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Abstract

Salmonella Typhimurium is a major cause of morbidity and mortality in hu-

mans. It is also a commonly used model organism for intracellular Gram neg-

ative pathogens, a group of bacteria that is becoming increasingly resistant to

available antibiotics. Systemic Salmonella infection involves proliferation in the

small intestine followed by infection of epithelial and later macrophage host cells.

In order to advance the understanding of the rôle of metabolism in virulence,

a genome-scale metabolic model of S. Typhimurium was constructed, based on

genomic and biochemical data obtained from public databases.

A method for modelling metabolic interactions between cells was developed

and applied to models of S. Typhimurium and the probiotic Lactobacillus plan-

tarum, in order to simulate the intestinal stage of infection. The analysis in-

dicated that interactions, involving the transfer of glycolate from L. plantarum

to S. Typhimurium, that favour growth of S. Typhimurium, are possible, by

unlikely to occur in vivo.

Data from Phenotype Microarray (PM), as well as DNA microarray data ob-

tained during infection of cultured macrophage cells, was integrated with the S.

Typhimurium model. The PM data was largely in agreement with model results

for growth on carbon and nitrogen sources, and indicated moderate agreement

for sulphur and phosphorus sources. A model-based method for analysis of

nutrient availability during growth inside host cells, based on PM and DNA

microarray data, was developed. This environment is poorly characterised and

direct experimental methods for obtaining this information are not available.

The analysis indicated a nutritionally complex host environment, dominated by

glycerol 3-phosphate and certain nucleosides and amino acids.

Owing to the complexity of the host environment, a method for identifica-

tion of a sub-network of the model, required for viability on all growth sup-

porting carbon sources was developed. The impact of sequentially removing

combinations of reactions in the sub-network from the genome-scale model was

evaluated. This analysis suggested approximately 60 reactions that in vari-

ous combinations could be of relevance for designing antimicrobial intervention

strategies, including antimicrobial agents and live attenuated vaccines.
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Chapter 1

Background and general

introduction

1.1 Motivation

The introduction of antibiotics as therapeutic against pathogenic bacteria dur-

ing the late 1930s and 1940s had a major positive impact on human health and

welfare. But even before penicillins were clinically available, the first resistance-

conferring penicillinase was identified [1, 2]. Introduction of streptomycin in

mid-1940s to control Mycobacterium tuberculosis was followed by isolation of

resistant strains of the pathogen in patients. This pattern was repeated for

other antibiotics developed during the 20th century. It was not until the 1950s

that the first report describing genetic transfer of antibiotic resistance between

bacteria was published, and not until the late 1960s that this notion was widely

recognised [3]. Until the end of the 20th century a high rate of development of

new classes of antibiotics counteracted the emergence and spread of antibiotic

resistance among pathogens [4]. Two worrying tendencies have coincided over

the last couple of decades: the development of new antibiotics has decreased

and multi-resistant bacteria have become more widespread [4, 5].

The development of new classes of antibiotics peaked in the 1940s to 1960s

and no new class has been registered since 1987. Much of the early develop-

ment of new antibiotics was based on empirical screening, i.e screening of growth

inhibitory effects of natural products (primarily from antibiotic producing mi-

croorganisms) on pathogens. This method became less cost-effective after most

of the interesting compounds produced by well characterised antibiotic produc-

ing microorganisms had been exploited [4]. Another reason why many large

pharmaceutical companies have shifted focus away from development of antimi-
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crobials is that this group of drugs are of limited commercial interest. Unlike

diabetes or hypertension, which often require life long medication, treatment of

bacterial infections with antimicrobials is usually short term, which means that

the revenues from sales of antimicrobials are more limited. Many of the new

antimicrobials are only approved for specific patient groups or situations, which

further limits the return on investment. If, despite these obstacles, a company

is successful in selling an antimicrobial, this only accelerates the emergence and

spread of resistance [5]. Following the thalidomide disaster in the 1960s, many

countries introduced stricter controls for approval of new drugs, which, apart

from increased drug safety, also increased the cost of development of new drugs,

including antimicrobials [2].

The origin and dynamics of antibiotic resistance in bacteria is a complex

topic that will not be covered in detail here. In general, many different mech-

anisms for overcoming the effect of an antimicrobial are possible: gene dupli-

cations resulting in elevated concentration of cellular targets; broad spectrum

efflux systems that export xenobiotics (including antimicrobials); specific en-

zymes that inactivate the antimicrobial, and mutations resulting in structural

modifications of cellular targets. Many of the more specific mechanisms directed

towards natural antibiotics are believed to have originated in the producing or-

ganisms [2]. Human activities have had a significant impact on the evolution

and spread of antibiotic resistance. Large quantities of antibiotics have been

produced industrially and eventually released to natural environments over the

last 70 years, creating strong selective pressure for resistance in natural micro-

bial populations [2].

Besides the direct release from industrial antibiotic production to natural en-

vironments, many uses of antimicrobials could favour resistant microbial pop-

ulations. Example of these activities include: use for growth promotion in

animal agriculture; use as prophylactic/therapeutic in humans; use as prophy-

lactic/therapeutic in pets; use for pest control in agriculture; use as biocide in

cleaning products, and use for genetic marker selection and sterile culture in

biological research [2].

Outbreaks of multi-resistant pathogens, that are very difficult to control us-

ing existing drugs, are becoming less restricted by geographic boundaries owing

to the increasing mobility of people and goods [6].

The clinical relevance of antibiotic resistance vary between different groups of

bacteria. Gram positive pathogens, primarily staphylococci (including MRSA),

streptococci, and enterococci, are becoming more manageable, owing to sus-

ceptibility to novel (Gram positive-specific) antimicrobials, including linezolid,

quinupristin in combination with dalfopristin, and daptomycin, which are all

derivatives of older classes of antimicrobials. Gram negative bacteria, especially
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members of the Enterobacteriaceae family, are cause for more concern. The

outer cell membrane of Gram negative bacteria is much less permeable to drug

molecules than the cell envelope of Gram positive bacteria. This, in combi-

nation with prevalence of unspecific efflux systems, makes drug development

against Gram negative bacteria highly challenging [2, 4]. Data from the UK

show a rise in ESBL (extended spectrum β-lactamase)-producing E. coli and

Klebsiella isolated from patients. Most of these isolates are resistant to one or

more commonly used antibiotics. Resistance to carbapenems, which are often a

last resort drug for multi-resistant Gram negative pathogens, is currently lim-

ited in the UK (<2% of isolated Enterobacteriaceae), but is becoming a more

widespread problem in other parts of the world [7].

1.2 Aim and structure

It should be evident from the introduction above that the slow rate of devel-

opment of new antimicrobials by pharmaceutical industry, in combination with

widespread resistance, especially among Gram negative bacteria, to currently

available ones, is highly problematic. The work presented here is intended to

address some aspects of this problem.

One of the main aims of this project is to identify enzymatic sites of vulner-

ability in the metabolic network of S. Typhimurium that could aid development

of antimicrobials or live attenuated vaccines. S. Typhimurium is a Gram neg-

ative pathogen of clinical importance (which is described in more detail in the

next section), but the main motivation for focusing on this organism is that it is

also widely used as a model organism for Gram negative intracellular pathogens.

The number of antimicrobials that inhibit metabolic enzymes is very limited [8],

thus metabolism is an underexploited source of targets for antimicrobial devel-

opment. A reason for this, in the case of S. Typhimurium, is that the number

of single enzymes in the network that are suitable drug targets is very limited,

owing to a high degree of network redundancy [8], which calls for simultaneous

inhibition of groups of two or more enzymes. This makes purely experimental

procedures for target identification through selective gene deletion difficult, as

it would involve construction of hundreds of thousands of mutant strain for a

typical Gram negative pathogen. It will be argued in later chapters that the

experimental efforts can be reduced significantly by simulating these deletions

in a computer model of metabolism, and focusing the experimental effort to

those enzymes that appear to be of interest based on the model analysis.

Metabolic enzymes have many properties that make them suitable drug tar-

gets: they perform a physiologically essential function; they are fairly well con-

served among Gram negative pathogens; and their activity can be inhibited by
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small molecules [9]. It is important however to note that the essentiality of a

given metabolic enzyme could be limited to certain situations, e.g. when the

organism is using a particular carbon source. This means that the suitability of

a given enzyme as a drug target could be related to the nutrient availability. In

the case of S. Typhimurium during infection this is not known in sufficient detail.

Another aim of this project is thus to use metabolic modelling in order to gain

insights into the metabolic behaviour of S. Typhimurium during infection. This

is done using two separate model-based approaches: Potential metabolic inter-

actions with the probiotic bacterium L. plantarum is explored; and system-wide

experimental data obtained from S. Typhimurium during infection is analysed.

This thesis has the following organisation:

• The remainder of Chapter 1 gives a brief introduction to the biology S.

Typhimurium.

• Chapter 2 describes the basis of much of the mathematical and computa-

tional methodology used in subsequent chapters.

• Chapter 3 describes the construction and analysis of a S. Typhimurium

metabolic model.

• In Chapter 4 the analysis of a previously published model of L. plantarum

is presented.

• Potential metabolic interactions between the models described in the pre-

vious two chapters is analysed in Chapter 5.

• Integration of experimental data relevant to infection of S. Typhimurium

is described in Chapter 6.

• Chapter 7 is devoted to model-based identification of potentially vulnera-

ble site in the metabolic network of S. Typhimurium.

• Chapter 8 is a general discussion of the results presented here.

1.3 Overview of the biology of Salmonella

1.3.1 Nomenclature and taxonomy

The Salmonella genus belongs to the gammaproteobacteria class and the En-

terobacteriacea family. Salmonellae are phenotypically characterised as rod-

shaped, Gram-negative, flagellated, and facultative anaerobes [10]. Classifica-

tion below the genus level has long been subject to debate [11]. Currently, the

genus is believed to include two species: Salmonella enterica and Salmonella
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bongori, of which only S. enterica cause disease in humans. S. enterica is di-

vided into six subspecies: enterica, salamae, arizonae, diarizonae, houtenae,

and indica. Close to all (>99%) disease in humans is caused by the enterica

subspecies [12]. Within Salmonella enterica subsp. enterica there are > 2100

serovars, phenotypically distinguished based on surface antigens, host specificity,

and sensitivity to phages [11]. These serovars are usually named in relation to

the symptoms they cause, their main host or the location of their discovery,

e.g. S. Typhimurium causes symptoms in mice that resembles those caused by

S. Typhi in humans, S. Colerasuis cause cholera-like symptoms in swine, and

the first isolate of S. Dublin was made in that city. Despite the phenotypical

diversity, the Salmonella serovars display a high degree of genetic similarity (96-

99%) [13]. Host specificity of serovars is usually classified as host restricted, host

adapted or unrestricted. Host restricted serovars are strongly associated with

a particular host species and cause severe, systemic infection in that species,

examples include Typhi, Paratyphi, and Sendai (human restricted), Gallinarum

(fowl restricted), Abortusovis (sheep restricted), Typhisuis (swine restricted),

Abortusequi (horse restricted). Host adapted serovars commonly cause systemic

infection in a host species, but can occasionally cause less severe symptoms in

other species, e.g. Cholerasuis, whose natural host is swine but which can cause

disease in humans, and Dublin, whose natural host is cattle but which can

also infect humans and sheep. The unrestricted serovars include Typhimurium

and Enteritidis, which can cause systemic infection in some species, but cause

self-limiting gastroenteritis in most mammals [14].

1.3.2 Epidemiology of Salmonella

The Salmonella serovars that cause disease in humans can be divided into ty-

phoidal and non-typhoidal serovars, where the former category includes the

main human restricted serovars Typhi and Paratyphi and the latter includes

most serovars, but most frequently Typhimurium and Enteritidis. The typhoidal

serovars cause typhoid fever, which is characterised by high fever, sepsis, and

gastrointestinal bleeding [10]. Untreated typhoid fever has a fatality risk (case

fatality) of 20% [15], this risk falls to 1% with treatment [16]. Non-typhoidal

serovars primarily cause self-limiting diarrhoea, but cases where non-typhoidal

serovars cause invasive, bloodstream infection (bacteremia) are an increasing

problem [10]. Invasive non-typhoidal infection can involve a range of symptoms,

typically (95% of cases) high fever and anaemia (40-50% of cases). The burden

of different Salmonella serovars shows considerable regional variation. Invasive

non-typhoidal salmonellae is a major concern in sub-Saharan Africa: Although

epidemiological data for this region is uncertain, the annual incidence in chil-
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dren aged 3-5 years has been estimated to 175-388 per 100000 and in adult HIV

patients to 2000-7500 per 100000 [10]. The fatality risk for infection of invasive

non-typhoidal salmonellae in this region is 22-47%, even when antimicrobials

are applied [10]. Incidence of invasive non-typhoidal salmonellae is much less

prevalent in Asia compared to sub-Saharan Africa: The highest rate, 7.2 cases

per 100000 individuals, was reported in Pakistan for children aged 2-15 years

[17]. Instead, typhoidal serovars are the dominating invasive salmonellae with

incidence for 5-15 year-olds at ∼500 cases per 100000 in Pakistan (Karachi) and

India (Kolkata) [18]. It has been suggested that the difference in epidemiology

between these two regions is related to the high prevalence of malaria and HIV

in sub-Saharan Africa [10]. In high income countries (Europe, Australia, New

Zealand, and North America) the incidence of typhoidal infection is low, 10 cases

per 100000. The incidence of non-typohoidal infection is considerably higher in

these regions, 690 per 100000 in Europe [19]. Mortality from non-typhoidal

infection in these regions is limited to 1-5% [10].

1.3.3 Salmonella infection

A common infection route for salmonellae is consumption of contaminated food

or water, although pet animals, such as reptiles and amphibians, are also a

source of infection [20]. Salmonellae are able to survive the low pH of the stom-

ach and the hostile environment of the small intestine [21]. In the small intestine

they can attach to epithelial cells and induce engulfment, thereby crossing the

epithelial barrier [22, 23]. A preferred route is through microfold cells, which

are epithelial cells that routinely sample the intestinal fluid for antigens by un-

specific engulfment of extracellular material. Microfold cells then transport the

vesicle to lymphoid cells situated under the epithelial cells [20]. Salmonellae

can also be engulfed by a particular type of phagocyte (CD18 expressing) in the

intestinal mucosa and transported across the epithelium [24, 25]. It has been

suggested that the phagocyte route allows typhoidal serovars to infect the host

without causing inflammation and diarrhoea [20]. After crossing the epithe-

lium typhoidal serovars will induce engulfment by macrophage cells and subse-

quently spread to lymph nodes and the spleen, whereas non-typhoidal serovars

will indirectly cause local inflammation by the action of white blood cells (poly-

morphonuclear leukocytes) [20]. The engulfment of typhoidal salmonellae by

macrophage cells creates an intracellular vacuole, referred to as the Salmonella

Containing Vacuole (SCV). Systemic infection can only proceed if the pathogen

can replicate in the SCV [26]. The detailed nutrient availability in the SCV is

unknown, but mutant strains that are defective in biosynthesis in certain nu-

cleotides and amino acids are unable to replicate and cause infection, suggesting

6



that these nutrients are not provided by the host [27].

1.3.4 Human intervention strategies

The primary public health strategy for Salmonella control is to establish and

maintain good general sanitation and hygiene (including safe practises for food

and water handling), good nutrition, and vaccination programs [10, 19]. Medi-

cal treatment of typhoidal fever is becoming increasingly difficult, especially in

developing countries, owing to the ubiquity of antibiotic resistance in salmonel-

lae [19]. Drug resistance in typhoidal serovars varies between different locations,

e.g. Ochiai et al. [18] reported that two-thirds of the typhoidal strains identi-

fied in Karachi, Pakistan were multi-resistant, which was the highest rate in

the study. Chloramphenicol was the primary therapeutic for typhoid fever until

the 1970s when resistance to this drug appeared. Fluoroquinolones, such as

ciprofloxacin, largely replaced chloramphenicol, but fluoroquinolone resistance

is an increasing problem, especially in south Asia [19, 28]. Non-typhoidal infec-

tions are usually self-limiting and left untreated, except for particularly vulner-

able groups, such as noenatals, older adults, and immunosuppressed patients.

Because of widespread drug resistance, non-typhoidal salmonellae are primar-

ily treated with fluoroquinolones [19]. However, resistance to fluoroquinolones

in non-typhoidal strains is reported to be on the rise [29]. More concerning is

perhaps the isolation of carbapenem resistant S. Typhimurium strains, as this

class is a last resort used clinically to treat Salmonella infection.

There are currently three vaccines against typhoid fever available interna-

tionally [19, 30]: (i) Heat killed whole cells of S. Typhi strain Ty2 administered

by injection, with an efficacy of 50-94%, but also high rates of side effects.

This vaccine has largely been replaced by alternative vaccines. (ii) Orally ad-

ministered live attenuated S. Typhi strain Ty21a (derived from strain Ty2 by

chemical mutagenesis [31]), has an efficacy of 50-80%, but very few side effect,

and protection lasts for five years or more. Disadvantages of this vaccine include

the need for multiple doses, dependency on cold chain, and possibly adverse ef-

fects in immunocompromised patients [19]; (iii) The Vi polysaccharide vaccine

is administered by injection, has an efficacy of 60-80% and can by used in im-

munocompromised patients. Unlike the attenuated Ty21a vaccine, protection

is limited to two years, and only towards strains that express the Vi antigen,

which excludes S. Paratyphi and certain S. Typhi strains [19].

There are currently no vaccines for non-typhoidal infection approved for

human use, but as multidrug resistance and invasive non-typhoidal infection

are becoming more problematic research in this area is encouraged [10, 19].

It is for these reasons that this thesis investigates potential metabolic targets
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that cause lethality or attenuation S. Typhimurium.
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Chapter 2

General methodology

2.1 Introduction

As the first draft sequence of the human genome was announced in 2000, many

individuals involved with the Human Genome Project had very high expecta-

tions as to the outcome of the project. Some of the more optimistic predictions

stated that within a decade, i.e. by 2010, ‘personalised medicine’ would come of

age. This would involve personalised genetic tests showing an individual’s risk

for common diseases, followed by personalised medical treatment. There was

also an expectation that the sequencing project would reveal the ‘key genes’ for

most of the major human diseases [32]. The promises of the early whole-genome

sequencing projects have largely gone unmet. There cannot be any doubt that

the availability of genome sequences has revolutionised biological sciences, but

this data alone has so far failed to give a complete picture of the organism of

interest. Moreover, the discrepancy between the expectations of the sequenc-

ing projects and the current state of biological sciences has motivated increased

research efforts towards analysis of emergent systemic properties of biological

components, rather than mere identification of components. Although biological

reductionism has been hugely successful in identifying many of the components

that make up cells and more complex biological systems, it does not offer a sat-

isfactory explanation of how these components interact to form living cells, or

how manipulation of these components could change cell behaviour in desirable

directions [33]. Owing to this, a more holistic scientific paradigm, referred to as

systems biology, has received increased interest over the last decade. Systems

biology does not have a single coherent definition, but most people working in

the field would consider a core feature to be construction and analysis of biolog-

ical models, i.e. formal descriptions of biological systems of arbitrary complex-

ity, which form a basis for integration of quantitative experimental data. This
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methodology is highly interdisciplinary and borrows heavily from biology, chem-

istry, physics, computer science and mathematics, but with the ultimate aim of

explaining biological phenomenon in terms of molecular interactions. One of the

more mature sub-disciplines of systems biology is its application to metabolism.

This stems primarily from the maturity of metabolic biochemistry: Many of the

enzymes in central carbon metabolism (at least for some well known organisms)

and the stoichiometry of the reactions they catalyse are known. Another factor

is that metabolism is a network of material transformations, which means that

it is subject to mass balance constraints. How this can be used in mathematical

analysis of networks is described in more detail in the next section.

Whilst systems biology is a relatively new discipline (systems-wide data,

such as genome sequences, having only been available since the late 1990s), the

same underlying philosophy has been applied to smaller biological systems in

the past. A prominent example of this is Metabolic Control Analysis (MCA).

Since metabolic biochemistry emerged as a separate science it inherited from

chemical kinetics the valid concept of rate limiting steps. In enzyme-catalysed

reactions where more than two substrates are involved it is not uncommon that

two of the substrates form an intermediate that reacts with the third substrate.

For example, the net reaction

A + B + C → P

can be decomposed to:

A + B → X

X + C → P,

where X is a reaction intermediate. If one of the intermediate steps is much

slower than the other one, the overall rate of the net reaction will equal the rate

of the slowest step, which is referred to the rate limiting step [34]. It is however

not uncommon in biochemical literature to find references to enzymes as rate

limiting for the overall flux through a multi-enzyme reactions systems, or path-

way. The implication of certain enzymes being rate limiting is that increasing

the concentration of these enzymes should increase the net flux through the

pathway. Phosphofructokinase in glycolysis is an enzyme that has been consid-

ered rate limiting for the glycolytic flux [35, 36]. Construction of mutant strains

with elevated phosphofructokinase concentration in baker’s yeast did not, how-

ever, have any effect on glycolytic flux. There are other similar examples of how

the concept of rate limiting enzymes in metabolism is problematic [37]. In order

to overcome these discrepancies MCA was developed during the mid-1970s as

a framework for analysis of how flux through metabolic networks is controlled.
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In contrast to traditional biochemistry, MCA relies on formal descriptions of

the system of interest. Most notable in this context is the introduction of the

Flux Control Coefficient (FCC), defined as the scaled sensitivity of an enzyme

concentration on the flux through the network, i.e. how much the concentration

of a given enzyme in a pathway affects the net flux through the pathway. For

example, if the flux through a pathway changes linearly with the concentration

of one single enzyme, and no other enzyme, in the pathway, then the enzyme

has an FCC of 1, and all other enzymes an FCC of 0. As opposed to the tra-

ditional sorting of enzymes into rate or non-rate limiting, MCA explains how

flux control is distributed over the enzymes in a pathway. Experimental and

theoretical work has shown that in a majority of cases flux control is indeed

distributed over the enzymes in a pathway, i.e. very few enzymes have FCCs

close to 1, and that simple one-enzyme overexpressions are unlikely to affect the

net flux through a pathway [37]. This brief description of MCA is in no way in-

tended to be complete but only serves as an example of how formal descriptions

of biological systems can be a great aid for understanding them.

2.2 Mathematical modelling of metabolism

Mathematical modelling of metabolic networks, as opposed to other cellular

networks, is a relatively established field. Some of the reasons for this are

outlined briefly:

• Experimental: The basic components of metabolic networks are biochemi-

cal reactions that transform metabolites, most of these reactions are catal-

ysed by enzymes. Many metabolic enzymes are well characterised in terms

of substrate specificity and, to a lesser extent, quantitative behaviour with

varying concentrations of substrates, products and other metabolites. This

accumulated data is a prerequisite for metabolic modelling.

• Theoretical: Quantitative experimental data relating the rate of an enzyme-

catalysed reaction to concentrations of metabolites can be used to for-

mulate a deterministic rate function. If the rate functions for a set of

enzymes in a given network is known, as well as the concentrations of

the metabolites assumed to affect the rate, this network can be modelled

as a set of ordinary differential equations. Even if only the association

between reactions and metabolites is known, but not the rate functions

and concentrations of metabolites, the rate of change of metabolite con-

centrations are still constrained by mass conservation. This means that

the change in metabolite concentration over time is the sum of the rates

of all reactions involved with the metabolite. It follows that variables in
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the system (reaction rates and metabolite concentrations) are more re-

stricted than they would otherwise be and less information is needed to

predict the behaviour of the system. Information transduction networks

also involve transfer of material, e.g. signalling pathways often include

phosphorylation and dephosphorylation steps, but the flow of information

is not directly proportional to the flow of material.

• Application: There are strong incentives to develop predictable models of

metabolic networks that are of technological (e.g. glutamate and lysine

producing bacterium Corynebacterium glutamicum [38]) or medical (e.g.

human [39, 40]) importance. These models can be used to devise rational

intervention strategies for modifying the behaviour of the network.

2.2.1 Foundations and terminology

Information concerning the association between reactions and metabolites, specif-

ically the stoichiometry or the molar proportions of substrates and product

forms the basis of any metabolic model. A reaction that converts 2 moles of A

into 1 mole of B can be expressed as:

2 A→ B,

or, alternatively:

B − 2 A = 0.

A convenient way of expressing the structure of a metabolic network is to com-

pile the stoichiometries of all reactions in the network into a stoichiometry ma-

trix, commonly abbreviated N, where columns correspond to reactions, rows

metabolites, and matrix elements are stoichiometric coefficients. This is illus-

trated in Fig. 2.1 for a small hypothetical network. In general all metabolites

in the model are represented as rows in the matrix, but for many applications

it is convenient to only include the internal metabolites, and exclude the ex-

ternal metabolites. Metabolites are considered external if their concentration

is constant [41], if this is not the case they are internal. Examples of external

metabolites include those whose cellular concentration is high enough to con-

sider any change negligible (e.g. water), or metabolites that are maintained at

a constant level outside the cell (and that can also be transported over the cell

boundary, which is illustrated in Fig. 2.1). As will be illustrated in Section 2.3,

biologically useful information can be extracted from a relatively information-

poor stoichiometric model.

Since the internal metabolite concentrations are non-constant, they are time-

dependent variables, determined by their initial values and the rates of consump-
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Figure 2.1: Metabolic network structure expressed with a stoichiometry matrix.
The network in A contains the internal metabolites A - E and external metabo-
lites x A and x E. The stoichiometry matrix (N) of the network is constructed as
indicated in B. For each reaction (column in N) the stoichiometric coefficients
appear as matrix elements at rows corresponding to metabolites involved with
the reaction (elements of other metabolites are filled with zeroes). The external
metabolites are not included in N.
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tion and production by the reactions in the system (assuming abiotic processes

that affect metabolite concentrations, such as convection or diffusion, are negli-

gible). Mathematically, the rate of change of the internal metabolite pools can

be represented as a set of balance equations, only determined by the stoichiom-

etry of the network and the reaction rates. For the network shown in Fig. 2.1,

the balance equations are:

dA
dt = vA tx − vR1

dB
dt = vR1 − vR2

dC
dt = vR2 − vR3

dD
dt = vR4 − vR5

dE
dt = vR3 + vR5 − vE tx,

which can be expressed using matrix notation as:

dS

dt
= N · v, (2.1)

where S is the vector of internal metabolite concentrations, N the stoichiom-

etry matrix, and v the vector of reaction rates.

The values of vector v are primarily determined by enzyme kinetics (also

referred to as rate laws or rate functions) and metabolite concentrations [34].

A numerically stable solution to Equation 2.1 is referred to as a steady state

solution. This implies that the systems is in a state at which the variables,

metabolite concentrations and reaction rates (which are called fluxes in a steady

state solution), do not change with time. The time-invariance of the system at

steady state is usually interpreted approximately, e.g. an oscillatory system with

constant amplitude is also considered to be in steady state because there is no

net accumulation or depletion of metabolites [42]. Fortunately, many biological

phenomenon occur under stationary (or approximately stationary) conditions,

well known examples from metabolic biochemistry include glycolysis and amino

acid biosynthesis [43]. Given that a metabolic network of interest eventually

reaches a steady state, Equation 2.1 simplifies to:

dS

dt
= N · v = 0, (2.2)

This is a very powerful constraint on the flux vector, v. Although a unique

solution is not obtained by the steady state constraint alone, Equation 2.2 im-

plicitly defines all possible steady state solutions. Consequently, given the steady

state assumption, v can be treated as a variable, and solved for independently

of the kinetics. This is the basis of structural model analysis.
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2.3 Structural modelling

Structural (or stoichiometric) models, where only the stoichiometry of the net-

work, but not any kinetic parameters, are known, are more fundamental than

kinetic ones, i.e. all kinetic models are also structural, but the converse is not

true.

2.3.1 Null-space analysis

Much of structural analysis is centred around the null-space of the stoichiometry

matrix. The flux vector v in Equation 2.2 is usually underdetermined and

(infinitely) many values of v could satisfy the equation. This space of possible

solutions is the null-space of the stoichiometry matrix. Although the null-space

contains an infinite number of solutions (points in flux space), this space can be

concisely defined as the linear combinations of columns of a kernel matrix (K),

which, unsurprisingly, is defined as:

N ·K = 0, (2.3)

Since the null-space is defined by the columns of the kernel (the kernel matrix

spans, or forms the basis of, the null-space) it follows that any steady state flux

vector is a linear combination of kernel column vectors [42]:

v = K · λ

where λ is a vector of scaling factors. For example, consider the network in

Fig. 2.1, a kernel matrix for the network is given by:

K =



1 0

1 −1

1 −1

0 1

0 1

1 0

1 0


where each row corresponds to a column in N (here, the row order is the

same as the column order in N).

If λ = [λ1 λ2]
T

,
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v =



1 0

1 −1

1 −1

0 1

0 1

1 0

1 0


·

[
λ1

λ2

]
=



λ1

λ1 − λ2

λ1 − λ2

λ2

λ2

λ1

λ1


(2.4)

From this representation of K it should be clear that if two linearly indepen-

dent fluxes are observed all steady state fluxes in the system can be determined.

For instance, if E tx (or A tx or R1) and R4 are measured and assigned fluxes

J1 and J2, respectively, it can be concluded that λ1 = J1 and λ2 = J2, and

further:

v =



J1

J1 − J2

J1 − J2

J2

J2

J1

J1


It should be noted that the kernel of any given matrix is not unique, since

different algorithms used for its computation cannot be guaranteed to return

the exact same matrix, but as will be shown, invariant properties may still be

obtained from the kernel. The simplest method for calculating the kernel of a

matrix is Gauss-Jordan elimination [44].

