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Abstract

Type 1 diabetes mellitus is an autoimmune disease resulting in insufficient insulin to regulate blood

glucose levels. The condition can be successfully managed through effective blood glucose control,

one aspect of which is the administration of bolus insulin. Formulas exist to estimate the required

bolus, and have been adopted by existing mobile expert systems. These formulas are shown to be

effective but are unable to automatically adapt to an individual.

This research resolves the limitations of existing formula based calculators by using case-based

reasoning to automatically improve bolus advice. Case-based reasoning is a method of artificial

intelligence that has successfully been adopted in the diabetes domain previously, but has primarily

been limited to assisting doctors with therapy adjustments. Here case-based reasoning is instead

used to directly assist the patient.

The case-based reasoning process is enhanced for bolus advice through a temporal retrieval al-

gorithm coupled with domain specific automated adjustment and revision. This temporal retrieval

algorithm includes factors from previous events to improve the prediction of a bolus dose. The

automated adjustment then refines the predicted bolus dose, and automated revision improves the

prediction for future advice through the evaluation of the resulting blood glucose level.

Analysis of the temporal retrieval algorithm found that it is capable of predicting bolus ad-

vice comparable to closed-loop simulation and existing formulas, with adapted advice resulting in

improvements to simulated blood glucose control. The learning potential of the model is made

evident through further improvements in blood glucose control when using revised advice.

The system is implemented on a mobile device with a focus on safety using formal methods

to help ensure actions performed do not violate the system constraints. Performance analysis

demonstrated acceptable response times, providing evidence that this approach is viable. The

research demonstrates how formula based mobile bolus calculators can be replaced by an artificially

intelligent alternative which continuously learns to improve advice.
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Chapter 1

Introduction

Diabetes Mellitus is the term used for a metabolic disorder resulting from defective insulin secretion,

insulin action, or both; leading to the subject’s inability to control blood glucose levels [Alberti and

Zimmet, 1998]. People living with early onset Type 1 Diabetes Mellitus (T1DM) require regular

insulin doses to control their blood glucose levels, a complex task even for the most motivated

individual [Borus and Laffel, 2010]. One aspect of blood glucose control for T1DM is the use of

bolus insulin doses to control the blood glucose following a meal. The bolus insulin dosage is

often calculated using established formulas with parameters defined by the subject’s doctor, blood

glucose readings, and carbohydrate counting. A drawback of these formulas is the inability to

automatically learn and improve future bolus advice. This leads to the hypothesis that artificial

intelligence (AI) in the form of case-based reasoning (CBR) can be used to overcome the inability to

learn and improve future advice. Case-based reasoning applies the philosophy that solutions which

are known to have worked in similar situations can be used to solve new problems [Kolodner, 1993].

This research seeks to investigate whether CBR is a viable approach for predicting and improving

bolus insulin doses for T1DM subjects.

Diabetes Mellitus has two classifications: early onset - T1DM also known as Insulin-Dependent

Diabetes Mellitus, and late onset - Type 2 Diabetes Mellitus (T2DM) also known as Non-Insulin-

Dependent Diabetes Mellitus [Alberti and Zimmet, 1998]. T1DM refers to cases arising as a result

of a defective autoimmune system and requires insulin injections several times a day to control

blood glucose levels. T2DM occurs due to defects in insulin secretion and insulin resistance.

T2DM is treated by changes to diet, the use of oral glucose lowering drugs and in some cases

insulin injections.

The World Health Organisation (WHO) states that 347 million people worldwide have Diabetes

Mellitus, of which 5% have T1DM [WHO, 2014a]. WHO predicts Diabetes Mellitus to become the

seventh leading cause of deaths worldwide by 2030. Statistics presented in a 2014 WHO report

on Non-Communicable Diseases (NCDs) [WHO, 2014b] show that 4% of NCD deaths under the
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age of 70 are a result of Diabetes Mellitus, with NCDs resulting in 52% of all deaths below the

age of 70. Poor management of Diabetes Mellitus is a leading cause for amputation, blindness and

kidney failure. Studies have shown that good blood glucose control reduces the risk of long-term

complications [DCCT, 1993, 2005], and serves as the motivation for this research. This research

proposes and implements an intelligent personalised insulin adviser on a mobile device for people

with T1DM.

To establish the current state of apps available to assist T1DM management on mobile devices

a search of the iTunes app store was conducted. Using the search term diabetes over 1,100 apps

were returned, with the majority functioning as logbooks, advice reference guides, or to count

carbohydrates. A small minority of the apps provide bolus dose suggestions through variations of

a common formula, and provide a foundation for this research to build upon. The step forward

this research will take is to use artificial intelligence in the form of CBR to move away from basing

decisions solely upon the use of general formulas, and use instead the subject’s history to provide

bolus insulin advice; tailoring the app to the user.

1.1 Aim and objectives

The question this research will investigate is whether an intelligent and robust mobile app for

predicting bolus insulin advice for people with T1DM can be developed. Six objectives are outlined

below to answer this question and fulfil the aim of developing such a system.

The objectives are to:

1. Identify the state-of-the-art approaches for T1DM bolus advice.

2. Discover how the state-of-the-art approaches predict bolus advice and evaluate what safety

mechanisms are in place.

3. Discover how CBR provides intelligence and how it has been utilised in the T1DM domain

previously.

4. Develop a CBR system for predicting user tailored T1DM bolus advice.

5. Implement the system on a mobile device.

6. Evaluate the implemented system for suitability on a mobile device.

Investigating the research question through these objectives will result in a convenient and

cost effective solution for T1DM self-management. The approach provides novelty firstly through

formally defining state-of-the-art approaches to both understand existing methods and also to help

ensure appropriate safety mechanisms are included by the implemented system. This is coupled

with the development of a novel mobile CBR system for user specific bolus insulin prediction.
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In Chapter 2 we discover that existing state-of-the-art approaches rely on established formulas

to predict bolus insulin advice. Variables for these formulas should only be tuned to the user

by expert recommendation, making the user reliant on professionals. Even if these variables are

tuned to the user, there is a chance that in different circumstances they may not reflect the current

situation. Additionally, many of these state-of-the-art mobile apps suffer from design flaws and

potential safety issues.

This research will use CBR to predict bolus insulin advice instead of the existing formulas.

In Chapter 3 we discuss how CBR has been used in the T1DM domain to assist practitioners,

but rarely the subject themselves. Case-based reasoning will allow the resulting app to learn and

improve future advice by reusing, adapting and refining previous predictions which were successful.

As CBR is constantly learning and refining predictions, the user experience should improve with

pro-longed use of the app.

1.2 Motivation

The motivation for this research is to provide a contribution to the advancement of mobile apps for

T1DM self-management. Several of my friends, family and acquaintances have been diagnosed with

T1DM or T2DM providing an insight into the difficulty of managing the condition. Additionally

my mother works with T1DM subjects and frequently says that her patients are always seeking

convenient technology which will make self-management easier.

This research will extend existing work by Christine Poerschke in the early 2000s [Poerschke,

2004]. Poerschke’s research sought to revise an existing hand-held insulin adviser for T1DM pa-

tients. The result of the research was the Patient-Oriented Insulin Regimen Optimiser (POIRO)

MK4, a rule-based and statistical expert system. POIRO MK4 is an extension of POIRO, which

was jointly developed by Oxford Brookes University and the Diabetes Research Laboratories at

Oxford University.

In Poerschke’s thesis, the idea of using AI methods such as Artificial Neural Networks (ANNs)

and CBR are explored. These approaches were ruled out by Poerschke as they either fail to

demonstrate how rules are learnt, or exceed the technological limits of the time. The first problem

remains true for ANNs, which can be viewed as a black box approach to learning [Tu, 1996]. The

latter is less likely to be an issue with modern mobile devices. Poerschke’s research was undertaken

during the era of palm PCs, and since then we have had the advent of smart phones and modern

tablets, with substantially greater computational ability.

A notable contribution from Poerschke is the use of formal methods to develop the revised expert

system. Poerschke used the B-Method [Abrial et al., 1991; Abrial, 1996] to formally specify the

application [Poerschke et al., 2003]. Formal specification is important in safety critical domains to

prove the system models the problem correctly and to significantly reduce the possibility of errors.
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The safety aspect of formal methods is important to the medical domain; firstly to ensure that

user inputs are realistic and secondly to ensure that actions performed by the user and system do

not invalidate the state of the system.

In this research a formal specification is created to model and understand state-of-the-art bolus

calculators available on the market. The formal specifications produced by Poerschke contained

proof obligations which were not discharged. The research in this thesis aims to discharge all of the

proof obligations generated by the specifications. In addition Event-B will be used instead of the

B-Method. Event-B is an evolution of the B-Method and was also developed by Jean-Raymond

Abrial [Abrial, 2010].

By extending Poerschke’s research to develop a robust and intelligent mobile app for T1DM

bolus insulin advice it is hoped that portable and reliable advice can be made available to greater

number of individuals with T1DM.

1.3 Context

The domain of T1DM management includes state-of-the-art bolus calculators and the use of CBR

to improve T1DM therapies. This section provides a brief outline of this related work which will

be examined in more detail later in this thesis.

State-of-the-art bolus calculators produce their bolus advice through the use of established

formulas. Barnard et al. [2012] conducted research on the benefits of automated bolus advisers in

young T1DM patients. The research discovered that 89.3% of participants found that an automated

bolus adviser made calculating bolus doses easy or very easy compared to manual calculations.

Additionally, 78.8% stated that these advisers improved their confidence in dose calculations. An

example of such a bolus calculator is the Accu-Chek® Aviva Expert developed by Roche [Roche,

2012], a blood glucose meter which doubles up as an expert system for suggesting bolus advice.

With the increased popularity of smart phones and tablets, a selection of mobile apps to aid

T1DM have been developed. A small number of these offer bolus advice similar to the Accu-

Chek® Aviva Expert. However, Klonoff [2012] raised safety concerns over mobile apps that offer

bolus advice, stating that often there is no explanation of the formula used and safety mechanisms

included. Some examples of the mobile apps available for bolus advice include: RapidCalc [Rapid-

Calc, 2015], Diabetes Personal Calculator [iTenuto Soft, 2015], Diabetic Dosage [Diabetic Dosage,

2015], and Insulin Calc [Insulin Calc, 2013]. These mobile applications vary in terms of features

available, with RapidCalc containing a large number of settings to help increase the accuracy of the

bolus calculator and data visualisation, whilst Diabetic Dosage allows for minimal customisation

and does not retain data.

Artificial intelligence in the form of CBR has been utilised for several research projects in the

domain of T1DM management, mainly to aid doctors with therapy adjustments for their patients.
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Montani et al. [2000] utilised CBR to produce a system for classifying T1DM subjects, allowing

doctors to identify the most suitable therapy based on patient classification. The research proved

successful, with the CBR system able to correctly classify subjects 83% of the time.

Case-based reasoning was also successfully adopted in the 4 Diabetes Support SystemTM [Mar-

ling et al., 2011]. The research undertaken by this project also attempted to aid doctors in suggest-

ing the most appropriate therapy. The case-base (database) was constructed by recording subject

information and identifying key problems with the assistance of a doctor. Each case consists of a

problem with blood glucose control and a therapy to solve the problem. Evaluation of the system

was conducted by a panel of doctors to see whether they agreed with the suggestions produced by

the CBR system. The results were positive with the panel agreeing with 80% of the suggestions.

Most recently, the Imperial NIHR Biomedical Research Centre [Herrero et al., 2014] have incor-

porated CBR alongside the Run-to-Run (R2R) control algorithm to aid self-management through

intelligent bolus dose calculations. The intent of this research is to provide a mobile app to assist

the self-management of T1DM. Case-based reasoning is utilised in this project to optimise the

parameters of a bolus insulin calculation. The app learns to improve future bolus advice through

revision of the parameters in the event of suboptimal solutions. Simulation showed that using

CBR in conjunction with R2R improved blood glucose control, with a complete elimination of

hypoglycaemia.

The aforementioned research projects for CBR in the T1DM domain highlight the positive

effects CBR can have for T1DM therapeutics. The research described in this thesis aims to add

to this collection of work by using CBR to improve bolus insulin dose suggestions, aiding self-

management.

1.4 Chapter overview

The thesis begins with a look at state-of-the-art bolus calculators currently available for assisting

T1DM self-management. These tools are analysed in detail to help identify key aspects involved in

bolus insulin advice. A formal specification in then created to ensure the understanding of these

tools is modelled correctly, and to assist the implementation of the resulting mobile app.

This is followed by a look at CBR in general, with a look at existing CBR models and their

components. This is coupled with a look at some of the seminal CBR applications developed as

well as the use of CBR in the T1DM domain.

A CBR model for T1DM is then introduced based upon the findings from the state-of-the-art

bolus calculators and CBR research. The model includes the use of temporal sequences, dynamic

feature weighting, adaptation and evaluation rules to improve the predictions made by the system.

Finally, the CBR model is implemented as a mobile app with the assistance of the formal

specification to help ensure the safety of the resulting app. The final app is then subjected to unit
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testing and performance evaluation.

A brief outline of the chapters and their contents are presented below.

Chapter 2 looks at existing bolus advisers on the market. This chapter seeks to identify the

features present in both a blood glucose meter with a built-in bolus adviser and mobile apps

publicly available. The features and constraints of these state-of-the-art advisers are then used

to produce a formal specification in Event-B. The chapter discusses developments in the formal

methods community, with a focus on the Rodin Platform for Event-B.

Chapter 3 is an in-depth discussion into CBR, the origins of which are discussed alongside models

proposed for implementing CBR systems. The chapter looks at the seminal CBR work, other

reasoning methods, and concludes with a look at the use of CBR in the domain of T1DM.

Chapter 4 discusses a case-based reasoner for T1DM bolus advice. A retrieval method is proposed

using temporal sequences to aid the identification of the most suitable cases. This is coupled with

a method for weighting distance functions through feature selection. An adaptation rule is then

proposed to reduce the effect of insulin stacking. This is followed by an automated method to

evaluate and revise a suggested solution in order to improve future bolus insulin advice.

Chapter 5 analyses and evaluates the bolus advice produced by the CBR system proposed in

Chapter 4. The chapter begins with an explanation of the methodology applied to testing the

CBR system, and identifies appropriate statistical measures for evaluation. The chapter concludes

with a comparison of the CBR results to those obtained by a T1DM simulator and formulas

used by a state-of-the-art bolus calculator, and the effectiveness of the adaptation and evaluation

approaches.

Chapter 6 discusses the implementation of a mobile prototype for bolus advice using CBR, and

goes on to outline its requirements and design. The formal specification devised in Chapter 2 is

used to aid the implementation of a robust mobile app for bolus decision support. The chapter

concludes with an evaluation of CBR performance on a mobile device.

Chapter 7 concludes this thesis with a discussion of research aim and objectives, research impact,

researching limitations, and recommendations for future research in the area.
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Chapter 2

Formal specification of a bolus

calculator

The self-management of T1DM is a complex task requiring good numeracy skills to help ensure

successful glycaemic control [Borus and Laffel, 2010; Kerr, 2010; Marden et al., 2012]. Individuals

with T1DM often maintain a diary for recording various factors such as meals, blood glucose

readings and insulin doses. This information can then be used to manually calculate a suitable

bolus dose [Sussman et al., 2012]. More recently artificial pancreases are being researched and

developed as an effective alternative for self-management, where glycaemic control is managed

through the automated delivery of insulin [Harvey et al., 2010]. However, this solution is not yet

openly available to T1DM subjects, with clinical trials and refinement still ongoing [Kovatchev

et al., 2014; Nimri et al., 2014]. To bridge this gap between manual bolus insulin calculation and

artificial pancreases a number of bolus calculators have been developed. These bolus calculators

allow T1DM subjects to quickly calculate bolus insulin doses in addition to functioning as an

electronic diary [Sussman et al., 2012; Barnard et al., 2012]. However, some concerns have been

raised of the safety of some bolus calculators [Klonoff, 2012]. We aim to address through the use

of a formal specification in this research.

In this chapter some of the state-of-the-art bolus calculators available on the market are ex-

amined. Firstly the Accu-Chek® Aviva Expert [Roche, 2012], a blood glucose meter with built in

bolus dose decision support. This is followed by a look at existing mobile apps which provide the

ability to calculate a bolus insulin dose. The information obtained through the assessment of these

state-of-the-art bolus calculators is then used to create a formal specification in Event-B. Prior to

the formal specification, the use of formal methods in software engineering and developments in

the formal methods community are discussed. The formal specification in this chapter seeks to aid

understanding of the problem through reverse engineering, and ensure that the model derived from
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the calculators is correct. The formal specification will also aid the implementation of a mobile

prototype discussed in Chapter 6.

2.1 Roche Accu-Chek Aviva Expert blood glucose meter

Accu-Chek blood glucose meters are one of the most prominent on the market and have been

produced by Roche for over 35 years [Roche, 2015a]. Historically, blood glucose meters are used in

combination with test strips to accurately inform the user of their blood glucose level before and

after meals to aid insulin therapy. Roche have released the Accu-Chek Aviva Expert [Roche,

2012] blood glucose meter to not only accurately measure blood glucose levels, but also to provide

bolus dose advice to the user. In this section the Accu-Chek Aviva Expert’s customisable settings

and bolus dose calculation method are discussed.

Figure 2.1: Accu-Chek Aviva Expert

Settings

The Accu-Chek Aviva Expert includes a selection of customisable features to tailor the device

to the subject’s condition. These settings are initially defined using the setup wizard and can be

modified through the interface at any time. The settings primarily define values to be used for

bolus advice or to warn the user if their blood glucose level breaches user defined thresholds. The

settings and their purpose are defined in the list below.
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Acting time

Defines the duration that a bolus insulin dose remains active in minutes.

Offset time

Defines the delay in blood glucose reduction following a bolus dose in minutes.

Basal insulin

Allows the user to specify their daily basal insulin1 dose in insulin units.

Maximum bolus dose

Limits the maximum bolus insulin dose displayed to the user following a calculation.

Meal rise

Defines the maximum increase in the subject’s blood glucose level following a bolus, which

if exceeded will prompt for an additional correction bolus.

Health factors

Allows the user to define percentage reductions or increases in bolus suggestions for different

health events such as stress, illness and exercise.

Insulin increment

Defines the accuracy of the insulin suggestions to correspond with the user’s equipment (e.g.

insulin pen or syringe).

Insulin sensitivity

Defines the reduction in blood glucose levels in mmol/L2 for a user defined quantity of insulin

units.

Carbohydrate unit

Defines the carbohydrate unit to be used by the device. Available options are: grams, bread

equivalent (equal to 12 grams of carbohydrate), kohlenhydrateinheit (equal to 10 grams of

carbohydrate), and carbohydrate choice (equal to 15 grams of carbohydrate).

Carbohydrate-to-insulin ratio

Defines the number of carbohydrate units covered by a user defined insulin unit quantity.

Target blood glucose range

Defines the upper and lower bounds of the subject’s target blood glucose range in mmol/L.

Hyperglycaemic and hypoglycaemic warnings

Defines blood glucose values in mmol/L for triggering hyperglycaemic and hypoglycaemic

1Intermediate or long acting background insulin to keep blood glucose levels constant during periods of fasting
[Diabetes.co.uk, 2015]

2Blood glucose concentration millimoles per litre, advised UK standard [Joint Formulary Committee, 2010].
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warnings for the user. The warnings are triggered if a blood glucose reading is above the

hyperglycaemic value or below the hypoglycaemic value.

Table 2.1 states the minimum, maximum and default values for the settings described for the

Accu-Chek® Aviva Expert [Roche, 2012]. As the device is Food and Drug Administration (FDA)

approved, the values in Table 2.1 will be used in the formal specification discussed later to aid the

safety of the system.

Data type Min Max Default

Acting time (minutes) 90 480 240
Offset time (minutes) 45 Acting time 60
Basal insulin (IU) 0 99 0
Maximum bolus dose (IU) 0 50 -
Meal rise (mmol/L) 2.8 11.1 2.8
Health factors (%) -50 50 0

Insulin sensitivity
Insulin units (IU) 0.1 50 1
Blood glucose (mmol/L) 0.1 55.4 -

Carbohydrate-to-insulin ratio
Insulin units (IU) 0.1 50 1
Carbohydrates (grams) 1 240 -

Target blood glucose range
Upper value (mmol/L) 5.5 15 8
Lower value (mmol/L) 3 8 4

High BG threshold (mmol/L) 6.5 19.5 16.5
Low BG threshold (mmol/L) 3 5.5 4
Hyperglycaemia limit (mmol/L) 10 19.5 16.5
Hypoglycaemia limit (mmol/L) 3 5 4

Table 2.1: Accu-Chek® Aviva Expert settings, value limit and default values

Bolus calculation

The Accu-Chek® Aviva Expert uses the subject’s blood glucose level alongside planned carbo-

hydrate intake, exercise, insulin sensitivity factor and carbohydrate-to-insulin ratio to predict a

suitable bolus insulin dose [Roche, 2013]. The total bolus dose suggested is calculated through the

sum of a correction bolus (Eq. 2.1) and meal bolus (Eq. 2.3). The correction bolus component cal-

culates the bolus insulin required to correct the subject’s blood glucose back to their target blood

glucose level, and if applicable, also factors in the effects of meal rise and active insulin3 time. The

meal bolus calculates the insulin units required to correct a specified carbohydrate intake.

The correction dose cb is defined by Eq. 2.1, let cbg define the current blood glucose level,

abg be the currently allowed blood glucose value (calculated by Eq. 2.2). The subject’s insulin

sensitivity factor is determined by the user defined number of insulin units isfi required to reduce

the subject’s blood glucose level by the user defined blood glucose reduction isfbg, e.g. if 1 insulin

unit reduces the subject’s blood glucose by 2 mmol/L then the insulin sensitivity factor is 0.5.

3Active insulin is also referred to as insulin on board in this thesis.
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cb = (cbg − abg)× isfi

isfbg
(2.1)

Calculation of the currently allowed blood glucose value abg used in Eq. 2.1 is calculated

using Eq. 2.2. This formula factors in the target range mean trm, the effects of a postprandial

blood glucose meal rise mr, and the sum of blood glucose covered by currently active insulin a.

The postprandial blood glucose meal rise mr is only applicable if the correction dose is calculated

within a specified time period following a meal.

abg = trm+mr +
∑

a (2.2)

The meal bolus mb (Eq. 2.3) is calculated by multiplying the planned carbohydrate intake c

by the carbohydrate-to-insulin ratio, which is determined by calculating the user defined insulin

unit quantity cri required to correct the a user defined quantity of carbohydrates in grams crc.

mb = c× cri

crc
(2.3)

Finally, the total bolus dose is calculated by Eq. 2.4 through the sum of the correction bolus

cb (Eq. 2.1) and meal bolus mb (Eq. 2.3).

suggested bolus dose =


cb+mb, cb+mb > 0

0, otherwise.

(2.4)

Negative correction boluses are permitted in order to reduce the suggested insulin if there is

either residual active insulin or the subject’s current blood glucose level is below their target value.

The overall suggested bolus cannot be negative, if the sum of the correction bolus and meal bolus

is negative then the suggested bolus is 0 insulin units.

Additional features

The primary purpose of the device is to allow the user to test and record their blood glucose level

using test strips. Although a unique selling point of this model is the built-in bolus adviser, it

is considered an optional feature. Other notable features include the ability to set reminders and

visualise data.

The device includes a selection of customisable reminders to inform the user when to perform

blood glucose tests and also to notify of upcoming appointments with their doctor. Blood glucose

test reminders include the ability to enable daily reminders at set times, post hypoglycaemia and

hyperglycaemia episode reminders, and post meal reminders. Data visualisation is another feature
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included and allows data to be displayed as trend graphs, a representation of the subject’s standard

day, or as a breakdown of targets. This trend graph displays blood glucose, carbohydrate intake

and bolus dose information together (Fig. 2.2a). The trend graph displays time along the x-axis,

blood glucose readings along the left y-axis, and a split of bolus doses and carbohydrate intake

along the right y-axis. The right y-axis is split such that the top half displays the bolus dose and

the bottom half displays the carbohydrate intake. This view can be filtered by type to display

overall, pre-meal, post-meal or bedtime data only over a period of 8 hours, 24 hours, 48 hours, or

7 days.

(a) Trend visulisation (b) Standard day visulisation (c) Target visulisation

Figure 2.2: Accu-Chek® Aviva Expert data visualisation

The standard day visualisation allows the user to quickly see an overview of their blood glucose

in time blocks over an average day. This aids in identifying periods of the day with high variations

and to view average trends. An example is shown in Fig. 2.2b, where the x-axis represents time

and the y-axis represents the subject’s blood glucose level. The time blocks depict the variation

in readings for each block with the average marked with an “X”. This view can be filtered over a

period of 7, 14, 30, 60, or 90 days.

Target visualisation allows the user to view the percentage of blood glucose readings that fall

into specified blood glucose ranges: within, above, below and hypoglycaemic. The device does not

state that hypoglycaemic readings are displayed. This view allows the user to quickly visualise the

percentage of time spent within different blood glucose ranges over a period of 7, 14, 30, 60 or 90

days. An example of this visualisation is shown in Fig. 2.2c.

2.2 Mobile apps for bolus insulin decision support

A selection of mobile apps to aid people with T1DM already exist on the market. These apps

vary with regards to their purpose, with most offering the ability to record carbohydrate intake,

blood glucose readings and insulin usage. Other apps provide general information to help the user

manage their condition, acting as a pocket guide. Although beneficial, they do not actively provide

insulin decision support. However, a small percentage of the apps available do offer insulin decision

support, allowing bolus insulin doses to be calculated using variations of established formulas.
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Four of these apps have been selected for analysis and evaluation: RapidCalc [RapidCalc, 2015],

Diabetes Personal Calculator [iTenuto Soft, 2015], Diabetic Dosage [Diabetic Dosage, 2015] and

Insulin Calc [Insulin Calc, 2013]. The selection of these apps was guided by a previous usability

study of T1DM mobile apps [Martin et al., 2011]. All of the selected apps allow for bolus insulin

doses to be calculated using a variety of bolus insulin formulas, with some of the apps supporting the

ability to log meals and visualise data. Each app will be analysed to identify user definable settings,

the calculation method, and additional features such as meal logging and data visualisation.

2.2.1 RapidCalc

Analysis and evaluation begins with RapidCalc [RapidCalc, 2015], an insulin decision support

app available for iOS. RapidCalc is the most sophisticated of the insulin calculators evaluated in

this research, supporting a large number of user definable settings and an easy to use interface.

RapidCalc provides support for time period variations of user settings, the ability to include exercise

in the calculation, and the inclusion of insulin on board reduction. Insulin on board factors in

insulin which is still active following a preceding bolus dose. Configuring the app is not a quick

process due to the number of user definable settings available, however these settings allow for an

improved user experience in the long-term.

The analysis and evaluation of RapidCalc will firstly look at the settings available to the user.

This is followed by a discussing into RapidCalc’s bolus insulin recommendation formula. Finally,

additional features of the application are discussed.

(a) User settings (b) Calculator

Figure 2.3: RapidCalc application for iOS

Settings

Before RapidCalc can be used to calculate a bolus insulin dose, the user must first define their

personal settings (Fig. 2.3a). These settings include details about their condition, units, and
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exercise and time variations.

Units and Limits:

Blood glucose units

Defines the blood glucose unit for the application to use (mmol/L or mg/dL4). This

cannot be modified without a full application reset.

Carbohydrate units

Defines the the carbohydrate unit to be used in grams or gram portions (10, 12, or 15

gram portions).

HbA1c units

Defines the unit used to display HbA1c
5 estimates in percentage or blood glucose units.

Smallest pen dose size

Defines the smallest dose size available to the user’s insulin pen or syringe (0.1, 0.5, 1.0,

or 2.0 insulin units).

Limit maximum bolus dose

Sets a maximum bolus dose, which if the calculation exceeds will be highlighted in red.

Blood glucose thresholds:

Ideal blood glucose range

Defines the user’s ideal blood glucose level in mmol/L or mg/dL.

Warning blood glucose range

Defines blood glucose thresholds at which hypoglycaemia ([3,10] mmol/L) and hyper-

glycaemia ([3,20] mmol/L) warnings are activated.

Time periods

All the inputs in this section allow the user to set the start time of each period of the day

(Breakfast, Morning, Lunch, Afternoon, Dinner, and Overnight). The application automat-

ically enforces a 70 minute difference between time periods, and will always cover a 24 hour

period.

Target blood glucose levels

Sets the target blood glucose levels ([3,10] mmol/L) for each time period.

Insulin sensitivity factors

Sets the insulin sensitivity factor ([0.1,20] mmol/L) for each time period.

4Blood glucose concentration in milligrams per decilitre, standard in some European countries and the US [Joint
Formulary Committee, 2010].

5Glycated Haemoglobin, measures the average plasma glucose over a period of 8 to 12 weeks [WHO, 2011]. The
measure provides an overall picture of blood glucose control.
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Carbohydrate ratios

Carbohydrate ratios for each time period, which states the number of insulin units required

to cover 1 carbohydrate portion, or carbohydrates in grams covered by 1 insulin unit. No

range limit is enforced.

Insulin usage profile

Sets the percentage of active insulin used as a percentage each hour over a total of 6 hours.

All hours must total 100%.

Exercise adjustment

Sets the percentage a bolus insulin dose is reduced for light, moderate and intense exercise.

Each intensity of exercise allows for separate reduction percentages for short, medium and

long exercise duration.

Basal insulin dosing

Sets the how many basal doses per day [0,3], the time of each basal dose, and the quantity

of insulin units in each basal dose.

Reminders:

Basal dose reminders

Reminds the user to administer their basal dose(s).

Postprandial blood glucose reminder

Reminds the user to test their postprandial blood glucose level.

Postprandial blood glucose check delay

Sets the delay time of the postprandial blood glucose check in hours and minutes after

a meal.

Personal details

Stores the user’s contact information and allows for a password to be applied to prevent

others from changing the application settings.

Bolus calculation

RapidCalc’s bolus insulin calculator (Eq. 2.5) (Fig. 2.3b) features six inputs for the user to

specify. The three main inputs are a preprandial blood glucose reading in mmol/L or mg/dL, the

planned carbohydrate intake in grams or the number of portions, and the intensity and duration

of any planned exercise. In addition there are three options: blood glucose not measured or extra

carbohydrates, over two units of alcohol in the last 4 hours, and hypoglycaemic event in the last

6 hours. If blood glucose not measured or extra carbohydrates is selected then insulin on board is

removed from the bolus calculation (Eq. 2.5). If alcohol has be consumed in the last 4 hours or if



16

a hypoglycaemic event has occurred in the last 6 hours, the correction dose (Eq. 2.7) is removed

from the bolus calculation (Eq. 2.5).

suggested bolus dose = meal dose + correction dose− insulin on board (2.5)

The meal dose is defined by Eq. 2.6, let ci be the carbohydrate-to-insulin ratio, c be the planned

carbohydrate intake, and e be the exercise percentage reduction.

meal dose = ci× c× (1− e) (2.6)

The correction dose is defined by Eq. 2.7, let pbg be the preprandial blood glucose reading, tbg

be the target blood glucose, isf be the insulin sensitivity factor, and e be the exercise percentage

reduction.

correction dose =

(
pbg − tbg
isf

)
× (1− e) (2.7)

Insulin on board in Eq. 2.5 is calculated using the user defined hourly percentage scale for all

meals occurring within 6 hours of any previously recorded bolus calculation.

Additional features

RapidCalc allows all calculations to be logged and viewed in the history. The log entry will display

all associated user settings relating to that meal in addition to the calculation inputs and any

additional notes. Statistics and graphs can also be generated by the application for 7, 30, and

90 days in the past. The statistics displayed over the selected time period include the number of

readings, hypoglycaemic and hyperglycaemic warnings, average bolus dose per day, and average

daily carbohydrate intake. RapidCalc includes two data visualisation options: a 24 hour blood

glucose profile scatter graph, and a bar chart displaying the average preprandial and postprandial

blood glucose readings recorded for each type of meal (breakfast, lunch, and dinner).

2.2.2 Diabetes Personal Calculator

Diabetes Personal Calculator [iTenuto Soft, 2015] is a mobile app available for iOS developed by

iTenuto Soft. The app is available as a free or purchased version, with the purchased version

evaluated in this research, since it includes additional features. The app allows for time period

based bolus insulin calculations to be conducted using a combination of user defined settings and

meal specific inputs.
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(a) User settings (b) Calculator (c) Insulin on board

Figure 2.4: Diabetes Personal Calculator application for iOS

Settings

The application has a minimal number of settings which must be defined prior to using the calcu-

lator. The settings are divided into two categories: glucose, and carbohydrate-to-insulin ratios.

Glucose settings:

Unit indicator

Sets whether the application uses mmol/L or mg/dL units.

Target blood glucose

Defines the target blood glucose level for the user.

Insulin sensitivity factor

Defines the reduction in blood glucose for 1 unit of insulin.

Carbohydrate-to-insulin ratios:

Defines the quantity of carbohydrates covered by 1 unit of insulin. Diabetes Personal Calcu-

lator provides carbohydrate-to-insulin ratios for six periods of the day (breakfast, morning

snack, lunch, afternoon snack, dinner, and evening snack).

A potential problem with the application is that should the user change the unit indicator

setting, then all other glucose settings do no change to reflect the change of units. This may be

beneficial if the user realises afterwards that the wrong unit indicator is selected as the values

entered will not be changed. Equally, the values could not reflect the specified unit. As the

application does not specify the units on the calculation screen, then it is unlikely to be an issue

if the user is consistent with their inputs.

More significantly, the application does not impose any restrictions on the values when the

subject defines their settings. This allows for potentially unrealistic or incorrect values to be
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entered, which would prove dangerous to the subject. The only input validation performed is to

ensure that a value has been entered.

Bolus calculation

To calculate a suggested bolus insulin dose with Diabetes Personal Calculator, a preprandial blood

glucose reading and the quantity of carbohydrates to be consumed in grams must be input by

the user at the time of calculation. The application allows for time period based carbohydrate-to-

insulin ratios, which are defined in the user’s settings. For each time period a separate calculation

screen is available, which are visually the same.

The formula used by Diabetes Personal Calculator is defined by Eq. 2.8, let pbg be the prepran-

dial blood glucose level in mmol/L or mg/dL, tbg be the target blood glucose level in mmol/L or

mg/dL, isf be the insulin sensitivity factor, c be the planned carbohydrate intake in grams, and

ci be carbohydrate-to-insulin ratio for a selected time period.

suggested bolus dose =
pbg − tbg
isf

+
c

ci
(2.8)

Diabetes Personal Calculator also provides some support for insulin on board. The app requires

the user to remember their previous time and insulin dose, and must be manually deducted from

the bolus suggestion acquired by Eq. 2.8. The app’s insulin on board calculator reduces the active

insulin using an hourly percentage reduction. This calculation is described by Eq. 2.9, let i be the

previous bolus insulin dose, p be the percentage reduction of the active insulin over the period of

1 hour, and h be the hours since i was administered.

insulin on board = i− i

100
× p× h (2.9)

Additional features

Diabetes Personal Calculator includes a list of food which allows the user to add carbohydrate

estimations based on the portion size of the food they are about to consume. The user can add

multiple food items for each meal and may also specific their own custom foods and meals.

The user can also record meal and insulin dose information within the app for reviewing at a

later date. The application allows the user to view this information for a maximum of 31 days

prior to the current date. One negative aspect of the app is that the user may only record one

meal for each time period of the day. This limits the user to only six unique meals and snacks each

day, which may not be desirable.

Other features available to the application include the ability to record basal insulin doses, and

an average blood glucose reading to HbA1c conversion tool.
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2.2.3 Diabetic Dosage

Diabetic Dosage [Diabetic Dosage, 2015] is the most basic of the bolus calculators reviewed in

this research, and is available for both iOS and Android devices. Unlike RapidCalc and Diabetes

Personal Calculator, Diabetic Dosage does not require any settings to be configured prior to use.

Instead the user specifies five parameters to calculate a suggested bolus dose: preprandial blood

glucose level, blood glucose unit (mg/dL or mmol/L), quantity of carbohydrate unit (1 unit =

10 or 15 grams of carbohydrate), insulin sensitivity factor, and insulin dose unit (half and whole

units).

(a) Calculator (b) Published formula

Figure 2.5: Diabetic Dosage application for iOS and Android

The app has some notable issues. One issue is that the app assumes a target blood glucose of

100 mg/dL (approximately 5.5 mmol/L), which is not treated as a constant across all subjects by

the other bolus calculators. Another issue is that the formula published on the app’s website (Fig.

2.5b and Eq. 2.10) does not represent the actual calculation performed by the app (Eq. 2.11).

In both Eq. 2.10 and Eq. 2.11, let pbg be the preprandial blood glucose level in mg/dL, isf be

the insulin sensitivity factor, and c be the planned carbohydrate intake in carbohydrate units (1

carbohydrate unit = 10 or 15 grams of carbohydrates).

published suggested bolus dose =
pbg − 100

isf + c
(2.10)

implemented suggested bolus dose =
pbg − 100

isf
+ c (2.11)

Both versions of the calculation produce different results to those used by the other apps.

Figure 2.6 illustrates the difference in bolus insulin suggestions for Diabetic Dosage in comparison

to Diabetes Personal Calculator and RapidCalc (ignoring insulin on board and exercise factors).
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pbg = 6.6 mmol/L

tbg = 5.5 mmol/L

isf = 2.0 mmol/L

c = 60 grams or 6 carbohydrate units

ci = 13 grams per insulin unit

or 0.769 insulin units per carbohydrate unit

(0.0769 insulin units per gram)

RapidCalc =
6.6− 5.5

2.0
+ (0.769× 6)

= 5.0 insulin units (to the nearest half unit)

Diabetes Personal Calculator =
6.6− 5.5

2.0
+

60

13
= 5.0 insulin units (to the nearest half unit)

Diabetic Dosage (published) =
6.6− 5.5

2.0 + 6

= 0.0 insulin units (to the nearest half unit)

Diabetic Dosage (implemented) =
6.6− 5.5

2.0
+ 6

= 6.5 insulin units (to the nearest half unit)

Figure 2.6: Diabetic Dosage calculation comparison

Figure 2.6 demonstrates that the version of the calculation published on the app’s websites is

incorrect. The implemented version relies on the user having a carbohydrate-to-insulin ratio of 1

carbohydrate portion to 1 insulin unit, which as shown can have a large bearing on the outcome.

The story behind the development of Diabetic Dosage can be found on the app’s website which

helps to explain the differences discovered. Development of the application was motivated by a

sister who wanted to help her brother with calculating bolus insulin doses. Previously a chart was

used to obtain a bolus insulin suggestion based on the brother’s preprandial blood glucose reading

and carbohydrates in the meal or snack. This resulted in the sister taking the chart and designing

a mobile application to help her brother and others with bolus insulin suggestions. This story

helps explain why the calculation is different to the other apps, as the information used to derive

the formula was tailored to her brother. However, this story illustrates how mobile technology can

be used to simplify obtaining bolus advice and removing the need to manually sift through tables

of numbers.

2.2.4 Insulin Calc

Insulin Calc [Insulin Calc, 2013] is the last of the mobile apps reviewed in this research. The app

is similar to Diabetic Dosage in terms of simplicity but does allow for a customisable target blood



21

glucose value. The app does not record data and instead works as a quick calculator. To reduce the

time taken to perform a calculation the app allows the target blood glucose level, insulin sensitivity

factor and carbohydrate factor to be stored and locked to prevent accidental change. Once these

three inputs are defined and saved, the user only needs to input their preprandial blood glucose

level and planned carbohydrate intake at the time of calculation.

The settings view of the application allows the user to specify which blood glucose unit to use

(mmol/L or mg/dL) and whether the suggested bolus dose should be rounded to whole units or

half units (Fig. 2.7a). The view also provides information about the application including how a

bolus suggestion is calculated.

(a) User settings (b) Calculator

Figure 2.7: Insulin Calc application for iOS

To perform a successful bolus calculation, the user must firstly define their target blood glucose

level, insulin sensitivity factor, and carbohydrate-to-insulin ratio (Fig. 2.7b). This information is

then used alongside the two calculation specific inputs of planned carbohydrate intake and prepran-

dial blood glucose reading to produce a bolus suggestion. The formula used by the application is

specified in Eq. 2.12, let pbg be the preprandial blood glucose level, tbg be the defined target blood

glucose level, isf be the blood glucose reduction per unit of insulin, c be the planned carbohydrate

intake, and ci be the carbohydrates to correct one unit of insulin.

suggested bolus dose =
pbg − tbg
isf

+
c

ci
(2.12)

The app updates the recommended dose when any input field is amended and does not require

all parameters to be defined prior to displaying a bolus insulin suggestion. This raises safety

concerns as the subject may use the bolus advice prior to defining all the parameters required for

an accurate dose to be calculated. Insulin Calc’s main drawback is the inability to factor active

insulin into the suggestion. In cases where there is no active insulin, the application replicates the

behaviour of the Accu-Chek® Aviva Expert, and such results can be considered reliable.
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2.2.5 Summary of the mobile apps

The mobile apps described in this section all provide a means to calculate bolus insulin doses.

However, it can be seen that the sophistication of the calculation and the features provided by the

apps vary drastically. A comparison of the features in the mobile apps and the Accu-Chek® Aviva

Expert are shown in Table 2.2. The column headers in this table are abbreviations denoted as

follows: AE - Accu-Chek® Aviva Expert, RC - RapidCalc, DPC - Diabetes Personal Calculator,

DD - Diabetic Dosage, IC - Insulin Calc.

AE RC DPC DD IC

Carbohydrate intake 3 3 3 3 3

Preprandial blood glucose 3 3 3 3 3

Target blood glucose 3 3 3 3

Insulin sensitivity factor 3 3 3 3 3

Time period variations 3 3

Carbohydrate-to-insulin ratio 3 3 3 3

Time period variations 3 3 3

Insulin on board 3 3 3

Exercise 3 3

Record meals 3 3 3

Configurable settings 3 3 3

Data visualisation 3 3

Table 2.2: Comparison of features present in the state-of-the-art mobile apps and Accu-Chek®

Aviva Expert

The most sophisticated of the apps is RapidCalc, which uses a bolus calculation formula similar

to the FDA approved Accu-Chek® Aviva Expert blood glucose meter with the addition of factors

such as alcohol, stress, and automated active insulin consideration, which the others apps do not.

Additionally, RapidCalc provides visualisations of data recorded and a large range of customisable

settings.

Diabetes Personal Calculator lacks some of the more sophisticated features of RapidCalc such

as data visualisation, alcohol, stress and exercise. However, Diabetes Personal Calculator still

provides more functionality than Insulin Calc and Diabetic Dosage by allowing active insulin to

be calculated, records to be stored, and configurable settings. A major pitfall of Diabetes Personal

Calculator is the limitation on how many meals can be recorded each day, which reduces the

flexibility of the app.

Insulin Calc is much more limited than both RapidCalc and Diabetes Personal Calculator,

only allowing a simple bolus calculation to be performed with no functionality for recording meal

information. Despite the simplistic nature of Insulin Calc, the formula mirrors that used by the

FDA approved Accu-Chek® Aviva Expert with the exclusion of active insulin consideration. This

provides some reassurance that the app itself is capable of producing reasonable advice, but could

still be improved.

At the low end of the sophistication scale is Diabetic Dosage, an app which simply allows
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bolus calculation with no means to record the information. Diabetic Dosage enforces a constant

target blood glucose level in the calculation, a factor which is likely to vary from subject to subject,

exposing users to inaccurate bolus calculations. This app also raised concerns due to the associated

website publishing the formula used by the app, which would result in incorrect bolus calculations

and is inconsistent with all the other products assessed in this research. Fortunately, the formula

implemented by the app does perform the calculation correctly, but is limited to a static target

blood glucose level as previously stated.

In summary, it can be concluded that RapidCalc is the benchmark for determining the features

which should be included in the app developed by this research. All the other other apps assessed

contain less features, providing no note-worthy contributions above RapidCalc. Below is a list of

considerations that will be used when designing the app:

� Produce bolus advice, to tailor the app to the user. Case-based reasoning (Chapter 3 - 5) will

replace the formulas described by these apps in order to allow the app to learn and improve

bolus advice over time.

� The ability to store meal records.

� Provide a comprehensive set of customisable settings to ensure the app can be tailored to all

subjects.

� Cater for both the European and US market by providing a suitable selection of units.

� Enforce constraints on user input to reduce the chance of errors and prevent potentially

dangerous advice.

� Provide a means to view previous records.

� Visualise previous records to help the user identify trends and spot outliers.

To ensure the understanding of the domain, data types and functionality of existing apps, a

formal specification will now be devised to model the current state-of-the-art approaches.

2.3 Formal specification

In this section a formal specification is defined from the features and constraints discussed earlier

in this chapter. The specification sets out to define the restrictions on user inputs and settings

to aid the safety of the app. Formal methods provide a mathematical framework for software

engineering, and help to ensure that the resulting system is correct through modelling the system

prior to implementation.

The Event-B language [Abrial, 2010] was chosen to create the formal specification for the mobile

app. An initial formal specification was produced by reverse engineering the Diabetes Personal
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Calculator application for iOS to learn and understand the Event-B language and its integrated

development environment (IDE) the Rodin Platform [Abrial et al., 2010]. This work was presented

(Appendix F) at the 2012 DEPLOY Federated Event to evaluate the Rodin Platform from a new

user’s perspective; with the conclusion that the tool, language and available resources simplified

the process of formalising the specification [Brown et al., 2012].

The formal specification included in this research is primarily based on the functionality of the

Accu-Chek® Aviva Expert as opposed to Diabetes Personal Calculator. This is due to approval

of the device by the FDA, which provides reassurance that the constraints and formulas used by

the device are safe.

2.3.1 Introduction to formal methods and Event-B

The use of formal methods in industry is generally limited to safety critical systems as the software

industry as a whole has yet to embrace its use [Woodcock et al., 2009]. Any application designed for

medical use should be considered safety-critical and developed using a formal approach. Woodcock

et al. [2009] state that that lack of evidence supporting the cost-benefit of formal methods is a

fundamental reason why they are not widely adopted in industry. This is in addition to the learning

curve required for its adoption. Snook and Harrison [2001] state that the adoption of formal

methods in the long-term does not have a negative implication on project costs and any increased

time spent on correctly modelling and specifying the system is balanced out by a reduction in the

resources required for testing and debugging.

A significant effort to promote the adoption of formal methods has been undertaken by the

RODIN (2004-2007) project, later funded by the DEPLOY (2008-2012) and ADVANCE (2011-

2014) projects. This project led to the development of the Rodin Platform, an Eclipse-based IDE

for Event-B modelling. Alongside the IDE, the project resulted in a repository of resources to

aid existing and new users of the platform. The resources available include a selection of plug-ins

designed to aid the modelling process. Most notably, a plug-in to integrate ProB into the IDE.

ProB provides a method to systematically check the model for errors through animation. The

animation process checks that the state of the model does not violate the invariants. In addition,

animation provides a method to visualise the activation of events, and the result the event actions

have on the state of model. Other plug-ins include automated code generation from the Event-B

specification and external provers to assist the automatic proofs.

