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Abstract 

The goal of this research  was to develop an algorithmic system capable of predicting 

the directional trend of the S&P 500 financial index. The approach I have taken was 

inspired by the biology of the human retina. Extensive research has been published 

attempting to predict different financial markets using historical data, testing on an in-

sample and trend basis with many employing sophisticated mathematical techniques. 

In reviewing and evaluating these in-sample methodologies, it became evident that 

this approach was unable to achieve sufficiently reliable prediction performance for 

commercial exploitation. For these reasons, I moved to an out-of-sample strategy and 

am able to predict tomorrow’s (t+1) directional trend of the S&P 500 at 55.1%.  

The key elements that underpin my bio-inspired out-of-sample system are: 

1. Identification of 51 financial market data (FMD) inputs, including other

indices, currency pairs, swap rates, that affect the 500 component companies

of the S&P 500.

2. The use of an extensive historical data set, comprising the actual daily closing

prices of the chosen 51 FMD inputs and S&P 500.

3. The ability to compute this large data set in a time frame of less than 24 hours.

The data set was fed into a linear regression algorithm to determine the predicted 

value of tomorrow’s (t+1) S&P 500 closing price.  This process was initially carried 

out in MatLab which proved the concept of my approach, but (3) above was not met.  

In order to successfully meet the requirement of handling such a large data set to 

complete the prediction target on time, I decided to adopt a novel graphics processing 

unit (GPU) based computational architecture. Through extensive optimisation of my 

GPU engine, I was able to achieve a sufficient speed up of 150x to meet (3). 

In achieving my optimum directional trend of 55.1%, an extensive range of tests 

exploring a number of trade offs were carried out using an 8 year data set.  The results 

I have obtained will form the basis of a commercial investment fund. 

It should be noted that my algorithm uses financial data of the past 60-days, and as 

such would not be able to predict rapid market changes such as a stock market crash. 
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Definitions 

Central Processing Unit (CPU) 

A central processing unit (CPU) (formerly also referred to as a central processor unit) 
is the hardware within a computer that carries out the instructions of a computer 
program by performing the basic arithmetical, logical, and input/output operations of 
the system. 

Exchange Rate 

An exchange between two currencies is the rate at which one currency will be 
exchanged for another. It is also regarded as the value of one country’s currency in 
terms of another currency. 

Figure of Merit (FoM) 

A figure of merit is a quantity used to characterise the performance of a device, 
system or method, relative to its alternatives. 

Genetic Algorithm (GA) 

Genetic algorithm (GA) is a search heuristic that mimics the process of natural 
selection. This heuristic (also sometimes called a metaheuristic) is routinely used to 
generate useful solutions to optimisation and search problems. 

Graphics Processing Unit (GPU) 

Graphics processing units (GPUs) are a specialised electronic circuit designed to 
rapidly manipulate and alter memory to accelerate the creation of images in a frame 
buffer intended for output to a display. GPUs are used in embedded systems, mobile 
phones, personal computers, workstations, and game consoles. Modern GPUs are 
very efficient at manipulating computer graphics, and their highly parallel structure 
makes them more effective than general-purpose CPUs for algorithms where 
processing of large blocks of data is done in parallel. 

In-sample Forecasting 

In-sample forecasts are forecasts within the range of the actual data used to build the 
regression model. 

Interest Rate Futures 

An interest rate future is a financial derivative (a futures contract) with an interest-
bearing instrument as the underlying asset.  It is a particular type of interest rate 
derivative. 

Linear Regression 

In statistics, linear regression is an approach for modelling the relationship between a 
scalar dependent variable and one or more explanatory variables denoted X.  
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London Interbank Offered Rate (LIBOR) 

The London Interbank Offered Rate is the average interest rate estimated by leading 
banks in London that they would be charged if borrowing from other banks. 

Long Position 

A long position in a security, such as a stock or a bond, or equivalently to be long in a 
security, means the holder of the position owns the security and will profit if the price 
of the security goes up. 

Mean Squared Error (MSE) 

The mean squared error (MSE) of an estimator measures the average of the squares of 
the "errors", that is, the difference between the estimator and what is estimated. MSE 
is a risk function, corresponding to the expected value of the squared error loss or 
quadratic loss. 

Market Capitalisation 

Market capitalisation (or market cap) is the total value of the issued shares of a 
publicly traded company; it is equal to the share price times the number of shares 
outstanding. As outstanding stock is bought and sold in public markets, capitalisation 
could be used as a proxy for the public opinion of a company's net worth and is a 
determining factor in some forms of stock valuation. 

MatLab 

MatLab (matrix laboratory) is a multi-paradigm numerical computing environment 
and fourth-generation programming language. Developed by MathWorks, MatLab 
allows matrix manipulations, plotting of functions and data, implementation of 
algorithms, creation of user interfaces, and interfacing with programs written in other 
languages, including C, C++, Java, and Fortran. 

Ordinary Least Squares  (OLS) 

Ordinary Least Squares is a method for estimating the unknown parameters in a linear 
regression model. This method minimises the sum of squared vertical distances 
between the observed responses in the dataset and the responses predicted by the 
linear approximation. 

Out-of-sample Forecasting 

Out-of-sample forecasts are used to predict future values of dependent variables. 

Short Position 

Short selling is the practice of selling securities or other financial instruments that are 
not currently owned, and subsequently repurchasing them. 
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S&P 500 

The S&P 500, or the Standard & Poor's 500, is a stock market index based on the 
market capitalisations of 500 large companies having common stock listed on the 
NYSE or NASDAQ. The S&P 500 index components and their weightings are 
determined by S&P Dow Jones Indices. 

Swap Rate 

Swap rate is the fixed rate that records demands in exchange for the uncertainty of 
having to pay the short-term LIBOR (floating) rate over time. At any given time, the 
market’s forecast of what LIBOR will be in the future is reflected in the forward 
LIBOR curve. 
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Chapter 1 

Introduction 

The Chinese poet Lao Tzu (6th Century BC) stated that, “Those who have knowledge

don’t predict.  Those who predict don’t have knowledge”, from which we can 

conclude that as we do not have knowledge of the future, prediction is our only option 

and in all walks of life a natural human trait.  In trying to devise a prediction system it 

is clear that certain knowledge of the future is not achievable.  Therefore a perfect 

prediction system cannot be devised and we will only ever be able to devise a 

partially successful system. 

In a business context the successful financial investor seeks an accurate prediction of 

future financial performance.  Although the holy grail of a perfect prediction system 

is impossible there are many who strive to forecast the future.  Some success can be 

had by considering all factors that are likely to influence, or be influenced by, future 

changes in any financial commodity and thus it is possible to devise a prediction 

system that is significantly more successful than an uninformed estimate. 

The role of the financial investor is to consider all market information and use this, 

traditionally together with personal market experience, to make a decision on whether 

to place a trade and, if so, at what level. As in most walks of life, the availability of 

ever more powerful computer systems is welcomed by investors and most finance 

houses now use algorithmic prediction systems on a daily basis to support their 

trading decisions. 

The principal goal of the research described in this thesis is the design and 

development of a financial algorithm capable of predicting (within 24 hours) today, 

the value of tomorrow’s Standard and Poor’s 500 (S&P 500) financial index. The 

S&P 500 is an aggregate index of 500 companies listed on the New York Stock 
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Exchange (NYSE) and National Association of Securities Dealers Automated 

Quotations (NASDAQ) that ‘best’ represents the U.S. economy as a whole, whilst 

satisfying certain market capitalisation requirements (Standard & Poor’s, 2014). They 

are chosen as they represent this performance in a single figure and hence the S&P 

500 is considered a useful ‘financial barometer’ of the U.S. economy. On the 

assumption that a successful prediction system can be developed, it is my ambition to 

set up an investment fund with investment decisions informed using the new system. 

 

Assessing a large amount of data has clear parallels with the way the human eye is 

able to assess a large amount of visual data and rapidly identify a particular area of 

interest.  This ability is referred to as foveation. The algorithm I have developed has 

been inspired by the biology of the human retina. 

 

The thesis comprises 7 chapters and 3 appendices. Chapter 2 covers previously 

published work on algorithmic financial forecasting. The majority of the research 

papers fall into two main categories (i) Artificial Neural Networks (ANNs) and (ii) 

Support Vector Machines (SVMs). Although both have some merit, I found that 

neither was able to scale sufficiently to handle the extensive data requirement to 

predict the S&P 500 within the necessary target time window of less than 24 hours. 

Also evident from the review was that curve-fitting to historical data is not a sound 

basis for future prediction; the future, though influenced by the past, is not solely 

predictable from past performance. 

