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Abstract

In recent years computer vision has played an increasingly important role in the

development of computer games, and it now features as one of the core technolo-

gies for many gaming platforms. The work in this thesis addresses three problems

in real-time computer vision, all of which are motivated by their potential appli-

cation to computer games.

We first present an approach for real-time 2D tracking of arbitrary objects.

In common with recent research in this area we incorporate online learning to

provide an appearance model which is able to adapt to the target object and its

surrounding background during tracking. However, our approach moves beyond

the standard framework of tracking using binary classification and instead inte-

grates tracking and learning in a more principled way through the use of struc-

tured learning. As well as providing a more powerful framework for adaptive

visual object tracking, our approach also outperforms state-of-the-art tracking

algorithms on standard datasets.

Next we consider the task of keypoint-based object tracking. We take the

traditional pipeline of matching keypoints followed by geometric verification and

show how this can be embedded into a structured learning framework in order

to provide principled adaptivity to a given environment. We also propose an

approximation method allowing us to take advantage of recently developed binary

image descriptors, meaning our approach is suitable for real-time application even

on low-powered portable devices. Experimentally, we clearly see the benefit that

online adaptation using structured learning can bring to this problem.

Finally, we present an approach for approximately recovering the dense 3D

structure of a scene which has been mapped by a simultaneous localisation and

mapping system. Our approach is guided by the constraints of the low-powered

portable hardware we are targeting, and we develop a system which coarsely mod-

els the scene using a small number of planes. To achieve this, we frame the task as

a structured prediction problem and introduce online learning into our approach

to provide adaptivity to a given scene. This allows us to use relatively simple

multi-view information coupled with online learning of appearance to efficiently

produce coarse reconstructions of a scene.
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Chapter 1

Introduction



1.1. Motivation

This thesis addresses a number of real-time computer vision problems, all of which

are motivated by their potential application to computer games. The work we

present has been carried out as part of a collaboration between academia and

industry and has therefore been influenced by factors from both of these fields.

Throughout this thesis, the desire has been to produce results which are both

academically interesting and rigorous, and which also lay the groundwork for

useful real-world applications of computer vision.

1.1 Motivation

In recent years, computer vision has played an increasingly important role in the

development of computer games, and it now features as part of the core technology

for many gaming platforms. Aside from the obvious factors contributing to this

such as the availability of cheaper camera hardware and more powerful processors,

there have been two major factors affecting the development of computer games

which have placed increasing emphasis on computer vision.

The first of these is the shift towards casual gaming, which aims to make

more accessible and social games which can be played by non-expert users. Many

of these are ‘physical’ games, meaning a user interacts with them using their

body, rather than having to learn less intuitive button presses on a traditional

controller. Besides being accessible to non-expert users, physical games have

proved popular for computer game publishers wishing to change the image of

gaming as an anti-social, unhealthy pastime.

The second factor is the rise in mobile gaming, caused by an explosion in

the number of portable devices such as smartphones and tablets, which means

that mobile gaming is no longer restricted to users who choose to carry around

a dedicated gaming device. The fact that most current smartphones, tablets

and portable games consoles also include a camera provides opportunities for

computer vision to be used in games for these devices.

The work in this thesis is motivated by both of these factors, and our contri-

butions fall into two broad categories:

2



1.2. Challenges

• Human-computer interaction. The work in Chapter 3 deals with track-

ing, which is motivated by the need to track the face of a player interacting

with a camera-based game. By tracking the player, games can be devel-

oped which take their input directly from the player’s physical movements,

providing a more intuitive form of human-computer interaction than would

be available using a traditional controller.

• Augmented reality (AR). Mobile devices provide an excellent platform

for augmented reality, as it feels both natural and magical to hold them

up as a ‘window’ to the world through which a user can see a modified

version of reality. The work in Chapter 4 deals with the task of providing

robust detection and tracking of an object in 3D, which is an essential core

component of an AR system. Chapter 5 deals with the higher-level task

of trying to infer the real-world structure of a scene, which can be used

to enhance the AR experience and provide a platform for more compelling

games.

1.2 Challenges

Being driven by applications for computer games means that certain important

challenges had to be taken into account when developing the approaches in this

thesis.

1.2.1 Diverse environments

A key factor when developing vision algorithms for use in computer games is

that they are expected to be deployed to a large audience in a wide variety of

environments. This principle has guided much of the work in this thesis, and a

common theme is that algorithms should incorporate an element of adaptability

to a given environment.

The approaches we develop all incorporate machine learning at their core,

in common with much of the recent research across the entire field of computer

3



1.2. Challenges

vision. Importantly, building on these well-studied and principled techniques

from the machine learning community provides us with a natural mechanism

for incorporating adaptability into our algorithms: online learning. Significant

progress has been made by the machine learning community in recent years in

order to handle the vast, distributed datasets which arise from an increasingly

digital and connected world. Traditional learning approaches which require access

to all training data at once are being superseded by those which are able to

learn incrementally using only portions of the dataset and, in the extreme case,

using only individual training examples. In this thesis we take advantage of this

progress in order to provide adaptability to diverse environments.

1.2.2 Computational constraints

The other significant factor which must be considered in our setting is computa-

tional cost and, in particular, the desire for algorithms to be real-time. This is of

course an imprecise term, but in general the algorithms developed in this thesis

are designed to be run interactively as frames are received from a camera. This

requirement places fundamental constraints on the types of approaches which can

be developed and affects the way that success is measured. Such real-time require-

ments have even more significant consequences when targeting portable devices.

While the portable computing revolution has been made possible in large part

by the development of more powerful and efficient processors, these devices still

possess only a fraction of the computational power of a typical desktop computer.

The computational constraints placed on the vision algorithms are compounded

by the fact that in practice not all of the available processing power is available,

since it is also necessary to run a game on the same device. The goal is therefore

to produce algorithms which achieve acceptable accuracy, whilst using as little

processing resources as possible.

We again find that we are able to benefit from progress in online machine

learning in order to work within these constraints. Because these learning al-

gorithms are intended to work with extremely large datasets, they too must be

designed to be as computationally efficient as possible. Often, this is achieved

4



1.3. Contributions

using the philosophy of the ‘unreasonable effectiveness of data’ [50], which states

that simple learning algorithms trained with large quantities of data often outper-

form more sophisticated and expensive learning algorithms trained with smaller

quantities of data. Using these simple learning algorithms, we are able to produce

algorithms which achieve our goal of providing adaptability in a principled way,

whilst still remaining computationally efficient, even for low-powered devices.

1.3 Contributions

In this thesis we address three problems in real-time computer vision. These

problems have been chosen because they have been identified as being useful

from an industrial perspective, in that they can provide the building blocks for

vision-based computer games. The approaches which we develop make use of

recent progress in online machine learning, and in particular structured learning,

in order to tackle these problems in a principled academic manner.

1.3.1 2D object tracking

Chapter 3 presents a novel approach for 2D tracking of arbitrary objects. In com-

mon with recent research in visual object tracking we incorporate online learning

to provide an appearance model which is able to adapt to the target object and its

surrounding background during tracking. However, our approach moves beyond

the standard framework of treating tracking as a binary classification problem

and instead integrates tracking and learning in a more principled way through the

use of structured learning. We use a structured output support vector machine

(SVM) to perform learning, and in order to allow for real-time application we

also introduce a budgeting mechanism which constrains the computational cost

of our approach. As well as providing a more powerful framework for adaptive

visual object tracking, our approach also outperforms state-of-the-art tracking

algorithms on standard datasets.

5



1.3. Contributions

1.3.2 Keypoint-based object tracking

Chapter 4 deals with the task of keypoint-based object tracking, which is a core

component required for AR applications. We take the traditional pipeline for

this task of matching keypoints using image descriptors followed by geometric

verification using random sampling and show how this can be embedded into

a structured learning framework in order to provide adaptivity to a given en-

vironment. Similarly to the work of Chapter 3, the use of structured learning

allows tracking and learning to be tightly integrated in a principled way. We also

propose an approximation method allowing us to take advantage of recently de-

veloped binary image descriptors, meaning our approach is suitable for real-time

application even on low-powered portable devices. Experimentally, we clearly see

the benefit that online adaptation using learning can bring to this problem.

1.3.3 Scene reconstruction

Chapter 5 continues the theme of AR on low-powered devices from Chapter 4

and presents an approach for approximately recovering the dense 3D structure

of a scene which has been mapped by a simultaneous localisation and mapping

(SLAM) system. Our approach is guided by the constraints of the hardware we

are targeting, and we develop a system which coarsely models the scene using a

small number of planes. In common with the work in other chapters, we frame

the task as a structured prediction problem and introduce online learning into

our approach. This allows us to use relatively simple multi-view information

coupled with online learning of appearance to efficiently produce reconstructions

of a scene which are useful from a gaming perspective.

6



1.4. Publications

1.4 Publications

The work presented in Chapter 3 first appeared in:

• S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured Output Tracking

with Kernels. In IEEE International Conference on Computer Vision, 2011.

The work presented in Chapter 4 first appeared in:

• S. Hare, A. Saffari, P. H. S. Torr. Efficient Online Structured Output

Learning for Keypoint-Based Object Tracking. In IEEE Conference on

Computer Vision and Pattern Recognition, 2012.

Both of these publications can be found as appendices to this thesis.
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Chapter 2

Background and Related Work



2.1. Object tracking

In this chapter we provide an overview of the background material relevant

to the work in this thesis. The first three sections focus on the computer vision

application areas tackled in Chapters 3-5, while the fourth section focuses on

structured learning, which features at the core of all the approaches developed in

this thesis.

2.1 Object tracking

Object tracking aims to estimate the motion of a target object between successive

frames of a video sequence. This is a fundamental problem in computer vision,

and a great deal of prior research exists in the area. The interested reader is

directed to [27] for a thorough survey of the field, while this section summarises

those approaches which are most relevant to the work in this thesis.

All tracking algorithms require some kind of representation of the target

object. Possible choices for this include points [76, 107], bounding box, con-

tour [12, 56] and articulated structures [23, 94]. The choice of representation in

turn determines the state of the tracker, which is what must be estimated in

each video frame. For the work presented in Chapter 3 of this thesis, we con-

sider only a bounding box representation (Figure 2.1). The advantage of such a

representation is that the state is simple, consisting only of 2D translation and

possibly rotation and scale. However, in the physical world we expect the target

object to undergo deformations, out-of-plane motion and be affected by partial

occlusions and lighting changes, none of which are handled explicitly by this

representation. Consequently, these factors must be handled by an appearance

model, which should encode the variability in the object as it appears within the

Figure 2.1: An example object tracking task using a bounding box representation.

Notice the target object undergoes significant appearance changes, which must be han-

dled by the tracking approach.

9



2.1. Object tracking

bounding box.

The appearance model is the primary differentiator between approaches which

make use of a bounding box representation and can broadly be divided into two

categories: generative and discriminative.

2.1.1 Generative appearance models

Generative approaches involve some kind of model which is able to capture the

way the target object appears inside the bounding box during tracking.

The simplest approach for modelling the appearance of target object is with

a single template image, for example the image inside the bounding box at the

start of tracking. Tracking can then be performed by registering this template

image with each subsequent video frame by maximising a similarity function,

based on e.g. sum of squared differences (SSD) or normalised cross-correlation

(NCC). To perform this maximisation, one approach is to use exhaustive local

search around the previous tracker state. Although this is very straightforward,

it is also computationally expensive. A more efficient approach is to assume that

the similarity function is locally smooth and perform gradient-based optimisation

[8,11,76]. This smoothness assumption may only be valid in a very local area, so

in order to handle greater motion between frames, coarse-to-fine optimisation on

an image pyramid can be used [18].

Tracking with a single template image suffers from robustness issues in prac-

tice, since it is does not provide sufficient tolerance to the changes in appear-

ance which are expected during tracking. Various extensions to this approach

have been proposed in order to improve robustness by incorporating illumina-

tion invariance [49], robustness to partial occlusion [57], and multiple appearance

modalities [13].

A strength of template based approaches is that they are able to provide very

accurate estimates of object state (Figure 2.2), and the mathematics they are

based on makes it straightforward to extend the classes of transformations which

are supported. But because of the way in which they model an object in terms of

individual pixels which must be aligned exactly with pixels in a new frame, they

10



2.1. Object tracking

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4 (e) Image 5

(f) Window 1 (g) Window 2 (h) Window 3 (i) Window 4 (j) Window 5
Fig. 4. Tracking a template on a planar object.

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4 (e) Image 5

(f) Window 1 (g) Window 2 (h) Window 3 (i) Window 4 (j) Window 5
Fig. 5. Tracking a template on the back of a car.

experiment, we track a (43×43) template on the back of a
car with a camera mounted on another car (see Figure 5(a)
to (e)). Again, the tracking is accurately performed (see
Figure 5(f) to (j)) in spite of the template changes due to
people movement that we can see through the window of
the car.

VIII. CONCLUSION

In this paper, we have proposed a real-time algorithm for
tracking planar targets. We perform an efficient second-
order approximation of the error using only first order
derivatives (the ESM algorithm). This avoids the compu-
tation of the Hessian of the cost function. At the same
time, the second order approximation allows the tracking
algorithm to achieve a high convergence rate. This is
very important if we want to track objects in real-time.
Despite the ESM algorithm deals only with changes of
the template due to the 3D motion of the plane, it can be
extended in order to take into account illumination changes
or transformed into a robust algorithm in order to take into
account partial occlusions.
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Figure 2.2: Template-based tracking using the ESM method [11]. This approach is

able to track under a large class of transformations, in this case perspective homography.

Image courtesy of S. Benhimane [11].

have little tolerance to spatial misalignment and as a result can be rather fragile.

An alternative approach for modelling object appearance is to treat it as a

probability distribution in some feature space, most commonly colour [30]. Track-

ing is then performed using the mean-shift [42] mode seeking algorithm to iter-

atively maximise the similarity between the model distribution and the current

tracker distribution. The strength of this approach is that it is far more toler-

ant to slight changes in object appearance, since it is essentially tracking a blob

of colour (Figure 2.3). The associated weakness, however, is that discarding all

spatial information reduces the discriminative power of the appearance model,

meaning the tracker provides less accurate estimates of object state and may be-

come confused by background regions with a similar colour distribution. Another

issue with this approach is that it is less straightforward to extend tracking to

include parameters such as scale and rotation, which are simple to include in a

template tracking framework.

attraction, while the probabilities of the colors that are part of
the background are considerably reduced. The ball is reliably
tracked over the entire sequence of 60 frames.

The last example is also taken from the Football sequence.
This time the head and shoulder of player number 59 is
tracked (Fig. 9). Note the changes in target appearance along
the entire sequence and the rapid movements of the target.

6.2 Kalman Prediction

It was already mentioned in Section 1 that the Kalman filter
assumes that the noise sequences vk and nk are Gaussian
and the functions fk and hk are linear. The dynamic
equation becomes xk ¼ Fxk"1 þ vk, while the measurement
equation is zk ¼ Hxk þ nk. The matrix F is called the
system matrix and H is the measurement matrix. As in the
general case, the Kalman filter solves the state estimation
problem in two steps: prediction and update. For more
details, see [5, p. 56].

The kernel-based target localization method was inte-
grated with the Kalman filtering framework. For a faster
implementation, two independent trackers were defined for
horizontal and vertical movement. A constant-velocity
dynamic model with acceleration affected by white noise
[5, p. 82] has been assumed. The uncertainty of the
measurements has been estimated according to [55]. The
idea is to normalize the similarity surface and represent it as
a probability density function. Since the similarity surface is
smooth, for each filter only three measurements are taken
into account, one at the convergence point (peak of the
surface) and the other two at a distance equal to half of the
target dimension, measured from the peak. We fit a scaled
Gaussian to the three points and compute the measurement
uncertainty as the standard deviation of the fitted Gaussian.

A first set of tracking results incorporating the Kalman
filter is presented in Fig. 10 for the 120 framesHand sequence
where thedynamicmodel is assumed tobe affectedbyanoise
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Fig. 8. Ball sequence. The frames 2, 12, 16, 26, 32, 40, 48, and 51 are shown.

Fig. 9. Football sequence, tracking player number 59. The frames 70, 96, 108, 127, 140, and 147 are shown.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 29, 2009 at 00:29 from IEEE Xplore.  Restrictions apply.

Figure 2.3: Mean-shift tracking using a colour distribution [30]. This approach is

able to track under significant appearance change, since the colour distribution remains

roughly the same. Image courtesy of D. Comaniciu [30].
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2.1. Object tracking

These issues have been addressed by various authors, and in particular the

approach of Elgammal et al. [39] along with the related approach of Yang et al.

[130] reintroduce spatial information into the mean-shift framework and perform

tracking in so-called joint feature-spatial spaces. Another related approach for

introducing spatial information into a histogram-based object model is that of

Adam et al. [2], which divides the target object into multiple sub-regions, with

tracking performed by robustly combining the results of tracking individual sub-

regions.

2.1.1.1 Incorporating adaptability

The approaches described so far do not incorporate any notion of adaptability of

the appearance model, as the template image or histogram remains fixed during

tracking. Such adaptability is often essential in practice to handle changes in

object appearance caused by object deformation and changing environmental

conditions. One simple strategy for adapting the appearance model is to replace

it each frame, discarding the previous model. This approach is very aggressive,

however, as it does not maintain any history about the appearance of the object in

previous frames. As a result, it is prone to drift, since small tracking errors will

accumulate over time and ultimately result in tracking failure. One approach

for dealing with this was proposed by Mattews et al. [79], which updates the

template only when it is considered safe to do so and retains the original template

to prevent drift (Figure 2.4). Other approaches maintain more sophisticated

appearance models which summarise the appearance of the object over time and

adapt gradually to changes, such as the incremental PCA approach of Ross et

al. [95] and the WSL tracker of Jepson et al.. [57].

2.1.2 Discriminative appearance models

More recent tracking research has focused around appearance models which are

discriminative, meaning that rather than capturing the appearance of the target

object alone, they model the differences between the appearance of the target

object and its surrounding background. Such approaches have benefited greatly
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Figure 1: A qualitative comparison of update Strategies 1, 2, and 3. With Strategy 1 the template is not
updated and tracking eventually fails. With Strategy 2, the template is updated every frame and the template
“drifts”. With Strategy 3 the template is updated every frame, but a “drift correction” step is added. With this
strategy the object is tracked correctly and the template updated appropriately across the entire sequence.

Next, we consider the more general case of template tracking with linear appearance variation.

Specifically, we generalize our algorithm to AAMs [Cootes et al., 2001]. In this context, our

appearance update algorithm can also be interpreted as a heuristic to avoid local minima and so we

again quantitatively evaluate it as such. We also demonstrate how our algorithm can be applied to

convert a generic person-independent AAM into a person specific AAM.

2 Single Template Tracking

We begin by considering the original template tracking problem [Lucas and Kanade, 1981] where

the object is represented by a single template image. Suppose we are given a video sequence of

images where are the pixel coordinates and is the frame number.

In template tracking, a subregion of the initial frame that contains the object of interest is

2

Figure 2.4: The template update problem. In the first row a fixed template is used,

and tracking is lost as the target object changes appearance due to lighting. In the

second row the template is updated every frame, which also results in tracking failure

because the template drifts. The final row uses an approach which combines both

fixed and updating templates to result in successful tracking. Image courtesy of I.

Matthews [79].

from the significant progress which has been made in the related task of category-

level object detection [33,40,122,123].

An early approach for discriminative object tracking was proposed by Avidan

[6], which used the classification function of an SVM as the similarity function

which should be optimised by a gradient-based tracker. The classifier itself was

learned offline, meaning a training set of representative examples of object and

background was required in advance of tracking, but this approach established the

now-common technique of incorporating discriminative classifiers into a tracking

framework.

2.1.2.1 Incorporating adaptability

Since discriminative approaches incorporate information about the target object

and its background, providing a mechanism for adaptability becomes particularly

important. While object detection research has shown that it is possible to use
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2.1. Object tracking

large training sets containing ‘typical’ background examples to train object de-

tectors, during tracking we will only be discriminating between the object and

a particular background. It is therefore desirable to use an appearance model

which is specific to this background. Since most discriminative appearance mod-

els are based around classifiers, online learning provides a natural mechanism for

achieving this, providing the tracker with the ability to adapt both to changes in

the object appearance, as well as changes in the surrounding background. After

initialising the classifier at the start of tracking (e.g. with a user-specified bound-

ing box, or the output from an object detector), approaches designed in this way

operate in two stages. First the existing classifier is used to update the state of

the tracker, and then the new state of the tracker is used in order to update the

classifier (Figure 2.5).

Figure 2.5: Online learning for tracking. The classifier confidence function is used

to update the state of the tracker, after which the classifier is updated by generating

training samples from the new tracker state. Image courtesy of H. Grabner [46].