Event-B is a formal modelling language developed by Jean-Raymond Abrial as an evolution

of the B-Method [Abrial, 2010; Abrial et al., 1991]. The purpose of modelling with Event-B is to

prove that a model will work prior to implementation and for early identification of problems with

the system requirements. Event-B models are broken down into two main components contexts

and machines. Contexts define constants of the model and use axioms to impose restrictions on the
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constants. These constants can include the definition of numerical values and sets. Machines model

the dynamic behaviour of the system. Variables represent the dynamic properties of the machine’s

state and can be altered by events within the machine. The behaviour allowed by the machine is

defined by invariants, and in order for the machine to successfully prove these invariants must not

be violated by changes to the machine’s state. The events allow for changes to be made to the

state of the machine and consist of parameters, guards and actions. The parameters define values

used by the event, providing a means to define event inputs. The guards express the conditions

which must be true to allow the event to be enabled and are used to preserve the invariant of the

machine. Adequate guards will prevent the event from altering the machine state in such a way

which would violate the invariants. If a machine is enabled, the actions defined by the machine

can be performed. These actions allow the state of the machine to be changed through the update

of variables.

An Event-B model is validated through the successful discharge of proof obligations, which

imply that the invariants and type declarations of the model are not violated by any aspect of the

model. For example, if a variable x is of type N1, the assignment of 0 to x would not discharge the

proof obligation created by x ∈ N1, since x must be greater than or equal to 1. The default prover

provided by the Rodin Platform often struggles with relatively simple proofs and it is recommended

that the Atelier B prover plug-in is installed to aid automatic proofs.

A key feature of the Event-B language is its incremental modelling process through refinement.

Refinement allows gradual development of the specification starting at an abstract level, which can

then be refined to include new functionality and gradually move the model towards the concrete

implementation. This type of refinement is known as horizontal refinement [Abrial, 2010]. There is

a second type of refinement called vertical refinement to transforms the specification into a format

which is easier to implement, and occurs after the completion of horizontal refinement.

2.3.2 Event-B example

Before formally specifying the bolus calculator a small example is presented. This example will

model a basic banking system and demonstrates some of the concepts introduced in Section 2.3.1.

To begin with the context of the banking system needs to be defined. The system will consist

of two custom sets PERSON and ACCOUNT which are defined in a context called bankc0 (Fig.

2.8). These sets describe all possible people and all possible accounts respectively.

CONTEXT bankc0

SETS

PERSON

ACCOUNT

END

Figure 2.8: Bank context bankc0
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With the context defined a new machine is introduced which sees this context. In the machine

variables of the system defined, alongside its initialisation and events. The variables of the banking

system will reflect the accounts owned by people.

Firstly, a variable account is defined, which is a subset of all possible accounts (ACCOUNT ).

This denoted by describing a new invariant which must be preserved by the system. In this case

the standard subset notation is used to say that account is a subset of ACCOUNT : account ⊆

ACCOUNT .

Secondly, a variable owner is introduced to map the account to a person, which is done using

a total function from account to PERSON : owner ∈ account→ PERSON .

Thirdly, a variable balance is introduced to map the account to their bank balance. In this

model the money in their account (the balance) will be a natural number (N). balance is defined

as a total function from account to N: balance ∈ account→ N

Any variables defined by the machine need initialising, this done using the special event called

‘Initialisation’. In this case the initialisation is assumed to be a fresh start, so all variables have

the initial value of the empty set (∅). All assignments in Event-B are done using the := notation,

and will also be seen in the event actions later. Figure 2.9 shows the machine called bankm0, with

the variable definitions just described as well as their their initialisation.

MACHINE bankm0

SEES bankc0

VARIABLES

account

owner

balance

INVARIANTS

inv1 : account ⊆ ACCOUNT

inv2 : owner ∈ account → PERSON

inv3 : balance ∈ account → N
EVENTS

Initialisation

begin
act1 : account := ∅
act2 : owner := ∅
act3 : balance := ∅

end

Figure 2.9: Bank machine bankm0, variables and initialisation

Now the context, variables, invariants and initialisation of the machine are defined some events

can be added. The first event defined is OPEN ACCOUNT (Fig. 2.10) which provides the ability

to open a new account, since a person cannot perform any tasks until they create an account. To

perform this event some parameters must be specified. Firstly the person p who is a member of

the set PERSON (p ∈ PERSON), and secondly a new account a which is a member of the set

ACCOUNT but does not already exist in the variable account (a ∈ ACCOUNT ∧ a 6∈ account).
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With the parameters and guards in place, the actions of the event are defined. The new account

a needs to be added to account using the set union (∪) operator (account := account ∪ {a}). It

is important to note that all set operators can only be applied to sets, since a is not a set it must

be represented as if it is a set by using the curly brackets {a}. This assignment alone will violate

inv2 and inv3 shown in Figure 2.9, since both owner and balance are total functions with the

domain account, meaning that all elements of account must be included. To resolve this owner

and balance must also be updated. In the case of owner, the function maps the account to the

person who owns the account. The new account is defined by parameter a and the person owning

the account p, resulting in the assignment owner(a) := p. This operation will override the range

of the total function, changing the value. The same is done to balance, but this time the new

account a maps to a N. Since the account will have no money in it, the assignment will map a to

0 (balance(a) := 0).

The full OPEN ACCOUNT event is shown in Fig. 2.10, where the any section defines the

parameters, the where section defines the event guards, and the then section performs any actions

should the guards not be violated.

EVENTS

Event OPEN ACCOUNT =̂

any
p
a

where
grd1 : p ∈ PERSON
grd2 : a ∈ ACCOUNT
grd3 : a /∈ account

then
act1 : account := account ∪ {a}
act2 : balance(a) := 0
act3 : owner(a) := p

end

Figure 2.10: Bank machine bankm0, open account event

Now the ability to open a new account is included in the model, a new event can be defined

to close the account CLOSE ACCOUNT (Fig. 2.11). This event will reverse the process of

OPEN ACCOUNT , removing an account specified by parameter a from the machine variables

account, owner and balance. To allow the event to be active the account a must be a member

of account, which in turn means it is in the domain of owner and balance due to these variables

being total functions. Another guard balance(a) = 0 is also added to this event in order to prevent

the account being closed if it stills contains money, where balance(a) will return the balance for

account a.

The first action described by the event will remove a from account using the set subtraction

(\) operator (account := account \ {a}). The owner and balance machine variables must also be

updated to close the account. To remove from these mappings the domain subtraction operator
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(C−) is used (e.g. owner := {a} C− owner). The CLOSE ACCOUNT (Fig. 2.11) event will now

remove account a whilst successfully preserving the machine invariants and ensuring the account

balance is 0 prior to closure.

EVENTS

Event CLOSE ACCOUNT =̂

any
a

where
grd1 : a ∈ account
grd2 : balance(a) = 0

then
act1 : account := account \ {a}
act2 : owner := {a}C− owner
act3 : balance := {a}C− balance

end

Figure 2.11: Bank machine bankm0, open account event

The model so far allows a person to open and close an account but not perform any useful

tasks such as depositing and withdrawing money. To include this functionality two new events are

added DEPOSIT (Fig. 2.12) and WITHDRAW (Fig. 2.13), which will increase and reduce the

account balance respectively.

The DEPOSIT event (Fig. 2.12) requires two parameters, the account a which is in the set

account, and the money m to be added to the account’s balance which is a N. Since this event

only changes the account balance, the only action required is an update to balance for account a

to the value of balance(a) +m.

EVENTS

Event DEPOSIT =̂

any
a
m

where
grd1 : a ∈ account
grd2 : m ∈ N

then
act1 : balance(a) := balance(a) + m

end

Figure 2.12: Bank machine bankm0, deposit event

The WITHDRAW event (Fig. 2.13) is almost identical to DEPOSIT with the same pa-

rameters, but instead of updating the account balance balance(a) to increase by m, balance(a) is

reduced by m. Additionally a new guard is added stating that the current account balance must

be greater than or equal to the withdrawal amount m to prevent the balance going below 0.
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EVENTS

Event WITHDRAW =̂

any
a
m

where
grd1 : a ∈ account
grd2 : m ∈ N
grd3 : balance(a) ≥ m

then
act1 : balance(a) := balance(a)−m

end

Figure 2.13: Bank machine bankm0, withdraw event

The specification described so far describes a simple banking system where people can open

a new account, and if they have an account can deposit, withdraw, and close the account. The

example has so far demonstrated the use of a context to define custom types, and machines which

provide the dynamic aspects of the model. Additionally several common aspects of Event-B mod-

elling have been described including the creation of variables, invariants, initialisation and events.

To conclude the example a simple refinement of the system will be done to add two different types

of account.

Refinement prevents the need for creating a complex system in one go, and allows functionality

to be gradually added. Any refined machine will inherit all aspects of the parent machines, meaning

that the refined machine must not violate the invariants of the parent machines. In this refinement

two account types will be defined current and savings which will be assigning to an account by

a new total function type. The OPEN ACCOUNT and CLOSE ACCOUNT events will be

refined to cater for this new functionality.

To begin this refinement a new context bankc1 (Fig. 2.14) is created which extends bankc0.

This context will define an enumerated set called TY PE with the constant elements current and

savings. This is achieved by defining TY PE as a new set, current and savings as constants, and

adding an axiom which states that TY PE is a partition containing the two constants.

CONTEXT bankc1

EXTENDS bankc0

SETS

TYPE

CONSTANTS

normal

savings

AXIOMS

axm1 : partition(TYPE , {normal}, {savings})
END

Figure 2.14: Bank context bankc1
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A new machine is now created called bankm1 (Fig. 2.15) which refines the machine bankm0.

Firstly a new variable type is defined to create a relationship between the account and its type.

This done in the same way as owner and balance through an invariant describing account to

TY PE as a total function (type ∈ account → TY PE). Additionally, type is initialised in the

refined machine as an empty set.

MACHINE bankm1

REFINES bankm0

SEES bankc1

VARIABLES

account

owner

balance

type

INVARIANTS

inv1 : type ∈ account → TYPE

EVENTS

Initialisation
extended

begin
act1 : account := ∅
act2 : owner := ∅
act3 : balance := ∅
act4 : type := ∅

end

Figure 2.15: Refined bank machine bankm1, variables, invariant and initialisation

The addition of the new variable type and its associated invariant will result in the machine

not successfully proving. To rectify this the OPEN ACCOUNT and CLOSE ACCOUNT events

must be refined so that they add and remove from type respectively. For the OPEN ACCOUNT

(Fig. 2.16) event a new parameter t of type TY PE is specified. Additionally, the action of the

event will assign t to type(a).
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EVENTS

Event OPEN ACCOUNT =̂

extends OPEN ACCOUNT

any
p

a

t
where

grd1 : p ∈ PERSON

grd2 : a ∈ ACCOUNT

grd3 : a /∈ account

grd4 : t ∈ TYPE
then

act1 : account := account ∪ {a}
act2 : balance(a) := 0

act3 : owner(a) := p

act4 : type(a) := t
end

Figure 2.16: Refined bank machine bankm1, open account event

For the refined CLOSE ACCOUNT (Fig. 2.17) event no new parameters are required, but

the account must be removed from the domain of type.

EVENTS

Event CLOSE ACCOUNT =̂

extends CLOSE ACCOUNT

any
a

where
grd1 : a ∈ account

grd2 : balance(a) = 0

then
act1 : account := account \ {a}
act2 : owner := {a}C− owner

act3 : balance := {a}C− balance

act4 : type := {a}C− type
end

Figure 2.17: Refined bank machine bankm1, close account event

A refinement can also provide additional functionality to the machine. To demonstrate this

a new event to change the account’s type called CHANGE TY PE (Fig. 2.18) is added to the

machine bankm1. This event requires two parameters, the account in question a and the new

type of the account t. Since there is little point in changing the account type to the same type, a

guard is included stating that the account’s current type must not be the same as the new type

(type(a) 6= t).
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EVENTS

Event CHANGE TYPE =̂

any
a
t

where
grd1 : a ∈ account
grd2 : t ∈ TYPE
grd3 : t 6= type(a)

then
act1 : type(a) := t

end

Figure 2.18: Refined bank machine bankm1, change account type event

This concludes the introductory Event-B example which covers the fundamental aspects of the

notation. For further examples please refer to Abrial’s book ‘Modeling in Event-B: system and

software engineering’ [Abrial, 2010]. In the next section Event-B is used to formally specify a

bolus calculator, a task which enables a better understanding of the problem and will also aid the

implementation of the mobile app for bolus decision support.

2.3.3 Formal specification of a bolus calculator

The specification of the bolus calculator begins by defining type and invariant conditions for the

variables of the system alongside abstract events for configuring the system and the bolus calcu-

lation. The variables and constraints used by the specification are derived from those presented

by the Accu-Chek® Aviva Expert in Section 2.1. The machine will start at an abstract level and

be refined twice to include new functionality to the model. The full machine specifications can be

found in Appendices A-C.

The bolus calculation used in this specification is based on that defined by the Accu-Chek®

Aviva Expert. The calculation has been adjusted to omit meal rise as no detailed information is

available in the documentation, and is not used in the formulas presented by the mobile apps or

that presented in research by Herrero et al. [2014]. Active insulin has also been changed to be

deducted from the total bolus sum as opposed to inclusion in the correction dose component. This

decision is taken as the Accu-Chek® Aviva Expert provides no detailed information on how to

calculate the sum of the blood glucose range covered by active insulin. This change also reflects

the formula presented Herrero et al. [2014] and the RapidCalc app. The bolus formula used in the

specification is presented in Eq. 2.13, let cd be the correction dose, md be the meal dose, and a

be the active insulin.
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bolus suggestion =


cd+md− a, if cd+md− a > 0

0, otherwise.

(2.13)

The correction dose cd for Eq. 2.13 is calculated by multiplying the user’s insulin sensitivity

factor isf by the difference in current blood glucose cbg and the user’s target blood glucose level

tbg (Eq. 2.14).

cd = (cbg − tbg)× isf (2.14)

The target blood glucose tbg (Eq. 2.15) is calculated from the average of the user’s upper

target blood glucose range level tru and the lower target blood glucose range level trl. The insulin

sensitivity factor isf (Eq. 2.16) is the reduction in blood glucose isfbg per a defined number of

insulin units isfi.

tbg =
tru+ trl

2
(2.15)

isf =
isfi

isfbg
(2.16)

The meal dose md for Eq. 2.13 is calculated by multiplying the planned carbohydrate intake c

in grams by the carbohydrate-to-insulin ratio cir (Eq. 2.17).

md = c× cir (2.17)

The carbohydrate-to-insulin ratio cir required to calculate the meal dose is defined as the

quantity of carbohydrates in grams crc covered by a defined number of insulin units cri (Eq.

2.18).

cir =
cri

crc
(2.18)

Finally, the active insulin a is the insulin which remains active from all recorded prior bolus in-

sulin doses. Equation 2.19 [Campbell and Abramovich, 2012] defines the active insulin calculation,

let C be a sequence of cases c, ci be the previous bolus insulin dose at the time ct in minutes of the

case c, t be the time of the current calculation in minutes, and at be the active insulin duration in
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minutes.

a =
∑
c∈C


ci×

(
1− t− ct

at

)
, if at > t− ct > 0

0, otherwise.

(2.19)

2.3.3.1 Abstract machine

The specification begins with an abstract specification of the system which focuses on the con-

straints of the system variables. Figure 2.19 provides an extract of the variables and invariants

that includes the maximum bolus dose, and upper and lower target blood glucose ranges. A full

specification of the variables and invariants are included in Appendix A due to the number present.

Event-B is limited to natural and integer numerical types, which presents a problem when decimal

values are required. To overcome this, all natural numbers or integers in the specification are

represented through multiplication by the power of 10, allowing precision to one decimal place

(e.g. 5.5 is represented as 55). Comments in the specification will be used help to reinforce this

representation.

MACHINE t1dm m0

VARIABLES

maxBolus Maximum bolus dose limit

targetRangeUpper Target blood glucose range upper value

targetRangeLower Target blood glucose range lower value

INVARIANTS

inv21 : maxBolus ∈ N
inv22 : maxBolus ≤ 500

The maximum bolus dose must be in the range [0.0,50.0] IU

inv23 : targetRangeUpper ∈ N
inv24 : targetRangeUpper ≥ 55 ∧ targetRangeUpper ≤ 150

Target blood glucose range upper value must be in the range [5.5,15.0]

inv25 : targetRangeLower ∈ N
inv26 : targetRangeLower ≥ 30 ∧ targetRangeLower ≤ 80

Target blood glucose range upper value must be in the range [3.0,8.0]

Figure 2.19: Extract of machine variables and invariants

Figure 2.19 defines the types of maxBolus, targetRangeUpper and targetRangeLower as that

of a natural number (N). This invariant alone implies that the value of these variables must

be greater than or equal to 0, and that negative values are not permitted. inv22 states that

maxBolus is restricted to a maximum bolus value of 50.0. Both of the invariants for maxBolus

state that 0 ≤ maxBolus ≤ 50 insulin units. Additionally, the invariants for targetRangeUpper

and targetRangeLower also define the constraints: 5.5 ≤ targetRangeUpper ≤ 15.0 mmol/L, and

3.0 ≤ targetRangeLower ≤ 8.0 mmol/L. These invariants prevent the variables from breaching

the constraints imposed by the Accu-Chek® Aviva Expert blood glucose meter.

Variables must be initialised by the machine using a special event called initialisation. The
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initialisation event defines the initial state of the machine, this state must comply with the in-

variants of the machine in order to successfully discharge all the proof obligations. Figure 2.20

demonstrates the initialisation for maxBolus, targetRangeLower, and targetRangeHigher. The ini-

tial values are derived from those specified by the Accu-Chek® Aviva Expert default values. The

full initialisation can be found in Appendix A.

MACHINE t1dm m0

EVENTS

Initialisation
Initilialises the machine

begin
act11 : maxBolus := 10

Default maximum bolus suggestion
act12 : targetRangeUpper := 80

Default target blood glucose range upper value
act13 : targetRangeLower := 40

Default target blood glucose range lower value
end

Figure 2.20: Extract of machine initialisation

With the variables and invariants of the machine specified and initialised, the events to model

the bolus calculation can be added. The event called bolusCalc is initially included as an abstract

event, which updates a variable bolusSuggestion and ensures it does not violate the invariant.

The specification for the bolusSuggestion states that it must be greater than or equal to 0, and

must be less than the maximum blood glucose value:

bolusSuggestion ∈ N ∧ bolusSuggestion ≤ maxBolus

An abstract event for the bolus suggestion bolusCalc is described by Figure 2.21. One parameter

is specified for the event, the bolus suggestion s. The event has two guards which check that

parameter s is a natural number and that s is less than or equal to the maximum bolus dose

maxBolus.

The bolusCalc event does not satisfy the requirements of the application alone as it is possible

that the bolus suggestion may be negative or greater than the maximum bolus dose. In these

circumstances, the bolus dose should be set to 0 and the maxBolus respectively. To model this, two

new events are added to the model to allow for these circumstances bolusCalcNeg and bolucCalcMax.

These events are shown in Fig. 2.22.
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MACHINE t1dm m0

EVENTS

Event bolusCalc =̂
Bolus calculator event for instances where s is > 0 and < maxBolus

any
s

s is the parameter of bolus suggestion
where

grd1 : s ∈ N
grd2 : s ≤ maxBolus

The bolus solution suggestion is ≤ maxBolus
then

act1 : bolusSuggestion := s
Sets the bolus suggestion value to parameter s

end

Figure 2.21: Abstract bolus calculation event

MACHINE t1dm m0

EVENTS

Event bolusCalcNeg =̂
Bolus calculator event for instances where s is < 0

any
s

s is the parameter of bolus suggestion
where

grd1 : s ∈ Z
grd2 : s < 0

The bolus solution suggestion is < 0
then

act1 : bolusSuggestion := 0
Sets the bolus suggestion to 0 as negative values are not permitted

end

Event bolusCalcMax =̂
Bolus calculator event for instances where s is > maxBolus

any
s

s is the parameter of bolus suggestion
where

grd1 : s ∈ N
grd2 : s > maxBolus

The bolus solution suggestion is > the maximum bolus dose
then

act1 : bolusSuggestion := maxBolus
Sets the bolus suggestion to maxBolus as values > maxBolus are not permitted

end

Figure 2.22: Additional abstract bolus calculation events

An additional event defineSettings to perform modifications to the system variables is also

defined in the machine and can been seen in Appendix A. Including these events concludes an

abstract model of the bolus calculator which will now be refined into a more concrete model. At

present, the model does not reflect the calculation to be performed but instead defines abstract the
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events required. All proofs are automatically discharged by the prover and animation with ProB

indicates that the events are only activated by parameters which satisfy the guards.

2.3.3.2 First refinement

The first refinement of the model will change the parameter s of the bolus calculation events to

the result of the bolus calculation formula. This requires the introduction of three variables not

defined in the first machine: planned carbohydrate intake carbs, preprandial blood glucose reading

preBG, and the active insulin activeInsulin.

The specification of the Accu-Chek® Aviva Expert states that the carbohydrate value has

the range [0,240]. A blood glucose range is not specified, but it is known that this value cannot

be negative. A maximum value for the blood glucose range is derived from the maximum value

allowed for insulin sensitivity of 55.4 mmol/L. These variables could be included as parameters in

the events, however to ensure consistency and to prevent activation of multiple calculation events

during animation, these will be defined as variables of the machine. In this refinement active

insulin will be modelled at an abstract level with an event that will allow the active insulin to be

set to a natural number.

MACHINE t1dm m1

VARIABLES

carbs Carbohydrates for the new problem

preBG Preprandial blood glucose reading for the new problem

inputsDefined Used to control the activation of bolus calculator events

activeInsulin The quantity of insulin units current active in the subject

INVARIANTS

inv1 : carbs ∈ N
inv2 : carbs ≤ 2400

Carbohydrate input must be ≤ 240 grams and ≥ 0 grams

inv3 : preBG ∈ N
inv4 : preBG ≤ 554

Preprandial blood glucose input must be ≤ 55.4 mmol/L and ≥ to 0 mmol/L

inv5 : inputsDefined ∈ BOOL
inputsDefined informs the machine carbs and preBG have been set.

inv6 : activeInsulin ∈ N Active insulin is ≥ to 0.

EVENTS

Initialisation
extended
Initilialises the machine

begin
act16 : carbs := 0 Default carbohydrate input set to 0 grams.
act17 : preBG := 60 Default preprandial blood glucose input set to 6.0 mmol/L.
act18 : inputsDefined := FALSE Inputs have not been defined by the user.
act19 : activeInsulin := 0 Default active insulin set to 0 insulin units.

Figure 2.23: Extract of the variables and invariants from the first machine refinement

Figure 2.23 displays the declaration and initialisation of the new variables with the new invari-
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ants to comply with the specification. In addition, a Boolean variable inputsDefined is declared,

which will prevent the bolus calculation events from activating unless the inputs required for the

bolus calculation have been defined. A new guard will be added to the bolus calculator events to

ensure they cannot be activated unless inputsDefined is TRUE.

The bolus calculator events are now updated to define the concrete calculation. A new guard is

added which states that the user inputs must be defined before the event can become active. The

parameter s from the original abstract machine also includes a new guard stating that the value

of s must be equal to the result of the calculation. The bolusCalc event is shown in Fig. 2.24,

bolusCalcNeg and bolusCalcMax contain the same changes in this refinement.

MACHINE t1dm m1

EVENTS

Event bolusCalc =̂
Bolus calculator event for instances where the result is > 0 and ≤ maxBolus

extends bolusCalc

any
s

where
grd1 : s ∈ N
grd2 : s > 0 The bolus solution is > 0
grd3 : s ≤ maxBolus

The bolus solution suggestion is ≤ maxBolus
grd4 :

s = (preBG − (targetRangeLower + (targetRangeUpper − targetRangeLower)/2 )) ∗
(isfI /isfBG) + carbs ∗ (carbRatioI /carbRatioC )− activeInsulin
The bolus solution is equal to the calculation formula

grd5 : inputsDefined = TRUE The user inputs must be defined first
then

act1 : bolusSuggestion := s

Sets the bolus suggestion value
end

Figure 2.24: Bolus calculation event in the first machine refinement

To activate the bolus calculation events bolusCalc, bolusCalcNeg, and bolusCalcMax, a new

event is required to define the user inputs. The parameters for this event must not violate the

invariants imposed on carbs and preBG. The resulting event defineInput is shown in Fig. 2.25.

The event updates the state of the machine to set new values for the machine variables carbs

and preBG. In addition, the event sets inputsDefined to TRUE, allowing the updated bolus

calculator events to be activated if the other guard conditions are also met.



39

MACHINE t1dm m1

EVENTS

Event defineInput =̂
Modifies user inputs for the bolus calculation

any
c Planned carbohydrate intake
bg Preprandial blood glucose level (mmol/L)

where
grd1 : c ∈ N
grd2 : c ≤ 2400

Carbohydrate value must be leq to 240 grams and ≥ 0 grams
grd3 : bg ∈ N
grd4 : bg ≤ 554

Carbohydrate value must be leq to 55.4 mmol/L and ≥ 0 grams
then

act1 : carbs := c
act2 : preBG := bg
act3 : inputsDefined := TRUE The user inputs have been defined

end

Figure 2.25: Event to define user inputs

The final inclusion in the first refinement is an event (Fig. 2.26) to update the variable

activeInsulin at an abstract level. This event sets activeInsulin to be equal to any natural

number defined by the parameter a, and is refined to a concrete event in the second refinement.

MACHINE t1dm m1

EVENTS

Event calcActiveInsulin =̂
Calculates active insulin

any
a Active insulin

where
grd1 : a ∈ N Active insulin must be ≥ to 0

then
act1 : activeInsulin := a

end

Figure 2.26: Abstract active insulin event

2.3.3.3 Second refinement

In order to model active insulin, there needs to be a record of previous cases. To incorporate this

into the model, a formal representation of past cases is required. The case-base will be represented

as total functions from a natural number representing the case id to a feature of the case. The

use of a total function implies that members of caseBase must also be a member of the function’s

domain. The case features that will be stored in this specification include the input variables of

carbohydrates and preprandial blood glucose reading. In addition to calculate active insulin, the

used bolus dose and time of the dose also need to be recorded. This requires the new machine
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variable of time for the current problem to be included, and the refinement of the defineInput

event to allow time to be modified. Additionally a new Boolean variable solutionObtained is

defined which must be TRUE to activate the event for adding a new case. Figure 2.27 shows the

new variables, and the associated invariants and initialisation for this refinement.

MACHINE t1dm m2

REFINES t1dm m1

VARIABLES

caseBase Sequence of case IDs

caseCarbs Function mapping a case ID to the carbohydrate intake

casePreBG Function mapping a case ID to the preprandial blood glucose reading

caseUsedBolus Function mapping a case ID to the bolus suggestion

caseTime Function mapping a case ID to time

time Time of the calculation

activeInsulinCases Set of applicable cases active insulin has been calculated for

solutionObtained Boolean defining if a bolus solution has been obtained

INVARIANTS

inv1 : caseBase ⊆ N1 Case IDs are a subset of natural numbers

inv2 : finite(caseBase) Case-base (case IDs) has cardinality

inv3 : caseCarbs ∈ caseBase→ N
Total function mapping every case ID to carbohydrate intake

inv4 : ∀c ·c ∈ ran(caseCarbs)⇒ c ≤ 2400
All retain carbohydrate values must be ≤ 240 grams

inv5 : casePreBG ∈ caseBase→ N
Total function mapping every case ID to preprandial blood glucose reading

inv6 : ∀bg ·bg ∈ ran(casePreBG)⇒ bg ≤ 554
All retained preprandial blood glucose readings must be ≤ 55.4 mmol/L

inv7 : caseUsedBolus ∈ caseBase→ N
Total function mapping every case ID to a bolus suggestion

inv8 : caseTime ∈ caseBase→ N Total function mapping every case ID to case time

inv9 : time ∈ N Time is ≥ 0

inv10 : activeInsulinCases ⊆ caseBase
Applicable active insulin cases are a member of caseBase

inv11 : solutionObtained ∈ BOOL

EVENTS

Initialisation
extended
Initilialises the machine

begin
act20 : caseBase := ∅ No cases initially
act21 : caseCarbs := ∅ No cases initially
act22 : casePreBG := ∅ No cases initially
act23 : caseUsedBolus := ∅ No cases initially
act24 : caseTime := ∅ No cases initially
act25 : time := 0 Initial time value is 0 minutes
act26 : activeInsulinCases := ∅ No active insulin cases initially
act27 : solutionObtained := FALSE Solution has not been obtained

end

Figure 2.27: Variables and invariant for the second machine refinement
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Two events allowing cases to be added and removed from the case-base are now defined. Figure

2.28 displays the event for adding cases retainCase, the case removal event can be found in the full

machine in Appendix C. The information for each feature is stored in the case must be compliant

with those defined by the specification, e.g. that carbohydrates must be in the range [0,240]

grams. An exception to this is the constraint limiting the maximum bolus dose maxBolus, as the

maximum allowed bolus dose may changed after retaining a case.

MACHINE t1dm m2

REFINES t1dm m1

Event retainCase =̂
Retains a case in the case-base

any
c New case ID

where
grd1 : solutionObtained = TRUE

A solution must be obtained first
grd2 : c ∈ N1

The caseID must be ≥ 0
grd3 : c /∈ caseBase

The caseID must not already exist in the case-base
grd4 : caseBase = ∅⇒ c = 1

If the case-base is empty, then the caseID is 0
grd5 : caseBase 6= ∅⇒ c = card(caseBase) + 1

If the case-base is not empty then the caseID is the cardinality of the case-base +
1

then
act1 : caseBase := caseBase ∪ {c}

Adds the caseID to the case-base
act2 : caseCarbs := caseCarbs ∪ {c 7→ carbs}

Maps the caseID to carbohydrates
act3 : casePreBG := casePreBG ∪ {c 7→ preBG}

Maps the caseID to the preprandial blood glucose reading
act4 : caseUsedBolus := caseUsedBolus ∪ {c 7→ bolusSuggestion}

Maps the caseID to the bolus suggestion
act5 : caseTime := caseTime ∪ {c 7→ time}

Maps the caseID to the time of the case
end

Figure 2.28: Event to retain cases

The calcActiveInsulin event is also refined in this machine to model to increase the machine

variable activeInsulin for instances where there exists a case c in caseBase that is not in the

set activeInsulinCases, and c has insulin which remains active (Fig. 2.29). Active insulin - also

known as insulin on board - is determined by Eq. 2.20 [Campbell and Abramovich, 2012], let ci

be the planned carbohydrate intake in grams, t be the time of the new problem in minutes, ct be

the case time in minutes, and a be the constant active insulin duration in minutes. As the event

will only calculate the active insulin against one previous case grd6 is introduced to keep the event

active until there are no retained cases which will contribute towards the active insulin sum.
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iob =


ci×

(
1− t− ct

a

)
, if a > t− ct > 0

0.0, otherwise.

(2.20)

MACHINE t1dm m2

REFINES t1dm m1

Event calcActiveInsulin =̂

extends calcActiveInsulin

any
a Active insulin remaining from a previous case
c The caseID which active insulin is to be calculated for

where
grd1 : a ∈ N

Active insulin must be ≥ 0
grd2 : c ∈ caseBase

The caseID must exist in the case-base
grd3 : c /∈ activeInsulinCases

The caseID must not already be accounted for in terms of active insulin
grd4 : time − caseTime(c) > 0

The current time must be after the previous case time
grd5 : time − caseTime(c) ≤ active

The different between the current time and case time must be ≤ to the active
insulin duration time (active)

grd6 : a = activeInsulin + (caseUsedBolus(c) ∗ (1 − ((time − caseTime(c))/active)))
Active insulin calculation

then
act1 : activeInsulin := a
act2 : activeInsulinCases := activeInsulinCases ∪ {c}

Adds the caseID into the cases where active insulin has already been accounted
for

end

Figure 2.29: Refined event to increment active insulin

The final step in the refinement is to alter the guards on the bolus calculator events (Fig. 2.30)

to ensure it is only enabled when there exists no cases in the case-base which would enable the

calcActiveInsulin event. This is enforced by grd6 (Fig. 2.30), which states that each case which

would contribute to the active insulin sum must be a member of the set activeInsulinCases.

This concludes the second refinement and the model of the bolus calculator. The formal speci-

fication presented in Appendices A - C successfully discharged all proof obligations, indicating that

the event guards ensure that the invariants will not be violated. The machines are animated using

the ProB plug-in to ensure that the events are enabled and disabled as expected. In addition,

the animation provides a way to ensure the calculations produce the expected results. In both

cases the animation was successful, with events enabled or disabled correctly and the calculations

producing the expected results based on the parameters and machine variables.



43

MACHINE t1dm m2

REFINES t1dm m1

Event bolusCalc =̂
Bolus calculator event for instances where the result is ≥ 0 and ≤ maximum bolus dose

extends bolusCalc

any
s Bolus suggestion

where
grd1 : s ∈ N1 The bolus suggestion is > 0
grd2 : s ≤ maxBolus The bolus solution suggestion is ≤ maxBolus
grd4 :

s = (preBG−(targetRangeLower+(targetRangeUpper−targetRangeLower)/2))∗
(isfI/isfBG) + carbs ∗ (carbRatioI/carbRatioC)− activeInsulin

The bolus suggestion equals the bolus calculation result
grd5 : inputsDefined = TRUE

The user inputs for the calculation must be done first
grd6 : caseBase 6= ∅⇒ (∀c ·c ∈ caseBase ∧ time − caseTime(c) > 0 ∧ c ≤

active⇒ c ∈ activeInsulinCases)
All cases where active insulin is applicable must be a member of
activeInsulinCases

then
act1 : bolusSuggestion := s Sets the bolus suggestion value
act2 : solutionObtained := TRUE A solution has been obtained

end

Figure 2.30: Refined bolus calculation event

2.4 Summary

In this chapter, state-of-the-art tools for bolus insulin advice were analysed to determine their

functionality. This process identified the differences between the tools, and also highlighted the

basic implementation of some mobile apps available for bolus advice on the market. The Accu-

Chek® Aviva Expert blood glucose meter provided detailed information on the constraints of

system variables which were used to produce a formal specification.

The creation of the formal specification not only aids in the implementation of the application,

but also helps to understand the problem. By modelling the problem using mathematics, issues

with the model can be identified prior to implementation. Primarily this focuses around ensuring

that the preconditions (guards) for any actions performed by the machine do not violate the

constraints (invariants). The formal specification outlined in this chapter will be used to aid the

mobile implementation discussed in Chapter 6 to ensure that the application is robust.

The chapter also highlighted the steps taken by the formal methods community to increase both

awareness and encourage developers to use such methods. The Rodin Platform and the repository

of resources available significantly aid the process of defining a formal specification. With continued

research in this area, there is hope that formal methods will be widely adopted in industry for all

system development and not just those of a safety critical nature.

Next we look at case-based reasoning (CBR), the artificial intelligence method which will replace
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the formulas used by the bolus calculators discussed in this chapter. The chapter will discuss the

history, models, components, and seminal work in the field to provide a general understanding of

CBR. Additionally, we will see how CBR has already been used successfully in the T1DM domain

to assist professionals.
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Chapter 3

Case-based reasoning

This chapter introduces case-based reasoning (CBR), an AI technique which will be used to predict

bolus advice instead of the formulas presented in Chapter 2. The chapter begins with an overview

of CBR and its origins. This is followed by a discussion on different CBR models which have been

proposed, with a detailed look at the processes within these models. Examples of some seminal

CBR systems are then presented to demonstrate how CBR can be applied to different tasks. This

is followed by a comparison of CBR to other reasoning methods. Finally, the chapter concludes

with a look into the use of CBR in the domain of T1DM.

The management of a T1DM subject is based on medical records and historical events contain-

ing information such as meals consumed, blood glucose readings, and hypoglycaemic or hypergly-

caemic occurrences. This use of historical data for providing guidance suggests that an application

which uses historical events is a logical approach to implementing a self-management system.

Case-based reasoning is a form of artificial intelligence (AI) which allows historical events to be

used for the purpose of prediction. The CBR process begins with a description of a new problem

which requires solving, with a set of features describing individual aspects of the new problem.

Case-based reasoning uses a similarity algorithm on a new problem to retrieve and reuse solved

historical problems known as cases. Relevant cases are reused and if necessary adapted to predict

a solution to the new problem. Finally, before retaining the new problem and its solution in the

case-base, the solution is revised through evaluating the real-world or simulated use of the solution.

This functionality will allow a subject to aid their self-management through the use of similar

historical cases based on the philosophy of CBR - that solutions which are known to have worked

for historical events can be reused and adapted to solve new problems [Kolodner, 1993].

As these cases are stored within the CBR system’s case-base, this information will also be

available for doctors to interpret. This is a useful benefit of CBR in the T1DM domain as subjects

often have regular medical visits with their doctor. In order for these medical visits to be most

effective, accurate logs must be maintained by the subject. The more detailed the information



46

provided by the subject, the better this guidance can be.

Case-based reasoning has been utilised previously in the domain of T1DM management with

positive results [Montani et al., 2000; Marling et al., 2008; Herrero et al., 2014]. The T-IDDM

[Montani et al., 2000] and 4 Diabetes Support SystemTM [Marling et al., 2008] projects resulted in

systems to aid a doctor with general guidance for a subject, whereas this research uses CBR as an

aid for self-management on a meal by meal basis. More recently research funded by the Imperial

NIHR Biomedical Research Centre has looked at using CBR in conjunction with continuous glucose

monitoring for bolus insulin advice to aid self-management [Herrero et al., 2014].

3.1 An overview of case-based reasoning

Case-based reasoning is a form of AI which employs historical problems known as cases to predict

an outcome for a new problem. These problems may represent anything, but are usually specific

to the domain of the CBR system. The aim of CBR is to solve or classify these new problems

using previous cases retained within the case-base. An example of a problem may be deciding

what should be served at a dinner party. Another example in the context of T1DM is how much

insulin should be administered for a meal.

The outcome of a CBR system will vary depending on its purpose. Possible outcomes include

an explanation of a new problem based on previous cases, criticising a proposed solution using

previous cases, and suggesting a solution to a new problem through the reuse of previous case

solutions [Kolodner, 1993].

The foundation of CBR systems can be traced back to research at Yale University in the late

1970s on dynamic memory [Kolodner, 1983; Schank, 1983; Riesbeck and Schank, 2013]. This

research focuses on the principle that we use our past experiences to understand and adapt to

new problems. When faced with a new problem, we will recall a similar experience in memory

aid to us to overcome the problem. We reason that if a solution to a similar problem in the past

worked, then the same solution, possibly with some adaptation, will allow us to overcome the new

problem. In the event that we fail to resolve the problem, we will learn from the experience and

apply what we have learnt to future problems. This concept resulted in the development of CYRUS

(Computerized Yale Retrieval and Update System) which implemented the concepts of indexing,

reorganising, generalising and searching a model of human memory [Kolodner, 1983].

CYRUS served as a basis for the CBR systems which emerged in the 1980s. Some of these

systems, which are discussed as examples later, include: MEDIATOR for conflict resolution [Simp-

son Jr, 1985], CHEF for meal dish planning [Hammond, 1986], CASEY [Koton, 1988] for diagnosing

heart problems, and JULIA for meal designing [Hinrichs and Kolodner, 1991].
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3.2 Case-based reasoning models

Case-based reasoning systems have been in development since the 1980s [Simpson Jr, 1985; Ham-

mond, 1986; Koton, 1988]; however, publications of CBR models did not surface until the mid-1990s

[Kolodner, 1993; Aamodt and Plaza, 1994; Allen, 1994; Hunt, 1995]. These models describe the

steps taken for implementing CBR, and all share the same fundamental aspects of reusing historical

cases to propose a solution, and evaluating the proposed solution to improve future reasoning. In

this section four models are presented: Aamodt and Plaza’s R4 model [Aamodt and Plaza, 1994],

Kolodner’s model [Kolodner, 1993], Hunt’s model [Hunt, 1995], and Allen’s model [Allen, 1994].

3.2.1 Aamodt and Plaza’s R4 model

The R4 model is one of the most recognised models for CBR [Aamodt and Plaza, 1994], and is

based on previous CBR implementations. The model provides an abstract representation of a CBR

cycle, describing a four step cycle consisting of the four Rs: retrieve, reuse, revise, and retain (Fig.

3.1).

RETRIEVE The most similar cases to a new problem are retrieved from the case-base.

REUSE The retrieved cases are then reused and adapted if necessary to aid in solving the problem.

REVISE The proposed solution is evaluated and revised if necessary.

RETAIN The case and its solution are then retained in the case-base to serve the purpose of

solving future problems.

The R4 CBR cycle begins with a description of a new problem, which is comprised of features.

In the domain of T1DM the problem will consist of features including carbohydrates, time and

current blood glucose level. Once the new problem has been defined, similar cases to this new

problem are then retrieved from the case-base using a similarity measure. The cases retrieved are

then reused to propose a solution to the initial problem. If required, the solution will then be

adapted in order to provide a better solution to the problem originally presented. Once adaptation

is completed, the solution will evaluated and revised where necessary to correct poor solutions.

The evaluated solution, alongside the problem are then retained as a new case in the case-base for

future reuse.

The strength of the case-base in this model is largely dependent upon the knowledge available

during the revision process. This knowledge can either be provided by the user with some domain

knowledge, an expert, or an automated process. If solutions retained within the case-base do not

solve the problem and yet are considered to be correct, there is a risk of these solutions being

reused for new problems. This could occur through incorrectly retaining a poor solution without
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Figure 3.1: R4 CBR cycle [Aamodt and Plaza, 1994]

correcting through revision, or not including an indication that the solution is poor to aid future

reasoning.

For user-based revision, the user does not require specific knowledge of each case within the

case-base, but some general knowledge of the domain is required to make informed revisions. This

user revision will be a part of our CBR system for T1DM bolus advice, as the user will have some

knowledge and guidance on how to manage their diabetes. An example of where user revision

would occur would be in the event of a postprandial blood glucose test indicating a low or high

blood glucose level. This may be as a result of too much insulin being administered, as a result

the solution should be adapted to a lower insulin dose.

An example of automated revision is provided by CHEF, a case-based reasoner for meal dish

planning [Hammond, 1986]. CHEF is able to adapt cases through the use of a separate knowl-

edge base of abstract planning problems. These abstract planning problems contain strategies for

revising the solution; the solution in the case of CHEF is a recipe to meet goals defined in the

original problem. Should revision be required, then the cause of the recipe’s failure is retained for

future failure prediction. A problem with the automated adaptation approach used by CHEF is

the requirement of expert domain knowledge in order to define these strategies. In Chapter 4 an

automated evaluation and revision rule is proposed using a postprandial blood glucose reading to

automatically revise the bolus suggestion [Becton, Dickinson and Company, 2005]. Additionally

failure acknowledgement and revision can be undertaken by the user. Should a failure occur, such



49

as too much insulin predicted in the solution, then the user can adjust the bolus solution prior to

retaining the new case for future reuse.

The R4 model served as the basis for the similarity-based R5 model [Finnie and Sun, 2003].

The emphasis of the R5 model is on case-base building, adding the additional step of repartition,

where the world of problems and solutions are partitioned using similarity relations.

In summary, the R4 model provides the fundamental steps required in order to implement a

CBR system. The R4 model and the other CBR models discussed later all have the same limitation

of not providing concrete methods for implementing each of the steps involved. This is due to the

requirement of domain specific step implementation, as a single method may not be best suited to

every domain. As a result, the R4 model should be seen as a general outline for implementing CBR

systems, allowing research and development to focus on the best method for each of the cycle’s

steps.

3.2.2 Kolodner’s model

Kolodner [1993] describes CBR as serving two separate purposes, both using concrete cases rather

than abstract rules. The first purpose is for remembering cases to aid in solving new problems

(problem-solving CBR). The second is to remember cases in order to understand new problems

(interpretive CBR). In complex domains both these purposes are often used together.

Figure 3.2: Kolodner’s CBR model [Kolodner, 1993]

The model begins with case retrieval and the reuse of retrieved cases to propose a solution as

described in the R4 model, but then differentiates depending on the purpose of the CBR system. For

problem-solving CBR, the predicted solution is subject to adaptation; as with the R4 model. For

interpretive CBR, the next step of the model is justifying the proposed solution. This justification

is done through comparing the new problem with previous cases in order to identify similarities to

reinforce the proposed solution, and to identify differences which need to be further assessed.
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Once a proposed solution has been adapted in the instance of problem-solving CBR, or justified

for interpretive CBR, the solution is now criticised. This involves either simulating the solution or

testing the solution against hypothetical situations. The outcome of the simulation or testing is

then assessed to determine if further adjustment is required prior to retaining the case.

Prior to retaining the new problem as a case for future reuse, the solution is evaluated in the

real world. This step is considered important by Kolodner, as it facilitates providing feedback

into why failure occurred and provides reasoning behind the failure. This failure and the reasons

behind the failure can then be used to adapt the solution further, and to aid the prediction and

solution of failures for future problems.

Kolodner’s model concludes with a memory update for retaining the problem, solution and

other information useful for future reasoning. This memory update step includes indexing the

new case in such a way that it can be retrieved again when it would be helpful in assisting future

problems. Indexes are discussed in more detail in Section 3.3.2.

3.2.3 Hunt’s model

Fundamentally, Hunt’s CBR model [Hunt, 1995] is similar to both the R4 and Kolodner models; the

main difference resides in the analysis of inputs [Avramenko and Kraslawski, 2008]. This analysis

stage involves feature selection to determine which attributes are important in the retrieval process.

By performing this feature selection, the obsolete attributes can be ignored in the retrieval process.

The retrieved case is then adapted to fit the problem prior to evaluation in order to determine

whether the solution is suitable. In the event the retrieved case cannot solve the new problem, the

reasons behind why it failed are used as a way of repairing the case by forming a new solution.

Once the problem is repaired it can then be stored for future use.

Figure 3.3: Hunt’s CBR model [Avramenko and Kraslawski, 2008]



51

3.2.4 Allen’s model

The model proposed by Allen [Allen, 1994] consists of five stages: presentation, retrieval, adapta-

tion, validation, and update [Avramenko and Kraslawski, 2008]. Allen’s model is similar to the

models previously discussed, but includes an additional process prior to retrieval. This additional

step explicitly states that a description of the current problem is created for input into the CBR

system. This step is also present in the R4 model but not as a process in its own right.

Figure 3.4: Allen’s CBR model [Avramenko and Kraslawski, 2008]

3.2.5 Comparison of the models

All four of the models discussed previously are fundamentally similar in terms of the overall process

cycle, and revolve around retrieving, adapting and revising cases from the case-base to obtain and

improve solutions. The R4 model is the most established and widely cited, most likely due to the

publication’s ease of access and easily remembered steps.

Kolodner’s model is unique as it proposes the concept of problem-solving and interpretive CBR

as two separate tasks. The model is also focused on the importance of learning from failures

to anticipate them in the future. Hunt’s model introduces the concept of pre-processing through

feature selection. It may have been considered that this process is somewhat natural. However, the

concept that retrieved cases should be relevant to solving the problem is important to the success

of CBR, and it is beneficial to explicitly state this in the model. It is difficult to differentiate

between the Allen and R4 models other than the additional initial step of presentation in Allen’s

model and naming of the cycle phases.