 

My conclusion from the review work of Chapter 2 was that a radically different 

approach was needed and so, inspired my the biology of the human eye, I devised a 

new algorithm, presented in Chapter 3. The algorithm requires extensive historical 

data, not only of S&P 500 closing prices but also historical data of a carefully selected 

set of 51 financial metrics covering the same period. Implementation of the algorithm 

to prove the concept was undertaken using MatLab running on a 6-core conventional 

central processing unit (CPU) computer. The net result was positive in that the 

accuracy of the predicted value of tomorrow’s S&P 500 algorithm was better than 
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50%.  However, the computational time far exceeded 24 hours and it became clear 

that a much faster computer system was needed. 

 

The focus of Chapter 4 is on the hardware requirements to reduce the computational 

time to below 24 hours.  It became evident that a computer system capable of 

extensive parallel processing would give the time reduction needed.  This entailed the 

development of a bespoke computer system using 3 multicore state-of-the-art 

Graphics Processing Units (GPUs) running in parallel together with a controlling 

CPU.  The development demanded significant software optimisation to obtain the 

required performance and also dynamic modification of the algorithm (all of which is 

described in Chapter 4). 

 

A key element in the algorithm is the selected 51 financial metrics.  If all 51 are used, 

the resultant computational time is too long.  The solution I found is to modify the 

algorithm by reducing the set of 51 down dynamically to a smaller sub-set for the 

particular day in question and look for an optimal number that will give the ‘best’ 

accuracy within the 24 hours time constraint.  This aspect of the optimisation process 

is the topic of Chapter 5.  

 

Optimisation of the directional trend accuracy is explored further in Chapter 6, this 

time in relation to the number of historical days of data that are used in the algorithm.  

In the last part of the chapter additional optimisation ideas are presented and 

discussed.  These include refining the algorithm to improve the directional trend 

accuracy and adapting the algorithm for different financial index prediction tasks 

other than the S&P 500. 

 

The final chapter of the thesis is Chapter 7, ‘Conclusions’, in which I summarise the 

key end points of each chapter. 
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Chapter 2 

Financial Forecasting 

This thesis focuses on the development of a new approach to forecasting financial 

markets.  The Standard and Poor’s 500, commonly called the S&P 500, will be used 

as the test financial index to evaluate the prediction algorithms within this thesis.  The 

S&P 500 was chosen because it is the strongest litmus test of the state of the U.S. 

economy (Karolyi & Stulz, 1996) and the larger industrial companies within it. 

 

2.1 Introduction and Explanation of S&P 500 

Origins of the S&P 500  

 The origin of the S&P 500 harks back to 1923, when Standard & Poor’s presented 

a series of indices that included 233 companies and covered 26 industries. The 

S&P 500, as it is now known, was introduced in 1957. 

 

 The S&P 500 is often observed as a proxy for the U.S. equity market and it is the 

only stock market benchmark in The Conference Board’s Index of Leading 

Economic Indicators. It has stood for U.S. stock market performance in that 

context since 1968 (S&P Dow Jones Indices, 2014). 

 

How the S&P 500 is composed 

 The Standard and Poor’s 500 index (S&P 500) is a stock market index based on 

the market capitalisation of 500 (and only ever 500) large companies having 

common stock listed on the NYSE and NASDAQ.  The S&P 500 index 

components and their weightings are determined by S&P Dow Jones Indices 

billion (S&P Indices, 2012). 

 

 The S&P 500 represents over 80% of the total domestic U.S. equity float-adjusted 

market capitalisation (S&P Dow Jones Indices, 2014). 

 



5 
 

 In order to be eligible for inclusion in the S&P 500 index as one of the 500, a 

company must satisfy these liquidity-based size requirements: 

o Market capitalisation is greater than, or equal to, US$ 4.0 billion (Standard 

and Poor’s, 2012) 

o Annual dollar value of shares traded must be more than the market 

capitalisation of the company billion (Standard and Poor’s, 2012) and 

o Minimum quantity of shares traded must be more than 250,000 in each of the 

six months leading up to the evaluation date billion (S&P Indices, 2012). 

 

 According to the Global Industry Classification Standard (GICS) the S&P 500 

comprises ten sectors: Energy, Materials, Industrials, Consumer Discretionary, 

Consumer Staples, Health Care, Financials, Information Technology, 

Telecommunications Services, and Utilities (S&P Dow Jones Indices, 2014). 

 

 Table 2.1 displays a list of the 100 largest weighted component companies of the 

S&P 500 index (based on the market capitalisation index weighting), June 2014. 

 
 

Table 2.1: Top 100 S&P 500 component companies based on each company’s 

individual percentage weight of whole index 

Symbol Company % Weight 
XOM Exxon Mobil Corp 3.1172 
AAPL Apple Inc. 2.4098 
MSFT Microsoft Corp 2.0327 
PG Procter & Gamble 1.8204 
GE General Electric Co 1.7028 
IBM Intl Business Machines Corp 1.6814 
JNJ Johnson & Johnson 1.6238 
JPM JP Morgan Chase & Co 1.6101 
T AT&T Inc 1.5419 
CVX Chevron Corp 1.5091 
WFC Wells Fargo & Co 1.4578 
BAC Bank of America Corp 1.4035 
CSCO Cisco Systems Inc 1.3615 
KO Coca-Cola Co 1.2812 
GOOG Google Inc 1.2213 
PFE Pfizer Inc 1.2013 
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INTC Intel Corp 1.1918 
MRK Merck & Co Inc 1.1113 
HPQ Hewlett-Packard Co 1.0546 
WMT Wal-Mart Stores 1.0542 
PEP PepsiCo Inc 1.0466 
ORCL Oracle Corp 0.9687 
PM Philip Morris International 0.9562 
C Citigroup Inc 0.9243 
COP ConocoPhillips 0.8175 
VZ Verizon Communications Inc 0.8096 
ABT Abbott Laboratories 0.7697 
MCD McDonald's Corp 0.768 
GS Goldman Sachs Group Inc 0.7271 
SLB Schlumberger Ltd 0.7029 
UTX United Technologies Corp 0.6742 
OXY Occidental Petroleum 0.6719 
BRK/B Berkshire Hathaway B 0.6603 
DIS Walt Disney Co 0.6347 
QCOM QUALCOMM Inc 0.6308 
MMM 3M Co 0.6275 
AXP American Express Co 0.5484 
KFT Kraft Foods Inc A 0.5269 
BA Boeing Co 0.525 
AMGN Amgen Inc 0.516 
HD Home Depot Inc 0.4796 
MO Altria Group Inc 0.4695 
UPS United Parcel Service Inc B 0.4686 
USB US Bancorp 0.4639 
CAT Caterpillar Inc 0.4435 
F Ford Motor Co 0.4324 
BMY Bristol-Myers Squibb 0.4317 
CVS CVS Caremark Corp. 0.4282 
AMZN Amazon.com Inc 0.4278 
EMC EMC Corp 0.4225 
LLY Lilly, Eli & Co 0.4139 
CL Colgate-Palmolive Co 0.4103 
CMCSA Comcast Corp A 0.4077 
MDT Medtronic Inc 0.4036 
TGT Target Corp 0.3895 
EMR Emerson Electric Co 0.3877 
V Visa Inc 0.382 
MS Morgan Stanley 0.3817 
UNP Union Pacific Corp 0.3805 
TWX Time Warner Inc 0.365 
UNH Unitedhealth Group Inc 0.3569 



7 
 

DD DuPont, E.I. de Nemours 0.3544 
HON Honeywell Intl Inc 0.3431 
PNC PNC Finl Services Group 0.327 
DTV DIRECTV Class A 0.3258 
BK The Bank of New York Mellon Corp 0.325 
MON Monsanto Co. 0.3211 
APA Apache Corp 0.3183 
DOW Dow Chemical 0.3169 
FCX Freeport McMoRan Copper & Gold 0.3113 
TXN Texas Instruments Inc 0.3089 
LOW Lowe's Cos Inc 0.3068 
SO Southern Co 0.3025 
GILD Gilead Sciences Inc 0.3021 
WAG Walgreen Co 0.2984 
NKE NIKE Inc B 0.2913 
NEM Newmont Mining Corp 0.2913 
GLW Corning Inc 0.2864 
HAL Halliburton Co 0.2828 
LMT Lockheed Martin 0.2802 
DE Deere & Co 0.2797 
EXC Exelon Corp 0.2769 
DVN Devon Energy Corp 0.2748 
KMB Kimberly-Clark 0.2688 
BAX Baxter Intl Inc 0.2675 
PX Praxair Inc 0.2668 
EOG EOG Resources 0.2635 
PRU Prudential Financial Inc 0.2623 
SPG Simon Property Group 0.258 
D Dominion Resources Inc 0.2571 
COST Costco Wholesale Corp 0.2486 
CELG Celgene Corp 0.2479 
NWSA News Corporation A 0.2464 
APC Anadarko Petroleum Corp 0.2458 
EBAY eBay Inc. 0.2427 
ESRX Express Scripts Inc 0.2403 
TRV Travelers Cos Inc 0.2399 
MET Metlife Inc 0.2386 
AFL AFLAC Inc 0.2382 
MRO Marathon Oil Corp 0.2378 
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At what rate does the S&P 500 change? 

