development languages which closely

resemble natural language is attractive in that rules may be used as sources for pseudo-natural

language explanations. Explanations which are genuinely built up from natural language will

probably be developed within the next ten years but, for the moment, the "state of the art" in

explanation is the presentation of prepared text when called upon by the user. Because of this,

explanation in many knowledge bases is little more than justification; for really useful

explanations an interactive dialogue has to be entered into, so that the user can prompt the level

of the explanation given. Current explanation facilities have been little more than justifications

of the results, without actually explaining the reasoning, or how to use the advice given.

Explanation is central to the acceptability of decision support systems. Recommendations must

be backed up by sound lines of reasoning. It is recommended that true explanation includes

causal links to suggestions and the deeper, underlying knowledge. Current efforts into natural

language explanation centre on intelligent use of semantic links between decision entities

(Crook 1992).

Many physicians now use computers in their daily routine, the number of computers inBritish

general practice for instance has risen steadily and the majority of GPs now own a computer to

help with patient administration and sometimes practical jobs such as prescription printing.

The problems with decision support systems fitting into the daily routine include mechanical,

epistemological and psychological problems; all these have to be overcome in some way.
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Mechanical problems include ease of use. speed and, for some applications the size of the

system. Memory capabilities are, however, improving and larger practices are using networks

for sharing of patient data. Physicians want to expend as little effort as possible on data entry,

and they require fast responses 10real time.

The human computer interface (or HCI), bas a central and vital role in \he success of any

computer system. Tbimbleby bas suggested (Tbimbleby 1990) that much more attention should

be paid to the development of user interfaces, especially for non-specialists in critical

situations. He describes the user interface in terms of scientific research, and suggests outlines

for developing help systems. Indoing so he describes the types of user and types of errors

which are commonly made by users and which HCI design should attempt to minimise or

ideally eliminate completely if possible.

Epistemological problems concern the depth and representation of knowledge within a system.

The quality of decisions and explanations is higbly relevant to the study of knowledge

representation, and techniques of inference used. A major problem with many medical decision

support systems is the amount of background medical knowledge required outside of the

specific field of the system. The need for help, in diagnostic systems especially, is often with

the difficult, non standard problems which often involve multiple pathology. This is less of a

problem in a limited and well circumscribed domain sucb as insulin adjustment, or even general

diabetes management,

Medical classification is not a sciendflc, well ordered system, as is biological taxonomy for

example. This also causes problems with storage and transfer of data, as well as problems with

terminology in language understanding. Medicine bas been described as a vestally complex

domain (Groen and Patel 1988), unlike chess or physics for example. It is inconsistent with the

paradigm of pattern recognition and forward reasoning which is often associated with iL In

medical domains, comprehension is the perceptive process most commonly ascribed to

expertise. The theory bas been put forward that medicine is essentially a backward reasoning
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process, akin to the hypothetico-deductive process often advocated as a paradigm of scientific

reasoning. The knowledge of medicine may be decomposed into underlying units of meaning,

known as propositions; this fits inwell with the use of rule-based logic and symbolic reasoning.

Psychological studies show that many physicians experience technical phobia with respect to

computer technology. How physicians react to the system will depend on their general attitude

to computers as well as their consideration of the above criteria Some physicians may feel

threatened by a computer, while others may be deeply distrustful of its decisions, especially if

the decisions do not agree with their intuition.

Consideration of the ethics of computer decision making systems have led to a redefinition of

the roles of patients and health care professionals; the patient is generally the ultimate decision

maker, unless totally incapacitated by the medical condition; physicians and other health care

professionals attend the patient and may utilise the decision support system as a tool. Even the

most sophisticated of tools cannot be assigned the status of a moral agent, and the consequences

of the medical decision must be borne by the patient and the physician. There can be no place

for ascribing bad decisions to computer error; computers should only improve decision making

power. The medico-legal issue of liability is equivocal with regard to developers of intelligent

decision system; the designers of the system may be liable for bad decisions, unless careful

attention is paid to warnings and disclaimers within the program. A more interesting question

is whether a physician could be liable for not using an available system to help with decisions.

These ethical questions are, however, beyond the scope of this thesis.

EVOLUfION OF COMPUTERISED CLINICAL DECISION SUPPORT

There have been several phases in the developmenl of computerised clinical decision support

tools. The first application of computers was the development of computer-based medical

records. The requirements of medical databases are to store diverse information such as

medical history, physical examination findings and laboratory data. One of the fmt systems to
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address the acquisition of medical history was the Plato I system (Slack 1966). Two principles

of medical databases were introduced at this time: (1) that reliable and manageable clinical

databases are necessary for the construction and validation of decision systems. (2) Data

acquisition systems should be capable of admitting and interpreting data from physicians

according to their general style efficiently and quickly. Slack later developed the art of data

acquisition to a system for acquisition of data directly from patients and thus produced the fast

clinical patient-oriented decision support system.

Hospital information systems (illS), such as the PROMIS system (Weed 1978) produced great

clinical interest but still did not make the breakthrough into acceptable everyday use. The

major reason for this lack of acceptance appears to have been the one-way nature of the

interaction. Physicians were expected to enter a great deal of information (complete medical

case histories in fact) for virtually no return. It became apparent at this time that the goal of

adapting the user interface to accept direct uninterpreted and unstructured data from clinicians

was impossible and time would be spent more profitably on the generation of decision support

from a smaller set of abstracted data.

A solution to the nomenclature problem could be a standardisation of medical terminology,

with extensions to allow for the use of synonyms locally. This may be achieved by the use of a

classification or coding system. The International Classification of Diseases bas produced such

a system, the current version is termed ICO-9, but improvements are expected in ICD-IO, due

within the next year. In the UK. the defmition of the Read clinical classification system, or

Read codes as they are generally known, bas provided a reasonably thorough basis for the

complete encoding of medical knowledge (Read and Benson 1986). However, the

classification bas its limitations, especially with the representation of events and the abstraction

of clinically significant features in a certain context However, the Read codes are fast

becoming the medical dictionary standard inBritish hospitals and general practice and the next

version of the codes (version 6) should improve on its deficiencies in version S. The Read
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codes already have the advantage that they subsume other international coding systems such as

ICD-9 and are compatible with the use of other coding systems.

Clinical databases and hierarchical classification systems fall into what may be called

supporting sub-systems. They are essential for storage of clinical data and provide support for

systems which actually generate decisions and decision support for the physician. The type of

real support required by physicians may be one or more of the following functions: reminders

of adverse drug reactions and interactions. clinical diagnostic and management support.

mechanisms to promote patient compliance with therapy. The last of these is perhaps the most

revolutionary and important development in recent years. Patients who use portable. band-held

or pocket computers to manage a medical condition have the benefits of a clinical advisor "on

call" 24 hours per day. The collection of data permitted by these new systems also provides a

service to the epidemiologist. who in some cases will be able to collect data which it had

previously been impossible to obtain.

Intelligent Decision Support: Expert Systerm.

There have been several definitions and classifications of expert systems (ESs) and intelligent

decision support systems (DSSs). (Ginzberg et alI982). In the first phase of development of

DSSs. systems were labour-intensive. in that the user had to define what alternatives were on

offer. In the 1960s. early decision systems merely permitted the user to extend his own

decision making capabilities by data collection. manipulation and representation. These early

systems used probabilities supplied by the system user to estimate a best course of action. The

next major development in computer systems was the introduction of spreadsheets.

Spreadsheet technology belongs to a particular set of decision support systems (Sprague and

Watson 1986). A major deficiency of spreadsheets is the lack of a system for formation of

hypotheses. 10 their present form. spreadsheets offer extremely powerful data manipulation and

statistical estimation capabilities. but at least some level of computer skill is required to use the

systems. and they may be limited in their support for different methods of data entry.
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Intelligent hypothesis formation was seen as a desirable addition for the development of IDSSs.

Some other essential criteria are listed below.

Table 2.2 Essential criteria for DSS
Supports but does not replace decision making
Directed toward semi-structured and/or unstructured decision making tasks.
Data and models organised around the decisions.
Ability to carry out interactive processing
User determines DSS control
DSS should be adaptable to changes in teh environment and decision maker's style.
Easy to use software interface.

Early AI research centred on general problem solving methodologies (GPS). The theory was

that a generalised set of problem solving methods, which included various search algorithms,

would be capable of application 10 any specific problem. This was not the case and it soon

became clear that a more fruitful approach is 10 provide the computer with a substantial amount

of very specific data on a single area, or domain. The data, or knowledge, was usually supplied

by an expert in the chosen domain and elicited by a human questioner, called a "knowledge

engineer", who later converted the information into a suitable format for the computer. This

move showed that computers could be made to reason about complex and very specific

domains in a sensible and useful way.

Medical applications were at the forefront of the new developments, called expert systems due

to their ability to act as experts in a single domain. The most successful and famous of these

systems was MYCIN (Shortliffe 1976). Knowledge was entered into the system in the form of

"if- then-" constructions known as "production rules", these type of systems are called "rule-

based". Althougb extremely successful at predicting correct diagnoses, it soon became clear

that the methods employed in MYCIN were not sufficient to model decision making processes

of domain experts, nor to extend to other domains. This came to light with the requirement for

quality explanations of the reasoning processes, and for the application of the knowledge-based

systems to teaching problems.
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NEOMYCIN (Clancey 1988) was specifically developed as an intelligent teaching aid. Unlike

its precursor, MYCIN, the knowledge within NEOMYCIN is structured in a rich hierarcby of

facts, flOdings and bypotheses. The reasoning processes are independent of the domain specific

knowledge. The knowledge base and reasoning procedure thus constitute a model of buman

knowledge organisation and diagnostic reasoning. Further refinements produced expert system

"sbells" to which EMYCIN (Shonliffe 1980) could be said to belong. These shells wbere

developed in such a way that the reasoning capabilities were completely separated from the

domain-specific knowledge and itwas this separation that produced a buge increase in interest

in more general AI problems again.

A return to more general representation and reasoning tecbniques followed. AI theory

developed into a "proper" scientific discipline with the development of theories for logic

programming. the logic languages Prolog and Lisp provided foundations for a number of

systems. Theoretical contributions concerning decision making. temporal and other non-

standard logics have also been addressed and in the process some psycbology and cognitive

science findings bave been incorporated into AI research. The main focus remains the

development of sophisticated and easy to use decision support systems, with medicine at the

front of the queue for useful systems.

DESIGN OF AN INTELLIGENT MEDICAL COMPUTER SYSTEM

The following sections describe, in general terms, the processes involved in building an

intelligent decision support system, particularly in the field of medicine. It is by no means an

exhaustive catalogue of techniques. but is taken as an outline of the type of methods which

were influential in the eventual choice taken for the project The classical waterfall model of

development such as recommended for all software engineering (Sommerville 1989) is

assumed, the overall methodology can thus best be described as an incremental prototyping

approacb where the system deslgn was refined with reference to prototype developments.
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Definition or Requirements or the Problem

The first stage in solving any problem is to state what the problem is in general terms and to

determine what levels of decision support are required. Fmt, is the problem well structured? H

it is well understood and well structured then algorithms may be defined and conventional

programming techniques may be appropriate. Hproblems are illdefined and complex then

some degree of uncertainty is present, and some of the concepts of AI programming Introduced

later are necessary.

How much detail is required? Is the problem well-bounded? Expert systems function most

reliably when the domain is well-bounded and a relatively narrow field. Once the domain starts

to widen, to cover more diverse situations, multiple experts have to become involved. This

creates problems of expert knowledge conflict which have to be resolved in some way. AI

techniques are most useful when the normal (analytical) problem solving approach is unable to

quantify all the necessary information. Suitable applications for AI methods usually contain at

least some heuristics or uncertainty.

The original aim of any system will inevitably be updated as research progresses, either to a

higher goal if progress is smooth, or scaled down if progress is slow. However, keeping the

original aim in mind is important, so that the system designer does not get side-tracked into

other areas. It is often desirable to rapidly prototype some domain knowledge, so that the

domain expert can see some results for all the effort of knowledge acquisition.

Knowledge Acquisition.

Knowledge acquisition covers all forms of knowledge assimilation, this may come about in at

least three distinct ways.

1)Direct elicitation of underlying concepts from a small number of experts (possibly only one),

2) by observation of instances of the problem to be solved and the solution methods used by
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human experts,

3) from published protocols and literature.

Virtually all systems will. at some stage, involve knowledge elicitation sessions with a highly

qualified expert in the field of interest This leads to the acquisition of high level heuristics and

the underlying "deep" knowledge associated with the problem. The task of the system designer

is then to implement this knowledge in relation to real cases of interest Even ifmany experts

are employed for knowledge acquisition, it is very useful to have one expert to act in situations

of conflict and to decide which of two conflicting theories is best The person who carries out

this role is often referred to in the literature as the Knowledge Tsar (Davies and HakieI1988).

The interview is usually regarded as the easiest knowledge elicitation method for both

knowledge engineer and expert to carry oUL In order for the interview to be fruitful it is

desirable to structure an interview before consulting with the expert and to ask specific

questions. The relationship between knowledge engineer and expert may become strained if

questions are vague or repetitive. The interviewer (or knowledge engineer) should aim to

extract the knowledge from the expert in as general a way as possible. Implementation of the

knowledge is a separate problem and the advantages of eliciting knowledge in a "pure" form

include the chance to abstract into many different forms. The selection of an appropriate

method for representing the knowledge is an entirely different problem to the initial collection

of the knowledge. For this reason, it has been suggested that knowledge engineering is best

carried out by two people (Davies and HakieI1988), one elicits knowledge without reference to

a particular format; the other person then converts that knowledge into a format suitable for the

computer system and software chosen for the job. It is said that this method does not constrain

the acquirer of the knowledge and the knowledge may then have a more natural structure. The

disadvantage of the method is that the knowledge may not fit into any computer representation

system without constant modifications.
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Protocol analysis is the name often given to the process of observation of actual cases of

problem solving; experts are often asked to describe and explain their reasoning techniques and

why particular questions were asked (Kassirer and Gorry 1978). Protocol analysis is not

recommended early on in the design cycle as specific cases are rarely representative of

underlying concepts. and it is difficult if not impossible for the system designer to extract

underlying concepts from these sessions. There is also no guarantee that all decisions of

importance will occur. Protocol analysis is much more useful later. when the level of

background knowledge is already at an advanced level. It is higbly useful for evaluation and

further elicitation of specific cases overlooked in the initial stages. Protocol analysis may also

lead to "exception" rules for use in unusual circumstances.

Knowledge acquisition from literature is a common source of clarification of concepts; it also

helps the knowledge engineer to use correct terminology when generating text output The

wealth of published literature on most aspects of medicine make it highly desirable for system

designers to study the literature and. in consultation with the expert, include the latest research

developments in the system. A possible explanation facility, at an extremely low level, may be

to reference sources of knowledge so that interested users may follow up advice.

Recently. much interest bas focused on more contrived methods of knowledge elicitation, for

example card sorts and laddered grids. Card sorts and laddered grids are intended to reveal an

expert's conceptual map of a domain. In a comparison by Burton et al (1990) it was shown that

contrived methods fared well against more traditional methods of knowledge elicitation (i.e.

interviews and protocol analysis) and, more importantly. that the knowledge gleaned is of a

different type and often augments the traditional techniques. In knowledge acquisition a

mixture of. for instance. protocol analysis and laddered grid may be almost twice as fruitful as

either technique alone.

The interview and protocol analysis were the main methods used for knowledge acquisition in

this work. Upon reflection. some contrived method, such as laddered grid might have been
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advantageous at an early stage of the research but the methods were unknown to the researcher

at that time.

Knowledge Representation

Methods of representing knowledge are central to artificial intelligence research. Two

problems exist; one is representing knowledge in concepts. the other is actually representing the

concepts in a computer. One problem should not influence the other, although in the real world

the constraints of computer linguistics will be a constraining factor in the design.

Documentation of decision problems bas traditionally been done using branched networks

known as decision trees. This method of brealdng down the ultimate goals into smaller sub-

goals works well for small problems, with few interactive factors. However, as the complexity

of the problem increases, the complexity of the diagram increases. The diagram is eventually

more complicated to follow than the list of rules which underlie it Clinical algorithms may be

represented by flow charts (Margolis 1992). Flow charts have the advantage that the detail is

restricted only to items of knowledge which are directly relevant at the decision points. In

practice, a large amount of baclcground knowledge is also necessary and the information

contained in these charts is therefore too limited. Recommended standards for flow charts are

now becoming defmed (MargoliS 1992) which should aid users to follow different algorithms

and to compare them for suitability for a particular medical domain and problem. Flow charts

are appropriate for the documentation of the insulin adjustment algorithms which underlie the

POIRO and PRESTO systems; some examples are given in chapter four.

The process of knowledge representation may involve deciding on a knowledge representation

system for an expert system, or merely a data structure for the storage of items of data in a more

traditional computer program, for example record structures in Pascal. Flexibility and clarity of

the data structures is important at this stage, as the cycle is likely to be repeated and the

structures updated regularly.
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One of the limitations of early systems was their lack of relational structure. In order to provide

structure to the knowledge Minsky (1975) introduced the concept of frames. This

representation system is based on prototypes. defaults. multiple perspectives and partial

matching. A frame is a structure for representing a stereotypical situation or object It may be

thought of as a network of nodes and relations, top levels are fixed and invariant, lower nodes

may have various interpretations and values and are termed slots.

Semantic networks were first introduced by Quillian (1968) as a model for natural language

representation and soon gained in popularity as a representation system. The meaning of words

is represented with the help of a graph composed of nodes. which refer to concepts linked

together by various relationships. for example causal or temporal links. This allows hierarchical

structures to be built up and one of the most common uses is in building structures with "a kind

of" or "is a" as the link. Symbolic reasoning and semantic networks are inextricably linked and

the decision of which semantics. or ontology. to use for knowledge bases is one of the hardest

tasks of knowledge engineering.

Whilst flowcharts provide a natural way to represent the algorithmic sections of the work in this

thesis, their use is not always appropriate to represent other knowledge such as the knowledge

used to construct the system's rules. A simple but effective approach to presenting the

knowledge encoded in rules for the reader is a system known as indented knowledge structure

(lKS) tables. The term is not (as far as I am aware) a standard term in AI. and the idea of

representing high level knowledge in a relevance table with just one simple link (depends on) is

also quite novel. An example is given in table 2.3 below.

Table 2.3 An example indented knowledge structure table
Result of examination depends on

knee jerk
ankle jerk
toe sensation sensitivity
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The advantages of IKS tables are simplicity, ability to organise data quickly and simplicity of

expansion of any pan of the knowledge. The knowledge is declared in natural language rather

than coded by letters and symbols. The single link in the knowledge structure is the clause

"depends on", and hierarchical knowledge structures may be quickly dermed with these tables.

The refinement of the knowledge into different link types with different properties should

follow logically once the dependencies are established. This is an informal system but has

proved effective and could easily, it is felt, be further refined and extended to a formal

definition if necessary.

Temporal Logic

Science, especially physics, has long recognised time as a basic parameter. The problem of

representing time is one of the major considerations of intelligent systems. Temporal reasoning

systems have been produced which relate either to points in time (Soper et al1991) or to

intervals (Allen 1983).

At the simplest level, time is divided into three fundamental areas: past. present and future.

Links between these areas are provided by words such as before and after. Temporal structures

are either linear or branching. Linear structures are dermed for all time, and time is reversible.

Branching temporal reasoning assumes an open future; the future is unknown and several

possibilities exist.

With classical temporal logic, it is impossible to say anything about the present time alone

without saying "it has always been", or "it will always be"; this is clearly too limiting and has

led to extensions to temporal logic by many people (Van Beek 1991, Console and Torasso

1991, Cousins and Kahn 1991). Van Beck, in particular, bas taken Allen's Original logic and

extended it 10 incorporate the representation of indermite time intervals. The theory is

unfortunately too complex for use in current practical systems, so a simplified interval algebra
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(SIA) bas been defined by Van Beet which bas solutions which are NP-complete and therefore

practical for use in temporal reasoning systems.

The simplest way to represent the present is to use a clock and set the time of events recorded

by the system to the current time; the concept of "now" can also be set by the user. either as a

constant or changeable entity. Temporal relationships between events may then be built up by

calculation of the time difference between the events. An option for representing periods

through a typical day which has been used extensively in this research is to use meals as

reference points and define the periods between meals using natural language phrases. For

example. the period between lunch and dtnner is afternoon.

Reasoning about Knowledge

An algorithm is defined as a process or rules for calculation. Algorithms usually presuppose

that all possible outcomes are known and are usually categorical in the choice of outcome given

the input More recently. the concept of algorithms has changed to include explicit decision

points where decisions are made with the data (or evidence) available at the time.

Heuristics are defined as advice (or rules of thumb) which are often effective. but are not

guaranteed to be correct An heuristic search is deftned as a function that takes a state as an

argument and returns a number. which is an estimate of the merit of that state. with respect to

the goal. Algorithms and heuristics may be combined indecision making software; in particular

heuristic searches often require algorithms for finding the best option and are therefore

algorithmic at the lowest level.

Useful concepts which have been developed to explain reasoning include the goal-oriented

problem space hypothesis. The original goal of AI was to give general problem solving search

algorithms. which could be implemented to solve almost any problem. Since then it has been

more advantageous to declare more specific domain knowledge, in order to solve problems in
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expert systems, with a return to the separation of decision making rules from domain

knowledge developed from application examples.

Searching methods are divided into breadth-fmt and depth-first searches. In depth-first

searches a plausible line of solutions is followed as far as it will go, to the point where each

solution is proved true or false. Ifone solution is false, then the next most plausible line is

followed. In breadth-first searching the search proceeds along all possible paths building up

probabilities of the most likely path to follow at each step.

The most common formalism for representing knowledge is as logical constructions known as

production rules. They are of the form IF (premises) TIffiN (deductions). The premises of

rules are termed antecedents, the deductions are termed consequents. The concept of rules was

first introduced by Newell and Simon in the 1950s. In the early 1970s Buchanan and ShortIiffe,

among others, showed that production rules were appropriate and logical for the basis of

knowledge-based systems (Davis et alI977).

Two types of reasoning mechanisms are concerned with rule-based systems: forward chaining

and backward chaining. In forward chaining rule systems a rule is fired as soon as its premises

become true. Another method is to start from the goal and work backwards trying to find a

logical path; this is known as backward chaining. Backward chaining is used when the goal is

known, and we merely need to prove whether it is possible, or how it can be achieved.

Default Reasoning

If no information to the contrary is produced, then default reasoning may be used (Reiter 1978).

Defaults are closely related to the use of frames, although the use of defaults is complicated by

the notion of effects on the rest of the world. This is sometimes confusingly referred to as the

frame problem (Hayes 1981); it is a difficult problem to describe in detail. Basically, it is

impossible to describe all the properties of the world which are not affected by an event,
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However, it is also likely that side effects of an event may occur. The frame problem is also

related to the Gordian level of ignorance introduced in chapter 1.

An example of the frame problem is given by Denner (1984): A robot is intelligent enough to

know that it needs a new battery, the battery is on a trolley in a room in which there is a bomb.

The robot correctly decides to pull the trolley out of the room in order to rescue the battery.

But what happens if the bomb is also attached to the trolley? The robot can be made more

aware in that it checks side effects of its action of removing the trolley. Now the robot

considers every possible side effect· for instance that the removal of the trolley does not

change the colour of the walls; this stifles it, so that it cannot come to a decision in time to save

the battery and the bomb goes off.

In order to avoid these considerations, the "closed world" assumption is made in many

intelligent systems. If an assumption cannot be proved then it is assumed to be false; this is

also known as negation by failure in logic. For instance if the question of a patient's drugs

arises, and a list of drugs has been entered, and aspirin cannot be found, it is assumed that the

patient does not take aspirin. If no knowledge related to required information bas been entered,

for instance the question of whether a patient smokes or not is not explicitly recorded, then a

question should be implemented automatically to discover the information. In the meantime the

only knowledge which can be deduced is that the information is currently unknown but is of

interest.

As rule-based systems are the most common paradigm for decision support systems/expert

systems they are now covered in more detail. The clinic-based system developed in this work is

a rule-based system; it is described in chapter five

Example or a Rule-Based System

Information items. or knowledge elements, are stored in a database which may also contain

hard facts which are invariant The combination of all these entities constitutes the basis of a
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working rule-based system. Some examples of the major entities of a working rule-based

system are given below: Questions are necessary to gain information from the user when a

piece of information may not be gleaned elsewhere.

Question 2
What drugs are currently being taken?
The patient takes •......

Question 1
Please enter blood pressure
diastolic ..
systolic ..

Rule 1
Itsystolic blood pressure> 100
then the patient is hypertensive

Fact 1
hypertensive drugs Include "Captopril"

Rule2
It the patient takes Anydrug
and hypertensive drugs Include Anydrug
then the patient takes anti-hypertensive therapy

Rule 3
Itthe patient is hypertensive
and the patient does not take anti-hypertensive drugs
then initiation of anti-hypertensive therapy Is required

10order to decide if anti-hypertensive therapy is required, the system looks at rule 3, because it

bas the desired goal, it then tries to prove the first antecedent of this rule. This it does by

referring back (backward chaining) to a previous rule which has this result, i.e. rule 1. This rule

in tum tries to ascertain systolic blood pressure, there are no rules which have this result, so it

asks the question of the user. The user may then supply an answer (or, if no value is available,

enter the answer unknown). If the value entered is bigher than 100, then the first antecedent bas

been proved. and lIlat fact is added to the knowledge base. The system goes on to tty the

second antecedent, and backward chains to the question about current drugs. If "Captopril" is
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entered as a current drug, then it will conclude that initiation of anti-hypertensive therapy is not

required. However, if no anti-hypertensive drugs are entered, then the fact "initiation of anti-

hypertensive therapy is required" will be proven, and further actions will be taken as necessary.

One way in which this conclusion may be used is to fire rule 4, below.

Rule4
If initiation of anti-hypertensive therapy is required
then selection of best anti-hypertensive drug Is required

This rule may, in tum, fire other rules, or it may initiate another backward chaining cycle, in

order to find the best drug to be used. The above example demonstrates the main components of

a knowledge base, and an example of the type of relational structure which may be built up.

Words like "take" are defined as relations, so that they become key words. In this definition the

opposite of takes has been defined to be "does not take"; if the expert system wants to prove A

does not take B, it tries to prove A takes B, and, if it fails, asserts that A does not take B by the

closed world assumption. This does not strictly follow from the rules of mathematical logic,

but is a permitted extension within the decision making context

implementation

Once data structures are defined, and the implementation language bas been selected or defined

as required, a prototype system may be implemented. If the design stage bas been thorough,

this should be the simplest stage of the process. The selection of a development language will

depend on hardware and software availability, as well as performance and safety

considerations. Cullyer et al (1991), after studying and comparing several software languages,

concluded that the safest language for the development of safety-critical applications is Pascal

However, languages such as Lisp and Prolog are more suited to AI program development

Many computerised tools are available for expert system design; these so called expert system

shells enable the designer to quickly enter and test sets of rules. Often, a good strategy is to

encode a specific problem, and test the logic, before moving on to large seale encoding of the

background knowledge.

60



Further up the software-aided design scale come complete knowledge-base building systems.

An example of a complete knowledge base design tool is KEATS (Motta et alI988). KEATS

includes facilities for knowledge acquisition. domain conceptualisation and interpreters to

provide frame and rule-based solutions to a problem.

An expert system shell which does not restrict the method of knowledge acquisition. but

includes powerful conceptual facilities for knowledge representation is the Xi+ system from

Inference. This has been the development vehicle used for the clinic-based expert system

described in chapter five.

Evaluation.

Requirements of decision support system validation are to evaluate: 1) The quality of the

system's advice and decisions; 2) The correctness of the reasoning techniques used; 3) The

quality of the human computer interaction; 4) System efficiency and cost effectiveness

(Gaschnig et alI983). Evaluation should be given a high priority and should be considered as

an integral part of the build-test-refine cycle.

The evaluation of some classes of intelligent systems (notably rule-based systems) can be

carried out by rigorous formal methods taken from mathematical logic. For example, Reiter

(1988) has defined a knowledge base in terms of logic programming as a set of first order

sentences. He bas applied formal mathematical logic techniques to study the Validity of

knowledge bases by definition of integrity constraints. Integrity constraints are meant to

characterise the acceptable states of a knowledge base and are used to enforce these states.

They can be thought of as statements of what the knowledge base can be said to "know". Highly

formal logic languages contain facilities to implement integrity constraints.

However, few systems correspond to the mathematical ideals of sucb models and practical

evaluation of intelligent systems requires other simplified methods. A major problem with the

evaluation of the results of decision support systems bas always been the problem of bow to
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evaluate a system, wben there are not necessarily any rigbt and wrong answers, and there is

considerable disagreement over the best strategy among experts. Ultimately, the evaluation of

a medical computer system is in bow it copes in the field in clinical field trials on real patients.

Unfortunately, in early stages of development this method is ethically and legally unacceptable.

Another side of evaluation is pbysician and patient acceptance of the system. Does it encroacb

on the pbysician • patient relationship? A common method of evaluating computer advice

systems is to run several test cases on the system and then ask experts to judge the systems

advice with different criteria (table 2.4).

adequate?
safe?
useful?
practical?
adequately explained/justified'?
intuitively reasonable?
returned _quicklyenough (performance question)

Table 2.4 Some criteria for judging system advice (answers could be on a scale of 1 to 5 say)
Is the advice:

If the questionnaire is kept simple enough so that subjects may simply tick a box (perhaps on a

sliding scale) this should not present too much difficulty in resources. The method of

presenting the decision problems and outcomes to the judges should be as close to thal found in

normal practice as possible.

The major drawback of this system is it is not exbaustive of all possible scenarios; indeed as the

system grows in size and complexity, it is difficull to ascertain how much it could actually deal

with. The problems are highligbted even further if system designers are changed.

In practical knowledge-based systems, the syntax of the knowledge is structured and the

relationships between different parts, (rules, static facts and so on) is well defined, In the case

of production rule systems, the knowledge base may be systematically checked for the

following problems:

Redundancy: Are any rules duplicating information or are they never going to be used'?
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Completeness: Are there any rules for which there is DO way of obtaining the antecedents

(either via questions or raw data)? This can be circumvented by the use of "automatic"

questions for "missing" information.

Contradiction: Do rules produce conclusions which contradict with other rules in an illogical

way?

Circular reasonin&: A common problem with forward chaining logic is circular reasoning. A

rule fIreS as many times as its antecedent is proven, and design needs to be careful, in order to

prevent the presence of logical loops. A common way of doing this is to include a system for

structuring the order of execution of the reasoning. Forward chaining may be limited to

reporting outcomes "as they happen" and redirecting the system if an important fact is proven.

The bulk of a system may then be encapsulated in simple backward chaining structures. It is

normally much easier to follow logic (and provide simple explanation) from backward chaining

than forward chaining.

The assessment of quality of human-computer interaction is largely a subjective quality, but

some metrics may be defined. Usability criteria are outlined as (Clegg et alI988): 1) ease of

learning; 2) ease of understanding the core concepts, and 3) degree of consistency and lack of

arbitrary commands. In addition, performance assessments should be carried out to check for

delays in response times for complex queries and heavy processor usage. In general, users

should feel in control and systems should oot be unpredictable. The degree of effort, both

physical and mental, required to learn and understand a system oeed evaluation, a minimum

amount of key presses to undertake tasks is desirable and it is a general principle to restrict the

depth of sub-levels in a selection system.

Performance aspects relate to system speed, the delays between requesting a service and

receiving that service should be measured and assessed. Systems should notify users why any
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delays are occurring when long delays are unavoidable, for example during a disk access

procedure.

Ease of information input and output may be assessed by an error log. Error and error

correction may be divided into "slips" and "mistakes" where slips are errors in execution while

mistakes are errors of formation of intentions. The former shows an error of dexterity (either of

mind or body), which possibly points to a physically difficult interlace, whilst the laner is a

more fundamental misunderstanding of what was required of the system and may indicate a

change in prompt or screen layout is necessary.

Two measures of usability of an interface are Pitt's law (Thimbleby 1990) and Hick's law (Hick

1952). Fin's law states that the time taken to move (the band) to a choice depends

logarithmically on the ratio of the target size to the distance which has to be moved to reach the

target. Hick's law applies to selection from menus; it states that the user's decision time is

proportional to the logarithm of the number of choices known to be open.

Pitt's law originally applied to movement of a cursor already placed on the screen, the distance

moved (d) was the distance moved across the screen to the target of width w (equation E2.1).

T -= a + b(log(2dlw» (E2.1)

Modifications need to be made to FiU's law in order to cater for touch screens (Sears and

Shneiderman 1991). Touch screens may Dothave a permanent cursor but the movement of the

hand to the screen (in three dimensions) needs to be counted. For touch screens, Fitt's law takes

account of the distance moved by the band D, some measure of target size W and the distance

moved to the actual target once the finger has been placed ODthe screen - this is assumed to be

very small as the finger should be placed close to the target in the fnt instance.

