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Abstract 

 

Background 

The improvement of energy efficiency in buildings is widely promoted as a measure to mitigate 

climate change through the reduction of CO2 emissions. Thermal regulations worldwide 

promote it, for both new and existing buildings. Among the existing stock, traditional and 

historic buildings pose the additional challenge of heritage conservation. Their energy 

efficiency upgrade raises the risk of provoking negative impacts on their significance. 

Aims and Methodology 

This research used an approach based on impact assessment methodologies, defining an inital 

baseline scenario for both heritage and energy, from which the appropriate improvement 

solutions were identified and assessed. The measures were dynamically simulated and the 

results for energy, CO2, cost and comfort compared with the initial scenario, and then being 

further assessed for their heritage impact to eventually determine the most feasible solutions. 

To test this method, ten case studies, representative of the identified typological variants, 

were selected among Oporto’s traditional buildings located in the World Heritage Site. 

Findings and Conclusions 

The fieldwork data revealed that the energy consumption of these dwellings was below the 

European average. Additionally, the households expressed that their home comfort sensation 

was overall positive. The simulations showed that the introduction of insulation and solar 

thermal panels were ineffective on these cases in terms of energy, cost and comfort. At the 

same time, these measures pose a great risk to the buildings’ heritage value. The most 

efficient solutions were obtained from behavioural changes and DHW retrofit. The study 

reinforced the idea that traditional buildings performed better than expected and can be 

retrofitted and updated at a low-cost and with passive solutions. The use of insulation and 

solar panels should be disregarded. 
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projects. 
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Chapter One: Introduction 

 

1.1 - Background 

The consequences of unsustainable development are today evident through climate change, 

which is emerging as the major environmental problem posed to humanity. Global warming is 

the most referenced consequence associated with it, leading the United Nations 

Intergovernmental Panel on Climate Change (IPCC) to state in its fourth assessment that, to 

avoid catastrophic changes, it is necessary to keep the global average temperature rise below 

2°C, as compared to the year 2000 levels (IPCC et al., 2007). On a political level, this target was 

adopted by the Ministers of the European Union, who declared it a major climate change 

mitigation objective to be met (EC, 2005). 

 

In Portugal, the SIAM and SIAM II Projects have estimated major weather changes in their 

scenarios (Aguiar et al., 2002; Santos et al., 2002; Santos and Miranda, 2006). These studies 

forecast a significant increase in temperature until 2100, with Portuguese mainland summer 

temperatures rising an average of 3°C at the seaside and 7°C in the inland. Associated changes 

include an increase in the intensity and frequency of heat waves, number of hot days1 and 

tropical nights2, a decrease in the occurrence of cold days3 and a reduction of the rainy season 

of 20% to 40%, compared to current levels, in particular during spring and autumn. The main 

impacts of these scenarios include predictable changes in the flood and drought regimes, a 

significant increase in the risk of fire hazards, air pollution levels and ecological disturbances, 

leading further to health problems and regional variations in agricultural productivity. A rise of 

erosion processes with a consequent increase in flooded areas and coastal erosion is also 

predicted to be severe (Ferreira et al., 2008; Santos et al., 2002; Santos and Miranda, 2006). 

The economic consequences for tourism will also be felt due to Portugal’s economic 

dependence on that sector (CLITOP, 2007).  

 

                                                           
1
 - Defined as days with temperatures above 35°C. 

2
 - Defined as nights with temperatures above 20°C. 

3
 - Defined as days with temperatures under 0°C. 
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Greenhouse gas (GHG) emissions, from natural or anthropogenic sources, are now widely 

accepted as the cause for global warming (IPCC et al., 2007). It is internationally recognised 

that the mitigation of this environmental problem must be addressed, especially in the area of 

man-made actions, which produce the main gases included in the GHGs. This is specifically 

addressed in the Kyoto Protocol, which has established international targets for the reduction 

of the GHGs (IPCC et al., 2007; Stocker et al., 2010; UN, 1998). 

 

1.1.1 – Carbon Dioxide Emissions (CO2) 

Of all the gases contributing to the ‘enhanced greenhouse effect’, CO2 is the most relevant, for 

76.7% of the total composition of GHG emissions in 2005 (IPCC et al., 2007). The European 

Environment Agency (EEA) confirms this for the European Union (EU) as well, with CO2 

accounting for 81.6% of the total emissions of the 27 member states (EU27) in 2009 (EEA, 

2011a; EEA, 2011c). Accordingly, the Portuguese Environment Report of 2011 reveals that CO2 

represented 75.2% of the total national emissions in 2009 (EEA, 2011c; Vilão et al., 2011). Due 

to the evident importance of CO2 emissions in climate change, their reduction has become a 

generally accepted target, functioning both as a benchmark for environmental sustainability 

and as a climate change mitigation indicator. 

 

The emissions resulting from the transformation and consumption of energy represent the 

highest percentage of human-generated CO2. In 2007, it accounted for an average of 95.3% of 

this gas' total emissions in the 27 European Union states, equalling 3,873.6 million tonnes (EC, 

2010b). These include all energy processes, namely the primary energy transformation (energy 

industries) and energy consumption. 

 

1.1.2 – Buildings and Energy 

In this framework, buildings play a crucial role due to their direct and indirect energy-

associated emissions, with relevance to the indirect resulting from their operational use. The 

CO2 produced along the entire construction process (including the manufacturing of materials) 

can also be accounted for under the embodied carbon of buildings. Regarding the entire life-

cycle of residential buildings, some estimates reveal that the operational stage may account 
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for 87.5% to 96.9% of the total CO2 emissions, while the remaining percentage can be 

attributed to the construction phase4 (Seongwon and Yongwoo, 2001). 

 

The European Environment Agency developed a study to determine end-users responsibility in 

order to reallocate the associated emissions from energy transformation (EEA, 2011b). Taking 

into account all scopes, the report reveals that the residential sector reached 25% of the total 

EU27 energy end-use GHG emissions (figure 1). Furthermore, it is possible to identify a similar 

distribution of direct and indirect emissions associated with energy in the residential sector. 

From figure 1 it can also be concluded that the emissions associated with buildings (residential 

and commercial) accounted for a significant 40% share of the total. This proves the relevance 

of buildings' energy end-use and the potential for their reduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – 2009 end-use greenhouse gas emissions from energy use in EU27 in EEA (2011b, p.9)  

 

For Portugal, the same data source reveals a slightly lower percentage of 33%, consisting of 

the residential (16%) and commercial (17%) sector. It also shows a lower consumption of direct 

energy sources and a higher dependence on energy transformation and supply than the 

European average. 

                                                           

4 - The authors of the study considered the national average life span of buildings to be 22.4 years. Changing this 
will give a different ratio. Nevertheless, the operational phase will always be responsible for the larger share of 
emissions as stated in (UNEP SPCI, 2009). 
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It is widely accepted that buildings represent a major environmental burden when taking into 

account all energy involved in their complete life-cycle (construction, use, and 

refurbishment/demolition), and the consequent consumption of resources and CO2 emissions. 

European residential buildings take predominance over non-residential ones, accounting for 

75% of the total floor space per capita, ranging from 25 m2 to 42 m2, respectively in eastern 

and southern countries (BPIE, 2011). In terms of associated emissions, the European average is 

54 kg of CO2 per m2, while the Portuguese average remains among the lowest with 40 kg of 

CO2 per m2. At the same time, European households were responsible for 68% of the total final 

energy use in buildings during 2009 (BPIE, 2011, p.44). This highlights the potential role of the 

residential buildings sector in addressing CO2 emissions reduction by cutting on their energy 

consumption. 

 

In Portugal, the energy consumption in buildings is circa 10% lower than the European 

average, accounting for 29.7% of the total final energy consumption in 2009. This gap could be 

explained by the mild Portuguese climate, which reduces the number of heating degree-days 

as compared to most European Countries5 (Eurostat, 2007, p.158). However, even with an 

energy consumption that is below European average, Portugal still reveals a high dependency 

on energy imports as shown in table 1. Hence, in addition to the environmental perspective, 

the financial burden posed by these energy imports turns energy conservation into a strategic 

national issue. This is also valid at the domestic economy level, as pointed out by surveys 

undertaken in the residential sector, which showed that each Portuguese household averagely 

spent the equivalent of 3.88 minimum wages on energy (transportation and housing) per year 

(INE and DGEG, 2011). In the context of an economic crisis, these costs could lead to scenarios 

of fuel poverty. 

 

Fuel Import Dependency in 2007 (%) 

 All fuels Solid fuels Oil Gas 

EU 27 53.1 41.2 82.6 60.3 

Portugal 82.0 100 98.9 98.7 

Table 1 – Energy import dependency in 2007 based in EC (2010b, p.30) 

 

                                                           

5 - Portuguese long-term average (1980-2004) is 1302 heating degree-days against 3386 days presented by the 
European Union average. 
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1.1.3 – Building Energy Efficiency 

Consequently, buildings play a significant role in addressing climate change by reducing their 

energy consumption. The IPCC’s Fourth Assessment Report identifies that GHG emissions 

associated with energy consumption in both new and existing buildings can be cut by an 

estimated 30 to 50%. In 2006, the European Commission (EC) stressed in the Energy Efficiency 

Action Plan: “Partly because of its large share of total consumption, the largest cost-effective 

savings potential lies in the residential (households) and commercial buildings sector (tertiary 

sector), where the full potential is now estimated to be around 27% and 30% of energy use, 

respectively” (EC, 2006, p.5). 

 

Relevant policies to address the reduction of energy consumption in buildings were developed 

by the responsible authorities at international, national and local levels. These efforts focus on 

the reduction of CO2 emissions both by improving the efficiency of energy transformation and 

distribution, as well as by introducing energy efficiency requirements in building regulations. 

Two main aspects for these regulations are intended to improve the fabric thermal behaviour 

and the efficiency of heating and cooling systems for buildings. 

 

The European legislative framework on building energy efficiency inter-relates several parallel 

strategic measures to promote climate change mitigation. Accordingly, the European Union 

Presidency promoted the ‘20 20 20 strategy’, which aims for a 20% reduction in GHG emissions 

and primary energy consumption until 2020 and a 20% increase in the use of renewable 

energy sources, as compared to 1990 levels (Council of the European Union, 2007). These 

targets reaffirmed the EU’s commitment to address climate change through the improvement 

of the energy efficiency of buildings. 

 

The ‘Energy Performance of Buildings Directive’ (EPBD) is the core of the EU building energy 

efficiency legislation and was mandatorily transposed into the state members’ national 

regulations, in order to locally adapt the methodology to achieve the goals of the main text. 

The Directive promotes the retrofit of existing buildings as a central strategy, a pedagogic 

measure which has become mandatory for public buildings. It also incentivises the use of 

renewable energy sources and the development of district heating and cooling (EC, 2010a). 

 

Following the EPBD, a new regulation for the thermal behaviour of buildings was released in 

Portugal in 2006: ‘Regulamento das Características do Comportamento Térmico dos Edifícios’ 
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(RCCTE). This legal text focuses on residential buildings and is complemented by additional 

legislation directed at mechanically heated or cooled buildings. These regulations converge to 

the national energy performance certification scheme, ‘Sistema Nacional de Certificação 

Energética e da Qualidade do Ar Interior nos Edifícios’ (RSE), which labels buildings according 

to their energy consumption and CO2 emissions. This legal framework relies on a simplified 

calculation methodology, and focuses mainly on the construction of new buildings. In order to 

be able to also deal with already existing buildings, an even more simplified method of 

calculation was implemented in 2009, maintaining the mandatory limit values for parameters 

and energy consumption. Be it at a European or at a national level, the core strategy of these 

regulations for the residential sector resides in the global improvement of the building 

envelope’s heat transfer and in the promotion of renewable energy sources for domestic 

water heating (DHW). 

 

1.1.4 – Existing Buildings Stock 

In addition to the introduction of energy-efficient solutions in the design of new buildings, the 

potential of adapting the existing building stock in order to improve the energy efficiency is 

also a growing topic of research (e.g. Balaras et al., 2007; BPIE, 2011; Ecofys, 2004; Lomas, 

2010; Meijer et al., 2009; Nemry et al., 2010; Sunikka, 2006). The current European new 

construction framework emphasizes the role of retrofit for existing buildings to meet the 

energy efficiency targets promoted by the European climate change and energy efficiency 

policies6 (BPIE, 2011; EC, 2010a; EC, 2012). 

 

Buildings built before 1960 represent a large share of the total buildings in Europe, accounting 

for 35%, 37% and 42%, respectively in central & east, south, and north & west European 

regions (BPIE, 2011). A recent study reinforces their strategic role in European energy 

efficiency policies by stating that “energy savings through the renovation of the existing 

building stock is one of the most attractive and low cost options to reduce the emissions of 

CO2 and potentially improve energy security by reducing imports of fossil fuels” (Copenhagen 

Economics, 2012, p.4). Moreover, it emphasises the economic and social benefits from this 

strategy, due to its labour intensiveness when compared with the construction of new 

buildings. In Portugal, the refurbishment of existing buildings has also been pointed out as a 

                                                           

6 - As pointed out in a European study, the use of the term ‘renovation’ promoted in European policy can be 
replaced by ‘retrofit’ or ‘refurbishment’ describing basically the same process (BPIE, 2011). 
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resource conservation strategy as well as promoting economic development and employment 

(CIP, 2010; CIP, 2011). 

 

Despite the difficulty of comparing the performance of the heterogeneous existing building 

stock in Europe, as pointed out by Itard and Meijer (2008), a cross-European study promoted 

by the Buildings Performance Institute Europe (BPIE) revealed that the residential sector 

amounts for an energy saving potential of up to 71%, which corresponds to a CO2 emissions 

reduction of 91.7% (2011). For the UK, a potential CO2 emissions reduction of 60% to 80% by 

2050, depending on the intensiveness of measures taken, was identified (Johnston et al., 2005; 

Killip, 2008; Shorrock et al., 2006). These scenarios integrate the macro vision of energy 

efficiency, accounting for the potential savings achievable by the decarbonisation of energy 

industries. Hence, it is possible to assume that existing residential buildings pose a major 

challenge and have a significant potential for energy efficiency improvement through 

refurbishment or retrofit. 

 

1.1.5 – Traditional Buildings and Energy Efficiency 

Traditional buildings represent the majority of the built environment in historic cities. Even if 

their own heritage value does not justify an individual listing, they contribute to the overall 

significance of any historic urban site. Consequently any disruption in their individual 

characteristics, which may appear to only have minor effects, could actually produce a slow 

change over time and hence lead to a significant disruption for the overall area. Since great 

care has already to be applied with any heritage grading, it has to be undoubtedly higher when 

dealing with World Heritage Sites. 

 

The European thermal regulations also apply to existing buildings undergoing major 

renovations or upgrade processes. Such operations are defined as costing 25% or more of the 

building’s total financial valuation. Following EPBD guidelines, the refurbishment, restoration 

or extension of the listed buildings or of the buildings located in historical areas, are exempt 

from fulfilling the requirements if they prove to be incompatible with the maintenance of the 

building’s heritage integrity. However, incompatibility has to be proven to and accepted by the 

local authorities which, without clear guidance, tend to perform a rather vague and casual 

appreciation of such values, in particular in the case of traditional buildings without specific 

heritage protection. Moreover, the mandatory requirements for the energy efficiency of 

existing buildings are based primarily on envelope improvements in order to address heat 
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losses. Changes to the envelope of traditional buildings are a dangerous process, raising the 

above expressed concerns at building and townscape levels. 

 

A conflict between the upgrade of energy efficiency in traditional buildings and the safeguard 

of their heritage values can thus be identified. This configures the difficulty on conciliating the 

technical approach with the subtler architectural heritage conservation practice. The relevance 

of this problem comes both from the important role these buildings can play in the mitigation 

of climate change, making their adaption fundamental, and from the absolute necessity to 

conserve their heritage significance, which is unavoidable in order to sustain the historic 

environment. 

 

1.1.6 – Traditional Buildings of Oporto 

In the case of Oporto, traditional buildings are major contributors for shaping the appearance 

of the World Heritage Site and constitute an urban stock which must be accounted for in the 

future decarbonisation policies of the city. Moreover, recent trends in the construction 

industry and the promotion of national urban regeneration policies prove the current interest 

in the refurbishment strategy (Portugal, 2004; Portugal, 2009). The creation of municipal 

companies to deal with the urban regeneration operational tasks directed this strategy mainly 

for the historic areas in Portugal. The Oporto Urban Renewal Company (Porto Vivo SRU) was 

the first institution to be created under this legal framework and lead to a large urban renewal 

scheme that is mainly aimed at traditional buildings. 

 

The gradual increase in tourist flows and urban downtown night life in Oporto (Macedo, 2011), 

lead to an emerging economic revitalisation and physical refurbishment processes of the 

historic city (INE, 2012a; INE, 2012b). The current economic constraints and the attractiveness 

of the historic city are evident in the increase in number of building refurbishment permits 

submitted to the local authority of Oporto in the first nine months of 2012 (417 representing 

90% of the total), and present a continuation of the growth pattern of  the previous two years7 

(Vida Imobiliária, 2013b). 

 

                                                           

7 - For the same period, refurbishment permits in Lisbon accounted for 96% of total (Vida Imobiliária, 2013a). In 
2011 the refurbishment permits in Portugal reached 25% of the total (INE, 2012b, p.35). 
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This is also reinforced by Guedes et al. (2009, p.2004), stating that “(…) in terms of sustainable 

development the situation presently found in Portugal offers good opportunities in two critical 

areas: building refurbishment and the revision of the comfort criteria.” The opportunity that is 

presented for the refurbishment of traditional buildings in Oporto’s historic centre is crucial for 

improving their energy efficiency, while at the same time promoting a strategy inserted into 

the sustainable development policies. 

 

1.1.7 – Current Research 

The shortcomings of modern architecture in terms of thermal performance of buildings are 

pointed out by Roaf et al. (2009), whose research compared the performance of several 

buildings in Naples from different ages, and concluded that “we have much to learn from the 

buildings and technologies of the past, and from the lifestyles and adaptive behaviour and 

opportunities created by their occupants” (p.200). Furthermore, the concepts of sustainable 

refurbishment rely heavily on a reduction of energy consumption by decreasing mechanical 

environment control and by taking advantage of the passive characteristics embodied in 

‘regionally appropriate buildings’ (Roaf et al., 2009), which reveal higher levels of resilience. 

 

Over the past 15 years a growing field of literature has been addressing the issue of thermal 

behaviour and energy efficiency of traditional buildings worldwide, with several examples 

being taken from the Mediterranean (Portugal8, Spain9, France10, Italy11, Greece12, Turkey13 and 

Cyprus14). This increasing interest confirms the emerging research framework. It also points to 

the passive characteristics of traditional architecture as a pathway to improve the thermal 

behaviour of contemporary buildings by for instance, the use of traditional materials or 

                                                           

8
 - (Afonso, 2009; Araújo and Almeida, 2006; Ferreira and Teixeira, 2010; Guedes et al., 2009; Mamede, 2012; 

Moradias et al., 2012; Silva and Ramos, 2003). 

9
 - (Cañas and Martín, 2004; Gálvez et al., 2012; Guerrero et al., 2005; Martín et al., 2010). 

10
 - (Cantin et al., 2010). 

11
 - (Ascione et al., 2011; Balocco and Grazzini, 2009; Cannarella and Piccioni, 2011; Cardinale et al., 2003; Marco 

and Torre, 1999). 

12
 - (Anna-Maria, 2009; Oikonomou and Bougiatioti, 2011; Tassiopoulou et al., 1996). 

13
 - (Baran et al., 2011; Esin and Yüksek, 2008; Ipekoglu et al., 2007; Serefhanoglu Sozen and Gedik, 2007). 

14
 - (Dincyurek and Turker, 2007). 



The investigation of energy efficiency measures in the traditional buildings in Oporto World Heritage Site: Joaquim Flores 

12 

techniques (Kim and Park, 2010; Srivastav and Jones, 2009), thus following the seminal path of 

Hassan Fathy (1986). 

 

A large group of research also embraces the energy efficiency of traditional building and 

comfort improvement by making use of their passive characteristics (Dili et al., 2010a; Dili et 

al., 2010b; Dili et al., 2010c; Dili et al., 2011; Fuller et al., 2009; Martín et al., 2010; Singh et al., 

2010), identifying in them some of the standards of sustainable architecture (Campagna and 

Frey, 2008; Jones et al., 2009; Young, 2008). 

 

In a Portuguese context, Guedes et al. emphasise the passive potential of vernacular 

architecture, pointing to the local climate as passive suitable, rendering air conditioning 

dispensable in the majority of situations (2009). The available statistics confirm this situation 

as only 22.6% of Portuguese households use cooling equipment, the majority of which are 

individual fans (69.5%), leaving air conditioning at a mere 7.2% of the total (INE and DGEG, 

2011). 

 

Similar research has also been conducted by several major institutions which work in the field 

of traditional buildings. The Building Research Establishment (BRE) in England successfully 

promoted the sustainable refurbishment of several Victorian and Edwardian era buildings, 

providing effective measures to promote energy efficiency on these types of dwellings 

(Cartwright et al., 2011; Coad and Finbow, 1990; Ferguson, 2011; Sluce and Tong, 1991; Yates, 

2006; Yates, 2010). In the past decade, English Heritage (EH) has produced practical guidance 

for the refurbishment of traditional and historic buildings in order to upgrade them to current 

energy efficiency standards, following the EPBD transposing in the United Kingdom (UK) law 

(Baker, 2010; Drewe and Dobie, 2008; English Heritage, 2007). The use of renewable energy 

sources in traditional buildings was also addressed by EH. At the same time, the impacts 

caused to heritage values by the introduction of these systems into an historic environment 

were also analysed (English Heritage, 2006; English Heritage, 2008; English Heritage, 2010a; 

English Heritage, 2010b; English Heritage, 2012). 

 

Moreover, the Society for the Protection of Ancient Buildings (SPAB) together with academics 

has undertaken on-site research focusing on several aspects of the thermal behaviour of 

traditional buildings. These case studies showed a clear gap between the calculated results and 

the effective measurements taken, revealing that traditional buildings have a better thermal 

performance than expected (Browne, 2012; May and Rye, 2012; Rye, 2011; Rye et al., 2012). 
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From a general overview of the above literature, it can be concluded that the established 

perception of traditional buildings having a poor thermal performance and being inadequate 

to meet the current targets of energy efficiency is an erroneous preconceived idea. The passive 

characteristics of this type of building give them some potential to achieve higher levels of 

energy efficiency, as pointed out by a field study conducted in France which focused on various 

thermal characteristics of eleven historic dwellings (Cantin et al., 2010). 

 

1.2 - Research Objectives 

The framework established in the background section allows for concluding that the 

promotion of energy efficiency in existing residential buildings is a widespread and 

fundamental policy to achieve a reduction in CO2 emissions and therefore mitigate climate 

change. European Directives have made mandatory the reduction of energy consumption 

associated with new and existing buildings, with exemptions being made for listed historic 

buildings. Other heritage-valued buildings which are not listed may be casuistically evaluated 

according to the specific legislation of the individual member states. Traditional buildings are 

included in this group as they are not listed individually, but by inclusion in a conservation 

area. 

 

This raises the question: how can their energy efficiency be improved without damaging their 

heritage value, both in terms of the building itself and the overall townscape? 

 

Literature and case studies address this question from separate perspectives. Some address 

traditional buildings by focusing on the most effective improvements solely from an energy 

point of view, treating them as if they were new buildings. Others focus on specific aspects of 

the performance of traditional buildings, failing to take an integrated approach at the problem. 

Even so, some provide processes which seem to address both aspects. However, they are 

mainly driven by the technical side of energy efficiency, leaving the heritage aspect to be 

addressed purely through experienced knowledge, thus missing a clear methodological 

approach. Conclusively, it was identified that there is a necessity to develop a methodological 

framework which combines energy improvement with heritage conservation by establishing 

clear definitions on how to weigh and obtain the most effective solutions. 
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1.2.1 – Research Questions 

The main aim of this research is to identify the means by which urban traditional residential 

buildings can be upgraded to improve their energy performance while at the same time 

preserving their heritage significance. Oporto’s traditional buildings, integrated in the World 

Heritage Site, will be used as a research object for development and testing of the 

methodological approach. The overall challenge will be balancing the most effective energy 

efficiency improvement measures to be introduced in Oporto’s traditional buildings. 

 

The impact measurement of the measures to be proposed to improve the energy efficiency of 

Oporto’s traditional buildings can be achieved by a process similar to the one used by Avanti 

Architects in the Barbican (2005). It comprises the identification of the fundamental attributes 

of the buildings' design, establishing their cultural significance and identifying what is 

unacceptable to be changed. Then, the solutions have to be graded by their visual and fabric 

impact to determine what is unacceptable, conditionally acceptable and freely acceptable. 

 

In order to address this central question other associated objectives were established to deal 

with it. First, it is necessary to identify how the heritage significance and the management of 

change in traditional buildings can be assessed. This relates to the identification of how the 

heritage valuing process occurs in traditional buildings and what the framework for assessing 

the impacts of change on these is. This is a much subtler process than the one that occurs in 

historic listed buildings and their establishment is fundamental to define the heritage scope in 

the current research. Further, it will allow establishing the heritage value of Oporto's 

traditional buildings and the means by which change must be managed on their energy 

efficiency upgrade. 

 

In a similar process the review of traditional buildings must be addressed in order to identify 

their specific thermal performance factors and how to assess them. This will allow measuring 

the performance of traditional buildings in Oporto and the means by which they can be 

improved. The revision of similar research and good practice examples will complement the 

previous assessment, allowing the identification of the most common measures and 

interventions used for the improvement of the energy efficiency of traditional buildings. These 

must cover the technical approach and also address their compatibility with the fabric of the 

buildings and their impact on the heritage value. 
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Based on the previous framework it becomes necessary to develop a methodology to assess 

the improvement of the energy efficiency of traditional buildings and their acceptable heritage 

limit of change. From the identified background, a framework involving the current research 

and the advances made on the field could be recognised. Further, it was possible to identify 

the main gap in knowledge, which is presented by the absence of a methodological approach 

integrating the heritage and energy efficiency components. Besides this integration, it is also 

fundamental to define and measure the feasibility of the measures to achieve the proposed 

aims. 

 

With the overall methodological framework defined, the second part of the research narrows 

the scope down to Oporto’s traditional buildings in order to test and validate the approach and 

to clearly identify the most feasible measures. Oporto’s traditional buildings provide the real 

data to accomplish this purpose, covering both the heritage value and the energy 

performance. This must address the definition of the typologies present in Oporto’s historic 

core and the identification of their fundamental characteristics in relation to the research 

objectives, including the establishment of their baseline performance in terms of energy and 

their heritage significance. Assuming that these buildings are occupied residential units, it is 

also necessary to integrate the role of households into the process, which is a fundamental 

aspect of the current strategies to improve energy efficiency in existing buildings. 

 

The Oporto case study will further be approached with the developed method, allowing 

identification of the most effective measures to improve energy efficiency without disrupting 

the significance of the buildings. Additionally, this final part aims to widen the methodological 

approach, discussing how it can be applied to traditional and historic buildings that share 

identical fundamental characteristics. 

 

1.3 - Thesis Structure and Research Development 

In terms of structure this thesis is divided into parts A and B. The first part (A) addresses the 

definition of the global framework, which shapes both components of the research: heritage 

valuing and energy efficiency in traditional buildings. The second part of the thesis (B) focuses 

on a case study of Oporto’s traditional buildings in order to apply the devised methodology 

into the research object. 
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After this introduction that establishes the background for the research, the second chapter 

will discuss the heritage dimension, covering the valuing and management of change 

processes. This includes addressing both the theoretical and methodological frameworks of 

the subject. 

 

The next chapter will focus on the energy efficiency of traditional buildings, and continue to 

cover theoretical and methodological frameworks. This will include reviewing the parameters 

that deal with the energy performance of buildings and the specific framework when 

approaching the performance of traditional buildings, which is an identified field of 

uncertainty. 

 

In chapter four, similar research projects and case studies are analysed in order to identify 

possible solutions to address the framework outlined in the previous chapter(s). This revision 

encompassed both heritage conservation and technical energy efficiency improvements. 

 

Part A concludes with chapter five, outlining an integrated methodological approach dealing 

with the gap identified in the current chapter’s background. This methodology must adopt the 

theoretical and methodological frameworks revised in previous chapters. 

 

In chapter six Oporto’s traditional buildings are characterised in terms of their architectural 

construction systems and heritage significance. 

 

The next chapter covers the analysis of the detailed data collected by fieldwork, aiming to 

obtain all necessary information to evaluate the energy performance of Oporto’s traditional 

buildings. This includes the selection of the research area, typological identification and case 

studies selection. 

 

Chapter eight then uses this information to model and simulate the case studies 

representative of the typological selection, allowing to obtain the performance benchmarking 

for the measures identified. Heritage impact assessment will be performed beforehand in 

order to outline the most feasible solutions under the methodological framework developed. 

 

Chapter nine discusses the overall results, covering both the specific case of Oporto’s 

traditional buildings and the validation of the methodological approach to traditional and 
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historic buildings in general. This chapter will close the process of answering the research 

questions while addressing the global theoretical and methodological frameworks. 

 

The final chapter concludes the research by covering the global research findings, draw 

recommendations and also addressing strengths and weaknesses of the overall process. 

Additionally, it points out future research to be developed concerning the scope of this 

thematic study. 
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Values assessment Relevant heritage grade 
Levels of intervention 

permitted 

Chapter Two: Valuing Heritage 
 

2.1 - Introduction 

The objective of this chapter is to review the heritage concepts associated with traditional 

buildings which are essential to this research. The necessity to balance energy performance 

improvement with heritage protection requires reviewing the concepts associated with 

heritage values assessment and intervention criteria, which must guide the upgrade 

operations of non-monumental urban traditional buildings. This will allow for addressing the 

objective of improving energy efficiency in Oporto’s traditional buildings, leading to a result 

where the savings achieved in energy are not obtained at the expense of significance loss. 

 

2.2 – Heritage 

The management of change in heritage buildings has to be found in the relation between 

heritage values and admissible intervention (figure 2). This approach is commonly accepted in 

national cultural heritage legislation15, with Portugal and Great Britain being no exception16. 

Under these procedures the initial values are assessed and compared against defined criteria, 

leading to the integration of the asset in a list of protected goods. The listing is made based on 

the relevance of the identified values, which directly leads to a level of protection and 

associated intervention grade, establishing their admissible change. 

 

 

 

 

 

 

Figure 2 – Intervention process identified in heritage regulations (France, Greece, Great Britain, Italy, Portugal and 
Spain) 

                                                           
15

 - (France, 2005; Greece, 2002; Italy, 2004; Spain, 1985). 

16
 - (Ancient Monuments and Archaeological Areas Act 1979. Chapter 46; National Heritage Act 2002. Chapter 14; 

Planning (Listed Buildings and Conservation Areas) Act 1990. Chapter 9; Portugal, 2001). 
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This is a proven and effective process which has been implemented in most European 

countries and worldwide for many years (Pickard, 2001). The major question resides in the 

process of defining the heritage relevance of the built objects through the identification of 

their associated values, allowing further the determination of their significance and respective 

degree of acceptable change. 

 

2.2.1 – Heritage as a Concept 

Referring to the dictionary definitions, the noun ‘heritage’ is both referred to as an inherited 

property and as a valued asset (Oxford University Press, 2008). Both cases refer to valued 

resources and intergenerational transmission, making it possible to identify similarities with 

the sustainable development concept, as defined in the Brundtland Report (1989). This is also 

pointed out in heritage literature, which frequently establishes a relation between natural and 

cultural heritage (English Heritage, 1997; Marco and Torre, 1999; Mason, 2002) or, in the 

specific economic phraseology of Throsby (2002), the notion of cultural and natural capital. 

 

At the centre of the heritage concept is the idea of historical ‘monument’, as argued by Choay 

(1992). It is elected from a group of works for representing values that must be transmitted to 

future generations in order to counteract the dissolving action of time, thus perpetuating the 

identity and character of their specific culture, consequently leading communities to demand 

their preservation. This process was also what led to the inclusion of the ‘intangible’ under the 

concept of heritage. 

 

It is possible to add the concept of ‘imageability’ defined by Kevin Lynch as, “(...) that quality in 

a physical object which gives it a high probability of evoking a strong image in any given 

observer" (1990, p.9). Reversely, this is the quality that causes the feeling of loss that is 

experienced when extensive change occurs in a familiar physical environment. 

 

Built heritage, being the context of human activities and causing a strong impression, helps 

then to give form to the concept of ‘collective memory’. Italian architect Aldo Rossi argued 

exactly this stating that cities are repositories of the collective memory of their people (1982 

[1966]). This is also consistent with the contemporary concept of ‘place attachment’ which, as 

defined by Mason, “refers to the social cohesion, community identity, or other feelings of 
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affiliation that social groups (whether very small and local, or national in scale) derive from the 

specific heritage and environmental characteristics of their ‘home’ territory” (2002, p.12). 

 

In conclusion, it can be said that the idea of timeless heritage points to something that holds 

and conveys values. Focusing on the field of urban, architectural, and archaeological heritage, 

the term applies to a whole group of assets that by its qualities or values is part of our 

memory, leading to local distinctiveness, i.e., characterising and distinguishing every building, 

place, or city. 

 

The value of ‘memory’ is today weighted in the definition of heritage, leading to a ‘democratic’ 

vision by encompassing both erudite and vernacular works. At the same time, as pointed out 

by De la Torre (2002), this democratic framework is also extensive to the determination of 

what is or is not heritage, a decision that is not exclusive to conservation experts anymore, but 

rather extended to the general public. At the same time being dependent on people’s choices, 

heritage values concur and sometimes conflict in the same asset. This means that the choices 

of a generation are not necessarily equal to the ones of the next generation and, in this way, 

values are also mutable. This highlights the necessity to perform reversible interventions in 

order to address this generational variability. In summary it can be said that heritage 

designates places, material objects or immaterial actions which impress people and 

consequently are protected and chosen to be transmitted. 

 

2.2.2 – Architectural Heritage  

In terms of architecture, the educational factor is also essential since it was always 

fundamental to acquire and understand models and canons of the past embodied in every 

built work. In architectural history, references are always present, even when they appear to 

be a complete break with the past, like for instance in the Modern Movement. 

 

In the 1930’s, Italian architect Gustavo Giovannoni advocated the need to protect ‘urban 

heritage’, a term first coined by him (Choay, 1992). This reveals a broader view for the 

safeguard of less relevant fabric, not remarkable in itself, but contributing to the harmony of 

the ensemble, integrating it into a general conception of urban planning. This approach was 

institutionalized with the publication of the Venice Charter in 1964, which extended the 

concept of heritage to vernacular architecture, i.e. the "(...) more modest works of the past 

which have acquired cultural significance with the passing of time" (ICOMOS, 1964, article 1). 
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This was reinforced in 1975 by the European Charter of Architectural Heritage and developed 

in a series of international documents, declarations and conventions that have multiplied over 

the last forty years (Jokilehto, 1999). 

 

The introduction of the ‘integrated conservation’ principle in the Amsterdam Declaration 

(1975) added a social element that, confined within the physical space it interacts with, 

generates movements and complex relationships. Basically, this corresponds to the transition 

from a static view, the city-museum, to a new, dynamic view. As Lynch wrote "(…) every citizen 

has had long associations with some parts of his city, and his image is soaked in memories and 

meanings. Moving elements in a city, and in particular the people and their activities, are as 

important as the stationary physical parts" (Lynch, 1990, pp.1-2). 

 

Conclusively, it is possible to say that the evolution of the architectural heritage concept leads 

to the inclusion of the erudite and vernacular, the monument and the site, as well as the 

historical centre and the territory, which came alongside with the integration of both the 

physical and social scopes in their conservation processes. 

 

2.2.3 – Significance, Authenticity and Integrity  

The publication of the Burra Charter by the Australian ICOMOS in 1979, produced the most 

established and disseminated national version of the Venice Charter. It introduces the concept 

of ‘place’, which is more comprehensive than the previously used ‘monument and site’. As 

referred by Jokilehto, “(…) it emphasizes the less tangible aspects of cultural significance, 

associations and meanings that places have for people, and the need to involve people in the 

decision-making process” (1986, p.289). The character and values embodied in the place are 

also translated into the broader concept of ‘cultural significance’, comprising both material 

and immaterial components of heritage. Accordingly, with the current heritage conceptions, 

the cultural significance of a place is pointed out as being mutable in time, since valuation is an 

act which is inseparable from the times and socio-cultural contexts in which it occurs (ICOMOS 

Australia, 2000). 

 

The World Heritage Convention, adopted in 1972, has not only broadened the scope of 

heritage (cultural, natural, tangible, intangible, etc.), but also introduced the valuation 

concepts of ‘universal significance’ or ‘outstanding universal value’ (OUV). The Operational 

Guidelines for the implementation of the World Heritage Convention (UNESCO, 2008), establish 
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the criteria by which to assess the OUV of properties, based on characteristics which render 

the asset relevant to mankind. Apart from these specific criteria the cultural properties must 

also meet the general conditions of ‘authenticity’ and ‘integrity’. 

 

Based on the Nara document, the concept of ‘authenticity’ is founded on credibility and truth 

of all sources of information on which the values attribution is based and of the objects own 

attributes. In the case of buildings this ranges from form and design to context, materials, 

associated traditions, construction techniques, use and function (Orbaşli, 2008; UNESCO, 

2008). 

 

The concept of ‘integrity’ deals with the wholeness and intactness of natural and cultural 

heritage and of the attributes necessary to express their OUV. In the special case of the built 

form, this also means that the fabric and its significant elements must be in good condition and 

any deterioration processes should be under control (UNESCO, 2008). As pointed out by 

Orbaşli (2008), several aspects concur to form the overall integrity of the building, namely 

physical, structural, design, aesthetic, setting and context, and the professional integrity of the 

conservation team. 

 

However, these concepts must be understood in the specific cultural context of the asset and 

not as a dogmatic approach towards conservation (Jokilehto, 2006). Management of change is 

another key point of the operational guidelines, ensuring the maintenance and/or 

enhancement of significance, authenticity and integrity of the listed properties. Today, these 

three concepts are the most relevant under the scope of the current research as they 

represent the essential characteristics that a built environment should possess to be listed as 

world heritage and which should be preserved in the management of change process. 

 

2.3 – Architectural Heritage Values Assessment 

As was pointed out earlier, architectural heritage values are the characteristics of a building 

that impress communities and consequently lead to their conservation. If the traditional 

conservation actors (architects, archaeologists and art historians) value objects to be essential 

by virtue of their embodied erudite values (artistic, historic, educational), the general public 

introduces a deeper complexity to the process, leading to a wider range of values as shown in 
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table 2. However, these values are not self-contained and isolated from each other, they are 

usually related and concur on an object (De la Torre and Mason, 2002). 

 

It is also possible to group and draw hierarchies for these values, as some are dependent on 

others. The examples of table 2 are grouped diversely by their authors: Mason (2002) 

clustered them under two main categories (socio-cultural and economic) while the English 

Heritage guidance (English Heritage, 2008) defines four main values (evidential, historical, 

aesthetic and communal), under which several others cross to define the heritage significance 

of buildings. The major questions reside on how to find values that define the status of 

heritage, and how to assess and establish their relative importance. In doing so, it will be 

possible to identify the characteristics that must be preserved in each object in order to 

maintain its overall cultural significance and integrity. 

 

 

Table 2 – Buildings heritage values in literature, partially based on (Mason, 2002) and completed with (Choay, 1992; 
English Heritage, 2008; Orbaşli, 2008; Roders, 2006). 

 

Reigl (1902) Lipe (1984) Choay (1992) Frey (1997)
Burra Charter 

(1998)
Mason (2002) Roders (2006) Orbasli (2008)

English Heritage 

(2008)

Sociocultural

Aesthetic
Artistic or 

aesthetic
Aesthetic Aesthetic Aesthetic Artistic Aesthetic

Architectural Design

Artistic

Townscape

Ecologic Landscape

Historical
Cognitive or 

memory
Historic Historical Historic Historic Historical

Illustrative

Local 

distinctiveness

Associative Associative Associative

Age National Prestige National Age Age and rarity Evidential

Public Communal

Commemorative Commemorative

Symbolic Symbolic Symbolic Symbolic

Social Social Social Social Social

Spiritual Spiritual Spiritual Spiritual

Religious Religious

Emotional

Educational Educational Intellectual

Technical Thecnological

Newness Scientific Scientific Scientific

Research

Informational Knowledge

Other cultural Cultural Cultural

Political Political Political

Economic

Use Monetary Use (market)

Nonuse 

(nonmarket)

Existence Existence

Option Option

Bequest Bequest

Economic EconomicEconomicEconomic
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2.3.1 – Architectural heritage values 

In an in-depth study on the evolution of the heritage concept, Françoise Choay identified three 

core values, which characterise a built form and give it the status ‘historical monument’: 

economic, artistic or aesthetic, and cognitive or memory values (1992). 

 

Economic value is naturally the oldest associated with the concept. It refers to the financial 

valuation of the building and directly recalls the idea of inheritance as an asset.  Despite the 

difficulty to quantify the economic value of built heritage due to the ‘emotional charge’ that 

the property holds (i.e., the other values which concur to the valuing process and are of a 

more subjective nature), this parameter is always present due to the ‘real estate’ nature of 

buildings. While this may seem absurd for estimating the value of a ‘monument’, that can be 

considered priceless  this  does not hold true when approaching heritage categorised as ‘group 

of buildings’ where the significance emerges from the ensemble as a whole. These buildings 

are inserted in a context and usually participate in contemporary life, thus making them part of 

the real estate market. Hence, their economic valuation plays an important role as their 

market value is measurable and can be inserted in the current economy (De la Torre and 

Mason, 2002; Mason, 2002; Throsby, 2002). 

 

The economic vision on heritage has been growing and now plays a major role in the literature, 

as revealed in the studies undertaken by the Getty Conservation Institute (De la Torre, 2002; 

Mason, 1999). The economic sciences framework argues for allow the measurement of some 

values of heritage by applying the principles of economic valuation for assets (Hutter and 

Rizzo, 1997; Mason, 2002; Mourato and Mazzanti, 2002; Throsby, 2002). 

 

Artistic or aesthetic value is referenced by Choay as an evidential characteristic embodied in 

the architectural object, which is initially perceived or attributed by scholars and over time 

extended to the community (1992). In this aesthetic framework it is important to distinguish 

between artistic and design values, as pointed out by the English Heritage guidance (2008). 

The first relates to the more or less spontaneous gesture of an artist or craftsman, while the 

second is the consequence of planned and conscious design. The discipline of architecture is 

tied directly with this last concept, while at the same time not excluding the artistic aspect 

which is present in buildings by either an erudite sculpture or painting, or by the skilled work 

of a craftsman. 
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Even if the aesthetical valuation is the result of a specific cultural context, the deeper 

intentions present in the architect’s design are usually timeless (beauty, proportion, harmony) 

and can also be evoked in other cultural contexts and by other generations. It is these timeless 

characteristics that lead to a building being appreciated for its material evidence, impressing 

scholars and the community, regardless of the presence or absence of other historical or social 

values in it. 

 

This aesthetic aspect is also connected with other values as the erudite design of a building 

always possesses an educational perspective. The timeless intentions which concur to create 

the overall work of art need to be found and identified in order to perform a conscious 

conservation, as defined in Cesari Brandi’s theories (1977). Also referring to the aesthetic 

component of heritage, Mason presents the idea that this can be enlarged to a sensory 

perception, utilising all senses and not merely sight (2002). Pursuing this idea, it can be 

affirmed that the aesthetics of a built heritage can be interpreted on two different levels: one 

is related to the erudite and expert interpretation of design and artistic qualities, while the 

other deals with the sensory experience provoked by the objects, which can by perceived by 

everyone. 

 

While traditional buildings may possess all of these values, the balance between them will 

probably be different. When compared with major works of architecture, their design 

significance might be valued less, but their artistic importance, due to their craftsmanship, 

communal values, or sensory experience, may play a fundamental role in their designation as 

heritage. The relation with physical characteristics of a specific context (e.g. climate and 

materials) must also be stressed, as they represent the bond established between man and 

natural resources, which is materialised in the technological value of the traditional 

construction systems. 

 

Following Choay’s categories, cognitive or memory values are also included in the genesis of 

heritage valuation. It is by the necessity of preserving the memory that protection occurs. 

Under this broad category most socio-cultural values can be included, as many of them are 

connected with specific points of collective memory (e.g. historical, commemorative, symbolic, 

illustrative or associative). This also highlights the relation with the past, as age and aesthetic 

were always fundamental in the heritage valuation of buildings, allowing to create a bond 

between past and present generations. In a wider conception of heritage, Roders proposes 
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that all built structures that are older than twenty-five years should be considered heritage, 

simply as testimonials of the past, without aprioristic aesthetical or historic evaluations (2006; 

2007). This vision can be inserted in the dynamic principle of preventive conservation, which 

should be implemented in order to avoid specific cultural or generational bias (English 

Heritage, 2008; Mason, 2002; Roders, 2007). 

 

In complement, traditional buildings acquire importance because they significantly contribute 

to shaping historic environments. The urban image transmitted by buildings, in the sense of 

Kevin Lynch’s ‘imageability’ (1990), impresses the memory of the inhabitants of historic cities 

and, in a subtle way, defines a sense of place which is the result of the ensemble instead of the 

unit. The preservation of this ‘image’, through a dialectic process established between the 

building unit and the historic city context, also preserves of the authenticity and integrity of 

the historic city. The fact that these units are not refined examples of design value may lead to 

their replacement, which in a slow and subtle way contributes to the degradation of a city’s 

identity. Hence, the valuing process for traditional buildings has to be approached from two 

different perspectives: the individual unit and the overall contribution to the character of the 

historic site. 

 

An analysis of the national heritage laws of England and Mediterranean countries (Portugal, 

Spain, France, Italy and Greece) allows the conclusion that buildings are still listed mainly by 

their historic and artistic values, which are transversally found in all legal texts (table 3). Most 

of this legislation is based on the concept of ‘monument’, which stems from nineteenth 

century laws based on the architecture and art history experts’ visions. Other values were 

added to update the concept, but the vision of experts is still prevalent in the process of 

electing buildings to be protected. However, these two values have to be understood in a 

broader sense: ‘historic’ can be broken down into a series of social values (age, rarity, 

symbolic, commemorative, national, emotional, political, spiritual, etc.), and ‘artistic’ 

represents the values associated with the physical attributes of buildings and the impression 

they produce (aesthetic, design, artistic, architectural, intellectual, educational, technical, 

scientific, etc.). 
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Table 3 – Buildings heritage values in England and Mediterranean Laws (footnotes 15 and 16). 

 

Conclusively, it is possible to affirm that there is no definitive and absolute guidance for the 

valuing of buildings and for understanding their grade of significance. The Getty Report (De la 

Torre, 2002) and the English Heritage Conservation Principles (English Heritage, 2008), present 

a solid set of values identifiable in buildings, which also coincides with Choay’s synthesis 

(1992). Most of the values in the table may also be grouped, as they are similar, with subtle 

denomination variations. 

 

2.3.2 – Architectural heritage values assessment 

As affirmed by Mason, the “value assessment presents a threefold challenge: identifying all the 

values of the heritage in question; describing them; and integrating and ranking the different, 

sometimes conflicting values, so that they can inform the resolution of different, often 

conflicting stakeholder interests” (2002, p.5). In figure 3 the overall framework in which values 

assessment is inserted, is systematised. 

 

The multidisciplinary approach among experts is also fundamental to obtaining a consistent 

result. By using what Mason called a ‘strategy of inclusiveness’, this approach should result in 

the ‘triangulation’ of the diverse disciplinary methods (2002). The same author further stresses 

that no single method is effective to produce adequate knowledge of the heritage values. 

However, contextual holistic understanding (social and physical), assures a varied and robust 

perspective on which values to assess. 

 

 

 

PORTUGAL SPAIN FRANCE ITALY GREECE ENGLAND

Historic Historic Historic Historic Historic Historic

Artistic Artistic Artistic Artistic Artistic

Aesthetic

Archaeological Archaeological Archaeological

Scientific Scientific Scientific Scientific

Social Social

Technical Technical

Architectural Architectural

Ethnographic Ethnographic

 Anthropological

 Industrial

Values
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Figure 3 – The heritage management process proposed by Mason (2002, p.6) positions significance and value 
assessment at the centre of the process. 

 

Nevertheless, traditional expert methodologies are still the base for identifying the values of 

built heritage and even when considering the most advanced conceptions, they constitute an 

established starting point whose scope must afterwards be extended. As affirmed by De La 

Torre and Mason (2002), even if the opinion of experts is one among many, their role has to be 

necessarily higher when dealing with buildings because of the specific technical framework of 

buildings, as it is evident in the heritage legislation (table 3). Accordingly, the process of 

assessing a building's ‘heritage cultural significance’ relies initially on art history research, 

based on documents, and archaeological and architectural surveys and analysis, referring 

mainly to the built object itself. This is not an impermeable process as the disciplinary 

approach can be crossed, turning buildings into documents for historians which also give 

valuable contributions for architects, with archaeologists being located in between these two 

fields. 

 

As affirmed by De La Torre and Mason, environmental methodologies, in particular impact 

assessment tools and ethno-orientated methods, are today valuable and complementary 

approaches (Mason, 2002). The parallelism between heritage assessment and environmental 

impact assessment is also stressed by Teller and Bond (2002). Moreover, the ICOMOS’s 

Guidance on heritage impact assessments for Cultural World Heritage Properties (2011), 

confirms how these frameworks can be effective and directly applied in the field of cultural 
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heritage. The stages presented in table 4 can be coincident with values assessment until step 

eighth, which represents the ‘statement of significance’ or statement of ‘Outstanding 

Universal Value’, through which the identified values must be clearly described, i.e. defining 

the baseline situation. 

 

Stages of Heritage Impact Assessment (HIA) 
    

1 Initial development and design 

2 Early consultation 

3 Identify and recruit suitable organisations to undertake works 

4 Establish study area 

5 Establish scope of work 

6 Collect data 

7 Collate data 

8 Characterise the heritage resource, especially in identifying attributes that convey OUV 

9 Model and assess impacts, direct and indirect 

10 Draft mitigation - avoid, reduce, rehabilitate or compensate 

11 Draft report 

12 Consultation 

13 Moderate the assessment results and mitigation 

14 Final reporting and illustration - to inform decisions 

15 Mitigation 

16 Dissemination of results and knowledge gained 

Table 4 – Heritage Impact Assessment Stages in (ICOMOS, 2011, p.13) 

 

The process of assessing architectural heritage values is based on a mixture of methods and 

approaches from several disciplines (ICOMOS, 2011; Mason, 2002). Mason divides the 

assessment tools and methodologies into ‘suitable for cultural values’ and ‘suitable for 

economic values’ (table 5). Due to their objectiveness, the economic methodologies are 

suitable for management processes, however they pose the danger of ‘blocking’ relevant 

qualitative aspects of heritage (i.e. artistic, symbolic, spiritual, etc.) (2002). Hence, the current 

research aimed at traditional buildings and their cultural significance must also rely on the 

cultural assessment methods, as advocated by the guidance of UNESCO (2008), English 

Heritage (2008) and ICOMOS (2011). The economic tools are out of the scope of this study and 

will not be explored. 
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Cultural Values Assessment Methods 

Expert Analysis 

Textual 

Iconographic 

Formal 

Semiology 

Ethnography 

Surveys 

Interviews (structured or unstructured) 

Other participatory method: field of planning/urbanism 
methods (public meetings, visioning, focus groups, key-
informant interviews, etc.) 

Mapping 

Traditional data mapping or plan 

Geographical Information Systems (GIS) 

Other mapping methodologies: Interactive mapping 
produced by non-professionals of the sector (‘mental 
mapping’; ‘parish maps’; informal ‘rock-and-dirt maps’) 

Primary research 
Archival 

Writing historical narratives 

Secondary research Literature 

Descriptive statistics 
Content analysis 

Demographic analysis 

Economic Values Assessment Methods  

Revealed-preference methods 

Economic impact studies 

Hedonic pricing methods 

travel-cost methods 

Stated-preference methods 
Contingent valuation methods 

Choice modelling 

Table 5 – Values assessment methods in (Mason, 2002, pp.19-22) 

 

2.4 – Architectural Heritage: Management of Change 

The current research focuses on the specificity of architectural heritage, leading to a building- 

focused approach. Architecture is a discipline with its own rules of design, to which the general 

concept of cultural heritage conservation can be applied, but whose refurbishment criteria 

also have to address disciplinary questions. The cultural significance of buildings can primarily 

be related to historical, symbolical, political or other social values, rather than to their 

aesthetical characteristics. These concurrent values can inform and be decisive in the heritage 

management process, but are less relevant in the specific design, thus allowing adaptive reuse. 
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The essential question is to identify how heritage values associated with a building can limit its 

refurbishment and how to establish design criteria for interventions. 

 

Based on the EIA framework (Morris and Therivel, 2009), Mason’s (2002) and ICOMOS (2011) 

methodological approaches are clear on the process of managing change: values must be 

assessed, statements of significance should synthesise the values, heritage should be graded 

against similar assets, and the impacts of the proposed change should then be graded taking 

into account the baseline expressed in the statement of significance. 

 

2.4.1 – Architectural assessment methodologies 

In the architectural field, urban and building surveys, as well as map and drawing analysis, can 

be used to systematise the fieldwork data obtained from the previous stages of the process. 

The use of geographic information system (GIS) is consensual today because it is a 

sophisticated and powerful tool to gather, cross and present data from several sources and 

disciplinary fields (ICOMOS, 2011; Mason, 2002; UNESCO, 2008). The drawing analysis made by 

Computer Aided Design (CAD) is common and established and allows for complex modelling 

and three dimensional (3D) representations of the research objects. Apart from being valuable 

instruments of analysis, these 3D tools are further pointed out as added-value resources for 

impact assessment (ICOMOS, 2011). Typological studies in architecture are also fundamental 

to perceive what is nuclear on buildings, allowing further comparisons between them 

(Fernandes, 1999). As written by Fernandez, "in 1966, Aldo Rossi in L'archittetura della cittá 

proposes new methods for the scientific study of historic cities, advocating the necessity of its 

morphological analysis and typological classification based in lots and built form of different 

ages" (1985, p.169). This typological analysis also allows for combining the built form with the 

context and the social behaviour, as a building's design is always the result of both physical 

and social factors. 

 

These approaches need to be complemented with other traditional research methods, namely 

referring to archival data (documents, historic maps, and iconography), existing heritage 

records, secondary research (literature), and quantitative data (census and other statistics). 

 

Conclusively, is possible to affirm that the architectural assessment methodologies, using field, 

primary and secondary research, will be the base for understanding heritage in traditional 

buildings in Oporto. These will cover archive and literature review, statistical sources analysis, 
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traditional and GIS mapping, direct survey and drawing analysis. To complement this, the 

social aspects of the research will be addressed by using ethnographic assessment 

methodologies, consisting of conducting primary research by using ethnographic fieldwork 

techniques. The use of these multi-disciplinary approaches will allow obtaining several 

different perspectives of the research objective. 

 

2.4.2 – Heritage Grading 

The process of identifying built heritage values is directly tied with the weighting of the overall 

importance of the object, comparing it to others (table 6 and table 7). The ‘statement of 

significance’, which commonly summarises the values a describing text (UNESCO, 2008), 

constitutes the baseline from against which the impacts should be compared measured 

(ICOMOS, 2011). 

 

  PORTUGAL SPAIN FRANCE ITALY GREECE ENGLAND 

Types 

Monument Monument Historic Monuments 
Cultural 
Heritage 

Monuments 
scheduled 
monument 

Group 
Historic 
Group 

Referenced Buildings   Historic Sites 
Listed 
buildings 

Site 
Historic 
Site 

Sites     
conservation 
areas 

    Secteurs Sauvegardés       

    

Zones de Protection 
du Patrimoine 
Architectural, Urbain 
et Paysager (ZPPAUP) 

      

Grades 

National 
Monument 

Cultural 
Interest 
(BIC) 

Historic Monuments 
(Listed) 

Cultural 
Interest 
(cultural 
heritage) 

Ancient 
Monuments 
(until 1830) 

Scheduled 
Monument 

Public 
Interest 

Spanish 
Historic 
Heritage 

Referenced Buildings 
(not listed) 

Remarkable 
Public Interest 
(landscape 
heritage) 

Recent 
Monuments 
(after 1830 
with more 
than 100 
years) 

Listed 
Building 
Grade I 

Local 
Interest 

    
National 
Monuments 

Recent 
Monuments 
(after 1830 
with less than 
100 years) 

Listed 
Buildings 
Grade II* 

      

Built elements 
and areas of 
archaeological 
interest 

  
Listed 
Building 
Grade II 

Table 6 - Buildings heritage typologies and grades in England and Mediterranean Laws (footnotes 15 and 16) 
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This process is conventionally used in the heritage listing performed under the diverse national 

regulations and international conventions. World Heritage can be considered at the top of this 

grading by its OUV and is normally integrated in national regulations under an autonomous 

grade or assuming the top grade (e.g. in Portugal it is automatically listed as the top grade of 

‘national monument’). Table 7 presents a detailed system of built heritage and historic urban 

landscape grading defined in the ICOMOS HIA report (2011), which adopts some of the criteria 

widely used in the national laws. Also transversal in the legal texts is the association between 

the heritage degree of significance and the relevance it has to a certain geographical area, as 

expressed by ‘local’, ‘national’ or ‘universal’ grades. 

 

Asset value grading scale Built Heritage or Historic Urban Landscape 

1 Very High 

Sites or structures of acknowledged international importance 
inscribed as of universal importance as WH property. 

Individual attributes that convey the OUV of the WH property. 

Other buildings or urban landscapes of recognised international 
importance. 

2 High 

Nationally-designated structures with standing remains. 

Other buildings that can be shown to have exceptional qualities in 
their fabric or historical associations not adequately reflected in the 
listing grade. 

Conservation Areas containing very Important buildings. 

Undesignated structures of clear national importance. 

3 Medium 

Designated buildings. Historic (unlisted) buildings that can be shown 
to have exceptional qualities or historical associations. 

Conservation Areas containing buildings that contribute significantly 
to its historic character. 

Historic townscapes or built-up areas with important historic 
integrity in their buildings, or built settings. 

4 Low 

“Locally Listed” buildings. 

Historic (unlisted) buildings of modest quality in their fabric or 
historical associations. 

Historic Townscape or built-up areas of limited historic integrity in 
their buildings, or built settings. 

5 Negligible 
Buildings or urban landscapes of no architectural or historical merit; 
buildings of an intrusive character. 

6 Unknown potential 
Buildings with some hidden (i.e. inaccessible) potential for historic 
significance. 

Table 7 – Built heritage and historic urban landscape values grading in (ICOMOS, 2011, p.14-16) 

 

2.4.3 – Heritage Impact Assessment 

The heritage legal texts analysed are vague in defining the intervention criteria to be used in 

listed buildings, or on how to measure the impact of change in their heritage significance. This 
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is usually performed in a process of building consent, which is casually evaluated by national or 

local heritage authorities. 

 

The EIA framework again proves to be the most complete approach for assessing the 

consequences of change on heritage management. The impact prediction pointed out by 

Therivel and Morris (2009), stresses the necessity to cover the direct/primary, the 

indirect/secondary and the cumulative impacts, demonstrating that change occurring 

indirectly in other scales or along time by cumulative processes must also be considered in the 

assessment. This is of particular relevance for traditional buildings as it addresses the problem 

posed by the small direct impacts occurring in the single unit which can have a large 

significance along time for the historic site. Additionally, the authors classify the impacts 

accordingly with the characteristic of the effects: “positive (beneficial) or negative (adverse); 

short-, medium-, or long-term; reversible or irreversible; and permanent or temporary” 

(Therivel and Morris, 2009, p.8). Furthermore, the qualitative assessment of the impacts uses 

the rating of ‘neutral’, ‘slight’, ‘moderate’ and ‘large’, either ‘negative’ or ‘positive’, resulting in 

a system of seven grades. Due to its subjective nature, the heritage impact assessment has to 

be approached under a similar qualitative process. 

 

In the London’s Barbican and Golden Lane listed buildings management guidelines, Avanti 

Architects proposed a system of colours17 (2005; 2007), establishing a direct relation with the 

requirements for the Listed Buildings Consent (LBC). Similar to traffic lights, this scheme grades 

the admissible types of intervention, translating the acceptable level of change of the values 

identified. The process determines the fundamental attributes of the building’s design which 

convey them their cultural significance and are unacceptable to be changed. This encompasses 

the visual characteristics of the object, but also the intellectual value embodied on it. The 

guidance is applicable to diverse types of alteration: external elements, common areas, flat 

interiors, private terraces and balconies.  

 

The ICOMOS report on HIA (2011) proposes a system based on the definition of a scale with 

five grades of impacts (table 8), which is further combined with the heritage grading, 

addressing separately the World Heritage (table 9) from the other categories (table 10). By 

                                                           
17

 - The scheme uses green, amber, red and black, referring the first to alterations which pose no problem and the 
last to changes where consent is unlikely to be granted. 
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combining the information in a matrix, the ‘significance of effect’ or the ‘overall impact’ caused 

to the asset can be obtained. 

 

The tools used to measure the impact rely on the expert’s consideration, but can thereafter be 

validated through public consultation processes (ICOMOS, 2011). More direct methodologies, 

like the use of architectural models or digital 3D modelling, can reinforce public participation 

which allows a non-expert audience to take part in the impact assessment (ICOMOS, 2011). 

Nonetheless, the evaluation of the impacts is always a subjective process, leading to the use of 

qualitative methodologies. It is also necessary to stress the necessity of promoting reversible 

interventions in order to comply with the current democratic and dynamic processes of 

heritage valuation (Orbaşli, 2008). 

 

Impact Grading Built Heritage or Historic Urban Landscape 

    
 

1 Major 

Change to key historic building elements that contribute to OUV, such that the 
resource is totally altered. 

Comprehensive changes to the setting. 

2 Moderate 

Changes to many key historic building elements, such that the resource is 
significantly modified. 

Changes to the setting of an historic building, such that it is significantly 
modified. 

3 Minor 

Change to key historic building elements, such that the asset is slightly 
different. 

Change to setting of an historic building, such that it is noticeably changed. 

4 Negligible Slight changes to historic building elements or setting that hardly affect it. 

5 No Change No change to fabric or setting. 

Table 8 - Built heritage and historic urban landscape impacts grading in (ICOMOS, 2011, pp.16-17) 

 

 

Value of heritage 

asset 

Scale & Severity of Change/Impact 

No 

Change 

Negligible 

Change 
Minor Change Moderate Change Major Change 

For WH properties 

Very High - 

Attributes which 

convey OUV 

Significance of Effect or Overall Impact (either adverse or beneficial) 

Neutral Slight Moderate/ Large Large/Very Large Very Large 

Table 9 – Change/Impact in World Heritage in (ICOMOS, 2011, p.9) 
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For other heritage 
assets or attributes 

Significance of Impact (either adverse of beneficial) 

Very High Neutral Slight Moderate/Large Large/Very Large Very Large 

High Neutral Slight Moderate/Slight Moderate/Large Large/Very Large 

Medium Neutral Neutral/Slight Slight Moderate Moderate/Large 

Low Neutral Neutral/Slight Neutral/Slight Slight Slight/Moderate 

Negligible Neutral Neutral Neutral/Slight Neutral/Slight Slight 

Table 10 – Significance of impact in heritage in (ICOMOS, 2011, p.10) 

 

2.5 - Conclusion 

Recent literature points to the democratisation of the heritage valuing process, which 

displaces the conservation experts’ exclusivist field to communitarian involvement. 

Globalisation also allows the process to be stretched from the local communities to a 

worldwide scale. At the same time, the cultural context, which is subject to change over time, 

plays a determinant role as the values of past societies are not necessarily coincident with that 

of present ones. Dynamic and democratic are characteristics which are today unavoidable in 

heritage valuing. Even so, the traditional expert’s studies are still fundamental in the heritage 

valuing methodology. The result of such processes should be reverted into a cultural heritage 

‘significance statement’, which must be respected in any change management process. 

 

In the specific case of traditional buildings inserted in an urban historic core as the ones object 

of the research, of modest singular significance, the assessment of values must take into 

consideration both, the unit and the ensemble. Moreover, when the outstanding universal 

value is recognised through the inscription on the world heritage list, it adds the necessity of 

conserving their identified authenticity and integrity. However, if integrity is object-based, 

authenticity is dependent on the cultural context in which the object is inserted. In general, 

traditional urban buildings possess in themselves a commonly recognisable set of values: 

design (influences from erudite architecture), artistic (presence of artistic or skilled crafts 

details) and technological (place based construction systems and local materials). 

Furthermore, their urban image is the most incisive characteristic which contributes to shape 

the urban historic landscape. 

 

The next stage of the process consists of benchmarking values: they are never absolute, but 

relative to something to which they must be compared, measured and graded. The final stage 
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is to assess the impact of any change which should be done against the baseline study 

(‘statement of significance’), which summarises the asset’s values. Accordingly, it is necessary 

to understand the changes occurring in order to evaluate and grade their impact on heritage. 

Consequently, it is fundamental to acknowledge the energy efficiency framework to further 

assess the consequences of its implementation in traditional buildings. 
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Chapter Three: Traditional Buildings and Energy Efficiency  

 

3.1 - Introduction 

The objective of this chapter is to discuss the main concepts and parameters concerning 

traditional buildings and energy efficiency in order to further identify the framework which 

relates these two subjects under the scope of this research. 

 

In order to achieve such an objective it is necessary to understand the specificity of traditional 

buildings, namely their definition and their clustering from the universe of buildings. 

Furthermore, the concept of refurbishment to be used is addressed and its integration 

discussed in the wider framework of urban sustainability, which is underlined in the philosophy 

of the current research project. 

 

The general concept of energy efficiency and the specific approach for buildings are discussed 

afterwards. Additionally, the building physics and the specific parameters that influence 

energy efficiency in traditional constructions are analysed. The thermal performance of 

traditional buildings and their assessment are discussed at the end of the chapter. Overall, this 

chapter establishes the basis for the framework which will be explored in the next chapter in 

order to identify adequate solutions for this type of heritage-valued construction. 

 

3.2 - Traditional Buildings 

In this field of research it is usual to employ several terms, such as ‘vernacular’, ‘historic’, 

‘traditional’ or just simply ‘old’, to define existing buildings. The use of the statistical 

classification of buildings by their construction age is a widely established method for 

clustering the existing stock (Balaras et al., 2007; Neidhart and Sester, 2004; Ravetz, 2008; 

Tabula Project Team, 2012). This grouping is based mainly on the distinct types of construction 

systems identified for each time period, establishing symbolic dates which represent moments 

of change. Under this methodology the category of built ‘before 1919’ defines the frontier for 

‘old’ buildings (UNECE, 1998). As affirmed by May and Rye, this generic classification reveals 

“(…) a lack of typological analysis and distinction of traditional buildings in stock modelling” 

(2012, p.22). The conceptual idea expressed in the Charter on the built vernacular heritage ties 
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these buildings to their local or regional roots, giving form to a coherent typological 

responsiveness which reveals a specific cultural significance (ICOMOS, 1999). This becomes 

patent in the informally transmitted design and construction systems, which are effective 

responses to functional, social and environmental constraints. The counterpoint to the notion 

of globalisation is then the core of this concept, which is also related to the widespread use of 

standardised construction systems that occurred after the Second World War (Nicol, 2012). 

 

The most common traditional construction system found in European historic cities from the 

Mediterranean comprises the use of solid stone or wood-framed walls, pitched roofs and 

wood as the main material for floor structures and frames. (Communities and Local 

Government, 2012; Eurostat, 2012). 

 

Oporto’s Traditional Buildings 

Oporto’s traditional urban buildings also clearly show centennial responsiveness to social and 

place interaction. Complementary, the influence of the architectural design of the city’s 

historic buildings is evident in all stages of its evolution (Alves, 1988; Fernandes, 1999; Ferrão, 

1985; Oliveira and Galhano, 1992). Furthermore, the cosmopolitan influence on their design, 

resulting from the essence of the city as a port, is also identifiable. Overall, this resulted in a 

mix between traditional construction techniques and an envelope design with transnational 

architectural influence. This allows affirming that these buildings are both the result of place-

rooted traditional vernacular processes as well as of semi-erudite design. Additionally, they are 

the most representative forms that shape the built environment of the Oporto World Heritage 

Site, both in number and typological coherence, and constitute a built stock which must 

inevitably be considered in the city’s urban regeneration policies. 

 

3.2.1 – Refurbishment 

As referred by Kurrent, spatial architectural structures have usually a longer life than the 

functions for which they were conceived (1978). Hence, the intervention and transformation 

of existing buildings has always been a recurrent theme in the field of architecture, pursuing 

functional adaptation or aesthetical and cultural updates. Since the 1960’s, the consciousness 

about traditional buildings has been growing, leading to a revisited interest in their adaptive 

integration into contemporary life in present times. The recognition of such a framework was 

affirmatively expressed by Lampugnani: “(...) the ephemeral construction in which we are 

forced to live never satisfied the wish of eternity that induces the work of architecture (…). We 
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are disappointed and wishing for our modern houses the same solidity that we can find in old 

buildings”18 (1992, p.II). Furthermore, Brand condensed this feeling by stating that “age plus 

adaptivity is what makes a building come to be loved” (1994, p.23). Resilience and ‘vintage’ are 

then the characteristics which allow traditional buildings to renew their role in the 

contemporary society. 

 

The act of intervention applied to existing buildings is usually classified under a large number 

of terms: ‘restoration’, ‘reconstruction’, ‘rehabilitation’, ‘refurbishment’, ‘retrofit’, ‘re-

architecture’, ‘remodelling’, and ‘renovation’. These terms reveal the diverse degrees of 

change allowed for each building based on its heritage value, ranging respectively from most 

conservative until least conservative. Under this principle, ‘restoration’ is commonly applied to 

historic buildings of high architectural value, as expressed in the Venice and Burra Charters 

(ICOMOS, 1964; ICOMOS Australia, 2000). The denomination of ‘reconstruction’ is also 

applicable to buildings of high architectural value, though in this scenario they are extremely 

damaged and require a more profound intervention, which consists of “returning a structure 

to a known earlier state by the introduction of new material into any remaining fabric” 

(ICOMOS Australia, 2000, p.2). The terms ‘rehabilitation’, ‘refurbishment’ and ‘retrofit’ apply 

to the greater bulk of traditional buildings, embarking varying degrees of heritage value and 

consequently allowing diverse levels of change. The first of these terms is currently used in 

Latin languages19 and equivalently expresses the possible intervention in traditional and 

vernacular buildings with heritage value. The word is commonly used in English as well, but 

less regularly in terminology and literature addressing the intervention on existing buildings. 

The remaining three definitions are applied to operations which address existing buildings 

without heritage relevance, allowing a less conditioned process of change. 

 

The most frequent terms currently applied in literature to describe energy efficiency upgrades 

in traditional buildings are ‘refurbishment’ and ‘retrofit’. However, even if the second term is 

increasingly used in literature, it is more generic and originally addresses the upgrade of any 

object to improve its performance, which may include specific measures in a building, but also 

in all types of equipment and services. As pointed out in a recent report, ‘refurbishment’ 

relates to the idea of a whole-house solution, while ‘retrofit’ is based on particular solutions 

                                                           
18

 - Free translation from Italian. 

19
 - French - réhabilitation, Italian - riabilitazione, Spanish - rehabilitación and Portuguese – reabilitação. 
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(National Refurbishment Centre, 2012). Conclusively, the most adequate term to be used in 

the context of this research is ‘refurbishment’. 

 

3.2.2 – Sustainability and refurbishment 

The relationship between sustainability and heritage, subjacent to this research, is not an 

internal process of heritage conservation, as expressed by Throsby (2002), but the idea that 

built heritage can still play an active part in the present, while at the same time addressing the 

issues of urban sustainability. This concept is closer to the contemporary role advocated to 

vernacular architecture by several authors (Asquith and Vellinga, 2006) and complementary to 

the union between ‘modernity’ and ‘tradition’ as present in work of the Portuguese architect 

Fernando Távora (Távora and Costa, 1993). 

 

In this sense, the refurbishment of traditional buildings has to be understood as inserted in a 

dynamic process of transformation, which also addresses the two parallel topics of climate 

change: adaptation and mitigation. In the context of the present research, the focus is on the 

energy efficiency upgrading, which is also understood as a sustainable strategy. Moreover, 

several other potential sustainability gains can be achieved with a refurbishment strategy, e.g. 

land conservation, reuse of materials, energy savings in construction and transportation, waste 

reduction and local economy stimulation. This is reinforced by stressing the importance of the 

‘embodied energy’ in buildings as a driver for promoting refurbishment (Cassar, 2006; Empty 

Homes Agency, 2008; Heath, 2000). 

 

Douglas emphasizes the concept of future proofing in the adaptation of buildings, arguing that 

this process should also consider the possibility of future uses (2006). Adaptability is further 

discussed at an urban level by Scoffham and Marat-Mendes, stressing that the traditional 

urban block offers the best shape for allowing change over time, and thus may be suitable for 

sustainability (2000). The environmental gains of Traditional Neighbourhood Design (TND) are 

also noted by Buxton (2000). Moreover, Salvador Rueda stresses the similarity between 

traditional urban patterns and the compact urban model, pointing out their social, economic 

and environmental advantages over the diffuse20 (2000). 

 

                                                           
20

 - The diffuse model is represented by the low density suburban development which sprawled around the 
compact urban centres. 
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The future weather is also highlighted by Douglas as a factor that should be taken into account 

when addressing the climate change adaptation in buildings (2006). In the Rough guide to 

sustainability, Brian Edwards introduced the refurbishment of buildings as the 4th ‘R’ of the 

environmental policy (2002). A similar approach is supported by Rodwell (2007) and 

complemented by Carroon (2010), who introduces ‘repair’ between ‘reduce’ and ‘reuse’ and 

puts a focus on this crucial aspect of the lifecycle of existing buildings. The last author also 

argues for the global CO2 emissions to be avoided by the reuse of buildings, stressing further 

the necessity of using low carbon materials in their refurbishment. Cassar supports this 

perspective, adding the physical dimension of the historic environment as the fourth pillar of 

sustainability, focusing “(…) on the contribution that historic buildings make towards 

sustainability and how historic buildings can be ‘demonstration models’ of sustainability for 

society” (2006, p.1). Additionally, several authors point out the cultural advantage of 

safeguarding heritage through the refurbishment policy for buildings (Cassar, 2006; English 

Heritage, 1997; Lewis, 1999; Rodwell, 2003). 

 

Using the Life Cycle Analysis (LCA) for buildings, several Swedish case studies by Erlandsson 

and Levin concluded that refurbishment is usually more environmentally favourable than new 

construction (2005). Furthermore, it is stressed that this would also indirectly reduce CO2 

emissions from the transport sector, as bringing more inhabitants to the historic city centre 

would reduce the daily commute traffic with the suburbs. As affirmed by Roaf et al.: 

“sustainable buildings are not about fashion or style; they are about performance, resilience 

and adaptability” (2004, p.15). 

 

The introduction of low carbon design practices added a green dimension to refurbishment, 

allowing existing buildings to perform at higher environmental and comfort levels. This is 

recognizable by the application of environmental assessment and certification schemes to 

traditional buildings, like LEED or BREEAM (Campagna and Frey, 2008; Ferguson, 2011; Young, 

2008). Similarly, the Portuguese sustainable buildings scoring system (LiderA) rates the 

intervention in existing built structures as the most sustainable (Pinheiro, 2007). More 

recently, the concept of sustainable refurbishment has emerged, which stresses the role of 

energy efficiency as one of the most relevant objectives to be achieved (Andresen et al., 2004; 

Anne, 2008; Douglas, 2006; Energy Saving Trust, 2010b; Mickaityte et al., 2008; Zavadskas et 

al., 2008). Keeping and Shiers based their concept of ‘green refurbishment’ on the downgrade 

of building services and on the enhancement of the passive techniques to achieve acceptable 

levels of comfort (1996). The authors argue that this will allow cutting down on energy and 
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maintenance costs due to the use of low-tech equipment, which is low energy and is cheaper 

to repair or replace. 

 

The theme of sustainable refurbishment applied to traditional buildings has also been widely 

promoted, leading to recent strategic research and practice promotion in the UK by the BRE, 

which established a specific sustainability scheme for traditional buildings refurbishment – 

EcoHomes XBC (National Refurbishment Centre, 2011; Yates, 2006). Conclusively, it is possible 

to affirm that traditional buildings emerge with a large potential for improving their 

environmental performance, contributing to the wider policies of climate change mitigation. 

 

3.3 – Energy Efficiency 

Energy efficiency is defined as “the ratio of useful energy output of a system, conversion 

process or activity to its energy input” (IPCC et al., 2007, p.814). At a macro scale this includes 

the optimisation of energy production, distribution and consumption processes, minimising 

losses and consequently achieving lower levels of CO2 emissions (Irrek et al., 2008). 

 

The EU Energy Efficiency Plan 2011 points to the distinction between energy efficiency and 

energy saving. The first is defined as a narrower concept which embraces the above idea of 

equipment optimization, while the second encompasses “consumption reduction through 

behaviour change or decreased economic activity” (EC, 2011, p.2). However, this text also 

stresses the difficulty in practice of distinguishing between the two concepts which are used 

interchangeably. Under the current policy a wider concept is applied by including the local 

production of renewable energy and balancing the consumption in a smart grid system. As 

pointed out by Irrek et al. (2008), this last approach can be addressed from several 

perspectives and scales, ranging from macro-economic to end-use. In the context of the 

present research the focus is on the end-use energy efficiency perspective, which is achieved 

through technical upgrade or behavioural changes. 

 

3.3.1 – Buildings energy efficiency concepts 

The World Energy Council (WEC) report Energy efficiency: a recipe for success (2010) proposes 

two complementary action lines to achieve a reduction in energy usage: technical and non-

technical or behavioural. Inserted into this overall framework, the following core concepts are 
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directly related to buildings, covering the various possible scopes in addressing their energy 

efficiency. 

 

Economic vision and fuel poverty 

The WEC study explores the definition of energy efficiency framed by the economists, 

encompassing “(…) all changes that result in decreasing the amount of energy used to produce 

one unit of economic activity” (2010, p.5). However, the study stresses that savings obtained 

from financial constraints, resulting from high energy prices, must not be included in the scope 

of energy efficiency and emphasises in the report that it should not be achieved at the expense 

of the home thermal comfort. This context alludes to the concept of ‘fuel poverty’, i.e. when 

households are unable to spend 10% of their income on energy, leading to a forced reduction 

in energy consumption and thus the inability to fulfil the criterion of being able to keep a warm 

level of comfort (20˚C during all of winter) (Magalhães and Leal, 2012). 

 

Cost-effectiveness and eco-efficiency 

The economic perspective also includes the cost-effectiveness of the solutions adopted, 

balancing the investment in energy efficiency measures with the savings obtained in a viable 

time period, i.e. the ratio of benefits to expenses (Irrek et al., 2008). This economic efficiency 

perspective must be complemented with the environmental perspective to avoid missing the 

climate change objectives. Current EU policies address both topics, adding eco-efficiency 

objectives to the cost optimal energy-efficiency policy (EC, 2009; EC, 2011). This relation is 

based on resource conservation that considers the complete life-cycle of materials and 

products in an integrated eco-design philosophy while avoiding the eventual use of solutions 

which are energy intensive in their production, thus nullifying the positive effect by increasing 

their embodied energy. 

 

Technology 

The technological approach is a vast field, including in buildings the areas of energy 

conservation, energy efficiency and local energy processes. Energy conservation relates to the 

capacity of improving the final energy conservation when it is used for heating and cooling in 

buildings. The optimization of building envelopes (opaque and glazed surfaces) through the 

improvement of their insulation and draught-proofing are the most relevant conservation 

technologies in buildings (Warren, 2003). Energy efficiency involves the optimization of the 

energy use in all types of building equipment, covering lighting, appliances, domestic hot water 
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production, heating and cooling services. Local energy processes refers to the possibility of 

optimizing the local energy production/transformation and distribution, consequently 

increasing the efficiency in relation to the larger grids distribution. An example for these local 

processes is district heating/cooling, using combined heat and power – CHP or combined 

cooling, heat and power – CCHP. It can also be employed on a micro level with combined heat 

and power implemented at building or home levels. Their efficiency becomes apparent when 

comparing the transformation of primary energy in a thermal power plant with that of the 

local transformation of natural gas, which present respective efficiencies of 40% and 80% 

(AdEPorto, 2010). 

 

Renewables 

Today, the use of renewable energy sources (RES) for power or heat production is one of the 

most adopted strategies when dealing with energy efficiency in buildings. It can be 

implemented at macro level (national or international grids), at neighbourhood level (solar 

district heating/cooling) and at building level (micro-wind generation, biomass, air and ground 

source heat pumps, solar photovoltaic and solar thermal hot water) (Energy Saving Trust, 

2010b). 

 

Under the current Portuguese building thermal performance regulation (Portugal, 2006a) the 

installation of solar thermal collectors for domestic hot water (DHW)21 is mandatory in new 

residential buildings or for major renovations, in order to take advantage of the Portuguese 

high solar radiation. Furthermore, the introduction of renewables in the national electric grid is 

also a national policy to simultaneously address climate change and fuel dependency 

(Portugal, 2006b; Portugal, 2008). 

 

Behaviour 

The role of human behaviour in terms of energy usage is another vector explored by energy 

efficiency policies. The promotion of consciousness for the optimal use of energy, in particular 

in the residential sector, is fundamental for achieving energy savings. The focus on the 

technical approach is ineffective if not complemented with optimal energy usage. As argued by 

                                                           
21

 - It is defined in the Portuguese thermal regulation as the potable water used for bathing, cleaning, cooking and 
other purposes, heated at more than 35°C on a specific equipment using conventional or renewable forms of 
energy (Portugal, 2006a, p.2475).  



 Chapter Three: Traditional Buildings and Energy Efficiency 

51 

Herring and Roy, simply promoting technical innovation is unlikely to lead to a reduction of 

energy consumption and emissions (2007). 

 

3.3.2 - Buildings energy efficiency framework 

It is possible to affirm that the energy efficiency framework for buildings involves both the 

energy conservation and the energy production through renewable sources. Conservation 

must complementarily address technological and behavioural approaches to achieve the best 

results. Addressing it through a single perspective will likely not produce the expected energy 

consumption reductions. 

 

Energy efficiency addresses all stages of a building's life-cycle: design, construction and 

operation (CIBSE, 2012). The approach shown in figure 4 is based on achieving a balance 

between energy consumption and production, with the goal of creating ‘Net Zero-Energy 

Buildings’ (NZEB), which is an objective of the current EPBD recast. Under this framework two 

phases are outlined: an improvement in building performance, including system efficiency and 

household behaviour, and the introduction of on-site energy generation from renewable 

energy sources. This principle is valid for achieving energy efficiency, both in new and existing 

buildings (Sartori et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Net Zero-Energy Buildings (NZEB) step approach for the existing stock in Ayoub (2011, p.9) 

 

This framework can be extended to form a broader approach by integrating supplementary 

passive techniques, e.g. natural ventilation and lighting, and adding an on-site tri-generation 
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strategy, as proposed in figure 5. This framework will be the base for approaching the energy 

efficiency of traditional buildings in the current research. 