Enzyme subsets

Since all possible steady state flux solutions are linear combination of kernel

column vectors, kernel row vectors contain information about reactions that

must apply for all possible solutions. For example, if a row vector contains only

elements equal to zero the corresponding reaction cannot occur in any solution

and is termed dead or strictly detailed balanced [45]. Further, sets of reactions

that have identical or proportional row vectors must carry proportional (steady

state) flux. These sets are called enzyme subsets (or reaction subsets) [46]. For

the network in Fig. 2.1, inspection of the kernel reveals that R1, Atx, and Etx

all share the row vector [1 0]; R2 and R2 share [1 − 1]; and R4 and R5 share

[0 1]. As indicated from network diagram this involves both sets of reactions

that for linear pathways (R2 and R2, and R4 and R5), but also the less intuitive
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set involving R1, Atx, and Etx. In the algorithm suggested by Pfeiffer et al. [46],

enzyme subsets are identified by (i) removing all dead reactions from K; (ii)

dividing all row vectors with the greatest common divisor; and (iii) comparing

each row with each other. Two or more reactions belong to the same subset

if their corresponding row vectors are identical and the sets do not conflict

with reaction reversibilities. An example of a reversibility conflict could be if

R2 appeared with directionality B ← C (i.e. the opposite direction to that

indicated in Fig. 2.1), resulting in the subset: B ← C → D. This would

not change the kernel matrix and inspection of the row vectors of R2 and R3

would still suggest that they are in a subset. Sets like these are referred to as

inconsistent subsets.

The procedure used within the framework of this thesis, which is imple-

mented in the metabolic software used [47], differs slightly from that suggested

by Pfeiffer et al. [46]. In step (ii) a flux ratio, di,j for each row vector combina-

tion is defined as:

di,j =


Ki,a

Kj,a
if

Ki,a

Kj,a
=

Ki,b

Kj,b
∧ (Ki,c = Kj,c = 0)

0 if
Ki,a

Kj,a
6= Ki,b

Kj,b
∨ (Ki,c 6= Kj,c)

(2.5)

where i, j ∈ {1 . . .m}, ∃a ∈ {1 . . . r}, ∃b ∈ {1 . . . r, b 6= a}, and ∀c ∈
{1 . . . r, c 6= a, b} (and K is the kernel matrix with m rows). In other words, each

combination of row vectors from the kernel matrix are compared by component-

wise division. If, for any two row vectors, all ratios are identical or zero, the

two reactions are in the same subset and the flux ratio is equal to the constant

ratio of the kernel elements. If this ratio is not constant or at least one of the

elements in any of the vectors is zero and the corresponding element in the other

vector is not, the reactions are not in the same subset.

Correlation analysis

Since the kernel matrix defines the solution space of Equation 2.2, the rows of

the kernel can be seen as vectors in this space. If two reactions are associated

with parallel row vectors in the kernel they are in the same enzyme subset. In

fact, Equation 2.5 can be used for determining whether two vectors (of equal

lenght) are parallel, which is true if the ratio di,j is non-zero. A logical extension

of the enzyme subset concept is then to asses the relation between any row

vector in the kernel. This was explored by Poolman et al. [48], where the angle

between row vectors was used for assessing the correlation between reactions in

the null-space. Specifically, the cosine of the angle between a pair of row vectors

in the orthogonal null-space was used, and referred as the reaction correlation
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coefficient (φij or RCC):

φij =
KiK

T
j√(

KiKT
i

)√(
KjKT

j

) = cos(θKij ) (2.6)

where K is the orthogonal kernel matrix (i.e. all column vectors are per-

pendicular to each other) with m rows, i, j ∈ {1 . . .m}, and θKij is the angle

between rows i and j in K. It follows from the definition that the RCC must be

in the range [−1, 1], where a coefficient of ±1 indicates that the reaction pair are

completely correlated, i.e. in the same subset, and a coefficient of 0 indicates

that they are completely disjoined, i.e. the reactions can never appear in the

same flux solution. As mentioned above, the kernel matrix calculated by Gauss-

Jordan elimination cannot be guaranteed to be unique. The angles between the

row vectors of the kernel, however, can be shown to be unique, provided that

the columns of the matrix are orthogonal [48]. This requirement can be ensured

by either calculating the kernel using the Singular Value Decomposition method

or by orthogonalising an existing kernel using the Gram-Schmidt method.

The reaction correlation coefficient is mathematically identical to Pearson’s

correlation coefficient (r) [48]. Although the form of Equation 2.6 is identical to

r, it should be emphasised that none of the statistical interpretations of r are

applicable to φ. Within the framework of this thesis r will mainly be applied to

sets of flux solutions, rather than the entire null-space.

The reaction correlations of a network can be visualised using clustering

of reactions into hierarchical trees, here referred to as metabolic trees. A com-

monly used method for generating hierarchical trees is the Weighted Pair Group

Method using Arithmetic Averaging (WPGMA) algorithm [49, 50], which has

been used for generating metabolic trees [48].

Conservation relationships

The definition of the null-space used so far is more specifically be referred to

as the right null-space of N. It is also possible to calculate the left null-space,

defined as:

KT ·N = 0T

or

NT ·K = 0 (2.7)

where T in NT denotes the transpose of matrix . Throughout this thesis,

unless stated otherwise, null-space (kernel) refers to the right null-space (ker-

nel). The left null-space can be used for identifying linear dependencies between
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Figure 2.2: Hypothetical network where metabolites m and B are in a conser-
vation relationship.

the rows of N. Biochemically, this corresponds to conservation relationships be-

tween metabolite, i.e. metabolites that are associated such that the sum of their

concentrations is constant [41].

An example of such a relationship is illustrated in Fig. 2.2, where the sum

of the concentration of metabolites m and B must be constant. Metabolite m can

be interpreted as a cofactor that participates in the catalysis of reactions R1,

R2, and R3, but is not consumed in the process. Since m does not leave the

system all molecules of m must appear as free m or as a moiety of metabolite B,

in other words m + B = constant. In this case m is a conserved moiety [41].

The stoichiometry matrix of the network is now:

N =

m

A

B

C

D

E



−1 1 0 1 0 0 0

−1 0 0 0 0 0 1

1 −1 0 −1 0 0 1

0 1 −1 0 0 0 0

0 0 1 0 1 −1 0

0 0 0 1 −1 0 0


The left kernel of the new stoichiometry matrix will then be:

G =

m

A

B

C

D

E



1

0

1

0

0

0


from which the conservation relationship between m and B can be deduced.
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2.3.2 Elementary modes analysis

As demonstrated above, the null-space of the stoichiometry matrix is very useful

for analysing relations between reactions that must be true for any flux solution

realisable by the network. This does not mean that all solutions defined by the

null-space are realisable by the network, since all reactions are treated as re-

versible in the kernel matrix. Moreover, the column vectors of the kernel are not

unique. Hence, even if the column vectors forms a basis of the null-space, they

are not invariant and individually they are not necessarily biologically meaning-

ful. The elementary modes concept [51] overcomes many of the shortcomings

of null-space based analysis. An elementary mode can be described as a com-

ponent pathway, i.e. a combination of reactions that forms a route through

the network. The complete set of elementary modes of a network gives a com-

plete description of the network and any flux solution is a (non-negative) linear

combination of elementary modes [52].

Definition

An elementary mode is a flux mode (i.e. a flux distribution with fixed pro-

portions between reactions, but not fixed flux values [52]), such that it does

not violate the steady state constraint, the reversibility constraints, and that

the flux mode cannot be decomposed to smaller modes that fulfil these criteria.

More formally, an elementary mode can be defined as a set of reactions, M [41]:

M = {v| v = λv∗, λ > 0}.

Where three criteria must apply to the vector v∗:

1. It must be a steady state solution.

2. Any irreversible reaction in v∗ can only carry positive (or zero) flux.

3. There is no flux vector that fulfils the two first criteria and is a subset of

v∗ in the network.

For the network in Fig. 2.1 there are only two modes that fulfil these criteria,

shown in Fig. 2.3. The mode in Fig. 2.3.C is only possible if the reactions

involved are reversible.

An algorithm for the computation of all elementary modes of a network was

suggested by Schuster and Hilgetag [51].

The original algorithm is efficient for relatively small networks. It does not,

however, scale well for large and complex networks, since all possible routes

must be evaluated [53]. Several alternative algorithms and improvements have
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Figure 2.3: Elementary modes in a small hypothetical network. Reactions that
participate in an elementary mode are indicated with red arrowheads. Modes
in A and B have identical net stoichiometries (x A → xE), and are both
irreversible. If reactions R2 - R5 are assumed to be reverible an additional
elementary mode can be found (C ). The mode in C is a metabolic cycle, thus
it does not have a net stoichioemtry. If only one of the enzyme subsets in the
cycle (R2 and R3, or R4 and R5) is reversible, the cycle will also be irreversibel.
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been described, e.g. Wagner [54] suggested a null-space based approach and

Gagneur and Klamt [55] suggested a binary approach.

Application

Elementary mode analysis has been successfully applied to several biological

problems [56]. For example, Trinh et al. [57] identified a set of elementary

modes in an Escherichia coli central carbon metabolism model that were not

involved in desirable net reactions (the joint biosynthesis of biomass precursors

and ethanol). By deleting the genes encoding the enzymes involved in the

undesirable modes, very high yields of ethanol on glucose could be achieved.

Klamt and Gilles [58] addressed the general problem of identifying minimal sets

of reactions for deletion in order to abolish an undesirable reaction. This work,

referred to as minimal cut set analysis and described in more detail in Section

2.6, has many potential application in metabolic engineering and rational drug

discovery [59].

An alternative approach for enumerating transformation routes through a

metabolic network, referred to as extreme pathways, was suggested by Schilling

et al. [60]. Extreme pathways are similar to elementary modes in that they

define flux modes that are non-decomposable and satisfy the steady state con-

straint. For a network where all reactions are irreversible the elementary modes

and the extreme pathways are identical. If there are reversible reactions in the

network the extreme pathways will be a subset of the elementary modes. Ex-

treme pathways, unlike elementary modes, must by systemically independent

[61]. This means that no extreme pathway is a non-negative linear combination

of other extreme pathways. Although elementary modes are non-decomposable

and linearly independent, some modes can be obtained by non-negative com-

binations with other. Consider the modes in Fig. 2.3. If the reversible mode

in Fig. 2.3.C is split into two irreversible modes, the extreme pathways of the

network would be the two cycles (with opposite direction) and one of the net

transformations of x A to x E (i.e. Fig. 2.3.A or Fig. 2.3.B). This is because

given e.g. the mode in Fig. 2.3.A, the mode in Fig. 2.3.B can be generated by

adding the cycle where R2 and R3 are operating in reverse to the mode in Fig.

2.3.A. It should be noted that since the extreme pathways for some networks are

a subset of the elementary modes, applications that rely on a complete enumer-

ation of all routes through the network might fail if extreme pathways are used.

Owing to the reduced complexity of extreme pathways, compared to elementary

modes, calculating the extreme pathways of a network is less computationally

expensive [62]. The similarities and differences between extreme pathways and

elementary modes are discussed in [61–63].
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2.3.3 Flux balance analysis

A modelling technique that has gained increasing popularity over the last decade

is Flux Balance Analysis (FBA). Unlike the methods mentioned above, FBA re-

quires that some of the fluxes in the system are known, and produces a (possibly

non-unique) flux solution. This makes the method useful for applications where

integration of different types of experimental data is sought. A common type of

experimental data used for FBA, especially when applied to whole cell models,

are measurements of biomass components. These could include the concentra-

tions of amino acids, nucleotides, membrane components, and cofactors.

FBA is the application of Linear Programming (LP) to underdetermined,

stoichiometric models. Briefly, LP is a mathematical optimisation method for

systems of linear equations, where given a set of constraints and an objective

function, the method will find a solution that optimises the objective. The value

of this solution, in terms of the objective function, is referred to as the objective

value. Applied to metabolic models this involves minimisation or maximisation

of some fluxes in the network, subject to some constraints. The constraints

include the steady state and often bounds on fluxes (i.e. maximum or mini-

mum, including negative, flux values). Reactions could also be assigned fixed

fluxes. Commonly used objective functions include maximisation of the yield

of biomass or ATP [64] and minimisation of total flux [65, 66]. Maximisation

of biomass yield often involves defining an hypothetical biomass reaction where

each substrate is a biomass component and the experimentally determined pro-

portion of the component in biomass is used as stoichiometric coefficient, the

product of this reaction is a unit of (external) biomass [67]. Yield maximisation

is carried out by maximising the flux through this reaction, which is interpreted

as the growth rate of the cell, while maintaining a fixed uptake of some car-

bon source. This optimisation is often referred to as maximisation of growth

rate [68, 69]. It has been argued [70–72] that this type of optimisation is an

optimisation of growth yield, and more generally, that any FBA problem is a

yield optimisation problem. This is because the only way to optimise an output

rate of a stoichiometric metabolic model is to select the most efficient route

through the network, i.e. a route the minimises flux through output reactions

that compete with the objective output reaction. This is indistinguishable from

maximising the yield of the objective reaction. The growth rate of a cell is a

function of kinetic properties of the metabolic network and cannot be modelled

using currently available methods in structural modelling.

The first applications of LP to metabolic models were described by Fell and

Small [73] and Watson [74]. It was later developed by Varma and Palsson [64, 75]

under the name Flux Balance Analysis. FBA is currently applied to a great
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variety of biological questions and metabolic networks of different complexity

[76].

Apart from LP, a related optimisation technique, Mixed Integer Linear Pro-

gramming (MILP), has also been applied to metabolic network modelling. In

MILP problems each variable is associated with an integer value (0 or 1), as

well as a continuous value. MILP can be used for problems where a discrete

quantity is optimised, e.g. the number of active or inactive reactions. A note-

worthy application is the iterative use of MILP to identify qualitatively different

solutions to an FBA problem that have the same objective value [77]. MILP

problems are, however, more complex and computationally expensive compared

to LP problems.

Metabolic example

A simple example of how FBA can be applied to the network in Fig. 2.1 is

given below. Assume the flux value of E tx is known to be 10 and the solution

with the minimal flux sum that can satisfy this constraint, as well as the steady

state constraint, is sought. This problem can be stated as:

Min :
∑7

j=1 vj

subject to

{
N5,7 · v = 0

E tx = 10.0

In this case the solution is the rather trivial elementary mode in Fig. 2.3.A

with all active reactions normalised to 10.

2.4 Construction and analysis of genome-scale

metabolic models

Structural modelling is popular owing to its mathematical simplicity and the

availability of experimental data required for performing this type of modelling.

These features also makes it highly scalable to large and complex networks,

including whole cell models, or genome-scale metabolic models (GSMs), and

models of communities of different cells. Within the context of this thesis, this

term refers to a structural model where all reactions are ultimately encoded

by the genome of the organism of interest, and similarly, all known metabolic

genes are accounted for in the model. There is of course no lack of interest

in constructing genome scale kinetic models, but there are significant problems

with this ambition, primarily related to the acquisition of experimental data

and performing dynamic simulation, if a model could be constructed. These

concerns are discussed in [78, 79].
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2.4.1 Genome annotation

The availability of annotated genomes of high quality is a prerequisite for con-

struction of GSMs. Since whole genome sequencing can be performed rapidly

and with high accuracy and low cost, at least for bacteria [80], generation of se-

quence data is not a major obstacle for GSM construction. Genome annotation,

i.e. assigning functions to the sequenced genes, is however potentially problem-

atic. From the model construction viewpoint, the main concern is the annota-

tion of genes encoding metabolic enzymes: the crucial information needed is the

stoichiometry of the enzyme catalysed reaction and, if available, the reversibil-

ity of the reaction. It must be emphasised that the association between genes,

proteins, enzymes, reactions, and metabolites is usually not a one-to-one, but a

many-to-many, relationship. For example, a single gene could encode an enzyme

that is capable of carrying out multiple metabolic functions. In that case the

enzyme would be represented by multiple reactions in a GSM. Alternatively, an

enzyme complex consisting of multiple proteins encoded by multiple genes could

carry out a single reaction. This complexity must be taken into account when

metabolic metabolic models are used for integration of gene expression data

or when modelling results are used to guide gene deletion experiments. But,

the association between different levels of biological information is essentially

a problem relating to bioinformatics, not metabolic modelling. Hence, in this

thesis, extraction and analysis of information relating to genome annotation is

carried out using data obtained from publicly available databases (described in

more detail below), and GSMs are constructed using this information. But the

genome annotation does not form a part of the models.

Ultimately, all genome annotations are based on experimental data. For the

central carbon metabolism of a set of well characterised model organisms, most

metabolic genes can be assigned functions with high confidence. For more pe-

ripheral parts of metabolism, especially for poorly characterised organisms, the

genome annotation is more indirect, and relies heavily on bioinformatic meth-

ods. Most automatic genome annotation pipelines identify potentially protein

coding genes, translate the genes to protein sequences and perform some sort

of similarity search where unknown predicted protein sequences are compared

with a database of proteins with known sequence and function [81]. Most meth-

ods for performing similarity searches are based on the BLAST (Basic Local

Alignment Search Tool) algorithm [82].

2.4.2 Biochemical databases

Apart from annotated genomes, biochemical databases are crucial aids for GSM

construction. Given an annotated genome, where the association between genes
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and metabolic enzyme reactions has been established, some of the remaining

challenges include how to assign correct stoichiometries to the enzyme reactions

and how to guarantee that names for reactions and metabolites are used con-

sistently. For example, a genome annotation could suggest that a gene encodes

an alcohol dehydrogenase (with EC number 1.1.1.1), but this only suggests a

very generic stoichiometry of the type alcohol +NAD → aldehyde +NADH.

In order to incorporate this reaction into a metabolic model it would need to

be replaced by a set of reactions with specific metabolites. Inconsistent use of

metabolite identifiers, i.e. where a metabolite is referred to by different identi-

fiers, introduces, potentially unintentional, constraints on the model since each

identifier will be treated as a separate metabolite in the model. Inconsistent

naming of reactions introduces unnecessary complexity since multiple reactions

with identical stoichiometries will be included in the model.

These, and other, potential problems can be minimised by using well curated

biochemical databases for model construction. Two well known databases suit-

able for model construction are KEGG [83, 84] and BioCyc [85, 86]. Both are

metabolic databases that use their own identifiers for reactions, metabolites and

pathways. The requirement that metabolite names should be used consistently

has previously not been fully meet in KEGG (reviewed in [87]). A feature of the

BioCyc database that makes it useful for model construction is the availability of

organism specific databases, Pathway/Genome Databases (PGDBs), which are

collections of the database entries (reactions, metabolites and pathways) that,

based on genome annotation, are present in a given organism. These PGDBs are

initially constructed using the software package Pathway Tools [88, 89]. Most

databases undergo some manual curation, although this varies significantly de-

pending on organism. A major concern with insufficiently curated PGDBs is the

presence of “gap filling reactions”. These are reactions that are introduced to

PGDBs by the Pathway Tools software (specifically the PathoLogic component

of the software) if some, but not all, of the reactions in a pathway are predicted

to be present according to the genome annotation. The rationale for this pro-

cedure is the assumption that genome annotation software misannotates genes

encoding multifunctional enzymes as unifunctional, thus creating holes in the

metabolic network [88]. Since some of the gap filling reactions are likely to be

false positives this could overestimate the metabolic capacity of the organism.

Other databases that are of relevance for model construction, and especially

curation, include BRENDA and TECRDB. BRENDA (BRaunschweig Enzyme

DAtabase) [90] is a database collecting information on metabolic enzymes. All

information is manually collected from published data. The database contains

much information relevant for kinetic modelling, e.g. kinetic parameters, reac-

tion mechanisms, and known effectors. Information relevant for GSM curation
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Table 2.1: Summary of databases used for model construction and curation
within the framework of this thesis. URLs for the databases can be found in
the list of URLs, under Nomenclature.

Database Dates used Version
BioCyc 1 November 2010 - 1 November 2012 15.0

BRENDA 1 November 2010 - 1 November 2012 -
TECRDB 1 November 2010 - 1 November 2012 -

includes reaction specificity and reversibility. The TECRDB [91] (Thermody-

namics of Enzyme-Catalyzed Reactions DataBase) collects experimental data

on thermodynamics of enzyme reactions. The is primarily useful for assign-

ing reaction reversibility, since reactions that are strongly thermodynamically

favoured in one direction are unlikely to be carry flux in vivo in the other direc-

tion. Entries in the database are sorted into classes depending on the quality of

the experimental data. Databases used for model construction are summarised

in Table 2.1.

2.4.3 Model curation

In initial metabolic model constructed from a public database is likely to con-

tain numerous errors of varying severity [87]. Inconsistent naming of reactions

and metabolites should be avoided since it results in unnecessary complexity

(inconstant reaction names) and artificially disconnected networks (inconstant

metabolites names). Missannotations, i.e. erroneous inclusion or exclusion of

reactions, are a significant source of errors in GSMs. Unfortunately, these errors

can only be dealt with by considerable manual effort. On the other hand, since

these errors cause a deviation in network topology from the biological reality

they are traceable. For example, consider the case where an FBA problem for a

GSM is constrained such that consumption of a certain external carbon source

is required, but no feasible solution can be obtained, despite experimental evi-

dence that the organism can use the carbon source and feasibility of the FBA

problem constrained for consumption on other carbons sources. In this case

it can be assumed that the deviation is ultimately caused by missannotation,

which can be resolved by considering biochemical literature, performing detailed

similarity searches, and, ideally, experimentally confirming the activity of the

missing reactions, followed by model correction.

A class of errors that are more difficult to detect, and thus more concerning,

are related to material imbalances. These include simple imbalances that are

relatively unproblematic to detect, such as R186-RXN, which in BioCyc version

11.1 was reported to have the stoichiometry:
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CPD-552 + 2 E- + 2 HSO3↔ S2O3 + 2 HSO3

where CPD-552 is trithionate (with empirical formula S3O6). The stoichiom-

etry implies that R186-RXN reduces CPD-552 and simultaneously eliminates one

atom of sulphur and three atoms of oxygen, which is clearly incorrect. The in-

consistency can be resolved by removing the two bisulphate (HSO3) molecules on

the right hand side and one bisulphate molecule on the left hand side of the equa-

tion. In cases where the empirical formula is unknown imbalances like these are

difficult to identify and resolve. A method for detecting material inconsistencies

of this type was suggested by Gevorgyan et al. [92]. Reaction stoichiometries

can be considered as statements about compounds. For instance, the reaction

A → B

suggests that A and B have the same empiric formula. If the network also

contains a reaction with the stoichiometry

A → B + C

the two reactions can only be consistent if C has a mass of zero. These stoi-

chiometric inconsistencies are always caused by material imbalances. The algo-

rithm described in [92] identifies the maximum number of unconserved metabo-

lites in the network, using a mixed integer linear programming approach. These

metabolites can be identified by analysis of the left kernel of the stoichiometry

matrix (Equation 2.7) as metabolites that are not involved in any nonnegative

conservation relationships [93]. In the example above metabolites A and B are

in such a relationship. An advantage of the algorithm suggested by Gevorgyan

et al. [92] is that it can identify unconserved metabolites solely on the bases of

reaction stoichiometry.

2.5 Analysis of genome-scale models

Since GSMs are large structural metabolic models all methods from structural

analysis can be applied to GSMs. An advantage of null-space based analysis

(Section 2.3.1) is that is is very general - conclusions drawn on the basis of the

null-space of a stoichiometry matrix will apply to all particular steady state

solutions achievable by the network, although all particular solutions defined

by the null-space might not be achievable by the network owing to reversibility

constraints. A consequence of the generality of null-space analysis for GSMs is

that results tend to be difficult to relate to biochemically relevant situations.
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For examples, as model complexity increases, size and number of enzyme subsets

tend to decrease [48].

With FBA (Section 2.3.3) the solution space can be constrained to a rel-

evant sub-space by incorporation of reaction reversibility and constraints on

transporter reactions. On the other hand, FBA solutions are single points in

solution space and thus on the opposite end of the generality spectrum, com-

pared to kernel matrices. Poolman et al. [94] suggested an application of FBA

where sets of solutions along one dimension of flux space (reaction) are collected

and analysed. This is achieved by setting up an FBA problem and repeatedly

solving it with the variable reaction fixed to different values. Reactions that ap-

pear in the collected solutions and change flux value in response to the changes

in the constrained reaction can be considered to be coordinated with the this

reaction. By selecting a physiologically relevant reaction, such as hydrolysis of

ATP [94], the set of responding reactions will form a sub-network that balances

the constrained reactions. This method is used for model analysis in Chapters

3, 7, and 4, and explained in more detail there.

2.6 Damage analysis

An important general application of metabolic modelling is analysis of how

changes in network topology affect the solution space. A subset of this applica-

tion involves identification of sets of reactions that when removed from the net-

work abolish a certain function. When applied to metabolic models of pathogens

this type of analysis can be used for identification of potential drug targets. A

general feature of structural models is that the solution space is highly depen-

dent on the metabolites assumed to be external. This can be seen by studying

the algorithm for calculating elementary modes (Section 2.3.2), where at the

start of the algorithm all metabolites are assumed to be external (and all re-

actions elementary modes), then as the algorithm progresses, metabolites are

sequentially made internal and preliminary elementary modes are combined to

form the actual elementary models of the model. Hence, if metabolites are in-

correctly made external this could introduce unrealistic elementary modes. This

is problematic when models of pathogen metabolism are used for drug target

identification since the nutrient availability during infection is largely unknown

[95]. This problem is addressed in Chapters 7 and 6.

Several methods for identification of drug targets in metabolic network have

been suggested. The most fundamental method is perhaps minimal cut set,

(MCS) analysis [58]. MCS involves the identifying the minimal sets of reactions

that when removed from the network abolish a specific target reaction. The

MCS of a network are commonly determined from the elementary modes, which
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limits the analysis (as defined in [58]) to networks where elementary modes are

computable. That MCSs can be determined from the elementary modes can be

seen by considering the elementary modes in Fig. 2.3. MCS analysis is based on

blocking each elementary mode that involves the target reaction by removing

the minimal number of reactions from the network. If E tx is the target reaction

only elementary modes involving this reaction needs to be considered (i.e. Fig.

2.3.A and 2.3.B). From these two modes it can be concluded that reactions A tx

and R1 appear in both modes and that they are each essential, hence each is an

MCS. Next, each target mode involves two mode specific reactions, R2 and R3

for mode A and R4 and R5 for mode B. Hence, in order to block both modes,

any combination of these two sets of reactions will also be MCSs. The complete

MCSs of the network are: {A tx}, {R1}, {R2, R4}, {R2, R5}, {R3, R4}, and

{R3, R5}. Note that e.g. {R1, R2} is also a cut set, but it is not minimal.

There are several methods for drug target identification that are based on

the application of FBA to GSMs. One method is to identify essential genes

in the network [96]. This is done by setting up a standard FBA problem and

sequentially setting the flux of each reaction (or sets of reaction), associated with

a gene, to zero and attempting to solve the FBA problem. If the problem is

infeasible the constrained reaction, and consequently the gene, is essential. Gene

essentiality analysis is often used to validate GSMs when experimental reference

data is available. It is also possible to extend this analysis to combinations of two

or more genes or reactions, although combinations of three or more is impractical

owing to the combinatorial explosion for GSMs. In functional genomics a pair

of genes are called synthetic lethal if the deletion of both genes results in a non-

viable phenotype (but the single mutants are viable) [97]. This terminology is

often used to describe FBA based essentiality analysis of GSMs, it should be

emphasised that synthetic lethality only refers to the definition given above, and

does not extend to reactions or sets of genes different from two.

Kim et al. [98] described an FBA based method, metabolite essentiality

analysis, for identification of potential drugs, rather than drug targets. Compu-

tationally the method is similar to gene essentiality analysis, described above,

but involves sequential removal of metabolites (by removing sets of reactions

involved with a given metabolite) from the network.

2.7 Software for metabolic modelling

Owing to the size and complexity of metabolic models, biologically meaningful

applications of metabolic modelling becomes impractical and error prone, even

for fairly small models, without the use of computers.
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2.7.1 Overview

There is a long history of applying computers to analysis and simulation of

metabolic systems going back to the early 20th century [99–101]. Because of

this there is a wide range of software available for metabolic modelling.

A common feature of most modelling software is that it simplifies the pro-

cess of converting a file specifying properties of the model (e.g. stoichiometry

and kinetics, if available) into mathematical objects, in addition to performing

the mathematical analysis. Many of the early programs for metabolic mod-

elling were developed for simulation of kinetic models, such as BIOSSIM [102],

METASIM [103], FACSIMILE [104], and SCAMP [105, 106].

These early software packages were all script based and could only be run

in batch mode, i.e. they consisted of files and libraries that could be called by

program written by the user. A popular alternative to the script based approach

is the Graphical User Interface (GUI), which is often considered easier to use

for novice modellers since it does not require any knowledge in programming

[101]. An early, and still widely used, application of GUIs in metabolic mod-

elling software is Copasi (previously Gepasi) [107, 108], which is also primarily

intended for kinetic modelling.

METATOOL [46] is one of the earlier software packages devoted to structural

modelling. It includes implementations of algorithms for determining elemen-

tary modes and enzyme subsets, and uses a script based user interface. It has

subsequently been succeeded by the GUI based YANA package [109]. Other

software specialised on structural analysis include CellNetAnalyzer [110] (suc-

cessor to FluxAnalyzer [111]), which includes algorithms for determination of

minimal cut sets. CellNetAnalyzer (and FluxAnalyzer) run in the commer-

cial computer environment MATLAB, and the user interface is the MATLAB

Command Line Interface (CLI). The COBRA Toolbox [112] is another mod-

elling package that runs on MATLAB, although an implementation using the

free programming language Python (described in more detail in Section 2.7.2)

was recently described [113]. It is mainly dedicated to FBA applied to GSMs.

