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Abstract

This research focuses on two theories: (i) competing risks and (ii) random effect (frailty)

models. The theory of competing risks provides a structure for inference in problems where

cases are subject to several types of failure. Random effects in competing risk models consist

of two underlying distributions: the conditional distribution of the response variables, given

the random effect, depending on the explanatory variables each with a failure type specific

random effect; and the distribution of the random effect. In this situation, the distribution of

interest is the unconditional distribution of the response variable, which may or may not have

a tractable form. The parametric competing risk model, in which it is assumed that the failure

times are coming from a known distribution, is widely used such as Weibull, Gamma and

other distributions. The Gamma distribution has been widely used as a frailty distribution,

perhaps due to its simplicity since it has a closed form expression of the unconditional hazard

function. However, it is unrealistic to believe that a few parametric models are suitable for

all types of failure time.

This research focuses on a distribution free of the multivariate frailty models. Another

approach used to overcome this problem is using finite mixture of parametric frailty especially

those who have a closed form of unconditional survival function. In addition, the advantages

and disadvantages of a parametric competing risk models with multivariate parametric

and/or non-parametric frailty (correlated random effects) are investigated. In this research,

four main models are proposed: first, an application of a new computation and analysis of

a multivariate frailty with competing risk model using Cholesky decomposition of the Log-

normal frailty. Second, a correlated Inverse Gaussian frailty in the presence of competing risks

model. Third, a non-parametric multivariate frailty with parametric competing risk model

is proposed. Finally, a simulation study of finite mixture of Inverse Gaussian frailty showed

the ability of this model to fit different frailty distribution. One main issue in multivariate

analysis is the time it needs to fit the model. The proposed non-parametric model showed a

significant time decrease in estimating the model parameters (about 80% less time compared

the Log-Normal frailty with nested loops). A real data of recurrence of breast cancer is used

as the applications of these models.
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Chapter 1

Introduction

The term survival analysis summarises statistical models and methods for analysing lifetime

data or time-to-event data. These models are frequently employed in a variety of disciplines

including Bio-statistics, Epidemiology, Engineering, Social Sciences and Economics. Survival

analysis differs from other statistical procedures in many features; one of these features

is the incompleteness of the survival times due to the censoring mechanism that gives a

mixture of discrete and continuous data. Another difference is the shape of the distribution

of the survival times that are non-negative random variables and usually skewed to right.

The proportional hazards models (PH) by Cox (1972) which assume that covariates have a

multiplicative effect on the hazard have dominated survival analysis. In addition, accelerated

failure time models are also used for the analysis of survival data by modelling the survival

time it-self and the covariates are assumed to act directly on it. During recent decades, these

models have been extended to become suitable for handling more complex survival data so

as to include frailty models and competing risks models. They provide a powerful tool to

analyse models with repeated measures, clustered survival data and multiple types of failure.

One of the main assumptions in analysing survival data is that all subjects have the same risk

of failure, which means that populations are homogeneous. However, this is usually not true

as different subjects could have different hazards. In univariate survival data, frailty models

are used to take into account the heterogeneity between subjects due to exclusion of some

1



Chapter 1. Introduction

important covariates in the model. In multivariate survival data, frailty models are used

when there are repeated measures or clustering. Repeated data occur in case of longitudinal

data or multiple recurrences of an event for the same individual. Competing risks models are

another form of multivariate survival data where the censoring variable is decomposed into

different variables. For each type of failure the subject experiences the event of that failure

or is censored.

Competing risks with frailty models frequently arise in a number of substantive scientific

research areas, particularly within the Social Sciences, Bio-statistics and Epidemiology. These

models combine two theories: (i) competing risks and (ii) random effect (or frailty) models.

The theory of competing risks provides a structure for reference to problems where cases are

subject to several types of failure, i.e. multiple causes of failure. There are two approaches

to analyse competing risks models in the literature. One places emphasis on cause specific

hazard functions and sub-distribution functions, while the other uses the concept of latent

failure times, where there is an inherent failure time for each type of failure, and only one

such time, the smallest, is observable. Both approaches arrive at the same inference, using

different notation (Kalbfleisch and Prentice, 2002 and Kundu, 2004). The concept of latent

failure times is the one employed in this thesis.

Random effects in competing risk models consist of two underlying distributions: the

conditional distribution of the response variables (i.e. failure types), given the random effect,

depending on the explanatory variables each with a failure type specific random effect; and the

distribution of the random effect in the population (i.e. frailty distribution). In this situation,

the distribution of interest is the unconditional distribution of the response variables which

may or may not have a tractable form.
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Due to its simplicity, the parametric competing risk model where the failure times have a

known distribution with monotonically increasing or decreasing baseline hazard and known

distribution of random effect, is widely used in practice (Hougaard, 2000, Lambert et al.,

2004 and Oskrochi and Crouchley, 2004), but it is unrealistic to believe that a few parametric

models are suitable for all types of failure time. Unlike the parametric models, a distribution

free model for the random effect in which only the baseline hazard follows a specific

distribution will be less demanding in term of assumptions and would be more robust. In

this situation the unconditional distribution of the competing risks does not have a tractable

form and hence a more complex non-linear multivariate optimisation procedure is needed

for parameter estimation (Oskrochi and Davies, 1997). One should differentiate between

the ways frailty introduced into the model. In univariate failure time, frailty is included

to accommodate heterogeneity between individuals. When individuals in the same group

or cluster are assumed to share the same frailty then it accommodates the heterogeneity

between clusters not individuals, the so-called shared frailty. Another way to include frailty

is by assuming different frailties for different individuals or for different competing risks.

In correlated frailty models, frailties are correlated through a covariance matrix and have

the same set of marginal distributions but not coming from a multivariate distribution. In

multivariate frailty models, frailties have a multivariate distribution with a general correlation

structure between the frailties.

This study will investigate the methodology and the applications of competing risk models

with multivariate frailty. In the first stage, the Chloeskey decomposition is applied in

analysing competing risks model for censored survival data with multivariate Log-Normal

frailty to a real data of breast cancer. In the second stage, a correlated Inverse Gaussian

frailty as well as a multivariate Inverse Gaussian frailty is proposed. In the third stage, a

methodology for analysing a competing risk model with non-parametric multivariate frailty

3
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is proposed. In the last stage, a finite mixture of Inverse Gaussian frailty is proposed. The

advantages and disadvantages of competing risk model with non-parametric and/or semi-

parametric multivariate frailty is compared using simulations data as well as real data.

In Chapter 2, a general introduction to survival analysis and its main characteristics is

summarized along with a description of a set of survival data on the recurrence of breast

cancer in the UK, which is used throughout the thesis to demonstrate the development of

the proposed models. In Chapter 3, a literature review of the univariate frailty models is

conducted. Chapter 4 generalises these models to suite correlated and multivariate frailty

models in the presence of competing risks in cases of parametric as well as non-parametric

frailty. In chapter 5, a different approach is used to fit frailty models by decomposing the

frailty distribution as a finite mixture model (semi-parametric model). Finally, chapter 6

concludes the main results and discusses the advantages and disadvantages of the proposed

methodologies.
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Chapter 2

Survival Analysis

The term ”survival analysis” is used for describing data that measure the time to some event.

The statistical analysis of survival data or ’time-to-event’ has applications in disciplines as

diverse as Medicine, Social Sciences, Engineering, Epidemiology, Economics, as well as many

others. Time-to-event could mean the time until some electrical component fails, time of

remission of a certain disease after treatment, or time from graduation until employment.

These applications have ensured that survival analysis has expanded rapidly in the last three

decades. In this study, the applications are within the biomedical framework where real data

from medical fields are used and our subjects are individuals. Two features of survival data

make them differ from the data used in classical methods (e.g. general linear models). First,

there is a mixture of discrete and continuous variables. The time-to-event is the continuous

part and the censoring is the discrete part. An individual is said to be censored if s/he does

not experience the time of interest before the end of the study: for example, a patient with

breast cancer may stay alive after the termination of the study. Second, in classical methods,

the dependent variable is modelled through a link function with a linear combination of the

explanatory variables. In survival analysis, the model is built either by the hazard function,

which represents the failure rate at time t; for example, proportional hazard model (PH) Cox

(1972), or by the survival function which represents the probability of surviving beyond time

(t), for example, accelerated failure time (AFT) (Lawless, 1982). These two models coincide

in the case of Weibull distribution.
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2.1 Definitions

2.1.1 Definition. Let T be a non-negative random variable that represents the survival

time (failure time, lifetime), of a subject, with probability density function (p.d.f) f(t), and

cumulative distribution function (c.d.f) F (t) = Pr(T ≤ t).

If T is absolutely continuous then the probability density function is

f(t) = lim
∆t→0+

P (Failure occurs in[t, t+ ∆t))

∆t
.

2.1.2 Definition. The survival function S(t) = Pr(T ≥ t), is the probability of an

individual surviving beyond time t, or more generally, the probability that the event of

interest has not occurred by duration t.

From the definition, if it is a continuous random variable then,

S(t) = Pr(T ≥ t) =

∫ ∞
t

f(u)du.

If T is discrete with mass points at tj with probability mass function (p.m.f)fj = P (T = tj)

then, for tj ≤ t < tj+1,

S(t) =
∑
i≥j

f(ti).

2.1.3 Definition. If T is an absolutely continuous random variable then, the hazard

function is given by

h(t) = lim
∆t→0

Pr(t ≤ T < t+ ∆t|T ≥ t)

∆t
=
f(t)

S(t)
, (2.1.1)

which represents the probability of failure at time t given that the individual survives up to

6
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time t. If T is a discrete random variable, then the hazard function is given by

h(t) = P (T ≥ t|T = t) =
Pr(T = t)

P (T ≥ t)
=

f(t)

S(t−)
,

where S(t−) = lim
x→t−

S(x) (t−: from left). Moreover,

S(t) =

j∏
i=1

S(ti+1)

S(ti)
=

j∏
i=1

S(ti)− fi
S(ti)

=

j∏
i=1

(
1− fi

S(ti)

)

and hence,

S(t) =

j∏
i=1

(1− h(ti)) .

2.1.4 Definition. If T is an absolutely continuous random variable then, the cumulative

hazard function c.h.f is

H(t) =

∫ t

0

h(u)du = − logS(t). (2.1.2)

Or equivalently,

S(t) = e−H(t) = exp

[
−
∫ t

0

h(u)du

]
.

The p.d.f f(t) can be written in terms of the hazard and the cumulative hazard function,

f(t) = h(t)exp[−H(t)].

If T is discrete,

7
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H(t) =
∑
i≤j

h(ti)

Sometime it is desirable to find the mean or the expected lifetime of subjects, for instance if

T is a continuous random variable with p.d.f f(t) then expected value of T is

µ =

∫ ∞
0

tf(t)dt.

Another way to get this expected value is by integrating the survival function, assuming that

the event of interest is bound to occur (i.e. S(∞) = 0)

µ =

∫ ∞
0

S(t)dt.

2.2 Censoring

As mentioned above, censoring is one of the reasons that survival analysis differs from

standard statistical analysis, so censored data are those observations whose time-to-event is

not observed before the end of the study. There are three different mechanisms of censoring:

type I, type II, and random censoring. In type I censoring, a sample of n subjects is followed

for a specific time T ∗ under the control of the researcher, so that the total duration of the

study is fixed whilst the number of subjects who experience the event of interest is random,

the actual failure time ti cannot be observed if ti > T ∗. This type of censoring is usually used

in medical applications. The opposite of this mechanism, type II censoring, occurs when a

sample of n subjects is followed until the failure time of the first r(r ≤ n) of the subjects is

observed. This type of censoring is usually used in industrial applications. Another possible

mechanism of censoring is random censoring, where each subject has associated with it a

potential censoring time Ci and a potential survival time Ti, which are usually assumed to
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be independent of one another (the so-called independent censoring). This type of censoring

will be the main censoring mechanism that is used within this thesis. Usually, the observed

variables are Yi = min(Ti, Ci), and the indicator variable δi.

Yi =

{
Ti if Ti ≤ Ci

Ci if Ti > Ci
, and δi =

{
1 if Ti ≤ Ci

0 if Ti > Ci.

The observed data takes the form, (y1, δ1), ..., (yn, δn), and possibly some factors (independent

variables). There are three different kinds of censoring, right-censoring, left-censoring, and

interval-censoring:

Right-censoring : when subjects leave the study or the study ends before observing their

survival (failure) time. It is only known that their survival time Ti lies in an interval (t,∞).

Throughout this thesis, right-censoring is assumed.

Left-censoring : when subjects experience the event (failure) before a certain duration. It is

only known that their survival time Ti lies in an interval [0, t).

Interval-censoring : when it is not clear when the event occurred. It is only known that the

time-to-event occurred within some interval [t1, t2). For more information see Lee and Wang

(2003).

2.3 Non-parametric survival distribution

When it is difficult to determine the distribution of the survival time, or no assumption

about the distribution is made, non-parametric or distribution-free survival time approaches

represent viable alternatives. In this case, the empirical distribution function is used to

estimate the survival function assuming that all subjects have experienced failure (i.e., no

censored data). The empirical survival function is given by

S̃(t) =
Number of subjects with survival times ≥ t

Number of subjects in the data set
.

9



Chapter 2. Survival Analysis

The following subsections give a briefly review of the two most popular estimators of the

survival function using both censored and uncensored data.

2.3.1 Life-table estimator

In the case of some subjects with censored time, the empirical function is not applicable any

more. Life-table estimator divides the study time into, usually equal intervals. The interval

width and number of intervals varies from one study to another depending on the length

of the study and the number of observations. Suppose that (t1, ..., tk) are the boundaries of

these intervals and let di,ci and ni denote the number of failures, number of censored subjects

and number of subjects who are at risk during the interval [ti, ti+1) respectively. Assuming

that the censoring is uniformly distributed along the interval, the average number of subjects

at risk during the interval [ti, ti+1) is n∗i = ni − ci/2, and hence the probability of failure is

di/n
∗
i . For t ∈ [tj, tj+1), and j = 1, ..., k, the life-table estimator of the survival function is

given by

j∏
i=1

(
1− di

n∗i

)
.

2.3.2 Product-limit estimator

Kaplan and Meier (1958) provided a special case of the life-table estimator, where the interval

boundaries are chosen so that there is at least one failure. Suppose that (t(1), ..., t(m))are the

ordered time points in which there is at least one failure so that, t(1) < t(2) < · · · < t(m). For

t ∈ [t(j), t(j+1)), and j = 1, ...,m, the product-limit estimator of the survival function is given
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by

j∏
i=1

(
1− di

ni

)
.

2.4 Parametric survival distribution

Although the non-parametric methods mentioned above are widely used in applications and

do not require any specific assumptions they are unsuitable for handling complex data sets

with explanatory variables, and if the distribution of the survival time is known, the inferences

will be more accurate. This section reviews some of the most commonly used distributions for

survival time. Actually, any non-negative random variable, whether discrete or continuous,

can be used to describe the survival time, while in this thesis our focus will be on continuous

distributions. Other random variables defined over the real line can be used say, x ∈ (−∞,∞)

such that x = log(t) or equivalently t = ex. There are some distributions that have been used

frequently in the literature of survival analysis, such as the Exponential, Weibull, Gamma,

Log-Normal and Log-Logistic distributions. For each distribution, the probability density

function, survival function, hazard function, expected value and the variance of survival time

are summarised in Table 2.1.

The Log-Normal and the Gamma distributions are generally less convenient computationally,

but are still frequently applied, as well as non-parametric approaches, such as the product

limit estimator suggested by Kaplan and Meier (1958) and related techniques. The

advantages and disadvantages of different parametric, semi-parametric and non-parametric

models as methodologies for statistical inference can be found in books such as Kalbfleisch

and Prentice (2002), Miller (1981), Lawless (1982), Cox and Oakes (1984) and Klein and

Moeschberger (1997).
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2.4.1 Exponential distribution

The simplest distribution for survival time is the Exponential distribution (T ∼ EXP (λ)),

especially used in reliability analysis in engineering applications. The p.d.f, the mean and

the variance of T are given in Table 2.1. It is used to model data with a constant failure

rate (indicated by the hazard plot which is simply equal to a constant). The exponential

distribution is a member of the exponential family. It has a unique property of “lack of

memory”, because of its constant hazard rate λ. The probability to failure within a particular

time interval depends only on the length, not on the location of this interval. In real-world

applications, the assumption of a constant rate is rarely satisfied.

2.4.2 Weibull distribution

The Weibull model is the most widely used parametric survival model. The Weibull

distribution was introduced by Weibull (1939); it is an important generalisation of the

exponential distribution with two positive parameters T ∼ Weib(α, λ), where α is the shape

parameter and λ is the scale parameter. Its first parameter allows different failure rates; if

it is less than one this indicates a decreasing hazard function while a value more than one

indicates an increasing hazard function, but if it is one then the distribution becomes the

exponential distribution and the hazard function is constant. Figure 2.1 describes the density

and the hazard curves of the Weibull distribution with a scale parameter that equals one with

different values of the shape parameter . The Weibull model also has another property in

the sense that if the plot of log(−log(Ŝ(t))) against log(t) shows a linear trend, that would

suggest Weibull model. Ŝ(t) is the empirical survival function which can be obtained the by

the Kaplan-Meier estimate.
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2.4.3 Gamma distribution

Another possible distribution of the survival time is the Gamma distribution T ∼ Γ(α, λ)

with two positive parameters: α the shape parameter and 1
λ

the scale parameter. Like the

Weibull distribution, it includes the Exponential distribution as a special case when α = 1.

The Gamma distribution is of limited use in survival analysis because the Gamma models

do not have closed-form expressions neither for the survival nor the hazard function, if α is

not an integer since both include the incomplete Gamma integral (If α is an integer then the

distribution reduces to Erlang distribution). Its maximum likelihood estimation is difficult to

get and involves incomplete Gamma integrals. This requires additional numerical calculations

in parameter estimation. It can be shown that the limit of its hazard as time goes to infinity

is equal to the shape parameter ( lim
t→∞

h(t) = λ). The Gamma hazard increases monotonically

if α > 1, from a value of zero at the origin to a maximum of λ; and is constant if α = 1;

and decreases monotonically if α < 1, from infinity at the origin to an asymptotic value of

λ. Figure 2.2 describes the density and the hazard curves of the Gamma distribution with a

scale parameter which equals one with different values of the shape parameter.

2.4.4 Log-Normal distribution

A random variable has a log-Normal distribution if the logarithm of the random variable is

normally distributed T ∼ LogN(µ, σ2) if and only if log(T ) ∼ N(µ, σ2). The log-Normal

distribution is self-replicating under multiplication and division. That is, multiplying or

dividing Log-Normal random variables will result in Log-Normal distributions. The hazard

function of the log-Normal differs from the previous two distributions; it starts from zero

at t = 0, increases to a maximum and then decreases and approaches zero as time goes to

infinity. The decreasing form of the hazard function as time increases makes the distribution
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unsuitable to model lifetime data in most medical applications. However, the Log-Normal

distribution can be very useful for representing lifetimes for situations with non-monotonic

hazards such as the analysis of electrical insulation or time to occurrence of lung cancer

among smokers. Figure 2.3 shows the density and the hazard curves of the Log-Normal

distribution with a location parameter which equals one with different values of the shape

parameter. It is similar to the Gamma distribution in the complexity of the hazard function

since numerical integration needs to be used to fit the distribution.

2.4.5 Log-Logistic distribution

The Log-Logistic distribution is the probability distribution of a random variable whose

logarithm has a logistic distribution T ∼ LogL(α, λ). It is one of the parametric survival

time models in which the hazard rate may be decreasing (if λ ≤ 1), increasing, or hump-

shaped (if λ > 1), that is, it initially increases and then decreases. Figure 2.4 describes the

density and the hazard curve of the log-logistic distribution with scale parameter equals one

with different values of the shape parameter. It has also another property that if the plot of

the logit of the survival function S(t), (log( S(t)
1−S(t)

)) against log(t) has a linear trend then it

is an indication of log-logistic model.
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(a) Weibull densities

(b) Weibull hazards

Figure 2.1: Weibull densities and hazards with scale parameter λ = 1 and shape parameter

α = (0.5, 1, 1.5)
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(a) Gamma densities

(b) Gamma hazards

Figure 2.2: Gamma densities and hazards with scale parameter λ = 1 and shape parameter

α = (0.5, 1, 1.5)

.
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(a) Log-Normal densities

(b) Log-Normal hazards

Figure 2.3: Log-Normal densities and hazards with location parameter (µ = 1) and shape

parameter(α = (0.5, 1, 1.5))

.
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(a) Log-Logistic densities

(b) Log-Logistic hazards

Figure 2.4: Log-Logistic densities and hazards with scale parameter λ = 1 and shape parameter

α = (0.5, 1, 1.5)

.
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Chapter 2. Survival Analysis

2.5 Likelihood function

In order to estimate the parameters involved in the survival analysis models, the likelihood

function is usually used. Since the observed data takes the form,(t1,δ1), ..., (tn, δn), where

(ti, δi) are respectively the survival time and the censoring indicator for the ith individual,

the likelihood function L(θ; ti) is given by

L(θ; ti) =
n∏
i=1

[f(ti)]
δi [S(ti)]

1−δi .

Using the relation in (2.1.2) the likelihood function becomes

L(θ; ti) =
n∏
i=1

[h(ti)]
δiS(ti). (2.5.1)

The maximum likelihood estimator of θ is the value in the parameter space that maximises

the likelihood function or equivalently the log-likelihood function which is given by

`(θ; ti) =
n∑
i=1

δi log[h(ti)] + log[S(ti)]. (2.5.2)

Example 2.1 Assume the survival times follow the Weibull distribution T ∼ Weib(α, λ),

then from Table 2.1, the probability density function, the hazard, and the survival function

are given by

f(t) = αλtα−1exp(λtα), h(t) = αλtα−1, S(t) = exp(λtα).

Applying formula (2.5.2), the log-likelihood is
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`(λ, α; ti) =
n∑
i=1

δi log[αλtα−1
i ] + λtαi ,

and consequently,

`(λ, α; ti) = r log(αλ) + (α− 1)
n∑
i=1

δi log ti − λ
n∑
i=1

tαi ,

where r =
∑n

i=1 δi is the number of uncensored individuals. Differentiating the log-likelihood

function and setting it to zero, the maximum likelihood estimators of λ and α are given by

λ̂ =
r∑n
i=1 t

α̂
i

, and
r

α̂
+

n∑
i=1

δi log ti − λ̂
n∑
i=1

tα̂i log ti = 0.

The values of λ̂ and α̂ can be found by an iterative numerical procedure such as the Newton-

Raphson algorithm.

2.6 Proportional hazard models

Many studies focus on determining the risk factors affecting the survival times of individuals

or subjects. Cox (1972) introduced the proportional hazard model (PH) in order to estimate

the effects of such risk factors or covariates influencing survival time data. It assumes that

the covariates have a multiplicative effect on the hazard. The proportional hazard model is

the most popular model for survival data and has been used extensively in the literature.

The proportional hazard model is given by

h(ti,xi) = h0(ti) exp(x
′

iβ). (2.6.1)

where h0(t) is the baseline hazard function corresponding to the hazard function of a subject

with covariate variables xi equal to 0, and β is a (p× 1) vector of unknown parameters.
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If the proportionality assumption is not satisfied, an alternative way to include the effect of

covariates is using additive models. The hazard function then takes the form

h(ti,xi) = h0(ti) + x
′

iβ. (2.6.2)

For more details, see (Lin and Ying, 1994) and (Beamonte and Bermdez, 2003). A more

general model that includes both types is called an additive-multiplicative model (Lin and

Ying, 1995).

Example 2.2 Assume the survival times follow the Weibull distribution T ∼ Weib(α, λ).

Then h0(ti) = αtα−1
i , and under the assumption of multiplicative hazard model, and setting

λ = exp(x
′

iβ) and r =
∑n

i=1 δi,

h(ti,xi) = αtα−1
i exp(x

′

iβ), and S(ti,xi) = exp(−tαi exp(x
′

iβ)).

Consequently, the log-likelihood is given by

`(β, α; ti) = r(log(α) + x
′

iβ) + (α− 1)
n∑
i=1

δi log ti −
n∑
i=1

tαi exp(x
′

iβ). (2.6.3)

2.7 Accelerated failure time models

Another way to estimate the effect of covariates on the survival time is through modelling the

survival time by accelerated failure time (AFT). The covariates are assumed to act directly

on survival times. The proportional hazard model is given by

S(ti,xi) = S0(ti exp(x
′

iβ)), (2.7.1)
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where S0(t) is the baseline survival function corresponding to the survival function of a

subject with covariate variables xi equal to 0. Another way to represent (2.7.1) is using the

survival time,

T = T0 exp(x
′

iβ),

where T0 has survival function S0(t). The AFT model assumes the effect of covariates is

multiplicative with respect to survival time. The AFT models are similar to the usual linear

regression model

log(Ti) = x
′

iβ + σεi,

where β is the unknown regression coefficient and x
′

i is the vector of observed covariates. The

random errors εi is assumed to be independently and identically distributed with the mean

zero and standard deviation one. If there are no censored data, the model can be readily

estimated by ordinary least squares. One can simply generate a new variable, Y = log(T ),

and use the linear regression model with Y as the dependent variable. If the error εi is

normally distributed, the OLS estimates will also be maximum likelihood estimates of the

model parameters. Survival data usually have at least some censored observations, and

these are difficult to handle with OLS. Alternatively, one can use Maximum Likelihood

Estimation (MLE) method with different distribution assumption. For each distribution of

εi, there is a corresponding distribution for T . For instance, if the survival times follow the

Weibull distribution T ∼ Weib(α, λ), then y = log(T ) has the extreme-value distribution

y ∼ ext(a, b), where a = log λ and b = 1/α , therefore,

`(β, b; yi) = −r log(b) +
n∑
i=1

δi

(
yi − x

′

iβ

b

)
−

n∑
i=1

exp

(
yi − x

′

iβ

b

)
.
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The following table lists some distributions of εi and their corresponding distributions of T .

Distribution of εi Distribution of T

Extreme value (2 parameters) Weibull

Extreme value (1 parameter) Exponential

Log-gamma Gamma

Logistic Log-logistic

Normal Log-normal

Table 2.2: Some distributions of εi and their corresponding distributions of T in modelling AFT.

2.8 Breast cancer recurrence data

This section describes a set of survival data on the recurrence of breast cancer in the UK

which will be used throughout the thesis to demonstrate the development of the proposed

models. The data used in this study was collected and provided by Research division of

Christie Hospital in Manchester U.K. and includes more than 2850 women who were referred

to the Christie Hospital, U.K. during 1985 and 1995, by their GPs with diagnosis of breast

cancer. The data also includes the subsequent monitoring of these women up to 2001. This is

an observational data set, hence, no randomisation or clinical trial was involved. Recurrence

in this study is defined as clinical recurrence of breast cancer (i.e. after remission). The

data were checked for values that were out of range, incorrect sequence of events or dates,

and logical inconsistencies such as discrepancy between date of death and date of follow-up.

As the result of this check a few individuals were excluded from the data set. The event

of interest in this study is the first recurrence time of breast cancer in patients after initial

treatment (surgery). There are three types of recurrence: Type one, local recurrence which

cancerous tumour cells remain in the original site and grow over time. Type two, regional
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recurrence of breast cancer is more serious because it usually indicates that the cancer has

spread past the breast, into the axillary (underarm) lymph nodes and beyond. Type three,

metastasis, where secondary cancer cells metastasise spread to other parts of the body and

cause tumour. In this study, the response variable is the time from initial treatment to either

local, regional recurrence or metastasis. In addition to these three observed recurrence times,

other situations considered where the recurrence time was not observed because the patient

was either symptomless at the end date of the study (independent right censoring) or the

patient dropped out for some reason before the end of the study. The patients in this study

can be classified into six categories:

1. patients who were alive when last seen with no disease and no recurrence (right

censoring)

2. patients who experienced a local recurrence (LR) as the first recurrence (T1)

3. patients who experienced a regional recurrence (RR) as the first recurrence (T2)

4. patients who experienced metastasis (MT) as the first recurrence (T3)

5. patients who died from breast cancer (DB) (i.e. drop-out due to the breast cancer)

before the first recurrence (T4) was observed

6. patients who died from other causes (DO) (i.e. drop-outs due to other causes) before

the first recurrence (T5) was observed

More details are in Appendix A. It is generally assumed that the right censoring mechanism

is independent of the recurrence time (Kalbfleisch and Prentice, 2002). However, this

assumption may not apply to both types of drop-outs. For instance, patients diagnosed with

an advanced stage of breast cancer may die due to that cancer before any clinical recurrence

of it. Similarly, patients with severe sickness tend to have shorter survival time and are more

likely to die from other diseases due to general weakness. Ignoring such informative drop-outs
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while employing the commonly used estimation procedures based on treating drop-outs as

independent right censored observations tends to underestimate the parameters of interest.

Hence, in this study drop-outs were not treated as right censored observations. Some of the

variables which have been observed for these patients to act as potential covariates are: age,

stage of the disease at first diagnosis, type of surgery, histology, the cohort of initial surgery,

chemotherapy, menopausal status, radiotherapy and side of the body. More details about the

data are given in chapter three.