 The index value is updated every 15 seconds during trading sessions and the 

market is informed by Reuters America, Inc. (S&P Dow Jones Indices, 2014). 

 

Key factors I believe influence the movement of the S&P 500  

 Individual Company Performance 

 

o The individual S&P 500 component companies have a direct effect on the 

price and therefore performance of the index. 

 

 Macro/US Economics 

 

o Sentiment with regard to U.S. and global economic confidence driving 

investor willingness to have either more or less exposure to the S&P 500. 

 

 Weight of Investment 

 

o This is the amount of daily inflow/outflow of investor capital entering/leaving 

the S&P 500 index. 

 

 Divisor of S&P 500 index 

 

o The S&P 500 uses a divisor number, which has little mathematical rationale 

behind it, but remains consistent and therefore enables comparability within 

the S&P 500 index over time. This number can alter each day upon close of 

trading, if the number of shares in issue in any of the companies included in 

the S&P 500 index changes (S&P Dow Jones Indices, 2014). 
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Year 

 Performance of the S&P 500 

 

o As Fig 2.1 depicts, since 1970 the S&P 500 index has recorded a generally 

positive trend, which has largely tracked inflation, but has also reacted to 

times of financial instability, namely the 2007 economic crisis. 

 

 

 

 

 

 

Figure 2.1: S&P 500 index price 1970 - 2013 (S&P Dow Jones Indices, 2014) 

 

2.2 In-sample and out-of-sample forecasting 

When forming statistical forecasting models, there are two types of forecast: in-

sample and out-of-sample. 

 

In-sample forecasting does not attempt to forecast the future path of one or several 

economic variables. Instead, in-sample forecasting uses today's information to 

forecast what today's outcome should be (depending on what inputs are included and 

the desired outcome of the model), therefore meaning the fitted values estimated in a 

regression are in-sample forecasts.  

 

Out-of-sample forecasting attempts to use today’s information to forecast the future 

behaviour of a particular entity (in the case of this study, the S&P 500 index) at 

tomorrow (t+1). When developing different statistical models, the term ‘out-of-

sample performance’ refers to the model's performance (i.e. accuracy, predictive 
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power) on data that were not included in the sample used to calibrate the models 

parameters.  

 

Whilst in-sample data are important when progressing through the development 

stages of a particular statistical forecasting model, out-of-sample testing is a way to 

guard against curve-fitting, and hence imperative in the successful application of a 

particular forecasting model at t+1. 

 

As mentioned in Yuan (2011), it is crucial that any methodology used for financial 

prediction must be greater than 50% accurate out-of-sample on any chosen time scale 

to be successful. 

 

2.3 Current forecasting methods 

Current methods of forecasting in financial markets require very intensive algorithms 

as the parameter inputs and computational complexity needed to create a meaningful 

prediction is large. Two of the most popular methods used are Artificial Neural 

Networks (ANNs) and Support Vector Machines (SVMs) (Huang et al., 2004), both 

of which are able to predict with some degree of success. Different approaches have 

inherent advantages and disadvantages and will be reviewed in the next section to 

provide the context for the new predictive algorithm which is presented in Chapter 3.  

 

2.3.1 ANN Review 

Since the first neural model by McCulloch and Pitts (1943), many different models 

referred to as ANNs have been developed to derive meaning from complicated data.  

A neural network is a computational technique that is designed to imitate the 

capability of the human brain in order to process large amounts of information and 

formulate patterns from often highly complex data sets.  More specifically, the term 

‘neural’ is derived from the ‘three-dimensional lattice of network’ among brain cells 
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(Hamid, 2004) and, like the human brain, uses a high number of parallel processing 

elements in order to acquire high computation rates. 

 

Akin to the human brain, generating optimum performance using ANNs requires a 

significant and often lengthy training period.  Hamid (2004) likens ANNs ‘learning 

period’ to the way a young child learns to distinguish and process different patterns, 

shapes and sounds within its brain when growing up.  Drawing on the same logic, the 

training period for ANNs is correlated by the different weights input into the 

activation function of the network.  Each neuron consists of inputs (like synapses) that 

are then multiplied by certain weights. Through changing the weights of an artificial 

neuron, the desired output needed for each specific input can be obtained.  The extent 

of the degree of these receptive signals is then computed by a given mathematical 

function that determines the activation of the neuron. This process is represented in 

Fig 2.2.  

 
Figure 2.2: An artificial neuron (Gershenson, 2003) 

 

The training process can be viewed as an optimisation problem, where the core aim is 

to minimise the mean square error of the entire set of training data.  However, even 

when a data set has irrelevant inputs, the networks can learn key features of the data. 

 

This problem can be solved in a range of ways with recent literature exploring a 

variety of methods including standard optimisation heuristics like simulated 

annealing, but also more unique optimisation techniques such as genetic algorithms 

and methods utilising back-propagation.  In recent literature, the back-propagation 

algorithm has been most commonly used in the ANN training process, however this 
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method has been met with a number of limitations, primarily concerning the extent of 

adjustment to the weights in each iteration. 

 

ANNs present particular promise in generating patterns from economic data due 

mainly to their effectiveness in unstructured decision-making tasks, which enables 

them to be able to deal with, and make sense of ‘fuzzy’ non-linear data patterns. The 

use of ANNs in financial prediction also allows deeper analysis of large sets of 

economic data, especially data sets that have the tendency to fluctuate within a short 

period of time, as most economic data does. Researchers believe ANNs offer an 

alternative response to successful stock market prediction, something that has been 

disregarded by the rise in exposure of the efficient market hypothesis in recent 

discourse. 

 

2.3.2 SVMs: description and review 

The second most common computational technique used for algorithmic prediction of 

financial markets is known as the SVM  algorithm, which was initially proposed by 

Cortes and Vapnik (1995, p.273) in their seminal research paper, “Support Vector 

Networks” as “a new learning machine for two-group classification problems”.  

Throughout the last two decades, SVMs have been developed and utilised extensively 

in a variety of fields as a technique for data classification, regression and prediction.   

 

The use of SVMs focuses on class separation and seeks to find the optimal separating 

hyper plane between the two classes by maximising the margin between the closest 

points of the classes.  Fig 2.3 (Meyer, 2012) depicts the theoretical notion of SVMs 

using a classification model; the points lying on the boundaries are referred to as 

support vectors and the centre of the margin is the optimal separating hyperplane. 

 

 



13 
 

 

Figure 2.3: Classification - linear separable model (Meyer, 2012) 

 

Hearst et al. (1998) cite the fundamental advantage of the support vector algorithm as 

‘lying at the intersection of learning theory and practice’.  Real world applications 

often mandate the use of more complex algorithms that are more difficult to analyse 

theoretically.  However, SVMs are analysed with relative ease mathematically due to 

the algorithms correspondence to a linear method in a high dimensional feature space, 

nonlinearly related to input space.   

 

It is also imperative to understand that SVMs belong to the general theory of kernel 

methods (Scholkopf and Smola, 2002) and rely on the data only through scalar 

products (an algebraic operation that takes two equal-length sequences of numbers 

and returns a single number).  Therefore, when dealing with complicated algorithms 

for non-linear pattern recognition or extraction, for the sake of analysis, the technique 

can continue to be based on a simpler linear algorithm; through the use of kernels, all 

necessary computations are performed directly in input space. 

 

Tay and Cao (2001) expressed that SVMs had been utilised as a tool to aid problems 

associated with financial forecasting, however to a limited extent.  Due to the degree 

of accuracy of certain financial forecasts being calculated via the estimates’ 

divergence from the observed values, these methods of forecasting based on reducing 

forecast error are not entirely sufficient to fulfil its objectives; financial trading 
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decisions propelled by forecasts containing any form of forecasting error are unlikely 

to be as profitable as trading guided by a more accurate and unconditional prediction 

in stock market movement (Yuan, 2011). 

 

2.4 Review of ANNs and SVMs 

In this section I will be reviewing significant papers written on ANNs and SVMs.  My 

intention is to consider the advantages and disadvantages of both approaches.  The 

findings of this literature review were used to inform the basis in the development of a 

novel approach, presented in Chapter 3.  

 

As shown later in Kim & Han (2000) it is crucial that any methodology used for 

financial prediction must be more than 50.1% accurate out-of-sample on any chosen 

time-scale.  