Similarly, SurreyFBA [114] is also focused on applications related to FBA anal-

ysis of GSMs. It is implemented in Jython (a combination of the programming

languages Python and Java), and supports both GUI and CLI.

Two packages that are primarily written in Python are PySCeS and ScrumPy.

PySCeS [115] is mainly designed for kinetic and metabolic control analysis, but

offers some support structural modelling. ScrumPy [47] (described in more de-

tail in Section 2.7.3) provides support for structural as well as kinetic modelling

(including metabolic control analysis). All modelling work in this thesis was

carried out using ScrumPy.
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This diversity in metabolic modelling software is both an asset, in that users

with different interests and preferences have a wide selection to choose from,

and a liability, since it makes interactions between different groups and sub-

disciplines difficult. Fortunately, a common model definition language, Systems

Biology Markup Language (SMBL) [116], which aids exchange and comparison

of models between modelling platforms, has been developed. The SMBL format

supports many types of biological models and is not limited to metabolic models.

2.7.2 The Python programming language

Python is a multipurpose programming language, first released in 1991. It is

a high-level language, which means that details concerning internal manage-

ment of computer system, that may not be of immediate interest for the user,

are automated. Python supports a number of programming paradigms [117]:

Object oriented - data and functions can be encapsulated in objects, which are

instances of generic classes, this paradigm promotes a highly modular and struc-

tured management of information; imperative - computation is carried out as

a sequence of statements; functional - can be seen as the opposite of the im-

perative paradigm, functional programs only evaluate statements; reflective -

programs are allowed to modify themselves under certain circumstances.

It was designed to combine many desirable traits [118]:

• Readability: Python syntax is designed to be clear and coherent, and

thereby easy to maintain. This does not guarantee, but promotes, high

quality and less error prone software.

• Extensibility: Many extensions of Python are available, this is especially

important for scientific programming. Notable examples of this are SciPy

and NumPy.

• Productivity: A given program can be written in Python using less code

compared other languages, such as C, C++, or Java. This in combination

with clear and readable syntax makes software development both fast and

reliable.

• Portability: Python runs predictably on all major operating systems.

• Libraries: A large collection of special purpose software, referred to as the

standard library, is distributed with Python.

• Integration: Python can be integrated with software written in other lan-

guages using a variety of integration mechanisms.
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• Flexibility: The combination of extensibility, availability of libraries and

interfaces to other languages makes Python highly flexible.

• Transparency: Python is free and open source.

2.7.3 ScrumPy: metabolic modelling with Python

The ScrumPy metabolic modelling package is a collection of programs written

in Python for construction and analysis of metabolic models [87]. The currently

available versions are adapted for Unix-like operating systems. The command

line user interface of ScrumPy is built on the standard Python IDLE, which is

an Integrated Development Environment (IDL) for Python development. The

absence of GUIs, for some features of model analysis, in ScrumPy is a deliberate

design feature motivated by the loss of flexibility and extensibility involved with

overreliance on GUIs. ScrumPy can be used in both interactive and batch mode,

which promotes two key features of Python: productivity - the interactive mode

promotes a fast development cycle; reusability - reliable code for model analysis

can be stored as programs and reused in batch mode. Many of the numerically

demanding modelling tasks, such as elementary modes calculations, numerical

integration of systems of rate equations, and the LP component of FBA, are

carried out by integrated third party software, predominantly written in C.

The next chapter describes the construction and analysis of a genome-scale

model of Salmonella Typhimurium, which involves much of the methodology

covered here.
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Chapter 3

Construction and analysis

of a Salmonella

Typhimurium genome-scale

metabolic model

3.1 Introduction

This chapter describes the construction of a genome-scale model of the metabolic

network of Salmonella Typhimurium LT2, and analysis of the resulting model.

Much of the work discussed in later chapters is applied to, or otherwise in-

volves, the model described in this chapter. The aim of the work described here

is two-fold: (i) to construct a structural metabolic model based on the genome

sequence of S. Typhimurium using publicly available data sources; (ii) to anal-

yse the simulated response of the model to a physiologically relevant stimulus,

and, based on this response, construct a functional sub-network of the genome-

scale model. The methodologies and challenges associated with the first aim,

construction and validation of GSMs, are reviewed in Chapter 2 (Section 2.4).

Three GSMs of the S. Typhimurium metabolic network have been published

[119–121] previously. As reviewed in Chapter 2 (Section 2.4), stoichiometric in-

consistencies in structural models can be identified using a MILP-based method

[92]. In this chapter, the three previously published models, as well as the model

presented here, are subjected to that test. One of the primary motivations for

constructing a Salmonella GSM de novo is that this model will be used in later

chapter for integration of experimental data. This work requires that the model
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is open for modifications.

The second aim of this chapter, analysing the model’s response to a simu-

lated stimulus, involves computational approaches introduced in Chapter 2, such

as FBA (Section 2.5) and null-space based methods (Section 2.2). In brief, the

analysis is carried out by setting up and solving a set of FBA problems, where

for each new solution, the flux constraint on a physiologically relevant reaction

is increased by a constant value. The constraint that all biomass components

must be produced in experimentally observed proportions is maintained in each

solution. By collecting these solutions and identifying reactions that are corre-

lated with the stimulus, a subset of the reactions in the model can be identified

and analysed as a smaller, separate, model.

Null-space based methods can be used to group reactions in a model into

correlated sets. Since these correlations apply for all possible states the sets

of highly correlated reactions tend to be very small for GSMs. By defining a

smaller model, with a smaller solution-space, based on the reactions that carry

flux in response to an LP-imposed stimulus, a more focused and informative

null-space analysis can be carried out. This is the motivation for the approach

to model analysis used in this chapter. Here, the model response to changes in

energy demand, modelled by the ATP hydrolysis reaction, is used to identify

the set of reactions employed to meet this imposed increase in energy demand,

thus in effect identifying the energy generating sub-network of the GSM. This

method has been used previously in analysis of an Arabidopsis thaliana GSM

[94]. Once this sub-network is extracted null-space based methods are used to

characterise it.

3.2 Method

The model was constructed in a modular fashion using techniques described in

Section 2.4, to generate five modules. These consisted of:

1. A ‘top-level’ module, the prime function of which is to import the other

modules.

2. Automatically generated reactions.

3. Transporters.

4. Electron transport chain to generate proton-motive force.

5. Additional reactions.

and are described in the following sections. This defines a metabolic network

that could be shown to be capable of generating all biomass components from a
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minimal medium composed of glucose, NH3, PO4, SO4 (and O2). Biomass was

assumed to be comprised of protein (as individual amino acids), lipopolysaccha-

rides (LPS), peptidoglycan, membrane, DNA and RNA. For a complete table

of species and relative abundance, see Appendix A.

Automatically generated reactions

The BioCyc flatfiles corresponding to gene, protein, enzyme, reaction and com-

pound mappings for “Salmonella enterica enterica serovar Typhimurium str.

LT2” were obtained from the BioCyc ftp site (registration required) [122, 123]

and processed to extract relevant reaction information.

Reactions involved with non-metabolic species (e.g. “Damaged-DNA-Pyrimidine”)

or generic compounds (e.g. “Aromatic-Oxoacids”) were removed (see Appendix

C). The atomic balance, in terms of C, N, P and S, was verified for the remaining

reactions.

Polymeric species, consisting of an undefined number of monomeric units,

can give rise to mass inconsistancies if they appear in reactions with stoichio-

metric coefficient that are not proportional to the number of monomeric units

involved in the reactions. For example, the BioCyc database reports a starch

synthesis reaction with the stoichiometry:

ADP-D-GLUCOSE→ ADP + Starch

in which a single glucose moiety is added to starch, and an amylase reaction

with the stoichiometry:

Starch↔ MALTOPENTAOSE

in which five glucose moieties are removed from starch. This allows the two

to operate in tandem, with a net stoichiometry:

ADP-D-GLUCOSE→ ADP + MALTOPENTAOSE

with an overall conversion of 1 glucose moiety into five glucose moieties. The

solution is to re-write such stoichiometries with the stoichiometry of the poly-

meric species weighted by the number of monomeric moieties on the opposite

side of the equation, so in the example above, glucose is taken as the monomer

and the amylase reaction re-written as:

5 Starch↔ MALTOPENTAOSE

thus solving the problem.
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Transport reactions

The transport module defines all reactions involving transfer between external

and internal compartments, with the exception of protons (see following section),

i.e. all biomass and media components plus CO2.

All transport reactions were defined with the external species on the left

hand side, so that all subsequent flux values, whether set as a constraint or as

part of a solution, can be consistently interpreted as positive flux representing

transport into the system and negative flux as loss from the system.

Electron transport chain

A realistic representation of the electron transport chain (ETC) depends upon a

number of proton translocating reactions. In order to accommodate this, these

reactions consists of a number of proton-translocations over the inner mem-

brane, resulting in a proton concentration gradient which is used for driving

phosphorylation of ADP. Since protons were declared external, translocation of

protons cannot be coupled to ADP phosphorylation in a meaningful way. This

problem was dealt with by treating the proton translocation process as a set of

transformations of (external) intracellular protons to (internal) periplasmic pro-

tons under the consumption of redox energy. Due to the steady state constraint

the periplasmic protons thus produced must be consumed in the ATP synthase

reaction (which phosphorylates one ADP to ATP under the consumption of 4

perimplasmic protons). To this end, a separate ETC module was constructed.

The ETC module had one single elementary mode, corresponding to a P/O

ratio of 1.25, which can be compared with the literature value for E. coli of

1.33 [124]. This module also included a generic irreversible ATPase reaction

(ATP hydrolysing).

Additional reactions

Since many of the automatically generated reactions in the S. Typhimurium

PGDB involved in fatty acid synthesis included compounds without defined

atomic composition, a generic fatty acid synthetase was defined. This generic

reaction converts acetyl-CoA, NADPH, and ATP into palmitate, accordingly:

8 AcCoA + 14 NADPH + 7ATP↔ Palmitate + 14 NADP + 8CoA + 7 ADP + 7 Pi

Consequently, the synthesis of all lipid-containing biomass components were

specifically defined with palmitate as a reactant. These biomass components

included phosphatidate, phosphatidylserine, phosphatidylethanolamine, phos-
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phatidylglycerol, cardiolipin, and 1,2-diacylglycerol. Similarly, the synthesis of

the biomass components peptidoglycan and lipopolysaccharide (LPS) contained

many atomically undefined intermediates and was replaced with a lumped reac-

tion, based on pathway information obtained from BioCyc, of defined reactants:

3 Ala + PEP + NADPH + Glt + 5 ATP↔

Peptidoglycan + 5 ADP + 6 Pi + UMP + UDP + NADP

2 CMP-KDO+4ADP-GMH+3 UDP-Glc+2 UDP-GA+6 Palmitate+3 ATP+UDP-Gal↔

LPS + 7 ADP + Acet + UMP + 5 UDP + 2 CMP

Nucleoside phosphatase reactions with generic substrates (nucleoside tri-, di-

or mono-phosphate) were replaced with reactions including defined reactants.

In a similar fashion, ribonucleoside reductase reactions with generic reactants

were re-defined with specific reactants.

A number of additional reactions, that were required for synthesis of all

biomass components individually, were added to the model after confirming the

presence of genes encoding the corresponding enzymes.

3.2.1 Software and tools

The construction-process and subsequent analysis of the model was carried out

using the ScrumPy software package [47]. All model analysis by LP was based

on the Gnu Linear Programming Kit (GLPK) integrated with ScrumPy. Calcu-

lations of flux distributions were done with minimisation of the sum of fluxes as

the objective function and the allowed solutions were constrained by fixing the

flux of transport reactions specifying biomass precursor export. The LP was

defined as stated below:

minimize :
∑m

i=1 |vi| · ci

subject to


Nn,m · v = 0

vj = tj ; k ≤ j ≤ m
vATPase = rATP

(3.1)

Where v is the vector of reaction rates, N is the stoichiometry matrix, with

n rows (metabolites), and m rows (reactions), where each reaction is associ-

ated with an objective coefficient, ci, which signifies the cost of a particular

reaction. For the analysis conducted here, all objective coefficients were set

to one. vk...m are the rates of the transporter reactions involved with biomass
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components (collected as the kth to mth reactions of N), fixed to the values

or ranges specified in the vector t. The transport vector t was calculated as

the product of the vector of biomass component concentrations (Appendix A)

and a fixed growth rate (µmax). A generic ATPase reaction (vATPase) was used

to represent the consumption of energy for maintenance and polymerisation of

biomass compounds (rATP, determined using Equation 3.3). Thus, the LP is

set to minimise the sum of fluxes, under the constraints that the steady state

assumption is obeyed, that biomass precursors are produced in proportion to

the biomass composition, and that specified nutrients and excretory products

can be produced.

3.2.2 Model curation

As described in Section 3.2 all automatically generated reactions were assumed

to be irreversible until shown otherwise. The rationale behind this strategy, as

described elsewhere [94], is as follows: regardless of whether all automatically

generated reactions are assumed to be reversible, and curated using thermody-

namic data for all reactions, or assumed to be irreversible, and curated when

required, the end result of both strategies is a set of reactions producing bio-

mass precursors while obeying thermodynamic constrains. Two methods were

used to identify reactions with possible inaccurate reversibility - identification

of inconsistent enzyme subsets (described in Section 3.2.2) and analysis of bio-

mass synthesis feasibility (described in Section 3.2.2). Reversible reactions are

summarised in Appendix C.

Inconsistent subsets

Determination of inconsistent subsets, as defined in Chapter 2 Section 2.2, was

used to identify reactions that needed to be redefined as reversible or defined in

the opposite direction. A total of 32 inconsistent subsets were detected in the

model, and reversibility evaluated based on information from on-line databases

TECRDB and BRENDA.

Feasibility of biomass synthesis

In addition to the procedure described in Section 3.2.2, identification of can-

didate reactions for reversibility redefinition was done by constraining the LP

(Section 3.2.1) to produce each biomass component in turn. When no feasi-

ble solution was found all reactions in the model were temporarily declared

reversible, the LP re-solved, and all reactions carrying negative flux, that previ-

ously were defined as irreversible, were evaluated for re-definition as reversible

or defined in the opposite direction.
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Model-wide validation of energy and material consistency

Energy consistency was evaluated by setting glucose transport to zero and the

generic ATPase to an arbitrary positive value and solving the LP. If a feasi-

ble solution existed, the reversibility and directionality of the reactions in the

flux solution were checked against thermodynamic data as described in Section

3.2.2. A similar procedure was used for oxidation of the currency metabolites

NADH and NADPH. The model was subjected to a check for stoichiometric

inconsistency [92] and described in Chapter 2, Section 2.4.

Consistency validation of existing S. Typhimurium GSMs

The previously published Salmonella GSMs were converted to ScrumPy format

and the biomass reactions of all three models were decomposed into several

transporter reactions, one for each biomass component included in the original

biomass reaction, and the models checked for stoichiometric inconsistency [92].

3.2.3 Model analysis

Simulated ATP demand variation

Variations of ATP demand were simulated by solving the LP:

minimize :
∑m

i=1 |vi| · ci

subject to


Nn,m · v = 0

vj = tj ; k ≤ j ≤ m
vATPase = JATPase; Jmin ≤ JATPase ≤ Jmax

(3.2)

where vATPase (the rate of the ATPase reaction) is fixed to the set value JATPase.

All other symbols have the same meaning as in Equation 3.1. The analysis was

performed by solving the LP repeatedly, where for each solution all constraints

remained fixed, except JATPase which was fixed to increasing values in a given

range. In order to simulate changes of ATP demand in a physiologically relevant

range, the lower limit of JATPase was set to an estimated rate of total ATP

demand (Equation 3.3, rATP)

rATP = YATP · µ+mATP (3.3)

which, using parameters derived from E. coli (YATP = 60 mmol ATP (g

DW)−1, mATP = 8.4 mmol ATP (g DW)−1 h−1, and µmax = 0.7 h−1, amounts

to 51 mmol ATP (g DW)−1 h−1 [125, 126]. The upper limit, rmax, was chosen as

the point at which all responsive reactions responded with a constant increase to
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the imposed ATPase flux (determined empirically as 350 mmol ATP (g DW)−1

h−1). The set of flux solutions of the responsive reactions was used to construct

a correlation tree, i.e. a dendrogram depicting similarities in flux response

quantified as the magnitude of the Pearson’s correlation coefficient between the

set of flux values of all pairs of reactions [94].

Flux correlation analysis

The set of LP solutions obtained using Equation 3.2 in Section 3.2.3 were col-

lected in a matrix, S̄p,m, where each of the m columns corresponds to a reaction

in the model, and each of the p rows corresponds to an LP solution, as such:

S̄p,m =

v1,Jmin v2,Jmin . . . vm,Jmin

...
...

. . .
...

v1,Jmax
v2,Jmax

. . . vm,Jmax

(3.4)

S̄ was refined into matrix Ŝ by removing reactions that did not respond to

the increase in ATP demand, i.e. columns where all elements are identical were

removed, or:

Ŝ = {S̄ | S̄1...n̂...i,j 6= S̄1...n̂+1...i,j} (3.5)

(∃n̂ ∈ {1, . . . , p− 1}; i ∈ {1, . . . , p}; j ∈ {1, . . . ,m}).

thus,

Ŝp,l =

vx,Jmin . . . vz,Jmin

...
. . .

...

vx,Jmax
. . . vz,Jmax

(3.6)

where l < m and 1 ≤ x, z ≤ l.
The flux correlation between the reactions in the Ŝ matrix was quantified as

the Pearson correlation coefficient between every combination of column in the

matrix. The correlation coefficient was defined as:

r(X,Y ) =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(3.7)

Equation 3.7 was applied to all combinations of column-vectors in matrix Ŝ,

generating the square matrix ∆:
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∆l,l =

r
(
Ŝ1...p,x, Ŝ1...p,x

)
. . . r

(
Ŝ1...p,x, Ŝ1...p,z

)
...

. . .
...

r
(
Ŝ1...p,z, Ŝ1...p,x

)
. . . r

(
Ŝ1...p,z, Ŝ1...p,z

) (3.8)

As indicated in the definition, the diagonal of ∆ will only contain ones

and the matrix is symmetric around the diagonal. The metabolic tree was

constructed as described in Chapter 2, Section 2.2.

Core model extraction and analysis

All reactions that displayed a change in simulated flux as a response to the

increase in ATP demand, i.e. the reactions represented by the columns of ma-

trix Ŝ defined in Equation 3.6, Section 3.2.3, were assembled into a new core

model. The reactions of this core model included transporters that exhibited

flux change, thus defining the external metabolites of the model as glucose, oxy-

gen and carbon-dioxide. The data generated using Equation 3.2 was also used

for calculating fixed rates of metabolite transfer between the core network and

the global network. These values were determined by balancing the net rate of

change of each metabolite in the core model for each level of fixed ATP demand,

using the stoichiometry of the core network and the reaction rates determined

in Equation 3.2. In other words, the matrix of metabolite balances, E, in the

core model, over the set of ATPase flux values investigated was obtained by

multiplying the stoichiometry matrix of the core model, N′, with an LP solu-

tion obtained with Equation 3.2, i.e. the transpose of any row-vector of matrix

Ŝ, v:

E = N′f,l · vT (3.9)

Where f is the number of metabolites in the core model, and l the number

of reactions in the core model. If the net flux of a given metabolite amounted

to zero, that metabolite was balanced within the sub-network, a negative net

flux indicated export from the sub-network, and a positive net flux import to

the sub-network.

Model condensation

In order to simplify the structure of the core model, it was condensed by re-

placing model reactions with the net-reactions of the corresponding enzyme

subsets. The formal description in this section is based on existing methods

available within the ScrumPy-evironment [47]. The procedure is based on ex-

pressing the enzyme subsets of the core model as a matrix, Sm,d (defined in

Equation 3.11), where each of the d columns represents a subset (or a reaction
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name if the reaction forms a singleton subset), each of the m rows represents a

reaction, each element is the normalised flux ratio of the subsets (as described

in Chapter 2, Section 2.2), and all structurally dead reactions and inconsistent

subsets have been omitted. In order to construct S, the intermediate square

matrix Dm,m is defined as the matrix of all reaction flux ratios:

Dm,m = [di,j ]m,m
(3.10)

where di,j is defined in Equation 2.5.

S can now be defined as:

Sm,d = {Dm,m |D1...m,a 6= D1...m,b} (3.11)

(∀a, b ∈ {1, . . . ,m})

i.e. S is the subset of unique column-vectors of D. It follows from the

symmetri of D that each row-vector in S has only one non-zero element, since

a reaction can only be in one subset, but each column-vector can have one non-

zero element (if the subset is singleton), or several (if the size of the subset is

greater than one).

Condensation of the core model was carried out by recursively multiplying

the stoichiometry matrix with the subset matrix (S) and removing isostoichio-

metrical reactions until no further condensation could be achieved, as outlined

in Algorithm 1. A simpel example of model condensation is shown in Fig. 3.1.

Algorithm 1 Minimal algorithm for condensing a given stoichiometry matrix
N by replacing sets of reactions with enzyme subsets. The auxiliary function
delete isoforms(N) identifies all isostoichiometric reactions and for any given
set of redundant reactions deletes all but one from N, it returns a list of isos-
toichiometric reactions. The function subsets matrix(N) returns the enzyme
subsets of N expressed as a matrix (as described in Equations 3.10 and 3.11
delete isoforms()).

function Condense(N)
iso := delete isoforms(N)
S := subsets matrix(N)
N := N · S
CanCondense := length(isos)>0 or length(S1...m,d)>length(Sm,1...d)
CanCondense := CanCondense and length(N1...n,m)>0
if CanCondense then

Condense(N)
end if
return N,isos

end function
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Figure 3.1: Illustration of the model condensation procedure. Colours of reac-
tion arrowheads and matrix elements indicate enzyme subset memebrship of a
given reaction. A: Network diagram of model before condensation. B : Kernel
matrix of model in A. The kernel indicate that steady state can be achieved by
either carrying flux from external metabolite E to external metabolite A through
R2 and R3 or by running a futile cycle involving R2, R3, R4, and R5 (by liear
combination of these two solutions, a solution involving R4, and R5 instead of
R2 and R3 can be obtained). Note that the kernel only give prototype solutions
that are not necessarily thermodynamically feasible, i.e. in this case only the
reverse of solution one is feasible. Enzyme subsets can be obtained from the
kernel as the reactions with proportional row–vectors. C : Matrix D is obtained
by applying Equation 3.10 to the kernel matrix. D : Matrix S is obtained as the
set of unique column–vectors in matrix D (by applying Equation 3.11). By ap-
plying Algorithm 1 to the network, the net reaction is the conversion of external
A to external E (with no internal metabolites).
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Table 3.1: Model properties. Number of reactions and metabolites of the
different modules constituting the model. Since metabolites can occur in more
than one module the total number of metabolites is less than the sum of the
number of metabolites in each module. Only genes whose gene-product are
involved in at least one reaction are included in the enumeration. Note that the
number of genes ultimately encoding reactions in the model is an underestimate,
gene–associations are not established for all reactions. During the curation
process 611 reactions and 374 metabolites defined in the database were excluded
from the model.

Module Reactions Metabolites Genes
S. Typhimurium PGDB 1623 1385 1,439
Automatically generated 1012 1011 -
Transporters 70 69 -

Input 5 7 -
Output 65 64 -

Electron transport chain 5 11 -
Additional reactions 74 147 -
Total 1161 1058 796

3.3 Results

3.3.1 General model properties

The final model had the characteristics summarised in Table 3.1. LP analysis

showed that all biomass components could be produced in biologically relevant

proportions from minimal media components, employing 318 reactions (includ-

ing transporters) of the 1161 reactions, ultimately encoded by 268 genes. The

capability to produce biomass precursors was retained under simulated varia-

tions in ATP demand. Approximately half of the reactions in the network, 510

out of 1161, were identified as “dead” (508 reactions were associated with zero-

vector rows in the null-space matrix, in addition correlation coefficient analysis,

described in [48], revealed two additional dead reactions), meaning that the re-

actions were unable to carry flux under the given media composition (glucose

minimal media under aerobic conditions).

3.3.2 Analysis of model inconsistencies

Analysis of unconserved metabolites in the four Salmonella models considered

here shows the two models published first (iRR1083 [119] and iMA945 [120])

did not have any unconserved metabolites, whereas for the consensus model

[121] this number was 430 metabolites. For the model presented here, 10 un-

conserved metabolites were identified (which could be reduced to 7 by removing
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Table 3.2: Metabolite import and export of core network. The table shows the
constants fluxes of import and export of metabolites between the core and the
main model during variation of ATPase flux. The number of involved reactions
refers to reactions in the main model only. Metabolites that were transported
with a flux below 1.00 were omitted from the table. Flux units are in mmol (g
DW)−1 h−1.

Import Export
Metabolite Flux Reactions Metabolite Flux Reactions

Conserved moieties
ADP 27.00 33 ATP 27.00 48
NADP 10.38 26 NADPH 10.38 25
NADH 8.70 14 NAD 8.70 16
Pi 40.58 37 GLT 6.90 21
NH3 11.39 12 PYR 8.57 10
αKG 7.70 10 PEP 3.95 6
CO2 4.06 20 3-PGA 2.64 1
OAA 2.97 2 ASP 2.42 9
CoA 2.49 9 GAP 4.90 3

AcCoA 1.76 7

compartment-specific metabolites). These compounds were limited to species

that only consisted of hydrogen and oxygen, namely: proton, oxygen, water,

superoxide, hydrogen peroxide, molecular hydrogen (and electron).

3.3.3 Model response to changing ATP demand

Of the 318 reactions required for synthesis of biomass, a total of 54 reactions

responded to the imposed ATP demand variation. This set of reactions was

reduced further to 34 by removing reactions where the total change in flux

response was below a treshold of 0.01 mmol (g DW)−1h−1.

The remaining reactions formed a connected network, which to a large extent

coincided with glycolysis, TCA, and the Entner-Doudoroff pathway (Fig. 3.2).

Since the ATP variation analysis involved increasing the ATP demand, whilst

keeping the rate of biomass precursor synthesis constant, the flux through the

core model could be divided into a variable and a constant component, as de-

scribed in Section 3.2.3. The constant fluxes of metabolite transfer between the

core network and the genome-scale network are summarized in Table 3.2.

Condensation of the core model, i.e. replacement of reactions with enzyme

subsets as described in Section 3.2.3, resulted in a model consisting of six subset

and five original reactions (Fig. 3.3). The stoichiometries of the enzyme subsets

are summarized in Table 3.3.

The flux correlations between the reactions of the core obtained using Equa-

tion 3.8 from the LP data with the full model, were visualised using a metabolic
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Figure 3.2: The core network. Colours represent different enzyme subsets. The
enzyme subsets of the model are indicated by different colours. Grey boxes
(circles) represent import (export) between the GSM and the core network, in
accordance with the data in Table 3.2. The grayed reactions (R35 and R36) were
not part of the core network, but have been included since they form part of the
canonical TCA. The numbers refer to the abbreviated names of the reactions
(Table 1), accordingly: R1 - glucose transporter, R2 - PGIsomerase, R3 - PFK,
R4 - FBPAldolase, R5 - TriPIsomerase, R6 - G6PDH, R7 - PGLactonase, R8 -
PGlucDehydr, R9 - KDPAldolase, R10 - GapDH, R11 - PGKin, R12 - PGAM,
R13 - Enolase, R14 - PyrKin, R15 - PyrDH, R16 - PhoAcTrans, R17 - AcetKin,
R18 - acetate transporter, R19 - CitLyase, R20 - AconDehydr, R21 - AconHydr,
R22 - IsoCitDH, R23 - 2-KGDH , R24 - SCoASynth, R25 - SucDH, R26 - GluDH-
(NAD(P)), R27 - Aspartase, R28 - AspTrans, R29 - CytOx, R30 - NADH DH,
R31 - ATPase, R32 - ATPSynth, R33 - CO2 transporter, R34 - O2 transporter,
R35 - FumHydr, R36 - MalDH.
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Table 3.3: Stoichiometry of enzyme subsets generated from the core model.
For each enzyme subset of the core network the condensed net stoichiometry is
shown. External metabolites are indicated by the prefix “x ”.

Enzyme
subset

Stoichiometry

Reactants Products
Ess 1 NAD + ADP + Q + αKG +

NADP + NH3 + Acet
→ NADH + 2 CO2 + GLT +

NADPH + ATP + QH2

Ess 2 x O2 + 2 QH2 + CO2 → 2 Q + x CO2

Ess 3 PEP + 2 Pi + 2 NAD + 2 ADP
+ x Glc + Pyr

→ 2 Acet + 2 NADH + 2 CO2 + 2
ATP + G6P

Ess 4 NADP + G6P → Pyr + GAP + NADPH
Ess 5 Pi + ADP + NAD + GAP ↔ PEP + NADH + ATP
Ess 6 G6P + PEP → Pyr + 2 GAP
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tree (Fig. 3.4). Reactions that occur in the same enzyme subset in the core

model are highly correlated in flux response, as expected. The agreement be-

tween null-space and and LP based correlation is not, however, absolute. This

deviation is due to the omission of constant import and export transporters

from the structural analysis of the core model. The flux responses of the core

reactions to increasing ATP demand fell into two broad categories - (i) reactions

that increased monotonically in magnitude with ATPase and (ii) reactions that

eventually reached a plateau and maintained constant flux for ATP demands

above a certain threshold. These two categories can be clearly distinguished as

the two main clusters in the metabolic tree, where the reactions that continually

increse include the reactions of enzyme subsets 2, 3, 5 and 6, the acetate trans-

porter and the electron transport chain reactions. The reactions that reached a

constant flux value with increasing ATP demand included the Entner-Doudoroff

(subset 4) and TCA pathways (subset 1). The difference between the two cat-

egories of reactions is also pronounced in Fig. 3.5, where the reactions of the

first category (i.e. those always increased with ATP demand) are found in Fig.