 

 

Figure 5 – Proposed buildings energy efficiency framework 

 

Portuguese energy efficiency framework 

In Portugal it is mandatory for all new buildings to meet the new requirements of the RCCTE 

thermal regulation, which establishes maximum annual rates for energy consumption22. The 

methodology adopted identifies a building's thermal performance by balancing heat transfer 

(through the envelope, thermal linear bridges and air renovation) with useful heat gains 

(lighting, equipment, occupants and solar gain through glazed elements). At the same time, 

several building parameters have to be met (envelope heat transfer coefficients, area and solar 

factor of the glazing elements, inner thermal inertia and roof solar protection). Additionally, 

any other production from RES is separately valued in the calculations, which allows for 

balancing possible existing energy conservation deficits. 

 

3.4 – Factors Influencing Energy Efficiency in Traditional Buildings 

An analysis of the envelopes of existing buildings in Europe shows low insulation and high air 

leakage levels within the oldest stock (BPIE, 2011). Furthermore, Guyot et al. state that the 

“envelope leakage can increase the heating needs by 5 to 20 kWh/m2/year in a moderate 

                                                           
22

 - It determines maximum values for heating, cooling and DHW in kWh/m
2
.year, which are further combined to 

give a global amount, that must be under the maximum admissible ‘yearly global primary energy demand’ (Nt - 
kgep/m

2
.year). These values are established for the heating and cooling seasons and for the weather zones officially 

defined. 

Buildings Energy Efficiency Framework 

On-site generation from renewables (power, heat and 
cooling) 

Buildings optimisation 
(passive design, building 

envelope and efficiency of 
systems) 
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climate (2500 to 3000 degree-days) given today’s levels of airtightness” (2010, p.7). These two 

factors may explain why southern European countries consume relatively high levels of energy 

for heating despite their lower heating needs due to milder winters (BPIE, 2011). However, the 

average Portuguese wall U-value decreased by 50% during the last five years as a consequence 

of the new thermal regulation application (BPIE, 2011). 

 

The BPIE study draws a framework for the energy refurbishment of existing buildings and 

highlights the most effective measures detected: 

 

- Improving the thermal performance of the building fabric through insulation of walls, 

floors and roofs, and replacement and tightening of windows and doors. 

- Improving the energy performance of heating, ventilation, air conditioning (HVAC) 

and lighting systems. 

- Installation of renewable technologies such as photovoltaic panels, solar thermal 

collectors, biomass boilers, or heat pumps. 

- Installation of building elements to manage solar heat gains. (2011, p.100) 

 

This approach fits into the general scheme of figure 5 and is confirmed by other studies which 

are supported by fieldwork and case studies analysis (Energy Saving Trust, 2010b; HFWG, 

2009; Richarz et al., 2007). 

 

The level of intervention is also fundamental in refurbishment operations for existing buildings. 

This is addressed in the EPBD recast by crossing the cost optimal approach with several 

possible levels of action: building, building unit and building element (e.g. window, door), 

which are also constrained by the type of ownership. The energy efficiency upgrade of existing 

buildings differs from the approach for new buildings due to the major role played by the 

operational stage of a building’s life-cycle (CIBSE, 2012). When existing buildings are redundant 

or inoperative, the approach has to be made mainly through an upgrade of their fabric 

performance (Ma et al., 2012). 

 

At the same time, the behavioural aspect of energy efficiency must complement the fabric 

retrofit of existing buildings. The households' feedback must be added to the physical 

assessment in order to provide a ‘whole-house’ approach (Gupta and Chandiwala, 2010). The 

post-occupancy evaluation (POE) is the usual technique used to understand the occupants' 
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behaviour, as performed by the Probe project (Bordass et al., 2001a; Bordass et al., 2001b; 

Bordass et al., 2001c; Cohen et al., 2001; Leaman and Bordass, 2001). 

 

3.4.1 – Building physics parameters 

The thermal performance of the fabric is crucial in determining a building’s energy 

consumption and to further identify the necessary upgrade measures. The thermal 

performance of buildings depends directly on the physics of materials and construction 

systems. Based on Fourier's Law for heat conduction, the basic principles for heat transfer in 

buildings are associated with two physical characteristics of materials: thermal conductivity (k) 

and specific thermal resistance (Rλ), expressing respectively the characteristic of materials to 

allow or resist heat conduction23. Derived from these parameters are the overall thermal 

transmittance (U) and the total thermal resistance (RT), which express the total values for the 

building's fabric elements, i.e. for the total materials thickness or for the sum of their diverse 

layers of materials (Hall and Allinson, 2010). These last two parameters are commonly named 

as ‘U-value’ and ‘R-value’24, and are conventionally the reference values for the thermal 

performance of a building's fabric under the thermal regulations and standards worldwide25 

(Portugal, 2006a; Santos and Rodrigues, 2009; Santos and Matias, 2007). They apply to the 

opaque and glazed elements of the building’s envelopes alike and benchmark the capacity of 

the fabric to sustain the thermal indoor environment in order to provide comfort to the 

occupants with an optimal usage of energy. These parameters are also influenced by the air 

permeability (m3/h/m2) and moisture (percentage of water), two factors which have to be 

considered in the energy performance calculation. 

 

Apart from the direct ‘conduction’ of energy, heat transfer through fluid (‘convection’) and 

electromagnetic waves (’radiation’) also need addressing (ASHRAE, 2009; Washington State 

University, 2008). Furthermore, the external environmental influence on the building’s 

envelope is determinant to its overall performance. The way solar energy interacts with the 

envelope throughout the year is translated into additional parameters: external walls light 

                                                           
23

 - The first is measured in watts per meter kelvin [W/(m·K)], while the second is inversely measured in meter kelvin 
per watts [(K·m)/W]. 

24
 - Respectively measured in watts per square meters kelvin [W/(m

2
·K)] and in square meters kelvin per watts 

[(K·m
2
)/W]. 

25
 - In Oporto’s climate zone, the maximum admissible U-values for the vertical and horizontal opaque elements, are 

respectively 1.6 and 1 W/m
2
.°C (Portugal, 2006a). 
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absorption coefficient (α - influenced by the colours used), solar gain, glazing shading 

coefficient and incident light transmittance. 

 

Thermal mass is another relevant factor which influences the fabric’s heat transfer. Basically, it 

refers to the capacity of the building fabric to store and lose heat over time (kJ/m2K). This 

process is determined by the following parameters: the specific heat capacity (amount of heat 

required to change by one degree the temperature of a substance’s unit mass - J/kg.K), the 

mass density (mass of the material per unit of volume - kg/m³), the thermal conductivity and 

the surface resistance (m2K/W) (The Concrete Centre, 2012). 

 

Passive design strategies make use of the building's physical characteristics and local weather 

conditions, allowing for energy to be saved through a bioclimatic approach (e.g. natural 

lighting and ventilation, solar gains and thermal mass heat storage). A temperate climate like 

the Portuguese enhances the viability of implementing passive design strategies. Additionally, 

traditional buildings usually possess a high thermal mass and were designed to take advantage 

of passive characteristics, which enhances their potential for improving energy efficiency 

(Wheatley, 2008). 

 

Conclusively, it is possible to affirm that the improvement of these building parameters is the 

key to upgrading the thermal performance (heat transfer) of a building’s envelope. This is 

confirmed in literature as well, where it is pointed out that an increase in insulation is an 

effective way of improving the energy performance of existing buildings and reduces the 

typical heat losses detected in walls (35%), roofs (25%), floors (15%) and windows (10 to 15%) 

(Department for Communities and Local Government, 2006; Livesey et al., 2013). However, 

while this can be accounted for at the design stage for new buildings, thermal improvement 

for the envelope in existing buildings is a heavyweight investment in which cost-effectiveness 

has to be carefully considered. 

 

3.4.2 - Building systems 

The building systems in the context of this research include all devices using energy that are 

necessary for the building’s operation, namely, all the equipment used for heating (space 

conditioning and water), cooling (space conditioning and food refrigeration), cooking, 

entertainment (media) and lighting. The intensity of usage and the equipment efficiency are 
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the main drivers of energy optimisation in building systems, which crosses technological 

improvement with behavioural enhancement. 

 

The energy labelling and eco-efficiency policies mainly address the technological framework, 

while smart-metering promotes behavioural change by improving the conscientiousness of the 

real energy consumption. From this perspective, the occupants' behaviour is determinant for 

improving energy efficient practices. Additionally, the upgrade of the equipment efficiency 

must be cost-effective in order to make its implementation feasible. 

 

3.4.3 – Occupants’ Behaviour 

The framework of the behavioural approach can be divided into choice and pattern of use. The 

first relates to the selection of the most efficient equipment and building services, accordingly 

with the global policies of energy labelling in appliances, lighting, heating and cooling 

equipment (EURECO, 2002). The second deals with the efficient and conscientious use of said 

equipment, with special relevance in the residential sector to the stand-by mode reduction, 

the lighting operation, the thermal environment control (including equipment, openings and 

shading devices) and the efficient use of appliances (e.g. use in off-peak hours). This second 

line is complemented by the recent smart-metering policy, leading to potential energy savings 

by promoting the ‘demand side management (DSM)’ (EC, 2006). An ongoing smart-metering 

field study revealed that it was possible to reduce energy consumption by 20% per house over 

one year in the Spanish pilot project (Gas Natural Fenosa, 2012). 

 

In the UK the average yearly standby and off-mode consumption varies between 343 kWh and 

591 kWh (Energy Saving Trust and DEFRA, 2012). In Portugal, studies undertaken by Quercus 

revealed an average yearly consumption of 194 kWh per dwelling, corresponding to 4.8% of 

the inhabitants' annual energy bill (Ferreira et al., 2008; Ferreira et al., 2011; Quercus, 2008). 

The Selina Project, which studied this specific subject at European Union level, stresses that 

addressing this through policies (energy labelling), funding and promoting household 

consciousness, will be expected “to achieve very large cost-effective savings of electricity (80 

TWh projected by 2020) and carbon emissions (30 MTons of CO2 by 2020)” (SELINA, 2011, 

p.10). 

 

Overall, it is estimated that a household’s potential for energy savings in the EU27 by 2020 

(with 2004 as the base year) may vary between 7.2% and 28.9%, for low and high-optimistic 
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scenarios (Fraunhofer-Institute for Systems and Innovation Research et al., 2009). Moreover, 

Almeida et al. stress that the combination of behavioural and technological approaches can be 

more effective, leading to potential electricity savings in the European residential sector of up 

to 48% (2011). 

 

Fuel poverty 

Today, the relation between energy consumption and poverty is a developing line of research 

(Bouzarovski et al., 2012). In recent studies, it was revealed that Portugal is one of the most 

vulnerable countries in context of the European Union (Thomson and Snell, 2013; WHO, 2012). 

This was also confirmed in previous research by pointing to the high rate of deaths occurring in 

winter, mainly among the elderly population, that were caused by fuel poverty (Bouzarovski, 

2011; Healy, 2004). Another study estimates that 50% of the Portuguese mainland households 

are living under fuel poverty conditions (Magalhães and Leal, 2012). Further, it points out that 

these rates calculation accounted for the social prices of energy still available, rising to 92% if 

they are ignored in the estimating model. Even if these perspectives are based mainly on 

statistical analysis and simplified comfort models, they reveal a scenario which is probably less 

severe than the reality, but still troubling. Accounting for a future liberalization of the energy 

market and the economic distress, this will probably aggravate. Additionally, the projection for 

the Portuguese population reveals an accentuated ageing process, forecasting three elderly for 

each young in 2060, being predictable a greater exposition to the risk of fuel poverty (INE, 

2009; INE, 2010). This is relevant in the context of Oporto’s historic centre since the majority of 

these households are elderly people with low income (Azevedo and Baptista, 2010; INE, 2011). 

 

3.4.4 - Indoor thermal comfort 

The level of indoor thermal comfort is another factor that influences the use of energy in 

buildings and is directly associated with the occupants. Thermal comfort refers to the 

achievement of a level of ”satisfaction with the thermal environment and is assessed by 

subjective evaluation” (ASHRAE, 2010, p.2). It depends on several factors, which are 

condensed in the ASHRAE thermal comfort standard under two categories: environmental 

(temperature, thermal radiation, humidity, and air speed) and personal (level of activity and 

clothing26) (ASHRAE, 2010). The combination of these parameters provides a temperature 

                                                           
26

 - With an associated system of measurement: ‘met’ units for human metabolic rate and ‘clo’ units for 
measurement of clothing insulation. 
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range, in which the sensation of human comfort lies. However, this assessment is very complex 

and dependent on climate, culture and individual sensorial factors (both psychological and 

physiological), rendering it subjective. 

 

The models and methods developed by Olgyay (1963), Givoni (1969), Fanger (1972) and Dear 

et al. (1997) represent a wide variety of approaches for the determination of the thermal 

comfort zone. The major distinction between them resides in the static or adaptive perspective 

undertaken. The first approach is based on a fixed comfort temperature set for all year round 

and for all occupants, disregarding local specificities. The method developed by Fanger 

establishes the ’Predicted Mean Vote’ (PMV) and the ‘Predicted Percentage of Dissatisfied’ 

(PPD), which are based on a person's direct vote on a seven point thermal sensation scale in a 

climatic chamber. This static method (PMV/PPD) is based on the statistics of these people’s 

sensations, taking into account six environmental and personal parameters, but disregarding 

the human capacity to adapt to the local environmental conditions. The 2010 ASHRAE indoor 

thermal comfort standard also uses this method but poses certain conditions (metabolic, 

clothing and air speed) which must be met in order to determine the comfort zone (2010). It 

also introduces the ‘elevated air speed method’, allowing an increase of the comfort zone by 

incrementing the air flow, assuming that the occupants are able to control it. 

 

Further research introduced the ‘adaptive model’ (Brager and Dear, 2001; Dear et al., 1997; 

Dear and Brager, 2002) which was also integrated into the ASHRAE’s standard and is accessible 

online to perform calculations (Tyler et al., 2012). This model adds outdoor weather 

parameters, which influence human thermal comfort perception, rendering it climate 

responsive and variable throughout the year by relying on the human capacity to tolerate and 

adapt to different thermal conditions. This model is mainly suitable for naturally conditioned 

spaces, which “are those spaces where the thermal conditions of the space are regulated 

primarily by the occupants through opening and closing of windows” (ASHRAE, 2010, p.9). 

Traditional buildings were conceived to function under these passive characteristics and still 

usually depend on their use for performing the control of indoor thermal comfort. 

 

The European EN 15251 standard (CEN, 2007) incorporates the revision of the adaptive model 

for Europe, following the results of the SCART’s project (McCartney and Nicol, 2002). It 

extended the scope of indoor comfort by incorporating thermal, air quality, visual and acoustic 

dimensions. Comparisons between these two adaptive approaches were discussed in several 

research projects (Guedes et al., 2009a; Halawa and van Hoof, 2012; Olesen, 2012; Roetzel et 
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al., 2011). The main differences pointed out reside in the calculation of the outdoor 

temperature (mean monthly outdoor temperature in ASHRAE 55 and outdoor running mean 

temperature in EN 15251) and in the comfort acceptability grades: PMV 80% and 90% in the 

ASHRAE 55 and categories I to IV in the EN 15251. ‘Category III’ is pointed out in the European 

standard as being the most suitable for complying with the thermal expectations of occupants 

of existing buildings. 

 

Even if the fieldwork dissimilarities detected are not significant, the results show that both 

standards’ comfort limits are exceeded in the Mediterranean area (Guedes et al., 2009a; 

Roetzel et al., 2011). Nicol and Mike (2011) performed a critical overview of the European 

standard, pointing out that the comfort perceived by occupants differs from the standard, 

leading them to conclude for the necessity of revising these limits, which should also be done 

in the ASHARE method. Based on previous research in free-running buildings (i.e. naturally 

ventilated), Roetzel et al. (2011) argued that the standard’s inability to conform with the 

human comfort acceptability detected may be explained by the occupants' adaptive resilience. 

These authors also concluded that in the Mediterranean climate of Athens it is very difficult to 

fulfil the criteria of both adaptive comfort standards, which could lead to the inadequate use 

of mechanical heating and cooling. Conclusively, it is possible to assume that in temperate 

climates the use of passive techniques to control the indoor environment can be a successful 

strategy. This was also affirmed by Guedes et al. (2009b) who concluded that Portuguese 

traditional architecture depends on high thermal mass and other passive techniques to 

achieve the best possible indoor comfort. 

 

Despite the incertitude of the adaptive models, due to the complexity of the human response 

to the environment, they are conceptually the best approach to determine the indoor comfort 

in existing buildings. As stated by Nicol and Humphreys (2009), this methodology relies on the 

interaction between building, occupant and environment, avoiding a closed building approach 

based on the use of heating, ventilating and air conditioning (HVAC) equipment. This approach 

has become part of the mainstream and can play an important role in the design strategy for 

low-energy buildings (Nicol, 2011). Thus, the adaptive comfort is naturally the approach to 

consider in traditional buildings, which have always relied on natural ventilation, passive 

technologies and human capacity to adapt. The challenge is to promote an acceptable thermal 

comfort range in their indoor spaces. 
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In Portugal, the buildings’ thermal performance regulation establishes a fixed reference 

temperatures of 20°C for the heating season27 and 25°C in conjunction with a relative humidity 

of 50% for the cooling season28 (Portugal, 2006a). The local application of the adaptive method 

for the indoor comfort of buildings was approached in several Portuguese fieldwork studies 

(Guedes et al., 2009a; Matias, 2010; Silva et al., 2010). They concluded the inadequacy of the 

fixed model required in the regulation, and argued for the necessity of further fieldwork to 

confirm a local adaptive model. This is particularly stressed for the residential sector due to the 

insufficiency of fieldwork in this area, which is normally limited to offices. 

 

3.4.5 – Cost-Efficiency 

The economic dimension of the implementation of energy efficiency measures is a crucial 

aspect to determine their feasibility. The cost optimal energy-efficiency concept is not 

completely clarified in terms of their methodological application (EC, 2009; EC, 2011), despite 

the discussion promoted by recent studies (Atanasiu and Kouloumpi, 2013). The idea of cost-

efficiency is mainly centred on the time needed to recover the initial investment, based on the 

financial results obtained from the energy savings. This is usually used in energy efficiency 

upgrade operations to determine the ‘pay-back’ or ‘return of investment’ (ROI) periods 

(Changeworks, 2008; Energy Saving Trust, 2010a; Yates, 2006). Like this, the assessment of the 

cost-efficiency is established, allowing for benchmarking the solutions to be implemented. 

 

3.4.6 - Traditional Buildings thermal performance assessment 

The analysis of the literature revealed a diverse perspective from the usual depreciation of 

traditional buildings in terms of their thermal performance. Moreover, and despite the 

specificity of their geographical location, it is transversal in traditional buildings to have a 

common responsiveness towards climate in order to achieve the desired comfort, which 

indicates a potential for their improvement. 

 

This was confirmed in 1999 by the United States General Services Administration, which found 

that the historic buildings under their supervision used 7% less energy than other buildings 

(Wolf et al., 1999). Similar results were found in Canada for commercial buildings (NRTEE-

                                                           

27
 - Conventionally from October to May. 

28
 - Conventionally from June to September. 
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TRNEE, 2009), and in the UK for court buildings (Wallsgrove, 2008). This last case stressed that 

pre-1900 buildings performed better than all others (197 kWh/m2)29. Moreover, the study 

refers that the older buildings were continuously upgraded and no significant differences can 

be found between them and the remaining age bands in terms of equipment and systems 

(2008). The American report explains this performance based on the thick, solid walls of these 

buildings, resulting in greater thermal mass which normally improves insulation, thus requiring 

less energy for heating and cooling (Wolf et al., 1999). Additionally, the use of natural lighting 

is also stressed, as these buildings were designed before the widespread use of electric lights 

and function based on large windows and high ceilings. Even if these results are too scarce to 

be generalized, they are a statement that these buildings can function based mainly on passive 

solutions. 

 

Concurrently, traditional buildings with solid walls have a high thermal mass, whose 

enhancement is also seen as a passive design strategy to explore in the temperate climates 

(Araújo and Almeida, 2006; Kosny et al., 2012; Richarz et al., 2007; The Concrete Centre, 2012). 

The BRE case studies proved that the initial poor performance of traditional buildings is 

surmountable through the introduction of energy efficiency measure on their refurbishment 

process, allowing cuts exceeding 60% in energy and CO2. This reveals the large potential 

residing in the improvement of these buildings. 

 

English Heritage and Historic Scotland have also actively promoted research to evaluate the 

performance of traditional buildings. A good example is the work of Baker, that concluded that 

traditional wood sash windows can perform as well as modern ones without compromising the 

image of the historic environment (2010). The tests undertaken combined the windows 

draught-proofing with other measures to improve their performance (introduction of curtains, 

blinds, shutters and double glazing). The results revealed that adding double glazing and using 

the traditional inner shutters were the most effective and achieved heat loss reductions of 

63% and 51% respectively. In the best scenario, it was possible to reduce the initial U-value of 

4.5 W/m2K to less than 2.0 W/m2K. Hence, the crucial role of inner shutters in the overall 

performance of windows must be emphasised and reinforced due to their usual use in 

traditional constructions. It must also be underlined that the sash windows and inner shutters 

                                                           
29

 - They consume less 24% than 1900-1939 buildings, less 45% than 1940-1959 buildings, less 36% than 1960’s 
buildings, less 21% than 1970’s and 1980’s buildings and less 8% than 1990’s and 2000’s buildings (Wallsgrove, 
2008). 
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studied are similar to the ones used in Oporto’s traditional buildings. In addition, as pointed 

out by Changeworks (2008), these single glazed windows represent a large area of the total 

envelope of traditional buildings, with high heat losses which must be addressed in the 

upgrade projects. 

 

Comparing the performance of traditional and new buildings, Drewe and Dobie point out that 

the main differences resides in the need of the traditional fabric to ‘breathe’ and in the 

necessity of controlling their moisture, factors that should be taken into account in designing 

retrofit projects (2008). This is seconded by Richarz et al., which applied these principles to the 

design of several solutions to address the energy efficiency upgrade in existing buildings 

(2007). The findings of the EU-funded project SUSREF, also point to the importance of 

moisture control when refurbishing solid stone walls and confirmed the influence of moisture 

content in their thermal behaviour (Häkkinen, 2012; Peuhkuri et al., 2012). This became 

evident in a field study conducted by Rye et al., where the analysed traditional buildings 

revealed a direct coherence of the moisture in the walls and the U-values ; if connected to the 

ground, the walls presented a higher level of moisture until a height of 1.00/1.2m above the 

finished floor, directly leading to higher U-values (Rye and Hubbard, 2012). The Drewsteignton 

case study, with solid granite walls like the ones used in Oporto, revealed a U-value differential 

of 0.26 W/m2K between lower and higher sections. 

 

Moreover, this research project highlights how ‘orthodox’ calculation methodologies, directed 

mainly towards new buildings and current construction systems, fail to predict the real 

performance of traditional buildings. The thermal parameters used in the construction systems 

databases are mainly based on contemporary materials, which do not always deal correctly 

with the complexity of the traditional systems. In the seven case studies undertaken, the in 

situ readings were up to 69% off from the ones estimated by the calculation standard (Rye and 

Hubbard, 2011). This confirms previous research which pointed out the recurrent discrepancy 

between the calculated U-values for traditional buildings and the ones measured in situ (Baker, 

2011; Changeworks, 2008; Rye, 2010). 

 

The data on table 11 illustrates this gap by comparing the measured and the calculated U-

values of four case studies before and after the refurbishment (Rye et al., 2012). Taking the 

example of the Drewsteignton solid granite wall, it is possible to verify the significant deviation 

between the values predicted (2.45 W/m2K) and the ones measured (1.24 W/m2K), which 
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fades in the post-refurbishment stage. In this case, an impressive heat loss reduction of 87% 

was obtained after the internal insulation of the exterior walls. 

 

Table 11 – Measured and calculated U-values before and after refurbishment in Rye et al. (2012, p.6) 

 

3.5 – Conclusions 

The cultural advantage of preserving the heritage value of traditional buildings is widely 

argued to be a fundamental act of sustainable development. This chapter argued for the 

inclusion of reusing traditional buildings and energy efficiency upgrades under the urban 

sustainability strategies, addressing environmental, economic and social dimensions. 

 

Energy efficiency is a wide field which addresses the optimisation of energy production and 

use and must be addressed on technical and behavioural scopes in buildings. Further, the role 

of RES and passive techniques are relevant in order to obtain the most optimised and cost-

optimal scenarios. 

 

A building's energy efficiency parameters influence all heat transfer processes occurring on the 

envelopes (opaque and glazed). The measurement of energy consumption and associated CO2 

emissions before and after improvements is another well-established method in the field. 

Results on comfort improvement and cost effectiveness of the solutions are additional 

parameters for benchmarking the energy efficiency of the operations. 

 

From the general overview of literature it is also possible to conclude the evident inaccuracy of 

‘orthodox’ calculation methodologies to provide reliable data for the simulation of traditional 

buildings. It is thus necessary to develop further research and case studies to support 

improvement projects of such buildings (May and Rye, 2012). 

2011 2012 2011 2012

 Measured un-

insulated W/m2K

 Measured 

insulated W/m2K

Calculated un-

insulated W/m2K

Calculated un-

insulated W/m2K

Shrewsbury

South wall

Shrewsbury

West wall

Location

1.48

2.06

1.24

0.76

Drewsteignton

Riddlecombe

0.48

0.63

0.16

1.52 0.59

1.71

2.45

0.72 0.93

0.62

0.19

0.60
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The social approach has to be safeguarded in these operations by promoting the appropriate 

levels of comfort, while at the same time avoiding false energy efficiency due to fuel poverty. 

This aspect is most relevant in the social framework context of the traditional quarters in 

Portuguese historic centres affected by the depression. Additionally, the approach of using 

diverse levels of intervention is appropriate to address the refurbishment of occupied 

traditional buildings by adding additional feasibility to the operations. 

 

Based on this context, it is necessary to identify the most feasible and effective measures to 

address the energy improvement of traditional buildings by crossing the cultural heritage 

issues with the technical and the behavioural approaches of the energy efficiency framework. 
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Chapter Four: Energy Efficiency Improvement in Traditional 
Buildings 

 

4.1 - Introduction 

This chapter aims to identify the measures and solutions which have been developed to 

specifically address the energy efficiency upgrading of traditional buildings, namely the 

constraints posed by their heritage value. This was performed through the analysis and 

revision of the literature and available case studies addressing specifically the energy efficiency 

improvement in traditional buildings. 

 

The framework of energy efficiency improvement for traditional buildings and the specific 

measures to address it are discussed, with special focus being put on the constraints posed by 

this type of building. This includes connecting several aspects of this field of research, namely 

the economic and social framework involving these typologies, the thermal performance of 

traditional buildings, their construction systems, the consequences for the heritage after 

introducing these measures and the current developments in technical research dealing with 

the energy efficiency of buildings, which can further be applied to Oporto’s traditional 

buildings. 

4.2 - Energy Efficiency in Traditional Buildings 

The approach to improve the energy efficiency of existing buildings through refurbishment is 

similar to the general buildings' framework explored in the previous chapter. The main 

differences reside in the pre-existing physical conditions, which are unchangeable (site location 

and building orientation), and the necessity of dealing with the occupants’ behaviour, which is 

usually accounted for in the design of new buildings. In being part of the existing stock, 

traditional buildings share this approach. Additionally, their specificity leads to the necessity of 

considering further factors: the cultural heritage values and the performance of traditional 

construction systems. 
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4.2.1 – Existing Buildings Energy Efficiency Approach 

The framework proposed by Erlandsson and Levin comprises the sub-systems ‘physical 

building’ and ‘housing’, which can be compared to the ‘hardware’ and ‘software’ concepts of 

information technologies (2005). The first relates to the building itself and all its components, 

while the second refers to a building's services and occupants' behaviour. A similar approach is 

proposed by Richarz et al. dividing energy efficiency upgrades in two complementary lines: 

constructions and installations (2007). 

 

Addressing the building simulation, Hensen and Lamberts (2011) presented a division in sub-

systems, which dynamically interact and influence energy efficiency in buildings (figure 6). This 

adds the actions of the occupants and the environmental conditions of the building site to 

previous approaches. It is worth mentioning that the division proposed in the building services, 

separates the equipment (lighting, appliances) from the HVAC system. This division is not 

consensual, being also usual to find these sub-systems under the building installations or 

services. This separation is not crucial, as these systems are dependent on the occupants' 

control and on their level of efficiency. However, this separation makes sense when dealing 

with existing buildings due to the variable costs involved in the upgrade of the equipment (soft 

measures) and of the HVAC systems (hard measures). 

 

 

 

 

 

 

 

 

 

 

Figure 6 – Dynamic 
interactions of sub-
systems in buildings 
in Hensen and 
Lamberts (2011, p.2) 

 

The building framework described by Brand, divides building and services systems into layers 

(figure 7), relating them to their possible timescales of change and simultaneously stressing 
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the adaptive capacity of traditional buildings. The building is disaggregated into structure, skin 

and space plan, while facilities are divided into services and stuff. All these layers are described 

according to their usual cycle of replacement: structure - 30 to 300 years; skin - 20 years; 

services - 7 to 15 years; space plan - 30 years; stuff - widely variable. Accordingly, services and 

stuff are the most feasible layers to be upgraded, followed by skin, which corresponds to the 

building envelope. Under the management of change it is also possible to affirm that these 

layers are widely accepted as the major targets for the energy efficient retrofit of buildings. 

 

 Figure 7 - Building layers of change in Brand (1994, p.13) 

 

Richarz specifically addressed the energy efficiency upgrade in existing buildings, concluding 

that renewing the installations can be the most effective way of achieving it (2007). Insulation 

is also pointed out as a highly effective solution. The same author argues for the use of passive 

measures in order “to activate or re-activate natural, self-regulatory processes in the building” 

(2007, p.21). It is also stressed that these measures work well in temperate climates, as they 

focus on natural ventilation and lighting, and take advantage or improve the existing thermal 

mass. 

 

The Recast Directive (EC, 2010) proposes several scales to address energy efficiency: technical 

building system, building, building envelope, building unit (house) and building element. These 

are complemented with local renewable energy production at superior scales, like the 

neighbourhood or the district. 
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Table 12 presents a synthesis of the energy efficiency approaches identified in the literature, 

showing both the building framework approach and the possible scales of intervention. This 

allows for pointing out the necessity of addressing energy efficiency upgrade in traditional 

buildings through these scales, based on the feasibility of their execution (affordability and 

ownership) crossed with their effectiveness in achieving energy savings (return of investment 

and carbon cuts). Furthermore, the comparison between the measures applicable at individual 

unit (home) and at building scale (e.g. insulation and renewables) should be taken into account 

to evaluate the improvements and obtain an overall scenario of potential cuts in energy and 

CO2 emissions. 

 

In terms of the implementation of the solutions, it is also important to consider a ‘fabric-first 

approach’, which means that “renewable energy sources should always come second to 

insulating a building and making it airtight. Without these measures, occupiers won’t receive 

the benefits from their renewable energy and micro-generation installations” (National 

Refurbishment Centre, 2012, p.10). The Building Research Establishment advocates the same 

in the refurbishment of their Victorian terrace case study, establishing a three steps approach: 

fabric first, then heating and hot water and finally renewables (BRE, 2012). 

 

Conclusively, it is possible to affirm that the approach for an energy efficiency upgrade in 

traditional buildings has to be directed towards the improvement of their envelope 

performance, technical systems efficiency and the occupants' behaviour, and must be 

complemented with the introduction of RES. Furthermore, it should be approached from 

various levels of intervention, in order to make it affordable for the households. The four 

components are interrelated and inextricably linked; however, for traditional buildings the 

envelope upgrade is the most sensible aspect, because it is subject to major heritage 

constraints. At the same time, its performance is crucial for the overall performance of the 

building, thus also posing the greatest technical challenges in its improvement. Similarly, the 

introduction of renewables has to be considered in respect of the visual consequences it 

causes to the building and to the historic city image. 
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Table 12 – Compared building approach framework 

 

4.3 – Improvement of Traditional Buildings Energy Efficiency 

Using the defined framework it is possible to draw up an approach for the energy efficiency 

improvement of traditional buildings based on three complementary levels: the building’s 

physical elements, the housing (services, equipment and occupants) and the energy 

Erlandsson and 

Levin, 2005

Richarz et al. , 

2007 

Hensen and 

Lamberts, 2011
Brand, 1994

Energy Efficiency 

Directive Recast, 

2010

AdEPorto, 2010 Restart Project, 1996

Environment Site District

Main facade Main facade

Skin Building Envelope

Roof Roof

Exterior windows       

and doors

Exterior windows       

and doors

Skylight

Gable facade Gable facade

Partition wall

Space Plan Building Unit

Party wall

Floor

Building Element

Housing Installations

HVAC System Services

Technical building 

system

Physical Building Construction Building

Structure Building

People
Temperature space 

control

Equipment Stuff
Solar thermal

Central HVAC system
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production (renewables). They can further be divided into systems and sub-systems, providing 

the possibility of addressing independent improvement measures (table 13). 

 

 

Table 13 – Traditional buildings improvement framework proposed 

 

Level System Sub-system building level home level

Framework Solutions Implementation

Physical 

Building

Building Common area

Building 

Envelope

Roof and Loft

Main facade

Gable facade

Party wall

Glazing (exterior 

windows and 

doors)

Skylight

Interior space

Floor/ceiling

Partition wall

Interior doors   

and windows

Housing

Building 

services

DWH, Heating, 

Cooling and 

ventilation

Equipment

Lighting

Appliances

Occupants

Behaviour

Control

Energy 

production
Renewables

o o

o

o

o

o

o o

o o

o

o o

o

o

o o

o

o

o

o
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Moreover, the elements to be improved are addressed by two scales of possible 

implementation: building and home. These levels are based both on the cost and on the 

consent procedures necessary to implement the solutions, which are aggravated in Portugal by 

the complex legal tenancy framework. A similar situation is identifiable for the improvement of 

the communal areas of the Scottish Georgian tenements, where any work must have the 

consent of all tenants (Changeworks, 2008). Hence, the focus must be set on the measures 

addressing the building unit or the building elements, which allow a direct action without the 

necessity of engaging all tenants or the building owners. Moreover, these measures are usually 

more affordable, consequently increasing their feasibility. 

 

At the same time, it is necessary to consider the possibilities posed by the local energy 

production. The heritage constraints posed by the historic cityscape limit their application. 

However, the district systems can be used to overcome such a situation, by concentrating the 

energy production and consequently minimising the impact. An example of this is the future 

RUTE (Thermal Energy Urban Network), which envisages the use of tri-generation from natural 

gas in Oporto’s urban core to provide combined cooling, heat and power to large consumers, 

while simultaenously reducing the losses in energy distribution by 30% (Cardoso, 2011; 

Fernandes, 2009). If this was applied to domestic consumers as well, it could help reducing the 

environmental footprint of Oporto’s traditional buildings with a reduced risks for heritage 

damaging. However, district scale is not in the scope of this research, so the subject will not be 

developed here. 

 

4.3.1- Solutions for Traditional Buildings 

The English Heritage developed a toolkit which identifies gradual stages of measures based on 

the cost and easiness of their implementation in the traditional buildings residential sector 

(2011). These stages range from easy savings (‘soft measures’) to long term planning (‘hard 

measures’) as shown in table 14. The first type is based mainly on lifestyle enhancements, both 

by improving the household’s behaviour and by using more efficient equipment. In what can 

be considered a second level, it proposes the general draught-proofing and ‘easy insulation’ of 

some building elements, which should be considered before carrying out ‘hard measures’. The 

maintenance and improvement of traditional windows and doors is further encouraged in 

order to maintain the character and appearance of traditional buildings. It consists either of 

draught-proofing the frame or in the installation of secondary glazing. ‘Easy insulation’ 

addresses the building systems and the elements which are reachable by the interior and 



The investigation of energy efficiency measures in the traditional buildings in Oporto World Heritage Site: Joaquim Flores 

74 

whose insulation poses no negative visual consequences. Inversely, the long term measures 

can be both costly and difficult to implement, as they involve construction work. They can be 

planned in advance and may be considered if in-depth refurbishment is to be undertaken. 

 

This framework of solutions seems consensual in the literature and summarises the research 

promoted by BRE, English Heritage, Historic Scotland and SPAB, based on UK case studies from 

the pre-1919 built stock, covering Georgian, Victorian and Edwardian houses (Cartwright et al., 

2011; Changeworks, 2008; Drewe and Dobie, 2008; Ferguson, 2011; Pickles et al., 2012; Rye et 

al., 2012; Yates, 2006)30. This literature is crucial, because it represents the most solid corpus 

of research, developed along a consistent period (since the 1990’s until now) and is based both 

on scientific experiments and case studies. At the same time, the type of buildings in question 

reveals a certain formal similarity with Oporto’s traditional buildings (with Georgian design 

influence), which is further discussed in Chapter Six. 

 

 

Table 14 – Residential traditional buildings energy efficiency toolkit in (English Heritage, 2011) 

                                                           

30 - See table 16. 

level category Measures

appliances standby nulling

lights turned off

lower heating temperature

higher efficiency

lower temperatures in clothes washing

less water boiling

introduction of controls for radiators and boiler

use of intelligent thermostats

smart energy metering

use of low-energy lamps

motion detectors for external lighting

boiler maintenance

introduction of fuel efficient boiler 

use of biomass heating

shutters

portieres

heavy curtains

‘sausage dogs’

frame draught-proofing

installation of secondary glazing

floors and chimneys

roof and loft (by the interior)

systems (hot water tank and piping system)

insulation of the building envelope roofs and walls

insulation of floors suspended or solid

solar thermal

photovoltaic

micro-wind

hydro power

air or ground heat pump

Introduction of renewables 

easy insulation of some building elements 

easy savings 

(‘soft measures’)

general draught-proofing  of doors and 

windows

long term 

planning (‘hard 

measures’)

lifestyle enhancements 

home appliances upgrade and better use

heating controls and energy metering

improved lighting

energy efficient heating 
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Table 15 – Solutions framework  

Level System Sub-system
English Heritage, 2011 

(´soft measures')

English Heritage, 2011 

(´hard measures')
Drewe and Dobie, 2008 Changeworks, 2008 Yates, 2006 Richarz et al. , 2007 Rye et al., 2012 AdEPorto, 2010 Restart Project, 1996

Cartwright et al. , 2011 

and Ferguson, 2011

Roof insulation from inside

Roof insulation from outside

Loft insulation Loft insulation Loft insulation

Exterior insulation Composite external insulation

External insulation with 

ventilation cavity

Party wall insulation

Draught-proofing doors and 

windows

Draught-proofing doors and 

windows
Draught-proofing  windows

Weatherstripping of windows 

and doors

Set a maximum of free-

cooling rate

Draught-stripping and seal 

on windows.

Secondary glazing
Draught-stripping on 

windows.

Double glazing or secondary 

glazing
Double or secondary glazing

Introduce double glazing in 

existing frames

Double glazing in wood 

frame
Double or triple glazing

Keeping traditional 

windows, doors and shutters

Maintaining traditional 

shutters

Maintaining traditional 

shutters

Maintenance or introduction of 

inner shutters

Secondary glazing in skylight

Double or triple glazing in 

skylight

Ground floor insulation Draught-proofing  floors Ground floor insulation Ground floor insulation Ground floor insulation

Floors insulation Suspended floors insulation
Floor insulation (confining with 

unheated spaces)

Central biomass pellet 

boiler

air-to-air and air-to-water 

source heat pumps

Solar thermalSolar thermal Solar thermal Solar thermal

En
e

rg
y 

p
ro

d
u

ct
io

n

R
e

n
e

w
ab

le
s Micro-generation (wind, 

photovoltaic, solar 

thermal, hydro power 

and heat pumps ground 

and air)

temperature space control

programmer, room thermostat 

and thermostatic radiator valves

O
cc

u
p

an
ts Behaviour

Lifestyle (nulling stanby, 

turning off lights, turning 

down the thermostat)

Room thermostats

Control
Heating controls & energy 

metering
Smart metering

Natural lighting

Appliances Home appliances Efficient appliances
A-rated energy efficiency 

appliancesEq
u

ip
m

e
n

t

Lighting Efficient lighting Efficient lighting Low energy lamps

Easy insulation (tank and 

pipes)
Heat recovery

Mechanical ventilation with heat 

recovery

Mechanical ventilation with heat 

recovery

Condensing combination 

boiler with a mechanical 

heat save device

Controlled ventilation system Natural cross ventilation Natural ventilation

Energy efficient heating
Gas central heating with 

condensing boiler

LPG-fired condensing boiler (hot 

water and space heating)

Central HVAC system

Partition wall insulation

Interior doors and 

windows

H
o

u
si

n
g

B
u

ild
in

g 
se

rv
ic

e
s

DWH, Heating, 

Cooling and 

ventilation

Energy efficient heating

Floors insulation

General draught-proofingPartition wall Low-cost draught-proofing 

(heavy curtains, portiere, 

shutters, sausage dogs)

Partition wall insulation

Skylight improvement

High light transmission, low 

solar gains, low reflectance 

glass in skylight

In
te

ri
o

r 
sp

ac
e Floor/ceiling Draught-proofing floors 

Adding insulation to 

floors

Floor insulation (confining 

with unheated spaces)

Glazing (exterior 

windows and 

doors)

Glazed  element 

improvement

Skylight

External insulating

render

External insulating

render
Gable facade insulation

Other facades external 

insulation

General draught-proofing 

including chimneys

Interior insulation (exterior wall 

dry lining insulation)
Dry lining insulation Dry lining insulation Main facade insulation

Interior insulation of main 

facades

Main facade dry lining 

insulation

Roof insulation
Roof insulation Roof insulation Roof insulation

Main facade

Draught-proofing chimneys Adding wall insulation Wall insulation

Dry lining insulation

B
u

ild
in

g 
En

ve
lo

p
e

Roof and Loft
Interior insulation (roof and 

loft)

Re-roofing incorporating 

insulation 
Top floor insulation

Roof insulation

Gable facade

Party wall

Draught lobby insulated porch

Framework Solutions

P
h

ys
ic

al
 B

u
ild

in
g

B
u

ild
in

g

Common area

Draughtproofing entrance 

door
draught sealing of front doors
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Table 16 – Traditional buildings energy efficiency case studies in the United Kingdom 

Cartwright et al. , 2011 and 

Ferguson, 2011
Changeworks, 2008 Restart, 2000 Energy Saving Trust, 2010

Pilot Case study 1 Case study 2 Case study 3
Case Study and demonstration 

project
Case study

Light refurbishment case 

study
Test wall

Georgian Tenement in World Heritage Edinburgh (test in 

a stair of 9 flats - 1820)

usual energy efficient measures 

in solid wall houses

Four-storey tenement in 

Greenock, Scotland (1996)

Nelson Housing Market Regeneration

Scheme (2006)

The Flagship Home Project, Beaufort 

Gardens, London
The Nottingham Ecohome (2000)

BRE Victorian Terrace - Watford 

(2007)
Recommended solutions Rectory, Ampermoching (1724; 2001-2002)

The Firs, Riddlecombe, 

Devon (2012)

Mill House, Drewsteignton, 

Devon (2012)

Lister Housing Co-operative, Lauriston Place, 

Edinburgh (2007-2008)

CRUARB Office, Rua da Fonte Taurina, Oporto 

(1996)
Sheffield EcoTerrace (2009)

loft insulation

150 mm mineral wool loft insulation 

between joists, 50 mm laid over 

joists

re-laying the roofs and the insulating of the 

roof spaces
Addition of a floor with high insulated roof

Roof insulation above the ceiling: 400 mm of Warmcell 

recycled newspaper insulation above and between the 

ceiling joists

mineral wood and sheep's wool 

insulation

Roof insulation from inside: waterproofing covering 

natural or mineral fibers between the rafters,  vapour 

barrier, second layer of insulation and finish

Roof insulation along slope of rafters: 300 mm of blown 

Warmcell insulation in a plywood web

heat phase-change materials in ceiling 

tiles

Roof insulation from outside when re-roofing: 

waterproofing covering, insulataion layer, second 

natural or mineral fibers between the rafters,  vapour 

barrier and finish

Natural cross ventilation of unheated roof space

Additional work: Re-roofed re-using most of old slates; 

Installed breathable underlay to protect insulation; 

Extended verge overhang for future external insulation

Top most floor insulation: filling void space between 

joists with natural or mineral fibers or loose fill 

material (cellulose flakes), vapour barrier (plastic 

sheeting or building paper), second layer of insulation 

if necessary and floorboard

loft insulation between the joists with mineral wool, 

vapour barrier
Loft insulation - 300mm of insulation

insulated dry lining to external 

walls

Plaster removed. External wall – 50 

mm expanded polystyrene 

insulation – plasterboard

dry lining

Internal insulation: 2 × 50 mm zero odp phenolic foam 

laminate boards (This was applied to the front elevation so 

that the external appearance could be maintained)

Main facade internal insulation: 

aerogel, polyurethane foam and 

polyisocyanurate insulation (PIR)

Internal insulation with upgrade of existing single 

glazing: insulation material place in the wall (rigidPS 

foam, mineral wool, mineral foam, rigid PUR foam, 

calcium silicate sheets), vapour barrier, finish. Points 

necessity to insulate internal partition 500mm when 

joining the external wall, and insulation of timber 

joists floors support in external walls (PUR spray foam). 

Secondary bouble galzing added

Internal insulation in granite 

external wall: gypsum skim (3mm), 

plasterboard (12.5mm), air gap 

(25mm), PIR (polyisocyanurate) 

board (100mm) + existing wall

external insulating render

use of traditional materials and original 

design features for the chimney stacks which 

are in keeping with the period of the houses

External insulation: 140 mm expanded polystyrene board 

and a Sto render system. The thermal performance of the 

walls has been improved by 860%

North facade external insulation: 

Expanded Polystyrene (EPS)

External insulation (in conjugation with new double 

glazing window): composite system (insulation board 

with rendering system)

External insulation composite system (60-140mm)
External insulation lime 

render 40mm

External insulation with ventilation cavity (conjugated 

with new double glazing window): create double 

framework of rails to support cladding; two levels of 

insulation between rails, possible covering of system 

withn boards, cladding material

secondary glazing

Replacement timber windows with 

double glazing (22 mm air gap) and 

draught sealing

fitting traditional double glazed sash 

windows to improve energy efficiency
double glazed windows in the rear elevation

The house would originally have had single glazing – double 

glazed u-PVC windows were inherited and no secondary 

glazing. Two north facing sets of French windows were triple 

glazed, krypton filled with two low e coats

Double and triple glazed framing New double glazing windows New double glazed windows
Existing wood double glazed 

windows
Secondary glazing (slim line) reducing U value to 2.0

secondary glazing in the front elevation Secondary double glazing Introduction of folden wooden shutters internally Shutters refurbishment

Weatherstripping of windows and doors: self-adhesive 

strip (DIY but limited durability), grooves in frame and 

standard sealing profiles

Draughtproofing - reducing  air changes per hour from 2.5-3 

(usual in sash windows) to 0.4

Introduce double glazing in existing frames

ground floor insulation

Solid ground floor: Excavated down and laid damp proof 

membrane horizontally and vertically to above ground level; 

150 mm polystyrene with 50 mm edge upstands; 100 mm 

concrete slab

Insulation of floors to unheated space
Suspended ground floor insulation: mineral wool, 

vapour barrier
Ground floor insulation

Suspended ground floor: 100 mm of sheep’s wool between 

the joists and 60 mm ofinsulating wood fibre board (Gutex) 

beneath the joists. A breather membrane over the Gutex

Floor insulation (21mm of insulating material and 9mm of 

particle board - u value of 0.25)

Second floor: Existing floorboards taken up and the joists 

strengthened; Loose Rockwool placed between joists for 

sound insulation (should have used sheep’s wool but not 

readily available at the time); 3 mm Regupol sheet made of 

recycled rubber and cork over joists for impact noise 

reduction; Existing boards replaced and supplemented with 

additional reclaimed boards to enlarged the floor area

General draught-proofing

partition wall

Composite board comprising 12.5 

mm wallboard and 19 mm extruded 

polystyrene fitted internally 

draught sealing of front doors of 

flats

replacement of front doors and rainwater 

goods

Replacement of some of the existing u-PVC doors with fsc 

timber

gas central heating with 

condensing boiler

Gas fires, gas fired central heating 

from back boiler, programmer, room 

thermostat and thermostatic 

radiator valves

Two condensing boilers were installed to 

provide communal heating to all the units but 

with each tenant having radiators and 

programmable controls

Central biomass pellet boiler
LPG-fired condensing boiler (hot water and space 

heating)
New 'A' rated condensing boilers

Air source heat pump

air-to-air and air-to-water source heat 

pumps

Condensing combination boiler with a 

mechanical heat save device

factory insulated hot water 

cylinder

Back boiler, 135 litre hot water tank 

with 80 mm factory applied 

insulation

Solar panels were installed on the roof to 

supply part of the building’s hot water with a 

heat recovery ventilation system

4 m2 flat plate solar panel contributes 50% to annual hot 

water; wood-fired boiler for central heating and hot water 

top-up; 1100 litre accumulator stores and distributes hot 

water to the radiators and domestic use; It was planned to 

install one or two 1 metre diameter wind turbines (this is no 

longer the case as it would not generate viable amounts in 

this area; Renewable energy and low energy construction 

has saved £800 to £1000 a year

Solar thermal Solar thermal

V
en

ti
la

ti
o

n

controlled ventilation system kitchen and bathroom extract fans
Mechanical ventilation with heat recovery 

unit per floor 

Both bathrooms and both kitchens have heat recovery fans 

which save up to 80% of airborne heat. Whole house heat 

recovery mechanical ventilation

Mechanical ventilation with heat 

recovery
Mechanical ventilation with heat recovery

Li
gh

ti
n

g 
an

d
 

ap
p

lia
n

ce
s

All low energy lamps and A-rated energy 

efficiency appliances

Low energy lighting (CFL's 23W); smart metering; energy 

advice

district heating system based on a biomass 

boiler
install a new front door and create an insulated porch

The potential environmental impact could be 

further reduced by combining the use of 

carbon neutral technology with a planned re-

use of construction materials supplemented 

by low environmental impact traditional 

materials such as lime mortars, insulation 

made from sheep’s wool or newspaper, and 

timber.

Over time, the u-PVC windows will be replaced as the 

glazing units fail (double glazed or secondary glazing)

energy cut by 67%/year and CO2 emissions 

cut by 63%/year

The overall energy savings are 75% in terms of costs and 85% 

in terms of tonnes of CO2 emitted

4% improvement in U-value 

of external wall

87% improvement in U-value of 

external wall

The annual energy cost of each flat were reduced by na 

average of £175 (some cases up to £400); The annual CO2 

emissions of each flat were reduced by na average of 1 

tonne (some cases up to 2.4 tonnes)

Simulated: (20% savings in heating, 20% savings in 

cooling, 40% saving in lighting

less 76% of CO2 emissions; less electricity consumption 

of 60% and less gas of 81%

after the work was completed the houses 

national home energy rating (NHER) 

increased from approximately 3.0 to 9.0.

The annual energy consumption of each flat were reduced 

by na average of 5000kWh (some cases up to 12000kWh); The 

annual CO2 emissions of each flat were reduced by na 

average of 1 tonne (some cases up to 2.4 tonnes)

Simulated: (7 MWh heating, 13 MWh cooling, 20 MWh 

lighting against similar non refurbished 13 MWh 

heating, 19 MWh cooling, 32 MWh lighting)

Less 67% in running costs

In
te

rn
al

 C
o

n
st

ru
ct

io
n

 Im
p

ro
ve

m
en

ts

Fl
o

o
rs

In
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B
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Sy
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s

Fu
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Sa
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Yates 2006 Richarz et al. , 2007 Rye et al.  2012

B
u

ild
in

g 
En

ve
lo

p
e

R
o

o
f 

an
d

 lo
ft

Ex
te

ri
o

r 
w

al
ls

G
la

zi
n

g



 Chapter Four: Energy Efficiency Improvement in Traditional Buildings 

77 

 

By crossing the framework for the improvement of traditional buildings presented in table 13, 

with the specific solutions identified in the literature reviewed, it was possible to produce a 

table that confirms the solutions framework presented above, and details it with the effective 

measures taken in diverse case studies (table 15). From these solutions it is possible to 

highlight the envelope insulation, the glazing upgrade and the introduction of renewables as 

the most effective for improving the energy efficiency of traditional buildings. As such, these 

measures will be further addressed below. Furthermore, the upgrade of the communal spaces 

and the cost-effectiveness of the solutions, which are subjects that need to be evaluated in the 

energy efficiency upgrade of Oporto's traditional buildings, are also reviewed. 

 

Insulation 

The use of external insulation is acknowledged to be the most effective, as it takes advantage 

of the high thermal mass that is usual with traditional buildings (Ferguson, 2011; Richarz et al., 

2007). However, its use in the building envelope is considered the major challenge for 

improvements to traditional buildings, for both the technical and the heritage constraints 

posed, as pointed out in several of the reviewed case studies (table 16). The BRE research 

conducted on several Victorian examples, supports this by pointing out the problems posed by 

the insulation of solid walls (Yates, 2006). The improvements tested were made by addressing 

the envelope’s insulation at several scales (roof, walls and glazing) and by paying careful 

attention to the consequences this had for the buildings’ authenticity. This ‘case-by-case’ basis 

is the most commonly applied approach for assessing the visual impact of the solutions and to 

verify the heritage disruption caused. 

 

The use of natural insulation, such as mineral and natural fibres or hemp batts, is pointed out 

to be more adequate for traditional buildings. It is normally more expensive than petro-

chemical materials, but it absorbs and lets out moisture and allows the traditional construction 

to continue breathing (Changeworks, 2008; Curtis, 2008; Drewe and Dobie, 2008; English 

Heritage, 2011; Yates, 2012). Richarz et al. underline the difference between the measures 

executed from the interior or from the exterior of the building, putting emphasis on the use of 

scaffolding which represents a substantial increase in the total cost (2007).  

 

Moreover, the same authors reviewed the type of insulation available for each approach, 

stating that flexible materials (e.g. mineral or natural fibres), are more suitable for inner 

insulation than rigid boards, as they can easily be inserted into the construction voids. These 
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factors confirm that natural and flexible insulation solutions are the most viable for the energy 

efficiency upgrade of traditional buildings. 

 

In the specific case of Oporto it is important to stress the dimensional problem posed to the 

feasibility of insulation due to the reduced interior dimensions of spaces and/or by the limited 

thickness available on the main facades due to the granite stone carving whose plan should 

not be surpassed. Consequently, the insulation thickness reveals to be an important parameter 

to consider in the implementation of the solutions. The local climate allows the use of reduced 

insulation thicknesses when compared to North European countries, but even so the available 

space is still constricted31. The use of dry lining insulation is additionally limited by the usually 

existing relation of the wall with the ceiling stucco, which must be preserved. The use of slim 

insulation materials may be considered to overcome the visual and dimensional effects of the 

intervention. Hence, it is possible to consider the use of two recent materials: aerogel 

insulation and phase change materials (PCM), i.e. materials which store or release heat when 

changing their phase (solid to liquid and vice versa). However, as pointed out by Cartwright et 

al., the use of less conventional materials poses two major restrictions: their high initial cost 

and the lack of knowledge in their application, which leads to longer times of execution and 

consequent higher costs (2011). 

 

The incorporation of microencapsulated PCM in plaster was studied in Portugal by Silva et al. 

(2008) and Monteiro et al. (2005), both pointing out its potential for energy efficiency. In these 

experiments 25% of PCM32 was incorporated in the final layer of plaster covering the inner face 

of exterior walls. The results revealed that the room maximum temperature was reduced by 

28% and the room minimum temperature was increased by 6%, without using any heating or 

cooling equipment (Monteiro et al., 2005). This 1 mm thick PCM layer improved the wall 

thermal mass significantly and, with an additional cost of 1€ per square meter of the total 

render cost, it seems to be a high potential solution to be used in the upgrade of the thermal 

performance of traditional buildings33. The analogous research undertaken by Lucas measured 

                                                           
31

 - The AdEPorto et al. study (2010), addressing the energy efficiency improvement of Oporto's traditional 
buildings, admits the possibility of using the minimal insulation thickness of 50mm in external walls, which may be 
increased until 100mm for obtaining the best results. Similarly, the roof insulation may use thicknesses varying from 
70mm until 160mm.  

32
 - This ratio proved to be the best in terms of balancing the mechanical stability of the plaster with their thermal 

improvement. 

33
 - The BRE Victorian terrace experimental project also incorporated PCM insulation into the ceiling tiles of the 

presentation room, with no results available yet (BASF, 2010). 
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a variation of 4 to 5°C between a wall with PCM plaster and a reference wall. The author 

highlights that it enabled achieving the thermal comfort temperatures with a reduced use of 

energy (2011). Additionally, the work undertaken by Zamalloa et al. in Spain during the 

summer of 2008, showed that the use of the PCM insulation increased the thermal inertia of a 

wall, thus reducing the cooling demand up to 30% (2009). These results confirm how PCM 

insulation can play a relevant role in the passive cooling of buildings, increasing of comfort and 

saving energy. 

 

The approach towards roof insulation is also consensual in literature, and is considered in 

conjunction with the loft space (Changeworks, 2008; Drewe and Dobie, 2008; English Heritage, 

2011; Richarz et al., 2007; Yates, 2006). If the space under the roof is not inhabited the 

insulation is placed on the floor which permits cross ventilation of this space (cold roof). If it is 

used for living, the insulation is then placed directly in the roof, either by re-roofing and 

placing insulation on the exterior, or by incorporating it between the rafters (warm roof). 

 

Glazing 

The upgrade of the traditional external windows and doors also needs to be carefully 

considered in order to avoid the disruption of the overall building character. The approaches 

that have proven to be the most successful are based on upgrading the glass (by the insertion 

of double glazing if the frame design allows it) or by the introduction of secondary glazing, 

which is usually a more viable measure with several successful examples among the reviewed 

literature (Changeworks, 2008; Curtis, 2008; Yates, 2006). From these examples, the Slimline 

secondary glazing applied in a Scottish pilot study deserves a special mention for its 

reversibility (Changeworks, 2008). The authors argue that the secondary glazing is usually less 

intrusive, but it must be conjugated with the original windows design. 

 

Furthermore, the literature stresses that the use of ‘low-cost’ measures (draught-proofing, 

curtains and inner shutters) allows enhancing the performance of the glazing systems 

(Changeworks, 2007; Drewe and Dobie, 2008; English Heritage, 2011). Addressing this 

objective, Richarz et al. introduced internal folding wooden shutters in upgrading a German 

traditional building with the aim of improving its thermal efficiency (2007). 

 

Associated both with the roof and the glazed elements of the buildings, updating skylights is 

also addressed in the case studies. Their improvement is similar to the approach used in 
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windows and focuses on the replacement of single by double glazing, the introduction of 

secondary glazing (Changeworks, 2008), and the upgrading of glass for high light transmission, 

low solar gains and low reflectance (Restart Project, 2000). 

 

Communal spaces 

Like in the Georgian tenements of Scotland, the skylights in Oporto are inserted on the top of 

the building’s communal space where the staircases are located. This raises the problem of the 

upgrade of such spaces, which was addressed in the Changeworks report (2008). Known in the 

Scottish tenements as the ‘stairwell’ or ‘close’, it allows for heat to escape. The proposed 

improvement of these spaces is based on three complementary measures: insulation, lighting 

and recycling of heat (Changeworks, 2008). The insulation consists mainly of draught-proofing 

the flats and building entrance doors. The building's main entrance can benefit from the 

installation of a second door creating a ‘draught lobby’, which allows the retention of heat. The 

similarity between Oporto’s traditional buildings makes this a possible measure to be taken 

into account when addressing their comprehensive upgrade. At the same time, the use of low 

energy lighting and the installation of a mechanical pump and piping system to recover heat 

from the roof space into the communal areas, which can then benefit from this ‘free’ heat, are 

advocated. However, as it is also stressed in the report that this is only viable when integrated 

in major refurbishment works (Changeworks, 2008). The same applies to any measure 

addressing the retrofit of the building's exterior, due to the high cost involved in such 

construction work, which is escalated by the necessity of using scaffolding. 

 

Cost-effectiveness 

The data compiled by Changeworks (2008) clearly shows how measures which are construction 

intensive have a high payback period and are hardly likely to be undertaken by tenants or 

owners with lower incomes (table 17). From the table it is possible to confirm that small house 

improvements are more effective, with the additional advantage of having the possibility of 

being executed on a Do-It-Yourself (DIY) basis, reducing the costs and the payback period. 

 

Inner space measures, such as the insulation of suspended timber floors and lofts or the 

building’s general draught-proofing, are also widely pointed out in literature as effective for 

energy efficiency upgrading of traditional buildings (table 15). This is confirmed by their 

payback time, in particular if they are executed without using a contractor. The retrofit of the 

building systems and the improvement of the occupants’ behaviour, are similar to the ones 
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previously discussed and usually do not present negative consequences for the traditional 

buildings’ fabric, which allows to classify them as ‘heritage friendly’. The upgrade of equipment 

and systems is highly variable, depending on the initial investment made, which can cover just 

a simple upgrade (insulation on the water tank or piping) up to the complete renovation. 

 

 

Table 17 – Payback periods from typical energy efficiency measures in (Changeworks, 2008, p.26) 

 

This framework of low and hard cost measures is also supported by Portuguese research. The 

study undertaken by Afonso identified that a period of 13 years is necessary in order to 

achieve the payback of the investment made for the building’s energy efficiency improvement 

(2009). Further, it points out that if this upgrade is inserted in the building’s total 

refurbishment, it requires only an additional investment of 10%. Similar results were obtained 

by Veiga, who identified a payback period of 12 years and confirmed the additional cost of 10% 

for improving the building's thermal performance under an overall refurbishment process 

(2011). 

 

Renewables 

The introduction of renewables is widely pointed out as a positive measure to compensate the 

energy consumption of buildings. Their use is proposed in some of the case studies identified, 

with precedence being given to the solar thermal systems (table 15 and table 16). However, 

their use in the historic environment is not consensual, as it has been revealed to be disturbing 

for the site character. English Heritage promoted research on this subject and analysed the 

Measure Cost (£) Annual savings (£) Payback period

Hot water tank insulation (800mm 

jacket)
12 20 c. 6 months

Hot water pipework insulation 10 10 1 year

Suspended timber floor insulation 90 (DIY) 45 2 years

250 (DIY) 110 c. 2 years

500 (contractor) 4 to 5 years

Cavity wall insulation 500 90 c. 5 years

90 (DIY) 20 c. 5 years

200 (contractor) c. 10 years

Solid wall insulation (50mm 

plasterboard laminates, or battens, 

insulation and plasterboard)
From 42/m

2 300
Depend on property 

size

Double glazing (seal units) 3,000 90 20+ years

Draught-proofing

Loft insulation (270mm)
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introduction of micro-generation from renewable sources, covering wind, solar thermal, 

photovoltaic, and biomass energy, in traditional buildings (English Heritage, 2006; English 

Heritage, 2008c; English Heritage, 2010a; English Heritage, 2010b; English Heritage, 2012). A 

similar but more detailed perspective is given by Changeworks for Scottish traditional buildings 

(2009). The major conclusion provided by this source stresses that renewables can be 

introduced but safeguarding a building’s significance must always be met and the visual 

consequences of the ‘intrusion’ must be carefully considered in each individual case. 

 

4.3.2 - Traditional buildings energy efficiency upgrade in Portugal 

In Portugal, the energy efficiency of traditional buildings has often been addressed in research, 

but concrete case studies are scarce. Further, the approach is mainly technical, driven by the 

attempt to comply with the thermal regulation for buildings. 

 

Driven by this objective, the Portuguese Energy Agency (ADENE) promoted research 

addressing the retrofit of existing residential buildings, focusing basically on dwellings built in 

the past five decades (Anselmo et al., 2004). Therefore, with the exception of pitched roofs, 

this research does not cover traditional buildings and their construction systems. Nonetheless, 

referring to the example of Oporto it points out that addressing the roof insulation is more 

effective in terms of cost-benefit analysis than insulating exterior walls. 

 

The larger bulk of research addressing this subject in Portugal was developed by the 

universities’ engineering departments, which may justify the focus on the technical approach 

undertaken (Afonso, 2009; Craveiro, 2008; Cupido, 2000; Jardim, 2009; Rocha, 2008). Based on 

the dynamic thermal simulation of a traditional building, Afonso concluded that to achieve the 

desired level of comfort, the top floor and the attic require the major thermal loads, while the 

middle floors present a very similar performance (2009). Additional research also points out 

the discrepancy between the thermal loads calculated, when using the static method inserted 

in the thermal regulation, and the dynamic modelling made by software, which presented 

lower values (Veiga, 2011). 

 

Some of this scholarly research addressed very detailed aspects of the construction systems of 

traditional buildings and their thermal performance improvement. Santos’s research 

addressed traditional pitched roofs, identifying mineral wool as the most effective insulation 
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solution for the majority of the cases (2009). The reversibility of the solutions in order to avoid 

damaging the heritage value of buildings is also stressed by this research. 

 

The 1996’s Restart project was a pioneer study in addressing the energy efficiency of Oporto's 

traditional buildings (Resetnet, 2010). The Oporto RESTART Project - ‘Porto - Rehabilitation 

Process in the Historical Centre’ - was integrated in the urban regeneration process taking 

place in the World Heritage area of the Historic Centre. This experimental project addressed 

the adaptive reuse of a building to host the Oporto Municipal technical body for the historic 

centre - CRUARB’s (Restart Project, 2000). The central strategy was based on the use of natural 

lighting, taking advantage of the central skylight and upgrading its glass characteristics. The 

building insulation was also central in the intervention, addressing the roof, partition walls and 

floors in non-heated zones. External walls were insulated from the interior to avoid conflicting 

with the building’s character. The project also promoted natural ventilation, but the thermal 

comfort was, however, mainly provided by a central HVAC system. 

 

The guidance promoted by AdEPorto et al. presents a holistic and very experience-based 

approach to the energy efficiency improvement of Oporto’s traditional buildings (2010). The 

study was also monitored by the Portuguese Heritage Institute (IGESPAR) in order to assess the 

solutions from the heritage conservation perspective. Methodologically, this work applies the 

most proven solutions to Oporto's traditional buildings to achieve the thermal performance 

levels required by the regulation. The occupants' behaviour or the appliances' efficiency are 

disregarded in the study, which addresses mainly the fabric and the systems. The approach 

focussed on the improvement of the overall building envelope, divided into exterior wall, 

glazed elements and roof (AdEPorto et al., 2010). The report stresses the particularity of the 

facades of Oporto’s traditional buildings, where the glazed area is usually superior to the 

opaque, which adds a high relevance to the retrofit of windows and French doors. Aligning 

with the previously reviewed literature, the exterior walls were divided into main and gable 

facades and grouped with the according possible insulation approaches. These are respectively 

dry lining and exterior insulation with independent cladding and air cavity. The proposed roof 

insulation is similar to the one presented by Richarz et al. (2007), consisting of the insertion of 

flexible materials between the rafters and of a vapour barrier layer to avoid condensation. 

When possible, it is recommended to upgrade the glazed elements (double glazing or 

introduction of secondary glazing, including in the skylight). It is also recommended to use 

traditional inner wood shutters, as advised in the reviewed best practice case studies. The 

introduction of solar thermal panels is also promoted in order to reduce the energy demand 
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and comply with the regulations. Aiming to minimise their visual impact, the design guidance 

stipulates that the panels should cover less than 10% of the total roof area, be mounted 

directly on the slope and parallel to the ridge. However, even if this reduces their impact, it is 

important to point out that the visual contrast between the black panels and the red roofs tiles 

is likely to disturb the image and character of the Historic Centre if applied on a large scale. 

This situation is aggravated by the sloping topography of the city, which allows seeing the 

historic centre roofscapes from above at several points, as shown in figure 8. 

 

 

Figure 8 – Oporto historic centre roofscapes as seen from the Cathedral hill 

 

4.4 – Heritage in Energy Efficiency Improvement of Traditional Buildings 

In the past ten years the UK’s heritage bodies have promoted several studies in the field of 

refurbishment of traditional and historic buildings in order to meet current day standards. The 

most recent concern is directed at climate change and sustainability in general (Cassar, 2005; 

English Heritage, 2008a; English Heritage, 2008b), and energy efficiency in particular, following 

the EPBD translation into the UK national regulation (Changeworks, 2008; Drewe and Dobie, 

2008; English Heritage, 2007; GHEU, 2007; Pickles et al., 2011; Wood and Oreszczyn, 2004). 

Further, these studies reinforce the necessity of minimising the disturbance to the existing 
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fabric and of promoting reversible solutions when upgrading for energy efficiency in traditional 

buildings (Drewe and Dobie, 2008). 

 

The concern posed by the application of the European thermal regulations in the historic 

environment, drove ICOMOS France to publish an official declaration (2008) and to organise a 

conference to discuss this subject with Euromed Heritage (2010). The results specifically stress 

the necessity to preserve the authenticity of traditional buildings, which are less protected and 

subjected to suffer damaging change during the renovation processes to achieve the 

regulation standards. Once more, the emphasis is put on the external insulation of buildings as 

the major challenge and risk for traditional buildings, as proven by the results presented by the 

Graz case study34 (2010). 

 

Overall, it is possible to affirm that the concern posed by the traditional buildings upgrade to 

address energy efficiency seems consensual among the conservation community. This concern 

can be summarised into the need of applying compatible technical systems to traditional 

buildings, which perform differently from modern ones, preserving at the same time their 

authenticity. However, a methodological approach balancing the weight of heritage with 

energy efficiency was not identified. Yates advocates the necessity of establishing a 

‘conservation limit’ and developed a methodology for dealing with it (2006; 2011). The method 

proposed is mainly based on the intervention criteria established in the international heritage 

charters and on the professional’s practice. Special emphasis is put on avoiding changes to the 

fabric and aesthetic appearance of the properties, but no specific method for achieving this is 

provided. The research promoted by the English Heritage and Historic Scotland bases its 

assessment on the conservation principles, but without clearly defining the assessment 

methodology (Baker, 2010; Changeworks, 2008; Curtis, 2008; Drewe and Dobie, 2008; English 

Heritage, 2011; Historic Scotland, 2012). May and Rye stress the necessity of developing a 

“systemic approach (…) regarding the assessment and retrofit of traditional buildings” (2012, 

p.7). They recommend the investigation of further methods and propose guidance for the 

management of change, implementing the usual three colours system (green, amber, red) for 

grading the impact of the solutions (2012). Even if the process of impact assessment was not 

straightforwardly defined, this study effectively presents the most comprehensive approach 

identified. The Oporto research and guidance are focused mainly on the technical aspects 

                                                           
34

 - The Federal Office for Historic Monuments in Vienna uses a colour system for grading the energy upgrade 
intervention. It is based in the three traffic lights in a very similar way to the previously reviewed in Chapter two. 
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(Cupido, 2000), merely addressing the heritage aspect on a common sense approach as 

avoiding to damage the appearance of buildings (AdEPorto et al., 2010; Restart Project, 2000). 

From this framework it is possible to conclude that an integrated method for addressing 

heritage in energy efficiency improvement processes is still needed. 

 

 

Table 18 – Energy efficiency improvements and their heritage consequences in traditional buildings 

 

Based on the framework of solutions previously approached and on the levels of intervention 

identified, it was possible to categorise these solutions accordingly to the consequences they 

Level System Sub-system Solutions building level home level Compatible Neutral Intrusive Disruptive

Dry lining insulation o o

exterior insulation o o

General draughproofing o o

Create insulated porch o o

exterior insulation o o

Inner insulation o o o

Dry lining insulation o o o

exterior insulation o o o

Dry lining insulation o o o

exterior insulation o o

Party wall Dry lining insulation o o o

draughproofing o o

Inner shutters o o

Double glazing o o

Secondary glazing o o

draughproofing o o

Double glazing o o

Low emissivity glass o o

draughproofing o o o

Insulation o o o

Partition wall Insulation o o

draughproofing o o

Double glazing o o

Improve efficiency o o

Piping insulation o o

Tank insulation o o

Thermostats o o

Natural ventilation o o o

Low energy lamps o o

Natural lighting o o

Appliances Improve efficiency
o

o

Stand-by nulling o o

Decrease heating temp. o o

Smart metering o o

Temperature control o o

Solar thermal o o o

Solar photovoltaic o o o

Micro-wind o o o

Biomass o o o

Heat pumps o o
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pose to the cultural significance of traditional buildings. This can be defined in the same way 

ICOMOS proposed the heritage impact assessment discussed in chapter two (2005; 2011). A 

similar code of colours was applied to assess an initial impact of the measures identified. The 

blue colour represents the neutral solutions, while green stands for the compatible solutions 

which pose no special consequences in their implementation. The solutions under the yellow 

group are most likely to be compatible, but this must be confirmed in detail. The intrusive 

solutions, which are disruptive and must be avoided, are represented under the red colour. 

The scheme in table 18 presents this framework which is provisionally fulfilled. This proposal 

will be further analysed in chapters six and seven, where it will be applied to the specific 

characteristics of Oporto’s traditional buildings. 

 

4.5 - Conclusions 

The approach to upgrade the energy efficiency of traditional buildings is consensually based on 

two major areas which can be called ‘hardware’ (the buildings fabric and all the physical 

related elements) and ‘software’ (building services, equipment and household behaviour). Also 

stressed is the priority given to the improvement of the energy conservation of the envelope, 

which further enhances any behavioural or equipment upgrade that otherwise may turn out to 

be ineffective. The introduction of renewables must come afterwards and be handled carefully 

in order to avoid damaging the historic city’s significance. 

 

Also consensual is the approach for traditional buildings energy efficiency improvement found 

in the literature, with special focus on the consistent research produced in the United Kingdom 

covering Georgian, Victorian and Edwardian architecture. This framework is also organised 

under several upgrade levels, according to the easiness and the feasibility of the 

implementation of the diverse solutions, which are crucial to take into account when dealing 

with rented buildings. 

 

It was also verified that the different approaches covering the integral building refurbishment 

or performed at home level, highly influenced by the economic feasibility of the solutions. 

Regarding the ownership framework of Oporto's traditional buildings and the economic 

constrains of the households, the focus must likely be set on the solutions that address the 

home level and  may be executed by the tenants themselves and thus have a high potential of 

feasibility. 
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The most usual and effective measure to improve energy efficiency in buildings, is widely 

pointed out in literature to be the insulation of the envelope. At the same time, the envelope 

is also the most vulnerable element of traditional buildings, as heritage constraints limit the 

changes it can be subject to, both at building and site scale. 

 

The specific measures identified to deal with the energy efficiency refurbishment of traditional 

buildings can be summarised as follows: 

 

- Use of ‘low cost’ solutions (draught-proofing, curtains and inner shutters); 

- Improvements in the insulation and draught-proofing of the building envelope (roof, 

walls, floor, windows and doors); 

- Taking advantage of high thermal mass and increased use of passive solutions (natural 

lighting, solar gains, natural ventilation); 

- Promotion of local energy production from renewables (solar thermal, solar PV, micro-

wind, biomass boilers and heat pumps); 

- Promotion of efficient district transformation of energy (co-generation); 

- Using the most efficient possible heating, ventilation, air conditioning (HVAC) and 

lighting systems; 

- Increasing the households’ awareness of efficient and optimised use of energy in 

dwellings (smart-metering); 

 

The solutions identified were further crossed with the consequences they posed to the 

significance of traditional buildings and coded into a four colours scheme. This must be 

confirmed in chapter six and seven, when addressing specifically Oporto’s traditional buildings. 

Moreover, this overall scheme will be the base for performing the building simulations in 

chapter eight. 
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Chapter 5: Methodology 
 

5.1 - Introduction 

The purpose of this chapter is to describe the framework of the research process in detail and 

discuss the methodology. Previous chapters reviewed the two main components that comprise 

this research: the valuing of heritage and the energy efficiency improvement of traditional 

buildings. Additionally, the most effective measures were identified through reviewing the 

literature and case studies analysis. Further, it will be necessary to cross these two distinct 

fields of research to obtain specific solutions to try out on Oporto's traditional buildings. 

 

The first section covers the general framework dealing with the main objectives and the 

methodological base. The next section details the methodological approaches used for the 

assessment of heritage and energy performance of buildings. This section relates to the 

framework that was worked out in chapter two, where methods to value heritage were 

discussed, and chapter three, addressing the energy performance of buildings. The final 

section explains the adopted methodology for improving the energy efficiency in traditional 

buildings without disrupting their heritage value. It was developed from chapter four, which 

reviewed solutions that had been developed in a number of case studies and in the literature 

that focuses on performance and heritage. The following sections detail the methodological 

approach devised to be applied to Oporto’s traditional buildings. 

 

5.1.1 – Methodological Framework 

From the analysis of the frameworks found in the literature and case studies, a sequential 

approach, that will address energy efficiency improvement and management of change in 

traditional buildings in a structured way, can be proposed. The literature addresses these two 

fields separately, dealing either with heritage values and impact assessment or with energy 

efficiency improvement. The exceptions were case studies in which the energy efficiency 

improvement of traditional buildings was analysed in the regards to the impact of the 

proposed measures on heritage. However, this approach is only outlined in research and no 

explicit methodology was expressed to merge these two fields. 

 

It was consequently necessary to devise a methodological approach that could deal with the 

aims and objectives mentioned above. From the analysed set of methodologies it can be 
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concluded that the most adequate frameworks rely on ‘environmental impact assessment’ 

methodologies (Morris and Therivel, 2009) or on their adaptation to the specific field of 

‘heritage impact assessment’ (ICOMOS, 2011; Therivel, 2009). Basically, the common approach 

resides on establishing a baseline situation, identifying and characterising changes to be 

implemented and finally measuring their impact against the baseline and in doing so 

identifying negative and/or positive consequences. Then, a strategy to deal with the 

consequences and to monitor the changes to be implemented can be derived from this 

process. The wide approach process proposed by Therivel and Morris (2009) in conjunction 

with the heritage-focused approach proposed by ICOMOS (2011) were the base for 

establishing the methodological approach of the current research. 

 

 

Figure 9 – Proposed sequential approach for energy efficiency improvement and management of change in 
traditional buildings 

 

The adaptation derived from the cited frameworks uses the same core philosophy, detailing 

the three-stage process (baseline assessment, measures identification and impact assessment) 

into six steps, which address the specificities of the research objectives (figure 9). The first 

three stages detail the baseline assessment stage, covering both heritage values and building 

performance and include the identification of potential improvement areas. The fourth stage 

identifies weaknesses in the energy performance and measures which can adequately mitigate 

them. The following stage performs the heritage impact assessment of these measures, 

grading their consequences in comparison to the baseline, thus allowing to determine which 

1 
• Assessment of Heritage Values 

2 
• Assessment of Buildings Performance 

3 
• Identification of Potential Improvements  

4 
• Identification of Adequate Improvement Measures 

5 
• Heritage Impact Assessment of Measures 

6 
• Determination of Measures Effectiveness 
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changes may be considered, leading to what Therivel and Morris (2009) called the ‘preferred 

option’. The final stage addresses the main objective of the research by identifying the overall 

effectiveness of the measures by taking into consideration the parameters defined for this 

purpose: energy, CO2, cost effectiveness, comfort and heritage. This includes the simulation of 

the proposed measures in order to assess their performance against the baseline and to obtain 

the most effective measures by crossing these parameters. In the following sections this 

process will be detailed in terms of its methodology of application. 

 

5.1.2 – Data Types and Tools 

The research is based both on quantitative and qualitative data collection methods, as is usual 

in research processes (Walliman, 2001). These two types of research strategies also echo the 

energy efficiency and heritage subjects, which are related respectively to quantitative and 

qualitative data. The quantitative methods were used in the fieldwork data acquisition and in 

the statistical and comparative analyses. This was complemented by qualitative and 

quantitative data gathering and analysis, obtained through a case studies survey and 

households questionnaires. 

 

 

Table 19 – Data types and tools framework 

 

Table 19 summarises the structure of the thesis in relation to the data gathered and tools 

used. Chapters one to four addresses the literature review aimed at identifying the research 

background, gap in knowledge, definitions, terminology, global framework and parameters to 

PART A Tools/Sources

Data type Collection method

PART B

secondary literature review internet, library, statistics

primary archival analysis archive, CAD analysis

primary visual survey
CAD analysis, fieldwork, GIS 

analysis

primary physical survey measurement, CAD analysis

primary interview questionnaire

primary monitoring sensors

software modelling

internet, library

internet, library

internet, library

primary previously collectedChapter 8 - Case Studies Modelling

Chapter 7 - Case Studies Baseline

Data

Chapter 2 - Valuing Heritage

Chapter 3 -  Energy Efficiency in 

Buildings

Chapter 4 - Improving Energy Efficiency 

in Traditional Buildings

secondary literature review

secondary literature review

literature reviewsecondary

Chapter 6 - Traditional Buildings in 

Oporto
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be used. This review was based mainly on secondary sources (books, journal articles, reports 

and papers) (Walliman, 2001). The second part of the thesis mainly uses primary sources 

obtained through archive analysis, fieldwork (research area and case studies surveys), sensors 

monitoring and interviews. 

 

5.2 – Baseline Assessment 

A proper definition of the methods to be used in assessing the heritage significance and energy 

performance of Oporto’s traditional buildings is fundamental to this research. These separate 

fields must be used to define the baseline with which the process of change to improve energy 

efficiency then must be compared. 

 

5.2.1 – Heritage 

The identification of values, which need to be gathered in order to define the significance of 

traditional buildings, is the first step in the process of heritage assessment. Secondly, these 

values must be graded by means of assessing the impact any change to them would have, thus 

identifying to what extent it will affect the character and significance of the building. As 

identified in chapter two, this is based not only on the use of traditional architectural analysis 

and history of art studies, but also on environmental impact assessment as advocated by 

ICOMOS (2011). Focusing on historic buildings and sites, Therivel identifies three main sources 

of judgment: archaeology, architecture and architectural history (2009). In the current case, it 

is possible to affirm that the assessment of buildings must be based mainly on the 

architectural disciplines. The ICOMOS experts' evaluation of the Oporto World Heritage Site 

pointed to the homogeneity of the townscape, shaped by its urban fabric and historic 

buildings, confirming the centrality of this disciplinary perspective (UNESCO, 2006). 

 

Of the identified value assessment methods, mainly the architectural methodologies will be 

used. The study edited by De la Torre showed a broad approach, covering a diversified range of 

heritage typologies, identifiable from several perspectives (2002). The combined 

methodological approach devised by Mason for cultural value assessment is the most 

comprehensive and was adapted for this reason in the current research (2002). The six 

categories presented by Mason are used and combined in order to obtain a wide spanning 

approach, which can specifically cover the assessment of traditional buildings. The methods 
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and tools, based on an adaptation of Mason’s scheme that will be used in the research to 

perform the heritage assessment are graphically expressed in figure 10. 