 

The core aim of White’s (1998) paper titled ‘Economic prediction using neural 

networks: the case of IBM stock returns’ is to demonstrate how the search for 

previously undetected regularities using neural network methods might proceed, using 

the case of IBM daily common stock returns as an example. 

 

White (1998) opens by drawing on literature by Lapedes and Farber (1987) that 

highlight the value of neural networks in performing complicated pattern recognition 

and non-linear forecasting tasks.  Their work applied neural networks to decoding 

protein sequences as well as demonstrating how neural networks are capable of 

decoding deterministic chaos.  However, the question still remains as to whether this 

theory can be used in extracting non-linear regularities from economic time series.  

The paper then dampens the optimism previously offered by neural networks in 

predicting the stock market, by introducing the concept of the “efficient market 

hypothesis” (EMH).  This concept states that the movement of an assets price based 

on public information is random and hence completely unpredictable; the author 
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attributes this absence of predictability to the reason that there is a lack of $100 notes 

lying on public pavements.  Alternatively the basis for EMH validation relies on the 

fact that prediction of a truly random market is not possible. 

   

However, the paper counters the claims put forward in the EMH by utilising the work 

of Simon (1982) and in particular, his bounded rationality arguments which underline 

how humans are inherently limited in their ability to process information.  White 

(1988) then switches back to the functions of neural networks to act as the processor 

of available information, citing how an advance in technology would effectively 

allow the creation of a form of inside information and thus create a margin for the 

successful prediction of economic time series. 

 

The study presented a target variable of interest, rt , which is the single day rate of 

return on IBM common stock on day t.  The definition of rt  used was 

(2.1)          rt = (pt – p (t-1)  + dt)/p(t-1) 

where pt is the closing price of day t and dt is the dividend paid on day t.  White used 

1,000 days of data, from 5000 days of data that was available, to train the neural 

network.  Evaluation of the knowledge that the neural network had acquired was 

undertaken using 500 days of data either side of the training period.  White’s detailed 

analysis, based on a relatively simple neural network, did not indicate conclusively 

that the EMH was incorrect, as he states in the paper, “the present neural network is 

not a money machine.”  Despite the failure to find clear evidence against the EMH, 

the results did contribute insightful information to this debate.  Firstly, this paper 

established that even less complicated networks are capable of misleadingly over-

fitting an asset price series with as many as 1,000 observations.  Secondly, the author 

stresses the significance of the optimisation methods being essentially local in this 

research study; there remains no guarantee that a global maximum is found, the 

author suggests global optimisation methods such as simulated annealing or the 

genetic algorithm.  However, more positively, the findings established how such 

simple networks are capable of “extremely rich dynamic behaviour” (White, 1988), as 

evidenced by time-series plots of rt.  Through its progression of computationally 
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efficient methods for obtaining mature networks, this exercise also sets to highlight 

the significance of statistical inference in establishing the performance of neural 

network models. 

 

Moving beyond the arguably limited scope of this study, the author stresses the need 

to expand the search range to gain evidence against the EMH.  Elaborating the 

network and allowing additional inputs such as other stock prices and volume, leading 

indicators and macroeconomic data will increase the scope of the findings; however 

the author stresses how any elaborations must be supported with vast infusions of data 

for the training period because the more connections, the greater the danger of over-

fitting. 

 

Bergerson and Wunsch (1991) open by explaining the application of neural networks 

in solving difficult problems that algorithmic computer programming has failed to 

solve, including predicting the stock market.  The analogy of an insect is used to 

display the different pattern processing, learning and other capabilities that evade 

even the most powerful computers. 

 

Similar to the study undertaken by Rumelhart, et al. (1986), this research utilises the 

back-propagation network, a method of training an ANN; it requires a dataset of the 

desired output for many inputs, which makes up the training set.  The authors believe 

their study is set apart from other research predicting stock market returns using 

neural networks due to the provision of a good set of training data in order to control 

precisely what the network learned about market prediction.  The paper states how it 

is imperative not only to draw on historical data but also on human expert input to 

implicitly define patterns, using hindsight, that an intelligent system might have been 

able to use for an accurate prediction.  Therefore, the framework of the network 

learned to produce signals is based on data that looked favourable to human experts, 

whilst upholding the requirement that anything considered to be a ‘good example’ 

must also be accompanied by profitability.  
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The authors stressed the labour intensive nature of their research model in producing a 

substantial set of training examples; four technical indicators were plotted against the 

daily S&P 500 data (between September 1980 and January 1981) and displayed clear 

‘buy’ and ‘sell’ decisions based on the human expert.  In attaining the framework to 

establish these plotted ‘buy’ and ‘sell’ positions, the authors added to the selection of 

parameters for the neutral architecture. The number of hidden units (determined by 

pruning) and input units remained the same at 54, however after training had 

stabilised, the units with the smallest weights, therefore least significance, were 

removed. The amount of training was then monitored; when the error on the test data 

and the error on the training data were the same, no further training was carried out. 

 

The results of this study displayed a theoretical 660% growth over the 25 months 

commencing January 1989 with the maximum drawdown for the month of September 

1989 which saw a 2.3% loss.  However, the conservative risk management rule, 

which governs where stop loss points are put to control losses when an incorrect 

prediction is made, was applied to allow maximum advantage of profit making 

opportunities.  

 

In conclusion, this paper’s use of a hybrid methodology offers a clear insight into the 

advantages gained over either rule-based or unaided neural network approaches.  The 

method described ensures that the rigidity of rule-based approaches is overcome 

whilst benefiting from pattern recognition gained through unaided neural networks.  

From this paper, it is clear that despite the hard work and demands on the experts’ 

time, the synergy of the rule-based and neural system ensures the design of an 

attractive risk-to-reward ratio trading model that produces a positive set of results. 

 

The next paper I reviewed, written by Malliaris (1994) cites the U.S. stock market 

crash in October 1987 as the reason for questioning the ‘classical’ approach to 

financial modelling, namely that financial indices, such as the S&P 500, are modelled 
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as a purely random walk.  By its very nature ‘random’ means that systematic 

forecasting of stock market prices cannot be achieved.  She claimed that the crash 

suggested that financial markets were not simply random.  The new approach 

proposed a non-random structure term ‘chaotic dynamics’.   To verify her claim the 

author devised an ANN which was used to predict market prices but, if the ANN 

produced better predictions of the S&P 500 than a Rescorla–Wagner (RW) model, 

then the structure of the financial market was confirmed as non-random.  In addition 

to confirming the non-random nature of the S&P 500 the author hoped that it would 

(i) confirm the chaotic nature of the index and therefore indicate that management of 

the S&P 500 portfolio was possible, and (ii) if she could show that the ANN 

outperforms the random walk model then this suggests that further research should be 

undertaken to establish links between the unknown but deterministic patterns of the 

S&P 500 to explanatory variables. 

 

The neural network was constructed and developed using the Brainmaker software, 

produced by California Scientific Software Inc.  When assembling the neural network 

a decision has to be made regarding number of nodes to have in the input and hidden 

layers.  An optimal number of nodes were determined using Brainmaker’s genetic 

training option.   Having decided the number of layers and nodes per layer the 

weights assigned to each node were altered until the ‘best’ performance was achieved.  

 

The author concluded that her ANN did outperform the random walk model.  The 

average Mean Absolute Deviation (MAD) for the ANN was 3.167 compared with 

6.188 for the random walk model and the average Mean Square Error (MSE) for the 

network was 15.609 compared with 41.32 for the random walk model.  Having 

demonstrated that her ANN was a more successful predictor than the RW model, her 

conjecture that the S&P 500 is indeed non-random opened the door for further 

research into the nature of the deterministic model that describes the time variation of 

the S&P 500. 
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The following paper, written by Kim and Han (2000), proposes the use of an ANN as 

a data mining technique.  However, as in the majority of studies, the authors draw on 

the limitations of ANNs in their inconsistent and unpredictable performance when 

faced with often complex and noisy stock market data.  A novel hybrid approach is 

developed that combines both ANNs and genetic algorithms for feature discretisation 

(GAFD) to mitigate the limitations of a sole ANN approach.  Instead of applying the 

commonly used and, arguably, unsuccessful technique of the gradient descent 

algorithm to train the network, this paper adopts Sexton et al. (1998) theory to apply 

the use of global search algorithms to obtain a weighting of the network.  Their study 

employed a GA to find the weighting of the ANN, with the subsequent results 

displaying the superiority of a GA-derived solution to the corresponding back-

propagation solution.  The authors then draw on the work of Liu and Motoda (1998) 

to explain feature discretisation, highlighting its importance in improving the 

generalisability of the learned results by heavily simplifying the process of learning.  