3.5.A – 3.5.C, whereas reactions from the second category are found in Fig.

3.5.B and 3.5.D. The elementary modes of the core model (Fig. 3.6) highlight

the simplicity of the model: despite the seemingly complex structure of Fig. 3.2

there are only four elementary modes. Each mode involves import of glucose

(and the remaining reactions in subset 3) and oxygen, hydrolysis and regenera-

tion of ATP, export of CO2, and lower glycolysis. Flux can pass through either

upper glycolysis (subset 6) or Entner-Doudoroff (subset 4), which represents

two separate modes. Likewise, after passing either subset 4 or 5, flux can either

exit the system through the acetate transporter after passing subset 3, or enter

TCA (subset 1). Thus, the redundancy between the acetate and the TCA route

forms the additional two modes of the core model. The flux response of the core

reactions can be seen as a shift away from primarily mode 1 towards mode 4, i.e.

a shift from a subsets 1 and 4, which both generate NADPH, towards subset 6,

which indirectly has a higher energy yield than subset 4, and the acetate trans-

porter, which has a lower flux-cost than subset 1. Subset 6 has a higher energy

yield because all the flux is directed towards subset 5 (lower glycolysis), which

generates one unit of ATP and one NADH, unlike subset 4 which only directs

half the flux to subset 5 and half goes directly to subset 3. In other words, the

relative importance of the NADPH-generating subsets decreases as the energy

demand increases.
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3.4 Discussion

3.4.1 Model construction and characteristics

As indicated in Table 3.1, iterative refinement of the initial model based on the

S. Typhimurium PGDB into the GSM presented here involved removing 611

reactions and 374 metabolites from the final model. This curation was mainly

aimed at atomically unbalanced reactions and reactions involving atomically un-

defined metabolites. The former type of reaction is an obvious error, and should

be replaced with correct stoichiometry, whereas the latter type of reactions are

not necessarily erroneous; they are however unsuited for GSMs. The approach

used here is based on identifying undefined metabolites and where necessary, i.e.

when the metabolite in question represents a metabolically relevant compound

with undefined composition, replace the metabolite with defined instances of the

metabolite. An example of this is the replacement of the generic and undefined

metabolite “NTP” with the four nucleoside triphosphates (and thus replacing

one reaction with four reactions).

Apart from the risk of including atomically unbalanced reactions when equat-

ing PGDBs with genome-scale models, a major remaining obstacle is the correct

assignment of reaction reversibility. As described in Sections 3.2.2 and 3.2.2 the

method of identification of candidate reactions for re-definition of reversibility

used here is based on analysis of enzyme subsets and LP. The rational for this

approach is mainly practical. Most reactions in a metabolic network involved

with transforming substrate into biomass are assumed to primarily carry flux in

one direction, reactions that will inhibit this function due to their irreversibility

will be identified with the methods used here.

The size of the model can be compared to GSMs constructed using the same

methodology as used here, e.g. a Streptococcus agalactiae 2603V/R GSM with

631 reactions [127] based on a genome of 2.16 Mb encoding 2,175 genes [128] the

A. thaliana GSM in [94] had 1,406 reactions based on a 157 Mb genome [129]

with at least 27,000 genes [130]. The corresponding numbers for the S. Ty-

phimurium GSM presented here are 1161 reactions based on a 4.857 Mb genome

containing 4,489 protein-coding genes [122].

3.4.2 Comparison with other models

As mentioned, three models of S. Typhimurium metabolism have been con-

structed [119–121]. However the first two (iRR1083 [119] and iMA945 [120])

were constructed by modifying a pre-existing E. coli model (iAF1260) [126], i.e.

genetic differences, in terms of presence or absence of genes encoding metabolic

enzymes, between E. coli and S. Typhimurium were identified and the relevant
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reactions subsequently removed from or added to the S. Typhimurium model.

A potential problem with this approach is that it might underestimate pheno-

typical differences between E. coli and S. Typhimurium since genes are anal-

ysed in isolation. This is different from the approach used for construction of

PGDBs, where the set of predicted enzymatic reactions of the organism, based

on genome sequence alone, is compared to a library of “canonical” pathways,

so that if a critical number of reactions in a given pathway is identified in the

set of organism-specific reactions, this pathway (and all reactions) is included

in the PGDB, even if all reactions in the pathway are not identified [123]. The

benefit of this approach is that reactions that are spontaneous or where there

is insufficient knowledge of the enzymatic basis of an observed reaction will not

be omitted from the model. From a model construction point-of-view this is

beneficial since the number of dead reactions will be minimised. The drawback

is the risk of overestimating the metabolic capacity of the organism. Given that

the reference model (iAF1260) is free from unconserved metabolites, any model

constructed by appending or removing individual reactions (provided that the

added reactions are consistent) will also be free from unconserved metabolites.

Hence, the consistency of iRR1083 and iMA945 cannot be considered without

taking their similarity to iAF1260 into account.

Unlike iRR1083 and iMA945, the Salmonella consensus model, which is

based on iRR1083 and a previously unpublished Salmonella model (constructed

using the same methodology as that used for iRR1083 [121]), contained 430 un-

conserved metabolites. So, although more detailed and larger than the previous

models (2,201 reactions were included in the consensus model, 1,079 in iRR1083

and 1,964 in iMA945), this model suffers from the drawback that more than a

third of the metabolites are inconsistent. As reviewed in Chapter 2 (Section 2.4),

a consequence of these inconsistencies is the potential for flux distributions that

violates the law of mass conservation, i.e. the appearance (or disappearance)

of material from nothing. This is a serious modelling error that is hard (if not

impossible) to detect, but can be prevented by using a consistent model. For

the reasons presented in this section, the model presented here was constructed

de novo from the S. Typhimurium genome and thoroughly curated to ensure

stoichiometric consistency.

3.4.3 ATP demand analysis

The core model identified from the variation of ATP demand shared a consider-

able number of reactions with components of central carbon metabolism - e.g.

glycolysis, TCA cycle and the electron transport chain. Three groups of reac-

tions, however, are less expected: The reactions of subset 4, subset 3, and citrate
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lyase, aspartate ammonia-lyase, and aspartate aminotransferase from subset 1.

The reactions of subset 4 (glucose-6-phosphate-1-dehydrogenase, 6-phospho-

gluconolactonase, phosphogluconate dehydratase and KDP aldolase) are con-

sidered components of the oxidative pentose phosphate pathway (glucose-6-

phosphate-1-dehydrogenase and 6-phosphogluconolactonase) and the Entner-

Doudoroff pathway (phosphogluconate dehydratase and KDP aldolase). The

Entner-Doudoroff pathway is primarily associated with growth on sugar acids

(e.g. gluconate, glucuronate and galacturonate) [131] which are metabolised

to 6-P-gluconate. During growth on glucose, glucose-6-P is converted to 6-P-

gluconate by the OPPP component of subset 4 (i.e. glucose-6-P-1-dehydrogenase

and 6-phosphogluconolactonase). The response of the reactions in subset 4 to

increasing ATP demand shows that the flux through the subset increased until

reaching a constant value. This switch is coordinated with the activation of

the reactions of subset 6 (upper glycolysis). As mentioned (Section 3.3.3), one

interpretation of this observation is that it is part of an overall switch from

elementary modes in the core network that generate NADPH to modes that

generate NADH and ATP, i.e. a switch from a primarily biosynthetic flux dis-

tribution to one with a higher energy yield. This observation would suggest that

an alternative function of the Entner-Doudoroff pathway, apart from its role in

growth on sugar acids, is to offer an NADPH-generating alternative to upper

glycolysis (subset 6), without involving all the reactions of the oxidative pentose

pathway. This hypothesis is consistent with the observation that E. coli growing

at maximum rate distributes a minor proportion (2%) of carbon flux through the

Entner-Doudoroff pathway [132]. Similarly, Peng and Shimizu [133] showed, us-

ing 2-D protein electrophoresis applied to E. coli cultures, that all the enzymes of

subset 4 were expressed under all conditions investigated. Actually, apart from

expression profiles from aerobic gluconate medium (which resulted in high ex-

pression of Entner-Doudoroff enzymes and slightly lower OPPP expression) the

highest expression of the enzymes in subset 6, especially the Entner-Doudoroff

enzymes, was obtained from aerobic glucose medium.

A similar response pattern to that of the reactions in subset 4 was observed

in an A. thaliana genome-scale model [94], where flux through the oxidative

component of the oxidative pentose pathway decreased until being turned off

in response to increasing ATP demand. As in the analysis presented here, a

possible interpretation of this is that the redox energy is shifted from NADPH

to NADH as the demand for ATP is increased.

Subset 3 involves the glucose transporter (via phosphotransferase system

(PTS)), pyruvate dehydrogenase and the reactions of the acetate dissimilatory

pathway (phosphate acetyltransferase and acetate kinase). The set is closely

associated with, but does not include, the acetate exporter. The generation of
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acetate is commonly associated with anaerobic metabolism in bacteria. How-

ever, E. coli has been shown to produce large amounts of acetate when grown

aerobically on glucose. The function of this phenomenon is unclear. Tradi-

tionally, it has been attributed to wasteful “overflow” metabolism, however,

mutation studies has shown that acetate dissimilation allows high growth rates

and cell densities [134]. El-Masi [134] suggested that acetate formation serves

the purpose of supplying ATP to the rest of metabolism and coenzyme-A to 2-

oxoglutarate dehydrogenase in the TCA. The analysis presented here suggests

that an optimal balance between ATP generation and flux minimisation (i.e.

minimisation of protein investment of the cell), whilst synthesising biomass,

can be achieved by diverting a significant proportion of the central carbon flux

into acetate excretion. This is especially pronounced for high energy demand

levels. Inspection of the elementary modes of the core model shows that the

flux distribution that is obtained at high energy demand is not the one with the

highest ATP yield, which is the mode that includes both TCA and glycolysis,

but not Entner-Doudoroff and acetate excretion (mode 2 in Fig. 3.6). In con-

trast, the analysis suggests that the TCA primarily serves a biosynthetic rôle

even at high energy demand, since the response curves reaches a constant value

with increasing energy demand. This is consistent with the observation that

high glucose concentrations repress expression of key TCA enzymes (succinate

dehydrogenase, succinyl-CoA synthetase and 2-oxoglutarate dehydrogenase) un-

der aerobic conditions [133, 135, 136]. This observation has been explained as

an effect of oxygen limitation, i.e. the situation where the glucose availabil-

ity exceeds the oxygen availability [136], the analysis presented here however

shows that this mode of operation is theoretically optimal even if there are no

limitations on glucose and oxygen uptake rates.

Another set of reactions not commonly associated with energy metabolism

are citrate lyase, aspartate ammonia-lyase, and aspartate aminotransferase from

subset 1 and the singleton subset glutamate dehydrogenase, which displays a

similar flux response as subset 1. Citrate lyase is primarily considered to be an

anaerobic enzyme that facilitates growth on citrate [137], although the failure

to delete the genes encoding the enzyme would suggest a more essential func-

tion in vivo [138]. It has also been linked to survival of S. Typhimurium [139]

and Y. pestis [140] in macrophages. It has been shown to be reversible [141] In

the work presented here it appears as if the function of citrate lyase in relation

to energy metabolism is closely associated with acetate dissimilation: when all

acetyl-CoA is channelled towards acetate (thereby generating one ATP per ac-

etate produced) no acetyl-CoA can enter TCA directly through citrate synthase.

By synthesising citrate from acetate and oxaloacetate the pool of acetate that

does not get excreted goes into TCA. This potential rôle of citrate lyase is not
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supported by direct experimental evidence, but can not be ruled out. The set

of reactions with the most complex topology involves aspartate ammonia-lyase,

and aspartate aminotransferase and glutamate dehydrogenase. They are not

part of a single biosynthetic pathway: in E. coli aspartate ammonia-lyase is

primarily associated with glutamate degradation [142], aspartate transaminase

is associated with both glutamate degradation and aspartate biosynthesis [143],

and glutamate dehydrogenase is primarily associated with glutamate biosynthe-

sis [144]. Although this set has the most complex topology of the subsets in the

catalytic core, the net stoichiometry is simple:

Fum + NADP↔ OAA + NADPH

and therefore acts to bypass the fumarate and malate dehydrogenase reac-

tions of the TCA cycle, again suggesting a possible rôle of the set of reactions

that would be difficult to identify without the use of a metabolic model.

As a consequence of the condensation, some structural features of the core

model are highlighted, primarily the association of pyruvate kinase to subset 6

(upper part of glycolysis, Fig. 3.2). This feature is a structural consequences

of the inclusion of subset 4 and the acetate transporter, since in the absence

of these subsets the network would form one single subset. The association of

pyruvate kinase with the reactions of upper glycolysis is supported by experi-

mental observations in E. coli : In the study by Siddique et al. [145] a pyruvate

kinase isoenzyme (pyruvate kinase I, encoded by pykF ) was deleted in E. coli

and cultures grown on glucose minimal medium were subjected to transcrip-

tional and metabolic flux analysis. The results showed that there was a corre-

lation in flux decrease between pyruvate kinase (21% of wild type, measured as

flux through pyruvate kinase II compared to wild type pyruvate kinase I) and

some of the reactions of upper glycolysis, 6-phosphofructokinase (13.4% of wild

type), triosephosphate isomerase (83% of wild type), and glucose-6-phosphate

isomerase (13.4% of wild type). The flux through fructose-bisphosphate al-

dolase, which is the remaining member of ESS 6, was not explicitly reported.

This decrease through upper glycolysis was concomitant with increased flux

through the first and the third reaction of the pentose phosphate pathway (6-

phosphogluconate dehydrogenase (273% of wild type) and glucose-6-phosphate

dehydrogenase (273% of wild type)). Since the flux through the TCA cycle

was only moderately decreased (97%), it could be assumed that flux from the

pentose phosphate pathway to the TCA cycle involved GAP as an intermedi-

ate, indicating that lower glycolysis was not severely affected by the deletion of

pyruvate kinase II. It was suggested that the cause of the flux decrease through

upper glycolysis was due to inhibition of 6-phosphofructokinase by PEP, which
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would be assumed to accumulate as an effect of the pyruvate kinase II deletion.

These results thus lend support to the suggested association between pyruvate

kinase and upper glycolysis.
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Chapter 4

Analysis of a Lactobacillus

plantarum genome-scale

metabolic Model

4.1 Introduction

This chapter describes the conversion of an existing genome-scale model of the

metabolic network of L. plantarum [70], into a version consistent with the mod-

elling conventions of the ScrumPy-software (e.g. a modular model design and

consistent definition of transport reaction external metabolites) [47] and com-

patible with the BioCyc database [123]. The L. plantarum model is then sub-

jected to the same analysis as was the S. Typhimurium model in Chapter 3;

response to ATP demand.

The conversion of the L. plantarum GSM to ScrumPy/BioCyc standards is

motivated by the analysis in subsequent chapters, where it is used for analysis

of metabolic interactions with S. Typhimurium, which requires that reaction

and metabolite names in the two models are consistent. The original model

was constructed using BiGG-nomenclature [146], which is not cross-referenced

to BioCyc.

A limitation with FBA often encountered when applying the technique to

metabolic models of microbial metabolism capable of both mixed acid and ho-

molactic fermentation, is that the experimentally observed mode of metabolism,

homolactic fermentation, has a lower energy yield than the alternative, and thus

will not appear in an optimal LP solution. This phenomenon is not limited to

lactic acid bacteria, FBA solutions for metabolic models of baker’s yeast typ-

ically favour aerobic respiration over the experimentally observed combination
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of respiration and fermentation [72].

The reason for this discrepancy is believed to be because L. plantarum

favours growth rate over biomass yield [70]. As reviewed in Chapter 2, Sec-

tion 2.5, nominal optimisation of growth rate in FBA problems are actually

optimisations of growth yield. In order to obtain FBA solutions that are closer

to the observed ones one practise has been to constrain the rate of key reac-

tions to experimentally observed values [147]. Similarly, Simeonidis et al. [148]

showed that more accurate FBA flux solutions could be obtained for a baker’s

yeast GSM by incorporating an energy cost proportional to the flux through

respiratory reactions, representing the cost of synthesising and maintaining mi-

tochondria.

Here a similar approach is used: a cost is added to output reactions that

are not observed in vivo, thereby promoting, but not forcing, solutions that are

experimentally observed.

4.2 Methods

The main issues covered in this section are: (i) reconstruction of the L. plan-

tarum GSM [70] based on the BioCyc database; (ii) adaptation of FBA to deal

with the discrepancy between optimal and experimentally observed flux distri-

butions in L. plantarum; (iii) effect of FBA formulation (iv) on model response

to energy demand variation. Since the technique of varying energy demand in

order to identify reactions involved in catabolism was introduced in Chapter 3,

Section 3.2.3, this will only be covered briefly here.

4.2.1 Modification of a Lactobacillus plantarum model

The ScrumPy-based L. plantarum was constructed with a similar modular struc-

ture to that of S. Typhimurium model described in Chapter 3, Section 3.2, where

all reactions were ultimately derived from the original L. plantarum model. The

modules included in the final model were: Automatically generated reactions;

Transporters; Electron transport chain to generate proton-motive force; Addi-

tional reactions; Fatty-acid biosynthesis.

Computational methods

The L. plantarum model [70] was downloaded as a spreadsheet document. All

reaction-information was extracted and used for programmatic sorting of the

reactions into categories corresponding to the degree of manual curation needed

to express the reaction using BioCyc-standards. The following categories were
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used: Matching reactions - model-reactions whose annotation included EC-

number and a common-name that could be uniquely associated with a BioCyc

entry; Transporter - model-reactions that involved at least one external metabo-

lite; Non-unique reactions - reactions that could only be partially matched to

BioCyc entries (e.g. alcohol dehydrogenase which can use a multitude of sub-

strates); and Non-matching reactions - all reactions that did not fall into any

of the above categories (e.g. artificial reactions, such as ).

The BioCyc equivalent of all reactions that were uniquely identified were in-

corporated into the automatically generated module. The transporter module

was defined with the reactions identified as transporters (as described above).

These reactions fell into two categories - importers of medium components

(thus defining the growth medium available to L. plantarum) and exporters of

metabolic by-products. Exporters of biomass components were manually added

to the transporter module (see section below). The fatty-acid biosynthesis, addi-

tional reactions and electron transport chain were manually constructed, based

on the reactions that did not match any BioCyc entries. The non-unique reac-

tions were incorporated into the automatically generated module when unique,

well-defined equivalents could be identified in BioCyc, otherwise they were man-

ually defined in the additional reactions module.

Deviations from original model

The following two reactions with complex stoichiometries in the original model

were replaced with sets of simpler reactions. A lumped reaction for biosyn-

thesis of the complex lipid acyl-glycerol-3-phosphate (L. plantarum specific),

”GAT1 LPL” in the original model, was expressed with BioCyc compound-

identifiers and split into fatty-acid specific reactions:

0.12 "2-Hexadecenoyl-ACPs" + 0.32 "Octadec-2-enoyl-ACPs"

+ 0.25 c_propyl_octadecan_acp + "GLYCEROL-3P" + 0.26

"2-Hexadecenoyl-ACPs" + 0.02 "Stearoyl-ACPs" + 0.03

"Tetradec-2-enoyl-ACPs" -> "ACP" + acyl_gly_P_LP

was replaced with six acyltransferase reactions and one assembly reaction,

in order to facilitate curation of the net reaction:

0.12 "2-Hexadecenoyl-ACPs" -> 0.12 acyl1 + 0.12 "ACP"

0.32 "Octadec-2-enoyl-ACPs" -> 0.32 acyl2 + 0.32 "ACP"

0.26 "2-Hexadecenoyl-ACPs" -> 0.26 acyl3 + 0.26 "ACP"
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0.02 "Stearoyl-ACPs" -> 0.02 acyl4 + 0.02 "ACP"

0.03 "Tetradec-2-enoyl-ACPs" -> 0.03 acyl5 + 0.03 "ACP

0.25 c_propyl_octadecan_acp -> 0.25 acyl5 + 0.25 "ACP"

0.12 acyl1 + 0.32 acyl2 + 0.26 acyl3 + 0.02 acyl4 +

0.03 acyl5 + 0.25 acyl5 + "GLYCEROL-3P" -> acyl_gly_P_LP

In these reactions the metabolites acylX were used to represent the acyl

moiety of an acyl-ACP molecule.

In the original model, biomass synthesis was modelled as a single reaction

where each biomass component was expressed as a reactant with the stoichio-

metric coefficients corresponding to the concentration of the component. Export

of certain polymeric biomass components (protein, DNA, and RNA) were ex-

pressed using the component metabolites, e.g. the transport of protein was split

into 18 tRNA-dependent transporters with the stoichiometry:

x_AA + "AA-tRNAs" <> "Charged-AA-tRNAs"

The biosynthesis of glutamine- and glutamate-charged tRNAs are interde-

pendent in L. plantarum, as can be seen from the stoichiometry of the last step

in the pathway, “6.3.5.7-RXN”:

1.0 GLN + 1.0 ATP + 1.0 GLT-tRNAs <> 1.0 Charged-GLN-tRNAs

+ 1.0 Pi + 1.0 GLT + 1.0 ADP

Thus the exporter of either of the amino acids must also export the other.

This was modelled using a combined glutamine/glutamate exporter:

2.0 "GLT-tRNAs" + x_GLN + x_GLT <> "Charged-GLT-tRNAs" +

"Charged-GLN-tRNAs"

Model validation

The consistency of the model was tested using the same tests as described in

Chapter 3, Section 3.2.2: Feasibility of synthesis of individual biomass compo-

nents using FBA, energy and material consistency, identification of unconserved

metabolites.

FBA problem formulation

Biomass synthesis was modelled using the same approach as applied to S. Ty-

phimurium in Chapter 3 (Equation 3.1):
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minimize :
∑m

i=1 |vi| · ci

subject to


Nn,m · v = 0

vj = tj ; k ≤ j ≤ m
vATPase = rATP

(4.1)

i.e. the objective was to minimise the sum of total flux through the network

(with each reaction carrying a certain flux-cost, c), given the steady state con-

straint (Nn,m · v = 0), the constraint that biomass exporters (vj) must carry

flux fixed to a certain value (tj), and that maintenance energy (modelled as flux

through a generic ATPase), vATPase, was fixed to a value, rATP , determined

using Equation 4.2:

rATP = YATP · µ+mATP (4.2)

where the experimentally determined parameters were YATP = 27.4 mmol

ATP (g DW)−1, mATP = 0.36 mmol ATP (g DW)−1 h−1, and µ = 0.4 h−1 [70],

which resulted in a flux of 11.3 mmol ATP (g DW)−1 h−1.

Each biomass exporter was fixed to the value corresponding to the product

of the concentration of the respective component and the growth rate.

Equation 4.1 was used in two ways: (i) modelling of mixed acid fermentation

by assigning an equal cost, c, of 1.0 for all reactions in the network and (ii)

modelling of homolactic fermentation by assigning a 100-fold higher cost to

exporters of metabolic by-products other than lactate (CO2, ethanol, formate,

acetate, succinate, and pyruvate).

4.2.2 Model analysis

Model response to ATP demand variation

The L. plantarum model was analysed using the same methods of variation of

energy demand as described in Chapter 3, Section 3.2.3. Briefly, this involved

re-solving Equation 4.1, for each iteration the value of the the fixed maintenance

energy (i.e. the flux of the ATPase reaction) was increased by a constant value

(i.e. vATPase was fixed to JATPase in the range Jmin . . . Jmax), essentially as

described in Equation 3.2.

The data obtained was analysed as described in Chapter 3, Section 3.2.3:

Equations 3.4 – 3.8 were applied to the collected solutions in order to identify

reactions that were responsive to the energy demand variation and calculate the

Pearson’s correlation coefficients of the flux-responses; Equation 3.9 was used

for calculating the rates of constant metabolite transport between the catabolic

core network and the global model; the responsive reactions were collected into
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a separate sub-model, which was condensed into the enzyme subsets using Al-

gorithm 1. The flux correlations were visualised in metabolic trees (as described

in Chapter 2, Section 2.2).

Energy demand analysis was applied to mixed acid fermentation (with equal

cost, c, for all reactions in the network) and homolactic fermentation (trans-

porters of CO2, ethanol, formate, acetate, succinate, and pyruvate assigned a

10-fold higher cost than other reactions). For both modes, the analysis was

conducted assuming presence and absence of oxygen.

4.3 Results

4.3.1 Model properties

The reconstructed model had 675 reactions (and 568 metabolites), which com-

pares to the 762 reactions (and 658 metabolites) of the original model. The

reason for the larger number of reactions in the original model is the differ-

ence in how external and internal metabolites are treated in the two models:

In the original model all metabolites that can be consumed or produced by

the model are associated with an exchange reaction which converts an external

metabolite into an internal metabolite, located in the extra-cytosolic compart-

ment. The physically external (but mathematically internal) metabolite can

then be imported to the cytosolic compartment by a transport reaction. In the

modified model the exchange reactions were omitted and metabolites located

in the external compartment treated as external metabolites, thus reducing the

total number of reactions (and metabolites). All biomass components could be

synthesised individually and in concert. The model was consistent in terms of

energy and mass (validated as described in Chapter 3, Section 3.2.2). Analy-

sis of stoichiometric inconsistencies identified five unconserved metabolites: O2,

H2O, OH−, H+, and O−2 . Since the unconserved metabolites were limited to

species only consisting of hydrogen and oxygen the model was considered stoi-

chiometrically consistent.

Of the 675 reactions in the model, 295 were needed for biomass synthesis

under homofermentative conditions, 291 under mixed acid conditions.

4.3.2 ATP demand variation

For each of the four conditions for which ATP demand analysis was carried

out (presence or absence of oxygen, mixed acid or homolactic fermentation),

the total number of responsive reactions was reduced further by removing reac-

tions whose net flux-change was below 0.01 mmol (g DW)−1h−1. The network-

diagrams of the catabolic core models are shown in Figs. 4.1 – 4.3. Under mixed
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acid conditions, some pairs of reactions functioned as net-transhydrogenases, i.e.

these reactions involved a redox pair (NAD(P)/NAD(P)H) and were isostoichio-

metric apart from the redox pair. These reactions were represented as a single

transhydrogenase reaction in the network diagrams. The size of the catabolic

core models varied depending on the mode of fermentation - under homolactic

conditions the number of responsive reactions was limited to 14 (including trans-

porters of glucose and lactate, see Fig. 4.1), and the response was insensitive to

oxygen availability; under mixed acid conditions, however, the size increased to

29 reactions (including a generic transhydrogenase) utilised under both aerobic

(Fig. 4.2) and anaerobic (Fig. 4.3) conditions. The 14 reactions identified under

homolactic conditions were limited to uptake and catabolism of glucose to the

fermentation by-product lactate, through glycolysis and lactate dehydrogenase.

Under mixed acid, anaerobic conditions 29 reactions responded to the imposed

ATP demand. In isolation, however, additional reactions were required in order

to obtain a steady state solution for the sub-model. Specifically, the regenera-

tion of cofactors (NAD and CoA), which in the global model was carried out by

reactions involved in biomass synthesis, was not available in the extracted core

model. Steady state solution was obtained by including reactions for ethanol

synthesis and export, from the global model. Under aerobic conditions a total

of 32 reactions responded to the imposed ATP demand, these included oxygen

uptake, menaquinol oxidase, and menaquinol-dependent NADH dehydrogenase.

All catabolic core models involved fixed rates of metabolite exchange with the

global model, shown in Table 4.1.

Compared to results obtained with the S. Typhimurium model (Chapter 3,

Section 3.3.3), more metabolites that were in a conservation relationship were

transported. Typically, for the conditions used here, two to four transported

metabolites and two to five conserved moieties were obtained, compared to six

to seven transported metabolites and three pairs of conserved moieties, obtained

from the S. Typhimurium model. The exchange between core and global model

also varied between the investigated conditions, the most pronounced differ-

ence occurring between mixed acid and homolactic fermentation, as would be

expected based on the structural difference between the two categories.