A common problem with CBR and AI in general is that no single method is suitable for use

across all domains [Aamodt and Plaza, 1994]. This leads to the challenge of devising appropriate

methods for each step of the CBR cycle to meet the demands of the specific domain.
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3.3 Case-based reasoning processes and components

The CBR models provide abstract guidance on how to implement a CBR system. In this section

the components and processes used by these models are examined in more detail. Firstly, the cases

and the case-base which retains them are discussed. This is followed by a detailed look at the steps

presented in the R4 model: retrieve, reuse, revise and retain.

3.3.1 Cases and the case-base

In CBR, records of historical events are known as cases, and represent specific knowledge relating

to a context [Kolodner, 1993]. These cases act as a blueprint describing information known about

a historical event called features, and the resulting outcome or solution. In the context of bolus

advice for T1DM, these case features will include information such as the quantity of carbohydrates

within a meal, the subject’s blood glucose level, and the time of the meal. The solution of the case

is the bolus insulin administered.

Cases are retained in a case-base for use by the CBR system. The complexity of the case-

base depends on the complexity of the domain. In well-defined domains where the features of the

cases are known, the structure of a case-base is simple. The complexity of the case-base structure

increases when the system is working with multiple domains or the structure of each case varies

greatly. Approaches for handling complex case-bases are discussed in the indexing section.

3.3.2 Indexing

In CBR, indexes are pointers to general episodes or concrete cases. Indexes facilitate the retrieval

stage by identifying relevant cases to a new problem and so affect efficiency. Indexing a case-base

was first introduced by Kolodner with the CYRUS system [Kolodner, 1983], based on Schank’s

dynamic memory model [Schank, 1983]. In CYRUS the case-base is a structure containing three

types of object: norms, indexes, and cases (Fig. 3.5) [Kolodner, 1983; Aamodt and Plaza, 1994].

Norms are general episodes consisting of all features applicable to all cases in the norm. Indexes

are a two component object consisting of the index and values to further discriminate the features

within the norm. The index values point to concrete cases or other norms.

The creation of indexes is a system and domain-dependent task and can be created manually or

automatically. Manual indexing requires an indexer to identify important features and any lessons

learnt in a case. The indexer requires knowledge of the domain in order to produce informed

indexes. For example, indexing a hyperglycaemic event with a cause such as stress. The next time

a new problem is presented to the CBR system with the feature of stress, the retrieval process

would then consider cases indexed by stress as plausible for reuse. Manual indexing can be a time-

consuming process which can result in inconsistent indexing, especially where there are multiple
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Figure 3.5: Example structure of CYRUS’ case-base [Aamodt and Plaza, 1994]

indexers involved.

Indexing through abstraction in CBR aids the retrieval process by allowing problems and cases

to be compared away from their concrete instances. This is useful in systems catering for multiple

domains, and also for those systems with a large number of features or where the features of a case

can vary. Increased levels of abstraction provide further reduction in complexity and constraints

[Bergmann and Wilke, 1996].

With abstraction, the case-base can be seen as a hierarchical structure consisting of concrete

cases and abstract cases, as with CYRUS. Each concrete case is a child of an abstract case, and

depending on the levels of abstraction used, abstract cases are a child of other more abstract cases.

Using different levels of abstraction provides benefits for retrieval as the degree of similarity a new

problem has to a case can be determined through similarity at different levels of abstraction. The

lower the level of abstraction a new problem matches a subset of cases, the higher the similarity

and more relevant for this subset of cases is likely to be for reuse.

Kolodner [1993] provides examples of how CHEF [Hammond, 1986] is able to use both concrete

and abstract indexing to help recall cases. A case could have an index of dish includes beef, however

when recalling previous cases other meat dishes would not benefit from this index. Instead if the

case is indexed more abstractly as dish includes meat, the case can then be recalled when the user

wishes to create a dish cooked with another meat such as lamb. However, abstract indexes do have

the disadvantage of important details being missed which could result in failure. For example,
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CHEF adapts a vanilla soufflé recipe to create a strawberry soufflé with the result that it fell. The

corrected recipe should then be indexed in a more concrete fashion such as dish type is soufflé and

dish includes fruit so that in future recalls a fruit based soufflé will not result in the same failure.

Automated approaches for indexing include the creation of data structures such as a binary

search tree, in addition to the indexing of cases by important features and lessons learnt. The use

of a binary search tree or k-dimensional tree (k-d tree) for multidimensional problems removes the

need for a traditional indexing approach [Wess et al., 1993]. As CBR is usually a multidimensional

problem, the discussion focuses on the use of k-d trees. A k-d tree partitions the case-base recur-

sively using a similarity measure to discriminate each dimension, each dimension being a feature of

the case. This discrimination can be achieved through methods such as evaluating the dispersion

of numerical or ordered nominal feature values, entropy or the similarity of cases to one another.

The structure and success of the k-d tree is largely dependent upon the discrimination method

used to partition the k-d tree. The leaves of the tree may be a single case or a bucket of cases, the

size of this bucket is predetermined before creating the k-d tree. During the creation of the tree

the recursion will end when the bucket size is reached. Once the k-d tree is created, retrieval can

quickly traverse the tree until a leaf or bucket is reached.

In this research, the majority of case discrimination is on feature values, as the features of

cases will remain constant. As a result, using CYRUS’ indexing approach would lead to one

general episode, and discrimination would only be achieved by the index-values. This approach of

abstracting cases could prove useful if cases do not always contain certain features, such as stress,

exercise, hypoglycaemic or hyperglycaemic events. The use of k-d trees for indexing is applicable

to this domain as all features are naturally numerical or can be represented on a nominal scale;

however, this approach focuses on retrieval efficiency for larger case-bases [Wess et al., 1993]. As

this research will use a small personal case-base the need for efficiency is low, and the resources

required to create and maintain the k-d tree may outweigh the benefits.

3.3.3 Retrieval

The retrieval process identifies the most similar case or subset of cases retained in the case-base

to a new problem [Kolodner, 1993]. As a case-base can be extremely large, selecting the most

appropriate retrieval method involves finding the balance between efficiency and the ability to

locate the best matching cases within the case-base.

Retrieval begins with the identification of features within the new problem, and is the first

stage of understanding the problem and its context [Aamodt and Plaza, 1994]. Unknown features

within the problem require understanding or removal. For understanding, it is common for the user

to explain the feature in order to link it to relevant category of the case-base, where for example

a category can be an index node. The issue of feature identification is outside the scope of the
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research undertaken as the features are already known, and only the values of the features will

change.

Once the features of the new problem are understood, the case-base is searched to identify the

best matching cases to the new problem. This matching process usually comprises two stages;

dimensional matching and aggregate matching [Kolodner, 1993]. Dimensional matching identifies

similar cases on a feature by feature basis and is usually facilitated by indexes. Aggregate matching

uses a more elaborate similarity measure to match the whole problem to whole cases.

Dimensional matching is used to resolve the serial search efficiency problem by retrieving a

subset of plausible cases from the case-base using each feature (dimension) of a new problem

independently. One approach to dimensional matching is the traversal of the case-base structure

such as a k-d tree and abstract hierarchies to locate a subset of relevant cases. For case-bases

where such structures do not exist, a filter can be adopted, where the relevant cases are selected

based on their features and corresponding values. An example of dimensional matching as a search

filter is selecting only subjects within a certain age range from the case-base dependent upon the

value of the feature age in the new problem.

Aggregate matching compares all the features of a new problem to the features in a retained

cases in order to determine similarity. This similarity is determined through a appropriate similarity

measure, discussed in Section 3.3.4. Aggregate matching is resource intensive and so is often used

after dimensional matching to reduce the number of cases where it is required. Features present in

the new problem are mapped to the features within cases retained by the case-base. The complexity

of mapping these features is dependent upon the domain of the CBR system. In well-defined

domains - such as T1DM - where the features of the new problem and cases remain constant the

mapping process is simple. The features representing the new problem will correspond to features

within a retained case. However, in systems where the features present in a new problem or case

may vary, this mapping process becomes more difficult. This is most prominent with cross-domain

CBR systems, or if the domain has a large scope. In the cross-domain systems, the features

contained within each case are likely to differ. In addition, the meaning of features which appear

to be similar can vary depending on the context. For these CBR systems, abstraction and heuristic

rules are often used to provide relationships between features.

A serial search is the simplest retrieval method, where each case retained in the case-base is

subject to an aggregate match. This method is not efficient, but does have the advantage that

every case is considered, meaning that there is no risk of relevant cases being omitted. With the

decreasing cost and availability of hardware capable of parallel processing since the advent of CBR,

there is an argument that the need for indexing is unnecessary due to the increased complexity

and maintenance required of the case-base. Advocates of indexed case-bases argue that it can be

used as part of the matching process [Kolodner, 1993].
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3.3.4 Similarity measures

Similarity measures are required to perform an aggregate match. A similarity measure can be a

numerical evaluation function, heuristic evaluation, abstraction, or a combination.

Numeric evaluation involves determining how similar two cases are through the use of a distance

function and is also known as nearest neighbour matching. The distance function takes each feature

contained within a new problem and compares it to the corresponding feature within a stored

case. It is likely that all features are not of equal importance; to overcome this, each dimension is

weighted within the distance function to represent its importance [Cunningham and Delany, 2007].

Common distance metrics used for this purpose include variations on the Euclidean, Manhattan

and Minkowski distance functions. Most commonly, some form of the Euclidean distance metric

is used with continuous features [El Emam et al., 2001], with an investigation demonstrating the

benefits of the weighted Euclidean distance [Mendes et al., 2003].

The Euclidean distance calculates the straight line distance between two points in feature space.

In the context of CBR this relates to the distance between a feature of a problem and the corre-

sponding feature in the retained case. Both the Euclidean distance and Manhattan distance are

reliant on both the new problem and retained case having the same structure (identical features).

Equation 3.1 defines the Euclidean distance calculation, let p be the new problem, c be a retained

case, n be the total number of features in the new problem or retained case, and i be an index

relating to the feature of the new problem or retained case (e.g. pi and ci will relate to the feature

of time in both instances).

ed(p, c) =

√√√√ n∑
i=1

(pi − ci)2 (3.1)

The weighted Euclidean distance is more suitable for CBR since it is likely that not all features

will have the same impact on the similarity. Equation 3.2 defines the weighted Euclidean distance

calculation, with one additional factor of feature weight w.

wed(p, c) =

√√√√ n∑
i=1

wi (pi − ci)2 (3.2)

The Manhattan distance in comparison determines distance through the sum of the absolute

differences of their Cartesian coordinates. It is for this reason it is sometimes referred to as taxicab

geometry, reflecting the route a taxicab would take around a grid road network (e.g. Manhattan,

New York). The standard Manhattan distance calculation is defined in Eq. 3.3 and weighted

Manhattan distance in Eq. 3.4.

md(p, c) =
n∑

i=1

|pi − ci| (3.3)
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wmd(p, c) =
n∑

i=1

wi|pi − ci| (3.4)

An example of the weighted Euclidean and Manhattan distance is presented to help illustrate

the process. In this example a new problem p is presented in Table 3.1 and two cases c are retained

in the case-base with the IDs 1 and 2, as displayed in Table 3.2. Each case has two features A and

B both of which has been normalised to a scale of 0.0 to 1.0. The weightings for each feature are

displayed in Table 3.3.

Feature A p1 Feature B p2

0.6 0.6

Table 3.1: Example new problem p for the weighted Euclidean and Manhattan distance examples

Case ID Feature A c1 Feature B c2

Case 1 0.8 0.5
Case 2 0.2 0.8

Table 3.2: Example cases c for the weighted Euclidean and Manhattan distance examples

Feature A w1 Feature B w2

0.4 0.6

Table 3.3: Feature weights w for the weighted Euclidean and Manhattan distance examples

Example 1 (Weighted Euclidean distance example).

wed(p, c) =

√√√√ n∑
i=1

wi(pi − ci)2

wed(p,Case 1) =
√

0.4(0.6− 0.8)2 + 0.6(0.6− 0.5)2

=
√

0.4× 0.04 + 0.6× 0.01

=
√

0.0160 + 0.006

=
√

0.022

= 0.148

wed(p,Case 2) =
√

0.4(0.6− 0.2)2 + 0.6(0.6− 0.8)2

=
√

0.4× 0.16 + 0.6× 0.04

=
√

0.064 + 0.024

=
√

0.088

= 0.297
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Example 2 (Weighted Manhattan distance example).

wmd(p, c) =
n∑

i=1

wi|pi − ci|

wmd(p,Case 1) = 0.4|0.6− 0.8|+ 0.6|0.6− 0.5|

= 0.4× 0.2 + 0.6× 0.1

= 0.08 + 0.06

= 0.14

wmd(p,Case 2) = 0.4|0.6− 0.2|+ 0.6|0.6− 0.8|

= 0.4× 0.4 + 0.6× 0.2

= 0.16 + 0.12

= 0.28

In both the weighted Euclidean and Manhattan examples it is determined that Case 1 has the

shortest distance to the new problem p and as a result can be considered the most similar case. As

the example demonstrates, these two distance functions do not return the same result, meaning

that in some situations the case retrieved can vary between the distance functions.

A distance function is not always suitable for determining similarity. Heuristic evaluation may

be used in situations where the similarity cannot be gauged without knowledge of the domain.

This evaluation process results in the exclusion of cases where it can be predicted that a case

will not solve the problem, and when used in conjunction with numeric evaluation, this exclusion

will occur first. If the new problem requires context, for example in cross-domain systems, then

heuristic evaluation is also needed. Heuristic evaluation allows for specific features to be considered

more important depending on the context. Where user interaction is required, the user will define

which features are most important in order to filter the matches, or to adjust the ranking by the

given preferences.

Abstraction provides a useful mechanism for retrieval when feature values require mapping,

similar to the use of heuristic rules. In abstraction, the rules are not explicit; instead they are

inferred through relationships and levels of abstraction. For example, in CHEF a new problem

is presented with the feature ingredient and feature-value beef sirloin steak. At a high level of

abstraction, beef sirloin steak is a meat. This would infer similarity between beef sirloin steak

and all types of meat; excluding other factors such as texture. At a lower level of abstraction,

beef sirloin steak is a red meat, and as a result has greater similarity to other red meats. The
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abstraction level can again be lower, with the type of meat as beef, where other concrete instances

include sirloin steak, T-bone steak and fillet steak. As a result, feature values at a lower level of

abstraction infer greater similarity, with concrete instances being the most similar.

In situations where a feature is missing, the system needs to determine whether the absence of

a feature can be ignored through the use of evidence [Koton, 1988]. This evidence principle may

be used when multiple states relate to the same solution. For example, in a diagnostic application

the system can ignore a feature which supports a certain diagnosis should there be another feature

present which supports the same diagnosis. If the differences between the features in the new

problem and old case can be reconciled, it may be suitable for reuse.

The problems stated above become even more prolific in cross-domain systems. The use of

structure mapping is used to overcome this problem. In structure mapping, cases from two different

domains can be compared on a more abstract level based on the structure of the cases. The theory

is that if two cases share the same structure, then despite representing two different domains, the

functional role will be similar.

Selecting an appropriate similarity measure is dependent upon the structure of cases and the

case-base. In this research all features to be included are numerical so a nearest neighbour match is

a logical approach to use. Other approaches such as heuristic rules and abstraction may be suited

should subject’s share a case-base in order to identify cases recorded by other similar subjects.

3.3.5 Reuse

A predicted solution is proposed through the reuse of the most similar case or cases from the

retrieval stage. Reuse in the R4 model is the stage of adaptation which determines what can be

reused from the retrieved cases, and what needs adjusting to fit the new problem [Aamodt and

Plaza, 1994]. As CBR is designed to find partial matches, it is common for an old case to not

exactly match the new problem. In order to overcome this issue, the adaptation of cases is required.

There are two primary strategies for adapting cases – substitution adaptation and transformation

adaptation [Kolodner, 1993].

Substitution adaptation can be achieved in a variety of ways. The method called parameter

adjustment is the most relevant to this research. Differences between the new problem and existing

case are used to apply specialised rules to the solution. JUDGE [Bain, 1986] a case-based reasoner

for sentencing crimes will be used to give an example of substitution through parameter adjustment.

JUDGE is presented with a new problem to sentence, in which the victim is killed but the cause

is accidental. The case retrieved as the best fit to the new problem also features that the victim

is killed; however in this existing case, the death was caused by intent. As the cause of death

differentiates, JUDGE adjusts the sentence to reflect this; in this case reducing the sentence by a

percentage value.
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In the context of this research, parameter adjustment can be used to adjust the insulin according

to differences in features between the problem and existing case. An example of this is to adjust

the bolus advice by reconciling differences between the active insulin in the new problem and the

retrieved case. Active insulin is the insulin which remains active in the subject from a prior bolus

dose, and the stacking effect of active insulin can lead to hypoglycaemia [Toffanin et al., 2013;

Walsh and Roberts, 2015]. If the active insulin in the problem is greater than that of the retrieved

case, the bolus insulin advice will need to be decreased to reflect the difference. In contrast, if

the active insulin in the problem is lower than the retrieved case, the insulin dose will require an

increase.

Re-instantiation is another method of substitution adaptation which substitutes the values of

the new problem into the case selected for reuse. The values of the features can be adjusted where

differences between the old case and the new problem can be used to justify changing a value.

CHEF [Hammond, 1986] provides an example of re-instantiation, where if at an abstract level the

ingredients within the reused case (a recipe) contains the same type of ingredients as the problem

(goals of the meal), then the ingredient in the problem can be substituted into the reused case. In

a concrete example, if an old case contained the ingredients chicken and peas and the new problem

requires pork and carrots, CHEF would re-instantiated the old case (chicken and peas) as pork

and carrots in order to fit the new problem. This substitution is based on the reasoning that these

ingredients are interchangeable because both pork and chicken are meat, and both carrots and peas

are vegetables. Re-instantiation requires some form of abstraction, such as an ontology to connect

similar concrete instances. In this research, the features do not suit the use of re-instantiation; as

for example, a blood glucose reading will always be a blood glucose reading and the carbohydrates

will always be carbohydrates.

Transformation adaptation is used when substitution adaptation is not a viable option. Trans-

formation is achieved either by a common sense approach, or through model guided repair. An

example from JULIA [Hinrichs and Kolodner, 1991] is chosen to explain transformation and how

it differs from substitution [Kolodner, 1993]. In JULIA, a meal is designed based on some con-

straints. JULIA is presented with a new problem with the constraints of pasta dish and kosher

meal, which being kosher cannot contain a combination of meat and dairy ingredients. The most

similar retained case JULIA can retrieve is lasagne, which contains both meat and dairy in the

form of cheese. In order to satisfy the constraints of the problem, JULIA must transform the

case to adapt to the new problem. JULIA selects two possible transformation heuristics to adapt

the problem from the system. The first transformation heuristic is remove meat since meat is

considered a secondary ingredient. The second is to substitute the meat based on a role it plays,

which in this example is protein. Using this transformation the meat is replaced by the non-meat

protein ingredient QuornTM. Common sense has to be applied to the transformation, as should

the protein component be removed, the dish will no longer be lasagne. In this example, common
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sense says the transformation rule: substitute meat for QuornTM is the best adaptation. JULIA’s

common sense for choosing the best transformation heuristic is based on user intervention; JULIA

will ask a question and the user decides whether or not to proceed. With this transformation, the

retrieved case fulfils the constraints of the new problem.

Model-guided transformation is an automated form of transformation adaptation achieved by

evaluating the similarities and differences between a new problem and an old case to find a suitable

repair heuristic. This repair heuristic is chosen based on general rules inferred by the similarities

and differences in an attempt to reconcile the differences. For example, if similarities between the

features of the new problem and existing case support the predicted solution then any features

known to be redundant to this solution will be removed from the new problem.

The best adaptation strategy to adopt is circumstantial. In the case of this research, a viable

adaptation strategy would be substitution through parameter adjustment, as presented in the

example of active insulin adjustment mentioned earlier.

3.3.6 Revise

Revision seeks to improve the future knowledge of the CBR system using real-world experience.

Aamodt and Plaza [1994] break the revision stage into two tasks of evaluate and repair. If the

evaluated solution is considered successful, then the problem and solution are retained as a new

case. If the solution is not successful, then the reason for the failure is used to repair the solution.

The evaluation of a solution usually occurs outside the CBR system, most commonly in the real-

world. In medical domains the results of evaluation may take several months or years. Prior to

evaluation, the new case can be stored in the case-base, but it should be noted that the solution

has not yet been evaluated [Aamodt and Plaza, 1994]. An alternative to real-world evaluation is

the use of a simulator capable of generating a correct solution.

Faults identified during evaluation require repairing prior to retaining the new case. For ex-

ample, in CHEF, problems not foreseen by the system cannot be repaired until after a dish is

created. Looking again at the soufflé example from Section 3.3.2 Indexing [Kolodner, 1993][Ham-

mond, 1986], if CHEF had not previously made a fruit soufflé, the system would not be able to

anticipate that adapting the vanilla soufflé dish would result in the soufflé falling. As a result,

this fault can only be detected after the dish has failed. It in these situations where the fault must

be repaired through revising a solution which has already been accepted. In the soufflé example,

the recipe will be revised to account for the extra liquid resulting from the use of fruit in order

to prevent the soufflé from falling. CHEF not only uses these revisions to fix a recipe, but also

retains these errors to anticipate and avoid faults in future tasks.

In this research, a postprandial blood glucose reading is used to evaluate the cases in order to

determine if the solution requires repairing. The postprandial blood glucose reading informs the
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subject of their blood glucose levels after the meal and bolus insulin dose. It is this stage which

lets us known if the solution was successful or unsuccessful. If successful, the new case can be

retained. If unsuccessful, the solution is revised to increase or decrease the bolus suggestion prior

to retaining the new case.

3.3.7 Retain

Retaining cases is fundamental to the acquisition of knowledge for aiding future problems [Aamodt

and Plaza, 1994]. The effort of identifying similar cases, reusing, evaluating and repairing the new

problem would be wasted if this information is not retained.

It is important to retain cases whether the outcome was desired or not. One aspect of retaining

is to store information of why failure occurred to facilitate future problem solving. The reasons

for failure can then be used to modify solutions in the future. How these failures are stored is

dependent upon the system, but they can be retained either as part of the new problem or be

retained as separate failure cases. Failure cases can then be used to predict problems in advance,

and adjust solutions to prevent this failure re-occurring.

If indexing is used, then it is important that a new case is correctly indexed during the retain

step. It may also be necessary to adjust existing indexes to identify relevant cases during subsequent

retrievals. For an example of appropriate abstract and concrete indexing please refer to Section

3.3.2 Indexing.

3.4 Examples

This section discusses seminal case-based reasoners developed for different purposes and domains

to illustrate the models and concepts introduced so far. These purposes are conflict resolution

(MEDIATOR) [Simpson Jr, 1985], diagnosis (CASEY) [Koton, 1988], planning (CHEF) [Ham-

mond, 1986], and design (JULIA) [Hinrichs and Kolodner, 1991]. All the case studies share the

fundamental characteristics described in the CBR models, but vary in emphasis. These funda-

mental characteristics are the use of historical knowledge stored within a case-base, a retrieval

mechanism, the ability to reuse and adapt cases to fit a new problem, and a method to evaluate

and revise the solution.

3.4.1 MEDIATOR: A case-based conflict resolver

MEDIATOR [Simpson Jr, 1985; Kolodner and Simpson, 1989] is a case-based reasoner developed

by Robert Simpson during his PhD at Georgia Institute of Technology. MEDIATOR was designed

to resolve disputes between two parties through inference, with the aim to determine resolutions in

which both parties may agree. MEDIATOR uses case-based inference to understand the problem,
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generate a plan, and recover in the event of failure. In the event MEDIATOR is unable infer

solutions using existing cases, it resorts to rule-based methods.

MEDIATOR initially identifies characteristics of the dispute in order to classify it against known

dispute types. MEDIATOR will ignore cases which fail to match any specified key features within

the new dispute. Having established classifications for the dispute, similar cases are retrieved from

the case-base. MEDIATOR then ranks the cases retrieved depending on how similar they are to

the new dispute. With the most similar case identified, the program begins to infer a plan to

resolve the dispute from retrieved cases. This plan is then subject to checks to ensure that it meets

the criteria and goals of the disputants.

MEDIATOR relies on feedback from the solution plan in order to improve decision making.

Should the solution be rejected, the system will attempt to explain the failure from a similar

previous case which also failed. MEDIATOR will then attempt to correct the cause of failure

through a remedy provided by the similar failure case, or through resolution plans. With the

failure resolved, MEDIATOR draws up a new plan to solve the problem.

The major contribution of MEDIATOR is its ability to infer solutions to a variety of problem

solving tasks through the reuse of experience, as opposed to relying on rule-based methods. The

processes used by MEDIATOR were later adopted and improved by other case-based reasoners

such as CASEY, CHEF, and JULIA.

3.4.2 CASEY: A case-based diagnostician

CASEY [Koton, 1988, 1989] is a case-based reasoner designed for the task of diagnosis. The goal of

CASEY is to diagnose a new subject using the features which represent the subject. The features

representing these subjects consist of details such as subject signs, medical history and symptoms.

Cases retained in CASEY’s case-base contain the features of the subject and the successful

diagnosis achieved through evaluating these features. The original case-base used by CASEY was

created using diagnosis produced by the separate Heart Failure Program [Long and Naimi, 1987],

a model-based reasoner. This Heart Failure Program is also used as a back-up for when CASEY

itself is unable to successfully predict a diagnosis. The diagnoses produced by the Heart Failure

Program are then added to CASEY’s case-base for future use. The implementation of CASEY

focuses primarily on the retrieval, justification and adaptation.

CASEY begins its diagnosis by first retrieving the most similar case to the new subject. If

CASEY is unable to identify a similar case, it is passed directly to the Heart Failure Program

for diagnosis. Following retrieval, CASEY uses evidence rules to justify whether a retrieved case

is suitable for achieving a successful diagnosis. Evidence rules for CASEY specify the situations

where differences can be resolved; providing CASEY with the ability to eliminate cases during

retrieval, and also allow features of the new subject and retained cases to be removed, added or
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adapted. For example, cases with a diagnosis which is known to be associated with a low heart

rate would be eliminated if the new subject has a high heart rate. Where features are not present

for the new subject or the retrieved case, evidence is found to suggest the feature may be present

or is not relevant and can be ignored. In the event significant differences are found, CASEY will

determine that the match is not suitable. Where CASEY finds all differences to be insignificant,

the old case can be adapted to account for the differences identified.

Adaptation of cases that are deemed by CASEY to have insignificant differences is done based

on the evidence principles used in the justification stage. This process involves adding, removing

and substituting features or states in the retrieved case to fit the new problem should there be

suitable supporting evidence.

If CASEY is able to reach a diagnosis for the new subject, the features of the subject and the

resulting diagnosis are retained within the case-base for future reuse. Otherwise, when CASEY

fails to achieve a diagnosis itself, it will then revert to passing the new subject to the Heart Failure

Program for diagnosis. The resulting diagnosis is then stored within CASEY’s case-base for future

reuse.

The accuracy of CASEY’s diagnoses are as a result of the Heart Failure Program’s model, and

the additional evidence rules included by CASEY do not reduce the accuracy [Kolodner, 1993].

The benefit of CASEY over the Heart Failure Program resides in its efficiency, with a two to three

magnitude increase in response time. This demonstrates how CBR can be used to increase the

efficiency of a model-based approach without negatively impacting the outcome.

3.4.3 CHEF: A case-based planner

CHEF was created to be a case-based reasoner for the purpose of planning in the domain of dish

recipes [Hammond, 1986]. CHEF plans a dish through the use of previously known recipes, which

consist of the sequence of events and the ingredients used to produce the dish. Failures which

occurred when making the dishes are also stored by CHEF in order to predict failures in the

future.

CHEF begins its planning process through the input of goals required for the dish. These goals

can be the inclusion of certain ingredients, or desired characteristics of the dish. CHEF will always

attempt to predict failures which may occur in the specified goals based on failures which occurred

in previous cases. Should CHEF predict a failure, a new goal will be added to avoid this failure.

An example of this failure prediction would be having historical knowledge that a combination of

ingredients in the problems goals would contradict the desired texture of the dish.

The established goals representing the new problem are input into CHEF to begin the retrieval

process. The best matching recipe retrieved from the case-base is that which achieves the most of

the specified goals. The importance of these goals is also factored into the decision. In CHEF the
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type of dish is considered more important than the type of meat in the dish for example.

With a recipe selected, CHEF is able to begin its adaptation phase. This firstly involves sub-

stituting ingredients where required. In order for this to occur, CHEF must have some knowledge

about the ingredient, such as knowing that chicken is a type of meat. An example of this adap-

tation occurring would be when CHEF has identified a recipe where the dish type matches that

specified in the problem, but the meat used in the retrieved dish is different to that specified in the

problem. In this instance, CHEF will change the meat within the retrieved recipe to that which

is specified in the problem. CHEF will then further adapt the recipe to include the specific steps

required for certain ingredients, and steps for the ingredient when used in that type of dish. An

example would be de-boning a chicken prior to use, a step which does not exist in the retrieved

recipe as a different meat which did not require de-boning was present.

Having created a new recipe, CHEF then seeks feedback through the simulation of the recipe.

This feedback allows CHEF to identify failures in order to repair the recipe. If a failure is identified

during simulation, CHEF will use known strategies to try and resolve the failure. These strategies

are stored in structures known as Thematic Organisation Packets (TOPs). Each TOP is an abstract

planning problem and contains a set of strategies for resolving the problem. An example of a TOP

in CHEF is the concurrent cooking of two ingredients. CHEF will identify steps in the recipe which

relates to a TOP. If the identified TOP does not contribute towards a goal of the problem, then

relevant strategies within the TOP will be applied in an attempt to resolve the failure. For the

concurrent TOP example, a strategy to cook the ingredients separately could resolve the problem

if doing so would not result in the failure of another goal.

Once the recipe meets the goals provided without failure, the recipe is stored in the case-base.

This will include information about any failures encountered, and how they were resolved to prevent

them occurring in future reuse.

CHEF’s major contribution to CBR is the ability to predict failures of a new problem based

upon experience. CHEF’s failure prediction is a result of failure resolution using pre-defined domain

knowledge stored in abstract planning problems called TOPs. The TOPs contain various strategies

to overcome the abstract planning problem, which requires domain expertise to create. The use

of TOPs for failure resolution works well in specific domains where expert knowledge is available.

Although TOPs are abstract, and could cater a large scope, the strategies relating to the TOPs

may require maintenance. This would be likely if the scope of the system increases, and additional

TOPs and strategies are required. Without domain knowledge, and defining the strategies, CHEF

would not be able to resolve failures; and as a result could not predict failures when planning a

dish.
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3.4.4 JULIA: A case-based designer

JULIA is a case-based reasoner for designing meals [Hinrichs and Kolodner, 1991]. A case-based

designer produces a concrete outcome based on a set of constraints, and does not describe the se-

quence of steps taken (the plan) to reach this outcome. Designing involves adapting the constraints

to produce a concrete outcome, removing contradicting constraints and adding new constraints

where too many possibilities of a concrete outcome exist. In contrast, a case-based planner such as

CHEF forms a plan of the required steps to be taken in order to reach a desired outcome [Kolodner,

1993]. As a result, JULIA is not be able to provide details on how to cook a dish as its purpose

is not to produce a recipe. Instead the purpose is to determine what courses, cuisine and dishes

would be suitable for the given constraints.

JULIA like CHEF not only uses previous cases to reach its conclusions, but also uses rules or

constraints to aid the design process. This general knowledge of the domain allows for the meal

plan, and meal dishes to be adjusted where previous cases may not be available to aid the design

process. This general knowledge contains information on concepts such as types of meals, courses

and social events.

When JULIA receives a new meal to plan, it will first attempt to define the structure of the

meal by finding a similar case which fits the criteria provided. This meal structure is a general

outline of the meal in terms of the number of people and types of courses included. Should JULIA

fail to find a case which fulfils the criteria, it will resort to general knowledge to find an appropriate

meal structure. With a meal structure in place, JULIA then breaks down each course into separate

sub goals. From this point, JULIA will use the same cycle of attempting to use previous cases for

each sub goal first, and then using general knowledge and rules known if necessary.

A unique feature of JULIA in comparison to CHEF is the way it interacts with the subject.

Where CHEF is a fully automated system which works with the demands input by the subject,

JULIA instead will ask for feedback of suggestions or ideas during runtime. For example, should

JULIA determine that the ingredients specified are common to two types of cuisine; JULIA will

ask the subject which of the cuisines they would like.

In addition to asking the subject questions, JULIA is also able to cope with constraints being

added during runtime. If the new constraints breach the solutions already obtained for sub goals

in the meal, JULIA will attempt to adapt and repair the solutions. This may be achieved by

swapping ingredients for example. JULIA will only backtrack on solutions it has reached if the

solutions cannot either be repaired, or the constraints cannot be relaxed.
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3.5 Comparison to other reasoning approaches

Case-based reasoning provides a number of useful contributions to the creation of automated

reasoning systems. Case-based reasoning provides the ability to reuse previous cases which worked

in the past, and can advise of potential problems based on previous experiences. In addition, some

CBR implementations such as CASEY have been shown to outperform existing expert systems

in terms of speed whilst maintaining accuracy [Koton, 1988]. The expert system in the case of

CASEY is a model-based Heart Failure Program. However, CBR does some have disadvantages.

If no cases in the case-base are able to correctly solve the problem then adjustment rules are

necessary to produce a potential solution, which often requires expert knowledge. Additionally

optimal solutions may be omitted where decision trees are used to reduce the number of cases

considered.

A comparison of CBR with rule-based and model-based reasoning is presented in this section.

In the case of model-based reasoning, there is discussion into how it can be used in conjunction

with CBR to improve the overall capability of a system.

3.5.1 Rule-based reasoning

Case-based reasoning can be seen as a form of rule-based reasoning [Kolodner, 1993]. The under-

lying difference between CBR and a rule-based approach is in the way knowledge is applied. In a

rule-based system, knowledge is applied through defined rules inside the program, such as if-then-

else rules [Golding and Rosenbloom, 1996]. These rules are formed by experts with the appropriate

knowledge for the domain. In contrast, with CBR the content of the cases form the knowledge

base, emphasising the focus on case features and adaptation. Another difference between the two

approaches is that CBR is built around the concept of finding partial matches instead of requiring

an exact match to the predefined rules. A rule-based approach explains how a solution was achieved

by following the sequence of rules used. Case-based reasoning instead provides its explanation of

the solution through the information within the reused cases.

Case-based reasoning systems have been shown to require significantly less development time

as well as reduced maintenance. An example of this can be found in the comparison of two similar

systems using the different approaches CANASTA [Register and Rewari, 1991] and CASCADE

[Simoudis, 1992]. Both systems assist engineers in crash recovery of the Virtual Memory System

operating system. CANASTA is a rule-based reasoning system for diagnosis and required 960

person days to implement the system. CASCADE, a CBR system, instead only required 105 person

days. Rule-based systems require ongoing maintenance throughout their lifetime, due to the need

for new rules to be added. Often this results in the added complication of modifying existing rules.

In comparison, CBR systems require little maintenance, as the knowledge is updated through the
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addition of new cases.

Systems and frameworks have been developed to combine both rule-based reasoning and CBR.

This combination may be adopted to find solutions where the rules are unable to do so, and as a

method to increase efficiency [Golding and Rosenbloom, 1996]. CABARET [Skalak and Rissland,

1990] provides an example of how rule-based reasoning and CBR have been combined to aid

statutory interpretation. In CABARET, CBR is used to assist reasoning by identifying cases by

broadening and discrediting rules to support a particular viewpoint.

The drawback of rule-based reasoning systems is that they are limited by the rules known to

the system. Case-based reasoning instead provides a method to solve problems without rules, and

can reach a solution without requiring an exact match. Whilst rule-based reasoning systems can

be effective, the resources required and the limitations suggest that CBR can be more effective.

This is reiterated by some rule-based reasoning systems adopting CBR to assist in situations where

the rules alone cannot reach a solution.

3.5.2 Model-based reasoning

Model-based reasoning, as with CBR, was developed to remove the need to start the reasoning from

the very beginning [Kolodner, 1993]. Both use knowledge to provide reasoning to their solutions,

but the way the knowledge is represented is different. In CBR, knowledge is stored within cases,

containing features of a specific episode. In model-based reasoning, knowledge is constructed from

a good understanding of the domain and infers causal rules from observations to reach a solution.

Another difference between the two approaches is how the knowledge is used. In CBR, the

knowledge is used to construct a solution, but is not able to validate or evaluate them. In con-

trast, model-based reasoning does not provide a method for producing a solution, but instead the

knowledge to validate and evaluate solutions.

Case-based reasoning and model-based reasoning complement each other and are often used

together. The ability to apply knowledge about a domain in order to validate and evaluate cases

is an important part of the adaptation process. Examples of systems where these two concepts

work together include CASEY and JULIA, both of which use general knowledge about the domain

in order to perform adaptation. For example, CASEY uses a model-based approach to form

evidence rules in order to evaluate and adapt cases. JULIA instead uses a model-based approach

to construct different meal types in terms of the number of courses, and advises on the general

content within courses. Ultimately, the benefit of using CBR and model-based reasoning together

lies in the ability to reason about general situations whilst considering specific aspects of previous

episodes.
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3.6 Case-based reasoning in the T1DM domain

The rise in popularity of CBR has led to its use in many domains including assisting with T1DM

management. The T-IDDM (Telematic Management of Insulin-Dependent Diabetes Mellitus)

project contains the first notable work within the domain [Montani et al., 2000]. The project

set about classifying T1DM subjects in order to find and suggest therapies based on historic data.

Subsequent work was also undertaken at Ohio University as part of the 4 Diabetes Support Sys-

tem� project [Marling et al., 2007].

Case-based reasoning has primarily been used in the T1DM domain to classify subjects in order

to provide doctors with a system to assist the identification of appropriate treatment therapies as

opposed to assisting self-management [Montani et al., 2000; Marling et al., 2007]. An exception to

this trend is in the research and development of the CBR(R2R) advanced bolus calculator, funded

by the Imperial NIHR Biomedical Research Centre [Herrero et al., 2014]. The research in this

thesis also uses CBR to predict bolus advice, however the approach adopted differs from that used

by Herrero et al. [2014].

3.6.1 T-IDDM Project

Research into T1DM therapy using CBR was undertaken as part of the T-IDDM project [Montani

et al., 2000], which set out to implement a web-based telemedicine system, comprising of many IT

services for managing chronic subjects. The CBR system aims to classify subjects in order to find

appropriate past therapies. Abstraction is used to structure the case-base, where each concrete

case is a leaf node of the lowest level of abstraction (basic class). Higher levels of abstraction exist

in the hierarchy with the highest level being the root class. The root class contains all concrete

cases and abstract classes. The use of this structure allows more flexibility in the retrieval stage and

also provides allows cases with missing features to be classified more generally. Determining the

basic class of the case is achieved through Bayesian classification, with the actual implementation

using a Naive Bayes strategy due to the assumed independence of the features within the case.

Näıve Bayes assumes that all features are independent of each other whether they are present or

not [Kononenko, 1993]. For this approach, a subset of features considered most important by a

doctor are utilised for determining the probability the case belongs to a certain basic class. The

cases are represented by various features (e.g. sex, height, and weight) of the subject in general

and T1DM relevant factors (e.g. glycated haemoglobin (HbA1c), insulin regime, etc.).

During retrieval, both the most probable class and a set of classes can be considered by using

the Heterogeneous Euclidean-Overlap Metric (HEOM) and Heterogeneous Value Difference Metric

(HVDM) distance metrics respectively [Wilson and Martinez, 1997]. Both metrics cater for the use

of both continuous and nominal values, where the standard Euclidean metric cannot appropriately
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handle nominal values. The metrics also allow for missing data by defining the distance of missing

features as 1 on the scale [0, 1] where 0 is an exact match, and 1 is the maximum distance.

Results from this research on 147 cases found the classification technique had an 83% success

rate, with 98% of cases falling into the two most probable classes. The high success rate provides

evidence that CBR can be appropriate in this domain. However, the system is not intended for use

as self-management, but as a tool for doctors to use to find potential adjustments to the subject’s

therapy.

3.6.2 The 4 Diabetes Support SystemTM Project

The 4 Diabetes Support SystemTM [Marling et al., 2011] project is led by Marling at Ohio Uni-

versity and focuses on the use of CBR to suggest therapies for blood glucose control issues. Initial

research for this project began with a clinical study between 2006 and 2007 with twenty T1DM

subjects using insulin pumps [Schwartz et al., 2008]. The study lasted six weeks and required

the participants to log information regarding their continuous blood glucose level, activities and

general health. Doctors took the collected data to structure cases, each of which represented one

problem with blood glucose control, and a recommended solution. A rule-based assessment routine

was developed in conjunction with doctors to automatically identify problems in patient data. The

doctor selects key problems resulting from this rule-based assessment to be input into the CBR

system, with the output of a similar case for each key problem. The output cases are then reused

to determine appropriate therapeutic adjustments.

The CBR process used in this project begins by identifying a subset of the most relevant cases

based on the each key problem type. Each case within this subset is then subject to an aggregate

match to score the similarity. If the score calculated is above a certain threshold, then the doctor

is given the suggested therapy adjustment for the subject. The doctor can then decide whether or

not to accept the suggestion.

The system was evaluated by a panel of three doctors and one specialist diabetic nurse who

were asked to review a sample of 10 problems. These 10 problems were randomly selected from a

total of 352 problems which were detected by the system. The panel were asked three questions

is relation to the problems, and the results were mostly positive. One such result is that the

evaluators agreed that the system identified the problem correctly 77.5% of the time.

Another evaluation of the system was also undertaken, where a similarity threshold to remove

cases below a certain score was disabled. In this test, 10 out of a total of 50 cases were randomly

selected and presented to a panel of three doctors. The doctors agreed 80% of the time that the

cases identified were similar to the problem, despite the threshold being disabled.

Further research between 2009 and 2010 aimed to enlarge the case-base, devise rules for detect-

ing additional problems and to enable adaptation of previous cases. During this research subjects



71

collected data using a continuous blood glucose monitor and insulin pump, and uploaded general

day-to-day information on a daily basis via a Web browser. Later in the project subjects could

upload data using a mobile app.

The 4 Diabetes Support SystemTM project has continued evolve since the CBR tool was created,

but the focus of the project has moved away from CBR [Marling et al., 2011]. The project has

evolved to include work into the inclusion of other classification techniques for problems which

could not be reliably detected. Alongside this, there have been improvements to the interface.

Assessments of system performance have also been undertaken. The most recent addition to the

project is the inclusion of blood glucose prediction through Support Vector Regression.

3.6.3 CBR(R2R) Advanced bolus insulin calculator

Recent research published in 2014 into the use of CBR for bolus insulin advice has been undertaken

in a project funded by the Imperial NIHR Biomedical Research Centre [Herrero et al., 2014]. This

research uses CBR in conjunction with Run-to-Run control (R2R) algorithm to provide insulin

decision support on a mobile device. The R2R algorithm updates the insulin sensitivity factor and

carbohydrate-to-insulin ratio through the evaluation of two post-postprandial glucose samples.

Cases in the CBR(R2R) approach are comprised of a triplet: parameters of the problem, solu-

tion, and outcome. The solution retains the carbohydrate-to-insulin ratio in addition to the insulin

sensitivity factor. The outcome describes the results of applying the solution to the parameters of

the problem.

In the CBR cycle, the most similar case is retrieved from the case-base using a weighted distance

function. The solution from the retrieved case is then reused in a bolus calculator formula. During

reuse, the hyperglycaemic correction is only applied if the preprandial blood glucose measurement

is below or above set hypoglycaemia and hyperglycaemia thresholds. The solution is then revised

the outcome to the new problem is unsatisfactory. A new case from the new problem are only

created and retained if no similar case already existed.

Evaluation of CBR(R2R) using the UVa/Padova T1DM simulator [Kovatchev et al., 2009]

showed improvements over the use of R2R alone, reinforcing the benefits CBR can provide.

CBR(R2R) also resulted in improvements to mean blood glucose levels, and the complete elimina-

tion of hypoglycaemia, which was not achieved by R2R alone.

3.7 Summary

In this chapter, an overview of CBR has been described. Firstly, models proposed by Aamodt

and Plaza, Kolodner, Hunt, and Allen to outline the steps required for CBR were described. This

was followed by a more detailed look at the functionality of the steps in the R4 model proposed

by Aamodt and Plaza. This model is broken down into four phases: retrieve, reuse, revise, and
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retain. The retrieve phase identifies similar existing cases to a new problem. These retrieved cases

are then reused to propose a solution to the new problem. Reuse of the cases is often to subject

to adaptation in order to resolve differences between the new problem and the retrieved cases.

With a solution proposed, it is then subjected to real-world evaluation or simulation to determine

if the proposed solution is correct. The evaluation and revision phase is crucial to CBRs learning

process. Only through correcting and improving solutions can the system learn to improve future

suggestions. Finally, the evaluated solution is retained in the case-base for future reuse.

Although models for implementing a CBR system exist, they are abstract and each phase

requires implementation suitable to the desired task. Examples of the seminal CBR systems

MEDIATOR, CASEY, CHEF, and JULIA were used to illustrate some approaches used for devising

CBR systems in different domains. The overview of CBR concluded with a comparison of CBR

to rule-based reasoning and model-based reasoning. Development and maintenance of rule-based

reasoning systems was shown to be resource intensive in comparison to CBR systems. Whilst

model-based reasoning has been shown to have good synergy with CBR when the domain is well

understood.

The chapter concluded with a look into the use of CBR within the domain of T1DM. The

T-IDDM project and 4 Diabetes Support SystemTM utilised CBR in the T1DM domain to aid

doctors with improvements to therapy. Both projects demonstrating positive results, and highlight

the benefits of CBR in the T1DM domain. Most closely related to this research is the Imperial

NIHR Biomedical Research Centre’s CBR(R2R) project, which uses CBR to assist the optimisation

of a bolus insulin calculation formula, aiding self-management. Simulation of CBR in conjunction

with the R2R algorithm demonstrated positive results with improved blood glucose control, and

provides evidence for the benefits of using CBR in the context of T1DM bolus advice.

Using the techniques identified in this chapter, we describe a CBR system for T1DM self-

management in Chapter 4. The system follows the R4 cycle introduced in this chapter, with each

stage tailored towards the T1DM domain. The system includes a novel temporal retrieval algo-

rithm, active insulin adjustment and automated advice evaluation. The system is then tested and

evaluated in Chapter 5 to determine and evaluate the optimal retrieval, adaptation and evaluation

configurations, and how the system compares to existing tools.
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Chapter 4

A case-based reasoner for bolus

decision support

This chapter applies the domain understanding acquired in Chapter 2 and the CBR methods from

Chapter 3 to propose a CBR system for T1DM bolus decision support. The system is primarily

based on the R4 model, following the same cycle of retrieve, reuse, revise, and retain [Aamodt

and Plaza, 1994]. The R4 model provides an abstract procedure to follow, but lacks detail on how

each step should be achieved. This chapter expands the work in progress paper presented at IEEE

HealthCom 2013 (Appendix G) [Brown et al., 2013].