 

Therefore, drawing on these techniques, this study seeks to utilise GA in order to find 

the near-optimal thresholds for feature discretisation whilst, at the same time, 

searching the connection weights between layers in the ANN.  The framework of this 

paper’s GAFD research model is represented in Fig 2.4 and in the context of this 

study is applied to predict the direction of change in the daily Korea stock exchange 

index (KOSPI). 

 

Figure 2.4: Overall framework of GAFD (Kim & Han, 2000) 
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Of the 3 models compared, Table 2.2 confirms that the GAFD has higher prediction 

accuracy than back-propagation linear transformation neural network (BPLT) and 

GALT (linear transformation with ANN trained by GA) by 10% to 11% for the 

holdout data.  The authors stress the importance to note how the difference in 

prediction accuracy between the training data and holdout data is likely to be 

attributed to the fact that the globally searched discretisation profoundly simplifies the 

learning process and eradicates all non-related patterns. 

 

Table 2.2: Average predictive performance - hit ratio: % (Kim & Han, 2000) 

Year BPLT GALT GAFD 

Training 

(%) 

Holdout 

(%) 

Training 

(%) 

Holdout 

(%) 

Training 

(%) 

Holdout 

(%) 

1989 59.05 48.28 57.33 49.12 68.10 59.65 

1990 62.23 49.15 59.23 56.90 66.95 60.34 

1991 58.97 53.45 53.42 50.00 63.25 56.90 

1992 61.02 51.72 60.17 44.83 66.95 58.62 

1993 54.01 44.07 54.43 44.07 67.09 61.02 

1994 62.45 64.41 61.18 59.32 63.29 62.71 

1995 63.83 44.83 63.83 53.45 69.36 65.52 

1996 61.28 60.35 61.70 50.00 64.26 67.24 

1997 46.15 50.00 50.43 50.00 64.10 62.07 

1998 55.98 51.72 56.84 48.28 64.53 62.07 

Total 58.50 51.81 57.86 50.60 65.79 61.70 

 

In their closing remarks, the authors state how their hybrid model goes beyond other 

studies by seeking the optimal thresholds of feature discretisation for the 

dimensionality reduction, hence ensuring their GAFD model can discretise the 

original continuous data whilst simultaneously assigning the genetically evolved 

connection weights.  The authors concluding remarks were, “GAFD reduces the 

dimensionality of the feature space then enhances the generalisability of the classifier 

from the empirical results” (Kim & Han, 2000 p.131). 
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The paper written by Khan et al. (2008) seeks to prove the superiority of genetic 

based algorithm techniques compared with the use of neural network back-

propagation in stock rate prediction.  The authors first outline the application of 

neural networks in stock market prediction, similar to the techniques in other neural 

network prediction studies already discussed.  

 

The authors then apply the concept of genetic algorithms (GAs) to stock market 

prediction; genetic algorithms are viewed by Goldberg and Deb (1991) as being an 

“iterative procedure maintaining a population of structures that are candidate 

solutions to specific domain challenges” (in Khan et al., 2008 pp162-163).  The 

authors use Darwin’s principle ‘survival of the fittest’ to demonstrate the concept of 

GAs in their ability to create a set of viable solutions but also to channel these 

solutions in a way that identifies only the most promising of solutions. 

 

According to Khan et al. (2008) generation of these new solutions is developed by 

drawing upon three genetic recombination operators.  Firstly, ‘biased reproduction’ 

selects the fittest people to reproduce.  Secondly, ‘crossover’ establishes the 

combination of parent chromosomes to create chromosomes of the children and 

passes the fittest genes to the next generation.  The final recombination operator 

surrounds the notion of ‘mutation’; this establishes the size of the total population, 

taking note that despite an increased population leading to an increased chance of 

establishing the global optimum, it would be at the expense of more central 

processing unit (CPU) time.  GAs were then combined with the theory of back-

propagation neural networks to form a hybrid approach, which the authors of this 

paper claim to be better than either rule based or unaided neural network approaches. 

 

In the experimental results section of this paper, the authors stress the importance of 

data normalisation in training the GA based back-propagation neural network.  

Moreover, because the close rate and volume of stocks are the key identified 
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quantitative factors for individual equities, both these variables were used as inputs 

whilst the next stock rate was utilised as the target of the study for training the 

networks. 

 

This study used data from the Indian National Stock Exchange and the stock ‘Maruti’ 

to demonstrate the comparison of the two approaches to stock market prediction.  The 

authors concluded that for this stock, GA based back-propagation neural network 

gave a more accurate prediction (98.31% success rate) compared with the back-

propagation neural network (93.22% success rate). This study was conducted using 

in-sample data, however the only way of achieving true validation is through the use 

of out-of-sample data. 

 

The main focus of this paper written by Gupta and Wang (2011) was to predict future 

stock index prices, calculate directional efficiency and rate of returns, in order to 

develop a trading system capable of delivering high yield over a long period of time.  

Gupta & Wang open by discussing the term Efficient Market Hypothesis (EMH), 

which asserts how it is impossible to predict the stock market in such a way as to earn 

greater profits from the stock market in an efficient market.  However, in line with 

Malliaris (1994) reviewed previously, the authors are quick to rebut these claims and 

draw on literature by Thaler (1985) to illustrate that it is theoretically possible to 

successfully predict the stock market movements.  The author proceed to highlight 

two specific categories of prediction systems that have had some success but 

ultimately fail due to certain flaws in the model.  Firstly, Fernandez-Rodriguez et al. 

(2000) relatively simple ANNs to predict and trade in the Madrid Stock Market Index.  

This process used 9 lagged inputs to predict the prices to base different buy/sell 

decisions; however this model did not perform well in a bullish market.  Secondly, the 

authors display how the work of Chang et al. (2004) who used a neural network 

model based on past prices to successfully obtain around 16% of returns per annum 

using a weekly prediction model; however this model failed for daily predictions. 
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Lai et al. (2006) open their paper by proposing a triple-phase novel nonlinear 

ensemble forecasting model based on SVM regression principles. The authors use this 

proposal as the basis of their study in order to overcome the shortcomings of neural 

network models found in previous forecasting literature. 

 

Firstly, individual neural network predictors were generated by drawing on Breiman’s 

(1990) literature on bias-variance trade-off.  Having established four key methods in 

generating diverse models, the study focuses on selecting appropriate ensemble 

members through the principal components analysis.  Finally, and dependent on the 

previous two stages, a collection of appropriate members can be obtained and 

combined into an aggregated predictor in an appropriate ensemble strategy (there are 

two ensemble strategies: linear ensemble and non-linear ensemble).  The authors 

outline two main linear approaches in ‘the simple averaging approach’ and ‘the 

weighted averaging approach’ but focuses more on the non-linear approach 

principally because it has a promising approach for determining the optimal neural 

ensemble weight of the predictor.  However, contrary to previously published work, 

the study proposes a new nonlinear ensemble method with a SVM regression 

(SVMR) principle. 

 

Empirical analysis was used in the paper that consisted of two time series data sets: 

the S&P 500 index series, and the GBP/USD series, shown in Table 2.3 which was 

reproduced from data in the paper by Lai (2006).  In-sample data is collected from 

January 1991 to December 2000 with out-of-sample data being taken from January 

2001 to December 2002.  
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Table 2.3: A comparison of root mean squared error (RMSE) between different 

ensemble methods (Lai et al, 2006)  

 

 

The results presented by the authors demonstrated that of all the ensemble methods, 

the SVMR model performed the best and therefore confirmed how the non-linear 

ensemble methods are more suitable for financial time-series forecasting than the 

linear approaches, due largely to the high volatility of the financial time series. 

 

Charles Yuan (2011) opens his research paper by stressing the importance yet 

complexity of financial forecasting in providing concrete data for investment 

decisions.  Drawn from the heated historical debate surrounding the predictability of 

stock returns out-of-sample, the author cites the current ambiguity of stock prediction 

techniques as the key basis for his study.   

 

Drawing initially on the early work by Alfred Cowles, whose seminal paper, “Can 

Stock Market Forecasters Forecast?” published in 1933, concluded how forecasters 

fail to predict the stock market.  The paper reviews more contemporary literature, 

most notably Fama’s (1991) work, that presents evidence of numerous variables able 

to predict, with reasonable success, the U.S. aggregate stock returns.  The author 

categorises these variables into three separate types: ‘price multiples predictors’ 

(dividend-price ratio, earnings-price ratio and stock market volatility); 

‘macroeconomic predictors’ (nominal interest rates, interest rate spreads and expected 

business conditions); and ‘corporate actions predictors’ (dividend payout ratio and 

corporate issuing activity).  However, whilst accepting that the results of these diverse 

stock forecasting techniques may prove successful ‘in-sample’, the work of Goyal and 

Welch (2003, 2008) suggests that stock return predictability is unreliable due largely 
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to the substantial model uncertainty and parameter instability surrounding data-

generating processes for stock returns; this indicates that predictive regression models 

are unstable and not well suited for out-of-sample forecasting.   