 

 

Figure 10 - Heritage assessment methodologies used in the research 

 

Expert Analysis 

The use of expert analysis can be divided into two different levels: the use of expertise in the 

analysis of data and the recourse to the opinion of a selected group of experts. Both 

approaches are valid and can be used in conjunction. In the specific case of Oporto, a large 

number of elaborate reports by experts have been published or are available in archives. Of 

these, the research produced under the World Heritage listing process (Loza, 2001; Loza et al., 

1993; Loza et al., 1998; UNESCO, 1996; UNESCO, 2006) and the heritage debate arising from it 

(Campos, 1997; Campos, 1999; Campos, 2002) deserve a separate mentioning. Furthermore, 

the scientific research produced by recognised experts focusing on the historic city of Oporto 

and its architecture is extensive. This permits an integrated approach, encompassing diverse 

scientific areas (architecture, history, archaeology, art history, sociology, economy and 

demography). At the same time, direct sources analysis, namely of archive drawings, images 

and historic maps, was conducted. Based on the extensive research produced for the World 

Heritage Site (WHS) inscription process, and on the availability of primary and secondary data 

sources, a further peer assessment of the significance of the historic buildings in Oporto was 

not deemed necessary. Personal expertise, through the visual analysis of the buildings 

performed during the survey and further comparing them with the literature, was also used. 
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Secondary Research 

The process of reviewing the literature was performed under the usual terms of similar 

research. The importance of ‘desk study’ in the development of the baseline is pointed out by 

Therivel and Morris (2009). Besides the usual library consultation, the research was also done 

by referring to electronic resources, namely online databases, journals, recognised institutions' 

websites and university repositories. The analysed case studies came from several reliable 

research institutions (e.g. European Union, English Heritage, Building Research Establishment, 

Historic Scotland, Energy Saving Trust and SPAB). 

 

Mapping 

In chapter two, the analysis of traditional mapping and the use of geographical information 

systems were identified as valuable tools for dealing with urban, architectural and social data. 

The use of historic maps found in the archives and the experts’ literature proved to be 

resourceful in understanding the historic city background. The use of CAD maps and aerial 

imagery allowed gathering information that served as a base for the first geometric and 

typological analysis and for preparing the fieldwork surveys. The GIS tool was used for 

gathering information of maps and databases, allowing for further analysis and conclusions. 

The buildings’ typological analysis and identification were based primarily on the GIS 

capabilities, which permitted cross referencing the available and the surveyed data. 

 

Primary Research 

The use of primary sources in the research was approached from two separate action lines. 

Firstly, the research in archives (mainly the Oporto Historic Archive) gave access to historic 

images and maps, refurbishment projects and previous surveys, which were valuable for the 

research. The second line resides in the fieldwork and conducted surveys, focusing on the 

object of the research itself, which is the most direct source available. 

 

Descriptive Statistics 

The use of the Portuguese Census data was the main source for statistical analysis, which was 

also integrated into the GIS process. This data was compared with the one available from 

international statistical organisations (e.g. Eurostat, OECD), putting it into a larger perspective. 

The data was mainly related to the social conditions, complementing the architectural 

perspective. Apart from this, environmental and energy related statistics were also analysed 

and compared at local, national and international levels. 
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Ethnography 

Ethnographic methodologies were used for the interviews in the selected case studies, aiming 

to retrieve information about dwellings occupancy and energy-related behaviour. Further, it 

was also aimed at understanding the heritage valuation the householders attributed to their 

home and their relation with the traditional dwellings and the historic city. 

 

5.2.2 – Buildings Performance 

The building performance assessment deals with two main factors: the definition of how to 

benchmark the energy performance of buildings and the methodology to be used in their 

measurement. As pointed out by Pérez-Lombard et al., “the primary aim is saving final energy 

or any related parameter (primary energy, CO2 emissions or energy costs) without 

compromising comfort or productivity” (2009, p.273). The benchmark of such processes is 

widely recognised through national certification schemes, which establish an energy-rating 

system based on the relation between calculated yearly energy consumption and the standard 

value for this building type. The European Standard EN 15217 defines the method to perform 

this relation, stating an overall energy performance index (EPI)35 and a maximum value which 

limits it (EPIMAX) (CEN, 2007). The ratio between these two indicators is further assessed 

against a range of levels (from A to G), corresponding to the usual energy labelling systems. 

The maximum value of the EPI is usually conditioned by the climate zone and/or the building 

type. For enlarging the comparison, the final results of the parameters are usually converted 

from useful energy into final energy36. This system can be classified as absolute because it 

rates buildings in a broad system, making it possible for a ‘consumer’ to perceive the position 

of the ‘product’. The assessment  process proposed by Pérez-Lombard et al. confirms this, by 

starting with a stage for gathering information about the building types, which is followed by 

the determination of the baseline limits, against whom the actual performance and results 

from the improvements of the specific cases are then compared (2009). This allows 

establishing a relation with the impact assessment process: definition of a baseline, impact 

assessment and mitigation. Thus, it is possible to conclude that it is viable to use an adapted 

                                                           
35

 - The EPI is expressed through the energy consumed per unit of conditioned area in a year (e.g. kWh/m
2
/year) 

allowing comparing the building's performance. 

36
 - Portuguese thermal regulation states the conversion factors (Fpu) of 0.290 kgep/kWh for electricity and 0.086 

kgep/kWh for any solid, liquid or gaseous fuel (Portugal, 2006). 
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methodological process for the assessment and comparison of the energy efficiency upgrade 

of Oporto’s traditional buildings. The initial stage can be substituted by the identification of the 

building typologies and/or variants, which must be assessed for defining their baseline (the 

actual building performance) and to identify their potential improvements (figure 11). For the 

purpose of the current research aims, this must further be compared with the proposed 

measures for identifying the resulting energy variation. 

 

Figure 11 – Oporto’s traditional buildings energy assessment process 

 

The assessment of the factors influencing the energy efficiency of buildings can be sub-divided 

into two parallel lines, one addressing the building’s fabric and one addressing the occupants' 

equipment and behaviour. These types of approaches are concurrent, aiming to create a final 

baseline model which allows understanding the building’s overall performance. The methods 

used for collecting information are similar (sometimes concurrent) to the ones used in the 

heritage assessment, and cover: literature review, drawing analysis, mapping, energy statistics 

analysis, surveys and direct interviews. The established parameters for energy performance 

include the energy consumption (kWh), carbon emissions (kg CO2) and cost (€). These are also 

suitable for energy efficiency comparisons, allowing for a direct comparison between baseline 

model and simulations, and with other buildings. Cost can be an effective parameter for 

transmitting the results to the householders and to the general public. Besides the energy-

related parameters, thermal comfort is also widely established as a factor which energy 

efficiency must not compromise, thus becoming an internal benchmark for the upgrade 

process. In chapter three several comfort models, in particular the static (PMV/PPD) against 

the adaptive, were discussed. Even if the adaptive model could represent human behaviour in 

free-running buildings more accurately, there is no extensive field experience on its use in 

Portugal. Hence, the ‘Predicted Percentage of Dissatisfied’ (PPD) indicator was used due to its 

widely established application. In conjunction, these four indicators (energy, CO2, cost and 

comfort) were used for comparing the efficiency between actual values and the ones obtained 

from the simulated design scenarios. At the same time, being the most widely used indicators, 
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they also permit extending the comparison beyond this research (Energy Saving Trust, 2010; 

IES, 2009; Rye et al., 2012; Yates, 2006). 

 

Under the current research, the costs were directly calculated from the energy consumption 

obtained for the two fuel sources that have been identified for Oporto's dwellings (LPG and 

electricity) and all values were reported in Euro37 (AdEPorto et al., 2008; AdEPorto and UCP, 

2011). The thermal comfort indicator was crossed with the energy consumption to identify 

eventual fuel poverty bias. The heating and cooling set points used in simulation were set in 

accordance with the values established in Portuguese thermal regulation at 20°C and 25°C 

respectively. 

 

As explained in chapter three, the heat transfer pattern associated with the building fabric is 

the most relevant factor identified. Thus, the assessment of a building's energy performance is 

essentially associated with its envelope. The thermal conductivity of materials and 

construction systems is the parameter which acts as the major benchmark for their 

performance. Accordingly, regulations on the energy efficiency of buildings widely use 

maximum admissible values for the construction elements. At the same time, air tightness is 

also an additional parameter which allows to assess the envelope performance in terms of 

energy. This especially relates to the performance of windows and doors, but can also be 

extended to other light construction systems which are normally present in the traditional 

constructions (suspended ceilings, lofts, roofs). 

 

The assessment of the thermal performance of buildings is then directly related to the 

acquisition of information about the behaviour of their construction systems, with relevance 

to masonry and glazed envelope elements. This question will be addressed in chapter six, 

through a literature review of the traditional Portuguese construction systems in order to 

identify in detail the usual fabric present in Oporto’s traditional buildings and the physical 

parameters associated with it. During the fieldwork in the research area, the construction 

systems and materials present were visually surveyed and recorded, in order to typify the most 

common ones. The case studies survey allowed a detailed record of these systems, which were 

                                                           

37 - All prices relate to 2013 and are inclusive of VAT (23%). Electricity prices were retrieved from EDP (0.1728/kWh) 
and exclude all fixed taxes which are independent from consumption. The butane gas prices were obtained from 
GALP company and were calculated through the disaggregation of a 13Kg bottle price per kg (0.8€). The cylinder 
price was not included because it is only paid once at first time acquisition. All values are in Euros (€) and when it 
became necessary to convert from British Pounds (£) 1.169 was used as a conversion factor. 
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compared with the reviewed literature and with the one identified in previous fieldwork, 

aiming to validate the information and to fulfil any existing gap. This data was used to obtain 

the baseline performance situation of the case studies. 

 

The thermal performance of materials in traditional buildings was identified in chapter four as 

presenting a certain degree of uncertainty (Baker, 2011; Rye, 2011a; Rye, 2011b; Rye et al., 

2012). This raises doubts about the use of typical values, which are primarily verified for 

contemporary construction types. Ideally, the process should be performed through in-situ 

measurements to reduce uncertainty. However, the necessary equipment and expertise to 

execute such measurements were not available, making it impossible to be incorporated into 

the research. A specific study has already addressed the particularity of the thermal 

performance of traditional Portuguese construction systems (Santos and Rodrigues, 2009). 

However, the results were not based on direct measurements, but rather on the use of typical 

U-values for the calculation of traditional construction systems. This gap was closed by 

crossing the information provided with several sources in an attempt to identify consensual 

values and thus reducing the eventual lack of accuracy (AdEPorto et al., 2010; ASHRAE, 2009; 

CIBSE, 2006; Mendonça, 2005; Quercus, 2004; Santos and Matias, 2007). 

 

Apart from the envelope’s heat transfer rate, the air permeability of its components is another 

parameter which influences the overall thermal performance of a building. Therefore, 

measuring it becomes necessary to complement the data used to determine the baseline 

performance, both for energy and household comfort. Like U-values, draught rating should be 

measured in-situ to obtain real data and higher accuracy. Unfortunately, measuring this 

parameter also requires specialised equipment, expertise and long periods of monitoring, 

which made its use impractical for this research. To obtain alternative information, the 

standard values in the literature were reviewed. Additionally, the existing cracks around the 

frames were measured38, during the case studies survey, which allowed inserting the 

correspondent data in the simulation software and calculating the air permeability. 

 

In the literature review, an improvement of the occupants' behaviour towards energy 

consumption was identified as having a significant reduction potential. Hence, it became 

fundamental to assess the behaviour of the households of the selected case studies in order to 

                                                           
38

 - This parameter is required by the simulation software. 
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achieve data which could be used both for thermal modelling and equipment modelling. The 

approach for this aspect was discussed in chapter four, covering the systems (heating, cooling 

and DHW), equipment (appliances, cooking and entertainment), lighting and human behaviour 

(occupancy pattern and control). The necessary data was obtained directly through the case 

studies survey and household interviews following the model implemented by Gupta and 

Chandiwala to perform similar questionnaires (2010). They were devised to collect information 

about the various pieces of equipment used by the households, covering information about 

their location, type, power rating and average usage hours. The information was collected 

during the survey, both by the direct observation of the equipment and by interviews with the 

occupants. 

 

Baseline Performance Modelling 

To obtain conclusions from this stage it is necessary to perform calculations to define the 

baseline model. Two possible methodologies were identified to develop such a model, 

differing in the use of steady or dynamic models of calculation. Both methodologies can be 

performed under the same thermal calculation standards and focus mainly on the thermal 

performance of the building's fabric and on the energy spent to satisfy the established level of 

thermal comfort. The main difference resides in the use of a simplified model based on an 

abstract type of use as opposed to a model which aims to simulate the real performance based 

on actual data. The first methodology is applied in thermal regulations to determinate the 

energy efficiency grading of new buildings or major refurbishments, targeting a typical use in 

the absence of real data. The dynamic model, on the other hand, allows for integrating real 

data information, including all sources of energy consumption, human behaviour, equipment, 

environmental conditions control and typical weather data, simulating the yearly variation. 

Even if this model can always only be a simplified version of reality, it is the most suitable for 

simulating the performance of occupied dwellings. Consequently, it becomes clear that the 

dynamic model represents the most effective and flexible approach to deal with occupied 

traditional residential buildings, from which actual data was collected. This is confirmed by the 

reviewed literature, where this method was predominant in determining the performance of 

traditional buildings. 

 

Modelling Software 

The complexity of the dynamic models can only be accurately handled with the use of 

computers and specific software. Thermal modelling software for buildings permits 
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conjugating complex data in a simplified model in order to establish the baseline performance 

and simulate improvement scenarios. The selection of the software for modelling traditional 

buildings must use the available data, covering all the factors involved as described by Hensen 

and Lamberts (2011). The Building Energy Software Tools Directory, maintained by the United 

States Department of Energy (USDOE) provides a large spectrum for an initial selection based 

on the first criterion defined (US DOE, 2011a). Several possibilities from the specific retrofit 

software section were analysed. The software from Integrated Environmental Solutions (IES) - 

Virtual Environment PRO (IESVE PRO) - was selected based on the review of the literature and 

on the licensing scheme and support available in the Oxford Brookes University. It was 

concluded in the undertaken review that this tool was used by several academic and research 

institutions (Hensen, 2011; University of Cambridge, 2012). An Anglo-American study 

extensively revised a large amount of energy modelling software, confirming IESVE PRO as a 

powerful dynamic simulation tool with capabilities of integrating all the necessary variables for 

the current research (Crawley et al., 2005; Crawley et al., 2008). The software permits a 

“detailed evaluation of building and system designs, allowing them to be optimized with 

regard to comfort criteria and energy use” (Crawley et al., 2008, p.665). The interoperability of 

the software, namely with Building Information Model (BIM) and CAD formats, is pointed out 

by Kumar (2008) and Kensek and Kumar (2008). Furthermore, the software was used in a 

similar research to model traditional buildings, establishing the baseline performance and the 

improvement options based on several design scenarios, and thus confirming their feasibility 

of use (IES, 2009). This study was commissioned to the IES by Historic Scotland, which allowed 

confronting the software developer with the difficulties posed by the simulation of traditional 

buildings. The software suite offers several modules integrating a wide range of possible 

analysis, namely energy, carbon, thermal (including comfort) and solar39. In terms of the 

standards compliance, the IES Virtual Environment meets the calculation procedures of both 

the International Standards Organization (ISO) and the American Society of Heating, 

Refrigerating and Air-Conditioning Engineers (ASHRAE) (US DOE, 2011b). 

 

                                                           

39 - The complete suite includes further the daylight, light, Computer Fluid Dynamics (CFD), bulk airflow, HVAC, 
climate, egress, ingress, value, cost, and low carbon/renewable strategies modules. In order to obtain expertise to 
perform the simulations in the IES-VE software, several web training sessions were performed in the following 
modules: ‘Model-IT’ (geometry data modelling, weather and location), ‘SunCast’ (solar shading simulations and 
calculations), ‘MacroFlo’ (wind and natural ventilation), ‘ApacheSim’ (construction and thermal data to perform 
dynamic thermal simulations) and ‘Vista’ (thermal results analysis). 
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The analysis of the results output by the software, allows establishing the baseline 

performance of Oporto's traditional buildings and identifying their potential improvements. 

This corresponds to the third stage of the general methodological framework, while also 

synthesising the first two previously described assessment stages. The baseline study 

encompasses both the energy performance and the heritage significance, performed in two 

parallel approaches. From this stage, the building's performance deficiencies are also 

identifiable, which allows defining the adequate measures to address them. 

 

5.3 – Energy Efficiency Improvement and Management of Change 

In chapter four, the framework for the energy efficiency improvement of traditional buildings 

and identifying the measures used in the case studies reported in the literature, were 

reviewed. One of the major points emerging from this framework, that must be addressed 

methodologically, is the assessment of how the upgrade measures affect the heritage in 

traditional buildings. The interaction of this component with the technical aspect of energy 

efficiency improvement is outlined in the analysed case studies, even if it was not explicitly 

expressed in terms of methodology. Most of the studies were undertaken by experts in both 

fields and/or promoted by institutions whose primary objective is heritage conservation (e.g. 

English Heritage, Historic Scotland or SPAB). A common approach towards heritage is 

identifiable in the diverse cases in the selection of the measures based on the criterion of 

retaining the visual integrity of the traditional buildings. Some of the cases also follow the 

guidance of the heritage charters and regulations. Accordingly, the usual envelope 

improvement is performed with solutions which are visually nonintrusive. The introduction of 

renewable energy sources is also part of this concern, posing similar questions regarding visual 

changes to the external envelope. Hence, it is possible to conclude that the visual assessment 

of the impact on the architectural elements which contribute to the significance of buildings 

and site is the main aspect to be considered. 

 

The process for traditional buildings has to be approached on two different levels: individual 

building and the overall historic urban landscape. This is justified because the individual 

change has to be considered for its wider consequences to the site. This can be approached by 

the ‘direct’ and ‘indirect’ impacts identified in the EIA classification. Moreover, the concept of 

‘cumulative impacts’ can also be applied, because the accruing of low, direct impacts along 

time can provoke highly damaging indirect impacts. This gains greater relevance in cases like 
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Oporto, where the conservation of the authenticity and integrity of traditional buildings is 

imperative for the protection of a World Heritage asset. Referring to the ICOMOS ‘grading 

scale’ discussed in chapter two, it is possible to state that Oporto's traditional buildings are 

classified under the ‘very high’ category due to their significant contribution to the attributes 

that convey the OUV of the World Heritage area, as recognised by the UNESCO (1996). 

 

5.3.1 - Measures Identification 

Stage four of the methodological approach deals with the identification of adequate measures 

to mitigate the previously measured energy performance weaknesses. This is always an open 

stage based on the gathering of the most up-to-date technology to meet the identified 

problems. At the same time, the solutions to be considered must also be adequate to 

traditional buildings, i.e. they must be compatible with the constructions systems of traditional 

buildings, namely allowing for maintaining their ‘breathability’. In the current research this 

stage was addressed through the revision of the scientific and technical literature and analysis 

of similar case studies discussed in chapter four. 

 

5.3.2 - Heritage Impact Assessment 

As pointed out in chapter two, the heritage impact measurement relies mainly on experts' 

consideration, but can also be validated in public consultation, depending on the scope and 

extension of the change process. In the current research the OUV of Oporto’s traditional 

buildings relates directly to the maintenance of the integrity of their architectural image, which 

shapes the character of the overall urban site. It is necessary to use a methodology which 

assesses the consequences of the proposed design scenarios in this image. The method 

described by Knight for the visual impact assessment was identified as being suitable for this 

process (2009). The application of the method was made in reference to the visual analysis of 

the consequences resulting from similar, already applied measures in Oporto’s traditional 

buildings and identified in the fieldwork. Furthermore, the simulation through photomontage 

was also used as proposed by Knight (2009). 

 

The consequences are later compared against the significance baseline using a grading scale, 

as discussed in chapter two. The grading attribution is directly related to the degree of impact 

on the values identified during the design process. The ICOMOS methodology proposes an 

impact scale of five grades which are further translated into the significance of the impact. The 

type of impact scale usually used in EIA, covers seven grades, varying from major positive to 
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major negative, which can be translated into a numerical scale ranging from +3 (major 

positive) to -3 (major negative) (Morris and Therivel, 2009). To assess the impact of the design 

solutions in more detail, this last scale was used, in order to obtain the overall impact of the 

solutions. These levels relate to the previously identified specificities of traditional buildings: 

the direct impact on the building's fabric (compatibility), the maintenance of the visual 

integrity of the building, and the consequences of the measures to the site (accounting for the 

cumulative impacts). In table 20 this method is synthesised by cross referencing the 

terminology used by ICOMOS (2011), the EIA impact scale (Therivel and Morris, 2009) and the 

usual colour scheme, with the diverse levels to be assessed. As stressed in chapter two, impact 

grading is essentially a subjective process and will be performed using professional researcher 

and academic expertise. 

 

 

Table 20 – Building dynamic simulation design scenarios heritage impact assessment 

 

This results in a process which is driven by a maximum admissible limit of change, to which the 

other indicators have to be weighted to achieve the global feasibility of the solutions. The 

determination of the ‘limit of change’ is then a critical process that must be based on the 

preservation of the fundamental elements identified, giving significance both for the buildings 

and for the entire World Heritage Site. In this sense and independently of their type or 

geographical location, the traditional buildings must be evaluated in what can be called a 

‘Group Impact Significance’. For the simulated scenarios the limits of change were identified 

based in the characteristics identified in chapters six and seven. The ‘professional judgement’ 

approach used was coincident with the city regulations for the WHS management, which focus 

on the preservation of visual integrity of the urban historic city (PORTO VIVO, 2008; WHO, 

2012). However, none of the city’s regulations specifically detail how to perform such 

preservation, forwarding the responsibility of evaluating the consent to the technicians of the 

local authorities. 
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overall impact
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Overall 
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Major pos i tive impact Very large  3

Moderate pos itive impact Large  2

Negl igible pos i tive impact Sl ight  1

No change Neutra l  0

Negl igible negative impact Sl ight -1

Moderate negative impact Large -2

Major negative impact Very large -3
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5.3.3 - Measures Effectiveness 

The final stage addresses the evaluation of the effectiveness of the proposed measures. The 

major question emerging at this point concerns the assessment of the effectiveness, which 

must be performed to obtain conclusions from the results. This stage directly compares the 

results from the design scenarios with the initial baseline model, following the usual method 

identified in the literature (IES, 2009). The comparison of the results was based on the four 

indicators previously described. They report quantitatively the improvements achieved in 

energy savings, CO2 reduction and comfort level. However, the measurement of their 

effectiveness must be assessed by using additional indicators that address the economic 

dimension, which will allow verifying the effectiveness of the investment made. The use of 

‘return of the investment‘ (ROI) or pay-back is a proven method to measure this cost-

effectiveness by calculating the number of years necessary to regain the initial investment. The 

measurement of the effectiveness based on the cost was selected because it relates to the 

feasibility of the measures' implementation, which is relevant in the context of low-income 

households in rented homes. To accomplish this calculation, the costs involved in the 

implementation of the measures were estimated, including both the upgrade of the building 

fabric40 and the equipment41. 

 

It is necessary to stress that at the end of this proposed process the effectiveness of the 

measures is determined by the total process and not only by the final stage as it incorporates 

all previous assessments made in terms of heritage, energy performance and comfort. This 

means that effectiveness is based on several components and is measured by weighting the 

following: heritage (impact of measure), energy and CO2 (measured improvements), cost-

effectiveness (pay-back measurement) and comfort (acceptable PPD). This is also a hierarchical 

process, with heritage impact assessment at the top, i.e. if a measure is revealed to be 

undoubtedly damaging for the building’s significance it will be disregarded, even if it proves to 

be highly efficient in the remaining parameters. 

                                                           

40 - The values involved in the measures implementation were retrieved from the construction estimating costs 
database available in the internet (Cype Ingenieros, 2011). 

41 - The costs involved in upgrading the efficiency of the equipment were retrieved from the European Union 
funded internet database (Quercus, 2012). 
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5.4 – Research Process 

Following the methodological conceptualisation explained in the previous section, the most 

relevant aspects of their application are now further explained. The main aspects to be 

addressed deal with the fieldwork surveys undertaken and with the development of the virtual 

models performed in the thermal simulation software, which contain detailed technicalities 

that must be explained. 

 

5.4.1 – Research Area Selection 

Due to the relative extensiveness of the area covered with traditional buildings in Oporto and 

their apparent homogeneity, the selection of the research area was made through ‘cluster 

sampling’, which is a feasible method to achieve representativeness of the building stock 

(Trochim, 2006; Walliman, 2001). The research area was chosen under the aspect of achieving 

the closest possible similarity with the overall traditional buildings stock and so that previous 

surveys and studies could be employed. The sample comprises a unique area coincident with 

official administrative boundaries, inside which all buildings were initially considered. 

 

5.4.2 – Fieldwork 

The conducted survey corresponds to the usual ‘bottom-up’ information processing strategy, 

where detailed information from the basis (individual building observation) is gathered in 

order to identify the common characteristics of the sample. Reviewing the possible 

approaches, Swan and Ugursal state that the “high level of detail is a strength of bottom-up 

modelling and gives it the ability to model technological options” (2009, p.1822). This 

methodological strategy was also extensively applied in the EU-funded project Tabula, which 

was conducted in fourteen countries and aimed at performing an energy assessment of the 

existing built stock through a typological approach (Dascalaki et al., 2011; Tabula Project Team, 

2010; Tabula Project Team, 2012). In the context of this study, “the term ‘building typology’ 

refers to a systematic description of the criteria for the definition of typical buildings as well as 

to a set of exemplary buildings representing the building types” (Tabula Project Team, 2012, 

p.7). This approach can be inserted in a ‘multi-stage sampling’ methodology (Trochim, 2006), 

by first identifying the typologies and afterwards the exemplary types, which represent the 

ones that can be used as case studies for posterior generalisation of the results. As also 

pointed out by Swan and Ugursal, this approach needs to be extrapolated to represent the 
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universe, which is accomplished by weighting the typologies according to their 

representativeness (2009). This was also the general methodology taken for this stage of the 

research project. 

 

The Geographic Information System (GIS)42 and the Computer Aided Design (CAD)43 analyses 

were made to prepare the background information for each building prior to the fieldwork. 

These analyses were based on digital maps and aerial imagery from Oporto City Council, which 

were complemented with more recent imagery from Google and Bing Maps to clarify very 

specific mapping doubts. The use of GIS is a valuable method to manage information in 

heritage surveying as clearly pointed out by Mason (2002). The same is pointed out by Swan 

and Ugursal (2009) for addressing the identification of the building ‘archetypes’ in a bottom-up 

model. 

 

A database was drawn and directly filled in the field for each building44. It included information 

about all the aspects and materials of the building envelope, urban insertion, function, age, 

conservation and heritage45. The approach implemented was based on the identification of the 

main typologies driven by the parameters that influence energy performance, focusing mainly 

on the envelope and the urban insertion (the relation with other buildings). These are 

coincident with the main factors influencing the building's energy performance, identified in 

the previous chapters and literature (Tabula Project Team, 2012). The GIS allowed gathering all 

the information, linking the records and photos from the survey with other sources of 

information, namely Census, SRU, CRUARB and Oporto City Council  data, allowing their cross 

analysis. 

 

5.4.3 – Typological Variants Identification 

The first stage consisted of the identification of all buildings meeting the criteria of being 

mainly residential and built before 1919. Exceptional buildings were excluded, based on both 

                                                           
42

 - ESRI ArcGIS educational software version 9.3 was used; later it was updated to version 10.1. 

43
 - Autodesk Autocad Map 3D 2011 educational software was used. 

44
 - The protocol is included in the appendix A. 

45
 - The personal experience obtained in the professional experience in the Oporto City Council Architectural 

Record, which include the Oporto heritage recording fieldwork, was a valuable background to fulfil this stage of the 
research. This experience included the development of record protocols, both used in the field and in the 
databases. 



 Chapter Five: Methodology 

109 

their function and built form. The functional survey allowed identifying the buildings where the 

residential function was dominant, i.e. occupying more than 50% of the building's area. The 

visual survey, literature review and historic mapping helped identifying the pre-1919 buildings. 

In this group the buildings whose built form allowed them to be identified as traditional, even 

if a major refurbishment had changed their aspect partially, were included. Based on the 

literature, the stratification of the age of traditional buildings comprises: ‘before eighteenth 

century’, ‘eighteenth century’ and ‘nineteenth century’, which also included the buildings until 

1919 (Fernandes, 1999; Ferrão, 1985). Furthermore, the selection was made through data 

crossing in the GIS software. 

 

5.4.4 – Case Studies Selection 

The case studies were selected by representing each building variant and the householders 

were approached personally by the researcher and/or with the support of some local 

institutions. The case studies selection was casuistic and their numbering followed the 

chronological order of acquisition. 

 

5.4.5 – Case Studies Survey 

The data achieved from the initial fieldwork was complemented with the architectural projects 

obtained in the local archives and then analysed before the case studies survey in order to 

anticipate the geometric measurements to be done. The analysis also aimed to determinate all 

information needed to perform the thermal modelling for the buildings by identifying it 

beforehand. This information covered the identification of materials and geometrical 

parameters directly related to the thermal performance variables identified in chapter three. 

 

Data collection was obtained by direct observation and measurement, through information 

provided by the households or by instrumentation (table 21). Official weather data was 

acquired from the Portuguese meteorological institute (Instituto Português do Mar e da 

Atmosfera - IPMA) with the objective of establishing the reference weather to be compared 

with the fieldwork data. The energy consumption data was obtained from the electricity 

provider (Energias de Portugal - EDP), after seeking the respective household's consent. 
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Table 21 – List of the equipment used in the survey 

 

5.4.6 – Household Questionnaire 

The methodology and design of the questionnaire were based on the Post Occupancy 

Evaluation (POE) strategy of the Probe research project (Bordass et al., 2001a; Bordass et al., 

2001b; Bordass et al., 2001c; Cohen et al., 2001; Leaman and Bordass, 2001) and on similar 

research performed by Gupta and Chandiwala (2010). Even if the aim was not to perform a 

POE, it is partially similar as it also addresses existing, occupied buildings. Furthermore, the 

information gathered by the POE questionnaire corresponded in parts with the thermal 

comfort evaluation. 

 

The questionnaire is designed in a structured format and composed of various types of 

information divided into three sections: occupancy, comfort and equipment, allowing the 

users’ profiles to be defined. Methodologically, the comfort section was designed based on a 

structured scale assessing the way occupants feel and their preferences ((Gupta and 

Chandiwala, 2010). The seven point thermal sensation scale was the base for the 

questionnaire ‘feel’ grading (ASHRAE, 2010; International Organization for Standardization, 

2005), while a short five point version was used for the ‘preferable’ measurement. Additional 

data was collected to perform a later check on the given answers. This included measurements 

with equipment (table 21Erro! A origem da referência não foi encontrada.), the activity level 

of the occupants during the last 15 minutes46 and their clothes47. This section further contains 

semi-structured questions about the house environment control, which provided data to be 

inserted in the modelling profiles. 

 

                                                           
46

 - The scale used allows a later conversion into ‘Metabolic Rate’ units (International Organization for 
Standardization, 2005). 

47
 - The scale used allows a later conversion to ‘Clothing’ units (International Organization for Standardization, 

2005). 

Equipment Measurement unit Brand Model

Digital Light meter light (lux) Extech LT300

Digital sound level meter noise (db) Extech 407730

Thermo-Hygrometer temperature (°C)  and humidity (%) Oregon Scientific THGR228N

Sensor (External Data Logger) temperature (°C), humidity (%) and light (lux) Onset HOBO U12 - 012

Sensor (Temperature data logger) temperature (°C) I-Buttons DS 1920
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As pointed out by Schwarz and Oyserman, the gap between research questions and the way 

they are understood by respondents leads to a data bias which is difficult to avoid (2001). This 

subjectivity bias when collecting data for performance modelling of buildings is also pointed 

out by Swan and Ugursal (2009). However, the main objective was to represent the occupants’ 

behaviour towards energy consumption in order to enable the implementation of a dynamic 

simulation, in the most accurate way possible. The survey undertaken, besides its limitations, 

allowed for a detailed recording of behavioural patterns and collection of valuable quantitative 

data which enabled performing dynamic modelling with real conditions. 

 

5.4.7 – Units and Variables 

In accordance with Portuguese standards, the units used in the research are the ones specified 

in the ‘International System of Units’ (SI) (Bureau International des Poids et Mesures, 2006). 

These are also commonly used in the scientific literature and use the metric system as it is also 

used in Portugal. This system covers both the ‘SI base units’ as the ‘coherent derived units’ and 

their decimal multiples and submultiples. Additionally, other ‘Non-SI units accepted for use 

with the International System of Units’ were used (Bureau International des Poids et Mesures, 

2006). Overall, these are used in the European (EN) and International (ISO) standards related 

to the energy performance calculation for buildings (Dijk and Khalil, 2009; International 

Organization for Standardization, 2012), on which the correspondent European Directives and 

Portuguese thermal regulations are based (EC, 2010; Portugal, 2006; Santos and Rodrigues, 

2009; Santos and Matias, 2007). Furthermore, the ISO Standards were the base of the 

calculations performed in this research both for the thermal modelling and the U-value 

calculation. 

 

The energy power was expressed in watt (W) or kilowatt (kW) and the energy consumption in 

the usual kilowatt per hour (kWh). As the large majority of the equipment in question was 

powered by electricity, no conversion was needed. The only exception was the use of standard 

13Kg butane gas cylinders. This poses the necessity of converting the number of cylinders used 

per month, based on information provided by the households, into kilowatt units. Based on 

the consulted sources, it is possible to verify that the conversion is not entirely consensual, 

ranging approximately from 12.2 to 14 kWh per kg of butane gas (Calor, 2012; Casa Certificada, 

2009; Climate Change Levy, 2008; Euroheat, 2003). The conversion factor of 13.62 kWh per kg 

of butane gas was chosen because it was the most commonly found one. 
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5.4.8 - Terminology 

The determination of the terminology to be used in the research was fundamental for the 

initial literature review. The dual language (Portuguese-English) posed difficulties in specific 

traditional building construction systems terminology, which is a very narrow field of research, 

without specific translations available. In order to avoid misunderstandings in the translation 

process, the strategy was based on the use of English architecture visual dictionaries to 

mediate the technical terminology conversion (Ching, 1995; Davies and Jokiniemi, 2008; 

Dorling Kindersley, 1992; Merrian-Webster, 2012). During the literature review process, other 

terms, that were deemed suitable, based on detailed images of materials of traditional 

buildings and construction systems, were added to this initial base. (Brunskill, 1992; Costa, 

1955; Leitão, 1896; Mascarenhas, 2012; Mateus, 2002; Pinho, 2000; Segurado, n.d.-a; 

Segurado, n.d.-b; Teixeira and Póvoas, 2012). 

 

5.5 - Conclusion 

This chapter outlined the methodological framework and described some detailed aspects of 

its application. The method is a consequence of the reviews made in the previous chapters and 

its definition closes part A of the thesis. The next chapters will apply this framework to 

Oporto’s traditional buildings, aiming to achieve the validation of the method and to answer 

the research questions that were initially posed. 

 

In chapter six, survey fieldwork and analysis of a detailed characterisation of Oporto’s 

traditional buildings is achieved through data collection, which allows identifying their 

typological matrix. A detailed survey is further undertaken on selected case studies, allowing 

the acknowledgement of their performance in real situations, the results being explained in 

chapter seven. The next chapter reports on the modelling of these cases and on the simulation 

of the previously identified solutions. The discussion in chapter nine allows identifying the 

most effective and feasible solutions, crossing environmental gains, cost effectiveness, 

feasibility of application and cultural significance consequences. From these results, 

conclusions are drawn in order to establish the method of sensitive refurbishment practices 

that do not unduly damage the heritage value of these buildings and that may be further 

replicated. The final chapter concludes the research and identifies further research to be 

undertaken. 
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Chapter Six: Traditional Buildings in Oporto 
 

6.1 - Introduction 

The objective of this chapter is to identify Oporto traditional building typologies, in order to 

determine their main geometric, spatial, and construction characteristics. In parallel, are also 

addressed the associated parameters influencing the buildings energy performance. The 

sections of this chapter cover the buildings analysis based on the surveys and research 

undertaken. The identification of the heritage values is also discussed, as the admissible 

change to be respected in any refurbishment operation. 

6.2 – Research Area Background 

The settlement in the granitic bank of the River Douro, near its mouth in the Atlantic coast, 

determined the mercantile character of the city. During the Middle Ages are established 

commercial relations with the Northern Europe, with special focus on the port cities of 

England, France and The Netherlands. Those natural and cultural conditions established the 

history of the city and shaped its urban form and traditional architecture. 

 

6.2.1 – Oporto’s Natural and Climatic Context 

Location 

Oporto is located in the geographic coordinates of 41˚ 08’ 27’’ N Latitude and -8° 36’ 52’’ W 

Longitude, taking the Ribeira Square in the historical centre as the reference mark. The city 

developed in the north bank of the river Douro, circa 4.4 Km from its mouth and is today 

inserted in the metropolitan area, to whom it is the core and the main historic reference. 

 

Geomorphology 

The topography of the city spreads from the river until an elevation of 163 meters, forming a 

hill with several valleys fitting it perpendicularly to Douro. On those, several rivers and streams 

run until reaching the confluence with Douro, where some of the first human settlements 

developed. On the top of the hill was established a fortified settlement facing the south and 

controlling the river activity. The development of the city was shaped in the relation 

established between those two levels. 
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Geologically, the city is settled in granite rock which is significantly known as the ‘Oporto 

granite’ (Costa and Teixeira, 1957; Oliveira, 1973), which was largely used in the construction 

of buildings, leading Oporto to be denominated as the ‘granite city’. 

 

Climate 

The Oporto climatic sub-type presents a dry or temperate summer, with an “average 

temperature in the hottest month below or equal to 22°C, and with four months or more with 

average temperatures above 10°C” (AEMET and IM-I.P., 2011, p.17). The Atlantic influence is 

determinant for the Oporto’s climate pattern avoiding extreme thermal amplitudes (AEMET 

and IM-I.P., 2011; Monteiro, 1997; Oliveira, 1973). The bioclimatic comfort index for the 

period between 1941 and 2000, reveals also that July is classified as ´hot´, while January is 

‘fresh’ (IGP, 2005). 

 

Temperature 

The Oporto Climate data (Instituto de Metereologia, 2012) show that the average maximum 

temperature reaches 25°C, while the average minimum is of 5°C. The number of days with 

maximum temperature above 30°C or minimum temperature under 0°C is not significant. In 

the summer period, the number of days with maximum temperature above 25°C is more 

expressive, ranging from 25% in June to 40% in August. 

 

Relative Humidity 

The location by the riverside and the proximity to the sea naturally influences this parameter 

for Oporto. From the analysis of a 75 year data set, Oliveira concluded that Oporto’s average 

humidity was 79.0%, classifying it as ‘strong humidity’ (1973). 

 

Precipitation 

The precipitation pattern is regular for the Portuguese northwest mainland, revealing the 

analysis of a 78 year data set that the yearly average precipitation was of 1210.8mm (Oliveira, 

1973). As expressed by Monteiro the driest month is July, which is consistent with the usual 

maritime influence (1997). 

 

Wind 

Once again the sea proximity and the location in the Douro valley, which forms a direct 

channel, are fundamental factors settling the wind direction patterns (Oliveira, 1973). From 
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April until September the dominant winds in Oporto come from the northwest, while in 

January and February the south winds are predominant and reveal the stronger yearly average 

speed (Monteiro, 1997). From the analysis of monthly wind patterns, Oliveira concluded that 

the yearly average wind speed was of 18.5 Km/h (1973). Regarding wind speed, Oliveira states 

that the strongest winds were from the northwest to the southwest, with an average speed of 

20.8 Km/h and a maximum average speed of 24.0 Km/h registered in the northwest quadrant. 

 

Insolation 

Portugal’s location is very favourable in terms of insolation, reaching the yearly sun average 

hours of 2200 to 3100. Oporto achieves circa 2600 hours per year, which leads to a monthly 

average of 216.7 hours. The monthly distribution data shows July as the sunniest month, with 

an average above the 300 hours. Regarding irradiation it is naturally achieved the same 

distribution pattern, reaching Oporto a yearly sum of global irradiation between 1500 and 

1600 kWh/m2. The optimal average yearly angle for solar panels is of 34 degrees in Oporto. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 – Oporto Serra do Pilar bioclimatic chart (Baruch Givoni method) in Gonçalves and Graça (2004, p.19) 

 

Based on the climate data available for Oporto city centre (Serra do Pilar weather station) 

Gonçalves and Graça developed the bioclimatic chart shown in figure 12. The authors 

concluded that several bioclimatic strategies for building design could be applied in Oporto, 

both for heating and cooling seasons (Gonçalves and Graça, 2004). For the heating season it is 

recommend the increase of the buildings thermal inertia, the reduction of the heat losses by 

conduction through the insulation improvement and the optimization of the solar gains. For 



The investigation of energy efficiency measures in the traditional buildings in Oporto World Heritage Site: Joaquim Flores 

118 

the cooling season the authors advocate the same measures for the thermal inertia and the 

conduction losses, complemented with the reduction of the solar gains by shading the glazed 

elements, and the promotion of passive cooling, through night transversal natural ventilation 

and soil cooling using underground pipes (Gonçalves, 2010). 

 

6.2.2 – Oporto’s Historic Centre 

The Oporto’s historic centre corresponds mainly to the area which was limited by the former 

medieval city walls (figure 13). This area developed over centuries through the relation 

between the primitive wall plateau, providing security and spirituality, and the river 

settlement, where trade and fishing activities took place (Afonso, 2000; Carvalho et al., 1996; 

Ferrão, 1985; Oliveira, 1973). The fourteenth century wall grouped the two nodes and allowed 

the densification of this urban area for the next 400 years. 

 

 

Figure 13 – Oporto Historic Centre over the Digital Terrain Model (DTM) 

 

In the second half of the eighteenth century the small neighbourhoods located outside the 

walls started growing through the planned urban expansions promoted by the Almada´s city 

administration. Those plans also modernised the historic core by opening new streets, allowing 

the convenient and safe connections from the city port to the new developing centre, halfway 

between the two original nodes (Ferrão, 1985). This expansion continued during the 

nineteenth century, leading to new cuts on the historic urban tissue to create wider 
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connections from the river to the new city centre or to the recently built Luís I iron bridge and 

new custom house (Abreu, 1986; Ferrão, 1985; Oliveira, 1973). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 – Infante Research Area before the nineteenth century major urban transformations – AHMP (285 FD) 

 

6.2.3 - Oporto World Heritage Area 

In 1991 the Oporto city council initiated the process to inscribe the historic centre on the 

World Heritage List, which occurred in 1996 (UNESCO, 1996b). The decision was based on the 

cultural criteria iv (UNESCO, 1996b). The recognition of the outstanding universal value of the 

Historic Centre of Oporto implied also the recognition of its authenticity and integrity 

(UNESCO, 2006; UNESCO, 2008). The delimitation is almost coincident with the former 

fourteenth century’s medieval wall, valuing the traditional buildings urban ensemble as a 

“townscape (…) of outstanding quality, in terms of both its homogeneity and its harmonious 

relationship with its river and hills” (UNESCO, 2006, p.2).  
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6.3 – Traditional Buildings Typologies 

Based on previous research (Fernandes, 1999; Ferrão, 1985; Oliveira and Galhano, 1992) and 

on the professional experience as coordinator of the Oporto Architectural Heritage Record 

(City Council), it was possible to have a general overview of the Oporto traditional buildings 

typology and corresponding construction systems (Costa et al., 2012; Teixeira and Belém, 

1998; Teixeira and Póvoas, 2012; Teixeira, 2004). This background information was 

complemented by the analysis of the available surveys and of the data collected by the 

fieldwork undertaken for this research project. 

 

The traditional buildings that exist today in Oporto’s historic core have been mainly built or 

transformed over a three hundred years period, between the seventeenth and the nineteenth 

centuries. Those buildings can be briefly described as: terraced houses facing the street, 

inserted in narrow and long lots, built before 1919 and mainly residential (with shops on the 

ground floor). Moreover, they have hip roofs, 3 to 5 floors, 2 or 3 windows per floor, solid 

granite exterior walls, inner wood structure, and plaster or tiles in the main facade. 

 

6.3.1 – Functional Typology 

Even if it is not possible to identify the starting point of Oporto traditional buildings’ typology, 

their medieval merchant genesis is consensual among the researchers who have addressed the 

theme (Fernandes, 1999; Ferrão, 1985; Oliveira and Galhano, 1992; Smith et al., 1961). 

Inserted in narrow urban lots and conditioned by the morphology, those buildings were 

dependent of their commercial function, which required a direct connection to the street. The 

merchant or craftsman occupied the entire building living above the shop or workshop. The 

research and surveys undertaken in the 1950’s by Oliveira and Galhano, lead them to affirm  

that until the sixteenth century the majority of the Oporto houses were slim, bourgeois or 

merchant, hybrid and functional (1992). They concluded that the houses were used from 

bottom to top, leading them to coin the term ‘vertical life’. The merchant premises were 

located at the street level, while the middle floors were used for the living and bedrooms. The 

kitchen and the dining room were located on the last floor to avoid fire hazards and smells 

from cooking, leaving the attic for the servants’ accommodation and store room. Placed in the 

centre of the building, the stair articulates the multiple floors and provides light from the 

skylight above for the inner rooms (figure 15 and figure 16). Based on this description, it is 

possible to stress that the void space of the stairs worked as a ‘light and air-flow well’. 

 



Chapter Six: Traditional Buildings in Oporto 

121 

This functional distribution is confirmed in the Rebelo da Costa’s description (1788) and in the 

research undertaken by Afonso (2000). This last reveals that even in the fourteenth century, 

when houses had mainly two or three floors, the use of the street floor for trade, the first for 

rooms and the last for kitchen, was current practice in the city. 

 

As shown in figure 15, the building’s entrance could be made directly through a corridor into 

the central stairs or by a direct flight of stairs to the first floor, from where the traditional one 

evolves. Those two access possibilities were very common in the past and are still persisting in 

the current unaltered buildings (Fernandes, 1999; Ferrão, 1985; Oliveira and Galhano, 1992). 

The Oporto’s traditional buildings settled on this spatial organization through the centuries, 

reaching nowadays with minor adaptations and technical updates (Fernandes, 1999; Ferrão, 

1985; Oliveira and Galhano, 1992). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 – CRUARB Survey - Parcels 189 and 190 ground and first floors plans.
48

 

 

 

                                                           

48 - Survey for the parcels 188 and 189 archived in CRUARB/Guia 11/2007, Armário F, nº30, parcelas 188 e 189, 
folha 3. 
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Figure 16 – CRUARB Archive – Parcel 
189 section

49
 

 

In the first quarter of the nineteenth century the bourgeois way of life suffered a profound 

transformation caused by the dissociation of the unit house/shop (Fernandes, 1999; Oliveira 

and Galhano, 1992). The historic quarters located inside the former medieval wall 

progressively lost their commercial attractiveness, first to the illuminist remodelled areas and 

after, to the nineteenth century expansions, where a new centrality was progressively shaped 

(Fernandes, 1999; Fernandes, 1997; Ferrão, 1985). The vertical house turns gradually into 

horizontal, with several low income industrial labourer families occupying the same building 

(Oliveira and Galhano, 1992). As an additional consequence this area becomes socially 

depreciated and extensively inhabited by lower income classes turning it into a social ghetto 

(Martins et al., 2008). The horizontal occupation of buildings is today the most usual, with one 

or two households occupying an entire floor divided by the central stair. When a single family 

occupies one floor, the front and back divisions of the dwelling are divided by the central stair, 

which remains as a communal space. 

 

                                                           

49 - Refurbishment project for parcel 189 archived in CRUARB/Guia 11/2007, Armário C, nº1, parcela 189, folha 15. 
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However, as analysed and typified by Fernandes (1999) and confirmed by several researchers 

(Ferrão, 1985; Oliveira and Galhano, 1992; Pires, 2000), the spatial matrix organization around 

the central stair persisted even in the new bourgeois houses of the nineteenth century, 

proving how embodied it was in Oporto social life. Additionally, Fernandes affirms that the 

specialization and increased complexity of the new houses’ inner space, reduces their capacity 

of adaptation when compared with the former typologies. Those new houses are pointed out 

by some authors to be influenced by the Georgian houses in the United Kingdom (Fernandes, 

1999; Ferrão, 1985; Oliveira and Galhano, 1992). This reveals the increasing British influence in 

the Oporto following the signature of the Methuen Treaty in 1703, which allowed the 

exponential increase in the Port Wine export to England and the establishment in the city of a 

large number of British traders (Cruz, 1984; Delaforce, 1988; Gonçalves, 2002). The influence is 

made also through the direct introduction in the city of the Neo-Palladianist architecture by 

the British architect John Carr (Santo António Hospital, 1779-1824) and by Consul John 

Whitehead (Oporto British Factory, 1785-1790) (Alves, 1988). This also confirms that Oporto’s 

traditional buildings represent a common and wide spread urban traditional house typology, 

allowing a generalization wider than the case studies. 

 

6.3.2 – Built Form 

Based on the Rebelo da Costa’s eighteenth century description, Robert Smith’s (1961) 

pioneering study summarizes the main characteristics of the traditional house of Oporto: slim 

shape, strong granite impression, ceramic decorated eaves, balcony’s granite corbels and 

British style influences.  The author stresses that this the built form was reproduced in Recife 

and other Brazilian cities, an opinion that is shared by other researchers (Oliveira and Galhano, 

1992). As previously mentioned, this description corresponds to the general impression 

produce by Oporto’s traditional buildings, which corresponds also to the global image of the 

historic World Heritage City. 

 

Buildings: Number of Floors and Height 

The buildings are predominantly of parallelepiped form, facing the street and sharing side 

walls in a row. The slim shape is produced over the centuries by the vertical extensions made 

to accommodate the historic core densification. Presumably, the initial houses had 

predominantly two or three floors (Afonso, 2000; Ferrão, 1985; Oliveira and Galhano, 1992), 

corresponding to heights that were economically affordable and technically easier to build. 

The data of 2001’s Census showed that in the São Nicolau Freguesia the predominant number 



The investigation of energy efficiency measures in the traditional buildings in Oporto World Heritage Site: Joaquim Flores 

124 

of floors were three to four (50%) or more than five (44%), which was confirmed in the 

research area survey, revealing that the majority of the buildings had four or five floors (figure 

17). 

Figure 17 - Research area buildings floors 

Buildings: Geometry and Urban Insertion 

The statistical analyses of the data collected in the fieldwork showed that the buildings 

surveyed had a median total height of 15.90m and a mean floor height of 3.62m. The 

respective mean values are close to these ones, respectively 17.07m and 3.70m (Table 22). 

Table 22 – Research area buildings’ geometric parameters 

Due to the strong historical relation with the street, Oporto’s traditional buildings of the 

fieldwork area have mostly one or two street facades (92%) and are all inserted in rows facing 

the street, as can be seen in figure 18. Regarding the relation with the street, it is possible to 

 Statistics 
Elevation 

(m) 
Area (m

2
) 

Volume 

(m
3
) 

Front width 

(m) 

Length 

(m) 

Floor Height 

(m) 

Mean 16.07 141.07 2,200.04 7.66 15.72 3.70 

Median 15.90 93.15 1,432.96 6.27 15.37 3.62 

Std. Deviation 4,40 241.08 4,713.43 6.43 6.16 0.751 

Minimum 4.71 26.88 221.84 2.33 4.38 2.36 

Maximum 32.04 3,391.70 76,347.24 62.41 58.70 9.24 

Percentile 25 12.58 64.84 866.00 4.90 11.64 3.24 

50 15.90 93.15 1,432.96 6.27 15.37 3.62 

75 19.04 141.22 2,419.71 7.83 19.21 4.01 
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point four different situations: building in rows with one facade (55%), building in rows with 

two facades for opposite streets (26%), building in rows/corners with two facades (11%) and 

building in rows/corners with three facades (8%). Moreover, it is possible to group the 

buildings into two basic categories: mid-terrace (81%) and end-terrace (19%). This data 

supports statistically the evidence of the traditional block pattern settlement. 

Figure 18 – Research area buildings’ facades facing the street 

Figure 19 - Research area buildings’ fronts (facades facing the street or backyard) 

Regarding the number of exterior surfaces of the envelope, it is possible to further analyse the 

data adding the facades which are in contact with the block interior (figure 19). The most 
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relevant is the fact that, from the buildings which have one street facade, 70% have also 

another facade to the backyard. From these analysis is possible to confirm the existence of a 

representative number of buildings with one facade facing the street and another to the lot 

interior (38%), followed by buildings with two facades for different streets (24%) and buildings 

with just one facing the street (16%). These correspond to the terraced buildings located in a 

row along the street and which are the most common in the research area (78%). The 

remaining are corner buildings with three or two street facades (8% and 10% respectively) or 

exceptional buildings (4%). Stand-alone buildings are less than 1% of the total, with very low 

representation in the area. 

Solar Orientation 

Analysing the solar orientation of the buildings’ main façade, it is possible to conclude that the 

quadrants between the southeast and the northwest are the most represented, as shown in 

figure 20. From those was registered a prevalence for south, northwest and southwest 

orientations, grouping 64% of all buildings. This is related to the urban morphology previously 

analysed, as most of the buildings are located in streets parallel to the river, which runs along 

the south of the settlement. Even if this data could lead to the conclusion that most buildings 

are privileged by the sun exposure, the concrete knowledge shows that this is not the reality, 

because the narrow streets produce shadow in most buildings even if they are favoured by the 

orientation. Because this factor is so variable only the casuistic analysis of each building would 

allow specific conclusions to be made. 

Figure 20 – Research area buildings’ main facade solar orientation 



Chapter Six: Traditional Buildings in Oporto 

127 

Roof Types 

Veiga de Oliveira and Fernando Galhano analysed the traditional roofs of the city, concluding 

that the hipped roofs were until the nineteenth century dominant in the city (1992), which is 

also supported by the eighteenth century iconography. The pitched roofs with side gable walls 

appeared only after that period. The survey undertaken also confirms it, as 91.8% of the 

buildings have traditional roofs; and from those 59.5% are hip roofs and 18.4% are hip roofs 

with three slopes. 

Figure 21 – Research area buildings’ roof types 

As pointed out and typified also by the previous authors those traditional tile roofs are further 

characterized by the existence of dormer windows, terraces, canopies and volume extensions, 

revealing that the roof space is used for living. The Oporto traditional roofs are also noticeable 

by the skylights’ sculptural conic form, which was also approached in Veiga’s and Galhano’s 

surveys and other research about Oporto Traditional Buildings (figure 22). Those elements 

arise above the roof, facilitating the light entrance and revealing their central stair typology. 

The data from the research survey confirms that those skylights are still relevant in the area, 

being present in 59.5% of the total buildings. From those 24.4% are traditional skylights and 

35.1% are contemporary adaptations for the same purpose. The last ones were classified as 

non-traditional skylights. The spatial distribution of the buildings with a skylight is uniform in 

the research area, revealing that those typologies cover several centuries of urban 

interventions and built forms, as shown in figure 23. 
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Figure 22 – Oporto traditional skylights in Oliveira 
and Galhano (1992, p.356) 

Figure 23 – Oporto research area buildings’ roofs and skylights 

Main Facade Design 

Oporto’s traditional buildings have always been modest in their facade design with lack of 

exuberant decoration like in other cities’ urban traditional buildings. The original two or three 

floor buildings had straight or corbelled facades without balconies, according to the usual 
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medieval typologies (Afonso, 2000; Fernandes, 1999; Ferrão, 1985; Oliveira and Galhano, 

1992). 

The corbelled system represents the intention of gaining area over the public space, which 

evolved to the introduction of columns at street level to support the upper floors (Afonso, 

2000; Fernandes, 1999; Ferrão, 1985). With time, this solution becomes solidified in archway 

galleries favouring the commercial life at street level, like in the very specific case of Miragaia 

(Fernandes, 1999). Those architectonic solutions still exist in a reduced number in localized 

areas of the historic city. From the seventeenth century onwards, the substitution of the wood 

and similar light system to heavy stone in the exterior walls, made the corbelled facades 

difficult to build, leading to the predominance of straight facades where balconies are later 

introduced. 

As affirmed by some authors the design of Oporto’s traditional buildings is not usually made by 

architects, but is contaminated by their erudite design present in exceptional urban buildings 

(Fernandes, 1999; Ferrão, 1985). The variations in design over the centuries are minor and 

made over the persistent typological matrix established. It consisted in the composition of the 

openings in the main facade, floor height variations and the design of the granite masonry 

decorated elements (Fernandes, 1999; Ferrão, 1985). According to the synthesis made by 

Oliveira and Galhano (1992), the seventeenth century houses had straight and severe designs, 

which were updated in the next century to show gracious and expressively curved lines, 

becoming poorly simplified and monotonous in the nineteenth century. Smith goes further, 

classifying the architectural references and stating that in the eighteenth century the Baroque 

influences of the Italian architect Nazoni, who worked extensively in Oporto at the time, are 

visible. From 1760 the Neoclassical reaction is shown through the oval design of the openings 

revealing the English influence (figure 24). In the nineteenth century the Neoclassical became 

dominant, through the use of Regency style, which follows directly the Georgian (Smith et al., 

1961). 

Discussing the complete image of the building, Oliveira and Galhano state that sometimes the 

last floor has a smaller height than the other ones (1992). This could be related to the fact that 

a large number of upper floors correspond to extensions, which could be made lower for 

economic and structural reasons. 
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Figure 24 – Opening bays accentuating the verticality of buildings in Oliveira and 
Galhano (1992, p.313) 

The number of openings per floor also gives Oporto’s traditional buildings another specific 

characteristic. Those windows or French doors giving access to balconies are aligned in 

columns (bays) accentuating the buildings’ verticality (figure 24) as pointed out by several 

authors (Fernandes, 1999; Ferrão, 1985; Oliveira and Galhano, 1992; Smith et al., 1961). 

According to Ferrão, in the seventeenth century the openings lean to the buildings side, 

leaving a wall space in the middle, which was filled with minor architectural elements, like 

small windows (1985). Where possible, the ground floor had three openings, which became 

common in the remaining floors from the eighteenth century on. In almost all buildings the lot 

front is coincident with the house facade, determining the number of possible bays per floor. 

This is the main reason for the prevalence of buildings with two or three opening bays, 

reaching 78% of the total. Independently of the façade’s design, the opening area represents 

the larger proportion of the facades, occupying most of the time a larger area than the opaque 

elements. 

The openings are surrounded by granite, which constitutes another distinctiveness of Oporto 

buildings. Analysing the available surveys, it is possible to conclude that this elements width 
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measure usually one span, ranging from 20 to 22cm revealing the common inaccuracy of this 

type of traditional constructions, as pointed out by Fernandes (1999). The nineteenth century 

projects found in the Oporto Historic Archive often present a graphic scale both in spans and in 

meters, allowing for a comparison of the two systems and to measure the window’s granite 

frame; in that case the span equals 22cm, which is the usual equivalence. 

Oliveira and Galhano also typified the windows and doors’ fanlight frames, which are another 

distinctive element of this traditional architecture. Several authors point out the British 

Georgian style influences present on those designs (Fernandes, 1999; Ferrão, 1985; Oliveira 

and Galhano, 1992; Smith et al., 1961). This has to be understood within the global windows 

frame design from the eighteenth century on. As stated by Wilhelm Giese, sash windows were 

brought by the British after the Methuen treaty, who themselves copied it from the Dutch 

(1963). From that date the wood balustrades were substituted by iron wrought balconies 

following the same design (Fernandes, 1999; Smith et al., 1961). 

The research survey showed that the traditional casement and sash frames are still dominant 

in 80.4% of the buildings, with a slight prevalence of casement (45.9%) over sash. The windows 

are normally divided by timber glazing bars into small square or rectangular shaped glass units. 

From the end of the nineteenth century, those tend to get larger in casement windows, by 

reducing the number of divisions, reaching at a certain point a single glass for each casement. 

This evolution is clear in figure 25, showing that the novelty of the eighteenth century sash 

windows faded during the nineteenth with the progressive substitution for the casement. This 

is clear when comparing the eighteenth century São João Street and the nineteenth century 

Mouzinho da Silveira Street, where sash is dominant in the first and casement in the second. 

Figure 25 – Traditional windows evolution (from eighteenth to nineteenth centuries) 
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6.3.3 – Construction System 

From the available surveys, literature and visual analysis of traditional buildings in ruins it was 

possible to characterize the construction system present in Oporto’s traditional buildings, in 

order to further identify the energy efficiency parameters which are needed for energy 

simulations to be performed on in this research. 

The initial houses were made predominantly of wood, probably with the ground floor built of 

stone (Afonso, 2000; Ferrão, 1985; Oliveira and Galhano, 1992). Real et al. identified in the 

archaeological excavations made near the Cathedral, the use of the Oporto granite in houses 

from the second century before Christ (1985-1986). Architect Rogério de Azevedo also states 

that wood remained the main construction material until the sixteenth century, being replaced 

by stone during the next two centuries (Smith et al., 1961). From the analysis of fifteenth and 

sixteenth century documents, Afonso concludes also that wood was an extensively used 

material and only the exemplary houses at the time were made of stone (2000). The same 

author also found the documented existence of a quarry close to the city in the fourteenth 

century, which allowed the progressive use of that material for the building’s envelope. 

Several more recent quarries were identified by Begonha, which served the construction of the 

eighteenth century’s major buildings (1997). Nevertheless, wood has always remained the 

horizontal and roof support material, as shown in CRUARB’s and Porto Vivo SRU surveys and 

available research (Costa et al., 2012; Teixeira and Póvoas, 2012; Teixeira, 2004). Figure 26 

illustrates this support system in two ruined buildings, allowing us to interpret Oporto’s 

traditional house construction system. The system is based on the rectangular shape stone 

perimeter wall, which supports the inner wood beams. Taking advantage of the urban 

insertion between two side or shared walls, the beams are put in place during the 

construction, facilitating the elevation of the building and serving at the same time as a 

compression element that prevents the collapse of the party walls. 
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Figure 26 – Wood beams for pavement support in two ruined traditional buildings 

 

Building Envelope: Walls 

The facades were originally in the timber framed system filled with small clay brick (figure 27), 

which can be affiliated in the North European ’fachwerk’ where it was common in the 

medieval towns (1999; Ferrão, 1985). Even if these timber framing construction systems were 

imported and commonly used until the nineteenth century, in Oporto they are normally 

hidden under a uniform surface. The additions made in the nineteenth century used mainly 

light materials, such as wood, which was disposed to imitate the stone mouldings (figure 28). 

The light walls were used largely in the nineteenth century, both for external walls and internal 

partitions, consisting in a simpler timber framing covered with lath and plaster commonly 

denominated as ’tabique’ (figure 29). Teixeira identified two types of these walls, one with a 

layer of wooden planking and the other with two layers (2004). It is also possible to find 

variants of these walls, with studs or without. The timber used in the structure and planking of 

these are usually made from Portuguese pine wood (Teixeira, 2004). 
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Figure 27 – CRUARB’s refurbishment work showing the 
timber framing construction system (Magalhães, 2010) 

Figure 28 – Timber framing extension with wood imitating 
stone in a ruined building 
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Figure 29 – Exterior timber stud wall framing with lath and 
plaster in a ruined building 

The walls were finished with plaster made of clay, grit and tallow, gaining a uniform painted 

surface (Fernandes, 1999). The most common mortar used was made of lime, aggregate and 

sand (Teixeira, 2004). The plaster was the dominant material covering the facades, which was 

complemented with tiles from the nineteenth century on (Oliveira and Galhano, 1992), 

allowing in both cases to establish a contrast with the granite stone masonry, giving Oporto’s 

traditional buildings their characteristic image (Oliveira and Galhano, 1992; Smith et al., 1961). 

The plaster and the tile coverings protected the granite walls (thermal and hygrometric), while 

performing an aesthetic uniform covering of the irregular stone. The interior surface of these 

walls was mostly covered with plaster, with the exception of the kitchen and bathroom spaces 

where ceramic tiles were also used. The thickness of the covering materials on both sides of 

the envelope walls is usually 3 to 4cm, above which the exterior granite stonework raises circa 

2cm (figure 30). 

Apart the plaster covering the gable facades (usually party walls), is also possible to find slate 

tiles or corrugated iron cladding, both nailed into a wood framing structure. Less frequently, 

the roof tiles are also used to cover the gable wall. The granite walls range frequently their 
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thickness from 1.5 to 3 spans (circa 0.3 to 0.6m), while the finishing layers have usually 

between 1.5 to 3cm each (Teixeira, 2004)50. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30 – Glazed ceramic tiles covering an exterior wall 
in a ruined building 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 - Slate tiles covering the exterior wall in a ruined 
building 

 

 

                                                           

50 - The literature information was complemented with direct measurements in some ruined houses. 
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Roof 

As stated by Teixeira (2004), until the nineteenth century the roofs were supported by simple 

wood structures above which the clay roof tiles were disposed (figure 32), getting more 

complex in their geometry from then on. The system is supported mainly by a roof truss 

spaced at around three meters apart and made by round wood beams with a diameter of 20 to 

30cm (Teixeira and Póvoas, 2010; Teixeira and Póvoas, 2012; Teixeira, 2004). Teixeira’s 

research reveals also that in the nineteenth century the round beams gave way to more 

industrialized rectangular sections of 8 to 12cm width by 20 to 25cm height. The wood source 

remains constant over time: chestnut, oak and Riga pine wood, which are stronger and more 

durable than the pine used for walls. 

Figure 32 – Simplified roof construction system based in Teixeira (2004, p.97) 

The roofs present slopes ranging most commonly from 27 to 22 degrees, depending on the 

type of roof tiles used: Portuguese traditional or Marseille, which was introduced and 

generalized more recently (Costa, 1955; Lopes, 2007; Segurado, n.d.). 

Horizontal Structure 

The horizontal structure which supports the system floor/ceiling uses a system which is similar 

to that used on the roof structure. The wood beam also has the same dimension and 

geometrical characteristics of the used in the roof structure (Teixeira and Póvoas, 2012; 

Teixeira, 2004). The maximum possible width for the wood beams is around 7m, determining 

also the maximum house width. 
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Figure 33 - CRUARB archive – Parcel 159 section.
51

 

 

The chestnut, oak and Riga pine wood are also the materials used for these structures. Beams 

are laid transversally, spaced 50 to 70cm, connecting the party walls on which they insert two 

thirds of their thickness (Teixeira, 2004). Wood joists were inserted between the beams and 

spaced out 1.5m to give stability to the structure. Consequently, this horizontal system is 

independent of the front and back facades. The stair assembles with this system and uses the 

same type of materials. Both the floors and the ceilings are supported by this structure, 

turning into the upper and under finishes of it. Partition walls are also posed directly in the 

beams, connecting the floor and the ceiling through the top and sole plates. 

 

Ceiling and Floor 

Solid hardwood is the usual material of floors, which is nailed directly into the beams and 

noggins. The planks are used in a multiplicity of lengths (reaching 10 meters) and are mainly 

                                                           
51

 - Survey for parcel 159 archived in CRUARB/Guia 11/2007, Armário F, nº30, parcela 159, folha 4. 
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made of Portuguese pine wood with a usual thickness of 3cm and widths ranging from 12 to 

30cm (Teixeira, 2004). 

The ceiling is generally made of stucco, which can be just simple or present an artistic 

moulding. This finish is supported by the pinewood slats nailed directly to the beams or to an 

intermediated timber frame. This system is similar to those used in the partition walls, with 

slats gaining a trapezium shape in order to retain the stucco, mortar and plaster as shown in 

figure 34 (Segurado, n.d.). 

Figure 34 – Schematic 3D drawing of traditional timber stud partition wall, floor and ceiling systems. 

Partition Wall 

The traditional partition walls are similar to the ’tabique’ exterior light walls mentioned above 

(Oliveira and Galhano, 1992; Segurado, n.d.). In the ground floor, where weight is not a 

constraint, sometimes  stone partition walls were also used (Fernandes, 1999). The partition 

types follow those described above according to Teixeira’s classification for the light exterior 

wall (2004). They are generally 13cm thick, and the slats present the same shape as the 

described for the ceiling as seen in figure 34. 

A wooden wall base made by a simple plank, usually 15cm wide, performs the transition with 

the floor hardwood planks. As referred to by Teixeira, in the richer houses could be applied an 

elaborated wood panelling reaching 50cm (2004). The single or double inner layers of 

Portuguese pine wood planking (2cm each) are disposed vertically or diagonally at 45 degrees 

(Costa, 1955; Segurado, n.d.; Teixeira, 2004) giving resistance to the walls, performing at the 
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same time the role of thermal and noise insulation. The plaster on both sides is made with grit 

based mortars (Teixeira, 2004). 

Windows and Exterior Doors 

Most of the windows frames are made of painted pine wood52 and have a single glazing of 3 to 

5mm of thickness. The same wood is used for the inner shutters, which were used originally in 

all the houses. Both the frames and the shutters have a usual thickness of 3cm. The interior 

shutters are used simultaneously for security, privacy, light and thermal controls. It is also 

usual to use light curtains, which allow the entrance of daylight while preserving the privacy of 

the home. In figure 35 and figure 36 are shown the usual location of the inner shutters in 

relation to the exterior doors and windows. 

Independently of the opening type (i.e. sash, casement or door), the insertion of the frames is 

always similar, placed slightly recessed from the exterior granite surface (2-3cm). The granite 

frames around the openings are the elements that receive the exterior wood frame, 

functioning as a jamb for the inner shutter. The form of the stone opening is completely 

adapted to their function, being prepared to work with the double system of window and 

shutter. The shutters are normally divided into three or four wood panels, which fold into the 

side, allowing the casement windows or doors to fully open. Some older models of shutters 

have small opening panels, which allow a more complex control of light (figure 37). Those are 

today rare and could probably be reminiscent of the time when no glazed frames were used. 

The space remaining between the shutter and the opening frame works as a cavity when all 

the elements are closed, allowing the extra insulation of the glazed elements, which are the 

weakest points of the exterior envelope. The figure 38 shows this system in a window, being 

possible to observe that the inner shutter covers only the frame until the window sill, whose 

thickness is equivalent to a span creating a recess in the exterior wall where the shutter panels 

fold. Doors are naturally completely covered by the inner shutter as seen in figure 37. 

52
 - In richer and rare cases the doors and windows can be made of oak. 
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Figure 35 – Exterior view, plan and detail of the traditional sash window with inner shutters. 

Figure 36 – Exterior view, plan and detail of the traditional balcony door with inner shutters. 

Sash Window exterior view

sash window plan sash window plan detail

Door plan

Door exterior view

Door plan detail
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Figure 37 – Ancient inner shutters 

At the end of the nineteenth century the system was updated in richer houses, where all the 

inner stone elements were covered by painted wood panelling, which connects with the wood 

wall base and presents the same painted finish. On both sides of the wall were created recess 

spaces to where the inner shutters fold, creating an image of a complete panel (figure 39). It is 

possible that this evolution had the intention of covering the weak points (i.e. the thermal 

bridges) in order to achieve a better degree of comfort. 

Figure 38 – Inner view and section of 
traditional sash window with inner 
shutters. 

Sash window inner view Sash window section
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Figure 39 – Inner shutters/panelling: shutters opened, closed and top and bottom details. 

Decorative Elements 

Apart the stonework of the main facade, the traditional houses of Oporto are very sober in 

their decoration, including the interior spaces. Very rarely the richer owners invested in the 

decoration in detriment of using better materials (e.g. oak instead of pine). Some rare cases 

present wood carving in ceilings and walls, but they are not representative of the common 

traditional houses. The usual decoration of Oporto’s traditional buildings consist in the stucco 

mouldings applied to the ceilings in several degrees of complexity, according to the owner’s 

social status and fortune. 

The stucco found in Oporto made in Adam’s or Wedgewood’s style with Victorian motifs 

testifies again to the English influence (Oliveira and Galhano, 1992). According to Vasconcelos, 

this neoclassical taste was introduced in the eighteenth century by the Consul John Whitehead 

in the British Factory House (1997). The most common stucco work is composed of a circular 

or elliptical motif in the centre of the room (figure 40) and a moulding around the entire 

ceiling, establishing the transition between the wall and the ceiling. These stucco ceilings are 

today one of the most considered heritage elements to be preserved in Oporto’s traditional 

buildings as pointed out by Vasconcelos (1997). 
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Figure 40 – Traditional Oporto stucco ceiling 

6.4 - Heritage Value 

The small variants found in the homogeneity of the Oporto houses are their most valuable 

heritage as it produces the image of the historic city, contributing to it even in greater 

proportion than the monuments. The main heritage value of this architecture is its 

“remarkable testimony to the development over the past thousand years of a European city 

that looks outward to the west for its cultural and commercial links” (UNESCO, 1996a, p.83). 

This declaration of ‘outstanding universal value’ led UNESCO to declare the historic core of 

Oporto as World Heritage under the category of ‘group of buildings’. So, the conservation of 

each building contributes also to the conservation of the urban ensemble. 

Any transformation process undertaken on these buildings must preserve their authenticity 

and their urban image. The consequences of the opposite approach can be seen in figure 41, 

where the imitation of the traditional design can induce a slight resemblance with the 

originals, but it is always a bad design and a lie. So, authenticity can also be translated into the 

design which respects, interprets and acts with truth. As underlined before, if this apparently 

small aspect occurs systematically in the refurbishment of traditional buildings, it has also to 

be accounted for the consequences it produces to the image of the historic city. 
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Figure 41 – Original and new frames imitating traditional design. 

Conclusively, it is possible to affirm that the Oporto World Heritage Site significance and OUV 

is related to the group of buildings which constitute it. Those are clearly a mix of historic and 

traditional buildings with a higher prevalence of the last ones, both by their larger number as 

by expressing the historic roots of a mercantile city. Then, the major value identified is the 

architectural value of Oporto’s traditional buildings. This means that each building possesses 

the individual design characteristics that shape its architectural value, which contribute at the 

same time to the value of the group. 

In each traditional building the main architectural characteristics which convey their value 

were discussed above and can be summarized by: 

- Overall image of the building, namely the narrow and long rectangular shape; 

- The granite elements of the facade and their relation with the historic renderings or 

tiles; 

- The rhythm of the elevations; 

- The historic materials covering the facades, namely rendering, ceramic tiles and slate; 

- The traditional design of windows and balcony door frames; 

- The shape and material of the roof, which forms the roofscapes of the historic city; 

- The traditional design of the skylights; 

- The artistic ironmongery work of the balconies; 

- The stucco ceilings. 

- The spatial matrix of the house organized around the central stair, which provides 

ventilation and natural lighting. 

Then, based on the previous chapters and on the above summarized, the approach to 

introduce energy efficiency measures in the refurbishment of traditional buildings in Oporto 

should identify: the previous elements, which must be not be changed, the existing traditional 
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techniques and construction systems, which present potential and must be enhanced (passive 

solutions) and the new compatible techniques that should be introduced to improve the 

buildings’ performance (passive or active). The major challenge will be to identify the 

admissible change in each of those elements and the impacts that change can produce both in 

the building and in the overall World Heritage Site. 

6.4.1 – Admissible Change 

As seen in chapter four, the intervention in the buildings envelope as a whole to avoid heat 

losses is the most used technique to improve energy efficiency in buildings. Additionally, it is 

proposed specifically for Oporto’s traditional buildings in the energy refurbishment guide 

(AdEPorto et al., 2010). At the home scale, the internal walls, ceilings and floors which make 

the separation to the other housing units, have also to be addressed and assessed in terms of 

heritage elements that cannot be damaged. 

The exterior walls, glazed elements and roofs were identified as the components of the 

envelope which have major potential for improvement and must then be assessed. Those are 

exactly the elements which convey the appearance to Oporto traditional buildings and should 

not be changed until certain limit. This means that solutions to be implemented have to be 

assessed against the consequences they pose in these elements and rated accordingly with the 

impact assessment grading. 

Addressing the thermal performance of each element, the potential improvement solutions 

must be identified, covering both the technical aspect and the maintenance of the building 

component appearance. This is obviously variable for each element and must be addressed 

individually. It is expectable that the major improvements will be directed to envelope, as no 

insulation or double glazed elements are present in the traditional buildings. 

Solid elements (walls) have to be considered accordingly with the wall finish layer and the 

relation between this surface and the stonework surface. As seen before, most of the buildings 

have plaster or glazed ceramic tiles in its facade. The last ones are widely recognized as 

presenting heritage value (Monteiro, 2001; Vasconcelos, 1996), which leads to the 

impossibility of removing or displacing them. So, any possible insulation has to be placed on 

the inner wall surface. The plaster cladding offers wider possibilities, as theoretically it can be 

replaced by an insulation system which presents the same type of finish. However, this poses 
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two questions in their application. The first relates to the fact that old granite walls and their 

traditional mortar and plaster finishes form a system which is permeable, allowing it to 

‘breathe’ (Appleton, 2003; Hughes, 1986; Mascarenhas, 2012; Mateus, 2002). So, in this 

situation as in any other intervention in traditional buildings, the introduction of a new system 

has to be carefully measured in its technical consequences and compatibility with the old 

system present. The second question concerns the image and aesthetical aspect of the 

building. As mentioned above, the relation between the stonework and the wall surfaces is 

crucial to safeguard the authenticity of the building. So, the stonework surface must always 

remain above the wall finish, allowing the shape of the stone to be fully seen. The introduction 

of insulation is only viable when this premise is possible to accomplish. Due to the irregularity 

of the existing stone this can only be considered when addressing each case. 

Roofs and skylights must be addressed in their double interaction with the building and the 

roofscape levels. The introduction of solar panels or double glazing must account with the 

impact in these two scales. 

The glazed openings also characterize Oporto’s traditional buildings, being one of the major 

problems to be addressed in terms of heat transfer, as they are predominantly single glazed 

and represent an area of circa 50% of the facade. It is important to conserve the traditional 

wood frame design because it represents a craftwork which gives value to the facade, both at 

building and group levels. The adaptation of casement windows to double glazing may be 

possible without disrupting their design. Sash windows are more complicated to adapt, 

because the increase on their thickness prevents them to function. Concurrently, they tend to 

become heavier, which makes them even more difficult to use than before. As suggested by 

the Adeporto guide, a double frame placed on the inside could be a solution to this problem 

(2010). These solutions must be complemented with the traditional inner shutters, giving 

additional thermal protection. 

Internal walls, ceilings and floors pose a diverse situation from the envelope, as they do not 

shape the image of the historic city and the inner decoration is usually rare, with the exception 

of stucco ceilings which must be preserved or restored. However, the authenticity of these 

buildings is also made by the traditional construction system which should be preserved when 

feasible, not only for heritage purposes but also for the economy of resources. The inner 

transformation of the construction systems should respect the principle of compatibility 

mentioned above, especially when regarding the introduction of new structural systems which 
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can cause damage to the structural walls. The introduction of dry-line insulation could be 

viable, but it will depend on the concrete situation (e.g. the inner space available or the stucco 

on the ceilings). 

 

6.5 – Conclusion 

Oporto traditional buildings are major contributors to shape the image and identity of the 

World Heritage Site. Therefore, it is essential to conserve their authenticity to avoid damaging 

the OUV of Oporto Historic City. This chapter covered the overall characteristics of these 

buildings, allowing to conclude that the envelope encloses a potential for energy efficiency 

improvement. In parallel, the envelope upgrade poses the highest constrains to Oporto 

traditional buildings heritage value. It is further necessary to understand in detail how these 

buildings perform in terms of energy to identify specific measures to address their 

improvement. The next chapter focus on this objective by investigating ten case studies 

representing the variants identified.  
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Chapter Seven: Case Studies First Stage Findings 
 

7.1 - Introduction 

This chapter focuses specifically on traditional buildings in Oporto. To obtain detailed 

information about real cases, ten homes were selected to serve as case studies for modelling 

and simulating energy efficiency improvements. These cases were representative of the 

diverse typological variants found in Oporto’s historic centre. An explanation of the 

identification process is also given in the current chapter. This explanation covers the 

discussion of the research area, variants identification and the survey process.  

 

Furthermore, the chapter aims to describe the surveyed case studies, focusing on their 

architectural heritage and energy efficiency performance, the - fundamental aspects of this 

research. The data collection for the ten case studies was done through observation, 

measurements and household questionnaires. Afterwards, the data was analysed and overall 

conclusions were drawn. Due to the extensiveness of the collected data, a selection was placed 

in the appendices, including detailed information about each case study. This data covers 

drawing surveys, construction systems and data obtained from the questionnaires. 

 

7.1.1 - Oporto Building Stock 

The urban fabric built before 1919 represents 17.65% of the total buildings in Oporto (figure 

42). This number rises to 54.99% in the historic urban core53 (INE, 2012). Additionally, the 

negative demographic development of the population in Oporto’s historic centre, circa 30% 

during the last decade, and the large number of unoccupied dwellings (40.66%) suggest a 

significant decline of the area (INE, 2012). The dwellings in the historic centre of Oporto are 

mostly rented (82.49%), which places their conservation under the complex Portuguese legal 

framework for renting. The low investment in refurbishment or retrofit made by the owners, in 

conjunction with the usual low income of the tenants, leads to the physical decay of buildings. 

Refurbishment solutions for the occupied buildings must deal with these constraints, as they 

affect the feasibility of their implementation. Nevertheless, Oporto’s urban core still maintains 

an over-occupation, with high densities ranging from 6,000 to 9,000 inhabitants per square 

kilometre (INE, 2012). At the same time, the historic city also accentuates the current ageing 

                                                           

53 - Comprising the three Freguesias of Sé, S. Nicolau and Vitória. 



The investigation of energy efficiency measures in the traditional buildings in Oporto World Heritage Site: Joaquim Flores 

152 

trends for the Portuguese population, with the elderly54 accounting for 26.9% of the total 

residents (INE, 2012). This framework leads to the conclusion that Oporto’s historic city 

presents displays a physical and social decay, which the regeneration policies to improve the 

energy efficiency of traditional buildings must address. 

Figure 42 – Census 2011: Oporto buildings age (INE, 2012) 

7.1.2 – Research Area Selection 

A research area was delimitated in order to determine the typologies of traditional buildings in 

Oporto’s historical centre. The area selection was based on the following criteria: it had to be 

part of the World Heritage Site and have a majority of traditional buildings with a high level of 

apparent integrity. Additionally, the area was also part of  the intervention zones of the Porto 

Vivo SRU and the former CRUARB (Ribeira-Barredo Urban Renewal Committee), whose 

operations produced a significant amount of surveys, refurbishment projects and construction 

works (Fernandes, 1999). Figure 43 show a geographic overview of the large number of 

overlapping urban renewal schemes and conservation areas implemented during the past 40 

years. 