The chapter begins by describing an overview of the CBR system architecture. This system

architecture frames the rest of the chapter, where each component is discussed in detail. Firstly

the structure of cases and case-base are defined through use of the UVa/Padova T1DM simulator

[Kovatchev et al., 2009], which is also used throughout this research to generate test data and to

evaluate the bolus advice suggested by the system. This is coupled with the identification of case

features from those present in the state-of-the-art bolus calculators discussed in Chapter 2.

The retrieval stage of the system is then presented, discussing the similarity measures used,

and how it has been enhanced for this domain through the use of automated feature weightings

obtained through feature selection algorithms, and expanding the scope of a new problem using

temporal sequences.

Following retrieval is the reuse stage. A simple reuse strategy is initially introduced to facilitate

testing of the retrieval algorithm. This is then expanded to include an adaptation rule for factoring

insulin stacking into the reuse stage as a form of parameter adaptation. Insulin stacking occurs

as a result of insulin remaining active for a period of time after a insulin dose, meaning that a

reduced bolus dose should be suggested to prevent potential hypoglycaemia.

Finally, the new case is revised and retained by the CBR system. During the revise stage the



74

suggested solution is evaluated to determine if the solution was correct or if it should be revised

prior to retaining the new case. Evaluation is achieved through the assessment of a postprandial

blood glucose reading. By comparing this reading to the user’s target blood glucose level, the bolus

advice can be revised to help the system learn and improve future suggestions.

4.1 System architecture

The architecture of the system is presented in Fig. 4.1. The system follows the R4 model proposed

by Aamodt and Plaza [1994] with the explicit introduction of temporal sequences in the retrieval

stage.

Figure 4.1: Case-based reasoning model for T1DM bolus insulin advice

The cycle of the system centres around the case-base, which stores the individual cases. The

system begins when the user inputs information about a new problem, which consists of their blood

glucose level, meal information and time. This new problem is then combined with preceding cases

to form a temporal sequence. A temporal sequence is a sequence of consecutive cases which expands

the new problem to include preceding factors.

This temporal problem sequence is then compared to temporal sequences contained by the case-

base in the retrieval stage of the system, as opposed to comparing isolated events. Comparison is

achieved in this system using a weighted distance function, with the feature weights computed by

a feature selection algorithm. This automated weighting provides additional benefit by tailoring

the similarity to the user. For example, one user’s bolus advice may be more dependant on
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carbohydrates than another user.

The most similar case is then reused in order to suggest a bolus insulin dose to the user. This

suggestion is subject to adaptation in this stage, where the bolus dose may be modified based on

differences in the active insulin of the retrieved cases and the current active insulin. The user may

also choose to manually perform adaptation based on their domain expertise.

After adaptation the case is considered solved. It is now that the solution can be revised based

on the actual outcome of using the suggestion. Revision can be achieved manually by the user

or an automated approach to revise the suggestion based on a postprandial blood glucose reading

and their target blood glucose range can be used.

The case and its corrected solution is then retained in the case-base for future cycles of the

system. Through continuous revision of the CBR suggestions, the system can learn to improve

bolus advice with each iteration.

4.2 UVa/Padova T1DM simulator

The FDA-approved UVa/Padova T1DM simulator [Kovatchev et al., 2009] is used in this research

to create test data and to evaluate the proposed CBR model. The simulator allows blood glucose

management to be assessed using closed-loop and open-loop control algorithms. The closed-loop

algorithm acts as an artificial pancreas, where bolus insulin is automatically calculated and dosed

to the subject as required [Farmer et al., 2008]. In contrast, the open-loop algorithm is reliant on

the subject administering the bolus insulin themselves.

Data can be simulated in two ways. One method is through the user interface, which allows five

meals at pre-defined times to be input over the course of multiple days. Alternatively, simulation

can be conducted using a scenario file, which is a text file that allows various parameters of the

simulation to be set with greater flexibility. Parameters include meal times and carbohydrates,

simulation length, bolus times and dose, and closed-loop or open-loop control. The only inputs

required for a meal to be simulated using closed-loop control is the quantity of carbohydrates

in grams, and the time of the meal. When using open-loop control, the bolus insulin dose and

time must also be specified. The results of the simulation can be exported as minute by minute

information on signals such as bolus doses, basal rate, and blood glucose level. This allows for a

continuous blood glucose reading to be obtained for the purpose of analysis and evaluation.

The simulator serves two important purposes for the research and development of the CBR

system. Firstly, the simulator allows for the production of datasets to create test case-bases and

problem sets through closed-loop simulation. Secondly, the simulator enables bolus suggestions

obtained through CBR to analysed and evaluated using open-loop simulation. The simulator does

have some limitations for this research, including the inability to model physical activity, stress,

time period based insulin sensitivity factors, and time period based carbohydrate-to-insulin ratios.
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4.3 Identifying case features

When working with a single domain and context such as bolus advice for T1DM subjects, the

features representing a case remain constant. This allows the case and case-base structure to be

defined at the start of the design process. The identification of key features begins with looking at

the state-of-the-art bolus calculators discussed in Chapter 2, and those available for testing with

the simulator. It is important that all case features considered can be simulated in order to reliably

analysis and evaluate the CBR suggestions.

In Chapter 2, the Accu-Chek® Aviva Expert (AE) blood glucose meter and four mobile apps

- RapidCalc (RC), Diabetes Personal Calculator (DPC), Diabetic Dosage (DD), and Insulin Calc

(IC) - for bolus advice were analysed. Each app varied in regards to the level of detail required to

perform a calculation. The features used in the bolus calculation by the blood glucose meter and

mobile apps are shown in Table 4.1.

AE RC DPC DD IC

Carbohydrate intake 3 3 3 3 3

Preprandial blood glucose 3 3 3 3 3

Target blood glucose 3 3 3 3

Insulin sensitivity factor 3 3 3 3 3

Time period variations 3 3

Carbohydrate-to-insulin ratio 3 3 3 3

Time period variations 3 3 3

Insulin on board 3 3 3

Exercise 3 3

Table 4.1: Comparison of features used in the state-of-the-art bolus calculators

All the state-of-the-art bolus calculators are reliant on the input of a problem-specific carbo-

hydrate intake and a preprandial blood glucose reading in order to obtain a bolus suggestion. The

target blood glucose level, insulin sensitivity factor, and carbohydrate-to-insulin ratios are all likely

to remain static as they are definable settings. In the case of Diabetic Dosage the target blood

glucose level cannot be modified by the user. These static features will not aid case retrieval as

each case will contain the same feature-value. Using a time period based insulin sensitivity factor

and carbohydrate-to-insulin ratio would make these features useful to retrieval as the feature-value

may change depending on the time of the case. However, as discussed in Section 4.2, time period

based insulin sensitivity factors and carbohydrate-to-insulin ratios are not supported by the sim-

ulator. Insulin on board will be included using temporal sequences which are discussed in Section

4.7, and as an adaptation rule in Section 4.10.

The features in the simulator are divided into two categories: subject features and meal-specific

features. There are a number of constant subject features included in the simulator, with each

subject feature representing a different medical statistic. These subject features can be discarded,

as the feature-value does not change and would not aid retrieval. Additionally, it is unlikely the
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majority of the medical statistics would be known by the subject themselves. The meal features

modelled by the simulator are carbohydrates, blood glucose level, and the time of the meal. The

blood glucose level is calculated by the simulator at run time, with only the initial blood glucose

level required as an input. These meal features present in the simulator are consistent with those

identified in the state-of-the-art bolus calculators.

Analysis of the state-of-the-art bolus calculators and simulator determined that the case features

will include planned carbohydrate intake, preprandial blood glucose level, time, and the bolus

insulin solution. These case features are limited to those which can be modelled by the simulator.

This is due to the simulator serving the purpose of creating the test case-base, problem sets, and

providing a method analyse and evaluate CBR suggestions using open-loop control. The limitations

of the simulator mean that time period variations of insulin sensitivity factor and carbohydrate-

to-insulin ratios, physical activity and alcohol cannot be included in this research. Through this

proof of concept, the same techniques discussed in this chapter can be applied to these features in

future work.

4.4 Case-base structure

Each case is comprised of features describing information known about the case, and a correspond-

ing solution (a bolus insulin dose). In this system, the features attached to this solution represent

the corresponding meal information.

All cases in the initial model relate to the subject of the system. Therefore, subject-specific

information on factors such as weight, sex, and age are omitted. The inclusion of these features

would only be necessary when looking at either long-term use of the application, or if the cases

are to be used by other users. With long-term use of the application, it is likely that the subject’s

characteristics will change. Although it could be considered that only retrieving recent cases is

a viable solution, it could potentially lead to relevant cases being omitted. For instance, if the

subject was to lose or gain weight, then the amount of insulin they require could change. Should

their weight then revert back to a state previously observed, then these older cases may prove to

be more relevant than more recent cases.

When looking at the potential for sharing these cases, the relevance of these features becomes

even more important. The question may be asked why subjects would wish to have their insulin

management based on the behaviour of other subjects. A strong reason to consider this approach

is due to new users initially having no previous cases, meaning that no solution can be obtained.

Reusing the cases of other users could overcome this problem. Alternatively, the a formula used by

a state-of-the-art bolus calculator could be adopted until a sufficient case-base has been produced.

In a shared case environment, the number of cases to sift through during retrieval has the

potential to become huge. For dealing with large case-bases, indexing would be required to ensure
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efficient retrieval. In this research, all the cases will be within the same context and of the same

structure. As a result, indexing would need to be based on the characteristics of a subject.

4.5 Retrieval

The retrieval stage seeks to identify the most relevant case(s) within the case-base for reuse.

Case retrieval mechanisms fall into two categories: dimensional matching and aggregate matching.

Dimensional matching identifies retained cases with similar features to those of the new problem,

and the independent similarity of feature values. Dimensional matching would serve only as a

means of improving efficiency by filtering the cases on a feature-value basis in this domain due

to the structure of all cases being identical. Aggregate matching is used to provide a detailed

comparison between the values of all features in the new problem and those of a retained case.

How aggregate matching is performed is dependent upon the domain. It is common in numerical

domains to use a nearest neighbour metric; in other domains, heuristic rules, or abstraction may

be used to determine similarity.

Nearest neighbour classifiers for numerical domains typically use a distance metric, such as

Euclidean and Manhattan (Taxicab geometry) distance [Wilson and Martinez, 1997]. Both the

Euclidean and Manhattan distance metrics allow for the computation of the distance between two

points in feature space, even with the presence of multiple features. Euclidean distance is a direct

line connecting two points within a feature space, whereas the Manhattan distance is the distance

by going horizontally or vertically along the axis of the feature space. In the case of nominal values,

the Euclidean and Manhattan distance functions are inappropriate. Although nominal features can

be represented on a continuous scale, the results would prove meaningless if there is no order to the

scale. One solution to this problem is the use of a hybrid distance function, which simply reverts to

using a distance function designed for nominal features where present. One such nominal distance

function is the Value Difference Metric (VDM), which determines the probability of a feature’s

value relating to an output class. As all the features present in this model are numeric, a distance

metric such as Euclidean or Manhattan is appropriate for this domain [El Emam et al., 2001].

A problem with the standard Euclidean and Manhattan metrics is the possibility of attributes

having a greater influence over the result than desired. This may occur when the range of values

between features varies by substantial amounts. To address this issue, all features are normalised

prior to use within the distance function. By default, all features are considered to have equal

importance within the function. This may not be desirable for achieving the best results, and cer-

tainly is not desirable within the T1DM domain where the importance of some variables are known

to have a greater impact on the quantity of insulin required. To overcome this a weighted version

of the distance function is used, which provides each feature with a multiplier denoting importance.

Section 4.6 describes the acquisition of these weights using feature selection algorithms.
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4.6 Feature weighting

To determine the similarity between a problem and an existing case, it is necessary to consider

the importance of each feature. If the similarity comparison is conducted with each feature having

equal importance, the result may not be desirable. Instead, each feature should be weighted in

accordance to its ability to correctly predict the outcome. These weights can then been used in

the similarity comparison to ensure accurate case retrieval.

Determining a weighting for each feature can be achieved by identifying the relevance between

a feature-value and the outcome. An understanding of the domain may tell us that certain features

are more important than others in determining the outcome. However, an estimate is not satisfac-

tory, and may vary from subject to subject. Instead, weightings can be identified from information

known to the system, which in this instance is available through the case-base. In data mining, the

process of feature selection is used to determine which features are required to reliably predict the

outcome [Guyon and Elisseeff, 2003]. This allows features of little or no importance to be ignored,

which is useful in big data environments. There are two main approaches to performing feature

selection: subset evaluation and single-attribute evaluation [Witten and Frank, 2005].

Subset evaluators aim to identify the smallest subset of features which can successfully predict

the outcome [Witten and Frank, 2005]. This is usually driven by a random cycle, which depending

on the number of features present, may or may not include every combination. In order to prevent

excessive computation time, the process is often limited to a certain number of iterations. Each

subset selected is tested to see how reliably the solution can be predicted, and the smallest possible

subset which achieves this is returned.

Single-attribute evaluators do not attempt to identify the smallest subset of features, and

instead evaluate each feature independently [Witten and Frank, 2005]. Each attribute is assigned

a numerical result based on its ability to predict the outcome, which allows for the features to be

ranked.

Both approaches are suitable for feature selection. However, for the purpose of weighting fea-

tures only the single-attribute evaluators will be considered. Through performing single-attribute

evaluation on each of the features, the results obtained can be used within the distance function for

feature weighting. The use of feature selection using single-attribute evaluators is analysed during

the experimental phase of this research. Several well-established attribute evaluators within the

Weka [Hall et al., 2009] data mining application will be used to obtain these weightings.

The data mining tool Weka provides a number of single-attribute evaluation algorithms. Some

single-attribute evaluators present in Weka include: Chi-Squared, Information Gain, Gain Ratio,

Symmetrical Uncertainty, One Rule, and RELIEF-F [Witten and Frank, 2005]. Each of these

attribute evaluators are described in the proceeding subsections. The performance of the feature

selection algorithms for T1DM bolus advice case retrieval is discussed in Chapter 5.
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4.6.1 Chi-Squared

In Weka, Chi-Squared is a single-attribute feature selection algorithm based on the χ2 statistic

[Witten and Frank, 2005]. The algorithm seeks to evaluate the χ2 value for a feature in respect

to predicting a class by comparing the number of observations to the excepted frequency. The

χ2 value for any feature is defined by Eq. 4.1, let Eij be the expected frequency, and Oij be the

observed frequency for class i with the feature-value j [Hall, 1999].

χ2 =
∑
i

∑
j

(Eij −Oij)
2

Eij
(4.1)

The excepted frequency Eij is defined by Eq. 4.2, let nj be the number of instances of the

feature with value j, ni be the number of instances of the class i, and n be the total number of

instances.

Eij =
njni
n

(4.2)

Any continuous feature values should be transformed into nominal values prior to performing

the χ2 test; a process called discretisation. Liu and Setiono [1995] presented Chi2, an automated

discretisation and feature selection algorithm using the χ2 statistic. Chi2 is based upon ChiMerge

[Kerber, 1992], an algorithm designed purely to discretise data. Equation 4.3 defines the ChiMerge

algorithm for discretisation, let C be the total number of classes, Aij be the number of examples

in interval i of class j, Eij be the expected frequency of Aij = Ri × Cj/N , Ri be the number of

examples in interval i =
∑C

j=1Aij , Cj be the number of examples in class j =
∑2

i=1Aij , and N

be the total number of examples =
∑C

j=1Aij [Kerber, 1992; Hall, 1999].

χ2 =
2∑

i=1

C∑
j=1

(Aij − Eij)
2

Eij
(4.3)

Weka does not adopt the Chi2 or ChiMerge algorithms prior to applying the χ2 statistic for

feature selection [Witten and Frank, 2005]. Instead, Weka applies a discretisation method proposed

by Fayyad and Irani [1993]; a minimum entropy heuristic which uses the Minimum Description

Length Principle (MDLP) [Rissanen, 1978] to determine useful cut points for discretising the fea-

tures. Liu et al. [2002] found using entropy with MDLP to be the best choice for data discretisation

when compared to other methods including Chi2 and ChiMerge. The same discretisation filter is

also applied to the entropy based feature selection algorithms Information Gain, Gain Ratio, and

Symmetrical Uncertainty [Witten and Frank, 2005]; algorithms which also favour nominal values

[Yu and Liu, 2003].

Equation 4.4 defines the entropy function for discretisation, which is applied recursively until

a stop criterion is met. Let S1 and S2 be two intervals of set S bound by cut point T , A be the



81

feature, and Ent(S) (Eq. 4.5) be the entropy for a subset of S, with P (Ci, S) is the proportion of

examples in S with the class Ci [Fayyad and Irani, 1993; Hall, 1999].

E(A, T ;S) =
|S1|
|S| Ent(S1) +

|S2|
|S| Ent(S2) (4.4)

Ent(S) = −
C∑
i=1

P (Ci, S) log2(P (Ci, S)) (4.5)

The criterion for stopping discretisation uses MDLP, where a partition induced by the cut point

T is only accepted if encoding the partition costs less than the encoding prior to the split. This

stop criterion is defined by Eq. 4.6, let N be the number of instances in the set S, and the distinct

classes present in S, S1, and S2 be c, c1, and c2 respectively [Fayyad and Irani, 1993; Hall, 1999].

Ent(S)− E(A, T ;S) >
log2(N − 1)

N
+

log2(3c − 2)− [cEnt(S)− c1Ent(S)− c2Ent(S)]

N
(4.6)

4.6.2 Information Gain

Information Gain is a feature evaluation approach which uses entropy to evaluate the uncertainty

of a feature [Quinlan, 1993]. This is achieved through evaluating how the inclusion of additional

information provided by a feature reduces the entropy. The entropy of a feature X is determined

by Eq. 4.7, with P (xi) being the frequency of value in X [Hall and Smith, 1999; Yu and Liu, 2003].

H(X) = −
∑
i

P (xi) log2(P (xi)) (4.7)

The entropy of feature X with the additional information provided by Y is calculated by Eq.

4.8, let P (yj) be the frequency of a value in feature Y , and P (xi|yj) be the frequency of a value

of X given the evidence of a value of Y . For classification, X is the class or outcome and Y is a

feature of the problem.

H(X|Y ) = −
∑
j

P (yj)
∑
i

P (xi|yj) log2(P (xi|yj)) (4.8)

Information Gain (Eq. 4.9) is calculated through the reduction in entropy of X following the

information of X provided by Y .

IG(X|Y ) = H(X)−H(X|Y ) (4.9)

A limitation of the Information Gain algorithm is the ability to only cater for nominal feature

values. To resolve this, continuous data is first partitioned into nominal values. In Weka, this is

achieved using the MDLP discretisation method.
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4.6.3 Gain Ratio

A limitation of Information Gain is the algorithm’s preference to select features containing a large

quantity of values [Quinlan, 1993]. This is due to increased partitioning leading to an increased

number of subsets which may only point to a single class. An example of this would be a unique

identification feature for which each subset would only contain one case, and subsequently relate to

only one class. This results in the maximal information gain IG(X|Y ) = 1 despite the information

being irrelevant for prediction. To overcome this, an extension of the Information Gain algorithm

was developed called Gain Ratio. Gain Ratio attempts to normalise the information gain by

factoring in the useful proportion of information.

The Gain Ratio (Eq. 4.10) is calculated through the division of the Information Gain (Eq. 4.9)

for X given the evidence of Y by the entropy of feature Y (Eq. 4.7) [Hall, 1999].

GR(X,Y ) =
IG(X|Y )

H(Y )
(4.10)

Gain Ratio has been shown to be robust and provide consistently better results than Information

Gain. However, evidence has shown that Gain Ratio can favour unbalanced splits when one

particular subset is smaller than the others [Mingers, 1989].

4.6.4 Symmetrical Uncertainty

Symmetrical Uncertainty [Press et al., 1988] was developed to compensate for Information Gain’s

preference for features with more values, similar to Gain Ratio [Yu and Liu, 2003]. Symmetrical

Uncertainty normalises the value to range [0, 1], where 1 implies the knowledge provided by a value

of Y always predicts the value of X, and 0 implies the values are completely independent of each

other. Symmetrical Uncertainty is defined by Eq. 4.11.

SU(X,Y ) = 2×
[

IG(X|Y )

H(X) +H(Y )

]
(4.11)

4.6.5 One Rule

One Rule was designed with simplicity in mind [Holte, 1993]. The algorithm uses the error rate of

a feature as opposed to the entropy approached used by Information Gain. Nevill-Manning et al.

[1995] describe the pseudocode for the One Rule algorithm as displayed in Fig. 4.2.

One Rule was tested against C4.5 [Quinlan, 1993] (used to generate decision trees) on 16

datasets that are regularly used for evaluation. The results showed that despite the simple approach

taken, One Rule was only marginally less accurate (by 3.1%) [Holte, 1993]. One Rule demonstrates

that with most real-world data problems, rules can perform as well as more complex algorithms.

In Weka, the One Rule feature selection algorithm performs discretisation using the same error
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for each attribute a, form a rule as follows:
for each value v from the domain of a,

select the set of instances where a has value v.
let c be the most frequent class in that set.
add the following clause to the rule for a:

if a has value v then the class is c
calculate the classification accuracy of this rule.

use the rule with the highest classification accuracy

Figure 4.2: One Rule pseudocode [Nevill-Manning et al., 1995]

rate principle [Witten and Frank, 2005].

4.6.6 RELIEF-F

RELIEF-F [Kononenko, 1994] is an extension of the RELIEF [Kira and Rendell, 1992] instance

based feature ranker. RELIEF was designed as an efficient method for estimating how the values

of features are able to distinguish between instances which are near to each other; these values

can either be discrete or continuous. This is achieved through finding a near-hit and near-miss

instance. A near-hit is an instance which belongs to the same class and neighbourhood as the

instance being evaluated. A near-miss is an instance in the same neighbourhood as the instance

being evaluated but is not of the same class. A limitation of the original RELIEF algorithm is

its ability to only deal with a two class problem, which would not be suitable for this research as

there will be more than two classes of bolus insulin dose available. The RELIEF-F extension was

devised to eliminate this constraint.

RELIEF-F is the result of incremental development of the RELIEF algorithm, starting with

RELIEF-A [Kononenko, 1994]. RELIEF-A extended RELIEF to include more than one near-hit

or near-miss. RELIEF-B, C and D implemented improvements upon RELIEF-A for dealing with

incomplete datasets. Multi-class problems were introduced with RELIEF-E by including near-

misses from each class present in the dataset. RELIEF-F improved this through averaging the

contribution of the near-misses for each class. This was introduced to allow the algorithm to

estimate the ability a feature has to separate two classes without considering if they are closest to

each other.

Equation 4.12 defines RELIEF-F, let m be in the sample size, diff(A,R,H) be the difference

between the values of the features in instance R and H, diff(A,R,M(C)) be the the difference

between the values of the features in instance R and the near miss instance M(C), and P (C) be

the prior probability of the feature for the class.

W (A) := W (A)− diff(A,R,H)

m
+

∑
C 6=class(R)

P (C)× diff(A,R,M(C))

m
(4.12)
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4.6.7 Summary of the feature selection algorithms

This section introduced six feature selection algorithms provided by the Weka data-mining tool.

Three of the algorithms - Information Gain, Gain Ratio and Symmetrical Uncertainty - use entropy

to determine a feature’s ability to classify. In contrast Chi-Squared applies the χ2 statistic to

predicting a class, One Rule applies error rate, and RELIEF-F applies a near-hit and near-miss

method.

All the algorithms in this section with the exception of RELIEF-F require features and classes

to be nominal values. As a result, all features with continuous values should be transformed into

nominal values prior to applying the discussed feature selection algorithms, with the exception of

RELIEF-F. Weka applies the entropy function described by Fayyad and Irani [1993] with MDLP to

determine optimal cut points to perform discretisation. This method is used for all feature selection

algorithms requiring nominal values with the exception of One Rule, which instead applies the same

error rate principle used in the feature selection process.

It is expected that all the entropy based algorithms - Information Gain, Gain Ratio and Sym-

metrical Uncertainty - will result in similar feature weightings. However, it is possible that Gain

Ratio and Symmetrical Uncertainty could produce more accurate weightings than Information

Gain, as these algorithms improve upon Information Gain. The other algorithms - Chi-Squared,

One Rule and RELIEF-F - all apply different methods to feature selection, and the results are

likely to differ for each algorithm. In terms of execution speed, the One Rule algorithm is likely to

out perform the other algorithms due to its simplistic approach. The optimal algorithm for this

system is difficult to predict and will be determined during analysis and testing of the proposed

CBR retrieval algorithm.

4.7 Temporal sequences

When seeking to solve a problem, it can be important to consider previous events. Events that

precede a current problem may result in a change to the solution. This is a problem in the T1DM

domain, as insulin remains active in the subject for several hours after the dose is administered.

Any remaining active insulin in the subject needs to be considered when predicting a new solution.

If the bolus from a previous a case is not considered, then there is a chance of insulin stacking

resulting in potential hypoglycaemic events [Toffanin et al., 2013; Walsh and Roberts, 2015]. To

address this and other temporal factors, an episode approach is used through the introduction of

temporal sequences (episodes) to aid case retrieval [Sánchez-Marré et al., 2005].

In a standard approach, the new problem and retrieved cases are considered as isolated in-

stances, and are independent of previous events [Sánchez-Marré et al., 2005]. Temporal sequences

allow not only the current isolated instance of a problem to be considered, but also multiple previ-
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ous events prior to the new problem. By factoring in previous events to the new problem, a similar

sequence of events can be obtained. As the cases are the subject’s continuous meal events ordered

by time, these sequences occur naturally in the case-base.

Several different approaches for temporal case-based reasoning have been explored, with the

majority focusing on the prediction of future events. Jaczynski [1997] proposed a CBR framework

with the ability to retrieve cases composed of time series features. Each time series represents

the evolution of a variable over time, catering for both numerical samples and changes of state.

Jære et al. [2002] investigated the use of Allen’s theory of temporal intervals [Allen, 1983] to avoid

faults through prediction in the CBR system CREEK. Another approach to temporal reasoning

is temporal projection, introduced by Branting and Hastings [1994]. Temporal projection shifts

retrieved cases forwards or backwards through a method such as simulation to match the new

problem. The case with the greatest similarity following a shift is then selected.

The aforementioned methods do not cater for the formation of temporal sequences from isolated

cases. For this research, an approach similar to Sánchez-Marré et al. [2005] is used for temporal

reasoning, which proposed that sequences of continuous temporal cases can be merged into a into a

singular case. This method allows the temporal sequences to be compared using standard distance

metrics without the need for additional rules. In the work conducted by Sánchez-Marré et al.

[2005], plausible episodes are generated from a new problem, which are then compared to similar

retrieved episodes in order to solve the new problem. Since the research in this thesis looks at

preceding events, there is no need to generate a possible episode first, and instead the episode is

created from the preceding cases.

For the CBR system presented in this research, a temporal sequence representing the new

problem is formed by merging the isolated instance of the new problem with the preceding cases in

the case-base. The temporal relation between these cases is defined by the time between the cases

in the sequence, which is a feature of each case. Equation 4.13 defines the formation of a temporal

sequence for a new problem, where the new problem P is a tuple of n number of f features, a

retained case C is a tuple of n number of f features, the case-base CB is the sequence of retained

cases C order by time, with C|CB| as the most recently retained case, and the temporal sequence

TSp is a sequence of the most recently retained cases in CB and the new problem P for a sequence
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length of t.

1 ≤ t ≤ |CB|+ 1

P = (f1, f2, ..., fn)

C = (f1, f2, ..., fn)

CB = 〈C1, C2, ..., C|CB|〉

TSp =


〈P 〉, if t = 1

〈CB|CB|−((t−2)+0), CB|CB|−((t−2)+1), ..., CB|CB|, P 〉, otherwise.

(4.13)

The case-base can be viewed as a sequence of retained case sequences order by time. Although

the cases are not stored this way due to the repetition of cases, it helps to illustrate how the

problem temporal sequence relates to the case-base during retrieval. Equation 4.14 describes a

case-base of temporal sequences, let TSCB be a sequence of sequences ordered by time, and each

sequence contained by TSCB consists of the retained cases Ci,...,t+(i−1) ordered by time with a

length of t.

1 ≤ t ≤ |CB|

TSCB = 〈〈C1, C2, ..., Ct+0〉〈C2, C3, ..., Ct+1〉, ..., 〈C|CB|−((t−1)+0), C|CB|−((t−1)+1), ..., C|CB|〉〉

(4.14)

The similarity between the problem sequence and a sequence within the case-base is calculated

using a standard nearest neighbour algorithm on the singular cases formed from these sequences.

One issue with temporal sequences is the possibility of broken sequences where there are cases

missing due to the user not recording a problem. A simple method for identifying such instances

would be to impose a maximum time difference between cases. However, it is possible that this

will not reflect the user’s actual behaviour. Instead, outlier fences defined by Tukey [1977] (Eq.

4.15) are used to identify probable gaps. Any time difference in the sequence which falls outside

the inner fence is considered an outlier and suggests a gap in the sequence.

lower inner fence = Q1 − 1.5× IQR

upper inner fence = Q3 + 1.5× IQR (4.15)

Simply limiting the sequence for instances where a gap is found would result in unexpected

retrieval results, as the total number of features will be reduced in comparison to other sequences.

Instead, for instances where a gap is found, the distance for the features is replaced by the maximum

distance of 1 on the scale [0,1] as described by Montani et al. [2000].
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4.8 Retrieval examples

In this section, worked examples of the retrieval process are described to illustrate how retrieval is

achieved. The examples include both the Euclidean (Eq. 4.16) and Manhattan (Eq. 4.17) distance

metrics on temporal sequences with the use of feature weightings. For both distance metrics, let

pi be a feature-value for the new problem, ci be the corresponding feature-value for the retained

case, wi be the weighting for the feature, and n be the total number of features.

wed(p, c) =

√√√√ n∑
i=1

wi(pi − ci)2

=
√
w1(p1 − c1)2 + w2(p2 − c2)2 + ...+ wn(pn − cn)2 (4.16)

wmd(p, c) =
n∑

i=1

wi|pi − ci|

= w1|p1 − c1|+ w2|p2 − c2|+ ...+ wn|pn − cn| (4.17)

Prior to calculating the distance the feature values must be normalised to a scale of [0,1] (Eq.

4.18). This normalisation process prevents features of different scales from distorting the result.

In the normalisation function (Eq. 4.18), let f be the feature to normalise, fi be the feature-value,

fmin be the minimum value of the feature, and fmax be the maximum value of the feature.

n(f) =
fi − fmin

fmax − fmin
(4.18)

4.8.1 Example: Retrieval without temporal sequences

The first example describes the use of the similarity measure discussed in this chapter to identify

the nearest neighbour case from a small example case-base (Table 4.2) in regards to a new problem

(Table 4.3) without the use of temporal sequences.

The first step is to normalise the feature values. Normalisation factors in the feature values of

both the case-base and the new problem. Example 4.8.1.1 demonstrates the normalisation of the

preprandial blood glucose level. The normalisation process results in the values shown in Tables

4.4 and 4.5.
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CB : case-base
cn : case cc : cbg : blood ct : time since ci : bolus

carbohydrates glucose level previous meal insulin (insulin
(grams) (mmol/L) (minutes) units)

c1 : Case 1 50 4.00 120 4.00
c2 : Case 2 30 6.00 240 2.00
c3 : Case 3 60 5.00 180 4.50

Table 4.2: Example case-base

p : new problem
pc : carbohydrates pbg : blood glucose pt : time since

(grams) level (mmol/L) previous meal (minutes)

60 3.50 160

Table 4.3: Example new problem

Example 4.8.1.1 (Normalisation).

f = 〈pbg, c1 · cbg, c2 · cbg, c3 · cbg〉
= 〈3.50, 4.00, 6.00, 5.00〉

fmin = 3.50 fmax = 6.00

n(f1) =
3.50− 3.50

6.00− 3.50
= 0.00

n(f3) =
6.00− 3.50

6.00− 3.50
= 1.00

n(f2) =
4.00− 3.50

6.00− 3.50
= 0.20

n(f4) =
5.00− 3.50

6.00− 3.50
= 0.60

p : normalised new problem
pc : carbohydrates pbg : blood glucose pt : time since

level previous meal

1.00 0.00 0.33

Table 4.4: Example normalised new problem

CB : normalised case-base
cn : case cc : carbohydrates cbg : blood ct : time since bolus insulin

glucose level previous meal

c1 : Case 1 0.67 0.20 0.00 0.80
c2 : Case 2 0.00 1.00 1.00 0.00
c3 : Case 3 1.00 0.60 0.50 1.00

Table 4.5: Example normalised case-base

The last task to cover before performing the distance calculations is to weight each feature.

Table 4.6 shows the weights to be used in this example for three features. The bolus insulin

solution does not require weighting since it is only used when determining similarity with temporal

sequences. The weights are normalised using the same method as the features; however, to avoid

weights of 0.0, the minimum and maximum ranges of the feature selection algorithm are used

instead of the minimum and maximum weights returned by the feature selection algorithm.
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w : normalised weights
wc : carbohydrates wbg : blood glucose wt : time since

level previous meal

1.00 0.30 0.20

Table 4.6: Example normalised weights

Examples 4.8.1.2 and 4.8.1.3 illustrate the Euclidean and Manhattan distance calculations

respectively for the new problem p against cases c1, c2, and c3 in the example case-base. A lower

distance implies greater similarity between the new problem and the case. In this example, both

distance metrics state that c3 has the lowest distance to the new problem, and c2 has the highest

distance. As a result c3 is the nearest neighbour in this instance. The values used in the examples

are rounded to two decimal places at each step, as a result some precision may be lost.

Example 4.8.1.2 (Euclidean distance).

wed(p, c) =
√
wc(pc− cc)2 + wbg(pbg − cbg)2 + wt(pt− ct)2

wed(p, c1) =
√

1.00× (1.00− 0.67)2 + 0.30× (0.00− 0.20)2 + 0.20× (0.33− 0.00)2

=
√

1.00× 0.11 + 0.30× 0.04 + 0.20× 0.11

=
√

0.11 + 0.01 + 0.02 =
√

0.14 = 0.37

wed(p, c2) =
√

1.00× (1.00− 0.00)2 + 0.30× (0.00− 1.00)2 + 0.20× (0.33− 1.00)2

=
√

1.00× 1.00 + 0.30× 1.00 + 0.20× 0.45

=
√

1.00 + 0.30 + 0.09 =
√

1.39 = 1.18

wed(p, c3) =
√

1.00× (1.00− 1.00)2 + 0.30× (0.00− 0.60)2 + 0.20× (0.33− 0.50)2

=
√

1.00× 0.00 + 0.30× 0.36 + 0.20× 0.03

=
√

0.00 + 0.11 + 0.01 =
√

0.12 = 0.35

Example 4.8.1.3 (Manhattan distance).

wmd(p, c) = wc|pc− cc|+ wbg|pbg − cbg|+ wt|pt− ct|

wmd(p, c1) = 1.00× |1.00− 0.67|+ 0.30× |0.00− 0.20|+ 0.20× |0.33− 0.00|
= 1.00× 0.33 + 0.30× 0.20 + 0.20× 0.33

= 0.33 + 0.06 + 0.07 = 0.46 = 0.46

wmd(p, c2) = 1.00× |1.00− 0.00|+ 0.30× |0.00− 1.00|+ 0.20× |0.33− 1.00|
= 1.00× 1.00 + 0.30× 1.00 + 0.20× 0.67

= 1.00 + 0.30 + 0.13 = 1.43 = 1.43

wmd(p, c3) = 1.00× |1.00− 1.00|+ 0.30× |0.00− 0.60|+ 0.20× |0.33− 0.50|
= 1.00× 0.00 + 0.30× 0.60 + 0.20× 0.17

= 0.00 + 0.18 + 0.03 = 0.21 = 0.21
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4.8.2 Example: Retrieval with temporal sequences

In this second example, the use of the distance metric with temporal sequences is demonstrated.

The same new problem (Tables 4.3 and 4.4) and case-base (Tables 4.2 and 4.5) are used to form the

temporal sequences, which in this example have a length of 2. The temporal sequence is ordered by

the date and time of the cases such that the most recent case in the last element of the sequence.

It is the last element of the sequence from which the reused solution is derived from. The cases

are ordered such that c2 occurs after c1, c3 after c2, and the new problem after c3. c1 is omitted

as there are no previous cases and temporal sequence cannot be formed. The process of creating

the temporal sequences and transforming the sequences in to a new compound case is illustrated

in Example 4.8.2.1. In the previous example there were three features, while in this example there

are seven features in the compound case. This is because in the preceding cases the bolus insulin

solution is also considered a feature.

Example 4.8.2.1 (Creating the temporal sequences).

TSp = 〈c3, p〉
= 〈(1.00, 0.60, 0.50, 1.00), (1.00, 0.00, 0.33)〉

TSc2 = 〈c1, c2〉
= 〈(0.67, 0.20, 0.00, 0.80), (0.00, 1.00, 1.00)〉

TSc3 = 〈c2, c3〉
= 〈(0.00, 1.00, 1.00, 0.00), (1.00, 0.60, 0.50)〉

In addition to the creation of the temporal sequences for this example, weights need to be

defined for the new compound cases. A feature selection algorithm is again used to calculate these

weights except with the compound cases instead of individual cases. The weights for this example

are shown in Table 4.7.

w1 : normalised weights for TS index 1
wc1 : carbohydrates wbg1 : blood glucose wt1 : time since wi1 : bolus

level previous meal insulin

0.40 0.20 0.10 0.50

w2 : normalised weights for TS index 2
wc2 : carbohydrates wbg2 : blood glucose wt2 : time since

level previous meal

1.00 0.30 0.20

Table 4.7: Example normalised weights for the temporal sequence

Examples 4.8.2.2 and 4.8.2.3 demonstrate the aggregate matching for temporal sequences using

the Euclidean and Manhattan distance metrics respectively. In this example both distance metrics
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find that c3 is the nearest neighbour when considering a temporal sequence length of 2 and the

weightings from Table 4.7.

Example 4.8.2.2 (Euclidean distance).

wed(p, c) =

√√√√√√
wc1(pc1 − cc1)2 + wbg1(pbg1 − cbg1)2 + wt1(pt1 − ct1)2

+ wi1(pi1 − ci1)2 + wc2(pc2 − cc2)2 + wbg2(pbg2 − cbg2)2

+ wt2(pt2 − ct2)2

wed(TSp, TSc2) =

√√√√√√
0.40× (1.00− 0.67)2 + 0.20× (0.60− 0.20)2 + 0.10× (0.50− 0.00)2

+ 0.50× (1.00− 0.80)2 + 1.00× (1.00− 0.00)2 + 0.30× (0.00− 1.00)2

+ 0.20× (0.33− 1.00)2

=

√√√√√√ 0.40× 0.11 + 0.20× 0.16 + 0.10× 0.25

+ 0.50× 0.04 + 1.00× 1.00 + 0.30× 1.00

+ 0.20× 0.45

=
√

0.04 + 0.03 + 0.03 + 0.02 + 1.00 + 0.30 + 0.09

=
√

1.51 = 1.23

wed(TSp, TSc3) =

√√√√√√
0.40× (1.00− 0.00)2 + 0.20× (0.60− 1.00)2 + 0.10× (0.50− 1.00)2

+ 0.50× (1.00− 0.00)2 + 1.00× (1.00− 1.00)2 + 0.30× (0.00− 0.60)2

+ 0.20× (0.33− 0.50)2

=

√√√√√√ 0.40× 1.00 + 0.20× 0.16 + 0.10× 0.25

+ 0.50× 1.00 + 1.00× 0.00 + 0.30× 0.36

+ 0.20× 0.03

=
√

0.40 + 0.03 + 0.03 + 0.50 + 0.00 + 0.11 + 0.01

=
√

1.08 = 1.04
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Example 4.8.2.3 (Manhattan distance).

wmd(p, c) = wc1|pc1 − cc1|+ wbg1|pbg1 − cbg1|+ wt1|pt1 − ct1|
+ wi1|pi1 − ci1|+ wc2|pc2 − cc2|+ wbg2|pbg2 − cbg2|
+ wt2|pt2 − ct2|

wmd(TSp, TSc2) = 0.40× |1.00− 0.67|+ 0.20× |0.60− 0.20|+ 0.10× |0.50− 0.00|
+ 0.50× |1.00− 0.80|+ 1.00× |1.00− 0.00|+ 0.30× |0.00− 1.00|
+ 0.20× |0.33− 1.00|

= 0.40× 0.33 + 0.20× 0.40 + 0.10× 0.50

+ 0.50× 0.20 + 1.00× 1.00 + 0.30×−1.00

+ 0.20×−0.67

= 0.13 + 0.08 + 0.05 + 0.10 + 1.00 + 0.30 + 0.13

= 1.79

wmd(TSp, TSc3) = 0.40× |1.00− 0.00|+ 0.20× |0.60− 1.00|+ 0.10× |0.50− 1.00|
+ 0.50× |1.00− 0.00|+ 1.00× |1.00− 1.00|+ 0.30× |0.00− 0.60|
+ 0.20× |0.33− 0.50|

= 0.40× 1.00 + 0.20×−0.40 + 0.10×−0.50

+ 0.50× 1.00 + 1.00× 0.00 + 0.30×−0.60

+ 0.20×−0.17

= 0.40 + 0.08 + 0.05 + 0.50 + 0.00 + 0.18 + 0.03

= 1.24

4.9 Reuse

The purpose of the reuse stage is to produce a predicted solution for the new problem. This pre-

dicted solution is determined by the case(s) obtained from the retrieval stage. Following retrieval,

the predicted solution (a bolus insulin dose) is simply formed from the bolus doses contained by

the retrieved cases. This is extended in Section 4.10 to include an adaptation rule to help further

reduce the effect of insulin stacking.

The predicted bolus insulin solution for the new problem is achieved by taking the solution from

the retrieved cases. In a temporal sequence, the solution is taken from the last case in the sequence,

which corresponds to the position of the new problem in the sequence. Prior to reuse, the retrieved

cases are sorted by their degree of similarity, from which the defined k-nearest neighbours (k-NN)
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of greatest similarity are selected for reuse. In the instance of 1-NN, the solution of the single

retrieved case is used to solve the new problem. For more than 1-NN, a simple k-NN regression

approach is used, taking the mean of the k retrieved bolus insulin values. Equation 4.19 defines

the reuse strategy, let bi define bolus insulin solution provided by a retrieved case.

suggested bolus insulin dose =
1

k

k∑
i=1

bi (4.19)

4.10 Adaptation

The use of temporal sequences in the retrieval phase aims to reduce the effect of insulin stacking

occurring through the inclusion of preceding bolus and time intervals in the retrieval algorithm.

However, it is probable that the nearest neighbour(s) will not exactly match the active insulin

profile of the new problem. The adaptation rule introduced in this section aims to adjust the bolus

advice in order to reduce the negative effects of insulin stacking, which can result in hypoglycaemic

episodes. This is applies a similar concept to the CBR system JUDGE [Bain, 1986], which reduces

or increases the length of a sentence based on differences between the new problem and retrieved

case.

Insulin on board (IOB) is included by insulin pumps and bolus calculators to account for insulin

stacking. Insulin stacking is the accumulative effect of multiple bolus doses and can result in an

increased risk of hypoglycaemic episodes [Toffanin et al., 2013; Walsh and Roberts, 2015]. Bolus

insulin calculators deduct IOB from the suggested bolus dose to account for the insulin which

remains active in the subject (Eq. 4.20 [RapidCalc, 2015]). Insulin on board will be included

in the reuse step of the CBR model to adjust retrieved bolus dose solutions to better reflect the

current problem.

suggested insulin = correction dose + meal dose− insulin on board (4.20)

The duration and levels of active insulin in the subject is dependent upon the type and brand of

the insulin, and also environmental factors [Heinemann, 2004]. Research into rapid action insulin

activity has shown that the level of active insulin remaining over its duration is not linear [Heine-

mann, 2004]. Insulin activity usually has an offset of 15 to 20 minutes, and after approximately

3 hours only 40% of the insulin remains active [Walsh et al., 2011]. Other studies show a peak in

insulin activity at 2 hours following the dose, followed by a rapid decline, with an estimated 6 hour

duration [Woodworth et al., 1994]. Another source states that only 50% of the insulin remains

active after 2 hours, which then gradually decreases over the next 4 hours, for a total duration of

6 hours [Walsh and Roberts, 2015].

Although the levels of active insulin have been shown not to follow a linear decline, many insulin



94

pumps and bolus calculators use a linear formula to calculate the active insulin remaining [Walsh

and Roberts, 2015]. Campbell and Abramovich [2012] describe one such linear IOB formula for

insulin pumps (Eq. 4.21) which will be used in this research. Walsh et al. [2011] state that the

most effective active insulin duration in linear calculations should be between 4 and 5 1/2 hours.

Insulin on board is calculated by multiplying the previous insulin dose by the time remaining

of the active insulin time shown in Eq. 4.21. The time difference must be greater than 0 and less

than the defined total active insulin time to avoid negative IOB values.

For the subsequent formulas in this section, the variables are defined as follows: the case-base

CB is a sequence of cases c, with each case c a tuple of case time ct in minutes and the bolus

insulin dose ci. t denotes time in minutes, pt is the time of a new problem in minutes, and rt is

the time of the retrieved case in minutes. RC is a sequence of case times rt in minutes for k > 1

nearest neighbour retrievals. The active insulin time a is a constant to reflect the duration of a

bolus insulin dose in minutes. The suggested bolus insulin dose i is the original bolus insulin dose

to be adapted. The type definitions for these variables are described below.

t : N, pt : N, a : N1, k : N1, i : R+
0

rt : N, RC : 〈rt1, rt2, ..., rtk〉
c = (ct, ci) : N× R+

0 , CB = 〈c1, c2, ..., c|CB|〉

iob(c, t, a) =

ci×
(

1− t− ct
a

)
, if a > t− ct > 0

0.0, otherwise.
(4.21)

It is possible that there is more than one previous bolus insulin dose for which active insulin

remains in the subject. As a result, IOB is calculated by for all cases where the time difference is

less than the active insulin time (Eq. 4.22).

iobsum(CB, t, a) =

|CB|∑
n=1

iob(cn, t, a) (4.22)

The adjustment to be applied to the insulin solution is calculated by deducting the IOB for the

retrieved case from the IOB of the new problem (Eq. 4.23).

aa(pt, rt, CB, a) = iobsum(CB, pt, a)− iobsum(CB, rt, a) (4.23)

Equation 4.24 adjusts the original insulin suggestion using the adjustment value calculated in

Eq. 4.23. If the IOB for the new problem is greater than that of the IOB for the retrieved case,

there is presently more active insulin within the subject. As a result, the suggested bolus insulin

needs to be reduced to reflect the fact that the original bolus insulin suggestion was obtained when
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there was less active insulin within the subject. In the reverse situation where the problem IOB is

less than the retrieved case IOB, the bolus insulin suggestion needs to be increased.

aia(i, pt, rt, CB, a) =

{
i− aa(pt, rt, CB, a), if i− aa(pt, rt, CB, a) ≥ 0

0.0, otherwise.
(4.24)

When handling more than 1-NN, an average of the sum of the IOBs for all the retrieved cases

is used instead (Eq. 4.25). In this situation, the retrieved case time is replaced by a sequence of

retrieved case times, where the size of the sequence is equal to k-NN. Equation 4.26 revises the

original bolus suggestion adjustment for k > 1 retrievals.

ab(pt,RC,CB, a) = iobsum(CB, pt, a)−
∑k

n=1 iobsum(CB,RCn, a)

k
(4.25)

aib(i, pt, RC,CB, a) =

{
i− ab(pt,RC,CB, a), if i− ab(pt,RC,CB, a) ≥ 0

0.0, otherwise.
(4.26)

4.10.1 Examples

To illustrate how the IOB adjustment is applied to the original bolus insulin suggestion, three

examples are given. Example 4.10.1.1 and example 4.10.1.2 demonstrates scenarios where the IOB

adjustment will result in a decrease and increase of the suggested bolus insulin dose respectively.