 

Through the use of SVMs combined with conventional predictive regression models 

that should exhibit substantially improved out-of-sample predictive power, the author 

aims in this study to build upon and ultimately disprove claims made by Goyal and 

Welch (2003, 2008) who view out-of-sample stock return predictions as unreliable. 

Fig 2.3 represents the procedures of the SVM prediction protocol. 

 

The author then introduces the benefits of SVMs in relation to prior studies that have 

produced limited results using the ANN in stock market returns due to the complex 

dimensionality of data within stock markets. A two-fold reason why SVMs produce a 

useful technique for data classification, regression and prediction is provided by the 

author to present a relatively uncomplicated notion whilst remaining sure that the 

predictive accuracy of this approach overwhelms many other methods.  The author 

develops his thesis further by explaining the role of linear classifiers and kernels 

involved in the application of SVMs in financial data prediction techniques.   

 

The second development introduced in this paper is the predictive regression model. 

The author explains how conventional regression models typically examine stock 

return predictability through the following predictive regression model:  

(2.2)                                     r(t+1) =  i + i x i,t + i, (t+1) 

where r(t+1) is the return on a broad marker index in excess of the risk-free interest 

rate (namely, the equity risk premium) from time (t+1), x i,t is a variable used to 

predict the equity risk premium, and i, (t+1) is a zero-mean disturbance term.  The 

author then introduces a sequence that he coined ‘the sequence of expanding 

windows’ to generate out-of-sample predictions and produces an example of this 

sequence in practice: “In order to predict the equity risk premium at time (t+1), we 

take all historical information from time 1 up to time t. Because as t grows larger, the 



26 
 

information from time 1 up to time t also gets larger, I call it a sequence of expanding 

windows” (Yuan, 2011 p.10). Despite the historical average of the equity risk 

premium being used as a benchmark forecast corresponding to the constant expected 

excess return model, this study draws on the work of Campbell and Thompson (2008) 

in evaluating predictive methods, who use the R2
OS  statistic to measure the 

proportional reduction in mean squared forecast error (MSFE) for a proposed model 

relative to the historical average benchmark.  Therefore when R2
OS > 0 , the proposed 

model is considered to outperform the historical average benchmark in the sense that 

it reduces the MSE in the out-of-sampling prediction. 

 

The final theory drawn upon in this paper centres on Bates and Granger’s (1969) 

notion that combining forecasts across models often produces a forecast that performs 

better than the best individual model.  Moreover, Yuan uses Timmermann (2006) to 

emphasise how forecast combination can be thought of as a diversification strategy 

that improves forecasting performance, the same way that asset diversification 

improves portfolio performance.  The paper affirms how a combination between 

SVM and predictive regression models is a move away from the traditional forecast 

combinations.  Therefore, when a SVM predicts that the equity risk premium is 

negative/non-negative for the current period, this theory seeks to find all historical 

negative/non-negative equity risk premium data, and use predictive regression models 

to estimate the period of the current equity risk premium for the forecast combination, 

the evaluation technique remains the same in this paper. The author continues to use 

the statistic R2
OS  to evaluate whether or not the combined strategy outperforms the 

benchmark historical average equity premium. 

 

In order to predict the equity risk premium, the author uses a set of 14 

macroeconomic variables (1-14) and two technical indicators (15 and 16) selected 

from the literature Goyal and Welch (2008) and Neely et al. (2003): 
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1. Dividend-price ratio (log), DP: log of a twelve-month moving sum of 
dividends paid on the S&P 500 index minus the log of S&P 500 index prices.  

2. Dividend yield (log), DY: log of a twelve-month moving sum of dividends 
minus the log of lagged S&P 500 index prices.  

3. Earnings-price ratio (log), EP: log of a twelve-month moving sum of 
earnings on the S&P 500 index minus the log of index prices.  

4. Dividend-payout ratio (log), DE: log of a twelve-month moving sum of 
dividends minus the log of a twelve-month moving sum of earnings.  

5. Stock variance, SVAR: monthly sum of squared daily returns on the S&P 500 
index.  

6. Book-to-market ratio, BM: book-to-market value ratio for the Dow Jones 
Industrial Average index.  

7. Net equity expansion, NTIS: ratio of a twelve-month moving sum of net 
equity issues by NYSE-listed firms to the total end-of-year market 
capitalisation of NYSE stocks.  

8. Treasury bill rate, TBL: interest rate on a three-month Treasury bill 
(secondary market).  

9. Long-term yield, LTY: long-term government bond yield.  
10. Long-term return, LTR: return on long-term government bonds.  
11. Term spread, TMS: long-term yield minus the Treasury bill rate.  
12. Default yield spread, DFY: difference between BAA- and AAA-rated 

corporate bond yields. 
13. Default return spread, DFR: long-term corporate bond return minus the long-

term government bond return.  
14. Inflation, INFL: calculated from the CPI (all urban consumers). 
15. %MA(2,12): calculated as the percentage change from MA(12) to MA(2). 
16. MOM(12): calculated as the percentage change from Pt -12 to P t . 

(In-sample data range from 1938:06 to 1974:12, and out-of-sample data range from 

1975:01 to 2010:12). 
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correlations with the response variable, in this case the sign (positive or negative) of 

the equity risk premium.  

 

Based on these proposed sets of explanatory variables, data results displayed out-of-

sample SVM had a 86.1111% prediction accuracy.  When combining SVM with 

predictive regression, results graphs display out-of-sampling actual equity risk 

premiums, as well as out-of-sample equity risk premium predictions based on the 

combined strategy and the benchmark historical average.  It is clear from the graph 

that the greater predictive power of the combined strategy is observed, only with 

smaller magnitude compared with the actual out-of-sample realisations of the equity 

risk premiums. 

 

Overall, this paper has made clear to me that despite recent studies which have 

developed strategies to accommodate many of the problems challenging traditional 

predictive regression models, out-of-sample prediction tests remain unsuccessful 

owing largely to the model uncertainty and parameter instability.  In contrast, 

however, this article underlined the value of SVMs for successful stock market return 

predictions in attaining over 87% prediction accuracy out-of-sample.  The 

significance of SVMs as a powerful predictive tool is further underlined when using 

DP (log of dividend-price ratio) as a predictive variable with the combined strategy 

shown to outperform the benchmark historical average by 33.44% in the MSFE sense. 

 

2.5 Observations and conclusions based on literature review 

Table 2.4 displays the key advantages and disadvantages of the two approaches based 

on the literary review.  
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Table 2.4: Summary Table – advantages and disadvantages of SVM and ANN 

 

Both ANNs and SVMs are predicated on the fact that history informs the future, 

which in the case of financial forecasting is incorrect. Whilst history does not 

necessarily guarantee successful prediction of future market movement, it does 

contain relevant, though not sufficient, information for financial forecasting.  Having 

reviewed the literature on ANNs and SVMs, these methodologies cannot be 

developed further to successfully predict the directional trend of the S&P 500. 

 

Reflecting on previously published work, it became clear to me that what’s required is 

a new approach that takes into account associated key drivers that influence the 

financial environment as well as the historical movements of the S&P 500.  These 

inputs essentially capture expert knowledge and must be incorporated into the 

algorithm as they are significant in influencing the directional trend of the S&P 500, 

as well as taking into account historical data.   

Approach Advantages Disadvantages 
SVM Can handle non-linear data 

 
Good classifications 
capabilities 

 
Not relying on model so 
requires fewer data 
assumptions 

 

Processing speed highly dependent 
on the quantity of inputs 

 
Hard to parallel process 

 
Out-of-sample results have not 
been successfully demonstrated 
 

ANN Can handle non-linear data 
 
Good prediction capability 
 
Ability to extract patterns and 
detect trends that are too 
complex to be noticed either 
by humans or computer 
techniques.  
 
Inherently parallel nature 

May have local minimum 
convergence problem when trained 
with certain algorithms. 
 
Human intervention needed to 
specify when a MSE becomes 
acceptable 

 
Out-of-sample results have not 
been successfully demonstrated 
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My novel approach is likely to require greater computational power as the pure 

volume of data to be processed will significantly increase above previously published 

algorithms, assuming that logic dictates that more inputs will provide greater 

accuracy. However, a key aspect will be establishing what the optimum number of 

inputs and optimum number of historical data points are needed to provide the most 

accurate financial prediction given time and computational limitations. 