The selected research area corresponds to the SRU’s Infante Priority Intervention Area (AIP) 

and is located inside the former medieval wall. It represents one of the oldest urban areas, 

while at the same time exhibiting the diversity of the urban renovations that took place in the 

historic city during the eighteenth and the nineteenth century. The CRUARB’s intervention 

54 - Defined as citizens of more than 65 years of age. 
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zone is also partially overlapped by this AIP, which allows taking advantage of the mix between 

refurbished and original traditional buildings. The research area is fully included within the 

World Heritage Site perimeter and in other specific conservation areas, set up to protect the 

historic centre. 

Figure 43 – Research Area (AIP Infante) 

7.1.3 – Research Area Survey 

A direct survey was undertaken in the research area with the objective of identifying the 

typologies of the traditional buildings and their characteristics. Methodologically, the selection 

process used a bottom-up approach, initially covering all buildings. These were then further 

analysed and their common characteristics identified, which allowed grouping them under 

diverse typologies. The data collection was undertaken directly in the field covered each one of 

the 316 buildings, which were visually surveyed and photographed. The geometric parameters 

included in the protocol were previously retrieved from the CAD drawing analysis55. Prior to 

the fieldwork, all records were geo-referenced, which allowed putting them in relation to the 

created GIS database. 

55
 - Apart from acquiring the geometry of all buildings, the detailed analysis of the CAD drawings turned also made it 

possible to determine the geometry of all the lots. In terms of the elevation data, sections of the streets with the 
facades of all buildings were also included which further, allowed to have their height in the database. The CAD 
work also included the cleaning and simplification of the drawings and the creation of polygons for all buildings and 
lots, allowing their import into the GIS. 
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7.1.4 – Identification of Typological Variants 

All the buildings meeting the established research criteria were initially included in the 

research. Then, singular remarkable buildings, such as churches, major institutions, hospitals 

and public administration were excluded. Traditional and mainly residential buildings were 

naturally predominant in the area, accounting for 89.4% of the total. Applying these criteria, 

the initial sample was reduced to 191 buildings. 

In the compact historic cities, in most of Europe and South American, buildings are mainly 

terraced houses, enclosed in traditional blocks. In Oporto, this type of compact urban fabric 

also spreads through the entire historic core, far beyond the research area. The analysis of the 

selected buildings proves the typological homogeneity of the sample, which is composed 

almost exclusively of similar terraced houses. Hence, instead of identifying typologies, the 

survey showed the existence of several variants of one main typology. Taking into account the 

building’s urban insertion and form factors, six variants and two sub-variants were identified. 

This classification accounted the number of facades facing a street or backyard, which 

establishes the building’s relation with the urban block and the adjacent constructions. It is 

also directly related the exposed area of the envelope of the building, which influences its 

thermal performance. The variants were denominated as V1, V2, V3a, V3b, V4 and V5, and are 

listed in table 23. They can be grouped into three main categories: corners (end terraced), 

including V1 and V2; row houses facing the street (mid terraced), including V3a, V3b and V4; 

and detached, comprising V5. 

Variant Street Facades Rear Facades Party walls 

V1 3 0 1 

V2 2 0 2 

V3a 2 0 2 

V3b 1 1 2 

V4 1 0 3 

V5 1 3 0 

Table 23 – Variants according to exposed facades. 
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Figure 44 - Variants distribution in the total Research Area (316 buildings) 

 

The analysis of the distribution of the selected buildings according to their variants shows that 

the mid terraced group (V3a, V3b and V4) is largely predominant, accounting for 91% of the 

total. This is consistent with the predominant compact urban block identified in the historic 

city. Variant five was excluded from further research due to its irrelevance in Oporto’s historic 

centre (less than 1%). 

 

The five variants to be modelled as case studies (V1, V2, V3a, V3b and V4) were further 

subdivided into the middle and top floors sub-variants, posing the hypothesis that these two 

categories would perform differently in terms of heat transfer due to their different exposure 

to the external environment. 

 

7.2 – Case Studies 

Following the process of determining the variants, it was necessary to identify the real cases 

that could represent them. The selection process was based on directly approaching the 

inhabitants in order to explain the research objectives to them and obtain their informed 

consent. This process is explained in the next sub-sections.  

 

7.2.1 – Case Studies Selection 

The assistance of some local institutions (Centro Social e Paroquial de S. Nicolau, Porto Vivo 

SRU and Junta de Freguesia de S. Nicolau) was crucial in approaching the households as the 
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local community proved to be rather reserved towards outsiders during first approaches. The 

selection process was made in conjunction with local institutions, based on the defined criteria 

and on the suggestions made by these institutions. 

 

As seen in figure 45, the cases are widely distributed in the research area, covering diverse 

urban development epochs. The cases also covered several types of integrity, ranging from 

buildings with their spatial and architectural structures intact, to buildings that were deeply 

refurbished by the CRUARB, or more recently by the Urban Rehabilitation Society. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45 - Case study variants location 

 

7.2.2 – Case Studies Survey 

The geometrical and construction data retrieved from the initial fieldwork were entered in the 

CAD and analysed, both statistically and by literature comparison. To further complement this, 

a scrutiny was performed in the CRUARB56 and PortoVivo SRU archives, in order to find 

available surveys and refurbishment projects. Furthermore, the glazed elements were 

                                                           
56

 - This archive is currently available at Casa do Infante – Oporto Historical Archive. 
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geometrically analysed in the CAD with the objective of obtaining the necessary parameters 

for the thermal modelling. Through direct observation, drawing analysis and direct household 

information, it was possible to define the materials and the construction systems present in 

the case studies57. The preparation of the survey and questionnaire was conjugated with the 

detailed analysis of the modelling software in order to ensure that all the necessary 

information was collected. 

 

7.2.3 – Household Questionnaire 

The objective of the questionnaire was to provide additional data about the human behaviour 

in the use of the dwelling, which was identified as a fundamental aspect in the energy 

efficiency framework for traditional buildings. At the same time, this information enables 

performing more accurate the simulations and avoiding bias. 

 

To participate in the study, the households had to be living in their homes for at least one year, 

as this allows a correspondence between weather, energy and behaviour patterns in a normal 

yearly cycle. When these criteria could not be met, it was necessary to select another building 

of the same variant. The researcher filled in the questionnaire by directly inquiring the 

inhabitants. The person answering the questionnaire needed to be eighteen years or older in 

order to represent their family. The information obtained from the participants included the 

identification of their pattern of use, which influences the energy consumption. This covered 

the identification of available equipment58, the general degree of satisfaction in terms of 

several comfort parameters, and the identification of their sense of identity towards the 

building and the historic site. Additionally, they signed a consent allowing access to their 

energy consumption data, covering two complete years (provided by the energy supplier). 

 

The contact with the household was initiated once the ethical approval from the Oxford 

Brookes Ethics Committee had been obtained. The questionnaire and all documentation were 

translated into Portuguese and provided to the families participating in the study. All 

participants signed the informed consent to participate in the study.  

 

                                                           
57

 - Drawings and data from the survey are in Appendix B. 

58
 - This covers heating, cooling, DHW, cooking, entertainment and lighting. This information was also confirmed by 

the direct observation of the equipment. 
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7.3 – Survey Results 

The case studies analysis allowed a detailed vision of each59. In the next sub-sections the 

results are analysed and described, in order to achieve an overall perspective that may be 

applicable for the entirety of Oporto’s traditional buildings. 

 

7.3.1 - Buildings and Energy in Oporto 

The energy matrix for Oporto (AdEPorto et al., 2008) and the household energy survey 

(AdEPorto and UCP, 2011) revealed in detail the actual energy consumption profile and 

consequent CO2 emissions. Due to the historic background of the city, energy policies have 

always been promoting cheap electricity, which is also presently the most commonly used 

energy source in the city (figure 46). The final energy consumption for electricity was of 5.6 

MWh/year per inhabitant, compared to the national average of 4.3 MWh (AdEPorto et al., 

2008). Consequently, the CO2 emissions associated with electricity were also the most 

relevant, accounting for 50% of the total share (figure 47). 

 

Figure 46 – Energy consumption in Oporto by energy sources based on AdEPorto et al.(2008, p.26) 

 

Figure 47 – CO2 emissions associated with the energy sources in Oporto based on AdEPorto et al.(2008, p.26) 

                                                           
59

 - The detailed data was inserted in the Appendix B. 
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Figure 48 – Energy demand by sector in Oporto (detailing the building sector in households and services sub-
sectors) based on AdEPorto et al.(2008, p.29) 

 

The demand side of energy consumption for Oporto was mainly associated with buildings, 

both in primary and final energy (figure 48), with this sector being responsible for 55% of the 

total CO2 emissions during 2004 (AdEPorto et al., 2008). A detailed look into this sector reveals 

that the household and the service sub-sectors were relatively equivalent in terms of energy 

demand, which was also shown in their share of CO2 emissions, 23% and 32% respectively. In 

residential buildings the primary and final energy consumption were also dominated by 

electricity (figure 49), which corresponded to 86% of this sub-sector’s total CO2 emissions 

(AdEPorto et al., 2008). When comparing the energy-associated emissions from the domestic 

sector with the national scores, it is possible to verify that they were considerably higher (1.2 

tons against 0.8 tons of CO2 per inhabitant in a year) (AdEPorto et al., 2008). This framework 

highlights the fact that the energy consumption in Oporto’s residential buildings and its 

environmental consequences are a problem that must be mitigated. The Oporto Energy Matrix 

divided the domestic energy demand sub-sectors (AdEPorto et al., 2008), showing that heat 

production (cooking, water heating and space heating) accounted for 71% of the total primary 

energy consumed (figure 50). 

 

9.00% 

33.00% 

58.00% 

26.00% 

32.00% 

8.00% 

45.00% 47.00% 

21.00% 
26.00% 

Indust. & others      Transportation Buildings Households Services

Energy Demand in Oporto by Sector (2004) 
Primary energy Final energy



The investigation of energy efficiency measures in the traditional buildings in Oporto World Heritage Site: Joaquim Flores 

160 

 

Figure 49 – Residential buildings’ primary and final energy consumption for Oporto based on AdEPorto et al.(2008, 
p.32) 

 

 

Figure 50 – Energy demand for Oporto’s residential sector based on AdEPorto et al.(2008, p.35) 

 

A national survey addressing the domestic energy consumption confirmed this scenario, 

showing that the three heating sub-sectors accounted for 84.1% of the total final energy 

consumed in Portuguese homes, which is close to the 78% identified in Oporto. This data also 

revealed that the cost involved with heat represented 78.3% of the total energy expenses in 

dwellings (INE and DGEG, 2011). Lighting had a small impact in the overall energy 

consumption, both at national and at Oporto levels. The amount of energy used for space 

cooling was insignificant at both levels, revealing the settled Portuguese cultural behaviour of 

disregarding the use of cooling equipment in homes. A recent energy survey for Oporto further 

detailed the three heat sub-sectors, confirming electricity as the main energy source (AdEPorto 

and UCP, 2011). For cooking, the use of mixed solutions (gas/electricity or gas cylinders) was 

identified, which complement the main energy source (figure 51). The space heating data 

showed that electricity was the most commonly used source for this purpose, with 54% of the 
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household relying on electrical devices. Moreover, a significant number of households (23%) 

affirmed that they were not heating their homes at all. This could be associated with fuel 

poverty problems or attributed to the good thermal performance of their houses (figure 52). 

Diesel and natural gas were used scarcely for space heating, which lead to infer that the 

central systems were not commonly used and that most households probably use individual 

electric devices or gas cylinders for heating their homes. The DHW scenario reinforces the 

previous conclusions, as electric cylinders and gas water heaters were used in 90% of scenarios 

(figure 53). 

 

 

Figure 51 – Energy sources for cooking in Oporto’s residential sector based on AdEPorto and UCP (2011, p.1) 

 

 

Figure 52 - Energy sources for space heating in Oporto’s residential sector based on AdEPorto and UCP (2011, p.1) 

 

 

Figure 53 - Energy sources for domestic water heating in Oporto’s residential sector based on AdEPorto and UCP 
(2011, p.1) 
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7.3.2 – Buildings 

The survey of the case study dwellings confirmed the general description made in chapter six 

about Oporto’s traditional buildings and reinforced the previously identified homogeneity. The 

physical characteristics of the case studies shown in table 24 also confirm the similarity with 

those identified in the research area’s overall survey. 

 

The case study buildings are mainly from the eighteenth and nineteenth centuries, which was 

identified as the predominant ages of the current constructions, although it is possible that 

some of them were originally from previous periods (cases 1, 3, 4, 5, 6 and 7). Cases 2, 8 and 9 

belong to periods that can be identified more easily, as they resulted from the urban 

transformations of the eighteenth (case 2) and nineteenth (case 8 and 9) century. Case 10 was 

an exception, because it revealed complex overlapping construction ages prior to the 

eighteenth century. This scenario is consistent with the age distribution verified in the research 

area selection where the eighteenth and nineteenth centuries were dominant, accounting for 

83.77% of the total building stock (figure 54). 

 

 Table 24 – Main characteristics of the case study buildings 

 

In terms of recent refurbishment, the cases covered a balanced distribution between buildings 

with intervention (6) and without (4). However, the refurbished cases encompassed diverse 

situations, which ranged from very light interior refurbishment (case 1) to deep remodelling 

where only the external envelope remained of the original building (cases 4, 5 and 6). Cases 2 

and 8 were subject to deep conservation measures, maintaining their traditional construction 

systems, which retrofitted. Most of the buildings presented overall a good state of 

conservation, with the exception of cases 3, 7, 9 and 10, which were the buildings without 

recent refurbishment. From this last group, cases 7 and 9 were in a bad conservation 

condition, revealing the long-time absence of conservation works. 

 

From street

Case Variant Main Age Storeys Width Lenght Bays Refurbishment terms

1 3b Mid XIX 4 7 20.5 3 Moderate conservation work  2005

2 3b Top XVIII 7 7 13.2 2 Moderate conservation work in C. 2006

3 3a Top XVIII 6 5.4 15.6 2 No. (1979 CRUARB's project not executed)

4 4 Top XIX 5 3 x 4.1 12.25 3 x 2 Substantial conservation work in 1976 by CRUARB's

5 4 Mid XIX 5 3 x 4.1 12.25 3 x 2 Substantial conservation work in 1976 by CRUARB's

6 3a Mid XVIII 6 3.4 + 3.7 15.8 2 x 2 Substantial conservation work C. 2000 by CRUARB's

7 2 Mid XVIII 4 6.43 5.98 2 No

8 1 Top XIX 5 C. 6.22 C. 11.68 4 Substantial conservation work in C. 2008

9 2 Top XIX 5 C. 3.84 C. 7.9 2 No

10 1 Mid Before XVIII 4 C. 9.27 C. 5.52 2 No

Main Facade



Chapter Seven: Case Studies First Stage Findings 

163 

 

Figure 54 – Research area buildings age distribution 

 

7.3.3 – Dwellings 

It was possible to confirm that in the most common variants (3a and 3b), the central stairs 

were still a fundamental element for spatial organisation (figure 55). In the buildings without 

profound refurbishment, these stairs divided the house into front and rear parts. The variants 

located at the corners (1 and 2) presented an irregular shape, with the stairs being located in a 

corner to allow a better distribution of the rooms. In the ‘variant 4’, the stairs were located at 

the rear party wall, freeing up the single street facade for allowing natural light to enter into 

the rooms. Independently of their position, the stairs still functioned as an air and light 

‘chimney’, as explained. Even in the deep-refurbished buildings, the traditional space 

organisation remained based around the stairs. However, these cases showed an effort on 

space rationalisation by reducing the circulation area (table 25). An extreme example for this is 

case 6 where the circulation area was reduced to 3% of the total dwelling area, as opposed to 

27% in a similar, non-refurbished variant (case 3). The space organisation also shows that most 

of the buildings possessed ‘wet rooms’ (kitchen and WC) in the back facades, which allowed 

for the main rooms and/or living rooms to be located on the opposite street facades. 

 

 

Table 25 – Area distribution in the houses 

 

16.23 % 

32.98 % 

50.79 % 

Before XVIII XVIII XIX

Buildings Age 

Case 1 Case 2 Case 3 Case 4 Case 5 case 6 Case 7 Case 8 Case 9 Case 10

spaces area (%) area (%) area (%) area (%) area (%) area (%) area (%) area (%) area (%) area (%)

circulation area 11 21 27 7 10 3 15 8

living room area 48 59 51 68 75 73 72 64 40 83

wet room area 17 10 15 11 11 23 28 19 16 17

common area 24 10

storage area 7 14 4 1 2 36
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From the geometric parameters listed in table 26, it is possible to quantitatively confirm the 

relevance of the glazed elements ratio in relation to the external wall surface, reaching a 

maximum of 48.67% in case 6. The mean value identified was 27.6%; however, four cases 

presented values above 40% (cases 1, 5, 6 and 9). 

 

Figure 55 – Houses space organization 
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Table 26 – Case study dwellings main geometric parameters 

 

7.3.4 – Construction Systems 

The solid granite walls (0.40 to 0.70m thicknesses) were predominant on the building 

envelope, clad with several types of finishes. The traditional plaster was the most common of 

these, but slate and ceramic glazed tiles were also found. Plaster was predominant in the 

internal finishes, with ceramic tiles being present in the kitchen and WC spaces. The 

lightweight traditional walls were also present, made of timber studs and finished exteriorly 

with corrugated iron cladding or slate tiles. These usually appear in the extensions or closing 

facades between party walls, as traditionally occurring in the corbelled facades. No insulation 

was identified in any of the surveyed exterior walls. The roofs were all covered with the 

traditional ceramic roof tiles, confirming the results from the total research area survey. The 

traditional wood structure without insulation was still maintained in the roofs. Case 8 posed an 

exception, because insulation had been introduced during recent refurbishment work. In 

general, the buildings could be considered traditional in terms of their envelope, which was 

preserved even in the deeply refurbished cases. 

 

The majority of the surveyed exterior window frames were original and single glazed. In the 

refurbished cases, a new windows design was replicated in the traditional frames. Once again, 

the exception was case 8, where a double glazed PVC frame was introduced. The existing 

original frames proved to be a weak point, because they allow air drafts due to a lack of 

maintenance over the years. The inner shutters were still the most common solar control 

device and were used in conjunction with light transparent curtains, which also serve the 

purpose of privacy. In the houses without inner shutters, they had obviously been removed, a 

step that the inhabitants expressed regret about. 

Volume Average Ratio

(m³) ceiling Volume

height to Area

Case Variant Floor Ceiling
External 

Walls

Internal 

Walls

Total 

Glazing
(m) (m)

1 3b Mid 160.30 61.20 61.20 28.70 254.30 12.50 2.86 23.09

2 3b Top 314.80 171.80 173.70 78.60 349.90 13.60 3.10 28.94

3 3a Top 269.50 209.30 210.80 134.40 428.60 12.20 2.93 35.05

4 4 Top 174.80 78.20 78.20 56.70 239.70 11.90 2.49 22.14

5 4 Mid 151.30 46.70 46.70 33.20 276.60 15.00 3.29 25.09

6 3a Mid 221.80 80.50 80.50 45.40 288.30 22.10 2.76 24.82

7 2 Mid 62.50 22.60 22.60 25.50 105.80 3.20 2.77 11.06

8 1 Top 360.80 186.00 186.00 161.80 433.70 38.10 3.46 27.69

9 2 Top 101.00 63.60 62.60 45.50 205.40 21.40 2.96 27.35

10 1 Mid 83.80 35.30 35.30 41.90 136.90 3.40 2.39 11.69

Area (m²)



The investigation of energy efficiency measures in the traditional buildings in Oporto World Heritage Site: Joaquim Flores 

166 

 

In term of inner construction systems, a clear difference was found between the original and 

the significantly refurbished buildings, encompassing cases 4, 5 and 6. In the first group, the 

horizontal system was still based on the traditional wood beams with solid hardwood flooring 

and stucco or lath and plaster ceiling, as described in chapter six. The inner partitions were 

made from traditional timber stud walls covered with lath and plaster (0.13m – ‘tabique’). The 

same type of construction system was used for the exterior lightweight walls with the above 

mentioned cladding. On the other hand, in the deeply refurbished cases new construction 

systems, including heavy concrete in the structural elements and brick or gypsum plasterboard 

in the inner partition walls were introduced (figure 56). 

 

Figure 56 – Homes construction systems 
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7.3.5 – Occupation 

The interviews with the inhabitants revealed that all houses were rented and owned by private 

proprietors, religious institutions and the Oporto city council, which was the most frequent. 

This confirms the previously explained dwellings ownership framework for Oporto (table 27). 

 

 

 

 

 

 

Table 27 – Dwellings 
ownership 

 

 

 

 

 

 

 

 

Table 28 – Cases occupation by age 
breakdown 

 

Families composed of four or five persons occupied the majority of the dwellings (table 28). 

Due to the small sample, this data is not representative of the framework revealed by the last 

Oporto Census, where most of the dwellings were found to be occupied by families with 1 

(31%) 2 (32%) or 3 elements (20%) (INE, 2012). The same situation occurs with the occupant’s 

age, as most dwellings are occupied by individuals with less than 18 years (38%) or between 18 

and 64 years of age (54%). The last Census revealed that in Oporto 23% of the inhabitants are 

older than 65 years, which confirms the perception of the existence of an aging population in 

the city. However, it is necessary to take a deeper look into the family composition found in 

the surveyed cases. Most of the adults were 50 to 59 year old and the couples were mostly 

grandparents, which had their grandchildren living with them, either permanently or just 

during the day. This reveals the existence of complex social networks that bias the statistics. 

The direct contact revealed that these families have a relatively low income and pay low rents. 

Cases Variant Ownership Owner

1 3b Mid rented Private

2 3b Top rented Religious Institution

3 3a Top rented Oporto City Council

4 4 Top rented Oporto City Council

5 4 Mid rented Oporto City Council

6 3a Mid rented Oporto City Council

7 2 Mid rented Private

8 1 Top rented Private

9 2 Top rented Private

10 1 Mid rented Private

Cases Variant <18 18-64 >65 total

1 3b Mid 3 2 0 5

2 3b Top 3 3 0 6

3 3a Top 1 3 0 4

4 4 Top 0 3 1 4

5 4 Mid 2 2 0 4

6 3a Mid 1 2 0 3

7 2 Mid 3 2 0 5

8 1 Top 0 0 1 1

9 2 Top 2 3 0 5

10 1 Mid 0 1 1 2

Occupants per age
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This framework of tenants and homeowners increases the difficulty of retrofitting or 

refurbishing the buildings, reducing the feasibility of such operations as previously pointed out. 

 

In terms of the occupation profile variation, it is evident that the pattern was stable along the 

year without holiday periods. Only two cases presented summer variations (cases 8 and 9) and 

in one of those, the absence in August was justified with family obligations. The same situation 

occurred with during weekends and bank holidays, as only one family showed a different 

pattern on the occasions (case 7). The weekday profile is directly connected to the mostly local 

professional and social life, as most of the dwellings were occupied during the day and many 

families have lunch at home every day. 

 

The majority of the tenants exhibited a high level of attachment to the place and were proud 

of living in the historic city centre. Mainly, this resulted from the long lasting social bonds 

developed towards the place. Most of them were born there or were living in the area for 

decades. The cases with lower levels of attachment resulted from a more recent displacement 

to the area or to the high levels of social and home degradation. Moreover, it is possible to 

point out that the attachment found towards the buildings and the site was mainly a result 

from social and emotional values. Even though some tenants revealed awareness of the World 

Heritage condition, the architectural value of the building and/or its specific elements was not 

relevant. 

 

In table 29 lists the overall comfort perception in the dwellings as stated by the inhabitants. 

The answers given may reveal the overall perception throughout the year and not the concrete 

conditions at the moment of the interview, which was the objective explained to the 

participants. This also became clear with the noise and light parameters, which were classified 

as quiet or bright, even when the measured values were contradictory to the participant’s 

opinion. Only two households (case 7 and 9) clearly remarked an overall bad comfort 

sensation, corresponding directly to those who were living in a degraded building. The majority 

of inhabitants (60%) had a positive or neutral perception of comfort. This could be explained 

by an acceptable thermal performance of the buildings and/or the adaptive behaviour of the 

households, and may explain the low use of space conditioning equipment. 
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Table 29 - Total questionnaire results 
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7.3.6 - Energy 

All equipment used was powered by electricity, with the exception of the stoves, which are 

powered by 13 kg butane gas cylinders (table 30). Case 10 was the only case where all 

equipment was powered by electricity. The surveyed dwellings presented a very similar range 

of appliances, with washing machines and refrigerators being present in all houses. The 

majority of the appliances were old and inefficient, presenting an improvement opportunity. 

However, it is important to mention that in the recent acquisition of new equipment the 

households revealed a predisposition for choosing more efficient models. In table 31 the 

percentages of energy consumed by the diverse equipment types in each dwelling are shown, 

revealing that the LPG share is relatively high. 

 

Most of the houses had a large number of TVs, with a significant share of plasma TV, which 

have a high energy consumptions. The group of entertainment equipment also comprised DVD 

players, several types of music players and cable TV decoders. The majority of the Hi-Fi 

equipment identified was old and the inhabitants mentioned that they use it very occasionally. 

The stand-by mode associated with this equipment was identified in all houses, constituting a 

potential source for improvement. 

 

Lighting was done through a mix of compact fluorescent (CFL), traditional fluorescent, halogen 

and incandescent lamps. Although most of the families use CF Lamps, they coexist with the 

traditional incandescent ones. Halogen lamps were less common and the traditional 

fluorescents were identified in all cases, especially to light the kitchen spaces, where they 

remained turned on for longer periods. The replacement of the old lamps by efficient CFL’s is 

also an improvement opportunity. Like equipment, the inhabitants revealed a predisposition 

to choose lamps that are more efficient. 

 

All the houses used electric hot water cylinders to provide for their DHW needs, which is 

consistent with the city’s general framework. This equipment clearly presents an improvement 

opportunity, because it is powered constantly while the hot water is only required during 

specific periods of the day. Moreover, most of the cylinders were old models with low 

insulation, which aggravates their performance and reveals another improvement opportunity. 
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Table 30 - Equipment comparison  

C
as

e
 1

C
as

e
 2

C
as

e
 3

C
as

e
 4

C
as

e
 5

C
as

e
 6

C
as

e
 7

C
as

e
 8

C
as

e
 9

C
as

e
 1

0

6 
C

F 
la

m
p

s
3 

C
F 

la
m

p
s

7 
C

F 
la

m
p

s
18

 C
F 

la
m

p
s

1 
C

F 
la

m
p

3 
C

F 
la

m
p

s
1 

C
F 

la
m

p

1 
fl

u
o

re
sc

e
n

t 

la
m

p

1 
fl

u
o

re
sc

e
n

t 

la
m

p

2 
fl

u
o

re
sc

e
n

t 

la
m

p
s

1 
fl

u
o

re
sc

e
n

t 

la
m

p

1 
fl

u
o

re
sc

e
n

t 

la
m

p

2 
Fl

u
o

re
sc

e
n

t 

la
m

p
s

2 
Fl

u
o

re
sc

e
n

t 

la
m

p
s

2 
Fl

u
o

re
sc

e
n

t 

la
m

p
s

1 
Fl

u
o

re
sc

e
n

t 

la
m

p

2 
fl

u
o

re
sc

e
n

t 

la
m

p
s

6 
h

al
o

ge
n

 la
m

p
s

15
 h

al
o

ge
n

 

la
m

p
s

4 
h

al
o

ge
n

 la
m

p
s

5 
la

m
p

s
16

 la
m

p
s

14
 la

m
p

s
15

 la
m

p
s

6 
la

m
p

s
20

 la
m

p
s

11
 la

m
p

s
8 

la
m

p
s

3 
TV

3 
TV

3 
TV

1 
TV

3 
TV

1 
TV

1 
TV

3 
TV

1 
TV

1 
P

la
sm

a 
TV

1 
M

in
i-

TV
3 

P
la

sm
a 

TV
1 

sm
al

l T
V

2 
P

la
sm

a 
TV

2 
C

ab
le

 T
V

 b
o

x 

d
e

co
d

e
r

1 
C

ab
le

 T
V

 b
o

x 

d
e

co
d

e
r

1 
C

ab
le

 T
V

 b
o

x 

d
e

co
d

e
r

1 
M

o
d

e
m

 R
o

u
te

r

1 
D

V
D

 p
la

ye
r

2 
D

V
D

 P
la

ye
r

2 
D

V
D

 P
la

ye
r

1 
V

C
R

1 
R

ad
io

1 
H

i-
Fi

1 
H

i-
Fi

1 
H

i-
Fi

1 
H

i-
Fi

1 
H

i-
FI

1 
D

e
sk

to
p

 

co
m

p
u

te
r

1 
P

h
o

n
e

1 
P

h
o

n
e

1 
La

p
to

p
 

co
m

p
u

te
r

1 
G

as
 

st
o

ve
/o

ve
n

1 
G

as
 

st
o

ve
/o

ve
n

1 
G

as
 

st
o

ve
/o

ve
n

1 
G

as
 s

to
ve

1 
G

as
 s

to
ve

1 
G

as
 s

to
ve

1 
G

as
 s

to
ve

1 
G

as
 s

to
ve

1 
G

as
 s

to
ve

1 
El

e
ct

ri
c 

st
o

ve

1 
El

e
ct

ri
c 

O
ve

n
1 

El
e

ct
ri

c 
O

ve
n

1 
El

e
ct

ri
c 

O
ve

n
1 

El
e

ct
ri

c 
O

ve
n

1 
El

e
ct

ri
c 

O
ve

n

1 
M

ic
ro

w
av

e
1 

M
ic

ro
w

av
e

1 
M

ic
ro

w
av

e
1 

M
ic

ro
w

av
e

1 
M

ic
ro

w
av

e
1 

M
ic

ro
w

av
e

1 
M

ic
ro

w
av

e
1 

M
ic

ro
w

av
e

1 
Ex

tr
ac

to
r 

h
o

o
d

1 
Ex

tr
ac

to
r 

h
o

o
d

1 
Ex

tr
ac

to
r 

h
o

o
d

1 
Ex

tr
ac

to
r 

h
o

o
d

1 
Ex

tr
ac

to
r 

h
o

o
d

1 
Ex

tr
ac

to
r 

h
o

o
d

1 
El

e
ct

ri
c 

fr
yi

n
g 

p
an

1 
To

as
te

r
C

o
ff

e
e

 m
ac

h
in

e
1 

To
as

te
r

1 
fr

id
ge

 /
 f

re
e

ze
r

1 
fr

id
ge

1 
Fr

id
ge

 /
 

fr
e

e
ze

r

1 
Fr

id
ge

 /
 

fr
e

e
ze

r

1 
Fr

id
ge

 /
 

fr
e

e
ze

r

1 
Fr

id
ge

 /
 

fr
e

e
ze

r
1 

Fr
id

ge
1 

Fr
id

ge
 /

 

fr
e

e
ze

r
1 

Fr
id

ge
1 

Fr
id

ge

1 
fr

e
e

ze
r

1 
Fr

e
e

ze
r

1 
D

is
h

 w
as

h
e

r
1 

D
is

h
 w

as
h

e
r

1 
W

as
h

in
g 

m
ac

h
in

e

1 
W

as
h

in
g 

m
ac

h
in

e

1 
W

as
h

in
g 

m
ac

h
in

e

1 
W

as
h

in
g 

m
ac

h
in

e

1 
W

as
h

in
g 

m
ac

h
in

e

1 
W

as
h

in
g 

m
ac

h
in

e

1 
W

as
h

in
g 

m
ac

h
in

e

1 
W

as
h

in
g 

m
ac

h
in

e

1 
W

as
h

in
g 

m
ac

h
in

e

1 
w

as
h

in
g 

m
ac

h
in

e

1 
Ir

o
n

1 
Ir

o
n

1 
Ir

o
n

1 
Ir

o
n

1 
V

ac
u

u
m

 

cl
e

an
e

r

1 
H

ai
r 

d
ry

e
r

DHW

e
le

ct
ri

c 
h

o
t 

w
at

e
r 

cy
li

n
d

e
r 

e
le

ct
ri

c 
h

o
t 

w
at

e
r 

cy
li

n
d

e
r

e
le

ct
ri

c 
h

o
t 

w
at

e
r 

cy
li

n
d

e
r

e
le

ct
ri

c 
h

o
t 

w
at

e
r 

cy
li

n
d

e
r

e
le

ct
ri

c 
h

o
t 

w
at

e
r 

cy
li

n
d

e
r

e
le

ct
ri

c 
h

o
t 

w
at

e
r 

cy
li

n
d

e
r

e
le

ct
ri

c 
h

o
t 

w
at

e
r 

cy
li

n
d

e
r

e
le

ct
ri

c 
h

o
t 

w
at

e
r 

cy
li

n
d

e
r

e
le

ct
ri

c 
h

o
t 

w
at

e
r 

cy
li

n
d

e
r

1 
El

e
ct

ri
c 

h
o

t 

w
at

e
r 

cy
li

n
d

e
r

Heating

1 
El

e
ct

ri
c 

o
il

-

fi
ll

e
d

 r
ad

ia
to

r 

h
e

at
e

r

1 
El

e
ct

ri
c 

o
il

-

fi
ll

e
d

 r
ad

ia
to

r 

h
e

at
e

r 

1 
e

le
ct

ri
c 

re
si

st
an

ce
 

h
e

at
e

r

1 
El

e
ct

ri
c 

o
il

-

fi
ll

e
d

 r
ad

ia
to

r 

h
e

at
e

r 

1 
e

le
ct

ri
c 

fa
n

 

h
e

at
e

r

1 
El

e
ct

ri
c 

o
il

-

fi
ll

e
d

 r
ad

ia
to

r 

h
e

at
e

r 

2 
o

ld
 E

le
ct

ri
c 

o
il

-

fi
ll

e
d

 r
ad

ia
to

r 

h
e

at
e

r 

Cooling

1 
e

le
ct

ri
c 

fa
n

1 
e

le
ct

ri
c 

fa
n

1 
e

le
ct

ri
c 

fa
n

1 
El

e
ct

ri
c 

fa
n

Leisure Appliances
Environment

Lighting



The investigation of energy efficiency measures in the traditional buildings in Oporto World Heritage Site: Joaquim Flores 

172 

 

Table 31 – Percentage of equipment (LPG, entertainment and appliances) and lighting in the total yearly energy 
consumed (estimated from the equipment simulation)

60
 

 

Space heating and cooling in the dwellings was performed exclusively by portable space-based 

equipment. These heaters appeared in 70% of the surveyed homes and the most frequent type 

were the electric oil-filled radiators. The use of cooling devices was not very frequent, 

appearing in only 40% of the homes and was done exclusively through electric fans. This 

behaviour is consistent with the usual Portuguese pattern regarding heating and cooling, but 

can also be a consequence of the positive comfort sensation identified in the survey. In some 

of the cases, it could also be pointed out as a result of fuel poverty, especially in terms of 

heating. 

 

The global results of the energy consumption on each of the ten cases, during the reference 

years of 2009-201061 are listed in table 32. The Figure 57, figure 58 and figure 59 present 

graphically the comparison of all cases electricity consumption, respectively by day average, 

day average per m2 and day average per inhabitant. The figures reveal dissimilar patterns, 

reflecting the diversity of dwellings, occupant behaviour and equipment type. However, when 

comparing the consumptions by inhabitant they revealed to be relatively homogeneous, with 

the exception of case 8 that systematically presented higher values. This can be explained by 

the fact that it is the only single occupied dwelling as well as the one with the largest floor 

area. Case 5 always presented high electricity consumptions, independently of the type of 

                                                           
60

 - The values were obtained by estimating the consumption referring to the information obtained in the direct 
surveys about each device power rating and hours of use. 

61
 - The electricity company (EDP) supplied the consumption data covering the period between the middle of 2008 

until the middle of 2011. The years of 2009 and 2010 were the only considered, because they were complete. The 
householders informed directly their average gas consumptions. 
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analysis performed. It is important to point out that this building was extensively refurbished, 

with the introduction of concrete floors, a closed inner patio and a large area of single glazed 

metal frame facing the patio. Furthermore, this case is a middle floor in a narrow street, which 

reduces the solar gains and aggravates the indoor environmental conditions, leading to a high 

use of heating equipment as confirmed by the tenants in the survey. 

 

The average consumption of energy per person among the 10 cases was of 1,734.6 kWh per 

year, which is significantly lower than the average of 3,067.66 kWh identified for Portugal in 

2011 (Eurostat, 2013; INE, 2012). Case 7 presented a yearly consumption of 1,574.85 kWh, 

evidencing the area bias. Only case 5 presented a yearly consumption above the national 

average (4,446.68 kWh/person), which is consistent with the pattern identified for this case in 

all the indicators. The results also confirmed the doubts raised in recent literature about the 

established vision that systematically refers to traditional buildings as performing poorly in 

terms of energy and associated building physics parameters (Baker, 2010; Baker, 2011; May 

and Rye, 2012; Rye, 2011; Rye and Hubbard, 2012; Rye et al., 2012). 

 

Table 32 - Total energy consumption results (electricity data from the supplier and gas data from the occupant’s 
information) 

Figure 57 – Electricity daily average consumption for all cases in 2009-2010 (data from EDP Company) 
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Figure 58 - Electricity daily average consumption per m
2
 for all cases in 2009-2010 (data from EDP Company) 

Figure 59 - Electricity daily average consumption per person for all cases in 2009-2010 (data from EDP Company) 

 

7.3.7 – Sensors Survey 

Additional temperature measurements were taken in some selected case studies, with the 

objective of obtaining detailed data about the thermal behaviour of these traditional buildings. 

Referring to this data, it was possible to calibrate the thermal models and achieve more 

accurate results. 

 

Eight sensors were placed in four case studies (2 sensors each), logging information during a 

month at half hour intervals, from the middle of May until the middle of June 2011 (table 33). 

This period has usually moderate temperatures, reaching average maximum values of 22.8˚C 

and occasional peeks of more than 30˚C (Instituto de Metereologia, 2012). The acquired 
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temperatures were crossed with the data for the same period from the Portuguese Weather 

Institute (Instituto de Meteorologia), used as reference. 

 

Table 33 – Temperature and humidity sensors placement 

 

In case 1, the temperature variation showed a constant pattern between the front and the 

back sensors. The values ranged from 1˚C to 3˚C in average, with the front room being always 

hotter than the back one. The comparison with the reference data gives a relatively stable 

pattern, with variations between day and night values. During the day, the temperature was 

averagely lower inside the house (4˚C to 6˚C). On the other hand, during the night the pattern 

verifies average higher values inside the house (6˚C to 9˚C). The temperature turning points 

occurred in the middle of the morning (10.00h to 11.00h) and in the beginning of the evening 

(18.00h to 19.00h). The differences between the solar exposition of the back and front 

facades, and the influence of the high thermal mass of the building, could explain this 

behaviour. 

 

The results of case 2 showed a constant variation between inside and outside temperatures, 

which remained always lower. Interiorly, the difference varied between 2˚C and 7˚C, with the 

upper floor normally remaining hotter. The top floor sensor logged higher measurements 

during the day, reaching 5.5˚C higher than the one on the fifth floor. During the night the 

inverse occurred, with the lower floor achieving temperatures 2.5˚C higher than the higher 

floors. The turning points usually occurred at 23:00h-00:00h and 11:00h-12:00h. The relation 

between the exterior temperatures also showed day and night variations, with the higher 

values occurring in the interior in the middle of the night (10˚C downstairs and 9˚C upstairs). 

The turning point happens in the middle of the morning when the inner measurements 

reached 4.5˚C and 2˚C lower than the outside, on the 5th and on the 6th floor respectively. 

These patterns can be justified by the uninsulated lightweight construction system of the 

traditional roof, which renders the top floor very permeable for the outside temperatures. In 

Case Variant Sensor Sensor Number Floor Room

1 3b middle floor ibutton 91 21 0000001EC9E9 2 Living room - SE wall

1 3b middle floor ibutton FE 21 00000022A9E6 2 Corridor back - NW wall

2 3b top floor ibutton 6A 21 0000001D0738 5 Stairs hall - SW wall

2 3b top floor ibutton A9 21 00000022B692 6 (attic) Bedroom - wood ceiling

3 3a top floor ibutton B4 21 0000001CCE9C 4 Kitchen - SE Wall

3 3a top floor ibutton 9D 21 0000001CFCCC 4 Bedroom -NW Wall

8 1 top floor ibutton F5 21 0000002077A1 3 Living Room - W wall

8 1 top floor ibutton 5A 21 0000001D6680 4 Bedroom - W wall
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contrast, the lower floor with higher thermal inertia presents higher temperatures during the 

night when the wall is releasing the accumulated heat. 

 

The case 3 sensors revealed a constant variation between the front and back sensors (2˚C to 

3˚C), with the southeast room always remaining hotter. The general profile is very similar to 

case 1. The comparison with the reference data gave a slightly irregular pattern, with 

variations between day and night values. During the day, the temperature was irregular, 

sometimes being lower inside the house (6˚C to 7˚C). When the temperatures were higher 

inside, they usually reached the lowest difference during the day. During the night, the pattern 

showed a stable average, reaching the interior measurements 7˚C to 10˚C higher. The turning 

points were generally in the beginning of the morning (08.00h to 09.00h) and in the beginning 

of the evening (18.00h to 19.00h). The different solar exposition of the back and front facades 

and the high thermal inertia of the building wall may explain this pattern. 

 

For case 8, the higher interior measurements occurred predominantly in the top floor 

(maximum of 2˚C), with a high variability during the first half of the day. The comparison 

between outside and inside temperatures showed variations between day and night, with the 

higher inner values occurring in the middle of the night (maximum of 10˚C). During the day, 

the pattern is not uniform and the temperature gets lower inside (maximum of 5˚C). The 

difference between inside and outside temperatures achieved the lowest values when the 

highest daily temperatures were reached (around 30˚C). Despite this variability, it was possible 

to identify a turning point in the beginning of the morning (7.00h to 8.00h), when the inner 

measurements start approaching the outside values, and in the beginning of the evening 

(18.00h to 19.00h) when the values start to diverge. These patterns can be explained by the 

performed refurbishment, which insulated the traditional roof, leading to lesser variations 

between the two floors, when compared to the similar situation of case 2. 

 

The importance of thermal inertia for a building’s performance is a factor widely pointed out in 

the literature (IES, 2009; The Concrete Centre, 2012). The above results confirmed its role in 

the thermal performance of Oporto’s traditional buildings, which was verifiable through the 

measured temperature variation patterns in the four cases. In figure 60 the simplified thermal 

behaviour of these solid walls along the year is graphically interpreted. The major question to 

be addressed refers to the necessity of identifying the summer turning points in the heat 

exchange patterns, in order to devise a natural ventilation strategy that helps dissipating the 
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heat accumulated in the walls. This is of special importance, not only for the current situation, 

but also when taking into account the future weather predicting the raise of the temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 60 - Oporto traditional buildings solid walls thermal behaviour 

 

7.4 – Building Heritage 

The surveyed cases also validate the main architectural features that are responsible for 

shaping the visual integrity of Oporto’s traditional buildings that was identified in the previous 

chapter. The relation between the granite moulding and the cladding surface is clear in all 

buildings, with the exception of case 4 where no granite elements exist. Figure 61 shows an 

example of a facade where the granite architectural elements were coloured, highlighting the 

relation to be preserved. Breaking this delicate visual relation, damages the building’s heritage 

significance and consequently the World Heritage Site. This is extremely important when it 

comes to the introduction of external insulation, which must consider this surface balance. 

Figure 62 shows the negative impact resulting from this situation in a traditional building of the 

Oporto World Heritage Site. 

 

For a similar reason, the glazed ceramic tiles used in the walls of case 6 render the use of 

external insulation impossible (figure 63). The traditional tiles are included in the architectural 
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heritage elements to be preserved. The slate tiles or corrugated iron cladding62 placed on the 

facades pose similar constraints. However, in these cases it is technically possible to introduce 

insulation under the external cladding, along the timber battens used for their fixing. If this 

situation occurs in a street facade with granite mouldings, as shown in figure 64, it poses a 

similar problem for the surface relation mentioned above. When it occurs in party walls or in 

facades without granite elements, where the window studs are wooden and integrated in the 

cladding system (figure 63), the degree of flexibility is higher and mainly limited by the 

technical factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 61 – Case 2 main facade with granite mouldings in light yellow. 

                                                           
62

 - For decades, corrugated iron has been the material used traditionally for cladding the extensions in traditional 
buildings in Oporto and as such is a remarkable feature of the city. 
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Figure 62 – Historic centre building in Oporto 
where plaster is above the granite jambs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 63 – Case 6 main facade showing the relation 
between granite mouldings and glazed ceramic tiles 
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Figure 64 – Case 3 facade with slate tiles cladding 

 

The design of the traditional wood frames is another architectural element defining the 

heritage significance of traditional buildings. Their upgrade requires a careful approach in 

order to avoid negative heritage impacts. Figure 65, figure 66 and figure 67 illustrate several 

examples of negative consequences resulting from the changes introduced in the frames of 

various traditional buildings in Oporto. These are respectively, the replacement of the 

traditional wood by PVC or aluminium frames imitating the original design, the use of new 

frames imitating the sash, but using a different opening mechanism, and the introduction of 

special reflective glass. All these solutions may prove to be more energy efficient; however, 

they may cause diverse degrees of loss of the building’s authenticity. Therefore, it is possible 

to conclude that any upgrade addressing the traditional window frames (double glazing, 

secondary glazing or efficient glass) must retain the building’s authenticity by avoiding 

introducing dissonant visual changes in the original frame. Any change must be previously 

assessed with that objective. 
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Figure 65 – Aluminium frame imitating 
traditional casement design in traditional 
building in Oporto 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 66 - Wood frame imitating the 
traditional sash design in a traditional 
building in Oporto 
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Figure 67 – Original balcony door with special glass in a traditional building in Oporto 

 

The roofscape of Oporto’s historic city is another relevant aspect of the World Heritage Site. 

Changes to individual roofs have to be assessed in order to determine their impact on the 

overall site. The introduction of renewables (solar panels or wind turbines) must also consider 

this factor to avoid negatively affecting the traditional buildings (figure 68 and figure 69). The 

cumulative impact on the site is another crucial aspect, as shown in the photomontage of 

figure 70. What appears to have only a small impact on an individual building, even following 

the rules specified in the Oporto guidance (AdEPorto et al., 2010), turns into a major disruption 

when applied on a large scale, compromising the historic city roofscape and consequently the 

World Heritage Site. All design solutions must consider the aspects identified above and 

address them on the various levels of significance: element, building and site. 
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Figure 68 – Traditional building in Oporto with Photovoltaic panels on the roof 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 69 – Traditional building in Oporto with DHW solar thermal panel on the roof (street level view)  
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Figure 70 – Oporto World Heritage Site panoramic view from the South and solar panels photomontage 
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Figure 71 - Oporto World Heritage Site panoramic view from the South and solar panels photomontage (detail) 

 

7.5 - Conclusion 

Overall, the characteristics identified in the case studies validate the revision made in chapter 

six. This covers the building parameters, the dwellings’ spatial distribution, the construction 

systems and the architectural heritage elements. Moreover, this also validates the bottom-up 

approach as the identified variants verify the main typological characteristics of the selected 

research area. 

 

The occupants’ survey revealed the existence of a complex social network in the historic area, 

leading to a very wide inter-generational use of the dwellings, which are usually occupied by a 
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large number of persons. The attachment of the inhabitants to the historic site was mainly 

high, confirming the established long-term bonds. All inhabitants were tenants, which means 

that any energy efficiency improvements to the buildings have to be done in accordance with 

the Portuguese legal framework for renting, a factor that may lead to increased difficulties for 

undertake the measures. 

 

The overall perceptions of comfort related by the tenants were mainly positive. This was also 

confirmed in the energy use as heating and cooling was done by individual, space-based 

devices. This observation also coincides with the identified Portuguese energy framework. 

 

The DHW, appliances and lighting equipment revealed a potential for improvement as it was 

often shown to be inefficient. The poor conservation of the original frames leaded to high 

levels of air drafts, marking another margin for improvement. 

 

The temperatures measured by the sensor showed that the thermal mass of these buildings 

play a key role for their performance. The night and day variations also confirm this, 

highlighting the role that nocturnal ventilation can play to avoid overheating. 

 

The identified heritage constraints pose diverse limitations for improvements to the building 

envelope. The conservation of the visual integrity of Oporto’s traditional buildings is crucial to 

preserve the significance of the entire World Heritage Site. Based on this principle, were 

identified the main heritage limitations of the envelope. 

 

Furthermore, it is necessary to model the case studies in order to determine the baseline 

against which the simulation of the identified improvements will be assessed. The heritage 

constraints should be accounted for by incorporating all dimensions of the research in order to 

achieve the most efficient solutions. 
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Chapter Eight: Case Studies Modelling and Simulation 
 

8.1 - Introduction 

This chapter presents the results from the simulations performed on the case studies. Firstly, 

the methodology and the process used to accomplish it are covered. It starts with a definition 

of the baseline model, based on the physical and behavioural data acquired from the survey. 

The design scenarios were chosen beforehand based on the technical, behavioural and 

heritage perspectives. They were afterwards simulated and the results were benchmarked 

against the baseline for reference. 

 

8.1.1 – Modelling and Simulation 

Swan and Ugursal identified two variations of the bottom-up modelling, which were defined as 

the statistical and the engineering approaches. The first is based on the analysis of statistical 

data and simple surveys (including energy bills) and is used to “determine the energy demand 

contribution of end-uses inclusive of behavioural aspects” (2009, p.1833). The second uses 

detailed quantitative data and intensive computer simulations, encompassing the impact of 

new technological developments. Basically, this points to a division between the physical 

(fabric, systems) and the social modelling (behaviour of use in building, systems and 

equipment). The authors also mention the validity of crossing methodologies due to the 

complexity involved in the modelling of building stock and the limitations posed by a single 

approach on its own. The bias provoked by the use of subjective households’ data is larger 

than the limitations identified in lack of accuracy of the physical factors. Still, to achieve the 

best results the system relies on combining the two factors to obtain a realistic simulation. 

 

Accordingly, these two types of approaches were undertaken at the same time through three 

separate development stages. The approaches partially separated the physical elements 

(buildings’ fabric) from the occupancy and behaviour data, which presented variable degrees 

of accuracy and allowed diverse possibilities of implementing and measuring the design 

scenarios (figure 72). Moreover, the dynamic simulation took the interaction between the 

occupants, fabric and equipment control, into account which were correlated in the software. 

The assessment of the possible improvements in behaviour and equipment was done 

separately, which allowed measuring the results directly and in a simpler way, as they were 
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harder to simulate in the software. Using the thermal simulation model it was possible to 

evaluate fabric improvements, but also some behavioural aspects, like the use and control of 

natural ventilation, space conditioning and lighting. Despite the specific limitations of this 

research, it can be affirmed that the ideal process should have been to perform a unique 

simulation that integrates all the information into the thermal software. 

 

The first stage was based on modelling the direct energy, behaviour and equipment raw data 

achieved through the direct contact with the householders. This was described in the previous 

chapter, where the energy behaviour was identified through the case studies. The second 

stage outputted the baseline model from the thermal simulation software and from the 

equipment data. The last stage resulted from the simulation of the design scenarios and 

allowed making further conclusions by comparing the diverse stages. The simulated design 

scenarios followed the performed literature review and integrated the information of chapters 

six and seven, covering the buildings’ thermal performance and their heritage limitations. 

 

 

Figure 72 – Variants modelling framework 

 

8.1.2 - Model Calibration 

The simulation’s accuracy and reliability is improved by calibrating the model, as stressed in 

the literature (Heo et al., 2012; Tahmasebi et al., 2012; Weber et al., 2012). In the case of 

existing buildings, the ideal process should be done through on-site monitoring over a certain 

Design Scenarios 

building improvement simulation 
behaviour and equipment improvement 

simulation 

Baseline Model 

building dynamic modelling equipment modelling 

Base Line Data 

measured consumption occupancy behaviour 
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period of time. As this was not possible, some procedures were devised in order to overcome 

this situation. 

 

The electricity consumption was calibrated by crossing three sources: the measured data, 

outputs from the equipment and thermal models (table 34). The data from the EDP Company 

was statistically analysed in order to obtain the mean for two years. The values for each of the 

ten case studies were compared with the two models. The calibration process was done by 

levelling the consumptions of the models with the real data through fine-tuning the hours of 

use, which presented a higher degree of uncertainty. Gas-powered equipment (stoves) was 

not considered, as no actual measurements were available. As becomes evident in table 34, 

the dynamic model baseline revealed to be closer to the real consumption. The differences 

shown in the equipment model are irregular and very small in most of the cases. However, in 

certain cases it they were revealed to be more than 1,000 kWh per year. Nevertheless, it is 

possible to confirm that both models are reliable enough for measuring the variations in 

energy consumption from the respective simulations. 

 

 

Table 34 – Electricity consumption comparison between the real data and the equipment and dynamic models 
baseline 

 

The temperatures acquired by the sensors were compared with the ones outputted from the 

dynamic simulation for the same time period and for the same room. The objective was to 

validate the thermal behaviour of the models and identify if they presented remarkable 

divergences or were reliable. 

 

Real  comsumption 

(kWh/year)

Equipment model  

(kWh/year)

Dynamic model  

(kWh/year)

electrici ty electrici ty electrici ty

Case 1 3641.0 2261.9 3040.1

Case 2 5978.3 6113.9 5344.0

Case 3 2950.3 2685.3 2420.8

Case 4 3896.9 3854.5 3667.6

Case 5 5692.7 5978.8 5289.4

Case 6 4139.0 4032.0 4041.0

Case 7 1796.8 2016.4 1974.2

Case 8 3421.8 3789.3 3409.1

Case 9 804.1 1423.9 1028.9

Case 10 2605.7 1954.7 2427.1
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The data was compared and graphically analysed for each sensor, as exemplified in figure 73 

and figure 74. The temperature patterns were similar in most of the cases and exhibited all a 

diverging at the end of the period. This is most likely caused by a climate anomaly regarding 

the typical weather used in the simulations. Overall, it can be affirmed that the measured data 

confirms the validity of the dynamic simulation, which can be classified under this aspect as 

accurate. 

 

 

 

 

 

 

 

 

 

 

Figure 73 – Comparison between modelled and measured temperatures (Case 1 – Sensor 4) 

 

 

 

 

 

 

 

 

 

 

 

Figure 74 - Comparison between modelled and measured temperatures (Case 2 – Sensor 1) 

 

8.1.3 – Equipment Model 

The protocol used to obtain information in the survey was based on a similar study undertaken 

by Gupta and Chandiwala (2010). It was designed to collect data about the equipment (model 

and brand), its location, the power rating and the average usage hours. Assuming a year with 
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365 days or 52 weeks, the use was converted into hours/year and then multiplied by the 

power rating, obtaining the estimated yearly consumption. The process was performed for all 

equipment as well as lighting, where a similar consumption was estimated. The total sums 

correspond to the household’s yearly consumption in kWh (electricity and butane gas), 

constituting the equipment model baseline63. The data was also introduced in the simulation 

software to achieve more accurate results, both in terms of the internal gains for each room as 

well as for the total energy consumption. 

 

8.1.4 – Dynamic Model 

To perform the dynamic simulation it was necessary to collect a large amount of data, covering 

the fabric’s thermal and geometrical properties, building systems, equipment and the profiles 

of occupation and use. The templates, databases and data relations used in the software are 

shown in figure 75. After the creation of the 3D physical model, the introduction of data 

focused on the construction and profile databases, which provided information about the 

thermal properties of the fabric and about the control of lighting, equipment, systems and 

openings. The data was mainly obtained through the surveys and complemented with archive 

material, CAD analysis and literature. Behaviour and control were contributed from the 

householders64. 

 

It is widely pointed in the literature that the materials of traditional construction systems still 

have some uncertainty associated with their thermal parameters. Therefore, the existing 

guidance was reviewed by cross referencing several sources. The absence of combined layers 

in modelling software was revealed to be a weakness, because many of the traditional 

construction systems combine several materials in a layer. To overcome this, the combined 

layers were modelled externally in the BuilDesk-U 3.4 software, using the detailed information 

achieved in the dwellings survey and complemented with the literature review. The results 

obtained were then applied in the thermal software as a simple layer in the construction 

systems database65. 

 

                                                             

63 - The tables with the detailed calculation for each case study are in the appendices. 

64 - Detailed information about all the variables used in the thermal modelling is listed in the appendices. 

65 - All the parameters of the materials used in the modelling of the ten case studies construction systems are listed 
in the appendices. 
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Figure 75 – IES VE PRO data and modules integration 

 

8.2 – Modelling 

The thermal and the equipment baseline models were performed using the IES-VE PRO and 

the Microsoft Excel spreadsheet tools. The first model aimed to identify comfort levels in the 

usually occupied rooms (bedrooms and living rooms), global energy consumption and 

associated carbon emissions. The second model outputted the average energy consumed in a 

year, subdivided by all the equipment identified in the survey. The baseline models allow 

establishing a reliable reference to evaluate the results obtained from the simulations, 

following the method used by the Historic Scotland (IES, 2009). 

 

After the calibration, the design scenarios were simulated in both models, addressing the 

improvement opportunities identified from the analysis of the baseline and from the direct 

survey. They were selected from the framework identified in chapter four and further assessed 

for their predicted heritage impact in the previous chapter. The final step aimed to identify the 

efficiency of the solutions by weighting the several previously defined components global 

heritage impact assessment, energy and carbon savings, cost effectiveness, and comfort 

against each other. 
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8.2.1 – Design Scenarios 

Several design scenarios were simulated, all addressing the improvement opportunities 

detected in the previous chapter. A conservative approach was taken to address the most 

feasible scenarios, i.e. simple solutions which can be easily implemented by the households. 

Additional measures could have been considered, but their technical difficulty and costs led to 

their exclusion from the design scenarios. These included the introduction of natural gas66, the 

use of more efficient and sophisticated systems to perform DHW, heating and cooling (central 

systems), or the introduction of emerging insulation materials. The gas equipment was not 

simulated, because it consisted only of stoves, whose replacement was not relevant in terms 

of energy savings. For this reason, the final savings achieved by this simulation refer to 

electricity only. 

 

The efficient equipment data used in the design scenarios was selected from the European 

project Topten database (Quercus, 2012). The stand-by data was retrieved mainly from the 

SELINA project database (2011). To obtain the pay-back indicator, the cost of each measure 

and the calculated savings, both in energy and cost, were determined (Cype Ingenieros, 2011; 

Quercus, 2012). With this data, it was possible to determine the years necessary to obtain a 

return from the investment. 

 

To address the identified improvement opportunities, three scenarios were selected to be 

simulated in the equipment model (table 35). The first scenario simulated turning off the 

stand-by mode on entertainment devices (TVs, DVD players, HI-FI, cable/TV boxes, etc.), which 

is a behavioural approach without any financial costs involved. 

Table 35 – Design scenarios used in the equipment simulations 

 

                                                             

66 - More environmentally friendly than electricity, but not available in the area. 

Scenario Measure Modelled in Excel table

1 Nulling equipment standby Removed the values of stand-by in 

entertainment

2 Replace existing lamps with more 

efficient CFL

Replaced the incandescent and 

halogen lamps power rating with CFL 

equivalent

3 Replace existing equipment with 

more efficient models

Replace the identified inefficient 

equipmet power rating with the 

equivalent from more efficient models
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The next scenario addressed the replacement of inefficient lamps (incandescent and halogen) 

with compact fluorescent. The majority of the householders revealed a predisposition to 

implement this measure. A gradual replacement of the existing lamps was considered the most 

feasible way for this scenario. Therefore and because of its relatively low cost, this scenario 

was disregarded in the pay-back analysis. 

 

The last scenario was based on the replacement of inefficient appliances identified with new 

models. This measure focused on the electric equipment with high consumptions, covering 

mainly large appliances (washing machines, dishwashers, ovens, fridges and freezers), but also 

the TVs. To increase the feasibility of this measure, it was only approached in a medium-term 

scenario, again based on their gradual replacement. Beside the technical scope, this is also a 

behavioural approach, as it relies on the householders’ choice to replace the malfunctioning 

devices. This measure is highly dependent on cost, so a pay-back analysis was performed to 

evaluate its feasibility. The selection of the new models was made by balancing the highest 

possible efficiency with the lowest available cost. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 36 – Design scenarios used in the dynamic simulations 

Scenario Measure Modelled in IES-VE

1 Draughtproofing windows and doors
Reduced crack flow in doors and 

windows (MacroFlo)

2
Improve single glazing with insulating 

film
Modelled in glazed constructions

3a Use of internal shutters
Modelled in external glazed elements 

(internal shade)

3b
Use internal shutters and change the 

profile

Modelled in external glazed elements 

(internal shade)

4
Reduce DHW temperature from 60° 

to 55° C
Modelled in Apache system

5
Upgrade DHW storage tank insulation 

(to 100mm)
Modelled in Apache system

6 Introduce double glazing modelled in glazed constructions

7 Introduce secondary glazing Modelled in glazed constructions

8a
Introduce insulation in floors and 

ceilings
Modelled in floor/ceiling constructions

8b Introduce insulation in roofs
Modelled in roof constructionsn (just 

top floor cases)

9
Introduce exterior insulation in party 

walls

Modelled in external wall 

constructions (just top floor or cases 

higher than side buildings)

10
Scenario 9 + introduce exterior 

insulation in facades

Modelled in external wall 

constructions

1_4_5 Composite scenario (1, 4 and 5) Combination of 1, 4 and 5

1_4_5_3 Composite scenario (1, 4, 5 and 3) Combination of 1, 4, 5 and 3

Solar Thermal Introduction of solar thermal DHW Modelled in Apache system

Solar Thermal 

and 4

Introduction of solar thermal DHW 

and scenario 4
Modelled in Apache system
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The dynamic thermal simulations addressed fourteen design scenarios. Additionally, two other 

scenarios were simulated with the objective of evaluating the results of using solar thermal 

energy for water heating. In table 36 the sixteen simulated design scenarios are listed. The first 

six are characterised by their high feasibility due to low costs and non-intrusiveness regarding 

the building’s heritage. In terms of costs, scenarios 3a and 3b may turn into an exception, as 

the introduction of internal shutters can be relatively costly. Scenario 2 may also turn into an 

exception, but in terms of heritage, as the applying the film on the glazed elements may be 

damaging to the visual integrity of the building, as was explained in the previous chapter. 

 

The next two simulations address upgrading the glazed elements, which is costly when 

compared to the previous solutions and has to be done with care to avoid incompatibility with 

the existing frames. The insulation of the horizontal partitions was addressed in scenarios 8a 

and 8b. This included the loft insulation in the case of a cold roof, or otherwise, the direct 

insulation of the roof. In terms of cost, heritage and compatibility constraints, these scenarios 

have to be approached like the previous two. 

 

 Simulations 9 and 10 refer to the introduction of external insulation, which is an expensive 

solution and may be highly intrusive for the building’s integrity. The first addresses exclusively 

the party walls, while the second encompassed the entire envelope, which may have a 

significant impact on the heritage value. 

 

Furthermore, composite scenarios, combining the solutions that presented the highest 

effectiveness were created. The remaining two scenarios addressed solar thermal solutions, 

which are intrusive for the image of the buildings and the character of the historic city as a 

whole. Nevertheless, it was necessary to identify their potential gains, because they are 

related to DHW improvements, which were revealed to have the highest effectiveness out of 

the previous scenarios. 

 

8.3 – Results 

The two types of simulations (equipment and dynamic) were benchmarked against the 

baseline situations in four indicators: energy, CO2 emissions, comfort and cost. Only electrically 

powered equipment was simulated and therefore energy and emissions results refer to this 
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power source only. The final energy and CO2 indicators also include the LPG, which was 

summed to the previous as a fixed component. The conversion factors used to determine the 

carbon emissions were retrieved from the energy supplier’s monthly mix (electricity) (EDP, 

2008) and from the Portuguese Energy Regulator Entity (LPG) (ERSE, 2011). The remaining 

indicators intended to cross-evaluate the efficiency and feasibility of the simulated design 

scenarios from a wider perspective, addressing the social framework identified during the 

research. 

 

8.3.1 - Baseline Performance 

The two modelling approaches outputted the energy consumptions listed in table 37 and 

divided them into the two types of energy used. The dynamic model was used as reference for 

the energy benchmarking of the simulations, while the equipment model was used to simulate 

the variation in the equipment consumption. 

 

 

 

 

 

 

 

 

 

 

 

Table 37 – Energy baseline comparison between the equipment and the dynamic models 

 

The results of the yearly mean values of the ‘Predicted Percentage Dissatisfied’ (PPD) in the 

living areas67 show relatively low percentages, ranging from 16.63% to 30.17% (table 38). Cross 

referencing these results with the use of cooling and heating (table 38), it is possible to verify 

that cases 1 and 10 present the lowest percentage of PPD, which is coincident with the 

absence of equipment for space conditioning. While not entirely excluding the economic factor 

                                                             
67 - Areas of the house used for living (rooms, living rooms, kitchen), which exclude the circulation spaces (corridors, 
halls) and WCs. 

electrici ty LPG Total electrici ty LPG Total

Case 1 2261.9 2137.2 4399.1 3040.1 2137.4 5177.5

Case 2 6113.9 1068.6 7182.5 5344.0 1068.6 6412.6

Case 3 2685.3 3205.8 5891.1 2420.8 3205.8 5626.6

Case 4 3854.5 854.9 4709.4 3667.6 854.9 4522.5

Case 5 5978.8 3205.8 9184.6 5289.4 3205.8 8495.2

Case 6 4032.0 2137.2 6169.2 4041.0 2137.2 6178.2

Case 7 2016.4 1410.6 3427.0 1974.2 973.9 2948.1

Case 8 3789.3 1068.6 4857.9 3409.1 1024.7 4433.8

Case 9 1423.9 3205.8 4629.7 1028.9 2200.1 3229.0

Case 10 1954.7 0.0 1954.7 2427.1 0.0 2427.1

Equipment model (kWh/year) Dynamic model (kWh/year)
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as a reason for the low energy consumption, it is still possible to conclude that it does not 

oppose to the thermal comfort. It is worth mentioning that case 5 presents in its living room 

the highest value of PPD (54.19%), which is coincident with the highest energy consumption 

verified in this dwelling. It is also important to remember that this living room belongs to a 

significantly refurbished and altered house and one of its walls has a large single glazed iron 

frame, which performs poorly in terms of thermal resistance. 

Table 38 – Predicted Percentage Dissatisfied (PPD) from the thermal simulation 

 

 

Table 39 – Case studies energy costs (2013 base prices including VAT) 

 

Using 2013’s energy prices for butane gas and electricity, the total and the daily energy costs 

for the surveyed cases were obtained (table 39). In the ten cases, the average cost of 

electricity per dwelling was of €603.50, while gas was amounted to €106.80, again reinforcing 

the prevalence of electricity in Oporto. 

 

8.3.2 – Equipment Simulation 

Table 40 presents the summary of the obtained results, which reveal a high potential for 

energy total savings, ranging from 8.38% (case 4) to 46.57% (case 6), and with an average of 

25% per dwelling. From the three scenarios, the nulling of stand-by and the adoption of more 

Cost (€/year) Cost (€/day)

Case Variant electricity LPG electricity LPG

1 V3b M 629.2 124.8 1.7 0.3 754.0 2.1

2 V3b T 1033.0 62.4 2.8 0.2 1095.4 3.0

3 V3a T 509.8 187.2 1.4 0.5 697.0 1.9

4 V4 T 673.4 49.9 1.8 0.1 723.3 2.0

5 V4 M 983.7 187.2 2.7 0.5 1170.9 3.2

6 V3a M 715.2 124.8 2.0 0.3 840.0 2.3

7 V2 M 310.5 82.4 0.9 0.2 392.9 1.1

8 V1 T 591.3 62.4 1.6 0.2 653.7 1.8

9 V2 T 139.0 187.2 0.4 0.5 326.2 0.9

10 V1 M 450.3 0.0 1.2 0.0 450.3 1.2

Cost (€/year) Cost (€/day)

Electricity + LPG

Room Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

Livingroom 12.80 34.03 27.05 22.26 54.19 18.22 25.22 28.92 30.45 15.59

Bedroom 1 15.26 26.25 28.22 25.13 24.47 23.38 27.36 29.59 22.81 21.42

Bedroom 2 18.36 25.68 22.89 30.41 21.61 25.27 29.23 15.28

Bedroom 3 20.09 24.01 27.78 29.21 31.68

Bedroom 4 31.45

Mean 16.63 27.49 26.49 26.75 33.42 22.29 26.29 30.17 26.63 17.43

heating no yes yes yes yes yes yes yes no no

cooling no yes no no yes yes no no yes no

kWh/m2 year 93.72 63.94 97.59 60.34 201.92 76.99 138.75 37.28 128.19 73.69
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efficient lighting emerged as the most effective measures, as their costs are low or nil. 

Additionally, the large number of multimedia devices further justifies the potential of standby 

nulling. 

 

The savings achievable specifically by each of these two measures are presented in table 40. 

The replacement of appliances with more efficient models is economically unattractive with an 

average return of investment ranging from 20 to more than 50 years. Hence, an equipment 

upgrade should best be done when their lifecycle finishes and substitution has to be 

considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 40 - Potential savings from the appliances simulation results 

 

8.3.3 – Dynamic Simulation 

The results obtained from the dynamic simulation are summarised in table 41, showing the 

potential savings achievable from each design scenario68. The same results are graphically 

presented in figure 76, showing the percentage of variation from the baseline obtained. The 

results reveal variable patterns and the savings were generally lower than the results achieved 

from the appliances simulation, reaching a maximum of 14% in energy and CO2 reduction. 

                                                             
68 - In the appendices include detailed information about the individual results of each solution, including the cost 
and payback analysis. 

Variant Case
Total 

(kWh/year)

Total 

(€/year) 2013
Total (%)

Lighting 

(kWh/year)

Lighting 

(€/year) 2013

Standby 

(kWh/year)

Standby 

(€/year) 2013

V3b

mid

V3b

top

V3a

top

V4

top

V4

mid

V3a

mid

V2

mid

V1

top

V2

top

V1

mid

69.91

726.05 125.46

586.60 101.36Case 7

Case 8

Case 9

Case 10

404.58Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Potential Savings

322.93 55.80 0.00 0.00 22.38

78.84 13.62 70.22 12.14

1152.62 199.17 263.44 45.51 222.70 38.49

3.87

17.89

18.85

27.04

8.38

246.54 42.60 79.28 13.70

214.42 37.05

1877.81 324.49 46.57 290.37 50.17 148.30 25.63

1215.57 210.05 20.46 442.85 76.52

29.09 141.96 34.44 67.90 10.83

83.28 14.35

455.96 78.79 31.03 166.73 31.48 31.67 5.99

737.89 127.51 42.25 251.33 44.64

7.26328.68 56.80 16.81 35.04 6.06 42.00
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Furthermore, most of the scenarios only achieved savings of 2% and, in a few specific cases, 

the measures even aggravated the consumption. The comfort results presented higher 

variations, showing both improvements of 30% and decrements close to 20%. It is also 

remarkable that the comfort improvements were not directly related to the achieved energy 

savings, making it possible to verify that some low-saving scenarios resulted in a significant 

decrease in the percentage of dissatisfied people. This highlights the possibility of 

implementing some scenarios to reach acceptable thermal comfort, even if the results on 

energy savings and carbon cuts are not that significant. 

 

The first two design scenarios simulated the draught proofing of windows and doors and the 

introduction of insulating film on the glazed elements (including skylights), which are both low-

cost and easy to implement measures, often pointed out in the literature as being adequate 

for the energy efficiency improvement of traditional buildings (Changeworks, 2008; Drewe and 

Dobie, 2008; English Heritage, 2011; Ferguson, 2011; Rye and Hubbard, 2012). However, the 

results revealed low reductions in energy and carbon, with a maximum of 1.38% in the first 

scenario and insignificant percentages in the second. Consequently, the payback period for 

both scenarios was extremely long, even though the costs involved were relatively low. The 

comfort improved in all ten cases, achieving averages from 2 to 4%. Results are however very 

variable across the several building variants and mostly depend on the size of the glazed area 

and frames’ crack length in each case. In some houses, decreases of 7.59% (case 1) and 7.44% 

(case 2) in the inhabitants’ dissatisfaction were verified. Assuming that these dwellings do not 

present large loads of heating and cooling, it is possible to affirm that the results of design 

scenario one point to its effectiveness for improving comfort, despite the low energy savings. 

The introduction of insulation film resulted in most cases in very low upgrades, both in terms 

of energy and comfort. 

 

The re-introduction of traditional internal shutters and/or the variations of their usage profile 

were simulated in scenarios 3a (closed at night and open during the day) and 3b (closed at 

night and open during the day in winter and the inverse in summer). For the same reason as in 

the previous design scenarios, the results in energy conservation improvement and carbon 

cuts were negligible, with average percentages below 1% in most cases. Consequently, the 

return of the investment period is extremely long. In terms of comfort, a reduction of the PPD 

from 2.82 to 11.99%, with an average of 6%, was verified. Overall, the use of shutters revealed 

to be more effective in scenario 3b, highlighting the versatility offered by environmental 
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control. Like in the previous scenarios, it can be concluded that these measures were mainly 

effective for the comfort improvement. Presumably, with higher heating and/or cooling loads, 

the four previous scenarios could increase their effectiveness. 

 

Scenarios 4 and 5 directly addressed domestic water heating. The first of these solutions 

applied a reduction in the water temperature of 5°C. As there are no costs involved in this, its 

effectiveness was high, even if the savings did not surpass 242.8 kWh/year (€41.96), 

corresponding to a decrease of 3.79% from the reference consumption. The second scenario 

retrofitted the electric hot water cylinder with a 100mm insulation jacket, achieving slightly 

higher savings, which reached a maximum of 6.69% (428.8 kWh/year and €74.10). 

Nevertheless, the average savings obtained in these two scenarios reached respectively circa 

2% and 3.5% in a year, with an average pay-back period of seven months in case 5. Naturally, 

these solutions are closely related to the number of occupants in the dwelling, a variable that 

directly determines the savings and pay-back period, with more densely occupied houses 

obtaining higher gains. 

 

The design scenarios 6 and 7 explored upgrading the glazed elements through the introduction 

of double and secondary glazing, respectively. These are also solutions widely pointed out in 

the literature and explored by Baker in the improvement of traditional sash windows (2010). 

Based on the large area of glazed elements present in Oporto’s traditional buildings’ facades 

and skylights, the local literature addressing this subject also reinforces these solutions as 

potentially efficient (AdEPorto et al., 2010; Restart Project, 2000). The technical difficulty of 

introducing these additional elements to the existing frames without prejudicing the image of 

the traditional buildings is also widely stressed in the literature. Therefore, these solutions 

must be assessed casuistically to verify their design compatibility and impact on the building’s 

visual integrity. A conservative approach was taken in the simulations by using light and cheap 

solutions available in Portugal, which averagely improved the U-values to 3 and 2.8 W/m2K, 

from the initial 4.6 W/m2K. The thermal conductivity improvements obtained from the two 

types of solutions reveal that secondary glazing is slightly more effective. The energy savings 

confirmed this pattern, but like in the previous scenarios the energy consumption profile leads 

to small gains, reaching a peak of 2.76%. However, the improvement average is lower than 1%, 

which once again makes these two scenarios economically unattractive. The comfort indicator 

also confirms the previous patterns, performing 8.13% better than the baseline. The results 

are however very variable, presenting negative and positive values in both solutions, which 

prevents reaching a clear conclusion about the most effective scenarios. 
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Table 41 – Potential savings from thermal simulation results 

Case Indicators Scenario 1 Scenario 2 Scenario 3a Scenario 3b Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 Scenario 8b Scenario 9 Scenario 10 
Scenarios 1, 4 

and 5

Scenarios 1, 4, 

5, and 3

Scenario Solar 

DHW

Scenario Solar 

DHW and 

scenario 4

Energy 

(kWh/year) 0.30 0.30 0.30 0.30 121.10 157.60 0.30 0.30 0.30 0.30 0.30 251.70 251.70 373.00 449.10

CO2 (kgCO2) 0.00 0.00 0.00 0.00 28.00 36.00 0.00 0.00 0.00 0.00 0.00 58.00 58.00 85.00 103.00

PPD (Mean %) -0.09 0.01 0.01 0.93 0.00 0.01 0.25 0.17 -0.01 0.01 0.39 -0.09 -0.08 0.00 0.00

Energy 

(kWh/year) 21.10 3.00 63.20 72.50 242.80 428.80 92.50 81.40 75.70 52.30 138.70 321.60 638.50 709.90 733.00 898.90

CO2 (kgCO2) 5.00 1.00 15.00 17.00 56.00 98.00 22.00 19.00 18.00 12.00 32.00 74.00 146.00 163.00 169.00 206.00

PPD (Mean %) -0.60 -0.05 -2.99 2.22 0.00 0.00 -1.14 -1.53 -0.36 -0.27 -1.94 -5.01 -0.60 1.66 0.00 0.00

Energy 

(kWh/year) 21.40 -0.30 31.40 18.00 201.20 346.00 3.30 26.80 16.30 16.30 36.40 36.30 524.00 555.90 618.90 762.40

CO2 (kgCO2) 4.00 -1.00 7.00 4.00 46.00 79.00 0.00 6.00 3.00 3.00 8.00 8.00 119.00 127.00 141.00 174.00

PPD (Mean %) 0.56 -0.01 0.88 1.62 0.00 0.00 0.17 0.78 0.84 0.82 4.00 3.99 0.56 1.62 0.00 0.00

Energy 

(kWh/year) 61.60 2.60 58.50 33.50 115.10 160.30 67.80 121.90 82.20 80.80 422.70 422.70 311.40 365.20 459.10 515.30

CO2 (kgCO2) 14.00 1.00 14.00 8.00 26.00 37.00 16.00 28.00 19.00 19.00 97.00 97.00 71.00 84.00 105.00 118.00

PPD (Mean %) -0.18 -0.01 -0.83 1.95 0.00 0.00 0.01 -0.33 0.19 0.16 -3.72 0.00 -0.18 -1.03 0.00 0.00

Energy 

(kWh/year) 66.20 0.00 0.20 0.00 242.20 393.80 -0.30 66.20 5.20 4.80 648.30 645.20 735.40 900.90

CO2 (kgCO2) 15.00 0.00 0.00 0.00 55.00 90.00 0.00 15.00 1.00 1.00 148.00 147.00 168.00 206.00

PPD (Mean %) 2.54 0.07 -1.52 0.00 0.07 0.07 0.14 2.72 -0.06 0.00 2.54 0.98 0.00 0.00

Energy 

(kWh/year) 41.00 0.50 0.00 -15.40 80.00 103.40 8.50 57.40 3.20 7.40 206.50 210.10 238.40 284.10

CO2 (kgCO2) 10.00 0.00 0.00 -3.00 19.00 24.00 2.00 13.00 1.00 2.00 47.00 48.00 55.00 65.00

PPD (Mean %) 0.57 1.04 0.00 2.09 1.01 1.01 0.00 1.52 0.94 1.37 0.57 0.74 0.00 0.00

Energy 

(kWh/year) 4.10 0.10 13.90 10.90 41.80 26.90 4.60 9.80 -0.30 20.60 63.60 66.50 87.50 108.60

CO2 (kgCO2) 1.00 0.00 3.00 3.00 10.00 6.00 1.00 2.00 0.00 5.00 15.00 15.00 20.00 25.00

PPD (Mean %) -0.05 0.43 -0.91 1.02 0.44 0.44 0.25 -0.38 0.38 1.40 -0.05 0.00 0.00 0.00

Energy 

(kWh/year) 18.00 0.50 59.20 -41.70 9.50 -71.40 -36.70 0.00 20.60 359.40 138.40 -45.70 -45.70 -57.80 -54.40

CO2 (kgCO2) 4.00 0.00 13.00 -10.00 2.00 -17.00 -9.00 0.00 4.00 82.00 31.00 -11.00 -11.00 -14.00 -13.00

PPD (Mean %) 2.27 2.24 2.78 3.62 2.24 2.24 2.10 0.00 2.11 4.03 1.63 2.27 2.27 0.00 0.00

Energy 

(kWh/year) 0.00 0.00 0.00 0.00 18.70 -144.30 0.00 0.00 0.00 0.00 0.00 0.00 -133.80 -133.80 -12.60 -5.00

CO2 (kgCO2) 0.00 0.00 0.00 0.00 4.00 -34.00 0.00 0.00 0.00 0.00 0.00 0.00 -31.00 -31.00 -3.00 -1.00

PPD (Mean %) 1.33 0.00 0.88 0.75 0.00 0.00 0.22 1.71 0.90 1.13 0.00 0.57 1.33 2.20 0.00 0.00

Energy 

(kWh/year) 0.00 0.00 0.00 0.00 68.00 72.40 0.00 0.00 0.00 0.00 125.30 125.30 239.10 268.00

CO2 (kgCO2) 0.00 0.00 0.00 0.00 16.00 17.00 0.00 0.00 0.00 0.00 29.00 29.00 55.00 61.00

PPD (Mean %) 0.01 0.01 0.00 0.75 0.00 0.00 0.23 0.26 -0.02 0.35 0.01 0.75 0.00 0.00

Case 6

Case 7

Case 8

Case 9

Case 10

Case 1

Case 2

Case 3

Case 4

Case 5
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Figure 76 – Energy, CO2 and PPD percentage variations from the baseline 
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The next two scenarios simulated the introduction of insulation in the floor/ceiling systems 

(8a) and roofs (8b). The simulated insulation was mineral wool with a thickness of 50mm, 

inserted under the floor or between the rafters, following the recommendations in the 

literature , which points to their lower cost, easiness of application and compatibility with the 

traditional buildings’ breathability (Changeworks, 2008; English Heritage, 2011; Richarz et al., 

2007; Yates, 2006). The simulations also included the variations of loft and warm roof 

insulation, depending on the situation identified for each case study. The Oporto energy 

agency guidance also stresses roof insulation as one of the best measures to address 

upgrading the energy efficiency of traditional buildings (AdEPorto et al., 2010). The results 

from these scenarios reinforced the previously identified patterns, revealing again low energy 

savings that remained under the 2% mark. These results, in conjunction with the relatively high 

cost of the measures, resulted in extremely high return periods. The comfort improved in most 

cases for an average of 1.83% and 4.06% in scenarios 8a and 8b respectively. 