T = a + b(log(cDIW) + dOog(eIW) (E2.2)
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Knowledge base evaluation techniques include: Interviews, Questionnaires, System Walk-

through, Formal observation (possibly video recorded), User diaries, System logging, Simple

experiments (comparing two or more versions of the system or an aspect of the system; for

example explanation types).

Experiments sbould be carefully formulated; stages in planning experiments are given in table

2.5 (Shneiderman 1987).

Table 2.5 Stages in planning experiments
1) Have a lucid and verifiable hypothesis.
2) Explicitly state what is being altered (independent variables).
3) Carefully choose what is being measured (dependent variables).
4) Judiciously select and assign subjects to groups.
S) Control for biasing factors.
6) Apply statistical methods and data analysis.

All the experiments outlined above suffer from the subjective nature of the assessment, There

is a real need for some metric attached to the usability of an interface. One suggestion is the

normalised performance ratio (NPR) (Moffat 1990). Equation E2.3 defines NPR as the mean of

the periods of time required by a group of people to complete an identical processing task,

divided by the sample standard deviation of those completion times. There is a correction for

subjects who fail to complete a task altogether as this must be included as a failing of the man-

machine interface.

NPR= --------------------- x ----- (E2.3)
mean of the completion times successes

sample sd of the completion times successes-failures

Equation E2.4 defines NPR in terms of operational complexity (o.c.), processing task

complexity (pte) and solution complexity (sc). Moffat shows that the NPR is actually

independent of these memes as the mean completion time E(x) is proportional to these factors,

althougb the argument used is mathematically flawed as factors which are cancelled are

undefined.
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NPR= -- .. ---- .. (E2.4)
E(x) g(MMI oc, pte) • se 1

&d(n-I) p • ,(MMI oc, pte) • se p

(P • sample coefficient of variation (cv).)

It can be shown (Moffat 1990) that pwill remain approximately constant within all ranges of

se. This is one of the fll'St attempts to produce such a metric. and is one which should be easy

to apply to most user interfaces. Only time pressure prevented such assessments being carried

out in the evaluations of the two systems described in the thesis.

Examples of Knowledge Base Validation. MYCIN, GLADYS and ANEMIA

MYCIN once again provides a classic example of a facet of decision support system

development which has since become a large knowledge engineering task - the validation of

intelligent systems. Validation of the MYCIN knowledge base was carried out in two stages: In

phase one several human prescribers and MYCIN advised on test cases. In phase two, the

human consultants assessed each piece of advice without knowing its origin. Classification of

each piece of advice was into one of four categories: equal, acceptable. alternative and

unacceptable. MYCIN compared very favourably with the human experts involved; it scored

70% acceptability to the majority of assessors. This result was, at first, thought to be

disappointingly low, but the study produced the realisation of just how great the diversity of

opinions is between experts. Indeed, it bas been suggested that evaluation of experts takes

place alongside evaluation of expert systems (Berry and Hart 1990).

A medical system which has undergone formal evaluation is GLADYS. GLADYS is the

GLAsgow system for diagnosing DYSpepsia. In the experiment. doctors were trained to be

familiar with GLADYS; then 202 patients were randomised so that the doctor received output

from GLADYS for only one half of them. (Knill-Jones and Dunwoodie 1989).
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A more complex example is the evaluation of ANEMIA, a system for management of anaemic

patients. (Quagliani 1988). 30 cases where analysed. 5 by ANEMIA and 5 each by 5 experts.

All the experts then saw the diagnoses and rated them as unacceptable, weakly acceptable,

acceptable or ideal. This concentrates on evaluation of advice offered; other trials need to be

done to assess usability, efficiency and cost effectiveness.

In any comparison experiment one should always watch for the Hawthorne effect

(Roethlisburger & Dickson 1939), basically that improvement of performance in an experiment

may be due to the monitoring and extra interest alone, and not due to the variable under

scrutiny.

In some medical applications, simulation models may be built, which may provide input to the

decision support system. Where decision systems use conventional algorithmic programming

care should be take that the same assumptions are not explicitly included in the simulation

model. In ideal circumstances, independent agents should produce a simulation model, perhaps

employing different basic physiological models to that of the system designer, so that the

validation can be as near as possible to a test of the model on real clinical cases. The use of

simulation is thus limited to areas where a high level of physiological knowledge is available

and may be modelled (for instance) using differential equations.

Lastly, the ultimate test of a decision support system is how it copes in the clinical setting.

Properly controlled. randomised trials provide the best method of comparing computer assisted

decision making with decisions made without the aid of a computer. Trials cannot usually be

made blind, due to the nature of advice. Patients must know when they are receiving expert

system advice and when they are receiving just default advice every day.

A possible option for use in a randomised trial may be to receive advice by telephone, half the

time from an expert physician, and half the time from the expert system. Note that patients

involved in this type of experiment are the ultimate decision makers and should accept
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responsibility for their fmal decision. They could perhaps rate the value of the decision support

given to them, or, less subjectively, the number of times patients followed the suggestions in

each phase (the compliance) could be used to assess acceptability of suggestions.

Decision Support System Maintenance

Due to the evolutionary nature of medicine and the possible treatments, diagnostic tests etc.

intelligent systems have a requirement to evolve and keep up with new developments. There is

also a need for interactive knowledge acquisition when the system encounters previously

unrecognised cases. Two solutions are possible: either full time knowledge engineers (or

systems programmers to be more general) update the system in stages, or the system updates its

own knowledge base (i.e. it learns).

Knowledge base maintenance is complicated, and several problems and proposed solutions

have arisen. Addition of new rules or facts may have side effects. Occasionally a rule may be

generalised or, in contrast, made more specific. An analysis of maintenance problems of the

GARYAN ES I system (Compton and Jansen 1990) suggests that experts do not report how they

reach a decision, rather they justify why a decision is correct These justifications are taken in

context, and this must be taken into consideration in expert system building. Two suggestions

are made for facilitating context changes in expert system development: ripple down rule bases

and a knowledge dictionary.

The knowledge dicti9nary is an extension of the common data dictionary; rules are broken into

their component parts and stored in a relational table, relational calculus can thus be used to

manipulate the knowledge base in a much more powerful way than text editing.

Ripple-down rules are essentially ordered rule additions; when a decision or outcome is

unsatisfactory to the domain expert, a new rule may be added after the last rule to be tried. All

additions of this kind to the GARYAN BSI are countersigned by a domain expert so the

classification is easily done.
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To assume that there are underlying primitive elements of knowledge structure derives from the

"physical symbol hypothesis" of Newell and Simon (1972). The extraction of this deep

knowledge is the most difficult task of knowledge engineering. Experts give justifications

which appear simple as they are in context with the presented problems. This leads 10 simple

addition of rules which is in contrast 10 general rules which are often opaque and difficult to

maintain.

An intelligent entity has the facility to learn from experience. Human learning is viewed as a

gradual process of concept formation (Gennari et a1199O), a succession of objects is observed

and a hierarcby of events is induced 10 summarise these experiences.

The major successful paradigms for machine learning include inductive approaches,

explanation based learning, genetic algorithms and connectionist learning methods. Early

research in this area includes Feigenbaum's EPAM which concerned buman verbal

memorisation tasks (Gennari et aI 1990). EP AM represents each instance of attribute-value

pairs, along with an ordered list of component objects. Knowledge is organised in a

discrimination network, where each non-terminal node specifies a test for deciding whicb link

to follow from that node; one node is labelled OTIIER to save all values baving to be stated.

Lebowitz's Unimem (Gennari et a11990) succeeded EPAM and introduced some novel ideas;

natural language understanding and inference were the goals. InUoimem both terminal and

non-terminal nodes bave concept descriptions which may be numeric and may have associated

weigbts.

Fisher's COBWEB (Gennari et .a11990) uses the theory that some concepts arc more "basic"

than others. It links parents to children by "is-a" links io the hierarchy. Four processes take

place: (1) classification of objects into existing classes, (2) creation of a new class, (3)

combination of two classes into a single class, (4) division of a class into several classes.
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CLASSIT (Gennari et al 1990) is a new model which embodies much of the earlier systems and

attempts to improve upon iL CLASSIT models concept formation with real valued inputs, this

leads to evaluation equations concerned with statistical distribution combinations. It is

particularly strong on evaluation of missing attributes by a statistical method employing the

standard deviation.

Explanation based learning (EBL) (Minton et all990) improves problem solving performance

through experience. Explanations are converted into operational recognition rules. The method

is thus knowledge intensive and analytical. STRIPS (Ftkes & Nilsson 1971) is perhaps the most

influential precursor of EBL; it solves a given problem and then converts its set of macro-

operators to solving similar problems in future. PRODIGY is described by Minton as an

example of an EBL system.

Derivational analogy solves a problem by replay of a pIan used to solve a previous problem,

modifying it where necessary. POPART (Mostow 1990) generates a suite of grammar related

tools intended to support the transformational development of specifications and programs. It

has facilities for recording, editing and replaying a sequence of steps.

Connectionist learning methods are popular in areas where pattern recognition is involved.

Ambitious projects designed to imitate actual brain processes led to the name neural networks

for this type of learning system (Pao 1990). Neural networks consist of massive numbers of

processing elements, called units, which interact through weighted connections. Long term

knowledge is encoded by the locations and weights of the connections and processing is

concerned with adding or removing connections or changing weights. Connectionist learning

methods are a popular current area of research but suffer from a lack of ability to justify or

explain their reasoning and difficulties of system validation. It is also difficult to represent

higher level conceptual knowledge in connectionist networks so they are often employed as pan

of an intelligent system along with a frame or rule based formalism.
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The neural network approach has been utilised in the AEDMI program (Ferrer-Salvans and

Alonso-Valles 1990) in order to ftlter subjective diagnostic probabilities supplied by a large

number of physicians on various cases. In this way it is hoped to create a large central database

for decision support.

EXISTING MEDICAL DECISION SUPPORT SYSTEMS

Early decision support systems which reached research prototype level include ONCOCIN

(Shortliffe et al 1981) - a rule-based expert system (or managing cancer patients and GUIDON

(Clancey 1979) which instructs students in the selection o( antimicrobial therapy for hospital

patients with bacterial infections and also utilises the rule base of MYCIN. Originally, MYCIN

was concerned with antimicrobial therapy selection; it was developed at Stanford University

during the 19705 and has become the most well-known and oft-quoted AI program of the

generation. Starting as a simple rule-based expert system written in the computer language

Lisp, it evolved into EMYCIN and NEOMYCIN which provided structural languages for

knowledge engineering, a meta level of reasoning above the domain specific knowledge of

MYCIN. A language translator provided explanation capabilities on two levels, a simple why?

capability wbicb translated rules and an interactive question and answer capability.

Frames were utilised in systems such as PUFF and WHEEZE (Aikins et al1983) which were

aimed at pulmonary diseases. An amalgamation of frame-based representation techniques with

rules still provides one of the most fruitful systems (or consuucung expert systems. For more

detailed information about medical knowledge based systems see Fieschi (1990), Giarratano

and Riley (1990), or the classic reference book by Waterman (1986).

General Medical Systems

General practitioners are, as the name suggests, non-specialists. For this reason they

undoubtedly experience more uncertainty when faced with unusual problems in newly
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presenting patients. The acquisition, classification and judgement of symptoms, clinical tests

and previous history is a complex process. For this reason computer decision support and

database systems are gaining in popularity for GPs and two proposed systems are described

below.

GPs' responsibility for patients with chronic. ongoing diseases is on the increase. GPs now

often run mini-clinics concerned with such problems as hypertension, asthma and (probably

most common among chronic conditions) diabetes. Decision support for these medical

conditions is vital if optimal care is to be provided for all patients.

The interactive nature of health care has led to the proposal of a massive knowledge base to

cover the whole field of medicine (Fox et a11987). This ambitious project. the Oxford System

of Medicine. bas been developed since 1986 by clinical and computer science researchers at the

Imperial Cancer Research Fund in London with funding partly by Oxford University Press and

the European Community AIM project LEMMA. The project is progressing well (Gordon et aI

1990) and is now in a second phase of three years. within the DILEMMA project. Presently.

the OSM database contains knowledge on diagnoses within several chosen medical fields and is

particularly complete in the areas of joint pain and breathlessness. Extensions to the

functionality have enabled the model to support the use of clinical guidelines. in particular a

guideline for the management of hyperlipidaemia has been implemented and a diabetes

guideline is planned for 1993. The current system implementation is based on an mM

compatible PC with software written in Prolog and C. Its user interface incorporates WIMPS

facilities and intelligent data input aids such as string completion. A new version. written

entirely in the C language should overcome restrictions due to PC memory and speed of

processors and will enhance cross-platform portability of the system.

The OSM is interesting mainly due to its implementation of a separate set of procedures for

decision making. Decision making in the OSM consists of five stages, (I) candidates are

proposed, (2) they are endorsed with arguments that support or refute the candidate (the
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candidate could be related to a diagnosis, investigation or treatment problem) (3) the candidate

can be evaluated, either qualitatively or quantitatively. (4) relationships with other candidates

are examined to see if any could coexist or are mutually exclusive and (5) a candidate (or

candidates) may be selected to form a decision. Automatic truth maintenance is included to

provide logical consistency of assertions made.

Acceptability of the system may be enhanced by its flexibility. An interactive evaluation

facility provides the opportunity for physicians to suggest their own decisions for the system to

discuss. as well as allowing the physician to view all the possible, supported, eliminated and

confirmed candidates in a situation.

Integrated with the OSM is an interface to the CD ROM edition of the Oxford Textbook of

Medicine, a major reference textbook. Another useful feature built into early prototypes is a

browsing facility to allow examination of this and in particular the medical information on

which decisions are based. This style of presentation is called hypertext, the use of such

methods is known to be highly attractive to medical practitioners (Timpka 1990). The internal

random coding system presently used for the Oxford System of Medicine is expected to be

linked with the Read codes as they become a standard in the medical informatics field in this

country. However, many deficiencies are present in the Read codes and the long term goal is to

link with the research of other AIM projects to provide definitive solutions to the various areas

of clinical computing which are presently perceived as a problem.

A similar browsing system with potential for decisioD support has also been developed by a

team of medical informaticists from Manchester University department of Computer Science,

led by Rector (1991). The current implementation of the system is in Smalltalk ODan Apple

Macintosh or Sun workstation and now includes hierarchical data structures and an extremely

sophisticated user interface combining text and graphics to simplify entry of data on several

levels. The Pen and Pad system is eventually to be aimed at the GP level and is set for beta

testing in June 1992. The fully developed user interface would subsequently be linked to
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modules to provide decision support on therapeutic and diagnostic decisions and the type of

drugs to administer. This could well be the Oxford System of Medicine or a system developed

from iL

The two general systems outlined above provide sophisticated frameworks for medical expert

systems but the substance of decision suppon still remains to be added. Massive expansion of

the OSM database from its presentlS,OOO to an estimated 10 million facts is now feasible

within the PC environment (Gordon et all990) given data storage requirements of individual

facts within the system. An advantage of the Manchester system is its syntactic knowledge

representation schema. Levels of abstraction are available to link concepts of disease to

individual entities and to different parts of the body through textual and graphical interfaces.

This work is also continuing within the AIM programme in the GALEN project, which aims to

produce a generalised architecture for terminology used inmedical systems.

Patient-Oriented Medical Systems

The vast majority of systems so far designed have been aimed at the non expert physician or

General Practitioner level with only a few recent examples of systems offering advice directly

to patients; many of these are within the field of diabetes (Albisser et al, Schultz et al,

Schrezenmeir et alI985b). In the next chapter, existing computer systems in diabetes care are

described and their impact on the decision making capabilities of physicians and patients who

use them.
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CHAPTER 3•COMPUTER SYSTEMS IN DIABETES CARE

COMPUTER RECORD KEEPING

Diabetes bas often been used as the paradigm for medical uses of information technology and

intelligent systems. Most large hospital diabetic clinics and some GPs who run diabetes clinics

now have computer databases to store patient details, results of biochemical analyses and so on.

One possible reason why diabetes is often selected as a medical domain by informatics

researchers is the multiplicity of links to other specialities which all too often occur in diabetes.

The motivation appears to be that links to cardiovascular problems, eye problems, neuropathy,

nephropathy and chiropody (the most common complications of diabetes) will enhance the

comprehensiveness of the computer system under development It is not uncommon for a

patient to be seen by three or four specialists, as well as a dietician, all of which would benefit

from a detailed description of the patient's diabetes.

Patient databases typically contain basic background data such as name, hospital identification

number, age, height etc. This is then updated with details of specific information such as

results of biochemical analyses and may be useful for the production of ideal weights for

'patients and for checks on routine tests which should be regularly carried out to monitor eyes,

kidney function, nerve responses and blood pressure. Analysis of patient databases can help

with policy decisions. The possibility for on-line data entry and recollection now exists but is

limited by availability of resources and by the existence of physician reluctance as outlined in

chapter two.

DIABETA is an example of a system which bas been accepted into clinical practice. It has been

in use in St Thomas' hospital for 8 years collecting data interactively in the diabetic outpatient

clinic. The system bas included the development of a limited "intelligent" advice system to

provide therapeutic advice, general advice, advice on screening and investigations, referrals,

timing of next visit and content of the next visit The system is written in Prolog and contains



over 1000 rules whose logic has been validated. The system bas been evaluated both in the

laboratory and by experienced diabetologists.

DIABETA currently holds records of 5600 patients. An example of the benefit of

computerisation occurred when the system was used to indicate risk factors for diabetic

nephropathy (Tsuruoka et all991). Proteinuria positive patients were examined (that is patients

whose urine sample contained a detectable level of protein). Risk factors did not involve

smoking, alcohol consumption, duration of diabetes, sex or obesity. There was significantly

worse glycaemic control in these patients. Patients also tended to be older at diagnosis, and the

group contained a higher proportion of affro-carribeans than the population as a whole. More

strokes were present in the maternal cause of death and there was a higher incidence of raised

blood pressure. The report, compiled with the aid of DIABET A, adds more evidence to

indicate the importance of glycaemic control, and of a personal and family history of

hypertension in the development of diabetic nephropathy.

Such retrospective analysis of patient databases is enlightening but the properly controlled,

randomised studies of the UKPDS should provide more concrete evidence of the connection

between management strategies and incidence of complications when the final reports are

published some time in 1993-94.

GLUCOSE MONITORING

As outlined previously in chapter one, diabetic management now centres on home blood

glucose monitoring (HBGM), which is also referred to as Self Monitoring of Blood Glucose

(SMBG). Urine measurements are limited to providing an indication of hyper glycaemia, they

depend on the net result of two processes: glomerular flltration and tubular reabsorption;

differences exist among individuals in these mechanisms and this produces differences in

glycosuria for given blood glucose levels. Urine monitoring is therefore only recommended in
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cases where patients are unable to carry out 5MBG or in elderly type n patients with very

stable diabetes and no complications or symptoms treated with minimal therapy.

Two major methods exist for the measurement of blood glucose. The rlI'Stmethod involves a

chemical reaction between the glucose content of the blood and chemicals in a strip which

changes the colour of the strip. The level of blood glucose may then be read off against a

colour chart by eye or special meters may be used to assess the level by photogrammetnc

reflectance techniques. A second method involves electrical resistance of electrodes, no colour

change is involved, instead a drop of blood is placed on the electrode and a direct amperometric

reading is attained.

The advantages of the first system are that a visual check may be made by patients as well as

the use of the meter. Many of the meters also contain memories for storage of several dated

and timed glucose measurements. Disadvantages of the system are the time delay between

taking the sample and obtaining a response, this may be two minutes or more and can be

inconvenient if patients need to measure glucose at work for example.

The advantages of the second system for decision making are its speed (30 seconds) and

accuracy. In tests, the amperometric meter produced results which were more closely correlated

with results of laboratory methods of measurement than the reflectance meters. Amperometric

meters tend to be much smaller and are therefore more likely to be carried and used regularly

by patients. Disadvantages at present include the lack of a memory (patients still have to enter

the measurements by hand into a log book); there is also no way of validating the meter's

readings apart from a second opinion gained when patients attend their clinic as the strip does

not change colour. In time these problems will probably be overcome and the reliability and

availability of meters should continue to improve in order to provide this essential prerequisite

for optimal blood glucose control.
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REPRESENTING AND INTERPRETING GLUCOSE RESULTS.

The link between glycosylation of proteins and the incidence of diabetic complications suggests

that the most important pointers 10adequacy of glucose control are the mean blood glucose and

the variability. It has been shown (Holman and Turner 1980) that in type Il diabetes meal time

insulin responses are often sufficient 10overcome the associated rise in glucose due 10the

carbohydrate content of the meal. The meal time rises in blood glucose, or post-prandial

glucose excursions as they are called, are superimposed on a raised fasting blood glucose level.

Monitoring of type II diabetics may therefore be carried out by measurement of the fasting

gJucose only and decisions as to the appropriate therapy may be made based solely on the

fasting blood glucose until the B cell function is impaired to the level where meal time insulin

is required.

Type I diabetes requires more frequent monitoring as little or no functional B cells remain and

insulin has to be supplied to cover meal time excursions.

Mean blood glucose, represents glycaemia in a simple way but gives no indication of variability

and depends on timing and frequency of measurements. If limited to fasting and/or preprandial

measurements it may be more representative. More intensive monitoring regimes suggest a

sampling scheme of preprandial and post prandial (90 mins after meals) measurements.

Reasonably good correlation was observed between this 7-point system and an even more

intensive 22-point measurement regimen (Service et aI 1987).

Measurements of extremes of glucose have been proposed as alternative indices of glucose

control. Variability may be quantified by a peak to nadir ratio, or a standard deviation, or a

ratio of some other arbitrarily selected points to represent high and low portions of the scale of

measurements. However, there is still no indication of the distribution of the measurements

through the day.
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Other indices of control include mean amplitude of glycaemic excursions (MAGE), which is a

measure to quantify major swings post meals (80 mins), and includes values greater than 1 SD.

The mean indices of meal excursions (MIME) describe post prandial excursions as time from

the start of the meal to the peak of glucose and are suited to continuous glucose monitoring

systems only. For non-diabetics MIME parameters are typically 45 mins +- 5 mins.

Problems with measurement exclusively of the fasting blood glucose came to light with the

discovery of the dawn phenomenon. It is thought that glucose levels start to rise in both normal

and diabetic individuals at around 4-5 am in readiness for waking up. The study of Schmidt et

al (1981) placed the dawn phenomenon within a new conceptual framework with regard to its

relationship to intra day blood glucose variation. The dawn effect was positively and

significantly correlated with measures of variation including CV and MAGE. Also its

consistency in the patients, despite variations in daily living parameters, suggests it may be a

universal factor in all type I diabetics.

Decisions concerning night-time insulin therapy are a particularly contentious area. Many

studies have been carried out to compare various insulin formulations (Riddle 1990). Night-

time or evening insulin strategies are dependent to a great extent on empirical findings. Riddle

advocates a trial and error approach to finding the most appropriate regimen for individual

patients. The basic variables are duration of action of the insulin, the time to peak. timing of

delivery, whether to include some short acting insulin (either a separate formulation or a mixed

insulin type) if the dose is given with the evening meal. In extreme cases sulphonylurea may be

given in conjunction with insulin, although the success of this approach depends on the amount

of residual beta cell function.

Studies have been carried out to compare continuous subcutaneous insulin infusion (CSII) with

multiple subcutaneous injections (MSI) and have found no significant difference between

glucose control due to the two methods. Haakens et al (1989) investigated the effect of

different therapy regimens on the fasting glucose. He concluded that csn was better than MSI
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for controlling morning glucose. Human isophane injected before bed produced lower glucose

than ultralente. However, when the breakfast meal was delayed glucose rose in CSII and

isopbane use, but remained stable in ultralente use. Attempts were made to increase the

ultralente in order to reduce fasting glucose but patients reported afternoon hypoglycaemia.

This may be because of a shorter half-life in the ultralente which theoretically bas no

discernible peak level. A better distributed diet may also have alleviated the hypo problem

while allowing reduced fasting glucose, as exhibited by many existing users of the basal

prandial insulin regimen (chapter four). As already stated, patients do not generally want the

inconvenience of a pump to constantly remind them of their diabetes so MSI is considerably the

best current option for optimal control.

Some reports suggest that human intermediate acting insulins are absorbed more quickly than

animal species, adding to the complexity of matching an insulin to the requirements of the

individual. Other factors concern administration, Le. site, temperature, physical activity and

inherent absorption characteristics and all should be taken into consideration.

In order to quantify the dawn phenomenon investigators coined the term FAGE for fasting

ascending glucose excursion, this is the difference between pre-breakfast glucose and the nadir

occurring overnight. Schmidt also noted that the FAGE was greater than both the midday meal

MAGE and the evening meal MAGE, despite the patient eating identical meals.

TheM·Value

An innovative parameter developed in the 60s (Schlichtkrull et al196S) is the M-value. This

formula (E25) provides a single numerical quantity for describing control in terms of mean and

swings by means of a logarithmic transformation of values compared to the standard reference

value.

M .. sum( abs( 10 ·log (BG/120)3 » IN + W/20. (E2.S)
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where BG are the N blood glucose determinations, W is the total range, i.e. the difference of the

highest value minus the lowest value. The reference value of 120 may be changed to suit

individuals (measurements should be in mgldl). The advantage of this system is that it gives a

measure of normality of control. high blood glucose values increase the figure. but very low

blood glucoses record still higher M-values. It is recommended (Service et al1987) that a

profile of 8 blood glucose readings. four pre-prandial and four post-prandial readings. should

provide an optimised indication of overall control. In practice, the four preprandial blood

glucoses are usually recorded and in the clinic POIRO management system the M-value for

preprandial blood glucoses is plotted beside a graph of the moving average blood glucose

before each meal. The differences between a seemingly good (i.e. low) blood glucose and the

M-value can be quite great. This may indicate asymptomatic hypoglycaemia which is

undetected, or may indicate that lower levels of blood glucose are obtainable and the reference

level of the M-Value should be tailored to individuals. However. the latter option makes it

impossible to standardise control parameters between individuals.

Long Term Control

Long term control may be defined as an overall value which describes blood glucose values

over an extended period of time. It may be measured by glycaemia directly as above. or by

some other assay independent of blood glucose measurements. A common assay at the current

time is the measurement of glycosylated haemoglobin <HbAlc) (see chapter one) which gives a

measure of control over the previous 2 to 3 months.

Fructosamine, the condensation product of glucose and proteins formed by the reduction of the

osazone of glucosamine, bas also been observed to relate to glycaemia, with positive

correlations to fasting glucose and HbAlc levels. The duration offructosamine is about 3-6

weeks.
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Emphasis on bypoglycaemia is recommended as continuous monitoring bas shown quite higb

prevalence of asymptomatic bypoglycaemia, especially in intensive insulin therapy. The M-

value, as described above, places special emphasis on bypoglycaemia, wbicb may be varied by

variation of abereference value. It may therefore be a most appropriate single measure of

adequacy of overall control but may be too complicated an entity to be used in clinical decision

making.

Most of the systems currently under development for pbysician decision support concentrate on

interpretation and representation of bome blood glucose measurements (Rodbard 1988, Coben

1991). Glucose meters with built in memories may be directly connected to the pbysician's

desk-top computer and abedata transferred and examined in various statistical and graphical

overviews. Alternatively, log book recordings may be transcribed to a computer for analysis,

although this is a tedious and error-prone method, Log book reports of blood glucose have been

shown to be error prone. Mazze et al (1985) conducted a study in whicb patients used a glucose

meter with a memory and recorded the measurements in their log books: the patients did not

know of the memory. The results showed tbat patients often fabricated "good" (normal range)

glucose results and did not report "bad" (higb) glucose test results. In a later study, patients

were made aware of the memory and almost 100% accuracy of recordings followed.

Wilson and Clarke (1983) made an early attempt to present raw HBGM data. Results taken

from patients' log books were transcribed to a computer as one dimensional arrays. The x-

values were the time variable and y-values the readings. The x-values were further coded by

date and time of day; the date was set as an integer starting from day I, decimal extensions

were applied to give the time of day as follows: 0.20 • 3 am, 0.40 • pre-breakfast, 0.42 • post-

breakfast etc. This method bas the advantage of retaining the one dimensional nature of the

array but loses the actual times of glucose determinations. The program code was written in

BASIC, with grapbic routines in a Hewlett-Packard graphic language. Raw data or the MAGE

(mean amplitude of glycaemic excursions, described in Service et al (1987) index of glycaemic
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excursions may be plotted. Three interpretations of the MAGE were used: The average

absolute amplitude of values compared to the daily mean. average absolute amplitude

compared to the grand mean of all the data, the mean of daily absolute differences from the

mean glucose minus one standard deviation (mean and SO of wbole data set). The resultant

grapbs were still difficult to interpret and more conclusive interpretation methods have since

been developed.

The Ambulatory Glucose Prome

The phrase 'Ambulatory Glucose Profile' (AGP) bas been coined (Mazze et al1987) to describe

one method of assessment of bome monitoring on a computer screen. The profile is a plot of a

period (usually two weeks) of glucose determinations; usually the median and quartiles are

plotted for each bour throughout the day although sometimes other percentiles may be plotted

provided there are enough readings.

The plot gives a representation of glycaemic control over the period studied and higblights

grossly bad control. However, due to its hourly nature, it does rely on regularity of meals and

insulin injections.

A meter with a memory is virtually essential for accurate presentation of blood glucose test

results. Some method of transferring the data to a larger pbysician oriented personal computer

is also essential for physician analysis within the limited time-scale of a clinic mnsultation. In

cases of limited memory within the glucose meter, data transfer by modem bas been put

forward as a possibility (Zimmet et al1988), although the method could prove expensive if

frequent data transfer is required.

ELECTRONIC LOG BOOKS.

Some systems have gone further than merely analysing glucose determinations and produced a

computerised patient log book for recording dietary carbohydrate, insulin doses and exercise as
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well as glucose values (Rodbard 1988). Systems for use by patients divide into those based on

commercial programmable calculators or pocket computers and custom built devices.

The CAMIT system (or MERLIN as it is called in the USA) is an example of an electronic

diabetes log book based OD a programmable calculator. The system bas been modified since it

was originally designed as a therapy adjustment program and bas gradually evolved into a

monitoring and interpretation system. The original system (see below) was integrated with the

Reflolux blood glucose testing system (manufactured as Accu-cbek in the USA and Canada).

The software was divided into three components. A custom built device, known as the CAMIT

EL (Electronic Log) is connected directly to the reflolux reflectance meter. It stores data on

other events and insulin doses as entered on a combined pictorial and numerical key pad. Data

is transferred to the serial port of the physician's Personal Computer via a link module CAMIT

IF. The PC runs the software CAMIT S which does the evaluation and simple graphical

displays of the collected data. The insulin dose adjustment function of CAMIT is described

later in this chapter under the beading of computer advice systems.

A custom built system - DIACRONO (Gomez-Aguilera et al1987) - includes facilities to enter

diet in terms of calories and nutrition, exercise from a subjective evaluation of three discrete

levels, glucose measured in the patient's normal way and insulin dose. A four option menu-

driven system is employed for choice of data entry. Numbers are entered on an in-line ten key

pad. The interesting aspect of the system is that it prompts for input at set times. known as

assessment intervals (Als). The system also has facilities to allow it to be connected to a desk-

top computer work station which is used to adjust insulin doses and diet with or without the aid

of a pbysician.

The DIY A system (personal communication) consists of a custom built hand held electronic log

book. The patient device (named Romeo) connects to the pbysician's computer (Homer) via a

connection unit (Juliet). The Homer system provides for display and interpretation of the data

collected by Romeo. There is DO advisory capacity within the system bowever, so it is limited
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in use to experts who merely require more information than can be gleaned from an ordinary

log book.

Diabetes Education.

Many patients have suggested a moreeducation-centred approach to diabetes care (Coles 1990.

Parrot 1990). Criticisms of traditional consultations include the limitation to basic medical

factors. such as current doses, frequency of monitoring etc. whilst more detailed explanation

and information about what may be done with glucose test results is overlooked. Coles

suggests that there sbould be more encouragement of patients to ask questions and lead the

consultation.

Considered as the first priority by many is education of bow to cope with newly diagnosed

diabetes as well as continued education througbout the duration of the disease. It was thought

that well motivated, knowledgeable patients would be more likely to carry out regular glucose

monitoring and to adjust insulin doses (Mazze ibid.).

Bloomgarden et al (1987) suggested that patient education may not be an efficacious

therapeutic intervention in most adults with IODM. In studying 345 patients, 165 were given

intensive education whilst 180 controls received normal therapeutic monitoring and advice.