 

In recent years there has been a considerable number of revolutionary technological 

developments based on bio-inspiration, where biology has been studied closely and 

used to inspire an alternative and often more efficient technique, particularly in the 

area of pattern recognition.  These new approaches diverge from ANN and SVM 

techniques, offering a powerful novel way forward to address the development of this 

radically different approach and will be described in Chapter 3. 
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Chapter 3 

The Algorithm (RPA) and Proof of Concept 

In this chapter a radically different algorithm for financial forecasting is presented 

following the findings of the literature review discussed in Chapter 2.  All companies 

included within the S&P 500 index operate within the same financial market 

conditions (Gross, 2013) which is an imperative to be taken into account when 

forming the basis of a predicted algorithm, such as the Regan Predictive Algorithm 

(RPA).  Therefore, an appropriate algorithm, the RPA, has been developed which 

includes both historical S&P 500 closing prices in tandem with a carefully crafted set 

of significant financial data deemed to hold the highest success in predicting the 

future trends and value of the S&P 500. 

 

My approach in establishing a prediction result for the S&P 500 index is based on a 

bio-inspired methodology. The technique used by the RPA to attain a prediction result 

is similar to the function of the human eye. In assessing the human eye, the retina has 

clear inputs (light as a stream of images projected onto the retina) and outputs (optic 

nerve impulses), which hence leads to a well defined, unidirectional information flow. 

Similarly, with this concept in mind, the RPA inputs vast amounts of data into a 

regression core, which then selects and sorts the most relevant data based on its mean 

squared error (MSE) and forms the basis for the prediction result. The RPA will focus 

on ‘hot spots, which are particular areas of interest that are likely to influence or are 

influenced by the S&P 500 in the same way a human eye will react to, and process a 

dominant area of activity, even if it is in the peripheral vision. 

 

In this chapter I will introduce the concept of the RPA and outline the 51 chosen 

FMD inputs that effectively capture the financial market conditions and will form the 

basis of my algorithm.  The chapter then moves on to testing the concept of the RPA 

using Matrix Laboratory (MatLab) and provides key results that will aid the 

progression of the model.  Chapter 3 closes with an attempt at the practical 

implementation of the RPA using FPGA hardware. 
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3.1 Introducing a novel bio-inspired approach to financial forecasting 

Predicting the S&P 500 is no easy task because the index is an aggregation of 500 

individual companies operating across all business sectors.  Clearly previous values of 

the index have some relevance in predicting tomorrow's value, though historical data 

alone, as the review of published work in this area covered in Chapter 2 showed, is 

not sufficient.  Also of relevance to the performance of each of the 500 companies in 

the S&P 500 is the financial climate that they are all operating within.  Clearly the 

task of predicting the future value of the index must involve 'viewing' this extensive 

data set systematically to determine the most likely figure for the S&P 500 tomorrow, 

that is at (t+1). 

 

In the early days of my research, Professor Toumazou and I were exchanging ideas of 

how best to devise a new predictive algorithm.  During our conversation he told me 

about some novel research that had recently been undertaken on the design of an 

artificial retina (Nikolic, 2007).  It was during this discussion that we both realised the 

parallels between the way the retina of the human eye functions and the way my 

algorithm to predict the S&P 500 needed to operate.  The human vision system is 

capable of processing an enormous amount of visual data that it receives from the 

retina.  The brain reviews all of this data but can still rapidly home in on a particular 

area of interest; this ability being called foveation.  Turning to my task of predicting 

tomorrow's value of the S&P 500, the similarity is that the prediction needs to review 

a vast amount of data and rapidly home in on the area of interest that is most likely to 

cause the value of the index to alter with time.  It was these functional similarities that 

inspired me to develop my algorithm, hence the use of the term 'bio-inspired 

algorithm'. 

 

3.2 Initial concept for the proposed RPA 

All financial prediction algorithms take historical financial data as inputs, evident 

from Chapter 2.  The approach I have chosen is to take the S&P 500 historical closing 

prices together with a carefully selected number of historical financial market data 

(FMD) inputs, which will be outlined in detail below, that dictate the financial 
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conditions within which all 500 companies operate.  As the number of FMD inputs 

included will directly increase the computational time, it is likely that there is a trade-

off between accuracy of prediction and computation time, hence the optimum number 

needs to be established.    The time period of historical data will have a similar effect 

on computational time and accuracy; that is, an excessive historical window will 

absorb more computational time and the prediction accuracy is likely to plateau as the 

relevance to (t+1) diminishes when including historical data.  Again, it is important to 

establish the optimum time frame. 

 

With this architecture, the algorithm takes account of the key drivers that influence a 

change in the S&P 500. The result for the S&P 500 predicted closing price for (t+1) 

must be generated in less than 24 hours.  This is likely to require a high speed 

computational architecture.  Historically, human intervention has a significant role in 

forecasting the S&P 500 (Gilbert & Karahalios, 2010).  This is undesirable when 

predicting the S&P 500 because the component companies are subject to change. For 

this reason, the goal for the RPA would be to have no external expert intervention. 

 

3.2.1 Selection criteria for the chosen FMD inputs  

Through my years of experience in the financial markets, it is my opinion that the 

performance of the financial markets is influenced by and fall into a number of 

categories including: 

 Key stock indices 

 Interest rate futures 

 Exchange rates 

 Commodity indexes 

  

Initially, I formulated a lengthy list of contributing FMD inputs and through extensive 

economic research and my personal knowledge of financial markets, was able to 

refine the number of chosen FMD inputs to an optimum figure that will best position 

the model in achieving successful financial prediction of the S&P 500. 



35 
 

 

A comprehensive list of FMD inputs that may have an impact on the performance of 

the S&P 500 extended initially to 60. I decided that due to the very significant 

increase in possible combinations each time an additional FMD input is added to the 

model (bearing in mind the inevitable increase in computation time), I would need to 

reduce the total number of FMD inputs. Therefore, having considered the most 

significant FMD inputs,  the final set was reduced to 51 by removing 9 FMD inputs 

considered to be least influential in affecting the S&P 500. 

 

3.2.2 Chosen financial market data set 

The 51 FMD inputs are defined below, together with their justification for inclusion 

in the RPA. A full list of all 51 FMD inputs with their corresponding values on a 

given day can be seen in Appendix 1. 

 

NASDAQ100 (1) 

The NASDAQ100 is a stock market index of 100 companies comprising the largest 

non-financial companies listed on the NASDAQ (National Association of Securities 

Dealers Automated Quotations). The companies' weights in the index are based on 

their market capitalisations, with certain rules capping the influence of the largest 

components. The index does not contain financial companies (banks or investment 

firms), but includes companies incorporated outside the United States (NASDAQ, 

2014). 

 

EURO STOXX 50 (2) 

EURO STOXX 50 is a market capitalisation-weighted stock index of 50 large, blue-

chip European companies operating within certain Eurozone nations. The index 

covers 50 stocks from 12 Eurozone countries, excluding the UK.  The EURO STOXX 

50 Index is licensed to financial institutions to serve as a barometer for a wide range 
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of investment products such as Exchange Traded Funds (ETF), Futures and Options, 

and structured products worldwide (STOXX, 2014). 

 

DAX (3) 

The Deutscher Aktien Index (DAX) is a stock index created in 1988 that represents 

30 of the largest and most liquid German companies which trade on the Frankfurt 

Exchange. The value of the index is based on a free-float weighted system 

and average daily volume (Bloomberg, 2014a). 

 

CAC 40 (4) 

The CAC 40, which takes its name from the system "Continuous Assisted Quotation”, 

is the main stock index on the Paris market. The index represents a capitalisation-

weighted measure of the 40 most significant values amongst the 100 highest market 

caps on the EuroNext Paris (EuroNext, 2014). 

 

FTSE100 (5) 

The Financial Times Stock Exchange 100 share index is an average of share prices in 

the 100 largest (based on market capitalisation) and most actively traded companies 

on the London Stock Exchange.  FTSE 100 companies represent about 81% of the 

entire market capitalisation of the London Stock Exchange (London Stock Exchange, 

2014). 

 

Euro 6m LIBOR (6) 

The 6-month Euro LIBOR interest rate is the average interest rate that a selection of 

banks in London are prepared to lend to one another in Euros with a maturity of 6-

months. Alongside the 6-month euro LIBOR interest rate there is a large number of 

other LIBOR interest rates for different length maturities as well as in other currencies 

(Global Rates, 2014). 

http://www.investorwords.com/5209/value.html
http://www.investorwords.com/5893/free_float.html
http://www.investorwords.com/5853/weighted.html
http://www.investorwords.com/352/average_daily_volume.html


37 
 

 

Euro 2yr Swap (7), Euro 5yr Swap (8), Euro 10yr Swap (9), Euro 20yr Swap (10), 

Euro 30yr Swap (11) 

In an interest rate swap agreement, one party undertakes payments linked to a floating 

interest rate index and receives a stream of fixed interest payments with the second 

party undertaking the reverse arrangement. The interest rate swap rate denotes the 

fixed rate paid on a rate swap to receive payments based on a floating rate (PIMCO, 

2014). 