 

The external insulation of the walls was simulated in two different scenarios, addressing the 

insulation of party walls (scenario 9) and the insulation of all external walls, including the party 

walls, (scenario 10), which poses a high level of heritage constraints. From these, the 

introduction of insulation in party walls or back facades is argued in literature to pose lower 

limitations to heritage (AdEPorto et al., 2010; Ferguson, 2011; Restart Project, 2000). The 

specific shape of Oporto’s buildings favours the use of insulation in party walls, as they often 

are the biggest area of the envelope. Due to the cladding and the absence of granite 

architectural elements they have lower heritage and technical limitations. The second scenario 

can be highly intrusive to the building’s integrity, as is consensually pointed out in the 

literature, where the use of dry-lining insulation is suggested alternatively. Rye et al. pointed 

out the advantages of internal wall insulation, which enhances the solar gains in winter by 

raising the temperature of the wall, allowing “more of the internal room heat to be retained 

for a longer period of time” (2012, p.46). The dry-lining insulation of Oporto’s traditional 

buildings is problematic due to the internal granite salience of external windows and doors, 

whose thickness prevents the use of effective insulation. In addition, the rooms’ dimensions 

will be compromised by the use of the conventional thick insulation. The use of technologically 

advanced thinner insulation (e.g. aerogel) is hardly commercialised and applied in Portugal, 

rendering it expensive and non-effective in terms of cost. Another alternative was the 

introduction of ‘Phase Change Materials’ (PCM) in interior finishes, developed from 

Portuguese research which resulted in a very attractive cost effectiveness (Monteiro et al., 
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2005; Sá et al., 2012). However, the IES VE software presents severe limitations in modelling 

PCM materials, which likely would lead to low accuracy in the results (IES, 2010). The 

limitations led to the decision of not including these emergent solutions in detriment of more 

conservative and feasible approaches. Nevertheless, it can be affirmed that aerogel and PCM 

in plaster may become feasible solutions in the future and the results from the ongoing 

research should be monitored (BRE, 2012; Cartwright et al., 2011; Energy Saving Trust, 2010; 

Ferguson, 2011). 

 

The scenarios modelled refer to the inclusion of conventional 50mm and 25mm EPS boards, 

respectively in the party walls and the street facades. Case 6 was not insulated because the 

main facade was covered with tiles, which made the application impossible. The first scenario 

was simulated in five cases, where the exposed party walls allowed insulation, resulting in 

energy savings of respectively 5.14% and 9.58% in two top variants (cases 2 and 4), but were 

insignificant for the remaining three cases. The second scenario presented a similar pattern, 

showing a slight saving (3.14%) for case 8. The obtained economic gains were directly 

conditioned by the size of the area of insulation, which resulted in large investments and in 

low economic benefits for all cases. The comfort outcomes revealed an irregular pattern, with 

a tendency for inverting the energy and carbon outcomes. 

 

Two additional composite scenarios were simulated by combining the previously identified 

most effective measures addressing the DHW improvement with other scenarios of easy 

implementation. The first of these simulations combined scenarios 4 and 5 (DHW) with the 

draught proofing of windows and doors, aiming to improve the general comfort (scenario 1). 

The other scenario added the use of internal shutters to the aforementioned, using the most 

effective scenario for each case (3a or 3b), while also aiming at additional improvements in 

comfort. The energy and carbon outcomes confirmed the pattern previously verified for each 

individual scenario, achieving cuts from 2.16% to 10.14% in the first simulation, and from 

2.31% to 11.32% in the second. Cases 8 and 9 were the exception in both simulations, showing 

increased energy consumptions. From these results, a slightly better improvement was 

obtained for the second scenario. Inversely, the payback period of the first scenario was more 

advantageous, which can be explained by the cost associated with the re-introduction of 

shutters in the cases where they had been removed, consequently increasing the average 

return of investment period from 2.8 to 19 years. The comfort measurements did not 

significantly change the results’ framework, being higher in the second scenario with a peak 

improvement in case 9 (8.24%). 
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Despite the heritage constraints posed by the introduction of solar panels, two additional 

scenarios were modelled using them to enhance the DHW. The first of these scenarios merely 

introduced a solar thermal system, while the second conjugated it with a reduction of the hot 

water temperature (scenario 4). The objective was to test the effectiveness of a wide-spread 

energy efficiency improvement measure for the buildings (English Heritage, 2011; Ferguson, 

2011; Richarz et al., 2007; Yates, 2006). Furthermore, this is a mandatory improvement under 

the Portuguese thermal regulation and subject of specific concern on the thermal 

improvement guidance for Oporto’s traditional buildings (AdEPorto et al., 2010). The first 

scenario reduced the energy consumption by 7.9% on average, reaching up to 9.4% when 

combined with a reduction of the hot water temperature. From an economic perspective, the 

savings achieved do not compensate the investment necessary to pay the solar system 

installation, with payback periods above 25 years. The analysis of comfort is not applicable in 

solutions addressing the DHW because they do not affect people’s thermal sensation. 

 

The data graphically presented in figure 76 clearly shows that the design scenarios directed at 

DHW upgrade are the most effective in terms of energy savings and carbon dioxide emissions 

reduction. From these, heating water with solar energy presents the highest reductions  

 

8.3.4 – Future Weather 

To evaluate the performance of Oporto’s traditional buildings, predicted climate changes and 

respective adaptation have to be taken into account and as such a future weather scenario 

was simulated (year 2080). The weather file was created using the CCWorldWeatherGen 

software tool developed by the Sustainable Energy Research Group from the University of 

Southampton (2012), which morphed the original Oporto weather file using the IPCC HadCM3 

climate change scenario data. The dynamic simulation outputted an increase of 3.39°C in the 

yearly mean temperatures (figure 77). The same pattern was identified when comparing the 

minimum and maximum peak temperatures, which increased by 2.30°C and 8.30°C 

respectively, confirming the forecasted tendency for higher temperatures and peak weather 

events. 
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Figure 77 - Comparison between yearly dry-bulb temperatures in Oporto baseline and future weather 2080 
simulations, using the IES VE PRO software 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 42 – Comparison between energy, CO2 and PPD indicators in baseline and future weather design simulation 
(Year 2080) 

Variant Case Indicators Baseline
Scenario 

Future 2080
variation

V3b Energy 5177.6 5088.00 1.73

mid CO2 1131 1111.00 1.77

PPD 16.63 25.90 -55.77

V3b Energy 6412.6 6062.90 5.45

top CO2 1440 1360.00 5.56

PPD 27.49 41.68 -51.60

V3a Energy 6632.9 6506.40 1.91

top CO2 1437 1409.00 1.95

PPD 26.49 24.60 7.12

V4 Energy 4522.5 4136.30 8.54

top CO2 1013 925.00 8.69

PPD 26.75 36.62 -36.88

V4 Energy 8495.3 8481.10 0.17

mid CO2 1863 1860.00 0.16

PPD 33.42 38.75 -15.94

V3a Energy 6178.3 6098.00 1.30

mid CO2 1360 1341.00 1.40

PPD 22.29 28.26 -26.78

V2 Energy 2948.1 2794.20 5.22

mid CO2 650 615.00 5.38

PPD 26.29 36.29 -38.04

V1 Energy 4433.7 3557.10 19.77

top CO2 988 788.00 20.24

PPD 30.17 31.53 -4.49

V2 Energy 3229 3231.00 -0.06

top CO2 684 684.00 0.00

PPD 26.63 23.34 12.35

V1 Energy 2427.1 2427.10 0.00

mid CO2 555 555.00 0.00

PPD 17.43 25.92 -48.71

Case 7

Case 8

Case 9

Case 10

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6
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In table 42, the results from the baseline simulation were compared with the 2080 weather 

simulation. A decrease in the energy consumption and associated CO2 emissions is clearly 

identifiable in almost all cases. In contrast, the PPD aggravates in all dwellings, except for two. 

The energy and carbon savings are more expressive in the top cases, while the comfort 

decrease is transversal without revealing a specific pattern. A more detailed look at the results, 

confirms that the energy spent on space conditioning and DHW decreases or remains stable in 

all cases. As space conditioning refers to heating only, it becomes clear that the energy 

systems related to heating are directly influenced by the new temperatures. The modelled 

cooling equipment, which was only composed of electric fans, revealed an opposite pattern, 

with all cases increasing or maintaining (systems with no fan) their energy consumption. A 

decrease in comfort is a direct consequence of the weather changes. However, even with a 

worsened performance, the PPD still remains lower than 45%, with around 30% in most cases. 

 

8.3.5 - Heritage Impact Assessment 

In the context of this research the previous measures addressing the stand-by mode, 

appliances and lighting, are clearly innocuous in terms of their heritage impact. Using ICOMOS 

assessment grading, they can be classified as ‘neutral’ because they produce “no change to 

fabric or setting” (2011, p.9), as listed in table 43. These measures will prove effective for 

existing buildings, independently of the heritage factor. Hence, under the scope of this 

research they can be neglected because they have no impact on the heritage of traditional 

buildings and are generic and applicable in any energy efficiency operation. They will only be 

accounted for in the evaluation of energy and CO2 improvements. 

Table 43 – Heritage impact assessment of the equipment simulation design scenarios 

 

The dynamically simulated design scenarios pose a wider range of impacts on heritage, either 

adverse or beneficial, as presented in table 44. Using the ‘professional judgement’ (ICOMOS, 

2011) and based on the previous elements of the research and city heritage management 

Scenario Measure
Impact on Fabric 

(+3 to -3)

Impact on visual 

integrity (+3 to -3)

Impact on site 

(+3 to -3)

Overall impact 

(+3 to -3)

1 Nulling equipment standby
0 0 0 0

2 Replace existing lamps with more 

efficient CFL
0 0 0 0

3 Replace existing equipment with 

more efficient models
0 0 0 0
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instruments, the scale of change was identified for each scenario and graded accordingly69. The 

judgement process relies mainly on the previous analysis regarding the heritage impact of 

concrete situations identified in Oporto’s historic centre, as explained in chapter seven. The 

benchmark is made accordingly with the impact produced on the fabric, visual integrity, 

townscape and the overall impact from the previous three. 

 

The ‘beneficial’ and ‘neutral’ impacts of the measures can be neglected under the scope of the 

current research, as they do not present constraints from heritage perspective. Consequently, 

their feasibility must be measured by their efficiency under the remaining parameters. On the 

other hand, solutions that reveal to have a ‘very large’ adverse impact, like the solar panels in 

the current research, cannot be accepted regardless of their proven efficiency under the other 

indicators.  In between these two extremes resides the major challenge, represented by the 

measures which range from 0 to -2 of potential risk. This means that the process is driven by a 

maximum admissible limit of change regarding heritage. Under this limitation, the other 

indicators have to be assessed to identify the effectiveness and overall feasibility of the 

solutions. The most expressive example for traditional buildings in Oporto is the limitation to 

insulate the exterior walls due to the windows granite casing (figure 78). Because of this limit, 

the insulation must be evaluated against the energy, CO2, cost and comfort parameters in 

order to measure its effectiveness. This weighting process means that if the insulation proves 

to be ineffective, it becomes unfeasible even if it respects the set heritage limit. Moreover, and 

despite the exemplified impact on visual integrity, the other levels must also be cumulatively 

assessed (fabric and townscape). Returning to the same example, the impact on the fabric 

must also be verified, and it must be validated if the introduction of the insulation poses a 

compatibility issues with the existing wall. 

 

The determination of the ‘limit of change’ is then the next, crucial step in evaluating the 

feasibility of any energy efficiency improvement measure. It is naturally dependent on 

preserving the identified fundamental elements in the traditional buildings that give 

significance to both the building and for the entire World Heritage Site. In this sense, 

traditional buildings must be evaluated independently of their type or geographical location in 

terms of what can be called ‘Group Impact Significance’. For the simulated scenarios, the limits 

of change were identified based on the elements identified in chapters six and seven. This 

                                                             
69 - In accordance with the method identified in chapter five. 
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‘professional judgement’ approach was coincident with the city regulations for the WHS 

management (PORTO VIVO, 2008; Portugal, 2012), which made the maintenance of the urban 

historic image mandatory. However, neither the city’s urban planning nor the WH 

management plan specifically detail how to perform such maintenance, assigning the 

responsibility for it to council and heritage body technicians. 

Table 44 – Heritage impact assessment of the building dynamic simulation design scenarios 

 

 

 

 

 

 

 

 

 

 

Figure 78 – Windows granite casing in a 19th century traditional building (in ruins) in Oporto 

Scenario Measure
Impact on Fabric 

(+3 to -3)

Impact on visual 

integrity (+3 to -3)

Impact on site 

(+3 to -3)

Overall impact 

(+3 to -3)

1
Draughtproofing windows and 

doors
 0 -1  0  0

2
Improve single glazing with 

insulating film
 0 -1 -1 -1

3a Use of internal shutters  1  1  0  1

3b
Use internal shutters and change 

the profile
 1  1  0  1

4
Reduce DHW temperature from 

60° to 55° C
 0  0  0  0

5
Upgrade DHW storage tank 

insulation (to 100mm)
 0  0  0  0

6 Introduce double glazing  0 -1 -1 -1

7 Introduce secondary glazing  0 -1 0 0

8a
Introduce insulation in floors and 

ceilings
-1  0  0  0

8b Introduce insulation in roofs -1  0  0  0

9
Introduce exterior insulation in 

party walls
-1 -1 -1 -1

10
Scenario 9 + introduce exterior 

insulation in facades
-2 -2 -1 -2

1_4_5 Composite scenario (1, 4 and 5)  0 -1  0  0

1_4_5_3 Composite scenario (1, 4, 5 and 3)  0 -1  0  0

Solar Thermal Introduction of solar thermal DHW -1 -2 -3 -2

Solar Thermal 

and 4

Introduction of solar thermal DHW 

and scenario 4
-1 -2 -2 -2
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In table 45, the limits of change identified for the simulated design scenarios are listed. 

Conclusively, it is possible to affirm that the limits of change must be driven by maintaining the 

visual integrity and authenticity (building and townscape), the compatibility with the fabric 

(traditional building systems) and the reversibility of the solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 45 – The limit of change identified for simulated design scenarios 

 

 

Scenario Measure Limit of change

1
Draughtproofing windows and 

doors
Strips should not be visible

2
Improve single glazing with 

insulating film
Image of the glass should not change

3a Use of internal shutters Not applicable

3b
Use internal shutters and 

change the profile
Not applicable

4
Reduce DHW temperature from 

60° to 55° C
Not applicable

5
Upgrade DHW storage tank 

insulation (to 100mm)
Not applicable

6 Introduce double glazing
Design of the frame should not 

change

7 Introduce secondary glazing
Exterior image of the frame should 

not change

8a
Introduce insulation in floors 

and ceilings

Ceiling plaster mouldings and wood 

floor  should not be damage

8b Introduce insulation in roofs
External image of the roof should not 

change

9
Introduce exterior insulation in 

party walls

External image of the building should 

not change

10
Scenario 9 + introduce exterior 

insulation in facades

External image of the building should 

not change

1_4_5 Composite scenario (1, 4 and 5) Strips can not be visible

1_4_5_3
Composite scenario (1, 4, 5 and 

3)
Strips can not be visible

Solar Thermal
Introduction of solar thermal 

DHW

External image of the roof should not 

change

Solar Thermal 

and 4

Introduction of solar thermal 

DHW and scenario 4

External image of the roof should not 

change
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8.4 - Conclusion 

Overall, the models were revealed to be accurate enough for the purpose of the research, and 

allowing adequate measuring of the potential savings in energy, carbon emissions, cost and 

comfort in traditional buildings. However, the use of on-site measurements can significantly 

improve the accuracy of the models and must be performed in future research. 

 

From the analysis of the scenarios it can be concluded that the low-cost solutions, such as 

stand-by nulling and light bulb replacement, presented highest efficiency, as they are non-

intrusive in terms of heritage and presented feasible pay-back periods. From the dynamic 

simulation, it was possible to conclude that the measures addressing water heating revealed 

higher efficiency for energy savings and carbon cuts (scenario 4 and 5), and are also innocuous 

in terms of heritage disruption. The envelope upgrade approach, which is usually pointed out 

to be a highly effective measure, was in this case revealed to be ineffective for reducing the 

energy consumption as well as potentially endangering the heritage value of traditional 

buildings. The most effective measures were ‘low cost’, based on the occupants’ behaviour 

and on simple interior retrofit. 

 

The assessment of the measures’ heritage impact affirms that the introduction of solar panels 

and/or external insulation in main facades will likely produce high negative impacts at building 

and World Heritage Site level. Improvements to the window frames present a relatively low 

risk, but their design must be monitored to avoid negative impacts at all levels. It is important 

to stress that the used solutions were conventional in order to improve their feasibility of 

implementation. The use of specific solutions may produce different results, depending on 

their concrete design. Furthermore, some of solutions may suffer technological and design 

advances that can produce changes for their future evaluation. 

 

The future weather scenario highlighted that the traditional buildings’ thermal mass is an 

advantage when dealing with the predicted increase in temperatures during the day. The 

challenge is to avoid overheating during the night by promoting adequate nocturnal 

ventilation and avoiding thermal distress. During the direct contact with the householders and 

through the simulation, it was identified that some of the behavioural measures are already 

being implemented to effectively address this problem. By combining windows and shutters 

control (closed during hot days and open in hot nights), some householders are already 

achieving good comfort results. 
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Chapter Nine: Energy Efficient Measures in Traditional 
Buildings 
 

9.1 - Introduction 

In the current chapter the results of the previous chapters are discussed. It will conclude with 

establishing which are the most effective measures to improve energy efficiency in Oporto's 

traditional buildings without negative impacts on their heritage significance. For this the 

results will be discussed by comparing them with the frameworks identified in the early 

chapters. This will allow benchmarking their current performance and identifying the most 

efficient measures. 

 

The prospects and outcomes from implementing these measures at the research area level are 

also approached. From this discussion, the main findings of the research will be highlighted in 

regards to the traditional buildings in the Oporto World Heritage Site. The applicability of these 

findings outside of the research area as well as major strengths and limitations will also be 

discussed. 

9.2 – Energy Efficiency Measures for Oporto's Traditional Buildings 

The surveyed case studies revealed the ‘inside’ of traditional buildings in the Oporto World 

Heritage Site, which allowed establishing their performance based on real data. The simulation 

permitted identifying the measures that yielded the most efficient results to improve the 

energy efficiency of Oporto's traditional buildings. These measures need to be discussed from 

an overall perspective to allow further conclusions under the framework of traditional and 

historic buildings. This includes putting the results in comparison with the previously identified 

literature and with the results from similar research. Accordingly, both the results from the 

baseline study and from the simulations will be discussed. 
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9.2.1 – Baseline Performance 

Energy 

In table 46 the baseline models (equipment and dynamic) are compared with the national (INE 

and DGEG, 2011) and Oporto energy survey (AdEPorto et al., 2008). The values are not directly 

comparable, due to the dissimilar categorisation of energy consumptions used. To facilitate 

the comparison, similar categories were grouped together in the table. The classification in 

‘DHW’ and ‘lighting’ is commonly used, while classifying ‘heating’ and ‘cooling’ as two separate 

parameters is a debatable decision due to the low significance of energy used for cooling in 

Portugal. The remaining categories are uncertain as they refer to different energy uses: 

cooking, electric equipment, appliances, entertainment, domestic refrigeration and LPG 

equipment, which are partially interrelated and sometimes overlap. In the last column, the 

category of 'cooking and equipment' was added to facilitate comparison. 

Table 46 – Compared mean energy consumption between simulations, national and Oporto energy surveys 

 

Using this table, it is possible to verify that the results were not entirely coincident. In general, 

the two surveys showed similar results, while the simulations presented some differences. 

However, it is necessary to consider some aspects which may explain these results. First, it is 

necessary to point out that the surveys that were conducted were designed for existing 

residential buildings in general and not specifically for traditional buildings. Secondly, the LPG 

consumption in the simulations was calculated from the estimates given by the householders, 

which may have been inaccurate and thus have changed the balance between the percentages 

in the total energy calculations. Nonetheless, it should be stressed that the LPG was only used 

for cooking and was not simulated, so it can be disregarded as it remains unchanged and does 

not affect the simulation results. The energy used for cooking and equipment is also influenced 

by this situation, making it very difficult to achieve detailed results. This category presented 

very similar results between the two surveys and between the two simulations, while at the 

same time showing a discrepancy of 10 to 15% between the surveys and the simulations. The 

appliances consumptions was derived from the direct surveys performed in the houses, which 

National energy survey (2010) Heating Cooling DHW Cooking Lighting Cooking + equiment

% of total energy consumption 21.5 0.5 23.5 39.1 4.5 50

Oporto energy survey (2004) DHW Cooking
Domestic 

refrigeration
Others Lighting Cooking + equiment

% of total energy consumption 23 27 11 7 4 45

Thermal simulation DHW LPG equipment Lighting Cooking + equiment

% of total energy consumption 27.81 33.31 2.14 61.65

Appliances simulation Heating Cooling DHW LPG equipment Appliance Entertainment Lighting Cooking + equiment

% of total energy consumption 20.17 0.26 7.29 34.91 20.8 8.4 8.17 64.11

8.4 28.34

10.9

Heating

28

Space conditioning Electric equipment

Electric equipment
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allowed obtaining a detailed control of the simulated data when compared with the thermal 

simulation, where the equipment was mainly incorporated to achieve the correct inputs for 

the internal gains. This consideration can also be applied to lighting, which was detailed based 

on the type of lamps and profiles named in the household’s survey. 

 

The energy consumption for the DHW was very similar in the surveys and in the thermal 

simulation while showing a discrepancy with the appliances simulation. However, the latter is 

a simplified mean day estimation that was disregarded against the dynamic simulation, which 

accounts for the complex variables interacting with the DHW system. For the same reason it 

was also decided to use the results presented in the thermal simulation for the space 

conditioning, even though their   pattern was quite dissimilar from the other three. This can be 

explained by the overall performance that was identified for the traditional buildings. 

Moreover, the mean consumption achieved for space conditioning was influenced by the fact 

that three of the cases do not consume energy for this purpose. If these cases were to be 

disregarded, the mean consumption would reach 11.70% of the total energy. 

 

In Portugal, residential buildings built before 1950 consume an average of 200 kWh/m2, while 

the ones built between 1950 and 2005 consume an average of 140 to 110 kWh/m2 (BPIE, 

2011). Further data states that the most recent and efficient residential buildings (2006-2010) 

consume an average of 109 kWh/m2 per year in Portugal (BPIE, 2012). The case studies 

representing the most common building variants (V3a and V3b) were in the survey (real data) 

revealed to have average consumptions below these values, ranging from 63.94 to 97.59 

kWh/m2. It must be stressed that the most recent buildings were built according to post-

thermal regulations, which made the use of insulation and solar panels for domestic water 

heating mandatory. 

 

The small floor area of some dwellings can bias the results, as can be seen in case 7, where the 

138.75 kWh/m2 consumed per year were directly influenced by its extremely reduced area 

(22.70m2). When analysing case 7’s yearly consumption per person, the result reveals a regular 

value of 1,574.85 kWh, which is very close to the average consumption verified in ten cases 

(1,734.6 kWh per year/person). Nevertheless, these consumptions are again much lower than 

the average of 3,067.66 kWh that was identified for Portugal in 2011 (Eurostat, 2013; INE, 

2012). Of all the dwellings studied, only case 5 presented a yearly consumption above the 

national average (4,446.68 kWh/person). This may be explained by the significant remodelling 

of this property, where only the original exterior walls were maintained. These works 
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introduced new construction systems regardless of their compatibility with the existing 

structures; namely the replacement of the original wood beams by a concrete structure, and 

the substitution of the lath and plaster partitions by hollow brick and gypsum plasterboard. 

After the refurbishment, the general feeling expressed by the householders was that the 

buildings worsened their performance in relation to the original situation. This highlights the 

idea that a careless or unconscious refurbishment made with inadequate materials can 

deteriorate the performance of traditional buildings. 

 

From these results it can be affirmed that the surveyed traditional buildings in Oporto perform 

better than the expected in terms of energy consumption. The surveyed values were not only 

below the European and Portuguese averages for residential buildings, but they were also 

close to the values that have been verified for the most recently built buildings.  The baseline 

data also reinforces the prevalence of electricity in Oporto, as the gas consumption in all cases 

was below the national average. The inverse can be observed for the electricity consumption, 

where only four cases present average values below the national rates. 

 

In terms of the cost spent on the energy per dwelling, the average for the ten cases was 

€710.30 per year, which again is below the national average (€840.00), further confirming the 

identified consumption pattern (INE and DGEG, 2011). 

 

By taking into account all the initial data, the energy consumption can generally be explained 

both by the building's thermal performance and by the low use of energy for space 

conditioning. The mild Portuguese climate and the cost involved may justify the usual absence 

of central systems, as demonstrated in the previous chapters. This explains the low energy 

consumption when compared with the standards promoted by the thermal regulations, which 

usually benchmark energy efficiency based on heating, cooling and DHW demands in relation 

to a theoretical pattern of use and a fixed model of comfort. 

 

Comfort 

It may be argued that the low income of these households could explain the low energy 

consumption, which may be achieved in at the cost of thermal comfort. However, the 

householders reported a reasonable overall comfort pattern, suggesting that the reasons for 

the identified consumption are not entirely related to socio-economic factors. 
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Comfort was overall reasonable in all the ten cases, with the mean PPD of the living areas 

remaining under the peak result of 35%. Naturally, this can be partially explained by the mild 

weather conditions of Oporto and concurrently by the buildings’ performance in relation to 

the local climate. The results do not clearly point to an extraordinary high thermal 

performance of these buildings, but to a centennial symbiosis between a building's fabric and 

the local climate, which permits achieving a balance between the desired comfort (adaptive) 

and the space conditioning, which is then used to compensate the peak situations. 

 

By cross referencing the data sources, it can be concluded that comfort was not identified as a 

major problem in the case studies, which consequently renders a higher investment in energy 

for heating and/or cooling unnecessary. This confirms the general tendency for Portugal and 

Oporto, where cooling was identified as irrelevant and heating represented around 20% of the 

global domestic sector energy consumption (AdEPorto et al., 2008; INE and DGEG, 2011). This 

also is apparent in the surveyed case studies, and is further confirmed in the domestic energy 

surveys for Portugal and Oporto (AdEPorto et al., 2008; AdEPorto and UCP, 2011; INE and 

DGEG, 2011), where cooling systems are inexpressive and heating is mostly performed by 

space-based individual devices instead of central heating systems. 

 

The European statistics reinforce this framework, as they show that the household energy 

consumption by end-use in the EU-27 for space heating accounted for an average of almost 

70% in 2009 (EEA, 2012). A survey undertaken in the UK domestic sector by Yohanis, revealed 

that of the 240 sampled homes, 99% have some form of central heating system, on which a 

third of them relies for heating entirely (2012). Moreover, in 72% of the sampled houses, the 

domestic hot water was provided by the central heating systems. These results also highlight 

the existing disparity between the domestic energy usage in the northern European and in the 

Mediterranean climates, as shown in the European energy statistics, where Spain and Cyprus 

were the countries with the lowest consumption of energy used for space heating70 (EEA, 

2012). This also points out that the use of centralised systems is efficient in colder climates 

with a greater number of heating degree days, while their effectiveness decreases in milder 

climates. In the case studies, the occasional use of portable heating devices, associated directly 

with the space occupation pattern, reveals to be much more flexible and consequently more 

adequate to satisfy the household’s needs. 

 

                                                           
70

 - No data was available for Portugal and Malta. 
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Not many studies on energy efficiency upgrading of traditional buildings report on comfort 

improvements. Only partial aspects of comfort or generalised unspecific comfort perceptions 

are usually given. Draught-proofing and upgrading of glazed elements are generally stressed to 

be proven measures, to improve airtightness and consequently raises comfort levels 

(Changeworks, 2007; Changeworks, 2008; Energy Saving Trust, 2010). The most commonly 

used criteria for comfort in the reviewed literature was the improvement of the indoor 

temperature. Thus, improving comfort is generally related to the maintenance of 

temperatures in a fixed comfort range, ordinarily defined as values between 19°C and 25°C. 

These are the values which drive the calculation of heating and cooling demands on the steady 

state models. The dynamic models allow interacting with several complex variables in a flexible 

way, leading to more accurate results as with the simulations performed in the IES VE 

software. 

 

Conclusively, it is possible to affirm that the low energy consumption detected in traditional 

buildings in Oporto reflects the balance between the actual levels of comfort and the low 

heating demand. The relatively favourable existing baseline also explains why the simulated 

design scenarios do not significantly influence the comfort level. 

 

9.2.2 – Measures Simulations 

The results obtained from the Oporto design scenarios simulation affirm the following: 

regarding the reduction of energy consumption, the DHW, equipment and lighting are 

effectively the major areas of potential and feasible improvement. Inversely, measures which 

focused on the retrofit of the construction systems revealed to be ineffective overall. This 

includes envelope insulation, which is widely established in the literature as the major focus of 

energy efficiency upgrades. 

 

Behavioural Measures 

The simulations addressing the behavioural approach showed a high efficiency, in particular 

for low-cost measures like the upgrade of lighting and stand-by nulling. The results from this 

last measure verify the outputs of similar studies that were performed either in Portugal 

(Antunes, 2008; Ferreira et al., 2011) or at a European level (REMODECE, 2008; SELINA, 2011). 

The Portuguese studies identified a potential energy saving of 5.1% in the domestic sector 

simply by not leaving devices in stand-by mode, and 2.6% by adopting more efficient lighting. 
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The averages identified in the 10 case studies were slightly lower and revealed an inverse 

trend with lighting presenting a higher potential (3.76%) than stand-by avoidance (1.78%). The 

high cost involved in upgrading the major appliances decreases their cost-effectiveness. 

However, as previously pointed out, this can be effective over the long term by relying on the 

behavioural choice when replacing the old models. 

 

Fabric Measures 

The results from the dynamically simulated design scenarios confirm and reinforce the 

influence of the Portuguese domestic energy consumption pattern. The relatively low use of 

energy in heating and cooling lead to small gains obtained from the energy conservation 

measures addressing the envelope upgrade. The DWH improvements revealed to be effective 

because they are less dependent on the climate, as proven by the fact that most European 

countries present a similar share of consumption in the energy statistics (EEA, 2012). 

 

The glazed elements in the 10 cases represent on average 40% of the total area of the main 

facade (ranging from 25% to 51%). This expressive area highlights the importance of 

considering the upgrading of these glazed elements. The small gains obtained from the 

draught proofing of external windows and doors (maximum of 1.39%), verify the laboratory 

tests carried out by Baker (2010), which showed that if these measures were applied to 

traditional sash and casement windows, their U-value was only upgraded from 4.5 to 4.2 

W/m2K which was pointed out to be statistically insignificant. Nonetheless, the comfort 

improvement obtained in most of the case studies' simulation, allows concluding that it 

justifies the use of these measures. 

 

The introduction of double and secondary glazing in the traditional windows allowed reducing 

the average U-values from the initial 4.6 W/m2K to 3 and 2.8 W/m2K respectively. This 

highlights the fact that the introduction of secondary glazing is slightly more effective than 

upgrading to double glazing. This also confirms Baker's results that use a single glazed 

traditional window (5.4 W/m2K) as a starting point and achieved a heat losses reduction of 

55% (1.9 W/m2K) and 63% (1.7 W/m2K) respectively by introducing double and secondary 

glazing (2010). Additionally, the results are also in line with the ones obtained in the Oporto 

guidance for the historic centre, which reduced the original U-value of 4.3 W/m2K to 3.3 and 

2.0 W/m2K, proving once more that secondary glazing produces better results than double 
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glazing (AdEPorto et al., 2010). Conclusively, it must be pointed out that the consistency of the 

results is transversal through the case studies. 

 

The increase of the airtightness obtained through glazing improvements is also pointed out by 

Baker (2010). However, the energy reduction from the design scenarios was again very limited, 

reaching an improvement average of less than 1%. Inversely, the comfort increased, achieving 

a maximum improvement of 8.13% from the baseline. Unlike the draught-proofing measure, 

the cost involved in upgrading the frames renders it unattractive, even despite the comfort 

improvement. 

 

These results from the upgrade of the glazed elements vary from the ones obtained from the 

simulation conducted in a nineteenth century Scottish villa, where this retrofit solution was 

one of the best performing scenarios (IES, 2009). However, this again reinforces the role space 

heating has on the results, as this case was simulated by taking into account the large heating 

loads required in the Scottish climate. 

 

The use of insulation in the envelope is widely promoted in the literature and the thermal 

regulations as one of the most effective measures. However, this was not verified in the 

simulations, where the insulation of roofs and walls achieved relatively low reductions for the 

energy consumption. The top saving value reached 9.58%, but the majority of the cases 

presented insignificant savings. These results, in conjunction with the high cost involved in the 

implementation of the measures, the heritage limitations, and the relatively reduced area of 

walls in the facades lead to the conclusion that the insulation of the envelope of traditional 

buildings in Oporto is a measure which is surprisingly ineffective. This is in contrast with the 

results obtained in the Oporto guidance, which presented an energy consumption reduction of 

up to 60% from the baseline situation (AdEPorto et al., 2010). These results may be explained 

by the use of the standard steady calculation method promoted by the thermal behaviour 

regulation, which is based on fixed heating and cooling loads, which are not in line with the 

real-life behaviour verified in the surveyed case studies. 

 

Nevertheless, it is again necessary to separately stress the energy savings obtained from 

improving the thermal behaviour of the fabric. While the first measure is ineffective, this 

second one confirms the expected improvements widely disseminated in the literature. The 

improvement obtained from insulating the case studies' external walls allowed to achieve 

average U-values of circa 0.54 W/m2K from the original 2.28 W/m2K. These values are very 
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similar to the typical U-value reduction obtained in the Oporto guidance of 0.6 W/m2K from 

the original 2.9 W/m2K (AdEPorto et al., 2010). The research undertaken by Rye et al. in the UK 

showed an analogous reduction pattern, obtaining a value of 0.16 W/m2K, down from the 

original 1.24 W/m2K in a granite wall (2012). This reinforces once again the idea that, when 

focusing on the strict fabric parameters, the obtained results revealed a transversal 

improvement. 

 

Another widely promoted measure, the introduction of solar thermal panels, also presented 

lower savings than expected, with an average reduction in the energy consumption of 7.9%. 

This result is consistent with the simulation performed in the Oporto guidance, which achieved 

a reduction of 6% in the energy consumption through the use solar collectors by addressing 

40% of the total DHW demand (AdEPorto et al., 2010). When comparing the cost savings with 

the required investment, solar thermal systems lose their efficiency and attractiveness. 

Moreover and as previously argued, the consequences to Oporto’s roofscape image caused by 

the massive use of solar panels are highly disruptive for the WHS authenticity. Additionally, the 

multifamily occupation identified in the case studies would result in a high demand of solar 

panels for each roof71. When taking into account all these factors, it can be concluded that 

solar thermal scenarios are not a viable solutions for the Oporto World Heritage Site. 

 

Overall, the results reached with the simulated design scenarios are far below the ones that 

were obtained in several similar case studies on the retrofits that had been performed in 

traditional buildings in England and Scotland72 (table 47). In the refurbishment of Victorian 

houses in the UK, Yates achieved energy cuts of 67% to 75% and carbon emissions reductions 

of 63% to 85% (2006). Similar results were obtained in the Sheffield EcoTerrace refurbishment 

(Energy Saving Trust, 2010), cutting 76% in carbon emissions and 60% to 81% in energy 

consumption (electricity and gas respectively). 

 

It must be stressed, however, that these refurbishment case studies were profound and also 

included the installation of renewables and efficient central heating systems, which were 

revealed to be cost-effective under the high heating demand in the UK. It is necessary to 

                                                           
71

 - The Portuguese thermal regulation (RCCTE) requires the installation of 1m
2
 of panel for each resident, given that 

it does not occupy more than 50% of the roof slopes facing south, southeast or southwest. This area was reduced to 
10% in the Oporto historic site guidance (AdEPorto et al., 2010, p.36). 

72
 - These case studies and the specific improvements performed are listed in the Chapter Four. 
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reinforce that without the high energy consumptions associated with heating and/or cooling, 

the possible savings will never meet the reported levels. The energy efficiency upgrade of the 

Edinburgh Georgian tenements produced results that were closer to the ones obtained in the 

Oporto case studies, with yearly average energy savings of 18.45% and CO2 emissions cuts of 

16.92% per flat (Changeworks, 2008). Despite the similar percentage of improvement obtained 

in relation to the baseline situation, the Oporto energy consumption presented values which 

demonstrate a different reality. Each Scottish flat consumed an average of 26,971.0 kWh per 

year, while in Oporto the dwellings consumed on average five times less (4,945.1 kWh/year). 

Table 47 – Literature case studies savings 

 

Overall these results reinforce the conclusion that the energy used for space conditioning 

highly influences savings, both in terms of energy consumption and carbon emissions. Oporto's 

traditional buildings are actually relatively low in energy consumption due to their use pattern 

of heating and cooling. Hence, upgrades that aim to improve heat losses in the existing fabric 

are revealed to be cost ineffective and present low savings for energy consumption and carbon 

dioxide emissions. At the same time, their lack of effectiveness is a positive outcome from the 

heritage perspective, as envelope approach measures are more intrusive to a building's 

appearance. 

 

Nevertheless, it should be considered that, disregarding the differences between climate zones 

and energy loads for space conditioning, a pattern of potential improvement emerges that 

confirms the role that these buildings may play in achieving climate change mitigation. 

Furthermore, a better performance than expected seems constant in all studies concerning 

traditional buildings, confirming that the current methods of calculation and thermal 

regulations must be adapted to overcome such gaps. This approach must focus on the built 

structure itself and on the real behavioural data. Moreover, the social perspective which is 

usually absent from energy efficiency objectives has to be inserted in the process when dealing 

with traditional and historic buildings located in the old depressed quarters. In these areas the 
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savings are much more than mere indicators; they are real improvements to the people's living 

conditions. It is then necessary to consider this factor and use it to promote awareness among 

the residents. Additionally, it is also possible to point out some additional gains obtainable 

from the reduction of the carbon dioxide emissions by using natural gas instead of LPG. From 

an overall perspective it is important to reinforce the idea of promoting district solutions which 

can embark tri-generation and/or strategically placed renewables to overcoming their visual 

impact on heritage (e.g. geothermal and heat pumps).  

 

It is important to point out that the scenarios which presented the best results were obtained 

in the variants 3a, 3b and 4. These are the most common across the research area (78% of all 

buildings), representing mid-terraced houses with one or two façades. This fact highlights the 

potential savings obtainable from a large scale implementation of the most effective design 

scenarios. 

 

9.2.3 - Short-term and long-term scenarios 

The detailed analysis of each simulated scenario allowed for determining the most feasible 

measures by crossing energy and carbon savings, cost effectiveness and comfort improvement. 

In table 48, table 49 and table 50 the most effective potential gains identified in the equipment 

and dynamic simulations are summarised. The diverse scenarios are reported by variant, which 

further allows calculating the potential savings achievable in the total research area based on 

the representativeness of each variant. 

 

The design scenarios were classified as 'short-term' and 'long-term', based on their cost-

effectiveness and their feasibility of implementation, similar to the approach taken by Yates 

(2006). This is verifiable in table 48 and table 49, where 'long-term' refers to the total possible 

savings obtainable from the equipment simulation, including the replacement of all non-

efficient equipment. The short-term scenario reduces the scope, isolating the low cost and 

immediately applicable measures from the previous. 

 

A similar approach was taken for the dynamic simulation scenarios, which were based on the 

DHW improvement measures identified as the most effective, to which the upgrade of the 

inner shutters was added. However, the analysis of the two scenarios revealed that the gains 

achievable by the second are negligible, even reaching negative values in some cases. For this 

reason, the final potential gains obtainable by merging the two simulations did not account for 
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this last scenario. The comfort indicators did not reveal to be conclusive, as they presented 

both better and worse results than the short-term scenario. Moreover, the short-term 

scenarios simulated for cases 8 and 9 (table 50) presented negative outcomes, hence they 

were only accounted for in terms of comfort. 

Table 48 – Potential savings from the equipment simulation regarding the yearly total energy in short-term 
scenarios 

 

 

 

 

 

 

 

 

 

Table 49 - Potential savings from the equipment simulation regarding the yearly total energy in long-term scenarios 

 

In table 51 the final results obtained from joining the two previous tables are listed. The short-

term scenario presented remarkable yearly savings, ranging from 4.28% to 16.73% for the 

consumed reference energy, which corresponded respectively to a decrease of 45.36kg and 

257.10kg in CO2 emissions. The long-term scenario approximately doubled or tripled these 

savings, registering reductions of 9.85% to 33.78% in the consumed energy, corresponding 

respectively to 104.25kg and 476.49kg of reduced CO2 emissions per year. It is important to 

point out that in both scenarios the most expressive results were obtained in the variants 3a, 

Variant Cases

Total 

savings 

(kWh)

Total 

savings (%)

Carbon 

Savings 

(kgCO2)

saving 

(€/year)

Lighting 

savings 

(kWh)

Lighting 

saving (%)

Carbon 

Savings 

(kgCO2)

saving 

(€/year)

Stand-by 

savings 

(kWh)

Stand-by 

savings (%)

Carbon 

Savings 

(kgCO2)

saving 

(€/year)

V1 mid case 10 328.68 16.81 75.14 56.80 35.14 1.80 8.03 6.07 42.00 2.15 9.60 7.26

V1 top case 8 737.89 15.19 168.69 127.51 251.33 5.17 57.46 43.43 83.28 1.71 19.04 14.39

V2 mid case 7 586.60 17.12 134.10 101.36 141.96 4.14 32.45 24.53 67.90 1.98 15.52 11.73

V2 top case 9 455.96 9.85 104.24 78.79 166.73 3.60 38.12 28.81 31.67 0.68 7.24 5.47

V3a mid case 6 1877.81 30.44 429.29 324.49 290.37 4.71 66.38 50.18 148.30 2.40 33.90 25.63

V3a top case 3 726.05 12.32 165.98 125.46 245.28 4.16 56.07 42.38 79.28 1.35 18.12 13.70

V3b mid case 1 404.58 9.20 92.49 69.91 78.84 1.79 18.02 13.62 70.22 1.60 16.05 12.13

V3b top case 2 1152.62 16.05 263.50 199.17 263.44 3.67 60.23 45.52 222.70 3.10 50.91 38.48

V4 mid case 5 1215.57 13.23 277.89 210.05 442.85 4.82 101.24 76.52 214.42 2.33 49.02 37.05

V4 top case 4 322.93 6.86 73.83 55.80 0.00 0.00 0.00 0.00 22.38 0.48 5.12 3.87

Long Term Scenario Short Term Scenario

Variant Cases

Total 

savings 

(kWh)

Total 

savings (%)
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Savings 
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saving 

(€/year)
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(€/year)
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(kWh)

Stand-by 

savings (%)

Carbon 

Savings 

(kgCO2)

saving 

(€/year)

V1 mid case 10 328.68 16.81 75.14 56.80 35.14 1.80 8.03 6.07 42.00 2.15 9.60 7.26

V1 top case 8 737.89 15.19 168.69 127.51 251.33 5.17 57.46 43.43 83.28 1.71 19.04 14.39

V2 mid case 7 586.60 17.12 134.10 101.36 141.96 4.14 32.45 24.53 67.90 1.98 15.52 11.73

V2 top case 9 455.96 9.85 104.24 78.79 166.73 3.60 38.12 28.81 31.67 0.68 7.24 5.47

V3a mid case 6 1877.81 30.44 429.29 324.49 290.37 4.71 66.38 50.18 148.30 2.40 33.90 25.63

V3a top case 3 726.05 12.32 165.98 125.46 245.28 4.16 56.07 42.38 79.28 1.35 18.12 13.70

V3b mid case 1 404.58 9.20 92.49 69.91 78.84 1.79 18.02 13.62 70.22 1.60 16.05 12.13

V3b top case 2 1152.62 16.05 263.50 199.17 263.44 3.67 60.23 45.52 222.70 3.10 50.91 38.48

V4 mid case 5 1215.57 13.23 277.89 210.05 442.85 4.82 101.24 76.52 214.42 2.33 49.02 37.05

V4 top case 4 322.93 6.86 73.83 55.80 0.00 0.00 0.00 0.00 22.38 0.48 5.12 3.87

Long Term Scenario Short Term Scenario

Variant Cases
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V1 mid case 10 328.68 16.81 75.14 56.80 35.14 1.80 8.03 6.07 42.00 2.15 9.60 7.26

V1 top case 8 737.89 15.19 168.69 127.51 251.33 5.17 57.46 43.43 83.28 1.71 19.04 14.39

V2 mid case 7 586.60 17.12 134.10 101.36 141.96 4.14 32.45 24.53 67.90 1.98 15.52 11.73

V2 top case 9 455.96 9.85 104.24 78.79 166.73 3.60 38.12 28.81 31.67 0.68 7.24 5.47

V3a mid case 6 1877.81 30.44 429.29 324.49 290.37 4.71 66.38 50.18 148.30 2.40 33.90 25.63

V3a top case 3 726.05 12.32 165.98 125.46 245.28 4.16 56.07 42.38 79.28 1.35 18.12 13.70

V3b mid case 1 404.58 9.20 92.49 69.91 78.84 1.79 18.02 13.62 70.22 1.60 16.05 12.13

V3b top case 2 1152.62 16.05 263.50 199.17 263.44 3.67 60.23 45.52 222.70 3.10 50.91 38.48

V4 mid case 5 1215.57 13.23 277.89 210.05 442.85 4.82 101.24 76.52 214.42 2.33 49.02 37.05

V4 top case 4 322.93 6.86 73.83 55.80 0.00 0.00 0.00 0.00 22.38 0.48 5.12 3.87

Long Term Scenario Short Term Scenario
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3b and 4, highlighting the potential savings which may be obtained from the implementation 

of any of these scenarios (table 51). 

Table 50 - Potential savings from the dynamic simulation regarding the yearly total energy in short- and long-term 
scenarios 

 

Table 51 – Long and short term scenarios from the thermal and equipment simulations 

Variant Cases

Total 

savings 

(kWh)

Total 

savings 

(%)

Carbon 

Savings 

(kgCO2)

saving 

(€/year)

Total 

savings 

(kWh)

Total 

savings 

(%)

Carbon 

Savings 

(kgCO2)

saving 

(€/year)

V1 mid case 10 202.44 9.11 46.28 34.98 453.98 21.97 103.78 78.45

V1 top case 8 334.61 6.88 76.50 57.82 737.89 15.19 168.69 127.51

V2 mid case 7 273.46 8.28 62.52 47.25 650.20 19.28 148.64 112.35

V2 top case 9 198.40 4.28 45.36 34.28 455.96 9.85 104.24 78.79

V3a mid case 6 645.17 10.45 147.49 111.49 2084.31 33.78 476.49 360.17

V3a top case 3 848.56 13.41 193.99 146.63 1250.05 20.22 285.77 216.01

V3b mid case 1 400.76 8.25 91.62 69.25 656.28 14.06 150.03 113.41

V3b top case 2 1124.64 16.73 257.10 194.34 1791.12 26.01 409.47 309.51

V4 mid case 5 1305.57 14.78 298.47 225.60 1863.87 20.86 426.10 322.08

V4 top case 4 333.78 7.37 76.31 57.68 634.33 13.75 145.01 109.61

Long Term ScenarioShort Term Scenario

Variant Case Indicators Baseline
Scenarios 

1, 4 and 5

Savings 

(%)

saving 

(€/year)

Scenarios 1, 

4, 5, and 3

savings 

(%)

saving 

(€/year)

Energy (kWh/year) 5177.6 4925.90 4.86 4925.90 4.86

CO2 (kgCO2) 1131 1073.00 5.13 1073.00 5.13

PPD (Mean %) 16.63 16.71 -0.51 16.71 -0.50

Energy (kWh/year) 6412.6 5774.10 9.96 5702.70 11.07

CO2 (kgCO2) 1440 1294.00 10.14 1277.00 11.32

PPD (Mean %) 27.49 28.10 -2.20 25.83 6.04

Energy (kWh/year) 6632.9 6108.90 7.90 6077.00 8.38

CO2 (kgCO2) 1437 1318.00 8.28 1310.00 8.84

PPD (Mean %) 26.49 25.92 2.12 24.87 6.12

Energy (kWh/year) 4522.5 4211.10 6.89 4157.30 8.08

CO2 (kgCO2) 1013 942.00 7.01 929.00 8.29

PPD (Mean %) 26.75 26.93 -0.67 27.78 -3.84

Energy (kWh/year) 8495.3 7847.00 7.63 7850.10 7.59

CO2 (kgCO2) 1863 1715.00 7.94 1716.00 7.89

PPD (Mean %) 33.42 30.89 7.59 32.45 2.92

Energy (kWh/year) 6178.3 5971.80 3.34 5968.20 3.40

CO2 (kgCO2) 1360 1313.00 3.46 1312.00 3.53

PPD (Mean %) 22.29 21.72 2.57 21.55 3.30

Energy (kWh/year) 2948.1 2884.50 2.16 2881.60 2.26

CO2 (kgCO2) 650 635.00 2.31 635.00 2.31

PPD (Mean %) 26.29 26.34 -0.17 26.29 0.00

Energy (kWh/year) 4433.7 4479.40 -1.03 4479.40 -1.03

CO2 (kgCO2) 988 999.00 -1.11 999.00 -1.11

PPD (Mean %) 30.17 27.90 7.52 27.90 7.52

Energy (kWh/year) 3229 3362.80 -4.14 3362.80 -4.14

CO2 (kgCO2) 684 715.00 -4.53 715.00 -4.53

PPD (Mean %) 26.63 25.31 4.98 24.44 8.24

Energy (kWh/year) 2427.1 2301.80 5.16 2301.80 5.16

CO2 (kgCO2) 555 526.00 5.23 526.00 5.23

PPD (Mean %) 17.43 17.42 0.06 16.68 4.28

Case 1

Case 2

Case 3

Case 4

V3b 

mid

V3b 

top

V3a 

top

V4 top

V1 mid

Case 5

Case 6

Case 7

Case 8

Case 9

Case 10

V4 mid

V3a 

mid

V2 mid

V1 top

V2 top

35.68

10.99

-7.90

Short Term Scenario

43.49

110.33

-23.12

21.65

Long Term Scenario

-23.12

21.65

43.49

122.67

96.06

63.11

111.49

36.31

11.49

-7.90

90.55

53.81

112.03
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Overall, it is possible to test the potential applicability of these savings to the total research 

area accordingly to the representativeness of each variant. Calculating with 191 buildings (665 

dwellings), it will be possible to save 464.76 MWh (€80,309) each year with the short-term 

scenario and 914.65 MWh (€158,051) with the long-term scenario. It can be affirmed that the 

results present a valid potential for complying with the energy and carbon reduction targets 

established by the municipality for 2020 (AdEPorto, 2010). Referring to the yearly buildings' 

energy saving targets established for 2020, these two scenarios represent respectively the 

shares of 1.22% and 2.41%. 

 

9.2.4 - Future-Proofing 

The simulated future weather confirmed the predicted changes for Oporto73 (Instituto de 

Meteorologia de Portugal and Instituto Dom Luiz da Universidade de Lisboa, 2008; Santos et 

al., 2002; Santos and Miranda, 2006), which aggravate the tendency for overheating. Based on 

such a future scenario, the study conducted by Aguiar et al. predicted a reduction in the 

energy consumption associated with heating and the inverse for cooling (2002). In the specific 

case of the Portuguese north coast, the study pointed out a decrease of 473kWh/year for 

heating and an increase of 651kWh/year for cooling. However, the calculations were made 

using the static comfort model, with continuous heating and cooling when the temperatures 

fall outside of the defined bandwidth (20˚C and 25˚C). 

 

The data output of the future weather simulations seems to support the arguments of Aguiar 

et al., who associate the decrement in heating energy consumption with the temperature 

increase.(2002). Regarding the performance, it can be pointed out that Oporto's traditional 

buildings show that a decrease in comfort is mainly due to rising temperatures. Consequently, 

the predicted climate changes may lead to minor adaptation measures that, if not mitigated 

correctly, can impact on the heritage value of the buildings. The current increase of 

refurbishment trends may lead to a gentrification of the area and consequently bring residents 

who may have higher comfort standards, thus leading to an increased cooling demand. This 

could consequently produce negative impacts on heritage and energy consumption if external 

AC units are to be installed. Another possible future scenario arises from the current 

demographic trends, which show a growing ageing population. This may turn into a major 

                                                           
73

 - It is predicted a 3°C increase in the Portuguese mainland coastal area. 
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social issue, resulting in severe health problems if this low-income population has to deal with 

these overheated dwellings. 

 

It can be affirmed that Oporto’s traditional buildings are not significantly affected by the 

predicted climate change. The reduction in the energy used for heating is a positive aspect. 

Hence, the future-viability of Oporto's traditional buildings has to be directed mainly towards 

decreasing comfort and the social and heritage problems arising from this. The solutions must 

take advantage of the buildings’ high thermal mass, which prevents overheating during the 

day. Again, the challenge is to enhance the natural ventilation during the evening and night 

time in order to dissipate the heat absorbed by the walls. This must be addressed by either 

raising the ventilation rates through the exterior frames or by enhancing the use of the central 

stair space through establishing a good ventilation rate between main door and skylight. 

Adapting these behaviours may be less intrusive to a building's appearance than changing the 

window frames. Still, the role of adaptive comfort and behaviour control must also be pointed 

out. Currently, some of the householders already use an adaptive approach by closing 

windows and shutters during the day in summer and leaving them open during the night. 

Based on their experience and respective simulated profile, this simple measure proves to be 

very effective in dealing with this problem. This highlights the role of adaptive behaviour in 

energy efficiency and confirms the positive performance of traditional windows and internal 

shutters as identified by Baker (2010) in relation to sash windows. 

 

9.3 – Main Findings 

Several points which must be highlighted emerge from the analysis of the results. Primarily, it 

can be stressed that the overall performance presented by the studied traditional buildings 

was higher than the installed vision which regards them as highly inefficient. This encompasses 

both energy and comfort converging to support the emerging literature which questions the 

established U-values used for these buildings. The Portuguese pattern of energy demand for 

space conditioning is directly linked to the mild climate which leads these buildings to perform 

better than the values which are being put out by calculation methods which are based on 

thermal regulations. Additionally, the dynamic simulation reveals to be the most adequate 

method for dealing with all the complex factors involved in the energy efficiency of traditional 

buildings, as the static calculation methods fail to fully encompass these. Furthermore, these 

buildings must be researched further instead of relying on the expected results from the 
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steady calculations. This will allow achieving a more accurate understanding of their integral 

performance which is a recognised gap in the literature. 

 

Regarding the performance, it can also be pointed out that Oporto's traditional buildings can 

face the predicted climate changes with minor adaptation measures that will not impact on 

their heritage value. These have to deal mainly with increasing the natural ventilation during 

the night in order to dissipate the heat accumulated by the high thermal mass of the solid 

walls. 

 

Secondly, it must be stressed that from the simulation analysis it can be affirmed that the most 

effective solutions to improve the energy efficiency of Oporto's traditional buildings are a DHW 

upgrade and the efficient use of equipment. From the short- and long-term scenarios, yearly 

cuts on energy use and carbon emissions of 464.76 MWh and 106 tonnes of CO2, and 914.65 

MWh and 209 tonnes of CO2 respectively, were identified. On average, each dwelling could 

respectively save €121 and €238 a year in the short- and long-term scenarios. The results 

present a valid and feasible potential to help achieving the energy and carbon reduction 

targets established in the 2020 strategy. At the same time, the cost savings are extremely 

relevant from the social perspective, as the population residing in the historic centre has a 

relatively low income, a factor which is further accentuated by the ageing trend among the 

population, which may lead to profound fuel poverty in the future. 

 

Thirdly, it was verified that the role of upgrading the fabric is less important than usually 

pointed out in literature, which relieves the pressure on the heritage values of these 

traditional buildings. Surprisingly, envelope insulation was revealed to be ineffective overall, 

resulting in irrelevant energy savings and low comfort improvements. At the same time, these 

are high-cost measures and negatively impact on the building's heritage values. The measures 

which were identified as more effective are non-intrusive to the heritage values identified in 

Oporto's traditional buildings. Solar panels were revealed to be highly intrusive to the historic 

context and damaging for the World Heritage City integrity. They were economically 

ineffective and presented administrative and design constraints. These last constraints in 

conjunction with the heritage intrusiveness can be extended to the introduction of solar 

photovoltaic panels or micro-wind generation. The intrusiveness of the panels highlights the 

necessity of addressing heritage impact on traditional buildings at several scales: element, 

building and site. This supports an independent approach diverging from the envelope-centred 

upgrade and reinforces the role of the social dimension in energy efficiency. However, it must 
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be stressed that the results are deeply influenced by the heating and cooling demands which 

characterise the Portuguese energy trends. Focusing strictly on the obtained fabric 

improvement thermal parameters, it is possible to verify that they follow the pattern 

expressed in the literature. 

 

Finally, it must be underlined that a broad consensual approach towards the energy efficiency 

upgrade of traditional buildings and posed heritage constraints emerged from the scientific 

and technical literature (AdEPorto et al., 2010; Changeworks, 2008; Energy Saving Trust, 2010; 

English Heritage, 2011; Ferguson, 2011; May and Rye, 2012; Restart Project, 2000; Yates, 

2006). However, as stressed previously, these approaches do not reveal a clear process of 

weighting the energy efficiency parameters with heritage significance protection. To overpass 

this gap, several methods were amalgamated and applied to Oporto's traditional buildings 

case studies. 
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Chapter Ten: Conclusions and Further Research 
 

10.1 - Introduction 

The purpose of this chapter is to summarise and connect the content of the thesis in order to 

highlight the significance of the findings. This includes establishing the connection with the 

aims of the thesis and answering the research questions. Furthermore, the implications for 

future policies aiming to improve the energy efficiency of traditional buildings in Oporto and 

similar cases are addressed. Finally, recommendations for further research are made. 

 

10.2 – Main Conclusions 

This dissertation covered the ‘Investigation of energy efficiency measures in the traditional 

buildings in the Oporto World Heritage Site’, thus allowing revising and addressing the major 

questions which frame this subject. This included bringing together the fields of building 

energy efficiency with heritage conservation in traditional buildings, by using the Oporto 

World Heritage Site as a case study. The study was divided into two parts: the first comprised 

establishing the background and the literature review, concluding with the methodology 

definition; the second part focused on the case studies, including determining the typologies, 

the survey results from the research area with 191 buildings, and the thermal simulation of 10 

case studies, representative of the identified variants. The second part concluded with 

determining the most effective measures to improve the energy efficiency of traditional 

buildings in Oporto, which also included a discussion of the obtained results in reference to the 

literature. 

 

10.2.1 – Review of the Thesis Aims and Objectives 

As established in Chapter One, the main aim of this research is to identify the means by which 

urban traditional residential buildings can be upgraded to improve their energy performance 

while at the same time preserving their heritage significance. Using Oporto’s traditional 

buildings integrated in the World Heritage Site as research objects, the aim was addressed by 

identifying the most effective measures for improving energy efficiency to upgrade these 

buildings. 



The investigation of energy efficiency measures in the traditional buildings in Oporto World Heritage Site: Joaquim Flores 

238 

 

To achieve such an objective, a methodology to assess the improvement of energy efficiency 

of traditional buildings and their acceptable limit of change to the heritage was developed. The 

method crossed the fields of heritage significance of traditional buildings and management of 

change assessment with the improvement of their energy efficiency, while balancing cost, 

comfort, energy consumption and CO2 emissions. By applying this method to the results of the 

dynamic and equipment simulations, it was possible to clearly identify the most feasible and 

effective measures applicable to the ten case studies and further and extrapolate the results to 

all traditional buildings located in the research area. The obtained findings are summarised in 

the next sub-section. 

 

10.2.2 – Findings Summary 

This sub-section highlights the main findings of the thesis, covering the performance of 

traditional buildings, most effective measures, social perspective, methodological approach 

and results extrapolation. 

 

Traditional Buildings Performance 

The analysis of the data regarding energy consumption for the case studies was obtained from 

the supplier and revealed the following: 

- a low consumption for heating and cooling was identified, confirming previously 

established patterns for Oporto and Portugal; 

- overall, one of the most intensive energy consumptions is related to the domestic hot 

water (DHW); the average yearly consumption calculated from the actual data for all 

the case studies was lower than the Portuguese and European shares for the most 

recently built buildings.  

 

From the analysis of the case study questionnaires, it was possible to conclude that the 

majority of the households are satisfied with the overall comfort of the dwelling, namely, with 

temperature, air quality, light and noise. 

 

The monitored temperatures during summer in four of the cases highlighted the relevant role 

of the thermal mass of these buildings. The pattern of temperature variation in the dwellings 

showed that the heat which had accumulated in the solid granite external walls was slowly 
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released during the night. In these cases, night ventilation should be improved to avoid 

overheating. The simulation with future weather scenarios reinforces this, pointing it out to be 

a major problem that needs addressing. The adopted behavioural controls in some dwellings, 

like closing the windows and shutters during summer days and opening them at night, 

revealed positive results. 

 

During the research process, doubts arouse due to recent literature about the established 

calculation methods which reported a lower performance of traditional buildings than what 

was actually observed. Recent fieldwork regarding thermal performance analysis of traditional 

buildings proves exactly this knowledge gap (Baker, 2010; Baker, 2011; Rye, 2011; Rye et al., 

2012). This point to the inadequacy of applying current standards and static energy calculation 

methods to traditional buildings. These calculations define abstract comfort levels which have 

to be continuously met throughout the year and serve as a basis for calculating the energy 

demand necessary to fulfil them.  

 

The Most Effective Measures 

The analysis of the design scenarios simulation results showed that the most effective 

measures are related to the DHW system retrofit and behavioural approach towards 

equipment use (lighting and stand-by nulling). This confirms the literature framework 

identified and is regardless of the buildings age. Simultaneously, these low-cost measures are 

also compatible with traditional buildings fabric and heritage values, which reinforces their 

feasibility. 

 

Surprisingly, envelope improvements resulted in negligible energy savings, which together 

with their high implementation costs rendered them ineffective due to very long pay-back 

periods. This ineffective fabric approach differs from the results reported in the literature, 

which presented significant energy savings achieved through envelope retrofit, with special 

relevance to insulation (Changeworks, 2008; Energy Saving Trust, 2010; Rye et al., 2012; Yates, 

2006). However, as previously pointed out, the influence of the low heating and cooling 

demands and the mild climate background in Portugal can explain the differing results. This is 

confirmed by the heat loss reduction that was achieved in the simulations, which also 

confirmed the literature results. The results were obtained at the dwellings retrofit scale and if 

a profound refurbishment of the entire building occurs, the cost-effectiveness of the solutions 

may raise and increase their effectiveness. Nevertheless, based on the achieved negligible 
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savings, it is extremely unlikely that they may become feasible. Moreover, even in this 

situation the management of change process remains valid as only the cost parameter 

changes. 

 

The comfort improvements achieved through envelope retrofit are also negligible, which 

reinforces their inadequacy for upgrading energy efficiency in Oporto's traditional buildings. 

The improvement of the glazed elements is the exception, especially for low cost draught-

proofing. While the energy savings are insignificant, these measures do increase the comfort 

levels of the inhabitants. The medium cost of introducing double or secondary glazing, in 

conjunction with the traditional internal shutters, may turn these solutions feasible should a 

scenario of increased heating and/or cooling loads occur. The changes on the traditional 

external frames must be performed with care in order to preserve the overall significance of 

the building. In the literature similar solutions were identified, which achieved a successful 

design compatibility with the original frames, leading to affirm that these solutions are 

perfectly viable to be implemented in Oporto. 

 

The use of solar thermal panels for water heating, although presented to be relatively cost-

effective, has a relevant negative impact on the significance of the World Heritage Site (‘visual 

noise’), resulting in a reluctance of using them in historic urban landscapes. This highlights the 

necessity to assess the heritage impact of the solutions at several levels: element, building and 

site. This is particularly relevant in traditional buildings, whose individual change may produce 

cumulative negative impacts on the site. 

 

In Oporto, the detected tenure framework additionally influences the concretisation of the 

measures. The feasibility of implementing general refurbishment is then highly compromised, 

regardless of cost. As opposed to this, all solutions which can be executed at the individual 

home (apartment) level reveal to be potentially practicable. In the literature it is pointed out 

that when measures are executed on a ‘do-it-yourself’ (DIY) basis, it is possible to cut the 

payback periods by half (Changeworks, 2008; Edinburgh World Heritage, 2012). The use of 

other forgotten traditional solutions, like ‘draught excluders’ or heavy curtains for draught-

proofing, is also pointed out (English Heritage, 2008). This could be a viable strategy to 

overcome the high payback periods of some retrofit solutions, specifically taking into account 

that the inhabitants of Oporto's historic centre usually have a low income. 
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The Social Perspective 

In the context of the research development it was possible to understand the relevance of the 

social perspective in the energy efficiency of traditional buildings. This covers two independent 

scopes; one is related to the role of the households’ behaviour in promoting energy efficiency, 

and the other one to the advantages which can be achieved for the inhabitants of the historic 

centre with the energy efficiency savings. 

 

The advantages of the first aspect were already patent in the obtained results and confirm the 

general trends in energy efficiency improvement for buildings, which are transversally pointed 

out in the literature (Energy Saving Trust and DEFRA, 2012), including in Portugal (Ferreira et 

al., 2008; Ferreira et al., 2011; Quercus, 2008). Combined behavioural and technological 

approaches can be more effective leading to potential electricity savings of up to 48% in the 

European residential sector (2011). In parallel, another possible behavioural approach in 

traditional dwellings was detected. The use of traditional methods to achieve comfort was 

shown to be effective. The control of windows and shutters is a good example of how to 

improve thermal, acoustic and visual comfort and save energy. So, the occupants behaviour in 

relation to energy use in their homes and how they can operate them so that less energy is 

needed for mechanical cooling, heating and electrical lighting, is a critical aspect of energy 

efficiency in the traditional buildings studied, encompassing a high saving potential. Moreover, 

the climate change trends point to increasing temperatures and possible overheating scenario. 

The control of natural ventilation by the occupants will likely be critical, both to improve 

comfort and avoid increasing the energy consumption. 

 

The relevance of the economic savings must be particularly highlighted in the detected social 

context. In accordance with the framework identified in the literature, the households 

participating in the study mostly had a low income. Additionally, the current context of an 

economic crisis, continuous raises of energy prices and the ageing population trends, 

aggravate this scenario leading to fuel poverty. The potential economic savings also have to be 

considered from this social perspective, going beyond the usual energy and carbon metrics, as 

they may actually improve the households' living conditions. 

 

The Methodological Approach 

A broad consensual approach towards energy efficiency upgrade for traditional buildings and 

consequent heritage constraints emerged from the scientific and technical literature. 
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However, these approaches do not reveal a clear process of weighting the energy efficiency 

parameters with heritage significance protection. To overpass this gap, several existing 

methods were crossed and applied to the case studies of traditional buildings in Oporto. The 

method rests on the traditional process of measuring energy efficiency improvements and is 

crossed with a cyclical process of heritage impact assessment. The first compares the baseline 

with the simulated design scenarios in order to measure the diverse parameters of energy 

efficiency. The heritage assessment evaluates the impacts caused by these solutions in several 

instances. A limit of change for each measure was then identified in order to benchmark and 

avoid any adverse impact on Oporto's traditional buildings and on the significance of the 

World Heritage Site. 

 

The measurement of this impact integrated in the methodological process was not identified 

in the reviewed case studies, which addressed it as a complement of the technical perspective. 

Yates addresses the question by discussing the ‘conservation limit’ which corresponds to the 

‘limit of change’ expressed in the previous section (2011). However, this methodology was 

never clearly expressed in the literature and reviewed case studies. This gap is pointed out by 

May and Rye, who stress the necessity of developing a “systemic approach (…) regarding the 

assessment and retrofit of traditional buildings” (2012, p.7). 

 

The research or guidance identified for Oporto mainly relies on technically driven approaches, 

which range from methods where energy is the most relevant aspect (Cupido, 2000) to 

methods which are based mainly on a common sense approach for avoiding damaging the 

buildings appearance (AdEPorto et al., 2010; Restart Project, 2000). 

 

The most delicate step in the process is to define the ‘limit of change’ regarding the heritage, 

which will drive the process of measuring the impact. Moreover, the heritage impact 

assessment on several levels, element, building, site, was used. In traditional buildings it is 

essential to consider the management of change from the perspective of these levels. Since 

their heritage is related mainly to group values and not to individual exceptional significance. 

As a consequence, it is necessary to assess how individual change may affect the group as a 

whole. 
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Figure 79 – Detailed methodological process 
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Results Extrapolation 

In the previous chapter, the results obtained from the short and long-term scenarios were 

extrapolated to the 191 traditional buildings of the research area. Even if the overall results 

are not expressive, they contribute to climate change mitigation policies. Moreover, if the 

results are extended to all the 7,891 pre-1919 buildings of Oporto it will be possible to achieve 

yearly energy consumption reductions of up to 11.32 GWh and 20.46 GWh, for short and long-

term scenarios respectively. These are reduction shares which impressively correspond to 

29.81% and 53.88% of the annual reduction target established by the municipality to comply 

with the 2020 strategy. Moreover, it is important to stress that such promising energy 

efficiency achievements were obtained with solutions that did not interfere with the buildings' 

heritage significance. This proves that it is possible to reach expressive cumulative results 

without compromising the historic site. 

 

Further extrapolations of the results are possible, but not without losing accuracy. The 

obtained results are linked to the construction technologies, building typologies, patterns of 

energy use and local climate. The terraced typology identified in Oporto is relatively common 

among traditional urban buildings across Europe and the former colonies of European nations 

around the world. The other factors are site specific and pose limitations to extending the 

findings. However, it is possible to hypothesise that similar results could be obtainable in the 

traditional buildings of the European Mediterranean region, which share some similarities with 

the traditional buildings of Oporto. From these, the energy consumption by end-use values for 

Spain and Cyprus resemble the Portuguese trend the most (EEA, 2012), which increases the 

potential to verify similar results. 

 

10.3 – Contribution to Knowledge 

The study’s key contribution to knowledge is based on the results from the simulations. 

Contrary to expectation, they highlighted the inefficiency of envelope insulation for upgrading 

the energy efficiency of traditional buildings in Oporto, independently of the heritage value 

impacts they may have. This result has not been previously described in the literature, which 

stresses the high efficiency of these measures in retrofitting all types of existing buildings. As 

mentioned in the results extrapolation, this output may also be valid for traditional and 
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historic buildings of the European Mediterranean region. This finding has important 

implications for providing a new understanding on how to approach energy efficiency 

improvements for these buildings. The thermal regulations and established policy and practice 

are based mainly on these upgrading solutions. By proving their inefficiency, the scope must 

be orientated towards new approaches, relieving traditional buildings of the heavy heritage 

impact that these solutions may bring. 

 

Other of the main contributions to knowledge made by this research is based on the 

development of an integrated methodology to address the scopes of heritage and energy 

efficiency in traditional buildings. As explained in the previous section, this method addresses 

the gap found in literature for jointly assessing energy efficiency improvement and heritage 

preservation of traditional or historic buildings, which are usually approached separately or by 

focusing on one of the fields, with prevalence to the technical perspective. No existing 

research was identified using a complete method crossing the variables addressing the two 

perspectives: energy, CO2, cost, comfort and heritage impact. Although their application was 

performed in the Oporto context, the method can be used for approaching any historic or 

traditional building independently of its geographical location, climate and construction 

system or heritage value. All the parameters can be changed inside the method to address 

local specificities and obtain the most feasible energy efficiency measures for each context. 

 

Another contribution of this thesis refers to the first application of a dynamic simulation for 

Southern European traditional or historic buildings, inserted in a methodology for putting out 

results and pointing out the most feasible measures. Despite the methodological approach, 

similar dynamic simulations were identified in Northern European countries, in particular in 

the UK case studies. The identified literature focusing on the Mediterranean or Southern 

European region is based on the study of partial components of traditional buildings, lacking a 

complete integration of all aspects for dealing with an occupied dwelling. 

 

10.4 – Policy Recommendations 

Built heritage is a strategic resource for a sustainable Europe and must be part of the 

contemporary life. At the same time, the reduction of the CO2 emissions from the residential 

sector is a strategic action to mitigate worldwide climate change. This second aspect must be 

achieved without compromising the first, even if this means giving up more substantial 
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savings. The balance between these two aspects is the core philosophy subjacent to this study, 

aiming to promote the refurbishment and re-use of the traditional as a strategy for a 

sustainable urban environment. The concept of ‘traditiovation’ exposed by Cannarella and 

Piccioni (2011) is an exact illustration of how to combine the advantages of traditional 

knowledge with the requirements of contemporary life. The ‘traditiovations’ are defined “as 

the practices and techniques deriving from historical or past traditional knowledge or re-

invented practices and techniques, however, linked to traditional knowledge, showing, thanks 

also to the support of science and research, a capability to operate as innovation, despite their 

apparently obsolete and out-of-date features, in production and management” (2011, p.691). 

 

Overall, the necessity to promote more integrated approaches to address energy efficiency in 

traditional buildings is beginning to emerge in the literature. At the same time, these 

approaches must be less rigid and address the specificities of these buildings. The research 

findings reinforce this vision and allow providing policy recommendations to improve the 

energy efficiency of traditional buildings. 

 

Main Recommendations: 

- The energy efficiency calculations for traditional buildings must allow the use of 

dynamic simulation, instead of relying exclusively on steady calculation methods 

promoting theoretical comfort models. 

- The retrofit of traditional buildings should assess insulation-orientated regulations 

critically, verifying their impact and feasibility for each case. 

- The role of thermal mass in the traditional buildings' performance renders it 

necessary to devise natural ventilation design strategies that help dissipating the 

heat accumulated in the solid walls. 

- The retrofit of the traditional frames should also be encouraged as it improves the 

inner comfort of the homes. Like insulation, improvements to the frames must also 

be assessed according to their impact and feasibility in each case. 

- The measures have to be based on design solutions that are compatible with the 

existing fabric; e.g. ‘breathability’ or hygrothermal behaviour. The simulations 

showed that the buildings which had been profoundly refurbished without 

considering compatibility, performed worse that the ones where the original fabric 

had been kept. 
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- The widely promoted use of solar thermal panels must be discouraged in historic 

environments, due to their visual impact. This recommendation is also valid for 

other renewable technologies which may produce similarly grave visual impacts. 

On the other hand, the introduction of non-intrusive renewables, like use of 

geothermal measures, should be encouraged. 

- The promotion of district heating and cooling can also be an alternative to solar 

systems. The traditional urban block can be a natural unit for these systems' 

energy distribution and/or transformation. A heritage assessment which considers 

the cumulative impacts on the historic site, rather than on the individual building 

only, should be introduced. 

- Based on the most effective solutions identified, the development of awareness 

campaigns for behavioural changes, focusing on DHW improvement, stand-by 

nulling, upgrade of equipment efficiency and enhancement of internal shutters 

and traditional windows use, is suggested. 

 

10.5 – Research Limitations 

The major limitation was the use of a small sample of ten cases. The limitation is mainly 

reflected in the incertitude of extrapolating the results. Further, the dwelling-limited approach 

instead of an entire building one could bring bias to the overall energy efficiency results. 

However, a whole-building approach would mainly focus on the fabric, which due to its low 

gains is unlikely to reveal a dramatic change in the results and lead to diverse conclusions. In 

the future, the comparison between the overall building and the dwellings performance must 

be explored, in order to compare the results. All limitations mentioned can also be pointed out 

as future research topics. 

 

Another limitation is the incertitude of the data accuracy used in the study. This is related to 

the U-values, which were taken from existing literature or simulated in the software when 

addressing the composite layers which are not fully accepted by IES VE software. The gap 

between calculated and in-situ measured values is widely pointed out in the literature. Thus, 

in-situ measurements are needed in the Portuguese and Oporto context to validate the 

results. The impossibility of accessing the adequate survey equipment turned unviable to 

integrate such component on the research, but it is undoubtedly a point to be explored in 

future research. The accuracy of the information reported by the householders regarding their 
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perception about energy consumption and behavioural control can also be pointed out as a 

limitation of this research. These limitations can provoke bias in the results, but they are 

constant in the performed simulations and are unlikely to affect the comparison between the 

results obtained. 

 

10.6 – Suggestions for further research 

The uncertainty of the heat transfer behaviour of traditional materials is widely pointed out in 

the literature and was also felt during this research. To perform in-situ measurements to 

obtain accurate U-values of traditional buildings systems is a suggestion for future research. 

 

Further work should also verify if the pay-back of the fabric approach reveals to be effective in 

profound refurbishment operations in Oporto that cover the entire building. The role of some 

emerging technologies should be explored in the energy efficiency improvement of traditional 

buildings. This includes the use of super-insulating materials, PCM insulation incorporated in 

the plaster, and slim glazing for retrofitting traditional frames. 
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street survey-Infante Porto BD_ID (objectid)

building identification

sru id ine id building id building id in lot

130 131213

name

building localization street names numbers

main street

back street

side street one

side street two

main façade solar orientation urban typhology

building characterization

age conservation heritage intervention date typhology

number of floors number facades number fronts gable facades number of openning rows roof type roof window

Building type

building geometry

main facade front width building long main façade elevation floor height building area building volume exterior wall thickness

building materials

main façade structure main facade main facade color roof windows frame windows color glass type

light control main façade insulation

building function

global function street function upper floors function

Building ocuppation

households

Observation



Age Age of Buildings Conservation Conservation of Buildings Functions Functions of Buildings Heritage Heritage Value of Buildings

bef_18 Before XVIII g Good res Residential li Listed

18 XVIII r Reasonable man_res Mainly Residential exc Exceptional

19 XIX b Bad com Commercial hi High

1_XX 1st Half of XX const In Construction serv Services gr Group

2_XX 2nd Half of XX refurb In Refurbishment pub_serv Public Services di Dissonant
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const In Construction war Warehouse
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edu Education

emp Empty

cult Culture

Solar_Orient Main Facade Solar Orientation

N North

NE Northeast

E East

SE Southeast

S South

SW Southwest

W West

NW Northwest

Fac_St_Mat Main Facade Structure Materials Fac_Mat Main Facade Material Colors Colors of Materials Facade_Insul Main Facade Insulation

st Stone ti Traditional Tile w White 0 No Insulation

con Concrete nti Non Traditional Tile y Yellow 1 Insulation 1 cm

wo Wood pl Plaster r Rose 2 Insulation 2 cm

ir Iron fa Fasquio g Grey 3 Insulation 3 cm

br Brick ta Tabique b Blue 4 Insulation 4 cm

not Not Identificable d Dark 5 Insulation 5 cm

gr Green 6 Insulation 6 cm

br Brown

Roof Type Roof Type Roof_Wind Roof Window

4_slop Traditional 4 Slopes trad_roof Traditional Roof Window

3_slop Traditional 3 Slopes non_trad Non Traditional Roof Window

2_slop Traditional 2 Slopes no_roof No Roof Window

1_slop Traditional 1 Slope

terr Terrace

Main_Window Main Facade Window Glass Main Façade Glass Type Solar_Prot Main Facade Solar Protection

trad_wood Traditional Wood Frame sing Single Glazed in_shut Inner Shutters
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HOUSING QUESTIONNAIRE        

Name Sex M F

Date Time Age

Are you a: Tenant Owner

1. Number of Occupants <18 18-64 >65

2. Number of persons that are normally at home:

07-08,30h 08,30-10h 10-12,30h 12,30-14h 14-16h 16-18h 18-20h 20-22h 22-24h 24-07h

Mon

Tue

Wed

Thu

Fri

Sat

Sun

3. Does this type of occupancy changes in holidays and how:

4. How do you feel the temperature at this time? 7. How do you find the daylight levelat your house at this time?

Much to warm Very bright

Too warm Bright

Comfortably warm Slightly bright

Comfortably neither warm nor cool Neither bright nor dim

Comfortably cool Slightly dim

Too cool Dim

Much too cool Very dim

5. I would prefer to be: 8. How do you find the noise in the surronding areas?

Much cooler Very noisy

A bit cooler Noisy

No change Slighly noisy

A bit warmer Neither noisy nor quiet

Much warmer Slightly quiet

Quiet

6. How do you find the air movement in Very quiet

your house at this time?

Very high 9. How would you describe the air quality in your house

High  at this time?

Slightly high Very bad

Neither high nor low Bad

Low Slightly bad

Very low Neither bad nor good

Slightly good

Good

excellent

The survey is being conducted to help with the refurbishment of your house in an energy efficient manner. All responses will be anonymous and the 

information collected will be treated as completely confidential by the survey team. 

Section B - Comfort

Section A - Occupancy

Questionnaire_JF_2010-09-14 1/2



HOUSING QUESTIONNAIRE        

10. At this time, how would you rate your overall comfort? 12. Activity level - What have you been doing in the last 15 min

in your house? Considering all the above factors Sitting (passive work)

Very bad Sitting (active work)

Bad Standing relaxed

Slightly bad Walking indoors

Neither bad nor good Walking outdoors

Slightly good Other (specify)

Good

excellent 13. Controls - tick all that apply How How long

Internal door open

11. Clothing you are using at this time - tick all that apply External door open

Short sleeve/blouse Window(s) open

Long sleeve shirt/blouse Blind/curtains down

Vest Internal shutters closed

Trousers/short skirt General lighting on

Dress Localised lighting on

Pullover General heating on

Jacket Localised heater on

Long socks Air condition on

Tights Fan on

Tie

Boots 14. Measurements

Shoes Air temperature (C°)

Sandals Relative Humidity %

Lighting level (lux)

Background noise level (dbA)

15. Specify the equipments in use and how they are used:

Room Equipment Power rating Average usage hours (day)

THANK YOU FOR YOUR HELP

Section B - Comfort (continuation)

Section C - Equipments

If you have any queries, please contact Joaquim Flores - jflores@brookes.ac.uk or +351962339320

2/2



QUESTIONÁRIO        

Nome Sexo M F

data Hora Idade

É: inquilino Proprietário

1. Número de ocupantes/idades <18 18-64 >65

2. Número de pessoas que está habitualmente em casa:

07-08,30h 08,30-10h 10-12,30h 12,30-14h 14-16h 16-18h 18-20h 20-22h 22-24h 24-07h

Segunda

terça

Quarta

Quinta

Sexta

Sábado

Domingo

3. Este tipo de ocupação muda nas férias e como:

4. Como é que sente a temperatura neste momento? 7. Como sente a iluminação natural na sua casa neste momento?

Demasiado quente Muito luminosa

Quente Luminosa

Confortalvelmente quente ligeiramente luminosa

Confortável, nem quente, nem fria Nem luminosa nem escura

Confortavelmente fria Ligeiramente escura

Fria Escura

Demasiado fria Muito escura

5. Eu preferia que fosse: 8. Como sente o ruído exterior?

Muito mais fresca Muito ruidoso

Mais fresca Ruidoso

Igual Ligeiramente ruidoso

Um pouco mais quente nem ruidoso nem silencioso

Muito mais quente Ligeiramente silencioso

Silencioso

6. Como acha a ventilação Muito silencioso

na sua casa neste momento?

Muito elevada 9. Como descreveria a qualidade do ar na sua casa

Elevada neste momento?

Ligeiramente elevada Muito má

nem elevada nem baixa Má

Baixa Ligeiramente má

Muito baixa Nem boa nem má

Ligeiramente boa

Boa

excelente

Este inquérito está ser conduzido de modo a permitir uma maior eficiência no uso da energia em futuros processos de reabilitação da sua casa e de casas 

semelhantes. Todas as resposta serão anónimas e a informação recolhida será tratada de modo completamente confidencial pela equipa de investigação. 