Example 4.10.1.3 demonstrates an IOB adjustment in a 2-NN scenario.

Example 4.10.1.1 (Decrease in suggested bolus insulin).

This example illustrates the adjusted bolus insulin using IOB adjustment for the new problem

with a time (pt) of 900 minutes, and a retrieved case of time (rt) 540 minutes. The retrieved case

time relates to Case 3 (c3) within the case-base (CB). The case-base in this example contains four

cases. The original bolus insulin suggestion (i) of 5.0 is also defined by Case 3 (c3). The active

insulin time (a) is defined as 240 minutes. All values are rounded to one decimal place.

In this example, the IOB for the new problem is greater than the IOB of the retrieved case.

As a result, the adjusted bolus insulin suggestion will be reduced as there is more active insulin

present in the new problem than in the retrieved case’s bolus insulin solution.

i : original bolus pt : problem rt : retrieved a : active
insulin suggestion time (minutes) case time insulin time

(insulin units) (minutes) (minutes)

5.0 900 540 240
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Case-base (CB)
cn : case ct : time ci : bolus insulin

(minutes) (insulin units)

Case 1 (c1) 180 5.0
Case 2 (c2) 360 4.0
Case 3 (c3) 540 5.0
Case 4 (c4) 720 6.0

aa(pt, rt, CB, a) = iobsum(CB, pt, a)− iobsum(CB, rt, a)

= (iob((180, 5.0), 900, 240) + iob((360, 4.0), 900, 240)

+ iob((540, 5.0), 900, 240) + iob((720, 6.0), 900, 240))

− (iob((180, 5.0), 540, 240) + iob((360, 4.0), 540, 240)

+ iob((540, 5.0), 540, 240) + iob((720, 6.0), 540, 240))

= (0.0 + 0.0 + 0.0 + 1.5)− (0.0 + 1.0 + 0.0 + 0.0)

= 1.5− 1.0 = 0.5

aia(i, pt, rt, CB, a) =

{
i− aa(pt, rt, CB, a), if i− aa(pt, rt, CB, a) ≥ 0

0.0, otherwise.

= 5.0− 0.5 = 4.5 insulin units

Example 4.10.1.2 (Increase in suggested bolus insulin).

The second example illustrates the adjusted bolus insulin using IOB adjustment for the new prob-

lem with a the time (pt) of 800 minutes, and a retrieved case of time (rt) 320 minutes. The retrieved

case time relates to Case 2 (c2) within the case-base (CB). The case-base in this example also

contains four cases. The original bolus insulin suggestion (i) of 3.0 is also defined by Case 2 (c2).

The active insulin time (a) is defined as 260 minutes. All values are rounded to one decimal place.

In this example, the IOB for the new problem is less than the IOB of the retrieved case. As a

result the amended bolus insulin suggestion will be increased as there is less active insulin present

than in the retrieved case’s bolus insulin solution.

i : original bolus pt : problem rt : retrieved a : active
insulin suggestion time (minutes) case time insulin time

(insulin units) (minutes) (minutes)

3.0 800 320 260

Case-base (CB)
cn : case ct : time ci : bolus insulin

(minutes) (insulin units)

Case 1 (c1) 200 7.0
Case 2 (c2) 320 3.0
Case 3 (c3) 520 5.0
Case 4 (c4) 700 3.0
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aa(pt, rt, CB, a) = iobsum(CB, pt, a)− iobsum(CB, rt, a)

= (iob((200, 7.0), 800, 260) + iob((320, 3.0), 800, 260)

+ iob((520, 5.0), 800, 260) + iob((700, 3.0), 800, 260))

− (iob((200, 7.0), 320, 260) + iob((320, 3.0), 320, 260)

+ iob((520, 5.0), 320, 260) + iob((700, 3.0), 320, 260))

= (0.0 + 0.0 + 0.0 + 1.8)− (3.8 + 1.0 + 0.0 + 0.0)

= 1.8− 3.8 = -2.0

aia(i, pt, rt, CB, a) =

{
i− aa(pt, rt, CB, a), if i− aa(pt, rt, CB, a) ≥ 0

0.0, otherwise.

= 3.0− (−2.0) = 5.0 insulin units

Example 4.10.1.3 (Multiple retrieved cases (2-NN)).

The final example illustrates the adjusted bolus insulin using IOB adjustment for the new problem

with a time (pt) of 1720 minutes, and a sequence of two retrieved cases (RC) with the times (ct)

〈520, 1020〉 minutes. The retrieved case time relate to Cases 3 and 6 (c3, c6) within the case-base

(CB), which in this example contains ten cases. The original bolus insulin suggestion (i) of 5.5 is

also defined by the average bolus insulin solution (ci) of Cases 3 and 6 (c3, c6). The active insulin

time (a) is defined as 320 minutes. All values are rounded to one decimal place.

In this example, the IOB for the new problem is greater than the IOB of the retrieved case.

As a result, the adjusted bolus insulin suggestion will be reduced as there is more active insulin

present in the new problem than in the retrieved case’s bolus insulin solution.

i : original pt : problem RC : retrieved a : active k : k-NN
bolus insulin time case times insulin time
suggestion (minutes) (minutes) (minutes)

(insulin units)

5.5 1720 〈520, 1020〉 320 2

Case-base (CB)
cn : case ct : time ci : bolus insulin

(minutes) (insulin units)

Case 1 (c1) 200 7.0
Case 2 (c2) 320 3.0
Case 3 (c3) 520 5.0
Case 4 (c4) 700 2.5
Case 5 (c5) 840 3.0
Case 6 (c6) 1020 6.0
Case 7 (c7) 1180 4.0
Case 8 (c8) 1320 1.5
Case 9 (c9) 1500 6.0

Case 10 (c10) 1600 0.5
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ab(pt,RC,CB, a) = iobsum(CB, pt, a)−
∑k

n=1 iobsum(CB,RCn, a)

k
= (iob((200, 7.0), 1720, 320) + iob((320, 3.0), 1720, 320)

+ iob((520, 5.0), 1720, 320) + iob((700, 2.5), 1720, 320)

+ iob((840, 3.0), 1720, 320) + iob((1020, 6.0), 1720, 320)

+ iob((1180, 4.0), 1720, 320) + iob((1320, 1.5), 1720, 320)

+ iob((1500, 6.0), 1720, 320) + iob((1600, 0.5), 1720, 320))

− (iob((200, 7.0), 520, 320) + iob((320, 3.0), 520, 320)

+ iob((520, 5.0), 520, 320) + iob((700, 2.5), 520, 320)

+ iob((840, 3.0), 520, 320) + iob((1020, 6.0), 520, 320)

+ iob((1180, 4.0), 520, 320) + iob((1320, 1.5), 520, 320)

+ iob((1500, 6.0), 520, 320) + iob((1600, 0.5), 520, 320))

+ iob((200, 7.0), 1020, 320) + iob((320, 3.0), 1020, 320)

+ iob((520, 5.0), 1020, 320) + iob((700, 2.5), 1020, 320)

+ iob((840, 3.0), 1020, 320) + iob((1020, 6.0), 1020, 320)

+ iob((1180, 4.0), 1020, 320) + iob((1320, 1.5), 1020, 320)

+ iob((1500, 6.0), 1020, 320) + iob((1600, 0.5), 1020, 320))

÷ 2)

= (0.0 + 0.0 + 0.0 + 0.0 + 0.0

+ 0.0 + 0.0 + 0.0 + 1.9 + 0.3)

− (0.0 + 1.1 + 0.0 + 0.0 + 0.0

+ 0.0 + 0.0 + 0.0 + 0.0 + 0.0

+ 0.0 + 0.0 + 0.0 + 0.0 + 1.3

+ 0.0 + 0.0 + 0.0 + 0.0 + 0.0)

÷ 2)

= 2.2− 2.4

2
= 2.2− 1.2 = 1.0

aib(i, pt, RC,CB, a) =

{
i− ab(pt,RC,CB, a), if i− ab(pt,RC,CB, a) ≥ 0

0.0, otherwise.

= 5.5− 1.0 = 4.5 insulin units

4.11 Revise

The revision step involves evaluation of a solution [Aamodt and Plaza, 1994]. This evaluation

sets out to determine if the solution was desirable, and is key to CBRs ability to learn. One

approach to performing revision is through the use of a domain expert to alter the solution, which

may be human or machine. The CBR systems CHEF and CASEY demonstrate the use of expert

systems to aid revision. In the case of CHEF, a simulator is used to try the proposed recipe,

allowing the identification of any faults in its plan [Hammond, 1986]. CASEY also uses a third

party application; in this instance, one built for heart condition diagnosis [Koton, 1988]. However,

this heart condition diagnosis system is only used when CASEY itself fails to reach a solution. It

is important that evaluation and revision occurs, as CBR is reliant on the quality of the solutions

retained in the case-base [Aamodt and Plaza, 1994].

In context of this research, revision can be a manual process where the user specifies a different
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bolus dose from their observations. However, an automated approach is more desirable. This

section describes an algorithm which attempts to automate this process through the assessment of

a postprandial blood glucose reading. A postprandial blood glucose reading is taken after a meal

by the subject to provide an indication of the effect the preceding bolus dose had on their blood

glucose control. An automated approach to evaluation will help to simplify this process for the

user of the system.

At this stage of the CBR cycle, the system has produced a proposed solution (bolus advice),

performed some form of adaptation if required, and is now awaiting validation of the solution. The

solution can be validated using a simulator as is the case for testing this application. However,

in real-world use this is not a feasible option, since the simulator may not accurately reflect the

behaviour of the subject, and is reliant on the user having access to a simulator. This leads to

evaluating the solution through the subject’s own observations. A postprandial blood glucose

reading allows the subject to observe the effect of a bolus dose on their blood glucose level. If the

postprandial blood glucose reading deviates away from the target blood glucose level, the bolus

advice can be improved. If the blood glucose level falls below the target level then a smaller dose

may have been more successful, and if the result is a higher blood glucose reading than the target

level then a larger dose may have been more successful. Postprandial blood glucose tests also allow

the user to identify the risk of hyperglycaemic and hypoglycaemic episodes caused by either too

little or too much bolus insulin administered respectively.

Becton, Dickinson and Company [2005] describe a method (Eq. 4.30) for correcting bolus

doses based on the subject’s insulin sensitivity factor (ISF). The ISF can be calculated using the

subject’s total daily insulin dose (TDD) [Davidson et al., 2008]. The inclusion of this correction

method within the CBR model will allow for automated revision of a solution prior to retaining a

case, aiding the learning process.

To calculate TDD based on guidelines by University College London Hospitals [2013], the sum of

4 days of bolus and basal insulin doses is divided by four. Equation 4.27 describes this calculation,

let I represent the sequence of bolus and basal doses over a period of d days, Ii be an individual

bolus or basal dose from the sequence of insulin doses I.

TDD =

∑|I|
i=1 Ii
d

(4.27)

In situations where there is not sufficient data to calculate the subject’s TDD, then an estimate

can be calculated (Eq. 4.28) using the subject’s body weight w in pounds [Davidson et al., 2008].

TDD = 0.24× w (4.28)

To calculate the ISF, University College London Hospitals [2013] suggests the use of the 100

rule for blood glucose measured in mmol/L, the equivalent for mg/dL is the 1800 rule. However,
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Davidson et al. [2003] undertook extensive statistical studies of various constants and suggests the

1,700 rule, which was applied to active insulin management (AIM) system [Davidson et al., 2008].

The 1,700 rule is an established recommendation [King and Armstrong, 2007], and will be used

in this research (Eq. 4.29). The ISF is converted to mmol/L by multiplying the result by the

constant 0.0555.

ISF =
1700

TDD
× 0.0555 mmol/L (4.29)

Finally, to calculate the bolus insulin revision the subject’s postprandial blood glucose level

pbg, target blood glucose level tbg, and ISF are applied to Eq. 4.30.

insulin adjustment =
pbg − tbg
ISF

(4.30)

To demonstrate the use of the postprandial revision algorithm, two insulin adjustments are

demonstrated in the following subsection. The approach will be analysed and evaluated in Chapter

5 to discover if this algorithm will allow the CBR system to improve future bolus suggestions

through the revision of suboptimal suggestions.

4.11.1 Examples

To demonstrate the postprandial revision algorithm, two insulin adjustment examples are provided.

The insulin doses used to calculate the total daily dose TDD and subsequently the insulin sensitivity

factor ISF for these examples are displayed in Table 4.8. In this table both bolus and basal doses

are shown over the period of four days, where each day has a single basal dose and between three

and four bolus doses.

Insulin type Day 1 (IU) Day 2 (IU) Day 3 (IU) Day 4 (IU)

Bolus

4 5 4 6
6 7 8 5
8 7 6 5

2 3
Basal 20 20 20 20

Table 4.8: Example insulin doses over a four day period

Table 4.9 shows the postprandial blood glucose reading pbg and target blood glucose level tbg

for Examples 4.11.1.3 and 4.11.1.4.

pbg: postprandial blood tbg : target blood
glucose (mmol/L) glucose (mmol/L)

8.0 6.5
4.0 6.5

Table 4.9: Example postprandial blood glucose readings

With the values defined, the postprandial insulin adjustment can be calculated. Firstly the
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TDD is calculated in Example 4.11.1.1. In this calculation the sequence I contains both the basal

and bolus dose values from Table 4.8, and the number of days d is 4. In this example, the resulting

TDD value is 39 IU.

Example 4.11.1.1 (Calculate total daily dose (TDD)).

I = 〈4, 6, 8, 20, 5, 7, 7, 2, 20, 4, 8, 6, 20, 6, 5, 5, 3, 20〉

d = 4

TDD =

∑|I|
i=1 Ii
d

=
156

4

= 39

Following the calculation of the TDD is the ISF calculation. This is demonstrated in Example

4.11.1.2, with the resulting ISF of 2.42. This ISF value will be used in both Example 4.11.1.3 and

4.11.1.4.

Example 4.11.1.2 (Calculate insulin sensitivity factor (ISF)).

ISF =
1700

TDD
× 0.0555

=
1700

39
× 0.0555

= 2.42

With all the information now acquired, the bolus insulin adjustment can be obtained. The

calculation of the two example postprandial blood glucose readings and target blood glucose values

from Table 4.9 are shown in Examples 4.11.1.3 and 4.11.1.4.

Example 4.11.1.3 demonstrates that the bolus insulin dose should be increased by 0.62 IU since

the postprandial blood glucose reading is higher than the target blood glucose level. In contrast,

Example 4.11.1.4 demonstrates that the bolus insulin dose should be decreased by 1.03 IU since

the postprandial blood glucose reading is lower than the target blood glucose level.

Example 4.11.1.3 (Increase in bolus insulin).

insulin adjustment =
pbg − tbg
ISF

=
8.0− 6.5

2.42

= 0.62
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Example 4.11.1.4 (Decrease in bolus insulin).

insulin adjustment =
pbg − tbg
ISF

=
4.0− 6.5

2.42

= -1.03

4.12 Retain

The retain step of the CBR cycle stores the solved problem and its solution in the case-base for use

in future cycles. The retain step is simple in this system, since no indexing has been adopted due

to the consistency of the case structure. The retained case is comprised of the features defining the

problem (carbohydrates, time, and a preprandial blood glucose reading), and the revised solution

(bolus dose).

Additional features may also be stored alongside these in order to store further information

and help facilitate data visualisation. This may include the postprandial blood glucose readings

and the bolus suggestion prior to revision.

4.13 Summary

In this chapter, a CBR system for T1DM bolus advice based on the R4 was introduced [Aamodt

and Plaza, 1994]. This initially involved identifying suitable case features from existing state-of-

the-art bolus calculators and the UVa/Padova T1DM simulator. Features which remain static are

discounted as they would not aid retrieval. Additionally, some features including physical activity,

and time period based insulin sensitivity factors and carbohydrate-to-insulin ratios are also omitted

due to limitations of the simulator. Through this process it was found that planned carbohydrate

intake, preprandial blood glucose level, and time were required to represent a case.

To retrieve cases similar to a new problem a weighted nearest neighbour distance metric is used.

This similarity measure was then enhanced through feature weightings obtained through single-

attribute feature selection algorithms available to the Weka data mining tool. Finally, temporal

sequences were introduced to include preceding events when determining similarity.

An adaptation rule to reduce the risk of insulin stacking and a method for automated bolus

solution evaluation was introduced to the system to optimise the retrieved advice. This adaptation

rule uses substitution adaptation to reconcile differences in active insulin between the new problem

and the retrieved cases. Through introducing this adaptation rule, the system is able to adjust the

solution in order to decrease the bolus dose if the new problem has a higher level of active insulin

than the retrieved case, and increase the bolus advice if the new problem has a lower level level of

active insulin than the retrieved case.
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Postprandial evaluation was introduced to provide the CBR system with a method to repair and

learn from faults. This is fundamental to the CBR process, as poor solutions need to be corrected

in order to improve future solutions. Two methods of evaluation were proposed, the first a manual

adjustment to the bolus insulin dose based upon the subject’s observations following a bolus. The

second is a method to automate this process to encourage users to perform an evaluation, and

to provide confidence in the evaluation. The automated approach will increase or decrease the

bolus solution based on the deviation away from the subject’s target blood glucose level using a

postprandial blood glucose reading. If the postprandial blood glucose reading is greater than the

target blood glucose level, the bolus dose is revised to increase the dose. For the opposite situation

where the postprandial blood glucose reading is lower than the target, the dose is decreased.

The next chapter analyses and evaluates the system proposed in this chapter. This process

will test the effectiveness of the retrieval algorithm presented, the performance of the insulin on

board adaptation, and the system ability to learn and improve through automated postprandial

evaluation and revision. The analysis and evaluation will also compare the CBR system to existing

methods of obtaining bolus advice.
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Chapter 5

Analysis and evaluation

This chapter describes the analysis and evaluation of the CBR system proposed in Chapter 4.

Firstly, statistical measures suitable for evaluating blood glucose management are identified. This

is followed by a discussion of the testing methodology. Testing begins with the generation of

problem sets and sample case-bases. These sample case-bases are then evaluated to determine

feature weightings through the use of feature selection algorithms. The problem sets are tested

against the sample case-bases with different retrieval configurations. The resulting CBR bolus

insulin suggestions are then simulated using the UVa/Padova T1DM simulator to obtain continuous

blood glucose levels for statistical analysis. The CBR retrieval results are then compared to those

obtained through closed-loop simulation and a state-of-the-art bolus calculation formula.

Analysis and evaluation of the adaptation algorithm is then discussed, where retrieved solutions

are adjusted through resolving any differences in the insulin on board from the new problem and

retrieved case. Finally, the chapter concludes with analysis and evaluation of the automated

revision algorithm, which aims to improve future bolus advice through the revision of suboptimal

solutions.

5.1 Statistical measures for evaluating bolus insulin

suggestions

Prior to devising a test plan for the CBR system, statistical measures need to be identified for

analysing and evaluating the bolus advice obtained through case retrieval. The data available

for testing is limited to information about the meals themselves and continuous blood glucose

data retrieved from the simulator. For testing purposes, the blood glucose data provides the best

representation of the subject’s well-being, as T1DM management fundamentally revolves around

maintaining safe blood glucose levels. The continuous blood glucose data is generated through
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open-loop simulation of the meal information input into the CBR system alongside the bolus

insulin suggested by the reuse of retrieved cases. This continuous blood glucose data provides a

simulated blood glucose reading for every minute of the simulation.

Several statistical measures have been identified for use on continuous blood glucose data [Clarke

and Kovatchev, 2009]: blood glucose risk index (BGRI), low blood glucose risk index (LBGI), high

blood glucose risk index (HBGI), time within target blood glucose range, mean, and variance.

5.1.1 Blood glucose risk index

The BGRI can be applied to continuous blood glucose data to determine overall variance of LBGI

and HBGI [Kovatchev et al., 1998, 2006; Clarke and Kovatchev, 2009]. LBGI is used as an early

indicator for detecting potential hypoglycaemic events, whilst HBGI is used as an indicator of

hyperglycaemic events. These risk indexes are obtained by splitting the data into low and high

glucose values to assess the variance independently of each other. Defined boundaries (Table 5.1)

have been outlined for LBGI and HBGI values to determine the risk level [Kovatchev et al., 1998,

2006; Roche, 2015b].

Risk level LBGI HBGI

Minimal x ≤ 1.1 x < 5.0
Low 1.1 < x ≤ 2.5 5.0 ≤ x ≤ 10.0

Medium 2.5 < x ≤ 5.0 10.0 < x ≤ 15.0
High x > 5.0 x > 15.0

Table 5.1: Low and high blood glucose risk index severity levels [Roche, 2015b]

The LBGI and HBGI are calculated by firstly applying Eq. 5.1 for blood glucose readings bg

in mmol/L and Eq. 5.2 for blood glucose readings bg in mg/dL.

f(bg) = 1.509× (ln(bg)1.084 − 5.381) (5.1)

f(bg) = 1.509× (ln(18× bg)1.084 − 5.381) (5.2)

The risk function r(bg) for each blood glucose is calculated by Eq. 5.3 of the readings.

r(bg) = 10× f(bg) (5.3)

The results of the risk function are split into two branches rl for low blood glucose readings

(Eq. 5.4), and rh for high blood glucose readings (Eq. 5.5).

rl(bg) =


r(bg), if f(bg) < 0

0, otherwise.

(5.4)



107

rh(bg) =


r(bg), if f(bg) > 0

0, otherwise.

(5.5)

To calculate LBGI and HBGI, two sequences of low blood glucose readings LBG and high blood

glucose readings HBG are firstly determined by Eq. 5.4 and Eq. 5.5. LBGI is then calculated for

the sequence of low blood glucose readings LBG using Eq. 5.6, and HBGI is calculated for the

sequence of high blood glucose readings HBG using Eq. 5.7.

LBGI(LBG) =
1

|LBG|

|LBG|∑
i=1

LBGi (5.6)

HBGI(HBG) =
1

|HBG|

|HBG|∑
i=1

HBGi (5.7)

Finally, the overall BGRI is calculated through the sum of LBGI and HBGI as shown in Eq.

5.8.

BGRI = LBGI +HBGI (5.8)

Lower values of LBGI and HBGI indicate a lower risk of hypoglycaemic and hyperglycaemic

events respectively as illustrated by Table. 5.1. BGRI determines the overall risk of both hy-

poglycaemic and hyperglycaemic events, with lower values indicating a reduced chance of both

hypoglycaemic or hyperglycaemic events occurring.

5.1.2 Time within target blood glucose level range

The percentage of time the subject spends within a pre-defined target range is a good indicator

that the solutions provided by the CBR system are safe for the subject. The standard target range

for T1DM subjects is between 4 mmol/L and 10.0 mmol/L [Rodbard, 2009; NICE, 2004]. The

higher the percentage of time spent within the target range, the better the blood glucose control.

However, the implications of extreme highs and lows are not represented by this.

5.1.3 Mean blood glucose level

The mean of the blood glucose data provides a simple approach to determining the subject’s overall

well-being, but does not aid in representing the variance, extreme lows, and extreme highs. The

optimal target mean blood glucose is dependent upon the subject’s target blood glucose level,

which discounting the 2 hours following a meal is between 4 mmol/L and 7 mmol/L [NICE, 2004].
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5.1.4 Variance and standard deviation

Calculating the variance and standard deviation of the continuous blood glucose data allows the

overall stability of the subject’s blood glucose to be assessed [Rodbard, 2009]. High variance

indicates that the subject’s blood glucose levels are varying greatly over time. In contrast, lower

variance represents improved stability, and if the subject is within the target range, improved blood

glucose control. Low variance combined with low or high blood glucose readings would indicate

that the subject is consistently outside the safe zone.

5.2 Retrieval test plan

This section describes the testing process used to analyse and evaluate CBR case retrieval. Each

stage of the testing process is listed below and visualised in Fig. 5.1. These stages are described

in detail in the proceeding subsections.

1. Retrieve configuration to test and compare.

2. Generate test data.

(a) Generate test case-bases.

(b) Generate test problem sets.

3. Acquire feature weights through feature selection.

4. Retrieve bolus insulin suggestions.

5. Export and simulate the bolus insulin suggestions.

6. Analyse and evaluate the continuous blood glucose readings.

Figure 5.1: Testing process
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5.2.1 Retrieval configurations

The first stage of the testing process identifies the different retrieval configurations which will be

analysis and evaluated. This includes different distance metrics, k-NN, feature selection algorithms,

and temporal sequence lengths. The two different distance metrics (Euclidean and Manhattan) are

selected for testing. In addition, six different feature selection algorithms (Chi-Squared, Informa-

tion Gain, Gain Ratio, One Rule, RELIEF-F, and Symmetrical Uncertainty) have been identified,

alongside no feature weighting. The other factors of k-NN and temporal sequence length will be

limited to five variations of values 1. . . 5. The list below summarises the retrieval configurations to

be tested.

Retrieval configurations

� 2 distance metrics: Euclidean and Manhattan.

� 6 feature selection algorithms for feature weighting: Chi-Squared, Gain Ratio, Info Gain,
One Rule, RELIEF-F, and Symmetrical Uncertainty.

� No feature weighting.

� 1. . . 5 nearest neighbours.

� 1. . . 5 temporal sequence length.

In total there are 350 retrieval variations to tested. The goal of this testing is to determine

which combination of distance metric, feature weighting, k-NN, and temporal sequence length is

the most optimal for case retrieval in this CBR system.

5.2.2 Generation of test data

With the retrieval configurations established, data to test needs to be generated. This involves

generating test case-bases and sets of test problems, and also computing the feature weights using

the feature selection algorithms.

Case base and new problems

� 5 case-bases, each containing cases over a period of 6 months.

� 5 problem sets, each containing problems over the period of 1 month.

5.2.2.1 Generation of the case-bases

Test runs of the simulator determined that 6 months of meals can be simulated reliably at any

one time. As a result it is was decided that the size of the test case-bases would be limited to 6

months. To generate the case-bases, 6 months of meal information are created. These meals are

generated randomly with varying time intervals between 120 and 420 minutes, and carbohydrate
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intakes of 0 to 240 grams [Roche, 2012]. A rule is imposed on these generated meals to make the

earliest meal of the day occur on or after 7 a.m., this is in order to prevent meals occurring when

the subject is likely to be asleep. The blood glucose level and bolus insulin dose for each cases

are obtained from the simulation of the meal information. These generated meals provide a wide

variety of realistic meal patterns over a 6 month period, with each case-base containing an average

of 821 cases.

Following simulation of the meal information, the simulated blood glucose and bolus insulin

signals require merging with the corresponding meal inputs of carbohydrates and time. These

blood glucose and bolus insulin values are extracted from the minute by minute signals exported

following simulation using the time the meal occurred during simulation.

5.2.2.2 Generating problem sets

The same process for generating the test case-bases is used to generate test problem sets. The

problem sets contain 1 month of randomly generated meals using the same method applied to

generating the test case-bases discussed in Section 5.2.2.1. Each problem set is simulated to obtain

realistic blood glucose levels for the problem, and the blood glucose signal exported and merged

to complete the problems.

5.2.3 Acquiring feature weights through feature selection

Each generated test case-base is run through through the six feature selection algorithms (Chi-

Squared, Information Gain, Gain Ratio, One Rule, RELIEF-F, and Symmetrical Uncertainty) in

Weka to acquire feature weights for use in the retrieval similarity measure. Prior to importing the

case-bases into Weka, the case-bases are formatted to represent temporal sequences of up to 5 in

length. Each of the six feature selection algorithms are then performed on the case-bases and the

resulting weights extracted. All the test case-bases resulted in similar feature weights, and the

mean feature weights from all five test case-bases with a temporal sequence length of 5 are shown

in Table 5.2.

The mean feature weights displayed in Table 5.2 show similar results between all the entropy

based feature selection algorithms (Information Gain, Gain Ratio, and Symmetrical Uncertainty).

This is expected due to Gain Ratio and Symmetrical Uncertainty being evolutions of the Informa-

tion Gain algorithm. Chi-Squared ranked the features simiarly to the entropy based algorithms

but produced a lower weighting for each feature. RELIEF-F appears to be somewhere between the

entropy based and Chi-Squared algorithms when looking at the magnitude of the weightings, but

does differ in terms of ranking (e.g. w4 time has a lower weighting than w4 blood glucose). One

Rule gave higher weightings to all features when compared to the other algorithms, but ranked

the features most similarly to RELIEF-F. Based on these observations we can expect retrieval
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using the entropy based and Chi-Squared weightings to result in similar nearest-neighbours being

identified. RELIEF-F is likely to be retrieval similar cases to the entropy based algorithms, with

potential for better or worse retrieval due to order the algorithm ranked the features. Another

expectation is that One Rule will produce different results in retrieval with temporal sequences

due to the higher weightings applied to all features, but due to the order the features are ranked,

may perform similarly to RELIEF-F.

Feature Chi-Sq. InfoGain GainRatio OneR RELIEF-F Sym. Uncert.

w1

Bolus insulin 0.009 0.017 0.016 0.179 0.010 0.017
Carbohydrates 0.012 0.023 0.018 0.182 0.017 0.021
Time 0.016 0.024 0.022 0.194 0.008 0.023
Blood glucose 0.008 0.015 0.017 0.186 0.008 0.016

w2

Bolus insulin 0.008 0.015 0.016 0.181 0.008 0.015
Carbohydrates 0.010 0.019 0.017 0.170 0.011 0.018
Time 0.012 0.025 0.024 0.177 0.013 0.024
Blood glucose 0.008 0.015 0.018 0.187 0.014 0.015

w3

Bolus insulin 0.009 0.018 0.018 0.180 0.015 0.018
Carbohydrates 0.011 0.021 0.018 0.184 0.009 0.019
Time 0.013 0.027 0.023 0.183 0.016 0.026
Blood glucose 0.010 0.019 0.020 0.195 0.012 0.019

w4

Bolus insulin 0.009 0.018 0.019 0.194 0.012 0.018
Carbohydrates 0.012 0.022 0.019 0.197 0.012 0.020
Time 0.011 0.024 0.022 0.170 0.009 0.022
Blood glucose 0.008 0.015 0.016 0.181 0.016 0.016

w5

Carbohydrates 0.608 0.849 0.727 0.864 0.705 0.783
Time 0.020 0.028 0.025 0.183 0.011 0.026
Blood glucose 0.012 0.018 0.020 0.195 0.011 0.018

Table 5.2: Mean normalised feature weights

5.2.4 Retrieving the bolus insulin suggestions

For testing purposes the retrieval process is automated. The system’s goal is to perform retrieval for

each problem in the problem sets using each of the generated case-bases and retrieval configurations.

The process begins by loading a case-base into memory. The system then performs retrieval for

each problem in a problem set for a retrieval configuration. This is repeated for each retrieval

configuration. Once a problem set has been tested using all retrieval configurations, the next

problem set is tested. This process is repeated until all case-bases have been tested against.

5.2.5 Exporting and simulating the bolus insulin suggestions

The bolus insulin suggestions obtained must be run through the simulator in order to analyse and

evaluate the retrieval algorithm. To achieve this, the meal information for each problem in the

problem set alongside the bolus insulin suggestion must be exported into a scenario file which can

be read by the simulator. To automate this process, after each problem set is tested against a test

case-base with one retrieval configuration, a scenario file is automatically generated. The generated
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scenario file tells the simulator to use open-loop control and contains all the solved problems in

the problem set. Each problem in the scenario file is represented by the meal time, carbohydrate

intake, and the corresponding bolus insulin dose.

Following simulation, continuous blood glucose readings are exported. This export provides

minute-by-minute continuous blood glucose levels during simulation which are used to run statis-

tical analysis upon.

5.2.6 Analysis and evaluation of the continuous blood glucose readings

The continuous blood glucose levels exported following simulation are processed to obtain the

LBGI, HBGI, BGRI, time with target range, mean, and variance. Applying these statistical mea-

sures provides a method to analyse and evaluate the effect the retrieved bolus insulin suggestions

had on the continuous blood glucose level. Through analysis and evaluation of the statistical results

an optimal retrieval configuration of those tested will be identified.

The statistical measures are then applied to continuous blood glucose results obtained through

closed-loop simulation and the Accu-Chek® Aviva Expert bolus calculator formula on the same

problem sets. This comparison provides a benchmark to judge the performance of CBR retrieval

against established methods for obtaining bolus advice, and determine if the proposed retrieval

strategy is capable of identifying suitable cases.

5.3 Retrieval analysis and evaluation

The aim of the retrieval test plan is to determine how different retrieval configurations will affect

the bolus insulin suggestions obtained. This section discusses the statistical results of the simulated

continuous blood glucose levels as a result of the suggested bolus insulin suggestions. The results

obtained are then compared to those achieved using closed-loop simulation, and the formula derived

from the state-of-the-art Accu-Chek® Aviva Expert bolus calculator.

The suggested bolus insulin doses alone do not provide the ability to analyse the performance

of the application. Instead the continuous blood glucose levels of the subject are required to assess

the performance. The continuous blood glucose levels are obtained through open-loop control

simulation. Open-loop control simulation is also applied to the bolus suggestions obtained from

the bolus calculator formula.

5.3.1 Analysis of retrieval configurations

The statistical analysis of the retrieval results seeks to establish the optimal retrieval configurations

from those explored in this research. The full statistical results are presented in Appendix D, Tables

D.1 - D.7, with each table displaying the results for one feature selection algorithm when applied

to different distance metrics (Euclidean and Manhattan), 1NN to 5NN, and temporal sequence
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lengths of 1 to 5. All the retrieval configurations displayed in these tables present the mean across

all problem sets and case-bases for BGRI, LBGI, HBGI, percentage of time below the target range

(<TR), percentage of time above the target range (>TR), variance (σ2), standard deviation (σ),

and mean blood glucose level (µ) in mmol/L.

Initial observations showed some trends in the results. Across all test cases the mean across all

statistical measures for the Euclidean and Manhattan distance metrics were almost identical. The

Euclidean distance produced marginally better blood glucose control than the Manhattan distance,

most notably in configurations where larger temporal sequence lengths are used. Observations on

k-NN performance showed a trend of improved retrieval results when factoring in a greater number

of nearest neighbours. Another observation is the performance of temporal sequences. Overall, the

retrievals with a temporal sequence length of 1 (where no preceding cases are included) resulted

in the poorest blood glucose control. This provides some evidence that including preceding events

helps to identify better previous cases. A temporal sequence length of 5 demonstrated varied

retrieval results depending on k-NN cases retrieved and the feature selection algorithm used. In

1-NN retrievals a larger temporal sequence resulted in the poorest blood glucose control, whilst in

5-NN retrievals a larger temporal sequence resulted in the better blood glucose control over smaller

temporal sequences. The BGRI results of the different temporal sequence lengths and k-NN are

presented in Fig. 5.2 and 5.3.

Figure 5.2 shows temporal sequence length along the x-axis and BGRI along the y-axis, with

each line representing a different k-NN retrieval. The figure highlights that overall 1-NN retrieval

resulted in the worst bolus predictions (due to a higher BGRI value) with longer temporal sequence

lengths, whilst in k > 1-NN retrievals BGRI improved when using longer temporal sequence

lengths. In contrast, Fig. 5.2 also shows that 5-NN retrieval performs the worst with temporal

sequence lengths of 1, but equal best with 4-NN when using a temporal sequence length of 5.

Figure 5.3 shows the same information as Fig. 5.2, except in this graph the x-axis is k-NN,

and lines are the temporal sequence length. The most notable observation from this figure is that

in all cases an improvement in BGRI is observed when increasing the temporal sequence length

from 1 (no previous cases) to 2 (including the previous case). This provides some evidence that

in all NN variations including the previous case in the retrieval process does help to improve the

predicted solution. Another observation from Fig. 5.3 is the deterioration or lack of improvement

in longer temporal sequence where k ≤ 3-NN retrieval is used.

The choice of feature selection algorithm used in most instances showed little variation in the

retrieval result. This observation is not unexpected as the weights produced by the algorithms were

similar with the exception of RELIEF-F and One Rule. Chi-Squared, Information Gain, Gain Ratio

and Symmetrically Uncertainty all resulted in similar and blood glucose control all configurations.

Overall RELIEF-F resulted in the poorest blood glucose control. One Rule produced interesting

results, with the performance dependent upon other configuration factors. In 1-NN configurations,
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Figure 5.2: k-NN BGRI results for temporal sequence lengths 1 to 5
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Figure 5.3: Temporal sequence BGRI results for 1-NN to 5-NN

One Rule resulted in the poorest blood glucose control, especially with a larger temporal sequence

length. However, in the cases where k > 1, One Rule demonstrated the best blood glucose control,

particularly for larger temporal sequences.

Appendix D, Table D.7 displays the results for retrieval where no feature weighting is used.

The main observation of this data is large variations for different retrieval configurations compared

to the consistency of the results where feature weightings are used. In some instances, the results

where feature weightings are not used out-performed those with feature weighting. However, due to
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the variation observed these positive results may be chance. Some retrieval configurations without

feature weighting caused the LBGI to move from the low to medium risk category. Also observed

is improved HBGI in comparison to retrieval where feature weightings are used. This is likely to

be a result of the high LBGI; as should the LBGI value be high, the HBGI value will be lower.

This observation indicates that the bolus suggestions in these instances resulted in larger bolus

insulin doses to be suggested than required.

The mean (µ) percentage reduction in BGRI for each of the feature selection algorithms in

comparison to no feature weighting are displayed in Fig. 5.4. The figure show the percentage

reduction in the measure in comparison to when no feature weighting is used. This figure clearly

shows that One Rule results in the highest percentage reduction of BGRI compared to no feature

weighting, and RELIEF-F resulting in the smallest reduction. In all cases it can be seen that

feature weighting benefits the retrieval process, but the selection of the algorithm can result in

further improvements. For example, nearly a two-fold improvement is seen when using One Rule

in comparison to RELIEF-F. Another interesting observation is the similarity between the Chi-

Squared and Information Gain algorithms, despite their different approaches to feature weighting.

Additionally it can be observed that the modifications introduced to improve the Information Gain

algorithm by Gain Ratio and Symmetrical Uncertainty have resulted in improved BGRI results.
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Figure 5.4: Mean BGRI % reduction for the weighting algorithms compared to no weighting

Figure 5.5 breaks down the BGRI results shown in Fig. 5.4 into its separate components of LBGI

and HBGI. This figure again shows percentage reduction in comparison to no feature weightings.

The most notable observation is the increase in HBGI (due to a negative percentage reduction)

for all feature selection algorithms in comparison to no feature weightings. However, it can also be

observed that there is a notable reduction in LBGI for all the feature selection algorithms which
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significantly outweigh this HBGI percentage increase, as seen in the overall BGRI results in Fig.

5.4.

All feature selection algorithms with the exception of One Rule result in almost identical per-

centage increases in HBGI of just over 1%. One Rule instead shows a percentage increase of less

than 0.5%. Looking at the LBGI statistics, it can be seen that Gain Ratio, One Rule and Symmet-

rical Uncertainty all result in the similar highest reduction of close to 4%. In contrast RELIEF-F

only manages just over a 3% reduction in LBGI.

From the information visualised in Fig. 5.4 and Fig. 5.5 it can clearly be seen that One Rule

results in the highest BGRI percentage reduction in comparison to no feature weightings. This is

through both a comparably high LBGI reduction coupled with with a minimal increase in HBGI.

This result is interesting due to the simplistic nature of the One Rule algorithm over the others

used in this research.
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Figure 5.5: Mean LBGI and HBGI % reduction for the weighting algorithms compared to no
weighting

The aim of the retrieval analysis and evaluation was to determine which of the retrieval config-

urations tested provide bolus insulin suggestions resulting in the best blood glucose control. The

conclusion reached is that the optimal retrieval configuration of those tested is: One Rule feature

selection, Euclidean distance metric, 5-NN, and a temporal sequence length of 5. This conclusion

is reached due to the primary statistic for measuring blood glucose control BGRI being the lowest

on average when tested with five problem sets on five sample case-bases. This configuration also

resulted in the lowest variance of all those tested. However, only marginal differences between the

configurations where feature weightings are included were observed.
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5.3.2 Comparison to other methods

In this section the continuous blood glucose results from CBR retrieval are compared to bolus

suggestions through closed-loop simulation, and the formula presented by the Accu-Chek® Aviva

Expert bolus calculator. Both the closed-loop simulation and bolus calculator were applied to the

same five problem sets used to evaluate CBR retrieval. The bolus calculator results were computed

and then simulated using open-loop simulation to obtain continuous blood glucose levels. The

results are compared to the optimal retrieval configuration, and are visualised in Fig. 5.6.

The mean statistical results across all five problems sets using closed-loop simulation can be

seen in Table 5.3. As the sample case-bases were created using the simulator it is expected that the

CBR results would be similar if the retrieval algorithm can correctly identify similar cases. The

BGRI, LBGI and HBGI continuous blood glucose results for the CBR suggestions and closed-loop

simulation (Fig. 5.6) yield, as expected, similar results. This provides evidence that the retrieval

algorithm is identifying appropriate cases within the case-base.

BGRI LBGI HBGI <TR % >TR % σ2 σ µ

4.34 2.11 2.2 0.12 0.00 0.79 0.89 6.37

Table 5.3: Closed-loop simulation statistics

Table 5.4 displays mean continuous blood glucose results for the bolus calculator advice. The

results show that the bolus calculator outperforms both the simulator and the CBR retrievals.

This provides evidence that the formulas used by the state-of-the-art bolus calculators can produce

reliable and accurate results. These results provide reassurance, as the mobile prototype (Chapter

6) will build the initial case-base for the subject using an existing formula, since simulation cannot

be incorporated into the app.

BGRI LBGI HBGI <TR % >TR % σ2 σ µ

4.21 1.92 2.29 0.00 0.00 0.76 0.87 6.49

Table 5.4: Bolus calculator statistics

The state-of-the-art bolus calculator results question whether performing CBR retrieval on a

case-base produced by the calculation formula will result in similar performance. To test this,

the optimal retrieval configuration is tested against case-bases produced by the bolus calculator

as opposed to closed-loop simulation. The case-bases were identical to those used previously, but

the bolus solutions are replaced by those obtained from the bolus calculator. The results shown

in Table 5.5 demonstrate similar CBR retrieval results to those produced by the bolus calculator,

with a marginal improvement in some statistical measures. This is visualised in Fig. 5.7 where the

original results are shown in addition to CBR retrieval on the bolus calculator case-base.
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Figure 5.6: Comparison of CBR, simulated and bolus calculator results

BGRI LBGI HBGI <TR % >TR % σ2 σ µ

4.14 1.87 2.26 0.00 0.00 0.74 0.86 6.48

Table 5.5: CBR retrieval result for case-bases produced by a bolus calculator
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Figure 5.7: Comparison of CBR to other methods including CBR with bolus calculator case-base

The comparison of the CBR retrieval results to the other methods show evidence that the

retrieval method discussed is capable of selecting reliable bolus advice when presented with a new

problem. The results also show that the quality of the CBR suggestions is related to the quality

of the cases retained in the case-base.
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5.4 Insulin on board adaptation testing and results

Insulin on board adaptation was tested against a combination of five case-base sets, each repre-

senting 6 months of cases; and five sets of problems of to be solved, each containing 1 month of

problems. Case retrieval is done using 5-NN weighted Euclidean distance on a temporal sequence

length of 5, with feature weights defined using the One Rule algorithm. This configuration is

selected as it demonstrated the best blood glucose control in the retrieval analysis and evaluation

conducted in Section 5.3.1.

No IOB With IOB

BGRI 4.22 ±0.31 3.94 ±0.27
LBGI 2.09 ±0.23 1.96 ±0.23
HBGI 2.13 ±0.16 1.98 ±0.26

< TR % 0.03 ±0.19 0.01 ±0.12
> TR % 0.00 ±0.00 0.00 ±0.00
∈ TR % 99.97 ±0.19 99.99 ±0.12

σ2 0.76 ±0.09 0.66 ±0.06
σ 0.87 ±0.05 0.81 ±0.04

µ mmol/L 6.34 ±0.13 6.30 ±0.21

Table 5.6: Continuous blood glucose statistical results

Table 5.6 shows that on average IOB adaptation results in small decreases to BGRI, LBGI and

HBGI against the already good blood glucose control obtained without IOB adaptation. There

is also a small increase in the percentage of time blood glucose levels are within target range,

alongside a notable reduction in variance. The results for HBGI, LBGI and HBGI are displayed

visually in Fig. 5.8.
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Figure 5.8: Insulin on board comparison
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The results show some improvement in overall blood glucose control with IOB adaptation, with

a 6.6% reduction in BGRI, in addition to a reduction in variance. The decrease in both LBGI

and HBGI suggests that the adaptation rule is able to correctly decrease or increase the bolus

insulin suggestion to account for differences between the IOB of the new problem and retrieved

case(s). This provides evidence that including this adaptation rule in the reuse step of the CBR

system does help to improve the bolus advice. As the results only show a slight improvement from

the pre-adaptation solution, it provides an indication that temporal sequences help to reduce the

effect of insulin stacking. Since the goal is to seek the optimal solution, any adjustment which can

improve the suggestion is beneficial to the system.

5.5 Postprandial evaluation testing and results

To test the effectiveness of the revision rule described in Chapter 4, the bolus insulin solutions

following IOB adaptation were subject to five cycles of postprandial evaluation. Three sets of

results are recorded for postprandial blood glucose readings taken at 2, 3 and 4 hours after the

bolus dose. The test cycles aim to determine the effect on the simulated continuous blood glucose

level using same the statistical measures to evaluate the retrieval process. The target blood glucose

for the subject is set as 6.66 mmol/L, and TDD used to estimate ISF is calculated using Eq. 4.27

over 4 preceding days, where each day has at least three meals recorded. A daily basal dose of

20 insulin units is added to each of the 4 days, as defined for the subject by the simulator. For

instances where the proceeding bolus dose occurs before the postprandial evaluation offset time,

the offset is adjusted to 15 minutes prior to the time of the proceeding bolus dose.

Results for five cycles of postprandial blood glucose evaluation and revision using readings 2

hours post meal bolus are displayed in Table 5.7. The results display gradual improvements in all

statistical measures for each evaluation cycle with the exception of HBGI. HBGI shows a slight

rise following the fourth cycle, which is still well below the minimal risk boundary of less than

5.0. From observing the results of increased offset times (discussed below), the most likely cause

for this slight rise in HBGI is due to the short offset time. The mean blood glucose level statistic

demonstrates how the revised bolus insulin doses on average result in a continuous blood glucose

level closer to the target blood glucose level of 6.66 mmol/L.