HbAlc fell in both groups with a slightly greater (but non significant) fall in the education

group. Similar results occurred with the fasting glucose.

No differences in qualitative variables sucb as bospitalisations, sick days off work etc. were

reported between the two groups. Guidelines for patient education have been released (Alogna

1983) and in the Bloomgarden study 54 aiteria relating to knowledge and behaviour were

included in questionnaires administered to each patient The education program consisted of

monthly education sessions, with each session concentrating OD a single aspect of management

of diabetes. The patients were subsequently divided into graduates (those attending at least 7 of

the 8 sessions) and non-graduates « 7 sessions attended).
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There were DOsignificant improvements iD knowledge and behaviour between education and

control groups in total, but a higbly signif1C8Ilt difference between graduates and the control.

HbAlc was not significantly different in any of the education or control patients whether

graduates or DOL

The education program contents may have been a factor in the negative result of the study; the

program did DOtemploy increased HBOM, self-adjusbDent of insulin doses or increased clinic

visits but concentrated on various aspects of the illness and in particular on nutritional

recommendations. Special education programs may be meaningless unless they correspond

with improved control and less likelihood of complications indicative of better health. This

study indicates that even patients with high knowledge of the disease are still not sure about

alteration of therapy, decision support could help them over that hurdle.

More success bas been claimed with computer aided education systems. Dammaco (1989)

showed that knowledge levels of adolescents were higher when computers were used for

instruction than cases where instruction was provided by booklet or group sessions.

The Eurodlabeta initiative

The Eurodiabeta project was a European Community supported project within the Advanced

Informatics in Medicine (AIM) exploratory phase. The project was proposed to examine the

feasibility of applying information technology to improve health care in the field of chronic

disease using diabetes as an example. InAprill990 physicians and information scientists from

allover Europe met to examine the potential of the project in a series of workshops. The

Eurodiabeta consortium consists of a balance of clinicians, informaticians, computer scientists

and industrial partners set up to ensure systems designed and built fit in with current medical

practice. Table 3.1 displays the six declared aims of the project
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Table 3.1 Aims of the Eurodiabeta project
a) Development of a conceptual model of diabetes health care delivery
b) Consensus on a diabetes data set for medical records in different health care settings.
c) Development of evaluation methods for knowledge based systems.
d) Development and assessment of model and knowledge based methods for assisting in insulin
dose adjustment,
e) Computer assistance in diet management,
1) Identification of non-technical barriers to the introduction of information technology based
systems.

Workshop 1 dealt with modelling aspects and concluded that tbe method is appropriate and

applicable to diabetes care and also considered it likely that the method of defining medical

structure and decisions by a developmental modelling tool could be adequate for a complete

description of diabetes care.

The technical aspects of modelling were addressed in workshop 2. Software packages were

used directly by clinicians to build up and validate conceptual models of medical practice. This

"prototyping" methodology enabled clinicians to interact directly with "the machine" in order to

produce models for input to system designers. The ability to model decision processes and the

provision of advice on how to manage a specific problem were considered the most useful

features of the system.

Workshop 3 considered the introduction of a diabetes data SeL A hierarchy of data sets were

proposed, including a Top Level Monitor consisting of a condensed extract of the data set, This

design established a problem oriented report characterising a patient's actual metabolic and

health status with special emphasis on secondary complications, risk factors and current

therapy.

Workshop 4 evaluated the diabetes data set dermed in Workshop 3 with reference to a set of

test cases taken from clinical practice. The need for further data items inevitably arose,

highlighting the deficiency of the initial definition. Further review of cases with incrementally

updated data sets produced a data set which was considered complete for a description of the

clinical status. However, a major criticism of the data was that medicine is necessarily a very
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bolistic process and data items on buman factors are also necessary and would be useful for

assessment of general well-being and psychological adjustmenL The impact of diabetes on the

wbole patient would then not be misjudged by merely examining bard facts.

The problem of "soft" data needs to be addressed with considerable care. In some cases the

information is gleaned directly from the patient; e.g. on bypoglycaemia. In other cases, the

patient may be on medication for a psychological problem or the doctor may have personal

knowledge of patients and may use knowledge of their very individual social and psycbological

conditions in management decisions. It is this type of doctor/patient assessment wbicb is

difficult, if not impossible, to encapsulate in a knowledge-based system.

An example of incorporating patient preference is implemented in the POIRO patient-oriented

system to be described in the next chapter. This concerns the risk of bypoglycaemia and is

described as follows. Given a one in a bundred chance of a bypo if an insulin dose is increased,

some patients may opt to remain at higb glucose levels, despite the greater chance (one in three

perhaps) of eventually getting microvascular complications such as nephropathy wbich can lead

to renal failure and early death. Of course, the decisions are not as clear cut as this. and the

effect of high glucose on proliferation of complications bas not yel been completely

established. Patients are made aware of these risks bowever, and the decision of whether to

adjust therapy is often reflected back on them in asymptomatic cases.

Computer Advice Systems

One of the first attempts to offer advice was the SUGAR-l system (pernick and Rodbard

1986). It provided a mechanism for developing customised treatment plans and provided a

retrospective analysis function. The program still expected the physician (or clinical assistant)

to type in a month of information and so was rather unfeasible for wide scale use. The program

advised changes both in individual doses and in the insulin regimen.
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Dose adjustment combined with educational programs aimed both at teaching pbysicians and

patients have been developed with various degrees of success. An interactive educational

expert system for providing personal advice and therapeutic recommendations, SESAM

DIABETE, (Levy et al1988) became available on the Frencb MINITEL network in 1988-89.

This powerful system is written in a Usp based shell (LISP.MBX) under VAX VMS. It allows

the creation and use of semantic networks with multiple inheritance 10 provide explanations 10

users.

The medical knowledge within SESAM DIABETE is encoded into 560 frames used to describe

medical entities and 300 principles relating 10 specific subjects such as bypoglycaemia. Then

there are 30 causal relationsbips sucb as:

Decrease of Insulin -- Induces -> Increase of Glycaemia.

In order to use the system a goal is set sucb as check the patient's knowledge of bypoglycaemia.

A searcb is then initiated wbicb looks for relationships wbere the consequence is a decrease in

Glycaemia. i.e. X -- Induces ->Deaease in Glycaemia. Other checks may also be advised

sucb as wbether the patient knows signs and symptoms of bypoglycaemia The details of the

system do not indicate wbether it advises on day 10 day individual treatment alterations,

althougb general problems sucb as what to do about exercise or travelling are dealt with in

detail. A natural language processor is employed at the front end of the system making it

reasonably friendly 10 the user. The system does seem to have a lot of promise but suffers from

the drawback of its size, and the time taken to access it may discourage regular use. Results of

clinical trials of the system are awaited with great interest.

Computerised advice or analysis systems for patients were limited in scope until the last few

years as few patients own personal computers (and even fewer mM compatibles) and the few

programs that were available for patients provided alternatives for the day ahead and required

the patient to type in timed events at the end of each day before prescribing for the following
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day. SUGAR-l had a patient oriented facility for data entry which was quite advanced in

outlook but required an enormous amount of time and motivation from the panent, Patients

with diabetes have repeatedly stated that they are not prepared to inconvenience themselves any

further by having to spend extra time and energy on a computer system.

In the last five or six years the ina-easing miniaturisation of microcomputer devices bas made

sopbisticated pocket or band held computing power available at a reasonable cost There have

been several attempts to program a device to advise insulin doses to insulin dependent diabetics

on a daily basis.

The Insulin Dosage Computer (IDC) is one such device (Albisser et al 1985). It is based on a

pocket calculator with a specialised keyboard and a tiny LCD calculator style display. The

system prompts for blood or urine glucose measurements to be entered four or more times per

day at fixed times, it then advises insulin adjusbnents based on a modified version of algorithms

published by Skyler et al (1981). The device bas capabilities for adjusting doses to take

account of exercise and a facility for entering hypoglycaemic reactions. The main drawbacks

of the device are its inflexibility, user interface and speed.

The algorithms use a simulation to produce expected glucose levels and this often means a 30 -

40 second wait for a prescribed dose after entering all the other information. It bas also

suffered because of its limited memory capacity and lack of a full audit trail, especially its

assumption that patients took the advised dose at all times. The device bas recently been

refused in the USA by the FDA until modifications are made.

The CAMIT system described earlier bad a component which was a band held insulin dose

computer system. It was devised by researchers at the University of Maim medical school

(Scbrezenmeir et al1985b) based on the popular Sharp PC·1500. The adjusbnent algorithms

used adaptation formulae based on data obtained by the artificial pana-eas (Biostator). The

algorithms developed for the CAMIT system are complex and require patients to enter gram

carbobydrate equivalents for every meal. The adaptation formulae convert daily insulin need

90



on conventional therapy (DINC1) into appropriate basal prandial doses to be given by multiple

subcutaneous injection (MSI) or via a pump.

Clinical trials of the CAMIT dose adjustment device in twelve patients produced extremely

good results in terms of significant reductions in blood glucose (Scbrezenmeir 1985b).

However, the use of the device coincided with the change to intensive therapy from twice daily

injections of mixed insulin and so the results are somewhat misleading. The device showed a

reduction of insulin need on the different therapy and a concomitant reduction in the number of

meals per day. No information on weight was included. The system of algorithms demands

rigid timing over meals and insulin doses and assumes that the advised dose is rigidly followed;

thus the device, while successful, could oot be used by the uninitiated or less motivated

individual.

The device is oot user-friendly; it bas a tiny conventional keyboard and small one line display

and therefore is restricted in its use to those with computer skills or who are willing and able to

learn those skills.

Most of the systems so far described have been limited io their decision support content and

even more limited in the AI content New systems are now appearing which do attempt to use

AI techniques, either alone, or in conjunction with mathematical models and algorithms. One

such model (Deutsch et al1989) aims to develop a dynamic model to predict outcome and plan

treatment whilst providing explanation/justification for the treatment The system concentrates

on insulin adjustment but is expected to be upgraded to include dietary and exercise advice in

the future.

The management of diabetes is described in lenDS of a control problem: the pancreas' normal

secretion breaks down so insulio therapy is required. Distinction is made between acute cases

of bad control due to diabetic coma. and longer term control problems due to variations of

glycaemic control over days to months. A simple diet presaiption is included, which gives

amounts of the main constituents to include in meals. Four insulin regimens are covered, RI •
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two intermediate injections, R2 - two mixed injections, R3 .: 3 injections per day of short,

intermediate or mixed insulin, R4 • 3 short acting injections to cover meals and 1 intermediate

acting injection before bed. Ulttalente insulin does not appear to be covered. The injection site

is explicitly stated and may be varied between femoral and abdominal.

Eight characteristic times for blood glucose monitoring are dermed, before and two bours after

main meals and at bedtime and dawn (2-4 am). Target values are rigidly set at 3.5 to 7 mmolll

before meals and 3.5 to 10 mmolll after meals, with a range of 7 to 10 mmolll before bed and

3.5 to 7 mmolll at dawn. Meals are also rigidly defined with a time and a carbobydrate content.

A qualitative model is used to reason about insulin dose adjustments, insulin types are described

by parameters of duration of action, onset and peak activity. This describes a piecewise smooth

curve with three sections: a rise from onset time to peak time, a duration at the peak and a

falling off section to total duration of action time. A limit of 15% is placed on dose changes.

Similar piecewise curves are employed to estimate glucose predictions after meals. The

expected modification of the blood glucose profile after adjustment of all available parameters

is calculated and selection is made of the most appropriate therapeutic action to take. Only one

adjustment is made at anyone time.

FIrst, the system attempts to select completely appropriate decision{s); if these cannot be found

because the normalisation of one glucose value would be deleterious 10 another, these partially

appropriate actions are suggested. If none of these can be found, then suggestions for

modifying the wbole regimen should be made to overcome the difficulties. In the present

system insulin adjustments are limited to +2 or·2 units, a desirable development would be to

take account of individual and circadian variations in sensitivities 10 various insulins used.

Three modules are defined; module one prescribes a diet dependent on age, sex, heigbt (ideal

body weigbt) and activity level in rather simplistic terms. Module two is an initialisation

module for starting insulin therapy, this is apparently always twice daily injection of

intermediate insulin unless an insulin dose regimen already exists. Module three is the therapy
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optimisation module, or module for subsequent consultations as it is referred to in the paper,

which may adjust any of the parameters of diet. timing of injections or meals. doses or the

regimen itself as appropriate.

The information available appears to indicate that the system is too regimented and lacks

tlexibility for both patients and pbysicians; there bas been no indication that a link to a patient

monitoring device is a future aim of the system, although it would appear to be desirable in

order to collect data in order to communicate with the stage three program.

Berger and Rodbard (1990) describe the CADMO (Computer-assisted diabetes monitor) system

which bas been designed for intelligent automated analysis and interpretation of data relevant to

glycaemic control. This suggests that due to the complexity of interactions involved in

glycaemic control and the lack of well-established straightforward rules for its interpretation,

the optimal contribution of expert systems would be in intelligent data abstraction and

presentation.

CADMO accepts data from standard memory meters and generates reports to discuss various

aspects of overall glycaemic control, several alternatives are then proposed so that the clinician

can then make the fmal decision. Program interaction from the keyboard is minimal, merely

requiring the patient's name and weight. dates to be analysed and a target blood glucose value.

Information, wbicb may be displayed one time point per line, includes glucose, insulin dose(s)

and events (meals. bypos activity etc.). Statistics are provided of mean and standard deviation

for total glucoses and for each time of day. Similar statistics are provided for insulin doses.

Glucose may also be summarised by day of week and in non-parametric forms which display

the percentage of results below or above threshold values - e.g. percent below 70 mgldl (about 4

mmolll).

Statistical tests are used to evaluate differences in mean glucose values within certain ranges or

time periods, Student's t-test and the chi-squared test are used. The results of these tests are
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then entered into rules which give textual responses to the user. These are triggered if mean

values at certain times of day differ significantly from the overall mean for the whole period.

Hypos (BG<50 mg/dl (approx. 3 mmoIll» are checked for reasons such as larger than usual

insulin dose or exercise. Fmally, a summary highlights the points to be addressed by the

physician.

In order to take this a step further and suggest insulin dose adjusbDents, mathematical

modelling techniques are employed: A plasma glucose profile is estimated from the glucose

results by extrapolation, a plasma insulin profile is calculated from pbarmacokinetic profiles of

the individual doses. These two are used as input to a simulator, the model derives the rate of

glucose entry and utilisation, which is in turn fed back to estimate more appropriate insulin

input to achieve optimal glucose disposal and control. Suggestions for dose adjusbDents and/or

regimen adjustments are made for the physician to choose; risks of bypoglycaemia and advised

extra monitoring times are given in the summary report, wbicb may suggest stepped increments

with frequent testing to confirm the right track is being followed.

Drawbacks of this system are the large inter- and intra-patient variability of model parameters,

the assumptions of constant lifestyle and diet and the difficulties of explanation to patients of

the need for extra injections.

REQUIREMENTS OF DIABETES COMPUTER SYSTEMS.

Now that an bistorical overview bas been given and example representative systems have been

described, consideration of requirements for new computer systems may be addressed. These

requirements are based on the information gathered for the early sections of this chapter and in

particular follow from the work done by Bergeler et al (1985). Three classes of management or

decision support systems were described by Bergeler: Large, bospital-based data management

systems; Individual physician or small clinic-based systems and patient-oriented systems.
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Table 3.2 lists the general features of computer systems desirable to provide medical support

for diabetes. It is not necessary that all these features are present in one program however.

Features may be subdivided into those more appropriate to the overall functional requirement of

the program and the type of hardware and software available.

Table 3.2 General desirable features of diabetes management computer systems

1.Documentation of therapeutical data + simple interpretation.
2. Rules for data analysis and estimation of effects of meats. exercise and illness.
3. Regulation of blood glucose by application of algorithms.
4. Regulation with adaptive methods and optimisation of parameters.
5. Process model of insulin-glucose system.
6. Expert system of therapeutical problems in diabetes treatment

Table 3.3 Required features for therapy management computers
1.Connection with patient computers.
2. Presentation and analysis of patient data.
3. Optimisation of therapy parameters.
4. Development and optimisation of the therapy program.
S. Management of all patients in computerised therapy (personal data, supervision etc.)

Table 3.4 Specific requirements of a large, clinic-based system
1.Data bank with all therapy data modified for use by other programs
2. Subprogram with a copy of therapy algorithms.
3. Process model of insulin/glucose system.
4. Capabilities for simulation of problems in diabetes treatment and optimisation of therapy
parameters.

Table 3.3 gives Bergeler's list of desirable features of physician or clinic-oriented computers

and table 3.4 gives specific guidelines for facilities of large hospital-based data management

systems. In the following two chapters, patient-oriented and pbysician-oriented diabetes

decision support systems are described. These chapters contain much more information about

be individual cases
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CHAPTER 4 - PATIENT ORIENTED INSULIN
REGIMEN OPTIMISER (POIRO)

INTRODUCTION

In chapter one, the complex process of glucose homeostasis was described and the problems

presented by diabetes, especially insulin replacement therapy, were introduced. This chapter

examines decision making problems which occur with the use of insulin and introduces the

hand-held decision support system, POIRO, which was developed in this project to provide

advice on insulin adjusbnenL

The unusual aspect of POIRO is that it is employed in an area where human expertise is not

usually available; i.e. to advise on day-to-day variation of insulin doses for insulin dependent

diabetic outpatients. Intelligent decision support systems traditionally model an actual human

expert's problem solving behaviour. POIRO puts into practice theoreticallrnowledge that had

previously been infeasible to apply, due to the lack of aVailability of physician advice to out-

patients. Even with the advent of computers and expert systems, advice availability has been

restricted, until recently, due to problems of physically transporting the computer. The single,

most unportant consideration of this system, therefore, is that it is portable; with current

technology, this limits the program design in crucial ways which are explained later. POIRO

has been evaluated both by simulation and in two controlled clinical trials. The methods and

results of these trials may make a significant conbibution to the discussion of evaluation and

validation of intelligent medical decision suppon tools.

AIMS

The main aim of the system is to provide intelligent optimisation of aD insulin regimen selected

by a physician. In order to be successful in this aim, the system has to be acceptable to both

physicians and patients. A second aim is to provide diabetes education for patients by showing

them how insulin can be adjusted. Finally it is intended to show how formal evaluation methods



(i.e. clinical trials) may be used in the evaluation of an intelligent computer system. These

aims are described in more detail below.

InteJlj&ent Olltimisation of an insulin reaimen The primary aim of the system is to optimise a

prescribed insulin regimen. lbat is, given types and times of administration of insulin

formulations, to apply rules of therapy adjustment in order to produce optimal blood glucose

control. Optimal blood glucose control is defmed as the achievement of the lowest possible

mean and variability of glucose measurements without producing hypoglycaemia. This is a

subjective quantity and will vary between patients. The major reason for this variation is the

large inter-patient variability in the perception of the lowest possible mean blood glucose which

does not cause an unacceptable risk of hypoglycaemia. Some patients may prefer to aim for a

slightly higher mean blood glucose than others in order to minimise the risks of bypoglycaemia.

Factors which need to be considered in this decision are occupation. age and the presence of

complications.

Physician acceptability. Physicians recognise that many patients currently give no

consideration at all to decision making; they do not have the time, ability or motivation to sit

down and work through calculations on how much insulin to inject on a meal to meal basis.

Consequently, it is common for patients to remain on the standard doses advised, even when

feeling unwell. Physicians are limited to making crude adjustments at irregular intervals; a

safety-first policy may be adopted inwhich they do not attempt to optimise the therapy due to

lack of evidence, or lack of confIdence in the standard of education attained by patients. The

incidence of both ketoacidotic diabetic coma (caused by uncontrolled high blood glucose) and

hypoglycaemic coma (caused by excessive insulin dosage) is evidence that this modus operandi

is unsuccessful for many patients. A decision support system for these type of patients wbich is

easy to use, but provides physicians with capabilities to set individual targets and retain control

of the rate at which insulin adjustment is carried out, should be aimed at; the system should

relieve physicians of many commonplace insulin adjusanent queries which may currently be

made by patients by telephone between clinics. It is therefore essential that a control and
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initialisation program is developed concurrently OD a desk-top microcomputer. This controller

program should aim for an equally intuitive and easy to use user interface in order 10motivate

physicians to use it.

Patient acceptability POIRO is designed for people who have DO previous experience or

aptltude for computer devices and 10provide a comfortable and inwitive system for them to use

with confidence. Reasons why computer assisted insulin adjustment has not previously made

much impact include the cost of suitable systems and ergonomic considerations, such as the

small size of keyboard and display of portable computer devices.

Diabetes education POIRO also aims 10 educate people in the art of self adjustment of insulin

doses; this should be made possible by explanations of advice given where appropriate.

Formal eyaluation Previous computer-assisted insulin adjustment devices have lacked properly

controlled clinical trials and this has affected their acceptability 10practising clinicians.

Ideally, the evaluation should be in two stages: the dose adjustment routines should be tested

against computer simulated patients and then in clinical trials with real patients. The

simulation studies, with appropriate choice of parameters should show bow the dose adjustment

algorithms cope with unusual circumstances and may give an indication of safe limits for

frequency and levels of adjustment. Clinical trials demonstrate the effectiveness of computer-

assisted insulin adjustment versus normal practice (albeit with the addition of a computerised

logbook).

REQUIREMENTS

Bergeler (1985) listed 14 requirements for the optimal patient-oriented therapy adjustment

computer (table 4.1). This table forms an excellent starting point for defining requirements of

the proposed POIRO system.
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Table 4.1 Optimum requirements for a patient-oriented computer system for insulin therapy.
1. Small package and minimal weighL
2. Large display and comfortable dialogue
3. Large keys for safe operation.
4. Minimum number of operating keys.
5. Clock.
6. Control capabilities for pump.
7. Interface to blood glucose measurement uniL
8. Adequate data exchange facilities.
9. High calculating speed.
10. Sufficient data storage capacity.
11. Minimal power consumption, battery operation.
12. Battery exchangeable without loss of data.
13. Integrated hardware checks for malfunction.
14. Program development b means of hi h levellan ua es.

Two of Bergeler's requirements were not included in the original POIR.o requirements

specification: requirement 6 (because there is no patient filtering of the advice) and requirement

7 (although attempts were made to interface with the Exactech meter). One additional

requirement of POIRO was security of both data and the program parameters. All these

requirements are now described and justified in more detail.

Small physical size. As already stated, this is of paramount importance as people travel

everywhere with their insulin and should be able to enter information at any time, and to

receive insulin dose advice at any time. The only way this may be achieved is to have a device

small enough to fit into a handbag, briefcase or pocket.

Laue display Mistakes in insulin doses read from the display may cause undesirable effects in

the blood glucose; injection of 18 units of insulin instead of 10 could cause severe

hypoglycaemia. Eye problems are common among people for whom the duration of diabetes is

more than five years, therefore the size of text should be large enough for people with less than

perfect vision to read with ease.

Comfortable dial02ue The display should contain sufficient lines of text to provide natural

language prompts and advice. In the past, small screens have led to the use of abbreviations

which patients have had to learn and may initially find confusing.
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Laree keys Essentially a safety feature, "slips" (dermed as errors in execution) are less likely in

proportion to the size of targets. This is in accordance with Fitt's law (chapter 2, page 64)

which states that the time taken for a user to move (a hand or pointing device) 10a target

depends on the ratio of distance moved 10 the target divided by the size of the target

Minimum number of operatine keys This requirement assumes a fixed number of keys for

entering data, rather like a calculator keyboard. The requirement may be modified for

configurable screens which support menus 10 incorporate Hick's law (chapter 2) The

requirement for POIRO may be stated as "minimise the number of options available at anyone

time in order to limit confusion and optimise selection time."

~ A timer is essential in order to relate events sucb as isolated blood glucose

measurements to previous meals and insulin doses. Time and date stamping of all the events as

they are entered assumes that they are entered at the time of measurement. It is not a

requirement of the system to allow retrospective entry of information, except for

hypoglycaemic reactions. It is required that all hypos are recorded as soon as possible; this is

due to the importance of preventing further hypoglycaemic reactions if possible, it is also a

requirement to permit retrospective entry of hypos as hypoglycaemia may prevent the patient

from using the device at the time.

Control capabilities for a pump are not an immediate requirement of the system, although it

may be possible to integrate the output from the system Into an open-loop or even a closed-loop

insulin pump in the future. Rigorous validation of the adjustment algorithms is essential before

this step could be contemplated, due 10 the lack of validation by the patient and the medico-

legal issues this raises.

Interface to a blood elucose measurement unit is not an essential initial requirement as data

may be entered manually via a keyboard. In fact, an advantage of IW1having an integrated

blood glucose meter is that users may continue to use their existing method of monitoring. For
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a mass-production device, an internal blood glucose sensor is a more realistic and sensible

requirement

Adequate data C1cbaDKefacilities The capability to initialise parameters, such as insulin

regimen and initial insulin doses, blood glucose targets and safety limits on a standard desktop

microcomputer must be provided. Two way transfer of all data is essential. As the system is

intended for use by physicians with limited experience of computers, the data exchange should

take place smoothly and reliably, and it should be invisible to the physician and patient once it

is initiated, preferably by the selection of a menu option or a key press.

Hi&h calcuJatin& speed. The device has to respond quickly in "real-time" to requests for advice.

The performance in terms of delay times for screen display and insulin dose calculation should

be minimal. The delays must not mislead patients into thinking the device is faulty or not

responding.

Sufficient data stora&e Memory management needs to be organised so that the most recent

events are kept in memory; once data storage is exhausted the oldest recorded data should be

overwritten by new events. The progressive nature of type I diabetes is such that any data older

than this is not relevant to the current state of the patient As a rough guide, sufficient data

storage may be defined as the amount of computer memory required to store all the events

entered between visits to the clinic (approximately three months of data).

Minimal power consumption The device should DOtdepend on access to the mains electricity

more often than is convenient Nickel cadmium based "Ni-Cad" batteries are currently the most

efficient power sourceswbicb can deliver the level of power required to drive a portable

computer, although in the near future ligbter and more efficient lithium-based battery cells are

likely.

Battery exchao&eable without loss afdata, This may be facilitated by a second "back-up"

battery, which may be less powerful than the main battery as it is not required to drive functions
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such as the screen, but merely to preserve the contents of memory while the main battery is

disconnected, or in emergencies when it becomes discharged. Loss of data may also be limited

by the use of a permanent data storage medium, such as a smart card or laser card (Brown

1989), and some small computers also now have small magnetic disks.

Inte&rated hardware checks for malfunction. This may be framed as a question: "is the device

reliable in everyday use?", many commercially available computers check random access

memory (RAM) every time they are turned 00. If a problem does occur with the hardware,

users should be notified in Simple terms to discontinue using the device and to consult their

physician for advice.

Proaram development by means ofhi&h level lan&uaaes. This is a principled development

feature and is desirable (although not essential) for documentation and maintenance of the

system. High quality software engineering is becoming more well-defined and many

development strategies have been defined, The waterfall model (Sommerville 1988 p7) has

been the underlying methodology used for the development of this system. Methodologies

designed especially for knowledge-based system development (such as KADS - Hickman et al.

1989) are also based primarily on the waterfall model. In terms of language choice, memory

limitations often prevent the use of specialised artificial intelligence and object oriented

languages such as Prolog, Lisp, SmallTalk and C++. The nature of the problem also affects the

choice of implementation language. Prolog is suitable in ill-defined domains where much

uncertainty is present: whereas well dermed domains, such as insulin therapy, may be more

suited to procedural modular languages such as C or Pascal. In the latter case, some crucial

aspects of the problem may be expressed in algorithms. The choice of hardware may also limit

the language choice due to the lack of memory and a lack of suitable software compilers for the

underlying operating system. For programs written in safety-critical environments, Cullyer et al

(1991) claim that Pascal is the safest choice of programming language due to its strong typing

and integrated compiler checks.
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Security. Access to the data transfer routines, and to the parameters of the dose adjustment

algorithms must be protected by a password for ethical reasons. The password may be limited

to a physician's identification or may be a general password which may only be generated by a

hospital data base for example. Smart cards provide secure, password protected data storage

and are an option for security of data as they are DOD-volatileand therefore less susceptible to

hardware or software failure.

Prototype Development Device

Two options exist for a prototype system: either a device is custom built. to suit the design

specifications, or a commercially available computer is chosen which provides the best match

to the requirements. Advantages of a custom built device include immediate compliance with

all the hardware requirements, whilst the disadvantages are the initial cost, delay in production

and a lack of flexibility during the prototype software development Advantages of the use of

an existing programmable computer include immediate aVailability of the hardware and

flexibility in programming; disadvantages include possible non-compliance with one or more of

the design requirements.

At the outset of this project (in 1988), possible hardware choices were examined. With the

above factors inmind the selection of a prototype development device could take place.

Devices available which were considered (primarily because of aiterion one- the small size

required) included Hewleu Packard programmable calculators, the Sharp PC 1500 and the

Epson EHT·I0. Of these, the EHT·I0 complied with all thirteen of the essential requirements

outlined, thus eliminating the need for a custom device. It had by far the largest display (14

cm. by 7 cm. or 14lines by 12 characters) and also benefited from the novel feature of using a

touch sensitive screen in place of the cOnventional keyboard.

The problems of patient acceptability are eased by the use of an easy method of communicating

information between the human user and the computer. Successful systems for everyday use
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tend to spurn traditional typewriter-style keyboards and have special"one-touch" function

buttons. This type of interface is DOW common in bank cash machines and in the graphical user

interfaces (GUIs) used in the MacintoshN and Windowsn.t operating systems. Another point

to be made about successful computer systems is that the "computer" angle is often hidden

from the person using the device, people are said to be less reticent about computer systems if

they are unaware that they are using one (Essinger 1990). Even in simple, one touch methods

of data entry, people still have confusion over the selection of the correct option (personal

observations of people using cash machines). Technology provides a solution to the problem of

relating between screen prompts and the correct button to press by the combination of the two

in a touch-sensitive screen.

The ElIT-l 0 was chosen for prototype development on the basis of these considerations and

also because it has many of the functional capabilities of a standard miaocomputer: it supports

RS232 communications; it has 256 kilobytes of memory, and it bas the ability to run compiled

Turbo Pascal programs under its CP/M operating system. Turbo Pascal version 3.0 was

therefore selected as the development language. The ElIT-I0's appearance is shown in fig 4.1.

For full technical Specifications see Appendix 1.

Features or the Device, CompOanee with requirements.

The ElIT-I0 screen incorporates a grid of70 touch-sensitive pads (5 wide by 1410ng). These

may be configured so that a number of pads combine to form a single touch-sensitive input

area, the full width of 5 pads permits menu items of length 9 characters or less within a border.

In this way, menu items are deftned as demonstrated by the main menu displayed in fig. 4.1. A

-TM "Macintosh" is a trademark Apple Corps.

TM "Windows" is a trademark of MiaosofL
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clock is available via in-line assembly code routines. An RS232 communications standard

interface may likewise be accessed via in-line assembly code routines.

off on
EPSON I -I

power

Mon 29 Jan
11:06

• IIInform me

I Glucose I
I General I
IInsulin I
IHypo I
IReview I

Fig 4.1 Diagram representing the EHT-JO hand-held computer. showing the initial screen 0/

the prototype POIRO system
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Part of the memory is utilised as a "RAM disc" which allows very fast access times (approx. 20

ns per access). Memory is divided into areas for program storage, program execution and data

storage. Memory is allocated for program execution at compile time within Turbo Pascal;

consideration of memory restrictions and the provision of sufficient storage space for data (see

above) were important factors in the development of data structures and the program code.

The ElIT-IO may be programmed directly using a plug-in keyboard but a second option was

used for development of the POIRO software. The code was written and tested on a

conventional desk-top PC before compiled code was transferred to the ElIT-IO for testing. The

development cycle required that code was recompiled after substinning flies containing

machine-specific code to call the user interface, communications port. and clock.

The Ni-Cad battery cell requires mains charging, on average. once per week in normal use. In

order to conserve battery power, the computer has an automatic "sleep" function which turns

off the screen after a pre-set time in which no data entry takes place (this may be set by the

user). However, even momentary power loss, or errors in the program which cause the system

to reset. deletes the program and destroys all the data stored on the RAM disc. Two methods

are available to alleviate this problem. The program may be stored in a computer component

known as an EPROM (Electronic Programmable Read Only Memory) which is plugged into the

circuit board of the device and is protected by the operating system of the computer; this is only

cost-effective for large-scale use of the program. Secondly, a smart card can be utilised as a

non-volatile data storage unit, Smart cards are under intense research and may become a

useful method of storing patient notes; limits 00 data capacity and speed of access are

drawbacks of present smart card technology but these should be overcome in the near future.