Secção B - Conforto

Secção A - Occupação

Questionnaire_JF_2010-09-14_PT 1/2



QUESTIONÁRIO        

10. Neste momento, como classificaria o confortona sua casa? 12. Nível de actividade - O que esteve a fazer nos últimos 15 m

tendo em consideração o global dos factores acima referidos sentado (trabalho passivo)

Muito mau Sentado (trabalho activo)

Mau de pé relaxado

Ligeiramente mau a andar em casa

Nem bom nem mau a andar no exterior

Ligeiramente bom Outro (especifique)

Bom

excelente 13. Controles - assinale os aplicáveis Como Tempo

Porta interior aberta

11. Roupa que está a usar neste momento - assinale o necessário Porta exterior aberta

camisa/blusa de manga curta Janela(s) aberta

camisa/blusa de manga comprida Estores/cortinas fechadas

Camisola Portadas interiores fachadas

calças/saia curta Luz geral acesa

vestido Luz localizada acesa

pullover Aquecimento geral ligado

casaco Aquecedor localizado ligado

meias altas Ar condicionado ligado

collants Ventoinha ligada

gravata

Botas 14. Medições

Sapatos Temperatura do ar (C°)

Sandálias Humidade relativa %

Intensidade luminosa (lux)

Nível de ruído de fundo (dbA)

15. Especifique os equipamentos que usa e como são usados:

Compartimento Equipamento Potência de consumo Média de horas de uso (por dia)

MUITO OBRIGADO PELA SUA COLABORAÇÃO

Se tiver alguma questão por favor contacte Joaquim Flores - jflores@brookes.ac.uk ou +351962339320

Secção B - Conforto (continuação)

Secção C - Equipamentos

2/2



Grades - English Portuguese Conversion

4

Much to warm Demasiado quente

Too warm Quente

Comfortably warm Confortalvelmente quente

Comfortably neither warm nor cool Confortável, nem quente, nem fria

Comfortably cool Confortavelmente fria

Too cool Fria

Much too cool Demasiado fria

5

Much cooler Muito mais fresca

A bit cooler Mais fresca

No change Igual

A bit warmer Um pouco mais quente

Much warmer Muito mais quente

6

Very high Muito elevada

High Elevada

Slightly high Ligeiramente elevada

Neither high nor low nem elevada nem baixa

Low Baixa

Very low Muito baixa

7

Very bright Muito luminosa

Bright Luminosa

Slightly bright ligeiramente luminosa

Neither bright nor dim Nem luminosa nem escura

Slightly dim Ligeiramente escura

Dim Escura

Very dim Muito escura

8

Very noisy Muito ruidoso

Noisy Ruidoso

Slighly noisy Ligeiramente ruidoso

Neither noisy nor quiet nem ruidoso nem silencioso

Slightly quiet Ligeiramente silencioso

Quiet Silencioso

Very quiet Muito silencioso



9

Very bad Muito má

Bad Má

Slightly bad Ligeiramente má

Neither bad nor good Nem boa nem má

Slightly good Ligeiramente boa

Good Boa

excellent excelente

10

Very bad Muito mau

Bad Mau

Slightly bad Ligeiramente mau

Neither bad nor good Nem bom nem mau

Slightly good Ligeiramente bom

Good Bom

excellent excelente



Construction terms English-Portuguese

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

A B

English Terminology Portuguese Terminology

Architrave (door) Padieira

Ashlar mansonry pedra aparelhada

Balcony Varanda ou Sacada

Beams Traves, Vigas

Canopy Cobertura de terraços e marquises

Carpet Alcatifa

Casement Window Janela de Abrir (1 ou 2 folhas)

Cast iron Ferro fundido

Ceiling height pé direito

Ceramic tile Azulejo cerâmico

Ceramic tile flooring Mosaico cerâmico

Chestnut wood Madeira de castanho

Cladding Revestimento

Clay Barro, argila

Concrete slab laje de betão

Corbels Cachorros

Cornice Cornija

Corrugated iron cladding Chapa ondulada de ferro

Crank Dobradiça

Detached house Edifício isolado

Dormer Window Janela Trapeira (sotão)

Eave Beiral

Ell Vara

End Terrace Edifícios que rematam a banda

Extensions Acrescentos

Exterior walls Paredes exteriores

Fanlight window Bandeira (porta ou janela)

Finish Acabamento

Flat Roof Cobertura Plana

Floorboarding Tábuas do soalho

Flues Condutas

Forged iron Ferro forjado

Frame Caixilho

French Window Janela/Porta de Abrir (porta envidraçada)

Gable Empena

Gable Roof Telhado de 2 Águas com acentuada inclinação

Gargoyle Gárgula

Georgian wrought iron fanlight 

window Gradeamento em ferro da bandeira (porta ou janela)

Glazed balcony Marquise

Granite Granito

Grit Saibro

Groove Ranhura, entalhe, sulco

Gypsum plaster Gesso

Gypsum skim Barramento de gesso

half-timbering or timber framing Taipa de Rodízio

Hip Roof Telhado de 4 Águas

Hydraulic lime Cal hidráulica

Indoor shutter, inner shutter Portada interior

Ironmongery Ferragens (puxadores, fechaduras, etc..)

Jalousie Veneziana, Gelosia, Rótula de Pau

Jamb Ombreira da Porta ou Janela

Joinst Juntas

Joists Barrotes

Landing Patamar da escada

Lath Ripa do fasquio

Lath and plaster Tabique/fasquio

Lath and plaster ceiling Tecto de estuque com base de tabique

Lattice or lattice-work Entrelaçado de ripas para fasquio

Lean-to Roof Telhado de 1 Água (normalmente telheiro)

lesbian and polygonal masonry Estereotomia entre pedra irregular e aparelhada

Lime Cal

1



Construction terms English-Portuguese

1

A B

English Terminology Portuguese Terminology

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

Lime mortar Reboco

Lime plaster Reboco de cal

Limestone Calcário

Linoleum Linóleo

Lintel Lintel, padieira

Mansart Roof Mansarda

Merlons Merlões

Mid Terrace Edifícios do meio da banda

Mortar Argamassa

Moulding Perfil de um elemento (cornija, por exemplo)

Noggin Tarugos

Oak wood Madeira de carvalho

Overhang Ressalto

Parapet wall platibanda

Partition walls Paredes interiores

Party wall Paredes de meação entre casas

Pediment Frontão

Pine wood Madeira de pinho

Pitched Roof Telhado de 2 Águas com inclinação variável

Plaster Reboco

Purlin Terça (telhado)

Rafters Caibros (telhado)

Ridge Viga de cumeeira

Riga pine wood Madeira de Pinho Riga

Roller blind(s) Estore(s)

Roof battens Ripas do telhado

Roof Ridge Cumeeira

Roof Tile Telha

Roof Truss Asna

Rubble masonry Pedra irregular

Sash Window Janela de Guilhotina

Sashes Caixilhos (folhas)

Scots Pine (or European Redwood, 

but less common) Madeira de casquinha

Semi-detached house Edifício geminado

Shutter Portada

Side hung Porta ou janela de abrir lateralmente

Sill Peitoril

Skylight Clarabóia

Slate Lousa

Sole plate Travessa soleira

Solid hardwood floor Soalho

Span Palmo

span vão (espaço entre)

Stairs landing patamar das escadas

Stone Pedra

Stone Masonry Alvenaria de pedra

Stone Mouldings Trabalho de Cantaria

Stonemasonry Cantaria

Stucco or plaster Estuque

Stud Prumo

Tallow Sebo

Tenement Edifícios de apartamentos

Terraced house Edifício urbano em banda

Timber stud partition wall Paredes interiores de tabique (madeira e reboco)

Top plate Travessa topo

Wall base Rodapé

Wall panelling Lambrim

2



Construction terms English-Portuguese

1

A B

English Terminology Portuguese Terminology

120

121

122

123

124

125

Wallpaper Papel de parede

Weatherstripped Calaftada

Wood plank Tábua de madeira do soalho

Wood slats Ripado

Wrought Gradeamento

Wrought Iron Balconies - Georgian, 

Regency, Victorian, Art Deco Gradeamento em ferro das varandas

3
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Case Study 1
Variant 3b roof plan

Ceramic roof tiles Skylight



0 m 5 m 10 m

Case Study 1
Variant 3b front facade (street)

Granite masonry Wood frame Forged ironPlaster



0 m 5 m 10 m

Case Study 1
Variant 3b rear facade (courtyard)

Wood framePlaster



0 m 5 m 10 m

Case Study 1

wood and plaster
partition wall

Variant 3b Section

Roof tile

Granite solid wall Wood



0.52m2
0.12m2

46.15% of
glazed area

0.54m2
0.35m2
64.8% of
glazed area

1.85m2
0.04m2

0.16 m2

8.65% of
glazed area

0.24 m2

1.15m2
0.16m2

41.74% of
glazed area

0.48 m2

0.16m2
0.16m2

Fanlight

Fixed

Door

1.09 m2

94.78% max.
opening area

0.45 m2

83.33% max.
opening area

1.70 m2

91.89% max.
opening area

Front (SE) 2th floor x 3 Side (SW) 2th floor x 1 Back (NW) 2th floor x 1

Fanlight

Door
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Case Study 1
Variant 3b - middle floor - Openings



glazed area

0.20m2
0.09m2
45% of
glazed area

0.15 m2

75.00% max.
opening area

Back (NW) 2th floor x 1

0.39m2
0.19m2
48.72% of
glazed area

0.69m2
0.29m2
42.03% of
glazed area

Fanlight 1 Fanlight 2

Interior doors

Fanlight 1 Fanlight 2

0 m 5 m 10 m

Case Study 1
Variant 3b - middle floor - Openings



Case 1 Construction elements

type 1 type 2 type 2 type 3 type 4 type 5 type 6

exterior wall front (SE) Side (SW) Side (NE) Back (NW) front (SE) back (NW) Side (SW) Kitchen Back (NW) WC

Total Thickness 0.55 0.75 0.75 0.72 0.24 0.75 0.72

ext layer plaster (0.025) plaster (0.025) plaster (0.025) plaster (0.025) granite plaster (0.025) plaster (0.025)

layer 1 granite (0.50) granite (0.70) granite (0.70) granite (0.67) granite (0.24) granite (0.70) granite (0.67)

layer 2

layer 3

layer 4

int layer plaster (0.025) plaster (0.025) plaster (0.025) plaster (0.025) granite tile (0.025) tile (0.025)

type 1 type 2 type 2

partition wall WC - Kitchen

Total Thickness 0.13 0.14 0.13

ext layer plaster (0.025) plaster (0.015) plaster (0.025)

layer 1 wood+mortar (0.08) brick (0.11) wood+mortar (0.08)

layer 2

layer 3

layer 4 mortar (0.01) mortar (0.02)

int layer plaster (0.025) tile (0.005) tile (0.005)

type 1 (Floor) type 2 (ceiling)

Horizontal separation

Total Thickness 0.30 0.30

floor layer hardwood (0.03) tile (0.005)

layer 1 wood beams (0.245) mortar (0.005)

layer 2 hardwood (0.03)

layer 3 wood beams (0.235)

layer 4 timber framing (0.01) timber framing (0.01)

ceiling layer gypsum (0.015) gypsum (0.015)



Case 1 Opening elements

Front (SE) - 3 doors 3 fanlight 6 sashes 3 sets of shutters 3 sets of curtais

Ext. Window (balcony door) Fanlight window Sashes (total window) use profile Shutters use profile Curtains use profile

total area (m2) 0.52 1.15

allways closed except with 

hot temperature 2.82 open day /closed night 2.82 closed continuously

glazed area (m2) 0.24 0.48

frame area (m2) 0.28 0.67

percentage of glazed (%) 46.15 41.74

percentage of frame (%) 53.85 58.26

max. Opening area (m2) 0.00 1.09

percentage of max. Opening area (%) 0.00 94.78

Frame material wood (3cm) wood (3cm) wood (3cm) light tissue

Type of glass single (3mm) single (3mm)

Side (SW) 1 casement window

Ext. Window (Kitchen) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 0.54 open continuously no not applicable no not applicable

glazed area (m2) no 0.35 no no

frame area (m2) no 0.19 no no

percentage of glazed (%) no 64.81 no no

percentage of frame (%) no 35.19 no no

max. Opening area (m2) no 0.45 no no

percentage of max. Opening area (%) no 83.33 no no

Frame material no wood (3cm) no no

Type of glass no single (3mm) no no

Back (NW) 1 door

Ext. Door (backyard) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 1.85 closed continuously no not applicable no not applicable

glazed area (m2) no 0.16 no no

frame area (m2) no 1.69 no no

percentage of glazed (%) no 8.65 no no

percentage of frame (%) no 91.35 no no

max. Opening area (m2) no 1.70 no no

percentage of max. Opening area (%) no 91.89 no no

Frame material no wood (3cm) no no

Type of glass no single (3mm) no no



Case 1 Opening elements

Back (NW) 1 casement

Ext. Window (WC) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 0.20 open continuously no not applicable no not applicable

glazed area (m2) no 0.09 no no

frame area (m2) no 0.11 no no

percentage of glazed (%) no 45.00 no no

percentage of frame (%) no 55.00 no no

max. Opening area (m2) no 0.15 no no

percentage of max. Opening area (%) no 75.00 no no

Frame material no wood (3cm) no no

Type of glass no single (3mm) no no

Int. Door Fanlight window Door use profiles Fanlight window 1 Fanlight window 2

total area (m2) no not applicable allways closed (bedrooms) 0.39 0.69

glazed area (m2) no no when in opened (others) 0.19 0.29

frame area (m2) no 0.20 0.40

percentage of glazed (%) no 48.72 42.03

percentage of frame (%) no 51.28 57.97

max. Opening area (m2) no 0.00 0.00

percentage of max. Opening area (%) no 0.00 0.00

Frame material no wood (3cm) wood (3cm) wood (3cm)

Type of glass no no single (3mm) single (3mm)

Int. Window Fanlight window sash use profiles

total area (m2) no not applicable allways closed

glazed area (m2) no

frame area (m2) no

percentage of glazed (%) no

percentage of frame (%) no

max. Opening area (m2) no

percentage of max. Opening area (%) no

Frame material no

Type of glass no



Case 1 Equipment table

Operation profile assumed Hours per year

IES VE code Room Category Equipment model brand Power (Kw) average usage hours (52 weeks, 365 days) Kwh/year Source

FLR20010 Hall lighting 3 halogen lamps 0.1050 1 hour/day 365 38.33 ERSE (35w)

FLR20024 Corridor lighting 1 compact fluorescent lamp 0.0110 0.5 hours/day 182.5 2.01 ERSE (11w)

FLR20018 Living Room lighting 1 compact fluorescent lamp 0.0110 4 hours/day 1460 16.06 ERSE (11w)

FLR20018 Living Room entertainment 1 TV Philips 0.0900 3 hours/day 1095 98.55 ERSE (90w)

FLR20018 Living Room entertainment 1 TV in standby Philips 0.0025 21 hours/day 7665 18.86 Deco Proteste Internet simulator

FLR20018 Living Room entertainment 1 DVD player 0.2400 0.5 hours/day 182.5 43.80 ERSE (240w)

FLR20018 Living Room entertainment 1 DVD player in standby 0.0014 23.5 hours day 8577.5 11.84 Deco Proteste Internet simulator

FLR20019 Bedroom 3 lighting 1 compact fluorescent lamp 0.0110 0.5 hours/day 182.5 2.01 ERSE (11w)

FLR20013 Bedroom 2 lighting 1 compact fluorescent lamp 0.0110 1 hour/day 365 4.02 ERSE (11w)

FLR20013 Bedroom 2 entertainment 1 TV 0.0900 1 hour/day 365 32.85 ERSE (90w)

FLR20013 Bedroom 2 entertainment 1 TV in standby 0.0025 23 hours/day 8395 20.66 Deco Proteste Internet simulator

FLR20013 Bedroom 2 entertainment 1 Desktop computer 0.3000 1 hour/day 365 109.50 ERSE (300w)

FLR20009 Bedroom 1 lighting 3 halogen lamps 0.1050 2 hours/day 730 76.65 ERSE (35w)

FLR20025 Kitchen lighting 2 compact fluorescent lamps 0.0220 3 hours/day 1095 24.09 ERSE (11w)

FLR20025 Kitchen appliance 1 Washing machine J853 Samsung 2.0000 2 washes (1.5h)/week 78 156.00 ERSE (2000w) - ver net

FLR20025 Kitchen appliance 1 Dish washer ZDF211 Zanuzzi 2.0000 1.5 hours/week 78 156.00 ERSE (2000w) - ver net

FLR20025 Kitchen appliance 1  fridge / freezer Class A Whirlpool 0.0392 On continuously 8760 343.39 model WTE 3111 W (internet manual) - 0.94w/day

FLR20025 Kitchen appliance 1 Microwave CRS Worten 0.9000 0.5 hours/day 182.5 164.25 ERSE (900w)

FLR20025 Kitchen appliance 1 Microwave in standby CRS Worten 0.0043 23.5 hours day 8577.5 37.28 Deco Proteste Internet simulator

FLR20025 Kitchen appliance 1 Electric frying pan DF 30AW Electric 2.0000 1 hour /week 52 104.00 in situ

FLR20025 Kitchen appliance 1 Iron 1.6000 7 hours /week 364 582.40 ERSE (1600w)

FLR20025 Kitchen entertainment 1 TV Trinitron Sony 0.0900 3 hours /day 1095 98.55 ERSE (90w)

FLR20025 Kitchen entertainment 1 TV in  stand-by Trinitron Sony 0.0025 21 hours/day 7665 18.86 Deco Proteste Internet simulator

FLR20025 Kitchen environment 1 Electric hot water cylinder 75 RI Aparici 2.0000 On continuously 8760 448.95 AKI - 1.23kWh/Day

FLR20025 Kitchen appliance 1 Gas stove/oven 2 hours/day (1 bottle /month) 0.00 Households

FLR20004 WC lighting 1 fluorescent lamp 0.0360 2 hours/day 730 26.28 ERSE (36w)

TOTAL 2635.17

3641.00 EDP (kWh/Year)
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Case Study 2
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Variant 3b top - rear facade (courtyard)
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Case 2 Construction elements

type 1 type 2 type 1 type 2 type 3 type 4 type 4

exterior wall front (E) 5th floor front (E) 6th floor Back (SW) 5th floor Back (SW) 6th floor front, Back (E, SW) Side (S) party wall Side (N) party wall

Total Thickness 0.50 0.20 0.50 0.20 0.22 0.60 0.60

ext layer plaster (0.025) plaster (0.025) plaster (0.025) plaster (0.025) granite plaster (0.025) plaster (0.025)

layer 1 granite (0.45) wood+mortar (0.15) granite (0.45) wood+mortar (0.15) granite (0.22) granite (0.55) granite (0.55)

layer 2

layer 3

layer 4

int layer plaster (0.025) plaster (0.025) plaster (0.025) plaster (0.025) granite plaster (0.025) plaster (0.025)

type 1 type 2 type 3 type 4

partition wall new room/livingroom Kitchen/WC

Total Thickness 0.13 0.14 0.13 0.13

ext layer plaster (0.025) plaster (0.015) tile (0.005) plaster (0.025)

layer 1 wood+mortar (0.08) brick (0.11) mortar (0.02) wood+mortar (0.08)

layer 2 wood+mortar (0.08)

layer 3

layer 4 mortar (0.02) mortar (0.02)

int layer plaster (0.025) plaster (0.015) tile (0.005) tile (0.005)

type 1 type 2 type 3

Horizontal separation roof

Total Thickness 0.30 0.30 0.21

floor layer hardwood (0.03) tile (0.005) ceramic tile (0.015)

layer 1 wood beams (0.245) mortar (0.005) wood (0.18)

layer 2 hardwood (0.03)

layer 3 wood beams (0.235)

layer 4 timber framing (0.01) timber framing (0.01)

ceiling layer gypsum (0.015) gypsum (0.015) wood (0.015)



Case 2 Opening elements

Front (E) 5th floor 2 sash windows

Ext. Window (Rooms) Fanlight window Sashes (total window) use profile Shutters use profile Curtains use profile

total area (m2) no 2.34 open 1 h day /moorning 2.34 open continuously 2.34 closed continuously

glazed area (m2) no 1.6

frame area (m2) no 0.74

percentage of glazed (%) no 68.38

percentage of frame (%) no 31.62

max. Opening area (m2) no 1.03

percentage of max. Opening area (%) no 44.02

Frame material no wood (3cm) wood (3cm) light tissue

Type of glass no single (3mm)

Front (E) 6th floor 1 casement window

Ext. Window (room) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 0.99 open 1 h day/moorning no not applicable 0.99 closed continuously

glazed area (m2) no 0.56 no

frame area (m2) no 0.43 no

percentage of glazed (%) no 56.57 no

percentage of frame (%) no 43.43 no

max. Opening area (m2) no 0.87 no

percentage of max. Opening area (%) no 87.88 no

Frame material no wood (3cm) no light tissue

Type of glass no single (0.3cm) no

Back (SW) 5th floor 1 sash window

Ext. Window (Kitchen) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 1.91 open 1 h day/moorning no not applicable no not applicable

glazed area (m2) no 1.28 no no

frame area (m2) no 0.63 no no

percentage of glazed (%) no 67.02 no no

percentage of frame (%) no 32.98 no no

max. Opening area (m2) no 0.83 no no

percentage of max. Opening area (%) no 43.46 no no

Frame material no wood (3cm) no no

Type of glass no single (0.3cm) no no



Case 2 Opening elements

Back (SW) 5th floor 1 casement

Ext. Window (WC) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 0.90 open 1 h day/moorning no not applicable 0.90 closed continuously

glazed area (m2) no 0.56 no

frame area (m2) no 0.34 no

percentage of glazed (%) no 62.22 no

percentage of frame (%) no 37.78 no

max. Opening area (m2) no 0.79 no

percentage of max. Opening area (%) no 87.78 no

Frame material no wood (3cm) no light tissue

Type of glass no single (0.3cm) no

Back (SW) 6th floor 1 casement window

Ext. Window (room) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 0.99 open 1 h day/moorning no not applicable 0.99 closed continuously

glazed area (m2) no 0.56 no

frame area (m2) no 0.43 no

percentage of glazed (%) no 56.57 no

percentage of frame (%) no 43.43 no

max. Opening area (m2) no 0.87 no

percentage of max. Opening area (%) no 87.88 no

Frame material no wood (3cm) no light tissue

Type of glass no single (0.3cm) no

Int. Door Fanlight window Door use profiles

total area (m2) no not applicable allways open

glazed area (m2) no no excepted bedrooms

frame area (m2) no

percentage of glazed (%) no

percentage of frame (%) no

max. Opening area (m2) no

percentage of max. Opening area (%) no

Frame material no wood (3cm)

Type of glass no no

Int. Window Fanlight window Door use profiles

total area (m2) no no not applicable

glazed area (m2) no

frame area (m2) no

percentage of glazed (%) no

percentage of frame (%) no

max. Opening area (m2) no

percentage of max. Opening area (%) no

Frame material no

Type of glass no



Case 2 Equipment table

Operation profile assumed Hours per year

IES VE code Room Category Equipment model brand Power (Kw) (average usage hours (52 weeks, 365 days) Kwh/year Source

FLR50016 Bedroom Hall lighting 1 lamp 0.0600 0.5 hours/day 182.5 10.95 ERSE (60w)

FLR50004 Stairs hall lighting 2 compact fluorescent lamps 0.0220 3 hours/day 1095 24.09 ERSE (11w)

FLR50015 Living room lighting 3 halogen lamps 0.1050 3 hours/day 1095 114.98 ERSE (35w)

FLR50015 Living room entertainment 1 TV Tecnimagem 0.0900 3 hours/day 1095 98.55 ERSE (90w)

FLR50015 Living room entertainment 1 TV in standby Tecnimagem 0.0025 21 hours/day 7665 18.86 Deco Proteste Internet simulator

FLR50015 Living room entertainment 1 Cable TV box decoder Meo Box 0.0162 3 hours/day 1095 17.74 EDP (8w) / Quercus (16.2w)

FLR50015 Living room entertainment 1 Cable TV box decoder in standby Meo Box 0.0094 21 hours/day 7665 72.05 Quercus (9.4w)

FLR50023 Bedroom 1 lighting 3 halogen lamps 0.1050 1.5 hours/day 547.5 57.49 ERSE (35w)

FLR50023 Bedroom 1 lighting 2 lamps (table lamps) 0.0800 1.5 hours/day 547.5 43.80 ERSE (40w)

FLR50023 Bedroom 1 entertainment 1 TV 0.0900 1 hour/day 365 32.85 ERSE (90w)

FLR50023 Bedroom 1 entertainment 1 TV in stand-by 0.0025 23 hours/day 8395 20.66 Deco Proteste Internet simulator

FLR50023 Bedroom 1 entertainment 1 DVD Player Nustic or Mustic ? 0.2400 0.5 hours/day 182.5 43.80 ERSE (240w)

FLR50023 Bedroom 1 entertainment 1 DVD Player in standby 0.0014 23.5 hours/day 8577.5 12.01 Deco Proteste Internet simulator

FLR50023 Bedroom 1 entertainment 1 Cable TV box decoder Meo Box 0.0162 1 hour/day 365 5.91 EDP (8w) / Quercus (16.2w)

FLR50023 Bedroom 1 entertainment 1 Cable TV box decoder in standby Meo Box 0.0094 23 hours/day 8395 78.91 Quercus (9.4w)

FLR50023 Bedroom 1 environment 1 Electric Fan 0.1000 all night in summer 0.00 LG (100w)

FLR50024 Bedroom 2 lighting 3 halogen lamps 0.1050 1.5 hours/day 547.5 57.49 ERSE (35w)

FLR50020 Kitchen lighting 1 fluorescent lamp 0.0580 4 hours/day 1460 84.68 ERSE (58w)

FLR50020 Kitchen lighting 1 compact fluorescent lamp 0.0110 2 hours/day 730 8.03 ERSE (11w)

FLR50020 Kitchen appliance 1 Washing machine HE605 TX Haier 1.9500 1.5 hours/day 547.5 416.10 1 washing/day. Manual in internet

FLR50020 Kitchen appliance 1 fridge Predilect Fagor 0.1500 On continuously 8760 223.00 ERSE (150w) Topten (223 kWh/year)

FLR50020 Kitchen appliance 1 freezer Ariston 0.2500 On continuously 8760 296.00 ERSE (250w) Topten (296 kWh/year)

FLR50020 Kitchen appliance 1 Microwave 0.9000 0.5 hours/day 182.5 164.25 ERSE (900w)

FLR50020 Kitchen appliance 1 Microwave in standby 0.0043 23.5 hours/day 8577.5 36.88 Deco Proteste Internet simulator

FLR50020 Kitchen appliance 1 Iron 1.6000 0.5 hour/day 182.5 292.00 ERSE (1600w)

FLR50020 Kitchen appliance 1 Extractor hood Airlux 0.1400 2 hours/day 730 102.20 ERSE (140w)

FLR50020 Kitchen appliance 1 Toaster 1.0000 0.25 hours/day 91.25 91.25 ERSE (1000w)

FLR50020 Kitchen environment electric hot water cylinder Spersil 1.0000 On continuously 8760 321.20 50 l - in situ; AKI - 0.88kWh/Day

FLR50020 Kitchen appliance 1 Gas stove/oven 0.5 bottles/month 0.00 Households

FLR50032 WC lighting 1 lamp 0.0600 1 hour/day 365 21.90 ERSE (60w)

FLR50019 Storage lighting 1 lamp 0.0600 0.25 hours/day 91.25 5.48 ERSE (60w)

FLR60034 Bedroom 3 (Floor 7) lighting 3 halogen lamps 0.1050 1.5 hours/day 547.5 57.49 ERSE (35w)

FLR60034 Bedroom 3 (Floor 7) entertainment 1 TV 0.0900 1.5 hours/day 547.5 49.28 ERSE (90w)

FLR60034 Bedroom 3 (Floor 7) entertainment 1 TV in standby 0.0025 22.5 hours/day 8212.5 20.21 Deco Proteste Internet simulator

FLR60034 Bedroom 3 (Floor 7) entertainment 1 DVD Player 0.2400 1 hour/day 365 87.60 ERSE (240w)

FLR60034 Bedroom 3 (Floor 7) entertainment 1 DVD Player in stand-by 0.0014 23 hours/day 8395 11.75 Deco Proteste Internet simulator

FLR60034 Bedroom 3 (Floor 7) environment 1 Electric oil-filled radiator heater 2.0000 1 h when cold (less 19) 0.00 ERSE (2000w)

FLR60039 Storage (Floor 7) lighting 3 halogen lamps 0.1050 0.125 hours/day 45.625 4.79 ERSE (35w)

TOTAL 3004.21

5978.26 EDP (kWh/Year)
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Case 3 Construction elements

type 1 (bedrooms) type 1 (livingroom) type 2 (Kitchen) type 3 type 4 type 5

exterior wall front (S) 5th floor Back (N) 5th floor Back (N) 5th floor front, Back (S, N) Side (E) party wall Side (W) party wall

Total Thickness 0.550 0.550 0.550 0.215 0.480 0.320

ext layer slate+wood (0.05) slate+wood (0.05) slate+wood (0.05) granite plaster (0.025) plaster (0.025)

layer 1 granite (0.475) granite (0.475) granite (0.475) granite (0.215) granite (0.43) granite (0.27)

layer 2

layer 3

layer 4

int layer plaster (0.025) plaster (0.025) tile (0.215) granite plaster (0.025) plaster (0.025)

type 1 type 2 type 2

partition wall

Total Thickness 0.13 0.13 0.13

ext layer plaster (0.025) plaster (0.025) tile (0.005)

layer 1 wood+mortar (0.08) wood+mortar (0.08) mortar (0.02)

layer 2 'wood+mortar (0.08)

layer 3

layer 4 mortar (0.02) mortar (0.02)

int layer plaster (0.025) tile (0.005) tile (0.005)

type 1 type 2 type 3

Horizontal separation roof

Total Thickness 0.30 0.30 0.21

floor layer hardwood (0.03) tile (0.005) ceramic tile (0.015)

layer 1 wood beams (0.245) mortar (0.005) wood (0.18)

layer 2 hardwood (0.03)

layer 3 wood beams (0.235)

layer 4 timber framing (0.01) timber framing (0.01)

ceiling layer gypsum (0.015) gypsum (0.015) wood (0.015)



Case 3 Opening elements

Front (S) 5th floor 2 casement windows

Ext. Window (Rooms) Fanlight window Sashes (total window) use profile Shutters use profile Curtains use profile Exterior blinders use profile

total area (m2) no 1.79 open 2 h day /summer no not applicable 1.79 closed continuously 1.79 75% open during day

glazed area (m2) no 0.96 closed continuously in winter no closed during night and away

frame area (m2) no 0.83 no

percentage of glazed (%) no 53.63 no

percentage of frame (%) no 46.37 no

max. Opening area (m2) no 1.55 no

percentage of max. Opening area (%) no 86.59 no

Frame material no wood (3cm) no light tissue plastic (0.01)

Type of glass no single (3mm) no

Back (N) 5th floor 2 casement windows

Ext. Window (Kitchen; Livingroom) Fanlight window Sashes (total window) use profile Shutters use profile Curtains use profile

total area (m2) no 1.81 open 2 h day /summer no not applicable 1.81 closed continuously

glazed area (m2) no 0.8 closed continuously in winter no

frame area (m2) no 1.01 no

percentage of glazed (%) no 44.20 no

percentage of frame (%) no 55.80 no

max. Opening area (m2) no 1.57 no

percentage of max. Opening area (%) no 86.74 no

Frame material no wood (3cm) no light tissue

Type of glass no single (0.3cm) no

Back (N) 6th floor 1 casement

Ext. Dormer Window Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 0.64 closed continuously no not applicable no not applicable

glazed area (m2) no 0.32 no no

frame area (m2) no 0.32 no no

percentage of glazed (%) no 50.00 no no

percentage of frame (%) no 50.00 no no

max. Opening area (m2) no 0.50 no no

percentage of max. Opening area (%) no 78.13 no no

Frame material no wood (3cm) no no

Type of glass no single (0.3cm) no no

Side (E) 6th floor 1 casement

Ext. Dormer Window Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 0.76 closed continuously no not applicable no not applicable

glazed area (m2) no 0.4 no no

frame area (m2) no 0.36 no no

percentage of glazed (%) no 52.63 no no

percentage of frame (%) no 47.37 no no

max. Opening area (m2) no 0.61 no no

percentage of max. Opening area (%) no 80.26 no no

Frame material no wood (3cm) no no

Type of glass no single (0.3cm) no no



Case 3 Opening elements

Int. Door Fanlight window Door use profiles

total area (m2) no not applicable allways open

glazed area (m2) no no excepted bedrooms

frame area (m2) no and acess to 6th floor

percentage of glazed (%) no

percentage of frame (%) no

max. Opening area (m2) no

percentage of max. Opening area (%) no

Frame material no wood (3cm)

Type of glass no no

Int. Window Fanlight window sash use profiles

total area (m2) no closed continuously

glazed area (m2) no

frame area (m2) no

percentage of glazed (%) no 0.65

percentage of frame (%) no

max. Opening area (m2) no

percentage of max. Opening area (%) no

Frame material no

Type of glass no



Case 3 Equipment table

Operation profile assumed Hours per year

IES VE code Room Category Appliance model brand Power (Kw) (average usage hours (52 weeks, 365 days) Kwh/year Source

FLR40064 Stairs Lighting 2 compact fluorescent lamps 0.0220 0.5 hours/day 182.5 4.02 ERSE (11w)

FLR40064 Stairs Lighting 1 lamp 0.0400 0.5 hours/day 182.5 7.30 ERSE (40w)

FLR40037 Corridor 1 Lighting 1 compact fluorescent lamp 0.0110 0.5 hours/day 182.5 2.01 ERSE (11w)

FLR40009 Corridor 2 Lighting 1 compact fluorescent lamp 0.0110 0.5 hours/day 182.5 2.01 ERSE (11w)

FLR40088 Corridor 3 Lighting 1 lamp 0.0400 0.5 hours/day 182.5 7.30 ERSE (40w)

FLR40022 Livingroom 1 Lighting 5 lamps 0.2000 2 hours/day 730 146.00 ERSE (40w)

FLR40022 Livingroom 1 Entertainment 1 Hi-Fi 0.0600 0.125 hours/day 45.625 2.74 ERSE (60w)

FLR40022 Livingroom 1 Entertainment 1 HI-Fi standby 0.0010 23.875 hours/day 8714.375 8.76 Deco Proteste Internet simulator

FLR40008 Living Room Lighting 2 compact fluorescent lamps 0.2200 2 hours/day 730 160.60 ERSE (11w)

FLR40008 Living Room Entertainment 1 Plasma TV 0.3000 2 hours/day 730 219.00 ERSE (300w)

FLR40008 Living Room Entertainment 1 Plasma TV in standby 0.0009 22 hours/day 8030 7.55 SELINA

FLR40091 Bedroom 1 Lighting 2 lamps 0.0800 1 hour/day 365 29.20 ERSE (40w)

FLR40091 Bedroom 1 Entertainment 1 TV 0.0900 1 hour/day 365 32.85 ERSE (90w)

FLR40091 Bedroom 1 Entertainment 1 TV in standby 0.0025 23 hours/day 8395 20.99 Deco Proteste Internet simulator

FLR40091 Bedroom 1 Environment 1 Electric oil-filled radiator heater 1h/day with cold (less 19) 0.00

FLR40092 Bedroom2 Lighting 4 lamps 0.1600 2 hours/day 730 116.80 ERSE (40w)

FLR40092 Bedroom2 Entertainment 1 TV 0.0900 1 hour/day 365 32.85 ERSE (90w)

FLR40092 Bedroom2 Entertainment 1 TV in standby 0.0025 23 hours/day 8395 20.99 Deco Proteste Internet simulator

FLR40041 Kitchen Lighting 2 fluorescent lamps 0.0720 3 hours/day 1095 78.84 ERSE (36w)

FLR40041 Kitchen Appliance 1 Microwave Taurus 0.8000 0.25 hours/day 91.25 73.00 in situ

FLR40041 Kitchen Appliance 1 Microwave in standby Taurus 0.0043 23.75 hours/day 8668.75 37.28 Deco Proteste Internet simulator

FLR40041 Kitchen Appliance 1 Fridge / freezer Balay 0.3000 On continuously 8760 293.00 ERSE (300w) Balay internet (293KWh/year)

FLR40041 Kitchen Appliance 1 Extractor hood 0.1400 1 hour/day 365 51.10 ERSE (140w)

FLR40041 Kitchen Appliance 1 Washing machine Maxx 7 Bosch 1.1900

2/3 washes  week (2.58 hours 

each) 335.4 399.13 Catalog internet

FLR40041 Kitchen Entertainment 1 TV 0.0900 1 hour/day 365 32.85 ERSE (90w)

FLR40041 Kitchen Entertainment 1 TV in standby 0.0025 23 hours/day 8395 20.99 Deco Proteste Internet simulator

FLR40041 Kitchen Environment 1 electric hot water cylinder Spersil 1.0000 On continuously 8760 321.20 50 l in situ; AKI - 0.88kWh/Day

FLR40041 Kitchen Appliance 1 Gas stove/oven 1.5 bottles/month 0.00 Households

FLR40038 WC Lighting 1 compact fluorescent lamp 0.0110 1 hour/day 365 4.02 ERSE (11w)

FLR40011 Storage Lighting 1 lamp 0.0400 0.25 hours/day 13 0.52 ERSE (40w)

FLR50021 Floor 5 Front Storage Lighting 1 lamp 0.0400 0.25 hours/week 13 0.52 ERSE (40w)

FLR50018 Floor 5 Back Storage Lighting 1 lamp 0.0400 0.25 hours/week 13 0.52 ERSE (40w)

TOTAL 2133.90

2950.27 EDP (kWh/Year)
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Case 4 Construction elements

type 1 type 2 type 3 type 4 type 5 type 6 type 7

exterior wall Side (S) 4th floor (room) side (W) 4th floor (room) side (E) 4th floor (room) side (W) 4th floor (livingroom) side (W) 4th floor (WC) Stair / Kitchen back house

Total Thickness 0.200 0.245 0.275 0.300 0.300 0.250 0.300

ext layer corrugated metal sheet (5 mm) corrugated metal sheet (5 mm) corrugated metal sheet (5 mm) corrugated metal sheet (5 mm) corrugated metal sheet (5 mm) plaster (0.015)

layer 1 wood / cavity (0.02) wood / cavity (0.02) wood / cavity (0.02) wood / cavity (0.02) wood / cavity (0.02) granite (0.22) granite (0.285)

layer 2 brick (0.15) granite (0.205) granite (0.235) granite (0.26) granite (0.26)

layer 3

layer 4 mortar (0.01)

int layer plaster (0.015) plaster (0.015) plaster (0.015) plaster (0.015) Tile (0.015) tile (0.005) plaster (0.015)

type 8 type 9 type 10 type 11 type 12

exterior wall Side (E) 4th floor 4th floor (courtyard/livingroom) 4th floor (courtyard / bedroom3) 4th floor (courtyard / bedroom1) 4th floor (courtyard / Hall)

Total Thickness 0.150 0.235 0.265 0.140 0.265

ext layer corrugated metal sheet (5 mm) plaster (0.015) plaster (0.015) plaster (0.015) plaster (0.015)

layer 1 wood / cavity (0.02) granite (0.205) granite (0.235) brick (0.11) granite (0.235)

layer 2 brick (0.11)

layer 3

layer 4

int layer plaster (0.015) plaster (0.015) plaster (0.015) plaster (0.015) plaster (0.015)

type 1 type 2 type 2 type 3

partition wall

Total Thickness 0.11 0.11 0.11 0.285

ext layer plaster (0.02) plaster (0.02) tile (0.005) plaster (0.015)

layer 1 brick (0.07) brick (0.07) mortar (0.015) granite (0.25)

layer 2 brick (0.07)

layer 3

layer 4 mortar (0.015) mortar (0.015) mortar (0.015)

int layer plaster (0.02) tile (0.005) tile (0.005) tile (0.005)

type 1 (all compartments) type 2 (kitchen, wc)

Horizontal separation

Total Thickness 0.25 0.25

floor layer linoleum (0.001) tile (0.005)

layer 1 wood (0.014) mortar (0.01)

layer 2 concrete (0.22) concrete (0.22)

layer 3

layer 4

ceiling layer gypsum (0.015) gypsum (0.015)

type 1 type 2

Horizontal separation (roof)

Total Thickness 0.21 0.21

roof layer ceramic tile (0.015) ceramic tile (0.015)

layer 1 wood (0.18) wood (0.18)

layer 2

layer 3

layer 4 cavity (variable)

ceiling layer gypsum (0.015) gypsum board (0.015)



Case 4 Opening elements

Front (S) 4th floor 1 sash windows

Ext. Window (Rooms) Fanlight window Sashes (total window) use profile Shutters use profile Curtains use profile

total area (m2) no 1.64 open 3 h day /with sun no not applicable 1.64 closed continuously

glazed area (m2) no 0.96 no

frame area (m2) no 0.68 no

percentage of glazed (%) no 58.54 no

percentage of frame (%) no 41.46 no

max. Opening area (m2) no 0.70 no

percentage of max. Opening area (%) no 42.68 no

Frame material no wood (3cm) no light tissue

Type of glass no single (2mm) no

Side (W) 4th floor (livingroom) 1 casement window

Ext. Window (room) Fanlight window Sash (1 window) use profile Shutters use profile Curtains use profile

total area (m2) no 0.55 open 3 h day /with sun no not applicable 0.55 closed continuously

glazed area (m2) no 0.41 no

frame area (m2) no 0.14 no

percentage of glazed (%) no 74.55 no

percentage of frame (%) no 25.45 no

max. Opening area (m2) no 0.48 no

percentage of max. Opening area (%) no 87.27 no

Frame material no wood (1.5cm) no light tissue

Type of glass no single (2mm) no

Side (W) 4th floor (livingroom) fixed window

Ext. Window (Kitchen) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 1.37 closed continuously no not applicable 1.37 closed continuously

glazed area (m2) no 1.145 no

frame area (m2) no 0.23 no

percentage of glazed (%) no 83.58 no

percentage of frame (%) no 16.42 no

max. Opening area (m2) no 0.00 no

percentage of max. Opening area (%) no 0.00 no

Frame material no wood (1.5cm) no light tissue

Type of glass no single (2mm) no

Side (W) 4th floor (Kitchen) 1 casement

Ext. Window (WC) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 0.67 open 8 h day no not applicable 0.67 closed continuously

glazed area (m2) no 0.51 no

frame area (m2) no 0.16 no

percentage of glazed (%) no 76.12 no

percentage of frame (%) no 23.88 no

max. Opening area (m2) no 0.59 no

percentage of max. Opening area (%) no 88.06 no

Frame material no wood (1.5cm) no light tissue

Type of glass no single (2mm) no

Side (E) 4th floor casement window x2 (a, b)

Ext. Window (room) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 0.82 open 3 h day /with sun no not applicable 0.82 closed continuously

glazed area (m2) no 0.68 no

frame area (m2) no 0.14 no

percentage of glazed (%) no 82.93 no

percentage of frame (%) no 17.07 no

max. Opening area (m2) no 0.77 no

percentage of max. Opening area (%) no 93.90 no

Frame material no wood (1.5cm) no light tissue

Type of glass no single (2mm) no



Case 4 Opening elements

Side (E) 4th floor fixed window x1 (a)

Ext. Window (room) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 0.59 closed continuously no not applicable 0.59 closed continuously

glazed area (m2) no 0.46 no

frame area (m2) no 0.13 no

percentage of glazed (%) no 77.97 no

percentage of frame (%) no 22.03 no

max. Opening area (m2) no 0.00 no

percentage of max. Opening area (%) no 0.00 no

Frame material no wood (1.5cm) no light tissue

Type of glass no single (2mm) no

Side (E) 4th floor fixed window x1 (b)

Ext. Window (room) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 0.46 closed continuously no not applicable 0.46 closed continuously

glazed area (m2) no 0.35 no

frame area (m2) no 0.11 no

percentage of glazed (%) no 76.09 no

percentage of frame (%) no 23.91 no

max. Opening area (m2) no 0.00 no

percentage of max. Opening area (%) no 0.00 no

Frame material no wood (1.5cm) no light tissue

Type of glass no single (2mm) no

Courtyard 4th floor fixed window x1

Ext. Window (hall) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 1.31 closed continuously no not applicable 1.31 closed continuously

glazed area (m2) no 1.08 no

frame area (m2) no 0.23 no

percentage of glazed (%) no 82.44 no

percentage of frame (%) no 17.56 no

max. Opening area (m2) no 0.00 no

percentage of max. Opening area (%) no 0.00 no

Frame material no iron (0.5cm) no light tissue

Type of glass no single (2mm) no

Shylight 4th floor fixed window x1

Ext. Window (hall) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 2.92 closed continuously no not applicable no not applicable

glazed area (m2) no 2.79 no no

frame area (m2) no 0.13 no no

percentage of glazed (%) no 95.55 no no

percentage of frame (%) no 4.45 no no

max. Opening area (m2) no 0.00 no no

percentage of max. Opening area (%) no 0.00 no no

Frame material no iron (0.1cm) no no

Type of glass no single (2mm) no no

Int. Door Fanlight window Door use profiles

total area (m2) no not applicable allways closed

glazed area (m2) no no except Kitchen

frame area (m2) no

percentage of glazed (%) no

percentage of frame (%) no

max. Opening area (m2) no

percentage of max. Opening area (%) no

Frame material no wood (3cm)

Type of glass no no



Case 4 Equipment table

Operation profile assumed Hours per year

IES VE code Room Category Appliance model brand Power (Kw) (average usage hours (52 weeks, 365 days) Kwh/year Source

FLR40045 Entrance Hall Lighting 1 compact fluorescent lamp 0.011 1 hour /day 365 4.02 ERSE (11w)

FLR40007 Bedroom Hall Lighting 1 compact fluorescent lamp 0.011 0.25 hours/day 91.25 1.00 ERSE (11w)

FLR40023 Living Room Lighting 4 compact fluorescent lamps 0.044 4 hours/day 1460 64.24 ERSE (11w)

FLR40023 Living Room Entertainment 1 TV HD TV Digital Plus Samsung 0.058 3hours/day 1095 63.51 Samsung internet

FLR40023 Living Room Entertainment 1 TV in standby HD TV Digital Plus Samsung 0.0003 21 hours/day 7665 2.30 Samsung internet

FLR40023 Living Room Environment 1 electric resistance heater 1.5 with cold 3/4 electric resistences 0.00 ERSE (1500w) WC heater high

FLR40000 Bedroom 1 Lighting 3 compact fluorescent lamps 0.033 1 hour /day 365 12.05 ERSE (11w)

FLR40048 Bedroom 2 Lighting 3 compact fluorescent lamps 0.033 1 hour /day 365 12.05 ERSE (11w)

FLR40047 Bedroom 3 Lighting 3 compact fluorescent lamps 0.033 1 hour /day 365 12.05 ERSE (11w)

FLR40003 Kitchen Lighting 1 fluorescent lamp 0.058 10 hours/day 3650 211.70 ERSE (58w)

FLR40003 Kitchen Appliance 1 Washing machine Fuzzy Logic 7Kg LG 1.19 3 times/week (2 hours) 312 371.28 LG internet

FLR40003 Kitchen Appliance 1 Dish washer Top dispaner Ocean 2 1 time /day (2 hours) 730 383.25 ERSE (2000w); TopTen (1.05 Kwh each wash)

FLR40003 Kitchen Appliance 1 Fridge / freezer Green Fresh Balay 0.3 On continuously 8760 293.00 ERSE (300w) Balay internet (293KWh/year)

FLR40003 Kitchen Appliance 1 Microwave Techno Star 0.9 0.5 hours/day 182.5 164.25 ERSE (900w)

FLR40003 Kitchen Appliance 1 Microwave in standby Techno Star 0.0043 23.5 hours/day 8577.5 36.88 Deco Proteste Internet simulator

FLR40003 Kitchen Appliance 1 Electric Oven 2.4 0.25 hours/day 91.25 219.00 ERSE (2400w)

FLR40003 Kitchen Appliance 1 Extractor hood Ocean 0.14 1 hour /day 365 51.10 ERSE (140w)

FLR40003 Kitchen Entertainment 1 Mini-TV 0.09 2 hours/day 730 65.70 ERSE (90w)

FLR40003 Kitchen Entertainment 1 Mini-TV in standby 0.0025 22 hours/day 8030 20.08 Deco Proteste Internet simulator

FLR40003 Kitchen Environment 1 electric hot water cylinder Jucomel 1.5 allways on 8760 467.20 50 l in situ; AKI - 1.28kWh/Day

FLR40003 Kitchen Appliance 1 Gas stove Ocean 1 bottle/2.5 months (0.4/month) 0.00 Households

FLR40002 WC Lighting 1 compact fluorescent lamp 0.011 1.5 hours/day 547.5 6.02 ERSE (11w)

FLR40019 Storage 1 Lighting 1 compact fluorescent lamp 0.011 0.25 hours/week 13 0.14 ERSE (11w)

FLR40021 Storage 2 Lighting 1 compact fluorescent lamp 0.011 0.25 hours/week 13 0.14 ERSE (11w)

TOTAL 2460.95

3896.90 EDP (kWh/Year)
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Case 5 Construction elements

type 1 type 2 type 2 type 3 type 4 type 5 type 6

exterior wall front (S) 2nd floor side (N) 2nd floor side (W) 2nd floor side (W) 2nd floor courtyard /livingroom Stair / Kitchen courtyard /side house

Total Thickness 0.55 0.30 0.30 0.30 0.30 0.30 0.15

ext layer plaster (0.025) plaster (0.025) plaster (0.025) plaster (0.02)

layer 1 granite (0.50) granite (0.275) granite (0.275) granite (0.285) granite (0.25) granite (0.26) brick (0.11)

layer 2

layer 3

layer 4 mortar (0.01) mortar (0.01)

int layer plaster (0.025) plaster (0.025) plaster (0.025) tile (0.005) plaster (0.025) tile (0.005) plaster (0.02)

type 1 type 2 type 2 type 3

partition wall

Total Thickness 0.11 0.11 0.11 0.285

ext layer plaster (0.02) plaster (0.02) tile (0.005) plaster (0.015)

layer 1 brick (0.07) brick (0.07) mortar (0.015) granite (0.25)

layer 2 brick (0.07)

layer 3

layer 4 mortar (0.015) mortar (0.015) mortar (0.015)

int layer plaster (0.02) tile (0.005) tile (0.005) tile (0.005)

type 1 (all compartments) type 2 (kitchen, wc)

Horizontal separation

Total Thickness 0.25 0.25

floor layer linoleum (0.001) tile (0.005)

layer 1 wood (0.14) mortar (0.01)

layer 2 concrete (0.22) concrete (0.22)

layer 3

layer 4

ceiling layer gypsum (0.015) gypsum (0.015)



Case 5 Opening elements

Front (S) 2nd floor - 3 doors 3 fanlight 6 sashes

Ext. Window (balcony door) Fanlight window (each) Sashes (each) use profile Shutters use profile Curtains use profile

total area (m2) 0.98 1.32 winter - 30 min / day 3.62

winter - open all day, 

closed in the night 3.62 closed continuously

glazed area (m2) 0.48 0.54

summer - open all night 

closed all day

summer - open all night 

closed all day

frame area (m2) 0.50 0.78

percentage of glazed (%) 48.98 40.91

percentage of frame (%) 51.02 59.09

max. Opening area (m2) 0.00 1.20

percentage of max. Opening area (%) 0.00 90.91

Frame material wood (3cm) wood (3cm) wood (3cm) light tissue

Type of glass single (2mm) single (2mm)

courtyard 1 - 2nd floor 1 fixed window

Ext. Window (room) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 1.65 closed continuously no not applicable 1.65 closed continuously

glazed area (m2) no 1.35 no

frame area (m2) no 0.30 no

percentage of glazed (%) no 81.82 no

percentage of frame (%) no 18.18 no

max. Opening area (m2) no 0.00 no

percentage of max. Opening area (%) no 0.00 no

Frame material no iron (0.5cm) no heavy tissue

Type of glass no single (2mm) no

courtyard 2 - 2nd floor 1 fixed window

Ext. Window (room) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 0.23 closed continuously no not applicable 0.23 closed continuously

glazed area (m2) no 0.18 no

frame area (m2) no 0.05 no

percentage of glazed (%) no 78.26 no

percentage of frame (%) no 21.74 no

max. Opening area (m2) no 0.00 no

percentage of max. Opening area (%) no 0.00 no

Frame material no iron (0.5cm) no heavy tissue

Type of glass no single2mm) no

courtyard 3 - 2nd floor 1 fixed window

Ext. Window (room) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 0.57 closed continuously no not applicable 0.57 closed continuously

glazed area (m2) no 0.51 no

frame area (m2) no 0.06 no

percentage of glazed (%) no 89.47 no

percentage of frame (%) no 10.53 no

max. Opening area (m2) no 0.00 no

percentage of max. Opening area (%) no 0.00 no

Frame material no iron (0.5cm) no heavy tissue

Type of glass no single (2mm) no



Case 5 Opening elements

courtyard 4 - 2nd floor 1 fixed window

Ext. Window (room) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 0.53 closed continuously no not applicable 0.53 closed continuously

glazed area (m2) no 0.48 no

frame area (m2) no 0.05 no

percentage of glazed (%) no 90.57 no

percentage of frame (%) no 9.43 no

max. Opening area (m2) no 0.00 no

percentage of max. Opening area (%) no 0.00 no

Frame material no iron (0.5cm) no heavy tissue

Type of glass no single (2mm) no

courtyard 5 - 2nd floor 1 fixed window

Ext. Window (room) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 0.53 closed continuously no not applicable 0.53 closed continuously

glazed area (m2) no 0.45 no

frame area (m2) no 0.08 no

percentage of glazed (%) no 84.91 no

percentage of frame (%) no 15.09 no

max. Opening area (m2) no 0.00 no

percentage of max. Opening area (%) no 0.00 no

Frame material no iron (0.5cm) no heavy tissue

Type of glass no single (2mm) no

Kitchen/Stairs - 2nd floor 1 awning window

Ext. Window (room) Fanlight window Sashes (total) use profile Shutters use profile Curtains use profile

total area (m2) no 0.44 opened during day no not applicable no not applicable

glazed area (m2) no 0.28 closed at night no no

frame area (m2) no 0.16 no no

percentage of glazed (%) no 63.64 no no

percentage of frame (%) no 36.36 no no

max. Opening area (m2) no 0.37 no no

percentage of max. Opening area (%) no 84.09 no no

Frame material no iron (0.5cm) no no

Type of glass no single (2mm) no no

Int. Door Fanlight window Door use profiles

total area (m2) no not applicable allways closed

glazed area (m2) no no excepted kitchen

frame area (m2) no

percentage of glazed (%) no

percentage of frame (%) no

max. Opening area (m2) no

percentage of max. Opening area (%) no

Frame material no wood (3cm)

Type of glass no no



Case 5 Equipment table 

Operation profile assumed Hours per year

IES VE code Room Category Appliance model brand Power (kW) (average usage hours) (52 weeks, 365 days) kWh/year Source

HALL0000 Hall Lighting 3 lamps 0.12 1.5 hours/day 547.5 65.70 ERSE (40w)

LVNG0000 Living Room Lighting 7 lamps 0.28 4 hours/day 1460 408.80 ERSE (40w)

LVNG0000 Living Room Appliance 1 cordless telephone Siemens 0.003 On continuously 8760 26.28 LG (3w)

LVNG0000 Living Room Entertainement 1 TV LG 0.09 4 hours/day 1460 131.40 ERSE (90w)

LVNG0000 Living Room Entertainement 1 TV in standby LG 0.00523 20 hours/day 7300 38.18 SELINA (TV  CRT 5.23w)

LVNG0000 Living Room Entertainement 1 Cable TV box decoder Meo Box 0.0162 4 hours/day 1460 23.65 Quercus (16.2w)

LVNG0000 Living Room Entertainement 1 Cable TV box decoder in standby Meo Box 0.0094 20 hours/day 7300 68.62 Quercus (9.4w)

LVNG0000 Living Room Entertainement 1 Hi-Fi Sanyo 0.06 0.5 hours / week 26 0.24 ERSE (60w)

LVNG0000 Living Room Entertainement 1 Hi-Fi in standby Sanyo 0.00205 167.96 hours/week 8734 17.90 SELINA (2.05w)

LVNG0000 Living Room Environment 1 Electric oil-filled radiator heater 2 with cold always on in minimum 0.00 ERSE (2000w)

LVNG0000 Living Room Environment 1 electric fan 0.1 with hot always on 0.00 LG (100w)

FLR20001 Bedroom Lighting 1 lamp 0.06 1 hour/day 365 21.90 ERSE (60w)

FLR20001 Bedroom Lighting 1 compact fluorescent lamp 0.011 1 hour/day 365 4.02 ERSE (11w)

FLR20001 Bedroom Entertainement 1 TV 0.09 0.5 hours / day 182.5 16.43 ERSE (90w)

FLR20001 Bedroom Entertainement 1 TV in standby 0.00523 23.5 hours/day 8577.5 44.86 SELINA (TV  CRT 5.23w)

BDRM0003 Bedroom 1 Lighting 1 lamp 0.06 1 hour/day 365 21.90 ERSE (60w)

BDRM0003 Bedroom 1 Entertainement 1 TV 0.09 0.5 hours / day 182.5 16.43 ERSE (90w)

BDRM0003 Bedroom 1 Entertainement 1 TV in standby 0.00523 23.5 hours/day 8577.5 44.86 SELINA (TV  CRT 5.23w)

KTCH0000 Kitchen Lighting 1 fluorescent lamp 0.058 4 hours/day 1460 84.68 ERSE (58w)

KTCH0000 Kitchen Appliance 1 Washing machine 6 Kg Samsung 2 1 wash / day (2 hours) 730 416.10 ERSE (2000w); Topten (1.14 kWh each cycle)

KTCH0000 Kitchen Appliance 1 Fridge / freezer Whirlpool 0.3 On continuously 8760 354.00 ERSE (300w); Topten (354 kWh/year)

KTCH0000 Kitchen Appliance 1 Microwave Silver 0.9 0.5 hours / day 182.5 164.25 ERSE (900w)

KTCH0000 Kitchen Appliance 1 Microwave in standby Silver 0.0043 23.5 hours/day 8577.5 36.88 Deco Proteste Internet simulator

KTCH0000 Kitchen Appliance 1 Electric Oven H + 610 ME Teka 2.693 0.25 hours/day 91.25 245.74 site Teka (2693w) HE610

KTCH0000 Kitchen Appliance 1 Coffee machine 1.2 0.5 hours / day 182.5 219.00 EDP (1200w)

KTCH0000 Kitchen Appliance 1 Extractor hood 0.14 allways off 0 0.00 ERSE (140w)

KTCH0000 Kitchen Appliance 1 Iron 1.6 2 hours /week 104 166.40 ERSE (1600w)

KTCH0000 Kitchen Appliance 1 Vacuum cleaner 1.6 1 time / week (1.5 hous) 78 124.80 ERSE (1600w)

KTCH0000 Kitchen Environment 1 electric hot water cylinder Arierom 2 On continuously 8760 448.95 AKI - 1.23 kWh/Day

KTCH0000 Kitchen Appliance 1 Gas stove H + 610 ME Teka 1.5 bottles / month 0.00 Households

WC__0000 WC Lighting 1 lamp 0.06 1.5 hours/day 547.5 32.85 ERSE (60w)

WC__0000 WC Lighting 1 Hair dryer 1.5 0.5 hours / day 182.5 273.75 ERSE (1500w)

STRG0000 Storage Lighting 1 lamp 0.06 0.25 hours/week 13 0.78 ERSE (60w)

TOTAL 3519.35

5692.66 EDP (kWh/Year)
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Case 6 Construction elements

type 1 (livingroom) type 2 (laundry) type 3 type 4 type 5

exterior wall front (S) 2nd floor front (S) 2nd floor Back (N) 2nd floor Side (E,W) 2nd floor Side (E) Kitchen, WC

Total Thickness 0.510 0.510 0.475 0.290 0.290

ext layer tile (0.01) tile (0.01) plaster (0.015)

layer 1 mortar (0.02) mortar (0.02) granite (0.445) granite (0.275) granite (0.275)

layer 2 granite (0.46) granite (0.465)

layer 3

layer 4 mortar (0.01) mortar (0.01)

int layer plaster (0.02) tile (0.005) plaster (0.015) plaster (0.015) tile (0.005)

type 1 type 2

partition wall

Total Thickness 0.14 0.14

ext layer plaster (0.015) plaster (0.015)

layer 1 brick (0.11) brick (0.11)

layer 2

layer 3

layer 4 mortar (0.01)

int layer plaster (0.015) tile (0.005)

type 1 type 2

Horizontal separation

Total Thickness 0.290 0.290

floor layer wood (0.025) tile (0.005)

layer 1 concrete (0.25) mortar (0.02)

layer 2 concrete (0.25)

layer 3

layer 4

ceiling layer gypsum (0.015) gypsum (0.015)



Case 6 Opening elements

Front a (S) 2th floor 2 casement doors

Ext. Door (Balcony / Laundry) Fanlight window Sashes (x2 each) use profile Shutters use profile Curtains use profile

total area (m2) no 1.46 closed continuously 1.46 open all day 1.46 closed continuously

glazed area (m2) no 0.841 closed all night

frame area (m2) no 0.62

percentage of glazed (%) no 57.60

percentage of frame (%) no 42.40

max. Opening area (m2) no 1.38

percentage of max. Opening area (%) no 94.52

Frame material no wood (3cm) wood (3cm) light tissue

Type of glass no single (3mm)

Front b (S) 2th floor 2 casement doors

Ext. Door (Balcony / livingroom) Fanlight window Sashes (x2 each) use profile Shutters use profile Curtains use profile

total area (m2) no 1.37

open 25% all day, closed 

night 1.37 open all day 1.37 closed continuously

glazed area (m2) no 0.777 closed all night

frame area (m2) no 0.59

percentage of glazed (%) no 56.72

percentage of frame (%) no 43.28

max. Opening area (m2) no 1.30

percentage of max. Opening area (%) no 94.89

Frame material no wood (3cm) wood (3cm) light tissue

Type of glass no single (3mm)

Back (N) 2th floor 4 casement doors

Ext. Door (Balcony) Fanlight window Sashes (x2 each) use profile Shutters use profile Curtains use profile

total area (m2) no 1.48 closed continuously 1.48 open all day 1.48 closed continuously

glazed area (m2) no 0.7944 closed all night

frame area (m2) no 0.69

percentage of glazed (%) no 53.68

percentage of frame (%) no 46.32

max. Opening area (m2) no 1.40

percentage of max. Opening area (%) no 94.59

Frame material no wood (3cm) wood (3cm) light tissue

Type of glass no single (3mm)

Int. Door Fanlight window Door use profiles

total area (m2) no not applicable allways open

glazed area (m2) no no except bedrooms

frame area (m2) no

percentage of glazed (%) no

percentage of frame (%) no

max. Opening area (m2) no

percentage of max. Opening area (%) no

Frame material no wood (3cm)

Type of glass no no



Case 6 Equipment table

Operation profile assumed Hours per year

IES VE code Room category Appliance model brand Power (Kw) average usage hours (52 weeks, 365 days) Kwh/year Source

FLR20015 Bedroom Hall Lighting 1 lamp 0.0400 0.5 hours/day 182.5 7.30 ERSE (40w)

FLR20016 Living Room Lighting 4 halogen lamps 0.1400 3 hours/day 1095 153.30 ERSE (35w)

FLR20016 Living Room Lighting 2 lamps 0.1200 0.5 hours/day 182.5 21.90 ERSE (60w)

FLR20016 Living Room Entertainment 1 Hi-Fi Sony 0.0600 1 hour/week 52 3.12 ERSE (60w)

FLR20016 Living Room Entertainment 1 Hi-Fi in standby Sony 0.0021 167.46 hours/week 8708 17.85 SELINA (2.05w)

FLR20016 Living Room Entertainment 1 Plasma TV HD SRS Samsung 0.3500 4 hours/day 1460 511.00 Samsung internet (350w)

FLR20016 Living Room Entertainment 1 Plasma TV in standby HD SRS Samsung 0.0003 20 hours/day 7300 2.19 Samsung internet (0.3w)

FLR20016 Living Room Entertainment 1 Cable TV box decoder HD - DSR 7151 Zon - Pace 0.0090 4 hours/day 1460 13.14 Quercus (9w)

FLR20016 Living Room Entertainment 1 Cable TV box decoder in standby HD - DSR 7151 Zon - Pace 0.0083 20 hours/day 7300 60.59 Quercus (8.3w)

FLR20016 Living Room Entertainment 1 DVD Player Mitsai 0.2400 1 hour/day 365 87.60 ERSE (240w)

FLR20016 Living Room Entertainment 1 DVD Player in standby Mitsai 0.0014 23 hours/day 8395 11.75 Deco Proteste Internet simulator

FLR20014 Bedroom 1 Lighting 3 lamps 0.1200 1 hour/day 365 43.80 ERSE (40w)

FLR20014 Bedroom 1 Lighting 2 lamps (side bed) 0.0800 1 hour/day 365 29.20 ERSE (40w)

FLR20014 Bedroom 1 Entertainment 1 Plasma TV HD SRS Samsung 0.3500 3 hours/day 1095 383.25 Samsung internet (350w)

FLR20014 Bedroom 1 Entertainment 1 Plasma TV in standby HD SRS Samsung 0.0003 21 hours/day 7665 2.30 Samsung internet (0.3w)

FLR20014 Bedroom 1 Environment 1 electric fan heater 2.0000 1 hour/day when cold 0.00 ERSE (200w)

FLR20014 Bedroom 1 Environment 1 electric fan 0.1000 1 hour/day when hot 0.00 LG (100w)

FLR20013 Bedroom 2 Lighting 3 lamps 0.1200 1 hour/day 365 43.80 ERSE (40w)

FLR20013 Bedroom 2 Lighting 2 lamps (side bed) 0.0800 1 hour/day 365 29.20 ERSE (40w)

FLR20013 Bedroom 2 Entertainment 1 TV 14'' Beko 0.0300 0.5 hours/day 182.5 5.48 Beko Manual (30w)

FLR20013 Bedroom 2 Entertainment 1 TV in standby 14'' Beko 0.0040 23.5 hours/day 8577.5 34.31 Beko Manual (4w)

FLR20013 Bedroom 2 Entertainment 1 DVD Player Samsung 0.2400 0.5 hours/day 182.5 43.80 ERSE (240w)

FLR20013 Bedroom 2 Entertainment 1 DVD Player in standby Samsung 0.0014 23.5 hours/day 8577.5 12.01 Deco Proteste Internet simulator

KTCH0003 Kitchen Lighting 2 Fluorescent lamps 0.0720 4 hours/day 1460 105.12 ERSE (36w)

KTCH0003 Kitchen Appliance 1 Washing machine AWO / D8409 Whirlpool 2.0000 3 times/week (1.5 hours) 234 212.16 ERSE (2000w); Manual (1.36 kWh each washing cycle)

KTCH0003 Kitchen Appliance 1 Microwave MW2717 Fairline 0.7000 0.25 hours/day 91.25 63.88 Internet (max 700w)

KTCH0003 Kitchen Appliance 1 Microwave in standby MW2717 Fairline 0.0043 23.75 hours/day 8668.75 37.28 Deco Proteste Internet simulator

KTCH0003 Kitchen Appliance 1 Fridge / freezer no brand identificable 0.0255 On continuously 8760 223.00 Top ten (223 hWh/year)

KTCH0003 Kitchen Appliance 1 Electric Oven Princess Milano 0.7000 0.5 hours/day 182.5 127.75 in situ

KTCH0003 Kitchen Appliance 1 Extractor hood Arjero 0.1050 when cooking (2hours/day) 730 76.65 nominal power 105 W

KTCH0003 Kitchen Appliance 1 Iron 1.6000 2 times/week (1.5 hours) 156 249.60 ERSE (1600w)

KTCH0003 Kitchen Entertainment 1 Plasma TV small Samsung 0.2300 4 hours/day 1460 335.80 Samsung internet (230w)

KTCH0003 Kitchen Entertainment 1 Plasma TV in standby small Samsung 0.0010 20 hours/day 7300 7.30 Samsung internet (1w)

KTCH0003 Kitchen Appliance 1 Gas stove Princess Milano 1 bottle/month 0.00 Households

KTCH0004 Kitchen - Laundry Lighting 1 Lamp 0.0600 1 hour/day 365 21.90 ERSE (60w)

KTCH0004 Kitchen - Laundry Appliance 1 Freezer HC150 Tensai 0.0292 On continuously 8760 256.00 Tensai internet (256 kWh/year)

KTCH0004 Kitchen - Laundry Environment 1 electric hot water cylinder 1.5000 On continuously 8760 321.20 in situ; AKI - 0.88 kWh/Day (50l, 1200w)

WC__0001 WC Lighting 1 lamp 0.0600 1.5 hours/day 547.5 32.85 ERSE (60w)

TOTAL 3587.37

4139.04 EDP (kWh/Year)
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Case 7 Construction elements

type 1 type 1 type 2 type 2 type 3 type 4

exterior wall front 1 (SW) 1st floor front 2 (NW) 1st floor side (SE) 1st floor side (NE) 1st floor stairs stairs ( Kitchen

Total Thickness 0.450 0.450 0.425 0.425 0.13 0.13

ext layer plaster (0.025) plaster (0.025) plaster (0.025) plaster (0.025)

layer 1 granite (0.40) granite (0.40) granite (0.40) granite (0.40) wood+mortar (0.08) wood+mortar (0.08)

layer 2

layer 3

layer 4 mortar (0.02)

int layer plaster (0.025) plaster (0.025) plaster (0.025) plaster (0.025) plaster (0.025) tile (0.005)

type 1 type 2 type 3

partition wall Kitchen-WC/rooms Kitchen/WC

Total Thickness 0.13 0.13 0.13

ext layer plaster (0.025) plaster (0.025) tile (0.005)

layer 1 wood+mortar (0.08) wood+mortar (0.08) mortar (0.02)

layer 2 'wood+mortar (0.08)

layer 3

layer 4 mortar (0.02) mortar (0.02)

int layer plaster (0.025) tile (0.005) tile (0.005)

type 1 type 2

Horizontal separation

Total Thickness 0.26 0.26Total Thickness 0.26 0.26

floor layer hardwood (0.03) tile (0.005)

layer 1 wood beams (0.20) mortar (0.005)

layer 2 hardwood (0.025)

layer 3 wood beams (0.20)

layer 4 timber framing (0.01) timber framing (0.01)

ceiling layer gypsum (0.015) gypsum (0.015)



Case 7 Opening elements

Front (SW) 1st floor 2 casement windows

Ext. Window Fanlight window Sashes (total window) use profile Shutters use profile Curtains use profile Exterior blinders use profile

total area (m2) no 1.58

allways open 25% during 

day no not applicable 1.58 open all day 1.58 75% open during day

glazed area (m2) no 1.02 closed when too cold no closed in the night closed during night and away

frame area (m2) no 0.56 no

percentage of glazed (%) no 64.56 no

percentage of frame (%) no 35.44 no

max. Opening area (m2) no 1.41 no

percentage of max. Opening area (%) no 89.24 no

Frame material no wood (3cm) no light tissue plastic (0.01)

Type of glass no single (3mm)

Int. Door Fanlight window Door use profiles

total area (m2) no not applicable allways open

glazed area (m2) no no

excepted bedroom and 

WC

frame area (m2) no

percentage of glazed (%) no

percentage of frame (%) no

max. Opening area (m2) no

percentage of max. Opening area (%) no

Frame material no wood (3cm)

Type of glass no no

Int. Window Fanlight window Window use profiles

total area (m2) no no not applicable

glazed area (m2) no

frame area (m2) no

percentage of glazed (%) nopercentage of glazed (%) no

percentage of frame (%) no

max. Opening area (m2) no

percentage of max. Opening area (%) no

Frame material no

Type of glass no



Case 7 Equipment table

Operation profile assumed Hours per year

IES VE code Room Category Appliance model brand Power (Kw) average usage hours (52 weeks, 365 days) Kwh/year Source

FLR10012 Livingroom Lighting 3 lamps 0.1200 4 hours/day 1460 175.20 ERSE (40w)

FLR10012 Livingroom Entertainment 1 TV  old model  Panasonic 0.0900 8 hours/day 2920 262.80 ERSE (90w)

FLR10012 Livingroom Entertainment 1 TV in standby  old model  Panasonic 0.00523 16 hours/day 5840 30.54 SELINA (TV  CRT 5.23w)

FLR10012 Livingroom Entertainment 1 VCR

Express programming 

system JVC 0.0200 no use 0 0.00 ERSE (20w)

FLR10012 Livingroom Entertainment 1 Hi-Fi old model Sanyo 0.0600 no use 0 0.00 ERSE (60w)

FLR10012 Livingroom Appliance 1 cordless telephone Gigaset A160 Siemens 0.0030 On continuously 8760 26.28 LG (3w)

FLR10012 Livingroom Environment 1 Electric oil-filled radiator heater HR 1500 Fidelis 1.5000 3 hours when cold 0.00 in situ

FLR10013 Bedroom Lighting 3 compact fluorescent lamps 0.0330 4 hours /day 1460 48.18 ERSE (11w)

FLR10013 Bedroom Lighting 2 lamps in bed side 0.0800 1 hour/day 365 29.20 ERSE (40w)

FLR10013 Bedroom Entertainment 1 small TV  Philips 0.0300 2 hours/day 730 21.90 same as BEKO

FLR10013 Bedroom Entertainment 1 small TV in standby  Philips 0.0040 22 hours/day 8030 32.12 same as BEKO

FLR10006 Kitchen Lighting 2 Fluorescent lamps 0.0720 8 hours/day 2920 210.24 ERSE (36w)

FLR10006 Kitchen Appliance 1 Washing machine TKX 85 Teka 2.0000 2 washes / week (1.5 hours) 156 118.56 Top ten (1.14 kWh each washing cycle)

FLR10006 Kitchen Appliance 1 Microwave Grill LG 0.9000 0.25 hours/day 91.25 82.13 ERSE (900w)

FLR10006 Kitchen Appliance 1 Microwave in standby Grill LG 0.0043 23.75 hours/day 8668.75 37.28 Deco Proteste Internet simulator

FLR10006 Kitchen Appliance 1 Fridge Cooler Bosch 0.0341 On continuously 8760 299.00 Top ten (299 kWh/year)

FLR10006 Kitchen Appliance 1 Toaster Silver 0.7500 0.25 hours/day 91.25 68.44 in situ

FLR10006 Kitchen Appliance 1 Electric Oven Mini oven grill Tefal 2.4000 0.25 hours/day 91.25 219.00 ERSE (2400w)

FLR10006 Kitchen Appliance 1 Electric Oven in standby Mini oven grill Tefal 0.0040 23.75 hours/day 8668.75 34.68 EDP (4w)

FLR10006 Kitchen Environment 1 Electric hot water cylinder CB 50 -N1 Fagor 1.6000 On continuously 8760 467.20 Fagor internet; AKI - 1.28 kWh/Day (50l, 2000w)

FLR10006 Kitchen Appliance 1 Gas stove Ruby 1 bottle / 1.5 months (0.66) 0.00 Households

FLR10007 WC Lighting 1 lamp 0.0600 2 hours/day 730 43.80 ERSE (60w)

TOTAL 2206.54

1796.81 EDP (kWh/Year)
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Case 8 Construction elements

type 1 type 1 type 1 type 2 (WC) type 3 (both floors) type 4 (WC 3rd floor) type 5

exterior wall front (W) 3rd floor side (E) 3rd floor side (W) 3rd floor front (W) 3rd floor side (N) party wall side (N) party wall (W, E, S) - granite

Total Thickness 0.511 0.511 0.511 0.510 0.485 0.485 0.190

ext layer plaster (0.02) plaster (0.02) plaster (0.02) granite

layer 1 granite (0.19)

layer 2

layer 3 granite (0.47) granite (0.47) granite (0.47) granite (0.47) granite (0.465) granite (0.465)

layer 4 plaster (0.02) plaster (0.02) plaster (0.02) mortar (0.015) plaster (0.02) mortar (0.015)

int layer wallpaper (0.001) wallpaper (0.001) wallpaper (0.001) tile (.005) wallpaper (0.001) tile (.005) granite

type 6 type 6 type 6 type7 (WC) type 7 (Kitchen) type 4 (WC 4th floor) type 4 (Kitchen - 4th floor)

exterior wall front (W) 4th floor side (E) 4th floor side (W) 4th floor front (W) 4th floor side (W) 4th floor side (N) party wall side (N) party wall

Total Thickness 0.300 0.300 0.300 0.300 0.300 0.485 0.485

ext layer granite granite granite granite granite

layer 1

layer 2

layer 3 granite (0.28) granite (0.28) granite (0.28) granite (0.28) granite (0.28) granite (0.465) granite (0.465)

layer 4 plaster (0.02) plaster (0.02) plaster (0.02) mortar (0.015) mortar (0.015) mortar (0.015) mortar (0.015)

int layer wallpaper (0.001) wallpaper (0.001) wallpaper (0.001) tile (0.005) tile (0.005) tile (0.005) tile (0.005)

type 1 type 2

partition wall

Total Thickness 0.13 0.13

ext layer wallpaper (0.001) wallpaper (0.001)

layer 1 plaster (0.025) plaster (0.025)

layer 2 wood+mortar (0.08) wood+mortar (0.08)

layer 3

layer 2

layer 3

layer 4 plaster (0.025) plaster (0.02)

int layer wallpaper (0.001) tile (0.005)

type 1 type 1 type 2

Horizontal separation Floor 3rd/4th floor Roof

Total Thickness 0.300 0.300 0.21

floor layer carpet (0.005) carpet (0.005) ceramic tile (0.015)

layer 1 hardwood (0.03) hardwood (0.03) wood (0.18)

layer 2 wood beams (0.23) wood beams (0.23)

layer 3

layer 4 timber framing (0.01) timber framing (0.01)

ceiling layer gypsum (0.025) gypsum (0.025) wood (0.015)



Case 8 Opening elements

Front (W); Side (S); Side (E) 3rd floor 10 casement windows

Ext. Window Fanlight window Sashes (each window x2) use profile Shutters use profile Curtains use profile

total area (m2) 0.73 1.03

open in the night 

with hot temp. 2.79

closed continuously 

75% 2.79 closed continuously

glazed area (m2) 0.46 0.71

frame area (m2) 0.27 0.32

percentage of glazed (%) 63.01 68.93

percentage of frame (%) 36.99 31.07

max. Opening area (m2) 0.00 0.96

percentage of max. Opening area (%) 0.00 93.20

Frame material PVC (3cm) PVC (3cm) wood (3cm) light tissue

Type of glass Double (3+2+3mm) Double (3+2+3mm)

Front (W); Side (S); Side (E) 4th floor 10 casement windows

Ext. Window Fanlight window Sashes (each window x2) use profile Shutters use profile Curtains use profile

total area (m2) no 0.4

open in the night 

with hot temp. no not applicable 0.8 closed continuously

glazed area (m2) no 0.22 no

frame area (m2) no 0.18 no

percentage of glazed (%) no 55.00 no

percentage of frame (%) no 45.00 no

max. Opening area (m2) no 0.35 no

percentage of max. Opening area (%) no 87.50 no

Frame material no PVC (3cm) no light tissue

Type of glass no Double (3+2+3mm) no

Int. Door Fanlight window Door use profiles

total area (m2) no not applicable allways open

glazed area (m2) no noglazed area (m2) no no

frame area (m2) no

percentage of glazed (%) no

percentage of frame (%) no

max. Opening area (m2) no

percentage of max. Opening area (%) no

Frame material no wood (3cm)

Type of glass no no

Int. Window Fanlight window Door use profiles

total area (m2) no no not applicable

glazed area (m2) no

frame area (m2) no

percentage of glazed (%) no

percentage of frame (%) no

max. Opening area (m2) no

percentage of max. Opening area (%) no

Frame material no

Type of glass no



Case 8 Equipment table

Operation profile assumed Hours per year

IES VE code Room Category Appliance model brand Power (Kw) (average usage hours (52 weeks, 365 days) Kwh/year Source

FLR30022 Hall/Stairs - Floor 3 Lighting 1 lamp 0.0600 1 hour/day 365 21.90 ERSE (60w)

FLR30017 Livingroom - floor 3 Lighting 5 lamps 0.2000 2 hours/day 730 146.00 ERSE (40w)

FLR30017 Livingroom - floor 3 Entertainmnet 1 TV 0.0900 1 hour/day 365 32.85 ERSE (90w)

FLR30017 Livingroom - floor 3 Entertainmnet 1 TV in standby 0.0052 23 hours/day 8395 43.91 SELINA (TV  CRT 5.23w)

FLR30017 Livingroom - floor 3 Environment 1 old Electric oil-filled radiator heater Forster 1.0000 1.5 hours/day when cold 0.00 in situ

FLR30011 Bedroom 2 - Floor 3 Lighting 1 lamp 0.0600 0.25 hours/week 13 0.78 ERSE (60w)

FLR30013 Bedroom 1 - Floor 3 Lighting 3 lamps 0.1200 0.25 hours/week 13 1.56 ERSE (40w)

FLR30013 Bedroom 1 - Floor 3 Lighting 2 side bed  lamps 0.0800 no use 0 0.00 ERSE (40w)

FLR30013 Bedroom 1 - Floor 3 Entertainmnet 1 TV 0.0900 no use 0 0.00 ERSE (90w)

FLR30013 Bedroom 1 - Floor 3 Entertainmnet 1 TV in standby 0.0052 no use 0 0.00 SELINA (TV  CRT 5.23w)

FLR30019 WC - Floor 3 Lighting 1 lamp 0.0600 0.25 hours/day 91.25 5.48 ERSE (60w)

FLR30019 WC - Floor 3 Environment 1 Electric hot water cylinder Arierom 2.0000 On continuously 8760 448.95 AKI - 1.23 kWh/Day (like case 5)

FLR40031 Hall/Stairs - Floor 4 Lighting 1 lamp 0.0600 1 hour/day 365 21.90 ERSE (60w)

FLR40015 Bedroom 1 - Floor 4 Lighting 1 lamp 0.0600 1 hour/day 365 21.90 ERSE (60w)

FLR40015 Bedroom 1 - Floor 4 Lighting 2 bed side lamps 0.0800 1 hour/day 365 29.20 ERSE (40w)

FLR40015 Bedroom 1 - Floor 4 Entertainmnet 1 TV 0.0900 3.5 hours/day 1277.5 114.98 ERSE (90w)

FLR40015 Bedroom 1 - Floor 4 Entertainmnet 1 TV in standby 0.0052 20.5 hours/day 7482.5 39.13 SELINA (TV  CRT 5.23w)

FLR40015 Bedroom 1 - Floor 4 Environment 1 old Electric oil-filled radiator heater Century 1.0000 allways on when cold 0.00 in situ