2.9 Summary

This chapter summarised the main features of the survival data and the methods available in

estimating the survival and hazard functions. Both parametric and non-parametric estimates

of the survival function are described. Estimating the empirical survival function by Product-

limit estimator can be used to judge the best fit for the survival function. Matching the graph

of empirical survival function with those in figure 2.1 to figure 2.4 can be used to decide the

parametric survival function. One of the limitations of these models is that they implicitly

assume homogeneity of study populations which may not be true. Adding covariates to the

model may relax this assumption. There are two ways to estimate the effects of covariates

or risk factors influencing survival time data, proportional hazard models and accelerated

failure time models. The proportional hazard models assume that the covariates have a

multiplicative effect on the hazard. Whereas in accelerated failure time models, the covariates

are assumed to act directly on survival times. An extension of these models is by including

random effects which will be discussed in the next chapter.
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Frailty Models in the literature

3.1 Introduction

In this chapter, first, a literature review of the frailty models in survival analysis and the

distributions used in modelling frailty is given. Second, the models discussed are applied to

a simulation data and to the breast cancer data presented in the previous chapter. Standard

methods in survival analysis implicitly assume homogeneity of study populations. That

means that all subjects have the same degree of failure risk and that the survival times

are independently and identically distributed. Models with covariates relax this assumption

by introducing observed sources of heterogeneity. But it is not realistic to assume that all

relevant risk factors or covariates were measured and included in the model. Either the

relevant risk factors are unknown or they are known but it may be costly to measure them.

Unmeasured covariates or omitted risk factors generate a between-subject variation usually

referred to as frailty (unobserved heterogeneity). Frailty models can be viewed as an extension

of Cox proportional hazard, (Cox, 1972). Considering these omitted risks as random variables

with a probability, a joint distribution of failure time and the frailty could be generated and

since the frailty is unobservable (i.e. no data on that) it has to be integrated out. In the

context of survival analysis, a frailty model is a mixed-effects model where the frailty is the
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random effect component which usually has a multiplicative effect on its hazard function.

Vaupel et al. (1979) introduced the term frailty as a measure of susceptibility to all causes

of death to describe mortality in non-homogeneous populations and used it in univariate

survival models. Clayton (1978) applied the idea of the frailty model to the multivariate

situation of chronic disease incidence in families, but he did not use the term ”frailty”.

3.2 Linear mixed models

Linear mixed models (LMMs) are statistical models for continuous responses in which the

residuals are assumed to be normally distributed but may not be independent or have constant

variance. Therefore, they provide the flexibility for modelling not only the means of the data,

but the variances and covariances as well. In a linear mixed-effects model, responses from

a subject are assumed to be the sum of fixed and random effects. A factor is considered

to be fixed if all levels or categories that are of interest are included in the study. A factor

is considered to be random if the levels or categories included in the study represent a

random sample from a larger population of values. The random effects contribute only to

the covariance structure of the data. It often introduces correlations between cases. Such

correlations are usually encountered in studies where data are grouped in clusters or in

longitudinal and repeated measures studies with multiple observations for the same subject.

If only fixed effects are included in the model, then the dependent variable Y is modelled in

relation to several explanatory variables by

Y = Xβ+ ε and ε ∼N(0,Σ), (3.2.1)
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where Y is (n × 1) vector, ε is (n × 1) vector of residuals with variance-covariance matrix

Σ, β is (p × 1) vector of unknown parameters, and X is (n × p) design matrix, the matrix

of explanatory variables. If the intercept is included in the model, then a vector of ones

should be included in the design matrix. If the model contains only continuous explanatory

variables, it is usually called a regression model while models containing only qualitative

variables are called Analysis of Variance models (ANOVA). Both of these models are special

cases of the general linear model, where both types of explanatory variables could be included

in the model. In general linear models, the response variables are assumed to be independent

and normally distributed with common variance, and link function µi = E(Yi) = Xiβ. In

longitudinal and cluster data, it is more appropriate to include both fixed and random effects

in the model, which is extension of the model given in (3.2.1). The the random effect is

included as follows

Yi = Xiβ+Zibi + εi,

bi ∼N(0,D) and εi ∼N(0,Σi).
(3.2.2)

where Yi is (ni × 1) vector of responses of individual or cluster i, (i = 1, ..., N), εi is (ni × 1)

vector of residuals with variance-covariance matrix Σi, β is (p× 1) vector of fixed effect, bi

is (q × 1) vector of random effect, Xi and Zi are (ni × p) and (ni × q) matrices of known

covariates and D is (q × q) covariance matrix of the random effect. Maximum likelihood

(ML) and restricted maximum likelihood (REML) estimation are the methods commonly

used to estimate the model parameters. For more information about linear mixed models

see Verbeke and Molenberghs (2000), McCulloch and Searle (2001) and Muller and Stewart

(2006). For statistical software fitting Linear mixed models see West et al. (2007).
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3.3 Model Identifiability

A statistical model should be identifiable to make a valid inference about its parameters.

A model is considered to be identifiable if its parameter values uniquely determine the

probability distribution of the data and the probability distribution of the data determines

the parameter values uniquely. The identifiability as defined in Casella and Berger (2002)

3.3.1 Definition. A parameter θ for a family of distributions {f(x|θ) : θ ∈ Θ} is identifiable

if distinct values of θ correspond to distinct p.d.fs. That is, if θ 6= θ
′
, then f(x|θ) is not the

same function of x as f(x|θ′).

One of the most common source of model non-identifiability is a poorly defined model. Over-

parameterisation of the model usually creates such a problem.

3.4 Univariate frailty models

In the frailty framework, when there is only one time-point measure and no clustering

of individuals, univariate frailty models are used to take into account the heterogeneity

between individuals due to the exclusion of important covariates in the model. In LMMs,

random effects are usually included when there is clustering or repeated measures while in

survival analysis random effects (frailty) are included to account for unobserved heterogeneity

between subjects. Vaupel et al. (1979) proposed a univariate frailty model to survival analysis

assuming a Gamma distribution to account for unobserved heterogeneity, i.e, assuming that

different subjects have different frailties so that subjects which are more frail tend to have

shorter survival time than those which are less frail. Many authors have discussed the

univariate frailty models. (See for example, Lancaster and Nickell (1980), Heckman and

Singer (1984, 1985), Vaupel and Yashin (1985), Hougaard (1984, 1986a,b, 2000), Vaupel
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(1990), Aalen (1988, 1992) and Richardson and Green (1997)).

There are different ways to include the random effect (frailty) in survival analysis. Under the

assumption of proportional hazard, the multiplicative frailty effects model which is commonly

used in the literature, the frailty acts multiplicatively on the underlying baseline hazard

function. In this case the conditional hazard function on the random effect z takes the form

h(ti,xi|z) = zh(ti,xi) = zh0(ti)exp(x
′

iβ). (3.4.1)

where h0(ti) is the baseline hazard, xi is the vector of covariates of the ith subject, and β is

the fixed effect vector. In (3.4.1), Z is assumed to have some density g(z, θ) with parameter

vector θ, E[Z] = 1 and V [Z] = τ 2. Any other value for this expectation could be used since

it would be absorbed into the baseline hazard function. The conditional survival function is

given by

S(ti,xi|z) = exp
(
−
∫ t

0
h(s,xi|z)ds

)
= exp

(
−z
∫ t

0
h(s,xi)ds

)
= exp

(
−zH0(ti)e

x
′
iβ
)
.

(3.4.2)

The unconditional survival function is given

S(ti,xi) =

∫ ∞
0

S(ti,xi|z)g(z)dz =

∫ ∞
0

exp
(
−zH0(ti)e

x
′
iβ
)
g(z)dz,

and, hence,

S(ti,xi) = LZ [H0(ti)e
x
′
iβ]. (3.4.3)

where LZ [.] is the Laplace transformation with respect to the random variable Z and H0(ti)
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is the cumulative baseline hazard function. This model is identifiable when the the expected

value of Z is finite (Elbers and Ridder, 1982). An alternative way to write the above model

is by setting (u = log z) in (3.4.1), the conditional hazard can be written as

h(ti,xi|u) = h0(ti)exp(x
′

iβ + u). (3.4.4)

This model is a special case of the LMMs (3.2.2) (intercept model) where the design matrix

of the random effect contains only a column vector of ones. Frailty models differ from

LMMs in several ways: First, they do not include residual components ε. In the frailty

models the residual variability is modelled through the survival distribution. Secondly, the

expected survival time, given the random effects, is not equal to the linear combination

of covariates as LMMs. Thirdly, the inferential methods of frailty models have been less

developed than LMMs due to the incompleteness of data due to censoring and truncation

especially in multivariate models with non-Gaussian frailty distribution. This thesis focuses

on multiplicative frailty models. However, other types of frailty models exist such as additive

frailty models, where the frailty acts additively on the baseline hazard function. The hazard

function as defined by Cai and Zeng (2011)takes the form

h(ti,xi|z) = h0(ti) + x
′

iβ + z.

For more details, see Lin and Ying (1994), Korsgaard and Andersen (1998), Peterson (1998),

Li (2002), Zhong and Li (2004), Pipper and Martinussen (2004), Yin and Ibrahim (2005),

Yin (2007) and Cai and Zeng (2011). Another way to include the frailty effect in the survival

analysis is through accelerated failure time (AFT) models. Many authors considered AFT

frailty models namely, Anderson and Louis (1995); Keiding et al. (1997), Klein et al. (1999),

Pan (2001), Lambert and Collett (2002), Lambert et al. (2004), Chang (2004), Zhang and
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Peng (2007) and Xu and Zhang (2009, 2010). In general, any distribution with positive

range, mean one and finite variance is a suitable candidate to represent the frailty distribution.

Gamma and Inverse Gaussian distributions are the mostly used distributions in the literature

since they provide a closed form expression for the unconditional survival function.

3.4.1 Gamma frailty model

The Gamma distribution is a member of the exponential family and from a computational and

analytical point of view; it is convenient as a frailty distribution and it is easy to derive the

closed form expressions of survival and the hazard function. This is due to the simplicity of the

Laplace transform. Therefore, most published work on frailty analysis assumes the Gamma

distribution because it is mathematically attractive. This includes both the frequentist

approach as well as the Bayesian approach. (See Clayton (1978), Clayton and Cuzick (1985),

Vaupel et al. (1979), Oakes (1982), Crowder (1985), Scallan (1987), Yashin et al. (1995), dos

Santos et al. (1995), Congdon (1995), Shih and Louis (1995), Sahu et al. (1997), Hougaard

(1995, 2000), Yin and Ibrahim (2005), Perperoglou et al. (2006), Balakrishnan and Peng

(2006), Duchateau and Janssen (2008), Peng and Zhang (2008), Jonker et al. (2009), Xu and

Zhang (2010) and Molenberghs and Verbeke (2011)). For a comparison between the Bayesian

approach and the frequentist approach see David et al. (2007).

Weibull hazard with Gamma frailty

Assume the survival times follow the Weibull distribution T ∼ Weib(α, λ), and the frailty

follows a Gamma distribution with unit mean and variance τ 2, Z ∼ Γ(1/τ 2, τ 2). (Without

loss of generality, any other value for the expectation could be absorbed into the baseline

hazard function). For the Weibull distribution, the baseline hazard is h0(t) = αλtα−1. The

effect of covariates is modelled through the scale parameter of the Weibull distribution,
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λ = exp(x
′

iβ). According to (3.4.2) the conditional survival function is given by

S(ti,xi|z) = exp
(
−zH0(ti)e

x
′
iβ
)

= exp
(
−ztαi ex

′
iβ
)
.

The unconditional survival and hazard functions are given by

S(ti,xi) = [1 + τ 2H0(ti)e
x
′
iβ]−(1/τ2) = [1 + τ 2tαi e

x
′
iβ]−(1/τ2).

h(ti,xi) =
h0(ti)e

x
′
iβ

1 + τ 2H0(ti)ex
′
iβ

=
αtα−1

i ex
′
iβ

1 + τ 2tαi e
x
′
iβ
. (3.4.5)

3.4.2 Inverse Gaussian frailty model

The inverse Gaussian distribution is named so because it satisfies the inverse relationship

with the Gaussian distribution. There are many similarities between the statistics derived

from this distribution and those of the Normal distribution. It is a member of the exponential

family and like the Gamma distribution it is mathematically attractive. It was presented as

an alternative to the Gamma distribution by Hougaard (1984) since it makes the population

homogeneous with time, whereas for Gamma the relative heterogeneity is constant. It is not

popular like Gamma frailty especially in multivariate frailty framework since the summation

of Inverse Gaussian usually is not an Inverse Gaussian (reproductivity property). However,

many authors have considered it. (See, Manton et al. (1986), Whitmore and Lee (1991), Klein

et al. (1992a), Lam and Kuk (1997), Keiding et al. (1997), Price and Manatunga (2001),

Economou and Caroni (2005), Jeong and Oakes (2005), Kheiri et al. (2007), Duchateau and

Janssen (2008) and Chen and Lio (2008)). The probability density function of the Inverse
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Gaussian distribution T ∼ IG(α, λ) with location parameter µ and scale parameter λ is

f(t) =

√
λ

2π
t−3/2 exp

{
− λ

2µ2t
(t− µ)2

}

The mean and the variance are

E[T ] = µ, V [T ] =
µ3

λ

Figure 3.1 describes the density of the Inverse Gaussain distribution with a scale parameter

which equals one with different values of the shape parameter.

Figure 3.1: Inverse Gaussian densities with scale parameter λ = 1 and shape parameter α =

(0.5, 1, 1.5, 5)

Weibull hazard with Inverse Gaussian frailty

Assume the survival times follow the Weibull distribution, T ∼ Weib(α, λ), and the frailty

model is an Inverse Gaussian distribution with unit mean and variance τ 2, Z ∼ IG(1, 1/τ 2).
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The unconditional survival and hazard functions are given by

S(ti,xi)= exp

(
1

τ 2
(1−

√
1 + 2τ 2H0(ti)ex

′
iβ

)
= exp

(
1

τ 2
(1−

√
1 + 2τ 2tαi e

x
′
iβ

)
.

h(ti,xi) =
h0(ti)e

x
′
iβ(

1 + 2τ 2H0(ti)ex
′
iβ
)1/2

=
αtα−1

i ex
′
iβ(

1 + 2τ 2tαi e
x
′
iβ
)1/2

. (3.4.6)

3.4.3 Log-Normal frailty models

Because of its relation to the Normal distribution, the Log-Normal distribution is frequently

used for frailty in the literature. Assuming a Log-Normal distribution is equivalent to

assuming Normal distribution for the additive frailty model incorporated in the exponent of

the hazard function of the Cox model. For models (3.4.1), the frailty distribution is assumed

to follow the Log-Normal distribution, whilst for models (3.4.4), the frailty distribution is

Normal. One of the difficulties of the Log-Normal frailty distribution is that the Laplace

transform does not have a simple form and hence no explicit form of the unconditional

likelihood exists. The Log-Normal distribution was mainly developed by McGilchrist and

Aisbett (1991). Many authors considered the Log-Normal frailty models in multivariate

frailty models. (See, McGilchrist (1993), Lillard (1993), Lillard et al. (1995), Xue and

Brookmeyer (1996), Sastry (1997), Gustafson (1997), Vaida and Xu (2000), Ripatti and

Palmgren (2000), Ripatti et al. (2002), Huang and Wolfe (2002) Stefanescu and Turnbull

(2006) and Duchateau and Janssen (2008)).
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3.4.4 Weibull hazard with Log-Normal frailty

Assume the survival times follow the Weibull distribution and the frailty has a Log-Normal

random variable Z with mean µ and variance τ 2, Z ∼ LogN(µ, τ 2). In Log-Normal frailty,

the inclusion of the frailty in the model is usually done by using W = LN(Z) which has

Normal distribution, W ∼ N(µ∗, σ2). In this case, the mean and the variance of the frailty

are related to those of the normal distribution through the following relations:

µ = E[Z] = eµ
∗+σ2/2,

τ 2 = V [Z] = e2µ∗+σ2
(eσ

2 − 1).
(3.4.7)

There are two forms of Log-Normal frailty in the literature. Depending on the restriction on

the frailty expected value, either the mean of frailty is one, i.e., E[Z]=µ = 1 or the mean

of the log of frailty is zero, i.e., E[W ] = E[LN(Z)] = µ∗ = 0. These restrictions are set to

assure model identifiability. If the effect of covariates is modelled through the scale parameter

of the Weibull distribution λ = exp(x
′

iβ+w), then the conditional survival function is given

by

S(ti,xi|z) = exp
(
−zH0(ti)e

x
′
iβ
)

= exp
(
−tαex

′
iβ+w

)
.

Unfortunately, the unconditional survival and hazard functions do not have a closed form

and numerical integration is needed to integrate out the frailty variable. The contribution of

the ith individual to the conditional likelihood is given by

Li(ti, δi,xi|z) = (zh0(ti)e
x
′
iβ)δie−zH0(ti)e

x
′
iβ .

where ti is the survival time or the censoring time of the ith individual, δi is the censoring

indicator, Z is the unobserved random effects (frailties), xi is the vector of the observed
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covariate, and h0(ti) is the baseline hazard. Assuming the conditional independence of the

survival times given the frailty, the unconditional (marginal) likelihood function is

Li(ti, δi,xi) =

∫
R+

(zh0(ti)e
x
′
iβ)δie−zH0(ti)e

x
′
iβf(z, τ)dz.

where f(z, τ) is the p.d.f of the frailty distribution. In the case of Log-Normal frailty, the

marginal likelihood of the ith individual is given by

Li(ti, δi,xi) =

∫
R

(αtα−1
i ex

′
iβ+w)δi exp(tαi e

x
′
iβ+w)

1

τ
√

2π
e−

w2

2τ2 dw.

A numerical integration such as Gauss quadrature integration could be used to integrate out

the frailty

∫ ∞
−∞

f(x)dx ≈
K∑
k=1

πke
x2kf(xk).

where xk and πk are the zeros of Hermite polynomials and their corresponding weight factors

respectively. To make this integration simpler and less time consuming from a computational

point of view one can set Y = W
2τ

, the simplified likelihood is given by

Li(ti, δi,xi) =

∫
R

(αtα−1
i ex

′
iβ+τy

√
2)δi exp(tαi e

x
′
iβ+τy

√
2)

1√
π
e−y

2

dy

≈
K∑
k=1

π∗k(αt
α−1
i ex

′
iβ+τy∗k)δi exp(tαi e

x
′
iβ+τy∗k), (3.4.8)

where y∗k = yk
√

2 and π∗k = πk/
√
π. Either the likelihood is maximise directly using an

iterative method, say Newton-Raphson or using the EM-algorithm by considering (3.4.8) as

a finite mixture. To use the EM-algorithm the vector of survival time T is assumed to be

observed part whilst the vector ζ = (ζ1, ..., ζn) to be unobservable random variables, where
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ζi = (ζi1, ..., ζiK) such that ζik is unity if ti comes from component k and 0 otherwise. So,

given all of the data Y = (T, ζ) and the set of the parameter of interest φ = (β, τ, α), the

complete likelihood of is

L(Y ,φ) =
n∏
i=1

K∏
k=1

[πkfik(ti,xi)]
ζik ,

and the complete log-likelihood is

`(Y ,φ) =
n∑
i=1

K∑
k=1

ζik log πk +
n∑
i=1

K∑
k

ζik log fk(y,xi). (3.4.9)

where fik(ti,xi) = (αtα−1
i ex

′
iβ+τy∗k)δi exp(tαi e

x
′
iβ+τy∗k). The EM-algorithm starts by estimating

the missing quantities in E-step and then maximisation in M-step.

E-Step. Suppose that φ = (β, τ, α) are known. Then the missing quantities ζ are replaced

by their conditional expectations, conditioned on the parameters and on the observed data

T. The conditional expectation of the kth component of ζi is just the conditional probability

that the observation ti comes from the kth component of the mixture, conditioned on the

parameters and the observed data. Let the conditional expectation of the kth component of

ζ be ζ̃ik. Then

ζ̃ik =
wkfik(ti,xi)∑m
k=1wkfik(ti,xi)

.

M-Step. Suppose that the missing ζi are now known. The estimates of the parameters

φ = (β, τ, α) can then be obtained by maximising the log-likelihood function ` in (3.4.9).

This procedure works fine if the score equations have closed form, but the problem here

is that the score equations cannot be solved analytically and ` needs to be maximised

iteratively. Similar procedures can be found in LMMs assuming a Normal random effect
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and the conditional distribution belongs to the exponential family Bock and Aitkin (1981),

Hsu (2000), McLachlan and Krishnan (2008) and Aitkin et al. (2009).

3.4.5 Non-parametric frailty models

Most of the recently published work about non-parametric frailty is from the Bayesian

prospective. The unknown frailty distribution is modelled non-parametrically using a

Dirichlet process (see, Manda 2011, Cai 2010, Naskar et al. 2005 and Pennell and Dunson

(2006)). Alternatively, a semi-parametric survival frailty model can be obtained by assuming

a non-parametric baseline hazard (see, Clayton (1988), Klein (1992b), Li and Lin (2000) and

Vaida and Xu (2000)). Naskar (2008) introduced a non-parametric Dirichlet process for the

distribution of frailty along with the assumption of a non-parametric baseline hazard function.

This thesis focuses on the frequentist approach since no prior distributions of the model

parameters is assumed. In the next section, simulations will show how the model inferences

are not robust against mis-specifying of the frailty distribution. This is also supported by the

literature. Heckman and Singer (1982a) induced interest in non-parametric representation

of frailty (also see, Laird 1978, Heckman and Singer 1984, Davies and Crouchley 1984). The

theoretical result of the non-parametric characterisation of the frailty distribution within

maximum likelihood estimation is narrowed to a finite number of mass points. Also from the

empirical experience it has been shown that the number of mass points tends to be small

(Davies, 1993). For univariate frailty models, see (dos Santos et al. 1995, Aitkin 1999 and

Aitkin et al. 2009). The Weibull hazard with non-parametric frailty model can be written as

Li(ti, δi,xi)≈
K∑
k=1

πk(αt
α−1
i ex

′
iβ+γk)δi exp(tαi e

x
′
iβ+γk). (3.4.10)

where 0 < πk < 1 and
∑K

k=1 πk = 1. This model is similar to the Weibull survival time

with Log-Normal frailty model given in (3.4.8) except that K and (γ, π) are no longer given
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and have to be estimated like other parameters. The mean and variance of the frailty have

been absorbed into the non-parametric representation of the model. For the EM-algorithm,

same argument as for (3.4.8) could be used to estimate the mixture in (3.4.10) as before,

except that the zeros of Hermite polynomials and their corresponding weights are considered

as parameter and need to be estimated.

3.5 Univariate simulations

Simulation studies are used to assess the performance of a proposed model, especially if there

is a lack of theoretical background. In simulations, the researchers know the true parameters

values and use them to generate the data. This data is used to fit the parameters using the

proposed model; if the original parameters values are retrieved then the proposed model is

acknowledged. However, real data sets are used to show the applicability of the proposed

model, but it does not evaluate its performance. Recurrence of breast cancer data is used

as an application of the proposed models in this thesis. It is an observational study where

recurrence is defined as clinical recurrence of breast cancer after remission where the event

of interest is the first recurrence of breast cancer. There are five possible outcomes, local

recurrence, regional recurrence, metastasis, died from breast cancer or died from other causes.

This section test the performance of the models mentioned above using simulated data (using

a self-written GAUSS code), while the next section demonstrates the applications of these

models to the breast cancer data. The model is fitted by maximum likelihood estimation

method based on numerical integration not the EM-algorithm. The simulated data have been

generated from a univariate frailty models assuming Weibull baseline hazard and different

frailty distributions including Gamma, Inverse Gaussian and Log-Normal distribution. The

simulations are divided into three parts: First, simulation of Log-Normal frailty model with

Weibull baseline hazard. Second, simulation of Log-Normal, Gamma and Inverse Gaussian
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frailty model with Weibull baseline hazard fitted by Log-Normal frailty using model (3.4.8).

Third, simulation of Log-Normal, Gamma, Inverse Gaussian and arbitrary (non-parametric)

frailty model with Weibull baseline hazard fitted non-parametrically using model (3.4.10).

First, a simulated data of failure times that follow a Weibull distributions T ∼ Weib(α, λ) and

censoring times follow a Weibull distribution C ∼ Weib(θ, α) assuming random censoring.

The distribution of the log of frailty W = Log(Z) is assumed to be Normal with mean zero

and variance σ2, W ∼ N(0, σ2). Two different sets of parameters were used to check the

model estimation. Different types of explanatory variables were generated, Xi1 is a continuous

random variable from Uniform distribution Xi1 ∼ Uni(0, 1), Xi2 is a dichotomous, and Xi3

is a qualitative variable with three categories which was converted to two dummy variable

Xi3,1 and Xi3,2.

Xi2 =

{
1 if ui1 < 0.3

0 if ui1 ≥ 0.3
and Xi3 =


1 if ui2 < 0.4

2 if 0.4 ≤ ui2 < 0.6

3 if ui2 > 0.6

where Uij ∼ Uni(0, 1), j=1,2. The linear predictors are generated as

x
′

iβ = β0 + xi1β1 + xi2β2 + xi3,1β3 + xi3,2β4.

The failure times were generated as Ti = (− log(ui3)/λi)
1/α, where λi = exp(x

′

iβ + W )

and W is the log of frailty with W ∼ N(0, σ2) and ui3 ∼ Uni(0, 1). The censoring times

were generated as Ci = (− log(ui4)/θ)1/α, where ui4 ∼ Uni(0, 1) and finally the survival

times are Yi = min(Ti, Ci). Two sets of parameters are used to generate the failure and

censoring times with censoring rate of 20%. The above models are estimated using the

maximisation procedure in Gauss program ‘MAXLIK’. A Gaussian quadrature integration

with 32 quadrature points was used to integrate out the frailty, the code is in appendix C. For

each set of parameters 600 data sets each with sample sizes of 500 and 5000 are simulated.
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The results are shown in Table 3.1. Obviously, the estimation method and the GAUSS code

managed to retrieve the true parameters values especially with the large sample size. The

standard errors are much smaller in case of sample size 5000 than 500.

Parameter True values

Sample size

True values

Sample size
500 5000 500 5000

Mean Mean Mean Mean
(S.e) (S.e) (S.e) (S.e)

α 1 1.066 1.003 0.5 0.550 0.503
(0.310) (0.038) (0.157) (0.030)

σ2 1 1.097 1.004 1.5 1.689 1.508
(0.596) (0.084) (0.713) (0.147)

β0 -4 -4.212 -4.011 3 3.354 3.019
(1.024) (0.148) (1.150) (0.215)

β1 1 1.052 1.007 0.8 0.872 0.808
(0.382) (0.090) (0.415) (0.111)

β2 -2 -2.144 -2.007 -1 -1.104 -1.005
(0.699) (0.092) (0.406) (0.090)

β3 4 4.259 4.013 0.7 0.762 0.703
(1.233) (0.160) (0.317) (0.074)

β4 2 2.128 2.009 -2 -2.209 -2.011
(0.689) (0.102) (0.720) (0.145)

Table 3.1: Simulation data of Weibull baseline hazard generated with Log-Normal frailty and

fitted by Log-normal, 600 data sets each with sample sizes of 500 and 5000.

Second, to test the robustness of the parameters estimate against mis-specifying the frailty

distribution, different frailty distribution were generated such as Gamma, Inverse-Gaussian,

and Log-Normal distribution and fitted by Log-Normal distribution. Table 3.2 shows

these simulations. Clearly, the results are not robust against the mis-specifying of frailty

distribution. There is a big difference between Gamma frailty and Log-Normal especially in

estimating the frailty variance τ 2. However, there is a big similarity between Log-Normal

and Inverse Gaussian frailties. More simulations that support these conclusions are given in

chapter five. The standard errors are smaller in case of Log-Normal and Inverse Gaussian

frailty than the Gamma frailty. This is also another indication of the similarity between
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Log-Normal and Inverse Gaussian and different from the Gamma distribution.

Parameter True values

Log-Normal Gamma Inverse Gaussian
500 5000 500 5000 500 5000

Mean Mean Mean Mean Mean Mean
(S.e) (S.e) (S.e) (S.e) (S.e) (S.e)

α 1 1.066 1.003 1.596 1.282 1.030 0.979
(0.310) (0.038) (0.633) (0.102) (0.261) (0.031)

τ 2 1 1.097 1.004 2.427 1.847 0.855 0.786
(0.596) (0.084) (1.220) (0.208) (0.510) (0.072)

β0 -4 -4.212 -4.011 -6.931 -5.680 -4.470 -4.285
(1.024) (0.148) (2.561) (0.418) (0.983) (0.133)

β1 1 1.052 1.007 1.537 1.288 1.011 0.978
(0.382) (0.090) (0.819) (0.157) (0.308) (0.080)

β2 -2 -2.144 -2.007 -3.212 -2.564 -2.065 -1.955
(0.699) (0.092) (1.352) (0.218) (0.561) (0.082)

β3 4 4.259 4.013 6.363 5.113 4.121 3.918
(1.233) (0.160) (2.550) (0.409) (1.089) (0.132)

β4 2 2.128 2.009 3.205 2.568 2.060 1.959
(0.689) (0.102) (1.369) (0.219) (0.537) (0.086)

Table 3.2: Log-Normal, Gamma and Inverse Gaussian frailty model with Weibull baseline hazard

and four covariates simulated data fitted by Log-Normal frailty, 600 data sets each with sample

sizes of 500 and 5000.