An influential approach based on these ideas was the Online Boosting method

proposed by Grabner et al. [46]. In this method, a boosting-based [102] classifier

similar to that proposed for object detection by Viola and Jones [123] is learned

online [86]. To update the classifier each frame, a set of labelled training ex-
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2.1. Object tracking

amples is generated using the current tracker state. The image patch inside the

current tracker bounding box is treated as a positive training example, while im-

age patches inside a number of randomly-selected bounding boxes from the local

area (some of which overlap with the tracker bounding box) are treated as nega-

tive examples. The boosting-based classifier is able to select from a large pool of

image features to best discriminate between the positive and negative examples.

This approach results in a powerful tracking framework, which under the right

conditions is able to track arbitrary objects in complex backgrounds, whilst han-

dling the various changes in appearance which cause problems for most tracking

approaches. It still suffers from a number of drawbacks, however, which subse-

quent research has attempted to address.

The first problem is that of label noise. Because the tracker state will in-

evitably contain some errors, the training examples given to the classifier may

not be labelled correctly. If the classifier cannot handle this noise, its ability

to discriminate between the target object and its background will suffer, causing

tracking quality to decline. Boosting is known to suffer from label noise [37], since

it can overfit to samples which are not well predicted by the current classifier, so

one approach is to make use of robust loss functions for boosting to provide more

tolerance to label noise [70,77]. Alternatively, different classifiers such as random

forests [22, 101] which have better robustness to label noise may be employed.

A particularly successful approach for handling labelling noise was proposed by

Babenko et al. [7], who make use of Multiple Instance Learning (MIL) [36] to al-

low the classifier to select from a number of potential positive examples, according

to its current state (Figure 2.6). This method was shown to provide significant

improvements over the original Online Boosting tracker.

The second problem is the reliance of classification-based approaches on self-

training, whereby the result of the tracker is always assumed to be correct and

then used to update the classifier. Fundamentally, this is a problem with all adap-

tive tracking methods, since the only true supervision comes from the first frame

of tracking (i.e. when the tracker is initialised). Given the framework of adaptive

tracking using a discriminative classifier, however, a number of approaches have

been proposed to try and mitigate the danger of self-training. One such approach
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2.2. Keypoint-based object detection

Figure 2.6: Multiple instance learning for handling label noise. The first column

updates the classifier using a single positive and multiple negative examples, which

may result in drift as the positive example is mis-aligned. The second column updates

the classifier using multiple positive and negative examples, which may also result in

drift as it is harder for the classifier to discriminate between the two classes. The final

column uses multiple instance learning to allow the classifier to select for itself which

example should be treated as positive based on its current state. Image courtesy of B.

Babenko [7].

was proposed by Grabner et al. [47], which makes use of semi-supervised learning

and treats all examples after the initial frame as unlabelled. This approach retains

a classifier learned from the initial frame, which is used to anchor future updates

during tracking so that significant drift cannot take place. In practice, however,

this approach can suffer from a lack of adaptability to appearance change, which

can also lead to poor tracking performance.

Fundamentally, there is a dilemma which must be faced when performing

adaptive object tracking. On one hand, allowing too much adaptation of the

appearance model can lead to drift and ultimately tracking failure. On the other

hand, if the adaptation is constrained in order to prevent drift, the appearance

model may not be able to handle the changes in object appearance, which will

also lead to tracking failure. Recently, attempts have been made to resolve this

dilemma by incorporating higher-level reasoning about the scene into the tracking

framework [60,99], which appears to be a promising research direction.
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2.2. Keypoint-based object detection

2.2 Keypoint-based object detection

Keypoint-based object detection is a widely-used approach for detecting instances

of a specific textured target object in an image. Its robustness and efficiency

mean that it forms the cornerstone of many computer vision applications such as

augmented reality (AR) and simultaneous localisation and mapping (SLAM).

The target object is modelled as a collection of distinctive keypoints, each

consisting of location and local appearance information. These keypoints are

designed to be easy to identify when the object is observed in a given image.

Detecting the object in an input image then follows a standard pipeline con-

sisting of three stages: detecting keypoints in an input image; finding potential

matches between image keypoints and model keypoints; and geometric verifica-

tion of matches to determine overall object presence and geometric transformation

(Figure 2.7).

The strengths of these approaches are twofold: firstly, they are able to detect

an object under a large class of geometric and photometric transformations. This

is possible because individual keypoints describe only local information about

an object, allowing methods to be designed which are locally tolerant to such

transformations. Secondly, they incorporate a great deal of redundancy, since

Figure 2.7: Keypoint-based object detection. A planar target object is shown on

the left, and potential matches are found between object and image keypoints (brighter

lines indicate higher matching scores). Geometric verification is then used to determine

the homography transformation between object and image.
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2.2. Keypoint-based object detection

geometric verification provides a very strong cue for object detection. This means

that detection requires only a subset of keypoints to be successfully matched,

making these methods robust against partial occlusions and matching failures.

There exists a great deal of prior research related to each of the stages of the

detection pipeline. In this section we provide a brief overview of some of the key

literature.

2.2.1 Keypoint detection

In order to identify keypoints in an image, a detector is required. The aim is

for a detector to have high repeatability, meaning it can reliably detect the same

keypoint even as an image undergoes various geometric and photometric transfor-

mations. To achieve this repeatability, the detector is designed with invariances

to certain transformations. In theory, if the local image data around the keypoint

is transformed in a way which is handled by the detector, it will still be detected.

In practice there are inevitably artefacts introduced by the imaging process such

as aliasing and noise which can violate the assumptions made by the detector, but

this is compensated by the redundancy which comes from modelling the object

as a collection of such keypoints.

An early example of a keypoint detector was proposed by Harris [52], which

uses the eigenvalues of a 2×2 matrix built from local image gradient information

around each pixel in an image to identify stable corners. A related extension was

proposed by Shi and Tomasi [107], which under certain assumptions results in

more stable corners. These detectors are able to provide invariance to translation

and rotation of the image.

To provide additional invariance to scaling of the image, a number of subse-

quent approaches have been proposed which make use of image scale-space [73].

This image representation adds a third dimension corresponding to the scale of a

Gaussian kernel with which the image is convolved. Blobs can then be identified

in scale-space by searching for extrema of the Laplacian of Gaussian (LoG) [74]

or Difference of Gaussian (DoG) [75] operators. In particular, the DoG detector

was introduced to accompany the well-known Scale-Invariant Feature Transform
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2.2. Keypoint-based object detection

(a) Input image (b) DoG keypoints (c) FAST keypoints

Figure 2.8: Examples of DoG [75] and FAST [96] keypoints. The DoG detector

identifies multi-scale blobs, while the FAST detector identifies single-scale corners.

(SIFT) [75] descriptor and so is widely used in practice. A similar approach for

blob detection uses the Determinant of Hessian (DoH) [74] operator, and a fast

approximation of this method is used as the detector for the widely-used Speeded

Up Robust Feature (SURF) [10] descriptor.

Detectors have also been proposed to handle general affine (translation, ro-

tation, scaling and shearing) transformations of the image. Some of these are

based on affine extensions to scale-space approaches [80, 121], while others iden-

tify different image features which are stable under affine transformations, such

as Maximally Stable Extremal Regions (MSERs) [78].

Whilst the development of keypoint detectors with invariance to a large class

of transformations is important, in practice an equally important consideration is

computational cost, especially where we are interested in real-time applications.

Consequently, one of the most commonly-used keypoint detectors in practice is

the Features from Accelerated Segment Test (FAST) detector [96]. This approach

aims to detect only single-scale corners, but focuses on doing so very efficiently.

Corners are identified by scanning a ring of 16 pixels around a central pixel and

checking whether a run of n consecutive pixels (with n = 9 most commonly

used) which are brighter or darker than the central pixel exists. Furthermore,

the ordering of tests is learned from training data to reject non-corner pixels as

quickly as possible. Although this approach only offers invariance to rotation and

translation, the fact that it is extremely fast, even on low-powered devices, means

it is frequently used. Leutenegger et al. [72] propose an extension to FAST which

also provides invariance to image scaling.
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2.2. Keypoint-based object detection

2.2.2 Keypoint matching

Once keypoints have been identified, the next stage in the object detection

pipeline is to use local appearance information in order to match keypoints in

an image against keypoints on the target object. Methods for achieving this can

be divided into two categories: those based on descriptors and those based on

classification.

2.2.2.1 Matching with descriptors

The traditional approach to matching has been to produce a descriptor for each

keypoint, a signature based on local image information. Ideally these descriptors

should be invariant to the same class of transformations as the detector, and the

usual approach is to use statistics based on the image data around a keypoint

to define a local coordinate frame in which to compute the descriptor. Given

a descriptor type, matching then becomes a nearest-neighbour problem. For

each keypoint in an image, the nearest-neighbour object keypoint is found using

some distance metric (usually Euclidean). If this distance is sufficiently small,

it is considered a candidate match. Additional heuristics are also employed in

practice, such as rejecting matches which are not sufficiently unique, as defined

by the ratio of distances between the nearest and second-nearest match [75].

Schmid and Mohr [103] introduced the concept of image descriptors by build-

ing Local Jets, vectors of local image derivative information, around image key-

points. Since then, many other descriptors have been proposed, by far the most

well-known of which is the SIFT descriptor [75]. This descriptor is constructed

from histograms of oriented gradient information collected from a 4x4 grid around

each keypoint, along with normalisation to increase robustness to illumination

changes (Figure 2.9). This carefully-designed descriptor and its associated DoG

detector have become the gold standard in terms of performance for keypoint

matching against which all other approaches are compared.

An issue with the SIFT descriptor is its computational cost. Construction of

the descriptor involves relatively expensive image operations such as convolutions

with Gaussian kernels and the resulting descriptor is a 128-dimensional real vec-
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2.2. Keypoint-based object detection

Image gradients Keypoint descriptor

Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.
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Figure 2.9: The SIFT descriptor. Local image gradients weighted by a Gaussian

kernel around DoG keypoints are collected into a spatial histogram to produce the

descriptor. This example shows 2x2 histograms, while the actual descriptor uses 4x4

histograms. Image courtesy of D. Lowe [75]

tor, making nearest-neighbour search expensive. Various approaches have been

proposed for addressing these issues. The SURF descriptor [10] was designed to

match the performance of SIFT, whilst replacing various stages in the pipeline

with more efficient alternatives making use of integral images [123] and the result-

ing descriptor is only 64-dimensional. This approach has been shown to be suit-

able for real-time application on desktop computers, although it is still too expen-

sive for low-powered devices. Approaches for accelerating the nearest-neighbour

search include reducing the dimensionality of the descriptor through the use of

principal component analysis (PCA) [61] or vector quantisation [112,120] and ap-

proximate search methods based on efficient tree structures [81,84,91]. However,

these approaches all require the original descriptor to be computed first, which

may itself be prohibitively expensive, particularly on low-powered devices.

2.2.2.2 Matching as classification

An alternative view of keypoint matching is to treat it as a classification problem.

In this setting, each object keypoint defines a class, and a classifier is trained

to identify which (if any) of these classes a given image keypoint corresponds

to. This approach was first introduced by Lepetit and Fua [71], who trained a

random forest [22] classifier based on simple tests between pairs of pixels around

a keypoint. Subsequently, a related approach by Özuyal et al. [87] replaced the

random forest classifier with a more discriminative and memory efficient random

fern classifier (Figure 2.10). The key factor in both of these approaches is the
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2.2. Keypoint-based object detection

training stage of the classifier. This proceeds by generating a large number of

synthetic views of the target object and then relying on the learning algorithm to

choose tests which together discriminate between the object keypoints. There are

two main strengths to such an approach. The first is that the classifier is tuned

specifically for the object of interest and can focus its tests appropriately. This is

in contrast to descriptor-based approaches, which require a universal descriptor

which is suitable for all objects. The second strength is that because the tests

are chosen to be very simple, the resulting classifier is efficient to evaluate at

run-time, allowing for real-time object detection.

The weakness of classification-based approaches is that the training stage is

typically time-consuming and computationally expensive, as a large number of

examples of the object keypoints under various transformations must be gener-

ated to produce an accurate classifier. This is acceptable for certain applications,

such as detecting a fixed image for an AR application, as the classifier can be

fully trained offline and then will only ever be evaluated at runtime. There are

other situations, however, where the classifier needs to be updated at runtime to

include new keypoints. One such example is SLAM, where keypoint-based object

detection can be used to perform relocalisation when tracking fails. Williams et

al. [127] propose a modification of the random forest approach to allow learning

of new keypoints for SLAM, but even with simplification of the classifier and
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Fig. 6. Generic tree used for keypoint recognition. When using C2 tests, the nodes contain tests comparing two pixels in the
keypoint neighborhood; the leaves contain the Pη(l,p)(Y (p) = c) posterior probabilities.

handle multi-class problems and are robust and fast, while remaining reasonably easy to train.
They are simple but powerful tools for classification, introduced and applied to recognition of
handwritten digits in [2]. They are closely related to the regression trees in the CART method [5].
Several trees are grown with some form of randomization as in [6] for example, but the queries
can be more complex than those of regression trees. In this section we first describe them briefly
in the context of our problem for the benefit of the unfamiliar reader. We then study their
properties and justify our implementation choices.

A. Randomized Trees

Figure 6 depicts a generic tree. Each internal node contains a simple test that splits the space
of data to be classified, in our case the space of image patches. Each leaf contains an estimate
based on training data of the posterior distribution over the classes. A new patch is classified
by dropping it down the tree and performing an elementary test at each node that sends it to
one side or the other. When it reaches a leaf, it is assigned probabilities of belonging to a
class depending on the distribution stored in the leaf. Since the numbers of classes, training

17th August 2006 DRAFT

6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

70

75

80

85

90

95

100

N
r

R
e
co

g
n
iti

o
n
 R

a
te

Effect of Prior on Recognition Rate

 

 

City
Flowers
Museum

Fig. 2. Recognition rate as a function of log(Nr) using the three test images of Section IV. The recognition rate remains relatively constant
for 0.001 < Nr < 2. For Nr < 0.001 it begins a slow decline, which ends in a sudden drop to about 50% when Nr = 0. The rate also
drops when Nr is too large because too strong a prior decreases the effect of the actual training data, which is around 10000 samples for
this experiment.
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Fig. 3. Ferns vs Trees. A tree can be transformed into a Fern by performing the following steps. First, we constrain the tree to systematically
perform the same test across any given hierarchy level, which results in the same feature being evaluated independently of the path taken
to get to a particular node. Second, we do away with the hiearchical structure and simply store the feature values at each level. This means
applying a sequence of tests to the patch, which is what Ferns do.

IV. COMPARISON WITH RANDOMIZED TREES

As shown in Figures 3 and 4, Ferns can be considered as simplified trees. Whether or not this
simplification degrades their classification performance hinges on whether our randomly chosen binary
features are still appropriate in this context. In this section, we will show that they are indeed. In fact,
because our Naive Bayesian scheme outperforms the averaging of posteriors used to combine the output
of the decision trees [20], the Ferns are both simpler and more powerful.

To compare RTs and Ferns, we experimented with the three images of Figure 5. We warp each image
by repeatedly applying random affine deformations and detect Harris corners in the deformed images. We
then select the most stable 250 keypoints per image based on how many times they are detected in the
deformed versions to use in the following experiments and assign a unique class id to each of them. The
classification is done using patches that are 32 × 32 pixels in size.

Ferns differ from trees in two important respects: The probabilities are multiplied in a Naive-Bayesian
way instead of being averaged and the hierarchical structure is replaced by a flat one. To disentangle the
influence of these changes, we consider four different scenarios:

• Using Randomized Trees and averaging of class posterior distributions, as in [20],

(a) Random forests (b) Random ferns

Figure 2.10: Random forests and ferns. Decision trees are constructed consisting of

pairwise pixel tests around a keypoint. While random forests select different tests at

each node, random ferns restrict all nodes at a given level to use the same test, resulting

in a simpler linear structure and lower memory requirements. Images courtesy of V.

Lepetit [71] and M. Özuysal [87]
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2.2. Keypoint-based object detection

the use of the GPU, training is still computationally expensive and can only

handle a relatively small number of keypoints. Özuysal et al. [88] propose an

alternative approach which uses an online version of random forest training, al-

lowing the classifier to be updated incrementally as new training data arrives.

Their approach is therefore suitable for situations in which keypoints are added

or removed at runtime, but still requires examples of the keypoints under many

different transformations, which must somehow be supplied.

2.2.2.3 Methods for low-powered devices

There has recently been significant interest in developing approaches for keypoint

matching which are suitable for portable devices such as smartphones and tablets.

These devices provide an excellent platform for AR and SLAM applications, but

they also have far less computational power than a typical desktop computer.

As has already been discussed, descriptor-based approaches typically involve

expensive image operations, followed by high-dimensional nearest-neighbour search.

While classification-based approaches were designed to provide more efficient

matching, the classifiers involved often have high memory usage, which also makes

them unsuitable for low-powered devices. Wagner et al. [125] present a number of

carefully-engineered modifications to both of these categories of approaches which

allow them to run on low-powered devices. They propose an approximation of

the SIFT descriptor and matching procedure which results in significantly lower

computational cost compared with the original approach. They also present an

approximation of the ferns approach which results in much lower memory usage

compared with the original.

Rather than improving the efficiency of existing approaches, there have also

been a number of recent methods proposed which are designed from the ground

up to be suitable for low-powered devices.

Taylor et al. [116] propose Histogrammed Intensity Patches (HIPs), a classi-

fication based approach which builds independent histograms of pixel intensities

for 64 sample locations around a model keypoint from training data. These his-

tograms are each approximated very coarsely in binary form using 5 bits, resulting

in a 320-bit representation of a model keypoint. Using a similar representation for
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2.2. Keypoint-based object detection
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Fig. 1. Each group of 10 bars represents the recognition rates in one specific stereo pair
for increasing levels of Gaussian smoothing. Especially for the hard-to-match pairs,
which are those on the right side of the plot, smoothing is essential in slowing down
the rate at which the recognition rate decreases.

Fig. 2. Different approaches to choosing the test locations. All except the righmost one
are selected by random sampling. Showing 128 tests in every image.

II) (X,Y) ∼ i.i.d. Gaussian(0, 1
25S2): The tests are sampled from an isotropic

Gaussian distribution. Experimentally we found s
2 = 5

2σ ⇔ σ2 = 1
25S2 to

give best results in terms of recognition rate.

III) X ∼ i.i.d. Gaussian(0, 1
25S2) , Y ∼ i.i.d. Gaussian(xi,

1
100S2) : The sampling

involves two steps. The first location xi is sampled from a Gaussian centered
around the origin while the second location is sampled from another Gaussian
centered on xi. This forces the tests to be more local. Test locations outside
the patch are clamped to the edge of the patch. Again, experimentally we
found S

4 = 5
2σ ⇔ σ2 = 1

100S2 for the second Gaussian performing best.

IV) The (xi,yi) are randomly sampled from discrete locations of a coarse polar
grid introducing a spatial quantization.

Figure 2.11: The BRIEF descriptor. Randomly-generated pairwise pixel tests are

concatenated to give a binary descriptor. This figure shows different sampling strategies

for selecting the tests. Image courtesy of M. Calonder [25]

an image keypoint, a dissimilarity measure between model and image keypoints

can be computed using a bitwise XOR followed by a bit-count, both of which can

be achieved very efficiently using bitwise operations on a CPU.

Calonder et al. [25] propose a descriptor-based approach called BRIEF, which

uses simple binary tests on randomly-generated pairs of pixels around a keypoint,

inspired by the random forest and fern classification-based approaches. The re-

sults of a number of independent tests are concatenated together to produce a

binary descriptor (Figure 2.11). The distance between two such descriptors can

then be computed using the Hamming distance, which can be computed very ef-

ficiently on a CPU using bitwise operations. Although this approach is extremely

simple, it has experimentally been shown to produce results comparable to SIFT

and SURF matching, whilst being around two orders of magnitude faster [24]. A

number of variations on this approach have subsequently been proposed, which

retain the core idea, but improve matching further by tuning the binary tests

which are chosen for the descriptor [5, 72,98].

2.2.3 Geometric verification

The final stage of the detection pipeline is geometric verification, which uses

the set of independently-found keypoint matches to infer the overall presence and

transformation of the target object. If the set of matches was known to be largely

correct then this would be a simple task, and we could use e.g. least-squares
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2.3. Scene reconstruction

estimation to find the best-fitting transformation between model and image given

the set of matches. However, because matches are generated independently by

considering only local image information, the expectation is that there will be

a significant number of outlier (incorrect) matches. For this reason, a robust

estimation procedure must be used which is able to tolerate these outliers.

The majority of approaches for geometric verification are based on RANSAC

[41]. Such approaches proceed by randomly sampling minimal subsets from the

full set of matches to generate transformation hypotheses and then use the re-

maining matches to test these hypotheses. The number of matches which define

a minimal subset depends on the class of transformation which is being consid-

ered [53]. To estimate a homography, for example, 4 matches are required, while

to estimate 3D rotation and translation given known intrinsic camera parameters

(the P3P problem), 3 matches are required. Depending on the ratio of inlier to

outlier matches, with a sufficiently large number of random samples the probabil-

ity of selecting a minimal set which is free from outliers is very high, allowing the

procedure to robustly estimate an overall object transformation. Alternatively, if

no transformation can be found with sufficient support from the set of matches,

no detection is reported.