Routines for using the smart card interface were implemented and smart cards were used for

around ten percent of patients during clinical trials with the POIRO system.
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Attempts were made to integrate a glucose meter (the Exactecb1'M "peo") with the EHf·lO.

The meter was connected to the printer socket 00 the ElIT·IO and software and hardware were

developed in an attempt to capture the output from the meter and to decipber the signal for

display 00 the EHf·lO's screen. The integration was unsuccessful due to the speed and non-

standard format of the stream of data obtained from the output of the meter in relation to the

data entry capabilities of the ElIT·IO's printer socket, although a routine to capture and

decipher the data was successful OD the development PC. Therefore the integration of a blood

glucose meter bad to be postponed in favour of other developments, but a commercial system

would undoubtedly benefit from this connection.

FUNC110NALSPEC~CATION

Detailed specification of the functionality of the POIRO program is now presented. Itwas

decided that the prototype should be developed io two stages: the first stage was to include the

definition of data structures and subsequent implementation of a data collection utility, while

the second stage would include the development of intelligent dose adjusunenl and general

advice functions.

During stage I, code and data structures for displaying textual prompts on the screen bad to be

defined. The factors that are known to affect blood glucose control bad to be data entry options

and these options were to be allowed to be entered individually at any time. In the

development of data entry screens, medical jargon bad to be avoided and the language as

natural as possible. The desigo bad to make it possible to provide individual language

definitions for patieots with different concepts (of meal·times for instance). Data structures for

storing the screen text bad to be dermed so that the language (initially Englisb) for the text of

1M Exactech is a trademark of Medisense Ltd.
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the screens was completely separated from the program code. This enabled the text to be

translated into other languages for use by non-English speakers in this country or in other

countries.

A clock provided a facility to record the time and date of all data entries, known as events.

Methods of storing events had to allow flexible access in order to retrieve previous events for

use in the dose adjustment algorithms. As space was limited. the data bad to be stored sucb that

the most recent events were available. Therefore, in cases of memory exhaustion, the oldest

data was sacrificed to free memory for new events. Patients had to be able to review personal

data. such as their next clinic time, as well as all the data they bave entered. In addition, they

had to be able to see graphs of glucose values in order to observe trends in their control.

Methods of recording information wer to be kept simple, so that patients did not have to do any

complicated calculations before entering the information, which was to be recorded with a

minimal amount of key presses.

The initial development of an unintelligent data collection device was necessary for two

reasons: one was to test the feasibility of the use of the hardware by patients, and the second

reason was that the routines for suggesting insulin adjustment needed to be separated from the

functionality of the interface and data storage. This requirement is analogous to the separation,

in traditional expert systems, of the inference engine and the knowledge base.

Data transfer routines had to be incorporated for data to be transferred to and from a desk top

computer under the control of a physician. The initial requirements of the initialisation

program were that it connected to POIRO simply, reliably and securely (secure in terms of

password-protected access) in order to transfer initial parameters of the system (dermed below)

and to send and receive data from iL Subsequent archiving of data collected using POIRO for

further analysis and long term storage also had to be provided. Interpretation and statistical

analysis routines were to be added to the physician's program in stages once these essential

functions were provided.
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Once stage 1 had been successfully completed, the second stage of development was to provide

active decision support. After completion of the second stage, POIRO was to be able to suggest

insulin doses when requested and to provide unsolicited warnings and advice, when appropriate,

in response to the information entered by the patient Warnings were to be displayed, for

instance, if blood glucose entries were Dotwithin predefmed limits, or if an insulin dose is

requested at an inappropriate time (e.g. within three bours of the previous dose for short acting

insulin doses). However, the major decision support function required was the suggestion of

insulin doses. An insulin regimen was to be selected by the pbysician and initial estimates of

doses wer to be provided. These doses were then to be optimised in response to glucose levels

and insulin doses taken from day to day. The standard insulin dose is a term applied to the

dose of any insulin, that is normally advised by a physician at a clinic, wbich would be taken in

standard circumstances. Where non-standard conditions applied, supplementary insulin had to

be calculated and advised if appropriate. Any cbanges from standard doses were to be explained

to the patient upon request. The insulin option was to include a facility for over-riding

POIRO's suggestion, i.e. the suggestion was not to be made dogmatically. Where patients

decided to alter the advised dose, the dose actually taken had to be recorded and used to assess

the correct dose the next day.

A major requirement of the system was that it should be tolerant of missing data. Missing data

means, in effect, missing blood glucose values. althougb the system was also to be tolerant of

unavailability of other information. It would be unrealistic to expect completely regular daily

blood glucose monitoring and it was thought that most patients would probably appreciate a

system in which regular (four times per day) blood tests were not required every day.

At various stages during the development, patients were able to use prototype systems for

evaluation and feedback. This provided some user requirements which had not been included

in the original requirements specification. For example, an additional feature requested by

patients was a free text facility to enter events not covered in the system. or to add short
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explanations of unusual events, as is often done in existing log books (such as the explanation

of a high fasting blood glucose by the patient's having missed the previous evening's ultralente

dose). Similarly, there could be many explanations for hypos other than an insulin dose which

was too large.

The next two sections describe the detailed design specification and implementation of the

above functional specification.

STAGE 1 • FEASmlL1TY AND DESIGN OF A DATA COLLECTION FUNCTION

The first stage of the design involved the defmition of appropriate data sttuctures: (a) for screen

text and menu options, (b) for storing general information about patients, their blood glucose

targets and their insulin doses, (c) for the events which may affect the blood glUCOSe,(d) the

blood glucose itself and (e) a facility for free text entry.

Text used within the system was divided into screens, each with a code number. The data

structure for a screen is shown in fig 4.2, a variable number of lines of text, together with the x

and y coordinates of each line's placement on the screen, is followed by an optional set of menu

options (a limit of four selections is set in order to keep the menus short and simple) and an

optional string of text for units if appropriate. All the language is initially entered in plain text

in a standard ASCII text file in a defmed syntax (see Appendix 2). This file is read into the

computer's memory when it is first switched on. These sttuctures allow screens to have an

unlimited number of lines of text and makes possible the conversion of text into any language

with the restraint of screen size and word lengch in the language. The ElIT·I0 has 12 optional

character sets for characters wich special accents in ocher languages apart from English. The

language to be used may be preselected by the physician at the time of initialisation.
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column on screen where text appears
line on screen where text appears
text to appear
pointer to the next piece of text
pointer to first piece of text
array of up to four menu options
units text for an event

x_posltlon
y_posltlon
Hne
next_One
first_llne
optlon_list
units

Fig 4.2 Data structures for screens.

The patient identity data structure is shown in fig 4.3, it incorporates an identification number

which is used to identify records stored on disk for the patient, it is probably wise, although not

essential, that the identity number should be set to the patient's hospital number. In the current

prototype, the number is set by the physician with the POIRO managerial program (pMP)

which is described later. A check is made to see if the number has been previously assigned to

another patient and if the patient named is already registered with a number. For any future

wide-scale use this would need to be standardised so that a standard core set of reference data

could be used for identification. This might include date of birth, sex, nationality etc.

surname used to link to databasesurname
first_name
Id_number
gender

hospital number set up by physician
O=female, lcmale

fig 4.3 Patient identi~ data structure

Three data structures are defmed to store therapy-related parameters (fig 4.4 to 4.6). All these

data structures are listed at this stage even though some parameters within the structures relate

to dose adjustment and are used in stage two of the design and implementation. The function of

each of these parameters will be explained as the Deed arises.

Information about height, weight, diet advised and physical fitness are stored in the farst data

structure (fig 4.4), these are all standard items already recorded in diabetic clinics; the items are

for information only and are not used in any of the dose adjustment algorithms or for giving

advice. The second data structure stores target blood glucose levels and permitted differences
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from the expected levels before dose alteration will take place (fig 4.5). The third data

structure stores dose prescriptions set by the physician and limits to which the doses may be

changed by the system (fig 4.6).

height
weight
calories
carbohydrates
fitness
doctor
phone
phoneJ
cUnic_date
cUnic_time

height in em.
weight in kg.
total daily calories of recommended diet
total grams carbohydrate in recommended diet
fitness level. on scale 0 to 100
physician's name
emergency contact number
second emergency number (for nurse during trials)
date of next clinic appointment
time of next clinic appointment

fig 4.4 Data structure for general information

target_BG
maximum_BG
minimum_BG
risk_level
allowed_offsets
reference_curves
mean_offsets
last_offset
current_offset
offset_date
Dumber_offsets
mean_BG
varlance_BG

array
total_BG

default target fasting blood glucose
limit set by physician for clinical safety
lower limit for clinical safety
number of standard deviations
permitted mean offset set by physician
standard meal excursion reference curves
moving average mean glucose offsets
last calculated offset
present offset
date of last offset calculation
number of offsets calculated since last dose adjustment
moving average pre-prandial blood glucose array
moving average variance of pre-prandial blood glucose

total number of pre-prandial blood glueoses entered array

fig 4.5 Data structure for blood glucose-related information

112



insulin_types
initial_doses
Iast_dose_long
current_doses
maximum_doses
minimum_doses
multipliers

types of insulin: short, intermediate and long
doses set by the physician for each type
time of day of last long acting dose
current (derived) doses array for each type
maximum permitted doses set by physician
minimum permitted doses set by physician
supplementary insulin multipliers array

fig 4.6 Data structure for insulin dose-related information.

The blood glucose test results and influential factors which affect the blood glucose level all

need to be recorded by the system. An event is defined as a timed data entry, a minimal

amount of specific information is stored for each event in addition to the time, date and time of

day of the event. The time of day relates to meal times, the four time points are breakfast.

lunch, dinner and bedtime. When events other than meals are recorded they are attached

logically to a time of day or are recorded with the time of day set to "uncertain", Fig 4.7 shows

the event data structure. The date and time of the entry are recorded in conventional character

string format as day/monthlyear (e.g. 28/03/90) and hour:minute (e.g. 12:30) respectively. The

event code links to the language file and records the screen from which the event was entered;

it is used to locate events of a certain type from within the store of events.

event_number
date
time
choice
value
value_2
value_3
tbne_oCday

4=other time

e.g glucose ., 2. insulin. 4
in format "ddlmm/yy"
in format "hh:mm"
number of selection from menu of options
e.g. BO level, dose taken
e.g. moving mean BO, dose advised
e.g. moving variance BO, standard dose
O=breakfast. 1.lunch, 2-dinner, 3-bedtime,

Fig 4.7 data structure of an event

Some events require a numerical value to be explicitly entered (e.g. a blood glucose value, or

insulin dose) while values for other factors may be represented on a 1 to 4 scale after being

entered symbolically (e.g. size of meals. intended exercise). The selection of items from a list

of options (menu) was used wherever possible in order to simplify the system as patients often
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have limited keyboard skills. Two additional fields are provided for various extra information

and calculations relevant to the event, such as an updated moving mean and moving variance

for glucose measurements; for insulin events these fields store the usual (standard) and advised

doses. This coded information may be decoded at the clinic appointment by the physician

using the POIRO manager program (PMP) and displayed with the original text of the screen.

The recording of a measured blood glucose is dermed as an event, The level of blood glucose

measured by current blood glucose testing devices may range from 1 mM up to 30 mM. Many

meters however have a limited range of possible values which is within these limits; if the

blood glucose is very low or very high, these meters often display a text warning in place of a

numerical value. The major quantities wbich affect the blood glucose are defined in the

indented knowledge table below (table 4.2).

Blood glucose depends on:
Time of day
Meal size and composition
Exercise
Health
Insulin

Table 4.2 Factors which affect blood glucose

The quantities of Table 4.2 are dermed as individual event options, with the exception of meal

composition. Whilst it is acknowledged that the composition of meals does have an effect on

the blood glucose (Scbrezenmeir et al198Sa) these effects are not well understood and are thus

difficult to include in a decision support system of this size without the addition of severe

complications. It is accepted that the major effect on glucose level is the actual portion size of

the meal and its timing (knowledge acquisition from knowledge tsar).

Circadian variation of insulin requirements were investigated by Scbrezenmeir (1985a) who

consistently found that glucose levels rose higber at breakfast than for other meals. It is

therefore necessary for the time of day to be entered in some way, as insulin doses vary with

each main meal. Four times of day were defined, based OD the four usual times of insulin
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doses: these were morning, afternoon, evening and bedtime. A screen was implemented which

prompted patients to enter the current "time of day" before entering any events. This proved

too confusing for patients and did not allow for events to be entered at other times, for instance

a blood glucose test mid morning at .the time of taking a snack. The time of day coocept is

closely related to meal-times, therefore patients in fact need not explicitly enter a time of day

but merely which meal is about to be taken: the options are Breakfast, Lunch, Dinner and

Snack. Note that there ill no explicit bed-time in this classification as a snack is always

recommended at bedtime, especially when insulin is injected at that time. This was much more

acceptable and did not cause any confusion once it was made clear to people which time of day

went with which meal definition.

A patient-Oriented, relative system of recording events is used for meals, exercise and health.

In the past, systems have requested dietary carbohydrate content of meals, either in grams of

carbohydrate or bread exchange units (Schrezenmeir et al1985a,b). Dieticians have now

realised that these systems are too complicated and are misunderstood by many patients and

some physicians (Eeley 1991). The two most important dietary considerations are the

regularity and nutritional balance of meals- these are best monitored by physicians or dieticians

in personal consultations. The only factor left is the meal portion size. A system of relative

recording of portion size is now recommended by dieticians: In this new system, portion sizes

may be recorded as "Nothing", "Light", "Normal" or "Large". These categories are therefore

used as meal event options and are coded within the algorithms on a 1 to 4 scale.

As with diet, exercise levels may be recorded as "None", "Minimal", "Normal" or "Heavy",

coded on a 1 to 4 scale; Health may be recorded as "Wen", "Unwell" or "Very ill", coded on a 1

to 3 scale. In all three cases, normality iswhat is normal/or the individual patient at the

particular time of day. This should make it easier for patients to decide what entry to make.

Hypoglycaemia is a consequence of insulin therapy. Although the occurrence of hypoglycaemia

does not directly affect the blood glucose per se, patients who have bypos may take some
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glucose to counteract the bypo and this affects the blood glucose at the folJowing measurement.

Therefore Hypos have to be recorded as an event as soon as possible after they occur. People

may be incapable of entering information wben they are experiencing a bypo so retrospective

entry of this event must be catered for. This is done by allowing a time delay since the bypo

occurred (in bours) to be entered; this time delay belps to pin-point the insulin dose responsible

for the reaction. In addition, eacb bypoglycaemic episode requires selection of a grade which

defines the severity of the episode in terms of the assistance required to regain a more normal

blood glucose level.

In order to meet the requirements for presentation of information to patients, the options

"Review" and "Information" complete the event options. Review bas three choices: "Readings"

steps back through all events entered already, while "Values" and "Trend" display glucose

readings in an interpreted graphical form

Unusual events, and explanations applicable to any of the events defined above may be entered

in free text format in a data structure called the notebook in POIRO. In order to preserve

memory space, the maximum amount of free text which may be entered by patients per

notebook entry is 24 characters, i.e. two lines of text on the screen.

date
message_number
message

in format "ddlmmlyy"
integer record number
text of message (24 characters)

Fig 4.8 Notebook data structure

The notebook data structure is shown in fig 4.8. Notebook entries are stored in a rolling file

similar to the event me; at the same time a notebook even: is recorded in the event me; this

contains a reference number (or key) to the notebook entry in the notebook flIe.

All events are finally entered by the patient via a confirmation option; if for any reason the

patient does not want to enter an event once the screen bas been selected, an abort function is
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available. These functions are enabled in POIRO by two function keys situated in a standard

position at the bottom of the screen and labelled "Ok" and "Quit" respectively.

An event which is not entered by the patient is the clinic event; this is recorded at every session

where POlRO is connected to a physician's PC running the PMP. The event records whether

the advice function was enabled or disabled, the position in the data file of the event and

notebook pointers (i.e. the next position to be filled, which is equivalent to the number of

events and notes recorded) and whether data was transferred to the PC.

The design of the data transfer routines was based on a protocol designed for use with a BBC

microcomputer (Walter 1988). The protocol was modified in order to provide a password from

the PC to POIRO and to defme different block sizes of data for each of the flles of information

to be transferred, i.e. the patient data, events and the notebook. Full specification of the data

communications routines are given in appendix 3.

IMPLEMENTATION. STAGE ONE

The software is predominantly written in Turbo Pascal. A few machine code routines were

em bedded in the code in order to use the special features of the ElIT -10 i.e. the touch screen,

beep, smart card, graphics and communications. A highly modular approach was adopted:

procedures and functions were designed and written for each type of insulin separately. The

code has been designed so that a limited number of input options are available to the user at any

one time. Given that this is the case, exhaustive testing oC every possible input should be

possible, see later under evaluation and validation.

A set of EHf-IO emulation routines (to display a "screen", enable touch pads and beep etc.)

were implemented in order to permit code design and testing OD the development computer (an

mM compatible PC running MS-DOS). These machine-specific routines were separated into a

source code "include" file. The EHT-IO specific routines to actually utilise the computer's

functions were substituted for the emulated routines and the source code was re-compiled under
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a CP/M version of Turbo Pascal. The executable code was created in command me (.COM)

format and transferred to the ElIT-IO. The "End-address" (see Turbo manual) of the code

under CP/M was set to DOOO(Hex) in order to protect the BIOS routines and to leave room for

data on the stack at execution time. Full documentation of the development methods and a

complete listing of code and flow diagrams are provided in the POIR.o documentation (Smale

1990).

The data structures defined above were implemented as record structures in Pascal. For

maximum clarity of the main screen (fig 4.1), the number of options available from this initial

screen was limited to 6, spaced one line apart. The description later outlines the method of use

of the POIRO system.

Within events, the system of selection from a menu of up to four options was implemented as a

grid of textual input boxes. The size of these touch-sensitive areas was. in almost all cases,

standardised to the width of the screen (9 characters) by one character deep (approximately 5

cm by 1 cm). All touch pads which may be selected are displayed within a border for their easy

identification and where selections are required the selected box is displayed in inverse (white

on black) on the LCD screen. In all cases the selection is confirmed by pressing "Ok" or

aborted by pressing "Quit" at the foot of the screen.

The order of execution of the main program is shown in fig 4.9. Initialisation involves the

setting up of the text screen system, the patient related parameters and the opening of files for

events and the notebook. If any of this information is not present, POIRO displays a message

and waits for the data which should then be transferred from the physician's PC using the

POIRO managerial program. The order of entry of data is recommended to be in the order

glucose followed by general followed by insulin in normal circumstances. Logic is included to

check and prompt for glucose and general events before insulin may be advised. It is

impossible to obtain an advised insulin dose without fltSt entering a meal ~; other events,
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however. are notmaodatory. Complete program flow diagrams are in the POIRO program

documentation (Smale 1990).

Main program

Initialise data structures for text and global variables

(plsplay date/tlme and main menu)

oop until selection made

(Check comms port/keyboard/tlme out)

Time out?
ower down until ON/OFF switch activated

Comma Input?

Button selected?

all appropriate data entry or review procedure

Fig 4.9 flow diagram o/the main program cycle.
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OPERATION OF POIRO.

When first turned on, the current date and time are displayed along with six major beadings on

touch sensitive pads: INFORM ME, GLUCOSE, GENERAL,INSULIN, HYPO and REVIEW.

The procedure wbich occurs wben each of the beadings is pressed is described below.

INFORM ME displays a screen showing the patient's name, pbysician's name and telepbone

number(s) for emergency contact, the date and time of the next clinic appointment.

GLUCOSE sets up a calculator-styled numerical keypad whicb patients use to enter their blood

glucose readings. There are two separate pads for entering a "Lo" or "Hi" reading, i.e. a

reading which falls outside of the range of the blood glucose meter.

GENERAL prompts for four pieces of information: The meal time and relative size of the meal,

plus the relative amount of exercise intended in the period following the meal and the bealth.

Mealtime options are Breakfast, Luncb, Dinner and Snack. Possible meal sizes are Nothing,

lighr, Normal and Large; exercise amounts are None, Minimal, Normal and Heavy, bealth may

be entered as Well, Unwell or Very Ill.

INSULIN allows selection of any of the prescribed insulin formulations and then displays the

standard dose, the advised dose (when advice is enabled, see below) and the dose taken. The

dose taken is set to the advised dose at fmt but may be altered by pressing the arrows to

increase or decrease by one unit at a time if required. With the advice function enabled, the

Explain heading may be pressed to display the information used to calculate the given dose.

HYPO: This option is used to record bypoglycaemic reactions. It includes a list of possible

grades and a numeric keypad for entering a time delay in bours if the reaction occurred when

the patient was not in a position to record it immediately. The patient is instructed to grade

hypos according to the degree of intervention necessary to alleviate symptoms and regain

normal blood glucose levels: grade one if the patient was able to cope alone; grade two if
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intervention of another person was required and grade three ifmedical intervention was

necessary. Fig 4.10 shows data entry screens.

HYPO
Severity

Grade Z
Grade 3

IOuit

GLUCOSE

Enter your
Blood sugar

Fig 4.10 POIRO data entry screens. From top left: Hypo, Insulin, Glucose, General (meal) and

How long ago?
0_ Hours

1 2 3
4 5 G
7 8 9
0 <-

IOuit IOle

1 2 3
• 5 G
7 8 9
0 <-

INSUUN
Type taken
I Actrapld

Ultratard

Enter dose

(Usual 10)
Advised 12
Taleen 12

m CD
IOuit I Ole I

GENERAL GENERAL
Enter meal time exercise

Brealdast to be taken

Lunch None
Dinner Minimal
Snack Normal

Size of meal Heavy

Nothing
Light Well

Normal Unwell
Large Very sick

10kIQuit IOuit I Ole

General (exercise/health).

8_ mmolll
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(8) REVIEW (b) .
10

Glucose
Fri 30 Jun

11:49

Dinner Xx
)(0

0 X 0
Meal size

X )(~
X

Large

X~
< II]

o am md pm bb

Finished Finished

[c)
Glucose Trend

Fig 4.11 Review screens (a) Readings (as enured), (b) Plot o/Values plus their Mean/or each

time 0/Day. traditionally known as a "modal day" plot and (c) Trend 0/Mean Daily Glucose
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REVIEW is the option which permits the patient to view all the information previously entered

in text form or as two graphs which show glucose control (Figure 4.11). The "Values" option

displays all glucose tests entered for the previous week, in relation to the time of day, along

with Ihe mean of the values for each time of day; "Trend" displays Ihe trend of mean daily

glucose over the previous four weeks.

At regular stages during the data collection development stage, patients were invited to try the

system and suggest any alterations or developments they would like to see. These initial

feasibility trials were successful in terms of the positive reactions received from Ihe subjects

involved; requests from them were considered as an important part of the knowledge elicitation

process; it was acknowledged that as patients were the eventual users of the system, it was vital

to test their reactions throughout the development.

STAGE l.1HE ADDmON OF INTELLIGENT DOSE ADJUSTMENT

The underlying concepts of insulin adjustment are well-defined but are complicated by the

multiple factors which have to be considered. As stated above, the most significant of these

factors are the size, composition and timing of meals, the amount of exercise to be undertaken

following each meal, the prevailing blood glucose at the time of the meal and the general health

of the patient. All these factors affect insulin requirements, although Ihe relative contributions

of each factor are not easUy identified. Even after taking all these factors into account, insulin

needs vary with the duration of Ihe disease inways which are not yet fully understood (Sharp et

al 1987); this means that insulin dose adjustment is a perpetual process which does not cease

once good control is achieved. The effects of changes in the liver. kidneys and other organs

involved in blood glucose homeostasis mean that even so called standard insulin requirements

vary, and therefore doses have to be monitored and adjusted throughout patients'lives.

The basic control model of glucose metabolism bas one dependent variable· blood glucose •

and one independent variable which bas to be estimated. insulin. The other independent
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variables may be predetermined to suit the individual concerned at a particular time. The

equation for calculation of a post-prandial blood glucose value may be represented in general

terms by equation E4.1.

eo-so = f (G(t), M, E. II, I,t,X ) (E4.1)

where O(t) is glucose at the time tmeasured before the meal or insulin dose, 8t is an increment

of time, M is the meal size, E is the intended exercise, H is the current health, I is the insulin

dose taken and X contains any other possible factors such as injection site variability. In

practice, a rearrangement of the function is required to estimate an appropriate insulin dose (I)

in order to give a desired blood glucose (0) at time t-Hit. Not surprisingly, no one has yet

successfully defined such a function. The major problems lie in the complex interaction of

insulin formulations (with differing durations), isolation of the individual components of the

equation and the high variability between patients.

Metabolic simulation models have sought general functions and have achieved some success

with modelling glucose-insulin dynamics (Rudenski 1987). This has mainly been in clinical

research within the laboratory setting with carefully controlled parameter values: e.g. fixed food

intake, same injection site for every injection. Metabolic models remain a region of great

interest (Andreassen 1990, Jensen 1990) but their use to predict blood glucose in individuals in

the outpatient setting is dependent on many (at the moment) unsubstantiated assumptions. Such

models are, however, extremely useful for education of physicians and patients of the likely

effects of changing any of the model parameters. Another use for metabolic models is as an

alternative to clinical trials for evaluation of other dose adjustment methodologies. This facility

has been utilised for evaluation of the present system and is described later.

Although all physicians are assumed to know and understand the processes involved in

metabolic control, expertise in insulin therapy adjustment is traditionally acquired by practice,

without a specific metabolic model in mind. Because of the system's complexity, rules of

thumb have to be employed to estimate the effect of each of the factors mentioned above and
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these rules. or algorithms, are learnt during clinical practice in a teacher-pupil relationship.

Expert physicians who have mastered these rules are capable of achieving tight control in many

patients, but are often frustrated by a lack of Information and non-compliance from patients.

With a computerised decision support system. such problems need to be addressed and the rules

used by experts in all situations need to be included. In order to deal with uncertain or missing

information. novel ideas are outlined later which go some way towards the promotion of tight

control in all patients.

Theoretical Basis and Knowledge Elicitation

Selection of an appropriate insulin regimen for an individual is not within the scope of POIRO.

but is addressed in the clinic decision support system described in chapter 5. However. rules

for therapy adjustment are inexorably linked to the insulin regimen. For simplicity of

development, one insulin regimen is selected and algorithms are defined to optimise the chosen

regimen. The two most popular insulin regimen are the basal prandial regimen and the soluble

isophane regimen. both are described in chapter 1 along with their advantages and

disadvantages. The basal prandial regimen was chosen to be implemented first on POIRO.

The reasons for this decision are thal the regimen separates completely the background insulin

requirements and the requirements to cover meal-times and that it more closely approximates

physiological insulin production. Also. for purely practical reasons. the basal prandial regimen

was more suitable for clinical trials as the majority of patients available for clinical trials were

already following the regimen.

Optimisation of the basal prandial insulin regimen may be separated into two stages; the aims

of these stages are: first, produce a normal fastiog blood glucose by once or twice daily

injections of loog acting (ultralente) insulin; second, regain the pre-prandial blood glucose level

by the time of the following meal. by injections of short acting (soluble) insulin. In addition,

the regimen is flexible; it may allow supplementary shon acting insulin adjustments for non-

standard food, exercise and bealth.
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la)
I

08:00 13:00 18:00
dinner

18:00
dinner

24:00
bedtime

ultralenie dose

imply that meals have to be taken QI set times.

24:00
bedtime

Fig 4.12 Basal Prandial regimen. possible variations: (a) No dose QI midday, (b) Split

breakfast lunch

(b)

08:00 1]:00
breakfast lunch

vertical axis (I) is insulin level in body, times on horizontal axis are for examl« only and do not
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Possible variations of the basic basal prandial regimen are shown in fig 4.12. Fig 4.12(a) shows

the case where no dose of soluble is taken at midday,1his is common for patients who have had

diabetes for a short duration (less than two years or so) and those who eat only a small amount

for lunch. The variation shown in fig 4.12(b) shows a split ultralente insulin dose, in this case

half the total dose is taken before breakfast and half with either the evening meal or before bed.

The split ultralente option is common among unstable (or "brittle") patients and those in whom

the fasting blood glucose remains high despite a higher than usual basal dose. Funher

variations are possible, although the number of ultralente injections is never more than two per

day and it is rare for short acting insulin to be prescribed more than three times daily, unless a

very large bed-time snack is eaten in which case the limit is four injections per day. POIRO is

capable of recognising any of these options and is flexible enough to optimise the chosen

regimen.

Heuristic Rules

Insulin dose adjustment is not an exact science and is often described as an an (Fieschi 1990).

It is not surprising, therefore, that heuristics, defined in chapter two, are the most common

methods used by physicians in order to decide on the best treatment for diabetic patients.

Therapy rules (or algorithms) for adjusunent of insulin take account of the factors mentioned

above and use long term information of responses to insulin doses to optimise the blood glucose

values.

It is surprising, given the scope for variation in regimen and optimisation techniques, that

relatively few sets of rules based on heuristics have been published (Skyler et al1981, Cbanock

et al1985. Shipp and Snyder 1986). These three algorithms have been compared with each

other via computer simulation (Newman 1987); and comparisons have been carried out

individually in which patients followed rules for periods with and without computer assistance

(Schiffrin 1985).
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In the simulation comparison by Newman (1987), the success of each algorithm was defined

both in terms of the mean glucose produced and the number of hypoglycaemic reactions

(dermed as blood glucose < 60 mgldl (3.3 mmo1l1». The study looked at the effect of

variations in the model parameters used to simulate the natural trend and Variability of blood

glucose on the actual mean blood glucose and incidence of hypoglycaemia induced by the dose

adjustments, over an extended period. The results showed that differences of mean glucose

produced between the three sets of rules were not clinically significant The most distressing

finding of this study was the high incidence of hypoglycaemia for all three algorithms. The

Chanock algorithms rated poorly as a huge number of dose adjustments were recommended and

the greatest incidence of hypoglycaemia occurred; this judgement was perhaps unfair as the

algorithms were used outside their intended domain, which is pump therapy. It can be

concluded that the Chanock algorithms are not appropriate for decision support for people who

use conventional insulin replacement therapy.

The most successful algorithms, with the above dermition of success. were the Skyler

algorithms and these deserve to be examined more closely. These algorithms have now passed

into the region of acceptable and safe principles of diabetes therapy and are by far the most

commonly cited example of an insulin adjustment program. The Skyler algorithms for

adjustment of the basal prandial regimen are listed in tables 4.3 to 4.5. The algorithms use

milligrams per decilitre (mg/dl) as the unit of blood glucose; to convert to millimoles per litre

(mmol/; or mM) the figures may be divided by 18.

Basically, the algorithms use the premises that the fasting blood glucose reflects the adequacy

of the long acting insulin dose, whilst the adequacy of each pre-prandial, short acting insulin

dose is reflected in the blood glucose measurements laken two hours post-prandially or

immediately prior 10 the next meal (or prior to bedtime for evening meal doses).
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If fasting blood glucose < 60 mgldl
or if hypos occur overnight
decrease long acting dose by 1·2 units

If fasting blood glucose> 130 mgldl for two days
increase long acting dose by 1·2 units

Table 4.3 Existing rules for adjusting long acting dose (Skyler et alI981)

Points to note about these algorithms are their dependence OD timed measurements and the

implicit assumptions about regularity of diet. exercise and health. In particular note the

assumption that meals will be spaced far enough apart so that the blood glucose should return to

a target baseline. It is suggested that only one insulin dose should be changed at a time,

especially to counteract hypoglycaemia. Because of the use of an absolute post-prandial blood

glucose target. rather than a variable baseline, a short acting dose could be increased even when

it has produced a reduction in absolute blood glucose; this would be disastrous if the pre-

prandial blood glucose before the dose in question was low. For example: the glucose before

lunch may be 14mmolll and then may be 15.5mmolll two hours after lunch. The lunch time

dose of short acting insulin is almost certainly too high but. according to the rules, it would be

increased. This is a problem with the sole use of absolute target blood glucose levels during the

day. If the pre-lunch blood glucose was 5mmolll the next day, an increased short acting dose

would be very likely to cause severe hypoglycaemia.