Third, to check the ability of non-parametric frailty model in capturing the parameters

estimates, a simulated data with different frailty distribution is generated and fitted by non-

parametric frailty. Four different frailty distribution are generated, Log-Normal, Gamma,

Inverse Gaussian and arbitrary (a discrete random variable with expect value equals one).

Table 3.3 presents the parameters’ estimates using five mass points of the non-parametric

frailty. These results are very close when the model is fitted with four mass points. Appendix

A gives the parameters estimates using one, two, three, four or five mass points along

with their log-likelihood. Obviously, the non-parametric frailty is capable of capturing the

parameters’ estimates regardless of the original distribution of frailty. The mass points and

their corresponding weights are represented by γi and πi, (i = 1, . . . , 5) respectively. The

standard errors are smaller in case of sample size of 5000.
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P
ar

am
et

er

T
ru

e
va

lu
es Log-Normal Gamma Inverse Gaussian Arbitrary

Sample size Sample size Sample size Sample size

500 5000 500 5000 500 5000 500 5000

Mean Mean Mean Mean Mean Mean Mean Mean

(S.e) (S.e) (S.e) (S.e) (S.e) (S.e) (S.e) (S.e)

β1 1 1.041 0.982 1.018 0.991 1.051 0.987 1.048 0.981

(0.330) (0.097) (0.333) (0.105) (0.347) (0.095) (0.372) (0.115)

β2 -2 -2.104 -1.963 -2.072 -1.990 -2.106 -1.973 -2.092 -1.962

(0.388) (0.140) (0.360) (0.121) (0.421) (0.144) (0.429) (0.164)

β3 4 4.181 3.924 4.127 3.96 8 4.220 3.950 4.195 3.923

(0.705) (0.266) (0.596) (0.230) (0.741) (0.266) (0.789) (0.318)

β4 2 2.079 1.963 2.065 1.983 2.103 1.975 2.093 1.961

(0.386) (0.144) (0.378) (0.128) (0.428) (0.145) (0.463) (0.173)

α 1 1.046 0.981 1.034 0.992 1.055 0.988 1.048 0.982

(0.171) (0.064) (0.144) (0.054) (0.180) (0.064) (0.186) (0.077)

γ1 -1.351 -1.381 -1.329 -0.850 -1.344 -1.332 -1.284 -1.214

(1.202) (1.267) (2.044) (6.282) (1.137) (1.141) (1.333) (1.050)

γ2 -1.314 -1.346 -1.354 -0.632 -1.219 -1.170 -1.241 -1.105

(1.097) (2.541) (2.113) (6.226) (0.984) (0.971) (1.190) (1.059)

γ3 -1.430 -1.461 -1.534 -1.184 -1.476 -1.273 -1.534 -1.448

(1.293) (1.312) (2.231) (6.495) (1.212) (1.103) (1.509) (1.273)

γ4 -1.462 -1.413 -1.773 -1.288 -1.398 -1.427 -1.490 -1.489

(1.407) (1.381) (2.325) (6.371) (1.315) (1.104) (1.281) (1.196)

γ5 -1.607 -1.439 -1.797 -1.348 -1.599 -1.508 -1.701 -1.577

(1.364) (1.382) (2.380) (6.197) (1.264) (1.177) (1.418) (1.225)

π1 0.195 0.196 0.212 0.207 0.200 0.190 0.198 0.196

(0.137) (0.136) (0.169) (0.153) (0.144) (0.134) (0.134) (0.116)

π2 0.193 0.202 0.191 0.222 0.196 0.204 0.197 0.197

(0.138) (0.128) (0.160) (0.143) (0.139) (0.138) (0.129) (0.121)

π3 0.203 0.207 0.206 0.202 0.201 0.204 0.194 0.199

(0.141) (0.137) (0.168) (0.154) (0.152) (0.142) (0.123) (0.112)

π4 0.200 0.197 0.195 0.189 0.197 0.204 0.203 0.204

(0.146) (0.136) (0.168) (0.152) (0.145) (0.141) (0.127) (0.119)

π5 0.208 0.197 0.195 0.181 0.206 0.198 0.208 0.205

(0.145) (0.135) (0.160) (0.146) (0.150) (0.141) (0.131) (0.116)

Table 3.3: Log-Normal, Gamma, Inverse Gaussian and arbitrary frailty model with Weibull

baseline hazard and four covariates simulated data, fitted by non-parametric frailty, 600 data sets

each with sample sizes of 500 and 5000.
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3.6 Results on breast cancer recurrence data

This is to illustrate the relationship of the models discussed above to the breast cancer data

given in chapter two and appendix A. The study included 2850 patients. Their status at

the time of first recurrence is given in 3.4. Around 38% of them experienced one of the five

types of failures (competing risks). Metastasis and regional recurrence are the most frequent

failure type with 15.8% and 9.2% respectively.

Failure Type N Percent

LOCAL RECURRENCE 169 5.9%

REGIONAL RECURRENCE 261 9.2%

METASTASIS 451 15.8%

DIED FROM BREAST CANCER 185 6.5%

DIED FROM OTHER CAUSES 128 4.5%

CENSORED 1656 58.1%

Total 2850 100.0%

Table 3.4: Patients status at time of first recurrence.

stage(I) tumour size less than 2cm and no nodes involved.

stage(II) tumour size between 2cm and 5cm and no nodes involved, or tumour size less

than 5cm with nodes.

stage(III) tumour size more than 5cm with or without nodes.

stage(IV) any tumour size with the presence of distant metastasis, i.e., disease elsewhere

other than the breast or local nodes.
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Variable Categories N %

STAGE

STAGE1 2107 73.9

STAGE2 457 16.0

STAGE3 179 6.3

STAGE4 107 3.8

SURGERY TYPE

NONE 45 1.6

INCISION BIOPSY 186 6.5

EXCISION BIOPSY 712 25.0

SIMPLE MASTECTOMY 543 19.1

RADICAL MASTECTOMY 36 1.3

WIDE LOCAL EXCISION AND

AXILLARY CLEARANCE 479 16.8

SURGERY AFTER NEO ADJUVANT

CHEMOTHERAPY 73 2.6

RADICAL MAST AND AXILLARY

CLEARANCE 776 27.2

HISTOLOGY

DUCTAL 1856 65.1

LOBULAR 336 11.8

DCIS (Ductal Carcinoma In Situ) 412 14.5

OTHER 246 8.6

DATE OF PRIMARY BEFORE 1990 1130 39.6

SURGERY 1990+ 1720 60.4

ANY NEO OR ADJUVANT NO 1525 53.5

CHEMOTHERAPY YES 1325 46.5

MENOPAUSAL STATUS
PRE 788 27.6

POST 2062 72.4

ANY ADJUVANT NO 1813 63.6

RADIOTHERAPY YES 1037 36.4

SIDE OF THE BODY
RIGHT 1354 47.5

LEFT 1496 52.5

Age
Mean ± SD

58.11 ± 12.97

Table 3.5: Independent variables included in the models.
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For the models used to fit this data, the qualitative variables are converted into dummy

variables and set the first category as the reference category except for Surgery type the last

category is used as the reference, see appendix A. Since this chapter focuses on univariate

frailty, death due to breast cancer is considered as the event of interest and all other

recurrences as independent censored observations. For simple models, three different software

packages are used to fit the models, Gauss, R and STATA. For advanced models, a self-written

code in both Gauss and R are used, see appendix C. STATA was used only to check the codes

written in Gauss and R since it contains a build in univariate frailty models especially for

Gamma and Inverse Gaussian. In multivariate case only Gauss program was used to fit the

model parameters. The optimisation procedure in Gauss showed robustness in reaching the

maximum likelihood estimates, while the optimisation procedure in R was sensitive to the

parameters’ initial values. Table 3.6 summarises the regression analysis of the data using

three different models. The first model is the Cox proportional model which does not assume

any parametric distribution for the baseline hazard function, model (2.6.1). The second

model is an independent Weibull model where the distribution of baseline hazard function is

Weibull and no frailty, model (2.6.3). The third model assumes Weibull distribution baseline

hazard function and Gamma frailty distribution as model (3.4.5). It is clear that the results

in the first and second columns of Table 3.6 for the Cox proportional hazard as close to those

of the Wiebull hazard which is a well-known result in the literature. To compare the second

model (i.e. reference model) with the third model (i.e. frailty model), a test of τ 2 = 0 vs

τ 2 6= 0, where τ 2 is the variance of the frailty distribution is used. The likelihood ratio test

is

−2log

(
likelihood(reference)

likelihood(frailty)

)
= (3785.24− 3764.17) = 21.07,
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which has a chi-square distribution with one degree of freedom. In this case the frailty model

is preferred to the reference model since (P-value < 0.0005). Figure 3.2 shows the hazards

of death due to breast cancer after initial treatment, for an average individual (function

evaluated at the mean value of the covariates), for each of the independent and the frailty

models. In the case of the independent model, the hazard of death due to breast cancer

seems unrealistic as it reaches its peak directly after initial treatment and then decreases

over time. In contrast, the frailty model displays a more realistic hazard function for death

due to breast cancer, whereas the lowest hazard level is directly after initial treatment and

then the hazard increases with time. The hazard of death due to breast cancer is always

lower when employing the frailty model which is expected as the effects of any unobserved

frailty on prognostic factors which have been appropriately controlled.

An important concept used in survival analysis is hazard ratio (HR) which can be defined as

the ratio of the hazard rate of one set of covariates to another set of covariates in the model.

For example, the point estimate of the HR of Stage2 compared to Stage1 (i.e. the reference

category) is ĤR = eβ2 = e0.545 = 1.725; in particular, the hazard for patients in Stage2 is

1.725 times the hazard for patients in Stage1. Table 3.6 shows that applying frailty increases

the HR for most of the factors in the model. Among the factors entered in the three models,

Age, stage2, stage3, stage4, surgtype1, surgtype2, hist3 and cohort have a significant effect on

breast cancer mortality. On the other hand, only hist2 has a significant effect in the Cox PH

model and the independent Wiebull model. The Weibull scale parameter is different between

the second model and the third model. In the independent Weibull model, α is close to one

which means constant hazard (i.e. Exponential baseline hazard), while in the Gamma frailty,

α = 1.41 indicating an increasing hazard which is more realistic in human studies.
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(a) Independent (no frailty)

(b) Gamma frailty

Figure 3.2: Weibull hazards of died from breast cancer for independent and frailty models.
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Variable Cox PH Weibull Wiebull-Gamma

hazard frailty

AGE **0.030 ( 0.009 ) **0.030 ( 0.008 ) **0.037 ( 0.011 )

STAGE2 **0.545 ( 0.189 ) **0.548 ( 0.211 ) *0.613 ( 0.248 )

STAGE3 *0.728 ( 0.305 ) *0.726 ( 0.289 ) *0.933 ( 0.373 )

STAGE4 **2.152 ( 0.283 ) **2.163 ( 0.270 ) **3.722 ( 0.510 )

SURGTYPE1 **1.981 ( 0.526 ) **2.078 ( 0.416 ) **2.668 ( 0.606 )

SURGTYPE2 **1.354 ( 0.416 ) **1.387 ( 0.311 ) **1.599 ( 0.395 )

SURGTYPE3 -0.073 ( 0.356 ) -0.056 ( 0.297 ) -0.089 ( 0.337 )

SURGTYPE4 -0.253 ( 0.391 ) -0.243 ( 0.297 ) -0.363 ( 0.343 )

SURGTYPE5 -44.78 ( 181.8 ) -8.152 ( 48.73 ) -10.901 ( 181.1 )

SURGTYPE6 -0.552 ( 0.436 ) -0.549 ( 0.389 ) -0.644 ( 0.417 )

SURGTYPE7 0.499 ( 0.495 ) 0.530 ( 0.514 ) 0.543 ( 0.577 )

HIST2 *0.465 ( 0.206 ) *0.472 ( 0.207 ) 0.439 ( 0.246 )

HIST3 *-1.472( 4.690 ) *-1.471 ( 0.614 ) *-1.484 ( 0.637 )

HIST4 0.146 ( 0.238 ) 0.121 ( 0.211 ) 0.094 ( 0.267 )

COHORT **0.578 ( 0.200 ) **0.620 ( 0.192 ) **0.703 ( 0.242 )

CHEMO 0.019 ( 0.233 ) 0.043 ( 0.191 ) 0.114 ( 0.216 )

MENO 0.211 ( 0.271 ) 0.204 ( 0.284 ) 0.181 ( 0.333 )

RADIO -0.455 ( 0.328 ) -0.457 ( 0.298 ) -0.421 ( 0.326 )

SIDE 0.242 ( 0.153 ) 0.248 ( 0.151 ) 0.277 ( 0.184 )

CONSTANT **-13.700 ( 0.834 ) **-16.488 ( 1.235 )

LN(α) 0.097 ( 0.060 ) **0.343 ( 0.080 )

(FRAILTY) τ 2 *2.171 ( 0.750 )

-2 Log Likelihood 2421.70 3785.24 3764.17

Table 3.6: Results of breast cancer data: died from breast cancer with the cox

proportional hazard, Weibull hazard and Weibull-Gamma frailty. Parameters’ estimates

with their standard error in parentheses.

*.P-value < 0.05

**.P-value < 0.01

P-value for testing H0 : βi = 0 vs H1 : βi 6= 0
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Although the standard errors of the third model are higher than the other models, it is

more appropriate in making inference about the factors effect on mortality of breast cancer

and ignoring the frailty underestimate the model parameters. Using the results of the third

model, one can conclude the following remarks. As expected, as age increases breast cancer

mortality increases. There is a significant difference between the four stages of the disease in

breast cancer mortality. The hazard ratio of stage2 is e0.613 = 1.85 times as for stage1 (the

reference category). The same for stage3 and stage4, the hazard ratio of stage3 is e0.933 =

2.54 times as for stage1, and for stage4 it is e3.72 = 43.3 times as for stage1. For surgery

type, surgtype1 (None) and surgtype2 (Incision biopsy) have significantly higher hazard ratios

compared to surgtype8 (Radical mast and axillary clearance), the reference category. This

seems unexpected, but actually this is because most of these two groups occur either in stage3

or stage4 of the disease. For histology, the only significant difference is between hist3 and hist1

(reference category). Patients with hist3 (DCIS , Ductal carcinoma in situ) have a hazard

ration of e−1.48 = 0.227 times as hist1 (Ductal). Finally, The hazard ratio of mortality due to

breast cancer of Cohort with the date of primary surgery after 1990 is e0.703 = 2.02 times as

those with before 1990. Unfortunately, the likelihood ratio test cannot be applied to different

frailty distributions in Table 3.7 since they are not nested. Two criteria are usually used for

model selection among a finite set of models. The first one is AIC which stands for Akaike

Information Criterion developed by Akaike (1974). The second one is BIC which stands for

Bayesian Information Criterion by Schwarz (1978). These criteria introduce a penalty term

for the number of parameters in the model, and the model with the smallest AIC or BIC

is preferred. By both criteria, the non-parametric frailty model has the smallest values and

hence is preferable when compared to other frailty distributions. The non-parametric model

is preferable since it has the smallest standard errors for all parameters estimate.
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Frailty distribution

Variable Gamma Inverse Gaussian Log-Normal Non-parametric

AGE **0.037(0.011) **0.036(0.011) **0.041(0.015) **0.036(0.009)

STAGE2 *0.613(0.248) *0.647(0.266) **0.685(0.313) *0.530(0.221)

STAGE3 *0.933(0.373) *1.008(0.406) **1.139(0.502) **0.826(0.311)

STAGE4 **3.722(0.510) **3.340(0.490) **4.069(0.985) **3.426(0.309)

SURGTYPE1 **2.668(0.606) **2.725(0.628) **3.172(0.927) **2.307(0.463)

SURGTYPE2 **1.599(0.395) **1.694(0.440) **1.940(0.582) **1.388(0.325)

SURGTYPE3 -0.089(0.337) -0.054(0.347) -0.092(0.394) -0.141(0.309)

SURGTYPE4 -0.363(0.343) -0.355(0.359) -0.446(0.419) -0.374(0.311)

SURGTYPE5 -10.9(181.05) -7.89(38.634) -7.89(31.485) -7.889(41.46)

SURGTYPE6 -0.644(0.417) -0.657(0.437) -0.792(0.510) -0.616(0.397)

SURGTYPE7 0.543(0.577) 0.555(0.609) 0.521(0.695) 0.521(0.538)

HIST2 0.439(0.246) 0.474(0.260) 0.490(0.303) 0.403(0.218)

HIST3 *-1.484(0.637) *-1.573(0.656) **-1.740(0.745) *-1.411(0.619)

HIST4 0.094(0.267) 0.100(0.270) 0.062(0.310) 0.115(0.230)

COHORT **0.703(0.242) **0.722(0.250) **0.839(0.315) **0.609(0.205)

CHEMO 0.114(0.216) 0.098(0.227) 0.145(0.257) 0.099(0.199)

MENO 0.181(0.333) 0.201(0.342) 0.275(0.391) 0.210(0.305)

RADIO -0.421(0.326) -0.477(0.339) -0.516(0.383) -0.397(0.306)

SIDE 0.277(0.184) 0.295(0.190) *0.365(0.224) 0.239(0.162)

CONSTANT **-16.49(1.235) **-16.29(1.462) **-19.91(3.934)

LN(α) **0.343(0.080) **0.332(0.104) **0.466(0.194) **0.290(0.060)

(FRAILTY)τ 2 *2.171(0.750) 4.968(4.081) **1.998(0.487)

-2 Log Likelihood 3764.17 3770.04 3802.20 3756.78

AIC 3808.17 3814.04 3846.20 3796.78

BIC 3939.18 3945.05 3977.21 3915.88

Table 3.7: Results of breast cancer data: Died from breast cancer assuming different frailty

distributions. Parameters’ estimates with their standard error in parentheses.

*.P-value < 0.05

**.P-value < 0.01
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Number of Number of -2log-likelihood AIC BIC

Points parameters

1 23 3785.2368 3831.2 3968.2

2 25 3758.7958 3808.8 3957.7

3 27 3756.0952 3810.1 3970.9

4 29 3756.1028 3814.1 3986.8

5 31 3756.1026 3818.1 4002.7

Table 3.8: Non-parametric models with different mass points.

For the Log-Normal frailty 128 quadrature mass points were used to fit the model whereas

for the non-parametric model only five mass points were used. Table A.4 lists the estimates

of the Log-Normal frailty with different number of quadrature points. The results are very

close when using nine points or more. One important issue about the non-parametric frailty

is the number of mass points which should be used to fit the model. Since these models are

not nested the log-likelihood ratio test can not be used the number of mass points. Table

3.8 lists the values of AIC and BIC of mortality due to breast cancer with different number

of mass points. Both AIC and BIC suggest that two points as the suitable number of mass

points. The parameters estimates with three mass points are very similar to those with four

and five point points (see Table A.3).

3.7 Summary

This chapter described the main features of univariate frailty models and reviewed the

most commonly used frailty distributions. Gamma, Inverse Gaussian and the Log-Normal

distributions are intensively studied in the literature. Some software like STATA can be used

to fit both Gamma and Inverse Gaussian frailty models. The Log-Normal frailty is available

in SAS-system through the PHREG Procedure, but in this thesis a self-written Gauss code
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is used. Other frailty distributions are not available in commercial software and need self-

written code in some programming languages. The simulation studies showed that the model

fits are sensitive to the choice of the frailty distribution. To overcome this problem a non-

parametric frailty model is also presented. The non-parametric frailty model was capable to

fit the model irrespective to the frailty distribution. Different models were used to analyse

the breast cancer data in which the event of interest is died from breast cancer. These models

include: Cox proportional hazard, Weibull hazard, Weibull-Gamma frailty, Weibull-Inverse

Gaussian frailty, Weibull-Log-Normal frailty and Weibull-nonparametric frailty. By applying

these modes one can conclude the following: First, ignoring the frailty underestimates the

model parameters. Second, the standard errors of parameter estimates are the smallest in

the case of non-parametric frailty. Only small numbers of mass points are needed in the

non-parametric frailty to reach the maximum likelihood estimates of the model parameters

which mean less time is required to fit the model compared to the Log-normal frailty. All

models discussed in this chapter are univariate frailty models where the main goal of adding

the frailty component is to take into account the unobserved risk factors. In many studies,

individual are clustered in subgroups or the individual could face more than one failure type.

The next chapter discusses these types of studies using multivariate frailty models.

55



Chapter 4

Multivariate frailty in competing risks

models

4.1 Introduction

Multivariate frailty models are used when there are repeated measures or clustering.

Repeated data occur in case of longitudinal data, concerning multiple recurrences of an

event for the same individual. Clustered data occur when individuals fall into groups like

families or hospitals. The difficulties of working with this kind of data arise from the

dependence of individuals upon the social context of their groups, or of repeated measures

upon the individuals concerned. Such dependence usually arises because individuals in the

same group are related to each other or because of the recurrence of an event for the same

individual. Multivariate frailty models have been used frequently for modelling dependence

in multivariate time-to-event data (Clayton 1978, Oakes 1982, Hougaard 2000 and Yashin

et al. 1995).

As mentioned, linear mixed models are usually used to analyse repeated measures and

cluster data for one outcome (response), but when multiple outcomes are measured at each

time-point or for each cluster, a joint model is required which allows for a correlation
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structure between the different outcomes. Many authors have studied such models; for

example, Thum (1997) studied models with multivariate clustered data in the context of

hierarchical modelling, Gueorguieva (2001) used joint modelling of a continuous- and a

binary-outcome measure in a developmental toxicity study on mice. Also in a longitudinal

setting, Chakraborty et al. (2003) obtained estimates of the correlation between blood and

semen HIV-1 RNA using a joint random-effects model. Although Models in all of these

examples can be applied to any number of responses, the computational procedure of model

fitting is only feasible for a limited number of responses. A recent series of papers proposed a

model-fitting procedure that is applicable irrespective of the number of responses. Fieuws and

Verbeke (2004) used a joint model of random-effects in a bivariate setting with longitudinally

measured continuous outcomes by fitting different mixed models joined by specifying a

common distribution for their random-effects. Fieuws and Verbeke (2006a) proposed a

method that allows joint analysis of multivariate repeated measures of a relatively high

dimension. The method is based on fitting bivariate mixed models for all pairs of outcomes.

As long as each bivariate mixed model can be fitted, estimates can be obtained for the full

multivariate mixed model. Fieuws et al. (2006b) applied the pairwise modelling strategy

proposed by Fieuws and Verbeke (2006a), to obtain parameter estimates of high dimensional

LMMs for binary questionnaire data, where all possible bivariate mixed models were fitted

and where the inference that follows from pseudo-likelihood theory has been proposed as

a solution. Fieuws et al. (2007) combined the proposed methods by Fieuws and Verbeke

(2006a) and Fieuws et al. (2006b); they used the pairwise modelling of repeated measures

for continuous as well as for binary questionnaire data, so that the approach is sufficiently

flexible to allow for different types of models for the different outcomes (i.e. linear, non-linear,

and generalised linear).
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Despite the big similarity between LMMs and multivariate frailty, many methods that could

be applicable to both models, the multivariate frailty models need special treatment. The

aim of the frailty model is to take into account the presence of the correlation between the

multivariate survival times. The first extension of univariate frailty to multivariate frailty is

the shared frailty model. In shared frailty models, individuals in the same group or cluster

are assumed to share the same frailty. Thus, it accommodates the heterogeneity among

clusters rather than among individuals. Correlated frailty models are an extension of shared

frailty. In correlated frailty models, frailties are correlated and have the same set of marginal

distributions. If the frailties follow a multivariate distribution with a general correlation

structure, then it is a full multivariate frailty model.

4.2 Shared frailty models

In many studies individuals are grouped into clusters, such as families, hospitals or schools.

Similar to univariate frailty, shared frailty models are used to take into account the

heterogeneity between clusters due to exclusion of important shared covariates. In these

models, it is assumed that all individuals in the same cluster share the same frailty. It was

introduced by Clayton (1978) and extensively studied by Hougaard (2000). Many authors

have studied shared frailty models with different distributions, including Gamma. Clayton

(1978), Gill (1989), Klein (1992b), Yu (2006), inverse Gaussian, Whitmore and Lee (1991),

Henderson and Oman (1999) and Log-Normal, McGilchrist (1993), Ripatti et al. (2002),

Vaida and Xu (2000). For the Bayesian approach see, Sinha (1993), Sahu et al. (1997) and

Yin and Ibrahim (2005).

In a shared frailty model there are two main assumptions: First, the failure times are

conditionally independent given the frailties. Second, the random effect Z of the jth cluster

58



Chapter 4. Multivariate frailty in competing risks models

(j = 1, · · · , k) is assumed to be constant over time and common to all individuals in the

same cluster. The hazard function of the ith individual in the jth cluster conditional on the

random effect is given by

h(tij,xij|zj) = zjh(tij,xij) = zjh0(tij)exp(x
′

ijβ),

where zj are the frailties, assumed to be iid (identically and independently distributed) with

the density g(z, θ) and parameter vector θ. h0(tij) is the baseline hazard function, xij is the

vector of covariate of the ith individual in the jth cluster and β is the fixed effect vector. Here

the frailty term is included to take into account the heterogeneity between clusters and not

individuals. Assuming that the failure times are conditionally independent given the frailties,

the conditional joint survival function is given by

S(tij,xij|zj) =
k∏
j=1

Sj(tij,xij |zj).

The unconditional joint survival function is given by

S(tij,xij) = EZ [S(tij,xij|zj)] = EZ [exp(−zj
k∑
j=1

H0j(tij)e
x
′
ijβ)] = LZ

[
k∑
j=1

H0j(tij)e
x
′
ijβ

]
.

where LZ [.] is the Laplace transformation with respect to the frailty random variable Z and

H0j(tij) is the cumulative baseline hazard function of the jth cluster. Thus, the unconditional

joint survival function can be expressed as the Laplace transform of the sum of the cumulative

baseline hazards with respect to the frailty distribution. The unconditional joint density

function is given by differentiation of the survival function with respect to ti1, · · · , tik

f(tij,xij) = (−1)k
k∏
j=1

h0j(tij)e
x
′
ijβL(k)

Z

[
k∑
j=1

H0j(tij)e
x
′
ijβ

]
.
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Another formulation of the above procedure is through the marginal survival functions

Sj(tij,xij) = LZ [H0j(tij)e
x
′
ijβ].

The unconditional joint survival function is given by

S(tij,xij) = EZ [S(tij,xij |zj)] = LZ

[
k∑
j=1

L−1
Z [Sj(tij,xij)]

]
.

There are some limitations with shared frailty models as mentioned by Xue and Brookmeyer

(1996). Firstly, it forces the unobserved factors to be the same within the cluster, which

is generally not appropriate. Secondly, the dependence between survival times within the

cluster is based on marginal distributions of survival times. Thirdly, in most cases shared

frailty will only induce positive association within the cluster.

4.3 Correlated frailty models

Due to their limitations, shared frailty models can be extended to correlated frailty models,

where each cluster has its own frailty distribution. Most of the correlated frailty models

developed until now are bivariate frailty models or restricted multivariate models. Such

frailties are often constructed using independent additive components with one common

component for both frailties to create the correlation between the frailties. There exists

a need for more flexibility in modelling correlation. The difficulty in these models is that

related outcomes have different but dependent frailties. (Yashin et al. (1995), Yashin and

Iachine (1999)) introduced a correlated Gamma frailty model and discussed its identifiability

conditions. Vaida and Xu (2000) suggested a bivariate frailty model in a slightly different

setting, dos Santos et al. (1995) used a combination of a shared Log-Normal and a
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Gamma frailty model on breast cancer data. Wienke et al. (2005) compared different

bivariate correlated frailty models and possible estimation strategies. Zahl (1997) used

several correlated Gamma frailty models to model the excess hazard. Li (2002) proposed

a multivariate Gamma frailty model in a genetic situation. For different frailty distributions

see Wienke (2007, 2010a) and Duchateau and Janssen (2008). A number of authors have

used a Bayesian approach for analysis of correlated frailty models; for instant, Xue and Ding

(1999), Kheiri et al. (2005), Wienke et al. (2005) Locatelli et al. (2004, 2007), Yin (2008) and

Cai (2010).

In contrast to a shared frailty model, correlated frailty models allow different frailties between

clusters and individuals in the same cluster. The hazard function of the ith individual in the

jth cluster conditional on the random effect is given by

h(ti,xij|zij) = zijh(tij,xij) = zijh0(tij)exp(x
′

ijβj).

where zij are the frailties, assumed to be iid with a joint density g(zi1, · · · , zik, θj) with

parameter vector θj. The Laplace transformation is more complicated in this case and a

different formulation is needed. Assuming the conditional independence of failure times

given the frailty, the unconditional likelihood function is given by

L(tij,xij) =
∏
i

∫
R+

· · ·
∫
R+

∏
j

[
(zijh0j(tij)e

x
′
ijβj )dij exp(−zijH0j(tij)e

x
′
ijβj )

]
×fZj(zi1, · · · , zik)dzi1 · · · dzik.