Subsequent research has further extended the underlying RANSAC approach

to use a more principled maximum-likelihood estimation procedure [118], which

is now more commonly used in practice. Another important improvement is the

PROSAC algorithm [29], which does not sample matches uniformly at random,

but rather assumes the matches can be ranked according to their quality (e.g.

using their matching score) and biases the sampling to focus initially on the

best matches. In practice this approach is able to estimate transformations with

substantially fewer iterations than RANSAC, which brings great benefit for real-

time applications.

2.3 Scene reconstruction

The task of reconstructing the underlying 3D scene which has been observed by

a camera is a fundamental problem in computer vision, as it essentially aims
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to invert the imaging process performed by a camera. Obtaining a 3D recon-

struction of a scene is particularly useful for AR applications, as it allows virtual

content to be introduced which interacts with its environment in a realistic way,

resulting in a more compelling experience for the user. Inverting a 2D image is

of course not possible in general, although approaches have been proposed which

attempt to achieve this by incorporating additional prior assumptions about the

scene [54,132]. Given multiple views of the scene, however, the problem of scene

reconstruction becomes well-posed, and there now exist a variety of sophisticated

approaches able to produce high-quality dense 3D scene reconstructions.

Such multi-view reconstruction approaches take as their input multiple cal-

ibrated images of a scene, meaning the intrinsic camera parameters are known

(focal length, principal point, distortion coefficients, etc), as well as the extrin-

sic camera parameters for each view (the 3D camera pose). This calibration

information may either come from a carefully controlled capture environment in

which the 3D pose of the camera is known in advance, or by using structure-from-

motion techniques [53] to estimate the calibration information from the images

themselves.

In order to estimate 3D information from multiple views, approaches typically

make use of photo-consistency to establish dense correspondences between pixels

in each view, which subsequently allows a 3D position for each pixel to be esti-

mated by triangulation. This technique is referred to as multi-view stereo, since

it generalises the principles used by stereo algorithms to more than two images.

While the core principle for these methods remains the same, there are still a

great variety of multi-view stero approaches [105] which differ in various factors

such as how they measure photo-consistency, how they represent the scene, how

they handle occlusion between views, and the optimisation strategy they use.

While photo-consistency provides a strong cue for multi-view reconstruction,

there are situations in which it may not be able to provide useful information.

Problems can occur with textureless regions, for example, where it becomes im-

possible to reliably establish correspondences between multiple views. Similar

problems can also occur at occlusion boundaries. To tackle these problems,

Campbell et al. [26] propose an approach to incorporate higher-level structural
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constraints based around local continuity to help resolve such ambiguities.

2.3.1 Real-time approaches

Traditional multi-view reconstruction methods are designed to operate offline and

are often computationally very expensive, taking minutes or hours on powerful

desktop computers to produce reconstructions. Recently, however, there has been

increased interest in developing approaches which are able to produce real-time

reconstructions, and it is these approaches which have the most potential for AR

applications.

One class of real-time method are those based around space-carving, which

perform volumetric reconstruction using reasoning based on the visibility of fea-

tures in the scene observed from multiple views. These approaches lend them-

selves well to the coarse reconstruction of individual closed objects, for example

allowing a user to ‘scan’ an object to produce a 3D model. The ProFORMA

method [89] achieves this by tracking points on the surface of an object as it is

moved in front of a fixed camera and subsequently uses tetrahedral space-carving

to produce a textured object model (Figure 2.12). A related approach proposed

by Basitan et al. [9] tracks the silhouette of an object by performing colour-based

segmentation in multiple viewpoints and uses space-carving on a voxel grid to

generate a 3D reconstruction of the object.

Space-carving methods are typically not able to produce very accurate re-

constructions and suffer from problems based on the topology of the scene. For

Figure 2.12: The ProFORMA reconstruction method. Points are tracked on the

surface of an object to produce a 3D point cloud. Delaunay tetrahedralisation is applied

and space-carving is used to remove empty tetrahedra. Image courtesy of Q. Pan [89]
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example, space-carving based on silhouettes is not able to reconstruct concavities

in an object, as these do not affect the silhouette. Another class of real-time

method are those which use multi-view stereo, but have been engineered to be

highly efficient so that they are capable of real-time reconstruction. One such

example is the method of Vogiatzis and Hernández [124], which is able to esti-

mate the 3D position of a large number of points in real-time to produce a dense

point cloud for a scene. Methods proposed by Newcombe and Davison [82] and

Stuehmer et al. [113] both use sophisticated optimisation algorithms which can be

implemented on the GPU in order to produce real-time depth-maps for multiple

views, which are then fused to give 3D scene reconstructions (Figure 2.13).

Figure 2.13: Real-time multi-view stereo using the method of Newcombe and Davison

[82]. Here depth-maps have been computed and fused from 4 reference views to produce

a 3D reconstruction. Image courtesy of R. Newcombe [82]

2.4 Structured learning

Computer vision as a field has benefited greatly from progress in machine learn-

ing, and powerful statistical models which can be learned efficiently from large

quantities of data now form the core of most modern vision techniques.

The types of problems dealt with in computer vision often involve rich models

with a large amount of structure. Such structure exists at various levels in the

vision pipeline. At the low level, there is structure in terms of the local spatial

relationships between pixels in an image. For higher-level scene understanding

tasks, models are introduced which are structured, such as pictorial structures,
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hidden markov models, etc.

Recent developments in machine learning have provided tools for learning with

such structured models, and this section provides a summary. For further reading,

the interested reader is directed to the survey by Nowozin and Lampert [85].

2.4.1 Structured prediction

Structured prediction provides a general framework for the task of finding so-

lutions to structured problems. In this setting we have a prediction function

f : X → Y from an input domain X to a structured output domain Y . This

prediction function is defined such that it makes use of an auxiliary function

g : X × Y → R, which can be seen as measuring the compatibility of an input-

output pair. Predictions are then made according to

ŷ = f(x) := argmax
y∈Y

g(x,y), (2.1)

meaning that ŷ is the output which has the highest compatibility with the input

x.

Such a framework encompasses many approaches commonly used in computer

vision, and performing prediction amounts to solving an optimisation problem,

with an objective function determined by g(x,y). Defining this objective function

and finding efficient ways of solving it thus form the core of structured prediction

problems.

2.4.1.1 Sliding-window object localisation

One example of a structured prediction approach used in computer vision is

sliding-window object localisation, which is the most common method used for

performing category-level object localisation. Here the task is to localise instances

of a given category (e.g. face, person, car, etc.) in an image, typically by drawing a

bounding box around them (Figure 2.14). Sliding-window approaches [33,40,122,

123] achieve this by training a classifier to predict whether a given bounding box

in an image contains the category of interest or not. Localisation then proceeds by
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Figure 2.14: Sliding-window object localisation. The goal is to draw bounding boxes

around instances of known object classes in an image.

searching over all possible bounding boxes in an image, with detections reported

at local maxima of the classification confidence function. As such, this process can

be viewed as an instance of structured prediction, in which the input is an image

x and the output is a bounding box y. The sliding-window search procedure is

performing the maximisation (2.1), with g(x,y) being the classification confidence

function for a given bounding box in the image.

Sliding-window methods must search and test a very large number of bound-

ing boxes in an image, which is potentially too expensive for practical purposes.

Consequently, researches have developed efficient ways of performing this predic-

tion. One approach is to introduce a cascaded classifier [122, 123], which uses

a simple and fast classifier in its early stages to reject windows which obvi-

ously do not contain the object, saving the full classifier for a smaller number

of more promising windows. For certain types of classifier another method is to

use branch-and-bound optimisation [67], which can make use of an upper bound

on the classification score of a collection of windows in order to reject portions of

an image which cannot possibly result in a detection.

2.4.1.2 Conditional random fields

Discrete labelling problems occur frequently in computer vision and are often

modelled as conditional random fields (CRFs). A CRF consists of a set of ran-

dom variables Y = {Y1, . . . , YN}, each of which can be assigned a label from a

set L = {l1, . . . , lK}. Often, the task is to label each pixel in an image, meaning

there will be one random variable per image pixel. Examples of the types of

labels include categories (e.g. road, building, tree, sky, etc.) in the case of se-

mantic segmentation (Figure 2.15), greyscale intensity values in the case of image
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denoising, or disparity values in the case of stereo matching.

Figure 1: Example results of our new simultaneous object class recognition and segmentation
algorithm. Up to 21 object classes (color-coded in the key) are recognized, and the corresponding object
instances segmented in the images. For clarity, textual labels have been superimposed on the resulting
segmentations. Note, for instance, how the airplane has been correctly recognized and separated from the
building, the sky, and the grass lawn. In these experiments only one single learned multi-class model has
been used to segment all the test images. Further results from this system are given in Figure 18.

mination, and to be robust to occlusion. Our focus
is not only the accuracy of segmentation and recog-
nition, but also the e�ciency of the algorithm, which
becomes particularly important when dealing with
large image collections or video sequences.

At a local level, the appearance of an image patch
leads to ambiguities in its class label. For example,
a window could be part of a car, a building or an
airplane. To overcome these ambiguities, it is nec-
essary to incorporate longer range information such
as the spatial layout of an object and also contextual
information from the surrounding image. To achieve
this, we construct a discriminative model for labeling
images which exploits all three types of information:
textural appearance, layout, and context. Our tech-
nique can model very long-range contextual relation-
ships extending over half the size of the image.

Additionally, our technique overcomes several

problems typically associated with object recogni-
tion techniques that rely on sparse features (such as
[33, 36]). These problems are mainly related to tex-
tureless or very highly textured image regions. Fig-
ure 2 shows some examples of images with which
those techniques would very likely struggle. In con-
trast, our technique based on dense features is ca-
pable of coping with both textured and untextured
objects, and with multiple objects which inter- or self-
occlude, while retaining high e�ciency.

The main contributions in this paper are three-
fold. The most significant is a novel type of feature,
which we call the texture-layout filter. These features
record patterns of textons, and exploit the textural
appearance of the object, its layout, and its textu-
ral context. Our second contribution is a new dis-
criminative model that combines texture-layout fil-
ters with lower-level image features, in order to pro-

2

Figure 2.15: Semantic segmentation. The goal is to label each pixel in an image with

one of a number of known categories. Image courtesy of J. Shotton [110]

The random variables Y are not independent, but rather affect one another

based on a neighbourhood N , which most commonly consists of pairwise con-

nections between random variables. Given some data x (e.g. the image data for

semantic segmentation or denoising, or a pair of images for stereo matching), the

posterior probability distribution of a particular labelling y of a pairwise CRF is

defined by a Gibbs distribution [51]:

P (y|x) =
1

Z

N∏

i=1

exp(−ψi(yi))
∏

(i,j)∈N
exp(−ψij(yi, yj)) (2.2)

where Z is a constant normalisation factor, and the terms ψi(yi) and ψij(yi, yj)

are referred to as unary and pairwise potentials, respectively. The way these

potentials are defined is problem-specific. In the case of semantic segmentation,

for example, the unary potential is generally determined by some type of classifier

giving a per-pixel confidence of category membership, while the pairwise potential

encourages neighbouring pixels with similar appearance to be assigned to the

same category. Finding the maximum a-posteriori labelling of a CRF given some

data x is thus an instance of structured prediction, since we wish to find:

ŷ = argmax
y∈LN

P (y|x). (2.3)
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The distribution (2.2) is log-linear, which means performing this maximisation is

equivalent to minimising the Gibbs energy, defined as:

E(y) =
N∑

i=1

ψi(yi) +
∑

(i,j)∈N
ψij(yi, yj) (2.4)

Minimising this energy is NP-hard in general, but in certain cases it can

be performed exactly and in polynomial time. In the case of tree-structured

CRFs, belief propagation [90] can be used. In the case of submodular energy

functions [64], the energy minimisation is equivalent to a graph cut problem, for

which several efficient algorithms exist [20,64].

In other cases, minimising (2.4) exactly is not feasible, but there are still

efficient approximate approaches. In particular, for the case of non-submodular

multi-label problems the α-expansion and αβ-swap move-making algorithms [21]

are widely used.

2.4.2 Learning the prediction function

The prediction function (2.1) may be designed by hand to capture the properties

of the problem of interest, but in many cases it is desirable to learn the function

based on training data. While structured prediction is often used in computer

vision, typically the way learning has been introduced does not take into account

the structure of the problem. For example, most approaches for sliding-window

object detection (as discussed in Section 2.4.1.1) involve training a binary classi-

fier from a training set of positive and negative examples. Therefore the learning

is for making this binary decision. However, in practice this classifier will be

used inside a sliding-window framework to perform structured prediction, which

is not taken into account at all by the learning. Blaschko and Lampert [14] tack-

led this problem in their influential work and showed how this pipeline can be

better embedded in a learning framework using a recently-proposed extension of

the support vector machine (SVM) [31] to structured output spaces [119]. We

now provide an overview of the classification SVM, and show how the principles

behind it can be extended to structured learning problems.
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2.4.2.1 Classification SVM

The classification SVM [31] is one of the most widely-used tools in machine

learning and computer vision. The task is to take a set of training examples

{(xi, yi)}Ni=1, where yi ∈ {−1, 1}, and learn a classification function h : X → R

which can be used to make predictions according to

ŷ := sign(h(x)). (2.5)

The SVM defines h(x) as a linear function of the input

h(x) = 〈w,x〉+ b, (2.6)

where b is a constant bias, and w represents a hyperplane defining the decision

boundary 〈w,x〉 + b = 0. Assuming the training data are separable, that is, it

is possible to find a decision boundary which correctly classifies all the positive

and negative training examples, the SVM finds w which results in the largest

possible separation between the positive and negative examples. To achieve this,

two additional hyperplanes 〈w,x〉 + b = 1 and 〈w,x〉 + b = −1 are taken on

either side of the decision boundary such that no training examples lie in the

region in between. The region between these two hyperplanes is referred to as

the margin, and the SVM finds the decision boundary which maximises the size

of this margin for the training data (Figure 2.16). The size of the margin can be

shown geometrically to be inversely proportional to ‖w‖, meaning the maximum-

Figure 2.16: The classification SVM. Given linearly separable training data, the SVM

finds the decision boundary with the largest margin between the two classes.
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margin decision boundary can be found by solving the following convex quadratic

optimisation problem [31]:

min
w

1

2
‖w‖2

s.t. ∀i : yi(〈w,xi〉+ b) ≥ 1.

(2.7)

To handle the situation where the training examples are not linearly separable,

it is possible to introduce slack variables which allow some of the training ex-

amples to violate the constraint that they must lie outside of the margin. The

optimisation problem then becomes

min
w,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi

s.t. ∀i : ξi ≥ 0

∀i : yi(〈w,xi〉+ b) ≥ 1− ξi,

(2.8)

where C is a parameter which controls how strongly margin violations are pe-

nalised. When C = ∞, this optimisation problem is equivalent to (2.7), since it

forces all ξi = 0.

The typical way in which (2.8) is solved is first by introducing Lagrange mul-

tipliers [31]:

min
w,ξ

max
α,β

{
1

2
‖w‖2 + C

N∑

i=1

ξi −
N∑

i=1

αi(yi(〈w,xi〉+ b)− 1 + ξi)−
N∑

i=1

βiξi

}
,

(2.9)

with αi, βi ≥ 0. Applying the stationary Karush-Kuhn-Tucker (KKT) [65] con-

dition and making the relevant substitutions into (2.9) results in the Lagrangian

dual form

max
α

N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyj〈xi,xj〉

s.t. ∀i : 0 ≤ αi ≤ C.

N∑

i=1

αiyi = 0

(2.10)

Another implication of the stationary KKT condition is an instance of the rep-

resenter theorem [104], which states that the solution to this optimisation can
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always be expressed as a linear combination of the training examples:

w =
N∑

i=1

αiyixi. (2.11)

Those training examples for which αi > 0 are referred to as support vectors, and

in general this solution will be sparse, meaning only a small proportion of the

training examples will have αi > 0.

It is also possible to extend the SVM to support non-linear classification. Since

all input vectors xi only ever appear inside scalar products (both during training

and classification), it is possible to use the kernel trick and first apply a non-

linear feature mapping φ(x) to an input vector x, before taking scalar products

in this new feature space. A linear classifier learned in this mapped feature

space will then correspond to a non-linear classifier in the original input space.

This approach can be taken further by replacing scalar products with a kernel

function k(x,x′). In this case, it is not necessary to perform an explicit feature-

mapping of the input vectors. Provided that the kernel function satisfies certain

properties [3], it can be shown that its evaluation is equivalent to a scalar product

in a corresponding Hilbert space, which may even have infinite dimensionality.

Since this mapping is never explicitly computed, evaluation of the kernel can

remain efficient.

There are a number of mature, publicly-available SVM solvers which have been

designed to efficiently solve the SVM optimisation problem (2.8) [28, 58]. Most

of these in practice solve the dual problem (2.10), using the efficient sequential

minimal optimisation (SMO) procedure proposed by Platt [92].

2.4.2.2 Structured SVM

Recently, the SVM has been extended beyond classification so that it can also be

used for structured prediction problems [115, 119]. The task in this setting is to

learn the prediction function (2.1) given a set of training examples {(xi,yi)}Ni=1,

where now yi ∈ Y is a structured label. The way this problem is approached

with the structured SVM is to define the auxiliary function g(x,y) as a linear
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function

g(x,y) = 〈w,φ(x,y)〉, (2.12)

where φ(x,y) is a joint feature mapping of the input-output pair. Learning

g(x,y) can thus be achieved by learning w. Given the prediction function (2.1),

the goal of learning is to satisfy the constraints:

∀i : 〈w,φ(xi,yi)〉 ≥ max
y∈Y\yi

〈w,φ(xi,y)〉. (2.13)

These constraints are non-linear, however they can equivalently be replaced by a

larger set of linear constraints:

∀i, ∀y ∈ Y \ yi : 〈w,φ(xi,yi)〉 ≥ 〈w,φ(xi,y)〉. (2.14)

As in the case of the classification SVM, there may be many w which satisfy all

of these constraints, so it is necessary to define additional criteria for selecting

the ‘best’ w. This is achieved by generalising the concept of the margin, such

that it now refers to the minimal difference between the score of a correct label

and the closest runner-up over the entire training set [119]:

γ = min
i

max
y∈Y\yi

〈w,φ(xi,yi)〉 − 〈w,φ(xi,y)〉. (2.15)

Analogously to the classification SVM, the structured SVM finds the w which

maximises γ for the training data, which can be shown to be achieved with the

following convex quadratic optimisation problem [119]:

min
w

1

2
‖w‖2

s.t. ∀i,∀y ∈ Y \ yi : 〈w,φ(xi,yi)〉 − 〈w,φ(xi,y)〉 ≥ 1.

(2.16)

To handle the situation where it is not possible to satisfy the constraints (2.13),

slack variables are introduced which allow some of the training examples to violate
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them. The optimisation problem then becomes:

min
w,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi

s.t. ∀i : ξi ≥ 0

∀i, ∀y ∈ Y \ yi : 〈w,φ(xi,yi)〉 − 〈w,φ(xi,y)〉 ≥ 1− ξi,

(2.17)

where C is a parameter controlling how strongly margin violations are penalised.

An issue with this formulation is that all margin violations are treated equally.

In the case of the classification SVM this is appropriate, since the problem is

binary. For structured prediction, however, it is desirable for prediction errors

which are close to the correct label to be penalised less than those which are

significantly different. This can be achieved by defining a problem-specific loss

function ∆ : Y × Y → R+. This loss function should satisfy ∆(y, ŷ) = 0 iff

ŷ = y and increase as ŷ and y become more dissimilar. This loss function can

be incorporated into (2.17) by margin rescaling, which defines the size of the

required margin between outputs according to the loss function1 [115,119]:

min
w,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi

s.t. ∀i : ξi ≥ 0

∀i, ∀y ∈ Y \ yi : 〈w,φ(xi,yi)〉 − 〈w,φ(xi,y)〉 ≥ ∆(yi,y)− ξi,

(2.18)

As can be seen, the structured SVM optimisation problem is very similar in

form to that of the classification SVM (2.7). The major difference is that now

instead of N constraints, there are N(|Y| − 1). Depending on the size of the

output space, this is potentially a very large or even infinite (if the output space

is continuous) number. Nevertheless, practical approaches exist for performing

this optimisation. Tsochantaridis et al. [119], who first introduced the structured

SVM as presented here, also proposed a cutting plane [62] scheme for solving

(2.18). The key observation is that although there are a very large number of

constraints, only a small fraction of them will ever be active, with the remaining

1An alternative approach is slack rescaling [119], in which the loss function is incorporated
by replacing the slack variables in (2.17) with ξi ← ξi/∆(yi,y); however, this has seen less use
in the computer vision literature.
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ones satisfied automatically. The optimisation procedure maintains an active set

of constraints, which define a reduced optimisation problem which can be solved

to find w. Given this solution, any constraints which are violated from the full

set are identified and added into the active set, and the procedure is iterated

until no further violated constraints exist. This method provably converges to

the solution of (2.18) and has the additional benefit that the core optimisation

procedure is able to use the same efficient methods [92] as standard classification

SVM solvers. Subsequent improvements have also been made to this approach

which result in faster convergence guarantees [59].