Table 5.8 displays postprandial evaluation results for blood glucose readings taken 3 hours post

meal bolus. Increasing the postprandial evaluation offset time to 3 hours shows improvements to

all statistical measures where an improvement can occur in comparison to the 2-hour offset. Most

notably, LBGI is reduced to the minimum risk category (≤ 1.1) after three cycles of evaluation.

The increased offset time also removed the rise in HBGI observed in the 2-hour offset.

The final postprandial evaluation uses a 4-hour offset and is presented in Table. 5.9. The

results show a slight degradation in blood glucose control in comparison to the 3-hour offset, this
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Original Run Cycle 1 Cycle 2

BGRI 3.94 ±0.27 3.50 ±0.30 3.29 ±0.32
LBGI 1.96 ±0.23 1.59 ±0.24 1.40 ±0.25
HBGI 1.98 ±0.26 1.91 ±0.31 1.89 ±0.20

< TR % 0.01 ±0.12 0.00 ±0.00 0.00 ±0.00
> TR % 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

σ2 0.66 ±0.06 0.55 ±0.06 0.51 ±0.06
σ 0.81 ±0.04 0.74 ±0.04 0.71 ±0.04

µ mmol/L 6.30 ±0.21 6.40 ±0.17 6.46 ±0.15

Cycle 3 Cycle 4 Cycle 5

BGRI 3.21 ±0.32 3.18 ±0.34 3.17 ±0.34
LBGI 1.31 ±0.24 1.27 ±0.23 1.25 ±0.23
HBGI 1.89 ±0.29 1.91 ±0.19 1.92 ±0.20

< TR % 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
> TR % 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

σ2 0.48 ±0.06 0.48 ±0.06 0.48 ±0.06
σ 0.69 ±0.04 0.69 ±0.04 0.69 ±0.04

µ mmol/L 6.50 ±0.15 6.53 ±0.14 6.54 ±0.14

Table 5.7: Postprandial evaluation 2 hours after meal bolus

Original Run Cycle 1 Cycle 2

BGRI 3.94 ±0.27 3.32 ±0.31 3.02 ±0.41
LBGI 1.96 ±0.23 1.41 ±0.17 1.14 ±0.14
HBGI 1.98 ±0.26 1.91 ±0.25 1.88 ±0.28

< TR % 0.01 ±0.12 0.00 ±0.00 0.00 ±0.00
> TR % 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

σ2 0.66 ±0.06 0.52 ±0.05 0.45 ±0.06
σ 0.81 ±0.04 0.72 ±0.03 0.67 ±0.04

µ mmol/L 6.30 ±0.21 6.44 ±0.15 6.52 ±0.13

Cycle 3 Cycle 4 Cycle 5

BGRI 2.87 ±0.43 2.82 ±0.44 2.81 ±0.41
LBGI 1.00 ±0.14 0.95 ±0.16 0.94 ±0.15
HBGI 1.87 ±0.29 1.87 ±0.28 1.87 ±0.28

< TR % 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
> TR % 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

σ2 0.43 ±0.06 0.41 ±0.06 0.41 ±0.05
σ 0.65 ±0.04 0.64 ±0.04 0.64 ±0.04

µ mmol/L 6.56 ±0.12 6.58 ±0.12 6.58 ±0.12

Table 5.8: Postprandial evaluation 3 hours after meal bolus

is likely due to duration of active insulin in simulation.

Visualisation of the postprandial evaluation revision results for BGRI, LBGI, HBGI and stan-

dard deviation are displayed in Fig. 5.9. The trend graphs illustrate the improvements in blood

glucose control with increased learning cycles. Most notably, the 3-hour offset produces improved

blood glucose control over both the 2-hour and 4-hour offsets. Cycle 0 in the trend graphs represent

the original continuous blood glucose results prior to postprandial evaluation.

The postprandial evaluation results indicate that the postprandial blood glucose offset time

is key to the quality of the bolus revision, with an offset time of 3 hours demonstrating the best
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Original Run Cycle 1 Cycle 2

BGRI 3.94 ±0.27 3.33 ±0.26 3.04 ±0.37
LBGI 1.96 ±0.23 1.41 ±0.19 1.14 ±0.13
HBGI 1.98 ±0.26 1.93 ±0.25 1.90 ±0.27

< TR % 0.01 ±0.12 0.00 ±0.00 0.00 ±0.00
> TR % 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

σ2 0.66 ±0.06 0.52 ±0.05 0.46 ±0.05
σ 0.81 ±0.04 0.72 ±0.03 0.68 ±0.04

µ mmol/L 6.30 ±0.21 6.43 ±0.16 6.50 ±0.14

Cycle 3 Cycle 4 Cycle 5

BGRI 2.92 ±0.41 2.89 ±0.40 2.89 ±0.37
LBGI 1.02 ±0.14 0.99 ±0.14 0.99 ±0.14
HBGI 1.90 ±0.27 1.90 ±0.27 1.90 ±0.37

< TR % 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
> TR % 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

σ2 0.43 ±0.06 0.43 ±0.06 0.43 ±0.05
σ 0.66 ±0.04 0.65 ±0.04 0.65 ±0.04

µ mmol/L 6.53 ±0.13 6.54 ±0.13 6.54 ±0.13

Table 5.9: Postprandial evaluation 4 hours after meal bolus
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Figure 5.9: Postprandial evaluation revision cycle trends

revision results over 2-hour and 4-hour offsets. With a 3-hour offset, a decrease in BGRI of 28.7%

is observed after five cycles of revision. This demonstrates the importance of revision to CBRs

ability to learn, as shortcomings of the solution can only be observed through simulation or real-

world use. The results demonstrate that an automated approach to bolus dose revision is possible
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within this CBR system, allowing the user to quickly evaluate the solution and obtain improved

bolus insulin suggestions in future reuse.

5.6 Summary

In this chapter the testing methodology of the proposed case-based reasoner for T1DM bolus deci-

sion support was discussed, and the subsequent results analysed and evaluated. Prior to devising

the test plan, methods to analyse the positive and negative effects of bolus insulin suggestions

were identified. This research identified statistical measures for evaluating the continuous blood

glucose data, which is an accessible output of the UVa/Padova T1DM simulator. Statistical mea-

sures for evaluating the continuous blood glucose data include BGRI, time within a target range,

mean, and variance. Blood glucose risk index is broken down into LBGI and HBGI, which can be

translated into risk categories, providing a clear method to identify the risk of hypoglycaemic and

hyperglycaemic events occurring.

With the identification of appropriate statistical measures to evaluate the retrieved cases, a test

plan was devised. The test plan involved the generation of five test case-bases and five problem

sets using the simulator. Retrieval results were obtained for each of the problems sets against

all the sample case-bases using the different retrieval configurations identified. These retrieval

configurations define the distance metric, k-NN, temporal sequence length, and feature selection

algorithm for feature weighting. The resulting bolus suggestions from case retrieval were then

simulated to obtain continuous blood glucose data.

Analysis of case retrieval found improvements in retrieval results with the use of temporal se-

quences. In all cases, a temporal sequence length of 2, which includes one preceding case resulted in

improved continuous blood glucose results. The success of larger temporal sequences is dependent

upon k-NN, with larger temporal sequences degrading the bolus suggestions in 1-NN retrieval, and

improving the bolus suggestions in 5-NN retrieval.

Analysis of the feature selection algorithms used for feature weighting identified similar continu-

ous blood glucose results overall for Chi-Squared, Information Gain, Gain Ratio, and Symmetrical

Uncertainty. This result is expected due to the similarity of the weights obtained using these

algorithms. One Rule was identified as the feature selection algorithm producing the best contin-

uous blood glucose results on average, with RELIEF-F performing the worst. A test run without

feature weighting produced inconsistent results, and overall produced poorer continuous blood glu-

cose levels. This highlights the benefit of weighted distance metrics in general and that the feature

weighting algorithms improve retrieval results. The two distance metrics evaluated (Euclidean and

Manhattan) produced similar results, with Euclidean resulting in the best blood glucose control

overall, especially for larger temporal sequence lengths.

The retrieval results were also compared to the continuous blood glucose results of closed-loop
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simulation and an existing state-of-the-art bolus calculator formula on the same problem sets. The

comparison showed similar results to those obtained by closed-loop simulation, providing evidence

the retrieval strategy successfully identified the best case(s) to solve a new problem. The bolus

calculator produced marginally superior results to those obtained using CBR retrieval and the

simulator. Retrieval was then re-run on a case-base created using the bolus calculator to see if the

results would match those produced by the calculator. Analysis of this re-run demonstrated that

retrieval on this case-base again produced similar results to those obtained by the bolus calculator.

This highlights the importance of the quality of the cases retained by the case-base for retrieving

optimal solutions.

The inclusion of IOB adaptation in the reuse stage of the CBR system resulted in an im-

provement to the bolus insulin suggestions based on analysis of the continuous blood glucose data.

Insulin on board is indirectly a feature of the cases when temporal sequences are used as the

time between boluses are part of the retrieval algorithm. The adaptation results demonstrate that

temporal sequences alone were not sufficient in the prevention of insulin stacking, but through

adaptation can be corrected to further improve the bolus suggestion.

Analysis and evaluation of the automated revision algorithm demonstrated significant improve-

ments to all the statistical measures. Observations highlighted that for optimal revision, a post-

prandial blood glucose reading should be taken approximately 3 hours after the bolus dose. Using

a 3-hour offset, the revision algorithm was able to reduce BGRI by 28.7% after only five revision

cycles. These observations demonstrate that with long term use of the system, the automated

revision method will allow the CBR system to improve bolus suggestions over time.

The CBR model introduced in Chapter 4 and tested in this chapter will now be implemented

as a mobile app. The functional and non-functional requirements of this app refer back to the

formal specification and design considerations identified in Chapter 2. The chapter also looks at

methods to determine the number of cases required for CBR to useful, and how the CBR system

performs on a mobile device.



125

Chapter 6

Mobile implementation

At this point we have analysed existing bolus calculators to understand the domain and described

a CBR model to replace the formulas used by them. This work will now be used in this chapter to

design and implement a prototype mobile app for bolus advice using CBR. The implementation

is then subject to unit testing, and finally the performance of CBR on a mobile device analysed.

The implementation will allow us to evaluate the practicality and usability of the CBR model on

a mobile device.

The work carried out on developing the CBR model for bolus advice was conducted using a

desktop system programmed in Java, which was chosen with the foresight of a simple transition

to an Android device. The mobile prototype requires a method to build a case-base as no rea-

soning can be conducted without any cases to reason upon. The development and testing of the

retrieval algorithm was primarily conducted using a case-base produced by the UVa/Padova T1DM

simulator. Whilst this method produced satisfactory cases and would allow a large case-base to

be produced quickly, it is not a viable option for the mobile implementation, since the simulator

cannot be embedded into the app. Instead the formula derived from the state-of-the-art bolus

advisers and formally specified in Chapter 2 will be adopted for this purpose. Evaluation of the

retrieval algorithm found that this formula produced marginally superior advice over the simulator,

providing confidence that this approach is viable. The drawback is that the user will have to use

the app without the aid of CBR until a sufficient number of cases have been retained. Section 6.1

discusses an approach to estimating how many cases are required for CBR to be enabled for bolus

advice.

The mobile prototype seeks to fulfil the range of functionality provided by the state-of-the-art

bolus advisers discussed in Chapter 2 in addition to the CBR model for bolus advice discussed

in Chapters 4 and 5. The implemented prototype must also conform to the safety constraints

presented in the formal specification, and address usability issues. These functional non-functional

requirements are described in Section 6.2.
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The implementation of the requirements is presented as behavioural models in Section 6.3 using

use case diagrams, use case descriptions, and activity diagrams from the Unified Modeling Language

(UML) [Booch et al., 2004]. These behavioural models describe and visualise the interaction

between the users and system.

The implemented prototype is subject to unit testing in Section 6.4 to ensure that operations

performed by the system do not violate the imposed constraints, and to ensure the system oper-

ations produce the correct outputs. The implementation is also subjected to performance testing

in Section 6.6 to assess if CBR is viable for mobile devices from a usability standpoint.

6.1 Cases required for case-based reasoning bolus advice

A method to create the initial case-base through the use of the bolus advice formula has been

specified by the formal specification in Chapter 2. Since the goal is to provide advice using CBR,

the app must know under which conditions CBR should be enabled. This section looks at an

approach to estimating the number of cases required for successful retrieval to occur.

Leake and Wilson [2011] conducted research into case coverage and discuss a method to pre-

dict the case-base size required for accurate results to be returned. This research proposed a

non-representativeness Monte Carlo method for estimating coverage which demonstrated similar

estimations to the representativeness Leave-One-Out method. The Monte Carlo method uses a

random uniform sample of the problem space against a case-base. The percentage of cases which

solved with this method provide an estimate of the case-base coverage. A case is considered solved

if the similarity is above a certain threshold. McSherry [2003] investigated similarity thresholds

in CBR, with results demonstrating an almost 100% retrieval accuracy with a 90% threshold, and

80% accuracy with a 80% threshold. As the system is of a safety-critical nature, a provisional high

similarity requirement of 90% is imposed.

Research by MacDonald et al. [2008] showed that the number of cases required increases as

the number of case features or similarity threshold increases. As a temporal sequence is a single

case with an increased number of features and the similarity threshold is high, the success rate of

retrieval is likely to be low with a small case-base. To overcome this, the the system will retry the

retrieval with the temporal sequence length reduced in length by 1 each time. If no cases are found

with the minimum temporal sequence length of 1, the calculator will revert to the bolus advice

formula and inform the user that the result is not obtained using CBR.

The Monte Carlo method proposed by Leake and Wilson [2011] was applied to sample case-

bases from 10 to 200 in size, with a uniform problem space sample of 4,600. The results of the

Monte Carlo coverage estimation (see Fig. 6.1) found a rapid improvement in successful retrievals

up to a case-base size of 35. At 35 cases there is a 55% probability of retrieving at least one

case with greater than or equal to 90% similarity. The probability of retrieving cases over 90%
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similarity then begins to plateau with a gradual increase to 65% with a case-base of size of 200.

These results are consistent with those presented by Leake and Wilson [2011], where there is a

rapid increase in prediction accuracy that quickly plateaus into a gradual improvement.
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Figure 6.1: Monte Carlo successful retrievals for a 90% similarity threshold

In real-world use, the distribution of problems and the case-base is unlikely to cover the whole

problem space, and instead may be limited to certain areas of feature space, especially if the user

has a regular daily pattern. In these scenarios, the probability of retrieving cases above 90%

similarity is likely greater than the estimate.

For a user recording four new cases a day, the app would require 9 days of continuous use to

retain the 35 cases to reach the beginning of the plateau identified in the Monte Carlo coverage

estimation. Unless the case-base has 100% coverage of the problem space there is still a possibility

for cases below the 90% similarity threshold to be retrieved. To account for this, the app will

revert to the bolus calculator formula should no cases above 90% similarity be retrieved. With

this additional safety mechanism, bolus advice through CBR is only used when a suitable case is

retrieved.

6.2 Design specification

Prior to the implementation of the mobile prototype, it is important to outline the functional and

non-functional requirements of the system. The formal specification in Chapter 2 focused on the

non-functional requirements of the system in regards to the constraints on system variables. The

functional requirements instead provide a list of required functionality for the mobile prototype.
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6.2.1 Functional requirements

The functional requirements are derived from the functionality presented by the state-of-the-art

bolus calculators in addition to the system requirements to perform CBR for bolus insulin advice.

In total, 13 functional requirements for the app were identified and are described below (FR-1 -

FR-13). Each of the functional requirements describes the general functionality, inputs, outputs

and storage required to fulfil the specified functionality.

FR-1
Function The user is able to define and save their subject specific settings.
Inputs Blood glucose unit (mmol/L or mg/dL).

Upper target blood glucose range (mmol/L or mg/dL).
Lower target blood glucose range (mmol/L or mg/dL).
High blood glucose warning level (mmol/L or mg/dL).
Low blood glucose warning level (mmol/L or mg/dL).
Hyperglycaemia blood glucose warning level (mmol/L or mg/dL).
Hypoglycaemia blood glucose warning level (mmol/L or mg/dL).
Blood glucose units (mmol/L or mg/dL) reduced by one insulin unit.
Carbohydrates (grams) covered by one insulin unit.
Active insulin time (minutes).
Daily bolus insulin dose (insulin units).
Maximum suggested bolus insulin dose (insulin units).

Outputs Confirmation when the settings are saved.
Storage Store all the user defined settings on the local device.

FR-2
Function The user is able to reset the app to the default settings.
Outputs Confirmation that the settings are reset.
Storage Delete the user’s defined settings on the local device.

FR-3
Function The user is suggested bolus insulin advice based on previous events using CBR.
Inputs Planned carbohydrate intake (grams)

Preprandial blood glucose reading (mmol/L or mg/dL).
Date and time.
Active insulin time (minutes).

Outputs Active insulin (insulin units).
Suggested bolus insulin (insulin units), rounded to the nearest half unit.

Storage Required inputs stored as settings are accessed from the local device.
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FR-4
Function Incorporate a bolus calculator to suggest bolus insulin advice and create a suffi-

cient number of cases for CBR to be used.
Inputs Planned carbohydrate intake (grams).

Preprandial blood glucose reading (mmol/L or mg/dL).
Date and time.
Upper target blood glucose range (mmol/L or mg/dL).
Lower target blood glucose range (mmol/L or mg/dL).
Blood glucose units (mmol/L or mg/dL) reduced by one insulin unit.
Carbohydrates (grams) covered by one insulin unit.
Active insulin time (minutes).

Outputs Correction dose (insulin units).
Meal dose (insulin units).
Active insulin (insulin units).
Suggested bolus insulin (insulin units), rounded to the nearest half unit.

Storage Required inputs stored as settings are accessed from the local device.

FR-5
Function The user may override the suggested bolus insulin advice or cancel the process in

the event they choose not to use the advice presented.
Inputs Bolus insulin dose (insulin units).
Outputs Updated suggested bolus insulin dose (insulin units).

FR-6
Function The user is prompted to perform a postprandial blood glucose reading through a

notification. The time of the reminder is specified as an offset from the current
time.

Inputs Time offset (minutes) for the reminder to displayed.
Outputs Confirmation that the reminder has been set.

Display a reminder at the specified time.
Storage Store the reminder on the local device.

FR-7
Function The user is able to record their postprandial blood glucose reading during the

evaluation process.
Inputs Postprandial blood glucose reading (mmol/L or mg/dL).

Unevaluated case details.
Outputs High or low blood glucose level warning if the postprandial blood glucose level is

above or below the high or low blood glucose defined in the user settings.
Hyperglycaemia or hypoglycaemia warning if the postprandial blood glucose level
is above or below the high or low blood glucose defined threshold in the user’s
settings.

Storage Access the unevaluated case from the local device.
Update the unevaluated case on the local device to store the postprandial blood
glucose reading.

FR-8
Function The user is able to perform manual revision of the bolus insulin dose for the

unevaluated case.
Inputs Revised bolus insulin dose (insulin units).

Unevaluated case details.
Outputs Revised bolus insulin dose (insulin units).

Difference between the used bolus insulin dose and revised bolus insulin dose.
Storage Access the unevaluated case from the local device.
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FR-9
Function The user is able to perform automatic revision of the bolus insulin dose for the

unevaluated case based upon the postprandial blood glucose reading.
Inputs Unevaluated case details.

Postprandial blood glucose reading (mmol/L or mg/dL).
Previous cases retained in the case-base.
Blood glucose units (mmol/L or mg/dL) reduced by one insulin unit.
Daily bolus insulin dose (insulin units).

Outputs Revised bolus insulin dose (insulin units).
Difference between the used bolus insulin dose and revised bolus insulin dose.

Storage Access the unevaluated case from the local device.
Access the user’s defined settings from the local device.

FR-10
Function Following successful evaluation of the proposed solution, the case is retained in

the case-base for logging, visualisation and future CBR reuse.
Inputs Unevaluated case details.

Postprandial blood glucose reading (mmol/L or mg/dL).
Revised bolus insulin dose (insulin units).

Outputs Confirmation the case has been retained.
Storage Access the unevaluated case from the local device.

Update the case as evaluated and store the revised bolus insulin dose in the case-
base on the local device.

FR-11
Function The user is able to view past cases which have been evaluated and retained in the

case-base.
Outputs A list of retained cases which have been evaluated by the user.
Storage Access the case-base containing evaluated cases on the local device.

FR-12
Function The user is able to delete a past case from the case-base.
Outputs Confirmation the case has been deleted.
Storage Delete the selected case from the case-base on the local device.

FR-13
Function The user is able to visualise trend graphs for blood glucose readings, carbohydrate

intake, and administered bolus insulin doses over a selected period of time.
Inputs Trend graph to display: blood glucose readings, carbohydrate intake and admin-

istered bolus insulin doses.
Number of preceding days to display.

Outputs Trend graph of the selected data over the selected period of time.
Storage Access the case-base containing evaluated cases on the local device.

6.2.2 Non-functional requirements

The non-functional requirements of the app describe the constraints imposed on inputs for safety,

and also the usability and quality factors required of the prototype.

With a app for use in the medical domain, it is crucial that it is created with safety at the

forefront. The safety constraints required of the system were derived from the Accu-Chek® Aviva

Expert, an FDA-approved blood glucose meter which also provides bolus advice. The Accu-Chek®



131

Aviva Expert provides a detailed list of lower and upper boundaries for various setting variables

and are described in Table. 6.1.

The formal specification in Chapter 2 validated that the guards required for actions which alter

the systems state or perform bolus advice using the specified formula do not violate the invariants

of the system. Inputs required for the CBR adviser will also be subjected to the same guards and

outputs limited by the same constraints, such as the maximum allowed bolus dose. The safety

and usability requirements of the system are described by non-functional requirements (NFRs) 1

through to 5.

NFR-1
All user inputs must be validated to ensure they are within the permitted range or listed allowed
values in the case of string selection.

Valid ranges and values are displayed in Table 6.1 and Table 6.2.

NFR-2
All blood glucose data will be stored and calculated in mmol/L units. Values will only be
converted to mg/dL for users with this setting when display of the value is required.

NFR-3
The user will not be able to obtain bolus advice until the app settings are configured and saved.

NFR-4
Bolus advice through CBR is only displayed if the similarity is over 90% to the retrieved case(s).
The bolus calculator formula will be used if no similar cases are retrieved.

NFR-5
All actions will be displayed within an acceptable response time. Nielsen [1993] describes 10,000
ms as a maximum tolerable response time for keeping the user’s attention.

Data type Min Max

Acting time (minutes) 90 480
Active insulin offset time (minutes) 45 Acting time
Basal insulin (IU) 0 99
Maximum bolus dose (IU) 0 50
Calculated bolus dose (IU) 0 50
Blood glucose (mmol/L) reduced by 1 insulin unit 0.1 55.4
Carbohydrates (grams) covered by 1 insulin unit 1 240
Target blood glucose upper range value (mmol/L) 5.5 15
Target blood glucose lower range value (mmol/L) 3 8
High blood glucose threshold (mmol/L) 6.5 19.5
Low blood glucose threshold (mmol/L) 3 5.5
Hyperglycaemia limit (mmol/L) 10 19.5
Hypoglycaemia limit (mmol/L) 3 5

Table 6.1: Input and output inclusive range constraints
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Data type Allowed values

Blood glucose unit mmol/L, mg/dL

Table 6.2: Input and output allowed value constraints

6.3 Behavioural modelling

Behavioural modelling is used to describe the dynamic interactions between objects [Booch et al.,

2004]. In this section, the interaction between the actors and the system are described using UML

use case diagrams, use case descriptions and activity diagrams.

The use case diagram presented in Fig. 6.2 describes the relationship between actors and seven

use cases: edit setting, load default settings, save settings, obtain bolus advice, postprandial bolus

advice evaluation, view past case, and view trend graph. Two types of actor are modelled in the

use case: the patient, and the doctor or carer. The patient is able to perform all interactions with

the system, whilst the doctor or carer may wish to view or visualise past events to help manage

the patient’s condition.

The use cases presented describe the behaviour required by the system to meet all the func-

tional requirements (Table 6.3) of the system outlined in Section 6.2.1. Each use case diagram is

accompanied by a use case description and activity diagram to capture and visualise the desired

behaviour in an understandable way.

Use case Functional requirements

Edit setting FR-1
Load default settings FR-2
Save settings FR-1
Obtain bolus advice FR-3, FR-4, FR-5, FR-6
Postprandial bolus advice evaluation FR-7, FR-8, FR-9, FR-10
View past case FR-11, FR-12
View trend graph FR-13

Table 6.3: Use case relationship to the functional requirements
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Figure 6.2: Use case diagram

6.3.1 Edit setting

Use case description

The edit setting use case describes the behaviour of the user changing an individual setting to

satisfy FR-1. The user will select a field on the settings screen to change. Once the value is

changed, the input will be validated by the system in accordance with NFR-1. If the input is

valid then the value will be updated, otherwise the user will be informed the value is invalid and

prompted to input the value again. The behaviour is visualised by the activity diagram Fig. 6.3a.

Actors

Patient.

Main success scenario

1. User selects a setting field to edit.

2. User inputs a new value.

3. System successfully validates the user’s input.

4. System updates the setting field value.
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5. System displays the settings screen.

Extensions

3a: The user’s input is invalid.

.1: System displays an invalid value message, returns to main success scenario (MSS) step
2.

(a) Edit setting (b) Load default settings (c) Save settings

Figure 6.3: Edit setting, load default settings and save settings activity diagrams

6.3.2 Load default settings

Use case description

The load default settings use case describes the behaviour of the user loading the systems default

settings to satisfy FR-2. The user will initiate the use case by selecting the option to load the

default settings from the settings screen. The user will then be prompted to confirm if they want

to load the default settings. If the user confirms the decision then the default settings are loaded

and settings screen updated, otherwise no changes are made. The behaviour is visualised by the

activity diagram Fig. 6.3b.

Actors

Patient.

Precondition

All values defined by the default settings are valid.
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Main success scenario

1. User selects load default settings.

2. System prompts user to confirm loading of the default settings.

3. User confirms load default settings.

4. System updates all setting fields with the default values.

5. System displays the settings screen.

Extensions

3a: The user cancels the loading of the default settings when prompted.

.1: System returns to MSS step 5.

6.3.3 Save settings

Use case description

The save settings use case describes the behaviour of the user saving their settings to satisfy FR-

1. Saving the settings is a precondition for the obtain bolus, postprandial blood glucose reading

evaluation, view past cases, and view trend graph use cases. To initialise the save settings use case

the user will select the save settings option on the settings screen. The settings will then be stored

on the device by the system and inform the user that the settings have successfully been saved.

The behaviour is visualised in activity diagram Fig. 6.3c.

Actors

Patient.

Main success scenario

1. User selects save settings.

2. System stores the settings on the device.

3. System displays save successful message.

4. System displays the settings screen.

6.3.4 Obtain bolus advice

Use case description

The obtain bolus advice use case describes the behaviour of the user inputting information about

their current situation and the system returning bolus advice; covering FR-3, FR-4, FR-5, and

FR-6. The use case is initiated when the user selects the bolus calculator option from the menu

or main screen. The user will then input the required details for obtaining bolus advice. At

this point, the user will choose between using CBR or the bolus formula for advice. If there are

sufficient cases in the case-base, CBR is selected by default. If CBR is selected, the system will

ensure that reused cases are above the similarity threshold. If this threshold is not met or if the
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user selects to use the bolus formula, then the system will use the bolus formula to calculate the

bolus advice. Once the system obtains the the bolus advice it is displayed to the user. The user

may now discard, override or accept the advice. Overriding the advice will allow the user to input

a manual bolus dose. Once the advice is accepted, the user will be prompted to input a time offset

for displaying the postprandial blood glucose reminder. When the reminder is set, the system

will store the unevaluated case and return to the main screen. The behaviour is visualised by the

activity diagram in Fig. 6.4.

Actors

Patient.

Precondition

The user settings are defined and saved.

Main success scenario

1. User inputs carbohydrate, current blood glucose level, and if advice should be obtained CBR
or using the bolus formula.

2. System uses CBR to obtain bolus advice.

3. System displays bolus advice.

4. User accepts bolus advice.

5. User sets postprandial blood glucose reading reminder offset time.

6. System stores the unevaluated case.

7. System returns to main screen.

Extensions

2a: Insufficient cases in the case-base or no similar cases retrieved by CBR.

.1: System uses bolus formula to obtain bolus advice instead of CBR, returns to MSS step
3.

4a: User selects override bolus advice.

.1: User manually overrides the bolus advice and returns to MSS step 3.

4b: User selects discard bolus advice.

.1: System cancels the process and returns to MSS step 7.
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Figure 6.4: Obtain bolus advice activity diagram

6.3.5 Postprandial bolus advice evaluation

Use case description

The postprandial bolus advice evaluation use case describes the behaviour of the user recording

their postprandial blood glucose level and evaluating the associated bolus advice; covering FR-7,
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FR-8, FR-9, and FR-10. This use case occurs a period of time after the obtain bolus advice use

case. The use case is initiated either through the reminder dialogue (set in the obtain bolus use

case) or through the pending evaluation screen. Upon initialisation the user is requested to input

their postprandial blood glucose reading. Once the reading is recorded, the user can select between

automated or manual revision of the bolus advice. Automated revision is completed by the system

using the user’s settings and the postprandial blood glucose reading. Manual revision involves

the user inputting amended bolus advice based upon their own evaluation of the advice. After

revision is completed, the user is presented with the updated information. The user must then

select whether to accept or decline the evaluated advice. If the user accepts the revision, the new

case is retained in the case-base by the system. The process is visualised in activity diagram Fig.

6.5.

Actors

Patient.

Preconditions

1. The user settings are defined and saved.

2. Bolus advice has been obtained and stored in an unevaluated case.

Main success scenario

1. User loads an unevaluated case.

2. User inputs postprandial blood glucose reading.

3. User selects automated evaluation method.

4. System displays revised bolus advice.

5. User accepts bolus advice revision.

6. System retains the new case in the case-base.

7. System returns to the main screen.

Extensions

3a: User selects manual evaluation.

.1: User inputs revised bolus dose, returns to MSS step 4.

5a: User selects cancel revision.

.1: System cancels the process, returns to MSS step 7.



139

Figure 6.5: Postprandial bolus advice evaluation activity diagram

6.3.6 View past case

Use case description

The view past case use case describes the behaviour of the user viewing the details of a previously

evaluated case retained in the case-base to satisfy FR-11 and FR-12. The use case is initiated

from the menu or main screen. The user will then be presented with a list of all cases retained in

the case-base. From this list of cases, the user is able to select a case to view. Viewing the case
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will display all the case details to the user and provide an option to delete the case if desired. If

the user chooses to delete the case, the system will prompt the user to confirm. Confirmation of

deletion will remove the case from the case-base and the user is returned to the list of past cases.

The process is visualised in activity diagram Fig. 6.6a.

Actors

Patient, Doctor/Carer.

Preconditions

1. The user settings are defined and saved.

2. At least one previous case exists in the case-base.

Main success scenario

1. System lists all past cases.

2. User selects a case to view.

3. System displays the past case.

4. System returns to the main screen.

Extensions

3a: User selects delete past case.

.1: System prompts for confirmation to delete the past case.

.2: If the user confirms the deletion, the past case is removed from the case-base and returns
to MSS 1, otherwise user does not confirm and returns to MSS 3.

(a) View past case (b) View trend graph

Figure 6.6: View past case and view trend graph activity diagrams
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6.3.7 View trend graph

Use case description

The view trend graph use case describes the behaviour of the user viewing recorded data to visualise

trends to satisfy FR-13. The use case is initialised from the menu or main screen and presents

the user with different feature trends to show. Upon selecting the feature to visualise, the user

is prompted to select the time period for which the trend graph will display records. Selection of

the time period will result in the system displaying the trend graph to the user. The process is

visualised in activity diagram Fig. 6.6b.

Actors

Patient, Doctor/Carer.

Preconditions

1. The user settings are defined and saved.

2. At least one previous case exists in the case-base.

Main success scenario

1. User selects trend graph to display (blood glucose, carbohydrate intake, or bolus taken).

2. User selects the trend graph time period.

3. System displays the trend graph.

4. System returns to the main screen.

Extensions

1a: No past cases exist.

.1: System displays notification that there are no past cases, returns to MSS 4.

6.4 Unit testing

Correct implementation is fundamental to the safety of the app. It is important that all inputs are

successfully validated, and that all actions performed by the app produce the correct output.

The use of a formal specification provides confidence that the guards present in the system

prevent invalid actions from occurring. It is always possible that a mistake can be made during

implementation that would cause the system to either violate the constraints or produce incorrect

results. In addition, certain aspects of the system were not formally specified, such as the CBR

model. To identify possible errors in implementation, unit testing is used to test critical methods

in the system. Each method is passed multiple valid and invalid inputs where possible to check if

the output is as expected.

Unit testing of the methods which modify the system settings and user inputs are achieved

using an automated approach. To perform the unit testing, random valid and invalid inputs are
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passed into the method. The invalid inputs include boundary values and just outside boundary

values (±1 in the case of integer inputs, and ±0.1 for double inputs). The expected output for the

input is then compared to the actual output. If the expected output matches the actual output,

the method passes the unit test.

This unit testing is performed on all methods required to adjust the app settings, calculation

outputs, retrieval similarity, IOB adjustment, and postprandial evaluation and revision. All the

unit tests conducted passed without the need for extensive debugging, which provides evidence that

the implementation correctly reflects the constraints and guards defined by the formal specification.

Appendix E displays the results of the unit tests for a combination of valid and invalid values.

6.5 System demonstration

In this section two brief case studies of the mobile implementation are demonstrated. The case

studies selected for demonstration will follow the main success scenarios of the obtain bolus advice

(Section 6.3.4) and postprandial bolus advice evaluation (Section 6.3.5) use cases. These use cases

have been selected as they demonstrate the case-based reasoning system on the mobile advice,

starting with the input of a new problem through to the retaining of a new case.

The system settings have been defined prior to this example, as required by the precondition

of the obtain bolus advice use case. Additionally the application has been pre-populated with a set

of pseudo cases, sufficient to allow CBR retrieval to be enabled.

Obtain bolus advice use case demonstration

The obtain bolus advice use case begins by tapping Bolus Calculator on the app’s main screen (Fig.

6.7a). The user is then presented with a screen to input their new problem description (Fig. 6.7b),

which requires selecting the quantity of carbohydrates in grams and current blood glucose level (in

this example the mmol/L unit is used) from the number pickers or by typing in the values. In this

example 65 grams of carbohydrates and a blood glucose reading of 6.0 mmol/L are input. The

Use CBR for suggestion checkbox is selected by default, since the system has sufficient cases to

use CBR. With the values input, the user can proceed by tapping the Calculate bolus dose button.

The user is then presented with the bolus insulin suggestion retrieved by the CBR algorithm

(Fig. 6.7c). In this example the retrieved advice is 5.0 insulin units, and since no insulin on board

adjustment is needed is also the final suggestion (highlighted in bold). The user can choose to

override the advice manually by tapping Override Bolus Suggestion or tap Cancel to return to the

main screen. Additionally, the user can also view the details of the cases reused to suggestion this

solution by tapping the Show Reused Cases button. In this example the user wishes to accept the

bolus insulin advice, and so must define the postprandial reminder time (in this case 180 minutes)

and tap the Set Reminder to save a new case that is pending postprandial evaluation. This new
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unevaluated case can be seen from the list of cases pending postprandial evaluation (Fig. 6.8b).

After tapping Set Reminder the user is returned to the main screen (Fig. 6.7a).

(a) Main screen (b) New problem input (c) Retrieved solution

Figure 6.7: Obtain bolus advice use case demonstration

Postprandial bolus advice evaluation use case demonstration

The postprandial bolus advice evaluation use case can begin either through the reminder notification

dialog box (Fig. 6.8a), which is automatically displayed after a certain duration defined by the

user in the obtain bolus advice use case, or by viewing the cases pending evaluation by tapping

Postprandial Evaluation on the main screen (Fig. 6.7a) and selecting the unevaluated case from

the list (Fig. 6.8b).

After selecting either OK from the reminder dialog box or selecting a case from those listed

as awaiting postprandial evaluation, the user is presented with the postprandial evaluation screen

(Fig. 6.8c). On this screen the user is presented with details of the pending case, this includes

the quantity of carbohydrates, the preprandial blood glucose reading, date and time, and the

bolus dose. The user is then required to input their postprandial blood glucose reading using the

number picker, in this example 5.0 mmol/L is input. The user may now tap Automated Evaluation

to perform the automated evaluation described in Section 4.11, or perform manual evaluation by

tapping the Manual Evaluation button. In this example automated evaluation will be used.

Following selection of automated evaluation, the user is presented with the bolus dose evaluation

screen (Fig. 6.8d). This screen displays the original bolus dose and the revised bolus advice.

Additionally, the insulin sensitivity factor (ISF) used and adjustment value is displayed to the

user for reference. The evaluation screen provides the user the option of cancelling or saving the

evaluated case. The user may wish to cancel if they have input the incorrect postprandial blood

glucose value or if they wish to use manual evaluation instead. To complete the use case, the user
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(a) Reminder (b) Case pending evaluation

(c) Case evaluation (d) Automatic evaluation revision

Figure 6.8: Postprandial bolus advice evaluation use case demonstration

taps the Save button, which will store the evaluated case in the case-base for future reuse and

return the user to the main screen (Fig. 6.7a).

The demonstration of these two use cases illustrates the full CBR cycle on the implement mobile

app. The CBR process in the app requires minimal input from the user, especially when the advice

does not require manual adjustment and automated evaluation is used. Where input is required

number pickers have been used where ever possible. This is to limit the user to valid inputs whilst

still having the option of keyboard input that is limited to the required character sets. Both use

cases demonstrated in this section can be completed in as few as nine actions (taps and spins)

by the user, starting from the selection of the bolus calculator on the main screen through to the

retaining of the evaluated case.
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6.6 Case-based reasoning performance

A drawback of CBR is that its retrieval process can be resource intensive. This poses the question

as to whether CBR is viable on a mobile device in order to meet Nielsen’s usability requirements on

acceptable response times [Nielsen, 1993]. Nielsen states that 10,000 ms is the limit for maintaining

a user’s attention. The prototype app is subjected to performance tests to determine the time taken

in milliseconds to compute the resource intensive retrieval stage on an Android smart phone.1

The time taken to perform a retrieval is tested against sample case-bases containing an in-

creasing number of cases. The retrieval process performs a full aggregate match across the entire

case-base. The first case-base consists of 10 cases, the second 100, and the subsequent incrementing

by 100 more cases, up to a total of 2,000 cases inclusive. The results obtained are from running

the app on a single thread as multi-threading on the device failed to result in any performance

improvements. This could be due to the overheads of multi-threading outweighing the benefits on

the dual-core CPU of the device. This test is repeated five times to assess consistency between the

results which are displayed in Table 6.4 and Fig. 6.9.

The results of the CBR retrieval performance on the device demonstrated acceptable compu-

tation time for smaller case-bases. The device on average processes retrieval in under 1,000 ms on

a case-base of size 300, which based on an average of four cases a day would equate to 75 days

of retained cases. The time taken to compute retrieval increases gradually as the case-base size

grows, with the computation time increasing more rapidly with each additional case. In 10,000

ms, the device on average was able to compute retrieval on 1,100 cases, whilst retrieval on 2,000

cases requires around 32,500 ms.

Based on Nielsen [1993] 10,000 ms limit and the performance results, retrieval can be computed

on 1,100 cases. This at an average of four cases recorded per day would allow 275 days of infor-

mation to be used. Determining an optimal number of cases to perform a full aggregate match

upon is difficult due to potentially varying user expectation, and differing performance between

devices.2 Through effectively utilising the multiple cores, increased frequency, and RAM available

to the latest mobile devices, there is potential for retrieval to be performed on larger case-bases

whilst still producing results in an acceptable time frame. Additionally, there is also much scope

for improving the efficiency of the retrieval through dimensional matching.

1Samsung Galaxy S2 running Android 4.1.2. 1.2 GHz CPU and 1 GB of RAM.
2The latest equivalent model of the Samsung Galaxy S2 at the time of writing is the Samsung Galaxy S6,

featuring a 2.1 GHz quad-core CPU and 3 GB RAM.
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No. of
cases

Time (ms)
Run 1 Run 2 Run 3 Run 4 Run 5 µ ± Min Max

10 32 22 8 9 9 16 16 8 32
100 222 250 126 125 127 170 80 125 250
200 495 504 408 477 399 456.6 47.4 399 504
300 1155 1021 969 871 850 973.2 181.8 850 1155
400 1685 1819 1404 1462 1400 1554 265 1400 1819
500 2448 2363 2150 2219 2261 2288.2 159.8 2150 2448
600 3249 3412 3034 2987 3023 3141 271 2987 3412
700 4467 4537 4203 4257 4073 4307.4 229.6 4073 4537
800 5883 5920 5208 5344 5488 5568.6 351.4 5208 5920
900 6830 6597 6689 6726 6794 6727.2 102.8 6597 6830

1000 8392 7847 8229 8029 8036 8106.6 285.4 7847 8392
1100 10485 9635 9610 9922 9635 9857.4 627.6 9610 10485
1200 11904 11564 11593 12981 11622 11932.8 1048.2 11564 12981
1300 14307 14131 13623 13513 13565 13827.8 479.2 13513 14307
1400 16902 15919 15779 15530 15763 15978.6 923.4 15530 16902
1500 19529 18146 17939 19395 18142 18630.2 898.8 17939 19529
1600 22608 20814 20486 20656 21155 21143.8 1464.2 20486 22608
1700 23826 22611 22838 22717 22899 22978.2 847.8 22611 23826
1800 26890 25507 25982 25667 26027 26014.6 875.4 25507 26890
1900 29279 28122 28260 28808 29997 28893.2 1103.8 28122 29997
2000 32821 32143 32856 31554 33139 32502.6 636.4 31554 33139

Table 6.4: Case-based reasoning retrieval performance results
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Figure 6.9: Mean time taken to perform CBR retrieval

6.7 Summary

In this chapter, the implementation of a prototype mobile app for bolus advice using CBR was

discussed. The prototype allows the user to define their settings, build a case-base using a state-of-

the-art bolus calculator formula, and use CBR for bolus advice. Trend graphs were also included

in the prototype app to provide a means for data visualisation. The trend graphs implemented
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provide information on blood glucose readings, carbohydrate intake and bolus insulin doses over a

variable period of time.

The Monte Carlo method for case coverage estimation was used to gauge the approximate

number of cases required to successfully retrieve cases of at least 90% similarity. The results found

that retrieval success begins to plateau after 35 cases are acquired with a success rate of 55%.

After 200 cases were acquired, the success rate increased to 65%. The Monte Carlo method adopts

a uniform representation of the case-base, so it is likely the real-world success rate will be higher

as a user’s behaviour is likely to follow patterns with the distribution confined to clusters. As a

fail safe mechanism, the prototype will revert to the bolus formula should no cases above 90%

similarity be retrieved.

The implementation uses the formal specification described in Chapter 2 to ensure that the

prototype successfully meets the constraints required of the system. The constraints include valid

values for user definable settings and outputs from the system. The app was subjected to unit

testing, where safety critical methods were tested to ensure the actual output matched the expected

output for a selection of random valid and invalid inputs.

Performance tests of CBR on a mobile device demonstrated acceptable performance times of

under 10,000 ms for case-bases up to 1,100 cases in size. With scope to improve efficiency of the

retrieval algorithm, and with further advancements in mobile device performance, the prototype

app demonstrates that CBR is viable on a mobile device.
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Chapter 7

Conclusions and further research

This research resulted in the successful completion of the primary aim, to implement an intelligent

and robust bolus adviser for T1DM subjects. The app’s use of CBR resulted in improved simu-

lated blood glucose control in comparison to the state-of-the-art bolus calculators assessed in this

research. As a result, this research confirms the original hypothesis which stated that CBR can be

used to overcome the inability to learn and improve future advice.

A notable contribution of this research is the resulting CBR system based on the R4 model

[Aamodt and Plaza, 1994]. The CBR system in this research enhanced the retrieval step through

the introduction of temporal sequences and dynamic feature weighting, resulting in better case

retrieval in comparison to a traditional approach. Temporal sequences allow factors from previous

events to be considered when identifying the most similar case, which is an important consideration

in temporal or sequential domains. Additionally, the research utilised domain specific rules to

enable automatic adaptation and revision, allowing the system to both improve suggestions and

optimise future advice. Results of these domain specific adaptation and revision rules showed

significant improvement in simulated blood glucose control and highlighted the potential of CBR

for bolus advice.

The research also adopted formal methods to assist the design of the resulting app. This helped

to resolve safety issues prominent in mobile health apps currently available on the market. The

use of formal methods helped to ensure that the domain was well understood and allowed system

constraints to be validated prior to implementation.

This concluding chapter looks at the work undertaken in the previous chapters in relation to

the aim and objectives outlined in Section 1.1. The chapter also looks at the impact of the research

and makes recommendations for further research.
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7.1 Reflection on the research aim and objectives

This section will reflect on the primary aim and objectives set out in Section 1.1 of the introductory

chapter.

1. Identify the state-of-the-art approaches for T1DM bolus advice

A motivation for this research was the mobile POIRO MK4 expert system for T1DM self-manage-

ment [Poerschke, 2004]. This particular system was created in the early 2000’s during the era of

palm PCs, when mobile technology was less powerful. As technology has advanced significantly

since then, alongside the ever growing popularity of smartphones and tablets, it was important to

see what state-of-the-art solutions for T1DM self-management currently exist.

The research into these state-of-the-art solutions were presented in Chapter 2, where the Accu-

Chek� Aviva Expert blood glucose meter and four mobile apps for iOS were assessed. Undertaking

this task found that all the solutions employed a similar formula to calculate bolus insulin doses.

These formulas can improve on past advice only through the optimisation of some constant values,

which would either require clinician advice or a good understanding of the domain.

The Accu-Chek® Aviva Expert blood glucose meter served as a benchmark when comparing

the mobile apps due to its FDA approved status, and the developers Roche being industry leaders.

The mobile apps assessed found a large variation in terms of sophistication. RapidCalc was the

only mobile app found for iOS that closely mirrored the functionality provided by the Accu-

Chek® Aviva Expert blood glucose meter. This was not only terms of the features used in bolus

calculations, but also additional features such as data recording, a comprehensive set of user

definable settings, and the ability to visualise data. Other apps including Diabetic Dosage and

Insulin Calc provided very little functionality in contrast, acting only as a simple bolus calculator

with no ability to record data.

2. Discover how the state-of-the-art approaches predict bolus advice and evaluate

what safety mechanisms are in place

The assessment of the state-of-the-art bolus calculators and associated literature in Chapter 2

highlighted many safety concerns. Some of the apps assessed did not impose constraints on user

inputs, allowing the suggestion of potentially fatal advice. Additionally, some of the apps used

suboptimal variations of the formula used by the Accu-Chek® Aviva Expert. These issues coupled

with the lack of official assessment required, raised concerns about health apps available to major

platforms. As a result, a formal approach was adopted during the design phase to best mirror the

constraints of the FDA approved Accu-Chek®.