(4.3.1)

For bivariate correlated Gamma frailty, see Yashin et al. (1995), restricted high dimension

of correlated Gamma frailties, Yashin and Iachine (1999), for four dimension Gamma frailty,

Giard et al. (2002) and different correlated frailty distributions Wienke (2007, 2010a). As

mentioned, correlated frailty models are usually constructed using independent positive
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components and hence they generate a restricted positive correlation coefficient which in

many cases is not appropriate. A general class of multivariate frailty models is when

the frailties are assumed to follow a multivariate distribution with a general structure of

covariance matrix. The most frequent distribution used in multivariate frailty is the Log-

Normal distribution. Other distributions are limited in the literature. The multivariate Log-

Normal frailty models are more flexible than other distributions but numerical integration is

needed to calculate the joint survival function.

4.4 Competing risks models

In studies of survival, subjects may be at risk of failure due to more than one cause, the so-

called competing risks analysis or multiple causes of failure. The objective of such analysis

is usually to determine risk rates of failure due to one cause while taking into account the

presence of the other causes. There are two approaches in the literature to analyse competing

risks: the first emphasises cause-specific hazard functions and sub-distribution functions for a

particular kind of failure, (Prentice et al. 1978, Fine and Gray 1999, Lunn and McNeil 1995).

The second, approaches the subjects through the concept of latent failure times, where there

is an inherent failure time for each type of failure and only one such time - the smallest - is

observable, (Slud et al. (1988), Kalbfleisch and Prentice (2002)). In this thesis, the emphasis

is on the concept of latent failure time. Parametric competing risk models, in which it is

assumed that the failure times are coming from a known distribution with monotonically

increasing or decreasing baseline hazard, is widely used in practice perhaps due to its

simplicity, for example (Hougaard (2000), Lambert et al. (2004), Oskrochi and Crouchley

(2004)) perhaps due to its simplicity. In conventional survival analysis the competing risks

are usually assumed independent, Han and Hausman (1990). Semi-parametric and non-

parametric competing risks models are discussed by many authors. For instance (Gelfand
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et al. 2000, Abbring and van den Berg 2003, Hudgens et al. 2001), Jewell et al. (2003)). In

univariate survival data, there is usually the following data for the ith individual: the failure

time (Yi), the censoring variable (δi) and some covariates (xi). In multivariate survival data,

there is either have cluster or recurrence data and the following data for the ith individual

in the jth cluster is observed: the failure times (Yij), the censoring variable (δij) and some

covariates (xij). In competing risks data, the following data for the ith individual is observed:

the failure time (time to the first failure) (Yi), the failures indicator variables (δik, k = 1, ..., K)

and some covariates (xi). See Table 4.1.

4.5 Frailty in Competing Risks Models

Random effects or frailty in competing risk models consist of two underlying distributions:

the conditional distribution of the response variables (failure times), given the random effect

depending on the explanatory variables each with a failure type specific random effect; and

the distribution of the random effect in the population (frailty distribution). In this situation,

the distribution of interest is the unconditional distribution of the response variables which

may or may not have a tractable form. Bandeen-Roche and Liang (2002) described the

association of time to multivariate failure in the presence of a competing risk. As mentioned

above frailty models in the presence of competing risks involve the conditional distribution

failure time given the frailty and the distribution of the frailty. Fahrmeir and Tutz (1994) and

Oskrochi and Davies (1997) implemented the Cholesky decomposition for multivariate frailty

models. The Cholesky decomposition decomposes the frailty variance-covariance matrix into

triangular matrices to convert the integration over a multivariate distribution to multiple

integrals over independent univariate Normal distributions.
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Univariate data

ID Yi δi xi1 · · · xip

1 Y1 δ1 x11 · · · x1p

2 Y2 δ2 x21 · · · x2p

. . . . . .

. . . . . .

. . . . . .

n Yn δn xn1 · · · xnp

Multivariate data

ID Yij cluster δij xij1 · · · xijp

1 Y11 1 δ11 x111 x11p

2 Y21 1 δ21 x211 x21p

. . . . . .

. . . . . .

. . . . . .

n1 Yn11 1 δn11 xn111 · · · xn11p

. . . . . . .

. . . . . . .

. . . . . . .

1 Y1J J δ1J x1J1 x1Jp

2 Y2J J δ2J x2J1 x2Jp

. . . . . .

. . . . . .

. . . . . .

nJ YnJJ J δnJJ xnJJ1 · · · xnJJp

Competing risk data

ID Yi δi1 · · · δiK xi1 · · · xip

1 Y1 δ11 · · · δ1K x11 · · · x1p

2 Y2 δ21 · · · δ2K x21 · · · x2p

. . . . . . . .

. . . . . . . .

. . . . . . . .

n Yn δn1 · · · δnK xn1 · · · xnp

Table 4.1: Univariate, multivariate and competing risks data presentation.
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Fine and Gray (1999) proposed a novel semi-parametric proportional hazards model for

the sub-distribution. Using the partial likelihood principle and weighting techniques, they

derived estimation and inference procedures for the finite-dimensional regression parameters

under a variety of censoring scenarios. They gave a uniformly consistent estimator for

the predicted cumulative incidence for an individual with certain covariates, confidence

intervals and bands can be obtained analytically or with an easy-to-implement simulation

technique. Fine et al. (2001) considered semi-competing risk models, in which a terminal

event censors a non-terminal event but not vice versa. The joint distribution of the events is

formulated via Gamma frailty model with marginal distributions unspecified. They showed

that the dependence between morbidity and mortality can be estimated separately from their

marginals under a Gamma frailty copula in the region of observable data. Jiang et al. (2004)

considered semi-competing risk models where mortality and morbidity may be correlated

and mortality may censor morbidity. They proposed a semi-parametric estimator for the

survival function based on a joint model for the two time-to-event variables, which utilises

the Gamma frailty specification in the region of the observable data. They extended the

methods of Fine et al. (2001) for the left truncated semi-competing risk problem, developed

an estimator for the Gamma frailty parameter under left truncation and derived a closed

form estimator for the marginal distribution of the non-terminal event. Naskar et al. (2005)

proposed a dependent competing risks model where dependency is induced through the

mixture of various failure types and a frailty component. The frailty term is modelled non-

parametrically using a Dirichlet Process (DP). They considered a semi-parametric mixture

model for analysing clustered competing risks data. Conditional on cluster-specific quantities,

the joint distribution of the failure time and event indicator can be expressed as a mixture

of the distribution of time to failure due to a certain type (or specific cause), and the failure

type distribution. They assumed that the marginal probabilities of various failure types
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(competing risks) are logistic functions of some covariates. The cluster-specific quantities are

subject to some unknown distribution that causes frailty. Lu and Tsiatis (2005) compared

two approaches for the competing risks model with missing cause of failure. Under the

assumption that the cause of death is missing at random, they compared the Goetghebeur

and Ryan (1995) partial likelihood approach with the one by Dewanji (1992). They showed

that the Dewanji partial likelihood estimator for the regression coefficients is consistent and

asymptotically Normal. While the Goetghebeur and Ryan estimator is more robust estimator

against mis-specification of proportional baseline hazards. Finkelstein and Esaulovac (2006,

2008) discussed the asymptotic behaviour of competing risks models with correlated frailty

in univariate and bivariate cases. They consider a set of absolutely continuous distributions

of a lifetime random variable.

In the next section, a review the correlated Gamma frailty and its application to competing

risks framework is given. In section 4.7, a new proposed correlated Inverse Gaussian frailty

model and its application to competing risks are presented. A general multivariate Inverse

Gaussian frailty model without any restriction on the correlation structure between the

frailties is given in section 4.8. In addition, a flexible multivariate frailty model that can

be applied whatever the original distribution of the frailty in section 4.10 is proposed. In this

model, a non-parametric multivariate frailty presented.

4.6 Correlated Gamma frailty model

In this section, a summary of the main aspects of the correlated Gamma frailty, which

has been intensively studied in the literature, is listed. Yashin et al. (1995) introduced

model of bivariate survival based on the notion of correlated individual frailty. This model

usually refereed to as the additive model since the frailty variable is constructed as the sum
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of independent variables. Many authors have studied this model and its extensions and

applications, for example see (Yashin and Iachine 1995a,b, 1999, Wienke et al. 2002, 2003,

Kheiri et al. 2005, Abbring and van den Berg 2007 and Duchateau and Janssen 2008) among

others. The procedure starts by defining a system of equations (frailty ) as the sum of

independent Gamma distributions a common variable to create the dependency and then

derive the unconditional survival function as the product of their Laplace transformation.

For the bivariate case, the results shown by Yashin et al. (1995) and Wienke (2007, 2010a)

are given.

Let Z1 = λ0
λ1
X0+X1 and Z2 = λ0

λ2
X0+X2, where X0, X1, X2 are independent random variables

with Gamma distribution Xi ∼ Γ(αi, λi), i = 0, 1, 2. The distribution of Z1 and Z2 is Gamma

with mean one and variance V [Zi] = 1/λi = τ 2
i , i = 1, 2, the correlation coefficient between

the two frailties is given by

ρz =
α0

(α0 + α1)(α0 + α2)
.

The unconditional survival function is

S(ti1, ti2) =
S1(ti1)

1−ρσ1
σ2 S2(ti2)

1−ρσ2
σ1(

S1(ti1)−σ
2
1 + S2(ti2)−σ

2
1 − 1

) ρ
σ1σ2

. (4.6.1)

This procedure is restricted since it can only create a positive correlation between the frailties

which may limits its applications. Moreover this correlation must satisfy the following

condition.

0 ≤ ρ ≤ min

(
τ1

τ2

,
τ2

τ1

)
.

To build the likelihood function, all partial derivatives of the bivariate survival function in
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(4.6.1) must be calculated which has the following form

L(ti1, ti2) =



S(ti1, ti2) if δi1 = 0, δi2 = 0(
− ∂
∂ti1

logS(ti1, ti2)
)
× S(ti1, ti2) if δi1 = 1, δi2 = 0(

− ∂
∂ti2

logS(ti1, ti2)
)
× S(ti1, ti2) if δi1 = 0, δi2 = 1(

∂
∂ti2∂ti1

S(ti1, ti2)
)

if δi1 = 1, δi2 = 1.

The last term of the likelihood can be written in logarithmic form

∂
∂ti2∂ti1

S(ti1, ti2) = [
∂

∂ti2∂ti1
logS(ti1, ti2) +

(
∂
∂ti1

logS(ti1, ti2)
)(

∂
∂ti2

logS(ti1, ti2)
)]
S(ti1, ti2).

Hence, The log-likelihood function can be written in terms of the bivariate survival function

as

δi1δi2 log
[

∂
∂ti2∂ti1

logS(ti1, ti2) +
(

∂
∂ti1

logS(ti1, ti2)
)(

∂
∂ti2

logS(ti1, ti2)
)]

+
∑2

j=1 δij log
(
− ∂
∂tij

logS(ti1, ti2)
)

+ log[S(ti1, ti2)].

(4.6.2)

Presenting the log-likelihood in terms of logarithm of the survival function simplifies the

calculations of the log-likelihood which is equivalent to the one given by Wienke (2007, 2010a).

The partial derivatives of the lnS(ti1, ti2) are available in Appendix B. An extensions of the

above bivariate correlated frailty are given by Yashin and Iachine (1999). They used the same

argument as the bivariate model by defining the frailties as Zj = αj(Y0 + Yj), j = 1, ..., k.

The Joint survival function has the following form

S(ti1, · · · , tik) =

(
k∑
j

Sj(tij)
−σ2

j − n+ 1

)
k∏
j

Sj(tij)
1−σ2

j (ρjh/σh), (4.6.3)
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where ρjh are the correlation coefficients between Zj and Zh, and σ2
j is the variance of Zj,

i, j = 1, ..., k; j 6= k. This model is restricted since ρjh/σjσh is assumed to be constant and

does not depend on j and k and should satisfies the following constrain

ρjh
σjσh

≤ min

{
1

σj
, j = 1, ..., k

}
,

which may be too restrictive for real applications.

4.7 Correlated Inverse Gaussian frailty model

In this section, a general correlated Inverse Gaussian frailty with different variances is

proposed. Many authors have studied the univariate Inverse Gaussian frailty model.

(Hougaard 1984,Manton et al. 1986, Whitmore and Lee 1991, and Klein et al. 1992a).

Although it has a closed form of the Laplace transformation, the correlated Inverse Gaussian

frailty is rarely considered in the literature since it doesn’t have the reproductivity property

(i.e. the summation of Inverse Gaussian is not an Inverse Gaussian). Kheiri et al. (2007)

suggested a Bayesian analysis of a correlated Inverse Gaussian frailty with common variance.

Wienke et al. (2010b) extended the compound Poisson frailty model to a bivariate model

where the correlated Gamma frailty model and the correlated inverse Gaussian frailty model

by Kheiri et al. (2007) as special cases.

In this section, a general correlated Inverse Gaussian frailty with different variances is

proposed. Let X1, ..., Xk be independent Inverse Gaussian random variables with Xi ∼

IG(ci, c
2
i ). The mean and the variance are equal to (ci > 0). Define Y =

∑k
i=1Xi, such that

Y ∼ IG(
∑
ci, (
∑
ci)

2). To derive the formulation of the correlated Inverse Gaussian frailty,

most of researchers start with a bivariate model then say it is straightforward to generalise
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it to the multivariate model. To derive a multivariate frailty model with general variance-

covariance matrix, a trivariate model is used to get the general form of the multivariate

model. In the first step, define the following system of equations (frailties):

Z1 = a1(X1 +X2 +X4), a1 = 1/(c1 + c2 + c4)

Z2 = a2(X1 +X3 +X5), a2 = 1/(c1 + c3 + c5)

Z3 = a3(X2 +X3 +X6), a3 = 1/(c2 + c3 + c6).

(4.7.1)

It can be shown that E[Zi] = 1, V [Zi] = ai = τ 2
i , and the variance-covariance matrix of Z

is given by

Σ = Cov(Z) =


a1 a1a2c1 a1a3c2

a1a2c1 a2 a2a3c3

a1a3c2 a2a3c3 a3

 (4.7.2)

The number of variables usually needed to define k frailty variables is
(
k
2

)
+k. For covariances(

k
2

)
variables are needed and k variables for the variances. A very important assumption

here is that given frailties Zi, i = 1, 2, 3 the survival times Ti, i = 1, 2, 3 are conditionally

independent. Hence the unconditional survival function can be calculated by

S(ti1, ti2, ti3) = E[S(ti1, ti3, ti3|Z1, Z2, Z3)]

=
∏3

j=1E[Sj(tij|Zj)]
=

∏3
j=1E[exp (−ZjH0j(tij)]

= E[exp(−X1[a1H01(ti1)+a2H02(ti2)]−X2[a1H01(ti1)+a3H03(ti3)]−
X3[a2H02(ti2) + a3H03(ti3)] − X4[a1H01(ti1)] − X5[a2H02(ti2)] −
X6[a3H03(ti3)])].

Using the fact that the random variables X1, ..., X6 are independent, the unconditional

survival function is given by
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S(ti1, ti2, ti3) = L1[a1H01(ti1) + a2H02(ti2)]L2[a1H01(ti1) + a3H03(ti3)]

L3[a2H02(ti2) + a3H03(ti3)]L4[a1H01(ti1)]L5[a2H02(ti2)]L6[a3H03(ti3)].

The unconditional survival function can be expressed using the marginal survival functions

as follow

S(ti1, ti2, ti3) =

[S1(ti1)]
(1−ρ12 τ1τ2−ρ13

τ1
τ3

)
[S2(ti2)]

(1−ρ12 τ2τ1−ρ23
τ2
τ3

)
[S1(ti3)]

(1−ρ13 τ3τ1−ρ23
τ3
τ2

)

×exp

{
ρ12
τ1τ2

(
1−

[
(1− τ 2

1 logS1(ti1))
2

+ (1− τ 2
2 logS2(ti2))

2 − 1
]1/2
)}

×exp

{
ρ13
τ1τ3

(
1−

[
(1− τ 2

1 logS1(ti1))
2

+ (1− τ 2
3 logS3(ti3))

2 − 1
]1/2
)}

×exp

{
ρ23
τ2τ3

(
1−

[
(1− τ 2

2 logS2(ti2))
2

+ (1− τ 2
3 logS3(ti3))

2 − 1
]1/2
)}

.

(4.7.3)

Since the frailties are defined by a system of non-negative random variables, the correlation

coefficients between the frailties are positive and they must satisfy the following conditions.

ρ12
τ1

τ2

+ ρ13
τ1

τ3

< 1, ρ12
τ2

τ1

+ ρ23
τ2

τ3

< 1 and ρ13
τ3

τ1

+ ρ23
τ3

τ2

< 1.

For more detail about the derivation of the unconditional survival function see appendix B.

The following argument is used to derive the likelihood function. It has different components

depending on the number of failures. Using the general form of the likelihood as in (2.5.1)
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and using the relation in (2.1.2) one can write the likelihood as

L(ti1, ti2, ti3) = 

S(ti1, ti2, ti3) if all δij = 0, j = 1, 2, 3(
− ∂
∂tij

S(ti1, ti2, ti3)
)δij

if only one of δij = 1, j = 1, 2, 3(
∂

∂tijtik
S(ti1, ti2, ti3)

)δijδik
if two of δij = 1, (j,k)

(j 6=k) = 1, 2, 3(
− ∂3

∂ti1∂ti2∂ti3
S(ti1, ti2, ti3)

)
if all δij = 1, j = 1, 2, 3.

(4.7.4)

In the case of competing risks models the individual faces only one type of the failures which

has the minimum failure time (i.e. only one of δij = 1, j = 1, 2, 3), see Table 4.1 . Another

possibility is that the individual does not face any of the failure types which means censored

from all failure types (i.e. all δij = 0, j = 1, 2, 3). In this case only the first order of the

partial derivatives of the likelihood function is needed. Consequently, (4.7.4) reduces to

L(ti1, ti2, ti3) =
3∏
j=1

(
− ∂

∂tij
logS(ti1, ti2, ti3)

)δij
S(ti1, ti2, ti3).

This comes from the fact that

∂

∂tij
S(ti1, ti2, ti3) =

(
− ∂

∂tij
logS(ti1, ti2, ti3)

)
S(ti1, ti2, ti3).

The log-likelihood is given by

`(ti1, ti2, ti3) =
3∑
j=1

δij log

(
− ∂

∂tij
logS(ti1, ti2, ti3)

)
+ log[S(ti1, ti2, ti3)]. (4.7.5)

In the case of competing risks, only the minimum failure time is observed and tij is replaced

by the time to the first recurrence, ti = min(ti1, ti3, ti3).
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4.8 Multivariate Inverse Gaussian frailty model

4.8.1 Inverse Gaussian frailty model

In this section, a general multivariate Inverse Gaussian frailty model where the joint

distribution of the frailty vector is a multivariate Inverse Gaussian is proposed. The additive

model in the previous section has two restrictions. First, it generates a correlated frailty

model whose marginal distributions are Inverse Gaussian variables but not a multivariate

Inverse Gaussian distribution. Second, it produces restricted correlation coefficients between

frailties. In this section, these restrictions are relaxed and a multivariate Inverse Gaussian

frailty with a general correlation structure between the frailties is presented. Minami (2003)

proposed a multivariate Inverse Gaussian distribution based on the inverse relationship with

the multivariate Normal distribution. The proposed distribution has three sets of parameters

β,µ and Ω denoted by Zk×1 ∼ MIG(β,µ,Ω) define on
{
z : β

′
z > 0, z ∈ Rk

}
. The p.d.f is

given by

f(z;β,µ,Ω) = (2π)−k/2β
′
µ |Ω|−1/2 (β

′
z)−(k/2+1)

× exp

{
− 1

2β
′
z

(z− µ)
′
Ω−1(z− µ)

}
. (4.8.1)

where β,µ ∈ Rk, β
′
µ > 0 and Ω is a symmetric positive definite matrix of size k × k. The

mean and the covariance matrix are given by

E[Z] = µ and V [Z] = β
′
µΩ.
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The cumulant generating function (c.g.f) of the distribution is given by

ΦMI(t) = ln(E[exp(−Zt)]) = −µ′
(t− bβ), (4.8.2)

where

b =
1

β
′
Ωβ

{
1 + β

′
Ωt−

√
(1 + β

′
Ωt)2 − β′

Ωβ t
′
Ωt

}
.

For identifiability purpose the frailty distribution is assumed to have a mean vector of ones

µ = 1 and β = 1, Z ∼MIG(1,1,Ω). Using the result of (4.8.2) the unconditional survival

function is given by

S(t) = exp

[
−1

′
H0(t) +

k

1
′
Ω1

{
1 + 1

′
ΩH0(t)

−
√

(1 + 1
′
ΩH0(t))2 − 1

′
Ω1 H0(t)

′
ΩH0(t)

}]
. (4.8.3)

where H0(t) = (H01(ti1), ..., H0k(tik))
′

is the cumulative baseline hazard. This is more

flexible than the previous model with no restriction on the correlation coefficients. The

same argument as in (4.7.4) could be used to derive the likelihood function. The first order

partial derivative of the log-survival function with respect to one of the survival times say tr

is given by

∂lnS(t)

∂tr
= −1

′
h0r(t) +

k

1′Ω1

×

{
1
′
Ωh0r(t)−

1
′
Ωh0r(t)(1 + 1

′
ΩH0(t))− 1

′
Ω1h

′
0r(t)ΩH0(t)√

(1 + 1′ΩH0(t))2 − 1′Ω1H0(t)
′
ΩH0(t)

}
. (4.8.4)

where h0r(t) = (0, ..., h0r(tr), ..., 0)
′

and k is number of individuals in the cluster or number
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repeated measure of an individual. The general likelihood of the multivariate survival data

either for cluster or repeated measures involves k orders of the partial derivatives of −logS(t).

In the case of competing risks only the first order of partial derivatives with respect to

ti1, ..., tik are required. Hence the log-likelihood function of competing risk model with k

possible failures is given by

`(ti1, ..., tik) =
k∑
j=1

δij log

(
− ∂

∂tij
logS(ti1, ..., tik)

)
+ log[S(ti1, ..., tik)]. (4.8.5)

4.9 Multivariate Log-Normal frailty model

The Laplace transformation of the Log-Normal variable does not have a closed-form

expression. Hence it doesnt follow the same methodology as the Gamma or the Inverse

Gaussian distributions to derive the unconditional survival function. The likelihood could

still be maximised directly using numerical integration methods. However, The Log-Normal

frailty model gives more flexibility in the multivariate case with general variance-covariance

matrix. A number of Authors have discussed the correlated Log-Normal frailty (Xue and

Brookmeyer 1996, Ripatti and Palmgren 2000 and Pankratz et al. 2005). For the Bayesian

analysis of multivariate Log-Normal frailty models see, (Locatelli et al. 2004 and Stefanescu

and Turnbull 2006).

4.9.1 Cholesky decomposition

This section describes the use of Cholesky decomposition in analysing competing risks model

for recurrence of the breast cancer. Given a symmetric positive definite matrix Σ, the

Cholesky decomposition creates a lower triangular matrix L with strictly positive diagonal

entries such that Σ = LL
′

or equivalently crates an upper triangle matrix D such that
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Σ = D
′
D. Fahrmeir and Tutz (1994) and Oskrochi and Davies (1997) implemented the

Cholesky decomposition for multivariate frailty models. First, define a multivariate Normal

distribution of three variables such that the vector U ∼ MVN(0,Σ) is a trivariate Normal

distribution


Ui1

Ui2

Ui3

 ∼ N




0

0

0

 ,


σ2

1 σ12 σ13

σ21 σ2
2 σ23

σ31 σ32 σ2
3




Let Zi = exp(Ui), then (Z1, Z2, Z3) have a trivariate Log-Normal


Zi1

Zi2

Zi3

 ∼ LogN




µ1

µ2

µ3

 ,


τ 2

1 τ12 τ13

τ21 τ 2
2 τ23

τ31 τ32 τ 2
3




The mean, variance and the correlation of the frailties Zij are

µj = E[Zij] = E[exp(Uij)] = e0.5σ2
j

τ 2
j = V [Zij] = eσ

2
j (eσ

2
j − 1)

τjk = Cov(Zij, Zik) = e0.5(σ2
1+σ2

2)(eσ12 − 1)

The unconditional likelihood function

L(ti1, ti2, ti3) =
n∏
i

∫∫∫
R+

3∏
j

[
(zijh0j(tij)e

x
′
ijβj )dij exp(−zijH0j(tij)e

x
′
ijβj )

]
×fZj(zi1, zi2, zi3)dzi1dzi2dzi3,
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or equivalently,

L(ti1, ti2, ti3) =
n∏
i

∫∫∫
R

3∏
j

[
(h0j(tij)e

x
′
ijβj+uij)dij exp(−H0j(tij)e

x
′
ijβj+uij)

]
×fUj(ui1, ui2, ui3)dui1dui2dui3.

(4.9.1)

Using the Cholesky decomposition, the multivariate Normal random vector U ∼MVN(0,Σ)

can be written as U = LU∗, where U∗ ∼MVN(0, I) and L is the lower Cholesky triangle

L =


l11 0 0

l21 l22 0

l31 l32 l33


The covariance matrix of U is Σ = LIL

′
.

U =


l11 0 0

l21 l22 0

l31 l32 l33

 ×


U∗1

U∗2

U∗3

 =


l11U

∗
1

l21U
∗
1 + l22U

∗
2

l31U
∗
1 + l32U

∗
2 + l33U

∗
3

 (4.9.2)

Hence, the random variable uij in model (4.9.1) are replaced by their corresponding values

in (4.9.2). Since the joint distribution of U∗ is a multivariate standard Normal distribution,

then it can be written as the product of its marginals.

L(ti1, ti2, ti3) =
n∏
i

∫∫∫
R

3∏
j

[
(h0j(tij)e

x
′
ijβj+[LU∗]ij)dij exp(−H0j(tij)e

x
′
ijβj+[LU∗]ij)

]
×

3∏
j

fU∗j (u∗ij)du
∗
i1du

∗
i2du

∗
i3.

where [LU∗]ij is the jth row of the vector LU∗. To evaluate the triple integrals the

Gaussian quadrature is used and then replacing the vector of the standard Normal variable

(u∗i1, u
∗
i2, u

∗
i3)
′
by quadrature mass points (y∗i1, y

∗
i2, y

∗
i3)
′
with quadrature weights (w∗i1, w

∗
i2, w

∗
i3)
′
,
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see section (3.3.3). The unconditional likelihood is given by

L =
n∏
i

(∑
m3

∑
m2

∑
m1

[
3∏
j

(
h0j(tij)e

x
′
ijβj+[Ly∗]j

)dij
exp

(
−H0j(tij)e

x
′
ijβj+[Ly∗]j

)]
w∗i1w

∗
i2w
∗
i3

)
.

(4.9.3)

where m1,m2 and m3 are the number of quadrature points of y∗i1, y
∗
i2 and y∗i3 respectively. The

likelihood function in (4.8.3) contains nested loops which may increase the time needed to

obtain the optimal solution of the model. Most software used to get the maximum likelihood

estimates are matrix oriented and working with matrices is much faster than loops. For

example, Gauss software has an element by element product procedure which can be used

to replace the loop by a vector. The summation in (4.8.3) is over the quadrature points and

the total number of iterations needed to get a single outcome is m1 × m2 × m3. One can

transform the loops into vectors by creating the following vectors

v1 = 1m2m3×1 ⊗ y∗1 ω1 = 1m2m3×1 ⊗w∗1
v2 = 1m3×1 ⊗ (y∗2 ⊗ 1m1×1) ω2 = 1m3×1 ⊗ (w∗2 ⊗ 1m1×1)

v3 = y∗3 ⊗ 1m1m2×1 ω3 = w∗3 ⊗ 1m1m2×1,

where ⊗ is the Kronecker product. This procedure showed a significant decrease in time

to reach the optimal solution of the model (i.e. the maximum likelihood estimators of the

model parameters). Converting the nested loops to vectors decreases the time needed to

fit the model by 50%. For the breast cancer data, fitting the model with five quadrature

points took ten days while using vectors only five days are required to fit the model. Further

reduction in time is by using the proposed non-parametric frailty model given in the next

section which decreases the time needed to fit the model by more than 80% of the nested

loops. Around two days are needed to fit the model of the breast cancer data using the

purposed non-parametric frailty.
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4.9.2 Weibull competing risks with Log-Normal frailty model

Assume that the failure times of the ith individual of jth failure (risk) have Weibull distribution

(Tij ∼ Weib(λj, αj)), i = 1, .., n,j = 1, .., k. The baseline hazards are hij(ti) = αjt
αj−1
i , where

ti = min
j

(tij). The likelihood of the trivariate competing risks model is given by

L =
n∏
i

(∑
m3

∑
m2

∑
m1

[
3∏
j

(
αjt

αj−1
i ex

′
ijβj+[Ly∗]j

)dij
exp

(
−tαji e

x
′
ijβj+[Ly∗]j

)]
w∗i1w

∗
i2w
∗
i3

)
.

4.10 Competing risks with non-parametric frailty

model

In the previous chapter, it was shown that the model estimates are not robust against

the mis-specifying of the frailty distribution. In multivariate frailty models, the choice of

the frailty distribution is crucial to obtain correct estimates of the dependence structure

(Duchateau and Janssen, 2008). This section makes use of the results of the previous section

of Cholesky decomposition and the non-parametric frailty in section (3.3.4). The frailty

variable is assumed to follow some distribution say g(z) with a variance-covariance matrix

Σ = QIQ
′

where Q is lower triangle of the Cholesky decomposition.