As in the case of classification SVMs, it is also possible to extend structured

SVMs to non-linear prediction functions by kernelisation. In the case of classifica-

tion SVMs, such kernels k(x,x′) operate on two elements from the input domain

only. Structured SVMs extend this concept and make use of joint kernels, which

operate on two input-output pairs:

k(x,y,x′,y′) = 〈φ(x,y),φ(x′,y′)〉. (2.19)

An example of such a joint kernel is the restriction kernel [14], used for object

localisation. Here the inputs X are images, and the outputs Y are bounding boxes.

The restriction kernel kr(x|y,x′|y′) applies any standard image-based kernel to

the regions in x and x′ defined by the bounding boxes y and y′.

2.4.2.3 Online learning

Both the classification and structured SVM as presented so far assume that all the

training data are available at the time of learning. This scenario is referred to as

batch learning. A different scenario is online learning, in which the training data

arrive sequentially. In this setting, the learner must be incrementally updated

each time a new training example arrives. The current state of the learner is

used in order to predict the label for this new example, which is then compared

to the true label, and adjustments are made to the learner as appropriate. Besides

handling the situation where training data truly does arrive sequentially, online

learning is a useful tool when there is a great deal of training data which cannot
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practically be processed by a batch learning algorithm.

Recent research has resulted in a variety of methods for training SVMs in an

online fashion. These methods can be separated into two classes: those which

operate in the primal, and those which operate in the dual.

Primal approaches. Methods for training SVMs online in the primal are gen-

erally based on stochastic sub-gradient descent. As an illustrative example, we

present an overview of the Pegasos [106] algorithm for online training of a clas-

sification SVM. This approach maintains a hyperplane wt which summarises the

result of learning from all examples {(xi, yi)}t−1
i=1. The objective function of the

primal SVM optimisation problem (2.8) can be rewritten in unconstrained form

(with a constant scaling that does not affect the solution) by eliminating the slack

variables ξ:

f(w) =
λ

2
‖w‖2 +

1

N

N∑

i=1

(1− yi〈w,xi〉)+, (2.20)

where λ = 1
NC

, and (z)+ = max{0, z} is the hinge function. In order to optimise

this given a single training example (xt, yt), Pegasos considers an approximate

objective function based on just this example:

f(w; t) =
λ

2
‖w‖2 + (1− yt〈w,xt〉)+. (2.21)

This approximation is justified probabilistically because, considering the training

examples as random variables, the expectation of its gradient is equivalent to

the actual gradient of (2.20). The function (2.21) is convex in w, but non-

differentiable due to the discontinuity in the gradient of the hinge function (z)+

at z = 0. Nevertheless, a sub-gradient [108] is given by

∇t = λwt − I(yt〈wt,xt〉 < 1)ytxt, (2.22)

where I(·) is an indicator function which takes a value of 1 if its argument is

true and 0 otherwise. This sub-gradient is then used to perform a single gradient

descent step according to

wt+1 = wt − ηt∇t, (2.23)
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where ηt = 1
λt

is the step size at time t. This approach provably converges to the

batch SVM solution [106], whilst being extremely simple to implement. Further

improvements have also been proposed which can accelerate convergence, such as

performing updates to w which are averaged over time [93,129].

A very similar approach for online learning can also be taken for the case of

structured SVMs, where now the approximate objective function based on the

structured training example (xt,yt) is derived from (2.18) and given by:

f(w; t) =
λ

2
‖w‖2 + ( max

y∈Y\yt
{∆(yt,y) + 〈w,φ(xt,y)〉 − 〈w,φ(xt,yt)〉})+. (2.24)

Let

ŷt = arg max
y∈Y\yt

{∆(yt,y) + 〈w,φ(xt,y)〉}, (2.25)

then a sub-gradient is given by:

∇t = λwt−I(∆(yt, ŷt)+〈w,φ(xt, ŷt)〉−〈w,φ(xt,yt)〉 > 0)(φ(xt,yt)−φ(xt, ŷt)),

(2.26)

and wt is updated in the same way as before. Notice that finding ŷt in(2.25)

is closely related to the prediction function (2.1), except it now also includes

the loss function ∆. This step is referred to as loss-augmented prediction and

is a core consideration when learning with the structured SVM. Ideally, the loss

function should be chosen in such a way that it decomposes over the output space,

meaning the efficient prediction algorithms discussed in Section 2.4.1 can still be

applied [14,114].

Dual approaches. While primal approaches for online learning are efficient and

simple to implement, they also rely on an explicit representation of the SVM

weight vector w. As has been discussed, one of the key strengths of SVMs is

that non-linearity can be introduced through the use of kernels. However, once

kernels are employed the weight vector is only represented implicitly based on

the set of support vectors. In order to make use of kernels in an online setting,

alternative algorithms have been proposed which perform online optimisation of

the dual SVM optimisation problems. In the case of the classification SVM, the

LASVM algorithm [16] performs online optimisation of (2.10), and the approach
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has subsequently been extended to the structured SVM to perform online opti-

misation of the dual form of (2.18) with the LaRank algorithm [15, 17]. All of

these methods are based on the fact that the standard approach for optimising

the dual form of SVMs is to use sequential minimal optimisation (SMO) [92].

SMO involves repeatedly solving minimal sub-problems of the dual optimisation

involving only pairs of Lagrange multipliers αi and αj, along with a strategy for

choosing these pairs to encourage fast convergence. LASVM and LaRank both

adapt SMO to an online setting, by alternating between optimising the Lagrange

multipliers associated with new training examples as well as of existing support

vectors.

When optimising in the dual, the solution is entirely defined by the set of

support vectors. It is known that in general the number of support vectors

increases with the size of the training set, meaning that in an online setting

the number of support vectors grows without bound over time. This has the

consequence that both prediction and learning become more expensive in terms

of computation and memory usage over time, which is an undesirable property

for an online learning algorithm. To tackle this issue, approaches have been

proposed for incorporating a budget on the number of support vectors [32, 126].

These approaches set an upper limit on the number of support vectors which

can be retained to describe the solution of the optimisation problem. Various

strategies can then be employed for enforcing this budget. The simplest strategy

is to remove support vectors, either based on their influence on the solution (i.e.

remove the support vector with the smallest Lagrange multiplier) or based on

their age. Other strategies [126] include projecting the support vector which

will be removed onto the remaining support vectors, or merging pairs of support

vectors.
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3.1. Introduction

3.1 Introduction

Visual object tracking is one of the core problems of computer vision, with wide-

ranging applications including human-computer interaction, surveillance and aug-

mented reality, to name just a few. For other areas of computer vision which aim

to perform higher-level tasks such as scene understanding and action recognition,

object tracking provides an essential component.

For some applications, the object to be tracked is known in advance and it

is possible to incorporate prior knowledge when designing the tracker. There are

other cases, however, where it is desirable to be able to track arbitrary objects,

which may only be specified at runtime. In these scenarios, the tracker must

be able to model the appearance of the object on-the-fly and adapt this model

during tracking to take into account changes caused by object motion, lighting

conditions, and occlusion (as illustrated in Figure 3.1). Even when prior infor-

mation about the object is known, having a framework with the flexibility to

adapt to appearance changes and incorporate new information during tracking is

attractive, and in real-world scenarios is often essential for successful tracking.

(a) Object motion (b) Lighting (c) Partial occlusion

Figure 3.1: Examples of different causes of appearance change of the target object.

An adaptive tracking framework is needed in order to handle these appearance changes

during tracking.
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Figure 3.2: Different adaptive tracking-by-detection paradigms: given the current

estimated object location, traditional approaches (shown on the right-hand side) gen-

erate a set of samples and, depending on the type of learner, produce training labels.

Our approach (left-hand side) avoids these steps and operates directly on the tracking

output.

An approach to tracking which has become particularly popular recently is

tracking-by-detection [6], which treats the tracking problem as a detection task

applied over time. This popularity is due in part to the great deal of progress made

recently in object detection, with many of the ideas being directly transferable

to tracking. Another key factor is the development of methods which allow the

classifiers used by these approaches to be trained online, providing a natural

mechanism for adaptive tracking [7, 46,99].

Adaptive tracking-by-detection approaches maintain a classifier trained on-

line to distinguish the target object from its surrounding background. During

tracking, this classifier is used to estimate object location by searching for the

maximum classification score in a local region around the estimate from the previ-

ous frame, typically using a sliding-window approach. Given the estimated object

location, traditional algorithms generate a set of binary labelled training samples

with which to update the classifier online. As such, these algorithms separate the

44
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adaptation phase of the tracker into two distinct parts: (i) the generation and

labelling of samples; and (ii) the updating of the classifier.

While widely used, this separation raises a number of issues. Firstly, it is

necessary to design a strategy for generating and labelling samples, and it is not

clear how this should be done in a principled manner. The usual approaches

rely on predefined rules such as the distance of a sample from the estimated

object location to decide whether a sample should be labelled positive or nega-

tive. Secondly, the objective for the classifier is to predict the binary label of a

sample correctly, while the objective for the tracker is to estimate object loca-

tion accurately. Because these two objectives are not explicitly coupled during

learning, the assumption that the maximum classifier confidence corresponds to

the best estimate of object location may not hold (a similar point was raised by

Williams et al. [128]). State-of-the-art adaptive tracking-by-detection methods

mainly focus on improving tracking performance by increasing the robustness of

the classifier to poorly labelled samples resulting from this approach. Examples of

this include using robust loss functions [70,77], semi-supervised learning [47,100],

or multiple-instance learning [7, 131].

In this chapter we take a different approach and frame the overall tracking

problem as one of structured output prediction, in which the task is to directly

predict the change in object location between frames. We present a novel and

principled adaptive tracking-by-detection framework which integrates the learn-

ing and tracking, avoiding the need for ad-hoc update strategies (see Figure 3.2).

Most recent tracking by detection approaches have used variants of online

boosting-based classifiers [7, 46, 99]. In object detection, boosting has proved to

be very successful for particular tasks, most notably face detection using the ap-

proach of Viola and Jones [123]. Elements of this approach, in particular the

Haar-like feature representation, have become almost standard in tracking-by-

detection research. The most successful research in object detection, however,

has tended to make use of SVMs rather than boosting, due to their good gener-

alisation ability, robustness to label noise, and flexibility in object representation

through the use of kernels [14, 40, 122]. Because of this flexibility of SVMs and

their natural generalisation to structured output spaces, we make use of the
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structured output SVM framework of Tsochantaridis et al. [119]. In particular,

we extend the online structured output SVM learning method proposed by Bor-

des et al. [15, 17] and adapt it to the task of adaptive object tracking. We find

experimentally that the use of our framework results in large performance gains

over state-of-the-art tracking by detection approaches.

A structured output SVM framework has previously been applied to the task

of object detection by Blaschko and Lampert [14]. In contrast to their work, in

our setting there is no offline labelled data available for training (except the first

frame which is assumed to be annotated) and instead online learning is used.

However, online learning with kernels suffers from the curse of kernelisation,

whereby the number of support vectors increases with the amount of training

data. Therefore, in order to allow for real-time operation, there is a need to

control the number of support vectors. Recently, approaches have been proposed

for online learning of classification SVMs on a fixed budget [32, 126], meaning

that the number of support vectors is constrained to remain within a specified

limit. We apply similar ideas in this chapter and introduce a novel approach for

budgeting which is suitable for use in an online structured output SVM frame-

work. We find empirically that the introduction of a budget brings large gains in

terms of computational efficiency, without impacting significantly on the tracking

performance of our system.

3.2 Online structured output tracking

3.2.1 Tracking by detection

In this section we provide an overview of traditional adaptive tracking-by-detection

algorithms, which attempt to learn a classifier to distinguish a target object from

its local background.

Typically, the tracker maintains an estimate of the position p ∈ P of a 2D

bounding box containing the target object within a frame of a video sequence

ft ∈ F , where t = 1, . . . , T is the time. Given a bounding box position p, a

classifier is applied to features extracted from an image patch within the bounding
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box xp
t ∈ X . The classifier is trained with example pairs (x, z), where z = ±1

is a binary label, and makes its predictions according to ẑ = sign(h(x)), where

h : X → R is the classification confidence function.

During tracking, it is assumed that a change in position of the target can be

estimated by maximising h in a local region around the position in the previous

frame. Let pt−1 be the estimated bounding box at time t− 1. The objective for

the tracker is to estimate a transformation (e.g. translation) yt ∈ Y such that the

new position of the object is approximated by the composition pt = pt−1 ◦ yt.

Y denotes our search space and its form depends on the type of motion to be

tracked. For most tracking-by-detection approaches this is 2D translation, in

which case Y = {(∆u,∆v) | ∆u2 + ∆v2 < r2}, where r is a search radius. In this

case the composition pt = pt−1 ◦ yt is given by (ut, vt) = (ut−1, vt−1) + (∆u,∆v).

Mathematically, an estimate is found for the change in position relative to the

previous frame according to

yt = argmax
y∈Y

h(x
pt−1◦y
t ), (3.1)

and the tracker position is updated as pt = pt−1 ◦ yt.

After estimating the new object position, a set of training examples from the

current frame is generated. We separate this process into two components: the

sampler and the labeller. The sampler generates a set of n different transfor-

mations {y1
t , . . . ,y

n
t }, resulting in a set of training examples {xpt◦y1

t
t , . . . ,x

pt◦ynt
t }.

After this process, depending on the classifier type, the labeller chooses labels

{z1
t , . . . , z

n
t } for these training examples. Finally, the classifier is updated using

these training examples and labels.

There are a number of issues which are raised by this approach to tracking.

Firstly, the assumption made in (3.1) that the classification confidence function

provides an accurate estimate of object position is not explicitly incorporated into

the learning algorithm, since the classifier is trained only with binary examples

and has no information about transformations. Secondly, examples used for train-

ing the classifier are all equally weighted, meaning that a negative example which

overlaps significantly with the tracker bounding box is treated the same as one

which overlaps very little. One implication of this is that slight inaccuracy dur-
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ing tracking can lead to poorly labelled examples, which are likely to reduce the

accuracy of the classifier, in turn leading to further tracking inaccuracy. Thirdly,

the labeller is usually chosen based on intuitions and heuristics, rather than hav-

ing a tight coupling with the classifier. Mistakes made by the labeller manifest

themselves as label noise, and many current state-of-the-art approaches try to

mitigate this problem by using robust loss functions [70, 77], semi-supervised

learning [47, 100], or multiple-instance learning [7, 131]. We argue that all of

these techniques, though justified in increasing the robustness of the classifier to

label noise, are not addressing the real problem which stems from separating the

labeller from the learner. The algorithm which we present does not depend on

a labeller and tries to overcome all these problems within a coherent framework

by directly linking the learning to tracking and avoiding an artificial binarisation

step. Sample selection is fully controlled by the learner itself, and relationships

between samples such as their relative similarity are taken into account during

learning.

To conclude this section, we describe how a conventional labeller works, as

this provides further insight into our algorithm. Traditional labellers use a trans-

formation similarity function to determine the label of a sample positioned at

pt ◦ yit. This function can be expressed as spt(y
i
t,y

j
t ) ∈ R which, given a refer-

ence position pt and two transformations yit and yjt , determines how similar the

resulting samples are. For example, the overlap function defined by

sopt(y
i
t,y

j
t ) =

(pt ◦ yit) ∩ (pt ◦ yjt )

(pt ◦ yit) ∪ (pt ◦ yjt )
(3.2)

measures the degree of overlap between two bounding boxes. Another example

of such a function is based on the distance of two transformations sdpt(y
i
t,y

j
t ) =

−d(yit,y
j
t ).

Let y0 denote the identity (or null) transformation, i.e. p = p ◦ y0. Given a

transformation similarity function, the labeller determines the label zit of a sample

generated by transformation yit by applying a labelling function zit = `(spt(y
0,yit)).
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Most commonly, this can be expressed as

`(spt(y
0,yit)) =





+1 for spt(y
0,yit) ≥ θu

−1 for spt(y
0,yit) < θl

0 for otherwise

(3.3)

where θu and θl are upper and lower thresholds, respectively. A binary clas-

sifier generally ignores the unlabelled examples [46], while those based on semi-

supervised learning use them in their update phase [47,100]. In approaches based

on multiple-instance learning [7, 131], the labeller collects all the positive exam-

ples in a bag and assigns a positive label to the bag instead. Most, if not all,

variants of adaptive tracking-by-detection algorithms use a labeller which can be

expressed in a similar fashion. However, it is not clear how the labelling parame-

ters (e.g. the thresholds θu and θl in the previous example) should be estimated in

an online learning framework. Additionally, such heuristic approaches are often

prone to noise and it is not clear why such a function is in fact suitable for track-

ing. In the subsequent section, we will derive our algorithm based on a structured

output approach which fundamentally addresses these issues and can be thought

of as a generalisation of these heuristic methods.

3.2.2 Structured output SVM

Rather than learning a classifier, we propose learning a prediction function f :

X → Y to directly estimate the object transformation between frames. Our

output space is thus the space of all transformations Y instead of the binary

labels ±1. In our approach, a labelled example is a pair (x,y) where y is the

desired transformation of the target. We learn f in a structured output SVM

framework [14, 119], which introduces a discriminant function g : X × Y → R

that can be used for prediction according to

yt = f(x
pt−1

t ) = argmax
y∈Y

g(x
pt−1

t ,y). (3.4)

Note the similarity between (3.4) and (3.1): we are performing a maximisation

step in order to predict the object transformation, however now the discriminant
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function g includes the label y explicitly, meaning it can be incorporated into the

learning algorithm. In our framework, rather than using the tracker position to

generate binary examples for training a classifier, we instead provide the single

labelled example (xpt
t ,y

0), which is then used to update the learner.

g measures the compatibility between (x,y) pairs and gives a high score to

those which are well matched. By restricting this to be a linear function g(x,y) =

〈w,Φ(x,y)〉, where Φ(x,y) is a joint kernel map (to be defined later), it can be

learned in a large-margin framework from a set of examples {(x1,y1), . . . , (xn,yn)}
by minimising the convex objective function

min
w

1

2
‖w‖2 + C

n∑

i=1

ξi

s.t. ∀i : ξi ≥ 0

∀i, ∀y 6= yi : 〈w, δΦi(y)〉 ≥ ∆(yi,y)− ξi

(3.5)

where δΦi(y) = Φ(xi,yi) − Φ(xi,y). This optimisation aims to ensure that

the value of g(xi,yi) for the training example (xi,yi) is greater than g(xi,y) for

y 6= yi, by a margin which depends on a loss function ∆. This loss function should

satisfy ∆(y, ȳ) = 0 iff y = ȳ and increase as y and ȳ become more dissimilar.

The loss function plays an important role in our approach, as it allows us to

address the issue raised previously of all samples being treated equally. This can

be achieved by making use of the transformation similarity function introduced

in Section 3.2.1. For example, as suggested by Blaschko and Lampert [14], we

choose to base the loss function on bounding box overlap according to

∆(y, ȳ) = 1− sopt(y, ȳ), (3.6)

where sopt(y, ȳ) is the overlap function (3.2).

3.2.3 Online optimisation

To optimise (3.5) in an online setting, we use the approach of Bordes et al. [15,17].

Using standard Lagrangian duality techniques, (3.5) can be converted into its

equivalent dual form
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max
α

∑

i,y 6=yi

∆(y,yi)α
y
i −

1

2

∑

i,y 6=yi
j,ȳ 6=yj

αy
i α

ȳ
j 〈δΦi(y), δΦj(ȳ)〉

s.t. ∀i, ∀y 6= yi : αy
i ≥ 0

∀i :
∑

y 6=yi

αy
i ≤ C

(3.7)

and the discriminant function expressed as g(x,y) =
∑

i,ȳ 6=yi
αȳ
i 〈δΦi(ȳ),Φ(x,y)〉.

As in the case of classification SVMs, a benefit of this dual representation is

that because the joint kernel map Φ(x,y) only ever occurs inside scalar prod-

ucts, it can be defined implicitly in terms of an appropriate joint kernel function

k(x,y, x̄, ȳ) = 〈Φ(x,y),Φ(x̄, ȳ)〉. The kernel functions we use during tracking

are discussed in Section 3.2.5.

By reparametrising (3.7) [15] according to

βy
i =





− αy
i if y 6= yi

∑

ȳ 6=yi

αȳ
i otherwise,

(3.8)

the dual can be considerably simplified to

max
β

−
∑

i,y

∆(y,yi)β
y
i −

1

2

∑

i,y,j,ȳ

βy
i β

ȳ
j〈Φ(xi,y),Φ(xj, ȳ)〉

s.t. ∀i,∀y : βy
i ≤ δ(y,yi)C

∀i :
∑

y

βy
i = 0

(3.9)

where δ(y, ȳ) = 1 if y = ȳ and 0 otherwise. This also simplifies the discriminant

function to g(x,y) =
∑

i,ȳ β
ȳ
i 〈Φ(xi, ȳ),Φ(x,y)〉. In this form we refer to those

pairs (xi,y) for which βy
i 6= 0 as support vectors and those xi included in at least

one support vector as support patterns. Note that for a given support pattern

xi, only the support vector (xi,yi) will have βyi
i > 0, while any other support

vectors (xi,y), y 6= yi, will have βy
i < 0. We refer to these as positive and

negative support vectors respectively.