The rules for each of the pre-prandial doses (table 4.4) are identical in format and glucose target

for each meal, which neglects circadian variation in blood glucose response, although it does

show a pattern which may easily be converted to a generalised basic computer algorithm. Dose

adjustments are not closely related to actual glycaemia, although the text includes a suggestion

of an alteration of 1·2 units of short acting insulin for each 30-50 mgldl (1.5·3 mM) above the

target.
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If blood glucose 2 hours after breakfast> 150mgldl OR if blood glucose before lunch> 130
mgldl for two days increase morning short acting dose by 1-2 units

If blood glucose after breakfast or before lunch < 60 mgldl OR if a hypo occurs between
breakfast and lunch decrease morning short acting insulin by 1-2 units

If blood glucose 2 hours after breakfast> 150 mgldl BUT blood glucose before lunch < 105
mgldl consult your doctor or clinician

If blood glucose 2 hours after lunch> 150 mg/dl OR if blood glucose before supper> 130
mgldl for two days increase pre-lunch short acting dose by 1-2 units

If blood glucose after lunch or before supper < 60 mgldl OR if a hypo occurs between lunch
and supper decrease pre-lunch short acting insulin by 1-2 units

If blood glucose 2 hours after lunch> 150 mgldl consistently BUT blood glucose before supper
< 105mgldl consult your doctor or clinician

If blood glucose 2 hours after supper> 150mgldl OR if blood glucose before bedtime> 130
mgldl for two days increase pre-supper short acting dose by 1-2 units

If blood glucose after supper or before bedtime < 60 mgldl OR if a hypo occurs between supper
and bedtime decrease pre-supper short acting insulin by 1-2 units

If blood glucose 2 hours after supper> 150mgldl consistently BUT blood glucose before
bedtime < 105mgldl consult your doctor or clinician

Table 4.4 Existing rules for adjusting pre-prandial short acting doses (Skyler et al 1981)

Table 4.5 outlines the provisions suggested by Skyler for supplementary (extra from standard)

short acting insulin. Supplementary sbort acting insulin is advised when pre-prandial blood

glucose tests are high but is not suggested to counteract extra food. exercise or illness.

If blood glucose before breakfast or before supper> 140 mgldl
take extra 1-2 units short acting insulin

If blood glucose before breakfast or before supper> 200 mgldl
take extra 24 units short acting insulin

Table 4.5 Supplemental insulin doses

General guide-lines for diet are given to accompany the algorithms, especially to counteract the

risk of hypoglycaemia due to exercise. It is suggested that extra carbobydrate-based snacks

should be used to compensate for exercise ratber than a reduction in insulin dose (a negative

supplement in effect); 10-15 grams of carbohydrate is suggested to cover 30 to 45 minutes of
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activity. Consideration of the patient's current weight is very simply treated. It is

recommended that insulin dose adjustments should be limited to 1 unit for patients under 40 kg

in weight, Patients over 40 kg in weight (i.e. the vast majority of adults) have to choose

between 1 or 2 units. Note that the dose adjustments are absolute and take no account of the

current dosage or sensitivity of patients to insulin. Overweight patients, or those who are

highly insensitive to insulin require bighez than average insulin doses and the small increments

suggested would not be sufficient to counteract rising glucose levels, especially if blood glucose

measurement is not carried out daily.

The success of intensive dose adjustment algorithms. such as the Skyler algorithms, depends on

regular blood glucose monitoring, careful adjustment of insulin dosage and patience. Careful

documentation is essential as it is often difficult for a doctor or clinician to help a patient who is

adjusting insulin without clear details of test results, insulin doses taken and other factors.

The Skyler algorithms have formed the theoretical basis of attempts at a patient oriented insulin

dosage computer (Albisser et al198S, Pemick and Rodbard 1986, Gomez-Aguilera et al1987 -

see chapter 3) However, there are many problems not addressed by these algorithms;

computers potentially offer far more facilities and more flexibility was required as well as

attention to making the use of the computer easier and more acceptable to patients.

There were. however, encouraging results of computer systems using simple algorithms.

Therefore, heuristic algorithms based on clinical practice, but adapted for more regular home

use, were used as a starting point for the new POIRO system. General guidelines were provided

by knowledge elicitation, based around the clinical practice outlined in the next subsection.

The algorithms separate into methods of assessing blood glucose conttol and the use of the

assessments in dose adjustment and the following subsections are also divided in this way.
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General Guide-lines for the Basal Prandlallmulin Regimen

The algorithms described below. which were conceived and developed for this project. refer to

adjustment of the basal prandial insulin regimen. Holman and Turner (1987) described the

initialisation of basal prandial therapy and adjustment guide-lines (tables 4.6 to 4.9) which form

the foundation of these algorithms. The first of these tables contains general guidelines without

specific suggestions on amounts of insulin changes.

Table 4.6 General Guide-lines for patients who are following the basal prandial insulin
regimen.

Diet and Weight
If overweight the dietician will recommend a slimming diet
Aim to maintain ideal weight
Take regular meals at the same times every day.

Background insulin supply
Ultralente insulin provides the background insulin supply your body needs. It should be taken
every evening, irrespective of nightwork, missed meals or illness.

Insulin/or Meals
Your doses of soluble (short acting) insulin are matched to your meals and injections should be
taken 30 minutes before them. Soluble insulin acts for approximately 6 bours. You will need
to take a snack 3 bours after a main meal and its injection to avoid bypo reactions. Adjustment
of your soluble doses allows your treatment to be flexible. Ifyou know you will be taking
unusual amounts of exercise or an unusually small meal reduce the preceding dose of soluble
insulin. If you will be eating a particularly large meal. take extta soluble insulin beforehand.

'The second table (table 4.7) suggests an ideal target range for pre-prandial blood glucose and

suggests a one-off increase in short actiog insulin if test results are persistently higb. This is

obviously crude and inadequate for accurate optimisation. As for the general guidelines. it is

not explicitly stated how bigb glucose tests may be, nor for exactly bow many days they may

remain bight before an adjustment should be earned out These figures bad to be elicited from

an expert as a rule of thumb. they may be different for different people.
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If you are measuring your blood sugar, you should aim for levels between 4 and 7 mmolll
before the main meals and before bed. This may be achieved by adjusting your insulin doses
and diet Aim for an overall pattern of good control. Don't worry about occasional stray
results. For example if your test before lunch has been over 10mmolll on several days you
should increase your morning soluble insulin by 4 units and check that the blood test before
lunch comes into the correct range.

Table 4.7 Blood Glucose measurements

An improvement OD the Styler algorithms are the suggestions for short term insulin adjustment

in cases of illness, abe suggestions of table 4.8 are based on pre-prandial blood glucose tests and

are thus dependent on accurate, regular monitoring. It is accepted that insulin requirements

increase considerably with even quite minor illnesses such as a cold; more serious infections

and viruses may cause severe hyperglycaemia and ketosis without proper care. Supplementary

insulin may thus be automatically added in times of illness even if a blood glucose test is not

carried out. This is one rule of thumb, extracted by knowledge elicitation, which is useful for

dealing with missing data.

If you are unwell, measure your blood sugar or do a urine test. If these are high, increase your
next dose of soluble insulin. With experience you will fmd what extra dose of insulin is
required. Many diabetics fmd that4 extra units are required for a blood sugar level of 12
mmolll before meals and 8 extra units for a blood sugar level of 16 mmolll. Even if you are
unable to eat you should continue to take your ultralente insulin. If you are unwell and your
blood sugar or urine tests are persistently high and you feellhirsty you should consult your
doctor.

Table 4.8 Illness

Ultralente insulin is essential for background insulin needs and must not be stopped even during

illhealth; however, the situation with regard to extra ultralente insulin during illhealth is not so

clear. The dangers of possible prolonged hypoglycaemia associated with excessive ultralente

insulin make it imperative that the ultralente dose is only adjusted with respect to fasting blood

glucose results and overnight hypoglycaemia. The guidelines for hypoglycaemia (table 4.9) do

not suggest dose reduction in order to avoid a repetition of the hypoglycaemia episode on

successive days; in fact, no explicit advice is given on how to reduce insulin in response to low

blood glucose test results (i.e. those below 4 mmolll). Presumably patients' sense of self-
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preservation is assumed to prompt a dose reduction, whereas a push is required to encourage

dose increases.

Table 4.9 Hypoglycaemia

Always carry glucose tablets with )'ou. If)'ou have a bypo, bite two tablets and swallow them.
Eat an additional two tablets if)'ou remain hypo. Never drive a car or operate machinery whilst
you might be bypo.

All patients who are started on the basal prandial regimen should be aware of these guidelines

and should aim to follow them; most people find that problems occur in adjustment of the

insulin- the fine-tuning process required for optimisation of control. One prolonged

bypoglycaemic reaction is often enough to make patients nervous about further adjustments.

The following sections describe further knowledge elicited from experts and the literature

which formed the actual work carried out to improve on the Skyler algorithms and to build on

the guidelines of tables 4.6 to 4.9.

IMPLEMENTATION. STAGE 1WO

The algorithms for assessing the effectiveness of long acting and short acting insulin are totally

separate and are treated in different sections below. However, some of the concepts introduced

in this work are common throughout and are introduced fU'SL In particular, the methods used to

allow for missing data are novel, and the use of glucose variation from calculated target values

(called offset glucose values, or just offsets) are totally new to the field and have been

introduced in this work. Provided meal times and insulin doses are entered, it is possible to use

default reasoning to estimate glucose values at the different times of day, provided that glucose

results are entered often enough, in order to provide information on the suitability of advice.

Calculation of pre-prandial blood glucose moving averages and moving standard deviations are

central to the use of defaults in order to allow for missing glucose values. Blood glucose values

are initially entered with an uncertain time of day. Once a meal is entered the blood glucose is

labelled with the appropriate time of day. A record is kept of the total Dumber of pre-prandial
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blood glucose determinations for each of the four times of day (n in equations FA.2 and FA.3).

The previous most recently entered blood glucose for the time of day is found and the number

of days since this was recorded is calculated; this time difference in days (dd in the same

equations) is used to bias the moving average to the newly entered figure. Equation FA.2

updates the moving average pre-prandial blood glucose and equation FA.3 likewise updates the

moving average variance which is subsequently used to calculate the standard deviation.

new average = (lin + ddl30) • new value + «n-1)/n. ddl30) • previous average
(FA.2)

(FA.3)

new variance -= (lin + ddl30) • (new value- new mean)2
+ «n-l)/n - ddl30) • previous variance

From observation of the relative weights of glucose measurements it appears that the number 30

in the denominator of equation FA.2 does not place an intuitively high enough bias towards new

readings. A value of 10 in the denominator would seem to provide a more intuitively correct

bias. This bas been demonstrated in reruns of patient data. Note that as n gets large the

weighting of the most recent reading tends to a limit of 3.3% with a figure of 1/30 but would

tend to 10% with a figure of 1/10. With the figure of 10 however, if DO reading is entered for

10 days then the weight of a new value would be 1; i.e. all readings older than 10 days would

be ignored. In order to comply with the rule of thumb that 30 days of readings have some

relevance the figure of 30 is used. More elaborate systems of producing a weighted average are

probably unnecessary at this stage but the system does require an intuitively correct feel to the

bias.

Clinical safety limits for blood glucose have to be observed; this is carried out in the following

way. When a glucose value is entered it is checked against pre-set extreme limits which the
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pbysician has deemed to be dangerous for the patient If these limits have been exceeded a

warning is immediately displayed as well as a request to repeat the reading one hour later.

Limits are originally set at 2 mmolll and 20 mmolll. If two successive tests fall outside of the

pre-set range a message is displayed to consult a physician for advice.

The effect of each insulin dose, whether long acting or short acting, is reflected in the test

results of a particular time of day. For short acting doses, the values following the next meal

reflect the effectiveness of the dose taken. For long acting doses the only value used to reflect

the effectiveness is the next day's fasting glucose. Whichever glucose is used, the principle of

insulin adjustment depends on recording the difference, the glucose offset, between the

expected (or ideal) blood glucose and the value actually recorded. The method of calculating an

expected value varies for different times of day and types of insulin. The procedures for

adjustment of the types of insulin are detailed below.

Assessment or the Long Acting Dose by Fasting Glucose Determinations

Long acting insulin is traditionally increased when the fasting glucose is above a fixed target set

by the physician. This takes no account of the variability of fasting glucose levels previously

recorded and therefore takes no account of the risk of a hypoglycaemic reaction. One

suggestion which has been put forward for incremental optimisation is to set a high target

fasting blood glucose at first and to gradually reduce the target at clinic appointments until

either complete normoglycaemia is achieved or else a limit is attained where any further

reduction of the target results in regular night-time hypoglycaemia (Albisser et alI985).

However, this method is inflexible and not specific to the individual patient concerned; it also

requires a high level of physician involvement and a prearranged plan for the target decrements.

A more appropriate method of setting a target fasting blood glucose would take variability and

mean of the levels already recorded and use them to calculate a target which would give an

acceptable risk of hypoglycaemia. Tbis is accomplished in POIRO by a newly developed

calculation involving the moving average fasting blood glucose and standard deviation.
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Assume the threshold at whiell patients cxperience debilitating bypoglycaemia is 2.S mmoVI.

Assume that patients accept a S% risk ofbypoglycaemia. In principle, the distribution of

fasting blood glucose measurements may be used to calculate the probability of a blood glucose

less than 2.S mm01l1 occurring, if the probability is less than 0.05 then the dose may be safely

increased, otherwise it may not, If a normal distribution is assumed for the fasting blood

glucose (fbg) then the target blood glucose is set by equation FA.4.

target fbg • 2 standard deviations .. 2.5 mmoVI. (FAA)

The standard deviation is calculated from the current moving standard deviation by a ratio

between the current moving average and the target, For small numbers of fasting blood glucose

measurements, c.g. in the initialisation stage, the coefficient of variation may well be larger

than 50%, in this case a maximum target fbg is used, this was set to 9 mmoVI.

Observation of the actual distribution of blood glucose readings in patient trials led to the

assumption that the normal distribution would be a reasonable approximation of the distribution

of fasting glucose values (fig 4.13). Further analysis by the author, in 11 other subjectsof

clinical trials, of higber moments of the mean (skewness and kurtosis, equations FA.S and FA.6,

(J = standard deviation) bas indicated that a more appropriate empirical distribution of fasting

blood glucose may be the Weibull distribution or the generalised lambda distribution

(Dudewicz and Misbra 1988 p228). Problems with fitting data to the normal assumption

include the pbysicallower limit on blood glucose set by the bypoglycaemic thresbold of around

1·2 mmol/l for many patients and the lack of accuracy of blood glucose testing strips for both

low and high blood glucose tests (there is. in cffect. no upper limit on blood glucose).

skewness- (FA.S)
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kurtosis II: (FA.6)

Further research in this area should centre on the possibility of calculating an inverse

distribution function for the actual values recorded. This is possible for a wide range of mean,

variance, skewness and kurtosis; it is usually easiest to calculate a disbibution with a

generalised lambda distribution approximation (Ramberg et a11979). For simplicity, and due

to lack of sufficient evidence to assume otherwise, the normal distribution is used in the present

algorithms.

The offset glucose is thus calculated by subtraction of the actual fasting blood glucose from the

target fasting blood glucose. This value is recorded and is used to update the moving average

offset blood glucose.

Assessing the Effectiveness or Short Acting Pre-prandial lnsuUn Doses

When meals are taken the blood glucose rises to a peak before the short acting insulin

formulations currently available begin to have an effect. The timing of injections before meals

affects the duration of the glucose perturbation and the peak blood glucose of the post-prandial

blood glucose curve (fig 4.14); this has been demonstrated by Kraegen et al (1981) wbo showed

that the optimum delay between soluble insulin injections and meals is approximately thirty

minutes for most individuals. It is assumed that patients follow a relatively constant routine

when injecting, althougb no assumptions are made about the delay between injections and

meals. It is mandatory, in this system, that the meal about to be taken is recorded before insulin

dose advice is requested. Patients are therefore instructed to record their intended meal size

when requesting insulin advice, even if they are not actually eating for balf an bour.
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Fig 4.13 An example 0/ a set 0/ blood glucose values over a four week period for a single

patient. Exhibits a good example 0/ day-to-day variation in glucose levels and meal timing.

The symbols represent different meal times. A ,..am (breakfast),» = md (lunch),O =pm

(evening meal), X = snacks (mostly be/ore bed).
Note the distribution of the number of blood glucose values around a mean/or each of the

meals. Take breakfast/or example (the symbol A denotes a pre-breakfast blood glucose

reading). The mean is approximately 6 mmoVl for this patient wilh most readings close to the

mean and a small number o/readings/orming the tails on either side (above and below) this

mean. A more mathematical analysis 0/ actual blood glucose results is explained in the text.
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It is not feasible, in most circumstances, for patients to time their post-prandial blood glucose

measurements at exactly two hours after a meal, as required by the Skyler algorithms. It is

probably better to encourage tests at the most convenient time for patients, which may vary

from day-to-day. In order to allow blood glucose measurements to be entered at any post-

prandial point the first requirement was to represent the expected ideal blood glucose response

to meals.

[aJ rnorniml
change In G
(mmoll)
8

2 6 8
time since breakfast/insulin injer.tion (hours}

(b) 8fternoon/evenlng
change In G
(mmoll)
8

2 6 8
time since lunch or dinner/insulln Injection (hours)

Fig 4.14 Meal reference curves: (a) Breakfast, (b) l-unch/Dinner.
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The curve displayed in fig 4.14 shows the mean of nine insulin dependent diabetic patients'

blood glucose levels over six bours after breakfast (a) and the evening meal (b). These curves

are used as an empirical "ideal" reference in order to estimate blood glucose levels after meals

given the glucose level before the meal. This estimate is then compared to the value entered

and assesses the effectiveness of the preceding short acting insulin dose.

In order to justify the use of this system it is assumed that the blood glucose determinations

during any day are related to the fasting glucose on that day which provides a baseline level.

The fasting glucose bas been sbown to remain a relatively stable entity in the absence of food,

illness or unusual exercise and should be especially so with effective long acting (ultralente)

insulin dosage, as employed in the basal prandial therapy regimen. The pre-prandial. short

acting doses sbould aim to counteract the post-prandial rise in blood glucose and to regain the

pre-prandial level before the following meal time or bedtime in the case of the evening meal

dose. The system of relating to an ideal curve thus makes no assumptions about the baseline

level. it isolates eacb insulin dose for individual assessment The system is an improvement on

the Skyler algorithms, wbich use absolute target blood glucose levels throughout the day. as the

effect of multiple dose adjustments should not induce bypos and the system is not limited to one

adjustment per day.

In addition to these assumptions, the determination of trends through the day, i.e. circadian

variations, is central to optimisation of the pre-prandial shoo acting insulin doses. For this

reason the response of the blood glucose after each meal and insulin dose is assessed by an

offset glucose value. This is the glucose actually measured less the expected blood glucose at

that time. For example if the pre-breakfast (fasting) blood glucose was 9 mmolll and a value of

14 mmolll is recorded 3 bours later. the expected value at that time would be 9 + 4 (obtained

from the curve in fig 4.12(a», i.e. 13 mmolll; therefore. an offset blood glucose of 1 mmolll is

recorded for that day and is used to update the mean offset for the breakfast insulin dose.
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A moving average glucose offset is calculated after each blood glucose event is entered; the two

most recent glucose offsets are also retained for each time oC day. When the appropriate insulin

dose is adjusted (see next subsection) the moving average and these two offsets are reset to

zero.

Insulin dose adjusttnents are calculated with respect to glucose offsets and are related to the

current default doses and insulin sensitivity. Dose adjustments should not exceed a fixed

percentage of the current dose Corethical and safety reasons. The maximum dose increase

should be more restrained than the maximum dose reduction as the short term effects are more

acute with dose increases which may lead to severe hypoglycaemia than for dose reductions

which are unlikely to cause immediate ketosis (the opposite extreme in blood glucose level).

The procedure carried out when a blood glucose test is entered is as follows. When a glucose

test result is entered, the system checks previous event entries for the last meal entered. If this

was within 10minutes it is assumed that the reading is a pre-meal reading for the meal and it is

labelled as such in its time of day slot; at the same time. the routine which updates the pre-

prandial blood glucose moving average is called, and the moving average and standard

deviation are updated with the new value. The search is then continued back to the next most

recent meal.

If the time since the previous meal is more than 10 minutes. but less than 8 hours. the system

checks the change in glucose from the previous meal; this is termed the offset. In order to do

this an expected blood glucose is calculated and the recorded value is compared to it to give an

offset. If an actual blood glucose value was entered at the previous meal it is used as a base.

otherwise the moving average value for the meal is used. Equation 134.7calculates the

expected glucose value. Equation FA.8 calculates the offset. The expected offset in equation

E4.7 is derived by a simple linear approximation from the curves for meal time excursions

given in fig 4.14.
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actual offset. actual value- expected value

(FA.7)

(FA.S)

expected value. previous value + expected offset

Checks are then carried out on the exercise. health and insulin entered with the previous meal.

and for hypos since the meal. If a hypo was recorded then both the glucose value and the offset

are ignored and the insulin dose is altered according to rules for hypos. The reason for

discarding the glucose value is that bypos are breakdowns iDnormal routine and the snack taken

to counteract the hypo may have affected the glucose reading.

If any of the other factors (exercise, health). are NOT normal or the insulin dose taken is not the

dose advised then the moving average offset is not updated but the offset is recorded.

Wben either the moving offset is outside pre-set limits OR two successive offsets are outside

slightly less tight limits (2 mmol/l), the dose may be changed. The dose is changed when it is

next requested; more details are given in the next subsection.

The POIRO Algorithms for Insulln Dose Adjustment

Fig 4.15 shows the screen obtained by selection of "INSULIN" from the main menu. The

screen is used to obtain an advised insulin dose. and to enter the dose taken should this be

different The explanation screens generated by pressing the "Explain" option are also shown.

These are generated by a mix of canned text and the text of the original event screens. They are

not sophisticated explanations in the true sense of expert system explanations but provide useful

justification of dose adjustments for subjects. The explanation screens also act as confumation

that the patient entered correct information; if any information is incorrect it may be changed

after quitting from the insulin screen; the correct insulin dose may subsequently be obtained.

The procedures used to produce the advised dose are now described.

Once the effectiveness of each insulin dose is assessed. algorithms for adjustment of inadequate

doses may be used. The glucose assessment offsets described above are used to calculate insulin
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adjustments, rather than single glucose values as used in previous algorithms. The novel use of

a dose adjustment curve, described below, is useful as it shows in pictorial form bow

adjustment depends on the offsets calculated using the algorithms. The method of calculation is

identical wbether the insulin is long acting or short acting, bowever, sucb parameters as

sensitivity may differ for different insulin types.

In principle, it should be possible to calculate insulin dose adjustments by a simple equation

such as eq. FA.9; bere the original dose Do is incremented by a constant S multiplied by the

average glucose offset J.l(g) to give a new dose D1; this is illustrated in fig 4.16(a).

The constant S is the sensitivity of the patient to the type of insulin and varies considerably

between individuals. For the moment, assume S = 1.

INSULIN
Type taken
I Actrapid

Ultratard

Enter dose
[Usual 10)
Advised 12
Taken 12

Ok

EXPLAIN
Your USUAL
Actrapld
dose In the
morning
Is 10 units
suggest no
change In
USUAL dose

I Continue

EXPlAIN
Advised dose
Is higher
than usual
because
meal size
Is Large
exercise
Is Ught
even though
glucose
Is low

Continue

(FA.9)

Fig 4.15. The INSUUN screen and example explanation screens for an Actrapid dose taken in

the morning before a large breakfast when expected exercise is light. The low blood glucose is

taken into account but is outweighed lly the other factors of meal size and exercise level..
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9

Fig 4.16 Retaiionship between glucose offset J.l(g) and dose change (a) basic line, (b) limits of

range, (c) limits of dose change added (implementaJion curve), (d) possible improvement by

transtation of dose changes.
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Although a target blood glucose value is defined, it is perfectly acceptable for the glucose to

fall within a range of 2 mmolll around this target (on average). Therefore the dose is not

changed if the average offset is within 1 mmolll of the target (fig 4.16(b».

Safety considerations dictated that anyone dose increase must not exceed 5 % of the current

dose (except cases where S% of the current dose is less than one unit). Dose reductions are

limited to 10% (although there is similarly a 1 unit minimum reduction). Incorporation of these

limits leads to the characteristic curve shown in fig 4.16 (c). Points to Dote about fig 4.16(c) are

the slope of the curve and the discontinuities (jumps) at offsets of 1 and -I mmolll. The piece-

wise equation for this curve is given in equation FA.! 0, where min and max have the usual

meanings of minimum and maximum value of the expressions within the brackets. It was the

equation used in the POIRO algorithms.

Do 1J,L(g)1SI

Do +mine I, max( 0.05 x Do ' J1(g) x S » J1(g) ~ 1

Do - mine I, max( 0.1 x Do ,1J1(g)1x S ) ) J1(g) S -1

(FA.!O)

Note that if the original dose Do is less than 30 units, the increase in dose will always be limited

to 1 unit. Similarly for dose reductions the decrease is limited to 1 unit whilst the current dose

is less than 15 units. Provided that a dose change has to be made when the moving average

offset is more than 1 mmolll the dose change of short acting insulin will be limited to 1 unit in

many normal weight cases. The expected short acting dose for normal weight, average height

man is approximately 40 units (Holman and Turner 1985) which is divided amongst two or

three pre-prandial doses.

For general insulin sensitivity S the dose increase will be limited to 5 % if S is greater in

magnitude than D120 as the minimum value of J1(g) for a change to be advised is 1. Similarly,

the decrease will be limited to 1 unit if S bas a numerical value less than D/10. Funher studies

are required to estimate the effect of changing the percentage limits on dose changes.
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The curve shown in fig 4.16 (d) is an attempt at "smoothing" the dose adjusunent function,

many other variations are possible and an interesting area of further study may be to compare

the effectiveness of each of these curves.

As stated earlier, the moving average offset is not updated unless all the factors which affected

the corresponding insulin dose were normal and the advised dose was taken. However, the

actual offset is recorded, provided there were no hypos in the Intermittent period. The insulin

dose is also altered if two successive offsets for the particular time of day are greater than 2

mmol/l or less than -2 mmolll. In this case the offset used in equation E4.10 is the average of

the two offsets.

Adjustments due to Hypoglycaemia.

If hypoglycaemic reactions are recorded, previous insulin doses and meal times are checked in

order to ascertain which insulin dose was responsible. If this analysis is successful, the insulin

dose is reduced by 10% immediately and dose offsets are reset to zero. A problem with this

procedure is the possibility of recording hypos more than once. The dose of insulin would be

reduced twice.

A better procedure for future use would be to record the hypo with the time of day of the insulin

dose to be changed. The hypo would then only alter the appropriate insulin dose when the dose

was next requested. A further refmement would be to check for discrepancies between

hypoglycaemia and high positive offsets. Although. in most cases the correct explanation

would be either that the positive offset was due to excessive snacking or that it was due to the

so called Somogyi effect; i.e. bypoglycaemia due to excessive insulin can lead to excessive

(rebound) hyperglycaemia. The effect is most often found with excess long or intermediate

acting insulin taken to cover night-time requirements. In other words, hypoglycaemia is always

given priority and doses are always reduced as is the case with existing algorithms.
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Supplementary Insulin Doses

Once algorithms for adjustment and optimisation of the standard insulin doses were developed,

further refinements were carried out to allow for Don-standard meals, exercise and health. These

refmements were based on an encapsulation of the usual practice of physicians at the featured

clinics in Oxford. The use of supplementary insulin adjustments for such wide ranging factors

is new to this system; it requires much research and refinement of the physician level software

so that the algorithms may be tailored to individual requirements.

Supplementary insulin doses are advised when any of the events related to the short acting

insulin dose are not normal. The system proposed here is a simple relative multiplication factor

system. Table 4.10 lists the factors and the multiplicative constants to be used to calculate the

short acting insulin dose.

Meal Size

OPTION MULTIPLIER

Nothing 0
Light 0.6
Normal 1.0
Large I.S

None 1.2
Minimal 1.1
Normal 1.0
Heavy 0.75

Well 1.0
Unwell 1.2
Verylli I.S

Table 4.10 Supplementary insulin calculation multipliers

FACfOR

Exercise

Health

Default (standard) insulin doses are taken when no informatiODis available whatsoever. By

default, it is assumed that all factors DOtentered are "Normal". In all cases where an item such

as exercise is missing, the insulin dose multiplier for the missing item is set to 1.0.

Note that the multiplier for a meal size of "nothing" is zero. This over-rides aU other

multipliers except high glucose values. In cases of high glucose values, the glucose-related
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insulin dose multiplier is used to calculate a supplementary dose which would be given if all

other factors had their default values, i.e. 1.0. In cases of missing or low glucose values in

conjunction with a meal size of "nothing", the dose of short acting insulin is set to zero.

As outlined below, these multipliers may be customised to individual patients. For instance

patients who are extremely sensitive to prevailing pre-prandial blood glucose may require much

higher multipliers for the blood glucose section; this data is Dot directly under the patients'

control to alter, but is the responsibility of the prescribing physician.

Non-compliance

Non-compliant patients do Dot follow advised doses of insulin. Non-compliance bas been seen

as a major problem in diabetes therapy (Bloom and Hart 1980) and has been blamed as a cause

of so-called brittle diabetes (O'Hare 1987). Where psychological reasons for non-compliance

are present then there is little that can be done until the psychological reasons are investigated

and treated. However, Don-compliance may be due to patients belief that they know that a

different dose is required. Previous systems have failed to acknowledge non-compliance of this

type and even when acknowledged it has Dever previously been utilised.

Rules for doses taken that are different from those advised check whether the resultant offset

was within the target range. If not, then if the offset is positive despite more insulin than

advised or the offset is negative despite less insulin than advised. then the dose taken was better

than the dose advised. The dose taken is subsequently used as a base for future days.

Use or tbe Notebook

The notebook option is available at any time via the INFORM ME option; it is also provoked

automatically by certain events within the normal data entry sequence: hYPOs.unusual blood

glucose values and non-compliant insulin doses are all questioned for a reason. Unusual blood

glucose values are defined as those which are not within two standard deviations of the moving
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average blood glucose value for the time of day. Another situation where the notebook may be

useful would be for ill health events.

The notebook explanations entered by patients are a useful research facility as they may later be

categorised into a menu system if any perceptible pattern emerges. For example, it may be that

hypos may be related primarily to just the four overall categories of unexpected exercise,

illness, inadequate diet or changes in the insulin dose; these options may be offered as a sub-

option after a hypo event is recorded. t.e. by a menu showing Exercise, Illness, Diet or Insulin

and may, in turn, trigger rules for adjusting insulin by different amounts. In one of the few

previous studies of reasons for hypoglycaemia it was shown that most episodes of

hypoglycaemia are due to changes in activity or diet and not to changes in the insulin dose

(Swenerton et alI991).

TIlE POIRO MANAGEMENT PROGRAM (pMP).

Several parameters need to be set by the physician when new patients begin to use the POIRO

system for the rust time. In particular, physicians need to decide on the target blood glucose

levels, safe limits on insulin dose adjustments and the multipliers for supplementary short

acting insulin. Default values for the multipliers and target blood glucose levels are provided.

Insulin dose limits may be set to plus or minus SO% of the starting dose or 6 units, whichever is

the greater. This should give a reasonable margin for safety whilst still allowing several dose

increases

All parameters concerned with the adjustment of insulin doses may also be altered. Especially

the offset range before doses may be increased, as depicted in the dose adjustment curves of fig

4.16; this is presently set at 1 mmolll. The time delays between m~s and preceding or

succeeding glucose values, the sensitivity to insulin, and the maximum permitted percent

increase or decrease of insulin dose may all be given different values although the default

values are probably most appropriate for initial bials with the device.
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A close relationship between the physician and patient system is an essential factor mentioned

in the conclusion of chapter 3. A simple facility for transferral of data from POmo to the

control system was required. Communication programs originally designed for the system were

far too complex for use by non-computer oriented physicians. Special routines were developed

which are simply activated by Ihe physician connecting the two computers with a simple cable

and then pressing the appropriate key on the physician's PC. The routines were limited slightly

in speed due to the use of a portable PC for transfer of the data away from normal sites during

the clinical trials (see below). Wilh the advent of portable computers wilh much faster

processing power, lhe transfer of a complete me of two thousand data items is considerably

speeded up and should take less than one minute.

The physician managerial program contains many data presentation and summarisation

routines. Statistical tables may be generated showing minimum, maximum. median and

quartiles of glucose and insulin data. Graphs of insulin doses and glucose test results by time of

day may be viewed. Overall glucose control is assessed by a box and whiskers plot; lhe overall

control graph also includes an option to show the daily M-value (SchlichtkruU et al196S)

plotted for any three week period.

Other information of interest includes statistical summaries of glucose in terms of lhe moments

about the mean: i.e. the mean, standard deviation, skewness and kurtosis. A graph showing

mean daily blood glucose versus mean daily standard deviation as flfSt suggested by Piwemetz

(1990) is included. Glucose data are divided into those recorded wilh computer advice and

those without computer advice and "best fit" straight lines are calculated and plotted for the two

sets of data for comparison.
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EVALUATION AND VALIDATION

Introduction

Two methods of evaluation and validation have been used for the POIRO system: clinical trial

and simulation. Clinical trials were carried out in 1989 and 1990. These trials had common

aims to obtain patient feedback about the use of the system and its effectiveness as measured by

the parameters of glycaemic control, i.e. pre-prandial blood glucose and long term

measurements haemoglobin Ale and fructosamine. The initial trial assessed effectiveness of

the algorithms with a fixed target blood glucose whilst the second trial assessed the algorithms

with a variable target blood glucose based on the feedback loop of actual mean and standard

deviation of blood glucose values recorded.