Z =


q11 0 0

q21 q22 0

q31 q32 q33

 ×


Z∗1

Z∗2

Z∗3

 =


q11Z

∗
1

q21Z
∗
1 + q22Z

∗
2

q31Z
∗
1 + q32Z

∗
2 + q33Z

∗
3


Z = QZ∗ where Z∗ has some p.d.f, g∗(z∗) and the variance-covariance matrix is the identity

matrix I. There are two differences between this model and the Log-Normal model. First,

the identity matrix of the variance-covariance of Z∗ does not necessary imply independence
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and hence the joint density can not be written as the product of the marginal distributions.

Second, the diagonal of the variance-covariance matrix of Z will be absorbed in the non-

parametric representation and the frailty variable QZ∗ will be replaced by the quadrature

mass points.

L(ti1, ti2, ti3) =
n∏
i

∫∫∫
R

3∏
j

[
(h0j(tij)e

x
′
ijβj+[QZ∗]j)dij exp(−H0j(tij)e

x
′
ijβj+[QZ∗]j)

]
×fZ∗j (z∗i1, z

∗
i2, z

∗
i3)dz∗i1dz

∗
i2dz

∗
i3


q11Z

∗
1

q21Z
∗
1 + q22Z

∗
2

q31Z
∗
1 + q32Z

∗
2 + q33Z

∗
3

 =


γ1

r21γ1 + γ2

r31γ1 + r32γ2 + γ3

 = γ.

Hence, the likelihood function is given by

L =
n∏
i

(∑
m3

∑
m2

∑
m1

[
3∏
j

(
αjt

αj−1
i ex

′
ijβj+[γ]ij

)dij
exp

(
−tαji e

x
′
ijβj+[γ]ij

)]
πi1πi2πi3

)
.

where [γ]ij is the jth row of the vector γ and (γ1, .., γ3, πi1, ..., πi3) are also vector of the

quadrature points and weights respectively. The terms (qij, i = j) are absorbed in the non-

parametric representation and (qij, i 6= j) are replaced by rij. The relation between (qij, i 6= j)

and rij can be found algebraically. For example, r21 = (q21/q11)(γ1 − β10). Note that rij are

not the correlation coefficients between the frailties, but they were added to the model to

account for the association between frailties. In non-parametric analysis, the main interest

is to fit the regression coefficients not these associations. Here the quadrature mass points

and their corresponding weights are unknown and need to be estimated. In this model,

there are two assumptions. First, the marginal distributions of the frailty are identical and

can be estimated by the same vector of quadrature mass points, γ1 = γ2 = γ3 and same

weights, πi1 = πi2 = πi3. For example, if three quadrature points are used, then the number
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of parameters needed to approximate the integrations is six parameters, three mass points

and three weights.

Second, using the Cholesky decomposition generates independence between the frailties. But

these two assumptions can be relaxed. First, one can assume different mass points and

different weights but independent marginal. In this case the total number of parameters

needed to approximate the integrations is eighteen parameters, nine mass points and nine

weights. Second, if the Cholesky decomposition does not generate independence between

the frailties, the weights at each pair of mass point cannot be written as the product of the

corresponding weights. In this case each combination of three points need a weight. The

number of parameters needed is nine mass points and one twenty-seven weights. Fortunately,

simulations showed that if there is no restriction on these parameters, the total number of

parameters needed to get acceptable result decreases.

4.11 Multivariate simulations

This is to test the performance of the above proposed models through simulated data.

Four simulation studies are conducted. First, a bivariate competing risks model with two

failure times following a Weibull distribution with same shape parameter α and different

scale parameters λ. The bivariate frailty is assumed to follow Inverse Gaussian distribution.

Second, same as the first data but the frailty is assumed to follow Log-Normal distribution

fitted using Cholesky decomposition. Third, an extension of the previous data by adding

a third failure type, a competing risks model with multivariate frailty. Fourth, a bivariate

competing risks model is generated with a Weibull baseline hazard and three different frailty

distributions, Log-Normal, Gamma, and Inverse Gaussian and fitted by non-parametric

frailty.

81



Chapter 4. Multivariate frailty in competing risks models

4.11.1 Bivariate Inverse Gaussian frailty of competing risks model

This is to check the proposed bivariate correlated Inverse Gaussian frailty model given in

section 4.7. A bivariate competing risks model with two failure times following a Weibull

distribution is generated, T1 ∼ Weib(λ1, α) and T2 ∼ Weib(λ2, α). Censoring times are

assumed to be independent and follow a Weibull distribution C ∼ Weib(θ, α). The frailties

Zij are assumed to follow a correlated bivariate Inverse Gaussian distribution with mean

one and variance τ 2
i generated using the argument given in section 4.7. The failure times

were generated as Tij = (− log(uij)/λij)
1/α, where λij = Zij exp(x

′

iβj) and uij ∼ Uni(0, 1),

j = 1, 2. Two different sets of parameters were used to check the model estimation. Three

different types of explanatory variables were generated, Xi1 is a continuous random variable

from Uniform distribution, Xi2 is a dichotomous, and Xi3 is a qualitative variable with three

categories which was converted to two dummy variable Xi3,1 and Xi3,2. See section 3.5. The

regression model is constructed using the following predictors,

x
′

iβ1 = β10 + xi1β11 + xi2β12 + xi3,1β13 + xi3,2β14.

x
′

iβ2 = β20 + xi1β21 + xi2β22 + xi3,1β23 + xi3,2β24.

The censoring times were generated as Ci = (− log(ui)/θ)
1/α, where ui ∼ Uni(0, 1) and

finally the survival times are Yi = min(Ti1, Ti2, Ci). Table 4.2 shows the simulated data of

two sets of parameters. The censoring rate is set to 20% and failure rate to 40% for each of

the two failure types to get a representative sample of each group. For each set of parameters,

500 data sets were generated each with sample sizes of 1000 and 5000. Using sample size

of 1000 instead of 500 like other simulation is due to the difficulty of getting the maximum

likelihood estimation of the Inverse Gaussian distribution. Different values of α, τ 2, ρ, and

different regression coefficients were used. The simulated data showed high levels of accuracy
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in retrieving the true values of model parameters with small standard errors particularly

when large sample size is used. The estimation method was capable to accommodate both

weak and strong correlation between frailties with small and large variances. The parameters

used in the first data set are, τ 2
1 = 0.8, τ 2

2 = 1.25, ρ = 0.3 and in the second data set are,

τ 2
1 = τ 2

2 = 1, ρ = 0.8.

Parameter True values

Sample size

True values

Sample size
1000 5000 1000 5000
Mean Mean Mean Mean
(S.e) (S.e) (S.e) (S.e)

α1 0.5 0.510 0.501 1.0 1.028 1.003
(0.057) (0.021) (0.112) (0.041)

α2 0.5 0.507 0.501 1.0 1.030 1.001
(0.059) (0.022) (0.128) (0.049)

τ 2
1 0.8 1.317 0.838 1.0 1.710 1.045

(1.611) (0.330) (1.895) (0.350)
τ 2

2 1.25 1.929 1.311 1.0 2.017 1.080
(2.046) (0.449) (2.084) (0.494)

ρ 0.3 0.197 0.294 0.8 0.690 0.815
(0.689) (0.273) (0.511) (0.186)

β10 -4.0 -4.027 -4.003 -2.0 -1.978 -2.002
(0.272) (0.116) (0.237) (0.089)

β11 9.0 9.201 9.013 6.0 6.214 6.019
(1.023) (0.383) (0.698) (0.251)

β12 3.0 3.050 3.007 4.0 4.101 4.010
(0.400) (0.150) (0.460) (0.179)

β13 2.0 2.053 2.003 2.0 2.066 2.005
(0.258) (0.102) (0.247) (0.093)

β14 1.0 0.987 0.998 -1.0 -1.015 -1.004
(0.339) (0.143) (0.198) (0.085)

β20 -3.0 -2.977 -3.006 -1.0 -0.895 -0.991
(0.201) (0.087) (0.320) (0.111)

β21 7.0 7.077 7.015 2.0 1.999 1.988
(0.888) (0.348) (0.668) (0.262)

β22 4.0 4.071 4.013 5.0 5.165 5.008
(0.477) (0.185) (0.595) (0.234)

β23 1.0 0.996 1.003 1.0 1.020 1.003
(0.218) (0.091) (0.261) (0.109)

β24 3.0 3.069 3.011 -2.0 -2.063 -2.004
(0.386) (0.142) (0.338) (0.138)

Table 4.2: Bivariate Inverse Gaussian frailty model with Weibull baseline hazard and two sets of

covariates simulated data, 500 data sets each with sample sizes of 1000 and 5000.
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4.11.2 Bivariate Log-Normal frailty of competing risks model

In this section, the accuracy of Cholesky decomposition in estimating the bivariate frailty

models discussed in section 4.9 is checked. Similar to the previous section, a bivariate

competing risks model with two failure times following a Weibull distribution is generated.

The log of frailty distributions associated with each failure are assumed to be Normal with

mean zero and variance σ2
i , Wi ∼ N(0, σ2

i ), i = 1, 2. For each failure type, only two types

of explanatory variables were generated, Xi1 is a continuous random variable from Uniform

distribution Xi1 ∼ Uni(0, 1), and Xi2 is a dichotomous variable generated as follows

Xi2 =

{
1 if ui < 0.3

0 if ui ≥ 0.3

where ui ∼ Uni(0, 1). The regression model was constructed using the following predictors,

x
′

iβ1 = β10 + xi1β11 + xi2β12, and x
′

iβ2 = β20 + xi1β21 + xi2β22.

The failure times were generated as Tij = (− log(uij)/λij)
1/α, where λij = exp(x

′

iβj + Wj)

and uij ∼ Uni(0, 1), j = 1, 2. The log of the frailty distributions associated with each failure

are assumed to be Normal with mean zero and variance σ2
i . W ∼ BV N(0,Σ) is a bivariate

Normal distribution

(
W1

W2

)
∼ N

((
0

0

)
,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
.

The censoring times were generated as Ci = (− log(ui3)/θ)1/α, where ui3 ∼ Uni(0, 1) and

finally the survival times are Yi = min(Ti1, Ti2, Ci). Table 4.3 shows the simulated data of

two sets of parameters with censoring rate of 20%. A Gaussian quadrature integration with 32

84



Chapter 4. Multivariate frailty in competing risks models

quadrature points was used to integrate out the frailty, codes are in appendix C. For each set

of parameters, 600 data sets each with sample sizes of 500 and 5000 are simulated. Different

values of α, σ2, ρ, and different regression coefficients are used. The simulated data showed

high levels of accuracy in retrieving the true values of model parameters using Cholesky

decomposition. In first data set, the parameter used are σ2
1 = σ2

2 = 1, ρ = 0.3 and in the

second data set the parameters used are, σ2
1 = 0.7, σ2

2 = 1.2, ρ = 0.8. The frailty variances

have bigger standard errors than other parameters in the model.

Parameter True values

Sample size

True values

Sample size
500 5000 500 5000

Mean Mean Mean Mean
(S.e) (S.e) (S.e) (S.e)

α1 1 1.088 1.010 0.5 0.527 0.501
(0.265) (0.051) (0.130) (0.023)

α2 1 1.069 1.007 0.5 0.610 0.506
(0.203) (0.047) (0.218) (0.029)

σ2
1 1 1.799 1.072 0.7 0.905 0.710

(2.506) (0.354) (0.618) (0.127)
σ2

2 1 1.668 1.058 1.2 1.738 1.236
(1.917) (0.326) (1.016) (0.164)

ρ 0.3 0.137 0.274 0.8 0.488 0.772
(0.926) (0.281) (0.567) (0.250)

β10 -3 -3.224 -3.027 -0.2 -0.318 -0.205
(0.738) (0.161) (0.303) (0.090)

β11 1 1.038 1.009 0.5 0.476 0.486
(0.454) (0.120) (0.393) (0.101)

β12 2 2.145 2.013 1 1.050 0.997
(0.613) (0.134) (0.341) (0.077)

β20 -4 -4.305 -4.030 0.2 0.201 0.202
(0.878) (0.216) (0.348) (0.076)

β21 2 2.154 2.019 0.7 0.907 0.701
(0.555) (0.138) (0.542) (0.113)

β22 3 3.230 3.024 1 1.223 1.017
(0.681) (0.156) (0.527) (0.086)

Table 4.3: Bivariate Log-Normal frailty model with Weibull baseline hazard and two sets of

covariates simulated data, 600 data sets each with sample sizes of 500 and 5000.
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4.11.3 Multivariate Log-Normal frailty of competing risks model

This section extends the pervious data by adding another failure time to have a trivariate

frailty model. The purpose of this addition is to test the performance of the Choleskey

decomposition of the Log-Normal frailty model in high dimensions. Three competing risks

with failure times, T1, T2, and T3 following the Weibull distribution are generated. Similar to

bivariate simulations, for each failure type two types of explanatory variables were generated,

Xi1 is a continuous random variable and Xi2 is a dichotomous variable. The log of the frailty

distributions associated with each failure are assumed to be Normal with mean zero and

variance σ2
i . W ∼MVN(0,Σ) is a multivariate Normal distribution


W1

W2

W3

 ∼ N




0

0

0

 ,


σ2

1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3




Table 4.4 shows the simulated data of three dimensions competing risks. The failure and

censoring times are generated at censoring rate of 20%. Gaussian quadrature integration

with 8 quadrature points was used to integrate out the frailty. 500 data sets each with

sample sizes of 1000 and 5000 are simulated. Because of high dimensionality of the model a

sample size of 1000 is used instead of 500. These simulations used the following parameters:

σ2
1 = 1.25, σ2

2 = 0.8, σ2
3 = 1.75, and the following correlations: ρ12 = −0.7, ρ13 = −0.1, ρ23 =

0.25. In conclusion, the estimation method using the Cholesky decomposition can be used in

all situations of positive and negative correlation between the log of frailties and with small

and large variances. The standard errors of parameters estimates in case of sample size 5000

are smaller than those for 1000.
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Parameter True values

Sample size

1000 5000

Mean(S.e) Mean(S.e)

β10 -4.0 -4.260 ( 0.596 ) -3.992 ( 0.266 )

β11 3.0 3.199 ( 0.541 ) 2.990 ( 0.219 )

β12 -1.0 -1.034 ( 0.426 ) -1.000 ( 0.189 )

α1 0.5 0.531 ( 0.078 ) 0.501 ( 0.030 )

β20 -3.0 -3.049 ( 0.377 ) -3.011 ( 0.128 )

β21 -2.0 -2.095 ( 0.409 ) -2.006 ( 0.148 )

β22 5.0 5.164 ( 0.706 ) 5.024 ( 0.206 )

α2 0.5 0.521 ( 0.074 ) 0.503 ( 0.023 )

β30 -2.0 -2.141 ( 0.366 ) -2.008 ( 0.133 )

β31 1.0 1.095 ( 0.355 ) 1.005 ( 0.141 )

β32 -2.0 -2.111 ( 0.595 ) -2.015 ( 0.253 )

α3 0.50 0.539 ( 0.095 ) 0.503 ( 0.029 )

σ2
1 1.25 1.754 ( 1.098 ) 1.275 ( 0.418 )

σ2
2 0.80 1.038 ( 0.875 ) 0.835 ( 0.196 )

σ2
3 1.75 2.536 ( 1.741 ) 1.846 ( 0.513 )

ρ12 -0.70 -0.647 ( 0.333 ) -0.706 ( 0.216 )

ρ13 -0.10 -0.086 ( 0.455 ) -0.092 ( 0.248 )

ρ23 0.25 0.247 ( 0.385 ) 0.258 ( 0.200 )

Table 4.4: Trivariate Log-Normal frailty model with Weibull baseline hazard and two covariates

simulated data, 500 data sets each with sample sizes of 1000 and 5000.
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4.11.4 Bivariate non-parametric frailty of competing risks model

This section tests the ability of the non-parametric frailty model proposed in section 4.10 in

capturing the model fits whatever the original frailty distribution. The simulation procedure

is similar to section 4.11.2 with different frailty distributions and there were fitted non-

parametrically. Assuming Weibull baseline hazard, the failure times were generated as

Tij = (− log(uij)/λij)
1/α, where λij = Zj exp(x

′

iβj) and uij ∼ Uni(0, 1), j = 1, 2 with

censoring rate of 20%. The distribution of frailties Zj are assumed to be either Log-Normal,

Gamma, or Inverse Gaussian. Table 4.5 shows the simulated data of 500 data sets each

with sample sizes of 500 and 5000 of Log-Normal, Gamma and Inverse Gaussian frailty

with two covariates fitted non-parametrically. The constant terms were absorbed in the

non-parametric representation. The component r was included in the model to capture the

association between frailties. The variances and the correlation used in these simulations

are τ 2
1 = 0.8, τ 2

2 = 1.25, ρ = 0.3. Only three mass points of the quadrature integration and

three corresponding weights were used for each frailty distribution and it was enough to

fit the models adequately whatever the original distribution. These mass points and their

weight are represented by γij and πij, (i = 1, 2; j = 1, 2, 3) respectively. To increase the

flexibility of the non-parametric frailty model, the mass points of each frailty distribution

are assumed to be different (i.e. γ1j and γ2j, j = 1, 2, 3 are different). The same applies for

their corresponding weights. The standard errors are almost the same whatever the original

frailty distribution.
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Parameter True values

Log-Normal Gamma Inverse Gaussian
500 5000 500 5000 500 5000

Mean Mean Mean Mean Mean Mean
(S.e) (S.e) (S.e) (S.e) (S.e) (S.e)

β11 9 9.327 8.936 9.259 8.750 9.434 9.032
( 1.468 ) ( 0.441 ) ( 1.375 ) ( 0.478 ) ( 1.531 ) ( 0.470 )

β12 3 3.136 3.010 3.142 2.932 3.193 3.031
( 0.574 ) ( 0.186 ) ( 0.521 ) ( 0.189 ) ( 0.619 ) ( 0.188 )

α1 0.5 0.520 0.498 0.518 0.487 0.527 0.503
( 0.080 ) ( 0.026 ) ( 0.076 ) ( 0.027 ) ( 0.086 ) ( 0.027 )

β21 7 7.600 6.975 7.958 7.128 7.761 7.098
( 1.770 ) ( 0.450 ) ( 2.032 ) ( 0.539 ) ( 1.784 ) ( 0.511 )

β22 4 4.327 3.957 4.475 4.056 4.423 4.032
( 0.971 ) ( 0.243 ) ( 1.104 ) ( 0.296 ) ( 0.975 ) ( 0.270 )

α2 0.5 0.542 0.496 0.565 0.508 0.555 0.505
( 0.123 ) ( 0.030 ) ( 0.140 ) ( 0.036 ) ( 0.122 ) ( 0.034 )

r 1.032 0.584 1.078 0.585 0.964 0.516
( 2.014 ) ( 0.403 ) ( 1.542 ) ( 0.317 ) ( 1.402 ) ( 0.494 )

γ11 -4.531 -4.149 -5.798 -5.215 -4.582 -4.767
( 6.269 ) ( 1.423 ) ( 7.983 ) ( 2.130 ) ( 1.893 ) ( 5.957 )

γ12 -4.283 -4.218 -5.392 -5.180 -4.427 -4.551
( 3.863 ) ( 2.114 ) ( 6.445 ) ( 2.251 ) ( 1.608 ) ( 3.592 )

γ13 -4.330 -4.333 -4.972 -5.122 -4.597 -4.686
( 4.610 ) ( 1.759 ) ( 2.203 ) ( 1.874 ) ( 2.209 ) ( 3.961 )

γ21 0.009 -0.805 -0.059 -1.252 -0.064 -1.109
( 6.559 ) ( 2.338 ) ( 6.084 ) ( 3.125 ) ( 5.122 ) ( 2.348 )

γ22 0.263 -0.695 -0.074 -1.470 0.198 -1.114
( 6.658 ) ( 2.411 ) ( 5.673 ) ( 2.743 ) ( 5.332 ) ( 2.585 )

γ23 0.264 -0.904 -0.210 -1.545 -0.215 -1.196
( 7.680 ) ( 2.464 ) ( 5.989 ) ( 2.588 ) ( 5.941 ) ( 2.392 )

π11 0.333 0.330 0.322 0.321 0.359 0.350
( 0.218 ) ( 0.207 ) ( 0.242 ) ( 0.234 ) ( 0.223 ) ( 0.204 )

π12 0.348 0.338 0.342 0.336 0.320 0.309
( 0.209 ) ( 0.212 ) ( 0.239 ) ( 0.239 ) ( 0.207 ) ( 0.195 )

π13 0.319 0.332 0.336 0.343 0.322 0.341
( 0.215 ) ( 0.220 ) ( 0.237 ) ( 0.235 ) ( 0.204 ) ( 0.199 )

π21 0.335 0.342 0.321 0.318 0.356 0.323
( 0.245 ) ( 0.225 ) ( 0.259 ) ( 0.225 ) ( 0.252 ) ( 0.228 )

π22 0.338 0.318 0.350 0.334 0.321 0.336
( 0.255 ) ( 0.217 ) ( 0.264 ) ( 0.214 ) ( 0.255 ) ( 0.223 )

π23 0.327 0.340 0.330 0.348 0.323 0.341
( 0.246 ) ( 0.219 ) ( 0.253 ) ( 0.215 ) ( 0.249 ) ( 0.232 )

Table 4.5: Log-Normal, Gamma and Inverse Gaussian frailty model with Weibull baseline hazard

and two covariates simulated data fitted non-parametrically, 500 data sets each with sample sizes

of 500 and 5000.
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4.12 Results on breast cancer recurrence data

In this section, the proposed multivariate competing risks frailty models is applied on the

breast cancer data discussed in previous chapters. This includes the Weibull hazard models

with multivariate Log-Normal frailty using Cholesky decomposition and the multivariate

non-parametric frailty along with the univariate models. The following tables summarise

the regression analysis for each model of the competing risks assuming Weibull hazard with

four different frailty models. First, the independent Log-Normal frailty model. Second, a

multivariate Log-Normal frailty model. Third, an independent non-parametric frailty model.

Fourth, a multivariate non-parametric frailty model. The discussion of the results is based

on the last model since it doesn’t assume a specific frailty distribution and it has the lowest

standard errors of the parameters estimates. In chapter six discusses the advantages and

disadvantages of these models.

4.12.1 Analysis and conclusions

Through Table 4.6 to Table 4.10, the emphasis is on the results of the multivariate non-

parametric frailty models since they have the smallest standard errors. Table 4.6 displays

the multivariate non-parametric frailty model of local recurrence. It shows that there is no

significant effect of age on the hazard of local recurrence, but the direction of the relation was

as expected, i.e. young patients have a higher chance of local recurrence. Patients in stage2

and stage3 of the disease have higher hazard than patients in stage1 (reference category).

There is no difference in the hazard of local recurrence between patients in stage4 and stage1

due to the fact that none of stage4 patients has local recurrence, see appendix A Table A.1.
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LOCAL RECURRENCE

Frailty distribution

Variable Univarite Multivariate Univarite Multivariate

Log-Normal Log-Normal non-parametric non-parametric

AGE -0.017(0.012)
∗
-0.026(0.011) -0.016(0.010) -0.017(0.010)

STAGE2
∗∗

0.808(0.288)
∗∗

0.827(0.246)
∗∗

0.664(0.227)
∗∗

0.758(0.242)

STAGE3
∗
0.935(0.409)

∗∗
1.196(0.368)

∗
0.726(0.317)

∗
0.758(0.343)

STAGE4 -10.895(52.30) -13.818(425.2) -11.720(98.65) -11.760(88.21)

SURGTYPE1
∗∗

3.314(0.738)
∗∗

3.044(0.703)
∗∗

3.088(0.605)
∗∗

2.888(0.618)

SURGTYPE2
∗∗

3.604(0.511)
∗∗

3.936(0.471)
∗∗

3.201(0.368)
∗∗

3.327(0.378)

SURGTYPE3
∗∗

1.457(0.344)
∗∗

1.616(0.393)
∗∗

1.322(0.287)
∗∗

1.355(0.286)

SURGTYPE4 0.280(0.358) 0.374(0.392) 0.226(0.307) 0.286(0.310)

SURGTYPE5 0.353(0.876) 0.712(0.777) 0.231(0.771) 0.469(0.799)

SURGTYPE6 -0.019(0.507) -0.094(0.462) 0.043(0.418) -0.032(0.416)

SURGTYPE7 0.275(0.878) 0.458(0.776) 0.313(0.767) 0.338(0.772)

HIST2 -0.416(0.330) -0.482(0.283) -0.404(0.275) -0.391(0.278)

HIST3 -0.469(0.379)
∗
-0.885(0.395) -0.459(0.317) -0.570(0.315)

HIST4
∗
-0.655(0.321)

∗
-0.654(0.273)

∗
-0.702(0.280)

∗
-0.651(0.276)

COHORT 0.125(0.237) 0.026(0.414) 0.154(0.199) 0.053(0.212)

CHEMO 0.280(0.237) 0.304(0.205) 0.234(0.197) 0.277(0.198)

MENO 0.258(0.323) 0.170(0.278) 0.237(0.270) 0.218(0.275)

RADIO
∗∗

-1.196(0.317)
∗∗

-1.132(0.289)
∗∗

-1.099(0.272)
∗∗

-1.061(0.273)

SIDE -0.053(0.195) 0.012(0.400) -0.066(0.164) -0.043(0.186)

LN(α) 0.084(0.116) 0.142(0.098) -0.069(0.068) 0.009(0.100)

CONSTANT
∗∗

-11.913(1.590)
∗∗

-11.159(1.255)

-2 Log Likelihood 3628.10 3628.52

Table 4.6: Results of breast cancer data: local recurrence. Parameters’ estimates with their

standard error in parentheses.

*.P-value < 0.05

**.P-value < 0.01

91



Chapter 4. Multivariate frailty in competing risks models

The hazard of local recurrence for the first three surgery types no surgery, incision biopsy

and excision biopsy is significantly (P-value < 0.01) higher than hazard of radical mastectomy

and axillary clearance (reference category). The hazard of the other four types of surgery

has no significant difference from the radical mastectomy and axillary clearance. Patients

with ductal histology (reference category) have a higher but not significant hazard of

local recurrence than lobular and dcis (ductal carcinoma in situ), while it is significantly

higher than other histology. Patients with radiotherapy have a significantly lower hazard

of local recurrence than those without. Other variables such as date of primary surgery,

chemotherapy, menopausal status, and side of the body affected have no significant effect

on the hazard of local recurrence. The log of the shape parameter of Weibull, Ln(α) is not

significantly different from zero, which means local recurrence has a constant hazard.

Table 4.7 displays the multivariate non-parametric frailty model of regional recurrence. The

results show that there is a significant inverse effect of age on the hazard of region recurrence.

Similar to local recurrence, patients in stage2 and stage3 of the disease have a higher hazard

of regional recurrence than patients in stage1. There is no difference in the hazard of local

recurrence between patients in stage4 and stage1 due to the fact that only few patients with

regional recurrence are in stage4. The hazard of regional recurrence for the first five surgery

types no surgery, incision biopsy, excision biopsy, simple mastectomy and radical mastectomy

is significantly higher than hazard of radical mastectomy and axillary clearance. The hazard

of wide local excision and axillary clearance, and surgery after neo adjuvant chemotherapy

has no significant difference from the radical mastectomy and axillary clearance. The hazard

recurrence ductal histology is significantly higher than all other histology types especially Dcis

(ductal carcinoma in situ) which has a much lower hazard than ductal histology. Patients

with primary surgery before 1990 have a significantly lower hazard of regional recurrence

than those after 1990.
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REGIONAL RECURRENCE

Frailty distribution

Variable Univarite Multivariate Univarite Multivariate

Log-Normal Log-Normal non-parametric non-parametric

AGE -0.023(0.012)
∗∗

-0.140(0.023)
∗∗

-0.047(0.012)
∗
-0.023(0.009)

STAGE2
∗∗

1.318(0.282)
∗∗

4.344(0.554)
∗∗

2.065(0.342)
∗∗

1.213(0.220)

STAGE3
∗∗

2.086(0.382)
∗∗

7.042(0.812)
∗∗

2.959(0.413)
∗∗

1.732(0.288)

STAGE4 0.796(0.513)
∗∗

2.327(0.589) 0.846(0.590) 0.604(0.423)

SURGTYPE1
∗∗

3.183(0.820)
∗∗

6.115(0.876)
∗∗

4.220(0.935)
∗∗

2.491(0.590)

SURGTYPE2
∗∗

3.604(0.604)
∗∗

11.029(1.129)
∗∗

5.205(0.532)
∗∗

2.910(0.410)

SURGTYPE3
∗∗

2.278(0.421)
∗∗

5.813(0.696)
∗∗

3.065(0.427)
∗∗

1.756(0.309)

SURGTYPE4
∗∗

1.437(0.383)
∗∗

3.127(0.545)
∗∗

1.837(0.402)
∗∗

1.185(0.281)

SURGTYPE5
∗∗

2.738(0.651)
∗∗

6.799(0.880)
∗∗

3.873(0.669)
∗∗

2.204(0.571)

SURGTYPE6 -0.870(0.633)
∗∗

-3.196(0.789) -1.121(0.651) -0.923(0.497)

SURGTYPE7 1.277(0.854)
∗∗

2.969(0.836) 0.752(0.883) 0.870(0.612)

HIST2
∗∗

-1.518(0.400)
∗∗

-3.537(0.756)
∗∗

-1.621(0.413)
∗∗

-1.136(0.318)

HIST3
∗∗

-4.151(0.894)
∗∗

-11.138(1.355)
∗∗

-5.077(0.881)
∗∗

-3.413(0.744)

HIST4
∗
-0.755(0.306)

∗∗
-1.620(0.355)

∗∗
-1.361(0.363)

∗∗
-0.707(0.239)

COHORT
∗∗

-0.731(0.271)
∗∗

-1.559(0.308)
∗
-0.644(0.271)

∗∗
-0.572(0.190)

CHEMO -0.332(0.268) 0.438(0.324) -0.304(0.318) -0.016(0.239)

MENO 0.529(0.341) 0.003(0.710) 0.063(0.378) 0.236(0.258)

RADIO -0.507(0.326)
∗∗

-1.071(0.338)
∗
-0.809(0.390) -0.347(0.226)

SIDE 0.211(0.205)
∗
0.819(0.326) 0.125(0.231) 0.151(0.154)

LN(α)
∗
0.200(0.088)

∗∗
1.295(0.094)

∗∗
0.511(0.047) 0.063(0.073)

CONSTANT
∗∗

-12.995(1.321)
∗∗

-31.481(3.384)

-2 Log Likelihood 5248.06 5227.96

Table 4.7: Results of breast cancer data: regional recurrence. Parameters’ estimates with their

standard error in parentheses.