The core step in the optimisation algorithm of Bordes et al. [15, 17] is an

SMO-style step [92] which monotonically improves (3.9) with respect to a pair of

coefficients β
y+

i and β
y−
i . Because of the constraint

∑
y β

y
i = 0, the coefficients
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Require: i, y+, y−
1: k00 = 〈Φ(xi,y+),Φ(xi,y+)〉
2: k11 = 〈Φ(xi,y−),Φ(xi,y−)〉
3: k01 = 〈Φ(xi,y+),Φ(xi,y−)〉
4: λu = gi(y+)−gi(y−)

k00+k11−2k01

5: λ = max(0,min(λu, Cδ(y+,yi)− βy+

i ))
6: Update coefficients
7: β

y+

i ← β
y+

i + λ
8: β

y−
i ← β

y−
i − λ

9: Update gradients
10: for (xj,y) ∈ S do
11: k0 = 〈Φ(xj,y),Φ(xi,y+)〉
12: k1 = 〈Φ(xj,y),Φ(xi,y−)〉
13: ∇j(y)← ∇j(y)− λ(k0 − k1)
14: end for

Algorithm 3.1: SMOStep

must be modified by opposite amounts, β
y+

i ← β
y+

i + λ, β
y−
i ← β

y−
i − λ, lead-

ing to a one-dimensional maximisation in λ which can be solved in closed form

(Algorithm 3.1).

The remainder of the online learning algorithm centres around how to choose

the triplet (i,y+,y−) which should be optimised by this SMO step. For a given

i, y+ and y− are chosen to define the feasible search direction with the highest

gradient, where the gradient of (3.9) with respect to a single coefficient βy
i is

given by

∇i(y) =−∆(y,yi)−
∑

j,ȳ

βȳ
j 〈Φ(xi,y),Φ(xj, ȳ)〉

=−∆(y,yi)− g(xi,y).

(3.10)

Three different update steps are considered, which map very naturally onto a

tracking framework:

• ProcessNew Processes a new example (xi,yi). Because all the βy
i are

initially 0, and only βyi
i ≥ 0, y+ = yi. y− is found according to y− =

argminy∈Y ∇i(y). During tracking, this corresponds to adding the true

label yi as a positive support vector and searching for the most important

sample to become a negative support vector according to the current state

of the learner, taking into account the loss function. Note, however, that
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3.2. Online structured output tracking

this step does not necessarily add new support vectors, since the SMO step

may not need to adjust the βy
i away from 0.

• ProcessOld Processes an existing support pattern xi chosen at random.

y+ = argmaxy∈Y ∇i(y), but a feasible search direction requires βy
i < δ(y,yi)C,

meaning this maximisation will only involve existing support vectors. As for

ProcessNew, y− = argminy∈Y ∇i(y). During tracking, this corresponds

to revisiting a frame for which we have retained some support vectors and

potentially adding another sample as a negative support vector, as well as

adjusting the associated coefficients. Again, this new sample is chosen to

take into account the current learner state and loss function.

• Optimize Processes an existing support pattern xi chosen at random, but

only modifies coefficients of existing support vectors. y+ is chosen as for

ProcessOld, and y− = argminy∈Yi∇i(y), where Yi = {y ∈ Y | βy
i 6= 0}.

Of these cases, ProcessNew and ProcessOld are both able to add new

support vectors, which gives the learner the ability to perform sample selection

during tracking and discover important background elements. This selection in-

volves searching over Y to minimise ∇i(y), which may be a relatively expensive

operation. In practice, we found for the 2D translation case it was sufficient to

sample from Y on a polar grid, rather than considering every pixel offset. The

Optimize case only considers existing support vectors, so is a much less expensive

operation.

As suggested by Bordes et al. [17], we schedule these update steps as fol-

lows. A Reprocess step is defined as a single ProcessOld step followed by

nO Optimize steps. Given a new training example (xi,yi) we call a single Pro-

cessNew step followed by nR Reprocess steps. In practice we typically use

nO = nR = 10.

During tracking, we maintain a set of support vectors S. For each (xi,y) ∈ S
we store the coefficients βy

i and gradients ∇i(y), which are both incrementally

updated during an SMO step. If the SMO step results in a βy
i becoming 0, the

corresponding support vector is removed from S.
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3.2. Online structured output tracking

3.2.4 Incorporating a budget

An issue with the approach described thus far is that the number of support

vectors is not bounded and in general will increase over time. Evaluating g(x,y)

requires evaluating scalar products (or kernel functions) between (x,y) and each

support vector, which means that both the computational and storage costs grow

linearly with the number of support vectors. Additionally, since (3.10) involves

evaluating g, both the ProcessNew and ProcessOld update steps will be-

come more expensive as the number of support vectors increases. This issue is

particularly important in the case of tracking, as in principle we could be pre-

sented with an infinite number of training examples.

Recently a number of approaches have been proposed for online learning of

classification SVMs on a fixed budget [32, 126], meaning the number of support

vectors cannot exceed a specified limit. If the budget is already full and a new

support vector needs to be added, these approaches identify a suitable support

vector to remove and potentially adjust the coefficients of the remaining support

vectors to compensate for the removal.

We now propose an approach for incorporating a budget into the algorithm

presented in Section 3.2.3. Similar to Wang et al. [126], we choose to remove the

support vector which results in the smallest change to the weight vector w, as

measured by ‖∆w‖2. However, as with the SMO step used during optimisation,

we must also ensure that the constraint
∑

y β
y
i = 0 remains satisfied. Because

of the fact that there only exists one positive support vector for each support

pattern, it is sufficient to only consider the removal of negative support vectors

during budget maintenance. In the case that a support pattern has only two

support vectors, then this will result in them both being removed. Removing the

negative support vector (xr,y) results in the weight vector changing according to

w̄ = w − βy
r Φ(xr,y) + βy

r Φ(xr,yr), (3.11)

meaning
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3.2. Online structured output tracking

‖∆w‖2 = βy
r

2
{
〈Φ(xr,y),Φ(xr,y)〉 +

〈Φ(xr,yr),Φ(xr,yr)〉 − 2〈Φ(xr,y),Φ(xr,yr)〉
}
.

(3.12)

Each time the budget is exceeded we remove the support vector resulting in

the minimum ‖∆w‖2. We show in the experimental section that this does not

impact significantly on tracking performance, even with modest budget sizes, and

improves the efficiency. We name the proposed algorithm Struck and show the

overall tracking loop in Algorithm 3.2. Our C++ implementation of Struck is

publicly available1.

Require: ft, pt−1, St−1

1: Estimate change in object location

2: yt = argmaxy∈Y g(x
pt−1

t ,y)

3: pt = pt−1 ◦ yt

4: Update discriminant function

5: (i,y+,y−)← ProcessNew(xpt
t ,y

0)

6: SMOStep(i,y+,y−)

7: BudgetMaintenance()

8: for j = 1 to nR do

9: (i,y+,y−)← ProcessOld()

10: SMOStep(i,y+,y−)

11: BudgetMaintenance()

12: for k = 1 to nO do

13: (i,y+,y−)← Optimize()

14: SMOStep(i,y+,y−)

15: end for

16: end for

17: return pt, St

Algorithm 3.2: Struck tracking loop.

1http://www.samhare.net/research
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3.3. Experiments

3.2.5 Kernel functions and image features

The use of a structured output SVM framework provides great flexibility in how

images are actually represented. In practice we choose to use a restriction kernel

[14] which uses the relative bounding box location y to crop a patch from a

frame xp◦y
t , allowing a standard image kernel to be applied between pairs of such

patches

kxy(x,y, x̄, ȳ) = k(xp◦y, x̄p̄◦ȳ). (3.13)

The use of kernels makes it straightforward to incorporate different image features

into our approach, and in our experiments we consider a number of examples.

We also investigate using multiple kernels in order to combine different image

features together.

3.3 Experiments

3.3.1 Tracking-by-detection benchmarks

Our first set of experiments aims to compare the results of the proposed approach

with existing tracking-by-detection approaches. The majority of these are based

around boosting or random forests and use simple Haar-like features as their

image representation. We use similar features for our evaluation in order to

provide a fair comparison and isolate the effect of the learning framework, but note

that these features were specifically designed to work with the feature-selection

capability of boosting, having been originally introduced by Viola and Jones [123].

Even so, we find that with our framework we are able to significantly outperform

the existing state-of-the-art results.

We use 6 different types of Haar-like feature arranged on a grid at 2 scales on

a 4×4 grid, resulting in 192 features, with each feature normalised to give a value

in the range [−1, 1]. The reason for using a grid, as opposed to random locations,

is partly to limit the number of random factors in the tracking algorithm, since

the learner itself has a random element, and partly to compensate for the fact

that we do not perform feature selection. Note, however, that the number of
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3.3. Experiments

features we use is lower than systems against which we compare, which use at

least 250. We concatenate the feature responses into a feature vector x and apply

a Gaussian kernel k(x, x̄) = exp(−σ‖x− x̄‖2), with σ = 0.2 and C = 100 which is

fixed for all sequences. Like the systems against which we compare, we track 2D

translation Y = {(∆u,∆v) |∆u2 + ∆v2 < r2}. During tracking we use a search

radius r = 30 pixels, though when updating the classifier we take a larger radius

r = 60 to ensure stability. As mentioned in Section 3.2.3, we found empirically

that searching Y exhaustively when performing online learning was unnecessary,

and it is sufficient to sample from Y on a polar grid (we use 5 radial and 16

angular divisions, giving 81 locations).

To assess tracking performance, we use the Pascal VOC overlap criterion as

suggested by Saffari et al. [99] and report the average overlap between estimated

and ground truth throughout each sequence. Because of the randomness involved

in our learning algorithm, we repeat each sequence 5 times with different random

seeds and report the median result.

Table 3.1 shows the results obtained by our tracking framework for various

budget sizes B, along with published results from existing state-of-the-art ap-

proaches [2, 7, 46, 69, 99], and example frames can be seen in Figure 3.3. It can

be seen from these results that Struck outperforms the current state-of-the-art

on almost every sequence, often by a considerable margin. These results also

demonstrate that the proposed budgeting mechanism does not impact signifi-

cantly on tracking results. Even when the budget is reduced as low as B = 20

we outperform the state-of-the-art on 4 out of 8 sequences.

In Figure 3.4 we show some examples of the support vector set S at the end

of tracking. An interesting property which can be observed is that the positive

support vectors (shown with green borders) provide a compact summary of the

change in object appearance observed during tracking. In other words, our tracker

is able to identify distinct appearances of the object over time. Additionally, it

is clear that the algorithm automatically chooses more negative support vectors

than positive. This is mainly because the foreground can be expressed more com-

pactly than the background, which has higher diversity. We also see from these

figures that the budgeting mechanism we use maintains support vectors from the
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3.3. Experiments

(a) coke

(b) david

(c) face1

(d) face2

(e) girl

(f) sylvester

(g) tiger1

(h) tiger2

Figure 3.3: Example frames from benchmark tracking sequences, showing the results

of Struck compared with MILTrack [7], OMCLP [99] and OAB [46]. Videos of these

results can be found at http://www.samhare.net/research.
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(a) girl (b) david (c) sylvester

Figure 3.4: Visualisation of the support vector set S at the end of tracking with

B = 64 (chosen for illustrative purposes). Each patch shows xp◦y
t , and positive and

negative support vectors have green and red borders respectively. Notice that the

positive support vectors capture the change in appearance of the target object during

tracking.

entire tracking sequence and does not discard old appearance information. We

believe that this contributes to the strong performance of our tracker, as it helps

prevent drift during tracking which could occur if old information was discarded.

3.3.2 Effect of structured learning

To investigate the importance of structured learning on our results, we next

perform a set of experiments against a baseline classification SVM. To achieve

this we modify our tracking framework such that the learner is no longer trained

using structured examples, but rather using a set of binary examples. Each frame

a single positive example is generated using the current tracker state, and negative

examples are generated by sampling from Y as in Section 3.3.1 and taking those

which have an overlap of less than 0.5 with the tracker state (i.e. θu = 1 and

θl = 0.5 using the labelling function (3.3)). All other factors are kept the same,

meaning both approaches use the same image features as in Section 3.3.1 and

both use a budget size B = 100.

Figure 3.5 shows precision plots for these two tracking approaches on each of

the benchmark test sequences from Section 3.3.1. These plots show the percentage

of frames for which the overlap between the ground truth bounding box and

tracker bounding box is greater then a particular threshold, which provides a
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(a) coke (b) david

(c) face1 (d) face2

(e) girl (f) sylv

(g) tiger1 (h) tiger2

Figure 3.5: Precision plots comparing the results of tracking using our structured

SVM framework with a baseline classification SVM. These plots show the percentage

of frames for which the overlap between the ground truth bounding box and tracker

bounding box is greater then a particular threshold 61



3.3. Experiments

more detailed view of the tracker performance than the average overlap used in

the previous section. As before, we run each tracker 5 times on the sequence

and compute the median precision for a given overlap threshold to produce these

plots.

We can see from these results that overall the precision curves for the struc-

tured SVM are better than or roughly equivalent to those for the classification

SVM, which demonstrate that the structured learning framework we use is able to

produce gains in accuracy over a traditional classification-based approach. These

gains are most notable on the more challenging sequences such as coke, david and

tiger2, for which the classification SVM does not perform particularly well.

In many cases, however, we see that the performance of the two tracking

approaches are quite similar. This indicates that a large part of the performance

gains observed in Section 3.3.1 can be attributed to our use of a kernelised SVM

rather than a boosting-based classifier. Nevertheless, we can still observe that

structured learning is able to bring additional performance gains, and importantly

it removes the need for introducing a binary labelling strategy, providing a more

tightly integrated approach to learning in a tracking context.

3.3.3 Combining kernels

A benefit of the framework we have presented is that it is straightforward to use

different image features by modifying the kernel function used for evaluating patch

similarity. In addition, different features can be combined by averaging multiple

kernels: k(x, x̄) = 1
Nk

∑Nk
i=1 k

(i)(x(i), x̄(i)). Such an approach can be considered a

basic form of multiple kernel learning (MKL), and indeed it has been shown [44]

that in terms of performance full MKL (in which the relative weighting of the

different kernels is learned from training data) does not provide a great deal of

improvement over this simple approach.

In addition to the Haar-like features and Gaussian kernel used in Section 3.3.1,

we also consider the following features:

• Raw pixel features obtained by scaling a patch to 16× 16 pixels and taking

the greyscale value (in the range [0, 1]). This gives a 256-D feature vector,
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Sequence A B C A+B A+C B+C A+B+C

coke 0.57 0.67 0.69 0.62 0.65 0.68 0.63
david 0.80 0.83 0.67 0.84 0.68 0.87 0.87
face1 0.86 0.82 0.86 0.82 0.87 0.82 0.83
face2 0.86 0.79 0.79 0.83 0.86 0.78 0.84
girl 0.80 0.77 0.68 0.79 0.80 0.79 0.79
sylvester 0.68 0.75 0.72 0.73 0.72 0.77 0.73
tiger1 0.70 0.69 0.77 0.69 0.74 0.74 0.72
tiger2 0.57 0.50 0.61 0.53 0.63 0.57 0.56

Average 0.73 0.73 0.72 0.73 0.74 0.75 0.75

Table 3.2: Combining kernels. A: Haar features with Gaussian kernel (σ = 0.2); B:

Raw features with Gaussian kernel (σ = 0.1); C: Histogram features with intersection

kernel. The bold shows when multiple kernels improve over the best performance of

individual kernels, while the underline shows the best performance within the individual

kernels. The last row shows the average of each column.

which is combined with a Gaussian kernel with σ = 0.1.

• Histogram features obtained by concatenating 16-bin intensity histograms

from a spatial pyramid of 4 levels. At each level L, the patch is divided

into L×L cells, resulting in a 480-D feature vector. This is combined with

an intersection kernel: k(x, x̄) = 1
D

∑D
i=1 min(xi, x̄i).

Table 3.2 shows tracking results on the same benchmark videos, with B = 100

and all other parameters as specified in Section 3.3.1. It can be seen that the

behaviour of the individual features are somewhat complementary. In many cases,

combining multiple kernels seems to improve results. However, it is also noticeable

that the performance gains are not significant for some sequences. This could

be because of our näıve kernel combination strategy and as has been shown by

other researchers, e.g. [46], feature selection plays a major role in online tracking.

Therefore, further investigation into full MKL could potentially result in further

improvements.

3.4 Summary

In this chapter, we have presented a new adaptive tracking-by-detection frame-

work based on structured output prediction. Unlike existing methods based on
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classification, our algorithm does not rely on a heuristic intermediate step for

producing labelled binary samples with which to update the classifier, which is

often a source of error during tracking. Our approach uses an online structured

output SVM learning framework, making it easy to incorporate image features

and kernels. From a learning point of view, we take advantage of the well-studied

large-margin theory of SVMs, which brings benefits in terms of generalisation and

robustness to noise (both in the input and output spaces). To prevent unbounded

growth in the number of support vectors, and allow real-time performance, we

also introduced a budget maintenance mechanism for online structured output

SVMs. We showed experimentally that our algorithm gives superior performance

compared to state-of-the-art trackers.

We believe that the structured output framework we presented provides a very

rich platform for incorporating advanced concepts into tracking. For example, it

would be relatively straightforward to extend the output space to include rota-

tion and scale transformations. It would also be possible to incorporate object

dynamics into this model. While these extensions focus on the output space, the

input space could also be enriched through the use of alternative image features

and multiple kernel learning.

The framework we have presented does have some limitations. One issue is

that if errors are made during tracking, the self-training approach we employ

means that it is possible for bad information to be incorporated into the ap-

pearance model during learning. We believe that our method is quite robust to

this situation as the set of support vectors allows the appearance model to cap-

ture multiple modalities of the target object, however there is no explicit means

for identifying and discarding such erroneous information. Fundamentally, as

discussed in Section 2.1, this is a difficulty which is faced by all adaptive track-

ing approaches, since true supervision only occurs at the point of initialisation.

Another issue is that at present we use exhaustive search in order to predict

the change in tracker location according to (3.4), meaning our approach is rela-

tively computationally expensive. It should be possible, however, to incorporate

a gradient-based approach for prediction into our framework, which would result

in significant performance gains.
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4.1. Introduction

4.1 Introduction

Keypoint-based object detection has become a cornerstone of modern computer

vision, enabling great advances in areas such as augmented reality (AR) and si-

multaneous localisation and mapping (SLAM). These object detection approaches

model an object as a set of keypoints, which are matched independently in an

input image. Robust estimation procedures based on RANSAC [29, 41, 118] are

then used to determine geometrically consistent sets of matches which can be

used to infer the presence and transformation of the object.

There has been a great deal of progress in making these approaches suitable for

real-time applications and there are now a range of methods available for use on a

desktop PC [10,71,87]. Recently, there has been significant interest in developing

approaches suitable for low-powered mobile devices such as smartphones and

tablets, which are becoming increasingly popular platforms for computer vision

applications [25, 72, 96, 116]. These approaches focus on making the matching

stage as efficient as possible, since this is generally the most time-consuming part

of the detection pipeline. To achieve this they design image descriptors which

can be represented as binary vectors, allowing matching to be performed very

efficiently by measuring Hamming distance between descriptors, which can be

implemented using binary CPU instructions.

The object models built by traditional approaches are static, usually con-

structed offline for a particular object. For certain applications like AR and

SLAM, however, we want to detect the object repeatedly in a dynamic environ-

ment. Additionally, some applications require on-the-fly learning and detection

to build an instantaneous model from only a single snapshot of the object. There-

fore it is desirable to be able to learn an object model efficiently online and adapt

it to a particular environment, which is not typically addressed by traditional

approaches. This process of adapting or learning the model should not add sig-

nificant overhead to the detection pipeline and should still be suitable for real-time

detection on low-powered devices. These requirements create a very challenging

problem for a learning algorithm.
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The approach we propose in this chapter frames the entire object detection

procedure as a structured learning problem, such that overall detection perfor-

mance can be optimised given a set of training images. Our formulation combines

feature learning, matching, and pose estimation into a single unified framework.

Furthermore, because we use a linear structured SVM to perform learning, we are

able to perform training online, which allows us to quickly adapt our model to

a given environment. Additionally, we show that we can accurately approximate

our model during evaluation in such a way that we can take advantage of binary

descriptors and the efficiency they provide. As a result, our algorithm adds a

relatively small amount of computational overhead compared to static models,

while improving the detection rate significantly.