In order to assess the algorithms theoretically, a metabolic simulation of blood glucose intake

and metabolism was written and hooked into the program to simulate a period of one month of

insulin dose adiustment, The patient parameters of sensitivity to blood glucose, meal timing and

intake, as well as different dose regimens were studied.

CLINICAL TRIALS.

Two formal clinical trials have been successfully completed. The first trial was of controlled,

open randomised crossover design; the second trial was of controlled sequential crossover

design. Six subjects took pan in each of the trials, full details and results of the fust trial are

given in the next section, followed by a description of the changes made for the second trial and

interesting results of the second trial.

Both trials were carried out with the close cooperation of the collaborating establishment in this

research, the Diabetes Research Laboratories (DRL), Radcliffe Infumary, Oxford. Patients were

recruited by the Laboratory's diabetic liaison nurse, sister Jill Steemson based on eligibility
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criteria set out in table 4.11. After selection, the patients were educated in the use of the POIRO

system for about one bour by a clinical collaborator (Liz Pemberton in trial one, Jill Steemson

berself in trial two). The clinical collaborator subsequently bad to arrange to meet each subject

once per week to transfer data from POIRO to the PMP running on a PC. At the start, crossover

and end of the trial she also took blood samples for measuring biochemical indices of control. If

any subjects were concerned about anything during the trial, medical backup was proved at all

times by an expert pbysician from the DRL and by Sister Steemson (emergency telephone

numbers were provided on the "INFORM ME" screen of the hand-held computer as well as on

the printed instructions.

The aims of trial one were to determine the effect of the POIRO system on the following

factors: pre-prandial blood glucose values recorded by the patients, their overall glycaemic

control assessed by mean glycaemia and glycosylated haemoglobin, insulin doses. the number

and severity of hypoglycaemic episodes, the subjects' lifestyles and their attirudes towards

diabetes and their opinions on the use of computer decision support systems.

Subjects were chosen for the trials on the basis of their control being sub optimal based on

historical HbAle levels in the range 8-10% (normal range 4-7%); full inclusion and exclusion

criteria are given in table 4.11.

INCLUSION CRITERIA
I History of raised glycosylated haemoglobin - HbAI > 8%
2 Established user of bome blood glucose monitoring
3 Capable of recognising and reacting appropriately to symptoms of hypoglycaemia
4 Current insulin regimen - basal prandial
5 Willing to alter insulin doses on a daily basis
6 Able to make regular contact by telepbone

EXCLUSION CRITERIA
I History of very bigb glycosy1ated haemoglobin - HbAI > 10%
2 Coexisting steroid therapy
3 Coexisting serious illness
4 Subjects could be excluded at their own or their pbysicians' request

Table 4.11 Inclusion and Exclusion criteria of subjects involved in clinical trials of the POIRO
system
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Trial one was carried out during the period October to December 1989. Six subjects (details in

table 4.12) were recruited for the study; wiUlessed informed oral consent was obtained from

eacb person and ethical approval for the trial was given by the Central Oxford Research and

Ethics Committee before commencement The author prepared the six hand-held computers, the

portable computer and disks for collecting data and trained the collaborator in the use of the

system. Twenty-four bour technical support was also provided by me during both trials. The

patients were recruited and educated by the clinical collaborator as mentioned above and 24

bour clinical backup was provided by consultant pbysicians.

Number
Male:FemaIe
Body Mass Index (kg/m2)
Age (years)
Duration of diabetes (years)
Ultralente dose (U)
Short acting insulin dose (U)
HbAlc (%)

6
4:2
23.4±2.5
32.O:t11.3
12.7±10.9 (range 5-34)
3O:t12
21±5
9.3±1.3 (range 6.8-10.8)

Table 4.12 Subject cbaracteristics at the start of the first clinical trial

In addition to the criteria in table 4.11, subjects were asked to follow a consistent nature of diet

throughout the trial, althougb changes in size and timing of meals was not discouraged as the

device is designed to cope with meal variation. In order to acbieve maximum benefit, subjects

were advised to carry out daily four point blood glucose profiles, The Exactecb blood glucose

meter was used by all subjects in order to achieve conformity and accuracy of test results.

Trial Protocol

Subjects eacb received a device pre-programmed with their existing insulin doses for an initial

one week "run in" period with the insulin dose advice function disabled; this period was used to

collect baseline statistics and to ensure that subjects were able to use the device successfully.

Subsequently, three subjects were selected at random to have the insulin dose advice enabled;

the other three subjects continued using the device to enter data only. After the end of the first
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three week period, a "cross-over' was carried out and the advice was enabled or disabled as

required.

Blood samples for analysis were collected at the commencement of the trial and at the

completion of each three week period. In addition, questionnaires were issued before and after

the trial in order to elicit the subjects' opinions of their diabetic control, their understanding of

diabetes and their attitude to the POIRO system.

Results

Five subjects successfully completed the trial, one subject withdrew after a grade two

hypoglycaemic reaction whilst receiving advice. Results quoted below are taken from the run-

in period and the final week of the two trial periods, "On" applies to the period with advice

enabled and "Off' applies to the period with advice disabled. The major quantitative results are

the mean pre-prandial blood glucose and the incidence of hypoglycaemia. In addition, the

variability of pre-prandial blood glucose, assessed by coefficient of variation (c.v.) is used to

compare glycaemic control. Statistics on the other factors, meal sizes, exercise and health are

included to give an indication of the amount of variability in lifestyle of the subjects and the

difficulties involved in control under normal circumstances. These figures are also useful to

detect misunderstandings in the methods of data entry.

The mean pre-prandial glucose levels for each of the four times of day appear in table 4.13.

The results are not significantly different between the two periods with and without advice.

However, there was a significant reduction in mean blood glucose between the run-in period

and the period with the advice function enabled (p<O.(X>7). Regularity of monitoring was high

for all except bedtime snack tests which were not previously carried out by the majority of

subjects. At least three tests were entered per week by all the subjects for the other times of day

throughout the trial.
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Subject Breakfast Lunch Dinner Snack

number Run-in On Off Run-in On Off Run-in On Off Run-in On Off

1 7.49 7.S9 7.70 4.SS S.S6 4.S1 8.54 6.13 6.81 10.50 7.50 6.41

2 6.85 9.04 9.33 8.70 5.20 8.72 9.63 7.80 8.70 7.98 . 7.90

3 11.35 7.56 8.08 12.61 7.30 5.20 10.19 7.02 S.64 12.10 It -
4 6.01 7.35 14.23 13.33 13.28 IS.S6 13.20 7.16 4.60 10.98 8.20 13.18

S 4.44 • 6.12 10.S7 • 7.1S 12.07 • 11.22 8.80 • 8.SS

6 7.64 6.32 6.96 6.80 7.40 5.44 9.93 6.04 4.33 12.30 7.50 10.35

t less than 3 events
- DO events recorded
• subject withdrew from study
Table 4.13 Mean pre-prandial blood glucose results. Comparison of run-in period and final
weeks with and without advice.

Subjects 1,3 and 4 received advice for the first three week period, whilst the other three

subjects had the advice enabled for the second three week trial period. There was a tendency

for subjects in the first group to reduce their pre-prandial blood glucose during the treatment

period and to maintain that reduction in the following period. This suggests that standard doses

were not optimal at the start of the Uial but were optimised during the advice period and

concomitantly that the optimal doses were then continued in the second period. The exception

to this was subject 4 who exhibited the highest reduction in blood glucose in the advice period

but did not keep up the improvemenL An examination of insulin doses taken (fig 4.17) reveals

that subject 4 did DOt, in fact, continue with the optimised doses but gradually regressed

towards the doses advised prior to the trial. A second possibility why a continuation of

improvement is apparent after advice is removed is due to the educational quality of the advice.

Subjects expressed increased confidence in self adjustment of insulin doses on the

questionnaires issued.

Figure 4.17 shows that the majority of subjects saw changes in their individual insulin doses.

this tended to be in a redistribution of the proportions of long and short acting insulin rather
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than significant changes in total daily insulin need. Compliance with advised insulin dose was

greater than 90% for all subjects in the trial period and was not a great problem for the system.

Mean total daily insulin dose (insulin U)
90 ~------~------~---------

72

S4

36

18

D--~·--D-_. •__ .....0- __

0-- -0

~----!

orr

Mean total daily Actrapid dose (insulin U)
36 r-------~--~--~--~~~
24

18

12

6

Run-in On

Off

Legend

Patient 1= []
Patient2- •

Patient 3 .. 0
Patient4= +
PatientS = X
Patient 6= •

Mean total daily Ultratard dose(insulin U)
~ ~------~------~--~~--,

• • Cl • - • • • • _ ~
a

':- -0- ",,__ .-- ....... ,.• • -.: : =--1

Run-in On

Run-in On orr

Fig 4.17 Insulin doses taken by each patient during each period of trial one.
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Subject Grade one Grade two Grade three

Number Run-in On Off Run-in On Off Run-in On Off

1 2 2 1 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 1 0 1 0 0 0 0 0 0

4 2 5 4 0 0 0 0 0 0

5 0 * 0 0 * 0 0 * 0

6 0 0 1 0 0 0 1 0 0

• subject withdrew from study
Table 4.14 Incidence of hypoglycaemia, by grade, during each period.

The incidence of hypoglycaemic reactions remained low throughout the Uial for all subjects

(table 4.14). Subject 4 was again unusual in that the number of grade one hypoglycaemic

reactions recorded was higber during the two treannent periods than in the run-in period. The

period with advice disabled is particularly perplexing as the subject also exhibited much higher

mean blood glucose levels. Analysis of the timing of hypoglycaemic reactions failed to show

any trend and it may be that the subject had unusual circumstances. It was recorded in the

notebook that she was moving house during the second three week period with advice off, the

stress involved in moving bouse is well known and it is also known that stress disturbs blood

glucose levels by similar processes to those involved in illhealth. One aspect of the table is the

lack of any other than minor hypoglycaemic reactions during the advice period, despite the

intensification of insulin therapy.
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Breakfast Lunch Dinner Snack

Subject Run-in On Off Run-in On Off Run-in On Off Run-in On Orf

number < > < > < > < > < > < > < > < > < > < > < > < >

1 0 0 0 0 0 0 0 33 0 0 0 0 14 0 1000 14 0 90 0 0 0 1000

2 0 0 0 0 0 0 83 0 SO 0 SO 0 0 0 0 0 0 0 0 0 - - 20 0

3 0 0 0 0 0 0 14 0 0 0 0 0 14 0 0 0 0 0 - - - - · .
4 0 0 0 0 0 0 28 0 12 0 12 0 14 14 0 42 16 16 25 11 25 6 2511

5 0 14 • • 0 0 28 0 • • 0 0 0 14 • • 0 0 50 SO • • · -
6 0 0 0 0 0 0 0 0 25 0 0 0 16 0 0 0 0 0 0 0 · · · .

t less than 3 events
• no events recorded
subject withdrew from study
Table 4.15 Meal results. Percentage of meal sizes less than «) or more than (» "Normal"
entered

Breakfast Lunch Dinner Snack

Subject Run-in On orr Run-in On Off Run-in On Off Run-in On orr

DUmber < > < > < > < > < > < > < > < > < > < > < > < >

1 0 28 0 0 0 0 0 28 0 0 0 0 56· 0 56 0 2814 40 10 77 0 100 0

2 84 0 100 0 66 0 80 0 100 0 100 0 20 0 0 0 56 0 0 0 - · 66 0

3 0 0 0 0 40 0 0 0 0 0 0 0 42 0 14 0 0 0 lOOt 0 l00tO - -
4 14 28 0 56 o 42 0 14 28 42 0 14 42 0 70 0 33 16 25 4 54 18 46 14

5 28 0 • • 16 16 25 0 • • 0 25 0 20 • • 0 20 5050t • • · -
6 42 0 42 0 0 0 20 0 20 0 0 0 16 16 0 0 0 20 0 0 0 0 0 0

t less than 3 events, - no events recorded, • subject withdrew from study
Table 4.16 Exercise results summary. Percentage of time when exercise less than (e) or more
than (» "Normal" was entered.
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The statistics of the percentage of meal sizes, exercise levels and health are presented in tables

4.15 to 4.17. They show relatively little variation in lifestyle between the three treatment

periods for most subjecrs. Where the pel'centage of meal sizes or exercise levels which are not

normal approaches 100% it may indicate a misunderstanding of the method of data entry of

these quantities, i.e. the relative scale is in relation to what is normal for the individual not to

some hypothetical normal person. For instance, subject 2 regularly entered meal sizes less than

normal for lunch and exercise less than normal for breakfast and lunch. Whilst this may have

been perfectly correct and explained simply by an illness or holiday from work, such trends

may indicate a problem and may be detected by summary statistic screens using the PMP

system. This emphasises the importance of the diabetes educator in conjunction with the

decision support system. Printed instructions did emphasise the relative scales, although it is

unclear how often the instructions were utilised. The importance of correct categorisation of

these factors cannot be underestimated as insulin doses are changed from the standard value

when the factors entered are not normal and small changes in normal insulin may cause severe

hypoglycaemia or hyperglycaemia if the lifestyle changes are only very slight or not carried

out.

Subject Breakfast Lunch Dinner Snack

number Run-in On Off RUD-in On Off RUD-iD On Off Run-in On Off

1 0 0 100 0 0 100 0 0 86 0 0 100

2 0 0 0 0 loot 0 0 0 0 0 . 0

3 0 0 0 14 0 0 14 0 0 0 0 -
4 0 0 84 0 0 56 0 0 lOOt 0 0 82

S 28 • 28 40 • 0 40 • 0 0 • .
6 0 0 0 0 0 0 0 0 0 0 0 0

t less than 3 events
- DO events recorded
• subject withdrew from study
Table 4.17 Health results, Percentage of time in each period when ill health was recorded
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Apart from minor occasional entries of unwell. subject 1 had a tooth abscess during the advice

off period and subject 4 had flu (which may explain some of the earlier observations). Long

term changes in overall glycaemia were assessed by blood tests for HbAlc and fructosamine.

HbAlc fell in three subjects and rose in one, whilst no comparison could be made in the other

two subjects. The results are therefore not significant. although highly encouraging. A total

comparison is however available between the run-in period and the advice Off period, this

shows improved HbAlc levels in all subjects simply due to the addition of a computer.

Subject Haemoglobin A, Fructosamlne

Humber Run-in On Off Run-in On Off

1 9.8 8.7 8.6 400 418 440

2 10.8 10.2 10.6 497 536 646

3 9.2 - 8.9 470 557 459

4 9.1 7.7 8.3 460 459 458

5 6.9 * 6.4 335 * 350

6 9.9 10.1 9.4 450 438 458

- no events recorded
• subject withdrew from study
Table 4.18 Biochemical indices of long term control.

Subjective properties, Le. qualitative considerations are now discussed. The reliability of the

computer and the program itself was high for a piece of previously untried software. Just two

problems occurred which were quickly corrected. The first problem was due to a subject who

entered a zero for a reading of "LO" on his blood glucose meter. This happens for the Exactech

meter for a blood glucose lesstban about 2 mmolll. The glucose procedure was then modified

to permit values no less than 1.0 to be entered. In addition, to allow for the range of meters two

extra buttons for "HI" and "LO" were added to the glucose screen,
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The second problem was due to battery failW'C. Data was lost from the events me whenever the

battery failed or there was a software fault such as the one described above. A facility to make

sure that data is saved (or in computer terms ·Oushed") to the disk was included once this

problem came to lighL Smart card routines were also tested but the limits of speed and data

capacity are too great for this to be acceptable to patients in the present state; (there is a delay

of approximately IS seconds for writing to the smart card).

There was a very positive general reaction to POIRO from subjects. The questionnaires, which

were devised in collaboration with the consultant physician, and administered by the clinical

collaborator, showed evidence that patients who had previously never changed their own insulin

doses would do so if advice from the computer were available. The subjects cited avoidance of

hypoglycaemia as their most important consideration, above the avoidance of long term

complications. This perhaps explained their previous reluctance to experiment with insulin

dose alterations whilst asymptomatic.

No subjects had any trouble understanding the user interface, many desaibed it as "natural".

The "Review" and "Notebook" facilities were greatly appreciated by all the subjects, although

they agreed that the notebook alphabetical keyboard was cramped and it was difficult to enter

any meaningful messages in the limited space of 24 characters.

From a practical viewpoint, the trial subjects considered POIRO to be a minimal intrusion on

their normal lifestyle, althougb they did express some reservations over the size and weight of

the EHT-IO prototype and would prefer a fmal model to be smaller. All subjects expressed

confidence in the reliability of POIRO and said they would use such a device regularly in the

future if it were available.

Trial Two

Trial 2 was carried out in May to July 1990. Again six patients were involved but in this case

all patients had a two week run in period without advice followed by four weeks of advice and
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then another two weeks with no advice. The same consultant physician was responsible for

clinical support, a special diabetic liaison nurse recruited and educated the patients and the

author provided the computers and the technical support. Several modifications were made to

the program used in the first trial in order to improve the algorithms for insulin adjustment and

to improve the reliability and security of data.

For trial one a fixed target fasting blood glucose of S.S mmol/l was set It became apparent

from analysis of results of trial one that setting a fixed target fasting blood glucose was too

inflexible as inter patient variability in coefficient of variation meant that a "safe" target to

avoid hypoglycaemia varied between patients. One subject who took part in trial one had a

grade 1 overnight hypo, followed the next day by a grade 2 overnight hypo which caused her to

withdraw from the study. The ultralente dose had been increased only once from the Original

value before the hypos. As no fasting blood glucose was entered on the day of the first hypo the

algorithms had no reason to reduce the ultralente dose which remained the same. This then led

to the grade 2 hypo. On further inspection, it became apparent that the fasting glucose had

previously been high, which led the algorithms (quite correctly) to increase the ultraIente dose;

the fasting blood glucose was reduced to normal (5 mmol/l) very quickly by the increase. At the

time of the first trial there were no rules included to reduce ultra1ente insulin in response to

overnight hypoglycaemia or hypoglycaemia before breakfast, with no fasting blood glucose for

confmnation. A rule to reduce ultra1ente by ten percent in case of any hypoglycaemia before

breakfast was included after the fll'St trial, along with more flexible methods for calculating

target fasting blood glucose levels. The concept of a moving target fasting glucose was also

invented for the second trial. The theory and implementation is described in previous sections

of this chapter. It is a fruitful area for progress when more patient data is collected for analysis.

The notebook was also used far more in the second trial; when subjects entered hypos,

unusually high or low blood glucose readings or insulin doses different to the advised dose, they

were prompted to give an explanation for the events.

163



Results of the second trial were equally encouraging as those of the first trial, but for different

reasons. Mean pre-prandial blood glucose levels were not reduced as efficiently but the rate of

hypoglycaemia was reduced, both in terms of perceived hypos and blood glucose results below

3.5 mmolll. The total number of reported hypoglycaemic episodes was swprisingly small which

suggests that those patients who, nevertheless, recorded several low blood glucose values may

not be aware of their own hypoglycaemia This is a controversial issue amongst diabetologists

and human synthetic insulin manufacturers and has been widely discussed elsewhere. So far

there is little reliable evidence that human insulin reduces awareness of hypoglycaemia.

Higher variability of factors such as meal size and exercise level was also apparent in the

second trial. One subject started her advice period by regularly recording a meal size of

"Nothing" for breakfast. The subject explained that her normal routine prior to the trial was to

inject her morning short acting insulin early and 10 eat much later (she entered a snack at this

time). This misunderstanding of the system meant she was regularly advised to take no insulin

and consequently exhibited much increased midday blood glucose results. She was advised to

enter "Normal" at breakfast time if she was following her normal routine. She was also advised

of the dangers of delaying food for more than half an hour after an injection. The same subject

was also unlucky enough to sustain an insect bite which caused severe inflammation and

consequently high blood glucose values. It is difficult to allow for illhealth and stress in a trial

of this kind where numbers are small, although these qualitative observations are important for

future research work and serve as examples of the many problems which physicians encounter.

Other Significant Observations

Interesting observations were drawn from other users of the device who were not part of either

of the clinical trials. The distribution of insulin was changed in some patients so that they had

more insulin at lunch time. On questioning one patient it became clear that his main meal time

was at midday not the evening meal as assumed by many physicians when initiating insulin
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therapy. This example highlights the dangers of making too many assumptions concerning

individuals in fitting them to the stereotypical patient.

Phase Plane Analysis and Possible Chaotic Behaviour.

In any feedback system, such as insulin/glucose dynamics, where the discrepancy between the

desired glucose and observed value is used to adjust the strength of a negative feedback signal,

i.e. insulin adjustment, the dynamics of the system are important. The approach to the end-point

(in this case near-normoglycaemia) could be too slow or there could be regualr

overcompensation, leading to oscillation or even unstable behaviour. One method of

investigating this is to look at phase-plane behaviour (Rapaport 1977).

This project provided. for perhaps the fmt time, an opportunity to analyse diabetic outpatient

data via the use of phase plane plots of insulin doses taken versus home monitored blood

glucose. In an analysis screen implemented in the PMP program. the time series of insulin

doses versus the following fasting blood glucose values were joined in chronological order by a

dotted line if more than one day had elapsed between points or an unbroken line for time

differences of one day. This pictorial analysis method gave an indication of possible

optimisation to the optimum dose for normal events and a more mathematical analysis of the

method should be developed. Due to the more variable nature of post-prandial blood glucose

response to short acting insulin the method is probably more useful for the ultralente dose. An

example plot is shown in fig 4.18. this shows the fasting glucose offset, or delta glucose, versus

the previous dose of ultralente for the four weeks of dose adjustments made by porno for a

Single subject of the second clinical trial. The plot is typical of many subjects, it shows

gradually increasing ultralente doses having little effect for some time until a large effect is

present some four to five days after the initial increase. There follows an interesting spiral

pattern which appears to have a focal point somewhere around the SO unit mark.

This analysis thus raises important questions about both the dose adjustment strategy and the

nature of the underlying physical characteristics of individual patients. The graphical

16S



representation of the glucose response to insulin dose adjusunents is a new method of education

for patients and physicians. The method could successfully be applied inmany other treatment

adjustment fields and could, as stated earlier, provide evidence of whether individual patients

have predictable variations and even predictable underlying diurnal variation, although the last

of these claims is by far the most difficult to quantify and present separately from the

background "noise" of physiological glucose dynamics.

-1

Fig 4.18 Phase plane plot o/fasting glucose offset (measured value- target) versus the previous

evening's long acting insulin dose for one subject during the second trial.
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Phase plots of delta glucose versus the previous short acting insulin dose taken are far more

variable and difficult to quantify due to changes in standard factors affecting the dose as well as

the changes in the standard dose brought about by the algorithms. One method of analysis

which has shown some pattern is to ignore supplementary insulin and to plot the standard dose

versus the delta glucose. This shows that glucose levels vary differently for different patients

(which is no surprise) and that the level at which an insulin dose change is effective is also a

variable between patients. There may be a chaotic influence to the data. in which case there is

no way of completely cutting down the variability. However, if this were the case, the

assessment of when the glucose delta is outside the chaotic range which would provide

optimum control is essential if insulin doses are to be altered at the right times. Thus, the limits

to which blood glucose may be allowed to vary, which are used to set limits on the dose change

curve should be set for individual patients and sbould depend on the chaotic attractor of the

particular patient's previous blood glucose results.

Multivariate Analysis

Parameters for insulin supplements due to variations in meal size, expected exercise, current

blood glucose and health are given approximate values based on available information and

expert opinion (see table 4.10 above). It would be dangerous (as well as extremely difficult) for

the band held system to alter these parameters. The alteration of sensitivity parameters by the

CAMIT system (Schrezenmeir et al 1985b· see chapter 3) resulted in problems of oscillatory

behaviour of insulin doses and blood glucoses. The optimisation of these parameters is far

better left to the pbysician management system wben a sufficient amount of data has been

gathered to carry out a statistically significant multivariate analysis.

Analysis of data from the first twelve patients bas, however, been inconclusive. Coefficients of

correlauon between parameters have been higb in occasional patients but no clear trends have

appeared whicb would reliably point to automatic parameter optimisation of this kind.
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SIMULATION.

The algorithms for adjusting glucose were evaluated by computer simulation. The basis of this

simulation model of glucose metabolism was the minimal model of Bergman et al (1982) with

modifications of Furler et al (1987). Further modifications were made 10 include injected

insulin (Kobayashi et al1983. Owens 1986) and ingestion of carbobydrate (Radziuk

1978.1985).

The basic code for the simulation of the metabolic pathway was produced using a metabolic

simulation research 1001-SCAMP (Sauro and Fell 1991). The compartmental approach

converted into a suitable pathway type model for use in the SCAMP simulation tool. The code

produced was used to repeat experiments from the Furler paper 10 validate the program and

then the simulation code was integrated with the algorithms for adjustment. Modifications were

made to allow repeated simulations of time periods in order to simulate an entire month of dose

adjustments.

Other factors investigated included variability of meal times (using a Poisson distribution),

relaxation of limits in dose adjustments and other factors which could not ethically be evaluated

in the clinical setting.

Background

Simulation models of glucose metabolism fall under two broad beadings: Comprehensive

models and Simple models. Comprehensive models predict overall system behaviour under a

variety of perturbations. The model is non linear and sbows the crucial processes of glucose,

insulin and glucagon dynamiCSand their interrelationships.

Simple models were pioneered by Bolie in 1961 (Berger and Rodbard 1989) but have not had a

major impact due to their lack of sufficient detail. Further developments looked for models

wbich could still be called simple but showed optimal complexity for modelling the system of
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interrelationships. These so called minimal models are DOW widely used for non invasive

evaluation of insulin sensitivity from IVGT tests.

External
Glucose

Non-Insulin dependent

Plasma Gluco::s:e__ ----p...l~(-G:.:(t)~--G-o;.o..) -T

(a)

Insulin dependent
(Includes net hepatic
glucose balance)

(b)

_P_3_(I_f(_q_-_IJ ~~~---p-2-de-~-y----~~

(c)

External
insulin

Decay productsPlasma Insulin

1st order decay (n)

Fig 4.19 The simulation model (a) Glucose compartment, (b) Insulin-dependent rate constant

x, (c) Plasma free insulin compartment, including a model of 2 types of anti-bodies. (see text).
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Description of the Simulation Model

The simple model employed for these simulations consists of two compartments for plasma

glucose and plasma free insulin (i.e. available insulin). The external source supplies glucose at

a rate Fa which is divided by the glucose volume Va; There are then two types of glucose

disposal: non insulin dependent (taken up in red blood cells and the kidneys etc.) and insulin

dependent (e.g. in muscles). This is described by an insulin dependent rate constant X. The

available (or free) insulin IF has one input FJ and three disposal methods: decay, which is

assumed to be of first order with parameter n and two reversible processes of binding to

antibodies. Two types of antibody binding are modelled which were first proposed and

validated by Berson and Yalow (1959). The set of differential equations derived from this

model are (Furler et aI 1985):

dO
_ = (p.-X[t])G(t)-P.Go+FaNa
dt

(E4.11)

dX
- = P2 X[t] + P30.,(t) - 10)
dt

(E4.12)

dIp dIBI dIBJ
_ = F.(t)NI-nIp(t)_
dt dt dt

(E4.13)

(E4.l4)

(E4.15)
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The parameters PI and P2 are negative quantities. The model is constructed so that blood

glucose tends to a reference value Go if the insulin level bas its reference value 10. The rate of

change of the delayed insulin action term X tends to decrease as X increases and tends to

increase as free insulin becomes elevated above its reference level 10.

Parameter values for association and disassociation constants k. and kd, and total binding

capacities Cor.were taken directly from Furler et aI (1985). For a full description of the model

refer to Furler et aI (1985) and Bergman et al (1981).

This model of glucose metabolism was converted into metabolic pathways for use in the

metabolic simulation tool SCAMP. The simulation model produced was validated against the

published model's results using original parameter values. In order to utilise the model for

testing the dose adjustment algorithms of POIRO several modifications bad to made. First, the

model included only constant infusions of both glucose and insulin, the equations subsequently

employed for insulin absorption from sub-cutaneous injection and for glucose appearance after

meal ingestion were incorporated in the SCAMP model using timed input equations.

The absorption of insulin was modelled using first order appearance and elimination rates in

order to give an insulin concentration C at time t after a dose D, Vdis the apparent distribution

volume of insulin (Kobayashi et al 1983).

K.D
C = (e-(Jre,) _ e-(K.,»

Vd(K.-KJ
(FA.l6)

The parameters K. and Ke in equation E4.16 were chosen for each type of insulin employed to

fit with published results of insulin concentrations (Owens 1986). Only the two main types of

insulin used in band-held system trials were actually modelled (i.e. Actrapid and Ultratard),

From actual data collected by the hand held device the distribution of meal times seemed to fit

a Poisson distribution (fig 4.13 is again a typical example). Meals were, on the whole, quite

regular, occasionally slightly early and occasionally late by up to two or three bours. The
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distribution used for simulating day-~day meal time variability exhibits this high probability

within the fll'St portion with a long tail after the normal meal time.

Simulation Results

With constant normal meal sizes, the dose adjustment algorithms quickly and smoothly reached

optimum insulin doses and thus normoglycaemia Variability of meal sizes produced a slightly

longer time to settled doses; with large variability the doses did not settle down to a single dose

but varied by differing amounts around a mean dose. Variability of meal times produced

similar results, which implies that the system of allowing for meal time variability was

satisfactory .

The results suggest that the algorithms lead to stable blood glucose values and do not

intrinsically cause instability or oscillation. They are also stable with respect to quite high

perturbations in meal timing and size.

Since the simulations were carried out, new data and models have become available. In

particular, the model of Berger and Rodbard (1989) includes equations for insulin injections

which take account of the amount of injected hormone in the calculation of the duration of

action of the dose. This phenomenon is well known to exist and is included in Renner's basic

rules of insulin therapy (cb. 3). However, the Berger and Rodbard model does not take account

of insulin antibody binding as the effects are probably minimal with human insulins. Effects

studied in the paper included a change of timing of the morning insulin dose and a change of

insulin regimen. They concluded from these comparison studies that an optimal insulin

regimen consisted of 3 short acting doses of insulin before breakfast. lunch and dinner with a

dose of intermediate acting insulin before bed.
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CONCLUSION

The hand-held system is a flexible and simple to operate unit which should provide optimum

outpatient decision support for people with diabetes. The system has proved itself both in

clinical trials and in simulation studies. Widespread clinical trials are essential to provide large

amounts of data for the study of parameter setting by multivariate analysis. The limitations of

the device with respect to general diabetes advice are DOtthought to be a significant problem.

The more general advice expected by diabetics is best provided via a physician in a clinic

consultation.

One of the major criticisms of all intelligent dose adjustment computers is that they rely on

accuracy of blood glucose measurements entered by users. Studies by Mazze (1985, 1987) have

shown the increase in reliability of patient reporting with the introduction of memory meters. It

is of great importance that a blood glucose sensor which is quick and accurate should be

incorporated in a future development of POmo although there is little reason to disbelieve the

blood glucose test results entered by any of the patients who have used this system. The

problems of fabrication of insulin doses for psychological reasons is completely outside the

scope of computer systems! Computers can help reasonably self-motivated individuals to

achieve better glucose control in the easiest possible way with the minimum of intrusion on

their normal lifestyles.

The use of a secure data storage medium, such as smart cards, is essential. If a modified form of

POmo is the answer, then the power ON/OFF switch should be modified so that the system is

switched on by pressing it but can only switch itself off via the sleep facility of Don-use for a

specified time (say two minutes). This would ensure that data was backed up after every entry

session and would save time at the next meal time.

The algorithms depend on intelligent parameter settings for their success. The parameters for

calculation of the moving average fasting blood glucose targets may be calculated by analysis
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of the probability distribution of previous values; the parameters for calculation of thresholds at

which it is advisable to alter the insulin dose may be calculated using chaos analysis in the

future and the parameters for calculation of supplementary parameters for multiplying doses for

non standard factors may be done using multivariate statistical analysis. None of this analysis

however is appropriate to be carried out within the POIR.o system and the selection of

parameters must be sanctioned by a competent, trained physician.

It is now a primary aim to provide decision support for physicians interested in the clinical care

of diabetes who are not, nevertheless, diabetes specialists. The clinic-based POIRO managerial

program has been successfully employed to set parameters by band for some time and a logical

progression of this is to develop a clinic based decision support system to help decide on these

values.