Condensation of the catabolic core models greatly simplified the structure

of the mixed acid networks (Figs. 4.2 and 4.3). The homofermentative model

resulted in the trivial net-reaction:

x_GLC -> 2 x_D-Lact

As can be seen in Figs. 4.2 and 4.3 some subsets (both singleton and multi-

reaction) in the expanded model become integrated as components in other

subsets during the condensation process. Under anaerobic conditions all the
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Figure 4.1: Catabolic core network under homolactic fermentation. The same
network was obtained irrespective of oxygen availability. The responsive reac-
tions involved glucose transport via the phosphotransferase system, glycolysis,
conversion of pyruvate to lactate via lactate dehydrogenase, and export of lac-
tate. Enzyme subset membership is indicated by reaction arrowhead colour;
in this case all reactions belonged to the same subset. Metabolites that were
imported at a fixed rate are indicated with gray boxes, exported metabolites
are indicated with gray circles. * - DHAP was only exported under aerobic
conditions. Reaction numbers refer to abbreviated reactions names (Table 1),
accordingly: R1 - glucose transporter, R2 - PGIsomerase, R3 - PFK, R4 - FBP-
Aldolase, R5 - TriPIsomerase, R6 - GapDH, R7 - PGKin, R8 - PGAM, R9 -
Enolase, R20 - ATPase, R21 - ATPSynth, R37 - PyrKin, R38 - D-LacDH, R39
- lactate transporter.
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Figure 4.2: Catabolic core under mixed acid fermentative, anaerobic conditions.
The enzymes subsets of the network are indicated by the colour of the reaction
arrowheads. Metabolites that were imported at a fixed rate are indicated with
grey boxes, exported metabolites are indicated with grey circles. Reactions R1
- R29 were common to the core model obtained in the absence and presence of
oxygen. The greyed out reactions (R31 - R33, conversion of AcCoa to ethanol
and subsequent export of ethanol from the network) were not part of the respon-
sive reactions, but were necessary for obtaining a steady state solution for the
core model. Reaction numbers refer to abbreviated reactions names (Table 1).
Reactions R1 - R9 have the same meaning as in Fig. 4.1: R10 - Transald, R11 -
TransketII, R12 - PhosKeto, R13 -TransketI, R14 - Rib5PEpi, R15 - RiboKin,
R16 - Rib5PIso, R17 - RiboHyd, R18 - hypoxanthine transporter , R19 - ino-
sine transporter, R20 - ATPase, R21 - ATPSynth, R22 - net-transhydrogenase,
R23 - PyrDH-(NADP), R24 - CO2transporter, R25 - PyrForm, R26 - formate
transporter, R27 - PhoAcTrans, R28 - AcetKin, R29 - acetate transporter, R30
- AcAldDH, R31 - AlcDH, R32 - ethanol transporter.
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Figure 4.3: Catabolic core under mixed acid fermentative, aerobic conditions.
The enzymes subsets of the network are indicated by the colour of the reaction
arrowheads. Metabolites that were imported at a fixed rate are indicated with
gray boxes, exported metabolites are indicated with gray circles. Reactions R1
- R29 were common to the core model obtained in the absence and presence
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Table 4.1: Table of constant fluxes of import and export of metabolites between
the core network and the global network. Data for all four conditions (mixed acid
or homolactic fermentation, in the presence or absence of oxygen) are shown.
For each conditions the data is split into conserved (upper part) and unconserved
(lower part) metabolites. The numbers of reactions refer to reactions in the main
model only. * - Core reactions involved with the conserved moieties responded
with negligible, non-zero, flux-change to the change in ATP demand, they are
subsequently not included in Figs. 4.1 – 4.3. ** - Gly-3P was involved in a net-
transhydrogenase reaction.

Import Export
Metabolite Flux Reactions Metabolite Flux Reactions

Mixed acid fermentation, anaerobic conditions
ADP 116.11 33 ATP 116.11 62
NADP 45.60 12 NADPH 45.60 12
NADH 48.39 11 NAD 48.39 13
CoA 63.20 12 AcCoA 63.21 9
Met-THF* 1.80 2 5-Met-THF* 1.80 1
Pi 140.0 22 Gly-3P** 20.10 4
Rib 1.91 1 R5P 2.04 1
- - - Form 1.66 3

Mixed acid fermentation, aerobic conditions
ADP 99.62 29 ATP 99.62 58
NADP 45.50 13 NADPH 45.50 13
NADH 50.25 15 NAD 50.25 13
CoA 63.20 12 AsCoA 63.20 9
CDP* 16.45 2 CTP* 16.45 6
Pi 140.00 22 Gly-3P** 20.10 4
Rib 1.91 1 R5P 2.04 1
- - - Form 1.66 3
- - - G6P 1.25 2

Homolactic fermentation, anaerobic conditions
ADP 118.40 35 ATP 118.40 64
NAD 48.14 15 NADH 48.14 13
NADPH 9.37 16 NADP 9.37 16
Pi 140.17 24 Pyr 58.65 5
GAP 2.90 4 Gly-3P** 20.10 4
- - - F6P 3.30 3
- - - G6P 1.25 2

Homolactic fermentation, aerobic conditions
ADP 101.90 31 ATP 101.90 60
NAD 58.65 18 NADH 58.65 16
CDP* 16.45 2 CTP* 16.45 6
Pi 140.17 24 Pyr 58.65 5
GAP 2.90 4 DHAP 20.10 4
- - - F6P 3.30 3
- - - G6P 1.25 2
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Table 4.2: Stoichiometry of enzymes subsets obtained by condensation of the
catabolic core models. For each enzyme subset of the respective core network the
condensed net stoichiometry is shown. Subsets 1 - 5 were obtained under mixed
acid anaerobic conditions, subsets 5 - 8 under mixed acid aerobic conditions.
External metabolites are indicated by the prefix “x ”.

Enzyme
subset

Stoichiometry

Reactants Products
Ess 1 1 x GLC + 2.5 Pi + 1 NAD + 1

ADP
→ 1 NADH + 1 Pyr + 1 ATP + 1.5

Ac-P
Ess 2 1 Pyr + 1 CoA + 1 NAD → x CO2 + 1 AcCoA + 1 NADH
Ess 3 1 H+

p + 1 ATP + x Acet ↔ 1 Ac-P + 2 H++ 1 ADP
Ess 4 1 Pi + 2 Pyr + 2 H++ 1 CoA ↔ 1 AcCoA + 1 Ac-P + 2 H+

p + 2
x Form

Ess 5 1 AcCoA + 2 NADH + 1 H+ ↔ 1 x EtOH + 1 CoA + 2 NAD
Ess 6 2 x GLC + 7 Pi + 2 AcCoA + 7

ADP + 2 NAD
→ 2 CoA + 2 NAD + 2 Pyr + 5

H+
p + 7 ATP

Ess 7 x O2 + 1 NADH → 2 H+
p + 1 NAD + H2O

Ess 8 1 CoA + 1 Pyr → H+
p + 1 AcCoA + x formate

reactions leading up to Pyr (i.e. in Fig. 4.2 reactions R1 - R19) form one

subset, phosphate acetyltransferase (R27 in the figure) forms a subset with the

formate producing subset in the expanded network (involving pyruvate formate-

lyase and a formate transporter), and the net-transhydrogenase together with

the CO2 producing branch forms a subset in the condensed model. The ac-

etate producing subset in the expanded model is conserved in the condensed

model, also the added ethanol related reactions form a single net reaction in

the condensed model. Under aerobic conditions reactions R1 - R19 (in Fig.

4.3) and R27 - R29 (i.e. phosphate acetyltransferase and the acetate producing

branch) forms one single condensed reaction; formate is produced and exported

by the subset involving pyruvate formate-lyase and formate transporter; and

the reactions involving oxygen uptake and reduction to water, while generating

proton-motive force for subsequent ATP synthesis, form a single subset (reac-

tions R34 - R36 in Fig. 4.3, R7 in Fig. 4.4.B). The CO2 producing subset is

unmodified by the presence of oxygen.

Flux correlation analysis of the data generated under mixed acid conditions

(irrespective of oxygen availability), show that reactions with perfectly corre-

lated fluxes do not necessarily belong to the same subset in the respective core

model (Figs. 4.6 and 4.5). Examples of this, assuming anaerobic conditions,

include the correlation of the Fig. 4.2 reactions R6 - R9 (lower glycolysis) with

reactions R26 - R27 (formate producing branch), and the association between

R3 - R5 (upper glycolysis) and R15, R17 - R19 (net conversion of inosine to
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Figure 4.4: Condensed catabolic core network under mixed acid, anaerobic (A)
and aerobic (B) conditions. The condensed networks are based on the networks
in Figs. 4.2 and 4.3, colour codes are consistent with those used in the expanded
networks. All metabolites involved with a particular reaction are indicated, but
stoichiometric coefficients are not. For complete stoichiometries see Table 4.2.
Reaction numbers refer to enzyme subsets names or reaction abbreviations for
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Figure 4.5: Flux correlation tree obtained under mixed acid, anaerobic condi-
tions. Subsets in Fig. 4.2 are indicated with node colour.

ribose-5-phosphate). Similar observations are made under aerobic conditions.

Analysis of the data generated under homolactic conditions show, trivially, that

all responsive reactions are perfectly correlated (Fig. 4.7 and Fig. 4.8.E).

The response curves of the core networks (Fig. 4.8.A – 4.8.E) indicate rel-

atively small differences between the reactions - unlike the responses obtained

for S. Typhimurium (Chapter 3, Section 3.3.3), all core reactions obtained here

were positively correlated with the ATPase flux.

4.4 Discussion

As shown by the different catabolic core models obtained by the ATP demand

variation, the method used for simulating homolactic fermentation resulted in

a less complex response, compared to the simulated mixed acid fermentation

(Figs. 4.1 – 4.3). Since the FBA problem used for generating the flux data for
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Figure 4.6: Flux correlation tree obtained under mixed acid, aerobic conditions.
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Figure 4.7: Flux correlation tree obtained under homofermentative conditions.
As indicated all reactions in the core network (shown in Fig. 4.1) responded
proportionally to the imposed ATP flux.

homolactic fermentation was more constrained than the mixed acid fermenta-

tion, this result is expected.

A noteworthy difference between the catabolic core models for the two modes

of fermentation is the absence of the pyruvate kinase reaction from the mixed

acid model. The reaction does however appear in all the FBA solutions used

to extract the catabolic core models, but does not respond to changes in ATP

demand under mixed acid conditions.

One surprising result was the inability of the mixed acid core model obtained

under anaerobic conditions to sustain a steady state solution, unless the ethanol

producing branch (subset 5 in Table 4.2) was included. The biochemical reason

for this finding is obvious from the condensed network (Fig. 4.4.A): CoA and

NAD cannot be recycled in the isolated network. Since these reactions (or any

other functionally related reactions) were not identified in the analysis, it can

be concluded that this function was carried out by the reactions carrying fixed

flux.
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Figure 4.8: Responses of representative reactions from all subsets of the con-
ditions analysed to changes in ATP demand. Subset number (as used in Fig.
4.4.A and 4.4.B, and Table 4.2) of the reactions are indicated in brackets. A: Re-
sponse of PhosKeto, glucose transporter, Rib5PIso, CO2 transporter, and TriPI-
somerase under mixed acid, anaerobic conditions. B: Response of TransAld, and
transporters of formate and acetate under mixed acid, anaerobic conditions. C:
Response of PhosKeto, glucose transporter, Rib5PIso, CO2 transporter, TriPI-
somerase, PGAM, and oxygen transporter under mixed acid, aerobic conditions.
D: Response of TransAld, and transporters of formate and acetate under mixed
acid, aerobic conditions. E: Response of Enolase under both aerobic and anaer-
obic, homofermentative conditions.
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Chapter 5

Modelling of metabolic

interactions between

Salmonella Typhimurium

and Lactobacillus

plantarum

5.1 Introduction

In this chapter a model combining those presented in the previous chapters

(Chapters 3 and 4) is constructed and analysed. Application of FBA to multi-

species systems has been described previously, mainly focusing on mutualis-

tic interactions. Examples include modelling of interactions between sulphate-

reducing Desulfovibrio vulgaris and the methanogen Methanococcus maripaludis

[149]; and pairs of constructed auxotrophic strains of E. coli [150]. In these

studies, interactions were modelled by treating the organism as separate com-

partments with a common exchange medium. In the case of the D. vulgaris - M.

maripaludis network, the FBA was set to maximise the biomass yield of both

organisms with various objective weightings - 10:1, 5:5, or 1:10 (D. vulgaris:M.

maripaludis) [149]. Interactions between the E. coli strains were analysed using

the Minimization Of Metabolic Adjustment (MOMA) algorithm [151], i.e. the

objective for any given auxotrophic mutant was to minimise the deviation in flux

solution from the wild type solution. This was done for all pairwise combina-

tions of mutants where each pair was allowed to exchange exported metabolites.
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Efforts to model antagonistic interactions in the form of competition has been

based on identification of substrates that more than one of the organisms in

the community can metabolise [152]. Zomorrodi and Maranas [153] developed

a bi-level FBA framework for simultaneous optimisation of community-level ob-

jectives (e.g. maximisation of total biomass yield in the community) and species-

specific objectives (maximisation of biomass yield of isolated organisms). The

approach used here shares certain features with the methods described above:

the organism-GSMs are incorporated as components, interconnected via a com-

mon medium. The integrated model is then subject to FBA where the biomass

synthesis of the individual organisms is fixed and the objective is to minimise

total flux of the integrated system. The FBA is repeated for different biomass

ratios of the two organisms. This analysis will identify potentially mutually ben-

eficial metabolic interactions between organisms in the community. Arguably, a

limitation with this approach, as with those mentioned, is that only mutualistic

interactions can be meaningfully modelled, provided only structural information

of the network is available. As mentioned, some attempts to model competition

have been based on identifying common substrates that can be utilised by more

than one member of the community [152, 153], the outcome of this competi-

tion is assumed to be predictable using FBA, i.e. if the FBA solution assigns

one organism a higher rate of biomass production for a given substrate uptake

rate, compared to the competing species, the species with the higher growth

rate out-competes the other species. There are at least two potential problems

with this approach: (i) the equation of growth rate with biomass yield; (ii)

the omission of the inhibitory effect of metabolic by-products. As reviewed in

Section 4.1, based on [71], FBA optimises biomass yield, not growth rate. The

assumption that a given species will out-grow a competing species because its

biomass yield is potentially higher, may be true, but this cannot be concluded.

The homolactic mode of fermentation in L. plantarum, presented in the pre-

vious chapter, is an example where this assumption is not true: despite the

lower growth yield (and calculated growth rate based on FBA) of homolactic

fermentation, this is the observed mode of fermentation, rather than mixed acid

fermentation, precisely because homofermentative fermentation enables a higher

growth rate. The second objection to this approach, which is also exemplified

by the metabolism of L. plantarum, is that it ignores the inhibitory effect of

excreted metabolic by-products. The lactate production of of various Lacto-

bacillus species has been shown to have a strong inhibitory effect on the growth

of competing, pathogenic bacteria [154]. This inhibition has been shown not to

be a simple pH-effect, which makes the phenomenon difficult to model with a

strictly structural approach. A solution to this problem will be not presented

here, but these limitations of structural modelling of bacterial communities are
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recognised.

5.2 Methods

In this section the methods used for integration of the GSMs of L. plantarum

and S. Typhimurium, and an FBA-based approach for interrogation of metabolic

interactions are described.

5.2.1 Model integration

The basic approach to model integration used here is shown in Fig. 5.1: Media

components (consumable by any or both of the organisms) are identified and

made available, as internal metabolites, to the common compartment; import

reactions present in the original model are modified to allow uptake of the

media components in the common compartment; metabolic by-products that

are potentially producible by any of the organisms are made exportable to the

common medium, available as media components to the other organism, and

exportable from the system. The biomass components are the only compounds

that can be made external directly by any of the organisms.

One prerequisite for the integration process is that metabolite identifiers are

used consistently in the original models, since inconsistencies in naming would

only result in creating structurally dead import reaction for the metabolic by-

products. Here, this was guaranteed by using models that are constructed

from a common database, BioCyc, as described in Chapters 3 and 4. In order

to distinguish the different compartments of the integrated model, reaction and

metabolite identifiers were modified by appending compartment-specific suffixes

to the names: MetaLac for L. plantarum; MetaSal for S. Typhimurium; and

InterMed for the the common medium. Model integration was carried out

using the following functions:

• ModInt(...) creates and saves an initial model containing the reactions

of the two user-supplied structural models. Each reaction is distinguished

by appending a suffix, equal to the file-name (omitting file extensions) of

the respective model, to the reaction name and the metabolites it involves.

These suffixes are returned as a list.

• AppendModel(...) is an auxiliary function to ModInt(...). Provided a

model to integrate, a stoichiometry matrix of integrated model (possibly

empty), a list of suffixes (possibly empty), it integrates the model in the

matrix of integrated models and returns the list of suffixes, with the name

of the model appended.
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Figure 5.1: Overview of the model integration process. Models M 1 and M 2

can both take up the external metabolites A and B; M 1 can produce (external)
biomass (Bio1), and metabolites C and D; M 2 can produce (external) biomass
(Bio2), and metabolites E and F. The integration process includes identifying
media components (A and B), exported compounds (C, D, E, and F), and biomass
components (Bio1 and Bio2). In the integrated model external media com-
ponets can be imported to a common medium and taken up by both species.
All exported compounds can be released to the common medium and exported
out of the integrated model or taken up by any other species than the producing
species.
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• MakeInterMed(...) replaces all external metabolites involved with trans-

port reactions in the integrated model constructed by ModInt(...) with

metabolites defined in the common medium. For each metabolite thus

defined (e.g. metA), a transporter in the transporter module (named

fname ext) is defined, accordingly:

metA_tx_InterMed:

x_metA -> metA_InterMed

The reversibility of the new transporter is identical to the reversibility of

the original reaction, i.e. a medium component can only be imported,

metabolic by-products can only be exported by the system. If any of the

reaction-names generated automatically are already defined in the model

a list of these is returned.

• MakeUptakeReac(...) enables a given organism in the integrated model

to take up metabolites produced by any other organism from the common

medium. The reactions are named by concatenating the identifier of the

transported metabolite with the suffix of the receiving organism and the

suffix UpTake. Automatically generated reaction names that are already

defined in the model are returned as a list.

• SubHasTx(...) is an auxiliary function to MakeUptakeReac(...) and

is used to identify metabolites in the common medium that are already

available to a given organism-specific compartment.

• MakeNewTxDict(...) is an auxiliary function to MakeUptakeReac(...).

Given an organism suffix (org suf) and a common medium-metabolite

(met), the function defines a reaction that links met with the equivalent

metabolite in the organism-compartment indicated by org suf, specified

as a Python dictionary. The function also returns a reaction name indicat-

ing the name of metabolite being transporter, the recipient organism, and

that the reaction is an uptake reaction (has suffix UpTake). For example,

if met A InterMed, which corresponds the originally internal metabolite

MET-A and OrgX are given, reaction:

met_A_OrgX_UpTake:

met_A_InterMed -> MET-A_OrgX

is specified by returning:

met_A_OrgX_UpTake,{’met_A_InterMed’:-1,’MET-A_OrgX’:1}.
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All uptake reactions are irreversible by default.

These functions were used to construct the full integrated model in terms of

the following modules:

• Integrated model: Generated by ModInt(...) (and modified by MakeInterMed(...)).

Contains all reactions from the original model, but modified as described

above.

• Common medium: Generated by MakeInterMed(...), defines the medium

available to both sub-models.

• Transport module: Generated by MakeUptakeReac(...), defines all in-

put/output relations of the integrated model, except for export of bio-

mass components, which is defined in the organism-specific compartments

of the integrated model.

These modules were combined into a top-level model. The final model was

validated in terms of stoichiometric and energetic constancy (as described in-

Chapter 3, Section 3.2.2).

5.2.2 Identification of mutualistic interactions

In order to identify possible metabolic interactions between S. Typhimurium

and L. plantarum a set of FBA problems (Equation 5.1) for the integrated

model were solved, where the organism-specific networks were constrained to

produced biomass at experimentally observed rates. For each new solution the

ratio between the two organisms was modified.

minimize :
∑m

i=1 |vi| · ci

subject to



Nn,m · v = 0

vj = tj · r; e ≤ j ≤ f, ∀r ∈ {0, n̂, 2n̂, . . . , 1}
vp = tp · q; g ≤ p ≤ h, q = 1− r
vATPaseMetaSal

= JATPaseMetaSal

vATPaseMetaLac
= JATPaseMetaLac

(5.1)

Where v is the vector of reaction rates, N is the (n × m) stoichiometry

matrix, where each reaction is associated with an objective coefficient, ci. As

described in Chapter 4, homolactic mode of fermentation was modelled by as-

signing objective coefficients 10-fold higher to transporters of fermentation by-

products associated with mixed acid fermentation, than the other reactions in

the network, thus penalising mixed acid and (indirectly) promoting homolactic
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fermentation. The impact of mode of fermentation on mutualism was investi-

gated by setting the objective coefficients as described above for the equivalent

transporters in the L. plantarum compartment. The rate of biomass produc-

tion was fixed with the transport vector t consisting, as described in previous

chapters, of the vector of biomass component concentrations of the respective

organisms and a common growth rate (µmax, set to 0.4 h−1). The proportion

of S. Typhimurium to L. plantarum biomass was fixed with the factor r (and q,

which equals 1−r), which was multiplied with the organism-specific component

of t. The biomass proportion factor r (and q) was sequentially set to all val-

ues in a range between 0 and 1, where the increment between two subsequent

solutions, n̂, was set to 0.02, corresponding to 50 solutions
(
n̂ = 1

nsolutions−1

)
.

Maintenance energy, modelled as a generic ATPase (one for each organism),

was fixed for the two sub-models as described previously (Section 3.2.3, for S.

Typhimurium, and Section 4.2.1, for L. plantarum). Using the relationship:

rATP = YATP · µ+mATP

with µ = 0.4 h−1, YATP,MetaLac = 27.6 mmol ATP (g DW)−1, mATP,MetaLac

= 0.36 mmol ATP (g DW)−1 h−1, YATP,MetaSal = 60 mmol ATP (g DW)−1,

mATP,MetaSal = 8.4 mmol ATP (g DW)−1 h−1, the following values were ob-

tained:

JATPaseMetaLac
= 32.30 mmol (g DW)

−1
h−1,

JATPaseMetaSal
= 11.4 mmol (g DW)

−1
h−1

As in FBA problems presented in previous chapters, the objective was to

minimise the sum of flux through the integrated network. In previous analysis

this was motivated by the assumption that cells tend to minimise the protein

investment for growth. Here, the purpouse is to identify potential mutualistic

interactions between two organisms that are assumed to minimise their protein

investment. By using flux minimisation for the integrated network flux solutions

that are mutually beneficial in terms of minimising protein investement are

favoured.

The model integration was carried out so that reactions carrying flux be-

tween compartments could be identified easily based on identifier suffix, i.e.

uptake of a metabolite, produced by one of the organism, by the other organism

could only occur in two ways: either through an uptake reaction (constructed

by MakeUptakeReac(...), all having the suffix UpTake); or through a fer-

mentation by-product present in the original model operating in the importing

direction.
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Table 5.1: Summary of distributions of reactions and metabolites over the
compartments of the integrated model. All metabolites exclusively defined in
the common medium are involved with one transport reaction connecting it to
the external medium and at least one sub-model transporter. The number of
input and output reactions are equal by coincidence.

Module Reactions Metabolites
S. Typhimurium GSM 1232 1072

Uptake 36 36
Biomass 50 50

L. plantarum GSM 677 569
Uptake 2 2

Biomass 42 42
Common medium 86 86

Input 43 43
Output 43 43

Total 1995 1728

5.3 Results and discussion

The number of reactions and metabolites of the integrated model are sum-

marised in Table 5.1.

Like the two component models, the integrated model was stoichiometrically

consistent for all carbon-containing metabolites.

The analysis of metabolic interactions between the two organisms identi-

fied one potential metabolite-exchange, namely transport of glycolate from L.

plantarum to S. Typhimurium (Fig. 5.2).

As can be seen from Fig. 5.2 the uptake of glycolate by S. Typhimurium

increases linearly with the relative concentration of the producer (L. plantarum),

when the concentration of L. plantarum reaches 100% the uptake drops to 0%,

since there is no organism to consume the glycolate. This shows that the demand

for glycolate by S. Typhimurium is not saturated at any point where the S.

Typhimurium biomass is non-zero. Glycolate excretion is required for biomass

synthesis of the L. plantarum model with the biomass composition specified

in [70]. Glycolaldehyde is a by-product of the biosynthesis of tetrahydrofoliate

(THF), which can be converted to glycolate and subsequently excreted from

the system (given the set of transporters reported in [70] glycolaldehyde cannot

be exported). There are no reports of glycolate production as an essential by-

product of biomass synthesis for L. plantarum, which could be explained by the

low concentration of THF in biomass (10−5 mmol (g DW)−1), resulting in a low

rate of glycolate excretion (equal to the rate of tetrahydrofoliate export).

The glycolate consumed by S. Typhimurium is converted to glyoxylate and
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Figure 5.2: Transport of glycolate from L. plantarum to S. Typhimurium as a
function of relative L. plantarum biomass concentration.

enters TCA via the glyoxylate bypass (Fig. 5.3). The flux through the reactions

in S. Typhimurium involved with glycolate (aldehyde dehydrogenase and gly-

colate oxidase, reactions 10 and 12, respectively, in Fig. 5.3), is in the order of

10−2 mmol (g DW)−1h−1. The glycolate that is taken up by S. Typhimurium is

consumed by glycolate oxidase, since the uptake flux is negligible in comparison

with the flux of aldehyde dehydrogenase (which produces glycolate) the glyco-

late provided by L. plantarum is not sufficient to completely replace the flux

from aldehyde dehydrogenase. This is a concequence of the relative crudness of

the analysis; with the number of solutions (nsolutions) set to 50 (and n̂ = 0.02

or 2%) the highest possible L. plantarum:S. Typhimurium proportion is 98:2

(excluding the ratio 100:0). With this ratio the glycolate flux from L. plan-

tarum to S. Typhimurium reaches its highest value, which approaches the rate

of tetrahydrofoliate export assuming a ratio of 100:0 (10−5 mmol (g DW)−1).

As nsolutions is allowed to increase, and the S. Typhimurium proportion

allowed to decrease, the glycolate uptake flux by S. Typhimurium approaches

the flux of glycolate oxidase. This switch only occurs when the S. Typhimurium

proportion is in the order of 10−6.

There are no reports of mutualistic metabolic interactions between S. Ty-

phimurium and L. plantarum in vivo. If this interaction did occur in vivo it

would be difficult to show this experimentally owing to the very small fluxes
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involved. Also, the effect might be masked by the inhibitory effect of other

metabolic by-products from L. plantarum, not accounted for in this modelling

framework. Although glycolate transfer from L. plantarum to S. Typhimurium

has not been experimentally identified, there are examples of metabolic interac-

tions involving glycolate. Ralstonia solanacearum, a Gram negative pathogen

of the Pseudomonas genus, has been hypothesised to use glycolate, which is a

by-product of photorespiration, as a carbon source during infection of tomatoes,

based on in vivo expression studies [155].

The surprising finding here is that the gains, in terms of global flux minimi-

sation, from metabolic interactions between S. Typhimurium and L. plantarum

(which in this study is assumed to able to produce up to 36 compounds) are

limited to a negligible transfer of glycolate.
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Chapter 6

Integration of

high-throughput data with

genome-scale metabolic

models

6.1 Introduction

The analysis of GSMs can be integrated with various types of experimental

data. Since GSMs (ideally) incorporate all genes encoding metabolic enzymes

they are well suited integration of genome wide data. In this chapter methods

for integration of two types of high-throughput data with GSMs, Phenotype

Microarray and DNA microarray data, are explored. Phenotype Microarray

(PM) is an automated system for characterisation of growth phenotypes of cells

on a standard set of media components [156]. The PM pipeline involves dis-

tributing cells (suspended in a buffer solution that maintains viability but not

growth) into 96-well microplates (commonly 20 standard plates are used). Each

well contains a specific (dried) compound, which potentially could serve as an

alternative source of C, N, P, or S, as well as other compounds needed for

metabolising the plate-specific compound (e.g. if a specific C source is provided

in a certain well, standard (dried) sources of N, P, and S (and micronutrients)

are also provided). After addition of cells to the microplates, they are main-

tained at a growth-permissive temperature (typically 35◦ C for human adapted

enterobacteria, such as E. coli and S. Typhimurium) and the rate of respiration

monitored for some lenght of time (usually between 24 to 48 h) [156]. The buffer
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solution contains a redox-sensitive tetrazolium dye, which in its reduced form

produces a purple colour. A respiring cell will generate an electron-flow through

the electron transport chain, which will reduce the dye with a rate proportional

to the rate of respiration [157]. The rate of colouration of the medium can be

monitored by a plate reader [158].

Previously, integration of PM data with GSMs has mainly been focused on

comparing FBA results with experimental data. For this type of analysis, the

PM output is typically interpreted as a proxy for growth, and compared to

the feasibility or infeasibility of the analogous set of FBA problems. AbuOun

et al. [120] reported overall prediction accuracy of a S. Typhimurium model in

the range 64% (for sulphur compounds) to 97% (for phosphorous compounds).

Discrepancies between FBA and PM results can be used as a starting point for

continued model curation [159].

DNA microarray analysis allows identification of differentially expressed

genes. Briefly, the method centres around the following steps [160]:

• Collecting mRNA from the organism of interest under different conditions.

This usually involves a reference condition, e.g. the wild type organism

cultivated on standard medium, and a test condition, e.g. a mutant strain

or wild type strain cultivated in the presence of sub-lethal concentrations

of a toxin.

• Conversion of mRNA to cDNA and labelling. This is accomplished using

reverse transcriptase, and incorporation of fluorescently labelled bases (one

colour for each experimental condition).

• Hybridisation of labelled cDNA to DNA probes. Probes are DNA frag-

ments that are fixed to a solid support (array). Each probe represents a

complete or partial gene, and is identified based upon its position on the

array. Microarray probes can be of a variety of types: single or double

stranded, synthesised separately using PCR (polymerase chain reaction)

[161] or in situ as oligonucleotides. cDNA from the two conditions are ap-

plied to the array simultaneously and allowed to hybridise to the probes.

• Scanning of fluorescence. The relative abundance of the two pools of

cDNA is determined indirectly by quantifying the two fluorescence signals

from the array.