4.2 Motivation and related work

Keypoint-based methods for geometric object detection generally follow a two

stage approach:

1. Finding a set of 2D correspondences between an object model and an input

image.

2. Estimating the transformation of the object in the image using a robust

geometric verification method based on hypotheses generated from the cor-

respondences (e.g. RANSAC and its variants).

Generally these two stages are considered as separate problems, and many al-

gorithms focus on improving the object detection quality by employing robust

methods for each of these steps individually.

To find the appearance-based 2D correspondences, there are two approaches:

matching and classification. Matching-based approaches [10, 25, 72, 75] use de-

scriptors to store a signature for each model keypoint in a database. These

descriptors are designed to be invariant to various geometric and photometric

transformations and can then be matched given a suitable distance metric to

keypoints in an image in a nearest-neighbour fashion.
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Classification-based approaches [71,87,116] treat matching as multi-class clas-

sification, in which the task is to classify each image keypoint as either background

or a particular keypoint from the model. These classifiers are learned offline from

training examples of the object observed under various geometric and photomet-

ric transformations (usually generated synthetically) and are therefore tuned to

the specific object and how individual keypoints might appear in an image. The

training algorithm and the number of training examples determine the computa-

tional complexity of the learning stage.

Since classification-based approaches rely on an expensive training stage as

well as the availability of a 2D/3D object model at training time, these approaches

cannot easily be used for on-the-fly detection and tracking of arbitrary objects.

This particular problem of the classification-based approaches limit their appli-

cability in practice.

Özuysal et al. [88] propose an approach for learning a classification-based

model at runtime, by using online random forests to reduce training time. How-

ever, this approach is still too computationally expensive to be useful on low-

powered devices and also does not continue to adapt the model after the initial

training phase. The method most related to our own work is that proposed by

Grabner et al. [48], in which keypoint classifiers are learned online by using Haar

features and an online boosting algorithm. This approach relies on the fact that

the geometric verification step can be used in order to provide labels for updating

the classifiers in an online manner, allowing for adaptive tracking-by-detection.

To the best of our knowledge, all previous methods involving learning treat the

generation of correspondences and estimation of object transformation separately.

In this chapter, we propose a novel approach which combines these two steps into

a coherent structured learning framework. In this formulation, correspondence

generation, learning, and transformation estimation all work together in a unified

optimisation formulation with the goal of performing object detection robustly.

Our approach proposes an alternative view on keypoint-based object detection

where the transformation estimation algorithm operates as the maximisation step

of a structured prediction framework. Unlike the online boosting approach of

Grabner et al. [48], our formulation is also capable of incorporating any kind of
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keypoint descriptor into its learning process and is specifically targeted towards

low-powered devices.

Structured output prediction was introduced to the computer vision commu-

nity by Blaschko and Lampert [14] for the task of 2D sliding-window object lo-

calisation. In Chapter 3 we have seen how a similar approach can be taken which

uses online learning to perform adaptive 2D tracking-by-detection. The work in

this chapter is different from these approaches because we are now interested in

object detection and tracking under a much larger class of transformations such

as 3D pose or homography, and as a result we propose using RANSAC in order

to perform structured prediction.

There has recently been significant research interest focusing on object de-

tection for low-powered portable platforms such as smartphones. In particular,

highly efficient methods such as BRIEF [25] and BRISK [72] have been devel-

oped for descriptor matching. Both of these methods perform simple binary

pixel-based tests on keypoints in order to build binary descriptors. By repre-

senting these descriptors as bitsets and measuring similarity using the Hamming

distance, matching can be performed extremely efficiently using bitwise opera-

tions which are well-supported by modern CPUs. We show how the internal

representation of our algorithm can be approximated to take advantage of these

binary descriptors, making our approach also suitable for low-powered devices.

4.3 Structured learning formulation

In this section, we describe our formulation of keypoint-based object detection as

a structured learning problem.

4.3.1 RANSAC for structured prediction

Given an object model M and an input image I, the goal of object detection

is to compute a transformation T ∈ T which maps M to I. A 3D pose or 2D

homography are examples of such a transformation.

We can think of this process as one of structured prediction, with the output
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space consisting of all valid transformations, along with a null transformation

indicating the absence of the object. We therefore assume that there exists a

function T = f(M, I) and that this function can be expressed as

T = argmax
T ′∈T

g(M, I, T ′), (4.1)

where g is a compatibility function, scoring all possible transformations of the

object given an image.

In practice, finding a solution for the prediction function (4.1) under a specific

model definition is generally unfeasible because the output space is very large, and

evaluating image observations under different transformations of the model will be

expensive. The way that this issue is usually handled is by applying an iterative

robust parameter estimation algorithm such as RANSAC [41] or PROSAC [29]

to approximately solve (4.1). These algorithms rely on a sparse representation

for the model and image and use a set of correspondences between model and

image points as their input.

Consider an object model M which is based on a sparse set of keypoints

M = {u1, . . . , uJ}, with each keypoint defined by a location (2D or 3D). Similarly,

let the image I be represented as a sparse set of keypoints I = {v1, . . . , vK}. A set

of correspondences C = {(uj, vk, sjk)|uj ∈ M, vk ∈ I, sjk ∈ R} is found between

model keypoints and image keypoints, where sjk is a correspondence score derived

from appearance information. Traditional RANSAC defines a score for a given

transformation in terms of the number of inliers

g(C, T ) =
∑

(uj ,vk)∈C
I(‖vk − T (uj)‖2 < τ), (4.2)

where T (uj) is the location of model keypoint uj under the transformation T , τ is

a spatial mis-alignment threshold and I(.) is an indicator function. This score is

then used as the compatibility function in (4.1) and maximised approximately by

randomly sampling transformations which are compatible with minimal subsets

of correspondences in C. Variants such as PROSAC use the correspondence scores

sjk to bias this sampling in order to reach a solution in fewer iterations.

Existing approaches have applied learning in an offline setting [71, 87, 116]
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as well as in an online setting [48, 88] to encourage reliable appearance-based

correspondences to be found in C. However, in these approaches the generation

and scoring of correspondences and the maximisation of (4.2) are decoupled from

each other. These approaches therefore do not perform learning which takes into

account the entire transformation prediction process.

To allow learning for the entire prediction process, we propose introducing a

weight vector wj for each model keypoint uj. This weight vector is used to score

correspondences according to sjk = 〈wj,dk〉, where dk is a descriptor extracted

around image keypoint vk, normalised such that ‖dk‖2 = 1. We then propose

modifying the compatibility function (4.2) to include correspondence scores, such

that it can be written as a linear operator

gw(C, T ) =
∑

(uj ,vk)∈C
sjk I(‖vk − T (uj)‖2 < τ)

=〈w,Φ(C, T )〉,
(4.3)

where w = [w1, . . . ,wJ ]T is the concatenation of model weight vectors and

Φ(C, T ) = [φ1(C, T ), . . . ,φJ(C, T )]T is a joint feature mapping. Each φj is defined

as

φj(C, T ) =





dk ∃(uj, vk) ∈ C : ‖vk − T (uj)‖2 < τ

0 otherwise.
(4.4)

Our goal is to learn the compatibility function (4.3) parameterised by w such

that the behaviour of this function in the output space is close to the actual

behaviour of RANSAC, but, because it includes information about appearance,

in the process of learning we will discover which model points are the most dis-

criminative and how best we can utilise them to predict transformations.

4.3.2 Structured SVM learning

Now, given a set of training examples {(Ii, Ti)}Ni=1, w can be learned in a maximum-

margin structured learning framework [119]. For each training example i, this

formulation tries to maximise the margin between the score of the true trans-

formation Ti and all alternative transformations. This can be expressed by the
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following optimisation problem

min
w,ξ

λ

2
‖w‖2 +

N∑

i=1

ξi

s.t. ∀i : ξi ≥ 0

∀i, ∀T 6= Ti : 〈w, δΦi(T )〉 ≥ ∆(Ti, T )− ξi

(4.5)

where δΦi(T ) = Φ(Ci, Ti)−Φ(Ci, T ), and λ is a parameter determining the trade-

off between training set accuracy and regularisation. ∆(Ti, T ) is a loss function

which measures the penalty for choosing T instead of the true transformation

Ti. The loss function ∆(Ti, T ) should measure the dissimilarity of two competing

transformation hypotheses and will be discussed in Section 4.3.3.

Because we are using RANSAC to perform structured prediction and this re-

lies on an accurate set of correspondences, we modify this formulation to also

encourage each inlier correspondence to score higher than any other image corre-

spondence. This can be realised as an additional set of ranking constraints and

the formulation then becomes

min
w,ξ,γ

λ

2
‖w‖2 +

N∑

i=1

ξi + ν
N∑

i=1

∑

(uj ,vk)∈C∗i

γij

s.t. ∀i : ξi ≥ 0

∀i,∀T 6= Ti : 〈w, δΦi(T )〉 ≥ ∆(Ti, T )− ξi
∀i,∀j : γij ≥ 0

∀i,∀(uj, vk),∀k′ 6= k : 〈wj,dk − dk′〉 ≥ 1− γij

(4.6)

where C∗i ⊂ Ci is the set of inlier correspondences under Ti, and ν is a weighting

parameter.

The learning problem presented in (4.6) allows us to train a discriminative

model in a unified way in which learning the representation of model points

and performing pose estimation are combined in a single structured learning

framework.
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4.3.3 Loss functions

The optimisation problem (4.6) requires a loss function ∆ to be defined between

two transformations. We consider a number of possible loss functions, which we

compare experimentally in Section 4.4.1.

The first loss function we consider is designed specifically for the case where

the transformations are projective homographies. Given two homographies T and

T ′, we define a distance

dhomography(T, T
′) =

1

4

4∑

i=1

‖ci − (TT ′−1)(ci)‖2, (4.7)

where {ci}4
i=1 = {(−1,−1)T, (1,−1)T, (−1, 1)T, (1, 1)T} are the corners of a square.

This distance can become arbitrarily large, so we define a loss function using a

truncated version:

∆homography(T, T
′) = min(dhomography(T, T

′), 20). (4.8)

A potential issue with this loss function is that since the compatibility func-

tion gw(C, T ) sums over those correspondences in C which are inliers under T ,

transformations with more inliers are likely to score higher than those with a

smaller number of inliers. For this reason we also consider loss functions which

take into account the fact that transformations will have different numbers of

inliers. We define two such loss functions, which are applicable for all classes of

transformations (i.e. not only homographies):

1. Hamming distance on inliers:

∆hamming(T, T
′) =

∑

(uj ,vk)∈C
I
(
z(uj, vk, T ) 6= z(uj, vk, T

′)
)
, (4.9)

where z(uj, vk, T ) = I(‖vk − T (uj)‖2 < τ). This loss function aims to

penalise transformations having different inlier sets.

2. Difference in number of inliers:

∆inliers(T, T
′) = |g(C, T )− g(C, T ′)|, (4.10)
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where g is the RANSAC scoring function (4.2). This loss function aims to

penalise transformations with different numbers of inliers, similar in spirit

to the traditional RANSAC approach.

4.3.4 Online learning

While (4.6) can be solved offline as a batch problem, we are interested in applying

our approach for adaptive tracking-by-detection, and therefore need a means for

updating w online. Because we are using a linear structured SVM, this can be

readily achieved using stochastic gradient descent. We first rewrite the optimisa-

tion problem (4.6) in unconstrained form as

min
w

{λ
2
‖w‖2 +

N∑

i=1

(
max
T 6=Ti
{∆(Ti, T )− 〈w, δΦi(T )〉}

)
+

+

ν
N∑

i=1

∑

(uj ,vk)∈C∗i

(
max
k′ 6=k
{1− 〈wj,dk − dk′〉}

)
+

} (4.11)

where (.)+ = max{0, .} is the hinge function. Given a training example (It, Tt) at

time t, a subgradient of (4.11) is found with respect to w, and a gradient descent

step is then performed according to

wt+1
j ←(1− ηtλ)wt

j+

I(max
T 6=Tt
{∆(Tt, T )− 〈wt, δΦt(T )〉} > 0)ηtα

t
j+

I(uj ∈ C∗t ) I(max
k′ 6=k
{1− 〈wt

j,dk − dk′〉} > 0)ηtνβ
t
j,

(4.12)

where ηt = 1/λt is the step size. Let T̂ = argmaxT 6=Tt{∆(Tt, T )− 〈wt, δΦt(T )〉}
and k̂ = argmaxk′ 6=k{1− 〈wt

j,dk − dk′〉}. Then αt
j and βtj are defined as

αt
j = φj(Ct, Tt)− φj(Ct, T̂ ), (4.13)

and

βtj = dk − dk̂. (4.14)

To estimate Tt for the current image, we use the prediction of (4.1) given
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4.3. Structured learning formulation

the old model representation wt−1, and we then update the model representation

by performing a single stoachastic gradient descent step according to (4.12), as

shown in Figure 4.1. Furthermore, when performing RANSAC in order to op-

timise the prediction function (4.1) we will also be exploring and scoring other

transformations, which gives us a mechanism for identifying any margin violations

which have occurred, the largest of which will contribute to the gradient descent

step (4.12). In this way, our online learning approach can re-use the intermediate

results of estimating Tt and thus adds only a small amount of overhead compared

to detection alone.Tracking Loop 

Detect     Correspondence generation + RANSAC 

Update     Structured SVM + stochastic gradient descent 

wt-1 

wt 

Tt 

Figure 4.1: Adaptive tracking-by-detection loop. At time t, the model wt−1 from the

previous frame is used in order to estimate the transformation Tt, which is subsequently

used as a training example to give an updated model wt.

4.3.5 Binary approximation of model

An important goal of our method is to be real-time and suitable for low-powered

devices, and we would therefore like to take advantage of binary descriptors. Al-

though these descriptors are very compact when represented as bitsets, to use a

linear SVM requires converting them into high-dimensional real vectors. While
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this is acceptable when updating the learner, it would be very computationally

expensive at the matching stage, which requires exhaustive evaluation of every

model classifier with every image keypoint. To avoid this, we propose approxi-

mating each wj in terms of a set of basis vectors

wj ≈
Nb∑

i=1

βibi (4.15)

where bi ∈ {−1, 1}D, and D is the dimensionality of the descriptor. This ap-

proximation must be updated each time wj changes, so we choose to use a simple

greedy method as described in Algorithm 4.1.

Require: wj, Nb

r = wj (initialise residual)
for i = 1 to Nb do

bi = sign(r)
βi = 〈bi, r〉/‖bi‖2 (project r onto bi)
r← r− βibi (update residual)

end for
return {βi}Nbi=1, {bi}Nbi=1

Algorithm 4.1: Binary approximation of wj .

Using this approximation, we can efficiently compute the scalar product 〈wj,d〉
using only bitwise operations. To do so, we represent each bi using a binary vector

and its complement: bi = b+
i − b+

i , where b+
i ∈ {0, 1}D. We then rewrite

〈wj,d〉 ≈
Nb∑

i=1

βi(〈b+
i ,d〉 − 〈b+

i ,d〉), (4.16)

and note that each scalar product inside the summation can be computed very

efficiently using a bitwise AND followed by a bit-count. This can be com-

puted even more efficiently if we have precomputed the bit-count of d, since

〈b+
i ,d〉 − 〈b+

i ,d〉 = 2〈b+
i ,d〉 − |d|. This means that by approximating wj with

Nb components, our correspondence score is roughly Nb times more expensive to

evaluate than a binary Hamming distance. In practice, we find it sufficient to set

Nb = 2, see Section 4.4.3 for experimental results.
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4.4 Experiments

We performed a number of experiments in order to validate the approach de-

scribed in this chapter. Our method is applicable to general object models and

transformations, but for the purposes of our experiments we consider the case of

a planar object model detected in an image under a homography transformation.

We recorded a number of video sequences of a static scene observed from

a moving camera, using a SLAM system to track the 3D camera pose in each

frame (example frames can be seen in Figure 4.2). Each sequence begins with a

fronto-parallel view of a planar patch, which is used in our experiments to define

the object model. Using the known camera pose, we computed a ground-truth

homography for the object in each video frame, which is then used for evaluating

the quality of the homography estimates produced during object detection in our

experiments.

Our experiments all consider the task of tracking-by-detection, as described

in Section 4.3.4, in which the target object should be detected in consecutive

frames of a video sequence. For this task we do not use any information about

the location of the object in the previous frame when detecting the object, but

we use each successful detection in order to perform an online learning step to

update our object model for subsequent frames. For each sequence, we initialise

a model using the fronto-parallel planar patch in the first frame, by detecting the

100 strongest features to define the locations of model keypointsM. The weight

vector wj for each model keypoint is initialised by setting it to the descriptor

extracted for each model keypoint in the first frame.

When learning with binary descriptors, we apply the feature transformation

d̃ = (d−0.5)/0.5
√
D, where D is the dimensionality of the descriptor, which cen-

tres and normalises the descriptors, as this is known to improve the performance

of stochastic gradient descent algorithms [68]. During matching this transforma-

tion can easily be handled implicitly in the binary approximation without any

overhead. We fix the SVM learning rate λ = 0.1 for all experiments. We also set

ν = 1 for the structured model.

In our experiments, we measure detection accuracy using the homography dis-
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(a) barbapapa

(b) comic

(c) map

(d) paper

(e) phone

Figure 4.2: Example frames from our test sequences, which also show the ground-truth

homography. These sequences are challenging for keypoint-based detection approaches

due to the presence of many similar features in the scene.
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tance dhomography(T, T
′) (4.7) introduced in Section 4.3.3. Using this distance, we

are able to quantitatively assess how the predicted object homography compares

with the ground-truth homography in each frame of our test sequences.

A C++ implementation of our approach as well as the annotated videos used

during our experiments are publicly available to download1.

4.4.1 Loss functions

Our first set of experiments aim to investigate which of the loss functions pro-

posed in Section 4.3.3 results in the best tracking-by-detection performance in

our framework. For these experiment we use the BRISK detector with 512-bit

BRISK descriptor, without using our binary approximation method.

Figure 4.3 shows precision plots obtained for each of our test sequences when

using the three loss functions described in Section 4.3.3. These plots show the per-

centage of frames for which the homography distance dhomography(T, T
′) between

the detected homography and ground-truth homography is less than a particular

threshold. Frames in which no detection is found are considered to have infinite

distance, which is why these plots do not reach a precision of 1. From these plots

we can see that overall the performance with all three loss functions is quite sim-

ilar, but that the ∆inliers loss function is able to consistently produce the highest

detection precision on our test sequences. On the comic sequence, in particular,

this loss function results in significantly improved performance. Another advan-

tage of this loss function is that, unlike ∆homography, it is valid for all classes of

transformations, since it is computed in terms of correspondences only. Therefore

this can be considered a general-purpose loss function for our approach.

4.4.2 Effect of structured learning

Our next set of experiments investigate the applicability of our approach to

various descriptor types, and explores the contribution of our structured learn-

ing framework, compared with independent classification for keypoint matching.

1http://www.samhare.net/research.
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(a) barbapapa (b) comic

(c) map (d) paper

(e) phone

Figure 4.3: Precision plots comparing loss functions. These plots show the percent-

age of frames for which the homography distance dhomography(T, T
′) defined in Section

4.3.3 between the detected homography and ground-truth homography is less than a

particular threshold.
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Based on the results of the previous section, for all these experiments we use the

loss function ∆inliers.

To provide a baseline with which to compare our method, we implemented a

modification of our framework consisting of independent online SVM classifiers for

each model keypoint. This modification takes away the coupling between model

points that comes from our model and trains each SVM classifier independently

of one another. At run-time, this approach computes a matching score for the

j-th model keypoint using the learned SVM classifier as fj(dk) = 〈wj,dk〉 and

uses this score to find the highest scoring match to construct the correspondence

set for pose estimation. To update each classifier, each inlier returned from the

geometric verification set is taken as a positive training example, and the next

highest scoring match for the model keypoint is taken as a negative example. We

then perform a stochastic gradient descent step to update the classifier.

We apply our approach using three different combinations of interest point

detector and descriptor: FAST detector with 256-bit BRIEF descriptor, BRISK

detector with 512-bit BRISK descriptor and SURF detector with SURF64 de-

scriptor. These have been chosen to illustrate that our method works with a

variety of feature point detectors and descriptors, but as they each have differ-

ent invariances and dimensionality, our results should not be interpreted as a

comparison between different descriptor types. Therefore, we are interested in

relative performance figures for a particular feature point detector and descriptor

combination.

To provide an additional baseline, we implemented the boosting-based classi-

fication approach proposed by Grabner et al. [48], by making use of the publicly

available online boosting code provided by the authors2. We train these classifiers

in the same manner as our independent SVM baseline.

Figure 4.4 shows precision plots for each combination of keypoint detector

and descriptor on our test sequences3. To summarise these plots, Table 4.1 shows

the precision at a threshold of dhomography(T, T
′) < 10, which we consider to be

correct detections.