The current managerial program has been modified to provide a subprogram of the new clinic-

based system so that full compatibility of the systems is possible in principle. The new clinic-

based decision support system is introduced in the next chapter.
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CHAPTER 5 - THE PHYSICIAN-RELATED, CLINIC-
BASED DECISION SUPPORT SYSTEM

INTRODUCTION

Between 1 and 2 % of the world's population has diabetes. With such a huge number of cases it

often falls to relatively inexperienced physicians to decide what is the correct therapy for

individual patients. Evidence shows (Gale 1990) that it is difficult for inexperienced physicians

to decide which therapy to apply from diet therapy, oral hypoglycaemics or insulin. In

developing countries, the problem is exacerbated by a relative or complete lack of facilities and

medical personnel.

Although any decision support system would need to cover the whole gamut of diabetes

therapy, from initial diagnosis through to complete insulin replacement therapy, the major

decision support requirements of physicians fall in initialisation and adjustment of insulin

replacement therapy.

Decision making is especially difficult when information provided by patients is incomplete,

uncertain or missing. In especially difficult situations, hospitalisation of patients is the only

option. However, by careful application of certain default rules of therapy, backed up by

education and counselling by bealth care professionals, it should be possible to initiate and

optimise therapy on an outpatient basis.

SYSlEM OVERVmW

Decision making in diabetes management is provided by the PRESTO diabetes therapy decision

support system. Pbysicians are prompted to enter information in as much detail as they desire;

the system then makes suggestions about each section of the consultation as it progresses. At

the end of the consultation, the system provides final suggestions for therapy adjustment. Help

on bow to use the system is available at all stages: the first stage of help describes how to enter



information, the second stage explains why the information is useful. The fmal therapy

adjustments are justified by explanations built up during the consultation and a full audit trail of

the consultation is provided on a summary card which may be printed automatically at the end

of the consultation if required.

For insulin treated patients, an add-on module may be called (derived from the PMP eh. 4)

which links with the POIRO patient-oriented decision support system described in chapter 4.

This could, with further refinement, provide an integrated solution to diabetes therapy

optimisation. Physicians will be able to set safe initial insulin doses, guided if necessary by

PRESTO, which will be gradually optimised by POIRO between consultations. At the present

time, this module is incomplete as it may only by used to initiate POIRO. Subsequent data

retrieval and analysis still has to be done using the original stand-alone POIRO management

program.

The POIRO system is an unusual and highly specialised device which has traditional algorithms

at its core in order to exhibit "intelligent" behaviour, whereas the PRESTO system is built

around much more traditional AI techniques but includes some Dovel features. It uses rules,

facts and defaults for reasoning about knowledge. Semantic connectors and frames are

extensively used in the design in order to simplify the rules and fuzzy variables are catered for

in order to use more natural representation of knowledge.

The overall aim of the system is to provide decision support for inexperienced physicians who

are faced with decisions about patients' diabetes therapy. As a side issue, the system also

provides a data entry and data reduction facility: it provides an overview of each patient in

simple terms and this could prove of value to other medical specialities, such as renal clinics,

which are often required by diabetics.

The system provides a common structure to consultations so that no questions are forgotten or

given less prominence unless physicians specifically leave out sections, which they are able to

do if they so wish. However, the system is modular which allows the flexibility for each
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section to be carried out individually in any order. The nature of questioning in medical

consultations and the amount oC time spent OD each general area (weight. HBGM,

complications etc.) has been studied CI'aylor et a11991) but no general principles bave emerged

about the relative importance oC sections. Some general principles to guide the order oC

sections have been included but these may easily be dlanged by the physician.

A prototype system was developed very early on in the project and quickly made its way into

the knowledge elicitation sessions. After completion of each consultation, the suggestions

made by the system (if any) were shown to doctors who compared them to their own advice and

made constructive criticisms.

Seminars were held regularly at which prototypes oC the system were displayed to a group oC

physicians. Feedback was collected from physicians regarding the system's suitability of

advice, the level oC complexity and the improvements that could be made.

Selection or Development Platform

The PRESTO system's aims required a more wide ranging examination oC development options.

Both the selection of hardware and software was less restricted than the POIRO system. In the

end, historical and practical considerations could not be ignored; however, the final selection

would probably not have changed given different circumstances at the time.

The development of POIRO bad been very confmed to a small domain, whereas the PRESTO

system had a much larger, and consequently less weU~ermed domain. This required a more

flexible development environment that would permit inacmental prototyping and a user

interface that could be used by physicians.

The three possible platforms for software development in the desk-top computing field were

identified as Sun Workstation running UNIX, mM compatible PC under DOS, and Apple

Macintosh. The important requirement oC aVailability within the clinical setting restricted or

eliminated the use of Sun and Macintosh systems and the PC option was therefore selected.
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The eventual choice of hardware was an Elonex 386-based Lap- Top portable computer running

under MS-DOS. The choice of software methodology lay between a development shell that bad

inference capabilities and a user interface building tool, or a low-level programming language.

The domain knowledge acquired during the early stages of this section of the research pointed

strongly towards a requirement for logical inference mechanisms with symbolic representation.

A re-implementation, at this stage, of the inference capabilities of Prolog or more high level

knowledge-base development methods was considered unwise as the system would probably be

redeveloped at a later stage for wide-spread commercial development For the development of a

research prototype the platform selected was considered optimal.

There was also a tacit aim within the research to construct a decision support system for

diabetes therapy with components which could, in theory, provide the foundation for a more

generic application of decision support to other clinical domains. The main research issues to

arise from this work include the representation of knowledge, the use of default reasoning and

research into the problems of multiple decisions and their influence on each other. Reasoning

by default and non-monotonic reasoning are relatively new ideas in AI which are addressed in

the system in some sections; the use of these techniques could be more widespread, if

necessary, in a production system.

KNOWLEDGE ELICITATION

Background knowledge

There exist many established medical outlines for physicians caring for diabetes (Hill 1987,

Daly et alI984, Olson 1981. Oakley et al1978) and for insulin treatment of types Iand n

diabetes with the basal prandial regimen (Holman and Turner 1985.1988). This makes the use

of rule-based expert system technology particularly appropriate for decision support in the

clinical setting.
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Knowledge elicitation from the literature was mainly employed 10 identify the major functions

for inclusion in a physician-oriented decision support system (Williams et al 1988). The eight

functions which were identified are shown in an indented knowledge table (table 5.1).

Table 5.1 Diabetes therapy depends on:

Patient history
Current clinical status
Current therapy
Home glucose monitoring
Clinic measurements
Hypoglycaemia
Diet
Therapy administration

The adjustment of therapy depends first of all on what the current therapy is: whether it is diet

alone. or one of the other therapeutic options. Table 5.2 lists the hierarchy of therapies. the

major categories in the first column correspond 10modules (or knowledge bases as they are

termed) in the PRESTO system; the therapies are listed in order of increasing intensity. csn
(Pump) therapies are not listed as they are not appropriate 10 this decision support system and

are still very uncommon.

Table 5.2 Therapy adjustment modules

No current therapy (for newly diagnosed patients only)
Diet therapy
Tablets: divided into

Dexfenfluramide
Sulphonylurea
Biguanide
Sulphonylurea & Biguanide

Tablets (usually sulphonylurea) & basal insulin
Single insulin: divided inlO

Basal insulin only
Mixed insulin

Multiple insulin: divided into
Short & intermediate acting (soluble isophane regimen)
Short & long acting (basal prandial regimen)

Adjustment of diabetes therapy seems to come down to a single basic equation (ES.I).

If control is Inadequate then change therapy (E5.l)
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This simplistic assessment does not show which factors are important; much more detail is, of

course, required in order to assess such high level concepts as control. Table 5.3 shows the

indented knowledge structure for level of control.

Not all the areas are required for every therapy type. therefore a further layer of influence is

also shown; this shows that the therapy type precedes, and controls the decision to include any

of the other information.

Table 5.3 Factors used to assess control.
Level of control depends on

Hypoglycaemia
Home glucose monitoring
Clinic glucose measurements
Biochemical analysis (e.g. Haemoglobin Alc)

Which of the above control factors to use depends on
aim of therapy
type of current therapy
availability of the control factor

The type of therapy for newly presenting diabetics is decided at an initial consultation once

diabetes has been diagnosed; the dependence of initial therapy on control factors is shown in

table 5.4. Note that severely ill type I diabetics who present in ketosis or pre-ketotic state will

almost certainly have been started on insulin replacement therapy immediately in hospital.

Guide-lines for initialisation of insulin therapy for hospital in-patients are covered in Holman

and Turner (1988) but are not included in PRESTO which concentrates solely on outpatient

therapy initialisation and adjustment.

Table 5.4 Initial decision of therapy

Type of therapy depends on
type of diabetes
level of hyperglycaemia
weight (or body mass index)

Type of diabetes depends on
presence of ketones in blood or urine
level of byperglycaemia
presence of islet cell antibodies
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Opinions differ as to the most appropriate initial therapy for newly diagnosed. non-ketotic (type

Il) diabetics. The clinical management strategy used as a basis of the PRESTO decision

support system is outlined in chapter 4, based OD the guide-lines by Holman and Turner (1988).

Therapy progresses in order of the list of possible therapies (table 52). Patients begin on no

therapy and at the f11'Ststage are advised to alter their diet to one more suitable for their needs

in relation to weight and glycaemic control (Lean and James 1986). If the fasting blood glucose

is still high oral hypoglycaemic therapies are considered. The next step in overweight patients is

usually metformin, followed by sulphonylurea or possibly both these agents together. After

oral hypoglycaemic therapy has reached maximal levels and fasting blood glucose remains

high, insulin may be applied either with a single daily dose of a long acting insulin or a single

or twice daily dose of a mixed insulin. The most intensive therapy offered is multiple insulin

injections; these consist of either short and intermediate acting insulin doses or long acting

insulin with short acting insulin added to correspond with meals.

The choice of initial therapy in individual cases takes account of the fasting blood glucose,

measured at the clinic, and the aim of therapy. The aim of therapy may be split into two

categories: Exemplary control aims for fasting blood glucose levels and pre-prandial blood

glucose levels within the normal range; i.e. 4-6 mmolll. Less tight control aims to maintain the

patient symptom free; this normally corresponds to a fasting blood glucose in the range 6-10

mmolll. This choice depends very much on the context of the patient; such factors as age,

coexistent morbidity and infumity may be taken into consideration by the physician. PRESTO

does not help with this decision as it was felt that many of the relevant factors would be

impossible to quantify in any computerised system; it was also appreciated by physicians who

did not wish to have decision support in this instance. Inprinciple the decision could be aided

but the extra complication and increased data entry required make it counter-productive.
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By default, it is recommended that exemplary control is the aim for most diabetics whilst less

tight control is appropriate for the elderly and those in dangerous employment where

hypoglycaemia must be avoided at all costs (e.g. roofers).

Once active anti-diabetic therapy has commenced, the goal becomes the achievement of the

designated aim of therapy. The adequacy of control is assessed from level of control and aim

of therapy as shown in table 5.5.

Table S.S Adequacy of control
Adequacy of control depends on

aim of therapy
level of control

The enlargement of the vague statement on the right band side of equation ES.l to change the

therapy is the main problem and forms the beart of this therapy adjustment decision support

system.

SYSTEM DEVELOPMENT MEmODS

A prototyping method of development was used. I attended and took notes at weekly diabetes

clinics of three different types. One clinic was involved in a research study and followed mainly

standard researcb protocols which give no room for flexibility within predefmed "safe" limits of

therapy (the UKPDS study). Therefore. all the information from these clinics was available in

printed research protocols wbicb indeed form an important part of the PRFSTO system design

process. The second clinic was carried out by the same clinicians but was not part of the

researcb study. The third clinic was carried out by a different clinical department and was a

standard NHS clinic.

There were several noticeable differences in policy and implementation between the three

clinics. The major organisational difference was the timing of the clinic; the third clinic was

carried out in the afternoon and was therefore unable to utilise a fasting blood glucose
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measurement. The major policy difference between the two bodies of clinicians was the

preferred choice of insulin regimen. The first body of clinicians were primarily using the basal

prandial regimen whilst the soluble isophane regimen was used by the majority of patients who

were seen by the other clinical department's clinicians. Many of the patients of this second

clinical department also used premixed soluble isophane insulin. Home urine monitoring was

not discouraged by this clinic, whereas patients seen by the first department's clinicians were

recommended fasting blood glucose monitoring only, except for elderly stable patients. For

several weeks, actual consultation sessions were monitored using a modified form of protocol

analysis (chapter 2). With the cooperation of expert clinicians modes of operation were quickly

established and elicitation of individual cases was carried OUl

The amount of information which may be recorded in a diabetes clinic is enormous (Williams

et alI988). However, much of the information is not directly used for adjustment of therapy;

for instance, the visual acuity. The knowledge content of data items may therefore be separated

into items used for therapy adjustment decisions, items relevant to complications and items

relevant for administration and research (such as family history, address and name of GP).

Regular clarification and further elicitation about points raised in the clinic was provided once

again by the expert physician involved with the hand-held system. He acted as a knowledge

tsar in choosing the level of information and type of representation to employ. A knowledge

tsar is a heavily involved, committed expert who provides a fmal clarification in cases of

disagreement among other experts, as suggested by others in the field of knowledge elicitation

(Gammack and Anderson 1989, Davies and HakieI1988).

As well as specialist diabetologislS, there are a myriad of supporting bealth-care professionals

involved in diabetes care. Diabetes specialist nurses and dieticians provide probably the most

important contributions to diabetes care after the specialist and GPs. Dieticians were

interviewed (James, Eeley 1991) in order to establish guide-lines for dietary advice within the

system. Consultations with dieticians at clinics also provided useful ideas for implementation
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of the diet module. Diabetic liaison nurses were also consulted on a more casual basis in order

to clarify points of relevance to therapy administration and patients' preferences.

The system specification has subsequently been divided into six opecational knowledge bases

contained in individual modules. The following sections contain the important principles for

each of the modules for data entry and therapy adjustment decision support.

DIABETES TIlERAPY DATA ENl'RY MODULES

Patient history module

This module has little relevance to therapy adjustment but has to be included for initial

registration of patients and for subsequent identification and record keeping purposes. For

adults, it will only be used in the initial consultation. For children, the height will need to be

regularly updated. In the future, such information could be retrieved directly from a

computerised patient record, which may be either card-based or sent by patients' GPs over

networks.

The general information entered is name, bospital number, gender, address and occupation.

Then more specific information about the mode of presentation of diabetes is entered. The

information should only need to be entered for new patients; it may then be arcbived for

retrieval at subsequent clinic visits. The only items of relevance to therapy are the type of

diabetes and the patient's height
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- Xi Pills

Fig 5.1 Initial data entry information displayed on the summary screen. This is normally

entered once only.

If type of diabetes is not explicitly entered, it is inferred from information about presenting

ketones. islet cell antibody titre or hyperglycaemia. At present, this inference is only carried

out if the type of diabetes is declared to be unknown; there is no check within the knowledge

base for inconsistencies. It should be emphasised that the PRESTO system does not carry out

diagnosis but is concerned solely with the management of diabetes. Height should be stable in

adults and is therefore entered only once at the patient history stage. For younger people height

may be entered under the next module "current clinical status".
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Current Cllnlcal Status Module

This module covers high level details of the patient's current clinical status. It should be the first

module to be executed in follow-up consultauons. The most important piece of data entered at

this time is weight which, like height. may be entered in metric or imperial units. The most

common symptoms of hyperglycaemia are listed and may be selected if they are present, If

symptoms are present. therapy is inadequate and the rules within individual knowledge bases

ensure that advice is given to increase therapy.

An assessment of obesity is required in order to determine a preferred diet The weight and

height of patients may be used to calculate various measures of obesity, such as the ratio of

weight to ideal body weight (MeuopolitaD life tables), or the body mass index (BMI). The

latter of these is the current preferred assessment of obesity as it is independent of gender. BM!

is used to categorise obesity level (table 5.6) by the World Health Organisation (W.H.O.). The

equations for calculation of ideal body weight (mW) are given in equations ES.2 and £5.3. The

formula for calculating the BMI (or Quetelet's index as it is also known) is given in equation

ES.4. For the BM! weight is given in kg and height in metres; for the mw, weight is given in

kilograms and height is in centimetres. The BMI has the advantage of being gender

independent, although in the past more attention bas been paid to the ideal body weight.

mw • -0.98 x Height + 0.0049 x Height' + 89 (Male) (£5.2)

• -0.79 x Height + 0.0044 x Height2 + 68 (Female) (£5.3)

BMI. Weight IHeight2 (ES.4)

BM!
<20
20-15
25 -30
30-40
>40

Obesity assessment
Underweight
Normal weight
Overweight
Obese
Morbid obese

Table S.6 W.H.O. Categorisation of obesity from BMI
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Research bas shown (Turner et al1982) that the degree of obesity is a aucial factor in

determining insulin requirements of diabetics treated with insulin, be they type I or type II. The

insulin requirement may be calculated for a standard (72 kg male) patient then multiplied by a

simple factor which bas been given the name lOp value". The P value equations are given for

males and females in equations ES.S and ES.6

P =Weight/(14.3 X Height) • Height (Male) (ES.S)

(ES.6)F .. Weightl(13.2 X Height) • Height (Female)

The six most commonly found complications of diabetes: vascular, retinopathy, autonomic

neuropathy, peripheral neuropathy, nephropathy and feet problems are then covered in

overview. The presence of retinopathy is a factor in therapy adjustment as it bas been sbown

that retinopathy progresses more quickly if diabetic control is tightened quickly; other

complications have no direct relevance to therapy adjustment.

Social history of smoking and drinking is important and is asked early in the consultation.

Smoking does not have a direct affect on the choice of anti-diabetic therapy, but should be

discouraged as people with diabetes are more at risk than people without diabetes from the

common conditions influenced by smoking such as cardiovascular disease. Alcohol potentiates

certain sulphonylurea drugs and, if taken to excess, may contraindicate metformin. In addition,

the blood glucose is affected by the carbohydrate content of alcohol and its effects may disguise

hypoglycaemia. It is common for hypoglycaemia to follow some hours after excessive alcohol.

Ad vice sbould be to avoid alcohol if possible, but if not, then take it in moderation. Practical

advice to a heavy weekend drinker may be to reduce insulin doses to compensate for the effects

of alcohol, the amount of adjustment will have to be found by trial and error by the patient.

Finally in this module, the aim of therapy is entered. The default aim is exemplary control, but

the aim may be changed at any time during the consultation or in subsequent consultations, in

order to check the effect of aim OD therapy adjustment.
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Current Therapy Module

The current therapy options are listed as the first column in table S.2; once a selection has been

made, the second level is assessed by inference from entry of actual insulin formulations or

hypoglycaemic tablets used.

For instance, if a patient's therapy is entered as "multiple insulin", the types of insulin taken are

then entered as "Insulatard" and "Actrapid". The inference is then made that the patient's

insulin regimen is the short and intermediate regimen (or soluble isophane as it is commonly

referred). There is a known problem with this inference in that if no insulin types are entered

the system stops.

For insulin therapy, the current doses taken by the patient need to be entered for each type. For

tablet therapies it is only necessary to ask whether the dose is maximal or sub-maximal; this

should be based on the maximal tolerated dose, absolute limits of each tablet type should be

recorded for use if the physician wishes to check the maximum dose of any individual tablet.

Diet Module

This module covers general dietary advice, as well as specific advice relevant to the type of

diabetes. Two levels of assessment of diet are possible: detailed and overview. A detailed

assessment involves questions about the type of foods eaten at each meal throughout the day,

followed by suggestions on how to modify the dieL The overview assessment option permits

information to be entered in a much higher level form. The distribution and size of meals

through the day are the important criteria. The size of meals may be in portion sizes or in

grams of carbohydrate if the patient has been formally assessed by a dietician and is following a

calorie controlled diet.
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The module records weight trend and patient assessment of adequacy of diet. These figures are

used in the decision about whether to begin active therapy for diet treated individuals or to refer

to a professional dietician.

An option is available for a computerised diet presaiption; this is based on the algorithms of

Lean et al. (1986) and comprises an assessment of the daily energy requirements or basal

metabolic rate (BMR). BMR is related to a patient's ideal body weight (Metropolitan Life

Insurance) as calculated in the current clinical status module. A correction for activity is used

to calculate individual energy requirements. Once energy requirements are known, proportions

of complex carbohydrate, fats and protein are calculated in the ratio 50:35: IS of energy

requirements. This is a decrease in the proportion of carbohydrate suggested by Lean but is a

more realistic target for most diabetics (Eeley 1991) who have to omit any simple

carbobydrates such as sugars from their diet. Actual grams of each component are calculated

by division by the energy content of one gram of each of the components. The equations for

calculation of calorie requirement may be found in the paper by Lean et al. (1986).

The use of basal metabolic rate (BMR) for calculation of dietary energy requirements has been

criticised as excessive (Daly et al. 1985). This has led to the proposal of the sedentary daily

expenditure (SOE) as a base for estimation of energy requirements (Webb and Sangal1991).

The SDE method remains to be thoroughly clinically assessed but appears to produce more

accurate predictions when fat free mass is known. However. the estimation still fares well even

with an estimation of fat mass made using an equation similar to that for BMI but with a

smaller exponent than 2 for the power of height The equations for SOE are given (ES.7 and

ES.8) and may be substituted for the BMR calculations in the estimation of dietary

requirements to improve the estimate if it is so desired.

SDE.28 x Weight - 31 x (WeigbtlHeigbt1.6) + 939 (men) (ES.7)

(ES.8)SOE = 21 x Weight - 27 x (WeightlHeight1.8) + 10S3 (women)
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The physician may select from three aims of diet: weight gaining, weight maintaining or weight

reducing. It is recommended (Lean) that a maximum of 500 keals may be deducted or added

to the basic energy requirements calculated in order to provide steady weight loss or gaio of

approximately 2 kg per month.

Finally, a reminder that these nomograms provide merely an assessment of the total dietary

needs of an individual. Professional, detailed dietary analysis by a trained dietician is desirable

on a regular basis.

Home Glucose Monitoring Module

This module may be subdivided into urine glucose monitoring and blood glucose monitoring.

The method of home blood glucose monitoring assessment is selected from a list which

includes visually read strips, reflectance meter and Exactech meter. If doubt is later inferred

about the accuracy of HBGM then PRESTO suggests a more accurate measurement technique

if possible, or to corroborate the home glucose tests with clinic tests and long term assessments

such as the HbAlc.

Different methods for physician data entry are essential. Physicians do not show much

enthusiasm for transcribing an entire log book to the computer. Even numerical assessments of

the mean and standard deviation are oot intuitively appealing to many doctors. A more

common method of expressing an overview of log book readings is by a range, defined to

contain the majority of readings, or else an overview of pre-prandial blood glucose levels in

symbolic linguistic terms.

Assessment of regularity and adequacy of HBGM is related to entry of the mean number of

days per month on which measurements are recorded and the mean number of readings per day.

It is recommended that patients on full insulin therapy should monitor four days each month.

and take four blood glucose readings in each of those days. Other. less intensively treated

patients are adequately monitored by one fasting blood glucose test per month once relative
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stability is achieved. It is stressed that illness perturbs the blood glucose in all diabetics and

more frequent (ideally daily) monitoring should be carried out during any intercurrent illness.

Home blood glucose monitoring values may be presented at the clinic in one of three ways: A

log book of values. word of mouth or memory meter/computerised log book.

Computerised log books or memory meters should have the capability of displaying at least

some indication of overall control. Ether a mean pre-prandial value over the previous month,

or seven values for example (Glucometer M), or a simple graph of mean daily glucose and/or

mean glucose levels for each time of day (as done by the hand-held system described in ch 4).

Ideally, physicians should also have a personal computer with facilities for communication with

all the HBGM devices now on the market in order to transfer the data for interpretation by

various statistical and graphical methods.

Problems arise with interpretation of patients conventional paper log books. There may be a lot

of data or just a few scattered points. In essence, what is required of the physician is an

assessment of the level of blood glucose before each main meal and before bed.

The expression of pre-prandial blood glucose values in linguistic (or fuzzy) terms allows

physicians to give an overview which does not rely on actual numbers. The range of possible

terms is low, normal, high and very high. Guide-lines are given in the help section but it should

be easy for physicians to decide into which category the test results should fall by intuition.

For more numerically inclined physicians. HBGM values may be entered as mean and standard

deviations, range values. or entire sets of readings. However, the computer merely converts

these numbers into the same fuzzy terms. However. actual levels of blood glucose are used for

precise calculation of therapy adjusunent.
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Clinic Measurements Module

This module prompts for observations and tests carried out in the clinic and laboratory results.

Blood glucose and urinalysis measurements should be routinely carried out in the clinic.

Clinics are best held in the morning so that patients can come fasting. The glucose at other

times of day (e.g. after meals) is higbly variable. The random glucose. as it is called is better

than no indication at all in type n diabetes but is not accurate enough for adjustment of therapy

in type I diabetes. The clinic fasting glucose may be used alone to alter therapy for type II

diabetics. Its use for type I diabetes is merely as a confirmation of the HBGM results reported

by patients. It is recommended that all patients have regular checks for progression of diabetic

complications: In particular an annual review should be carried out at which the items in table

5.7 should be examined.

Blood pressure
Visual acuity
Fundoscopy
Foot examination
Cholesterol and triglycerides

Table 5.7 Annual review - items to be examined

Fig 5.2 Clinic screen, showing biochemistry and examination data entry form.
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Fig 5.3Hypoglycaemia module screens. Dat enlry screen (top) and advice offered (bottom).
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If examination of any of the data entered so far is suggestive of romplications such as renal

dysfunction or hepatic problems then the decision support system notifies the physician.

Further test results which may be entered for assessment of complications include those in table

S.8

Plasma Creatinine
Creatinine clearance
Protein clearance
Potassium
Sodium
Uric Acid

(24hour)
(24 hour)

Table S.8 Biochemical analysis

It is not within the current scope of the system to advise therapy for any of the romplications

presented but the system informs the physician when the level of any test is abnormal and an

appropriate course of action. An example of how the above data may be used is the use of

plasma creatinine to estimate renal function and the onset of nephrotic syndrome. Once plasma

creatinine becomes abnormally high (above 150 mg/dl), the inverse of the plasma creatinine

plotted against time should show a linear relationship. By use of a few timed creatinine results

it should be possible to estimate when a renal physician should become involved and to

estimate the time before active therapy should be considered (Matthews, personal

communication).

Hypoglycaemia Module

The presence of hypoglycaemia (hypos) tends to overshadow other factors in therapy

adjustment decisions as the avoidance of bypos tends to be uppermost in most patients' minds.

In order to properly adjust therapy, pbysicians rll'Stneed to ascertain whether the hypo could

have been prevented by dietary adjustment or insulin reduction. The timirig of hypos in relation

to meals and insulin doses is used to decide which insulin dose to alter or how to adjust the diet

to avoid further hypoglycaemia. In cases wbere there is an explanation for a hypo, for example
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if they are exercise-related, suggestions for avoidance of hypos are given, for example to reduce

a short acting insulin dose prior to exercise.

Therapy AdmlnlstraUon Module

This module is mainly concerned with insulin administration but also questions timing of

tablets for tablet therapies. Short half-life, second generation sulphonylureas may cause

hypoglycaemia in the morning; the tablet may then be moved to lunch time. The time of taking

tablets is questioned and may be used in the therapy adjustment module later to propose a

change to avoid further hypoglycaemia or low pre-prandial blood glucose results.

Various problems may be presented by patients concerned with insulin administration by

injections. Areas covered by this module include problems at injection sites, mixing of

injections and timing of injections. There are four recognised problems which may occur at

injection sites: lipoatrophy - the wasting away of flesh around sites, Ilpohypenrophy- lumpy

deposits of fat, insulin allergy - a red, itchy rash near injection sites and abscesses caused by

non-sterile needles.

PRESTO identifies the problems and gives advice for alleviation of them. The treatment

suggested for the first two problems is usually rotation of injections sites. Allergies may require

a change of therapy to insulin of a different species if they persist. Abscesses may require

surgical removal and treatment. PRESTO will suggest alternative therapies within the therapy

adjustment modules if necessary.

Timing of insulin delivery with meals has been extensively investigated (Kraegen et all981,

Schrezenmeir et alI98Sb). The optimal time of insulin delivery is regarded as 30 minutes

before meals and this is the advice suggested by PRESTO. Periods longer than 30 minutes have

been tried by other researchers but pre-prandial hypoglycaemia has been produced.
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DIABETES THERAPY ADJUSTMENT MODULES

This section is subdivided into individual therapy-related modules which are called into

operation depending on the entry of current therapy.

"No Current Therapy" Module

The selection of initial therapy is made along guide-lines set out by Holman and Turner (1988).

It is recommended that a period of at least three months intensive diet therapy should be tried in

all non-ketotic patients before any active therapy is initiated (UKPDS protocol). The selection

of subsequent therapy is made on the basis of the aim of therapy and the actual blood glucose

level either monitored at home or at the clinic is used as the basis for this decision.

Diet Therapy Adjustment Module

The term "diet therapy" is employed to describe the treatment of type n diabetes when the

glucose level is high in conjunction with obesity and no other therapeutic agents are required to

bring the blood glucose back to normal levels. As outlined above, however, diet is an essential

aspect of all diabetes therapy. The aim of diet therapy is to educate patients to eat a more

appropriate diet, as outlined above and ultimately to lose weight. Realistic target weights need

to be set which patients have a reasonable chance of achieving. As a rough guide a weight loss

of 2 kg is approximately equivalent to a 1 mM decrease in fasting blood glucose.

If the diet is not working, or Ibe blood glucose remains persistently high, the module decides

the next therapeutic option: tablets or insulin. The basis for this choice rests, once again, in the

aim of therapy and level of glucose. Other factors such as alcohol intake, presence of certain

complications etc, also playa part. In particular, Metformin must DOl be prescribed when there

is evidence of hepatic or renal failure due to the increased risks of lactic acidosis.
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Drugs which are said to have a weight reducing effect, such as dexfentluramine hydrochloride,

are sometimes prescribed for overweight type two diabetics but their use is controversial and

should preferably be avoided (BNF March 1992, pl60). Such drugs are therefore not currently

included in the diet therapy module.

Oral Hypoglycaemic Therapies Module

The choice of initial oral hypoglycaemic therapies is limited to two major options:

sulphonylurea or biguanide (Metformin). AUcurrently available sulphonylurea drugs have

been included as options within the system.

The rules for adjustment of oral therapies should be based solely on fasting glucose

measurements taken before breakfast: these measurements are unaffected by meal times and

provide an accurate indication of the level of glycaemic control. The major rule in this case is

" If the fasting glucose is above the target range then advise an increase in therapy".

In conjunction with this, there are rules for switching to insulin therapy if the maximum oral

therapy is ineffective (see above for defmition of maximal therapy): "If the fasting glucose is

above the target range and oral therapy is maximal then advise switch to insulin therapy".

The rules for increasing oral therapies depend on the aim of therapy: If the aim is exemplary

control then oral therapies will be applied only if there is a realistic chance of the glucose

falling to near normal levels of around 6 mmolll, otherwise insulin is advised to be initiated

immediately. In some elderly patients who have no complications, less tight control may be

acceptable and oral therapies may be continued while they have no diabetic symptoms.

There exists a grey area between starting oral therapy with a certain dose and stopping oral

therapy to start insulin therapy once maximal therapy is ineffective. There is no simple

relationship between the amount of tablets and their effect. Rules of thumb for incrementing

tablets were thus elicited and are employed for individual tablet types. Problems of different
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tablet sizes have to be taken into consideration, especially with the more potent sulphonylurea

tablets such as Glibenclamide. An example strategy for Metformin is given in table S.9. Tablet

sizes of Metformin are SOO and 850 mg. The smaller (500 mg) tablets are often used as a "start

up" dose by non-experts but are not advised by experts. The British National Formulary (BNF

1992) contains advised protocols for drug therapy which may be added to the system for any

new oral hypoglycaemic drug as it appears.

IoitiaIdose
IfFBG still high
and then

850mg
1700mg
2550 mg (Maximum dose)

Table 5.9 Strategy for incrementing Metformin.

When the decision is made to stop sulphonylurea tablets and start insulin therapy, an adjusbllent

of the fasting blood glucose (FBG) has to be made to allow for the effect of maximal

sulphonylurea (equation E5.9 a and b).

FBG = 4.S134 x 10 (FB(hO.0426) (fBG <-16mM)

(FBG> 16mM)

(ES.9(a»

(ES.9(b»FBG=20

Decisions also have to be made whether to stop the sulphonylurea or suggest that it be

continued in addition to a basal insulin supplement Once again, the decision is based on the

fasting glucose level.