• Data analysis. Statistical analysis of the raw data usually involves re-

moving background noise, normalisation of experimental biases, and iden-

tification of genes whose expression is significantly different under the

investigated conditions. Data is commonly transformed from expression

ratios
(

i.e. signaltest
signalreference

)
to fold changes

(
i.e. log2

(
signaltest

signalreference

))
.
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Several methods for integration of DNA microarray data with GSMs have

been described previously. All approaches are based upon the assumption that

expression rate of a given gene is correlated with the flux through the reac-

tion ultimately encoded by the gene. The GIMME (Gene Inactivity Moderated

by Metabolism and Expression) algorithm [162] is based upon solving a de-

fault FBA problem, then removing reactions in the network that are associated

with under-expressed genes (given a user defined threshold). The FBA is then

re-solved for the truncated model, if possible. If no feasible solution can be

obtained reactions are re-introduced to the model so that the deviation from

the expression data is minimised, until the FBA is feasible. iMAT (integrative

Metabolic Analysis Tool) [163] involves sorting the reactions in the network into

the categories, low, moderate, or high expression, based on the expression of the

associated genes and user defined thresholds. A MILP is formulated, where the

only constraints are that the solution must obey the steady state assumption

and be thermodynamically feasible, the objective is to minimise the number of

reactions associated with low expression in the solution and to maximise the

number of highly expressed reactions. Similar to GIMME, iMAT allows a re-

action associated with low expression to appear in the solution if no feasible

solution can be obtained otherwise.

In this chapter a number of methods for model analysis relying on PM

or DNA microarray data are presented. All analysis is applied to the S. Ty-

phimurium model described in Chapter 3. The analysis presented in this chapter

includes validation and subsequent curation of the model using comparisons be-

tween FBA solutions (mimicking the media conditions tested experimentally)

and PM data. Solutions that are confirmed to support growth (more correctly,

respiration) are subjected to a more detailed clustering analysis. A method for

incorporating expression data in FBA is presented. Finally, an approach for

integration of phenotype and expression data with FBA is presented.

6.2 Integration of PM data with metabolic

models

A prerequisite for comparing sets of FBA solutions with PM data is that equiv-

alence can be established between metabolite identifiers in the model used for

generating the FBA solutions and the metabolite identifiers used in the experi-

mental data set. Specifically, any source of C, N, S, or P for which growth data

is available must have an unambiguous, if any, equivalent in the model. The

compounds that fall into this category primarily involve complex, polymeric car-

bohydrates. These compounds are difficult to incorporate into metabolic models
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since the monomers of which the polymers are composed are not uniquely de-

fined. A more problematic situation is when a compound from the experimental

data set is indeed defined in the model, but due to insufficient information this

relationship cannot be established, and the compound is treated as undefined.

Another potential problem is inconsistent use of compound names within either

the model or the experimental data, which, if it cannot be guaranteed by the

provider of the data, needs to be addressed in the integration process.

6.2.1 Software and computational methods

Software was developed to accomplished the following tasks: (i) harmonisation

of metabolite identifiers used in the BioCyc database and the PM system; (ii)

construction of transporter modules allowing uptake of metabolites investigated

experimentally and expressed with BioCyc identifiers; (iii) comparing FBA so-

lutions with corresponding PM data.

Database harmonisation

Harmonisation of the identifiers used in the PM system and the BioCyc database

was primarily carried out using an auxiliary database, BiologKeggEntries, kindly

provided by Dr William Newell (Animal Health and Veterinary Laboratories

Agency). BiologKeggEntries collects information concerning PM compounds,

each entry (compound) contains the Kegg database identifier, the position in

the PM system (i.e. which well and plate it appears in), PM name, synonyms,

mass, chemical formula, possibly compound identifiers in other databases, and

reactions (Kegg identifiers) involved with the compound. Similar information is

available for any compound defined in BioCyc. Since there are no direct links

between BiologKeggEntries and BioCyc, these links were established indirectly

by attempting to identify common links to at least one other database between

all compounds defined in BioCyc and BiologKeggEntries.

Transporter-module construction

Each well on a PM plate contains one well-specific compound (source of C, N, P,

or S) and three compounds (one for each element that is not being tested on the

particular plate) that are common to all wells on the plate. This experimental

set-up was modelled by constructing four transport modules that could replace

the transport module described in Section 3.2. Each module represented one

set of sources of a particular element, i.e. the carbon module contained trans-

porters of all carbon sources tested and ammonia, sulphate, and phosphate; the

nitrogen module contained all nitrogen sources and pyruvate (carbon source),
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sulphate, and phosphate, etc. All modules allowed uptake of oxygen. All trans-

port reactions involved only one internal and one external metabolite, except

transporters that have been shown experimentally to take up metabolites (sug-

ars) through the phosphotransferase system (PTS). These were defined as:

PEP + x_sugar -> Pyr + sugar-phosphate

The following carbon sources were identified as PTS compounds: Glucose,

mannitol, mannose, sorbitol, galactitol, glucosamine (and beta-D-glucosamine),

tagatose, and fructose.

Comparison of FBA solutions with PM data

Growth on the nutrient sources defined in the model was modelled by solving

the following equation, similar to Equation 3.1:

minimize :
∑m

i=1 |vi| · ci

subject to


Nn,m · v = 0

vj = tj ; k ≤ j ≤ m
ve = 0; f ≤ e ≤ h, e 6= g

vATPase = rATP

(6.1)

where, as previously, the problem is set to minimise the sum of flux, subject

to the steady state constraint, biomass synthesis constraint, and ATP mainte-

nance constraint. The additional constraint, that only one transporter (with

index g in Equation 6.1) of alternative sources of a given element (transporters

with indices in range f to h) can carry flux (while the other, transporters in

that range cannot) was added to the problem. The problem was solved with

g being set to each index in range f to h, sequentially. Each solution (or ab-

sence of solution) was compared with published PM data for S. Typhimurium

(strain LT2) [120]. In AbuOun et al. [120] the phenotype data was reported as

growth or no growth, which was compared to the feasibility or infeasibility of

the corresponding FBA problem.

Cases where the FBA solution did not agree with the PM observation were

subject to further scrutiny. Disagreement could be of two types: (i) The model

predicted growth, but reactions required for catabolism could not be used in

vivo due to regulation. (ii) Growth was observed experimentally, but not pre-

dicted by the model since reactions required for catabolism was missing from

the database. The analysis was conducted using a total of 377 nutrients (190 C-

sources, 94 N-sources, 59 P-sources, and 34 S-sources). The nutrients could be

91



divided into two broad categories - known nutrients, i.e. those that were defined

in the model and unknown nutrients, that were not defined in the model and

could thus not be tested explicitly, but were by default assumed not to support

growth.

6.2.2 Compound clustering analysis

Cluster analysis was applied to the solutions generated by Equation 6.1. This

analysis was applied in order to gain insight into the structure of the global

catabolic network of S. Typhimurium, i.e. how complete flux solutions for

biomass synthesis on different growth supporting compounds compare to each

other. The clustering analysis was carried out in a similar fashion to the flux

correlation analysis described in Section 3.2.3. The solutions generated by Equa-

tion 6.1 were collected into a matrix, Ca,m:

Ca,m =

v1,tx1
. . . vm,tx1

...
. . .

...

v1,txa . . . vm,txa

(6.2)

where a is the number of alternative nutrient sources available (using the

symbols in Equation 6.1, a = h−f), m is the number of reactions in the model,

and tx indicates a transporter in the model, as previously. Correlations between

the flux solutions in Ca,m were quantified by applying Pearson’s correlation

coefficient, r(X,Y ), defined in Equation 3.7, to all combinations of row-vectors

(i.e. FBA solutions) in Ca,m and collected into ∆a,a:

∆a,a =

r (C1,1...m,C1,1...m) . . . r (C1,1...m,Ca,1...m)
...

. . .
...

r (Ca,1...m,C1,1...m) . . . r (Ca,1...m,Ca,1...m)

(6.3)

The correlations were visualised in a metabolic tree (Fig. 6.2), constructed

as described in Section 2.2.

6.3 Integration of expression data with metabolic

models

The least technical approach to metabolic interpretation of expression data is

simple inspection of up and down regulated genes, whereas the method presented

here is a systems based approach. As mentioned in Section 6.1, previously

published methods for integration of expression data and FBA, rely, to varying

degrees, on excluding reactions from the solution space based on the expression
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of the corresponding gene(s). In contrast, the method presented here is based

upon favouring reactions associated with highly expressed genes, and penalising

those associated with genes expressed at a low rate, by assigning each reaction

in the model an objective coefficient, or weighting factor, inversely proportional

to the expression of their corresponding gene(s). If the FBA is formulated

as a minimisation problem a high objective coefficient, proportional to a low

expression rate, adds a high cost to the reaction assigned the coefficient. The

benefits of this approach are that it is simple to implement, does not require

user defined thresholds for high or low expression, nor exclude reactions from

the solution space. A drawback is that it is limited to FBA formulations where

all reactions in the model are included in the objective function, such as flux

minimisation.

6.3.1 Methods

DNA microarray data for S. Typhimurium under several growth conditions and

globally normalised using the BABAR package [164], was kindly provided by Dr

Arthur Thompson (Institute for Food Research). Associations between reactions

in the model and genes in the data set were obtained from the BioCyc database

through the PyoCyc module in ScrumPy.

The original data was expressed as fold changes (FC), i.e.

FC = log2

(
signaltest

signalreference

)
.

This formulation of expression data cannot be readily integrated into an

FBA problem since objective coefficients must be non-negative. Further, the

weighting factors needed for this must be inversely proportional to the gene

expression rate. The data was transformed to inverse expression ratios in order

to comply with these constraints:

weight =
1

expression ratio
=

signalreference
signaltest

=
1

2FC
(6.4)

This method was applied to ATP demand analysis (Section 3.2.3) by setting

the objective coefficients in Equation 3.2, ci, to values derived from Equation

6.4. In cases where a reaction was associated with more than one gene and

no information on the relationship between genes (gene products constituting

isoenzymes or components in a multimeric enzyme) was available, the highest

signal was used. This analysis was carried out using microarray data extracted

from S. Typhimurium during macrophage infection. In the analysis all reactions

that were not associated with any genes were assigned an objective coefficient

of 1. As previously, the analysis was conducted assuming only glucose minimal
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medium.

6.4 Combining Microarray and PM data for model

analysis

As mentioned in Section 1.3.3, the nutrients available to, and used by, S. Ty-

phimurium during infection are largely unknown. In this section a method com-

bining expression and PM data with metabolic modelling in order to identify

compounds consumed by the organism from which the expression data was ob-

tained is presented. In brief, the method uses FBA solutions generated with the

method described in Section 6.2, identifies reactions unique for the catabolism

of a set of (possibly singleton) compounds, and assigns a fold change to the set,

based on the expression of the compound-associated reactions.

6.4.1 Method

Using the flux solutions collected in Ca,m (Equation 6.2), internal reactions

(columns in Ca,m) were associated with PM compounds (rows in Ca,m) on which

they were active. The purpose of this procedure was to identify reactions that

could be associated with as few compounds as possible, so that gene expression

associated with a given reaction could be indicative of catabolism of a unique

compound. Thus, the initial reaction-compound associations were modified by

removing redundant information: If a set of reactions, R = {r1, . . . , rx}, could

be associated with a single compound, A = {a}, and another set of reactions,

R̂ = {r̂1, . . . , r̂y}, could be associated with a set of compounds, B, containing

this single compound, B ⊃ A, then A was removed from B so that R̂ was

associated with B′ = B∆A. This procedure could be generalised for any size of

sets A and B, as long as B ⊃ A. Importantly, removal of redundant information

from B based upon A could reveal redundant information in a set C, such that

C ⊃ B, which would not have been apparent before simplification of B. In

order to deal with this possibility the method was implemented as a recursive

algorithm, i.e. the procedure was repeated until no more redundant information

could be removed.

The method is illustrated in Fig. 6.1. This set of non-redundant reaction-

compound associations will hereafter be referred to as minimal reaction-compound

associations, and the process of determining this association will be referred to

as reaction-compound simplification

The assignment of relative expression to compounds was done in three steps:

(i) for all reactions in a minimal reaction-compound association the respective

fold change (as in Section 6.3, reactions with multiple gene associations were
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Figure 6.1: Illustration of reaction-compound simplification. A: Inspection
of the FBA solutions obtained when using compounds A - E as single me-
dia component shows the associations indicated by the colours of the arrow-
heads. Specifically, {r1} ∼ {A}, {r2, r3, r4} ∼ {B}, {r5} ∼ {A, B},
{r6} ∼ {A, B, E}, {r9} ∼ {C}, {r10} ∼ {C, D}, and {r7} ∼ {B, C, D}
(where ∼ indicates association between sets of reactions and compounds). Any
indication of activity of r5 could be due to catabolism of either A or B. Reaction
r1 can only be active if A is available and reactions r2 − r4 can only be active
when B is available. Thus, r1, r2, r3 and r4 are better indicators for A or B
than r5, and the association {r5} ∼ {A, B} can be removed. This reasoning
can be applied to all reactions with multiple compound associations, resulting
in the figure in B .
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Table 6.1: Results of comparison between FBA growth predictions and PM
data. Known nutrients are defined in the model, whereas unknown nutrients
are not and thus by default assumed to not support growth. n indicates the
number of nutrients tested for each category.

Known Unknown
Element Match(%) Mismatch(%) n Match(%) Mismatch(%) n
Carbon 90 10 97 71 29 93
Nitrogen 80 20 59 89 11 35
Sulphur 40 60 10 52 48 24
Phosphorus 83 17 29 40 60 5

assigned the maximum fold change) were collected; (ii) the average fold change

for the reactions was calculated; (iii) the fold change calculated in (ii) was

expressed as the relative fold change (in range [0,1]) in terms of the maximum

and minimum fold change in the data set. The analysis was applied to the same

expression data set, collected during intracellular growth of S. Typhimurium,

as that used for integration of expression data and FBA (Section 6.3.1).

6.5 Results

6.5.1 Integration of PM data with metabolic models

The results of the comparisons between FBA solutions and PM data are shown

in Table 6.1. As indicated, the agreement between experimental and FBA data

was 80 - 90% for the carbon and nitrogen sources. For sulphur and phosphorus

sources the agreement was poorer, indicating a lack of biochemical information

on catabolism of S and P sources. These results were obtained following iterative

curation based upon previous, poorer matches, until no more improvements

could be made. The conditions where the agreement was below 50% (i.e. sulphur

with known metabolites and phosphorus with unknown metabolites) was based

upon few (10 and 5, respectively) samples. As mentioned, similar analysis was

performed by AbuOun et al. [120] and yielded the following agreements between

experimental and FBA data (number of sources in parenthesis): Carbon sources

- 86% (92), nitrogen sources - 83% (66), phosphorous sources 97% (29), and

sulphur sources - 64% (14).

Compound clustering analysis was carried out using the flux solutions of

all growth supporting carbon compounds, as indicated by both experimental

and FBA data. The result of the analysis is visualised as a metabolic tree

(Fig. 6.2). In order to identify possible associations between chemical structure

of compounds and compound clustering based upon FBA solutions, the com-

pounds were sorted into 21 broad categories (listed in Fig. 6.2), based upon
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BioCyc compound classes. As can be seen in the metabolic tree, there is some

agreement between the structure of the compounds and the flux solutions for

their conversion to biomass precursors. There are three main clusters, one is

dominated by flux solutions for most amino acids and dipeptides. Most sugars

(pentoses, hexoses, and their phosphorylated equivalents), appear in the same

main cluster, closely correlated with the solutions for nucleosides. Solutions

for most carboxylic acids cluster together, but this main cluster contains var-

ious other compound classes with fewer members, e.g. diols, cyclic alcohols,

and sugar acids. There are also deviations from these patterns: Uridine (a

pyrimidine) forms an isolated node; fucose and rhamnose (non-PTS hexoses)

cluster together with the carboxylic acids; glucose 6- and 1-phosphate (hexose

phosphates) and galactoses (hexoses) are closely correlated with the consump-

tion of polysaccharides; some monocarboxylic acids (formate, glyoxylate, and

glycolate) form isolated nodes.

As a result of the curation process 65 new reaction were included in the

model. All results presented in this thesis have been obtained with this curated

model. All elements-specific models are included in Appendix C

6.5.2 Expression data integration

The structure of the catabolic core model obtained using expression data from

intracellular growth is shown in Fig. 6.3.

The catabolic core model is almost identical to the catabolic core model

obtained for L. plantarum under homolactic fermentation (Fig. 4.1), the main

difference between the networks is the production and excretion of lactate in L.

plantarum and acetate and carbon dioxide in S. Typhimurium. Since similar

computational methods were used in both cases, this seems to indicate that

the method of identifying catabolic cores through variation of ATP demand is

highly sensitive to the assignment of objective coefficients to reactions in the

FBA problem.

As with the L. plantarum catabolic core model, the one obtained here also

contained a single enzyme subset, and consequently a single elementary mode,

which distinguishes it from the catabolic core of S. Typhimurium described in

Chapter 3, where all reactions were assigned a uniform objective value. The

original catabolic core is more complex, it involves 34 reactions and can be

decomposed to four elementary modes. This reduction in complexity in the

catabolic core model described here is presumably due to the use of non-uniform

objective coefficients, i.e. the precise distribution of objective coefficients is less

important than the fact that they are not identical. The composition of the

resulting catabolic core is however likely to be determined by the distribution
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of objective coefficients.

An interesting observation is that the network obtained here corresponds ex-

actly to one of the acetate producing elementary modes in the original catabolic

core, namely EM 4 in Fig. 3.6. As shown in Chapter 3, this is also the mode that

the original catabolic core tends towards as the ATP demand increases. Acetate

excretion is commonly observed in fast growing E. coli in aerobic glucose-based

medium, as reviewed in Section 3.4.3. Knowledge relating to the metabolism

of S. Typhimurium during infection is scarce, which makes independent com-

parisons with the results obtained here difficult. The results of the integration

of in vivo expression data and FBA presented here does however support the

hypothesis that energy regeneration during macrophage growth occurs through

the mode shown in Fig. 6.3.

6.5.3 Combining microarray and PM data for model anal-

ysis

The distribution of expression levels over minimal reaction-compound associa-

tions is shown in Fig. 6.4, and in more detail as a bar chart in Fig. 6.5. As can

be seen in the figures, the compound associated with the highest expression is

glycerol-3-phosphate (a sugar alcohol phosphate). Other compounds associated

with high expression are 4-aminobutyrate (an amino acid), citrate (a tricar-

boxylate), and adenosine (a purine). In general, the distribution of compound

associated expression does not seem to support consumption of particular groups

of compounds, only particular compounds. For instance, it could be argued that

the data supports consumption of nuceosides (thymidine, adenosine, inosine, de-

oxyadenosine, and uridine), since adenosine and thymidine are associated with

high expression. On the other hand, inosine is associated with very low expres-

sion (∼0) and deoxyadenosine with low to intermediate expression (∼0.2). A

group of compounds that deviates somewhat from this pattern are the amino

acids. The majority of the amino acids in Figs. 6.2 and 6.4 appear in the same

cluster in the lower part of the tree (together with dipeptides). In this cluster,

the amino acid with the lowest associated expression is L-ornithine (∼0.2) and

the highest is L-aspargine (∼0.6). Note that none of the compounds that are

associated with very low expression in this cluster are amino acids according

to the categories used in Fig. 6.2 - glycyl-L-aspartic acid and glycylproline are

dipeptides and ethanolamine is an amino alcohol.
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Figure 6.4: Visualisation of expression to compound associations. The metabolic
tree shows the scaled relative expression of reactions associated with a given
carbon compound, superimposed on the metabolic tree shown in Fig. 6.2. The
node colours indicate the scaled relative expression associated with the com-
pound, varying from yellow (indicating the minimum expression level identified
in the data set) to blue (indicating the maximum expression level). Black nodes
indicate compounds that could not be associated with an expression level.
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6.6 Discussion

The motivation for developing the reaction-compound simplification method was

to simplify the analysis of expression data in the context of metabolism, and

more specifically to improve interpretations of carbon source utilisation from

DNA microarray data. This reliance on expression data offers some important

benefits, but also introduces some restrictions on the conclusions that can be

drawn from the analysis. Expression data from DNA microarrays is genome-

scale, the implication of this, in conjunction with PM data, for the analysis

presented here is that all possible compounds that can be catabolised by an

organism, are within the scope of the analysis. This is in contrast to meth-

ods based on carbon labelling, such as 13C-isotopologue profiling (described

in more detail below), where the scope of the analysis is limited to a selected

set of metabolites. DNA microarray technology is just one method for expres-

sion analysis, a promising alternative method is RNA sequencing (RNA-seq).

In brief, RNA-seq involves conversion of extracted RNA into a cDNA library,

followed by deep sequencing (using some high-throughput sequencing technol-

ogy) [165]. One of the benefits of RNA-seq is that it allows quantification of

transcripts of low abundance, which implies that pathogen transcripts can be

quantified even in situations where host transcripts are in much greater abun-

dance [166]. This would in principle make the method applicable to expression

data obtained from pathogens growing inside multicellular host organisms, in

contrast to data obtained from cultured host cells. This type of analysis is possi-

ble with microarray based methods as well, but the quality of the low abundance

pathogen expression data is very limited. There are currently no reported ap-

plications of methods based on carbon labelling which allows probing pathogen

catabolism inside intact host organisms. The main drawback of the method

presented here is inherent to all expression based analysis: Expression data re-

lating to metabolic enzyme does not necessarily indicate enzyme abundance or

carbon flux through a particular reaction. The implication of high expression

rates of enzymes involved in catabolism of a particular compound could be that

the compound is consumed. Alternatively, the implication could be that the in-

tracellular environment is so variable in nutrient availability that the pathogen

has evolved regulatory mechanisms to allow quick consumption of a broad set

of compounds.

Direct experimental data related to the metabolism of S. Typhimurium dur-

ing infection is difficult to obtain. One important contribution to this field is

the study by Götz et al. [167], where a method for partial characterisation of the

carbon catabolism during intracellular growth was applied to S. Typhimurium

during infection of cultured human epithelial (Caco-2) cells. Although this
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method was applied to epithelial, rather than macrophage, cells, microarray

analysis indicate that expression of metabolic genes by S. Typhimurium grown

in the two types of cell cultures do not differ much [168]. Briefly, the method,

referred to as 13C-isotopologue profiling [167, 169], is based upon exposing in-

fected host cells to growth media containing (uniformly labelled) 13C-glucose

shortly after the onset of infection, followed by isolation of the bacterial cells

and analysis of the labelling profile of bacterial biomass. Unlike Metabolic Flux

Analysis (MFA), 13C-isotopologue profiling does not result in detailed flux dis-

tributions, but based upon the distribution of labelled carbon in amino acids,

some insights about the origin of the carbon can gained: E.g. if a given amino

acid is enriched in labelled carbon this is an indication that the carbon atoms

were derived from the labelled growth medium, rather than directly from the

host cell. The results presented by Götz et al. [167] indicate that the main car-

bon sources used by S. Typhimurium during the epithelial stage of infection are

glucose and most amino acids. Similarly, expression analyses of S. Typhimurium

in both epithelial and macrophage cells have shown that transporters associated

with glucose, branched-chain amino acids, and glycerol-3-phosphate are over-

expressed [168, 170]. Previous studies have suggested, using auxotrophic S.

Typhimurium strains, that purins, pyrimidines, and some amino acids (histi-

dine and methionine) are synthesised de novo during systemic mouse infection

[26, 171].

These findings could be considered to contradict some of the results presented

here. However, it is important to emphasise the following drawbacks of the

method: (i) Carbon sources that cannot be associated with unique catabolic re-

action (or where these reactions cannot be identified indirectly through reaction-

compound simplification) cannot be associated with an expression level. Hence,

even if reactions associated with glucose catabolism are over-expressed they can-

not be uniquely identified, as indicated in Fig. 6.4; (ii) The method suggested

here is focused on finding experimental support for the catabolism of a given

metabolite, i.e. if a biomass precursor, originating from the host cell, is incorpo-

rated in the biomass of the pathogen without any modifications, this metabolite

would not be identified.

A previously published method, Differential Producibility Analysis (DPA)

[172], bears some resemblance to the method suggested here. It addresses

the related problem of associating expression data with production of a given

metabolite. DPA is based upon identifying reactions (and in extension, genes)

that are essential for biosynthesis of all metabolites defined in a GSM, using

FBA and known gene-to-reaction associations of the organism of interest. All

genes associated with a given metabolite are then separated into up- or down-

regulated genes and the median signal for each metabolite (for both up- and
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down-regulated genes) is calculated. Then, a statistical test, Rank Product

Analysis [173], is used to rank the metabolites based upon the average microar-

ray signal intensity over a set of experimental conditions. DPA was successfully

applied to Mycobacterium tuberculosis expression data, isolated under various

conditions (macrophage, human sputum, and a range of in vitro media). Bonde

et al. [172] reported up-regulation of genes associated with biosynthesis of cell

envelope components and aromatic amino acids, and down-regulation of central

carbon metabolism, biosynthesis of (non-aromatic) amino acids and sugars. Al-

though the metabolic behaviours of S. Typhimurium and M. tuberculosis during

macrophage infection are not readily comparable, results presented by Bonde

et al. [172], as well as those presented here and by Götz et al. [167], seems

to indicate the availability of some amino acids in both the macrophage and

epithelial environments.

A potentially useful continuation of the analysis presented here could be

to complement it with DPA. DPA can be applied to identify metabolites that

are being synthesised by an organism (that would be difficult to identify by

other methods), whereas the method suggested here is intended for analysis

of catabolism. A method that combines the two approaches would potentially

give a more complete understanding of the media availability and the metabolic

activity of an intracellular pathogen. Validation of the method presented here

would be useful, but a test data set for this purpose has not been obtained to

date.
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Chapter 7

Damage analysis of

Salmonella Typhimurium

metabolism

7.1 Introduction

A major motivation for constructing and analysing metabolic models of pathogenic

bacteria is to understand how their metabolism functions during infection, and

in extension to prevent or terminate infection by disrupting their metabolism.

The focus of this chapter is to identify sites of vulnerability in the metabolic

network of S. Typhimurium that are relevant for its metabolism during infec-

tion. Specifically, the aim is to identify sets of reactions whose removal from the

network will interfere with its performance under infection-relevant conditions.

These reactions could be of interest from a pharmaceutical viewpoint, but since

experimental verification of the importance of these reactions for infection has

not been pursued owing to time constraints, this cannot be confirmed.

As reviewed in Section 2.6, several approaches for identifying potential drug

targets using GSMs of pathogenic bacteria have been suggested previously. In

the case of S. Typhimurium, the outcome in terms of clinically relevant drug

targets or therapeutic strategies have so far been limited: Thiele et al. [121] iden-

tified 56 potential synthetic lethal gene pairs using FBA-based approach (double

gene deletion analysis, described in Section 2.6) assuming LB growth medium

(here assumed to consist of all amino acids, RNA and DNA monomers, and vita-

mins required for biomass synthesis). Previous work by Becker et al. [8] showed

that approximately 150 metabolic enzymes are essential during Salmonella in-

fection of mice, however most of these enzymes are already, or have been consider
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as, targets for antimicrobials. It was suggested that a high degree of metabolic

redundancy in S. Typhimurium resulted in a low proportion of single essential

enzymes, and thus, that pairs (or larger sets) of enzymes that carried out essen-

tial metabolic functions could be used as drug targets [8]. Since identifying these

pairs experimentally would require construction and characterisation of approx-

imately 500 000 mutant strains, the model-based approach described in Thiele

et al. [121] was used. There are a few potential problems with this approach: As

discussed in Chapter 6 (Section 6.5.3), the nutrient availability during infection

is poorly characterised, but since systemic infection in the mouse model requires

that certain biomass components are synthesised de novo (e.g. purines, pyrim-

idines, histidine and methionine), LB medium is too rich to accurately model

the nutrient availability of S. Typhimurium during infection. Solutions to FBA

problems are highly dependent upon the media components assumed to be avail-

able to the organism being modelled. Consequently, if FBA based identification

of synthetic lethal genes is carried out assuming a certain medium, the analysis

will only be valid for that medium, or a subset of it. In the case of modelling a

medium of unknown composition by assuming a composition which is definitely

more complex, the analysis will underestimate the number of synthetic lethal

genes. This is because the network redundancy will be obscured by the media

redundancy. For example, consider an organism that can synthesise an essential

biomass precursor from simpler metabolites by two different routes. Genes as-

sociated with reactions in these routes would constitute synthetic lethal pairs.

If, however, the essential precursor was (falsely) assumed to be available in the

medium, these pairs would not be detected with the FBA-based method.

Furthermore, by restricting the analysis to pairs of genes, rather than reac-

tions, targets that would be relevant drug targets (i.e. involving two reactions)

could be missed because more than two genes are associated with the reactions.

The approach described in this chapter to overcome some of these problems

is to focus on the subset of metabolism that is involved with generation of

energy and precursors for synthesis of biomass components. The rationale for

this is that the ability to maintain these functions is essential for an organism,

regardless of the detailed compositions of the medium and the biomass. As

showed in Chapter 3 the catabolic core of a GSM can be identified by simulating

a variation of energy demand (modelled by a generic ATPase reaction), whilst

maintaining a fixed rate of biomass synthesis. A strength of this method is

that the catabolic core is extracted from a realistic whole cell system and based

upon its function within that system. By applying this method to all growth

supporting carbons sources, as determined in Chapter 6, and constructing a

consensus model from the catabolic cores, a global catabolic core model for

S. Typhimurium is obtained. Owing to the relative simplicity of this model
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(compared to a GSM) exhaustive damage analysis can be applied.

7.2 Methods

7.2.1 Catabolic core extraction

Equations 3.2 and 6.1 were combined in order to generate the flux data from

which the global catabolic core was extracted:

minimize :
∑m

i=1 |vi| · ci

subject to


Nn,m · v = 0

vj = tj ; k ≤ j ≤ m
ve = 0; f ≤ e ≤ h, e 6= g

vATPase = JATPase; Jmin ≤ JATPase ≤ Jmax

(7.1)

i.e. for each transporter of a growth-supporting carbon source (reactions f

through h in v) the constraint to carry zero flux was removed and the ATPase

reactions was sequentially set to increasing values in the range [Jmin, Jmax].