*.P-value < 0.05

**.P-value < 0.01
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Other variables such as chemotherapy, menopausal status, radiotherapy, and side of the

body affected have no significant effect on the hazard of regional recurrence. Similar to

local recurrence, the log of the shape parameter of Weibull for regional recurrence is not

significantly different from zero, which means regional recurrence has constant hazard.

Table 4.8 displays the multivariate non-parametric frailty model of metastasis. Similar to

regional recurrence, there is a significant inverse effect of age on the hazard of metastasis.

As patients move from one stage to another of the disease, the hazard of metastasis increases

significantly. The hazard ratios of metastasis of stage2, stage3, and stage4 compared to stage1

are 4.95, 11.81, and 65.24, respectively. The hazard of metastasis of surgeries, incision

biopsy and radical mastectomy is significantly higher than hazard of radical mastectomy

and axillary clearance, meanwhile the hazard is significantly lower for excision biopsy and

wide local excision and axillary clearance than hazard of radical mastectomy and axillary

clearance. There is no significant difference between the metastasis hazard of ductal and

lobular histology. While the hazard is significantly lower for ductal than the other two

histology types, Dcis (ductal carcinoma in situ) and other. The hazard ratios of Dcis and

other compared to Ductal are 0.019 and 0.51 respectively. Patients with primary surgery

after 1990 have significantly lower hazard of metastasis than those before 1990. Namely,

the hazard ratio of cohort surgery after 1990 is about half of cohort surgery before 1990.

The hazard of metastasis of patients with any neo or adjuvant chemotherapy is significantly

2.28 higher than those without. Patients who are post menopausal have significantly lower

metastasis hazard than pre menopausal. The hazard of metastasis of patients with any

adjuvant radiotherapy is significantly 1.92 higher than those without. The side of the body

affected has no significant effect on the hazard of metastasis. In contrast to local and regional

recurrence the log of the shape parameter of Weibull for metastasis is significantly more than

zero, which means the hazard of metastasis increases by time.
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METASTASIS

Frailty distribution

Variable Univarite Multivariate Univarite Multivariate

Log-Normal Log-Normal non-parametric non-parametric

AGE
∗∗

-0.054(0.010)
∗∗

-0.201(0.026)
∗∗

-0.062(0.010)
∗∗

-0.061(0.010)

STAGE2
∗∗

1.185(0.189)
∗∗

5.182(0.586)
∗∗

1.508(0.197)
∗∗

1.599(0.225)

STAGE3
∗∗

2.008(0.321)
∗∗

8.917(0.971)
∗∗

2.537(0.293)
∗∗

2.469(0.339)

STAGE4
∗∗

3.885(0.527)
∗∗

13.404(1.340)
∗∗

4.486(0.350)
∗∗

4.178(0.468)

SURGTYPE1 -1.370(0.933)
∗
-2.887(1.357) -0.883(1.084) -0.916(1.188)

SURGTYPE2 0.737(0.388)
∗∗

4.642(0.983)
∗
0.904(0.423)

∗∗
1.135(0.390)

SURGTYPE3
∗∗

-0.735(0.280)
∗∗

-1.328(0.492)
∗∗

-0.961(0.300)
∗
-0.783(0.318)

SURGTYPE4 -0.126(0.239)
∗
0.994(0.428) -0.145(0.258) -0.085(0.264)

SURGTYPE5 0.451(0.405) 0.496(0.720)
∗∗

1.365(0.467)
∗
1.235(0.511)

SURGTYPE6
∗∗

-1.137(0.302)
∗∗

-4.171(0.797)
∗∗

-1.368(0.316)
∗∗

-1.453(0.337)

SURGTYPE7 -0.881(0.483)
∗∗

-2.125(0.613) -0.839(0.486) -0.775(0.486)

HIST2 -0.218(0.220) -0.576(0.420) -0.171(0.215) -0.209(0.226)

HIST3
∗∗

-3.279(0.824)
∗∗

-12.354(1.668)
∗∗

-3.875(0.802)
∗∗

-3.990(0.816)

HIST4 -0.418(0.228)
∗∗

-2.011(0.729)
∗
-0.588(0.267)

∗∗
-0.672(0.261)

COHORT
∗∗

-0.512(0.178)
∗∗

-1.122(0.327)
∗∗

-0.650(0.214)
∗∗

-0.668(0.209)

CHEMO
∗∗

0.780(0.173)
∗∗

2.711(0.394)
∗∗

0.930(0.183)
∗∗

0.825(0.195)

MENO
∗
-0.545(0.235)

∗∗
-2.047(0.579)

∗
-0.574(0.253)

∗
-0.562(0.253)

RADIO
∗∗

0.753(0.229)
∗∗

1.684(0.388)
∗∗

0.684(0.208)
∗∗

0.652(0.210)

SIDE 0.006(0.129) 0.615(0.321) 0.069(0.156) 0.090(0.161)

LN(α)
∗∗

0.228(0.077)
∗∗

1.585(0.102)
∗∗

0.421(0.037)
∗∗

0.465(0.074)

CONSTANT
∗∗

-9.294(0.920)
∗∗

-35.571(4.180)

-2 Log Likelihood 8808.40 8769.62

Table 4.8: Results of breast cancer data: metastasis. Parameters’ estimates with their standard

error in parentheses.

*.P-value < 0.05

**.P-value < 0.01
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Table 4.9 displays the multivariate non-parametric frailty model of died from breast cancer.

In contrast with the pervious recurrences, there is a significant proportional effect of age

on the hazard of died from breast cancer. There is no significant difference between died

from breast cancer hazard of stage2 and stage3, and stage1 of the disease. While the hazard

of stage4 is significantly 70 times higher than stage1, the hazard of died from breast for

patients with surgery, none and incision biopsy is significantly higher than hazard of radical

mastectomy and axillary clearance, meanwhile there is no significant difference between

other surgeries and radical mastectomy and axillary clearance. The hazard ratio of died

from breast cancer is significant 0.25 times lower for ductal than Dcis (ductal carcinoma in

situ). There is no significant difference between the hazards of ductal and the other two

types of histology. Patients with primary surgery after 1990 have significantly 2.12 times

higher hazard ratio of dying due breast than those of surgery before 1990. Other variables

such as chemotherapy, menopausal status, radiotherapy, and side of the body affected

have no significant effect on the hazard of died from breast cancer. Similar to metastasis

the Log of the shape parameter of Weibull for died from breast cancer is significantly

more than zero, which means the hazard of died from breast cancer increases by time.
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DIED FROM BREAST CANCER

Frailty distribution

Variable Univarite Multivariate Univarite Multivariate

Log-Normal Log-Normal non-parametric non-parametric

AGE
∗∗

0.059(0.014)
∗∗

0.114(0.023)
∗∗

0.036(0.009)
∗∗

0.040(0.012)

STAGE2
∗∗

0.939(0.344)
∗∗

1.899(0.411)
∗
0.530(0.221) 0.525(0.284)

STAGE3
∗∗

1.568(0.467)
∗∗

2.246(0.524)
∗∗

0.826(0.311) 0.848(0.438)

STAGE4
∗∗

5.511(0.680)
∗∗

12.139(1.346)
∗∗

3.426(0.309)
∗∗

4.245(0.533)

SURGTYPE1
∗∗

3.889(0.626)
∗∗

9.334(1.135)
∗∗

2.307(0.463)
∗∗

2.881(0.788)

SURGTYPE2
∗∗

2.910(0.535)
∗∗

2.760(0.490)
∗∗

1.388(0.325)
∗∗

1.566(0.508)

SURGTYPE3 -0.393(0.480) -0.491(0.495) -0.141(0.309) -0.262(0.369)

SURGTYPE4 -0.328(0.449) -0.098(0.702) -0.374(0.311) -0.503(0.371)

SURGTYPE5 -12.646(216.3) -17.414(49.29) -7.889(41.46) -8.092(44.35)

SURGTYPE6
∗
-1.119(0.556)

∗∗
-2.760(0.662) -0.616(0.397) -0.722(0.446)

SURGTYPE7 0.867(0.665)
∗∗

-3.226(0.879) 0.521(0.538) 0.463(0.617)

HIST2
∗
0.712(0.299) 0.563(0.345) 0.403(0.218) 0.471(0.293)

HIST3
∗
-1.733(0.847)

∗∗
-5.591(0.970)

∗
-1.411(0.619)

∗
-1.375(0.662)

HIST4 0.313(0.317)
∗∗

-1.037(0.356) 0.115(0.230) 0.122(0.279)

COHORT
∗∗

0.962(0.293)
∗∗

2.267(0.394)
∗∗

0.609(0.205)
∗∗

0.753(0.260)

CHEMO 0.104(0.274)
∗∗

1.220(0.422) 0.099(0.199) 0.157(0.233)

MENO 0.747(0.428) 0.050(0.721) 0.210(0.305) 0.206(0.369)

RADIO -0.210(0.466) -1.040(0.533) -0.397(0.306) -0.335(0.343)

SIDE
∗
0.537(0.224)

∗∗
0.705(0.234) 0.239(0.162) 0.238(0.220)

LN(α)
∗∗

0.715(0.106)
∗∗

1.369(0.117)
∗∗

0.290(0.060)
∗∗

0.377(0.119)

CONSTANT
∗∗

-25.928(2.782)
∗∗

-52.334(6.182)

-2 Log Likelihood 3801.12 3758.80

Table 4.9: Results of breast cancer data: died from breast cancer. Parameters’ estimates with

their standard error in parentheses.

*.P-value < 0.05

**.P-value < 0.01
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Table 4.10 displays the multivariate non-parametric frailty model of died from other causes.

Similar to died from breast cancer, there is a significant proportional effect of age on the

hazard of died from other causes. The hazard ratio of stage2 is significantly 1.69 times higher

than stage1. Whilst there is no significant difference between died from other causes hazard

of stage3 and stage4, and stage1 of the disease. The hazard of died from other causes for

patients with surgery, none, incision biopsy, and excision biopsy is significantly higher than

hazard of radical mastectomy and axillary clearance. In the meantime, there is no significant

difference between other surgeries and radical mastectomy and axillary clearance. There

is no significant difference between the hazard of ductal and all other types of histology.

The hazard ratio of died from other causes of patients with any adjuvant radiotherapy is

significantly 0.38 lower than those without. Other variables such as cohort, chemotherapy,

menopausal status, and side of the body affected have no significant effect on the hazard of

died from other causes. Similar to local recurrence the log of the shape parameter of Weibull

is not significantly different from zero, which means died from other causes has constant

hazard.
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DIED FROM OTHER CAUSES

Frailty distribution

Variable Univarite Multivariate Univarite Multivariate

Log-Normal Log-Normal non-parametric non-parametric

AGE
∗∗

0.086(0.012)
∗∗

0.086(0.015)
∗∗

0.086(0.012)
∗∗

0.083(0.012)

STAGE2 0.350(0.232) 0.381(0.259) 0.346(0.232)
∗
0.527(0.267)

STAGE3 0.401(0.326) 0.405(0.362) 0.399(0.326) 0.509(0.357)

STAGE4 -1.202(1.029) -1.683(1.076) -1.204(1.029) -1.526(1.070)

SURGTYPE1
∗
1.293(0.576) 1.315(0.886)

∗
1.295(0.574)

∗
1.317(0.597)

SURGTYPE2
∗
1.050(0.459) 1.335(0.802)

∗
1.050(0.457)

∗∗
1.289(0.487)

SURGTYPE3
∗∗

0.841(0.319)
∗
0.897(0.348)

∗∗
0.843(0.319)

∗∗
0.943(0.337)

SURGTYPE4 0.489(0.325) 0.502(0.391) 0.489(0.325) 0.594(0.343)

SURGTYPE5 1.025(0.754) 1.154(0.802) 1.088(0.754) 1.326(0.798)

SURGTYPE6 0.415(0.461) 0.449(0.487) 0.415(0.461) 0.418(0.470)

SURGTYPE7 0.303(1.040) 0.432(1.066) 0.301(1.040) 0.393(1.061)

HIST2 0.102(0.266) 0.117(0.282) 0.099(0.266) 0.089(0.276)

HIST3 -0.448(0.441) -0.476(0.482) -0.453(0.441) -0.557(0.454)

HIST4 -0.143(0.279) -0.132(0.289) -0.146(0.278) -0.133(0.283)

COHORT -0.282(0.228) -0.298(0.235) -0.280(0.228) -0.352(0.234)

CHEMO 0.015(0.209) -0.017(0.751) 0.013(0.204) 0.032(0.214)

MENO 0.394(0.453) 0.419(0.482) 0.392(0.453) 0.357(0.458)

RADIO
∗∗

-0.944(0.353)
∗
-0.979(0.412)

∗∗
-0.947(0.352)

∗∗
-0.977(0.358)

SIDE -0.097(0.179) -0.080(0.195) -0.098(0.178) -0.070(0.187)

LN(α) 0.063(0.076) 0.084(0.087) 0.062(0.076) 0.125(0.089)

CONSTANT
∗∗

-16.831(1.118)
∗∗

-17.209(1.235)

-2 Log Likelihood 2747.36 2746.92

Table 4.10: Results of breast cancer data: died from other causes. Parameters’ estimates with

their standard error in parentheses.

*.P-value < 0.05

**.P-value < 0.01
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4.12.2 Merging failure types

Dimensionality in multivariate analysis is a very important issue. Removing one failure type

from a competing risks model could minimise the model fitting time remarkably. One would

be interested in testing for merge some of failure types

H0 : h0j(tij)e
x
′
ijβj = h0k(tik)e

x
′
ikβk

j 6= k
H1 : h0j(tij)e

x
′
ijβj 6= h0k(tik)e

x
′
ikβk

.

For example, can local and regional recurrence be merged? To answer these types of questions,

the chi-square distribution is used with degrees of freedom equivalent to the difference in

number of parameters between the full (before merging) and reduced models (after merging).

Table 4.11 lists the deviance of testing merging between each pair of competing risks. Since

all deviance values are very large and by using the chi-square distribution with 30 degrees of

freedom, the null hypothesis is rejected and none of the competing risks pairs can be merged.

Local Regional Metastasis
Died from

breast cancer

Local

Regional 463.9

Metastasis 506.1 771.9

Died from breast cancer 332.9 365.7 546.0

Died from other causes 293.6 300.4 301.3 295.0

Table 4.11: Deviances of testing for merging competing risks.

4.12.3 Interpretation of the frailties

Using the Cholesky decomposition of the multivariate Log-Normal frailty, the lower triangle

of the variance-covariance matrix of the random effects is given by
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LR RR MT DB DO



LR l11 0 0 0 0

RR l12 l22 0 0 0

MT l13 l23 l33 0 0

DB l14 l24 l34 l44 0

DO l15 l25 l35 l45 l55

=

LR RR MT DB DO



1.377 0 0 0 0

6.001 3.653 0 0 0

4.491 2.396 6.511 0 0

−6.358 3.688 0.095 0.0004 0

0.431 −0.456 −0.033 −0.0001 0

and hence, the variance-covariance matrix of the random effects is Σ = LL
′

LR RR MT DB DO



LR σ2
1 σ12 σ13 σ14 σ15

RR σ12 σ2
2 σ23 σ24 σ25

MT σ13 σ23 σ2
3 σ34 σ35

DB σ14 σ24 σ34 σ2
4 σ45

DO σ15 σ25 σ35 σ45 σ2
5

=

LR RR MT DB DO



1.90 8.26 6.18 −8.76 0.59

8.26 49.36 35.70 −24.68 0.92

6.18 35.70 68.30 −19.10 0.63

−8.76 −24.68 −19.10 54.03 −4.43

0.59 0.92 0.63 −4.43 0.39

The variance of the frailty distribution is very small in case of died from other causes, σ2
5 =

0.39 which is an indicator of no important risks factors are omitted from the model. Whilst,

the variances of other frailty are very big especially for regional recurrence, metastasis and

died from breast cancer with σ2
2 = 49.36, σ2

3 = 68.3 and σ2
4 = 54.03 respectively. This means

that there are many important risks factor are not included in the model. Although, the

interpretation of the nature of frailty in multivariate competing risks models is not straight

forward and more complex than in univariate cases, still one can get a clear idea about the

way they are correlated. In multivariate cases, it is frequently encountered with more than

one omitted risk factor. This causes the interpretation of the nature of frailty to be more

complex than a univariate cases. The above variance-covariance matrix suggests that
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• the frailty of time to local recurrence (LR) is positively correlated with the frailty

of time to regional recurrence (RR), metastasis (MT), and died from other causes

(DO). The correlation coefficients are 0.85, 0.54, and 0.68 respectively. It is negatively

correlated with the frailty of time to died from breast cancer (DB) (ρ = -0.87);

• the frailty of regional recurrence is positively correlated with the frailty of time to

metastasis (ρ = 0.62), but it is negatively associated with frailty of time to died from

breast cancer (ρ = -0.48). It is weakly correlated to died from other causes;

• the frailty of metastasis is weakly correlated with frailty of time to died from breast

cancer (ρ = 0.31), but it is not correlated with the frailty of time to died from other

causes (ρ = 0.12); and

• the frailty of died from breast cancer is negatively and highly correlated with frailty of

time to died from other causes (ρ = -0.96)

Using the multivariate non-parametric frailty the association coefficients are:

LR RR MT DB DO



LR

RR r12

MT r13 r23

DB r14 r24 r34

DO r15 r25 r35 r45

=

LR RR MT DB DO


1.15

1.07 0.07

−1.46 0.02 0.64

0.50 0.01 −0.15 0.01

The diagonal of the association matrix was absorbed in the non-parametric representation

of the model and merged with the constant part βj0. As mentioned before, this is not a

correlation matrix, and it was included in the model to account for the association between

competing risks frailties. As a summary conclusions, died from breast cancer is informative
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(highly correlated) for both local and regional recurrence while died from other causes is

informative for local recurrence only. It seems that the nature of frailty for local recurrence

(non-aggressive cancer), which definitely exists, is highly and positively correlated with other

frailties except died from breast cancer, which is negatively correlated. With regard to the

time of regional recurrence (aggressive cancer), the frailty was related to the susceptibility

of patients to more aggressive types of breast cancer (metastasis). On the other hand, died

from breast cancer is negatively associated with all other frailties, especially the frailty of

died from other causes. None of these competing risks can be merged with another and it

seems that each failure type has its own characteristics and different risk factors.

4.12.4 Clinical results

The following points summarise the effect of the risk factors on the hazard of each type of

outcome.

• Age of patient. Young patients have higher chance of local, regional and metastasis

recurrence than old patients, whereas they have lower hazard of ”died from breast

cancer” than old patients.

• Stage of the disease. Patients in stage2 and stage3 have significantly higher hazard

of local and regional than patient in stage1. The hazard of metastasis of stage1 is

significantly lower than the other three stages. Only patients in stage4 have significantly

higher hazard of ”died from breast cancer” than stage1.

• Surgery type. Patients without surgery or with incision biopsy surgery have higher

hazard of all recurrence than patients with radical mastectomy and axillary clearance

except metastasis no difference. Patients with excision biopsy surgery have higher

hazard of local and regional recurrence than patients with radical mastectomy and
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axillary clearance and lower hazard for metastasis no difference for ”died from breast

cancer”.

• Histology. There is more chance for patients with ductal than patients with Other

histology for local recurrence and higher hazard of regional than all other three types

of histology. The hazard of metastasis for patients with ductal is the same for lobular

but higher than the other two types. The hazard of metastasis for patients with ductal

is higher than dcis (ductal carcinoma in situ) but the same for the other two types.

• Cohort. Patients with primary surgery before 1990 have the same change of local

recurrence as those after 1990 but they have lower hazard of regional recurrence and

metastasis. However, the hazard of ”died from breast cancer” is higher for patients

with primary surgery before 1990 than after 1990.

• Chemotherapy. Patients with chemotherapy have higher hazard of metastasis than

patients without. There is no significant effect of chemotherapy on the hazard of local,

regional and ”died from breast cancer”.

• Menopausal status. Patients pre-menopausal have lower hazard of metastasis than

patients post-menopausal. There is no significant effect of menopausal status on the

hazard of local, regional and ”died from breast cancer”.

• Radiotherapy. Patients with radiotherapy have lower hazard of local recurrence than

patients without. There is no significant effect of radiotherapy on the hazard of regional,

metastasis and ”died from breast cancer”.

• Side of the body affected. There is no significant effect of the side of body with

cancer (right or left) on the hazard of all types of outcome (competing risks).
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4.13 Summary

In this chapter, different types of frailty models are discussed, shared frailty, correlated frailty

and multivariate frailty. Most of the existent models are correlated frailty models rather

than multivariate model. One of the limitations of the correlated frailty model is that they

have restricted correlation coefficients between frailties; e.g. Correlated Gamma and Inverse

Gaussian frailty discussed in sections 4.6 and 4.7. Whilst the multivariate frailty models

have unrestricted correlations, but they have the limitation that the marginal likelihood

function does not have a closed form and numerical integration is needed to get the maximum

likelihood estimator; e.g. Log-Normal frailty discussed in section 4.9. The interpretation of

the frailty is not straight forward in multivariate frailty models. A competing risks model

with multivariate frailty is introduced and employed in the analysis of the time to the first

recurrence of breast cancer. The analysis was carried out by a Cholesky decomposition

of multivariate Log-Normal frailty and by a non-parametric multivariate frailty. The non-

parametric frailty model is much less time consuming in fitting the data with the smallest

standard errors of parameters estimates. The simulations showed that only a few numbers of

mass points are needed to fit the data using non-parametric frailty compared to multivariate

Log-normal where at least eight points are needed to get acceptable results. In the analysis

of competing risks models, including frailty is important to take into account the potential

relation between different failure types. Ignoring this fact and employing the commonly used

estimation procedures underestimate the parameters of interest and could lead to inaccurate

inference about relevant risk factors. Another way to overcome the problem of mis-specifying

the frailty distribution is breaking the frailty distribution in sub-distribution the so-called

finite mixtures. in the next chapter, several simulation studies of mixture of different frailly

distribution are conducted.
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Frailty and finite mixture

5.1 Introduction

In previous chapters, it was shown that the choice of the frailty distribution is crucial for

making valid inferences. Fitting the model using a non-parametric frailty is one way to

overcome this problem. In this chapter, a different prospective is used to solve the problem.

The model is fitted by breaking the frailty distribution into a finite number of components,

the so-called finite mixture. Mixture models are usually used to model data that come from a

heterogeneous population. Using a mixture of frailty distributions increases the flexibility of

modelling the unobserved heterogeneity, especially if the frailty distribution is not unimodal.

The finite mixture models of a parametric frailty distribution can be viewed as a semi-

parametric models, as they can be written in terms of J components of a specific distribution.

In general, a random variable T with a probability density function f(t) can be decomposed

into a sum of J class probability density functions. Let fj(t) denote the jth class probability

density function. The finite mixture model with J-component has the following general form

f(t|θ1, · · · , θJ ; π1, · · · , πJ−1) =
J∑
j=1

πjfj(t|θj),
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where πj represents the probability that the realisation t is coming from the jth component.

Furthermore, these probabilities must satisfy the following constraints

0 < πj < 1 and
J∑
j=1

πj = 1.

The mean and the variance of the finite mixture are

µ = E[T ] =
J∑
j=1

πjµj σ2 = V [T ] =
J∑
j=1

πj(µ
2
j + σ2

j )− µ2 (5.1.1)

For more information see (Everitt and Hand, 1981) and (Frhwirth-Schnatter, 2006).

5.2 Frailty as a finite mixture

Finite mixture models with and without covariates are extensively studied in the literature.

Most of the published work has concentrated on mixtures of normal distribution, with less

emphasis on non-normal mixtures. Recently, many studies have factored the random effects

into a wide variety of regression models. For example, Hall and Wang (2005) considered a

finite mixtures of generalized linear mixed effect models. van Duijn and Bockenholt (1995)

presented mixture models for the analysis of repeated count data. Olsen and Schafer (2001)

considered regression models with mixed effects for clustered continuous data. A Finite

mixture of bivariate Poisson regression models in the presence of random effect was considered

by BermDez and Karlis (2012).

In this chapter, a simulation study of finite mixture of frailty models is conducted where the

frailty distribution is constructed as a mixture of distributions especially for those with

a closed-form of the unconditional hazard such as Gamma and Inverse Gaussian. The

purpose of these simulations is to assess the performance of finite mixture of frailty models.
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Ravishanker and Dey (2000) considered a multivariate survival data using finite mixtures

of positive stable frailty distributions. Hanagal (2008) gave two types of mixture models

for survival data with frailty. In the frailty model, the general form of the unconditional

likelihood function is

L(ti, δi|xi) =

∫
R+

(zh0(ti)e
x
′
iβ)δie−zH0(ti)e

x
′
iβf(z, τ)dz,

where h0(ti) is the baseline hazard, xi is the vector of covariates of the ith subject, β is a

p× 1 fixed effect vector and f(z, τ) is the p.d.f of the frailty distribution. Assuming that the

frailty distribution can be written as a sum of J class probability density functions, then

f(z, τ) =
J∑
j=1

πjfj(z, τj),

where, 0 < πj < 1, j = 1, · · · , J and
∑J

j=1 πj = 1. The unconditional likelihood function can

be written as

L(ti, δi|xi) =

∫
R

(−zh0(ti)e
x
′
iβ)δie−zH0(ti)e

x
′
iβ

J∑
j=1

πjfj(z, τj)dz,

consequently,

L(ti, δi|xi) =
J∑
j=1

πj

∫
R

(−zh0(ti)e
x
′
iβ)δie−zH0(ti)e

x
′
iβfj(z, τj)dz (5.2.1)

The set of parameters need to be estimated is θ = (β1, ..., βp, τ
2
1 , ..., τ

2
J , π1, ..., πJ−1)

′
, which

can be estimated either by EM-algorithm or by direct the maximisation of likelihood function.
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5.2.1 Finite mixture of Gamma frailty model

Assuming the survival times follow the Weibull distribution T ∼ Weib(α, λ), and the jth

class of the frailty distribution is a Gamma distribution with a unit mean and variance τ 2
j ,

fj ∼ Γ(1/τ 2
j , τ

2
j ), the frailty distribution can be written as

f(z, τ 2) =
J∑
j=1

πjΓ(1/τ 2
j , τ

2
j ).

The unconditional (marginal) likelihood function has a close-form and given by

L(ti, δi|xi) =
J∑
j=1

πj

(
αt

α−1

i ex
′
iβ

1 + τ
2

j t
α

i e
x
′
iβ

)δi

[1 + τ
2

j t
α

i e
x
′
iβ]
−(1

/
τ
2

j )

= (αt
α−1

ex
′
iβ)δi

J∑
j=1

πi(1 + τ
2

j t
α

i e
x
′
iβ)
−(δi+( 1

τj
))
. (5.2.2)

5.2.2 Finite mixture of Inverse Gaussian frailty model

In this section, a Weibull regression model with a finite mixture of Inverse Gaussian frailty

is proposed. Assuming the survival times follow the Weibull distribution, T ∼ Weib(α, λ),

and jth class of the frailty distribution is an Inverse Gaussian distribution with a unit mean

and variance τ 2
j , fj ∼ IG(1, 1/τ 2

j ), the frailty distribution can be written as

f(z, τ 2) =
J∑
j=1

πjIG(1, 1/τ 2
j ).

The unconditional likelihood function has a close-form and given by

L(ti, δi|xi) =
J∑
j=1

πj

(
αtα−1

i ex
′
iβ

(1 + 2τ 2
j t
α
i e
x
′
iβ)1/2

)δi

exp

(
1

τj
(1− (1 + 2τ 2

j t
α
i e
x
′
iβ)1/2)

)
. (5.2.3)
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5.2.3 Finite mixture of Log-Normal frailty model

Assuming the survival times follow the Weibull distribution and jth class of the frailty

distribution is a Log-Normal random variable with mean µ and variance τ 2
j , the frailty

distribution can be written as

f(z, τ 2) =
J∑
j=1

πjLogN(1/τ 2
j , τ

2
j ).