To ensure a firm understanding of the domain and constraints a bolus calculator was formally

specified using the Event-B language. This step was adopted to ensure the perceived understanding
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of how a bolus calculator works was correct. Additionally, it helped ensure that all data types and

constraints were not violated by actions performed by the system. Performing this task aided the

implementation in Chapter 6 greatly by ensuring the pre-conditions in the model were sufficient

in preventing erroneous actions by the implemented system.

3. Discover how CBR provides intelligence and how it has been utilised in the T1DM

domain previously

Before devising a CBR system for bolus advice it was important to first understand the mechanisms

of CBR. In Chapter 3, we looked at the fundamental aspects of CBR. This research found the R4

model to be the most understandable and widely adopted model in the field [Aamodt and Plaza,

1994]. The R4 model draws upon earlier CBR work to produce a model for all purposes consisting

of a four step cycle: retrieve, reuse, revise, and retain.

Although the R4 model serves as a good guideline for creating a CBR system, the individual

steps of the cycle are abstract, relying on the designers to identify suitable concrete methods for

each stage of the cycle.

Starting with the retrieve step; the research identified that case retrieval can consist of two

search methods, a dimensional match and an aggregate match. The dimensional match helps to

reduce the number of cases considered for a more detailed aggregate match. Due to the rigid

structure of the cases in the context of T1DM bolus advice, a dimensional match would be hard

to achieve, since all features will be present in each case. For this reason, the research focused on

aggregate matching, with a look at a few methods: distance functions, heuristic matching, and

abstraction. Since the cases will work with continuous numeric values, distance functions were

found to be the most appropriate for this research.

Following retrieval is the reuse of cases, where the retrieved solution can either be reused directly

or adapted to better solve the problem. Adaptation allows differences to be reconciled between the

problem and retrieved case, either through substitution or transformation. Substitution adaptation

involves applying specialist rules to resolve differences, whilst transformation applies a heuristic

approach to reconciling differences either by removing and adding features, or inferring feature

values based on domain models. For the context of this research substitution adaptation was

found to be the most suitable, with the ability to adapt the bolus advice through reconciling

differences in active insulin.

After reuse it is assumed the adapted solution has been accepted. However, before retaining

the case it is important that the solution is validated first in the revise stage. Revision of the

case requires either real-world or simulated evaluation of the solution. This evaluation determines

if there are any faults and how they can be resolved. In this research, postprandial evaluation

was adopted to evaluate the solution, where a blood glucose reading is taken at a delayed time

following the administration of the bolus insulin. This evaluation allowed the assessment of the
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subject’s postprandial reading against their target blood glucose level. The difference between the

postprandial reading and target level is then used to revise the solution.

Finally, a case with its revised solution is retained in the case-base. The difficulty in the retain

step is selecting appropriate indexes for a case, where appropriate levels of abstraction should be

used to best index the problem for future retrievals. However, as the cases in the system are

consistent in structure and all cases relate to the same feature value pairs, indexing the case-base

did not seem beneficial.

Comparing CBR to rule-based and model-based reasoning discovered that although the ap-

proaches are different, there is often synergy between the methods. Many CBR systems adopt

rule-based and model-based reasoning techniques in order to reconcile differences during adapta-

tion or to assist the repair of solutions which failed. Looking at seminal CBR systems such as

MEDIATOR [Simpson Jr, 1985], CHEF [Hammond, 1986], CASEY [Koton, 1988], and JULIA

[Hinrichs and Kolodner, 1991], found that all these systems rely somewhat on rules or models to

assist the CBR process. The same is true for this research, where adaptation and revision use

specific rules to improve the solution.

By understanding the mechanisms of CBR, appropriate strategies to implement a CBR system

based on the R4 model were identified, which are consistent with techniques used by other CBR

systems.

4. Develop a CBR system for predicting user tailored T1DM bolus advice

The strategies identified when exploring the CBR literature were then used to propose a CBR

system for obtaining bolus suggestions. Chapter 4 discussed the CBR system in detail, and Chapter

5 analysed and evaluated the different steps in the CBR cycle. A key component of CBR is

the retrieval of the most relevant previous cases. Research into retrieval investigated the effect

of different distance metrics, temporal sequences, and feature weighting using feature selection

algorithms. The retrieved solutions were analysed using statistical measures for continuous blood

glucose readings.

Analysis of the case retrieval process when using temporal sequences to include previous events

identified an improvement in blood glucose control. The result of larger temporal sequences was

dependent upon other retrieval factors; in particular, the number of nearest neighbours retrieved,

and the feature selection algorithm.

The results also yielded more stable blood glucose control with the use of feature weighting

over retrieval with no feature weighting. The choice of feature selection algorithm made little

difference to the results, but on average the One Rule feature selection algorithm produced the

best blood glucose control and RELIEF-F feature selection algorithm the poorest. The observation

that One Rule and RELIEF-F feature selection algorithms produced the best and worst retrieval

results respectively is not unexpected due to their different approach to feature ranking. The
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entropy based Information Gain, Gain Ratio and Symmetrical Uncertainty feature selection all

resulted in similar weightings. It is expected that these algorithms would produce similar results

as Gain Ratio and Symmetrical Uncertainty are evolutions of Information Gain. The results do

suggest a minor improvement in blood glucose control from Symmetrical Uncertainty and Gain

Ratio over Information Gain, which would reflect the improvements to the original algorithm.

Although the feature weightings obtained from the Chi-Squared feature selection algorithm were

similar to RELIEF-F in some instances, the results exhibited similar performance to the entropy

based algorithms.

The last variant in the retrieval process is the distance metric used. This research tested two

distance metrics Euclidean and Manhattan. Overall, little difference was observed between the

two metrics, with a marginal benefit when using the Euclidean distance metric.

Adaptation and evaluation rules were then introduced to the CBR system. Adaptation was

included to factor in the effects of insulin stacking before presenting a solution, reducing the risk of

hypoglycaemic episodes. The inclusion of the adaptation rule to prevent insulin stacking produced

notable improvements in blood glucose control, with a reduction in both the low blood glucose

risk index and high blood glucose risk index. On average, this resulted in a 6.6% reduction in the

blood glucose risk index compared to the continuous blood glucose levels prior to adaptation.

An automated evaluation rule to revise a bolus suggestion was then introduced to help improve

the suggestions for future reuse. Automated evaluation revises the bolus suggestion based on the

difference between a postprandial blood glucose reading and the subject’s target blood glucose

level. Repeated evaluation of the suggestions resulted in greatly improved blood glucose control.

Five cycles of postprandial evaluation with a 3-hour meal offset resulted in a further reduction of

28.7% in the blood glucose risk index from the original solution with adaptation to account for

insulin stacking.

5. Implement the system on a mobile device

A prototype mobile app was developed to assess the viability of CBR on a mobile device in Chapter

6. The app used the formal specification in Chapter 2 to help ensure the app was both safe and

robust by conforming to the constraints of the Accu-Chek® Aviva Expert.

An initial problem to solve was how could CBR be used when there are no existing cases. Since

the state-of-the-art applications utilise a formula, which despite not being intelligent is able to

produce satisfactory results, it was decided that this approach could be used to build a case-base.

This then lead to the question of how many cases are required for case-based reasoning in order to

retrieve an appropriate solution. This question was addressed using the Monte Carlo method on

a uniform distribution of the feature space. This method found that approximately 35 cases were

required to reach the beginning of the plateau for reliably retrieving a case with 90% similarity.

However, in real-world use the problem space is unlikely to follow a uniform distribution and
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instead be isolated to clusters, so the number of cases required is likely to be less. As an extra

safety measure, it was decided that the app should revert to the bolus formula if a defined similarity

threshold is not met.

To guide the implementation, functional and non-functional requirements of the system were

defined, and UML adopted in the form of use cases, use case descriptions and activity diagrams.

Formally defining the behaviour of the system prior to implementation, alongside the formal spec-

ification helped to ensure the development of a reliable app which allowed the user to perform all

the tasks available to the more sophisticated bolus calculators.

The resulting app provides a method to produce a subject specific case-base using a state-of-

the-art bolus calculator formula, and the ability to evaluate the calculated results prior to case

retention. Once a sufficient case-base is created, the user can obtain suggestions through CBR

instead.

Implementation of the prototype app from the formal specification and design specification

proved beneficial, with the unit tests of all safety critical methods passing without the need for

debugging. This provides some evidence for the use of formal methods in aiding implementation,

especially in ensuring preconditions successfully prevent the actions of the system from violating

the system constraints.

6. Evaluate the implemented system for suitability on a mobile device

Performance analysis of the mobile prototype was conducted in Chapter 6 to assess the performance

viability of CBR on a mobile device. The benchmark for CBR performance testing was set at

10,000ms using the upper acceptable response time described by Nielsen [1993]. Performance

testing against this benchmark found that an Android device could successfully perform CBR

on case-base size of up to 1,100 cases. This finding provides evidence that CBR is viable for

T1DM bolus advice on mobile devices, and potentially other similar domains. Additionally, with

continuing improvements in hardware and more efficient retrieval algorithms, it is feasible for CBR

to be implemented on mobile devices in a range of contexts.

Primary aim: Develop an intelligent and robust mobile app using CBR to predict

bolus insulin advice for T1DM subjects

The objectives outlined above all assisted in reaching the primary aim of this research; to develop an

intelligent and robust mobile app using CBR to predict bolus insulin advice for T1DM subjects.

The resulting mobile app uses CBR to fulfil the intelligence aspect of the tool, a process aided

through a novel retrieval algorithm, and domain specific adaptation and revision rules. The CBR

system proved to be just as effective as the approach used by state-of-the-art bolus calculators prior

to any form of adaptation or learning through revision. With the added functionality of adaptation
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to account for insulin on board, and the addition of revision through postprandial evaluation, the

app is able to learn from suboptimal suggestions and improve future advice.

The issue of performance on a mobile device was a concern for using CBR. This research showed

that CBR in this domain demonstrated acceptable response times on a mobile device. With the

advancement of hardware and a more efficient retrieval algorithm, CBR appears to be a viable

method to use on mobile devices.

The robustness of the resulting app was achieved through careful assessment of existing bolus

calculators including the FDA approved Accu-Chek® Aviva Expert. To ensure the understanding

of the domain was correct, a bolus calculator was initially modelled in Event-B. This process helped

to define concrete system constraints which were successfully validated through unit testing after

implementation.

In summary, this research successfully adapted and contributed to existing methods to fulfil

the research aim, and confirms the hypothesis that CBR is a valid approach for improving bolus

advice.

7.2 Impact

Successful management of T1DM is a difficult task for subjects due to the complexity of the

condition. As a result, subjects often seek methods to aid their ability to successfully manage

the condition through good blood glucose control. Successful management of blood glucose levels

reduces the risk of long-term complications. Smart phones and tablets can provide a convenient

and portable method to provide this assistance to a large number of T1DM subjects.

State-of-the-art mobile apps for T1DM bolus advice such as RapidCalc and Diabetes Personal

Calculator for iOS provide a means for bolus advice, but are reliant on continuous medical advice

from a doctor for optimal configuration. The research and development of an intelligent mobile

app presented in this research provides a means to obtain bolus advice from past solutions. These

solutions are not constrained to user defined constants and through evaluation and revision, future

suggestions can be improved and tailored towards the subject.

The concepts discussed are not limited to mobile devices and could be utilised for insulin pumps,

blood glucose monitors, personal computers, and as a web service accessible from any device with

internet access. The potential versatility allows for a widely accessible intelligent solution to bolus

advice.

7.3 Recommendations for further research

The research conducted was limited to a non-clinical perspective of the domain. Related literature

and state-of-the-art approaches were used throughout the research to obtain a detailed understand-
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ing of the domain, and to identify accepted measures for the analysis and evaluation of results.

All the concepts presented were analysed and tested using the FDA-approved UVa/Padova T1DM

simulator. However, the simulator constrained the number of features which could be accommo-

dated. This resulted in the exclusion of features such as exercise and stress which are present

in some existing bolus calculators. As a simulator is used, it is not possible to truly assess the

real-world success of the concepts discussed in this research without clinical studies. The CBR

system discussed in this research can be extended to include features which due to the limitations

of the simulator could not be included. Some features omitted in this research which should ex-

plored include exercise, stress and alcohol. An expanded system with clinical trials would provide

a real-world insight into the viability of CBR for T1DM self-management.

Evaluation of case retrieval illustrated how the quality of CBR suggestions are dependent upon

the quality of the cases retained in the case-base. As a result, the effectiveness of CBR is reliant on

a well-managed case-base produced by accurate user inputs and evaluation in addition to regular

use. This is an area related to user behaviour, and the identification of methods to improve the

user’s interaction with the system would aid CBR in all domains that involve humans.

Efficiency of CBR retrieval was not an area of focus in this research. There is potential to

increase the performance of the proposed retrieval process through the inclusion of dimensional

matching to reduce the number of cases requiring an aggregate match. Improvements to the

efficiency increases the range of devices for which CBR in this domain would be viable. As the

majority of efficiency concerns reside in the retrieval process, a cloud service would be an approach

to consider. Such an approach would have to be implemented carefully to prevent issues associated

with network access, which is an area of concern for quality of experience.

A CBR service in the cloud also opens up the possibility of case sharing between subjects. This

would reduce the need for a case-base to be created using a traditional bolus calculator or similar

method, potentially allowing CBR to be used without the need to create a case-base. For case

sharing to be reliable, a suitable method for identifying the similar subjects would be required.

Additionally, steps would need to be taken to ensure the security and confidentiality of any stored

user information.

Some elements of this research also have the potential for use in other domains. Most notably

the use of temporal sequences to improve case retrieval in sequential domains. Research into the use

of temporal sequences in other domains will help provide evidence to validate the method. Exam-

ples of such use may be other medical conditions which require self-management, cost-estimation

for software-engineering, and the prediction of future events in a number of domains based on

sequential events. There are certainly questions to be asked about how to determine optimal

temporal sequence length, possibly through an hypothesis by domain experts which can then be

validated through simulated or real-world testing. Additionally, the use of temporal sequences

is highly dependant on feature weighting, so future research could explore the use of different
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algorithms, or explore how the algorithms used in this research perform in other domains.

7.4 Concluding remarks

This research set out to see if CBR was a viable approach for predicting bolus insulin advice,

and the analysis and evaluation conducted found that the approach is viable. Retrieval results

prior to adaptation and revision produced suggestions similar to closed-loop simulation and state-

of-the-art bolus calculators. The inclusion of adaptation and evaluation rules further improved

the suggestions, with significant improvements in blood glucose control after repeated revisions.

Performance of the CBR system on a mobile device resulted in acceptable performance of the app

for up to 1,100 cases. With a large scope for improved efficiency of the resource intensive retrieval

process and further improvements in mobile technology, it can be concluded that CBR is viable

on mobile devices.

With continued research of intelligent systems for personalised T1DM advice, there is great

potential for reliable, robust, cost effective, and accessible solutions to become available to an

increasing number of individuals.
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Appendix A

Event-B specification: Abstract

machine

MACHINE t1dm m0

VARIABLES

active Active insulin time (minutes)

basal Basal insulin (insulin units)

bgThresHigh Upper blood glucose threshold (mmol/L)

bgThresLow Lower blood glucose threshold (mmol/L)

carbRatioC Carbohydrate-to-insulin ratio: carbohydrates per carbRatioI

carbRatioI Carbohydrate-to-insulin ratio: insulin units (insulin units)

hyperThreshold Hyperglycaemia threshold (mmol/L)

hypoThreshold Hypoglycaemia threshold (mmol/L)

isfBG Insulin sensitvity factor: reduction in blood glucose for isfI insulin units (mmol/L)

isfI Insulin sensitivity factor: insulin units

maxBolus Maximum bolus dose (insulin units)

targetRangeUpper Target blood glucose range upper value (mmol/L)

targetRangeLower Target blood glucose range lower value (mmol/L)

bolusSuggestion Suggested bolus dose (insulin units)

settingsDefined Boolean informing the system the user settings are defined

INVARIANTS

inv1 : active ∈ N
inv2 : active ≥ 900 ∧ active ≤ 4800

Active insulin time must be in the range [90.0,480.0] minutes

inv3 : basal ∈ N
inv4 : basal ≤ 990

Basal insulin dose must be in the range [0.0,99.0] IU

inv5 : bgThresHigh ∈ N
inv6 : bgThresHigh ≥ 65 ∧ bgThresHigh ≤ 195

High blood glucose threshold must be in the range [6.5,19.5] mmol/L

inv7 : bgThresLow ∈ N
inv8 : bgThresLow ≥ 30 ∧ bgThresLow ≤ 55

Low blood glucose threshold must be in the range [3.0,5.5] mmol/L

inv9 : carbRatioC ∈ N
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inv10 : carbRatioC ≥ 10 ∧ carbRatioC ≤ 2400
Carbohydrates correct by carb-to-insulin ratio per carbRatioI must be in the range
[1.0,240.0] grams

inv11 : carbRatioI ∈ N
inv12 : carbRatioI ≥ 1 ∧ carbRatioI ≤ 500

Insulin units for carb-to-insulin ratio pmust be in the range [1.0,50.0] mmol/L

inv13 : hyperThreshold ∈ N
inv14 : hyperThreshold ≥ 100 ∧ hyperThreshold ≤ 195

Hyperglycaemia threshold must be in the range [10.0,19.5] mmol/L

inv15 : hypoThreshold ∈ N
inv16 : hypoThreshold ≥ 30 ∧ hypoThreshold ≤ 50

Hypoglycaemia threshold must be in the range [3.0,5.0] mmol/L

inv17 : isfBG ∈ N
inv18 : isfBG ≥ 10 ∧ isfBG ≤ 554

Blood glucose reduction for ISF must be in the range [1.0,55.4] mmol/L

inv19 : isfI ∈ N
inv20 : isfI ≥ 1 ∧ isfI ≤ 500

Insulin units for ISF must be in the range [1.0,50.0] IU

inv21 : maxBolus ∈ N
inv22 : maxBolus ≤ 500

The maximum bolus dose must be in the range [0.0,50.0] IU

inv23 : targetRangeUpper ∈ N
inv24 : targetRangeUpper ≥ 55 ∧ targetRangeUpper ≤ 150

Target blood glucose range upper value must be in the range [5.5,15.0]

inv25 : targetRangeLower ∈ N
inv26 : targetRangeLower ≥ 30 ∧ targetRangeLower ≤ 80

Target blood glucose range lower value must be in the range [3.0,8.0]

inv27 : bolusSuggestion ∈ N
inv28 : bolusSuggestion ≤ maxBolus

The bolus suggestion must be < = the maximum allowed bolus dose

inv29 : settingsDefined ∈ BOOL

EVENTS

Initialisation
Initilialises the machine

begin
act1 : active := 2400

Default active insulin time 240.0 minutes
act2 : basal := 0

Default basal dose 0 IU
act3 : bgThresHigh := 165

Default high blood glucose threshold 16.5 mmol/L
act4 : bgThresLow := 40

Default low blood glucose threshold 4.0 mmol/L
act5 : carbRatioC := 10

Default carbohydrates per carbRatioI insulin unit for carbohydrate-to-insulin ratio

act6 : carbRatioI := 10
Default insulin unit for carbohydrate-to-insulin ratio

act7 : hyperThreshold := 165
Default hyperglycamia glucose threshold 16.5 mmol/L

act8 : hypoThreshold := 40
Default hypoglycamia glucose threshold 16.5 mmol/L

act9 : isfBG := 10
Default reduction in blood glucose per isfI insulin unit for insulin sensitivty factor

act10 : isfI := 10
Default insulin unit for insulin sensitvity factor

act11 : maxBolus := 0
Default maximum bolus suggestion
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act12 : targetRangeUpper := 80
Target blood glucose range upper value

act13 : targetRangeLower := 40
Target blood glucose range lower value

act14 : bolusSuggestion := 0
Bolus suggestion initially 0

act15 : settingsDefined := FALSE
Settings are not defined

end

Event bolusCalc =̂
Bolus calculator event for instances where the result is ≥ 0 and ≤ maxBolus

any
s Bolus suggestion

where
grd1 : s ∈ N1

Bolus suggestion is greater than 0
grd2 : s ≤ maxBolus

The bolus solution suggestion is less than or equal to maxBolus
then

act1 : bolusSuggestion := s
Sets the bolus suggestion value

end

Event bolusCalcNeg =̂
Bolus calculator event for instances where s < 0

any
s Bolus suggestion

where
grd1 : s ∈ Z

Bolus suggestion is any integer
grd2 : s ≤ 0

The bolus suggestion is less than 0
then

act1 : bolusSuggestion := 0
Sets the bolus suggestion to 0 as negative values are not permitted.

end

Event bolusCalcMax =̂
Bolus calculator event for instances where s > maxBolus

any
s Bolus suggestion

where
grd1 : s ∈ N
grd2 : s > maxBolus

The bolus solution suggestion is greater than maxBolus
then

act1 : bolusSuggestion := maxBolus
Sets the bolus suggestion equal to maxBolus as values greater than maxBolus are
not permitted

end

Event defineSettings =̂
Modifies the users settings

any
ac Active insulin time
ba Daily basal dose
bgH High blood glucose warning threshold
bgL Low blood glucose warning threshold
crC Carbohydrate-to-insulin ratio: carbohydrates
crI Carbohydrate-to-insulin ratio: insulin units
heT Hyperglycaemia warning threshold
hoT Hypoglycaemia warning threshold
iBG Insulin sensitivity factor: blood glucose
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iI Insulin sensitivity factor: insulin units
mB Maximum allowed bolus dose
tU Target blood glucose upper value
tL Target blood glucose lower value
b Revised bolus value, if the current state is invalidated by a change to maxBolus

where
grd1 : ac ∈ N
grd2 : ac ≥ 900 ∧ ac ≤ 4800
grd3 : ba ∈ N
grd4 : ba ≤ 990
grd5 : bgH ∈ N
grd6 : bgH ≥ 65 ∧ bgH ≤ 195
grd7 : bgL ∈ N
grd8 : bgL ≥ 30 ∧ bgL ≤ 55
grd9 : crC ∈ N
grd10 : crC ≥ 10 ∧ crC ≤ 2400
grd11 : crI ∈ N
grd12 : crI ≥ 1 ∧ crI ≤ 500
grd13 : heT ∈ N
grd14 : heT ≥ 100 ∧ heT ≤ 195
grd15 : hoT ∈ N
grd16 : hoT ≥ 30 ∧ hoT ≤ 50
grd17 : iBG ∈ N
grd18 : iBG ≥ 10 ∧ iBG ≤ 554
grd19 : iI ∈ N
grd20 : iI ≥ 1 ∧ iI ≤ 500
grd21 : mB ∈ N
grd22 : mB ≤ 500
grd23 : tU ∈ N
grd24 : tU ≥ 55 ∧ tU ≤ 150
grd25 : tL ∈ N
grd26 : tL ≥ 30 ∧ tL ≤ 80
grd27 : b ∈ N

bolusSuggestion, required incase the new maxBolus violates the current state
grd28 : bolusSuggestion > mB ⇒ b = mB

If bolusSuggestion in the current state would violate the new maxBolus value, then
amend the bolusSuggestion to maxBolus

grd29 : bolusSuggestion ≤ mB ⇒ b = bolusSuggestion
If bolusSuggestion in the current state does violate the new maxBolus value, then
maintain the same value

then
act1 : active := ac
act2 : basal := ba
act3 : bgThresHigh := bgH
act4 : bgThresLow := bgL
act5 : carbRatioC := crC
act6 : carbRatioI := crI
act7 : hyperThreshold := heT
act8 : hypoThreshold := hoT
act9 : isfBG := iBG
act10 : isfI := iI
act11 : maxBolus := mB
act12 : targetRangeUpper := tU
act13 : targetRangeLower := tL
act14 : bolusSuggestion := b

end

END



175

Appendix B

Event-B specification: First

refinement

MACHINE t1dm m1

REFINES t1dm m0

VARIABLES

active Active insulin time (minutes)

basal Basal insulin (insulin units)

bgThresHigh Upper blood glucose threshold (mmol/L)

bgThresLow Lower blood glucose threshold (mmol/L)

carbRatioC Carbohydrate-to-insulin ratio: carbohydrates per carbRatioI (grams)

carbRatioI Carbohydrate-to-insulin ratio: insulin units (insulin units)

hyperThreshold Hyperglycaemia threshold (mmol/L)

hypoThreshold Hypoglycaemia threshold (mmol/L)

isfBG Insulin sensitvity factor: reduction in blood glucose for isfI insulin units (mmol/L)

isfI Insulin sensitivity factor: insulin units (insulin units)

maxBolus Maximum bolus dose (insulin units)

targetRangeUpper Target blood glucose range upper value (mmol/L)

targetRangeLower Target blood glucose range lower value (mmol/L)

bolusSuggestion Suggested bolus dose (insulin units)

carbs User input for planned carbohydrate intake

preBG User input for preprandial blood glucose level (mmol/L)

inputsDefined Boolean informing the system the user inputs are defined

activeInsulin Active insulin (insulin units)

settingsDefined Boolean informing the system the user settings are defined

INVARIANTS

inv1 : carbs ∈ N
inv2 : carbs ≤ 2400

inv3 : preBG ∈ N
inv4 : preBG ≤ 554

inv5 : inputsDefined ∈ BOOL

inv6 : activeInsulin ∈ N
EVENTS



176

Initialisation
extended
Initilialises the machine

begin
act1 : active := 2400

Default active insulin time 240.0 minutes
act2 : basal := 0

Default basal dose 0 IU
act3 : bgThresHigh := 165

Default high blood glucose threshold 16.5 mmol/L
act4 : bgThresLow := 40

Default low blood glucose threshold 4.0 mmol/L
act5 : carbRatioC := 10

Default carbohydrates per carbRatioI insulin unit for carbohydrate-to-insulin ratio

act6 : carbRatioI := 10

Default insulin unit for carbohydrate-to-insulin ratio
act7 : hyperThreshold := 165

Default hyperglycamia glucose threshold 16.5 mmol/L
act8 : hypoThreshold := 40

Default hypoglycamia glucose threshold 16.5 mmol/L
act9 : isfBG := 10

Default reduction in blood glucose per isfI insulin unit for insulin sensitivty factor
act10 : isfI := 10

Default insulin unit for insulin sensitvity factor
act11 : maxBolus := 0

Default maximum bolus suggestion
act12 : targetRangeUpper := 80

Target blood glucose range upper value
act13 : targetRangeLower := 40

Target blood glucose range lower value
act14 : bolusSuggestion := 0

Bolus suggestion initially 0
act15 : settingsDefined := FALSE

Settings are not defined
act16 : carbs := 0

Initial carbohydrate value is 0. Must be modified before use
act17 : preBG := 0

Initial preprandial blood glucose value is 0. Must be modified before use
act18 : inputsDefined := FALSE

User inputs are not defined
act19 : activeInsulin := 0

Initial active insulin value is 0
end

Event bolusCalc =̂
Bolus calculator event for instances where the result is ≥ 0 and ≤ maxBolus

extends bolusCalc

any
s Bolus suggestion

where
grd1 : s ∈ N1

Bolus suggestion is greater than 0
grd2 : s ≤ maxBolus

The bolus solution suggestion is less than or equal to the maximum bolus dose
grd4 : s = (preBG−(targetRangeLower+(targetRangeUpper−targetRangeLower)/2 ))∗

(isfI /isfBG) + carbs ∗ (carbRatioI /carbRatioC )− activeInsulin
The bolus suggestion equals the bolus calculation result

grd5 : inputsDefined = TRUE
The user inputs for the calculation must be done first

then
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act1 : bolusSuggestion := s

Sets the bolus suggestion value
end

Event bolusCalcNeg =̂
Bolus calculator event for instances where s < 0

extends bolusCalcNeg

any
s Bolus suggestion

where
grd1 : s ∈ Z

Bolus suggestion is any integer
grd2 : s ≤ 0

The bolus suggestion is less than 0
grd3 : s = (preBG−(targetRangeLower+(targetRangeUpper−targetRangeLower)/2 ))∗

(isfI /isfBG) + carbs ∗ (carbRatioI /carbRatioC )− activeInsulin
The bolus suggestion equals the bolus calculation result

grd4 : inputsDefined = TRUE
The user inputs for the calculation must be done first

then
act1 : bolusSuggestion := 0

Sets the bolus suggestion to 0 as negative values are not permitted.
end

Event bolusCalcMax =̂
Bolus calculator event for instances s > maxBolus

extends bolusCalcMax

any
s Bolus suggestion

where
grd1 : s ∈ N
grd2 : s > maxBolus

The bolus solution suggestion is greater than the maximum bolus dose
grd3 : s = (preBG−(targetRangeLower+(targetRangeUpper−targetRangeLower)/2 ))∗

(isfI /isfBG) + carbs ∗ (carbRatioI /carbRatioC )− activeInsulin
The bolus suggestion equals the bolus calculation result

grd4 : inputsDefined = TRUE
The user inputs for the calculation must be done first

then
act1 : bolusSuggestion := maxBolus

Sets the bolus suggestion to maxBolus as values greater than maxBolus are not
permitted

end

Event defineSettings =̂
Modifies the users settings

extends defineSettings

any
ac Active insulin time
ba Daily basal dose
bgH High blood glucose warning threshold
bgL Low blood glucose warning threshold
crC Carbohydrate-to-insulin ratio: carbohydrates
crI Carbohydrate-to-insulin ratio: insulin units
heT Hyperglycaemia warning threshold
hoT Hypoglycaemia warning threshold
iBG Insulin sensitivity factor: blood glucose
iI Insulin sensitivity factor: insulin units
mB Maximum allowed bolus dose
tU Target blood glucose upper value
tL Target blood glucose lower value
b Revised bolus value, if the current state is invalidated by a change to maxBolus

where
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grd1 : ac ∈ N
grd2 : ac ≥ 900 ∧ ac ≤ 4800

grd3 : ba ∈ N
grd4 : ba ≤ 990

grd5 : bgH ∈ N
grd6 : bgH ≥ 65 ∧ bgH ≤ 195

grd7 : bgL ∈ N
grd8 : bgL ≥ 30 ∧ bgL ≤ 55

grd9 : crC ∈ N
grd10 : crC ≥ 10 ∧ crC ≤ 2400

grd11 : crI ∈ N
grd12 : crI ≥ 1 ∧ crI ≤ 500

grd13 : heT ∈ N
grd14 : heT ≥ 100 ∧ heT ≤ 195

grd15 : hoT ∈ N
grd16 : hoT ≥ 30 ∧ hoT ≤ 50

grd17 : iBG ∈ N
grd18 : iBG ≥ 10 ∧ iBG ≤ 554

grd19 : iI ∈ N
grd20 : iI ≥ 1 ∧ iI ≤ 500

grd21 : mB ∈ N
grd22 : mB ≤ 500

grd23 : tU ∈ N
grd24 : tU ≥ 55 ∧ tU ≤ 150

grd25 : tL ∈ N
grd26 : tL ≥ 30 ∧ tL ≤ 80

grd27 : b ∈ N
bolusSuggestion, required incase the new maxBolus violates the current state

grd28 : bolusSuggestion > mB⇒ b = mB

If bolusSuggestion in the current state would violate the new maxBolus value, then
amend the bolusSuggestion to maxBolus

grd29 : bolusSuggestion ≤ mB⇒ b = bolusSuggestion

If bolusSuggestion in the current state does violate the new maxBolus value, then
maintain the same value

then
act1 : active := ac

act2 : basal := ba

act3 : bgThresHigh := bgH

act4 : bgThresLow := bgL

act5 : carbRatioC := crC

act6 : carbRatioI := crI

act7 : hyperThreshold := heT

act8 : hypoThreshold := hoT

act9 : isfBG := iBG

act10 : isfI := iI

act11 : maxBolus := mB

act12 : targetRangeUpper := tU

act13 : targetRangeLower := tL

act14 : bolusSuggestion := b

end

Event defineInput =̂
Modifies user inputs for the bolus calculation

any
c Planned carbohydrate intake
bg Preprandial blood glucose level (mmol/L)

where
grd1 : c ∈ N

Carbohydrate value must be greater than or equal to 0
grd2 : c ≤ 2400

Carbohydrate value must be less than or equal to 240 grams
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grd3 : bg ∈ N
Blood glucose value must be greater than or equal to 0

grd4 : bg ≤ 554
Carbohydrate value must be less than or equal to 55.4 mmol/L

then
act1 : carbs := c
act2 : preBG := bg
act3 : inputsDefined := TRUE

The user inputs have been defined
end

Event calcActiveInsulin =̂
Calculates active insulin

any
a Active insulin

where
grd1 : a ∈ N

Active insulin must be greater than or equal to 0
then

act1 : activeInsulin := a
end

END
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Appendix C

Event-B specification: Second

refinement

MACHINE t1dm m2

REFINES t1dm m1

VARIABLES

active Active insulin time

basal Basal insulin

bgThresHigh Upper blood glucose threshold

bgThresLow Lower blood glucose threshold

carbRatioC Carbohydrate-to-insulin ratio: carbohydrates per carbRatioI

carbRatioI Carbohydrate-to-insulin ratio: insulin units

hyperThreshold Hyperglycaemia threshold

hypoThreshold Hypoglycaemia threshold

isfBG Insulin sensitvity factor: reduction in blood glucose for isfI insulin units

isfI Insulin sensitivity factor: insulin units

maxBolus Maximum bolus dose

targetRangeUpper Target blood glucose range upper value

targetRangeLower Target blood glucose range lower value

bolusSuggestion Suggested bolus dose

carbs User input for planned carbohydrate intake

preBG User input for preprandial blood glucose level (mmol/L)

inputsDefined Boolean informing the system the user inputs are defined

activeInsulin Active insulin (insulin units)

settingsDefined Boolean informing the system the user settings are defined

caseBase Sequence of case IDs

caseCarbs Function mapping a case ID to the carbohydrate intake

casePreBG Function mapping a case ID to the preprandial blood glucose reading

caseUsedBolus Function mapping a case ID to the bolus suggestion

caseTime Function mapping a case ID to time

time Time of the calculation

activeInsulinCases Set of applicable cases active insulin has been calculated for

solutionObtained Boolean defining if a bolus solution has been obtained

INVARIANTS
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inv1 : caseBase ⊆ N1

Case IDs are a subset of natural numbers

inv2 : finite(caseBase)
Case-base (case IDs) has cardinality

inv3 : caseCarbs ∈ caseBase→ N
Total function mapping every case ID to carbohydrate intake

inv4 : ∀c ·c ∈ ran(caseCarbs)⇒ c ≤ 2400
All retain carbohydrate values must be less than or equal to 240 grams

inv5 : casePreBG ∈ caseBase→ N
Total function mapping every case ID to preprandial blood glucose reading

inv6 : ∀bg ·bg ∈ ran(casePreBG)⇒ bg ≤ 554
All retained preprandial blood glucose readings must be less than or equal to 55.4 mmol/
L

inv7 : caseUsedBolus ∈ caseBase→ N
Total function mapping every case ID to a bolus suggestion

inv8 : caseTime ∈ caseBase→ N
Total function mapping every case ID to case time

inv9 : time ∈ N
Time is a number greater than or equal to 0

inv10 : activeInsulinCases ⊆ caseBase
Applicable active insulin cases are a member of caseBase

inv11 : solutionObtained ∈ BOOL

EVENTS

Initialisation
extended
Initilialises the machine

begin
act1 : active := 2400

Default active insulin time 240.0 minutes
act2 : basal := 0

Default basal dose 0 IU
act3 : bgThresHigh := 165

Default high blood glucose threshold 16.5 mmol/L
act4 : bgThresLow := 40

Default low blood glucose threshold 4.0 mmol/L
act5 : carbRatioC := 10

Default carbohydrates per carbRatioI insulin unit for carbohydrate-to-insulin ratio

act6 : carbRatioI := 10

Default insulin unit for carbohydrate-to-insulin ratio
act7 : hyperThreshold := 165

Default hyperglycamia glucose threshold 16.5 mmol/L
act8 : hypoThreshold := 40

Default hypoglycamia glucose threshold 16.5 mmol/L
act9 : isfBG := 10

Default reduction in blood glucose per isfI insulin unit for insulin sensitivty factor
act10 : isfI := 10

Default insulin unit for insulin sensitvity factor
act11 : maxBolus := 0

Default maximum bolus suggestion
act12 : targetRangeUpper := 80

Target blood glucose range upper value
act13 : targetRangeLower := 40

Target blood glucose range lower value
act14 : bolusSuggestion := 0

Bolus suggestion initially 0
act15 : settingsDefined := FALSE

Settings are not defined
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act16 : carbs := 0

Initial carbohydrate value is 0. Must be modified before use
act17 : preBG := 0

Initial preprandial blood glucose value is 0. Must be modified before use
act18 : inputsDefined := FALSE

User inputs are not defined
act19 : activeInsulin := 0

Initial active insulin value is 0
act20 : caseBase := ∅

No cases initially
act21 : caseCarbs := ∅

No cases initially
act22 : casePreBG := ∅

No cases initially
act23 : caseUsedBolus := ∅

No cases initially
act24 : caseTime := ∅

No cases initially
act25 : time := 0

Initial time value is 0 minutes
act26 : activeInsulinCases := ∅

No active insulin cases initially
act27 : solutionObtained := FALSE

Solution has not been obtained
end

Event bolusCalc =̂
Bolus calculator event for instances where the result is ≥ 0 and ≤ maxBolus

extends bolusCalc

any
s Bolus suggestion

where
grd1 : s ∈ N1

Bolus suggestion is greater than 0
grd2 : s ≤ maxBolus

The bolus solution suggestion is less than or equal to the maximum bolus dose
grd4 : s = (preBG− (targetRangeLower + ((targetRangeUpper−

targetRangeLower)/2))) ∗ (isfI/isfBG) + carbs ∗ (carbRatioI/carbRatioC)−
activeInsulin

The bolus suggestion equals the bolus calculation result
grd5 : inputsDefined = TRUE

The user inputs for the calculation must be done first
grd6 : caseBase 6= ∅⇒ (∀c ·c ∈ caseBase ∧ time − caseTime(c) > 0 ∧ c ≤ active⇒ c ∈

activeInsulinCases)
All cases where active insulin is applicable must be a member of activeInsulinCases

then
act1 : bolusSuggestion := s

Sets the bolus suggestion value
act2 : solutionObtained := TRUE

A solution has been obtained
end

Event bolusCalcNeg =̂
Bolus calculator event for instances where s < 0

extends bolusCalcNeg

any
s Bolus suggestion

where
grd1 : s ∈ Z

Bolus suggestion is any integer
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grd2 : s ≤ 0

The bolus suggestion is less than 0
grd3 : s = (preBG− (targetRangeLower + ((targetRangeUpper−

targetRangeLower)/2))) ∗ (isfI/isfBG) + carbs ∗ (carbRatioI/carbRatioC)−
activeInsulin

The bolus suggestion equals the bolus calculation result
grd4 : inputsDefined = TRUE

The user inputs for the calculation must be done first
grd5 : caseBase 6= ∅⇒ (∀c ·c ∈ caseBase ∧ time − caseTime(c) > 0 ∧ c ≤ active⇒ c ∈

activeInsulinCases)
All cases where active insulin is applicable must be a member of activeInsulinCases

then
act1 : bolusSuggestion := 0

Sets the bolus suggestion to 0 as negative values are not permitted.
act2 : solutionObtained := TRUE

A solution has been obtained
end

Event bolusCalcMax =̂
Bolus calculator event for instances s > maxBolus

extends bolusCalcMax

any
s Bolus suggestion

where
grd1 : s ∈ N
grd2 : s > maxBolus

The bolus solution suggestion is greater than the maximum bolus dose
grd3 : s = (preBG− (targetRangeLower + ((targetRangeUpper−

targetRangeLower)/2))) ∗ (isfI/isfBG) + carbs ∗ (carbRatioI/carbRatioC)−
activeInsulin

The bolus suggestion equals the bolus calculation result
grd4 : inputsDefined = TRUE

The user inputs for the calculation must be done first
grd5 : caseBase 6= ∅⇒ (∀c ·c ∈ caseBase ∧ time − caseTime(c) > 0 ∧ c ≤ active⇒ c ∈

activeInsulinCases)
All cases where active insulin is applicable must be a member of activeInsulinCases

then
act1 : bolusSuggestion := maxBolus

Sets the bolus suggestion to maxBolus as values greater than maxBolus are not
permitted

act2 : solutionObtained := TRUE
A solution has been obtained

end

Event defineInput =̂

extends defineInput

any
c Planned carbohydrate intake
bg Preprandial blood glucose level (mmol/L)
t The time of the calculation

where
grd1 : c ∈ N

Carbohydrate value must be greater than or equal to 0
grd2 : c ≤ 2400

Carbohydrate value must be less than or equal to 240 grams
grd3 : bg ∈ N

Blood glucose value must be greater than or equal to 0
grd4 : bg ≤ 554

Carbohydrate value must be less than or equal to 55.4 mmol/L
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grd5 : t ∈ N
Time must be greater than or equal to 0 minutes

then
act1 : carbs := c

act2 : preBG := bg

act3 : inputsDefined := TRUE

The user inputs have been defined
act4 : time := t

end

Event calcActiveInsulin =̂

extends calcActiveInsulin

any
a Active insulin remaining from a previous case
c The caseID which active insulin is to be calculated for

where
grd1 : a ∈ N

Active insulin must be greater than or equal to 0
grd2 : c ∈ caseBase

The caseID must exist in the case-base
grd3 : c /∈ activeInsulinCases

The caseID must not already be accounted for in terms of active insulin
grd4 : time − caseTime(c) > 0

The current time must be after the previous case time
grd5 : time − caseTime(c) ≤ active

The different between the current time and case time must be less than or equal to
the active insulin duration time

grd6 : a = activeInsulin + (caseUsedBolus(c) ∗ (1 − ((time − caseTime(c))/active)))
Active insulin calculation

then
act1 : activeInsulin := a
act2 : activeInsulinCases := activeInsulinCases ∪ {c}

Adds the caseID into the cases where active insulin has already been accounted for

end

Event retainCase =̂
Retains a case in the case-base

any
c New case ID

where
grd1 : solutionObtained = TRUE

A solution must be obtained first
grd2 : c ∈ N1

The caseID must be greater than or equal to 0
grd3 : c /∈ caseBase

The caseID must not already exist in the case-base
grd4 : caseBase = ∅⇒ c = 1

If the case-base is empty, then the caseID is 0
grd5 : caseBase 6= ∅⇒ c = card(caseBase) + 1

If the case-base is not empty then the caseID is the cardinality of the case-base +
1

then
act1 : caseBase := caseBase ∪ {c}

Adds the caseID to the case-base
act2 : caseCarbs := caseCarbs ∪ {c 7→ carbs}

Maps the caseID to carbohydrates
act3 : casePreBG := casePreBG ∪ {c 7→ preBG}

Maps the caseID to the preprandial blood glucose reading
act4 : caseUsedBolus := caseUsedBolus ∪ {c 7→ bolusSuggestion}

Maps the caseID to the bolus suggestion
act5 : caseTime := caseTime ∪ {c 7→ time}

Maps the caseID to the time of the case
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end

Event removeCase =̂

any
c The caseID to remove

where
grd1 : c ∈ caseBase

The caseID must be a member of case-base
then

act1 : caseBase := caseBase \ {c}
Removes the caseID from the case-base

act2 : caseCarbs := {c}C− caseCarbs
Removes the caseID to carbohydrate mapping

act3 : casePreBG := {c}C− casePreBG
Removes the caseID to preprandial blood glucose mapping

act4 : caseUsedBolus := {c}C− caseUsedBolus
Removes the caseID to bolus mapping

act5 : caseTime := {c}C− caseTime
Removes the caseID to case time mapping

act6 : activeInsulinCases := activeInsulinCases \ {c}
Removes the caseID from the cases active insulin cases if present

end

Event defineSettings =̂

extends defineSettings

any
ac Active insulin time
ba Daily basal dose
bgH High blood glucose warning threshold
bgL Low blood glucose warning threshold
crC Carbohydrate-to-insulin ratio: carbohydrates
crI Carbohydrate-to-insulin ratio: insulin units
heT Hyperglycaemia warning threshold
hoT Hypoglycaemia warning threshold
iBG Insulin sensitivity factor: blood glucose
iI Insulin sensitivity factor: insulin units
mB Maximum allowed bolus dose
tU Target blood glucose upper value
tL Target blood glucose lower value
b Revised bolus value, if the current state is invalidated by a change to maxBolus

where
grd1 : ac ∈ N
grd2 : ac ≥ 900 ∧ ac ≤ 4800

grd3 : ba ∈ N
grd4 : ba ≤ 990

grd5 : bgH ∈ N
grd6 : bgH ≥ 65 ∧ bgH ≤ 195

grd7 : bgL ∈ N
grd8 : bgL ≥ 30 ∧ bgL ≤ 55

grd9 : crC ∈ N
grd10 : crC ≥ 10 ∧ crC ≤ 2400

grd11 : crI ∈ N
grd12 : crI ≥ 1 ∧ crI ≤ 500

grd13 : heT ∈ N
grd14 : heT ≥ 100 ∧ heT ≤ 195

grd15 : hoT ∈ N
grd16 : hoT ≥ 30 ∧ hoT ≤ 50

grd17 : iBG ∈ N
grd18 : iBG ≥ 10 ∧ iBG ≤ 554

grd19 : iI ∈ N
grd20 : iI ≥ 1 ∧ iI ≤ 500

grd21 : mB ∈ N
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grd22 : mB ≤ 500

grd23 : tU ∈ N
grd24 : tU ≥ 55 ∧ tU ≤ 150

grd25 : tL ∈ N
grd26 : tL ≥ 30 ∧ tL ≤ 80

grd27 : b ∈ N
bolusSuggestion, required incase the new maxBolus violates the current state

grd28 : bolusSuggestion > mB⇒ b = mB

If bolusSuggestion in the current state would violate the new maxBolus value, then
amend the bolusSuggestion to maxBolus

grd29 : bolusSuggestion ≤ mB⇒ b = bolusSuggestion

If bolusSuggestion in the current state does violate the new maxBolus value, then
maintain the same value

then
act1 : active := ac

act2 : basal := ba

act3 : bgThresHigh := bgH

act4 : bgThresLow := bgL

act5 : carbRatioC := crC

act6 : carbRatioI := crI

act7 : hyperThreshold := heT

act8 : hypoThreshold := hoT

act9 : isfBG := iBG

act10 : isfI := iI

act11 : maxBolus := mB

act12 : targetRangeUpper := tU

act13 : targetRangeLower := tL

act14 : bolusSuggestion := b

end

END
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Appendix D

Case-base reasoning retrieval

statistical results
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DM k-NN TS BGRI LBGI HBGI <TR (%) >TR (%) σ2 σ µ

Euc.