As in Equations 3.2 and 6.1, the objective function was minimisation of total

flux and the objective coefficients, ci, were set to 1. Parameters Jmin and Jmax

were used as previously (set to 63 and 350 mmol (g DW)−1h−1, respectively).

For each carbon source, a matrix Ŝ of reactions responsive to changes in energy

demand (as defined in Equations 3.4 – 3.6) was created.

In order to remove unnecessary complexity from the global catabolic core,

reactions that were only associated with a single carbon source (excluding trans-

porters), as well as pairs of reactions that formed net-transhydrogenases, were

removed. This was done by constructing an initial model of all responding re-

actions. Using the complete set of source specific responses (i.e. the set of Ŝ

matrices) all non-transport reactions unique for a given source were removed

from the initial model. Null-space based methods (see Sections 3.2.3 and 2.2 )

were used to identify reactions that were rendered dead by the removal of the

source specific ones, and by condensing the model to net-reactions, reactions

that could only carry flux as a net-transhydrogenase were also identified and

removed. These reactions were subsequently removed from the corresponding

Ŝ matrix. The procedure is outlined in Fig. 7.1.

This simplification was motivated by the limited contribution of reactions

associated with few carbon sources to the global catabolic core, although their

contribution to the source specific cores in which they appear is crucial. Simi-

larly, net-transhydrogenases may provide a crucial function to a source specific

catabolic core, but in the global core they will be functionally redundant.
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Figure 7.1: Illustration of catabolic core simplification. An initial model (A) is
modified by removing all internal reactions asociated with single carbon sources
(B). After removal of the reactions in B, the remaining model is condensed into
enzyme subsets (C ). The final step (D) involves removal of reactions that are
dead (here transporters A tx and B tx, and internal reaction r 5) or condense
into net–transhydrogenases (r 11 and r 12).
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7.2.2 Flux correlation analysis

In order to investigate the flux correlations between the reactions in the global

catabolic core, analysis similar to that described previously (Section 3.2.3) was

used. The source specific flux response matrices, Ŝ, were combined in the matrix

Ẑ:

Ẑp,f =

vx̂,Jmin,tx1
. . . vẑ,Jmin,tx1

...
. . .

...

vx̂,Jmax,tx1
. . . vẑ,Jmax,tx1

vx̂,Jmin,tx2
. . . vẑ,Jmin,tx2

...
. . .

...

vx̂,Jmax,txl
. . . vẑ,Jmax,txl

(7.2)

where p is the product of the number of carbon sources used (l) and the num-

ber of flux solutions (rows) in each Ŝ matrix, and f is the number of reactions in

the global catabolic core. Each carbon source is associated with a transporter,

txn. As previously, Pearson’s correlation coefficient (r(X,Y ), Equation 3.7) was

calculated for all combination of the columns in Ẑ, as indicated in Equation 3.8,

and a metabolic tree generated from the resulting correlation matrix.

7.2.3 Damage analysis

The procedure for identifying suitable candidate reactions involved the following

steps: (i) All single reactions in the global catabolic core were sequentially

removed from the complete GSM (with all growth supporting carbon sources

available) and its ability to produce biomass was quantified; (ii) Reactions that

did not impose damage on the GSM were combined in pairs and the procedure

of quantifying the damage on the GSM repeated; (iii) The procedure was then

repeated with the remaining reactions by combining them in sets of three. This

was carried out by repeatedly solving the LP:

minimize :
∑m

i=1 |vi| · ci

subject to


Nn,m · v = 0

vj = tj ; k ≤ j ≤ m
vATPase = rATP

vi, vj , vk = 0; i, j, k ∈ {1 . . . l}

(7.3)

where Nn,m is the stoichiometry matrix of the GSM. Assuming that the

stoichiometry matrices of the GSM and the global catabolic core model have

the same column order (i.e. the first l reactions of N are the reactions of

the catabolic core), vi, vj , and vk represent all combinations of these shared
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reactions (including cases where i = j = k and i = j 6= k). For each feasible

flux solution the objective value, i.e. the sum of fluxes, was recorded. All

reaction sets that rendered the LP unfeasible or caused an increase in objective

value of more than 25% (compared to the solution with no reactions fixed to

zero) were considered damaging and not included in larger reaction sets for

further analysis.

In order to asses the contribution of individual reactions in the global catabolic

core to the damage imposed on the GSM two metrics were defined: Damage co-

efficient (Dr) and relative frequency (Fr). The damage coefficient is the average,

normalised damage associated with a given reaction, and the relative frequency

is the ratio of the number of occurrences of a given reaction and maximum

number of occurrences of any reaction in the set. The output of Equation 7.3 is

a set of sets of reactions, {{rx, . . . , rz}, . . . , {rx̂, . . . , rẑ}}, where reaction set

can be associated with a damage, {rx, . . . , rz} ∼ d1, . . . , {rx̂, . . . , rẑ} ∼ dn.

In order to express a given reactions contribution to the damage of a particular

set of reactions, this association can be expressed as the ratio of the damage

and the cardinality (i.e. number of members, symbolised with | . . . |) of the set,

rx ∼ d1

|{rx, ..., rz}| . For any reaction that appears in more than one reaction set

this yields a set of ratios, collected in q, e.g.:

rx ∼
{

d1
|{rx, . . . , rz}|

, . . . ,
dm

|{rx, . . . , rb}|

}
= qx

The damage coefficient of any reaction is then defined as:

Drx =

∑
i∈qx

i
dmax

|qx|
(7.4)

where dmax is the maximum damage possible, and |qx| is the cardinality of

the set qx. Since the maximum damage is an unfeasible solution, dmax is set to

an arbitrarily high value, 1000. The implication of this definition of D is that

an essential reaction will have a coefficient of 1.0 and a reaction that always

appear in essential sets of size two will have a coefficient of 0.5, etc.

Based upon the definition of q, Fr was defined as:

Frx =
|qx|

max(|q1|, . . . , |qn|)
(7.5)

where |qx| represents the cardinality of qx and max(|q1|, . . . , |qn|) is the max-

imum cardinality of any set in q. Unlike the standard definition of relative fre-

quency, where absolute frequency of an item is compared with the total number

of items, the frequency of a given reaction was compared to the most frequent

reaction in the set, i.e. max(|q1|, . . . , |qn|) in Equation 7.5.
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7.3 Results

7.3.1 Structure of the global catabolic core

Initially, the global catabolic core included 342 reactions. Using the simplifi-

cation described in Section 7.2.1 the size was reduced to 173 reactions. Using

condensation (see Section 3.2.3) the size could be reduced further to 128 reac-

tions. This simplification also included reducing the number of carbon sources

from 81 to 34. The metabolic tree based on correlations calculated using Equa-

tion 7.2 is shown in Fig. 7.2.

The structure of the correlation tree in Fig. 7.2 indicates that although

most of the carbon source transporters are closely correlated with some internal

reactions in the catabolic core, a significant minority do not correlate well with

any internal reactions. Similarly, some internal reactions are not strongly cor-

related with any carbon sources. As shown in Fig. 7.2, the enzyme subsets of

the glucose-based catabolic core (Chapter 3) are, in most cases, not maintained

in the global catabolic core. Reactions that form subsets in the glucose core are

closely, but not completely, correlated in the global core.

7.3.2 Damage analysis

Damage analysis identified 179 sets of reactions that caused an increase in ob-

jective value of 25% or more. Most of these sets included three reactions (164

sets), and only a small number (15 sets) were reaction pairs. No single reactions

from the global catabolic core caused damage above the fixed threshold. These

reaction sets that causes damage above the threshold of 25% involved a total

of 65 reactions, 13 of which were transporters. The distribution of damage co-

efficients, as defined in Equation 7.4, over these reactions is shown in Fig. 7.4,

and in more detail in Fig. 7.6. As evident in Fig. 7.6, most of the reactions

with a damage coefficient of 0.33 or above, indicating participation in a lethal

set of two or three reactions, were primarily involved in metabolism of amino

acids, and thus not found in the glucose-based catabolic core. It should be em-

phasised that since synthesis of biomass components is used as a constraint in

the damage analysis, reactions that, when removed from the network, interfere

with this process will be assigned high damage coefficients. As mentioned in

the introduction to this chapter, a motivation for focusing the damage analysis

on the global catabolic core was to identify sets of reactions that were involved

in generation of energy and precursors for biomass synthesis, without being too

limited by the precise composition of the biomass, since this is not constant.

Hence, reactions with high damage coefficients could carry a high damage in

vivo if removed from the network, if the assumption concerning biomass com-

112



CATAL-RXN
THREDEHYD-RXN
PyrForm

fructose
L-glutamine

fumarate
succinate

D-fructose-6-phosphate
alpha-D-glucose 1-phosphate

beta-D-glucose-6-phosphate
1.1.1.8-RXN

Phosphate_tx
GLYC3PDEHYDROGBIOSYN-RXN-(NADP)
sn-glycerol-3-phosphate

alpha-D-galactose
6PGDH-(NAD)
6PGDH-(NADP)
TSA-REDUCT-RXN-(NAD)

1.2.1.2-RXN
formate

ACETATE--COA-LIGASE-ADP-FORMING-RXN
GLY3KIN-RXN
acetate
TSA-REDUCT-RXN-(NADP)
GKI-RXN
GLYOCARBOLIG-RXN

ISOCIT-CLEAV-RXN
glyoxylate

citrate
L-glutamate

RXN0-5266
PEROXID-RXN
GARTRANSFORMYL2-RXN

GLUTAMATESYN-RXN
L-GLN-FRUCT-6-P-AMINOTRANS-RXN
L-ornithine

SPONTPRO-RXN
ORNITHINE-GLU-AMINOTRANSFORASE-RXN

GluDH
GART-RXN

PYRROLINECARBDEHYDROG-RXN
RXN-7181
L-proline

glucose
G6PDH
PGLactonase

D-gluconate
KDPAldolase

GLUCONOKIN-RXN
PGlucDehydr

GLUCONATE-5-DEHYDROGENASE-RXN-(NAD)
GLUCONATE-5-DEHYDROGENASE-RXN-(NADP)
5-dehydro-D-gluconate

GLUCOSAMINE-6-P-DEAMIN-RXN
beta-D-glucosamine

L-aspartate
OXALODECARB-RXN
AspTrans
L-alanine

GABATRANSAM-RXN
RXN-6902
RXN-2901
2.6.1.18-RXN
RXN-2902

ASPDECARBOX-RXN
ASPARTATEKIN-RXN
ASPARTATE-SEMIALDEHYDE-DEHYDROGENASE-RXN
HOMOSERDEHYDROG-RXN-(NAD)
L-homoserine

glycine
GCVMULTI-RXN
GLYOHMETRANS-RXN

4.3.1.17-RXN
L-serine
L-threonine

THREODEHYD-RXN
AKBLIG-RXN

METHYLISOCITRATE-LYASE-RXN
2-METHYLCITRATE-SYNTHASE-RXN
4.2.1.99-RXN
2-METHYLCITRATE-DEHYDRATASE-RXN

KETOBUTFORMLY-RXN
2-oxobutanoate

PYRROLINECARBREDUCT-RXN-(NADP)
MALSYN-RXN

L-LACTDEHYDROGFMN-RXN
lactate

PYRROLINECARBREDUCT-RXN-(NAD)
MALIC-NADP-RXN

Suc_tx
2-oxoglutarate

Ac_tx
PyrDH

AcetKin
PhoAcTrans

pyruvate
ADENYL-KIN-RXN
PEPSYNTH-RXN

TransketII
Transald
TransketI
Rib5PIso
Rib5PEpi
inosine

RXN0-901
Urate_tx
RXN-7682

INOPHOSPHOR-RXN
PPENTOMUT-RXN

GLUCOKIN-RXN
maltose

AMYLOMALT-RXN
RXN0-5182

PFK
FBPAldolase
PyrKin

TriPIsomerase
Enolase

PGAM
GapDH
PGKin

NH3_tx
GLUTAMATE-DEHYDROGENASE-NADP+-RXN-(NAD)

HOMOSERDEHYDROG-RXN-(NADP)
THRESYN-RXN
HOMOSERKIN-RXN

PEPCARBOXYKIN-RXN
FORMYLTHFDEFORMYL-RXN

METHYLENETHFDEHYDROG-NADP-RXN
METHENYLTHFCYCLOHYDRO-RXN
PGLYCDEHYDROG-RXN

PSERTRANSAM-RXN
RXN0-5114

Aspartase
PEPCARBOX-RXN

beta-D-galactose
ALDOSE1EPIM-RXN

UDPGLUCEPIM-RXN
GALACTURIDYLYLTRANS-RXN
GALACTOKIN-RXN

PHOSPHOGLUCMUT-RXN
PGIsomerase

MALIC-NAD-RXN
malate

CO2_tx
ATPase

O2_tx
CytOx

ATPSynth
NADH_DH

AconHydr
AconDehydr
CitLyase

MalDH
FumHydr
SucDH

2-KGDH
SCoASynth
THX
IsoCitDH

SUCCSEMIALDDEHYDROG-RXN
SUCCINATE-SEMIALDEHYDE-DEHYDROGENASE-RXN
4-aminobutyrate

SARCOX-RXN
SARCOSINE-DEHYDROGENASE-RXN
4-hydroxyphenylacetate

CARBOXY-OXOHEPT-ENEDIOATE-DECARBOXY-RXN
5.3.3.10-RXN
HYDROXYHEPTA-DIENEDIOATE-HYDROXY-RXN
1.14.13.3-RXN
1.13.11.15-RXN
4-HYDROXY-2-KETOPIMELATE-LYSIS-RXN
CHMS-DEHYDROGENASE-RXN

-

8.58

A

B

C

D

E

Figure 7.2: Flux correlations
of the global catabolic core.
Reactions that are also present
in the glucose-based catabolic
core are indicted by the node
colour being consistent with
the arrowhead colour in Fig.
3.2. Transporters of car-
bon sources are indicated by
turquoise ( ) nodes. Other re-
actions are indicated by gray
( ) nodes. Also indicated
in the tree are the reactions
of the non-oxidative pentose
phosphate pathway, with blue
( ) nodes. Clusters A-E are
shown in more detail in Fig.
7.3.
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Figure 7.3: Enlarged clusters from Fig. 7.2.
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position are accurate. Reactions with intermediate damage coefficients could

be less damaging in vivo, but are also less biased by the assumptions regarding

which biomass components are being synthesised.

The distribution of relative frequency is shown in Figs. 7.7 and 7.9. Unlike

the distribution of damage coefficients, the reactions with high relative frequen-

cies are dominated by reactions also found in the glucose-based catabolic core.

Two reactions in particular have very high relative frequencies, ATP synthase

(ATPSynth) and the carbon dioxide transporter (CO2 tx), indicating that both

participate in a high proportion of the reaction sets, but as can be see in Fig. 7.6,

both reactions have modest damage coefficients (below 0.1). This is a general

pattern observed for the global catabolic core, and not an intrinsic property of

the two metrics. Although in the extreme case of essential reactions, these will

have a damage coefficient of 1 and only occur in one (singleton) reaction set, but

for larger reactions sets only the network structure determines the relationship

between the damage coefficient and relative frequency for a given reaction. For

example, if an essential function in a metabolic network can be carried out by

any of two equivalent elementary modes, then in order to abolish this function

both modes must be removed, which can be done by removing any combination

of one reaction from each mode. A reaction from any of these modes will have a

damage coefficient of 0.5, but a relative frequency proportional to the size of the

other mode. The complete set of damaging reactions are collected in Appendix

B and C.

7.4 Discussion

The damage analysis highlights the essentiality of the pentose phosphate path-

way. Out of the 179 reaction sets, 42 contained reactions from the non-oxidative

pentose phosphate pathway (Rib5PIso, Rib5PEpi, TransketI, TransketII, and

Transald). A majority of these sets were non-lethal (31), but 11 of the sets

caused lethality in the GSM. All lethal sets involved at least two of the listed

reactions, but owing to their involvement in non-lethal sets as well, their damage

coefficients are relatively moderate: Rib5PIso - 0.1, Transald - 0.16, TransketI

- 0.14, and TransketII - 0.16. The exception to this pattern is Rib5PEpi with

a coefficient of 0.5. It is worth noting that owing to the high degree of re-

dundancy of the genes encoding the enzymes catalysing these reactions (each

reaction is associated with at least two genes: Rib5PIso - 2 genes; Transald - 3

genes; TransketI - 4 genes; TransketII - 4 genes; Rib5PEpi - 4 genes) this set

would be difficult to identify with approaches focused on single and double gene

knockouts.

The essentiality of some of the reactions identified in the analysis presented
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Figure 7.4: Distribution
of damage over the global
catabolic core. Damage co-
efficients (Equation 7.4) of
reactions in the catabolic core
are indicated by the gradient
from red (indicating damage
coefficient of 1) ( ) to bright
green (indicating a coefficient
of 0) ( ) (see scale). As in
Fig. 7.2, carbon source trans-
porters are indicated with
turquoise nodes, and were not
assigned damage coefficients.
Clusters A-E are shown in
more detail in Fig. 7.5. The
damage coefficients are shown
in more detail as a bar chart
in Fig. 7.6.
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Figure 7.5: Enlarged clusters from Fig. 7.4.
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Figure 7.7: Relative frequency
of reactions in the global
catabolic core. Frequencies
(as defined in Equation 7.5)
are indicated by the node
colour: blue nodes ( ) indicate
a relative frequency of 1, yel-
low nodes indicate a relative
frequency of 0, gradients be-
tween blue and yellow ( ) in-
dicate frequencies between the
extremes (see scale). As in
Figs. 7.2 and 7.4, turquoise
nodes are used for carbon
source transporters. Clusters
A-E are shown in more detail
in Fig. 7.5. The relative fre-
quencies are shown in more de-
tail in Fig. 7.9.
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Figure 7.8: Enlarged clusters from Fig. 7.4.

120



0

0
.2

0
.4

0
.6

0
.81

N
H
3_

txG
C
VM

U
LT

I-R
XN

ASPAR
TATEKIN

-R
XN

M
ETH

YLE
N
ETH

FD
EH

YD
R
O
G
-N

AD
P-R

XN

H
O
M

O
SER

D
EH

YD
R
O
G
-R

XN
-(N

AD
P)

TH
R
EO

D
EH

YD
-R

XN

M
ETH

EN
YLT

H
FC

YC
LO

H
YD

R
O
-R

XN

M
al
D
HALD
O
SE1E

PIM
-R

XN

PEPSYN
TH

-R
XN

AKBLI
G
-R

XN

H
O
M

O
SER

KIN
-R

XN

ASPAR
TATE-S

EM
IA

LD
EH

YD
E-D

EH
YD

R
O
G
EN

ASE-R
XN

M
ALS

YN
-R

XN

G
LY

O
H
M

ETR
AN

S-R
XN

H
O
M

O
SER

D
EH

YD
R
O
G
-R

XN
-(N

AD
)

PEPC
AR

BO
XYKIN

-R
XN

G
ALA

C
TO

KIN
-R

XN

R
ib
5P

Epi

2.
6.

1.
18

-R
XN

G
ALA

C
TU

R
ID

YLY
LT

R
AN

S-R
XN

IS
O
C
IT

-C
LE

AV-R
XN

G
LY

O
C
AR

BO
LI

G
-R

XN

ASPD
EC

AR
BO

X-R
XN

U
D
PG

LU
C
EPIM

-R
XN

PEPC
AR

BO
X-R

XN

TH
R
ESYN

-R
XN

Asp
ar

ta
se

SC
oA

Syn
th

2-
KG

D
H

M
ALI

C
-N

AD
P-R

XN

Suc
_t

xAsp
Tra

ns
Tra

ns
ke

tI

Tra
ns

al
d

G
LY

C
3P

D
EH

YD
R
O
G
BIO

SYN
-R

XN
-(N

AD
P)

PYR
U
VFO

R
M

LY
-R

XN

Ac_
txC

yt
O
xAce

tK
inPho

AcT
ra

ns

G
ap

D
HAD

EN
YL-

KIN
-R

XN

Pho
sp

ha
te

_t
x

Tra
ns

ke
tII

PG
AMN

AD
H
_t

x
O
2_

txEno
la
sePG

KinTriP
Is
om

er
as

e

R
ib
5P

Is
o

6P
G
D
H
-(N

AD
)

Pyr
KinKD
PAld

ol
as

e

PG
lu
cD

eh
yd

r

C
O
2_

txATPSyn
th

Relative frequency

R
e
a
ct

io
n

F
ig

u
re

7.
9:

B
ar

ch
ar

t
of

re
la

ti
ve

fr
eq

u
en

ci
es

(E
q
u

a
ti

o
n

7
.5

)
o
f

re
a
ct

io
n

s
fr

o
m

th
e

g
lo

b
a
l

ca
ta

b
o
li

c
co

re
in

d
a
m

a
g
in

g
re

a
ct

io
n

se
ts

.

121



here has been evaluated experimentally during infection. Becker et al. [8] used

proteomics to identify enzymes that were expressed by S. Typhimurium during

infection of mice. A subset of these enzymes were experimentally evaluated in

vivo by constructing deletion mutants. The essentiality data relevant for the

analysis presented here is summarised in Table 7.1. Becker et al. [8] identified a

total of 155 proteins as potential drug targets, these coincide with 13 of reactions

(and 24 protein-coding genes) identified in this analysis.

It should be emphasised that all reactions included in Table 7.1 occurred in

sets of two or three in the data presented here, whereas the in vivo data was

mainly based on single gene deletions (the only double deletion included in the

table is ∆ackA ∆pta). It is also worth noting that none of the mutations listed

in the table caused complete lethality, which is consistent with the modelling

results. This observation also strengthens the motivation for including reaction

deletions that are non-lethal, but cause an increase in objective value compared

to the wild type, in the damage analysis: In this analysis the situation be-

ing modelled is growth in the macrophage where both the nutrient availability

and the detailed biomass composition is unknown. Thus, it is reasonable to

assume that a reaction deletion that cause a significant investment in enzyme

(estimated as increase in flux sum) on a rich medium will have an even greater

impact on growth in the nutritionally poorer and hostile macrophage environ-

ment. Furthermore, as indicated in the table, complete lethality is not required

for avirulence, which suggests that reaction sets with a relatively low damage

could be sufficient for avirulence in vivo.

An experimental strategy for implementing these reaction sets could be to

focus on single reactions with high damage coefficients, and only implement the

complete sets if these single deletions fail to cause attenuation. This way, reac-

tion deletions that cause sufficient damage to prohibit infection, but not neces-

sarily biomass synthesis, could be identified. The suggested experimental design

would allow identification of high damage reactions sets that could potentially

be useful as drug targets. It would also suggest low or intermediate damage sets,

which is potentially useful for construction of live attenuated vaccine strains. If

high damage reaction sets were to be used as drug target candidates, it would

be desirable to avoid targeting any reactions which are shared between the host

and the pathogen. A cursory comparison between the reactions included in

the human PGDB from BioCyc and the reactions assigned a damage coefficient

indicate that 15 reactions would be suitable targets (damage coefficient shown

in parenthesis): AcetKin (0.08), PhoAcTrans (0.08), AspKin (0.33), KDPAl-

dolase (0.1), HomoSerDH (0.33), AlaTransAm (0.5), ThreSyn (0.33), IsoCit-

Cleav (0.33), AspDeCarb (0.5), AspSemAldDH (0.33), PyrForm (0.08), MalSyn

(0.33), HomoSerDH (0.33), PGlucDehydr (0.1), GlyoCarLig (0.33).
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Table 7.1: Summary of gene essentiality of reactions identified in damage anal-
ysis. Dr refers to the damage coeffcient of the reaction (as defiend in Equation
7.4) and Fr to the relative frequency (Equation 7.5). The summary is based on
data and literature review presented in Becker et al. [8]. Note that abbreviated
reaction names are used (see Table 1).

Reaction Dr Fr Genes Comment Reference
AcetKin 0.08 0.08 ackA,

pduW
∆ackA ∆pta (see PhoAc-
Trans, below) has a wild
type phenotype, but is
suggested to be redun-
dant.

[8, 174]

AspSemAldDH 0.33 0.01 usg,
asd

∆asd is avirulant, pre-
sumably owing to inability
to produce peptidoglycan.

[8]

AspKin 0.33 0.01 lysC,
thrA,
metL

∆lysC is avirulant, pre-
sumably owing to inability
to produce peptidoglycan.

[8]

ATPSynth 0.03 1 atpA–
atpH

∆atpB is avirulent, pre-
sumably owing to inability
to generate ATP.

[8, 175]

Enolase 0.12 0.12 eno Predicted essentiallity
based on expression.

[8]

GapDH 0.09 0.09 gapA Predicted essentiallity
based on expression.

[8]

GCVMult 0.33 0.01 lpdA ∆lpdA is avirulant. [8]
IsoCitCleav 0.33 0.01 aceA Predicted essentiallity

based on expression.
[8, 176]

MetTHFDH 0.33 0.01 folD Other reactions in the fo-
late biosynthesis pathway
(all expressed by the fol
operon) are targets for sul-
fonamids.

[8]

PhoAcTrans 0.08 0.08 eutD,
pta

∆ackA ∆pta (see
AcetKin, above) has
a wild type phenotype,
but is suggested to be
redundant.

[8]

PGKin 0.09 0.12 pgk Predicted essentiallity
based on expression.

[8]

6PGDH-(NAD) 0.1 0.28 gnd,
rfbK,
rfbM,
rfbG,
rfbF

Deletions of genes en-
coding reactions involved
in biosynthesis of compo-
nents of LPS are aviru-
lant.

[8, 177]

UPDGluEpi 0.5 0.01 galE ∆galE is avirulant. [178,
179]
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Chapter 8

General discussion

In the World Economic Forum’s Global Risks report from 2013 [180] three risk

cases of global concern are highlighted, one of those is the threat posed by

antibiotic resistant bacteria in combination with the declining antimicrobial re-

search and development pipeline. The report points out a few troubling aspects

of this problem: Multi-resistant Gram negative pathogens, notably Klebsiella

pneumoniae, that are resistant to all currently available antimicrobials (includ-

ing those that are in the development pipeline) have been isolated. The success

of treatment of infectious diseases over the last 70 years has depended on a

steady input of new classes of antimicrobials, rather than the drugs being very

sophisticated, since resistance would emerge eventually, especially for natural

antibiotics. Thus, there is the possibility of a worst case, post-antibiotic scenario

where all available antimicrobials have been rendered ineffective. Although for

most healthy adults, at least in high income countries, this would not involve an

immediate health threat, over the course of an individual’s life there are many

situations where efficient antibiotics are needed. Many currently available med-

ical practises, e.g. preterm birth management, heart surgery, organ transplant,

immunomodulating therapies to treat autoimmune diseases, as well as certain

forms of cancers, would become associated with higher risk of complications in

the absence of efficient antibiotics. This scenario would also, apart from high

mortality rate, result in significant economic damage.

With the exception of multi-resistant Gram positive bacteria, the problem

highlighted in the Global Risks report, and addressed in this thesis, has not

improved since the work presented here was started. In the following section

the results obtained here will be briefly reviewed, focusing on their relevance in

addressing this problem.
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8.1 Overview of the results obtained

Chapter 3 was focused on the construction of a genome-scale metabolic model

of S. Typhimurium. The choice of modelling S. Typhimurium for addressing

the concern of antibiotic resistant Gram negative pathogens was motivated by

the fact that it is an established model organism for this group of bacteria,

as well as a significant pathogen in its own right. The primary aim of the

chapter was to construct a consistent model and analyse fundamental properties

of the S. Typhimurium metabolic network. The starting point of the model

construction was a previously constructed organism specific BioCyc database.

As highlighted in the chapter, significant curation efforts were still required

in order to construct a high quality metabolic model. The S. Typhimurium

metabolic model was analysed by simulating changes in energy demand, using

flux balance analysis. This method, which was also applied in Chapters 4 and

7, was used for identifying reactions that were correlated with energy demand,

and therefor formed a catabolic sub-network within the genome-scale network.

The main focus of Chapter 4 was to adapt a previously published genome-

scale model of L. plantarum to the ScrumPy and BioCyc standards in order

to analyse metabolic interactions between this model and the S. Typhimurium

model. Energy demand analysis showed that the catabolic core of L. plantarum

shared some common features with the S. Typhimurium model and that the

structure of the catabolic core was greatly influenced by which mode of fermen-

tation (heterolactic or homolactic) the L. plantarum network was using.

The focus of Chapter 5 was analysis of metabolic interactions between S.

Typhimurium and L. plantarum. Since the infection route of S. Typhimurium,

and other enteric bacteria, involves ingestion and transmission through the ep-

ithelium of the small intestine, interactions with resident microflora (including

L. plantarum) is an important part of the infection cycle. The initial ambition

of this work was to identify different types of interactions, mutually beneficial,

as well as antagonistic, ones. It was soon realised that the complex phenomenon

of antagonism through metabolic interactions could not be accurately modelled

using a structural approach alone, and that more experimental data would be

required in order to pursue this aim. What could be modelled with structural

models was potentially beneficial interactions. The results of Chapter 5 indi-

cate that these are very limited. The only mutualistic interaction identified was

transfer of glycolate from L. plantarum to S. Typhimurium.

Chapter 6 was dedicated to integration of experimental data with the S.