In this case the unconditional likelihood function does not have a closed-form, but using the

results of section 3.4.4, it can be expressed as

L(ti, δi,xi) =
J∑
j=1

πj

∫
R

(αtα−1
i ex

′
iβ+τjy

√
2)δi exp(tαi e

x
′
iβ+τjy

√
2)

1√
π
e−y

2

dy.

≈
J∑
j=1

K∑
k=1

πjπ
∗
k(αt

α−1
i ex

′
iβ+τy∗k)δi exp(tαi e

x
′
iβ+τy∗k). (5.2.4)

where y∗k and π∗k are the zeros of Hermite polynomials and their corresponding weight factors

respectively while πj is the mixing probability.

5.3 Finite mixture of correlated Inverse Gaussian

frailty model

In this section, a mixture of correlated Inverse Gaussian frailty model is proposed based on the

results reported in section 4.7. Assuming the survival times follow the Weibull distribution

and jth class of the frailty distribution is a correlated Inverse Gaussian distribution with

a unit mean vector and variance-covariance matrix Σj, similar to the one given in 4.7.2,
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fj ∼ BIG(1,Σj), the frailty distribution can be written as

f(z,Σ) =
J∑
j=1

πjBIG(1,Σj).

In general, the mean and the variance of multivariate mixtures are given by

E[Z] = µ =
J∑
j=1

πjµj, V [Z] =
J∑
j=1

πjΣj +
J∑
j=1

πj(µj − µ)(µj − µ)
′

(5.3.1)

For the mixture in 5.3.1, the variance reduces to

V [Z] =
J∑
j=1

πjΣj

In the bivariate case, the unconditional log-likelihood function is given by

`(ti1, ti2) =

J∑
j=1

πj

{
δi1δi2 log

[
∂

∂ti2∂ti1
logSj(ti1, ti2) +

(
∂

∂ti1
logSj(ti1, ti2)

)(
∂

∂ti2
logSj(ti1, ti2)

)]

+
2∑
j=1

δij log

(
− ∂

∂tij
logSj(ti1, ti2)

)
+ log[Sj(ti1, ti2)]

}
.

(5.3.2)

where,

Sj(ti1, ti2) =

[S1(ti1)]
(1−ρj

τ1j
τ2j

)
[S2(ti2)]

(1−ρj
τ2j
τ1j

)

×exp

{
ρj

τ1jτ2j

(
1−

[(
1− τ 2

1j logS1(ti1)
)2

+
(
1− τ 2

2j logS2(ti2)
)2 − 1

]1/2
)}

In case of competing risks, either the individual faces one of the failures (i.e. only one of
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δij = 1, j = 1, 2) or censored (i.e. both δij = 0, j = 1, 2). In constructing the likelihood

function only the first order of the partial derivatives is needed. Hence the log-likelihood in

5.3.2 reduces to

`(ti1, ti2) =
J∑
j=1

2∑
k=1

πjδik log

(
− ∂

∂tik
logSj(ti1, ti2)

)
+ log[Sj(ti1, tij)]. (5.3.3)

5.4 Simulations

This section examines the performance of a frailty mixture with different distribution in

both univariate and bivariate data. In univariate data, three mixtures are tested, Gamma,

Inverse Gaussian, and Log-Normal distributions. In bivariate frailty, only a mixture of the

correlated Inverse Gaussian frailty proposed in section 4.7 is examined. In each study, data

are generated using Weibull baseline hazard and four different frailty distributions, namely,

the Log-Normal, Gamma, Inverse Gaussian and an arbitrary distribution. These models are

fitted using mixtures of Gamma, Inverse Gaussian, and Log-Normal frailty distributions.

Simulations from the frailty distributions were conducted in the same manner as described

in the previous chapters. The arbitrary distribution is generated from a discrete random

variable, say Y with an expected value equals to one using the following steps. First, generate

a random numbers from a Uniform distribution U ∼ Uni(0, 1). Second, cut the range (0, 1)

into different segments with different lengths (probabilities). Third, if the generated number

from is within the first segment return some value of Y and if it within the second segment

return another value Y , and so forth. The returned values and the length of segments are

set so that the expect value of the random variable Y is equal to one.
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P
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Log-Normal Gamma Inverse Gaussian Arbitrary

Sample size Sample size Sample size Sample size

500 5000 500 5000 500 5000 500 5000

Mean Mean Mean Mean Mean Mean Mean Mean

(S.e) (S.e) (S.e) (S.e) (S.e) (S.e) (S.e) (S.e)

β0 -4 -3.933 -3.919 -4.049 -4.008 -3.909 -3.878 -3.907 -3.879

(0.259) (0.085) (0.308) (0.094) (0.258) (0.079) (0.282) (0.089)

β1 1 0.943 0.943 1.024 0.999 0.909 0.917 0.949 0.937

(0.246) (0.078) (0.304) (0.094) (0.241) (0.073) (0.273) (0.083)

β2 -2 -1.887 -1.877 -2.006 -2.004 -1.857 -1.839 -1.885 -1.865

(0.201) (0.060) (0.241) (0.078) (0.191) (0.061) (0.224) (0.066)

β3 4 3.77 3.758 4.037 4.010 3.715 3.678 3.753 3.727

(0.305) (0.094) (0.378) (0.110) (0.292) (0.091) (0.337) (0.102)

β4 2 1.879 1.878 2.016 2.008 1.877 1.838 1.879 1.862

(0.216) (0.073) (0.279) (0.086) (0.216) (0.070) (0.249) (0.081)

α 1 0.945 0.940 1.009 1.002 0.931 0.921 0.942 0.934

(0.068) (0.020) (0.082) (0.024) (0.065) (0.019) (0.072) (0.022)

τ 2 1 0.364 0.377 0.993 1.004 0.337 0.334 0.662 0.661

(0.147) (0.043) (0.238) (0.068) (0.137) (0.043) (0.188) (0.053)

Table 5.1: Log-Normal, Gamma, Inverse Gaussian and arbitrary frailty models with Weibull

baseline hazard and four covariates simulated data estimated by Gamma frailty, 500 data sets each

with sample sizes of 500 and 5000.
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P
ar
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e
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es Log-Normal Gamma Inverse Gaussian Arbitrary

Sample size Sample size Sample size Sample size
500 5000 500 5000 500 5000 500 5000

Mean Mean Mean Mean Mean Mean Mean Mean
(S.e) (S.e) (S.e) (S.e) (S.e) (S.e) (S.e) (S.e)

β0 4 -3.929 -3.909 -4.016 -3.988 -3.893 -3.880 -3.889 -3.876
(0.254) (0.085) (0.305) (0.091) (0.254) (0.082) (0.288) (0.085)

β1 1 0.931 0.935 0.996 0.994 0.917 0.922 0.927 0.932
(0.233) (0.077) (0.291) (0.090) (0.243) (0.072) (0.275) (0.084)

β2 -2 -1.879 -1.874 -1.981 -1.990 -1.832 -1.841 -1.873 -1.860
(0.191) (0.060) (0.246) (0.075) (0.194) (0.063) (0.226) (0.068)

β3 4 3.758 3.746 3.983 3.976 3.681 3.678 3.740 3.723
(0.293) (0.094) (0.365) (0.114) (0.294) (0.096) (0.337) (0.099)

β4 2 1.880 1.875 1.978 1.990 1.851 1.835 1.874 1.858
(0.214) (0.072) (0.281) (0.090) (0.216) (0.071) (0.247) (0.078)

α 1 0.941 0.938 0.992 0.995 0.924 0.921 0.939 0.933
(0.064) (0.020) (0.081) (0.026) (0.066) (0.021) (0.072) (0.021)

τ 2 1 0.382 0.372 0.937 0.981 0.322 0.335 0.655 0.659
(0.319) (0.044) (0.238) (0.076) (0.147) (0.045) (0.181) (0.053)

τ 2
1 0.682 0.372 0.644 0.767 0.231 0.287 0.479 0.586

(7.542) (0.044) (0.500) (0.691) (0.167) (0.107) (0.241) (0.124)
τ 2

2 1.957 0.372 0.667 0.731 0.229 0.287 0.473 0.586
(31.033) (0.044) (0.535) (0.450) (0.239) (0.103) (0.243) (0.127)

τ 2
3 1.855 0.372 0.676 0.768 0.238 0.289 0.480 0.584

(36.809) (0.044) (0.502) (0.510) (0.174) (0.108) (0.239) (0.125)
τ 2

4 0.964 0.372 0.721 0.740 0.258 0.289 0.471 0.588
(15.666) (0.044) (0.846) (0.536) (0.412) (0.104) (0.240) (0.129)

τ 2
5 1.240 0.373 0.672 0.734 0.238 0.286 0.486 0.589

(16.411) (0.048) (0.604) (0.393) (0.341) (0.107) (0.249) (0.127)
π1 0.190 0.199 0.190 0.185 0.188 0.192 0.187 0.187

(0.112) (0.035) (0.283) (0.280) (0.257) (0.191) (0.243) (0.187)
π2 0.200 0.198 0.208 0.208 0.185 0.202 0.196 0.199

(0.133) (0.032) (0.293) (0.299) (0.245) (0.210) (0.248) (0.199)
π3 0.197 0.200 0.199 0.223 0.208 0.210 0.210 0.194

(0.135) (0.028) (0.296) (0.323) (0.273) (0.209) (0.273) (0.198)
π4 0.200 0.201 0.213 0.186 0.230 0.207 0.193 0.212

(0.132) (0.033) (0.297) (0.289) (0.282) (0.213) (0.246) (0.208)
π5 0.213 0.202 0.189 0.199 0.190 0.190 0.214 0.208

(0.148) (0.041) (0.284) (0.289) (0.252) (0.183) (0.272) (0.213)

Table 5.2: Log-Normal, Gamma, Inverse Gaussian and arbitrary frailty models with Weibull

baseline hazard and four covariates simulated data estimated by mixture of Gamma frailty, 500

data sets each with sample sizes of 500 and 5000.

114



Chapter 5. Frailty and finite mixture

P
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Log-Normal Gamma Inverse Gaussian Arbitrary

Sample size Sample size Sample size Sample size

500 5000 500 5000 500 5000 500 5000

Mean Mean Mean Mean Mean Mean Mean Mean

(S.e) (S.e) (S.e) (S.e) (S.e) (S.e) (S.e) (S.e)

β0 4 -4.040 -3.999 -3.587 -3.563 -4.070 -4.010 -3.843 -3.814

(0.304) (0.092) (0.233) (0.076) (0.318) (0.099) (0.258) (0.078)

β1 1 1.056 1.007 0.890 0.883 1.073 1.007 0.998 0.978

(0.295) (0.088) (0.282) (0.086) (0.312) (0.086) (0.291) (0.090)

β2 -2 -2.079 -2.016 -1.797 -1.771 -2.122 -2.013 -1.991 -1.963

(0.301) (0.086) (0.213) (0.064) (0.353) (0.094) (0.221) (0.067)

β3 4 4.172 4.029 3.564 3.517 4.240 4.025 3.964 3.900

(0.553) (0.146) (0.266) (0.081) (0.622) (0.168) (0.300) (0.088)

β4 2 2.087 2.012 1.803 1.778 2.116 2.011 1.982 1.946

(0.333) (0.093) (0.218) (0.069) (0.360) (0.102) (0.246) (0.077)

α 1 1.046 1.008 0.911 0.897 1.061 1.006 1.000 1.001

(0.134) (0.034) (0.054) (0.016) (0.149) (0.041) (0.068) (0.478)

τ 2 1 2.160 1.059 1.851 1.715 2.327 1.068 2.346 1.995

(4.000) (0.289) (0.487) (0.113) (3.186) (0.334) (1.305) (0.232)

Table 5.3: Log-Normal, Gamma, Inverse Gaussian and arbitrary frailty models with Weibull

baseline hazard and four covariates simulated data estimated by Inverse Gaussian frailty, 500 data

sets each with sample sizes of 500 and 5000.
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P
ar
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T
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e
va
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es Log-Normal Gamma Inverse Gaussian Arbitrary

Sample size Sample size Sample size Sample size
500 5000 500 5000 500 5000 500 5000

Mean Mean Mean Mean Mean Mean Mean Mean
(S.e) (S.e) (S.e) (S.e) (S.e) (S.e) (S.e) (S.e)

β0 4 -4.050 -4.008 -3.958 -3.971 -4.030 -4.004 -3.995 -3.976
(0.312) (0.095) (0.319) (0.100) (0.332) (0.099) (0.299) (0.094)

β1 1 1.022 1.005 1.052 1.056 1.030 1.004 1.069 1.043
(0.286) (0.080) (0.330) (0.105) (0.300) (0.086) (0.332) (0.100)

β2 -2 -2.057 -2.001 -2.110 -2.110 -2.064 -2.004 -2.103 -2.082
(0.317) (0.091) (0.319) (0.102) (0.360) (0.108) (0.302) (0.112)

β3 4 4.133 4.005 4.194 4.221 4.111 4.008 4.210 4.162
(0.580) (0.157) (0.529) (0.184) (0.644) (0.192) (0.497) (0.192)

β4 2 2.062 2.003 2.111 2.107 2.064 2.002 2.109 2.078
(0.327) (0.099) (0.348) (0.113) (0.371) (0.114) (0.335) (0.118)

α 1 1.034 1.001 1.049 1.055 1.032 1.002 1.054 1.041
(0.137) (0.037) (0.120) (0.044) (0.155) (0.045) (0.117) (0.046)

τ 2 1 1.846 1.020 2.878 1.952 2.062 1.063 4.302 1.989
(2.664) (0.300) (2.636) (0.614) (3.139) (0.516) (4.155) (0.546)

τ 2
1 2.488 1.025 52.384 120.800 2.388 0.754 6.494 4.342

(3.347) (1.335) (76.120) (165.430) (3.554) (1.136) (7.048) (2.604)
τ 2

2 0.421 0.398 1.706 17.318 0.407 0.214 0.606 0.575
(1.892) (2.966) (3.520) (78.278) (1.557) (0.311) (2.937) (1.208)

τ 2
3 0.098 0.034 0.870 0.995 0.079 0.033 0.126 0.094

(0.453) (0.031) (4.357) (2.233) (0.118) (0.028) (0.164) (0.078)
τ 2

4 0.063 0.017 0.257 0.407 0.083 0.014 0.098 0.054
(0.220) (0.042) (1.661) (1.513) (0.479) (0.020) (0.465) (0.070)

τ 2
5 0.175 0.906 0.747 24.502 0.187 0.497 0.247 0.464

(0.957) (3.019) (5.499) (72.074) (1.633) (1.131) (1.204) (1.195)
π1 0.600 0.505 0.295 0.149 0.649 0.522 0.602 0.568

(0.335) (0.385) (0.217) (0.191) (0.356) (0.457) (0.231) (0.200)
π2 0.153 0.195 0.366 0.357 0.163 0.123 0.150 0.225

(0.282) (0.313) (0.329) (0.271) (0.291) (0.298) (0.232) (0.216)
π3 0.026 0.009 0.111 0.198 0.021 0.004 0.025 0.032

(0.099) (0.035) (0.229) (0.259) (0.084) (0.018) (0.095) (0.082)
π4 0.046 0.025 0.040 0.090 0.042 0.007 0.033 0.033

(0.115) (0.072) (0.132) (0.168) (0.118) (0.024) (0.098) (0.090)
π5 0.175 0.266 0.189 0.206 0.125 0.344 0.190 0.141

(0.234) (0.355) (0.229) (0.243) (0.212) (0.439) (0.210) (0.217)

Table 5.4: Log-Normal, Gamma, Inverse Gaussian and arbitrary frailty models with Weibull

baseline hazard and four covariates simulated data estimated by mixture of Inverse Gaussian frailty,

500 data sets each with sample sizes of 500 and 5000.
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P
ar
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es Log-Normal Gamma Inverse Gaussian Arbitrary

Sample size Sample size Sample size Sample size
500 5000 500 5000 500 5000 500 5000

Mean Mean Mean Mean Mean Mean Mean Mean
(S.e) (S.e) (S.e) (S.e) (S.e) (S.e) (S.e) (S.e)

β0 4 -4.030 -3.986 -4.015 -3.988 -4.016 -3.903 -4.024 -3.965
(0.317) (0.094) (0.360) (0.100) (0.308) (0.108) (0.279) (0.080)

β1 1 1.004 0.987 1.151 1.068 1.002 0.983 1.035 0.996
(0.276) (0.080) (0.475) (0.104) (0.273) (0.081) (0.280) (0.081)

β2 -2 -2.015 -1.989 -2.266 -2.128 -1.992 -1.973 -2.050 -1.991
(0.286) (0.084) (0.568) (0.106) (0.321) (0.075) (0.235) (0.071)

β3 4 4.048 3.975 4.545 4.258 3.997 3.937 4.103 3.984
(0.514) (0.140) (1.120) (0.181) (0.537) (0.136) (0.366) (0.111)

β4 2 2.015 1.986 2.263 2.131 1.989 1.965 2.053 1.994
(0.316) (0.089) (0.601) (0.116) (0.325) (0.087) (0.283) (0.080)

α 1 1.010 0.994 1.135 1.065 0.999 0.985 1.025 0.996
(0.120) (0.033) (0.269) (0.043) (0.127) (0.031) (0.085) (0.025)

τ 2 1 0.771 0.805 1.292 1.213 0.759 0.795 0.810 0.758
(0.284) (0.081) (0.525) (0.108) (0.299) (0.072) (0.227) (0.080)

τ 2
1 0.643 0.688 1.017 1.047 0.605 0.502 0.633 0.615

(0.448) (0.274) (0.808) (0.647) (0.403) (0.233) (0.524) (0.412)
τ 2

2 0.663 0.684 0.964 1.097 0.602 0.498 0.673 0.597
(0.389) (0.290) (0.811) (0.650) (0.297) (0.218) (0.826) (0.415)

τ 2
3 0.658 0.656 0.985 1.091 0.608 0.496 0.606 0.635

(0.633) (0.198) (0.803) (0.611) (0.369) (0.219) (0.508) (0.427)
τ 2

4 0.636 0.692 1.059 1.082 0.628 0.513 0.609 0.589
(0.595) (0.340) (0.957) (0.646) (0.444) (0.228) (0.480) (0.402)

τ 2
5 0.608 0.667 1.033 1.092 0.629 0.516 0.603 0.600

(0.367) (0.215) (0.852) (0.622) (0.443) (0.218) (0.468) (0.394)
π1 0.203 0.203 0.212 0.205 0.182 0.177 0.179 0.205

(0.250) (0.260) (0.243) (0.198) (0.235) (0.331) (0.224) (0.229)
π2 0.207 0.209 0.190 0.186 0.192 0.199 0.198 0.214

(0.252) (0.261) (0.231) (0.186) (0.252) (0.358) (0.223) (0.231)
π3 0.199 0.187 0.205 0.196 0.191 0.189 0.209 0.212

(0.259) (0.233) (0.246) (0.187) (0.251) (0.343) (0.228) (0.227)
π4 0.196 0.210 0.192 0.203 0.220 0.220 0.204 0.185

(0.244) (0.259) (0.230) (0.193) (0.276) (0.372) (0.235) (0.227)
π5 0.195 0.190 0.201 0.210 0.215 0.215 0.211 0.183

(0.248) (0.256) (0.230) (0.207) (0.270) (0.369) (0.228) (0.223)

Table 5.5: Log-Normal, Gamma, Inverse Gaussian and arbitrary frailty model with Weibull

baseline hazard and four covariates simulated data estimated by mixture of Log-Normal frailty,

500 data sets each with sample sizes of 500 and 5000.
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Parameter True values

Log-Normal Gamma Inverse Gaussian

500 5000 500 5000 500 5000

Mean Mean Mean Mean Mean Mean

(S.e) (S.e) (S.e) (S.e) (S.e) (S.e)

β10 -4 -4.041 -3.984 -4.080 -4.042 -3.995 -3.984

(0.354) (0.343) (0.423) (0.123) (0.371) (0.110)

β11 9 9.603 9.098 9.917 9.164 9.541 9.070

(1.730) (0.504) (1.631) (0.378) (1.853) (0.487)

β12 3 3.176 3.041 3.255 2.967 3.197 3.041

(0.624) (0.231) (0.601) (0.167) (0.674) (0.191)

α1 0.5 0.530 0.500 0.550 0.500 0.530 0.510

(0.100) (0.030) (0.090) (0.020) (0.140) (0.030)

β20 -3 -2.948 -2.977 -2.864 -2.882 -2.937 -2.993

(0.314) (0.332) (0.360) (0.098) (0.370) (0.086)

β21 7 7.412 7.099 7.645 7.117 7.470 7.081

(1.394) (0.430) (1.330) (0.366) (1.675) (0.423)

β22 4 4.246 4.049 4.452 4.176 4.275 4.024

(0.767) (0.279) (0.781) (0.188) (0.909) (0.232)

α2 0.5 0.530 0.500 0.550 0.520 0.530 0.500

(0.090) (0.040) (0.090) (0.020) (0.150) (0.030)

τ 2
1 0.8 6.04 1.010 20.61 2.950 6.35 0.740

(14.64) (0.670) (68.01) (1.330) (14.75) (0.840)

τ 2
2 1.25 7.16 1.610 37.78 8.600 8.44 1.580

(13.42) (0.880) (80.79) (3.410) (17.11) (0.980)

ρ 0.3 0.540 0.490 0.570 0.650 0.550 0.520

(0.340) (0.280) (0.330) (0.230) (0.320) (0.290)

Table 5.6: Bivariate Log-Normal, Gamma and Inverse Gaussian frailty model with Weibull baseline

hazard and two covariates simulated data fitted by mixture of bivariate Inverse Gaussian, 500 data

sets each with sample sizes of 500 and 5000.
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The above tables describe four simulation studies of finite frailty mixtures. The simulated

data is generated with four different frailty distributions, Log-Normal, Gamma, Inverse

Gaussian and an arbitrary distribution. In the first study, data was fitted by Gamma frailty

and mixture of Gamma, results are shown in tables 5.1 and 5.2 respectively. Neither the

Gamma frailty model nor its mixture was able to capture the model estimates even with

five Gamma mixtures except when the original frailty distribution is Gamma. In the second

study, the simulated data was fitted by Inverse Gaussian and mixture of Inverse Gaussian

distribution. The results are shown in tables 5.3 and 5.4 respectively. Similar to Gamma

distribution, the Inverse Gaussian frailty was not able to capture the model estimates, while

its mixture managed to fit all of the four frailty models. Only the frailty variance, τ 2 is

not close to its true value since it is the mixing parameter. The mixing variances and

their corresponding weights are represented by τ 2
i and πi, (i = 1, . . . , 5) respectively. In

the third study, the simulated data was fitted by the Log-Normal and the mixture of Log-

Normal distributions. The results of Log-Normal frailty are in Table 3.2 in chapter three,

while the results of its mixture are presented in in Table 5.5. The Log-Normal mixture

model displays similarity to the Inverse Gaussian mixture with respect to capturing the

estimates of the four frailty models. These results confirm the conclusions drawn from the

previous chapters. Because of quadrature integration in a Log-normal mixture, the Inverse

Gaussian mixture is preferable since it is less time consuming. The last study of simulation

is the correlated bivariate Inverse Gaussian frailty mixture. The results are summarized in

Table 5.6. Obviously, the bivariate Inverse Gaussian mixture is capable of capturing the

parameter estimates of other frailty models except the frailty variances since they are the

mixing parameters. Only three mixtures are capable to fit the model, the mixing variances

and their corresponding weights are not presented since they are not of the main interest.
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5.5 Summary

The main goal of this chapter was to check the performance of finite mixture of frailty models

through simulation studies. In the univariate frailty, three finite mixtures are considered,

Gamma, Inverse Gaussian and Log-Normal. The Gamma mixture was not able to capture

the model parameters except when the original frailty distribution is Gamma. Both Inverse

Gaussian and Log-Normal finite mixture were capable to fit the model parameters whatever

is the original frailty distribution. However, the inverse Gaussian mixture is preferable since

it does not involve numerical integrations. In the bivariate frailty, only the Inverse Gaussian

mixture is considered. Using only three mixtures, it managed to fit the model parameters

very well except the frailty variances and the correlation coefficient and overestimates them

which expected since it they are analytically different from the true parameters, see formulae

5.3.1.
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Conclusions

6.1 Introduction

The present thesis discussed a variation of univariate, bivariate and multivariate frailty

models in the presence of competing risks. There are two sources of variability in survival

data, variability due to observable covariates and variability caused by unknown risk factors

which usually is uncontrollable. Estimating the individual hazard rate without taking into

account the unobserved heterogeneity will underestimate the hazard function. Competing

risks frailty models consist of two underlying distributions: baseline hazard distribution and

the random effect distribution. The main emphasis in this thesis is on the frailty distribution

rather than the baseline hazard distribution which is assumed to have a Weibull distribution.

6.2 Concluding Remarks

The simulations showed that the right specification of the frailty distribution is crucial

for making valid model inferences. There are four proposed frailty models in this thesis.

First, a novel non-parametric multivariate frailty model with competing risks which showed

a significant decrease in time to model by more than 80%. A model that can accommodate

121



Chapter 6. Conclusions

all multivariate frailty models irrespective of the original frailty distribution. Second, a

correlated Inverse Gaussian frailty model, but with restrictions on correlation coefficients.

Third, a multivariate Inverse Gaussian frailty model without any restrictions. Fourth, a

finite mixture of frailty models especially for those with a close-form of unconditional survival

function. One should distinguish between correlated and multivariate models. In correlated

models, the marginal distributions are known while the joint distribution is constructed by

the sum of marginals. In multivariate models, both the marginals and joint distribution are

well defined. Most of the published research in the area of frailty is for correlated models

rather than multivariate models. This is what makes the multivariate Log-Normal and the

proposed non-parametric frailty models more flexible in modelling frailty.

There are two advantages of the proposed non-parametric multivariate frailty over the Log-

Normal frailty. First, it is a distribution free model which does not depends on the original

distribution of the frailty. Second, it is much less time consuming compared with the Log-

Normal distribution, even when more parameters are added to the model (the quadrature

points and their corresponding weights). By estimating the quadrature points and their

weights from the model it minimises the number of iterations of the model fit. Latent

approach of competing risks is not a full multivariate survival data in the sense that only the

minimum failure time is observed, i.e. there is only one dependent variable. The multivariate

settings come from the inclusion of the indicator variable of each failure in the model. One

of the limitations of correlated frailty models is that they may be not flexible enough in

modelling data that are negatively correlated. Another limitation is that in frailty models,

the likelihood function is usually expressed in terms of all partial derivatives of the survival

function. Hence, generalisation from the bivariate to the multivariate is not straightforward.

On the other hand, this could be an advantage of competing risks model over the multivariate

survival data since only the first order of the partial derivative is needed to fit the model.
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The simulation studies of the non-parametric frailty for univariate and multivariate showed

that a small number of quadrature points (around three) is needed to fit the model well. To

test the applicability of the proposed models, a real data set of breast cancer was used. It

is a complicated data set in which around three thousand patients of breast cancer and five

competing risks are included in the model. Both Log-Normal and non-parametric frailty were

tried for the data. In the Log-Normal frailty model with five quadrature points a vector with

(55 = 3125) points is needed to get a single iteration (number of quadrature to the power of

number of competing risks).

From an estimation point of view, one important issue in competing risks with frailty model is

the initial values of the model parameters to start with. The following procedure is suggested

to minimise the fitting time of the model. First, start with individual failure time without

frailty and use them as starting values for individual failure with frailty. Second, aggregate

these results as starting values of the multivariate model. Third, for the Log-Normal frailty it

is better to start with two quadrature points and then use them as starting values for higher

number of quadrature points.

6.3 Limitations and future research

Despite their similarity with linear mixed models, frailty models need special treatment.