Insulin Replacement Therapy Modules

As already stated, the area in most need of decision support is insulin therapy adjustment This

falls into two levels of adjusbllent: Choice of regimen, adjusbllent and optimisation of the

chosen regimen. The former decisions are general to all therapy adjusunent modules whereas

the adjustment and optimisation of an insulin replacement therapy regimen is specific to the

current therapy regimen.
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Elicitation of the general principle of insulin adjustment bad already been carried out in the

design of the patient-oriented system. The rules used for that system were suitably altered to

suit the outpatient clinic basal prandial module. The main difference was the higher level of

dose changes suggested. Whereas in the day to day changes made by the patient-oriented

system the maximum permitted increase in dose was 5% the minimum sensible dose change in

the clinic system was 10% with a maximum change of 40% except in exceptional

circumstances (Matthews 1991, personal communication).

KNOWLEDGE REPRESENTATION

Representation of time

The knowledge representation structures are related primarily to times of day. These are split

into 8 parts: 3 meal times and between meal periods (table 5.10).

the time between bed and breakfast.

Table 5.10 Meal times and periods between meals

breakfast
morning
midday meal
afternoon
evening meal
evening
bed
acting insulin
overnight

the first meal of the day.
. the time between breakfast and
variously called lunch, dinner etc. by patients
the time from midday meal to
variously called dinner. supper etc.
the time period until
this is the time when most patients take a snack and maybe long

Temporal relationships are defmed in order to link these time points; e.g. successor of breakfast

is midday meal. Other information is related to these times as follows: Insulin doses are

related to meals by. for example. dose of short acting before Meal (e.g. breakfast). Snacks

between meals are represented as: Snack in morning. hypos are related to their time of

occurrence by relationships such as: Hypo in afternoon includes occasional (number). grade 1

(severity). exercise-related (cause).
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The connecting words (connectors) "before", "in", "oj and "includes" are used to build up

structures which may be used in genC'l'alised rules using variable time periods and meals.

Representation or IMulin Cbaraderlstlcs

As many of the thirty or so insulin formulations share similar characteristics of duration of

action, use and nature, the rules may be generalised to some extent and a hierarchical frame

structure is employed for the representation of therapeutic agents. The oral agents are also

represented in this way. An example for the short acting insulin Acttapid™ is shown in table

5.11

Acttapid Is a short acting insulin
species or Actrapid b human
onset or Acttapid -= 30 (minutes)
duration or Acttapid = 360 (minutes)
manufacturer or Acttapid b Novo

Table 5.11 Characteristics of a type of insulin (Acttapidl"M)

Additional information may then relate to this knowledge structure. For instance insulin levels

may become very high on some pork-based insulin formulations due to the presence of

antibodies, antibodies are not likely to affect synthetic human insulin levels, so it may be

advisable to change to a human insulin. 10 another case, patients who are prescribed human

insulin may experience undetected hypoglycaemia, they could be changed to pork-based insulin

again.

The manufacturer is included for cases where a second insulin formulation is required. for

instance the addition of short acting insulin to a long acting insulin. It may be more appropriate

to prescribe insulins from the same manufacturer and species to avoid problems of supply or

allergies etc.
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SYSTEM IMPLEMENTATION

The system is implemented as a series of modules. In an initial screen, the entry of the patient's

name and hospital (or some other) identification number begins a search for any previous

history. Ifprevious history exists, it is retrieved and displayed in a condensed formal for the

physician. This format is an attempt to carry out a concise clinical summary, inferred from the

previous history items. An example summary of a fictitious patient is shown in fig 5.4.

If no previous patient history exists, the system loads the module that elicits patient history,

which then asks for details of the patient's background and in particular asks about the

presentation of diabetes. The other areas within the system may then be entered in an order

selected by the physician, but guided by the decision support system. A default order is

recommended as: (1) current clinical status, (2) current anti-diabetic therapy, (3) HBGM, (4)

clinic test results, (5) hypoglycaemia, (6) diet and (7) therapy administration.

Once all relevant information bas been entered, the system automatically executes the

appropriate set of rules for the current therapy type and advises the physician of its suggestions.

The physician may then type in free text comments. A printer may then be used to print out a

summary of the consultation, this lists all the important data entered along with the computer's

suggestions and the doctor's comments.

If required, the pbysician may request therapy suggestions at any point once the current therapy

bas been entered into the system by the selection of "advise therapy suggestions" from the main

menu. The physician may also return to any of the sections and change any of the information

already entered. The system may then advise different suggestions depending on what

information was changed. For example the addition of extra blood glucose test results may

fundamentally change the suggestions.
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The Development Shell· XJ+

The structured representation system and symbolic reasoning employed within this design fits

very well with the knowledge based system building shell Xi+TM. In the Xi+ expert system

shell, rules which may be used in forward chaining are called demons; in order to differentiate

between demons and rules the key word "If' is replaced by the word "When" in demons.

Demons are not used in backward cbaining but it is possible to use rules in both forward and

backward chaining although this may prove complicated and it is clearer if rules and demons

are kept separate. Therefore, the normal "If' type rules are used solely for backward chaining.

This separation into "rules" and "demons" is useful for extracting procedural knowledge about

which modules to carry out in a certain order from the more declarative knowledge used to

represent knowledge about diabetes and its treatment within the individual knowledge base

modules.

Fig 5.4 Paslen: history summary (top left) and main menu of optionstbottom left) and their

status (bottom right), IIIthe start of a consultlllion.
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FunctlonaUty of the System

A main "driver" knowledge base suggests the above options to physicians in the specified order

although the information may be entered in different orders for different patients. One

observation from the clinical setting is the seemingly unstandardised and unstructured nature of

questioning by many physicians. However, the physicians' methods showed that they were

moving between the above well defined sections in a logical order for particular consultations.

An area of interest may be how to model the direction of the consultation in different

circumstances and the benefits or drawbacks of a more structured, predefined route through the

data entry procedures.

Once sufficient information bas been gathered. the controlling knowledge base calls a therapy

regimen knowledge base. This then assesses all the available information, specific to the current

therapy, to produce therapy decisions. In most cases a single recommendation strategy is

suggested, although occasionally alternatives are given for the physician to make the final

decision.

Using Default InsuUn Requirements

Insulin requirements undoubtedly vary with many different factors. The most important known

factors are given in table S.12.

Insulin requirements depend on:
- remaining beta cell function (endogenous insulin secretion)
- degree of obesity
- duration of diabetes
- diet and exercise proftle

Table S.12 Insulin requirements

As the production of insulin is equimolar with the production of C-peptide (chapter one), and

C-peptide is fairly stable, it is possible to estimate surviving beta cell capacity by an assay of C-

peptide. For people with very little endogenous insulin secretion. i.e. those with type I, insulin-
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dependent diabetes, the insulin requirements may be estimated, without any blood glucose

values. by use of the F-value (ES.5 and ES.6) and the experimental and empirical observation

that a male of average height and weight requires 36 units of exogenous basal insulin (see

Holman and Turner 1988). Equations ES.IO and ES.II give values for basal and pre-prandial

insulin needs in terms of the F-value parameter.

Research on normal and diabetic subjects, (HobnaD and Turner 1988) bas shOWD that, m normal

circumstances, slightly more insulin is required atmeal times (54% of total insulin need) than is

required to meet the basal needs (equation ES.ll). In practice, experts often aim to balance the

amounts of long and short acting insulin.

Basal insulin need = 36 x F (ES.I0)

(E5.11)Pre-prandial insulin need • 54/46 x Basal insulin need

For type Il diabetes, once insulin therapy becomes necessary, the fasting blood glucose (FDG),

combined with the F value (F). indicates the basal insulin need (equation ES.12). Inmost cases,

once the basal dose exceeds "16 x F" units insulin production is so low that extra insulin is

needed to cover meals. There is no simple ratio to predict meal time insulin requirements; the

need for pre-prandial insulin increases as the beta cell function decreases and basal need

increases towards the expected maximum. The initial pre-prandial insulin need is calculated

from the basal insulin dose by equation ES.13.

Basal insulin need (B). (3.22 x FDG - 0.07 x FDGl-ll.l1) x F (ES.12)

Pre-prandial insulin need. -1.9 x B + 0.0751 X B2+ 12.55 (ES.13)

The basal dose (B) may be assessed by fasting glucose measurements taken at home or in the

clinic, the expected pre-prandial doses are distributed amongst meal times on an individual

basis, although rules of thumb are employed to distribute pre-prandial insulin by default mto

two doses taken before breakfast and before the evening meal.
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The basal prandial regimen separates the basal requirements from the meal time requirements

so that the actual distribution of short actiog insulin through the day may vary considerably

between individuals.

Wbere home blood glucose monitoring is available it is always used to adjust insulin doses.

Wbere the only available indication of control is a HbA tc blood test. it must be used to

estimate whether doses should be raised over all. The presence of symptoms, in particular

recent nocturia with urination and thirst (especially ifmore than twice in one night), is also an

indication that insulin needs to be increased.

In these cases, the system attempts to approach the default doses by gradual increments, or in

severe cases, near default doses may be advised immediately, with special instructions to

monitor for hypoglycaemia and check the hypoglycaemia with extra food if necessary. The

food may subsequently be reduced gradually as easily as insulin may be increased.

Timing of Insulin Doses by Default

The primary aim is to normalise the fasting blood glucose, so the long acting dose is

incremented first, Ideally, the long acting dose should be taken before bed. so that the slight

peak of insulin release corresponds to a period of rising blood glucose (the dawn effect). Once

the dose reaches estimated default levels (E5.IO), with instability still present. the long acting

dose is split into two; a morning dose and a before bed dose.

The distribution of the short actiog insulin should depend OD the relative sizes of daily meals.

In the absence of any information to the contrary, a slightly higher dose should be given before

breakfast as the breakfast meal requires most insulin. Short acting insulin should only be

increased with care and based on home blood glucose monitoring.
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EVALUATION AND VALIDATION

The amount of evaluation and validation carried out in each of the areas recommended by

Berry and Han (1990 ch. 2) varies. A summary of progress in each area is now followed by

suggestions for future evaluation and validation.

The Quality of the System's Advice and Decisions

One evaluation study to compare decisions made by physicians of different levels of experience

with the decisions of the decision support system was carried out (see below). Informal

analysis of the decisions made by the system when used in the clinic setting is less systematic

and does not follow the rules of designing experiments. Therefore, general comments only will

be given about the agreement between physicians and the system.

In straightforward cases where data is available on home blood glucose monitoring and long

term control has been assessed by HbAlc, the system agreed with the decisions of the

physicians approximately 90% of the time. The disagreements usually occurred because of

physician interpretation of the patient's information. When told of the decision support system's

advice in cases of disagreement the system's suggestions were rated as acceptable in 100% of

cases.

In cases with less data on HBOM there was considerably more disagreement on advice. Some

physicians preferred to adopt an education strategy, using a higb HbAlc to jolt patients into

regular HBOM, with advice offered on what to do with the results in some cases. Others took

the view that intervention bad to be taken immediately and preferred to dicwe new therapy

even in the absence of HBOM to guide them. The choice of policy rests with the physician's

assessment of the patient's interest in diabetes control and compliance. This is extremely

difficult to include in a decision support system.
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The line taken by the system was to use the default reasoning for insulin therapy outlined

above. Oral therapy could be altered on a clinic fasting blood glucose alone and so was not

considered such a problem as the clinic FBG is always available except for patients who had

mistakenly eaten breakfast (this assumes a morning clinic of course).

In general terms there was rougbly 50% agreement with the suggestions given by the system in

cases where no home glucose monitoring was recorded. The future policy of the system may be

to ask for the view of the physician on whether to suggest alterations or advise a course of

HBGM and a further consultation three months later.

Evaluation so far: A knowledge-based validation exercise

In order to assess the level of agreement between physicians and the computer in the early

stages of development a simple experiment was designed. A set of test cases was sent to eight

'expert' physicians for their assessment and recommendations for management, seven of the

eight replied. The test cases were lifted from recorded consultations with actual patients. The

usual precautions to provide patient anonymity were observed.

Four of the physicians were of a senior level (consultant or senior registrar) and three were

junior registrars or senior housemen. In addition. five of the physicians came from a clinic

which relies heavily on the basal prandial regimen while the other two were involved in a clinic

which mainly uses soluble isopbaoe or premixed insulin regimens.

Eight test cases were included in the experiment covering the range of possible therapies

available in the expert system at that time. The main therapeutic variations occurred in the

insulin treated patients, althougb qualitatively the advice offered was consistent in all cases.

The quantitative amounts by which to change insulin and whether to change to a different

regimen differed considerably between phYSicians.
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There was less disagreement between physicians for tablet-treated patients, merely preferences

for different types of sulphonylureas, although one important outcome of the tablet-treated

cases (and those on diet alone) was the preference in 6 out of the 7 physicians for metformin

treatment as the first therapeutic option for obese type n patients. This preference and

consensus view was subsequently added to the system.

The correctness of the reasoning techniques used was not assessed directly as the reasoning

techniques used were established rule-based inference techniques which have been assessed

elsewhere. The correctness of rule-based approaches tomedical knowledge-based systems in

general has been a subject of interest for some time (Davis et alI977). Little may be added to

this debate by the present work, save to say that rule-based systems provided a suitable platform

for the development. Correctness of reasoning is difficult to quantify. It is not merely validation

that the outcome is acceptable but that the methods of achieving an acceptable outcome are

sound and safe.

The correctness of reasoning is closely related to explanation. The latest clinic system includes

an explanation module; these explanations may be rated by clinicians who use the system. No

other contrived methods of assessing correctness of reasoning have been used.

With reference to common usability criteria, the system fares reasonably well. It is recognised

that formal evaluation and validation techniques are required in order to qualify this statement

and such experiments are suggested below and in chapter 6. The interface is largely menu-

driven. Exceptions are the occasional numerical and text input for insulin doses, name and

identification number of patients etc. The core concepts of data entry and response should be

readily recognisable to all trained physicians, whether they have a special interest in diabetes or

not There is a high degree of consistency in the type of information and data entry methods:

the use of meal times as a basis is intuitive to the physicians involved in diabetes care. There

are only five keys or key combinations, required to use the system, although further options are

available as users become more experienced: TAB to move between fields, RETURN to select

208



a menu item, CfRL+RETURN to complete a section and the up and down cursor control keys

for menu selection. Help and Explanation are available at all stages by pressing keys Fl and F3

respectively. Once these key combinations are learnt the system may be used with confidence.

A special ESCAPE menu is provided when users press the escape key. The options available

are: continue, save the consultation,load a consultation, return to the main section (screen) or

exit the system.

Some sections are divided into layers of data entry, it is possible to step through layers in either

direction by pressing the PAGE UP (PgUp) or PAGE DOWN (PgOn) keys. Layering of data

entry is kept minimal; at most 3 layers are used at anyone time so that physicians do not forget

where they are. A label at the top of the screen displays the current patient's name and the

current knowledge base module.

An area where some improvement could bemade is in error correction. Slips may often be

corrected by using PgUp and PgOn to move between layers of sections. In other cases mistakes

may be wiped by pressing escape and selecting "return to main screen" from the options.

Evaluation techniques used so far have been limited to system-walk-through techniques.

Positive reactions were forthcoming from physicians at the sessions, but some did express the

worry that it would slow them down considerably.

Proposed further evaluation will be by hands-on use by physicians. Formal observation

(possibly video recorded) of how consultations are changed by the introduction of the system

would be useful. It would probably not be ethically desirable to use real patients in this type of

experiment, so an actor could be used to represent the patient first in a normal consultation and

second, in a computer-aided consultation. Time spent discussing each area of diabetic control

could be recorded and questionnaires could be answered about the feeling of satisfaction felt in

both cases.
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Once initial tests had been conducted and possibly modifications made to the system, real

patients could be used in the experiments. Their responses to questionnaires would be more

useful than those of an actor.

Simple experiments, comparing 2 or more versions of the system or an aspect of the system

could be a possibility. For example, one version of the system could give spontaneous

explanation whilst the other could only give explanations on request,

An experiment to measure the normalised performance ratio (NPR • chapter 2) could be

designed. Different tasks ranging from entering a patient's weight in kg to a completion of an

entire consultation could be used to assess a value of beta for the system. Time restrictions

make it impossible 10include results of such an experiment here.

Performance and System Emc:lency

Performance measures commonly carried out on interactive, "real-time" computer systems

include response time and time delay for operations such as requesting help.

The delay for initial setting up of files etc. and the delay which occurred between sections

(modules) of the program as it currently stands are listed in table 5.14. The minimum delay

occurred when no data were entered within the module, the maximum delay corresponds to

completion of all the data entry sections. In principle, the mean delay could be calculated over

a minimum of 5 or so typical consultations but would lie somewhere near to the maximum

value in normal circumstances. Times are rounded to the nearest 1/100 second. The mean

delay time for initial set up (of data files etc.) taken over 4 measures was 25.30 ± 0.30 seconds.
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Table 5.14 Delays for accessing modules from the main driver module

Module minimum delay (s) maximum delay (s)

history 1.99 10.51
stams 1.71 10.40
therapy 1.59 10.32
HBGM 1.76 10.49
clinic 2.13 10.87
hypos 1.78 10.57
diet 1.57 10.39
administration 2.07 11.06

mean 1.83 10.58
ad 0.20 0.24

explanation
14.78
14.49
6.20
5.85
5.92
5.93
15.07
15.06

Table 5.15 - time delays in receiving help and explanation
section help
general health 0.31
weight 0.30
symptoms 0.28
symptoms(repeat)
complications 0.29
complications(repeat)
smoking 0.32
aim of therapy 0.31

The results of table 5.15 were puzzling at first until the system organisation and memory usage

were taken into consideration. The help sub-system utilises a library of files and is permanently

built into the shell of the system, the times to access the library are therefore much faster and

less variable than times to access the explanation sub-system. The explanation sub-system has

been added on in the development; normal explanation facilities merely display the rule

currently under execution with the option IDtrace back the logic of why the rule is in execution.

The explanation sub-system now consists of a knowledge-base which is called with the

parameter of the name of the item currently highlighted for data entry. A file is then assigned

from another library, known as the report library, and that is displayed. The reason for the high

variability of the delay is due to the memory organisation of the system. The explanation

knowledge-base remains resident in memory but for some reason takes various times to
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execute. In a further experiment, explanation was requested 10 times in succession from the

same section. The results in table 5.16 show that the delay falls to a reasonably constant value

of around 4 seconds after 3 requests. A fully developed system would need to employ an

explanation subsystem similar to the belp library, thus reducing the delay to acceptable levels.

mean±sd
mean± sd

5.73 ± 3.34
4.07 ± 0.39 (ignoring first two values)

Table 5.16 Course of delays to receipt of explanation from one section.
Request number Delay (s)

1 12.57
2 12.19
3 3~S
4 3.62
5 336
6 4.42
7 4.62
8 394
9 4.14
10 4.52

Whilst no bard and fast rules apply to acceptable delays within computing systems. delays

longer than 1 or 2 seconds should be avoided if possible. Delays as long as 2S seconds for a

one-off occurrence sucb as initialisation may be acceptable but delays of 10 seconds or more

every time a module is used or explanation is requested would almost certainly be unacceptable

for actual use in the clinic by physicians.

The current technology is not capable of great improvement as It bas already been optimised.

Two methods for improvement of the response times exist: transfer the system to faster

hardware or software platform, or rewrite the software with optimisation and better use of

memory management, probably in a low level language such as C or Pascal.

Cost Effectiveness

This is possibly the most difficult area of evaluation to perform as an assessment needs to be

made of the financial value of the decision support system. What price more effective diabetes

care? The cosl-effectiveness of the system depends not only on base costs of buying and
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maintaining hardware and software- remember performance improves as systems get faster-

but also on the time spent by physicians using the system. In order to be cost effective systems

should not make consultations longer than they were prior to the introduction of the systems.

Cost-effectiveness is closely linked with performance, as outlined above. A compromise

situation often bas to be sought with acceptable performance at acceptable COSL Estimation of

software costs at various stages of the development may be aided by the use of a model, several

models are described and a model is proposed by Mohanty (1981). Mohanty suggests that the

cost of software is perhaps most closely aligned with its quality, although that point is highly

debatable. Newly developed formal techniques can and will become standard software

development techniques in so-called safety-critical fields such as medicine. They need not be

costly in real terms. Their use in conjunction with proven software engineering techniques, such

as following a development life cycle of requirements, design, development and evaluation,

will ensure that the right product is delivered in the quickest time with the least errors. Cost can

be estimated in man-units of effort but the productivity of individuals will affect this assessment

and it is therefore difficult to be accurate. Another major problem, especially in medicine is the

measurement of the utility of software and computer use in general. Some people still say that

computers can do nothiog that cannot be done with paper which is, in my opinion, absolute

nonsense.

KNOWLEDGE BASE MAINTENANCE

A knowledge base can never be complete. As new knowledge is created by experiment or

experience, so knowledge bas to be added to a knowledge based system. A piece of knowledge

can never be considered as static. All knowledge is to some extent changable with time.

therefore, knowledge bases need to be structured so that their knowledge can be updated easily

and safely, without affecting the knowledge already in the system.
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The method used to maintain the current knowledge-base has been manual addition of rules.

Although a selection of test cases exist and are regularly run through the system to check that

new rules have not affected other sections. the perils of such additions of rules are well known

(Compton and Jansen 1990).

Recommended essential development of a delivery system would include either ripple-down

rule organisation or explanation-based learning (see ch. 2). The major problem with

explanation-based learning is that the expert has to enter rules manually. The development of

voice recognition may be the only spur for physicians to allow the type of interaction necessary

for decision support to reach the clinic. New generation graphical user interfaces (GUIs) are

rapidly approaching which may feature artificial speech generation and rudimentary voice

recognition in the fashion of an animation (McMillan and Harris 1990) although the technology

may be some time reaching the market place.
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CHAPTER 6 • CONCLUSIONS

CLINICAL IMPACf

The possible cIinical impact of the two systems is difficult to estimate at this very early stage.

Still fewer than fifty patients have bad experience of using POIRO,but the favourable

comments from the vast majority of these people undoubtedly shows that a decision support

system for everyday use would be popular. Indeed, many of the patients who used the system

for a time have expressed a desire to carry out extended trials of the system; this may be the

next step in the evaluation. The actual clinical impact, during the trial phase was an increased

health care professional workload; this was due to ina-eased demand for reassurance from wary

patients when insulin doses were changed. Extra work was also required to cope with the

collection and assimilation of data. In the long term, however, patients would be expected to

foIIow the advice between clinic attendances with confidence and should not encounter

problems which previously might have resulted in a physician call; for instance a short term

illness or change in diet or lifestyle (going on holiday for example) is quite easily addressed by

POmo provided glucose measurements are carried out, The benefits to the physician in these

type of time savings is probably minimal, but the extra availability of information, collected

and transferred by the system, should provide enormous benefits to epidemiological studies.

There is also potential for the use of POIRO within clinical trials of different insulin

preparations, lengths of needles for injections and so on. POIRO now offers a facility to carry

out controlled experiments in dose adjustment and at the very least provides for the essential

coIIection of data.

The completed clinic system (PRESTO) would permit intelligent use of the extra data generated

by POmo during the time of the consultation. A set of graphical routines, statistical routines

and the further employment of the standalone DSS with data entry from the POmo system

should enhance the decision data of the physician. The PRESTO system as it stands will not

gain clinical approval for the simple reason that its performance is too slow. Three methods of



improving the performance are possible: The first is to implement the system directly in a low

level programming language such as clipper or C. This bas obvious advantages of speed but,

unless the inference engine is re-implemented in the code, it loses the possibility of quick

modifications of the rule-base. The second alternative is dependent on new versions of the

expert system shell Xi+. The system bas been transferred successfully to the new version (3.5)

of Xi+ which runs under Windows 3. The efficient use of extended memory for storing

knowledge bases may improve the time lags between loading knowledge bases to a usable

stage. The third. and probably most attractive, solution would be to move the knowledge into a

module of another decision support system, (the only realistic current candidate being the

Oxford System of Medicine). This would have advantages that the problems of storage and

speed would have been addressed, and also the integration with general medicine would be

effected. This is a serious, although often neglected, problem with most domain specific

applications intended for use in general practice. The Advanced Informatics in Medicine (AIM)

second pbase includes a new project - Dilemma - wbich builds on the research which went into

the OSM in order to provide facilities for decision support in general practice medicine. A

diabetes module for the new system is planned and the integration of the PRESTO system

would have obvious mutual benefits of interacting technology and clinical research.

Lessons Learnt

The main lesson to be gained from the development work is the importance of listening to the

end user (i.e. patients) in order 10understand their likes and dislikes. Early trials of the hand

held device paid off handsomely in the development of that system. Likewise, early display of

the physician based system to practising diabetologists and other interested parties from both

the computer science and clinical fields produced advice on information omitted and also some

encouraging comments that the system was heading in the right direction.

The structure of knowledge in relation to the timing of meals and therapy has been the crucial

aspect of the system. Simple rules have been generalised to fit into the times of day at which
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the patients take their meals. Utilising longitudinal data will be a major challenge to further

developments of the system along with integration into existing data base information.

The Way Forward

Simplicity of use must be the major consideration in computerised tools for use in many areas

but especially one as critical and widespread as medicine. Patients should be educated by any

tools. Advice should be offered in support of their own knowledge enabling them to be self

reliant in future.

The clinic system will benefit greatly from an improved user interface and improved interaction

within the program allowing simple "what if' type questions to be asked. A graphical interface

has potential for tasks such as entering portions of food in the dietary assessment knowledge

base and especially for graphical interpretation of longitudinal information on clinic

measurements such as haemoglobin Ale and body weight.

One particular aspect of the system which could be greatly enhanced by graphics is the

explanation of dose changes. If a picture of a patient's current situation could be shown to

change graphically to lower (or higher) glucose values as insulin was increased (reduced) it

may give the patient more insight into exactly which blood glucoses are affected by which

insulin doses. This would be especially useful in more complicated insulin regimens.

CompatibUlty

A major problem throughout the development of the two systems was the incompatibility of the

operating systems of the two computers. The CP/M operating system of the Epson device and

the MS-DOS PC both support Turbo Pascal so that was a distinct advantage but the file

structures were different and several other odd differences in code came to notice. The POIRO

system has since been re-implemented on an IBM-compatible palm-top computer running MS-

DOS. However, the lack of a touch-sensitive screen OD the palm-top makes it a far more

difficult system to use.
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This merely highlights the importance of providing compatibility between health care systems

for general use. Similarly, while different health authorities, and even different departments

within hospitals, are using different coding systems and computer hardware and software, the

problems of information transfer are DOt going to be resolved.

Individual patient records stored on smart cards are currently a popular option, especially in

France and Germany where large scale trials have been carried out, This still requires

compatibility of the health care professionals' systems to be able to retrieve data relevant to

their speciality. The password protection of certain sections of the cards provides a method of

integrating all personal information on one card, including fmancial and health data. There is

still the major problem of loss of the cards, so some central "back-up" store of information

would need to be kept and updated by all the remote sites, or otherwise kept centrally and

distributed over networks. Eventually we may see this taken a step further with implanted

electronic memory chips within the human body, with specialities related to individual bealth

problems.

Diabetes Therapy In the 90s

As we move further into the last decade of the century, we are more and more able to

understand the human body and the treatment of chronic diseases. Much recent optimism bas

been aroused by pancreas and islet cell transplants. Research into a hybrid artificial pancreas

continues to arouse hopes that implanted "bionic" devices may provide the best solution to

insulin replacement therapy. The technology has some way to go before the treatment is

commonplace. Transplants will only be a serious option for patients with renal failure as the

transplants are carried out in conjunction with kidney transplants.

People with diabetes are now able to live longer and enjoy more freedom during their lives than

they were even twenty years ago. During the next few years the results of large, prospective,

randomised trials are expected. If, as expected, these results show the desirability of intensive
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insulin replacement therapy against conventional therapy the computer system outlined in this

thesis should be at the forefront of the provision of such care.

The present work could, in any case. provide vital information about glucose regulation in

diabetes for any proposed therapeutic options. 1be knowledge of this is. at this stage. still a

largely misunderstood area.

The inherent instability of type I diabetes bas aroused suspicions of chaos (Gleick 1990).

Modelling of diabetes should concentrate on non-linear dynamics; it may soon be possible to

define a family of chaotic attractors which typify the course of type I diabetes but this ismerely

conjecture. I am very cautious of expounding this theory too much as chaos is unfortunately a

much abused and misunderstood theory in many other sciences. This line of research should

reasonably be put to an experienced chaos expert and could prove to be an interesting area for

further study.

It has been shown for decades now that traditional diabetes care is capable. in the right hands.

of good control. The employment of these two systems should provide that quality of control in

many more cases than at present I hope that the results of this research work can help to

provide the basis for a flexible. robust. well-validated intelligent support systems. flfStly for

diabetes but later for many other chronic diseases which require self-management and therapy

adjustment.
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APPENDIX 1- TECHNICAL SPECIFICATION OF THE EDT-I0 USED ASTHE POIRO PROTOTYPE

Main CPU: J,LPD70008C-MOS (Z-SOcompatible). Q.K- 3.6864 MHz.

Slave CPU: CPU7508 4-bit C·MOS. (Controls key input. clock, power supply and serial
communications)

ROM: System ROM J,LPD23ClOOOGCMOS 128 KB. Application ROM of 128 KB is
supported (CMOS structure with access time faster than 200 ns).

Main Memory: Can be extended up to 256 Kbytes, up to 232 KB can be used as a RAM disk.

Display: 154 x 84 dot LCD and LCD controller T6963. Driver X:TI778 x 4, Y:T69 I x 1. Size
of screen is 12 columns x 14 lines or 24 columns x 10 lines in borizontal mode.

Input: Toucb Panel with 14 x 5 input points. Area of Touch keys 10.5 x 9.35 mm.

Interfaces: RS·232C lIF, cartridge lIF, bar code lIF and IC card lIF for external interface
connection. The cartridge lIF consists of 4 modes (lIS mode, DB mode, 10mode, OT mode).

Power supply : Nickel-cadmium battery pack as a main battery charged through an AC
adaptor. Nickel-cadmium sub-battery performs RAM backup as a design safeguard, even when
the main battery is discharged, RAM backup is supported.

Operating System: Extended CP/M Version 2.2.



APPENDIX 2 • THE FIXED DATA FILE
Several items of information Deed to be initialised by the physician and then transferred back
and forth between the physician's PC and the ElIT-I0. These items are further described in the
main text At a clinic visit the currently derived advised doses are written to the fixed data file
and uploaded along with all the originally prescribed information.

Surname
First Name
00004 (id number)
O(Sex:O=f~e, l-~e)
180 (height cm)
84 (weight kg)
2000 (diet teal)
200 (dietary CHO g)
75 (activity level %)
Dr. Holman (supervising doctor)
0865 224597 (contact Dumber)
Jill- 64937 (second contact number)°1111/90 (date of next clinic)
14:30 (time of next clinic)
5.5 (target FBG)
20.0 (maximum allowed blood glucose)
2.5 (minimum allowed blood glucose)
Actrapid (short acting insulin regimen)
(008,014.002) (Dose, Maximum, Minimum) (pre-breakfast)
(012,018,006) ( " " ") (pre-lunch)
(018,027,009) ( " " ") (pre-evening meal)
(000,000,000) ( " " ") (pre-bed)

(blank space for intermediate acting insulin regimen)
Ultratard (long acting insulin regimen)
(006,012,000) ( " " "
(000,000,000) ( " " "
(000,000,000) (" . " "
(006,012,000) ( " " "
[Control variables]
meal 0.00, 0.60, LOO, 1.40
exercise 1.20, 1.10, 1.00,O.75
health LOO, 1.20, 1.50
supplement 2.00,0.75,3.50,0.90, 10.00, 1.10, 15.00, 1.15
gluranges 1.00,2.00, 1.00,2.00,0.05,0.10
sensitivity 1.00,0.00,4.00
duftimes 60,30,420,10,180,240
stats 2.00,3.50
o (advice status O=off, lzon)

) (pre-breakfast)
) (pre-lunch)
) (pre-evening meal)
) (pre-bed)



APPENDIX 3 • COMMllNICATIONS ROUI'INES.

Constants used:

The following is a refresher of the commonly used names for constants in the extended ASCII character
set reserved for communications.

NULL=SOO SOH=SOI STX.S02 ETX.S03 EOT=SQ4

ENQ.SOS ACK.SQ6 CR-SOd ESC-Sib

As well as these there are some slightly DOD-standard constants

ECODEO.Sll ECODEl-S12 ECODEl.S13

And a few other constant values which are used in the protocol

block_size == $80 (128 decimal) - the size of the block used in untyped flies by default in CP/M (the
block size for blockread I blockwrite may not be defined by the user inCP/M as it may inMS-DOS).

password == 'password' - this string is sent to establish the authorisation of the user of the PC to access
data stored on the EHT-IO.