Typhimurium genome-scale metabolic model. Specifically, Phenotype Microar-

ray (PM) data and DNA microarray data obtained during intracellular growth

was used. The integration of these two data types with the S. Typhimurium
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model provided a basis for analysing nutrient availability and catabolism during

infection. The results did not indicate any simple generalisations of the nutri-

ent availability in vivo, but there were clear differences between carbon sources,

e.g. glycerol-3-phosphate, some nucleosides, and some amino acids, appeared to

be dominating. The distribution of metabolite-associated expressions could be

indicative of a complex nutrient availability in vivo where many carbon sources

are present at low concentration and co-metabolised. The results could also

be indicative of a nutritionally variable environment to which S. Typhimurium

has adapted by expressing metabolic genes related to catabolism of many un-

related compounds. The results obtained here and the general methodology

for model-based analysis of expression could, pending experimental validation,

be of great use for understanding the in vivo metabolism of Salmonella and

other pathogenic bacteria. This information would not only be of general scien-

tific interest, but be useful for designing intervention strategies against infective

bacteria.

In the final chapter, results from Chapters 3 and 6 were combined in order to

identify enzymes that could be of pharmaceutical interest. The method used in

Chapter 7 was intended to identify sets of reactions that were important for via-

bility of S. Typhimurium, regardless of the nutrient composition available to the

cell. This approach was motivated by the results from Chapter 6, indicating an

either variable or complex host environment. In order to achieve this, a consen-

sus catabolic core network based on all growth supporting carbon sources was

constructed and used for damage analysis. The focus on catabolism and energy

generation was motivated by the importance of this metabolic function for over-

all viability. An alternative would have been to identify the reactions that were

invariably associated with biomass synthesis. A problem with this approach is

that with many carbon sources available the number of invariable biosynthetic

reactions becomes quite limited. Catabolism and energy generation is arguably

more fundamental that biomass synthesis for most pathogens. There are also

experimental indications that growth of Salmonella during infection is limited.

For example, after infection of human macrophages, M. tuberculosis can enter

a state of dormancy where no or little growth occurs [181]. Despite the re-

duced metabolic activity and cellular ATP levels during dormancy, uncouplers

of respiratory ATP generation have a strong antimicrobial effect on dormant

cells in vitro [182]. Rapid growth of S. Typhimurium is usually observed when

cultured macrophage cell lines are used for simulating in vivo macrophage in-

fection. However, there is accumulating evidence for the occurrence of cells

entering a metabolically dormant state during infection of cultured fibroblasts

[183], similar to that of mycobacteria [184, 185]. Observations from animal tis-

sue indicate an average total number of intracellular replications in vivo of two
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or three [186].

8.2 Outlook

There is of course much additional work that would be both interesting and

worthwhile pursuing. The most urgent priority for any continuation of the this

work would be experimental investigation of the hypotheses generated here.

The method for data integration presented in Chapter 6 could be validated

by applying it to expression data obtained during growth on media with known

composition. The increasing accuracy of RNA-seq expression data [165, 166]

makes it, in principle, very applicable to the method suggested in this work.

This technology, in combination with metabolic modelling, also opens up the

possibility of analysing in vivo metabolism and nutrient availability in environ-

ments that otherwise would be challenging to analyse experimentally, such as

intracellular growth in intact living host tissue.

Perhaps the most interesting continuation of the results presented here would

be construction and validation of the deletion mutations suggested in Chapter 7.

A remaining question following validation would be how to use this information.

An option would be to use the identified enzymes as targets for drug develop-

ment. One of the benefits of antimicrobials targeting metabolic enzymes is that

these targets are often conserved, which makes the drug suitable as a broad

spectrum antimicrobial. A potential problem with this approach is of course

the risk of inhibiting host enzymes. Although, drug candidates have been de-

veloped that specifically inhibit mycobacterial homologues of type-II NADH

dehydrogenase (phenothiazines and analogous compounds) [187] and ATP syn-

thase (diarylquinolines) [188], indicating the feasibility of targeting a conserved

metabolic pathway.

The estimated damage imposed by the reaction sets in Chapter 7 falls within

the extremes of no damage at all to complete lethality. Live attenuated vaccines

for bacterial pathogens are strains that are viable, but genetically modified to

be avirulant. In many cases this has been achieved by deletion of metabolic

genes [189]. An alternative application of the less damaging reaction sets could

then be construction of live attenuated vaccines for S. Typhimurium. Safe and

efficient bacterial vaccines could dramatically reduce the need for routine use

of antibiotics, thus decrease the selective pressure on multi-resistant pathogens,

which in effect would preserve the potency of the last resort antibiotics [180, 190].
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[151] D. Segrè, D. Vitkup, and G.M. Church. Analysis of optimality in natural

and perturbed metabolic networks. PNAS, 99:15112–15117, 2002.

[152] S. Freilich, R. Zarecki, O. Eilam, E. Shtifman Segal, C. S. Henry, M. Ku-

piec, U. Gophna, R. Sharan, and E. Ruppin. Competitive and cooper-

ative metabolic interactions in bacterial communities. Nat Commun, 2:

doi:10.1038/ncomms1597, 2011.

[153] A. R. Zomorrodi and C. D. Maranas. OptCom: A Multi-Level Optimiza-

tion Framework for the Metabolic Modeling and Analysis of Microbial

Communities. PLoS Comput. Biol., 8:e1002363, 2012.

141



[154] J. M. Neal-McKinney, X. Lu, T. Duong, C. L. Larson, D. R. Call, D. H.

Shah, and M. E. Konkel1. Production of Organic Acids by Probiotic

Lactobacilli Can Be Used to Reduce Pathogen Load in Poultry. PLoS

ONE, 7:e43928, 2012.

[155] D. G. Brown and C. Allen. Ralstonia solanacearum genes induced during

growth in tomato: an inside view of bacterial wilt. Mol. Microbiol., 53:

1641–1660, 204.

[156] B. R. Bocher, P. Gadzinski, and E. Panomitros. Phenotype microarrays for

high-throughput phenotypic testing and assay of gene function. Genome

Research, 11:1246–1255, 2001.

[157] B. R. Bochner and M. A. Savageau. Generalized Indicator Plate for Ge-

netic, Metabolic, and Taxonomic Studies with Microorganisms. Appl.

Environ. Microbiol., 33:434 – 444, 1977.

[158] B. R. Bochner. New technologies to assess genotype-phenotype relation-

ships. Nat. Rev. Genet., 4:309 – 314, 2003.

[159] Y.-K. Oh, B. O. Palsson, S. M. Park, C. H. Schilling, and R. Mahadevan.

Genome-scale Reconstruction of Metabolic Network in Bacillus subtilis

Based on High-throughput Phenotyping and Gene Essentiality Data. J.

Biol. Chem., 282:28791–28799, 2007.

[160] A. Ehrenreich. DNA microarray technology for the microbiologist: an

overview. Appl Microbiol Biotechnol, 73:255–273, 2006.

[161] D. J. Duggan, M. Bittner, Y. Chen, P. Meltzer, and J. M. Trent. Expres-

sion profiling using cdna microarrays. Nat. Genet., 21:10 – 14, 1999.

[162] S. A. Becker and B. O. Palsson. Context-Specific Metabolic Networks Are

Consistent with Experiments. PLoS Comput. Biol., 4, 2008.

[163] T. Shlomi, M. N. Cabili, M. J. Herrg̊ard, B. Ø. Palsson, and E. Rup-

pin. Network-based prediction of human tissue-specific metabolism. Nat.

Biotechnol., 4, 2008.

[164] M.J. Alston, J. Seers, J.C.D. Hinton, and S. Lucchini. BABAR: an R pack-

age to simplify the normalisation of common reference design microarray-

based transcriptomic datasets. BMC Bioinformatics, 11, 2010.

[165] Z. Wang, M. Gerstein, and M. Snyder. RNA-Seq: a revolutionary tool for

transcriptomics. Nat Rev Genet., 10:57–63, 2009.

142



[166] A.J. Westermann, S.A. Gorski, and J. Vogel. Dual RNA-seq of pathogen

and host. Nat Rev Microbiol., 10:618–630, 2012.
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Appendix A

Biomass

Table A.1: Concentration of biomass components of Salmonella Typhimurium
used as constraints in FBA.

Component Concentration

(mmol(g DW)−1))

Reference

Amino acids

Isoleucine 0.087 [119]

Arginine 0.13 [119]

Alanine 0.75 [119]

Aspartate 0.37 [119]

Glutamate 0.26 [119]

Valine 0.28 [119]

Proline 0.26 [119]

Cysteine 0.017 [119]

Threonine 0.35 [119]

Phenylalanine 0.14 [119]

Glycine 1.5 [119]

Lysine 0.31 [119]

Tyrosine 0.04 [119]

Histidine 0.067 [119]

Serine 0.32 [119]

Tryptophan 0.088 [119]

Aspargine 0.27 [119]

Glutamine 0.20 [119]

Methionine 0.10 [119]

Leucine 0.21 [119]
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Nucleotides

dATP 0.026 [119]

UTP 0.15 [119]

CTP 0.17 [119]

ATP 0.15 [119]

dCTP 0.028 [119]

dTTP 0.026 [119]

dGTP 0.029 [119]

Cell envelope

Phosphatidylethanolamine 1.5·10−3 [191]

Phosphatidylserin 4.0·10−6 [191]

Peptidoglycan 0.049 [192]

Phosphatidylglycerol 4.2·10−4 [191]

1,2-diacylglycerol 1.88·10−4 [191]

Lipopolysaccharide 9.37·10−4 [193]

Phosphatidate 4.0·10−6 [191]

cardiolipin 1.4·10−5 [191]

Starch 0.027 [191]

Other compounds

NADH 5.0·10−5 [126]

NAD 2.15·10−3 [126]

Methyl-tetrahydrofolate 0.05 [126]

Putrescine 0.035 [126]

Succinate-CoA 3.0·10−6 [126]

Acetyl-CoA 5.0·10−5 [126]

NADP 1.3·10−4 [126]

CoA 6.0·10−6 [126]

UDP-glucose 3.0·10−3 [126]

FAD 1.0·10−5 [126]

Spermidine 7.0·10−3 [126]

AMP 1.0·10−3 [126]
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Appendix B

Reaction sets

Table B.1: Damage of reaction sets from Chapter 7, expressed as sum of total
flux. The reference, wild type total flux is 192 mmol (g DW)−1h−1. This data
also appears as a python file in Appendix C

Reaction sets Damage

(mmol (g

DW)−1h−1)

RXN-3341,Suc tx,CO2 tx 300.4

UDPGLUCEPIM-RXN,GALACTURIDYLYLTRANS-RXN lethal

ATPSynth,GLYCEROL-3P tx,ACETATEKIN-RXN 253.1

ATPSynth,PHOSACETYLTRANS-

RXN,TRIOSEPISOMERIZATION-RXN

253.9

HOMO-SER tx,ATPSynth,GLYCEROL-3P tx 241.2

RXN-3341,O2 tx,CO2 tx 249.6

PHOSGLYPHOS-RXN,CO2 tx,NADH DH ubi 246.1

O2 tx,CO2 tx,RIB5PISOM-RXN 252.4

RXN-3341,CO2 tx,Cytochrome c oxidase 243.5

TRANSALDOL-RXN,1TRANSKETO-RXN lethal

1TRANSKETO-RXN,2TRANSKETO-RXN lethal

NH3 tx,ATPSynth,PEPDEPHOS-RXN 242.0

ATPSynth,RIB5PISOM-RXN,TRIOSEPISOMERIZATION-

RXN

247.1

ATPSynth,2OXOGLUTARATEDEH-RXN,PEPDEPHOS-RXN 242.6

3PGAREARR-RXN,O2 tx,CO2 tx 243.4

O2 tx,CO2 tx,KDPGALDOL-RXN 249.6

CO2 tx,2PGADEHYDRAT-RXN,Cytochrome c oxidase 243.5

Suc tx,CO2 tx,KDPGALDOL-RXN 300.4
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ATPSynth,PEPDEPHOS-RXN,RIB5PISOM-RXN 248.0

PGLUCONDEHYDRAT-RXN,CO2 tx,GLYCEROL-3P tx 257.8

CO2 tx,ASPAMINOTRANS-RXN,KDPGALDOL-RXN 247.7

PGLUCONDEHYDRAT-RXN,RIB5PISOM-

RXN,1TRANSKETO-RXN

lethal

RXN-3341,PHOSGLYPHOS-RXN,CO2 tx 290.4

ATPSynth,2-KETOGLUTARATE tx,TRIOSEPISOMER-

IZATION-RXN

241.1

ATPSynth,CO2 tx,KDPGALDOL-RXN 273.4

ASPDECARBOX-RXN,2.6.1.18-RXN lethal

ATPSynth,PGLUCONDEHYDRAT-RXN,1TRANSKETO-RXN 241.0

HOMO-SER tx,ATPSynth,RIB5PISOM-RXN 241.6

ATPSynth,2PGADEHYDRAT-RXN 244.8

ATPSynth,PEPDEPHOS-RXN,Ac tx 250.2

ATPSynth,ADENYL-KIN-RXN,TRIOSEPISOMERIZATION-

RXN

241.7

PGLUCONDEHYDRAT-RXN,O2 tx,CO2 tx 249.6

RXN-3341,CO2 tx,TRIOSEPISOMERIZATION-RXN 253.1

3PGAREARR-RXN,CO2 tx,NADH DH ubi 246.1

CO2 tx,GAPOXNPHOSPHN-RXN,2TRANSKETO-RXN 241.8

GCVMULTI-RXN,METHYLENETHFDEHYDROG-NADP-

RXN,GLYOHMETRANS-RXN

lethal

CO2 tx,NADH DH ubi,RIB5PISOM-RXN 242.6

RXN-3341,CO2 tx,2PGADEHYDRAT-RXN 290.4

ATPSynth,PGLUCONDEHYDRAT-RXN,PEPDEPHOS-RXN 245.8

PGLUCONDEHYDRAT-RXN,CO2 tx,GAPOXNPHOSPHN-

RXN

290.4

CO2 tx,GAPOXNPHOSPHN-RXN,RIB5PISOM-RXN 257.4

CO2 tx,2PGADEHYDRAT-RXN,RIB5PISOM-RXN 257.0

PGLUCONDEHYDRAT-RXN,CO2 tx,ASPARTASE-RXN 246.4

ATPSynth,RXN-3341,PEPDEPHOS-RXN 245.8

ATPSynth,KDPGALDOL-RXN,PEPDEPHOS-RXN 245.8

HOMOSERDEHYDROG-RXN-(NAD),HOMOSERDEHYDROG-

RXN-(NADP), ASPARTATE-SEMIALDEHYDE-

DEHYDROGENASE-RXN

lethal

GLYOCARBOLIG-RXN,MALSYN-RXN,ISOCIT-CLEAV-RXN lethal

PGLUCONDEHYDRAT-RXN,CO2 tx,PEPCARBOX-RXN 434.9

3PGAREARR-RXN,CO2 tx,Cytochrome c oxidase 243.4

HOMOSERDEHYDROG-RXN-(NAD),ASPARTATEKIN-

RXN,HOMOSERDEHYDROG-RXN-(NADP)

lethal

149



PGLUCONDEHYDRAT-RXN,CO2 tx,2PGADEHYDRAT-RXN 290.4

ATPSynth,RXN-3341,TRIOSEPISOMERIZATION-RXN 246.9

PHOSGLYPHOS-RXN,CO2 tx,KDPGALDOL-RXN 290.4

RXN-3341,Phosphate tx,CO2 tx 250.8

PGLUCONDEHYDRAT-RXN,CO2 tx,ASPAMINOTRANS-

RXN

247.7

ATPSynth,PHOSACETYLTRANS-RXN,RIB5PISOM-RXN 241.5

PGLUCONDEHYDRAT-RXN,CO2 tx,NADH DH ubi 245.9

RXN-3341,CO2 tx,GAPOXNPHOSPHN-RXN 290.4

PHOSGLYPHOS-RXN,CO2 tx,Cytochrome c oxidase 243.4

CO2 tx,2PGADEHYDRAT-RXN,NADH DH ubi 246.2

RIBULP3EPIM-RXN,1TRANSKETO-RXN lethal

HOMO-SER tx,ATPSynth,PEPDEPHOS-RXN 242.6

ATPSynth,Phosphate tx,RIB5PISOM-RXN 243.1

RIBULP3EPIM-RXN,TRANSALDOL-RXN lethal

ATPSynth,GLYCEROL-3P tx,ADENYL-KIN-RXN 241.7

ATPSynth,GLYCEROL-3P tx,Ac tx 249.8

ATPSynth,GLYCEROL-3P tx,2-KETOGLUTARATE tx 241.2

ATPSynth,MALIC-NADP-RXN,TRIOSEPISOMERIZATION-

RXN

241.3

PGLUCONDEHYDRAT-RXN,Phosphate tx,CO2 tx 250.8

PGLUCONDEHYDRAT-RXN,3PGAREARR-RXN,CO2 tx 290.4

KDPGALDOL-RXN,RIB5PISOM-RXN,1TRANSKETO-RXN lethal

ATPSynth,CO2 tx,RIB5PISOM-RXN 259.1

ATPSynth,GLYCEROL-3P tx,PEPDEPHOS-RXN 247.3

CO2 tx,GLYCEROL-3P tx,KDPGALDOL-RXN 257.8

CO2 tx,KDPGALDOL-RXN,GLYC3PDEHYDROGBIOSYN-

RXN-(NADP)

243.5

RXN-3341,CO2 tx,ASPAMINOTRANS-RXN 247.7

PGLUCONDEHYDRAT-RXN,CO2 tx,GLYC3P-

DEHYDROGBIOSYN-RXN-(NADP)

243.5

HOMO-SER tx,ATPSynth,TRIOSEPISOMERIZATION-RXN 241.2

ATPSynth,KDPGALDOL-RXN,TRANSALDOL-RXN 240.9

RXN-3341,CO2 tx,PEPCARBOX-RXN 434.9

ATPSynth,3PGAREARR-RXN 244.8

ATPSynth,PGLUCONDEHYDRAT-

RXN,TRIOSEPISOMERIZATION-RXN

251.9

ATPSynth,ASPAMINOTRANS-RXN,PEPDEPHOS-RXN 242.2

PHOSGLYPHOS-RXN,CO2 tx,2TRANSKETO-RXN 241.8

RXN-3341,RIB5PISOM-RXN,1TRANSKETO-RXN lethal
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THRESYN-RXN,THR tx,THREODEHYD-RXN lethal

ATPSynth,PHOSACETYLTRANS-RXN,PEPDEPHOS-RXN 250.2

ATPSynth,PYRUVFORMLY-RXN,TRIOSEPISOMERIZATION-

RXN

245.6

GCVMULTI-RXN,METHENYLTHFCYCLOHYDRO-

RXN,GLYOHMETRANS-RXN

lethal

HOMO-SER tx,ASPARTATEKIN-RXN lethal

ATPSynth,PEPDEPHOS-RXN,PYRUVFORMLY-RXN 248.9

ATPSynth,CO2 tx,GLYCEROL-3P tx 241.1

2OXOGLUTARATEDEH-RXN,SUCCCOASYN-RXN lethal

AKBLIG-RXN,THRESYN-RXN,THR tx lethal

Phosphate tx,CO2 tx,KDPGALDOL-RXN 250.8

CO2 tx,KDPGALDOL-RXN,PEPCARBOX-RXN 434.9

PGLUCONDEHYDRAT-RXN,PHOSGLYPHOS-RXN,CO2 tx 290.4

ATPSynth,PEPDEPHOS-RXN,TRIOSEPISOMERIZATION-

RXN

247.3

CO2 tx,GLYCEROL-3P tx,RIB5PISOM-RXN 245.4

ATPSynth,Phosphate tx,PHOSACETYLTRANS-RXN 241.8

O2 tx,CO2 tx,2PGADEHYDRAT-RXN 243.5

ATPSynth,Phosphate tx,ADENYL-KIN-RXN 242.2

ATPSynth,PHOSACETYLTRANS-RXN,GLYCEROL-3P tx 253.1

ATPSynth,CO2 tx,PEPDEPHOS-RXN 250.4

HOMO-SER tx,ASPARTATE-SEMIALDEHYDE-

DEHYDROGENASE-RXN

lethal

ATPSynth,MALATE-DEH-RXN,PEPDEPHOS-RXN 241.6

ATPSynth,PYRUVFORMLY-RXN,RIB5PISOM-RXN 242.5

CO2 tx,KDPGALDOL-RXN,2PGADEHYDRAT-RXN 290.4

O2 tx,CO2 tx,GAPOXNPHOSPHN-RXN 243.4

RXN-3341,3PGAREARR-RXN,CO2 tx 290.4

ATPSynth,GLYCEROL-3P tx,2TRANSKETO-RXN 241.2

ATPSynth,ADENYL-KIN-RXN,ACETATEKIN-RXN 241.2

ATPSynth,PGLUCONDEHYDRAT-RXN,TRANSALDOL-RXN 240.9

PGLUCONDEHYDRAT-RXN,CO2 tx,TRIOSEPISOMER-

IZATION-RXN

266.8

HOMOSERKIN-RXN,THR tx,THREODEHYD-RXN lethal

3PGAREARR-RXN,CO2 tx,RIB5PISOM-RXN 256.9

ATPSynth,RXN-3341,CO2 tx 273.4

ATPSynth,RXN-3341,TRANSALDOL-RXN 240.9

ATPSynth,ADENYL-KIN-RXN,PEPDEPHOS-RXN 246.8

ATPSynth,CO2 tx,TRIOSEPISOMERIZATION-RXN 241.1
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ATPSynth,GLYCEROL-3P tx,FRUCTOSE-6P tx 241.1

ATPSynth,SUCCCOASYN-RXN,PEPDEPHOS-RXN 241.4

ATPSynth,Suc tx,PEPDEPHOS-RXN 241.7

ATPSynth,ACETATEKIN-RXN,RIB5PISOM-RXN 241.5

ATPSynth,2TRANSKETO-RXN,TRIOSEPISOMERIZATION-

RXN

241.2

CO2 tx,RIB5PISOM-RXN,TRIOSEPISOMERIZATION-RXN 245.3

ATPSynth,MALIC-NADP-RXN,GLYCEROL-3P tx 241.3

ATPSynth,MALIC-NADP-RXN,PEPDEPHOS-RXN 241.9

ATPSynth,Phosphate tx,CO2 tx 242.4

ATPSynth,PEPDEPHOS-RXN,2-KETOGLUTARATE tx 243.2

ATPSynth,RIB5PISOM-RXN,Ac tx 241.5

PHOSGLYPHOS-RXN,CO2 tx,RIB5PISOM-RXN 257.4

ATPSynth,GLYCEROL-3P tx,RIB5PISOM-RXN 247.1

CO2 tx,KDPGALDOL-RXN,Cytochrome c oxidase 243.5

3PGAREARR-RXN,CO2 tx,2TRANSKETO-RXN 240.9

ATPSynth,GLYCEROL-3P tx,KDPGALDOL-RXN 247.6

CO2 tx,KDPGALDOL-RXN,TRIOSEPISOMERIZATION-RXN 266.8

ATPSynth,RXN-3341,1TRANSKETO-RXN 241.0

CO2 tx,GAPOXNPHOSPHN-RXN,Cytochrome c oxidase 243.4

CO2 tx,GAPOXNPHOSPHN-RXN,KDPGALDOL-RXN 290.4

3PGAREARR-RXN,CO2 tx,KDPGALDOL-RXN 290.4

PGLUCONDEHYDRAT-RXN,TRANSALDOL-

RXN,RIB5PISOM-RXN

lethal

ATPSynth,Ac tx,TRIOSEPISOMERIZATION-RXN 250.5

PGLUCONDEHYDRAT-RXN,CO2 tx,Cytochrome c oxidase 243.5

ATPSynth,ADENYL-KIN-RXN,Ac tx 241.2

ATPSynth,KDPGALDOL-RXN,TRIOSEPISOMERIZATION-

RXN

251.9

ATPSynth,ACETATEKIN-RXN,TRIOSEPISOMERIZATION-

RXN

253.9

KDPGALDOL-RXN,TRANSALDOL-RXN,RIB5PISOM-RXN lethal

PGLUCONDEHYDRAT-RXN,Suc tx,CO2 tx 300.4

CO2 tx,2PGADEHYDRAT-RXN,2TRANSKETO-RXN 241.0

ATPSynth,PGLUCONDEHYDRAT-RXN,CO2 tx 273.4

CO2 tx,KDPGALDOL-RXN,ASPARTASE-RXN 246.4

ATPSynth,GLYCEROL-3P tx,PYRUVFORMLY-RXN 245.7

ATPSynth,PHOSGLYPHOS-RXN 244.8

PEPSYNTH-RXN,PEPCARBOXYKIN-

RXN,2PGADEHYDRAT-RXN

lethal

152



ATPSynth,PEPDEPHOS-RXN,THR tx 240.9

UDPGLUCEPIM-RXN,ALPHA-D-

GALACTOSE tx,ALDOSE1EPIM-RXN

lethal

ATPSynth,KDPGALDOL-RXN,1TRANSKETO-RXN 241.0

ATPSynth,ACETATEKIN-RXN,PEPDEPHOS-RXN 250.2

ATPSynth,RXN-3341,GLYCEROL-3P tx 246.9

CO2 tx,KDPGALDOL-RXN,NADH DH ubi 245.9

ATPSynth,RIB5PISOM-RXN,GLYC3PDEHYDROGBIOSYN-

RXN-(NADP)

243.8

ATPSynth,PGLUCONDEHYDRAT-RXN,GLYCEROL-3P tx 247.6

ATPSynth,ADENYL-KIN-RXN,PYRUVFORMLY-RXN 242.2

GALACTOKIN-RXN,UDPGLUCEPIM-RXN lethal

PHOSGLYPHOS-RXN,O2 tx,CO2 tx 243.4

RXN-3341,CO2 tx,NADH DH ubi 245.9

ATPSynth,PHOSACETYLTRANS-RXN,ADENYL-KIN-RXN 241.2

ATPSynth,PEPDEPHOS-RXN,PYRUVATE tx 243.0

RXN-3341,CO2 tx,ASPARTASE-RXN 246.4

ATPSynth,FRUCTOSE-6P tx,TRIOSEPISOMERIZATION-

RXN

241.1

RXN-3341,CO2 tx,GLYC3PDEHYDROGBIOSYN-RXN-

(NADP)

242.4

RXN-3341,CO2 tx,GLYCEROL-3P tx 253.1

HOMOSERKIN-RXN,AKBLIG-RXN,THR tx lethal

ATPSynth,Phosphate tx,ACETATEKIN-RXN 241.8

ATPSynth,GAPOXNPHOSPHN-RXN 244.8

TRANSALDOL-RXN,2TRANSKETO-RXN lethal

RXN-3341,TRANSALDOL-RXN,RIB5PISOM-RXN lethal

CO2 tx,GAPOXNPHOSPHN-RXN,NADH DH ubi 246.1
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Appendix C

Additional material

Content of the attached CD.

C.0.1 Additional files

Deleted reactions

List of deleted reactions. Python file (deleted.py).

Reversible reactions

List of reversible reactions. Python file (reversible.py).

Model, glucose based, ScrumPy format

Salmonella Typhimurium GSM, ScrumPy format (MetaSal.spy). Includes mod-

ules Transporters.spy, AutoModel.spy, ETC.spy, and Extra.spy.

Model, glucose based, SBML format

Salmonella Typhimurium GSM, SBML format (MetaSal.sbml).

PM integrated model, C sources, ScrumPy format

Salmonella Typhimurium GSM, ScrumPy format (MetaBioSal C.spy). Includes

modules AutoModel.spy, ETC.spy, Extra.spy, Transporters BioLog C test.spy,

Tx auto C.spy, Transporters out.spy, and Transporters BioLog sugars.spy

PM integrated model, C sources, SBML format

Salmonella Typhimurium GSM, integrated with PM C-sources, SBML format

(MetaSal.sbml).
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PM integrated model, C sources, ScrumPy format

Salmonella Typhimurium GSM, ScrumPy format (MetaBioSal C.spy). Includes

modules AutoModel.spy, ETC.spy, Extra.spy, Transporters BioLog C test.spy,

Tx auto C.spy, Transporters out.spy, and Transporters BioLog sugars.spy

PM integrated model, C sources, SBML format

Salmonella Typhimurium GSM, integrated with PM C-sources, SBML format

(MetaSal C.sbml).

PM integrated model, N sources, ScrumPy format

Salmonella Typhimurium GSM, ScrumPy format (MetaBioSal N.spy). Includes

modules AutoModel.spy, ETC.spy, Extra.spy, Transporters BioLog N test.spy,

Tx auto N.spy, and Transporters out.spy.

PM integrated model, N sources, SBML format

Salmonella Typhimurium GSM, integrated with PM N-sources, SBML format

(MetaSal N.sbml).

PM integrated model, P sources, ScrumPy format

Salmonella Typhimurium GSM, ScrumPy format (MetaBioSal P.spy). Includes

modules AutoModel.spy, ETC.spy, Extra.spy, Transporters BioLog P test.spy,

Tx auto P.spy, and Transporters out.spy.

PM integrated model, P sources, SBML format

Salmonella Typhimurium GSM, integrated with PM P-sources, SBML format

(MetaSal P.sbml).

PM integrated model, S sources, ScrumPy format

Salmonella Typhimurium GSM, ScrumPy format (MetaBioSal S.spy). Includes

modules AutoModel.spy, ETC.spy, Extra.spy, Transporters BioLog S test.spy,

Tx auto S.spy, and Transporters out.spy.

PM integrated model, S sources, SBML format

Salmonella Typhimurium GSM, integrated with PM S-sources, SBML format

(MetaSal S.sbml).
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Damage analysis

Damaging reaction sets from the global catabolic core model, as defined in

Chapter 7. Python file, contains a Python dictionary relating reaction sets

(string of reaction names, separated by comma) to imposed damage (objective

value (float) or the string ”lethal” if set is lethal). (damage reac sets.py)
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