1

1 4.44 2.23 2.21 0.16 0.00 0.82 0.91 6.33
2 4.40 2.22 2.17 0.15 0.00 0.81 0.90 6.33
3 4.40 2.19 2.21 0.14 0.00 0.81 0.90 6.34
4 4.43 2.21 2.22 0.16 0.00 0.82 0.90 6.34
5 4.46 2.23 2.22 0.16 0.00 0.83 0.91 6.34

2

1 4.44 2.22 2.22 0.14 0.00 0.82 0.90 6.34
2 4.39 2.21 2.18 0.13 0.00 0.80 0.90 6.33
3 4.40 2.19 2.21 0.14 0.00 0.81 0.90 6.34
4 4.42 2.21 2.21 0.12 0.00 0.81 0.90 6.33
5 4.44 2.23 2.21 0.11 0.00 0.82 0.91 6.33

3

1 4.42 2.21 2.22 0.15 0.00 0.81 0.90 6.34
2 4.38 2.19 2.20 0.13 0.00 0.80 0.90 6.34
3 4.40 2.20 2.20 0.14 0.00 0.81 0.90 6.34
4 4.41 2.21 2.20 0.13 0.00 0.81 0.90 6.33
5 4.42 2.21 2.21 0.11 0.00 0.81 0.90 6.34

4

1 4.43 2.22 2.22 0.16 0.00 0.82 0.90 6.34
2 4.38 2.19 2.19 0.13 0.00 0.80 0.89 6.33
3 4.38 2.18 2.20 0.14 0.00 0.80 0.89 6.34
4 4.41 2.21 2.20 0.12 0.00 0.81 0.90 6.33
5 4.41 2.20 2.21 0.10 0.00 0.81 0.90 6.34

5

1 4.44 2.22 2.22 0.17 0.00 0.82 0.90 6.34
2 4.39 2.19 2.19 0.13 0.00 0.80 0.89 6.33
3 4.38 2.19 2.19 0.14 0.00 0.80 0.89 6.33
4 4.38 2.19 2.19 0.10 0.00 0.80 0.89 6.33
5 4.39 2.20 2.19 0.11 0.00 0.80 0.90 6.34

Man.

1

1 4.43 2.21 2.22 0.16 0.00 0.81 0.90 6.34
2 4.43 2.21 2.22 0.15 0.00 0.81 0.90 6.34
3 4.43 2.21 2.22 0.15 0.00 0.81 0.90 6.34
4 4.44 2.22 2.22 0.17 0.00 0.82 0.90 6.33
5 4.45 2.24 2.21 0.18 0.00 0.82 0.91 6.33

2

1 4.42 2.20 2.22 0.15 0.00 0.81 0.90 6.34
2 4.42 2.20 2.22 0.14 0.00 0.81 0.90 6.34
3 4.42 2.20 2.22 0.15 0.00 0.81 0.90 6.34
4 4.42 2.21 2.21 0.16 0.00 0.81 0.90 6.33
5 4.44 2.23 2.21 0.15 0.00 0.81 0.90 6.33

3

1 4.41 2.20 2.22 0.14 0.00 0.81 0.90 6.34
2 4.42 2.21 2.21 0.14 0.00 0.81 0.90 6.34
3 4.41 2.21 2.21 0.16 0.00 0.81 0.90 6.33
4 4.42 2.22 2.21 0.16 0.00 0.81 0.90 6.33
5 4.43 2.21 2.21 0.15 0.00 0.81 0.90 6.34

4

1 4.41 2.20 2.21 0.15 0.00 0.81 0.90 6.34
2 4.41 2.20 2.21 0.14 0.00 0.80 0.90 6.34
3 4.41 2.21 2.21 0.16 0.00 0.81 0.90 6.33
4 4.42 2.21 2.21 0.15 0.00 0.81 0.90 6.33
5 4.42 2.20 2.21 0.15 0.00 0.81 0.90 6.33

5

1 4.41 2.20 2.21 0.15 0.00 0.81 0.90 6.34
2 4.41 2.20 2.21 0.14 0.00 0.81 0.90 6.34
3 4.41 2.21 2.20 0.15 0.00 0.81 0.90 6.34
4 4.42 2.21 2.21 0.15 0.00 0.81 0.90 6.34
5 4.41 2.20 2.21 0.15 0.00 0.81 0.90 6.34

Table D.1: Chi-Squared retrieval statistics
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DM k-NN TS BGRI LBGI HBGI <TR (%) >TR (%) σ2 σ µ

Euc.

1

1 4.44 2.22 2.21 0.16 0.00 0.82 0.90 6.33
2 4.38 2.21 2.17 0.15 0.00 0.80 0.90 6.33
3 4.40 2.20 2.20 0.14 0.00 0.81 0.90 6.34
4 4.42 2.21 2.22 0.15 0.00 0.82 0.90 6.34
5 4.46 2.25 2.21 0.15 0.00 0.83 0.91 6.33

2

1 4.43 2.21 2.22 0.14 0.00 0.82 0.90 6.34
2 4.38 2.20 2.18 0.13 0.00 0.80 0.89 6.33
3 4.39 2.19 2.20 0.14 0.00 0.81 0.90 6.34
4 4.40 2.19 2.21 0.11 0.00 0.81 0.90 6.34
5 4.44 2.23 2.21 0.11 0.00 0.82 0.91 6.33

3

1 4.43 2.21 2.22 0.15 0.00 0.81 0.90 6.34
2 4.37 2.19 2.19 0.13 0.00 0.80 0.89 6.33
3 4.40 2.19 2.21 0.14 0.00 0.81 0.90 6.34
4 4.41 2.21 2.20 0.13 0.00 0.81 0.90 6.33
5 4.41 2.21 2.21 0.12 0.00 0.81 0.90 6.34

4

1 4.43 2.21 2.22 0.15 0.00 0.81 0.90 6.34
2 4.38 2.19 2.18 0.13 0.00 0.80 0.89 6.33
3 4.38 2.19 2.20 0.15 0.00 0.80 0.89 6.34
4 4.39 2.19 2.20 0.12 0.00 0.80 0.90 6.33
5 4.40 2.20 2.21 0.10 0.00 0.81 0.90 6.34

5

1 4.44 2.21 2.22 0.17 0.00 0.81 0.90 6.34
2 4.38 2.19 2.19 0.13 0.00 0.80 0.89 6.33
3 4.37 2.18 2.19 0.13 0.00 0.80 0.89 6.34
4 4.37 2.19 2.18 0.11 0.00 0.80 0.89 6.33
5 4.39 2.20 2.19 0.11 0.00 0.80 0.90 6.33

Man.

1

1 4.43 2.21 2.22 0.16 0.00 0.81 0.90 6.34
2 4.43 2.21 2.21 0.15 0.00 0.81 0.90 6.34
3 4.43 2.21 2.22 0.15 0.00 0.81 0.90 6.34
4 4.44 2.22 2.22 0.17 0.00 0.82 0.90 6.33
5 4.45 2.23 2.21 0.16 0.00 0.82 0.91 6.33

2

1 4.42 2.20 2.22 0.15 0.00 0.81 0.90 6.34
2 4.41 2.20 2.21 0.14 0.00 0.81 0.90 6.34
3 4.42 2.20 2.22 0.15 0.00 0.81 0.90 6.34
4 4.43 2.21 2.21 0.15 0.00 0.81 0.90 6.33
5 4.44 2.23 2.21 0.14 0.00 0.82 0.90 6.33

3

1 4.41 2.20 2.22 0.14 0.00 0.81 0.90 6.34
2 4.42 2.21 2.21 0.13 0.00 0.81 0.90 6.34
3 4.42 2.21 2.21 0.15 0.00 0.81 0.90 6.34
4 4.43 2.22 2.21 0.14 0.00 0.81 0.90 6.33
5 4.42 2.21 2.21 0.13 0.00 0.81 0.90 6.34

4

1 4.41 2.20 2.22 0.15 0.00 0.81 0.90 6.34
2 4.41 2.20 2.21 0.14 0.00 0.81 0.90 6.34
3 4.41 2.21 2.21 0.14 0.00 0.81 0.90 6.34
4 4.41 2.21 2.21 0.14 0.00 0.81 0.90 6.33
5 4.42 2.21 2.21 0.15 0.00 0.81 0.90 6.33

5

1 4.41 2.20 2.21 0.15 0.00 0.81 0.90 6.34
2 4.41 2.21 2.21 0.14 0.00 0.81 0.90 6.34
3 4.41 2.21 2.21 0.14 0.00 0.81 0.90 6.34
4 4.41 2.20 2.21 0.15 0.00 0.81 0.90 6.34
5 4.42 2.21 2.21 0.15 0.00 0.81 0.90 6.33

Table D.2: Information Gain retrieval statistics
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DM k-NN TS BGRI LBGI HBGI <TR (%) >TR (%) σ2 σ µ

Euc.

1

1 4.44 2.23 2.22 0.16 0.00 0.82 0.91 6.34
2 4.39 2.21 2.18 0.14 0.00 0.80 0.90 6.33
3 4.40 2.20 2.21 0.15 0.00 0.81 0.90 6.34
4 4.43 2.21 2.22 0.15 0.00 0.82 0.90 6.34
5 4.45 2.23 2.22 0.15 0.00 0.83 0.91 6.34

2

1 4.44 2.21 2.23 0.15 0.00 0.82 0.91 6.34
2 4.38 2.20 2.18 0.12 0.00 0.80 0.89 6.33
3 4.40 2.19 2.20 0.14 0.00 0.81 0.90 6.34
4 4.42 2.21 2.21 0.11 0.00 0.81 0.90 6.33
5 4.43 2.21 2.21 0.12 0.00 0.82 0.90 6.33

3

1 4.43 2.21 2.22 0.15 0.00 0.81 0.90 6.34
2 4.38 2.19 2.19 0.14 0.00 0.80 0.90 6.33
3 4.39 2.18 2.21 0.14 0.00 0.80 0.90 6.34
4 4.41 2.21 2.20 0.12 0.00 0.81 0.90 6.33
5 4.40 2.19 2.21 0.11 0.00 0.81 0.90 6.34

4

1 4.43 2.22 2.22 0.16 0.00 0.82 0.90 6.34
2 4.38 2.19 2.19 0.12 0.00 0.80 0.89 6.33
3 4.37 2.18 2.20 0.14 0.00 0.80 0.89 6.34
4 4.39 2.19 2.20 0.12 0.00 0.80 0.90 6.33
5 4.41 2.20 2.21 0.12 0.00 0.81 0.90 6.34

5

1 4.44 2.22 2.22 0.17 0.00 0.82 0.90 6.34
2 4.39 2.19 2.19 0.14 0.00 0.80 0.89 6.33
3 4.38 2.18 2.19 0.13 0.00 0.80 0.89 6.34
4 4.36 2.18 2.18 0.11 0.00 0.79 0.89 6.33
5 4.39 2.20 2.19 0.12 0.00 0.80 0.90 6.34

Man.

1

1 4.43 2.20 2.23 0.16 0.00 0.81 0.90 6.34
2 4.43 2.21 2.21 0.15 0.00 0.81 0.90 6.34
3 4.43 2.21 2.22 0.16 0.00 0.81 0.90 6.34
4 4.43 2.22 2.22 0.16 0.00 0.81 0.90 6.33
5 4.44 2.22 2.22 0.16 0.00 0.82 0.90 6.33

2

1 4.42 2.20 2.22 0.15 0.00 0.81 0.90 6.34
2 4.41 2.20 2.21 0.14 0.00 0.81 0.90 6.34
3 4.42 2.21 2.21 0.15 0.00 0.81 0.90 6.34
4 4.42 2.21 2.21 0.15 0.00 0.81 0.90 6.33
5 4.43 2.22 2.21 0.14 0.00 0.81 0.90 6.33

3

1 4.41 2.20 2.22 0.14 0.00 0.81 0.90 6.34
2 4.42 2.21 2.21 0.13 0.00 0.81 0.90 6.34
3 4.41 2.20 2.21 0.14 0.00 0.81 0.90 6.34
4 4.43 2.22 2.21 0.14 0.00 0.81 0.90 6.33
5 4.43 2.21 2.21 0.12 0.00 0.81 0.90 6.33

4

1 4.41 2.20 2.22 0.14 0.00 0.81 0.90 6.34
2 4.41 2.20 2.21 0.13 0.00 0.81 0.90 6.34
3 4.41 2.21 2.21 0.15 0.00 0.81 0.90 6.34
4 4.41 2.21 2.20 0.14 0.00 0.81 0.90 6.33
5 4.42 2.21 2.21 0.14 0.00 0.81 0.90 6.33

5

1 4.41 2.20 2.22 0.14 0.00 0.81 0.90 6.34
2 4.41 2.21 2.21 0.14 0.00 0.81 0.90 6.34
3 4.41 2.20 2.20 0.14 0.00 0.81 0.90 6.34
4 4.42 2.21 2.20 0.14 0.00 0.81 0.90 6.34
5 4.43 2.21 2.21 0.16 0.00 0.81 0.90 6.34

Table D.3: Gain Ratio retrieval statistics
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DM k-NN TS BGRI LBGI HBGI <TR (%) >TR (%) σ2 σ µ

Euc.

1

1 4.45 2.25 2.20 0.15 0.00 0.82 0.91 6.33
2 4.49 2.26 2.23 0.23 0.00 0.85 0.92 6.34
3 4.59 2.30 2.28 0.23 0.00 0.89 0.94 6.35
4 4.62 2.31 2.31 0.21 0.00 0.90 0.95 6.35
5 4.67 2.34 2.33 0.21 0.00 0.92 0.96 6.36

2

1 4.43 2.24 2.19 0.13 0.00 0.81 0.90 6.33
2 4.39 2.21 2.18 0.16 0.00 0.81 0.90 6.33
3 4.43 2.20 2.23 0.13 0.00 0.83 0.91 6.34
4 4.40 2.19 2.21 0.10 0.00 0.82 0.90 6.34
5 4.39 2.19 2.20 0.12 0.00 0.82 0.90 6.35

3

1 4.40 2.23 2.18 0.12 0.00 0.80 0.90 6.33
2 4.40 2.20 2.19 0.14 0.00 0.81 0.90 6.33
3 4.34 2.14 2.19 0.09 0.00 0.79 0.89 6.33
4 4.34 2.16 2.18 0.08 0.00 0.79 0.89 6.33
5 4.28 2.13 2.15 0.04 0.00 0.78 0.88 6.35

4

1 4.41 2.23 2.18 0.12 0.00 0.81 0.90 6.33
2 4.35 2.19 2.16 0.14 0.00 0.79 0.89 6.33
3 4.31 2.13 2.18 0.07 0.00 0.78 0.88 6.33
4 4.29 2.13 2.15 0.11 0.00 0.77 0.88 6.33
5 4.24 2.11 2.13 0.03 0.00 0.77 0.87 6.34

5

1 4.40 2.22 2.17 0.13 0.00 0.80 0.90 6.33
2 4.34 2.18 2.16 0.11 0.00 0.79 0.89 6.33
3 4.29 2.13 2.16 0.07 0.00 0.78 0.88 6.33
4 4.26 2.11 2.15 0.06 0.00 0.76 0.87 6.32
5 4.22 2.09 2.13 0.03 0.00 0.76 0.87 6.34

Man.

1

1 4.46 2.23 2.23 0.17 0.00 0.82 0.91 6.34
2 4.42 2.23 2.19 0.18 0.00 0.81 0.90 6.33
3 4.46 2.24 2.22 0.17 0.00 0.83 0.91 6.33
4 4.44 2.22 2.22 0.18 0.00 0.83 0.91 6.34
5 4.50 2.27 2.23 0.17 0.00 0.85 0.92 6.35

2

1 4.46 2.23 2.23 0.15 0.00 0.82 0.91 6.34
2 4.40 2.21 2.19 0.15 0.00 0.81 0.90 6.33
3 4.42 2.21 2.21 0.13 0.00 0.82 0.90 6.34
4 4.38 2.19 2.19 0.13 0.00 0.80 0.90 6.33
5 4.39 2.21 2.18 0.11 0.00 0.81 0.90 6.34

3

1 4.45 2.23 2.22 0.16 0.00 0.82 0.91 6.34
2 4.38 2.20 2.19 0.13 0.00 0.80 0.89 6.33
3 4.39 2.18 2.20 0.11 0.00 0.80 0.90 6.34
4 4.37 2.19 2.18 0.12 0.00 0.80 0.89 6.33
5 4.33 2.16 2.17 0.08 0.00 0.79 0.89 6.34

4

1 4.45 2.23 2.22 0.15 0.00 0.82 0.90 6.34
2 4.38 2.19 2.18 0.12 0.00 0.80 0.89 6.33
3 4.38 2.18 2.20 0.11 0.00 0.80 0.89 6.33
4 4.34 2.18 2.17 0.12 0.00 0.79 0.89 6.32
5 4.32 2.16 2.16 0.08 0.00 0.78 0.89 6.34

5

1 4.43 2.22 2.21 0.15 0.00 0.81 0.90 6.34
2 4.37 2.19 2.18 0.11 0.00 0.79 0.89 6.33
3 4.37 2.18 2.19 0.11 0.00 0.80 0.89 6.33
4 4.33 2.16 2.17 0.11 0.00 0.78 0.89 6.33
5 4.30 2.15 2.15 0.06 0.00 0.78 0.88 6.34

Table D.4: One Rule retrieval statistics
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DM k-NN TS BGRI LBGI HBGI <TR (%) >TR (%) σ2 σ µ

Euc.

1

1 4.44 2.22 2.22 0.19 0.00 0.82 0.90 6.34
2 4.41 2.22 2.19 0.16 0.00 0.81 0.90 6.33
3 4.45 2.25 2.20 0.17 0.00 0.82 0.91 6.33
4 4.45 2.25 2.20 0.17 0.00 0.82 0.91 6.33
5 4.45 2.23 2.22 0.16 0.00 0.82 0.91 6.34

2

1 4.44 2.22 2.22 0.16 0.00 0.82 0.90 6.34
2 4.41 2.22 2.19 0.13 0.00 0.81 0.90 6.33
3 4.42 2.23 2.20 0.15 0.00 0.81 0.90 6.33
4 4.44 2.23 2.21 0.14 0.00 0.82 0.90 6.33
5 4.42 2.21 2.21 0.13 0.00 0.81 0.90 6.33

3

1 4.43 2.21 2.22 0.15 0.00 0.81 0.90 6.34
2 4.40 2.20 2.20 0.14 0.00 0.81 0.90 6.33
3 4.43 2.22 2.21 0.13 0.00 0.81 0.90 6.34
4 4.40 2.20 2.21 0.13 0.00 0.81 0.90 6.34
5 4.42 2.21 2.21 0.12 0.00 0.81 0.90 6.34

4

1 4.43 2.21 2.22 0.17 0.00 0.81 0.90 6.34
2 4.39 2.21 2.19 0.15 0.00 0.80 0.90 6.33
3 4.42 2.22 2.20 0.15 0.00 0.81 0.90 6.34
4 4.41 2.20 2.20 0.14 0.00 0.81 0.90 6.34
5 4.41 2.20 2.21 0.12 0.00 0.81 0.90 6.33

5

1 4.43 2.21 2.22 0.14 0.00 0.81 0.90 6.34
2 4.39 2.20 2.19 0.14 0.00 0.80 0.90 6.33
3 4.42 2.22 2.20 0.14 0.00 0.81 0.90 6.34
4 4.40 2.20 2.20 0.12 0.00 0.81 0.90 6.33
5 4.40 2.21 2.19 0.11 0.00 0.80 0.90 6.33

Man.

1

1 4.43 2.21 2.22 0.18 0.00 0.81 0.90 6.34
2 4.43 2.21 2.22 0.20 0.00 0.81 0.90 6.34
3 4.46 2.23 2.22 0.22 0.00 0.82 0.91 6.34
4 4.45 2.23 2.22 0.20 0.00 0.82 0.91 6.34
5 4.45 2.23 2.22 0.17 0.00 0.82 0.90 6.33

2

1 4.43 2.21 2.22 0.15 0.00 0.81 0.90 6.34
2 4.43 2.21 2.22 0.14 0.00 0.81 0.90 6.34
3 4.44 2.23 2.22 0.17 0.00 0.82 0.90 6.33
4 4.43 2.22 2.21 0.16 0.00 0.81 0.90 6.33
5 4.44 2.22 2.22 0.16 0.00 0.82 0.90 6.33

3

1 4.43 2.21 2.22 0.17 0.00 0.81 0.90 6.34
2 4.43 2.21 2.22 0.14 0.00 0.81 0.90 6.34
3 4.44 2.22 2.21 0.16 0.00 0.81 0.90 6.33
4 4.44 2.22 2.22 0.15 0.00 0.81 0.90 6.33
5 4.44 2.22 2.21 0.14 0.00 0.81 0.90 6.33

4

1 4.44 2.22 2.22 0.16 0.00 0.81 0.90 6.34
2 4.43 2.21 2.21 0.14 0.00 0.81 0.90 6.33
3 4.43 2.22 2.21 0.16 0.00 0.81 0.90 6.33
4 4.43 2.22 2.21 0.15 0.00 0.81 0.90 6.33
5 4.44 2.22 2.22 0.15 0.00 0.82 0.90 6.33

5

1 4.44 2.22 2.22 0.16 0.00 0.81 0.90 6.34
2 4.42 2.21 2.21 0.14 0.00 0.81 0.90 6.34
3 4.43 2.22 2.21 0.15 0.00 0.81 0.90 6.33
4 4.44 2.22 2.22 0.14 0.00 0.81 0.90 6.33
5 4.44 2.22 2.22 0.15 0.00 0.82 0.90 6.34

Table D.5: RELIEF-F retrieval statistics
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DM k-NN TS BGRI LBGI HBGI <TR (%) >TR (%) σ2 σ µ

Euc.

1

1 4.44 2.22 2.22 0.16 0.00 0.82 0.91 6.34
2 4.39 2.21 2.18 0.14 0.00 0.80 0.90 6.33
3 4.40 2.20 2.21 0.15 0.00 0.81 0.90 6.34
4 4.42 2.20 2.22 0.14 0.00 0.82 0.90 6.34
5 4.45 2.23 2.22 0.15 0.00 0.83 0.91 6.34

2

1 4.44 2.21 2.22 0.14 0.00 0.82 0.90 6.34
2 4.38 2.20 2.18 0.13 0.00 0.80 0.90 6.33
3 4.39 2.19 2.20 0.15 0.00 0.81 0.90 6.34
4 4.41 2.20 2.21 0.11 0.00 0.81 0.90 6.34
5 4.43 2.22 2.21 0.11 0.00 0.82 0.90 6.33

3

1 4.42 2.21 2.22 0.15 0.00 0.81 0.90 6.34
2 4.38 2.19 2.19 0.13 0.00 0.80 0.89 6.33
3 4.39 2.19 2.20 0.14 0.00 0.81 0.90 6.34
4 4.40 2.21 2.20 0.12 0.00 0.81 0.90 6.33
5 4.41 2.20 2.21 0.11 0.00 0.81 0.90 6.34

4

1 4.43 2.21 2.22 0.15 0.00 0.81 0.90 6.34
2 4.38 2.19 2.19 0.12 0.00 0.80 0.89 6.33
3 4.38 2.18 2.20 0.14 0.00 0.80 0.90 6.34
4 4.39 2.19 2.20 0.12 0.00 0.80 0.90 6.33
5 4.40 2.20 2.21 0.11 0.00 0.81 0.90 6.34

5

1 4.44 2.22 2.22 0.17 0.00 0.82 0.90 6.34
2 4.38 2.19 2.19 0.14 0.00 0.80 0.89 6.33
3 4.37 2.18 2.19 0.13 0.00 0.80 0.89 6.34
4 4.37 2.18 2.18 0.10 0.00 0.79 0.89 6.33
5 4.39 2.20 2.19 0.11 0.00 0.80 0.90 6.34

Man.

1

1 4.43 2.21 2.22 0.16 0.00 0.81 0.90 6.34
2 4.42 2.21 2.22 0.15 0.00 0.81 0.90 6.34
3 4.43 2.21 2.22 0.16 0.00 0.81 0.90 6.34
4 4.43 2.22 2.22 0.17 0.00 0.82 0.90 6.33
5 4.45 2.23 2.22 0.16 0.00 0.82 0.91 6.33

2

1 4.42 2.20 2.22 0.15 0.00 0.81 0.90 6.34
2 4.41 2.20 2.21 0.14 0.00 0.81 0.90 6.34
3 4.42 2.20 2.22 0.15 0.00 0.81 0.90 6.34
4 4.42 2.21 2.21 0.15 0.00 0.81 0.90 6.33
5 4.44 2.22 2.22 0.14 0.00 0.82 0.90 6.33

3

1 4.41 2.20 2.22 0.14 0.00 0.81 0.90 6.34
2 4.42 2.21 2.21 0.13 0.00 0.81 0.90 6.34
3 4.41 2.20 2.21 0.14 0.00 0.81 0.90 6.34
4 4.43 2.22 2.21 0.14 0.00 0.81 0.90 6.33
5 4.42 2.21 2.21 0.12 0.00 0.81 0.90 6.34

4

1 4.41 2.20 2.22 0.14 0.00 0.81 0.90 6.34
2 4.41 2.21 2.21 0.14 0.00 0.81 0.90 6.34
3 4.41 2.21 2.21 0.14 0.00 0.81 0.90 6.34
4 4.41 2.21 2.21 0.14 0.00 0.81 0.90 6.33
5 4.42 2.21 2.21 0.14 0.00 0.81 0.90 6.33

5

1 4.41 2.20 2.21 0.15 0.00 0.81 0.90 6.34
2 4.41 2.21 2.21 0.14 0.00 0.81 0.90 6.34
3 4.41 2.20 2.20 0.14 0.00 0.81 0.90 6.34
4 4.41 2.21 2.20 0.15 0.00 0.81 0.90 6.34
5 4.43 2.21 2.21 0.16 0.00 0.81 0.90 6.33

Table D.6: Symmetrical Uncertainty retrieval statistics
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DM k-NN TS BGRI LBGI HBGI <TR (%) >TR (%) σ2 σ µ

Euc.

1

1 4.50 2.28 2.22 0.21 0.00 0.84 0.92 6.33
2 4.50 2.29 2.20 0.21 0.00 0.84 0.92 6.32
3 4.56 2.33 2.23 0.19 0.00 0.87 0.93 6.31
4 4.82 2.47 2.35 0.35 0.03 0.97 0.98 6.34
5 5.35 2.77 2.57 0.90 0.11 1.20 1.09 6.37

2

1 4.54 2.37 2.17 0.21 0.00 0.84 0.92 6.26
2 4.56 2.44 2.12 0.23 0.00 0.84 0.92 6.21
3 4.57 2.46 2.11 0.24 0.00 0.85 0.92 6.20
4 4.60 2.47 2.13 0.25 0.00 0.86 0.93 6.20
5 4.73 2.52 2.22 0.58 0.01 0.94 0.97 6.26

3

1 4.46 2.24 2.23 0.10 0.00 0.82 0.91 6.34
2 4.41 2.24 2.18 0.11 0.00 0.81 0.90 6.32
3 4.40 2.22 2.18 0.11 0.00 0.81 0.90 6.31
4 4.33 2.17 2.16 0.10 0.00 0.79 0.89 6.31
5 4.41 2.21 2.20 0.27 0.01 0.84 0.92 6.35

4

1 4.48 2.30 2.18 0.13 0.00 0.83 0.91 6.29
2 4.44 2.30 2.14 0.15 0.00 0.81 0.90 6.27
3 4.39 2.28 2.12 0.17 0.00 0.80 0.89 6.26
4 4.35 2.25 2.11 0.16 0.00 0.79 0.89 6.25
5 4.33 2.20 2.13 0.14 0.00 0.81 0.90 6.30

5

1 4.46 2.24 2.22 0.10 0.00 0.82 0.91 6.33
2 4.37 2.20 2.17 0.10 0.00 0.80 0.89 6.32
3 4.33 2.18 2.15 0.08 0.00 0.79 0.89 6.32
4 4.25 2.12 2.13 0.06 0.00 0.77 0.88 6.31
5 4.22 2.09 2.13 0.11 0.00 0.78 0.88 6.35

Man.

1

1 4.50 2.27 2.23 0.23 0.00 0.84 0.92 6.33
2 4.44 2.23 2.21 0.17 0.00 0.83 0.91 6.33
3 4.58 2.30 2.27 0.25 0.00 0.88 0.94 6.33
4 4.83 2.50 2.33 0.50 0.00 0.97 0.98 6.32
5 4.92 2.55 2.36 0.50 0.09 1.03 1.01 6.33

2

1 4.53 2.36 2.17 0.24 0.00 0.84 0.92 6.27
2 4.53 2.39 2.14 0.24 0.00 0.84 0.91 6.23
3 4.54 2.44 2.11 0.25 0.00 0.84 0.92 6.21
4 4.67 2.51 2.16 0.31 0.00 0.89 0.94 6.21
5 4.58 2.43 2.15 0.31 0.00 0.87 0.93 6.23

3

1 4.46 2.23 2.23 0.12 0.00 0.82 0.91 6.34
2 4.38 2.19 2.19 0.12 0.00 0.80 0.90 6.33
3 4.38 2.22 2.16 0.13 0.00 0.80 0.90 6.32
4 4.37 2.20 2.17 0.15 0.00 0.81 0.90 6.32
5 4.27 2.13 2.14 0.10 0.00 0.78 0.88 6.33

4

1 4.49 2.29 2.20 0.16 0.00 0.83 0.91 6.30
2 4.42 2.27 2.15 0.15 0.00 0.81 0.90 6.28
3 4.38 2.27 2.11 0.20 0.00 0.80 0.89 6.27
4 4.35 2.24 2.11 0.14 0.00 0.79 0.89 6.26
5 4.25 2.16 2.09 0.11 0.00 0.77 0.88 6.28

5

1 4.45 2.23 2.22 0.12 0.00 0.82 0.91 6.33
2 4.34 2.16 2.17 0.10 0.00 0.79 0.89 6.33
3 4.29 2.17 2.13 0.09 0.00 0.78 0.88 6.32
4 4.25 2.14 2.11 0.09 0.00 0.76 0.87 6.30
5 4.14 2.04 2.10 0.04 0.00 0.74 0.86 6.33

Table D.7: No feature weighting retrieval statistics
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Appendix E

Unit testing

Class.Method
String Settings.setUnit(String value)

Description
Modifies the blood glucose unit setting.

Initial value
mmol/L

Valid outputs
mg/dL, mmol/L

input expected output actual output result

mg/dL mg/dL mg/dL pass
mmol/L mmol/L mmol/L pass

obtko mmol/L mmol/L pass
oib6y mmol/L mmol/L pass
orhyi mmol/L mmol/L pass
o5byd mmol/L mmol/L pass
odiry mmol/L mmol/L pass

Table E.1: Settings.setUnit() unit test results
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Class.Method
double Settings.setBasal(double value)

Description
Modifies the normal daily basal insulin dose in insulin units.

Initial value
0.0

Valid outputs
[0.0, 99.0]

input expected output actual output result

0.0 0.0 0.0 pass
99.0 99.0 99.0 pass
95.46 95.46 95.46 pass
66.71 66.71 66.71 pass
6.35 6.35 6.35 pass
68.12 68.12 68.12 pass
43.83 43.83 43.83 pass

-0.1 0.0 0.0 pass
99.1 0.0 0.0 pass

-77.23 0.0 0.0 pass
-105.05 0.0 0.0 pass
457.73 0.0 0.0 pass
-384.88 0.0 0.0 pass

Table E.2: Settings.setBasal() unit test results

Class.Method
double Settings.setMaxBolusLimit(double value)

Description
Modifies the maximum allowed bolus dose in insulin units.

Initial value
0.0

Valid outputs
[0.0, 50.0]

input expected output actual output result

0.0 0.0 0.0 pass
50.0 50.0 50.0 pass
39.52 39.52 39.52 pass
45.16 45.16 45.16 pass
33.02 33.02 33.02 pass
49.22 49.22 49.22 pass
4.19 4.19 4.19 pass

-0.1 0.0 0.0 pass
50.1 0.0 0.0 pass

252.09 0.0 0.0 pass
-79.75 0.0 0.0 pass
-290.37 0.0 0.0 pass
187.03 0.0 0.0 pass

Table E.3: Settings.setMaxBolusLimit() unit test results



199

Class.Method
int Settings.setCarbsToInsulin(int value)

Description
Modifies the carbohydrates in grams corrected by one insulin unit.

Initial value
12

Valid outputs
[1, 240]

input expected output actual output result

1 1 1 pass
240 240 240 pass
3 3 3 pass

233 233 233 pass
28 28 28 pass
140 140 140 pass
86 86 86 pass

0 12 12 pass
241 12 12 pass
666 12 12 pass
998 12 12 pass
-976 12 12 pass
-941 12 12 pass

Table E.4: Settings.setCarbsToInsulin() unit test results

Class.Method
double Settings.setInsulinSensitivity(double value)

Description
Modifies the decrease in blood glucose mmol/L per one insulin unit.

Initial value
2.0

Valid outputs
[0.1, 55.4]

input expected output actual output result

0.1 0.1 0.1 pass
55.4 55.4 55.4 pass
13.62 13.62 13.62 pass
7.22 7.22 7.22 pass
30.59 30.59 30.59 pass
21.03 21.03 21.03 pass
18.09 18.09 18.09 pass

0.0 2.0 2.0 pass
55.5 2.0 2.0 pass

292.12 2.0 2.0 pass
71.86 2.0 2.0 pass
295.38 2.0 2.0 pass
173.38 2.0 2.0 pass

Table E.5: Settings.setInsulinSensitivity() unit test results
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Class.Method
double Settings.setTargetRangeUpper(double value)

Description
Modifies the upper value of the target blood glucose range in mmol/L.

Initial value
8.0

Valid outputs
[5.5, 15.0]

input expected output actual output result

5.5 5.5 5.5 pass
15.0 15.0 15.0 pass
9.34 9.34 9.34 pass
13.61 13.61 13.61 pass
8.35 8.35 8.35 pass
7.0 7.0 7.0 pass

11.01 11.01 11.01 pass

5.4 8.0 8.0 pass
15.1 8.0 8.0 pass
-3.11 8.0 8.0 pass

-128.68 8.0 8.0 pass
416.8 8.0 8.0 pass

-793.18 8.0 8.0 pass

Table E.6: Settings.setTargetRangeUpper() unit test results

Class.Method
double Settings.setTargetRangeLower(double value)

Description
Modifies the lower value of the target blood glucose range in mmol/L.

Initial value
4.0

Valid outputs
[3.0, 8.0]

input expected output actual output result

3.0 3.0 3.0 pass
8.0 8.0 8.0 pass
4.02 4.02 4.02 pass
6.73 6.73 6.73 pass
3.82 3.82 3.82 pass
7.93 7.93 7.93 pass
3.91 3.91 3.91 pass

2.9 4.0 4.0 pass
8.1 4.0 4.0 pass

212.82 4.0 4.0 pass
107.85 4.0 4.0 pass
87.19 4.0 4.0 pass

-313.91 4.0 4.0 pass

Table E.7: Settings.setTargetRangeLower() unit test results
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Class.Method
double Settings.setTargetBG(double targetRangeLower, double targetRangeHigher)

Description
Defines the target blood glucose level in mmol/L from the user’s defined lower and upper
target range values in mmol/L.

Initial value
6.0

Precondition
targetRangeLower ≤ targetRangeUpper

Valid outputs
[targetRangeLower, targetRangeUpper]
value = targetRangeLower + (targetRangeUpper − targetRangeLower ÷ 2)

inputs expected output actual output result
target range lower target range upper

5.4 5.6 5.5 5.5 pass
5 10 7.5 7.5 pass
4 7 5.5 5.5 pass
6 7.4 6.7 6.7 pass

3.5 10 6.75 6.75 pass
5 5 5 5 pass

5.4 5.3 6.0 6.0 pass
8 5.5 6.0 6.0 pass
8 7.9 6.0 6.0 pass

Table E.8: Settings.setTargetBG() unit test results

Class.Method
double Settings.setHighBGThreshold(double value)

Description
Modifies the high blood glucose warning level in mmol/L.

Initial value
16.5

Valid outputs
[6.5, 19.5]

input expected output actual output result

6.5 6.5 6.5 pass
19.5 19.5 19.5 pass
13.64 13.64 13.64 pass
9.06 9.06 9.06 pass
14.47 14.47 14.47 pass
10.32 10.32 10.32 pass
17.58 17.58 17.58 pass

6.4 16.5 16.5 pass
19.6 16.5 16.5 pass

561.48 16.5 16.5 pass
-229.7 16.5 16.5 pass
-375.67 16.5 16.5 pass

5.64 16.5 16.5 pass

Table E.9: Settings.setHighBGThreshold() unit test results
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Class.Method
double Settings.setLowBGThreshold(double value)

Description
Modifies the low blood glucose warning level in mmol/L.

Initial value
4.0

Valid outputs
[3.0, 5.5]

input expected output actual output result

3.0 3.0 3.0 pass
5.5 5.5 5.5 pass
4.65 4.65 4.65 pass
3.77 3.77 3.77 pass
4.89 4.89 4.89 pass
3.44 3.44 3.44 pass
3.54 3.54 3.54 pass

2.9 4.0 4.0 pass
5.6 4.0 4.0 pass

-202.48 4.0 4.0 pass
259.68 4.0 4.0 pass
690.36 4.0 4.0 pass
362.2 4.0 4.0 pass

Table E.10: Settings.setLowBGThreshold() unit test results

Class.Method
double Settings.setHyperThreshold(double value)

Description
Modifies the hyperglycaemia warning level in mmol/L.

Initial value
16.5

Valid outputs
[10.0, 19.5]

input expected output actual output result

10.0 10.0 10.0 pass
19.5 19.5 19.5 pass
14.61 14.61 14.61 pass
17.19 17.19 17.19 pass
13.08 13.08 13.08 pass
14.91 14.91 14.91 pass
12.92 12.92 12.92 pass

9.9 16.5 16.5 pass
19.6 16.5 16.5 pass

394.11 16.5 16.5 pass
229.76 16.5 16.5 pass
-114.18 16.5 16.5 pass
144.17 16.5 16.5 pass

Table E.11: Settings.setHyperThreshold() unit test results
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Class.Method
double Settings.setHypoThreshold(double value)

Description
Modifies the hypoglycaemia warning level in mmol/L.

Initial value
4.0

Valid outputs
[3.0, 5.0]

input expected output actual output result

3.0 3.0 3.0 pass
5.0 5.0 5.0 pass
3.37 3.37 3.37 pass
4.62 4.62 4.62 pass
3.98 3.98 3.98 pass
3.69 3.69 3.69 pass
4.57 4.57 4.57 pass

2.9 4.0 4.0 pass
5.1 4.0 4.0 pass

-12.0 4.0 4.0 pass
125.41 4.0 4.0 pass
-192.96 4.0 4.0 pass
166.54 4.0 4.0 pass

Table E.12: Settings.setHypoThreshold() unit test results

Class.Method
int Settings.isValidCarbInput(int value)

Description
Validates a carbohydrate input in grams. Returns -1 if out of range [0,240].

Valid outputs
[0, 240]

input expected output actual output result

0 0 0 pass
240 240 240 pass
202 202 202 pass
145 145 145 pass
105 105 105 pass
226 226 226 pass
73 73 73 pass

-1 -1 -1 pass
241 -1 -1 pass
-428 -1 -1 pass
-164 -1 -1 pass
310 -1 -1 pass
-779 -1 -1 pass

Table E.13: Settings.isValidCarbInput() unit test results
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Class.Method
double Settings.validateBolus(double value)

Description
Ensures a bolus dose suggestion is not negative and is less than or equal to the maximum
allowed bolus dose in insulin units. Output is rounded to the nearest half (#.0 or #.5).

Valid outputs
[0.0, 15.0]

input expected output actual output result

3.55 3.5 3.5 pass
12.5 12.5 12.5 pass
9.3 9.5 9.5 pass
1.23 1.0 1.0 pass
11.38 11.5 11.5 pass

-0.1 0.0 0.0 pass
15.1 15.0 15.0 pass
74.27 15.0 15.0 pass
83.28 15.0 15.0 pass
-60.0 0.0 0.0 pass

140.09 15.0 15.0 pass

Table E.14: Settings.validateBolus() unit test results

Class.Method
double Settings.validateIOB(double value)

Description
Ensures the insulin on board is not negative.

Valid outputs
output ≥ 0.0

input expected output actual output result

0.0 0.0 0.0 pass
5.78 5.78 5.78 pass
13.51 13.51 13.51 pass
7.22 7.22 7.22 pass
0.9 0.9 0.9 pass
6.65 6.65 6.65 pass
1.61 1.61 1.61 pass

-0.1 0.0 0.0 pass
-236.17 0.0 0.0 pass
-283.32 0.0 0.0 pass
284.54 284.54 284.54 pass
104.12 104.12 104.12 pass

Table E.15: Settings.validateIOB() unit test results
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Class.Method
double Features.normalise(double value, double min, double max)

Description
Normalises a feature-value to [0,1] based on the min and max feature values.
Expected output calculated manually.
All outputs rounded to two decimal places in the results table.

Preconditions
min < max
min ≤ value ≤ max

Valid outputs
Preconditions met: [0.00, 1.00]
Preconditions violated: -1.00

inputs expected output actual output result
value min max

0.00 0.00 100.00 0.00 0.00 pass
100.00 0.00 100.00 1.00 1.00 pass
30.03 5.45 90.37 0.29 0.29 pass
-14.84 -50.87 27.54 0.46 0.46 pass
-50.36 -95.12 -12.38 0.54 0.54 pass
60.98 31.58 65.61 0.86 0.86 pass
45.57 27.43 69.43 0.43 0.43 pass

0.00 100.00 0.00 -1.00 -1.00 pass
0.00 0.00 0.00 -1.00 -1.00 pass

100.00 50.00 0.00 -1.00 -1.00 pass

Table E.16: Features.normalise() unit test results
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Class.Method

double TSeq.sim(TSeq problem, ArrayList<Weights> weights)

Description

Returns the weighted Euclidean distance between the temporal sequence of retained cases

(current instance of TSeq) and the temporal sequence of the new problem.

Tested manually using the examples from Chapter 4 without rounding.

Precondition

|problem| = |case| = |weights|

Valid outputs

Precondition met: Return the weighted Euclidean distance, output ≥ 0.00

Precondition violated: -1.00

p = (1.00, 0.00, 0.33)

c1 = (0.67, 0.20, 0.00, 0.20) w1 = (0.40, 0.20, 0.10, 0.50)

c2 = (0.00, 1.00, 1.00, 0.00) w2 = (1.00, 0.30, 0.20)

c3 = (1.00, 0.6, 0.5, 1.00)

inputs expected output actual output result
problem case (this) weights

〈p〉 〈c1〉 〈w2〉 0.37773 0.37773 pass
〈p〉 〈c2〉 〈w2〉 1.178889 1.178889 pass
〈p〉 〈c3〉 〈w2〉 0.337313 0.337313 pass
〈c3, p〉 〈c1, c2〉 〈w1, w2〉 1.228959 1.228959 pass
〈c3, p〉 〈c2, c3〉 〈w1, w2〉 1.034785 1.034785 pass

〈c3, p〉 〈c1〉 〈w1〉 -1.00 -1.00 pass
〈c3, p〉 〈c1〉 〈w1, w2〉 -1.00 -1.00 pass
〈p〉 〈c1, c2〉 〈w1〉 -1.00 -1.00 pass
〈p〉 〈c3〉 〈w1, w2〉 -1.00 -1.00 pass
〈p〉 〈c2, c3〉 〈w1, w2〉 -1.00 -1.00 pass

Table E.17: TSeq.sim() unit test results
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Class.Method

double Core.iobAdjust(Case problem, ArrayList<Case> retrieved, ArrayList<Case> case-

Base, double, ait)

Description

Returns the adjusted bolus insulin suggestion after resolving differences between insulin on

board in the new problem and the retrieved case(s).

Tested manually, includes the examples from Chapter 4 without rounding.

Precondition

ait > 0

Valid outputs

Precondition met: Return the adjusted bolus insulin advice, output ≥ 0.00

Precondition violated: -1.00

Case-base #1 (CB1)
case time bolus insulin

c1 180 5.0
c2 360 4.0
c3 540 5.0
c4 720 6.0

Case-base #2 (CB2)
case time bolus insulin

c1 200 7.0
c2 320 3.0
c3 520 5.0
c4 700 3.0

Case-base #3 (CB3)
case time bolus insulin

c1 200 7.0
c2 420 5.0
c3 700 7.0
c4 750 5.0

Case-base #4 (CB4)
case time bolus insulin

c1 200 7.0
c2 320 3.0
c3 520 5.0
c4 700 2.5
c5 840 3.0
c6 1020 6.0
c7 1180 4.0
c8 1320 1.5
c9 1500 6.0
c10 1600 0.5

Problem #1 (p1)
time bolus insulin

900 5.0

Problem #2 (p2)
time bolus insulin

800 3.0

Problem #3 (p3)
time bolus insulin

1720 5.5

inputs expected output actual output result
problem retrieved case-base ait

case(s)

p1 〈c3〉 CB1 240 4.5 4.5 pass
p2 〈c2〉 CB2 260 4.923076923 4.923076923076923 pass
p2 〈c2〉 CB3 200 0.0 0.0 pass
p3 〈c3, c6〉 CB4 320 4.53125 4.53125 pass

p1 〈c1〉 CB1 0 -1.0 -1.0 pass
p1 〈c1〉 CB1 -1 -1.0 -1.0 pass

Table E.18: Core.iobAdjust() unit test results
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Class.Method

double Core.evalBG(double postBG, double targetBG, double tdd)

Description

Returns a bolus insulin adjustment based on the postprandial blood glucose reading (mmol/

L), target blood glucose level (mmol/L), and total daily insulin (insulin units).

Precondition

tdd > 0

Valid outputs

Precondition met: Return the bolus insulin adjustment.

If postBG > targetBG, the adjustment should be positive.

If postBG < targetBG, the adjustment should be negative.

If postBG = targetBG, the adjustment should be 0.0.

Precondition violated: exception thrown

inputs expected output actual output result
postprandial blood target blood total daily

glucose level glucose level insulin

7.0 7.0 40.0 0.0 0.0 pass
3.5 5.5 41.5 -0.8797 -0.8797 pass
9.2 5.5 36.0 1.526232 1.526232 pass
5.0 7.0 38.5 -0.81611 -0.81611 pass
4.0 4.5 45.0 -0.23847 -0.23847 pass

6.0 6.0 0.0 exception exception pass

Table E.19: Core.evalBG() unit test results
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Class.Method

double Core.calculator(double preBG, double targetBG, double isf, int ci, int carbs, double

iob, double maxBolus)

Description

Returns a bolus insulin suggestion using the following formula:

bolus suggestion = (preBG− targetBG)× 1

isf
+ carbs× 1

ci
− iob

Precondition

All inputs are validated prior to this method being called.

Valid outputs

[0.0,maxBolus]

preBG targetBG isf ci (carbs- carbs iob max expected actual result
to-insulin) bolus output output

6.6 5.5 2 13 60 2 10 3.165385 3.265385 pass
7 5.5 3 14 80 0 10 6.214286 7.214286 pass
5 6.5 2.5 10 140 5 10 8.4 9.6 pass
8 6 3 12 90 3 10 5.166667 6.166667 pass
10 6.75 2 15 65 0 10 5.958333 8.208333 pass

5 5 2 12 240 0 10 10 10 pass
5 5 2 12 0 5 10 0 0 pass

Table E.20: Core.calculator() unit test results
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