FLR40021 Bedroom 2 - Floor 4 Lighting 1 lamp 0.0600 1 hour/day 365 21.90 ERSE (60w)

FLR40016 Kitchen - Floor 4 Lighting 2 Fluorescent lamps 0.0720 4 hours/day 1460 105.12 ERSE (36w)

FLR40016 Kitchen - Floor 4 Appliance 1 Washing machine C40T Jolly Candy 1 wash/week (1.5 hours) 78 59.28 Top ten (1.14 kWh each washing cycle)

FLR40016 Kitchen - Floor 4 Appliance 1 Fridge / freezer Indesit 0.0404 On continuously 8760 354.00 Top ten (354 kWh/year)

FLR40016 Kitchen - Floor 4 Appliance 1 Electric Oven Tecnogas 2.4000 0.25 hours/day 91.25 219.00 ERSE (2400w)

FLR40016 Kitchen - Floor 4 Appliance 1 Electric Oven in standby Tecnogas 0.0040 23.75 hours/day 8668.75 34.68 EDP (4w)

FLR40016 Kitchen - Floor 4 Appliance 1 Gas stove Tecnogas 0.5 bottles/month 0.00 Households

FLR40035 WC - Floor 4 Lighting 1 lamp 0.0600 2 hours/day 730 43.80 ERSE (60w)

FLR40019 Storage - Floor 4 Lighting 1 lamp 0.0400 0.125 hours/day 45.625 1.83 ERSE (40w)

TOTAL 1768.13

3421.76 EDP (kWh/Year)
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Case 9 Construction elements

type 1 type 1 type 2 type 3 type 4 (Kitchen) type 5 (WC) type 6 (Kitchen)

exterior wall front (E) 4th floor side (N) 4th floor side (W) party wall side (SE) party wall front (E) front, side (E, SE) side (SE) party wall

Total Thickness 0.200 0.200 0.210 0.360 0.200 0.155 0.360

ext layer slate+wood (0.05) slate+wood (0.05) slate+wood (0.05) plaster (0.02)

layer 1 wood+mortar (0.125) wood+mortar (0.125) granite (0.185) granite (0.335) wood+mortar (0.125) brick (0.11) granite (0.335)

layer 2

layer 3

layer 4 plaster (0.02) plaster (0.02) plaster (0.02)

int layer plaster (0.025) plaster (0.025) plaster (0.025) plaster (0.025) tile (0.005) tile (0.005) tile (0.005)

type 1 type 2 type 3

partition wall rooms / Kitchen Kitchen / WC

Total Thickness 0.13 0.13 0.175

ext layer plaster (0.025) plaster (0.025) tile (0.005)

layer 1 wood+mortar (0.08) wood+mortar (0.08) plaster (0.02)

layer 2 wood+mortar (0.125)

layer 3

layer 4 plaster (0.02) plaster (0.02)

int layer plaster (0.025) tile (0.005) tile (0.005)

type 1 (Floor) type 2 type 3 type 4 type 5

Horizontal separation Floor Floor (Kitchen) Floor (Balcony) ceiling roof - balcony

Total Thickness 0.300 0.300 0.700 0.220 0.03

floor layer hardwood (0.03) tile (0.005) tile (0.005) corrugated metal sheet (0.005)

layer 1 wood beams (0.23) mortar (0.005) wood + mortar (0.225) iron (0.025)

layer 2 hardwood (0.02) cavity (0.2)

layer 3 wood beams (0.23) wood beams (0.23) wood beams (0.18)

layer 4 timber framing (0.015) timber framing (0.015) timber framing (0.015) timber framing (0.015)

ceiling layer gypsum (0.025) gypsum (0.025) gypsum (0.025) gypsum (0.025)ceiling layer gypsum (0.025) gypsum (0.025) gypsum (0.025) gypsum (0.025)



Case 9 Opening elements

Side (N) 4th floor 2 casement windows

Ext. Window Fanlight window Sashes (each) use profile Shutters use profile Curtains use profile

total area (m2) no 0.61 open with hot temperature no not applicable 1.22 closed continuously

glazed area (m2) no 0.41 no

frame area (m2) no 0.20 no

percentage of glazed (%) no 67.21 no

percentage of frame (%) no 32.79 no

max. Opening area (m2) no 0.56 no

percentage of max. Opening area (%) no 91.80 no

Frame material no wood (3cm) no light tissue

Type of glass no single (3mm) no

Front (E) 4th floor 1 casement window

Ext. Window (Kitchen) Fanlight window Sash use profile Shutters use profile Curtains use profile

total area (m2) no 0.16 open continuously no not applicable no not applicable

glazed area (m2) no 0.07 no no

frame area (m2) no 0.09 no no

percentage of glazed (%) no 43.75 no no

percentage of frame (%) no 56.25 no no

max. Opening area (m2) no 0.12 no no

percentage of max. Opening area (%) no 75.00 no no

Frame material no wood (3cm) no no

Type of glass no single (3mm) no no

Front (E) 4th floor 1 door (2 sashes)

Ext. Door (to balcony) Fanlight window Door (each) use profile Shutters use profile Curtains use profile

total area (m2) no 1.01 open continuously no not applicable no not applicable

glazed area (m2) no 0.6 no no

frame area (m2) no 0.41 no no

percentage of glazed (%) no 59.41 no nopercentage of glazed (%) no 59.41 no no

percentage of frame (%) no 40.59 no no

max. Opening area (m2) no 0.95 no no

percentage of max. Opening area (%) no 94.06 no no

Frame material no wood (3cm) no no

Type of glass no single (3mm) no no

Side (SE) 4th floor 1 casement

Ext. Window (WC) Fanlight window Sash use profile Shutters use profile Curtains use profile

total area (m2) no 0.08 open continuously no not applicable no not applicable

glazed area (m2) no 0.03 no no

frame area (m2) no 0.05 no no

percentage of glazed (%) no 37.50 no no

percentage of frame (%) no 62.50 no no

max. Opening area (m2) no 0.05 no no

percentage of max. Opening area (%) no 62.50 no no

Frame material no wood (3cm) no no

Type of glass no single (3mm) no no



Case 9 Opening elements

Front (E) 4th floor 3 fixed windows

Ext. Window (balcony) Fanlight window window a x3 use profile Shutters use profile Curtains use profile

total area (m2) no 1.32 not applicable no not applicable 1.32 closed continuously

glazed area (m2) no 1.13 no

frame area (m2) no 0.19 no

percentage of glazed (%) no 85.61 no

percentage of frame (%) no 14.39 no

max. Opening area (m2) no 0.00 no

percentage of max. Opening area (%) no 0.00 no

Frame material no Aluminium (3cm) no light tissue

Type of glass no PVC (3mm) no

Front (E) 4th floor 1 fixed window

Ext. Window (balcony) Fanlight window window b use profile Shutters use profile Curtains use profile

total area (m2) no 0.53 not applicable no not applicable 0.53 closed continuously

glazed area (m2) no 0.37 no

frame area (m2) no 0.16 no

percentage of glazed (%) no 69.81 no

percentage of frame (%) no 30.19 no

max. Opening area (m2) no 0.00 no

percentage of max. Opening area (%) no 0.00 no

Frame material no Aluminium (3cm) no light tissue

Type of glass no PVC (3mm) no

Front (E) 4th floor 1 fixed window

Ext. Window (balcony) Fanlight window window c use profile Shutters use profile Curtains use profile

total area (m2) no 0.14 not applicable no not applicable 0.14 closed continuously

glazed area (m2) no 0.06 no

frame area (m2) no 0.08 no

percentage of glazed (%) no 42.86 nopercentage of glazed (%) no 42.86 no

percentage of frame (%) no 57.14 no

max. Opening area (m2) no 0.00 no

percentage of max. Opening area (%) no 0.00 no

Frame material no Aluminium (3cm) no light tissue

Type of glass no PVC (3mm) no

Front (E) 4th floor 1 door

Ext. Door (Balcony) Fanlight window Door use profile Shutters use profile Curtains use profile

total area (m2) no 1.43 closed continuously no not applicable no not applicable

glazed area (m2) no 0.78 no no

frame area (m2) no 0.65 no no

percentage of glazed (%) no 54.55 no no

percentage of frame (%) no 45.45 no no

max. Opening area (m2) no 1.19 no no

percentage of max. Opening area (%) no 83.22 no no

Frame material no Aluminium (3cm) no no

Type of glass no single (3mm) no no



Case 9 Opening elements

Side (N) 4th floor 3 fixed windows

Ext. Window (balcony) Fanlight window window d x3 use profile Shutters use profile Curtains use profile

total area (m2) no 1.18 not applicable no not applicable 1.18 closed continuously

glazed area (m2) no 1 no

frame area (m2) no 0.18 no

percentage of glazed (%) no 84.75 no

percentage of frame (%) no 15.25 no

max. Opening area (m2) no 0.00 no

percentage of max. Opening area (%) no 0.00 no

Frame material no Aluminium (3cm) no light tissue

Type of glass no PVC (3mm) no

Int. Door Fanlight window Door use profiles

total area (m2) no not applicable allways open

glazed area (m2) no no excepted bedrooms

frame area (m2) no

percentage of glazed (%) no

percentage of frame (%) no

max. Opening area (m2) no

percentage of max. Opening area (%) no

Frame material no wood (3cm)

Type of glass no no

Int. Window Fanlight window window use profiles

total area (m2) no 0.2 not applicable

glazed area (m2) no 0.15

frame area (m2) no 0.05

percentage of glazed (%) no 75.00

percentage of frame (%) no 25.00percentage of frame (%) no 25.00

max. Opening area (m2) no 0.00

percentage of max. Opening area (%) no 0.00

Frame material no wood (3cm)

Type of glass no single (3mm)



Case 9 Equipment table

Operation profile assumed Hours per year

IES VE code Room Category Appliance model brand Power (Kw) (average usage hours (52 weeks, 365 days) Kwh/year Source

HALL0000 Hall Lighting 1 lamp 0.0600 0.125 hours/day 45.625 2.74 ERSE (60w)

LVNG0000 Living Room Lighting 3 lamps 0.1200 3 hours/day 1095 131.40 ERSE (40w)

LVNG0000 Living Room Entertainment 1 Plasma TV Samsung 0.1180 2 hours/day 730 86.14 Samsung internet (118w)

LVNG0000 Living Room Entertainment 1 Plasma TV in standby Samsung 0.0003 22 hours/day 8030 2.41 Samsung internet (0.3w)

LVNG0000 Living Room Entertainment 1 Hi-FI 0.0600 1 hour/day 365 21.90 ERSE (60w)

LVNG0000 Living Room Entertainment 1 Hi-FI in standby 0.0021 23 hours/day 8395 17.21 SELINA (2.05w)

LVNG0000 Living Room Entertainment 1 Radio 0.0070 1 hour/day 365 2.56 LG (7w)

LVNG0000 Living Room Entertainment 1 Radio in standby 0.0015 23 hours/day 8395 12.59 SELINA (1.5w)

LVNG0000 Living Room Entertainment 1 Modem Router 0.0052 On continuously 8760 45.38 SELINA (5.18w)

LVNG0000 Living Room Entertainment 1 Laptop computer 0.0500 2 hours/day 730 36.50 LG (50w)

LVNG0000 Living Room Environment 1 Electric fan 0.1000 On with hot temperature 0.00 LG (100w)

BDRM0000 Bedroom 1 Lighting 1 lamp 0.0600 1 hour/day 365 21.90 ERSE (60w)

BDRM0000 Bedroom 1 Lighting 1 side bed lamp 0.0400 1 hour/day 365 14.60 ERSE (40w)

BDRM0000 Bedroom 1 Entertainment 1 Plasma TV Samsung 0.1180 2 hours/day 730 86.14 Samsung internet (118w)

BDRM0000 Bedroom 1 Entertainment 1 Plasma TV in standby Samsung 0.0003 22 hours/day 8030 2.41 Samsung internet (0.3w)

KTCH0000 Kitchen Lighting 1 Fluorescent lamp 0.0580 3 hours/day 1095 63.51 ERSE (58w)

KTCH0000 Kitchen Appliance 1 Fridge Cooler Bosch 0.0346 On continuously 8760 303.00 Bosch manual (KIL 38A40 IE Cooler - 303 kWh/year)

KTCH0000 Kitchen Appliance 1 Microwave 0.9000 0.25 hours/day 91.25 82.13 ERSE (900w)

KTCH0000 Kitchen Appliance 1 Microwave in standby 0.0043 23.75 hours/day 8668.75 37.28 Deco Proteste Internet simulator

KTCH0000 Kitchen Appliance 1 Extractor hood Tecnogas 0.1400 2 hours/day 730 102.20 ERSE (140w)

KTCH0000 Kitchen Environment 1 Electric hot water cylinder Termobrasa 1.5000 On continuously 8760 321.20 50 l in situ; AKI - 0.88 kWh/Day (1200w, 50L)

KTCH0000 Kitchen Appliance 1 Gas stove 1.5 bottles/month 0.00 Households

WC1_0000 WC 1 Lighting 1 lamp 0.0400 0.75 hours/day 273.75 10.95 ERSE (40w)

WC2_0000 WC 2 - Balcony Lighting 1 Compact fluorescent lamp 0.0110 2 hours/day 730 8.03 ERSE (11w)

FLR40000 Storage 1 Lighting 1 lamp 0.0400 0.125 hours/day 45.625 1.83 ERSE (40w)

STRG0001 Storage 2 - Balcony Lighting 1 lamp 0.0400 1 hour/day 365 14.60 ERSE (40w)

STRG0001 Storage 2 - Balcony Appliance 1 Washing machine Balay 2.0000 2 washes/week (1.5 hours) 156 118.56 ERSE (2000w); Top ten (1.14 kWh each washing cycle)

STRG0002 Storage 3 - Balcony Lighting 1 lamp 0.0400 1 hour/day 365 14.60 ERSE (40w)

STRG0003 Storage 4 - Balcony curve Lighting 1 lamp 0.0400 1 hour/day 365 14.60 ERSE (40w)

TOTAL 1576.35

804.13 EDP (kWh/Year)
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Case 10 Construction elements

type 1 type 2 type 3 type 4 type 5 type 6

exterior wall front (SE) 2nd floor front (SE) 2nd floor side 1 (E) 2nd floor Side 2 (N) 2nd floor Side 3 (W) party wall Side 3 (W) party wall

Total Thickness 0.580 0.580 0.230 0.500 0.525 0.525

ext layer plaster (0.025) plaster (0.025)

corrugated metal sheet 

(5 mm) plaster (0.025)

layer 1 granite (0.53) granite (0.53) wood / cavity (0.02) granite (0.45) granite (0.50) granite (0.50)

layer 2 wood+mortar (0.18)

layer 3

layer 4 mortar (0.02) mortar (0.02)

int layer plaster (0.025) tile (0.005) plaster (0.025) plaster (0.025) plaster (0.025) tile (0.005)

type 1

partition wall Kitchen/WC

Total Thickness 0.13 0.13 0.13

ext layer plaster (0.025) tile (0.005) tile (0.005)

layer 1 wood+mortar (0.08) mortar (0.02) mortar (0.02)

layer 2 wood+mortar (0.08) wood+mortar (0.08)

layer 3

layer 4 mortar (0.02)

int layer plaster (0.025) tile (0.005) plaster (0.025)

type 1 type 2 (floor WC / Kitchen)

Horizontal separation

Total Thickness 0.30 0.30Total Thickness 0.30 0.30

floor layer hardwood (0.04) tile (0.005)

layer 1 wood beams (0.235) mortar (0.005)

layer 2 hardwood (0.03)

layer 3 wood beams (0.235)

layer 4 timber framing (0.01) timber framing (0.01)

ceiling layer gypsum (0.015) gypsum (0.015)



Case 10 Opening elements

Front (SE) 2nd floor 1 casement window

Ext. Window (Rooms) Fanlight window Sashes (total window) use profile Shutters use profile Curtains use profile

total area (m2) no 0.88

open when occupied and 

hot 0.88 open in day, closed at night 0.88 closed continuously

glazed area (m2) no 0.55

frame area (m2) no 0.33

percentage of glazed (%) no 62.50

percentage of frame (%) no 37.50

max. Opening area (m2) no 0.79

percentage of max. Opening area (%) no 89.77

Frame material no wood (3cm) wood (3cm) light tissue

Type of glass no single (3mm)

Front (SE) 2nd floor (Kitchen) 1 casement window

Ext. Window (room) Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 0.15

open during day except 

when cold no not applicable 0.15 closed continuously

glazed area (m2) no 0.07 no

frame area (m2) no 0.08 no

percentage of glazed (%) no 46.67 no

percentage of frame (%) no 53.33 no

max. Opening area (m2) no 0.14 no

percentage of max. Opening area (%) no 93.33 no

Frame material no wood (3cm) no light tissue

Type of glass no single (0.3cm) no

Side 1 (E) 2nd floor 2 sash windows

Ext. Window Fanlight window Sashes (total window) use profile Shutters use profile Curtains use profile

open when occupied and 

total area (m2) no 1.01

open when occupied and 

hot 1.01 open in day, closed at night 1.01 closed continuously

glazed area (m2) no 0.61

frame area (m2) no 0.40

percentage of glazed (%) no 60.40

percentage of frame (%) no 39.60

max. Opening area (m2) no 0.43

percentage of max. Opening area (%) no 42.57

Frame material no wood (3cm) wood (3cm) light tissue

Type of glass no single (0.3cm)



Case 10 Opening elements

Side 2 (N) 2nd floor 1 casement

Ext. Window Fanlight window Sashes use profile Shutters use profile Curtains use profile

total area (m2) no 0.42

open during day except 

when cold no not applicable 0.42 closed continuously

glazed area (m2) no 0 no

frame area (m2) no 0.42 no

percentage of glazed (%) no 0.00 no

percentage of frame (%) no 100.00 no

max. Opening area (m2) no 0.30 no

percentage of max. Opening area (%) no 71.43 no

Frame material no wood (3cm) no light tissue

Type of glass no no glass no

Int. Door Fanlight window Door use profiles

total area (m2) no not applicable allways open

glazed area (m2) no no

excepted bedroom and 

WC

frame area (m2) no

percentage of glazed (%) no

percentage of frame (%) no

max. Opening area (m2) no

percentage of max. Opening area (%) no

Frame material no wood (3cm)

Type of glass no no

Int. Window Fanlight window Sash use profiles

total area (m2) no no not applicable

glazed area (m2) no

frame area (m2) noframe area (m2) no

percentage of glazed (%) no

percentage of frame (%) no

max. Opening area (m2) no

percentage of max. Opening area (%) no

Frame material no

Type of glass no



Case 10 Equipment table

Operation profile assumed Hours per year

IES VE code Room Category Appliance model brand Power (Kw) (average usage hours (52 weeks, 365 days) Kwh/year Source

FLR20010 Living Room Lighting 1 fluorescent lamp 0.0580 3 hours/day 1095 63.51 ERSE (58w)

FLR20010 Living Room Lighting 5 lamps 0.2000 no use 0 0.00 ERSE (40w)

FLR20010 Living Room Entertainment 1 TV Sony 0.0900 2 hours/day 730 65.70 ERSE (90w)

FLR20010 Living Room Entertainment 1 TV in standby Sony 0.0052 22 hours/day 8030 42.00 SELINA (TV  CRT 5.23w)

FLR20010 Living Room Appliance 1 Fridge 0.0255 On continuously 8760 223.00 Top ten (223 kWh/year)

FLR20010 Living Room Appliance 1 Cordless telephone 0.0030 On continuously 8760 26.28 LG (3w)

FLR20002 Bedroom 1 Lighting 1 lamp 0.0400 1 hour/day 365 14.60 ERSE (40w)

FLR20012 Bedroom 2 Lighting 1 lamp 0.0400 no use 0 0.00 ERSE (40w)

FLR20013 Kitchen Lighting 1 fluorescent lamp 0.0580 allways on with house occupied (13 hours) 4745 275.21 ERSE (58w)

FLR20013 Kitchen Appliance 1 washing machine 1 wash/week (1.5 hours) 104 59.28 Top ten (1.14 kWh each washing cycle)

FLR20013 Kitchen Appliance Electric stove Leco 2.4000 2 hours/day 730 1752.00 ERSE (2400w)

FLR20011 WC Lighting 1 lamp 0.0400 2 hours/day 730 29.20 ERSE (40w)

FLR20011 WC Environment 1 Electric hot water cylinder 1.5000 On continuously 8760 321.20 50 l in situ; AKI - 0.88 kWh/Day (1200w, 50L)

TOTAL 2871.98

2605.74 EDP (kWh/Year)



Occupancy profiles persons in the house

case 1 same all year ages occupants

days\hours 0-7 7-8.30 8.30-10 10-12.30 12.30-14 14-16 16-18 18-20 20-22 22-24 <18 3

Mon 5 0 0 0 0 0 5 5 5 5 18-64 2

Tue 5 5 0 0 0 0 5 5 5 5 >65 0

Wed 5 0 0 0 0 0 5 5 5 5 total 5

Thu 5 0 0 0 0 0 5 5 5 5

Fri 5 0 0 0 1 0 5 5 5 5 each 20%

Sat 5 2 2 2 2 5 5 5 0 0

Sun 5 5 5 5 5 5 5 5 5 5

case 2 same all year ages occupants

days\hours 0-7 7-8.30 8.30-10 10-12.30 12.30-14 14-16 16-18 18-20 20-22 22-24 <18 3

Mon 6 4 2 2 2 2 2 6 6 6 18-64 3

Tue 6 4 2 2 2 2 2 6 6 6 >65 0

Wed 6 4 2 2 2 2 2 6 6 6 total 6

Thu 6 4 2 2 2 2 2 6 6 6

Fri 6 4 2 2 2 2 2 6 6 6 each 16.66%

Sat 6 6 6 6 6 6 6 6 6 6

Sun 6 6 6 6 6 6 6 6 6 6

case 3 same all year ages occupants

days\hours 0-7 7-8.30 8.30-10 10-12.30 12.30-14 14-16 16-18 18-20 20-22 22-24 <18 1

Mon 4 4 2 2 2 2 2 4 4 4 18-64 3

Tue 4 4 2 2 2 2 2 4 4 4 >65 0

Wed 4 4 2 2 2 2 2 4 4 4 total 4

Thu 4 4 2 2 2 2 2 4 4 4

Fri 4 4 2 2 2 2 2 4 4 4 each 25%

Sat 4 4 4 4 4 4 4 4 4 4

Sun 4 4 4 4 4 4 4 4 4 4

case 4 same all year ages occupants

days\hours 0-7 7-8.30 8.30-10 10-12.30 12.30-14 14-16 16-18 18-20 20-22 22-24 <18 0

Mon 3 1 1 1 1 1 1 3 3 3 18-64 3

Tue 3 1 1 1 1 1 1 3 3 3 >65 1

Wed 3 1 1 1 1 1 1 3 3 3 total 4

Thu 3 1 1 1 1 1 1 3 3 3

Fri 3 1 1 1 1 1 1 3 3 3 each 25%

Sat 4 4 4 4 4 4 4 4 4 4

Sun 4 4 4 4 4 4 4 4 4 4

case 5 same all year ages occupants

days\hours 0-7 7-8.30 8.30-10 10-12.30 12.30-14 14-16 16-18 18-20 20-22 22-24 <18 2

Mon 4 2 2 1 1 1 1 3 3 4 18-64 2

Tue 4 2 2 1 1 1 1 3 3 4 >65 0

Wed 4 2 2 1 1 1 1 3 3 4 total 4

Thu 4 2 2 1 1 1 1 3 3 4

Fri 4 2 2 1 1 1 1 3 3 4 each 25%

Sat 2 2 2 2 2 2 2 2 2 2

Sun 2 2 2 2 2 2 2 2 2 2

case 6 same all year ages occupants

days\hours 0-7 7-8.30 8.30-10 10-12.30 12.30-14 14-16 16-18 18-20 20-22 22-24 <18 1

Mon 3 3 1 1 2 1 1 1 3 3 18-64 2

Tue 3 3 1 1 2 1 1 1 3 3 >65 0

Wed 3 3 1 1 2 1 1 1 3 3 total 3

Thu 3 3 1 1 2 1 1 1 3 3

Fri 3 3 1 1 2 1 1 1 3 3 each 33%

Sat 3 3 3 3 3 3 3 3 3 3

Sun 3 3 3 3 3 3 3 3 3 3



Occupancy profiles persons in the house

case 7 same all year ages occupants

days\hours 0-7 7-8.30 8.30-10 10-12.30 12.30-14 14-16 16-18 18-20 20-22 22-24 <18 3

Mon 2 5 5 5 5 5 5 2 2 2 18-64 2

Tue 2 5 5 5 5 5 5 2 2 2 >65 0

Wed 2 5 5 5 5 5 5 2 2 2 total 5

Thu 2 5 5 5 5 5 5 2 2 2

Fri 2 5 5 5 5 5 5 2 2 2 each 20%

Sat 0 0 0 0 0 0 0 0 0 0

Sun 0 0 0 0 0 0 0 0 0 0

case 8 10 days out in summer ages occupants

days\hours 0-7 7-8.30 8.30-10 10-12.30 12.30-14 14-16 16-18 18-20 20-22 22-24 <18 0

Mon 1 1 1 1 1 1 0 1 1 1 18-64 0

Tue 1 1 1 1 1 1 0 1 1 1 >65 1

Wed 1 1 1 1 1 1 0 1 1 1 total 1

Thu 1 1 1 1 1 1 0 1 1 1

Fri 1 1 1 1 1 1 0 1 1 1 each 100%

Sat 1 1 1 1 1 1 0 1 1 1

Sun 1 1 1 1 1 1 0 1 1 1

case 9 out of house in the summer for 1 month ages occupants

days\hours 0-7 7-8.30 8.30-10 10-12.30 12.30-14 14-16 16-18 18-20 20-22 22-24 <18 2

Mon 5 5 1 0 2 0 0 0 5 5 18-64 3

Tue 5 5 1 0 2 0 0 0 5 5 >65 0

Wed 5 5 1 0 2 0 0 0 5 5 total 5

Thu 5 5 1 0 2 0 0 0 5 5

Fri 5 5 1 0 2 0 0 0 5 5 each 20%

Sat 5 5 5 0 0 0 0 0 5 5

Sun 5 5 5 0 0 0 0 0 5 5

case 10 same all year ages occupants

days\hours 0-7 7-8.30 8.30-10 10-12.30 12.30-14 14-16 16-18 18-20 20-22 22-24 <18 0

Mon 2 2 2 2 2 0 1 2 2 2 18-64 1

Tue 2 2 2 2 2 0 1 2 2 2 >65 1

Wed 2 2 2 2 2 0 1 2 2 2 total 2

Thu 2 2 2 2 2 0 1 2 2 2

Fri 2 2 2 2 2 0 1 2 2 2 each 50%

Sat 2 2 2 2 2 0 1 2 2 2

Sun 2 2 2 2 2 0 1 2 2 2
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Building envelope requirements

Thermal protection requirements (U values in W/(m² K))

Roof Walls Floor Windows

Austria 0.2 0.35 0.4 1.4

Belgium 0.3 0.4 0.6 2.5

Bulgaria 0.3 0.35 0.5 1.8

Cyprus 0.85 0.85 2 3.8

Czech Republic 0.24 0.3 0.45 1.7

Denmark 0.2 0.3 0.2 1.8

Estonia 0.15 to 0.2 0.2 to 0.25 0.15 to 0.2 0.7 to 1.4

Finland 0.09 0.17 0.16 1

France 0.2 to 0.25 0.36 to 0.4 0.37 to 0.4 1.7 to 1.9

Germany 0.24 0.24 0.3

Greece 0.35 to 0.5 0.4 to 0.6 0.45 to 0.5 2.6 to 3.2

Hungary 0.25 0.45 0.45 1.6

Ireland 0.25 0.37 0.37 2.2

Italy 0.32 to 0.65 0.33 to 0.62 0.29 to 0.38 1.3 to 1.7

Latvia 0.2k to 0.35k 0.25k to 0.5k 0.2k to 0.35k 1.8k to 2.4k

Lithuania 0.16 0.2 0.25 1.6

Malta 0.59 1.57 1.57 5.8

Netherlands 0.4 0.4 0.4 4.2

Norway 0.18 0.22 0.18 1.6

Poland 0.25 0.3 0.45 1.7

Portugal 0.9 to 1.25 1.45 to 1.8 1.2 to 1.65 3.3 to 4.3

Romania 0.2 0.56 0.35 1.3

Slovakia 0.19 0.32 1.7

Slovenia 0.2 0.28 0.9 1.1 to 1.6

Spain 0.45 to 0.65 0.57 to 0.94 0.62 to 0.69 3.1 to 5.7

Sweden 0.4 to 0.6

Switzerland 0.17 to 0.2 '0.17 to 0.2 '0.17 to 0.2 1.3

United Kingdom 0.2 0.3 0.25 2

http://www.buildingsdata.eu/results

Data HUB for the Energy Performance of Buildings

The values in yellow were completed using Portuguese regulation



Materials EN-ISO 6946

Material ID: Description:

Specific heat 

capacity J/(kg·K) source

Conductivity 

W/(m·K) source

Density ( 

kg/m³) source

Vapour 

resistance GN·s 

(kg·m) Source Notes Calculation Method

[GST11] Granite - ITE50 650 Mendonça 2.8 ITE50 2600 ITE50 (average) 300 Mendonça EN-ISO 6946

[USPM0004] Traditional Plaster - ITE50 1046 Mendonça 0.8 ITE50 1600 ITE50 15 Mendonça

Traditional plaster and mortar with sand 

and lime EN-ISO 6946

 [GPL1] Traditional stucco - ITE50 1046 Mendonça 0.8 ITE50 1600 ITE50 - -

Traditional ceiling stucco - sand and 

gypsum EN-ISO 6946

[USPM0005] Traditional Mortar - ITE50 1046 Mendonça 0.8 ITE50 1600 ITE50 15 Mendonça

Traditional plaster and mortar with sand 

and lime EN-ISO 6946

[CYT1] Traditional glazed ceramic tile - ITE50 960

Mendonça 

(average) 1.3 ITE50 2300 ITE50 200

Mendonça 

(average) cerâmica vidrada/grés cerâmico EN-ISO 6946

[USBC0001] Hollow Brick 11 - ITE50 837 IES VE 0.34 ITE50 740

Cerâmica 

Torreense (tijolo 

11) 0 EN-ISO 6946

[ST] Slate Tiles - ITE50 753 IES VE 2.2 ITE50 2400 ITE50 (average) Infinite Mendonça EN-ISO 6946

[CLT1] Roof Clay tiles - ITE50 837 IES VE 0.34 ITE50 1000 ITE50 (lowest) 200

Mendonça 

(average) EN-ISO 6946

[TMF1] Pine Wood - ITE50 2720 IES VE 0.18 ITE50 565 ITE50 (average) 70 Mendonça EN-ISO 6946

[TMF11] Oak and Chestnut Wood - ITE50 2390 IES VE 0.23 ITE50 810 ITE50 (average) 60 Mendonça EN-ISO 6946

Paper (wallpaper) 0.042

[CF411] Ordinary Simple Glass - ITE50 850 FEUP (V. Freitas) 1.0 ITE50 2500 ITE50 Infinite Mendonça

Well ventilated air layer 1008 EN 12524 0.0 EN-ISO 6946 1.23 EN 12524 BuildDesk U 3.4 EN-ISO 6946

Unventilated, heat flow upwards - 50mm 1008 EN 12524 0.313 EN-ISO 6946 1.23 EN 12524 BuildDesk U 3.4 EN-ISO 6946

Unventilated, heat flow upwards - 100mm 1008 EN 12524 0.625 EN-ISO 6946 1.23 EN 12524 BuildDesk U 3.4 EN-ISO 6946

Unventilated, heat flow upwards - 300mm 1008 EN 12524 1.875 EN-ISO 6946 1.23 EN 12524 BuildDesk U 3.4 EN-ISO 6946

[O1112] Combined Layer_Studs_Mortar_BuildeskU3.4 1551

BuilDesk U 3.4 

combined 

(30%+70%) 0.61 BuilDesk U 3.4 1289.5

BuilDesk U 3.4 

combined 

(30%+70%) Layer - studs + mortar

EN-ISO 6946 combined 

method

[O1111] Combined Layer_Oak_Unvent_BuildeskU3.4 1424

BuilDesk U 3.4 

combined 

(30%+70%) 1.37 BuilDesk U 3.4 243.84

BuilDesk U 3.4 

combined 

(30%+70%) Layer - Oak beams + unventilated

EN-ISO 6946 combined 

method

[O111] Combined Layer_wood_Unvent_BuildeskU3.4 1300.7

BuilDesk U 3.4 

combined 

(17%+83%) 0.291 BuilDesk U 3.4 97.05

BuilDesk U 3.4 

combined 

(17%+83%) Layer - studs + unventilated

EN-ISO 6946 combined 

method

[ST11111] Combined Layer_wood_Vent_Roof_BuildeskU3.4 1232.3

BuilDesk U 3.4 

combined 

(13%+87%) 0.023 BuilDesk U 3.4 74.5

BuilDesk U 3.4 

combined 

(13%+87%)

Layer - studs + well ventilated under 

roof tiles

EN-ISO 6946 combined 

method

[ST1111] Combined Layer_wood_Vent_BuildeskU3.4 1352

BuilDesk U 3.4 

combined 

(20%+80%) 0.035 BuilDesk U 3.4 113.96

BuilDesk U 3.4 

acombined 

(20%+80%) Layer - studs + well ventilated

EN-ISO 6946 combined 

method

[O11] Traditional floor-ceiling - ITE54 2390 0.7 700 0

Inhomogeneous layers combined 

method in ITE54

EN-ISO 6946 combined 

method

[CAIN11] Wood studs and plaster 837 0.382 32 0

Inhomogeneous layers combined 

method - IES VE

EN-ISO 6946 combined 

method

C:\Users\Quim\Documents\BROOKES\THESIS\Ch11_Appendices\U-Values Reference.xlsx



Materials thermal properties Comparison scheme  

Source page material (granite) Density (Kg/m3) thermal conductivity [W/(m.°C)] Portuguese Specific heat capacity J/(Kg.K) Vapour resistance GN.s/(Kg.m)

ITE50 - table I.2 I.4 Granite 2500-2700 2.800 granito 650 (Mendonça) 790 (Toolbox) 300 (Mendonça)

IES-VE (apache tables) 18 GST - Granite (red) 2650 2.900 granito (vermelho) 900.00 0

AdePorto PE1 Stone wall 2.900 parede de granito

Source page material (slate) Density (Kg/m3) thermal conductivity [W/(m.°C)] Portuguese Specific heat capacity J/(Kg.K) Vapour resistance GN.s/(Kg.m)

ITE50 - table I.2 I.4 Slate 2000-2800 2.200 ardósia 753 (IES-VE) ∞ (Mendonça)

IES-VE (Apache tables) 19 Slate tiles 2700 2.000 753

IES-VE (Apache tables) 20 Slate - SL01 1602 1.442 1464

Source page material (wall ceramic tiles) Density (Kg/m3) thermal conductivity [W/(m.°C)] Portuguese Specific heat capacity J/(Kg.K) Vapour resistance GN.s/(Kg.m)

ITE50 - table I.2 I.10 glazed ceramic tiles 2300 1.300 azulejo 920 - 1000 (Mendonça) 100 - 300 (Mendonça)

IES-VE (Apache tables) 19 Clay tile 1900 0.840 800.00 0

IES-VE (Apache tables) 19 Clay tile - HF-C1 1121 0.571 837.00 0

Source page material (ceramic roof tiles) Density (Kg/m3) thermal conductivity [W/(m.°C)] Portuguese Specific heat capacity J/(Kg.K) Vapour resistance GN.s/(Kg.m)

ITE50 - table I.2 I.4 Brick, tiles and roof tiles (fausto simões) 1900 (IES-VE) 0.770 Telha cerâmica 837 (IES-VE)

Quercus - Ecocasa Ceramic roof tile 1800-2000 1.150 Telha cerâmica

IES-VE (Apache tables) 19 Ceiling tiles 380 0.056 1000

IES-VE (Apache tables) 19 CYT - Clay tiles 1900 0.84 800

IES-VE (Apache tables) 19 USCT0000 - Clay tile - HF-C1 1121 0.571 837

Source page material (wall plaster) Density (Kg/m3) thermal conductivity [W/(m.°C)] Portuguese Specific heat capacity J/(Kg.K) Vapour resistance GN.s/(Kg.m)

ITE50 - table I.2 I.7 Traditional mortar and plaster (walls) 1800-2000 1.300 argamassa tradicional 1046 (Mendonça) 15 (Mendonça)

ITE50 - table I.2 I.7 Traditional mortar and plaster (walls) >2000 1.800 1046 (Mendonça)

ITE50 - table I.2 I.7 Traditional lime and sand mortar or plaster  (walls) 1600 0.800 reboco tradicional de cal e areia 1046 (Mendonça) 15 (Mendonça)

Quercus - Ecocasa Traditional plaster 1500-2100 1.150 rebobo tradicional

IES-VE (Apache tables) 18 USPM0001 - Perlite Plaster - sand aggregate (ASHRAE) 1860 0.720 800.00 0

IES-VE (Apache tables) 18 USPM0000 - Cement Plaster - sand aggregate (ASHRAE) 1680 0.810 800.00 0

IES-VE (Apache tables) 17 PLD - Plaster (dense) 1300 0.500 1000.00

IES-VE (Apache tables) 17 PLL - Plaster (lighweight) 600 0.160 1000.00

IES-VE (Apache tables) 17 GPL - Gypsum Plastering 1200 0.420 estuque 837.00

IES-VE (Apache tables) 18 Stucco - HF-A1 2659 0.721 estuque 837.00

Source page material (ceiling plaster) Density (Kg/m3) thermal conductivity [W/(m.°C)] Portuguese Specific heat capacity J/(Kg.K) Vapour resistance GN.s/(Kg.m)

ITE50 - table I.2 I.6 Traditional stucco or plaster (ceiling) ≤1000 0.400 gesso (Mendonça) (0.35) 837 (IES-VE)

IES-VE (Apache tables) 17 GPL - Gypsum Plastering 1200 0.420 837.00
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Materials thermal properties Comparison scheme  

Source page material (glass) Density (Kg/m3) thermal conductivity [W/(m.°C)] Portuguese Specific heat capacity J/(Kg.K) Vapour resistance GN.s/(Kg.m)

ITE50 - table I.2 I.10 Sodium-Limestone glass (incl. Float glass) 2500 1.000 vidro simples Sódico-calcário 850 (V Freitas - lowest) ∞ (Mendonça)

IES-VE CF4 Clear float 4 mm 1.060

Mendonça 4.67 clear glass 5 mm

UFP (Martins) 16 Ordinary single glass 2500 1.160 795

Source page material (wood) Density (Kg/m3) thermal conductivity [W/(m.°C)] Portuguese Specific heat capacity J/(Kg.K) Vapour resistance GN.s/(Kg.m)

ITE50 - table I.2 I.7 Wood (semi-dense) -folhosas 565-765 0.180 carvalho, castanho

ITE50 - table I.2 I.7 Wood (dense) - folhosas 750-870 0.230 carvalho (Mendonça) 2390 IESVE 40 - 60 (Mendonça)

ITE50 - table I.2 I.7 Wood (resinosas densas) 520-610 0.180 casquinha 2720 IES VE

ITE50 - table I.2 I.7 Wood (resinosas muito densas) > 610 0.230 pinho (Mendonça - 530-600 kg/m3) 70

Mendonça ? Hardwood 1500 - 2510 (Mendonça) 1700 (Toolbox)

Quercus - Ecocasa Hardwood 450-1000 0.12-0.29 madeira maciça

IES-VE (Apache tables) 20 Timber flooring 650 0.140 soalho 1200.00

IES-VE (Apache tables) 20 Pine (20% moist) 419 0.140 pinho 2720.00

IES-VE (Apache tables) 20 Oak (radial) 700 0.190 carvalho 2390.00

IES-VE (Apache tables) 20 Soft Wood - WD01 513 0.115 carvalho 1381.00

IES-VE (Apache tables) 20 Hard Wood - WD11 721 0.158 carvalho 1255.00

IES-VE (Apache tables) 20 Wood - WF-B7 593 0.121 carvalho 837.00

Source page material (metal) Density (Kg/m3) thermal conductivity [W/(m.°C)] Portuguese Specific heat capacity J/(Kg.K) Vapour resistance GN.s/(Kg.m)

ITE50 - table I.2 I.9 Steel 7800 50.000 aço 450 - 512 (Mendonça) ∞ (Mendonça)

ITE50 - table I.2 I.9 Inox 7900 17.000 aço inox ∞ (Mendonça)

ITE50 - table I.2 I.9 Aluminium 2700 230.000 alumínio 830 - 950 (Mendonça) ∞ (Mendonça)

ITE50 - table I.2 I.9 Iron 7870 72.000 ferro ∞ (Mendonça)

ITE50 - table I.2 I.9 Cast iron 7500 50.000 ferro fundido ∞ (Mendonça)

IES-VE (Apache tables) 17 Steel 7800 50.000 aço 480.00

IES-VE (Apache tables) 17 Aluminium 2800 160.000 alumínio 896.00

IES-VE (Apache tables) 17 Lightweight metallic cladding 1250 0.290 chapa metálica 1000.00

IES-VE (Apache tables) 17 Steel siding - HF-A3 7690 44.970 chapa aço ondulada 418.00

Source page material (brick) Density (Kg/m3) thermal conductivity [W/(m.°C)] Portuguese Specific heat capacity J/(Kg.K) Vapour resistance GN.s/(Kg.m)

ITE50 - table I.2 I.4 Brick, tiles and roof tiles (fausto simões) 1800-2000 0.770 tijolo cerâmico 837 (IES-VE)

IES-VE (Apache tables) 13 Common brick - BK01 1922 0.721 tijolo cerâmico 837.00

IES-VE (Apache tables) 13 Common brick - HF-C4 1922 0.727 tijolo cerâmico 837.00

Source page material (carpeting) Density (Kg/m3) thermal conductivity [W/(m.°C)] Portuguese Specific heat capacity J/(Kg.K) Vapour resistance GN.s/(Kg.m)

ITE50 - table I.2 I.10 Textile (carpet) 200 0.060 carpete

ITE50 - table I.2 I.10 Linoleum 1200 0.170 linóleo 1800 (Mendonça)

IES-VE (Apache tables) 13 Wilton carpet 186 0.060 alcatifa 1360.00

IES-VE (Apache tables) 13 Synthetic carpet 160 0.060 carpete 2500.00

Source page material (Plastic) Density (Kg/m3) thermal conductivity [W/(m.°C)] Portuguese Specific heat capacity J/(Kg.K) Vapour resistance GN.s/(Kg.m)

ITE50 - table I.2 I.8 PVC 1390 0.170 1040 (Mendonça) 20000 (Mendonça)
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Constructions thermal properties Comparison scheme

source page material (external wall) thickness (m) heat transfer coefficient U [W/(m2.°C)] walls superficial mass [(kg/m2)] (ITE54) Q (kWh/m2.year) (AdePorto)

ITE50 II.2 external simple wall (granite, plaster or tile) 0.40-0.60 2.9

ITE54 I.25 external simple wall (granite, mortar, plaster or other) 0.30 2.4 680

ITE54 I.25 external simple wall (granite, mortar, plaster or other) 0.60 1.8 1350

ITE54 I.25 external simple wall (granite, mortar, plaster or other) 0.90 1.4 2030

ITE54 I.25 external simple wall (granite, mortar, plaster or other) 1.20 1.2 2700

Mendonça A1 . 28 granite and plaster 0.40 + 0.02 3.05

Mendonça A1 . 28 granite, lã rocha, plasterboard (int) 0.40+0.05+0.013 0.69

ITE54 I.7 - I.8 external simple wall (granite) 0.20 3.7 520

ITE54 I.7 - I.8 external simple wall (granite) 0.40 2.9 1040

ITE54 I.7 - I.8 external simple wall (granite) 0.60 2.4 1560

ITE54 I.7 - I.8 external simple wall (granite) 0.80 2.1 2080

ITE54 I.7 - I.8 external simple wall (granite) 1.00 1.8 2600

AdePorto 12 Stone wall (generic) - PE1 2.9 112

Adeporto 12 Brick wall (generic) - PE3 1.3 50

AdePorto 12 Timber stud wall - PE2 3 116

source page material (exterior floor with usual finishes) thickness (m) heat transfer coefficient U [W/(m2.°C)] floor superficial mass [(kg/m2)] (ITE54) Q (kWh/m2.year) (AdePorto)

ITE54 I.57 - I.58

floor with ceiling finished with intermediate space with weak 

ventilation 0.21 - 0.25 1.4 60

ITE54 I.57 - I.58

floor without ceiling finished or with intermediate space heavily 

ventilated 0.18 - 0.22 2.2 40

source page material (interior floor with usual finishes) thickness (m) heat transfer coefficient U [W/(m2.°C)] floor superficial mass [(kg/m2)] (ITE54) Q (kWh/m2.year) (AdePorto)

ITE54 I.57 - I.58

floor with ceiling finished with intermediate space with weak 

ventilation 0.21 - 0.25 1.2 60

ITE54 I.57 - I.58

floor without ceiling finished or with intermediate space heavily 

ventilated 0.18 - 0.22 1.7 40

source page material (partition wall) thickness (m) heat transfer coefficient U [W/(m2.°C)] floor superficial mass [(kg/m2)] (ITE54) Q (kWh/m2.year) (AdePorto)

AdePorto 12 Timber stud partition wall 3 116

source page material (partition wall) thickness (m) heat transfer coefficient U [W/(m2.°C)] floor superficial mass [(kg/m2)] (ITE54) Q (kWh/m2.year) (AdePorto)

AdePorto 12 Timber stud partition wall 3 116

source page material (glazed elements) thickness (m) heat transfer coefficient U [W/(m2.°C)] floor superficial mass [(kg/m2)] (ITE54) Q (kWh/m2.year) (AdePorto)

AdePorto 12 Wood frame (protected) 4.3 166

AdePorto 12 Wood frame (unprotected) 3.7 143

AdePorto 12 Metal frame (protected) 5 193

AdePorto 12 Metal frame (unprotected) 4.3 166

source page Roofing (slope) thickness (m) heat transfer coefficient U [W/(m2.°C)] floor superficial mass [(kg/m2)] (ITE54) Q (kWh/m2.year) (AdePorto)

AdePorto 12 Light 3.8 147

AdePorto 12 Light concrete 2.8 108

AdePorto 12 Heavy concrete 3.4 131

source page Roofing (horizontal) thickness (m) heat transfer coefficient U [W/(m2.°C)] floor superficial mass [(kg/m2)] (ITE54) Q (kWh/m2.year) (AdePorto)

AdePorto 12 Light concrete 2.3 89

AdePorto 12 Heavy concrete 2.6 100

U – heat transfer coefficient [W/(m2.ºC)].

Q – annual energy per m2 demanded to compensate the annual heat losses (Q = 0,024 x U x GD) [kWh/m2.year].
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Building Template 

Manager (BTM)

Room attributes templates

Templates Lettable floor area (%) Circulation floor area (%)

Rooms 80 20

Circulation 1 99

Constructions

Specific

Macroflo Opening Types

Specific

Thermal conditions

Building regulations

template Room type NCM Building type NCM Activity External ventilation rate

Rooms Heated or occupied room Residential spaces

NCM Dwell: 

Bedroom/Kitchen/Dining 

Room/Lounge/bathroom Not applicable

Circulation Other buffer space Residential spaces

NCM Dwell: Circulation 

area 0

Room conditions Profile constant simulation setpoint

DHW consumption 

l/(h.pers)

Heating specific 20

DHW specific RCCTE: 40l/(day.pers)

Cooling specific 25

Plant (auxiliary energy) specific

Model settings

Solar reflected fraction Furniture mass factor

0.05 1

Humidity control

Min. Percentage saturation Max. Percentage saturation

0 100

System

System

HVAC system specific Apache System

Heating

Heating plant radiant fraction 0.2

IES Manual: 0 for forced 

warm air heaters and 0.9 

for high temperature 

radiant heaters

electric radiators 0.9 and 

thermo-ventilators 0

Simulation heating unit capacity unlimited

Cooling

Cooling plant radiant fraction 0

IES manual: 0 for an air 

system

Simulation cooling unit capacity unlimited

System outside air supply

Min. Flow 0.8 (l/s.m2)

Additional free cooling flow 

capacity 5 (ach.)

IES manual: free cooling 

typical open window 5 ach

Variation profile off continuously

Internal gains (casual gains)

Specific

Air exchanges variation profile Adjacent conditions Max. Flow

Infiltration on continuously External air 0.25 ach

Electric Lighting

Not used

Radiance Surface Properties

Not used



Apache Systems

Heating

Generator

Fuel electricity oy Butane gas

Is it a heat pump? never

Seasonal efficiency

Delivery efficiency not available

SCoP kW/kW

Generator size kW not available

Heat recovery Note used

Vent. Heat recovery effectiveness

Vent heat recovery return air temp. 

(°C)

CH(C)P Not used

Is this heat source used in 

conjunction with CHP? never

What ranking does this heat source 

have after the CH(C)P Plant?

Cooling

Generator (Never air conditioning)

Cooling/ventilation mechanism Natural ventilation Mechanical ventilation ?

Hot Water

Generator

Is DHW served by ApacheHVAC 

boiler? never

Electric Water 

Heaters

Electric water 

heating 

cylinders

DHW deliver efficiency 0.8 0.7 RCCTE (p.2506)

RCCTE 

Simplified 

(p.17415) 

equipment with 

0-9 years

Set points

Mean cold water inlet temp. (°C) 15 °C RCCTE (p.2506)

Hot water supply temp. (°C) 60 °C ΔT 45 °C RCCTE (p.2506)

Storage

Is this a storage system? always yes

Storage volume (l) variable 50 to 75l

Insulation not available

Storage losses (kWh(l.day)) 0.0075 ?

Secondary circulation never

Solar Water Heating

Solar panel

Is there a solar heating system? No. To be simulated

Area (m2)

Azimuth (° clockwise from north)

Tilt (° from horizontal) 23 roof slope

Shading factor

Degradation factor

Conversion efficiency at ambient 

temperatura

First order heat loss coefficient (a1) 

(W/m2.K)

Second order heat loss coefficient 

(a2) (W/m2.K2)

Flow rate (l/(h.m2))

Pump power (kW)

Heat exchanger effectiveness

Storage tank

Volume (l)

Storage loss at max. Temp. 

(kWh/(l.day))

Aux. Energy



Method (never)?

Auxiliary energy method specific

Auxiliary energy

Auxiliary energy value W/m2

Off-schedule heating/cooling AEV 

W/m2

Air Supply

Outside air supply

supply condition external air

Cooling air supply sizing

Air supply temperature difference (0 

for no sizing) K

Control

Master zone control

Master zone specific
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Simulations results Baseline Scenario 1 gain Scenario 2 gain Scenario 3a gain Scenario 3b gain Scenario 4 gain Scenario 5 gain Scenario 6 gain Scenario 7 gain Scenario 8 gain Scenario 8b gain Scenario 9 gain Scenario 10 gain

Energy (kWh/year) 5177.6 5177.3 0.3 5177.3 0.3 5177.3 0.3 5177.3 0.3 5056.5 121.1 5020 157.6 5177.3 0.3 5177.3 0.3 5177.3 0.3 5177.3 0.3 5177.3 0.3

CO2 (kgCO2) 1131 1131 0 1131 0 1131 0 1131 0 1103 28 1095 36 1131 0 1131 0 1131 0 1131 0 1131 0

PPD (Mean %) 16.63 16.71 -0.09 16.62 0.01 16.62 0.01 15.70 0.93 16.63 0.00 16.62 0.01 16.38 0.25 16.46 0.17 11.61 5.02 16.62 0.01 16.24 0.39

Energy (kWh/year) 6412.6 6391.5 21.1 6409.6 3 6349.4 63.2 6340.1 72.5 6169.8 242.8 5983.8 428.8 6320.1 92.5 6331.2 81.4 6336.9 75.7 6360.3 52.3 6273.9 139 6091 322

CO2 (kgCO2) 1440 1435 5 1439 1 1425 15 1423 17 1384 56 1342 98 1418 22 1421 19 1422 18 1428 12 1408 32 1366 74

PPD (Mean %) 27.49 28.10 -0.60 27.55 -0.05 30.49 -2.99 25.28 2.22 27.49 0.00 27.49 0.00 28.63 -1.14 29.02 -1.53 27.85 -0.36 27.76 -0.27 29.43 -1.94 32.51 -5.01

Energy (kWh/year) 6632.9 6611.5 21.4 6633.2 -0.3 6601.5 31.4 6614.9 18 6431.7 201.2 6286.9 346 6629.6 3.3 6606.1 26.8 6616.6 16.3 6616.6 16.3 6596.5 36.4 6596.6 36.3

CO2 (kgCO2) 1437 1433 4 1438 -1 1430 7 1433 4 1391 46 1358 79 1437 0 1431 6 1434 3 1434 3 1429 8 1429 8

PPD (Mean %) 26.49 25.93 0.56 26.50 -0.01 25.61 0.88 24.87 1.62 26.48 0.00 26.48 0.00 26.31 0.17 25.70 0.78 25.65 0.84 25.66 0.82 22.48 4.00 22.50 3.99

Energy (kWh/year) 4522.5 4460.9 61.6 4519.9 2.6 4464 58.5 4489 33.5 4407.4 115.1 4362.2 160.3 4454.7 67.8 4400.6 122 4440.3 82.2 4441.7 80.8 4099.8 423 4099.8 423

CO2 (kgCO2) 1013 999 14 1012 1 999 14 1005 8 987 26 976 37 997 16 985 28 994 19 994 19 916 97 916 97

PPD (Mean %) 26.75 26.93 -0.18 26.76 -0.01 27.58 -0.83 24.81 1.95 26.75 0.00 26.75 0.00 26.75 0.01 27.08 -0.33 26.57 0.19 26.59 0.16 30.48 -3.72 0.00 26.75

Energy (kWh/year) 8495.3 8429.1 66.2 8495.3 0 8495.1 0.2 8495.3 0 8253.1 242.2 8101.5 393.8 8495.6 -0.3 8429.1 66.2 8490.1 5.2 8490.5 4.8

CO2 (kgCO2) 1863 1848 15 1863 0 1863 0 1863 0 1808 55 1773 90 1863 0 1848 15 1862 1 1862 1

PPD (Mean %) 33.42 30.89 2.54 33.36 0.07 34.95 -1.52 0.00 33.42 33.36 0.07 33.36 0.07 33.28 0.14 30.71 2.72 33.48 -0.06 0.00 33.42

Energy (kWh/year) 6178.3 6137.3 41 6177.8 0.5 6178.3 0 6193.7 -15.4 6098.3 80 6074.9 103.4 6169.8 8.5 6120.9 57.4 6175.1 3.2 6170.9 7.4

CO2 (kgCO2) 1360 1350 10 1360 0 1360 0 1363 -3 1341 19 1336 24 1358 2 1347 13 1359 1 1358 2

PPD (Mean %) 22.29 21.72 0.57 21.25 1.04 0.00 22.29 20.20 2.09 21.28 1.01 21.28 1.01 0.00 22.29 20.77 1.52 21.35 0.94 20.92 1.37

Energy (kWh/year) 2948.1 2944 4.1 2948 0.1 2934.2 13.9 2937.2 10.9 2906.3 41.8 2921.2 26.9 2943.5 4.6 2938.3 9.8 2948.4 -0.3 2927.5 20.6

CO2 (kgCO2) 650 649 1 650 0 647 3 647 3 640 10 644 6 649 1 648 2 650 0 645 5

PPD (Mean %) 26.29 26.34 -0.05 25.86 0.43 27.21 -0.91 25.27 1.02 25.85 0.44 25.85 0.44 26.04 0.25 26.68 -0.38 25.91 0.38 24.90 1.40

Energy (kWh/year) 4433.7 4415.7 18 4433.2 0.5 4374.5 59.2 4475.4 -41.7 4424.2 9.5 4505.1 -71.4 4470.4 -36.7 4433.7 0 4413.1 20.6 4074.3 359 4295.3 138

CO2 (kgCO2) 988 984 4 988 0 975 13 998 -10 986 2 1005 -17 997 -9 988 0 984 4 906 82 957 31

PPD (Mean %) 30.17 27.90 2.27 27.93 2.24 27.39 2.78 26.56 3.62 27.93 2.24 27.93 2.24 28.08 2.10 0.00 30.17 28.07 2.11 26.15 4.03 28.54 1.63

Energy (kWh/year) 3229 3229 0 3229 0 3229 0 3229 0 3210.3 18.7 3373.3 -144.3 3229 0 3229 0 3229 0 3229 0 3229 0 3229 0

CO2 (kgCO2) 684 684 0 684 0 684 0 684 0 680 4 718 -34 684 0 684 0 684 0 684 0 684 0 684 0

PPD (Mean %) 26.63 25.31 1.33 26.63 0.00 25.75 0.88 25.88 0.75 26.63 0.00 26.63 0.00 26.41 0.22 24.92 1.71 25.73 0.90 25.50 1.13 0.00 26.63 26.06 0.57

Energy (kWh/year) 2427.1 2427.1 0 2427.1 0 2427.1 0 2427.1 0 2359.1 68 2354.7 72.4 2427.1 0 2427.1 0 2427.1 0 2427.1 0

CO2 (kgCO2) 555 555 0 555 0 555 0 555 0 539 16 538 17 555 0 555 0 555 0 555 0

PPD (Mean %) 17.43 17.42 0.01 17.42 0.01 0.00 17.43 16.68 0.75 17.43 0.00 17.43 0.00 17.20 0.23 17.17 0.26 17.45 -0.02 17.08 0.35

Case 7

Case 8

Case 9

Case 10

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6



Variant Case Indicators Baseline Scenario 1 Scenario 2 Scenario 3a Scenario 3b Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 Scenario 8b Scenario 9 Scenario 10 
Scenarios 1, 4 

and 5

Scenarios 1, 4, 

5, and 3

Scenario Solar 

DHW

Scenario Solar 

DHW and 

scenario 4

V3b Energy (kWh/year) 5177.60 0.30 0.30 0.30 0.30 121.10 157.60 0.30 0.30 0.30 0.30 0.30 251.70 251.70 373.00 449.10

mid CO2 (kgCO2) 1131.00 0.00 0.00 0.00 0.00 28.00 36.00 0.00 0.00 0.00 0.00 0.00 58.00 58.00 85.00 103.00

PPD (Mean %) 16.63 -0.09 0.01 0.01 0.93 0.00 0.01 0.25 0.17 5.02 0.01 0.39 -0.09 -0.08 0.00 0.00

V3b Energy (kWh/year) 6412.60 21.10 3.00 63.20 72.50 242.80 428.80 92.50 81.40 75.70 52.30 138.70 321.60 638.50 709.90 733.00 898.90

top CO2 (kgCO2) 1440.00 5.00 1.00 15.00 17.00 56.00 98.00 22.00 19.00 18.00 12.00 32.00 74.00 146.00 163.00 169.00 206.00

PPD (Mean %) 27.49 -0.60 -0.05 -2.99 2.22 0.00 0.00 -1.14 -1.53 -0.36 -0.27 -1.94 -5.01 -0.60 1.66 0.00 0.00

V3a Energy (kWh/year) 6632.90 21.40 -0.30 31.40 18.00 201.20 346.00 3.30 26.80 16.30 16.30 36.40 36.30 524.00 555.90 618.90 762.40

top CO2 (kgCO2) 1437.00 4.00 -1.00 7.00 4.00 46.00 79.00 0.00 6.00 3.00 3.00 8.00 8.00 119.00 127.00 141.00 174.00

PPD (Mean %) 26.49 0.56 -0.01 0.88 1.62 0.00 0.00 0.17 0.78 0.84 0.82 4.00 3.99 0.56 1.62 0.00 0.00

V4 Energy (kWh/year) 4522.50 61.60 2.60 58.50 33.50 115.10 160.30 67.80 121.90 82.20 80.80 422.70 422.70 311.40 365.20 459.10 515.30

top CO2 (kgCO2) 1013.00 14.00 1.00 14.00 8.00 26.00 37.00 16.00 28.00 19.00 19.00 97.00 97.00 71.00 84.00 105.00 118.00

PPD (Mean %) 26.75 -0.18 -0.01 -0.83 1.95 0.00 0.00 0.01 -0.33 0.19 0.16 -3.72 0.00 -0.18 -1.03 0.00 0.00

V4 Energy (kWh/year) 8495.30 66.20 0.00 0.20 0.00 242.20 393.80 -0.30 66.20 5.20 4.80 648.30 645.20 735.40 900.90

mid CO2 (kgCO2) 1863.00 15.00 0.00 0.00 0.00 55.00 90.00 0.00 15.00 1.00 1.00 148.00 147.00 168.00 206.00

PPD (Mean %) 33.42 2.54 0.07 -1.52 0.00 0.07 0.07 0.14 2.72 -0.06 0.00 2.54 0.98 0.00 0.00

V3a Energy (kWh/year) 6178.30 41.00 0.50 0.00 -15.40 80.00 103.40 8.50 57.40 3.20 7.40 206.50 210.10 238.40 284.10

mid CO2 (kgCO2) 1360.00 10.00 0.00 0.00 -3.00 19.00 24.00 2.00 13.00 1.00 2.00 47.00 48.00 55.00 65.00

PPD (Mean %) 22.29 0.57 1.04 0.00 2.09 1.01 1.01 0.00 1.52 0.94 1.37 0.57 0.74 0.00 0.00

V2 Energy (kWh/year) 2948.10 4.10 0.10 13.90 10.90 41.80 26.90 4.60 9.80 -0.30 20.60 63.60 66.50 87.50 108.60

mid CO2 (kgCO2) 650.00 1.00 0.00 3.00 3.00 10.00 6.00 1.00 2.00 0.00 5.00 15.00 15.00 20.00 25.00

PPD (Mean %) 26.29 -0.05 0.43 -0.91 1.02 0.44 0.44 0.25 -0.38 0.38 1.40 -0.05 0.00 0.00 0.00

V1 Energy (kWh/year) 4433.70 18.00 0.50 59.20 -41.70 9.50 -71.40 -36.70 0.00 20.60 359.40 138.40 -45.70 -45.70 -57.80 -54.40

top CO2 (kgCO2) 988.00 4.00 0.00 13.00 -10.00 2.00 -17.00 -9.00 0.00 4.00 82.00 31.00 -11.00 -11.00 -14.00 -13.00

PPD (Mean %) 30.17 2.27 2.24 2.78 3.62 2.24 2.24 2.10 0.00 2.11 4.03 1.63 2.27 2.27 0.00 0.00

V2 Energy (kWh/year) 3229.00 0.00 0.00 0.00 0.00 18.70 -144.30 0.00 0.00 0.00 0.00 0.00 0.00 -133.80 -133.80 -12.60 -5.00

top CO2 (kgCO2) 684.00 0.00 0.00 0.00 0.00 4.00 -34.00 0.00 0.00 0.00 0.00 0.00 0.00 -31.00 -31.00 -3.00 -1.00

PPD (Mean %) 26.63 1.33 0.00 0.88 0.75 0.00 0.00 0.22 1.71 0.90 1.13 0.00 0.57 1.33 2.20 0.00 0.00

V1 Energy (kWh/year) 2427.10 0.00 0.00 0.00 0.00 68.00 72.40 0.00 0.00 0.00 0.00 125.30 125.30 239.10 268.00

mid CO2 (kgCO2) 555.00 0.00 0.00 0.00 0.00 16.00 17.00 0.00 0.00 0.00 0.00 29.00 29.00 55.00 61.00

PPD (Mean %) 17.43 0.01 0.01 0.00 0.75 0.00 0.00 0.23 0.26 -0.02 0.35 0.01 0.75 0.00 0.00

Case 6

Case 7

Case 8

Case 9

Case 10

Case 1

Case 2

Case 3

Case 4

Case 5



Variant Case
Total 

(kWh/year)

Total (€/year) 

2013
Total (%)

Lighting 

(kWh/year)

Lighting 

(€/year) 2013

Standby 

(kWh/year)

Standby 

(€/year) 2013

V3b

mid

V3b

top

V3a

top

V4

top

V4

mid

V3a

mid

V2

mid

V1

top

V2

top

V1

mid
7.26328.68 56.80 16.81 35.04 6.06 42.00

83.28 14.35

455.96 78.79 31.03 166.73 31.48 31.67 5.99

737.89 127.51 42.25 251.33 44.64

29.09 141.96 34.44 67.90 10.83

214.42 37.05

1877.81 324.49 46.57 290.37 50.17 148.30 25.63

1215.57 210.05 20.46 442.85 76.52

3.87

17.89

18.85

27.04

8.38

246.54 42.60 79.28 13.70

Potential Savings

322.93 55.80 0.00 0.00 22.38

78.84 13.62 70.22 12.14

1152.62 199.17 263.44 45.51 222.70 38.49

Case 7

Case 8

Case 9

Case 10

404.58Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

69.91

726.05 125.46

586.60 101.36



Case 1

Project File: Case1_Base2.mit

Sim File: case1_base2.aps 07/May/2013

Weather File: PortoIWEC.fwt

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

case1_base2.aps case1_base2.aps case1_base2.aps case1_base2.aps case1_base2.aps case1_base2.aps case1_base2.aps case1_base2.aps case1_base2.aps case1_base2.aps

Summed 

total
0 1.5689 1.5689 0.0131 2.1374 1.4579 3.5953 2.1374 3.0401 5.1776

Project File: Case1_Future.mit

Sim File: case1_future.aps 24/May/2013

Weather File: PRT_PORTO_HadCM3-A2-2080.epw

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

Summed 

total
0 1.4795 1.4795 0.0131 2.1374 1.4579 3.5954 2.1374 2.9506 5.088

↔ ↘ ↘ ↔ ↔ ↔ ↔ ↔ ↘ ↘

Case 2 

Project File: Case2_Base2.mit

Sim File: case2_base2.aps 07/May/2013

Weather File: PortoIWEC.fwt

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

Summed 

total
0.6964 2.5032 3.1996 0.0847 1.0686 2.0595 3.128 1.0686 5.344 6.4126

Project File: case2_Future.mit

Sim File: case2_future.aps 25/May/2013

Weather File: PRT_PORTO_HadCM3-A2-2080.epw

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

Summed 

total
0.2561 2.5033 2.7594 0.0847 1.0686 2.1503 3.2188 1.0686 4.9943 6.0629

↘ ↔ ↘ ↔ ↔ ↗ ↗ ↔ ↘ ↘

Case 3 

Project File: Case3_Base2.mit

Sim File: case3_base2.aps 07/May/2013

Weather File: PortoIWEC.fwt

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

Summed 

total
0.2894 2.1314 2.4208 0.0788 3.2058 0.9276 4.1332 3.2058 3.4271 6.6329

Project File: Case3_Future.mit

Sim File: case3_future.aps 25/May/2013

Weather File: PRT_PORTO_HadCM3-A2-2080.epw

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

Summed 

total
0.1629 2.1313 2.2943 0.0788 3.2058 0.9276 4.1334 3.2058 3.3006 6.5064

↘ ↔ ↘ ↔ ↔ ↔ ↔ ↔ ↘ ↘

Case 4 

Project File: Case4_Base2.mit

Sim File: case4_base2.aps 07/May/2013

Weather File: PortoIWEC.fwt

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

Summed 

total
0.6821 1.4301 2.1121 0.2117 0.8549 1.3438 2.1986 0.8549 3.6676 4.5225

Project File: Case4_Future.mit

Sim File: case4_future.aps 25/May/2013

Weather File: PRT_PORTO_HadCM3-A2-2080.epw

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

Summed 

total
0.2959 1.4301 1.7259 0.2117 0.8549 1.3438 2.1987 0.8549 3.2814 4.1363

↘ ↔ ↘ ↔ ↔ ↔ ↔ ↔ ↘ ↘

Case 5 

Project File: Case5_Base2b.mit

Sim File: case5_base2b.aps 10/May/2013

Weather File: PortoIWEC.fwt

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

Summed 

total
0.0932 2.6905 2.7837 0.0847 3.2058 2.421 5.6268 3.2058 5.2894 8.4953

Project File: Case5_Future.mit

Sim File: case5_future.aps 25/May/2013

Weather File: PRT_PORTO_HadCM3-A2-2080.epw

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

Summed 

total
0.0464 2.6486 2.695 0.0847 3.2058 2.4956 5.7014 3.2058 5.2753 8.4811

↘ ↘ ↘ ↔ ↔ ↗ ↗ ↔ ↘ ↘

Case 6 

Project File: Case6_Base2.mit

Sim File: case6_base2.aps 07/May/2013

Weather File: PortoIWEC.fwt

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

Summed 

total
0.235 1.0386 1.2736 0.1051 2.1372 2.6621 4.7994 2.1372 4.041 6.1783

Project File: Case6_Future.mit

Sim File: case6_future.aps 25/May/2013

Weather File: PRT_PORTO_HadCM3-A2-2080.epw

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

Summed 

total
0.1453 1.0386 1.1839 0.1051 2.1372 2.6716 4.8088 2.1372 3.9607 6.098

↘ ↔ ↘ ↔ ↔ ↗ ↗ ↔ ↘ ↘



Case 7

Project File: Case7_Base2.mit

Sim File: case7_base2.aps 07/May/2013

Weather File: PortoIWEC.fwt

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

Summed 

total
0.2208 0.6956 0.9163 0.0726 0.9739 0.9854 1.9593 0.9739 1.9742 2.9481

Project File: Case7_Future.mit

Sim File: case7_future.aps 25/May/2013

Weather File: PRT_PORTO_HadCM3-A2-2080.epw

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

case7_future.aps case7_future.aps case7_future.aps case7_future.aps case7_future.aps case7_future.aps case7_future.aps case7_future.aps case7_future.aps case7_future.aps

Summed 

total
0.0669 0.6956 0.7624 0.0726 0.9739 0.9854 1.9593 0.9739 1.8204 2.7942

↘ ↔ ↘ ↔ ↔ ↔ ↔ ↔ ↘ ↘

Case 8

Project File: Case8_Base2.mit

Sim File: case8_base2.aps 08/May/2013

Weather File: PortoIWEC.fwt

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

Summed 

total
2.0199 0.5981 2.618 0.1008 1.0247 0.6904 1.7151 1.0247 3.4091 4.4337

Project File: Case8_Future.mit

Sim File: case8_future.aps 25/May/2013

Weather File: PRT_PORTO_HadCM3-A2-2080.epw

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

Summed 

total
1.1432 0.5981 1.7413 0.1008 1.0247 0.6904 1.7151 1.0247 2.5325 3.5571

↘ ↔ ↘ ↔ ↔ ↔ ↔ ↔ ↘ ↘

Case 9

Project File: Case9_Base2.mit

Sim File: case9_base2.aps 08/May/2013

Weather File: PortoIWEC.fwt

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

Summed 

total
0 0.4049 0.4049 0.0218 2.2001 0.6022 2.8024 2.2001 1.0289 3.229

Project File: Case9_Future.mit

Sim File: case9_future.aps 25/May/2013

Weather File: PRT_PORTO_HadCM3-A2-2080.epw

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)
Equip LPG (MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total LPG (MWh) Total electricity (MWh) Total energy (MWh)

Summed 

total
0 0.4049 0.4049 0.0218 2.2001 0.6042 2.8043 2.2001 1.0309 3.231

↔ ↔ ↔ ↔ ↔ ↗ ↗ ↔ ↗ ↗

Case 10

Project File: Case10_Base2.mit

Sim File: case10_base2.aps 08/May/2013

Weather File: PortoIWEC.fwt

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total electricity (MWh) Total energy (MWh)

Summed 

total
0 0.9711 0.9711 0.307 1.1491 1.1491 2.4271 2.4271

Project File: Case10_Future.mit

Sim File: case10_future.aps 25/May/2013

Weather File: PRT_PORTO_HadCM3-A2-2080.epw

Ap Sys boilers space 

cond'g energy (MWh)

Ap Sys boilers DHW 

energy (MWh)

System electricity 

(MWh)

Lights electricity 

(MWh)

Equip electricity 

(MWh)

Total equip energy 

(MWh)
Total electricity (MWh) Total energy (MWh)

Summed 

total
0 0.9711 0.9711 0.307 1.1491 1.1491 2.4271 2.4271

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔



Design Scenarios Building modelling

Scenario measure modelling in IES-VE

Baseline

1 Draughtproofing windows and doors reduce crack flow in doors and windows (MacroFlo)

2 Improve single glazing with insulating film model in glazed constructions

3a Use of internal shutters model in external glazed elements (internal shade)

3b use internal shutters and change profile model in external glazed elements (internal shade)

4 Reduce DHW temperature from 60 to 55 C model in DHW system

5 Upgrade DHW storage tank insulation (to 100mm) model in DHW system

6 Introduce double glazing model in glazed constructions

7 Introduce secondary glazing model in glazed constructions

8a Introduce insulation in floors and ceilings model in floor/ceiling constructions

8b Introduce insulation in roofs model in roof constructions

9 introduce exterior insulation in party walls model in external wall constructions

10 scenario 9 + introduce exterior indulation in facades model in external wall constructions

11 Introduce PCM in the rooms (inside) not modelled

1_4_5 Composite scenario (1, 4 and 5)

1_4_5_3 Composite scenario (1, 4, 5 and 3)

Design Scenarios equipment modelling

Scenario measure modelling in Excel table

1 nulling equipment standby

2 replace existing lamps with more efficient ones replace incandescent and halogen lamps with CFL equivalent

3 replace existing equipment with more efficient one replace identified inefficient equipmet with efficient equivalent models



Design Scenario 1

Baseline Scenario 1 gain total Saving (€) Measure cost (€) Payback (years) saving % existing simulated

Energy (kWh/year) 5177.6 5177.3 0.3 0.05 157.44 3037.04 0.01

non-weatherstripped doors 

and windows

weatherstripped doors 

and windows

CO2 (kgCO2) 1131 1131 0 0.00

Energy (kWh/year) 6412.6 6391.5 21.1 3.65 105.24 28.86 0.33

non-weatherstripped doors 

and windows

weatherstripped doors 

and windows

CO2 (kgCO2) 1440 1435 5 0.35

Energy (kWh/year) 6632.9 6611.5 21.4 3.70 151.99 41.10 0.32

non-weatherstripped doors 

and windows

weatherstripped doors 

and windows

CO2 (kgCO2) 1437 1433 4 0.28

Energy (kWh/year) 4522.5 4460.9 61.6 10.64 101.55 9.54 1.36

non-weatherstripped doors 

and windows

weatherstripped doors 

and windows

CO2 (kgCO2) 1013 999 14 1.38

Energy (kWh/year) 8495.3 8429.1 66.2 11.44 111.00 9.70 0.78

non-weatherstripped doors 

and windows

weatherstripped doors 

and windows

CO2 (kgCO2) 1863 1848 15 0.81

Energy (kWh/year) 6178.3 6137.3 41 7.08 163.85 23.13 0.66

non-weatherstripped doors 

and windows

weatherstripped doors 

and windows

CO2 (kgCO2) 1360 1350 10 0.74

Energy (kWh/year) 2948.1 2944 4.1 0.71 35.09 49.53 0.14

non-weatherstripped doors 

and windows

weatherstripped doors 

and windows

CO2 (kgCO2) 650 649 1 0.15

Energy (kWh/year) 4433.7 4415.7 18 3.11 294.73 94.76 0.41

non-weatherstripped doors 

and windows

weatherstripped doors 

and windows

CO2 (kgCO2) 988 984 4 0.40

Energy (kWh/year) 4436.4 4418.2 18.2 3.14 294.73 93.72 0.41

non-weatherstripped doors 

and windows

weatherstripped doors 

and windows

CO2 (kgCO2) 989 985 4 0.40

Energy (kWh/year) 3229 3229 0 0.00 81.59 na 0.00

non-weatherstripped doors 

and windows

weatherstripped doors 

and windows

CO2 (kgCO2) 684 684 0 0.00

Energy (kWh/year) 2427.1 2427.1 0 0.00 44.28 na 0.00

non-weatherstripped doors 

and windows

weatherstripped doors 

and windows

CO2 (kgCO2) 555 555 0 0.00

Case 7

Case 8

Case 9

Case 10

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 8B



Design Scenario 2

Baseline Scenario 2 gain Saving (€) Measure cost (€) Payback (years) saving % existing simulated

Energy (kWh/year) 5177.6 5177.3 0.3 0.05 10.09 194.64 0.01
simple glazing

Improve simple glazing with 

insulating film

CO2 (kgCO2) 1131 1131 0 0.00

Energy (kWh/year) 6412.6 6409.6 3 0.52 25.42 49.04 0.05
simple glazing

Improve simple glazing with 

insulating film

CO2 (kgCO2) 1440 1439 1 0.07

Energy (kWh/year) 6632.9 6633.2 -0.3 -0.05 16.29 na 0.00
simple glazing

Improve simple glazing with 

insulating film

CO2 (kgCO2) 1437 1438 -1 -0.07

Energy (kWh/year) 4522.5 4519.9 2.6 0.45 11.22 24.97 0.06
simple glazing

Improve simple glazing with 

insulating film

CO2 (kgCO2) 1013 1012 1 0.10

Energy (kWh/year) 8495.3 8495.3 0 0.00 16.70 na 0.00
simple glazing

Improve simple glazing with 

insulating film

CO2 (kgCO2) 1863 1863 0 0.00

Energy (kWh/year) 6178.3 6177.8 0.5 0.09 27.71 320.72 0.01
simple glazing

Improve simple glazing with 

insulating film

CO2 (kgCO2) 1360 1360 0 0.00

Energy (kWh/year) 2948.1 2948 0.1 0.02 4.41 255.21 0.00
simple glazing

Improve simple glazing with 

insulating film

CO2 (kgCO2) 650 650 0 0.00

Energy (kWh/year) 4433.7 4433.2 0.5 0.09 50.11 579.98 0.01
simple glazing

Improve simple glazing with 

insulating film

CO2 (kgCO2) 988 988 0 0.00

Energy (kWh/year) 3229 3229 0 0.00 na na 0.00
simple glazing

Improve simple glazing with 

insulating film

CO2 (kgCO2) 684 684 0 0.00

Energy (kWh/year) 2427.1 2427.1 0 0.00 na na 0.00
simple glazing

Improve simple glazing with 

insulating film

CO2 (kgCO2) 555 555 0 0.00

Case 7

Case 8

Case 9

Case 10

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6



Design Scenario 3

Baseline Scenario 3a gain Saving (€) Measure cost (€) Payback (years) saving % existing simulated

Energy (kWh/year) 5177.6 5177.3 0.3 0.05 73.85 1424.58 0.01 open day /closed night (20-8h) same

CO2 (kgCO2) 1131 1131 0 0.00 introduced shutter in kitchen

Energy (kWh/year) 6412.6 6349.4 63.2 10.92 1905.00 174.44 0.99 always open open day /closed night (20-8h)

CO2 (kgCO2) 1440 1425 15 1.04 introduced shutter in all exterior openings

Energy (kWh/year) 6632.9 6601.5 31.4 5.43 2279.00 420.02 0.47 no shutters open day /closed night (20-8h)

CO2 (kgCO2) 1437 1430 7 0.49 introduced shutter in all exterior openings

Energy (kWh/year) 4522.5 4464 58.5 10.11 1485.00 146.90 1.29 open day /closed night (20-8h)

CO2 (kgCO2) 1013 999 14 1.38 no shutters introduced shutter in all exterior openings

Energy (kWh/year) 8495.3 8495.1 0.2 0.03 na 0.00

winter - open all day, closed in the night (21-

6.30h) open day /closed night (20-8h)

CO2 (kgCO2) 1863 1863 0 0.00 summer - open all night closed all day (6.30-21h)

Energy (kWh/year) 6178.3 6178.3 0 0.00 na 0.00 open day /closed night (21-7.30h) same

CO2 (kgCO2) 1360 1360 0 0.00

Energy (kWh/year) 2948.1 2934.2 13.9 2.40 667.00 277.69 0.47

exterior blinders - 75% open during day, closed 

during night and when away

introduce shutters  - open day /closed night 

(20-8h)

CO2 (kgCO2) 650 647 3 0.46 no shutters removed exterior blinders

Energy (kWh/year) 4433.7 4374.5 59.2 10.23 1538.00 150.35 1.34 shutters in 3rd floor - closed continuously 75% open day /closed night (20-8h)

CO2 (kgCO2) 988 975 13 1.32 no shutters in 4th floor introduced shutter in all exterior openings

Energy (kWh/year) 3229 3229 0 0.00 2213.40 na 0.00 no shutters open day /closed night (20-8h)

CO2 (kgCO2) 684 684 0 0.00 introduced shutter in all exterior openings

Energy (kWh/year) 2427.1 2427.1 0 0.00 na 0.00 open day /closed night (19.30-7.30h) same

CO2 (kgCO2) 555 555 0 0.00 introduced shutter in all exterior openings
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Design Scenario 3B

Baseline Scenario 3b gain Saving (€) Measure cost (€) Payback (years) saving % existing simulated

Energy (kWh/year) 5177.6 5177.3 0.3 0.05 73.85 1424.58 0.01
open day /closed night (20-8h)

winter - open all day, closed in the night (21-

6.30h)

CO2 (kgCO2) 1131 1131 0 0.00

summer - open all night closed all day (6.30-

21h)

Energy (kWh/year) 6412.6 6340.1 72.5 12.53 1905.00 152.06 1.13
always open

winter - open all day, closed in the night (21-

6.30h)

CO2 (kgCO2) 1440 1423 17 1.18

summer - open all night closed all day (6.30-

21h)

Energy (kWh/year) 6632.9 6614.9 18 3.11 2279.00 732.70 0.27
no shutters

winter - open all day, closed in the night (21-

6.30h)

CO2 (kgCO2) 1437 1433 4 0.28

summer - open all night closed all day (6.30-

21h)

Energy (kWh/year) 4522.5 4489 33.5 5.79 1485.00 256.53 0.74

winter - open all day, closed in the night (21-

6.30h)

CO2 (kgCO2) 1013 1005 8 0.79
no shutters

summer - open all night closed all day (6.30-

21h)

Energy (kWh/year) 8495.3 8495.3 0 0.00 na 0.00

winter - open all day, closed in the night (21-

6.30h)
same

CO2 (kgCO2) 1863 1863 0 0.00
summer - open all night closed all day (6.30-21h)

Energy (kWh/year) 6178.3 6193.7 -15.4 -2.66 na -0.25
open day /closed night (21-7.30h)

winter - open all day, closed in the night (21-

6.30h)

CO2 (kgCO2) 1360 1363 -3 -0.22

summer - open all night closed all day (6.30-

21h)

Energy (kWh/year) 2948.1 2937.2 10.9 1.88 667.00 354.12 0.37

exterior blinders - 75% open during day, closed 

during night and when away

winter - open all day, closed in the night (21-

6.30h)

CO2 (kgCO2) 650 647 3 0.46
no shutters

summer - open all night closed all day (6.30-

21h)

Energy (kWh/year) 4433.7 4475.4 -41.7 -7.21 1538.00 -213.44 -0.94
shutters in 3rd floor - closed continuously 75%

winter - open all day, closed in the night (21-

6.30h)