There is a need for additional developments in methods of frailty models analysis especially

in multivariate case. One of the limitations of the multivariate Log-Normal frailty is the

numerical integration that is needed to fit the model. The time it needs to fit the model

depends on the number of quadrature points for the numerical integration and the dimension

of the multivariate (number of failure times) which creates nested loops in the estimation

process. Converting loops into vectors decreased the time of model fit tremendously, but still
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it is a time consuming process. For future research, one may work on relaxing the assumptions

used in frailty models such as constant frailty across individuals and the proportionality

of hazard to suit practical applications. Throughout this thesis, it was assumed that the

baseline hazard is following the Weibull distribution (i.e. parametric baseline hazard). A

further research could be more general models where both the baseline hazard and the frailty

are distribution free, i.e. a full non-parametric model.
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Appendix A

Data

A.1 Variables in the model

The variables included in the regression analysis of breast cancer data are as follow:

AGE a continuous variable represents the age of patient in years

STAGE a categorical variable with four level. Stage of the disease which is known as

Manchester stage as given in page 43. The code for dummy variables used is as follows

STAGE1 0 0 0

STAGE2 1 0 0

STAGE3 0 1 0

STAGE4 0 0 1

SURGTYPE a categorical variable of surgery type with with eight levels: the code for

dummy variables used is as follows
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None 1 0 0 0 0 0 0

Incision biopsy 0 1 0 0 0 0 0

Excision biopsy 0 0 1 0 0 0 0

Simple mastectomy 0 0 0 1 0 0 0

Radical mastectomy 0 0 0 0 1 0 0

Wide local excision and axillary clearance 0 0 0 0 0 1 0

Surgery after neo adjuvant chemotherapy 0 0 0 0 0 0 1

Radical mastectomy and axillary clearance 0 0 0 0 0 0 0

HIST a categorical variable of histology status with four levels: the code for dummy

variables used is as follows

Ductal 0 0 0

Lobular 1 0 0

Dcis (Ductal Carcinoma In Situ) 0 1 0

Other 0 0 1

COHORT a categorical variable of date of primary surgery with two levels:

(0)Before 1990 (1)After 1990

CHEMO a categorical variable of any neo or adjuvant chemotherapy with two levels:

(0)No (1)Yes

MENO a categorical variable of menopausal status with two levels:

(0)PRE (1)Post

RADIO a categorical variable of any adjuvant radiotherapy with two levels:

(0)No (1)Yes

SIDE a categorical variable of side of the body affected with two levels:

(0)Right (1) Left
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A.2 Variables by risks

Local Regional Metastasis Died from Died from

recurrence recurrence breast cancer other causes

Variable N % N % N % N % N %

STAGE

1 110 65.1 147 56.3 232 51.4 91 49.2 87 68

2 33 19.5 56 21.5 124 27.5 34 18.4 27 21.1

3 26 15.4 46 17.6 46 10.2 19 10.3 13 10.2

4 0 0 12 4.6 49 10.9 41 22.2 1 0.8

SURGERY

1 6 3.6 8 3.1 2 0.4 19 10.3 8 6.3

2 32 18.9 40 15.3 47 10.4 47 25.4 12 9.4

3 56 33.1 91 34.9 75 16.6 25 13.5 42 32.8

4 25 14.8 75 28.7 111 24.6 20 10.8 33 25.8

5 2 1.2 8 3.1 13 2.9 0 0 2 1.6

6 10 5.9 6 2.3 55 12.2 13 7 8 6.3

7 2 1.2 4 1.5 10 2.2 5 2.7 1 0.8

8 36 21.3 29 11.1 138 30.6 56 30.3 22 17.2

HIST

1 105 62.1 202 77.4 342 75.8 93 50.3 76 59.4

2 18 10.7 15 5.7 55 12.2 32 17.3 18 14.1

3 19 11.2 2 0.8 2 0.4 3 1.6 7 5.5

4 27 16 42 16.1 52 11.5 57 30.8 27 21.1

COHORT 1 81 47.9 183 70.1 238 52.8 76 41.1 80 62.5

2 88 52.1 78 29.9 213 47.2 109 58.9 48 37.5

CHEMO 1 100 59.2 175 67 202 44.8 118 63.8 66 51.6

2 69 40.8 86 33 249 55.2 67 36.2 62 48.4

MENO 1 113 66.9 159 60.9 282 62.5 159 85.9 120 93.8

2 56 33.1 102 39.1 169 37.5 26 14.1 8 6.3

RADIO 1 134 79.3 171 65.5 265 58.8 155 83.8 113 88.3

2 35 20.7 90 34.5 186 41.2 30 16.2 15 11.7

SIDE 1 84 49.7 119 45.6 216 47.9 80 43.2 62 48.4

2 85 50.3 142 54.4 235 52.1 105 56.8 66 51.6

Age

Mean ± SD 58.0 ± 14.3 56.0 ± 14.6 53.9 ± 12.8 65.8 ± 14.0 71.6 ± 11.9

Table A.1: Independent variables by recurrence type.
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A.3 Data analysis without frailty

Frailure type

Variable Local Regional Metastasis Died from Died from

recurrence recurrence breast cancer other causes

AGE -0.012(0.01) -0.012(0.01) -0.038(0.01) 0.03(0.01) 0.086(0.01)

STAGE2 0.533(0.21) 0.772(0.17) 0.844(0.12) 0.548(0.21) 0.346(0.23)

STAGE3 0.565(0.29) 1.373(0.22) 1.291(0.18) 0.725(0.29) 0.399(0.33)

STAGE4 -10.89(70.7) 0.521(0.35) 2.664(0.23) 2.163(0.27) -1.204(1.03)

SURGTYPE1 2.894(0.56) 2.148(0.49) -0.904(0.75) 2.077(0.42) 1.296(0.59)

SURGTYPE2 2.92(0.34) 2.177(0.32) 0.472(0.25) 1.385(0.31) 1.051(0.47)

SURGTYPE3 1.23(0.27) 1.522(0.26) -0.552(0.19) -0.055(0.3) 0.844(0.32)

SURGTYPE4 0.198(0.3) 1.084(0.25) -0.08(0.16) -0.242(0.3) 0.489(0.33)

SURGTYPE5 0.212(0.73) 1.565(0.41) 0.387(0.3) -7.886(42.66) 1.088(0.75)

SURGTYPE6 -0.001(0.4) -0.851(0.48) -0.805(0.2) -0.551(0.39) 0.417(0.46)

SURGTYPE7 0.273(0.75) 0.725(0.55) -0.636(0.35) 0.53(0.51) 0.306(1.04)

HIST2 0.603(0.25) 0.564(0.2) 0.319(0.16) -0.121(0.21) 0.148(0.28)

HIST3 0.273(0.33) -0.471(0.31) 0.151(0.2) 0.351(0.26) 0.248(0.34)

HIST4 0.182(0.37) -2.496(0.74) -2.405(0.73) -1.592(0.63) -0.307(0.49)

COHORT 0.123(0.18) -0.35(0.16) -0.316(0.12) 0.621(0.19) -0.28(0.23)

CHEMO 0.252(0.19) -0.115(0.15) 0.501(0.11) 0.042(0.19) 0.012(0.24)

MENO 0.27(0.26) 0.354(0.21) -0.386(0.16) 0.204(0.28) 0.392(0.45)

RADIO -1.026(0.26) -0.297(0.18) 0.516(0.14) -0.458(0.3) -0.95(0.35)

SIDE -0.046(0.16) 0.108(0.13) 0.005(0.09) 0.248(0.15) -0.098(0.18)

LN(α) -0.131(0.07) -0.253(0.05) -0.103(0.04) 0.097(0.06) 0.062(0.08)

CONSTANT -9.87(0.85) -8.87(0.67) -6.918(0.53) -13.578(0.85) -16.966(1.14)

-2 Log Likelihood 3628.52 5227.95 8769.63 3758.80 2746.91

Table A.2: Weibull baseline hazard model without frailty for all failure types.
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A.4 Non-parametric frailty

The parameters estimates of breast cancer data using non-parametric frailty using different

number of mass points.

Number of mass points

Variable One Two Three Four Five

AGE 0.030(0.008) 0.036(0.009) 0.047(0.014) 0.048(0.014) 0.048(0.014)

STAGE2 0.548(0.211) 0.530(0.221) 0.623(0.288) 0.626(0.290) 0.626(0.290)

STAGE3 0.726(0.289) 0.826(0.311) 1.124(0.407) 1.138(0.408) 1.138(0.408)

STAGE4 2.163(0.270) 3.427(0.321) 4.132(0.542) 4.168(0.539) 4.168(0.539)

SURGTYPE1 2.077(0.416) 2.307(0.464) 2.706(0.597) 2.719(0.599) 2.720(0.598)

SURGTYPE2 1.385(0.311) 1.388(0.326) 1.674(0.441) 1.684(0.443) 1.684(0.443)

SURGTYPE3 -0.055(0.296) -0.141(0.309) -0.201(0.394) -0.207(0.397) -0.207(0.397)

SURGTYPE4 -0.242(0.297) -0.374(0.311) -0.638(0.448) -0.653(0.451) -0.654(0.451)

SURGTYPE5 -17.873(5136) -9.769(106.3) -15.252(1151) -12.646(339) -12.646(335)

SURGTYPE6 -0.550(0.389) -0.616(0.397) -0.886(0.532) -0.905(0.536) -0.905(0.536)

SURGTYPE7 0.531(0.514) 0.521(0.538) 0.434(0.735) 0.424(0.744) 0.424(0.744)

HIST2 0.472(0.207) 0.403(0.219) 0.391(0.286) 0.387(0.289) 0.387(0.289)

HIST3 -1.471(0.613) -1.411(0.619) -1.713(0.708) -1.726(0.709) -1.726(0.709)

HIST4 0.121(0.210) 0.115(0.230) 0.059(0.280) 0.055(0.283) 0.055(0.283)

COHORT 0.621(0.192) 0.609(0.206) 0.711(0.251) 0.718(0.252) 0.718(0.252)

CHEMO 0.042(0.193) 0.099(0.199) 0.137(0.260) 0.142(0.263) 0.142(0.263)

MENO 0.204(0.285) 0.210(0.306) 0.329(0.390) 0.343(0.394) 0.343(0.394)

RADIO -0.459(0.297) -0.397(0.306) -0.512(0.376) -0.514(0.378) -0.514(0.378)

SIDE 0.248(0.151) 0.239(0.163) 0.269(0.198) 0.270(0.199) 0.270(0.199)

LN(α) 0.097(0.060) 0.290(0.063) 0.508(0.132) 0.519(0.130) 0.519(0.130)

-2 Log Likelihood 3785.2368 3758.7958 3756.0952 3756.1028 3756.1026

Table A.3: Breast cancer Weibull hazard with non-parametric frailty using different number of

mass points.
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A.5 Log-Normal frailty

Table A.4: Breast cancer Weibull hazard with Log-normal frailty using different number of mass

points.

Number of mass points

Variable 3 points 4 points 5 points 6 points

AGE 0.036(0.012) 0.046(0.017) 0.059(0.014) 0.042(0.013)

STAGE2 0.637(0.267) 0.649(0.312) 0.939(0.344) 0.694(0.333)

STAGE3 1.139(0.417) 1.047(0.393) 1.569(0.467) 1.140(0.429)

STAGE4 3.771(0.531) 3.764(0.524) 5.512(0.679) 4.034(0.576)

SURGTYPE1 3.006(0.617) 2.887(0.724) 3.888(0.626) 3.208(0.797)

SURGTYPE2 1.928(0.509) 1.704(0.435) 2.909(0.535) 2.150(0.566)

SURGTYPE3 -0.088(0.356) -0.177(0.411) -0.393(0.479) -0.057(0.427)

SURGTYPE4 -0.392(0.363) -0.611(0.477) -0.326(0.448) -0.411(0.426)

SURGTYPE5 -7.890(38.45) -7.89(30.89) -7.898(20.46) -7.89(28.26)

SURGTYPE6 -0.698(0.431) -0.895(0.534) -1.118(0.555) -0.865(0.519)

SURGTYPE7 0.524(0.589) 0.415(0.748) 0.869(0.665) 0.531(0.712)

HIST2 0.475(0.263) 0.404(0.300) 0.711(0.299) 0.490(0.321)

HIST3 -1.531(0.645) -1.762(0.699) -1.732(0.847) -1.842(0.751)

HIST4 0.149(0.273) 0.004(0.298) 0.313(0.317) 0.049(0.307)

COHORT 0.756(0.248) 0.740(0.253) 0.963(0.293) 0.833(0.293)

CHEMO 0.115(0.226) 0.161(0.263) 0.104(0.274) 0.168(0.288)

MENO 0.230(0.350) 0.379(0.443) 0.748(0.428) 0.273(0.403)

RADIO -0.450(0.338) -0.552(0.379) -0.210(0.465) -0.534(0.408)

SIDE 0.394(0.192) 0.301(0.208) 0.537(0.224) 0.327(0.220)

CONSTANT -18.189(1.824) -19.87(2.765) -25.93(2.781) -20.96(2.628)

LN(α) 0.386(0.098) 0.461(0.127) 0.714(0.106) 0.523(0.132)

LN(τ 2) 0.452(0.177) 0.678(0.209) 1.043(0.124) 0.813(0.209)

-2 Log Likelihood 3805.78 3799.3574 3801.1342 3799.3808

Continued on next page
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Continued from previous page

Number of mass points

Variable 7 points 8 points 9 points 16 points

AGE 0.041(0.017) 0.050(0.016) 0.039(0.013) 0.039(0.013)

STAGE2 0.703(0.326) 0.713(0.383) 0.673(0.308) 0.663(0.293)

STAGE3 1.154(0.874) 1.290(0.474) 1.038(0.440) 1.088(0.476)

STAGE4 4.455(1.883) 4.759(0.656) 4.014(0.999) 3.876(0.760)

SURGTYPE1 3.308(0.894) 4.177(1.282) 3.240(0.916) 2.999(0.764)

SURGTYPE2 1.757(0.478) 2.935(0.805) 1.848(0.524) 1.875(0.519)

SURGTYPE3 -0.109(0.400) -0.096(0.522) -0.073(0.385) -0.085(0.382)

SURGTYPE4 -0.524(0.520) -0.194(0.514) -0.419(0.408) -0.416(0.396)

SURGTYPE5 -7.892(30.265) -7.902(20.196) -7.891(32.579) -7.890(33.451)

SURGTYPE6 -0.835(0.546) -1.201(0.678) -0.772(0.504) -0.754(0.479)

SURGTYPE7 0.498(0.700) 0.686(0.708) 0.532(0.690) 0.514(0.667)

HIST2 0.512(0.349) 0.791(0.478) 0.487(0.287) 0.474(0.288)

HIST3 -1.766(0.791) -2.112(0.962) -1.716(0.737) -1.694(0.709)

HIST4 0.032(0.324) 0.098(0.351) 0.030(0.316) 0.066(0.299)

COHORT 0.886(0.466) 1.130(0.457) 0.815(0.310) 0.811(0.295)

CHEMO 0.152(0.254) 0.230(0.319) 0.160(0.262) 0.135(0.247)

MENO 0.208(0.377) 0.451(0.489) 0.234(0.376) 0.255(0.373)

RADIO -0.543(0.411) -0.385(0.464) -0.506(0.375) -0.507(0.371)

SIDE 0.410(0.319) 0.399(0.281) 0.344(0.214) 0.351(0.212)

CONSTANT -20.095(5.502) -25.80(3.834) -19.32(3.269) -19.10(2.839)

LN(α) 0.479(0.259) 0.720(0.162) 0.442(0.176) 0.426(0.148)

LN(τ 2) 0.711(0.483) 1.124(0.215) 0.639(0.333) 0.614(0.281)

-2 Log Likelihood 3802.828 3799.447 3802.376 3802.405

Continued on next page
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Continued from previous page

Number of mass points

Variable 32 points 64 points 128 points

AGE 0.042(0.015) 0.041(0.015) 0.041(0.015)

STAGE2 0.691(0.319) 0.685(0.313) 0.685(0.313)

STAGE3 1.154(0.514) 1.139(0.502) 1.139(0.502)

STAGE4 4.123(1.068) 4.070(0.986) 4.069(0.985)

SURGTYPE1 3.225(1.013) 3.174(0.928) 3.172(0.927)

SURGTYPE2 1.960(0.608) 1.941(0.582) 1.940(0.582)

SURGTYPE3 -0.092(0.398) -0.092(0.395) -0.092(0.394)

SURGTYPE4 -0.451(0.425) -0.445(0.419) -0.446(0.419)

SURGTYPE5 -7.891(30.966) -7.891(31.484) -7.891(31.485)

SURGTYPE6 -0.802(0.520) -0.791(0.510) -0.792(0.510)

SURGTYPE7 0.524(0.700) 0.522(0.695) 0.521(0.695)

HIST2 0.495(0.308) 0.489(0.303) 0.490(0.303)

HIST3 -1.755(0.760) -1.741(0.745) -1.740(0.745)

HIST4 0.062(0.315) 0.062(0.314) 0.062(0.310)

COHORT 0.850(0.327) 0.839(0.315) 0.839(0.315)

CHEMO 0.148(0.261) 0.145(0.258) 0.145(0.257)

MENO 0.278(0.395) 0.274(0.391) 0.275(0.391)

RADIO -0.519(0.388) -0.516(0.383) -0.516(0.383)

SIDE 0.369(0.228) 0.364(0.224) 0.365(0.224)

CONSTANT -20.14(4.320) -19.92(3.940) -19.91(3.934)

LN(α) 0.477(0.211) 0.466(0.194) 0.466(0.194)

LN(τ 2) 0.712(0.376) 0.693(0.352) 0.692(0.352)

-2 Log Likelihood 3802.189 3802.201 3802.202
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Correlated frailty

B.1 Correlated Gamma frailty

The logarithm of bivariate survival function of the correlated frailty model and its partial

derivatives
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1− ρ τ1
τ2

)
lnS1(t1) +

(
1− ρ τ2

τ1

)
lnS2(t2)

−
(

ρ
τ1τ2

)
ln
(
S1(t1)−τ

2
1 + S2(t2)−τ

2
2 − 1

)

∂
∂t1

lnS(t1, t2) = −
(

1− ρ τ1
τ2

)
h1(t1) +

{(
ρ

τ1τ2

)
τ 2

1 f1(t1)S1(t1)−τ
2
1−1

×
(
S1(t1)−τ

2
1 + S2(t2)−τ

2
2 − 1

)−1}

∂
∂t2

lnS(t1, t2) = −
(

1− ρ τ2
τ1

)
h2(t2) +

{(
ρ

τ1τ2

)
τ 2

2 f2(t2)S2(t2)−τ
2
2−1

×
(
S1(t1)−τ

2
1 + S2(t2)−τ

2
2 − 1

)−1}
134



Chapter B. Correlated frailty

∂2
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B.2 Correlated Inverse Gaussian frailty
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Appendix C

Gauss code

The software used to analysis the breast cancer data and in conducting the simulations are

”Gauss” and ”R”. STATA was used only to check the codes written in Gauss and R for

univariate frailty models. In multivariate case only Gauss program was used to fit the model.

The optimisation procedure in Gauss showed robustness in reaching the maximum likelihood

estimates, while the optimisation procedure in R was sensitive to the parameters’ initial

values. The list below is a sample of Gauss code used in the thesis.

GAUSS is commercial statistical software. GAUSS is a matrix programming language for

mathematics and statistics developed by Aptech Systems. Its primary purpose is the solution

of numerical problems in statistics, econometrics, time-series, optimization and 2D- and 3D-

visualization.

R is a free software programming language and a software environment for statistical

computing and graphics. The R language is widely used among statisticians and data miners

for developing statistical software and data analysis.

STATA is commercial statistical software developed by StataCorp. Its capabilities include

data management, statistical analysis, graphics and simulations
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Chapter C. Gauss code

Listing C.1: Gauss code of univariate simulation of Log-Normal frailty

1 /* Simulation of Univariate survival time assuming weibull(alpha ,lambda) for failure times@

2 and weibull(alpha ,theta) for survival times */

3 new;

4 output file = Univariate_Simulation5000.out reset;

5 for ii(1 ,600 ,1);

6 n=5000;

7 const=ones(n,1);

8 alpha =1;

9 sigma =1;

10 b0=-4;

11 b1=1;

12 b2=-2;

13 b3=4;

14 b4=2;

15 x1=rndu(n,1);

16 u1=rndu(n,1);

17 x2=(u1 . <0.3);

18 u2=rndu(n,1);

19 x31=(u2 . <0.4);

20 x32 =(0.4 .<= u2).*(u2 . <0.6);

21 z=sigma*rndn(n, 1);

22 xb=b0+b1*x1+b2*x2+b3*x31+b4*x32;

23 lamb=exp(xb+z);

24 u3=rndu(n,1);

25 lifetimes =(-ln(u3)./ lamb )^(1/ alpha);

26 theta = 0.01;

27 u4=rndu(n,1);

28 censtimes =(-ln(u4)/theta )^(1/ alpha);

29 aa=lifetimes~censtimes;

30 stime = minc(aa ’);

31 status= (censtimes .> lifetimes );

32 y=stime~const~x1~x2~x31~x32~status;

33 let varname = time const x1 x2 x31 x32 status;

34 call dstat(0,y);

35 call dstat(0,z);

36 b_ =cols(y);

37 u={
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Chapter C. Gauss code

38 -10.07742267422950 , -9.06439921070241 , -8.21972876538224 , -7.46075575412152 , -6.75593083054070 ,

39 -6.08896430907698 , -5.45003327362342 , -4.83260461324449 , -4.23202110999540 , -3.64478124988082 ,

40 -3.06813516901312 , -2.49984041518739 , -1.93800490592571 , -1.38098019927214 , -0.82728490377977 ,

41 -0.27554641923028 ,0.27554641923028 ,0.82728490377977 ,1.38098019927214 ,1.93800490592571 ,

42 2.49984041518739 ,3.06813516901312 ,3.64478124988082 ,4.23202110999540 ,4.83260461324449 ,

43 5.45003327362342 ,6.08896430907698 ,6.75593083054070 ,7.46075575412152 ,8.21972876538224 ,

44 9.06439921070241 ,10.07742267422950

45 };

46 w={

47 4.124607489018270E -23 ,5.208449591960860E -19 ,6.755290223670070E -16 ,2.378064855777800E-13,

48 3.347501239801200E -11 ,2.312518412074240E -09 ,8.881290713105870E -08 ,2.059622103953430E-06,

49 3.055980306089630E -05 ,3.025570258170630E -04 ,2.062051051307880E -03 ,9.903461702320580E-03,

50 3.410984772609200E -02 ,8.534480827208050E -02 ,1.565389937575980E -01 ,2.117055698804790E-01,

51 2.117055698804790E -01 ,1.565389937575980E -01 ,8.534480827208050E -02 ,3.410984772609200E-02,

52 9.903461702320580E -03 ,2.062051051307880E -03 ,3.025570258170630E -04 ,3.055980306089630E-05,

53 2.059622103953430E -06 ,8.881290713105870E -08 ,2.312518412074240E -09 ,3.347501239801200E-11,

54 2.378064855777800E -13 ,6.755290223670070E -16 ,5.208449591960860E -19 ,4.124607489018270E-23

55 };

56

57 proc lwei(be,y);

58 local llikl ,I;

59 llikl=zeros(n,1);

60 I=zeros(n,1);

61 I=sumr(

62 exp( y[.,b_].*

63 (be[b_ -1,1]+y[.,2:b_ -1]* be[1:b_ -2,1] + u’*exp(be[b_ ,1])+( exp(be[b_ -1 ,1]) -1).* ln(y[. ,1]))

64 - (Exp(y[.,2:b_ -1] * be[1:b_ -2,1] + u’*exp(be[b_ ,1]) ).* (y[. ,1]^( exp(be[b_ -1 ,1]))))

65 ).*w’ );

66

67 llikl=ln(I + (I.==0.0).*1e-15);

68 retp(llikl);

69 endp;

70

71 library maxlik;

72 #include maxlik.ext;

73 start ={1,1,1,1,1,1,1};

74 maxset;

75 __title = "Simulation of Weibull with random effect using cholesky decomposition ";
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Chapter C. Gauss code

76 __output = 1000;

77

78 {x0 ,f,g,cov ,ret}= maxlik(y,0,&lwei ,start);

79 call maxprt(x0,f,g,cov ,ret);

80 print "log -likelihood =" f*n;

81 endfor;

82 output off;

83 end;

Listing C.2: Gauss code of multivariate simulation of Log-Normal frailty

1 /* Simulation of Biivariate survival time assuming weibull(alpha ,lambda1) for failure times

2 of type1 ,weibull(alpha ,lambda2) for failure times of type2 and weibull(alpha ,theta)

3 for survival times */

4 new;

5 output file = Bivariate_Simulation700.csv reset;

6 mm=700;

7 p_est=zeros(mm ,11);

8 strr=zeros(mm ,11);

9 for ii(1,mm ,1);

10 print ii;

11 n=500;

12 const=ones(n,1);

13 alpha =0.5;

14 sigma1 =0.7;

15 sigma2 =1.2;

16 rho =0.8;

17

18 b10 =-0.2;

19 b11 =0.5;

20 b12 =1;

21

22 b20 =0.2;

23 b21 =0.7;

24 b22 =1;

25

26 x11= rndu(n,1);

27 unif1=rndu(n,1);

28 x12=(unif1 . <0.3);

139



Chapter C. Gauss code

29 sigma=sigma1 ^2~rho*sigma1*sigma2|rho*sigma1*sigma2~ sigma2 ^2;

30 sigma;

31 z=rndmn ((0~0)’,sigma ,n);

32 vcx(z);

33

34 xb1=b10+b11*x11+b12*x12;

35 xb2=b20+b21*x11+b22*x12;

36

37 unif3=rndu(n,1);

38 unif4=rndu(n,1);

39

40 lamb1=exp(xb1+z[. ,1]);

41 lifetimes1 =(-ln(unif3 )./ lamb1 )^(1/ alpha);

42

43 lamb2=exp(xb2+z[. ,2]);

44 lifetimes2 =(-ln(unif4 )./ lamb2 )^(1/ alpha);

45

46 theta = 0.3;

47 unif5=rndu(n,1);

48 censtimes =(-ln(unif5)/theta )^(1/ alpha );

49

50 aa=lifetimes1~lifetimes2~censtimes;

51 stime = minc(aa ’);

52 status1 = (lifetimes1 .< censtimes ).*( lifetimes1 .< lifetimes2) ;

53 status2 = (lifetimes2 .< censtimes ).*( lifetimes2 .< lifetimes1) ;

54 cens =( status1 .==0).*( status2 .==0);

55

56 y=stime~const~x11~x12~status1~status2;

57 pr=cols(y);

58 b_ =pr -1;

59

60 u={

61 -10.07742267422950 , -9.06439921070241 , -8.21972876538224 , -7.46075575412152 , -6.75593083054070 ,

62 -6.08896430907698 , -5.45003327362342 , -4.83260461324449 , -4.23202110999540 , -3.64478124988082 ,

63 -3.06813516901312 , -2.49984041518739 , -1.93800490592571 , -1.38098019927214 , -0.82728490377977 ,

64 -0.27554641923028 ,0.27554641923028 ,0.82728490377977 ,1.38098019927214 ,1.93800490592571 ,

65 2.49984041518739 ,3.06813516901312 ,3.64478124988082 ,4.23202110999540 ,4.83260461324449 ,

66 5.45003327362342 ,6.08896430907698 ,6.75593083054070 ,7.46075575412152 ,8.21972876538224 ,
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67 9.06439921070241 ,10.07742267422950

68 };

69 w={

70 4.124607489018270E -23 ,5.208449591960860E -19 ,6.755290223670070E -16 ,2.378064855777800E-13,

71 3.347501239801200E -11 ,2.312518412074240E -09 ,8.881290713105870E -08 ,2.059622103953430E-06,

72 3.055980306089630E -05 ,3.025570258170630E -04 ,2.062051051307880E -03 ,9.903461702320580E-03,

73 3.410984772609200E -02 ,8.534480827208050E -02 ,1.565389937575980E -01 ,2.117055698804790E-01,

74 2.117055698804790E -01 ,1.565389937575980E -01 ,8.534480827208050E -02 ,3.410984772609200E-02,

75 9.903461702320580E -03 ,2.062051051307880E -03 ,3.025570258170630E -04 ,3.055980306089630E-05,

76 2.059622103953430E -06 ,8.881290713105870E -08 ,2.312518412074240E -09 ,3.347501239801200E-11,

77 2.378064855777800E -13 ,6.755290223670070E -16 ,5.208449591960860E -19 ,4.124607489018270E-23

78 };

79 e=ones(rows(u),1);

80 u2=u.*.e;

81 u1=e.*.u;

82 w2=w.*.e;

83 w1=e.*.w;

84

85 proc lwei(be,y);

86 local llikl ,I;

87 llikl=zeros(n,1);

88 I=zeros(n,1);

89 I=sumr(

90 exp(

91 y[.,b_].*(be[b_ -1,1] +y[.,2:b_ -1]* be[1:b_ -2,1] + u1 ’*be[b_ ,1]+ u2 ’*be[2*b_+1,1]

92 +(exp(be[b_ -1 ,1]) -1).* ln(y[. ,1]))

93 -(Exp(y[.,2:b_ -1]*be[1:b_ -2,1]+u1 ’*be[b_ ,1]+u2 ’*be[2*b_+1,1] ).*(y[. ,1]^( exp(be[b_ -1 ,1]))))

94 +

95 y[.,b_ +1].* (be[2*b_ -1,1] + y[.,2:b_ -1]* be[b_+1:2*b_ -2,1] + u2 ’*be[2*b_ ,1]

96 +(exp(be[2*b_ -1 ,1]) -1).* ln(y[. ,1]))

97 -(Exp(y[.,2:b_ -1]* be[b_ +1:2*b_ -2,1] + u2 ’*be[2*b_ ,1] ).* (y[. ,1]^( exp(be[2*b_ -1 ,1]))))

98

99 )

100 .*w1 ’.*w2’ );

101

102 llikl=ln(I + (I.==0.0).*1e-15);

103 retp(llikl);

104 endp;
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105

106 library maxlik;

107 #include maxlik.ext;

108 start ={1,1,1,1,1,1,1,1,1,1,1};

109 maxset;

110 __title = "Bivariate Simulation of Weibull with random effect ";

111 __output = 1000;

112 {x0 ,f,g,cov ,ret}= maxlik(y,0,&lwei ,start);

113 call maxprt(x0,f,g,cov ,ret);

114 print "log -likelihood =" f*n;

115 p_est[ii ,.]=x0 ’;

116 if rows(cov) == 11;

117 strr[ii ,.]= sqrt(diag(cov))’;

118 endif;

119 endfor;

120 output off;

121 output file = Parameters_Bivariate_Simulation700.out reset;

122 format /m1 8,4;

123 outwidth 132;

124 print p_est;;

125 print strr;

126 output off;

127 end;
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