As can be seen from these results, the structured learning framework out-

2http://www.vision.ee.ethz.ch/boostingTrackers/onlineBoosting.htm.
3Videos of these results can be found at http://www.samhare.net/research.
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(a) FAST detector with 256-bit BRIEF descriptor

(b) BRISK detector with 512-bit BRISK descriptor

(c) SURF detector with SURF64 descriptor

Figure 4.4: Precision plots for different detector/descriptor combinations. For each

combination we plot the results without learning (static), independently trained SVM

classifiers, and our structured learning framework. Additionally, in (a) we plot the

results of the boosting approach [48].
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performs the static model (with no learning), as well as the model trained with

independent SVM classifiers. Comparing the results of independent SVM clas-

sifiers and the static model highlights the fact that adapting an object model

to a particular environment online helps a lot in practice. However, the high-

est detection rate is attained when we used our structured learning framework,

in which the learning of the object model and geometric estimation are linked

inside a unified formulation. It should be noted that for SURF descriptors the

independent SVMs had difficulty learning an object model. We suspect that this

is caused because of the continuous nature of the SURF descriptor and the fact

that the number of generated keypoints is lower with the SURF keypoint detec-

tor. However, given the same settings, the structured learning approach is able

to benefit fully from the adaptation process and improve upon the static model.

For the boosting-based learning approach, it is only fair to compare results

against the models where we use the BRIEF descriptor (as both of these methods

use the same FAST keypoint detector). Again, one can see by comparing the

boosting method with the static method that learning provides an improvement.

However, the boosting-based approach is not able to outperform the independent

SVM baseline and therefore also performs worse than our structured learning

framework.

The most difficult video in our set of experiments is the paper sequence. This

video sequence features highly repetitive local appearance structures and a simple

static model fails in all cases. The learning-based approaches (except the boosting

method), however, are able to deliver a reasonable detection rate using binary

descriptors. An example frame from this sequence is shown in Figure 4.5, where

we also display the correspondences which have been found before geometric

verification. As can be seen in the top image, because of the confusing appearance

of the local image features, the static BRIEF model fails to match model keypoints

reliably to the image. However, the structured learning framework which uses

the same set of descriptors extracted from the input image has learned a more

discriminative object model and is able to provide more correct correspondences,

resulting in a successful detection. Another observation is that although the

structured learning model produces some incorrect correspondences, they all have
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(a) Static BRIEF model

(b) Learned BRIEF model using our structured learning formulation

Figure 4.5: Example frame from the paper sequence showing the top correspondence

for each model keypoint. The model is displayed in a green box on the left of these

images. The brightness of each line indicates the correspondence score, before any

geometric verification has taken place (the brighter the higher the score). The learned

model has adapted to discriminate against the many confusing keypoints in the image,

resulting in a successful detection, while no detection is found with the static model.
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very low scores (as shown by their dark colour).

4.4.3 Binary approximation

To verify that the binary approximation proposed in Section 4.3.5 is reasonable

when using binary descriptors such as BRIEF and BRISK, we repeat our ex-

periments for the BRIEF descriptor model learned in our structured framework

and approximate the model keypoint weight vectors wj with varying numbers of

binary bases Nb. As can be seen in Figure 4.6, in general the binary approxi-

mation produces detection performance comparable to the original results with

Nb ≥ 2 bases, and for the less challenging sequences even a single basis suffices. In

terms of detection time, which includes the stages of generating correspondences

between model and image, performing geometric verification, and updating the

learner, we see that the binary approximation provides significant performance

gains (using Nb = 2 we observe approximately 4 times faster detection with our

implementation).

(a) Detection rate (b) Detection time

Figure 4.6: Behaviour of the learned BRIEF model using our structured formula-

tion when employing a binary approximation of each wj as described in Section 4.3.5.

Considering Nb = 2, we see from (a) that detection performance is almost equiva-

lent to the original model without approximation, whilst (b) shows that this results in

approximately 4 times faster detection time.

86



4.5. Summary

4.4.4 Low-powered implementation

To demonstrate that our approach is indeed suitable of use on a low-powered de-

vice, we have ported our implementation to run on an Apple iPhone 4 (see Figure

4.7). On this device we observe a frame-rate of around 5fps for our approach using

the proposed binary approximation with Nb = 2, compared with around 8fps for

the static approach without learning. Note that with more device-specific optimi-

sation both of these frame-rates could be improved, but we can already observe

that our method does not add a significant overhead to the detection pipeline

and is therefore suitable for real-time applications on low-powered devices.

Figure 4.7: Our method is able to perform real-time detection and learning on low-

powered devices. Here it is shown running on an Apple iPhone 4.

4.5 Summary

In this chapter, we have presented a novel approach to learning for real-time

keypoint-based object detection and tracking. Our formulation generalises previ-

ous methods by combining the feature matching, learning, and object pose estima-

tion into a single structured learning framework. We showed how our framework

allows an object model to be learned online, and presented an approximation to

create an efficient way of using binary descriptors at runtime. During our experi-
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ments we observed that structured learning plays an important role in improving

the detection rate compared to state-of-the-art static and learning-based feature

matching techniques.

While we did not perform feature selection explicitly, our formulation implic-

itly is able to down-weight the less discriminative model features and therefore

provides a good starting platform for further research into automatic online fea-

ture selection. A limitation of the method as presented, however, is that all of

the model keypoints must be defined at the start of learning. For applications

like SLAM it would be important to perform feature selection which could also

incorporate new keypoints over time, which would require extending our frame-

work.
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5.1. Introduction

5.1 Introduction

The work presented in this chapter continues with the theme of augmented reality

on low-powered devices from Chapter 4. We now turn our attention to the task

of scene reconstruction for mobile AR gaming based upon simultaneous locali-

sation and mapping (SLAM). Tackling this particular problem is motivated by

the industrial collaboration with Sony Computer Entertainment Europe, as this

is an area which has been identified as being of particular interest in the context

of making vision-based computer games. The work in this chapter can therefore

be seen in a slightly different light to those preceding it, since it is concerned

with attempting to produce a practical solution to a specific real-world problem

given certain constraints. Nevertheless, the approach which we present here is

closely linked to the work in previous chapters as we treat the task as one of

structured prediction and show that the addition of online learning into the re-

sulting framework can help to improve the quality of the resulting reconstruction

algorithm.

Most current AR applications make use of a known target object which can

be detected and tracked in 3D using the keypoint-based approaches discussed

previously in this thesis. As well as being used as a tracking target, the physical

object typically then provides a ‘stage’ upon which virtual content can be dis-

played such that it appears realistically in the scene. Such an approach means

that the AR experience requires the user to have this physical object in front of

them, for example an image in a magazine or on product packaging.

Recently, a great deal of progress has been made in the field of vision-based

SLAM, and there are now a number of robust approaches [34, 63] which can be

employed to reliably track the 3D pose of a camera in real-time as it moves in a

previously unknown physical environment. A lot of subsequent engineering effort

has also gone in to allowing these approaches to run on low-powered devices such

as smartphones and portable games consoles.

SLAM has the potential to provide a powerful platform for AR gaming, as it is

able to map large physical areas and, importantly, does away with the requirement
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that the user has a known object in front of them. This gives much greater

flexibility in terms of when and where an AR experience can take place. However,

it has the associated drawback that there is no longer a known stage on which to

place virtual content. The goal of the work in this chapter is thus to develop a

system able to provide a reconstruction of the underlying scene as it is explored,

such that virtual content can be displayed in a realistic manner.

The majority of approaches to SLAM are based around sparse representations

of the scene. The map which is built by these systems consists of a set of distinc-

tive 3D keypoints which can be reliably tracked, which are then used in order to

estimate the 3D pose of the camera in each frame. While this sparse represen-

tation is sufficient for the task of camera tracking, and has the benefit of being

computationally efficient, it does not generally provide enough information for

the higher-level task of displaying virtual content in the scene. For this purpose,

a more complete reconstruction of the scene is required.

In this chapter, we develop an approach which uses a sparse SLAM system

running on a low-powered portable games console as its starting point and aims to

produce a simple reconstruction of the scene. Our target application is tabletop

AR, in which we envisage the user having a playing surface along with some

other objects such as boxes or books. Guided by this application area and the

constraints we have in terms of computational power, we propose modelling the

scene using a small number of planes, the boundaries of which we then attempt

to estimate using cues from the input image stream. Besides the computational

benefits, modelling the scene in this way has additional advantages for gaming

applications, as the resulting reconstruction is more semantically meaningful than

e.g. a mesh, since each planar region defines a distinct area on which game content

can be displayed.

In common with the work presented in other chapters of this thesis, the ap-

proach we develop is framed as a task of structured prediction. We formulate

scene reconstruction as a pixel-wise labelling problem and use a CRF to impose

structure on the solution. We use relatively simple multi-view photo-consistency

information in order to keep computational requirements low, but show how we

can also incorporate online learning based on the appearance of each plane in
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order to refine the initial solution. In this way, our approach results in an ef-

ficient reconstruction algorithm which we demonstrate to be suitable even for

low-powered devices.

5.2 Motivation and related work

Multi-view reconstruction has a rich history in computer vision and many so-

phisticated approaches have been proposed. Algorithms are typically provided

with a set of calibrated images of a scene from multiple viewpoints and then

proceed to infer 3D information about the scene using multi-view stereo [105].

The calibration information can either come from a carefully-controlled capture

environment in which the 3D pose of the camera is known in advance, or by us-

ing structure-from-motion techniques [53] to recover the calibration information

from the images themselves. These approaches are typically designed to oper-

ate offline, with the goal of producing highly accurate reconstructions, without

particular concern for computational constraints.

A SLAM system is itself performing real-time structure-from-motion and is

therefore able to provide a set of calibrated images suitable for multi-view recon-

struction. Because of this, there has recently been research interest in adapting

multi-view reconstruction algorithms to a real-time SLAM setting. These meth-

ods are based on traditional reconstruction techniques, but take advantage of the

fact that some of these algorithms lend themselves well to parallelisation. This

means that these approaches can be implemented using general-purpose graphics

processing unit (GPGPU) programming and make use of the extremely powerful

graphics hardware in modern computers. In this way, the approaches developed

by Newcombe and Davison [82, 83] and Stuehmer et al. [113] are both able to

produce highly-detailed dense reconstructions of a scene as it is explored by a

handheld camera.

The goal for our own work is also to produce a scene reconstruction in real-time

using the result of a SLAM system, but we are specifically interested in doing so

on low-powered portable gaming devices. In this setting, even performing SLAM

using a sparse representation presents a significant computational challenge and
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requires careful engineering. Furthermore, GPGPU programming is not an op-

tion, since the limited graphics hardware available is entirely used for displaying

game content, meaning any solution must be suitable for a low-power CPU.

Given these constraints, the approach we take is to simplify the reconstruction

task by modelling the scene using a small number of planes. While this assump-

tion will not be suitable for all scenes, for the application of tabletop gaming

which we are targeting we expect it to be able to capture the coarse structure of

the scene adequately.

Similar piecewise-planar modelling approaches have been previously used for

multi-view reconstruction, particularly in the case of urban street scene recon-

struction, where the goal is to reconstruct building facades and roads [43, 111].

The motivation for using a planar assumption in these cases is that although it

provides a simplified reconstruction of the scene, the complexity of the resulting

model is constrained, meaning it provides a form of regularisation of the solution

and can better handle challenges such as poorly textured or specular surfaces.

These approaches are not designed for real-time operation on low-power devices,

however, and still require significant computational resources.

The contribution of this chapter is a structured prediction framework for per-

forming fully-automatic coarse scene reconstruction on a low-powered device in a

few seconds, meaning it can be used in conjunction with a SLAM system running

on this device to provide a platform for AR gaming. We also demonstrate that by

introducing online learning of appearance information into our framework, we are

able to refine the initial reconstruction solution obtained from photo-consistency

information alone. In this way, our approach is able to adapt to a given scene and

better handle situations in which photo-consistency is not informative or reliable.

5.3 Our approach

5.3.1 SLAM system

The starting point for our method is the Magnet SLAM system developed by

Sony Computer Entertainment Europe, which has been designed to run on the
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PlayStation Vita portable games console. This system is based on the PTAM

method proposed by Klein and Murray [63], but has been carefully engineered

to allow it to run on a low-powered device. As the camera explores a scene,

the system constructs and maintains a map consisting of a set of 3D landmarks

L = {p1, . . . ,pNL}, along with a set of keyframes K = {K1, . . . , KNK}, where each

keyframe is a tuple Ki = (Ii,Mi, Ti) consisting of a 320× 240 pixel RGB image

Ii, a set of 2D image-space measurements of a subset of landmarks (i.e. those

landmarks which have been successfully tracked in Ii) Mi, and the estimated

3D pose of the camera Ti. Over time, new keyframes are added to the map

and a background thread periodically performs bundle-adjustment [53] in order

to jointly refine the estimates of the landmark positions and keyframe camera

poses. For performance reasons on a low-powered device, both the number of

landmarks and the number of keyframes are kept relatively low, meaning the

maps built by this system are particularly sparse. For a typical tabletop scene,

we can expect something of the order of NK = 50 and NL = 200. Figure 5.1a

shows an example of a typical tabletop scene, along with the landmarks which

have been inserted into the map.

One factor which is difficult to handle in a SLAM system is scene scale, since

this can not be directly estimated using visual information alone. While it is

possible to estimate true scene scale given additional sensor information from

accelerometers and gyroscopes, this functionality is not present in the Magnet

SLAM system. Instead, the scene scale is arbitrary, with the initial landmarks

inserted into the map at an average distance of 15 units from the first keyframe.

The fact that scale is unknown does not cause problems in practice, particularly

since for the tabletop scenes we are interested in, the true scale of the scene stays

roughly constant.

5.3.2 Plane finding

The sparse landmarks tracked by the SLAM system correspond to locally planar

surface patches in the scene. The first stage of our approach aims to automatically

identify larger planes which are supported by clusters of these landmarks. Our
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(a) Landmarks (b) Plane assignments

Figure 5.1: A typical tabletop scene. The left image shows the landmarks which have

been inserted into the SLAM map, while the right image shows how these landmarks are

automatically assigned to planes using the approach described in Section 5.3.2. Here 4

planes have been identified, each of which has a different colour, while red corresponds

to the background class.

assumption is that each landmark can either be assigned to one of these larger

planes, or otherwise can be labelled as part of the ‘background’ of the scene,

meaning it does not belong to any plane. To achieve this, we make use of the

energy-based model-fitting approach PEaRL [55]. In essence, this approach offers

a means for performing RANSAC [41] for fitting multiple models. However, by

fitting these models simultaneously, rather than greedily fitting them individually,

it has been shown to produce superior results [55]. Crucially, the method also

offers a means for automatically estimating the appropriate number of models to

fit, which is essential for our application.

We begin by generating an initial set of plane hypotheses H, where each

hypothesis is described by a parameter vector θh, consisting of a 3D normal

vector and the distance from the origin. To generateH we perform a 2D Delaunay

triangulation of the landmarks when projected into a single keyframe (the choice

of keyframe is arbitrary, in practice we use the reference keyframe discussed in the

following section). We use each resulting triangle to define a plane hypothesis, by

computing the plane passing through all three landmarks in 3D. We also include

an additional ‘background’ hypothesis ∅.
PEaRL defines an energy function in terms of a set of labelling variables

f = {fp}, which specifies an index into H for each landmark p, along with the

95



5.3. Our approach

set of plane parameters θ = {θh}

E(f, θ) =
∑

p∈L
Dp(fp, θfp) +

∑

p,q∈N
Vpq(fp, fq) +

∑

h∈H
chδh(f). (5.1)

The first term in this energy is a data cost, which specifies the cost for assigning

each landmark to a given plane. For this we use

Dp(fp, θfp) =




‖p− θfp‖ if fp 6= ∅

d∅ otherwise
(5.2)

where ‖p − θfp‖ is the perpendicular distance between the landmark p and the

plane with parameters θfp . For the background hypothesis ∅, a constant cost d∅

is used. In all our experiments we fix d∅ = 0.3.

The second term in (5.1) is a smoothness cost, which encourages neighbouring

landmarks defined by a neighbourhood N to take the same label. In our case,

we define a neighbourhood using the edges of the Delaunay triangulation which

we originally computed for generating H and then use

Vpq(fp, fq) = wpqI(fp 6= fq), (5.3)

where I is an indicator function, and

wpq = β exp

(
−‖up − uq‖2

σ2
w

)
. (5.4)

Here up is the 2D position of landmark p when projected into the reference

image (and likewise for uq), meaning that wpq is larger for pairs of landmarks

which are closer together in the reference image. σw is computed based on the

mean value within the reference image σ2
w = 2

|N |
∑

p,q∈N ‖up − uq‖2 [19], and in

all our experiments we fix the parameter β = 0.05.

The final term in (5.1) is a label cost, which plays the important role of

controlling the number of planes which are active. Here

δh(f) =





1 if ∃p : fp = h

0 otherwise,
(5.5)
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meaning every plane with non-zero support will incur a cost. The parameter ch

controls how much cost is paid for each active hypothesis, and therefore by setting

this parameter appropriately we can encourage solutions using a small number

of planes, which is what we desire for our application. In our experiments we

fix ch = 4, except for the background hypothesis for which we use c∅ = 0, as it

should always be active and not penalised.

PEaRL then proceeds to minimise (5.1) in an EM fashion: it first fixes plane

parameters θ and optimises over the landmark labelling f , and then fixes f and

optimises over θ. Since only the first term in (5.1) is affected by θ, for a given

labelling f we can simply perform a least-squares fit for each active plane in-

dependently, which is guaranteed to improve the solution. The original PEaRL

algorithm [55] proposed a heuristic means of optimising the labelling f given a

fixed θ, but this was subsequently improved by Delong et al. [35], who proposed

an extension to the α-expansion [21] algorithm capable of handling the label cost

term in (5.1), which is the method we use. These two optimisation steps consti-

tute a single iteration of PEaRL, and in practice we find it sufficient to perform

3 iterations, as the method converges quickly.

At the end of this process, we are left with a set of active planes P =

{π1, . . . , πNP }, along with an assignment of each landmark to one of these planes,

or to the background class. An example assignment can be seen in Figure 5.1b,

in which the landmarks have been coloured to reflect their assignments to planes.

5.3.3 Boundary estimation

The set of planes P gives us some information about the geometry of the scene,

but because these planes have infinite extent they are of limited use in practice,

since any augmentation would not respect physical boundaries of these planes in

the scene. The next stage of our approach therefore aims to estimate boundary

information for each of these planes. While we can already derive some informa-

tion about plane extents by considering which landmarks have been assigned to

each plane, this information is very sparse and is not sufficient to obtain a full

reconstruction of the scene. Furthermore, by definition landmarks correspond
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to highly-textured points in the scene, meaning they do not generally provide

information about regions with low texture.

The approach we propose for estimating plane boundaries is to treat the task

as a structured prediction problem and perform pixel-wise labelling of a reference

view of the scene. Our goal is to assign each pixel in this view to one of the

planes in P , or to the background if it does not lie on any of these planes.

Given such a labelling, we can then back-project the labels in the reference view

onto each plane in order to obtain their extents. This approach is viewpoint-

dependent and is therefore only able to produce a 2.5D reconstruction of the scene.

However, this formulation considerably simplifies the resulting labelling problem,

since in a particular view each pixel can only be assigned to a single plane, and

we can therefore avoid explicitly handling the complex dependencies between

planes such as how they occlude one another. This type of 2.5D reconstruction is

also how most other approaches for real-time multi-view reconstruction proceed

[82,83,113].

We begin by selecting a reference view of the scene, which is taken from the

set of keyframes K. Given that landmarks provide us with useful information for

performing labelling, we choose the keyframe Kr containing the largest number of

landmark measurements to be our reference view. In order to keep computational

requirements as low as possible, we first reduce the size of the labelling problem

by over-segmenting the reference image Ir to produce a set of superpixels S. The

method we choose for generating superpixels is the SLIC [1] algorithm, which is

particularly computationally efficient, whilst producing regular superpixels that

respect image boundaries well. This step reduces the size of the labelling prob-

lem dramatically from 320 × 240 = 76, 800 pixels to roughly 1000 superpixels.

Example superpixel segmentations can be seen in Figure 5.2.

To find a labelling L of the superpixels we define a pairwise CRF over the

graph G = (S,N ), where N is the neighbourhood defined by pairs of superpixels

which share a boundary. In doing so, we introduce structure into the resulting

labelling problem, since we are making the assumption that the labels of neigh-

bouring superpixels should affect one another. A good labelling then corresponds
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Figure 5.2: Examples of SLIC superpixels [1] for two reference images.

to the minimum of the energy function

E(L) =
∑

s∈S
Ds(Ls) +

∑

s,t∈N
Vst(Ls, Lt). (5.6)

We define the data term Ds by considering the multi-view photo-consistency of

pixels belonging to superpixel s. For each pixel u in Ir, given a particular plane π

we can calculate a hypothesised 3D position Xπ
u by back-projecting the pixel onto

the plane. We select a small number of other keyframes from nearby viewpoints1

Kρ = {Kρ
1 , . . . , K

ρ
Nρ
} to use for measuring photo-consistency, where in practice

we take Nρ = 4. The per-pixel photo-consistency cost for the plane π is then

defined as the average of the L1-norm of the colour difference measured in Lab

colour space in each keyframe2

ρu(π) =
1

Nρ

∑

Ko∈Kρ
‖ILabr (u)− ILabo (proj(T−1

o Xπ
u))‖1, (5.7)

where proj(·) projects a point from 3D camera space to 2D screen space. The

L1-norm is used in order to provide robustness against the situation where a

pixel visible in the reference frame is occluded in another view, since we do not

explicitly attempt to model these occlusions [83]. In order to add some tolerance

for sensor noise and slight inaccuracy in the estimates of camera poses, we first

apply a Gaussian blur with σ = 1.0 to all images before computing this cost. The

1In practice we choose the keyframes with the highest number of shared measurements with
the reference keyframe, since this is a good indication that the viewpoints are nearby.