CO2 (kgCO2) 988 998 -10 -1.01
no shutters in 4th floor

summer - open all night closed all day (6.30-

21h)

Energy (kWh/year) 3229 3229 0 0.00 na 0.00
no shutters

winter - open all day, closed in the night (21-

6.30h)

CO2 (kgCO2) 684 684 0 0.00

summer - open all night closed all day (6.30-

21h)

Energy (kWh/year) 2427.1 2427.1 0 0.00 na 0.00
open day /closed night (19.30-7.30h)

winter - open all day, closed in the night (21-

6.30h)

CO2 (kgCO2) 555 555 0 0.00

summer - open all night closed all day (6.30-

21h)
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Design Scenario 4

Baseline Scenario 4 gain Saving (€) Measure cost (€) Payback (years) saving % existing simulated

Energy (kWh/year) 5177.6 5056.5 121.1 20.93 2.34 DHW at 60°C DHW at 55°C

CO2 (kgCO2) 1131 1103 28 2.48

Energy (kWh/year) 6412.6 6169.8 242.8 41.96 3.79 DHW at 60°C DHW at 55°C

CO2 (kgCO2) 1440 1384 56 3.89

Energy (kWh/year) 6632.9 6431.7 201.2 34.77 3.03 DHW at 60°C DHW at 55°C

CO2 (kgCO2) 1437 1391 46 3.20

Energy (kWh/year) 4522.5 4407.4 115.1 19.89 2.55 DHW at 60°C DHW at 55°C

CO2 (kgCO2) 1013 987 26 2.57

Energy (kWh/year) 8495.3 8253.1 242.2 41.85 2.85 DHW at 60°C DHW at 55°C

CO2 (kgCO2) 1863 1808 55 2.95

Energy (kWh/year) 6178.3 6098.3 80 13.82 1.29 DHW at 60°C DHW at 55°C

CO2 (kgCO2) 1360 1341 19 1.40

Energy (kWh/year) 2948.1 2906.3 41.8 7.22 1.42 DHW at 60°C DHW at 55°C

CO2 (kgCO2) 650 640 10 1.54

Energy (kWh/year) 4433.7 4424.2 9.5 1.64 0.21 DHW at 60°C DHW at 55°C

CO2 (kgCO2) 988 986 2 0.20

Energy (kWh/year) 3229 3210.3 18.7 3.23 0.58 DHW at 60°C DHW at 55°C

CO2 (kgCO2) 684 680 4 0.58

Energy (kWh/year) 2427.1 2359.1 68 11.75 2.80 DHW at 60°C DHW at 55°C

CO2 (kgCO2) 555 539 16 2.88
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Design Scenario 5

Baseline Scenario 5 gain Saving (€) Measure cost (€) Payback (years) saving % existing simulated

Energy (kWh/year) 5177.6 5020 157.6 27.23 17.00 0.62 3.04

DHW tank with 40mm insulation (0.7 

efficiency)

DHW tank with 100mm insulation (loose 

jacket - 0.9 efficiency)

CO2 (kgCO2) 1131 1095 36 3.18

Energy (kWh/year) 6412.6 5983.8 428.8 74.10 17.00 0.23 6.69

DHW tank with 40mm insulation (0.7 

efficiency)

DHW tank with 100mm insulation (loose 

jacket - 0.9 efficiency)

CO2 (kgCO2) 1440 1342 98 6.81

Energy (kWh/year) 6632.9 6286.9 346 59.79 17.00 0.28 5.22

DHW tank with 40mm insulation (0.7 

efficiency)

DHW tank with 100mm insulation (loose 

jacket - 0.9 efficiency)

CO2 (kgCO2) 1437 1358 79 5.50

Energy (kWh/year) 4522.5 4362.2 160.3 27.70 17.00 0.61 3.54

DHW tank with 40mm insulation (0.7 

efficiency)

DHW tank with 100mm insulation (loose 

jacket - 0.9 efficiency)

CO2 (kgCO2) 1013 976 37 3.65

Energy (kWh/year) 8495.3 8101.5 393.8 68.05 17.00 0.25 4.64

DHW tank with 40mm insulation (0.7 

efficiency)

DHW tank with 100mm insulation (loose 

jacket - 0.9 efficiency)

CO2 (kgCO2) 1863 1773 90 4.83

Energy (kWh/year) 6178.3 6074.9 103.4 17.87 17.00 0.95 1.67

DHW tank with 40mm insulation (0.7 

efficiency)

DHW tank with 100mm insulation (loose 

jacket - 0.9 efficiency)

CO2 (kgCO2) 1360 1336 24 1.76

Energy (kWh/year) 2948.1 2921.2 26.9 4.65 17.00 3.66 0.91

DHW tank with 40mm insulation (0.7 

efficiency)

DHW tank with 100mm insulation (loose 

jacket - 0.9 efficiency)

CO2 (kgCO2) 650 644 6 0.92

Energy (kWh/year) 4433.7 4505.1 -71.4 -12.34 17.00 -1.38 -1.61

DHW tank with 40mm insulation (0.7 

efficiency)

DHW tank with 100mm insulation (loose 

jacket - 0.9 efficiency)

CO2 (kgCO2) 988 1005 -17 -1.72

Energy (kWh/year) 3229 3373.3 -144.3 -24.94 17.00 -0.68 -4.47

DHW tank with 40mm insulation (0.7 

efficiency)

DHW tank with 100mm insulation (loose 

jacket - 0.9 efficiency)

CO2 (kgCO2) 684 718 -34 -4.97

Energy (kWh/year) 2427.1 2354.7 72.4 12.51 17.00 1.36 2.98

DHW tank with 40mm insulation (0.7 

efficiency)

DHW tank with 100mm insulation (loose 

jacket - 0.9 efficiency)

CO2 (kgCO2) 555 538 17 3.06
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Design Scenario 6

Baseline Scenario 6 gain Saving (€) Measure cost (€) Payback (years) saving % existing simulated

Energy (kWh/year) 5177.6 5177.3 0.3 0.05 185.00 3568.67 0.01 wood frame with single glass 4mm wood frame double glass (4+6+4)

CO2 (kgCO2) 1131 1131 0 0.00

Energy (kWh/year) 6412.6 6320.1 92.5 15.98 466.00 29.15 1.44 wood frame with single glass 4mm wood frame double glass (4+6+4)

CO2 (kgCO2) 1440 1418 22 1.53

Energy (kWh/year) 6632.9 6629.6 3.3 0.57 299.00 524.34 0.05 wood frame with single glass 4mm wood frame double glass (4+6+4)

CO2 (kgCO2) 1437 1437 0 0.00

Energy (kWh/year) 4522.5 4454.7 67.8 11.72 316.00 26.97 1.50 wood frame with single glass 4mm wood frame double glass (4+6+4)

CO2 (kgCO2) 1013 997 16 1.58

Energy (kWh/year) 8495.3 8495.6 -0.3 -0.05 306.00 -5902.78 0.00 wood frame with single glass 4mm wood frame double glass (4+6+4)

CO2 (kgCO2) 1863 1863 0 0.00

Energy (kWh/year) 6178.3 6169.8 8.5 1.47 508.00 345.86 0.14 wood frame with single glass 4mm wood frame double glass (4+6+4)

CO2 (kgCO2) 1360 1358 2 0.15

Energy (kWh/year) 2948.1 2943.5 4.6 0.79 81.00 101.90 0.16 wood frame with single glass 4mm wood frame double glass (4+6+4)

CO2 (kgCO2) 650 649 1 0.15

Energy (kWh/year) 4433.7 4470.4 -36.7 -6.34 na -0.83 PVC with double glazing (4+12+4mm) wood frame double glass (4+6+4)

CO2 (kgCO2) 988 997 -9 -0.91

Energy (kWh/year) 3229 3229 0 0.00 na 0.00 wood frame with single glass 4mm wood frame double glass (4+6+4)

CO2 (kgCO2) 684 684 0 0.00

Energy (kWh/year) 2427.1 2427.1 0 0.00 na 0.00 wood frame with single glass 4mm wood frame double glass (4+6+4)

CO2 (kgCO2) 555 555 0 0.00
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Design Scenario 7

Baseline Scenario 7 gain Saving (€) Measure cost (€) Payback (years) saving % existing simulated

Energy (kWh/year) 5177.6 5177.3 0.3 0.05 2095.00 40412.81 0.01 single glazed wood frame (4mm) secondary glazing (50+6mm)

CO2 (kgCO2) 1131 1131 0 0.00

Energy (kWh/year) 6412.6 6331.2 81.4 14.07 2221.00 157.90 1.27 single glazed wood frame (4mm) secondary glazing (50+6mm)

CO2 (kgCO2) 1440 1421 19 1.32

Energy (kWh/year) 6632.9 6606.1 26.8 4.63 2459.00 530.98 0.40 single glazed wood frame (4mm) secondary glazing (50+6mm)

CO2 (kgCO2) 1437 1431 6 0.42

Energy (kWh/year) 4522.5 4400.6 121.9 21.06 3206.00 152.20 2.70 single glazed wood frame (4mm) secondary glazing (50+6mm)

CO2 (kgCO2) 1013 985 28 2.76

Energy (kWh/year) 8495.3 8429.1 66.2 11.44 2571.00 224.75 0.78 single glazed wood frame (4mm) secondary glazing (50+6mm)

CO2 (kgCO2) 1863 1848 15 0.81

Energy (kWh/year) 6178.3 6120.9 57.4 9.92 5201.00 524.36 0.93 single glazed wood frame (4mm) secondary glazing (50+6mm)

CO2 (kgCO2) 1360 1347 13 0.96

Energy (kWh/year) 2948.1 2938.3 9.8 1.69 720.00 425.17 0.33 single glazed wood frame (4mm) secondary glazing (50+6mm)

CO2 (kgCO2) 650 648 2 0.31

Energy (kWh/year) 4433.7 4433.7 0 0.00 na 0.00 Double glazed PVC same

CO2 (kgCO2) 988 988 0 0.00

Energy (kWh/year) 3229 3229 0 0.00 na 0.00 single glazed wood frame (4mm) secondary glazing (50+6mm)

CO2 (kgCO2) 684 684 0 0.00

Energy (kWh/year) 2427.1 2427.1 0 0.00 na 0.00 single glazed wood frame (4mm) secondary glazing (50+6mm)

CO2 (kgCO2) 555 555 0 0.00
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Design Scenario 8

Baseline Scenario 8 gain Saving (€) Measure cost (€) Payback (years) saving % existing simulated

Energy (kWh/year) 5177.6 5177.3 0.3 0.05 574.00 11072.53 0.01 uninsulated floors and ceilings Introduce insulation in floors and ceilings

CO2 (kgCO2) 1131 1131 0 0.00

Energy (kWh/year) 6412.6 6336.9 75.7 13.08 1308.80 100.05 1.18 uninsulated floors and ceilings Introduce insulation in floors and ceilings

CO2 (kgCO2) 1440 1422 18 1.25

Energy (kWh/year) 6632.9 6616.6 16.3 2.82 460.00 163.32 0.25 uninsulated floors and ceilings Introduce insulation in floors and ceilings

CO2 (kgCO2) 1437 1434 3 0.21

Energy (kWh/year) 4522.5 4440.3 82.2 14.20 778.67 54.82 1.82 uninsulated floors and ceilings Introduce insulation in floors and ceilings

CO2 (kgCO2) 1013 994 19 1.88

Energy (kWh/year) 8495.3 8490.1 5.2 0.90 519.00 577.59 0.06 uninsulated floors and ceilings Introduce insulation in floors and ceilings

CO2 (kgCO2) 1863 1862 1 0.05

Energy (kWh/year) 6178.3 6175.1 3.2 0.55 886.00 1602.29 0.05 uninsulated floors and ceilings Introduce insulation in floors and ceilings

CO2 (kgCO2) 1360 1359 1 0.07

Energy (kWh/year) 2948.1 2948.4 -0.3 -0.05 237.68 na -0.01 uninsulated floors and ceilings Introduce insulation in floors and ceilings

CO2 (kgCO2) 650 650 0 0.00

Energy (kWh/year) 4433.7 4413.1 20.6 3.56 1575.00 442.46 0.46 uninsulated floors and ceilings Introduce insulation in floors and ceilings

CO2 (kgCO2) 988 984 4 0.40

Energy (kWh/year) 3229 3229 0 0.00 171.01 na 0.00 uninsulated floors and ceilings Introduce insulation in floors and ceilings

CO2 (kgCO2) 684 684 0 0.00

Energy (kWh/year) 2427.1 2427.1 0 0.00 425.59 na 0.00 uninsulated floors and ceilings Introduce insulation in floors and ceilings

CO2 (kgCO2) 555 555 0 0.00
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Design Scenario 8B

Baseline Scenario 8b gain Saving (€) Measure cost (€) Payback (years) saving % existing simulated

Energy (kWh/year) 5177.6 na 0.00 na na

CO2 (kgCO2) 1131 0.00

Energy (kWh/year) 6412.6 6360.3 52.3 9.04 816.70 90.37 0.82 Uninsulated roof Introduce insulation in roof

CO2 (kgCO2) 1440 1428 12 0.83

Energy (kWh/year) 6632.9 6616.6 16.3 2.82 951.00 337.64 0.25 Uninsulated roof Introduce insulation in roof

CO2 (kgCO2) 1437 1434 3 0.21

Energy (kWh/year) 4522.5 4441.7 80.8 13.96 1175.00 84.16 1.79 Uninsulated roof Introduce insulation in roof

CO2 (kgCO2) 1013 994 19 1.88

Energy (kWh/year) 8495.3 na 0.00 na na

CO2 (kgCO2) 1863 0.00

Energy (kWh/year) 6178.3 na 0.00 na na

CO2 (kgCO2) 1360 0.00

Energy (kWh/year) 2948.1 na 0.00 na na

CO2 (kgCO2) 650 0.00

Energy (kWh/year) 4433.7 4074.3 359.4 62.10 1348.00 21.71 8.11 Uninsulated roof Introduce insulation in roof

CO2 (kgCO2) 988 906 82 8.30

Energy (kWh/year) 3229 3229 0 0.00 na 0.00 Uninsulated roof Introduce insulation in roof

CO2 (kgCO2) 684 684 0 0.00

Energy (kWh/year) 2427.1 na 0.00 na na

CO2 (kgCO2) 555 0.00
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Design Scenario 9

Baseline Scenario 9 gain Saving (€) Measure cost (€) Payback (years) saving % existing simulated

Energy (kWh/year) 5177.6 5177.3 0.3 0.05 669.80 12920.52 0.01 uninsulated exterior walls 50mm EPS in back and party walls

CO2 (kgCO2) 1131 1131 0 0.00

Energy (kWh/year) 6412.6 6273.9 138.7 23.97 561.00 23.41 2.16 uninsulated exterior walls 50mm EPS in party walls

CO2 (kgCO2) 1440 1408 32 2.22

Energy (kWh/year) 6632.9 6596.5 36.4 6.29 7191.00 1143.26 0.55 uninsulated exterior walls 50mm EPS in party walls

CO2 (kgCO2) 1437 1429 8 0.56

Energy (kWh/year) 4522.5 4099.8 422.7 73.04 5546.00 75.93 9.35 uninsulated exterior walls 50mm EPS in exterior walls

CO2 (kgCO2) 1013 916 97 9.58

Energy (kWh/year) 8495.3 na 0.00 no exterior party walls na

CO2 (kgCO2) 1863 0.00

Energy (kWh/year) 6178.3 na 0.00 no exterior party walls na

CO2 (kgCO2) 1360 0.00

Energy (kWh/year) 2948.1 na 0.00 no exterior party walls na

CO2 (kgCO2) 650 0.00

Energy (kWh/year) 4433.7 na 0.00 no exterior party walls na

CO2 (kgCO2) 988 0.00

Energy (kWh/year) 3229 3229 0 0.00 1908.00 na 0.00 uninsulated exterior walls 50mm EPS in party walls

CO2 (kgCO2) 684 684 0 0.00 0.00

Energy (kWh/year) 2427.1 na 0.00 no exterior party walls na

CO2 (kgCO2) 555 0.00
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Design Scenario 10

Baseline Scenario 10 gain Saving (€) Measure cost (€) Payback (years) saving % existing simulated

Energy (kWh/year) 5177.6 5177.3 0.3 0.05 1090.60 21037.81 0.01 uninsulated exterior wall 25mm EPS in main facade + 50mm EPS in back and party walls

CO2 (kgCO2) 1131 1131 0 0.00

Energy (kWh/year) 6412.6 6091 321.6 55.57 2729.00 49.11 5.02 uninsulated exterior wall 25mm EPS in facades + 50mm EPS in party walls

CO2 (kgCO2) 1440 1366 74 5.14

Energy (kWh/year) 6632.9 6596.6 36.3 6.27 7845.00 1250.67 0.55 uninsulated exterior wall 25mm EPS in facades + 50mm EPS in party walls

CO2 (kgCO2) 1437 1429 8 0.56

Energy (kWh/year) 4522.5 4099.8 422.7 73.04 5546.00 75.93 9.35 uninsulated exterior wall 50mm EPS in exterior walls (same as simulation 9)

CO2 (kgCO2) 1013 916 97 9.58

Energy (kWh/year) 8495.3 8490.5 4.8 0.83 571.00 688.42 0.06 uninsulated exterior wall 25mm EPS in main facade

CO2 (kgCO2) 1863 1862 1 0.05

Energy (kWh/year) 6178.3 6170.9 7.4 1.28 506.00 395.71 0.12 uninsulated exterior wall 25mm EPS in back facade

CO2 (kgCO2) 1360 1358 2 0.15

Energy (kWh/year) 2948.1 2927.5 20.6 3.56 2381.00 668.88 0.70 uninsulated exterior wall 25mm EPS in facades

CO2 (kgCO2) 650 645 5 0.77

Energy (kWh/year) 4433.7 4295.3 138.4 23.92 4347.00 181.76 3.12 uninsulated exterior wall 25mm EPS in facades

CO2 (kgCO2) 988 957 31 3.14

Energy (kWh/year) 3229 3229 0 0.00 3986.00 na 0.00 uninsulated exterior walls 25mm EPS in facades + 50mm EPS in party walls

CO2 (kgCO2) 684 684 0 0.00

Energy (kWh/year) 2427.1 2427.1 0 0.00 3715.00 na 0.00 uninsulated exterior wall 25mm EPS in facades

CO2 (kgCO2) 555 555 0 0.00
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Design Scenarios 1, 4 and 5

Baseline Scenarios 1 4 5 gain Saving (€) Measure cost (€) Payback (years) saving % existing simulated

Energy (kWh/year) 5177.6 4925.9 251.7 43.49 174.44 4.01 4.86 baseline Conjunction of scenarios 1, 4 and 5

CO2 (kgCO2) 1131 1073 58 5.13

Energy (kWh/year) 6412.6 5774.1 638.5 110.33 122.24 1.11 9.96 baseline Conjunction of scenarios 1, 4 and 5

CO2 (kgCO2) 1440 1294 146 10.14

Energy (kWh/year) 6632.9 6108.9 524 90.55 168.99 1.87 7.90 baseline Conjunction of scenarios 1, 4 and 5

CO2 (kgCO2) 1437 1318 119 8.28

Energy (kWh/year) 4522.5 4211.1 311.4 53.81 118.55 2.20 6.89 baseline Conjunction of scenarios 1, 4 and 5

CO2 (kgCO2) 1013 942 71 7.01

Energy (kWh/year) 8495.3 7847 648.3 112.03 128.00 1.14 7.63 baseline Conjunction of scenarios 1, 4 and 5

CO2 (kgCO2) 1863 1715 148 7.94

Energy (kWh/year) 6178.3 5971.8 206.5 35.68 181.85 5.10 3.34 baseline Conjunction of scenarios 1, 4 and 5

CO2 (kgCO2) 1360 1313 47 3.46

Energy (kWh/year) 2948.1 2884.5 63.6 10.99 52.09 4.74 2.16 baseline Conjunction of scenarios 1, 4 and 5

CO2 (kgCO2) 650 635 15 2.31

Energy (kWh/year) 4433.7 4479.4 -45.7 -7.90 311.73 -39.47 -1.03 baseline Conjunction of scenarios 1, 4 and 5

CO2 (kgCO2) 988 999 -11 -1.11

Energy (kWh/year) 3229 3362.8 -133.8 -23.12 98.59 -4.26 -4.14 baseline Conjunction of scenarios 1, 4 and 5

CO2 (kgCO2) 684 715 -31 -4.53

Energy (kWh/year) 2427.1 2301.8 125.3 21.65 61.28 2.83 5.16 baseline Conjunction of scenarios 1, 4 and 5

CO2 (kgCO2) 555 526 29 5.23
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Design Scenarios 1, 4, 5 and 3

Baseline Scenarios 1 4 5 3 gain Saving (€) Measure cost (€) Payback (years) saving % existing simulated

Energy (kWh/year) 5177.6 4925.9 251.7 43.49 248.29 5.71 4.86 Baseline Conjunction of scenarios 1, 4, 5 and 3

CO2 (kgCO2) 1131 1073 58 5.13

Energy (kWh/year) 6412.6 5702.7 709.9 122.67 2027.24 16.53 11.07 Baseline Conjunction of scenarios 1, 4, 5 and 3b

CO2 (kgCO2) 1440 1277 163 11.32

Energy (kWh/year) 6632.9 6077 555.9 96.06 2447.99 25.48 8.38 Baseline Conjunction of scenarios 1, 4, 5 and 3

CO2 (kgCO2) 1437 1310 127 8.84

Energy (kWh/year) 4522.5 4157.3 365.2 63.11 1603.55 25.41 8.08 Baseline Conjunction of scenarios 1, 4, 5 and 3

CO2 (kgCO2) 1013 929 84 8.29

Energy (kWh/year) 8495.3 7850.1 645.2 111.49 128.00 1.15 7.59 Baseline Conjunction of scenarios 1, 4, 5 and 3

CO2 (kgCO2) 1863 1716 147 7.89

Energy (kWh/year) 6178.3 5968.2 210.1 36.31 181.85 5.01 3.40 Baseline Conjunction of scenarios 1, 4, 5 and 3

CO2 (kgCO2) 1360 1312 48 3.53

Energy (kWh/year) 2948.1 2881.6 66.5 11.49 719.09 62.58 2.26 Baseline Conjunction of scenarios 1, 4, 5 and 3

CO2 (kgCO2) 650 635 15 2.31

Energy (kWh/year) 4433.7 4479.4 -45.7 -7.90 1849.73 -234.23 -1.03 Baseline Conjunction of scenarios 1, 4, 5 and 3

CO2 (kgCO2) 988 999 -11 -1.11

Energy (kWh/year) 3229 3362.8 -133.8 -23.12 2311.99 -100.00 -4.14 Baseline Conjunction of scenarios 1, 4, 5 and 3

CO2 (kgCO2) 684 715 -31 -4.53

Energy (kWh/year) 2427.1 2301.8 125.3 21.65 270.18 12.48 5.16 Baseline Conjunction of scenarios 1, 4, 5 and 3b

CO2 (kgCO2) 555 526 29 5.23

Case 7

Case 8

Case 9

Case 10

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6



Design Scenario Solar DHW

Baseline

Scenario Solar 

Thermal gain Saving (€) Measure cost (€) Payback (years) saving % existing simulated

Energy (kWh/year) 5177.6 4804.6 373 64.45 4147.30 64.34 7.20 Baseline Introduction of solar thermal DHW

CO2 (kgCO2) 1131 1046 85 7.52

Energy (kWh/year) 6412.6 5679.6 733 126.66 4147.30 32.74 11.43 Baseline Introduction of solar thermal DHW

CO2 (kgCO2) 1440 1271 169 11.74

Energy (kWh/year) 6632.9 6014 618.9 106.95 4147.30 38.78 9.33 Baseline Introduction of solar thermal DHW

CO2 (kgCO2) 1437 1296 141 9.81

Energy (kWh/year) 4522.5 4063.4 459.1 79.33 4147.30 52.28 10.15 Baseline Introduction of solar thermal DHW

CO2 (kgCO2) 1013 908 105 10.37

Energy (kWh/year) 8495.3 7759.9 735.4 127.08 4147.30 32.64 8.66 Baseline Introduction of solar thermal DHW

CO2 (kgCO2) 1863 1695 168 9.02

Energy (kWh/year) 6178.3 5939.9 238.4 41.20 4147.30 100.67 3.86 Baseline Introduction of solar thermal DHW

CO2 (kgCO2) 1360 1305 55 4.04

Energy (kWh/year) 2948.1 2860.6 87.5 15.12 4147.30 274.29 2.97 Baseline Introduction of solar thermal DHW

CO2 (kgCO2) 650 630 20 3.08

Energy (kWh/year) 4433.7 4491.5 -57.8 -9.99 4147.30 -415.23 -1.30 Baseline Introduction of solar thermal DHW

CO2 (kgCO2) 988 1002 -14 -1.42

Energy (kWh/year) 3229 3241.6 -12.6 -2.18 4147.30 -1904.81 -0.39 Baseline Introduction of solar thermal DHW

CO2 (kgCO2) 684 687 -3 -0.44

Energy (kWh/year) 2427.1 2188 239.1 41.32 4147.30 100.38 9.85 Baseline Introduction of solar thermal DHW

CO2 (kgCO2) 555 500 55 9.91

Case 7

Case 8

Case 9

Case 10

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6



Design Scenarios Solar DHW and 4

Baseline

Scenario Solar 

Thermal and 4 gain Saving (€) Measure cost (€) Payback (years) saving % existing simulated

Energy (kWh/year) 5177.6 4728.5 449.1 77.60 4147.30 53.44 8.67 Baseline Introduction of solar thermal DHW with scenario 4

CO2 (kgCO2) 1131 1028 103 9.11

Energy (kWh/year) 6412.6 5513.7 898.9 155.33 4147.30 26.70 14.02 Baseline Introduction of solar thermal DHW with scenario 4

CO2 (kgCO2) 1440 1234 206 14.31

Energy (kWh/year) 6632.9 5870.5 762.4 131.74 4147.30 31.48 11.49 Baseline Introduction of solar thermal DHW with scenario 4

CO2 (kgCO2) 1437 1263 174 12.11

Energy (kWh/year) 4522.5 4007.2 515.3 89.04 4147.30 46.58 11.39 Baseline Introduction of solar thermal DHW with scenario 4

CO2 (kgCO2) 1013 895 118 11.65

Energy (kWh/year) 8495.3 7594.4 900.9 155.68 4147.30 26.64 10.60 Baseline Introduction of solar thermal DHW with scenario 4

CO2 (kgCO2) 1863 1657 206 11.06

Energy (kWh/year) 6178.3 5894.2 284.1 49.09 4147.30 84.48 4.60 Baseline Introduction of solar thermal DHW with scenario 4

CO2 (kgCO2) 1360 1295 65 4.78

Energy (kWh/year) 2948.1 2839.5 108.6 18.77 4147.30 221.00 3.68 Baseline Introduction of solar thermal DHW with scenario 4

CO2 (kgCO2) 650 625 25 3.85

Energy (kWh/year) 4433.7 4488.1 -54.4 -9.40 4147.30 -441.19 -1.23 Baseline Introduction of solar thermal DHW with scenario 4

CO2 (kgCO2) 988 1001 -13 -1.32

Energy (kWh/year) 3229 3234 -5 -0.86 4147.30 -4800.12 -0.15 Baseline Introduction of solar thermal DHW with scenario 4

CO2 (kgCO2) 684 685 -1 -0.15

Energy (kWh/year) 2427.1 2159.1 268 46.31 4147.30 89.55 11.04 Baseline Introduction of solar thermal DHW with scenario 4

CO2 (kgCO2) 555 494 61 10.99

Case 7

Case 8

Case 9

Case 10

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6



Design Scenario Future Weather 2080

Baseline

Scenario Future 

Weather 2080 gain Saving (€) Measure cost (€) Payback (years) saving % existing simulated

Energy (kWh/year) 5177.6 5088 89.6 1.73 Baseline Future weather 2080 simulation

CO2 (kgCO2) 1131 1111 20 1.77

Energy (kWh/year) 6412.6 6062.9 349.7 5.45 Baseline Future weather 2080 simulation

CO2 (kgCO2) 1440 1360 80 5.56

Energy (kWh/year) 6632.9 6506.4 126.5 1.91 Baseline Future weather 2080 simulation

CO2 (kgCO2) 1437 1409 28 1.95

Energy (kWh/year) 4522.5 4136.3 386.2 8.54 Baseline Future weather 2080 simulation

CO2 (kgCO2) 1013 925 88 8.69

Energy (kWh/year) 8495.3 8481.1 14.2 0.17 Baseline Future weather 2080 simulation

CO2 (kgCO2) 1863 1860 3 0.16

Energy (kWh/year) 6178.3 6098 80.3 1.30 Baseline Future weather 2080 simulation

CO2 (kgCO2) 1360 1341 19 1.40

Energy (kWh/year) 2948.1 2794.2 153.9 5.22 Baseline Future weather 2080 simulation

CO2 (kgCO2) 650 615 35 5.38

Energy (kWh/year) 4433.7 3557.1 876.6 19.77 Baseline Future weather 2080 simulation

CO2 (kgCO2) 988 788 200 20.24

Energy (kWh/year) 3229 3231 -2 -0.06 Baseline Future weather 2080 simulation

CO2 (kgCO2) 684 684 0 0.00

Energy (kWh/year) 2427.1 2427.1 0 0.00 Baseline Future weather 2080 simulation

CO2 (kgCO2) 555 555 0 0.00

Case 7

Case 8

Case 9

Case 10

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6



Case 1 Equipment simulation table 

Baseline Operation profile assumed Hours per year Baseline Simulation

IES VE code Room Category Equipment model brand Power (Kw) Equipment Power (Kw) average usage hours (52 weeks, 365 days) Kwh/year Kwh/year Source

FLR20010 Hall lighting 3 halogen lamps 0.1050 CFL 0.0330 1 hour/day 365 38.33 12.05 ERSE (35W); Topten equals CFL 11W

FLR20024 Corridor lighting 1 compact fluorescent lamp 0.0110 same 0.5 hours/day 182.5 2.01 2.01 ERSE (11w); efficient

FLR20024 Corridor appliance 1 Washing machine J853 Samsung 2.0000 Topten 2 washes (1.5hx2)/week 156 312.00 137.00 ERSE (2000w) - ver net; Topten efficient appliance - 137kWh

FLR20018 Living Room lighting 1 compact fluorescent lamp 0.0110 same 4 hours/day 1460 16.06 16.06 ERSE (11w); efficient

FLR20018 Living Room entertainment 1 TV Philips 0.0900 TV (Topten) 0.0300 3 hours/day 1095 98.55 32.85 ERSE (90w); Topten efficient appliance - 30W

FLR20018 Living Room entertainment 1 TV in standby Philips 0.0025 no standby 21 hours/day 7665 18.86 0.00 Deco Proteste Internet simulator

FLR20018 Living Room entertainment 1 DVD player 0.2400 Topten 0.0350 0.5 hours/day 182.5 43.80 6.39 ERSE (240w); Topten 35W

FLR20018 Living Room entertainment 1 DVD player in standby 0.0014 no standby 23.5 hours day 8577.5 11.84 0.00 Deco Proteste Internet simulator

FLR20019 Bedroom 3 lighting 1 compact fluorescent lamp 0.0110 same 0.5 hours/day 182.5 2.01 2.01 ERSE (11w); efficient

FLR20013 Bedroom 2 lighting 1 compact fluorescent lamp 0.0110 same 1 hour/day 365 4.02 4.02 ERSE (11w); efficient

FLR20013 Bedroom 2 entertainment 1 TV 0.0900 TV (Topten) 0.0300 1 hour/day 365 32.85 10.95 ERSE (90w); Topten efficient appliance - 30W

FLR20013 Bedroom 2 entertainment 1 TV in standby 0.0025 no standby 23 hours/day 8395 20.66 0.00 Deco Proteste Internet simulator

FLR20013 Bedroom 2 entertainment 1 Desktop computer 0.3000 same 1 hour/day 365 109.50 109.50 ERSE (300w); no information

FLR20009 Bedroom 1 lighting 3 halogen lamps 0.1050 CFL 0.0330 2 hours/day 730 76.65 24.09 ERSE (35w); Topten equal CFL 11W

FLR20025 Kitchen lighting 2 compact fluorescent lamps 0.0220 same 3 hours/day 1095 24.09 24.09 ERSE (11w); efficient

FLR20025 Kitchen appliance 1 Dish washer ZDF211 Zanuzzi 2.0000 efficient 1.5 hours/week 78 156.00 156.00 ERSE (2000w) - ver net; efficient

FLR20025 Kitchen appliance 1  fridge / freezer Class A Whirlpool 0.0392 efficient On continuously 8760 343.39 343.39 model WTE 3111 W (internet manual) - 0.94w/day; efficient

FLR20025 Kitchen appliance 1 Microwave CRS Worten 0.9000 same 0.5 hours/day 182.5 164.25 165.25 ERSE (900w); no information

FLR20025 Kitchen appliance 1 Microwave in standby CRS Worten 0.0043 same 23.5 hours day 8577.5 37.28 37.28 Deco Proteste Internet simulator; not viable

FLR20025 Kitchen appliance 1 Electric frying pan DF 30AW Electric 2.0000 same 1 hour /week 52 104.00 104.00 in situ; no information

FLR20025 Kitchen appliance 1 Iron 1.6000 same 4 hours /week 208 332.80 332.80 ERSE (1600w); no information

FLR20025 Kitchen entertainment 1 TV Trinitron Sony 0.0900 TV (Topten) 0.0300 3 hours /day 1095 98.55 32.85 ERSE (90w)

FLR20025 Kitchen entertainment 1 TV in  stand-by Trinitron Sony 0.0025 no standby 21 hours/day 7665 18.86 0.00 Deco Proteste Internet simulator

FLR20025 Kitchen environment 1 Electric hot water cylinder 75 RI Aparici 2.0000 same On continuously 8760 448.95 448.95 AKI - 1.23kWh/Day; no information

FLR20004 WC lighting 1 fluorescent lamp 0.0360 same 2 hours/day 730 26.28 26.28 ERSE (36w); efficient

TOTAL Electricity 2541.57 2027.81 less 20.21%

EDP (kWh/Year) 3641.00

FLR20025 Kitchen appliance 1 Gas stove/oven 1 bottle (13 Kg) /month 156 Kg/Year 2137.20 Households / 13.7 kWh per Kg

Simulation



Case 2 Equipment simulation table

Baseline Operation profile assumed Hours per year Baseline Simulation

IES VE code Room Category Equipment model brand Power (Kw) Equipment Power (Kw) (average usage hours) (52 weeks, 365 days) Kwh/year Kwh/year Source

FLR50016 Bedroom Hall lighting 1 lamp 0.0600 CFL 0.0110 0.5 hours/day 182.5 10.95 2.01 ERSE (60w);  Topten equals CFL 11W

FLR50004 Stairs hall lighting 2 compact fluorescent lamps 0.0220 same 3 hours/day 1095 24.09 24.09 ERSE (11w); efficient

FLR50015 Living room lighting 3 halogen lamps 0.1050 CFL 0.0330 3 hours/day 1095 114.98 36.14 ERSE (35w)

FLR50015 Living room entertainment 1 TV Tecnimagem 0.0900 TV (Topten) 0.0300 3 hours/day 1095 98.55 32.85 ERSE (90w); Topten 30W

FLR50015 Living room entertainment 1 TV in standby Tecnimagem 0.0025 no standby 21 hours/day 7665 18.86 0.00 Deco Proteste Internet simulator

FLR50015 Living room entertainment 1 Cable TV box decoder Meo Box 0.0162 same 3 hours/day 1095 17.74 17.74 EDP (8w) / Quercus (16.2w); no information

FLR50015 Living room entertainment 1 Cable TV box decoder in standby Meo Box 0.0094 no standby 21 hours/day 7665 72.05 0.00 Quercus (9.4w)

FLR50023 Bedroom 1 lighting 3 halogen lamps 0.1050 CFL 0.0330 1.5 hours/day 547.5 57.49 18.07 ERSE (35w);  Topten equals CFL 11W

FLR50023 Bedroom 1 lighting 2 lamps (table lamps) 0.0800 CFL 0.0160 1.5 hours/day 547.5 43.80 8.76 ERSE (40w); Philipls equal 8W

FLR50023 Bedroom 1 entertainment 1 TV 0.0900 TV (Topten) 0.0300 1 hour/day 365 32.85 10.95 ERSE (90w); Topten 30W

FLR50023 Bedroom 1 entertainment 1 TV in stand-by 0.0025 no standby 23 hours/day 8395 20.66 0.00 Deco Proteste Internet simulator

FLR50023 Bedroom 1 entertainment 1 DVD Player Nustic or Mustic ? 0.2400 Topten 0.0350 0.5 hours/day 182.5 43.80 6.39 ERSE (240w); Topten

FLR50023 Bedroom 1 entertainment 1 DVD Player in standby 0.0014 no standby 23.5 hours/day 8577.5 12.01 0.00 Deco Proteste Internet simulator

FLR50023 Bedroom 1 entertainment 1 Cable TV box decoder Meo Box 0.0162 same 1 hour/day 365 5.91 5.91 EDP (8w) / Quercus (16.2w); no information

FLR50023 Bedroom 1 entertainment 1 Cable TV box decoder in standby Meo Box 0.0094 no standby 23 hours/day 8395 78.91 0.00 Quercus (9.4w)

FLR50023 Bedroom 1 environment 1 Electric Fan 0.1000 all night in summer 0.00 LG (100w)

FLR50024 Bedroom 2 lighting 3 halogen lamps 0.1050 CFL 0.0330 1.5 hours/day 547.5 57.49 18.07 ERSE (35w);  Topten equals CFL 11W

FLR50020 Kitchen lighting 1 fluorescent lamp 0.0580 same 4 hours/day 1460 84.68 84.68 ERSE (58w); efficient

FLR50020 Kitchen lighting 1 compact fluorescent lamp 0.0110 same 2 hours/day 730 8.03 8.03 ERSE (11w); efficient

FLR50020 Kitchen appliance 1 Washing machine HE605 TX Haier 1.9500 Topten 1.5 hours/day 547.5 416.10 137.00 1 washing/day. Manual in internet; Topten - 137kWh/year

FLR50020 Kitchen appliance 1 fridge Predilect Fagor 0.1500 same On continuously 8760 223.00 223.00 ERSE (150w) Topten (223 kWh/year); efficient

FLR50020 Kitchen appliance 1 freezer Ariston 0.2500 Topten On continuously 8760 296.00 190.00 ERSE (250w) Topten (296 kWh/year)

FLR50020 Kitchen appliance 1 Microwave 0.9000 same 0.5 hours/day 182.5 164.25 164.25 ERSE (900w); no information

FLR50020 Kitchen appliance 1 Microwave in standby 0.0043 same 23.5 hours/day 8577.5 36.88 36.88 Deco Proteste Internet simulator; not viable

FLR50020 Kitchen appliance 1 Iron 1.6000 same 0.5 hour/day 182.5 292.00 292.00 ERSE (1600w); no information

FLR50020 Kitchen appliance 1 Extractor hood Airlux 0.1400 same 2 hours/day 730 102.20 102.20 ERSE (140w); no information

FLR50020 Kitchen appliance 1 Toaster 1.0000 same 0.25 hours/day 91.25 91.25 91.25 ERSE (1000w); no information

FLR50020 Kitchen environment electric hot water cylinder Spersil 1.0000 same On continuously 8760 321.20 321.20 50 l - in situ; AKI - 0.88kWh/Day; no information

FLR50032 WC lighting 1 lamp 0.0600 CFL 0.0110 1 hour/day 365 21.90 4.02 ERSE (60w);  Topten equals CFL 11W

FLR50019 Storage lighting 1 lamp 0.0600 CFL 0.0110 0.25 hours/day 91.25 5.48 1.00 ERSE (60w);  Topten equals CFL 11W

FLR60034 Bedroom 3 (Floor 6) lighting 3 halogen lamps 0.1050 CFL 0.0330 1.5 hours/day 547.5 57.49 18.07 ERSE (35w); Topten equals CFL 11W

FLR60034 Bedroom 3 (Floor 6) entertainment 1 TV 0.0900 TV (Topten) 0.0300 1.5 hours/day 547.5 49.28 16.43 ERSE (90w); Topten 30W

FLR60034 Bedroom 3 (Floor 6) entertainment 1 TV in standby 0.0025 no standby 22.5 hours/day 8212.5 20.21 0.00 Deco Proteste Internet simulator

FLR60034 Bedroom 3 (Floor 6) entertainment 1 DVD Player 0.2400 Topten 0.0350 1 hour/day 365 87.60 12.78 ERSE (240w); Topten 35W

FLR60034 Bedroom 3 (Floor 6) entertainment 1 DVD Player in stand-by 0.0014 no standby 23 hours/day 8395 11.75 0.00 Deco Proteste Internet simulator

FLR60034 Bedroom 3 (Floor 6) environment 1 Electric oil-filled radiator heater 2.0000 1 h when cold (less 19) 0.00 ERSE (2000w)

FLR60039 Storage (Floor 6) lighting 3 halogen lamps 0.1050 CFL 0.0330 0.125 hours/day 45.625 4.79 1.51 ERSE (35w); Topten equals CFL 11W

TOTAL 3004.21 1885.25 less 37.25%

EDP (kWh/Year) 5978.26

FLR50020 Kitchen appliance 1 Gas stove/oven 0.5 bottles (13kg)/month 78 kg/year 1068.60 Households / 13.7 kWh per Kg

Simulation



Case 3 Equipment simulation table

Baseline Operation profile assumed Hours per year Baseline Simulation

IES VE code Room Category Appliance model brand Power (Kw) Equipment Power (Kw) (average usage hours (52 weeks, 365 days) Kwh/year Kwh/year Source

FLR40064 Stairs Lighting 2 compact fluorescent lamps 0.0220 same 0.5 hours/day 182.5 4.02 4.02 ERSE (11w); efficient

FLR40064 Stairs Lighting 1 lamp 0.0400 CFL 0.0080 0.5 hours/day 182.5 7.30 1.46 ERSE (40w), Philips equals 8W

FLR40037 Corridor 1 Lighting 1 compact fluorescent lamp 0.0110 same 0.5 hours/day 182.5 2.01 2.01 ERSE (11w); efficient

FLR40009 Corridor 2 Lighting 1 compact fluorescent lamp 0.0110 same 0.5 hours/day 182.5 2.01 2.01 ERSE (11w); efficient

FLR40088 Corridor 3 Lighting 1 lamp 0.0400 CFL 0.0080 0.5 hours/day 182.5 7.30 1.46 ERSE (40w), Philips equals 8W

FLR40022 Livingroom 1 Lighting 5 lamps 0.2000 CFL 0.0400 2 hours/day 730 146.00 29.20 ERSE (40w), Philips equals 8W

FLR40022 Livingroom 1 Entertainment 1 Hi-Fi 0.0600 same 0.125 hours/day 45.625 2.74 2.74 ERSE (60w); no information

FLR40022 Livingroom 1 Entertainment 1 HI-Fi standby 0.0010 no standby 23.875 hours/day 8714.375 8.76 0.00 Deco Proteste Internet simulator

FLR40008 Living Room Lighting 2 compact fluorescent lamps 0.0220 same 2 hours/day 730 16.06 16.06 ERSE (11w); efficient

FLR40008 Living Room Entertainment 1 Plasma TV 0.3000 LCD 0.0240 2 hours/day 730 219.00 17.52 ERSE (300w), Topten 24W

FLR40008 Living Room Entertainment 1 Plasma TV in standby 0.0009 no standby 22 hours/day 8030 7.55 0.00 SELINA

FLR40091 Bedroom 1 Lighting 2 lamps 0.0800 CFL 0.0160 1 hour/day 365 29.20 5.84 ERSE (40w), Philips equals 8W

FLR40091 Bedroom 1 Entertainment 1 TV 0.0900 TV (Topten) 0.0300 1 hour/day 365 32.85 10.95 ERSE (90w); Topten 30W

FLR40091 Bedroom 1 Entertainment 1 TV in standby 0.0025 no standby 23 hours/day 8395 20.99 0.00 Deco Proteste Internet simulator

FLR40091 Bedroom 1 Environment 1 Electric oil-filled radiator heater 2.0000 1h/day with cold (less 19) 0.00

FLR40092 Bedroom2 Lighting 4 lamps 0.1600 CFL 0.0320 2 hours/day 730 116.80 23.36 ERSE (40w), Philips equals 8W

FLR40092 Bedroom2 Entertainment 1 TV 0.0900 TV (Topten) 0.0300 1 hour/day 365 32.85 10.95 ERSE (90w)

FLR40092 Bedroom2 Entertainment 1 TV in standby 0.0025 no standby 23 hours/day 8395 20.99 0.00 Deco Proteste Internet simulator

FLR40041 Kitchen Lighting 2 fluorescent lamps 0.0720 same 3 hours/day 1095 78.84 78.84 ERSE (36w); efficient

FLR40041 Kitchen Appliance 1 Microwave Taurus 0.8000 same 0.25 hours/day 91.25 73.00 73.00 in situ; no information

FLR40041 Kitchen Appliance 1 Microwave in standby Taurus 0.0043 same 23.75 hours/day 8668.75 37.28 37.28 Deco Proteste Internet simulator; not viable

FLR40041 Kitchen Appliance 1 Fridge / freezer Balay 0.3000 Topten On continuously 8760 293.00 219.00 ERSE (300w) Balay internet (293KWh/year)

FLR40041 Kitchen Appliance 1 Extractor hood 0.1400 same 1 hour/day 365 51.10 51.10 ERSE (140w); no information

FLR40041 Kitchen Appliance 1 Washing machine Maxx 7 Bosch 1.1900 Topten 2/3 washes  week (2.58 hours each) 335.4 399.13 173.00 Catalog internet

FLR40041 Kitchen Entertainment 1 TV 0.0900 TV (Topten) 0.0300 1 hour/day 365 32.85 10.95 ERSE (90w)

FLR40041 Kitchen Entertainment 1 TV in standby 0.0025 no standby 23 hours/day 8395 20.99 0.00 Deco Proteste Internet simulator

FLR40041 Kitchen Environment 1 electric hot water cylinder Spersil 1.0000 same On continuously 8760 321.20 321.20 50 l in situ; AKI - 0.88kWh/Day; no information

FLR40038 WC Lighting 1 compact fluorescent lamp 0.0110 same 1 hour/day 365 4.02 4.02 ERSE (11w); efficient

FLR40011 Storage Lighting 1 lamp 0.0400 CFL 0.0080 0.25 hours/day 13 0.52 0.10 ERSE (40w), Philips equals 8W

FLR50021 Floor 5 Front Storage Lighting 1 lamp 0.0400 CFL 0.0080 0.25 hours/week 13 0.52 0.10 ERSE (40w), Philips equals 8W

FLR50018 Floor 5 Back Storage Lighting 1 lamp 0.0400 CFL 0.0080 0.25 hours/week 13 0.52 0.10 ERSE (40w), Philips equals 8W

TOTAL 1989.36 1096.28 less 44.89%

EDP (kWh/Year) 2950.27

FLR40041 Kitchen Appliance 1 Gas stove/oven 1.5 bottles/month 234 kg/year 3205.80 Households / 13.7 kWh per Kg

Simulation



Case 4 Equipment simulation table

Baseline Operation profile assumed Hours per year Baseline Simulation

IES VE code Room Category Appliance model brand Power (Kw) Equipment Power (Kw) (average usage hours (52 weeks, 365 days) Kwh/year Kwh/year Source

FLR40045 Entrance Hall Lighting 1 compact fluorescent lamp 0.011 same 1 hour /day 365 4.02 4.02 ERSE (11w); efficient

FLR40007 Bedroom Hall Lighting 1 compact fluorescent lamp 0.011 same 0.25 hours/day 91.25 1.00 1.00 ERSE (11w); efficient

FLR40023 Living Room Lighting 4 compact fluorescent lamps 0.044 same 4 hours/day 1460 64.24 64.24 ERSE (11w); efficient

FLR40023 Living Room Entertainment 1 TV HD TV Digital Plus Samsung 0.058 same 3hours/day 1095 63.51 63.61 Samsung internet; efficient

FLR40023 Living Room Entertainment 1 TV in standby HD TV Digital Plus Samsung 0.0003 no standby 21 hours/day 7665 2.30 0.00 Samsung internet

FLR40023 Living Room Environment 1 electric resistance heater 1.5 with cold 3/4 electric resistences 0.00 ERSE (1500w) WC heater high

FLR40000 Bedroom 1 Lighting 3 compact fluorescent lamps 0.033 same 1 hour /day 365 12.05 12.05 ERSE (11w); efficient

FLR40048 Bedroom 2 Lighting 3 compact fluorescent lamps 0.033 same 1 hour /day 365 12.05 12.05 ERSE (11w); efficient

FLR40047 Bedroom 3 Lighting 3 compact fluorescent lamps 0.033 same 1 hour /day 365 12.05 12.05 ERSE (11w); efficient

FLR40003 Kitchen Lighting 1 fluorescent lamp 0.058 same 10 hours/day 3650 211.70 211.70 ERSE (58w); efficient

FLR40003 Kitchen Appliance 1 Washing machine Fuzzy Logic 7Kg LG 1.19 Topten 3 times/week (2 hours) 312 371.28 173.00 LG internet

FLR40003 Kitchen Appliance 1 Dish washer Top dispaner Ocean 2 Topten 1 time /day (2 hours) 730 383.25 262.00 ERSE (2000w); TopTen (1.05 Kwh each wash)

FLR40003 Kitchen Appliance 1 Fridge / freezer Green Fresh Balay 0.3 Topten On continuously 8760 293.00 219.00 ERSE (300w) Balay internet (293KWh/year)

FLR40003 Kitchen Appliance 1 Microwave Techno Star 0.9 same 0.5 hours/day 182.5 164.25 164.25 ERSE (900w); no information

FLR40003 Kitchen Appliance 1 Microwave in standby Techno Star 0.0043 same 23.5 hours/day 8577.5 36.88 36.88 Deco Proteste Internet simulator; not viable

FLR40003 Kitchen Appliance 1 Electric Oven 2.4 same 0.25 hours/day 91.25 219.00 219.00 ERSE (2400w); no information

FLR40003 Kitchen Appliance 1 Extractor hood Ocean 0.14 same 1 hour /day 365 51.10 51.10 ERSE (140w); no information

FLR40003 Kitchen Entertainment 1 Mini-TV 0.09 TV (Topten) 0.0300 2 hours/day 730 65.70 21.90 ERSE (90w)

FLR40003 Kitchen Entertainment 1 Mini-TV in standby 0.0025 no standby 22 hours/day 8030 20.08 0.00 Deco Proteste Internet simulator

FLR40003 Kitchen Environment 1 electric hot water cylinder Jucomel 1.5 same allways on 8760 467.20 467.20 50 l in situ; AKI - 1.28kWh/Day; no information

FLR40002 WC Lighting 1 compact fluorescent lamp 0.011 same 1.5 hours/day 547.5 6.02 6.02 ERSE (11w); efficient

FLR40019 Storage 1 Lighting 1 compact fluorescent lamp 0.011 same 0.25 hours/week 13 0.14 0.14 ERSE (11w); efficient

FLR40021 Storage 2 Lighting 1 compact fluorescent lamp 0.011 same 0.25 hours/week 13 0.14 0.14 ERSE (11w); efficient

TOTAL 2460.95 2001.35 less 18.68%

EDP (kWh/Year) 3896.90

FLR40003 Kitchen Appliance 1 Gas stove Ocean 1 bottle/2.5 months (0.4/month) 62.4 kg/year 854.88 Households / 13.7 kWh per Kg

Simulation



Case 5 Equipment simulation table 

Baseline Operation profile assumed Hours per year Baseline Simulation

IES VE code Room Category Appliance model brand Power (Kw) Equipment Power (Kw) (average usage hours) (52 weeks, 365 days) Kwh/year Kwh/year Source

HALL0000 Hall Lighting 3 lamps 0.12 CFL 0.0240 1.5 hours/day 547.5 65.70 13.14 ERSE (40w), Philips equals 8W

LVNG0000 Living Room Lighting 7 lamps 0.28 CFL 0.0560 4 hours/day 1460 408.80 81.76 ERSE (40w), Philips equals 8W

LVNG0000 Living Room Appliance 1 cordless telephone Siemens 0.003 same On continuously 8760 26.28 26.28 LG (3w); no information

LVNG0000 Living Room Entertainement 1 TV LG 0.09 TV (Topten) 0.0300 4 hours/day 1460 131.40 43.80 ERSE (90w)

LVNG0000 Living Room Entertainement 1 TV in standby LG 0.00523 no standby 20 hours/day 7300 38.18 0.00 SELINA (TV  CRT 5.23w)

LVNG0000 Living Room Entertainement 1 Cable TV box decoder Meo Box 0.0162 same 4 hours/day 1460 23.65 23.65 Quercus (16.2w); no information

LVNG0000 Living Room Entertainement 1 Cable TV box decoder in standby Meo Box 0.0094 no standby 20 hours/day 7300 68.62 0.00 Quercus (9.4w)

LVNG0000 Living Room Entertainement 1 Hi-Fi Sanyo 0.06 same 0.5 hours / week 26 0.24 0.24 ERSE (60w); no informationh

LVNG0000 Living Room Entertainement 1 Hi-Fi in standby Sanyo 0.00205 no standby 167.96 hours/week 8734 17.90 0.00 SELINA (2.05w)

LVNG0000 Living Room Environment 1 Electric oil-filled radiator heater 2 with cold always on in minimum 0.00 ERSE (2000w)

LVNG0000 Living Room Environment 1 electric fan 0.1 with hot always on 0.00 LG (100w)

FLR20001 Bedroom Lighting 1 lamp 0.06 CFL 0.0110 1 hour/day 365 21.90 4.02 ERSE (60w); Topten equals CFL 11W

FLR20001 Bedroom Lighting 1 compact fluorescent lamp 0.011 same 1 hour/day 365 4.02 4.02 ERSE (11w); efficient

FLR20001 Bedroom Entertainement 1 TV 0.09 TV (Topten) 0.0300 0.5 hours / day 182.5 16.43 5.48 ERSE (90w)

FLR20001 Bedroom Entertainement 1 TV in standby 0.00523 no standby 23.5 hours/day 8577.5 44.86 0.00 SELINA (TV  CRT 5.23w)

BDRM0003 Bedroom 1 Lighting 1 lamp 0.06 CFL 0.0110 1 hour/day 365 21.90 4.02 ERSE (60w); Topten equals CFL 11W

BDRM0003 Bedroom 1 Entertainement 1 TV 0.09 TV (Topten) 0.0300 0.5 hours / day 182.5 16.43 5.48 ERSE (90w)

BDRM0003 Bedroom 1 Entertainement 1 TV in standby 0.00523 no standby 23.5 hours/day 8577.5 44.86 0.00 SELINA (TV  CRT 5.23w)

KTCH0000 Kitchen Lighting 1 fluorescent lamp 0.058 same 4 hours/day 1460 84.68 84.68 ERSE (58w); efficient

KTCH0000 Kitchen Appliance 1 Washing machine 6 Kg Samsung 2 Topten 1 wash / day (2 hours) 730 416.10 173.00 ERSE (2000w); Topten (1.14 kWh each cycle)

KTCH0000 Kitchen Appliance 1 Fridge / freezer Whirlpool 0.3 Topten On continuously 8760 354.00 219.00 ERSE (300w); Topten (354 kWh/year)

KTCH0000 Kitchen Appliance 1 Microwave Silver 0.9 same 0.5 hours / day 182.5 164.25 164.25 ERSE (900w); no information

KTCH0000 Kitchen Appliance 1 Microwave in standby Silver 0.0043 same 23.5 hours/day 8577.5 36.88 36.88 Deco Proteste Internet simulator; not viable

KTCH0000 Kitchen Appliance 1 Electric Oven H + 610 ME Teka 2.693 same 0.25 hours/day 91.25 245.74 245.74 site Teka (2693w) HE610; no information

KTCH0000 Kitchen Appliance 1 Coffee machine 1.2 same 0.5 hours / day 182.5 219.00 219.00 EDP (1200w); no information

KTCH0000 Kitchen Appliance 1 Extractor hood 0.14 same allways off (not in use) 0 0.00 0.00 ERSE (140w)

KTCH0000 Kitchen Appliance 1 Iron 1.6 same 2 hours /week 104 166.40 166.40 ERSE (1600w); no information

KTCH0000 Kitchen Appliance 1 Vacuum cleaner 1.6 Topten 1 1 time / week (1.5 hous) 78 124.80 78.00 ERSE (1600w)

KTCH0000 Kitchen Environment 1 electric hot water cylinder Arierom 2 same On continuously 8760 448.95 448.95 AKI - 1.23 kWh/Day; no information

WC__0000 WC Lighting 1 lamp 0.06 CFL 0.0110 1.5 hours/day 547.5 32.85 6.02 ERSE (60w); Topten equals CFL 11W

WC__0000 WC Lighting 1 Hair dryer 1.5 same 0.5 hours / day 182.5 273.75 273.75 ERSE (1500w); no information

STRG0000 Storage Lighting 1 lamp 0.06 CFL 0.0110 0.25 hours/week 13 0.78 0.14 ERSE (60w); Topten equals CFL 11W

TOTAL 3519.35 2327.69 less 33.86%

EDP (kWh/Year) 5692.66

KTCH0000 Kitchen Appliance 1 Gas stove H + 610 ME Teka 1.5 bottles / month 234 kg/year 3205.80 Households / 13.7 kWh per Kg

Simulation



Case 6 Equipment simulation table

Baseline Operation profile assumed Hours per year Baseline Simulation

IES VE code Room category Appliance model brand Power (Kw) Equipment Power (Kw) average usage hours (52 weeks, 365 days) Kwh/year Kwh/year Source

FLR20015 Bedroom Hall Lighting 1 lamp 0.0400 CFL 0.0080 0.5 hours/day 182.5 7.30 1.46 ERSE (40w), Philips equals 8W

FLR20016 Living Room Lighting 4 halogen lamps 0.1400 CFL 0.0440 3 hours/day 1095 153.30 48.18 ERSE (35W); Topten equals CFL 11W

FLR20016 Living Room Lighting 2 lamps 0.1200 CFL 0.0220 0.5 hours/day 182.5 21.90 4.02 ERSE (60w); Topten equals CFL 11W

FLR20016 Living Room Entertainment 1 Hi-Fi Sony 0.0600 same 1 hour/week 52 3.12 3.12 ERSE (60w); no information

FLR20016 Living Room Entertainment 1 Hi-Fi in standby Sony 0.0021 no standby 167.46 hours/week 8708 17.85 0.00 SELINA (2.05w)

FLR20016 Living Room Entertainment 1 Plasma TV HD SRS Samsung 0.3500 LCD 0.0240 4 hours/day 1460 511.00 35.04 Samsung internet (350w), Topten 24W

FLR20016 Living Room Entertainment 1 Plasma TV in standby HD SRS Samsung 0.0003 no standby 20 hours/day 7300 2.19 0.00 Samsung internet (0.3w)

FLR20016 Living Room Entertainment 1 Cable TV box decoder HD - DSR 7151 Zon - Pace 0.0090 same 4 hours/day 1460 13.14 13.14 Quercus (9w); no information

FLR20016 Living Room Entertainment 1 Cable TV box decoder in standby HD - DSR 7151 Zon - Pace 0.0083 no standby 20 hours/day 7300 60.59 0.00 Quercus (8.3w)

FLR20016 Living Room Entertainment 1 DVD Player Mitsai 0.2400 Topten 0.0350 1 hour/day 365 87.60 12.78 ERSE (240w); Topten 35W

FLR20016 Living Room Entertainment 1 DVD Player in standby Mitsai 0.0014 no standby 23 hours/day 8395 11.75 0.00 Deco Proteste Internet simulator

FLR20014 Bedroom 1 Lighting 3 lamps 0.1200 CFL 0.0240 1 hour/day 365 43.80 8.76 ERSE (40w), Philips equals 8W

FLR20014 Bedroom 1 Lighting 2 lamps (side bed) 0.0800 CFL 0.0160 1 hour/day 365 29.20 5.84 ERSE (40w), Philips equals 8W

FLR20014 Bedroom 1 Entertainment 1 Plasma TV HD SRS Samsung 0.3500 LCD 0.0240 3 hours/day 1095 383.25 26.28 Samsung internet (350w), Topten 24W

FLR20014 Bedroom 1 Entertainment 1 Plasma TV in standby HD SRS Samsung 0.0003 no standby 21 hours/day 7665 2.30 0.00 Samsung internet (0.3w)

FLR20014 Bedroom 1 Environment 1 electric fan heater 2.0000 1 hour/day when cold 0.00 ERSE (200w)

FLR20014 Bedroom 1 Environment 1 electric fan 0.1000 1 hour/day when hot 0.00 LG (100w)

FLR20013 Bedroom 2 Lighting 3 lamps 0.1200 CFL 0.0240 1 hour/day 365 43.80 8.76 ERSE (40w), Philips equals 8W

FLR20013 Bedroom 2 Lighting 2 lamps (side bed) 0.0800 CFL 0.0160 1 hour/day 365 29.20 5.84 ERSE (40w), Philips equals 8W

FLR20013 Bedroom 2 Entertainment 1 TV 14'' Beko 0.0300 same 0.5 hours/day 182.5 5.48 5.48 Beko Manual (30w); already efficient

FLR20013 Bedroom 2 Entertainment 1 TV in standby 14'' Beko 0.0040 no standby 23.5 hours/day 8577.5 34.31 0.00 Beko Manual (4w)

FLR20013 Bedroom 2 Entertainment 1 DVD Player Samsung 0.2400 Topten 0.0350 0.5 hours/day 182.5 43.80 6.39 ERSE (240w); Topten 35W

FLR20013 Bedroom 2 Entertainment 1 DVD Player in standby Samsung 0.0014 no standby 23.5 hours/day 8577.5 12.01 0.00 Deco Proteste Internet simulator

KTCH0003 Kitchen Lighting 2 Fluorescent lamps 0.0720 same 4 hours/day 1460 105.12 105.12 ERSE (36w); efficient

KTCH0003 Kitchen Appliance 1 Washing machine AWO / D8409 Whirlpool 2.0000 Topten 3 times/week (1.5 hours) 234 212.16 173.00

ERSE (2000w); Manual (1.36 kWh each washing cycle); Toptten 

173kWh/year

KTCH0003 Kitchen Appliance 1 Microwave MW2717 Fairline 0.7000 same 0.25 hours/day 91.25 63.88 63.88 Internet (max 700w); no information

KTCH0003 Kitchen Appliance 1 Microwave in standby MW2717 Fairline 0.0043 same 23.75 hours/day 8668.75 37.28 37.28 Deco Proteste Internet simulator; not viable

KTCH0003 Kitchen Appliance 1 Fridge / freezer no brand identificable 0.0255 same On continuously 8760 223.00 223.00 Top ten (223 hWh/year); efficient

KTCH0003 Kitchen Appliance 1 Electric Oven Princess Milano 0.7000 same 0.5 hours/day 182.5 127.75 127.75 in situ; no information

KTCH0003 Kitchen Appliance 1 Extractor hood Arjero 0.1050 same when cooking (2hours/day) 730 76.65 76.65 nominal power 105 W; no information

KTCH0003 Kitchen Appliance 1 Iron 1.6000 same 2 times/week (1.5 hours) 156 249.60 249.60 ERSE (1600w); no information

KTCH0003 Kitchen Entertainment 1 Plasma TV small Samsung 0.2300 LCD 0.0240 4 hours/day 1460 335.80 35.04 Samsung internet (230w); Topten 24W

KTCH0003 Kitchen Entertainment 1 Plasma TV in standby small Samsung 0.0010 no standby 20 hours/day 7300 7.30 0.00 Samsung internet (1w)

KTCH0004 Kitchen - Laundry Lighting 1 Lamp 0.0600 CFL 0.0110 1 hour/day 365 21.90 4.02 ERSE (60w); Topten equals CFL 11W

KTCH0004 Kitchen - Laundry Appliance 1 Freezer HC150 Tensai 0.0292 Topten On continuously 8760 256.00 145.00 Tensai internet (256 kWh/year); Topten 145 kWh/year

KTCH0004 Kitchen - Laundry Environment 1 electric hot water cylinder 1.5000 same On continuously 8760 321.20 321.20 in situ; AKI - 0.88 kWh/Day (50l, 1200w); no information

WC__0001 WC Lighting 1 lamp 0.0600 CFL 0.0110 1.5 hours/day 547.5 32.85 6.02 ERSE (60w); Topten equals CFL 11W

TOTAL 3587.37 1752.64 less 51.14%

EDP (kWh/Year) 4139.04

KTCH0003 Kitchen Appliance 1 Gas stove Princess Milano 1 bottle/month 156 kg/year 2137.20 Households / 13.7 kWh per Kg

Simulation



Case 7 Equipment simulation table

Baseline Operation profile assumed Hours per year Baseline Simulation

IES VE code Room Category Appliance model brand Power (Kw) Equipment Power (Kw) average usage hours (52 weeks, 365 days) Kwh/year Kwh/year Source

FLR10012 Livingroom Lighting 3 lamps 0.1200 CFL 0.0240 4 hours/day 1460 175.20 35.04 ERSE (40w), Philips equals 8W

FLR10012 Livingroom Entertainment 1 TV  old model  Panasonic 0.0900 TV (Topten) 0.0300 8 hours/day 2920 262.80 87.60 ERSE (90w)

FLR10012 Livingroom Entertainment 1 TV in standby  old model  Panasonic 0.00523 no standby 0.0000 16 hours/day 5840 30.54 0.00 SELINA (TV  CRT 5.23w)

FLR10012 Livingroom Entertainment 1 VCR Express programming system JVC 0.0200 same 0.0000 no use 0 0.00 0.00 ERSE (20w); no use

FLR10012 Livingroom Entertainment 1 Hi-Fi old model Sanyo 0.0600 same 0.0000 no use 0 0.00 0.00 ERSE (60w); no use

FLR10012 Livingroom Appliance 1 cordless telephone Gigaset A160 Siemens 0.0030 same 0.0030 On continuously 8760 26.28 26.28 LG (3w); no information

FLR10012 Livingroom Environment 1 Electric oil-filled radiator heater HR 1500 Fidelis 1.5000 3 hours when cold 0.00 in situ

FLR10013 Bedroom Lighting 3 compact fluorescent lamps 0.0330 same 0.0330 4 hours /day 1460 48.18 48.18 ERSE (11w); efficient

FLR10013 Bedroom Lighting 2 lamps in bed side 0.0800 CFL 0.0160 1 hour/day 365 29.20 5.84 ERSE (40w); Philips equals 8W

FLR10013 Bedroom Entertainment 1 small TV  Philips 0.0300 same 0.0300 2 hours/day 730 21.90 21.90 same as BEKO; efficient

FLR10013 Bedroom Entertainment 1 small TV in standby  Philips 0.0040 no standby 0.0000 22 hours/day 8030 32.12 0.00 same as BEKO

FLR10006 Kitchen Lighting 2 Fluorescent lamps 0.0720 same 0.0720 8 hours/day 2920 210.24 210.24 ERSE (36w)

FLR10006 Kitchen Appliance 1 Washing machine TKX 85 Teka 2.0000 same 2 washes / week (1.5 hours) 156 118.56 118.56 Top ten (1.14 kWh each washing cycle); efficient

FLR10006 Kitchen Appliance 1 Microwave Grill LG 0.9000 same 0.9000 0.25 hours/day 91.25 82.13 82.13 ERSE (900w); no information

FLR10006 Kitchen Appliance 1 Microwave in standby Grill LG 0.0043 same 0.0043 23.75 hours/day 8668.75 37.28 37.28 Deco Proteste Internet simulator; not viable

FLR10006 Kitchen Appliance 1 Fridge Cooler Bosch 0.0346 Topten On continuously 8760 303.00 216.00 Bosch manual (KIL 38A40 IE Cooler - 303 kWh/year); Topten 216 kWh/year

FLR10006 Kitchen Appliance 1 Toaster Silver 0.7500 same 0.7500 0.25 hours/day 91.25 68.44 68.44 in situ; no information

FLR10006 Kitchen Appliance 1 Electric Oven Mini oven grill Tefal 2.4000 Topten 0.9100 0.25 hours/day 91.25 219.00 83.04 ERSE (2400w); Topten

FLR10006 Kitchen Appliance 1 Electric Oven in standby Mini oven grill Tefal 0.0040 same 0.0040 23.75 hours/day 8668.75 34.68 34.68 EDP (4w); no information

FLR10006 Kitchen Environment 1 Electric hot water cylinder CB 50 -N1 Fagor 1.6000 same 1.6000 On continuously 8760 467.20 467.20 Fagor internet; AKI - 1.28 kWh/Day (50l, 2000w); no information

FLR10007 WC Lighting 1 lamp 0.0600 CFL 0.0110 2 hours/day 730 43.80 8.03 ERSE (60w); Topten equals CFL 11W

TOTAL 2210.54 1550.42 less 29.86%

EDP (kWh/Year) 1796.81

FLR10006 Kitchen Appliance 1 Gas stove Ruby 1 bottle / 1.5 months (0.66) 102.96 kg/year 1410.55 Households / 13.7 kWh per Kg

Simulation



Case 8 Equipment simulation table

Baseline Operation profile assumed Hours per year Baseline Simulation

IES VE code Room Category Appliance model brand Power (Kw) Equipment Power (Kw) (average usage hours (52 weeks, 365 days) Kwh/year Kwh/year Source

FLR30022 Hall/Stairs - Floor 3 Lighting 1 lamp 0.0600 CFL 0.0110 1 hour/day 365 21.90 4.02 ERSE (60w); Topten equals CFL 11W

FLR30017 Livingroom - floor 3 Lighting 5 lamps 0.2000 CFL 0.0400 2 hours/day 730 146.00 29.20 ERSE (40w), Philips equals 8W

FLR30017 Livingroom - floor 3 Entertainmnet 1 TV 0.0900 TV (Topten) 0.0300 1 hour/day 365 32.85 10.95 ERSE (90w)

FLR30017 Livingroom - floor 3 Entertainmnet 1 TV in standby 0.0052 no standby 0.0000 23 hours/day 8395 43.91 0.00 SELINA (TV  CRT 5.23w)

FLR30017 Livingroom - floor 3 Environment 1 old Electric oil-filled radiator heater Forster 1.0000 1.5 hours/day when cold 0.00 in situ

FLR30011 Bedroom 2 - Floor 3 Lighting 1 lamp 0.0600 CFL 0.0110 0.25 hours/week 13 0.78 0.14 ERSE (60w); Topten equals CFL 11W

FLR30013 Bedroom 1 - Floor 3 Lighting 3 lamps 0.1200 CFL 0.0080 0.25 hours/week 13 1.56 0.10 ERSE (40w), Philips equals 8W

FLR30013 Bedroom 1 - Floor 3 Lighting 2 side bed  lamps 0.0800 CFL 0.0160 no use 0 0.00 0.00 ERSE (40w), Philips equals 8W

FLR30013 Bedroom 1 - Floor 3 Entertainmnet 1 TV 0.0900 TV (Topten) 0.0300 no use 0 0.00 0.00 ERSE (90w)

FLR30013 Bedroom 1 - Floor 3 Entertainmnet 1 TV in standby 0.0052 no standby 0.0000 no use 0 0.00 0.00 SELINA (TV  CRT 5.23w)

FLR30019 WC - Floor 3 Lighting 1 lamp 0.0600 CFL 0.0110 0.25 hours/day 91.25 5.48 1.00 ERSE (60w); Topten equals CFL 11W

FLR30019 WC - Floor 3 Environment 1 Electric hot water cylinder Arierom 2.0000 same On continuously 8760 448.95 448.95 AKI - 1.23 kWh/Day (like case 5); no information

FLR40031 Hall/Stairs - Floor 4 Lighting 1 lamp 0.0600 CFL 0.0110 1 hour/day 365 21.90 4.02 ERSE (60w); Topten equals CFL 11W

FLR40015 Bedroom 1 - Floor 4 Lighting 1 lamp 0.0600 CFL 0.0110 1 hour/day 365 21.90 4.02 ERSE (60w); Topten equals CFL 11W

FLR40015 Bedroom 1 - Floor 4 Lighting 2 bed side lamps 0.0800 CFL 0.0080 1 hour/day 365 29.20 2.92 ERSE (40w), Philips equals 8W

FLR40015 Bedroom 1 - Floor 4 Entertainmnet 1 TV 0.0900 TV (Topten) 0.0300 3.5 hours/day 1277.5 114.98 38.33 ERSE (90w)

FLR40015 Bedroom 1 - Floor 4 Entertainmnet 1 TV in standby 0.0052 no standby 0.0000 20.5 hours/day 7482.5 39.13 0.00 SELINA (TV  CRT 5.23w)

FLR40015 Bedroom 1 - Floor 4 Environment 1 old Electric oil-filled radiator heater Century 1.0000 allways on when cold 0.00 in situ

FLR40021 Bedroom 2 - Floor 4 Lighting 1 lamp 0.0600 CFL 0.0110 1 hour/day 365 21.90 4.02 ERSE (60w); Topten equals CFL 11W

FLR40016 Kitchen - Floor 4 Lighting 2 Fluorescent lamps 0.0720 same 0.0720 4 hours/day 1460 105.12 105.12 ERSE (36w); Efficient

FLR40016 Kitchen - Floor 4 Appliance 1 Washing machine C40T Jolly Candy 2.0000 same 1 wash/week (1.5 hours) 78 59.28 59.28

Top ten (1.14 kWh each washing cycle); not 

necessary

FLR40016 Kitchen - Floor 4 Appliance 1 Fridge / freezer Indesit 0.0404 Topten On continuously 8760 354.00 219.00 Top ten (354 kWh/year): Topten 219 kWh/Year

FLR40016 Kitchen - Floor 4 Appliance 1 Electric Oven Tecnogas 2.4000 Topten 0.9100 0.25 hours/day 91.25 219.00 83.04 ERSE (2400w); Topten

FLR40016 Kitchen - Floor 4 Appliance 1 Electric Oven in standby Tecnogas 0.0040 same 23.75 hours/day 8668.75 34.68 34.68 EDP (4w)

FLR40035 WC - Floor 4 Lighting 1 lamp 0.0600 CFL 0.0110 2 hours/day 730 43.80 8.03 ERSE (60w); Topten equals CFL 11W

FLR40019 Storage - Floor 4 Lighting 1 lamp 0.0400 CFL 0.0080 0.125 hours/day 45.625 1.83 0.37 ERSE (40w), Philips equals 8W

TOTAL 1768.13 1057.17 Less 41.21%

EDP (kWh/Year) 3421.76

FLR40016 Kitchen - Floor 4 Appliance 1 Gas stove Tecnogas 0.5 bottles/month 78 kg/year 1068.60 Households / 13.7 kWh per Kg

Simulation



Case 9 Equipment simulation table

Baseline Operation profile assumed Hours per year Baseline Simulation

IES VE code Room Category Appliance model brand Power (Kw) Equipment Power (Kw) (average usage hours (52 weeks, 365 days) Kwh/year Kwh/year Source

HALL0000 Hall Lighting 1 lamp 0.0600 CFL 0.0110 0.125 hours/day 45.625 2.74 0.50 ERSE (60w); Topten equals CFL 11W

LVNG0000 Living Room Lighting 3 lamps 0.1200 CFL 0.0240 3 hours/day 1095 131.40 26.28 ERSE (40w), Philips equals 8W

LVNG0000 Living Room Entertainment 1 Plasma TV Samsung 0.1180 LCD 0.0240 2 hours/day 730 86.14 17.52 Samsung internet (118w), Topten 24W

LVNG0000 Living Room Entertainment 1 Plasma TV in standby Samsung 0.0003 no standby 0.0000 22 hours/day 8030 2.41 0.00 Samsung internet (0.3w)

LVNG0000 Living Room Entertainment 1 Hi-FI 0.0600 same 0.0600 1 hour/day 365 21.90 21.90 ERSE (60w); no information

LVNG0000 Living Room Entertainment 1 Hi-FI in standby 0.0021 no standby 0.0000 23 hours/day 8395 17.21 0.00 SELINA (2.05w)

LVNG0000 Living Room Entertainment 1 Radio 0.0070 same 0.0070 1 hour/day 365 2.56 2.56 LG (7w); no information

LVNG0000 Living Room Entertainment 1 Radio in standby 0.0015 no standby 0.0000 23 hours/day 8395 12.59 0.00 SELINA (1.5w)

LVNG0000 Living Room Entertainment 1 Modem Router 0.0052 same 0.0052 On continuously 8760 45.38 45.55 SELINA (5.18w); no information

LVNG0000 Living Room Entertainment 1 Laptop computer 0.0500 same 0.0500 2 hours/day 730 36.50 36.50 LG (50w); no information

LVNG0000 Living Room Environment 1 Electric fan 0.1000 On with hot temperature 0.00 LG (100w)

BDRM0000 Bedroom 1 Lighting 1 lamp 0.0600 CFL 0.0110 1 hour/day 365 21.90 4.02 ERSE (60w); Topten equals CFL 11W

BDRM0000 Bedroom 1 Lighting 1 side bed lamp 0.0400 CFL 0.0080 1 hour/day 365 14.60 2.92 ERSE (40w), Philips equals 8W

BDRM0000 Bedroom 1 Entertainment 1 Plasma TV Samsung 0.1180 LCD 0.0240 2 hours/day 730 86.14 17.52 Samsung internet (118w), Topten 24W

BDRM0000 Bedroom 1 Entertainment 1 Plasma TV in standby Samsung 0.0003 no standby 0.0000 22 hours/day 8030 2.41 0.00 Samsung internet (0.3w)

KTCH0000 Kitchen Lighting 1 Fluorescent lamp 0.0580 same 0.0580 3 hours/day 1095 63.51 63.51 ERSE (58w); efficient

KTCH0000 Kitchen Appliance 1 Fridge Cooler Bosch 0.0346 topten On continuously 8760 303.00 216.00 Bosch manual (KIL 38A40 IE Cooler - 303 kWh/year); Topten 216 kWh/year

KTCH0000 Kitchen Appliance 1 Microwave 0.9000 same 0.9000 0.25 hours/day 91.25 82.13 82.13 ERSE (900w); no information

KTCH0000 Kitchen Appliance 1 Microwave in standby 0.0043 same 0.0043 23.75 hours/day 8668.75 37.28 37.28 Deco Proteste Internet simulator; not viable

KTCH0000 Kitchen Appliance 1 Extractor hood Tecnogas 0.1400 same 0.1400 2 hours/day 730 102.20 102.20 ERSE (140w); no information

KTCH0000 Kitchen Environment 1 Electric hot water cylinder Termobrasa 1.5000 same 1.5000 On continuously 8760 321.20 321.20 50 l in situ; AKI - 0.88 kWh/Day (1200w, 50L); no information

WC1_0000 WC 1 Lighting 1 lamp 0.0400 CFL 0.0080 0.75 hours/day 273.75 10.95 2.19 ERSE (40w), Philips equals 8W

WC2_0000 WC 2 - Balcony Lighting 1 Compact fluorescent lamp 0.0110 same 0.0110 2 hours/day 730 8.03 8.03 ERSE (11w); efficient

FLR40000 Storage 1 Lighting 1 lamp 0.0400 CFL 0.0080 0.125 hours/day 45.625 1.83 0.37 ERSE (40w), Philips equals 8W

STRG0001 Storage 2 - Balcony Lighting 1 lamp 0.0400 CFL 0.0080 1 hour/day 365 14.60 2.92 ERSE (40w), Philips equals 8W

STRG0001 Storage 2 - Balcony Appliance 1 Washing machine Balay 2.0000 same 2 washes/week (1.5 hours) 156 118.56 118.56 ERSE (2000w); Top ten (1.14 kWh each washing cycle); efficient

STRG0002 Storage 3 - Balcony Lighting 1 lamp 0.0400 CFL 0.0080 1 hour/day 365 14.60 2.92 ERSE (40w), Philips equals 8W

STRG0003 Storage 4 - Balcony curve Lighting 1 lamp 0.0400 CFL 0.0080 1 hour/day 365 14.60 2.92 ERSE (40w), Philips equals 8W

TOTAL 1576.35 1135.48 Less 27.97%

EDP (kWh/Year) 804.13

KTCH0000 Kitchen Appliance 1 Gas stove 1.5 bottles/month 234 kg/year 3205.80 Households / 13.7 kWh per Kg

Simulation



Case 10 Equipment simulation table

Baseline Operation profile assumed Hours per year Baseline Simulation

IES VE code Room Category Appliance model brand Power (Kw) Equipment Power (Kw) (average usage hours (52 weeks, 365 days) Kwh/year Kwh/year Source

FLR20010 Living Room Lighting 1 fluorescent lamp 0.0580 same 3 hours/day 1095 63.51 63.51 ERSE (58w); efficient

FLR20010 Living Room Lighting 5 lamps 0.2000 CFL 0.0400 no use 0 0.00 0.00 ERSE (40w), Philips equals 8W

FLR20010 Living Room Entertainment 1 TV Sony 0.0900 TV (Topten) 0.0300 2 hours/day 730 65.70 21.90 ERSE (90w); Topten 30W

FLR20010 Living Room Entertainment 1 TV in standby Sony 0.0052 no standby 22 hours/day 8030 42.00 0.00 SELINA (TV  CRT 5.23w)

FLR20010 Living Room Appliance 1 Fridge 0.0255 same On continuously 8760 223.00 223.00 Top ten (223 kWh/year); efficient

FLR20010 Living Room Appliance 1 Cordless telephone 0.0030 same On continuously 8760 26.28 26.28 LG (3w); no information

FLR20002 Bedroom 1 Lighting 1 lamp 0.0400 CFL 0.0080 1 hour/day 365 14.60 2.92 ERSE (40w), Philips equals 8W

FLR20012 Bedroom 2 Lighting 1 lamp 0.0400 CFL 0.0400 no use 0 0.00 0.00 ERSE (40w), Philips equals 8W

FLR20013 Kitchen Lighting 1 fluorescent lamp 0.0580 same allways on with house occupied (13 hours) 4745 275.21 275.21 ERSE (58w); efficient

FLR20013 Kitchen Appliance 1 washing machine 2.0000 same 1 wash/week (1.5 hours) 104 59.28 59.28 Top ten (1.14 kWh each washing cycle); not necessary

FLR20013 Kitchen Appliance Electric stove Leco 2.4000 Topten 0.9100 2 hours/day 730 1752.00 664.30 ERSE (2400w); Topten

FLR20011 WC Lighting 1 lamp 0.0400 CFL 0.0080 2 hours/day 730 29.20 5.84 ERSE (40w), Philips equals 8W

FLR20011 WC Environment 1 Electric hot water cylinder 1.5000 same On continuously 8760 321.20 321.20 50 l in situ; AKI - 0.88 kWh/Day (1200w, 50L)

TOTAL 2871.98 1663.44 Less 42.08%

EDP (kWh/Year) 2605.74

Simulation