2The average is only taken over those keyframes for which Xπ
u projects inside the image Io.
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data term Ds for a superpixel is then defined by taking the median cost for all

pixels belonging to this superpixel, which provides additional tolerance to error

caused by our relatively simple photo-consistency cost

Ds(Ls) =





median
u∈s

(ρu(Ls)) if Ls ∈ {π1, . . . , πNP }

ρ∅ otherwise.

(5.8)

The background label ∅ presents a problem for this photo-consistency measure,

since it is not possible to project a pixel into other views when it is assigned to

the background, as the depth is unknown. The only option is therefore to use

a constant cost in this case, which should be lower than the photo-consistency

cost for typical incorrect plane assignments. This issue will be discussed more

in Section 5.4, but for all our experiments we have empirically chosen the value

ρ∅ = 5. Example photo-consistency costs for the example scene in Figure 5.1 can

be seen in Figure 5.3a.

The pairwise smoothness term Vst in (5.6) should encourage smooth labellings

of the reference image and is defined in terms of a combination of colour similarity

between neighbouring superpixels and 3D depth information obtained from the

plane geometry, similar to the approach taken by Gallup et al. [43]

Vst(Ls, Lt) = β V c(s, t) V d
st(Ls, Lt). (5.9)

Here β is a constant scaling factor to ensure that the data and smoothness terms

are comparable, in our experiments we fix β = 15. The first term is influenced

by colour similarity and is defined as

V c(s, t) = 0.2 + 0.8 exp

(
−‖Īr

Lab
(s)− ĪrLab(t)‖2

σ2
c

)
, (5.10)

where Īr
Lab

(s) is the mean Lab colour over pixels u ∈ s, and σ2
c = 2

|N |
∑

s,t∈N ‖Īr
Lab

(s)−
Īr
Lab

(t)‖2 [19]. The effect of this term is to encourage transitions between labels

to take place at colour discontinuities in the reference image, since these often

correspond to the boundaries of planes. The second term is influenced by depth
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information between planes and defined as

V d
st(Ls, Lt) =





0 if Ls = Lt

1 if Ls = ∅ or Lt = ∅

0.3 + 0.7 min(1, d/100) otherwise,

(5.11)

where d is the 3D depth difference between the centre of superpixels s and t

according to their labels. The effect of this term is to encourage transitions

between labels to take place at locations in the reference image corresponding to

the projections of plane intersections, which should help to ensure the labelling

respects the planes which have been identified.

Finally, we make use of the labelling of landmarks provided by the initial

plane-fitting stage of our approach in order to provide hard constraints to guide

the superpixel labelling L. This step is important as it allows us to inject the

sparse labelling information which has already been obtained for the 3D land-

marks into the resulting dense reconstruction. Each 2D landmark measurement

um ∈ Mr in the reference frame corresponds to a 3D landmark pm which has

now been assigned to a particular plane π (or the background ∅). We therefore

find the superpixel s which contains um and modify Ds such that it becomes

Ds(Ls) =





0 if Ls = π

∞ otherwise.
(5.12)

In cases where multiple measurements fall within the same superpixel but belong

to different planes, we leave Ds unchanged.

The resulting energy (5.6) defines a standard multi-label pairwise CRF, for

which an approximate solution can be efficiently found using the α-expansion

algorithm [21].

5.3.4 Online learning of plane appearance

Multi-view photo-consistency provides a strong cue for performing the labelling

of the reference view, however there are still situations where it is not infor-
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mative or reliable. This is particularly the case for textureless regions, where

the photo-consistency cost (5.7) is generally unable to identify the correct plane

assignment. Another issue is that the photo-consistency measure we use is com-

puted in a rather simple manner to keep computational cost low and is therefore

not very tolerant to slight inaccuracy in the keyframe poses estimated by the

SLAM system, as well as different exposure settings or sensor noise in the camera

images.

In order to handle these issues, we propose incorporating appearance in-

formation for each plane into the reconstruction pipeline. This is achieved by

learning appearance models for each plane, which are initialised using the photo-

consistency solution and subsequently used to refine the labelling in an iterative

fashion. This approach is inspired by similar ideas which have been applied to

interactive image segmentation, such as the GrabCut algorithm [97].

The approach we propose is to introduce a classifier which can be used to pre-

dict which plane a given superpixel belongs to, based on appearance information

alone. For this purpose we use a multi-class linear SVM classifier learned in a

one-vs-all manner [38], since this allows us to take advantage of efficient online

SVM learning approaches [106]. For each superpixel s, we construct a feature

vector xs defined by the bins of a 3D colour histogram. This histogram uses 5

bins per colour channel, meaning xs is a 125D vector with ‖xs‖1 = 1. For each

plane π, as well as the background class ∅, we introduce a linear weight vector

wπ. Given a labelling L, we can generate positive and negative training examples

X+
π = {xs | Ls = π} and X−π = {xs | Ls 6= π} for each plane, which are then

used to update the associated weight vectors by performing online learning using

the Pegasos algorithm [106] (which was also described in Section 2.4.2.3 of this

thesis). For all our experiments, we use an SVM regularisation of C = 0.1.

In order to use such a classifier to produce a unary cost for the labelling

energy function, we take the approach of Kumar and Hebert [66] and use a

logistic function to produce a per-plane likelihood for each superpixel from the

SVM classification score:

P (xs|Ls) =
1

1 + exp(−〈wLs ,xs〉)
. (5.13)
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This likelihood will be close to 1 when the classification score is large and positive

and close to 0 when it is large and negative. We then take the negative log-

likelihood to be the unary superpixel cost:

Dapp
s (Ls) = − logP (xs|Ls) = log(1 + exp(−〈wLs ,xs〉)) (5.14)

This appearance cost is combined with the original photo-consistency cost to give

Ds(Ls) =
1

2
(Dpc

s (Ls) + γDapp
s (Ls)) (5.15)

where Dpc
s is the original cost defined in Section 5.3.3, and γ is a parameter to

ensure the scales of the two costs are comparable. In all our experiments we fix

γ = 10. Appearance costs produced after training the SVM classifier from the

initial photo-consistency labelling for the example scene in Figure 5.1 can be seen

in Figure 5.3b.

Our overall approach proceeds as follows: we first find an initial labelling L0

using photo-consistency information alone (as described in Section 5.3.3). We

then use this labelling in order to learn the weight vectors {w0
π} for each plane.

These weight vectors are subsequently used to define the combined data cost

(5.15), resulting in a new labelling L1. This new labelling is used to update

the weight vectors per plane {w1
π}, and the process is repeated for a number of

iterations, in a similar manner to GrabCut [97].

In common with the other approaches which have been presented in this thesis,

we are therefore making use of online learning in order to provide an element of

adaptability to a given environment with this approach. Our motivation is that

the use of photo-consistency information provides a good starting point for a

scene reconstruction and will succeed in many areas. However, there are other

areas which will not be well reconstructed using photo-consistency information

alone, and the hope is that plane appearance provides an orthogonal cue which

will allow information to be transferred to the uncertain regions, resulting in a

more consistent overall reconstruction.

Unlike the structured learning approaches presented in Chapters 3 and 4, in

this approach the classifier does not explicitly take structure into account, as it
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5.4. Results

is trained to classify superpixels independently. However, it is worth noting that

the way in which this classifier is trained does take the structure into account.

The samples used to train the classifier are generated based on the final CRF

labelling, which has been found using the pairwise neighbourhood structure of

the superpixels in the reference image. Thus our approach can still be seen as

performing a form of structured learning, with the structure being taken into

account implicitly by the learning procedure.

5.4 Results

Typical results produced by our approach on a number of example desktop scenes

can be seen in Figure 5.4. For each scene this figure shows the reference image,

along with the initial result found using photo-consistency information alone (Sec-

tion 5.3.3). Subsequent columns show the result after each iteration of re-labelling

using the appearance-based classifier (Section 5.3.4), which shows how the result-

ing labelling changes as appearance information is incorporated and updated.

As can be seen from these results, in many cases the proposed method is

able to produce promising coarse scene reconstructions. For the applications

we are interested in, namely providing basic scene reconstruction for gaming

applications, these reconstructions would often be adequate. In most cases, the

actual boundaries would not need to be displayed to the user, but rather they

would be used internally by a game in order to allow virtual content to respect

physical boundaries in the scene. The boundaries identified by our approach

would be sufficient for defining collision geometry for a physics engine, or for

performing occlusion of virtual objects as they move behind objects in the scene.

We see from these results that the plane-finding stage of our approach (Section

5.3.2) is rather robust and able to reliably find a small number of dominant

planes in the scene using the landmarks from the SLAM map. We have found

empirically that this stage is not very sensitive to parameter settings and also

requires minimal computational cost.

The boundary estimation stage of our approach is less robust, however, and

we see from the results that it does not reliably produce high-quality segmenta-
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(a) (b) (c) (d) (e)

Figure 5.4: Result of the proposed method on a number of tabletop scenes. The

reference image is shown in column (a), and column (b) shows the result of labelling

using photo-consistency cost alone. Columns (c)-(e) show the result of labelling after

each iteration of updating the appearance-based classifier. In all cases the dark blue

colour corresponds to the background label.
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tions. The primary issue is that the method aims to be fully automatic, and as

a result the iterative online learning algorithm we use can fail to refine the solu-

tion if the initial labelling provided by the photo-consistency cost contains gross

errors. Essentially, our method is performing an unsupervised clustering of the

scene, and if the cluster initialisations are poor, the final labelling will also suffer.

Another issue is that there are a relatively large number of parameters involved

in defining the energy function which is minimised when performing labelling,

and although these have all been fixed throughout our experiments, they have

been set empirically by hand.

Perhaps the most serious difficulty with this approach is the requirement of

having a background label. As has previously been mentioned, because pixels

labelled as background have unknown depth, we must use a fixed value for the

photo-consistency cost for this label. Choosing this value to work in all cases is

difficult: if it is too high then regions which should be labelled as background are

assigned to planes, which subsequently is reinforced when learning the appear-

ance models for planes; conversely, if it is too low then regions which should be

assigned to planes are assigned to the background, which also is reinforced once

the appearance models are learned.

5.4.1 Implementation on a low-powered device

The work in this chapter was originally motivated by the desire to perform scene

reconstruction on a low-powered device. To demonstrate that the approach we

have developed is indeed suitable for this setting, we have produced an imple-

mentation for the PlayStation Vita portable games console.

After an initial period of exploring the scene in order to build up a map,

we then trigger our reconstruction algorithm. The reconstruction algorithm only

needs to be run once in order to produce 3D geometry which can subsequently

be used by AR applications, so it is sufficient for it to be able to execute within

a few seconds, which could then be run as a background task as part of a game.

Table 5.1 shows timings for our method when running on this hardware. In this

implementation, we first perform labelling using photo-consistency information
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alone and then perform three iterations of appearance learning and re-labelling to

produce the final reconstruction. The computational complexity of some of the

stages involved are affected by the number of active planes, so we show timings

for scenes in which 1-5 planes have been identified. In all cases the timings are

produced by averaging the results over 3 different scenes with the given number

of planes.

Stage 1 plane 2 planes 3 planes 4 planes 5 planes
Plane finding 62 62 62 62 62
Blurring 59 59 59 59 59
Photo-consistency 810 1388 1971 2557 3150
SLIC 391 391 391 391 391
Labelling 155 188 205 227 254
Learner update 5 10 14 19 24
Total 1957 2687 3354 4048 4769

Table 5.1: Timings (ms) of our approach running on a PlayStation Vita. We first

perform labelling using photo-consistency information alone, followed by 3 iterations

of appearance learning and re-labelling to produce the final reconstruction.

We see from these results that our approach is able to produce results for up to

5 planes within approximately 5 seconds. It should be noted that these timings are

for a standard C++ implementation which does not include any device-specific

optimisation, and we therefore would expect that all of these could be significantly

improved. Nevertheless, the fact that the approach can run within a few seconds

would already be acceptable for a background task during a game. The most

expensive operation is currently the building of the per-pixel photo-consistency

cost, since this involves warping the keyframe images with a homography defined

by each of the planes which have been identified. As the number of planes in-

creases, this stage dominates the overall time taken by the algorithm. However,

we anticipate that this stage in particular could be significantly optimised for the

target device, which would therefore make the overall algorithm much faster.

Figure 5.5 shows some examples of the reconstruction system running on this

hardware, where the results of labelling have been back-projected to produce a

3D mesh defined by the centres of the superpixels. Although coarse, we can

see that this geometry would be sufficient for the purpose of adding AR content

realistically into the scene.
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Figure 5.5: Examples results of the proposed reconstruction algorithm running on a

PlayStation Vita portable games console. Here the labelling has been back-projected

to produce a 3D mesh for each plane defined by the centres of superpixels.
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5.5 Summary

In this chapter we have presented a method for performing coarse 3D reconstruc-

tion of tabletop scenes intended for AR applications based around SLAM. Our

motivation was to produce an approach suitable for use on low-powered devices,

and we have shown that this has been achieved with an implementation which

operates within a few seconds on a PlayStation Vita portable games console.

Our approach makes use of simple photo-consistency information to obtain

an initial reconstruction and subsequently uses online SVM learning of plane ap-

pearance in order to produce a more refined solution. We have demonstrated how

this use of online learning allows us to transfer information from regions which are

well-reconstructed using photo-consistency information to those which are not,

such as textureless regions, resulting in a more complete overall reconstruction.

While the framework we have presented shows promising results, there are

still a number of outstanding issues and avenues for future research which we

believe would make for a more robust and practically useful solution.

The first issue is how best to handle the background class, which is required

for labelling regions of the reference image which do not belong to any plane. This

class requires a constant photo-consistency cost to be used and choosing this value

to work across all scenes is difficult in our current framework. One approach for

tackling this issue could be to make this value adaptive and attempt to estimate

it online for a given scene in order to give a stable reconstruction.

Another avenue for future work would be to improve the accuracy of the

labelling of the reference view. One issue at present is that our algorithm con-

tains a relatively large number of parameters which have been set by hand, so it

would most likely be beneficial to try and learn these parameters based on labelled

training data, which has been shown to be beneficial for other pixel-wise labelling

problems [4,114]. Accuracy could potentially also be improved by including addi-

tional features besides colour histograms when learning the per-plane appearance

classifier. Texture, for example, or more sophisticated features [109, 110] could

potentially provide stronger cues for classification.
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Finally, the reconstruction produced by our algorithm is currently 2.5D, as

we generate per-pixel depth information for the reference view. For a more com-

plete 3D scene reconstruction, the reconstructions from multiple reference views

could be fused together, in an approach similar to that used by other real-time

reconstruction methods [82,83].
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Conclusions



6.1. Contributions

In this thesis we have tackled three real-time computer vision problems, all

of which are motivated by their potential application to vision-based computer

games. This motivation stems from an industrial collaboration with Sony Com-

puter Entertainment Europe, who are interested in using computer vision to pro-

vide a platform for the development of modern and accessible computer games.

The desire to tackle problems and produce techniques which have real-world ap-

plications has been an important factor throughout this thesis, and we hope that

the approaches that have been presented can provide building blocks for future

research and product development in this space.

A common theme throughout this thesis has been a focus on computational

efficiency, since gaming applications typically demand real-time algorithms which

can be run interactively as frames are received from a camera. This requirement

has influenced many of the design choices which have been taken when developing

solutions in this work. Furthermore, the work in Chapters 4 and 5 has focused

on providing solutions which are suitable for low-powered devices, which are an

increasingly important platform from a gaming perspective. While the power of

these devices is increasing at a rapid pace, they still possess only a fraction of

the power of a typical desktop computer, meaning designing real-time computer

vision algorithms for them still presents a major challenge.

The other major theme throughout this thesis has been online structured

learning, which has been incorporated into all of the solutions we have developed.

We have used online learning in order to provide a principled and computation-

ally efficient means for incorporating adaptability into our algorithms, which is

essential for handling the wide variety of environments we expect to encounter

when deploying vision-based games in the real world. Incorporating structure

into the learning results in even greater gains, since the learner is more tightly

integrated into the overall pipeline, meaning the adaptability is focused correctly

for the target application.

113



6.1. Contributions

6.1 Contributions

In Chapter 3 we considered the task of 2D arbitrary object tracking, which has

many potential applications for human-computer interaction and AR. We pre-

sented a novel approach for this task which makes use of online kernelised struc-

tured output learning in order to model the appearance of the target object during

tracking. Our method is able to adapt online to appearance changes of the tar-

get object and its surrounding background during tracking, and does so using a

principled structured learning framework which takes the entire tracking pipeline

into account, rather than artificially introducing an intermediate classification

stage. The use of kernels provides great flexibility in terms of the image represen-

tation which can be used by our method, allowing different image features to be

used and combined together. We also introduced a budgeting mechanism which

ensures that the computational complexity of our approach remains bounded,

meaning it is suitable for the real-time applications we are targeting. Experi-

mentally, we observed that our framework results in a tracking algorithm which

delivers state-of-the-art performance on standard tracking datasets.

Chapter 4 continued the theme of adaptive object tracking, this time focusing

on keypoint-based object tracking, which is central to many AR applications.

The approach we presented takes the traditional pipeline of keypoint matching

and geometric verification, and embeds this within an online structured learning

framework. In doing so, our approach is able to provide a principled mecha-

nism for adapting the detection pipeline for a specific object and background

environment. This allows our approach to provide significant improvements to

detection performance compared with traditional methods and means we can

handle challenges such as repetitive features and confusing background, which

we demonstrated experimentally. Our approach adds only a small amount of

overhead compared to a non-adaptive approach, and we further showed how we

can make approximations which allow us to take advantage of recently proposed

binary keypoint descriptors, allowing for real-time operation even on low-powered

devices.

In Chapter 5 we tackled a different problem related to AR: scene reconstruc-
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tion for SLAM on low-powered devices. In common with other work in this thesis,

we framed the task as one of structured prediction and presented an approach

which is able to automatically identify a small number of dominant planes in a

scene, along with estimates of their boundaries. To perform this boundary esti-

mation, our approach initially makes use of simple multi-view photo-consistency

information, and subsequently incorporates online learning of the appearance of

each plane to help refine the reconstruction. The resulting algorithm is com-

putationally efficient, and we show that it is able to run on a typical scene in

a few seconds on a low-powered device, making it suitable for mobile gaming

applications based around SLAM.

6.2 Future work

When developing the approaches described in this thesis, there was a desire to

produce principled frameworks which could be built upon by future research.

The use of online learning, in particular, means there is a great deal of existing

research from the machine learning and computer vision communities which could

be incorporated into the approaches we have presented in this thesis.

For the 2D object tracking approach presented in Chapter 3, future work

could include extending the output space which is used during tracking. One

example would be to consider tracking which takes into account object deforma-

tion and articulation, while another would be to handle jointly tracking multiple

target objects. Other potential avenues include exploring different types of image

features, as well as incorporating online multiple kernel learning [45] to choose

features which are well suited to a given object and environment. Another in-

teresting direction would be to adapt this algorithm so that it is better-suited

to low-powered devices, perhaps by using binary features such as those used for

keypoint matching in Chapter 4.

For the keypoint-based object tracking approach presented in Chapter 4, our

approach is already able to down-weight those keypoints which are less discrimi-

native in order to better detect the target object. However, we do not perform fea-

ture selection explicitly, so future work might include adding a sparsity-inducing
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norm [117] during learning to explicitly encourage feature selection. Another in-

teresting avenue could be to model and learn keypoint deformation, which would

allow the tracking of deformable and articulated objects. However, this would be

difficult to achieve in an online learning framework which uses self-training, as

measures would need to be taken to avoid drift.

For the scene reconstruction approach presented in Chapter 5, as has already

been discussed in Section 5.5, there are a number of avenues for future work

which would help to improve the reconstruction results. These include how best to

handle the background class during labelling, improvements to labelling accuracy,

and fusing multiple 2.5D reconstructions into a global 3D reconstruction.

One thing which is clear is that the increasing ubiquity of portable, powerful,

devices containing cameras makes this an exciting time for the field of computer

vision in general and presents many opportunities for vision-based gaming in

particular. We hope that the work presented in this thesis will have contributed

some building blocks which can be built upon by others both in academia and in

industry.
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