 

US$ 6m LIBOR (12) 

The London Interbank Offered Rate is the average interest rate estimated by leading 

London banks that they would be charged if borrowing from other banks. The 6-

month $US dollar LIBOR interest rate is the average interest rate at which a selection 

of banks in London are prepared to lend to one another in $US dollars with a maturity 

of 6 months (Global Rates, 2014). 

 

US$ 2yr Swap A (13), US$ 5yr Swap SA (14), US$ 10yr Swap S/A (15), US$ 20yr 

Swap A (16), US$ 30yr Swap A (17) 

In an interest rate swap agreement, one party undertakes payments linked to a floating 

interest rate index and receives a stream of fixed interest payments with the second 

party undertaking the reverse arrangement. The interest rate swap rate denotes the 

fixed rate paid on a rate swap to receive payments based on a floating rate (Swap-

Rates, 2014). 

 

JPY 6m LIBOR (18) 

The London Interbank Offered Rate is the average interest rate estimated by leading 

London banks that they would be charged if borrowing from other banks. The 6-

month Japanese yen LIBOR interest rate is the average interest rate at which a 
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selection of banks in London are prepared to lend to one another in Japanese yen with 

a maturity of 6 months (Global Rates, 2014). 

 

JPY 2yr Swap (19), JPY 5yr Swap (20), JPY 10yr Swap (21), JPY 20yr Swap (22), 

JPY 30yr Swap (23) 

In an interest rate swap agreement, one party undertakes payments linked to a floating 

interest rate index and receives a stream of fixed interest payments with the second 

party undertaking the reverse arrangement. The interest rate swap rate denotes the 

fixed rate paid on a rate swap to receive payments based on a floating rate (Swap-

Rates, 2014). 

 

GBP 6m LIBOR (24) 

The London Interbank Offered Rate is the average interest rate estimated by leading 

London banks that they would be charged if borrowing from other banks. The 6-

month GBP LIBOR interest rate is the average interest rate at which a selection of 

banks in London are prepared to lend to one another in GBP with a maturity of 6 

months (Global Rates, 2014). 

 

GBP 2yr Swap (25), GBP 5yr Swap (26), GBP 10yr Swap (27), GBP 20yr Swap 

(28), GBP 30yr Swap (29) 

In an interest rate swap agreement, one party undertakes payments linked to a floating 

interest rate index and receives a stream of fixed interest payments with the second 

party undertaking the reverse arrangement. The interest rate swap rate denotes the 

fixed rate paid on a rate swap to receive payments based on a floating rate (Swap-

Rates, 2014). 
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Swiss 6m LIBOR (30) 

The London Interbank Offered Rate is the average interest rate estimated by leading 

London banks that they would be charged if borrowing from other banks. The 6-

month Swiss franc LIBOR interest rate is the average interest rate at which a selection 

of banks in London are prepared to lend to one another in Swiss frans with a maturity 

of 6 months (Global Rates, 2014). 

 

Swiss 2yr Swap (31), Swiss 5yr Swap (32), Swiss 10yr Swap (33), Swiss 20yr Swap 

(34), Swiss 30yr Swap (35) 

In an interest rate swap agreement, one party undertakes payments linked to a floating 

interest rate index and receives a stream of fixed interest payments with the second 

party undertaking the reverse arrangement. The interest rate swap rate denotes the 

fixed rate paid on a rate swap to receive payments based on a floating rate (Swap-

Rates, 2014). 

 

EUR/USD 1m forward (36), EUR/USD 3m forward (37), USD/CHF 1m forward 

(38), USD/CHF 3m forward (39), USD/JPY 1m forward (40), USD/JPY 3m forward 

(41), GBP/USD 1m forward (42), GBP/USD 3m forward (43) 

A currency forward is a binding contract in the foreign exchange market that locks in 

the exchange rate for the purchase or sale of a currency on a future date, in this case, 

either 1 month or 2 months. It is essentially used as a hedging tool that does not 

involve any upfront payment. A major benefit of a currency forward is that it can be 

tailored to a particular amount and delivery period, unlike standardised currency 

futures (Currencies Direct, 2014). 

 

WTI NYMEX (Oil 1m) (44), WTI NYMEX (Oil 3m) (45) 

Light Sweet Crude Oil (WTI) futures and options are the world's most actively traded 

energy product. WTI is the deepest and most liquid global energy benchmark, trading 

nearly 850,000 futures and options contracts daily (CME Group, 2014a). 
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NYMEX (Gas 1m) (46), NYMEX (Gas 3m) (47) 

Henry Hub Natural Gas futures allow market participants significant hedging activity 

to manage risk in the highly volatile natural gas price, which is driven by weather-

related demand. They also provide efficient transactions in and out of positions (CME 

Group, 2014b). 

 

Gold (48) 

The bullion market is measured in $US per troy ounce. Investors generally buy gold 

as a hedge or harbour against economic, political or social fiat currency crises. The 

gold market is subject to speculation as are other markets, especially through the use 

of futures contracts and derivatives (BullionVault, 2014). 

 

Goldman Sachs Commodity Index (49) 

The S&P Goldman Sachs Commodity Index (GSCI) is a composite index of 

commodity sector returns demonstrating an unleveraged, long-only investment in 

commodity futures.  The returns are calculated on a fully collateralised basis with full 

reinvestment. These attributes provide investors with an index representing a realistic 

picture of realisable returns attainable in the commodities markets (Goldman Sachs, 

2014). 

 

Long U.S. bond (50) 

The 30-year U.S. Treasury Bond is a U.S. bond with the longest maturity; it has a 

coupon payment every 6-months as with treasury notes and are commonly issued with 

maturity of 30 years.  The secondary market is highly liquid; therefore the yield on 

the most recent Treasury Bond offering was commonly used as a proxy for long-term 

interest rates in general (Investopedia, 2014). 
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VIX (51) 

VIX is a trademarked ticker symbol for the Chicago Board Options Exchange Market 

Volatility Index.  The VIX is a common measure of the implied volatility of S&P 500 

index options. Often referred to as the fear index or the fear gauge, the VIX represents 

the most popular measure of the market's expectation of stock market volatility over 

the next 30-day period (Bloomberg, 2014b). 

 

3.2.3 Historical data  

Having chosen the 51 FDM points that most relevant in determining the S&P 500 at 

(t+1) and subsequently shown to be well-founded, the closing prices of all 51 FMD 

inputs over a 160-day period formulated the data set to test the concept of the RPA. I 

chose 160 days of historical data because it provides a data set large enough to 

establish a proof of concept of this model whilst maintaining a manageable set of data 

for processing. 

 

3.3 Architecture of the proposed RPA 

I propose a unique concept of a method, which compares the movement of the 51 

FMD inputs over a chosen period of days, with the change in the movement between 

(t) (today) and (t – 1) (yesterday).  The FMD inputs within the data sets that have the 

closest mean squared error (MSE) to the difference in the movement of (t) to (t – 1), 

are chosen and weighted based upon their movement to the S&P 500 at (t) to (t – 1), 

closest to the MSE.  The results are then combined using the weightings to produce a 

number for the closing price of the S&P 500 at (t+1).  This is then compared with (t); 

if the basic prediction is greater than (t), the S&P 500 will be forecast to increase 

compared with (t– 1); equally, if the number is lower, this signifies that the S&P 500 

will fall in price.  At this point there is no significance given to the size of the 

difference between the result and the closing price because I am initially only 

interested in forecasting the directional trend. 
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3.3.1 Potential implementation challenges  

The scale of the proposed model could produce a number of complications that would 

need to be answered in order to successfully fulfil its intrinsic objective of predicting 

the S&P 500 at (t+1). As the number of FMD inputs used increases, the number of 

potential combinations would also increase – the same will also happen if I increase 

the number of historical days of data.  Calculations suggest that, on average, for each 

added FMD input, the number of potential data combinations would increase 

exponentially. Table 3.1 displays the number of possible combinations against 

number of FMD inputs. 

Table 3.1: Number of combinations against number of FMD inputs 

Number of FMD Inputs Number of Combinations 

1 51 

2 1,275  

3 20,825  

4 249,900  

5 2,349,060  

6 18,009,460  

7 115,775,100  

8 636,763,050 

9 3,042,312,350  

10 12,777,711,870  

11 47,626,016,970  

12 158,753,389,900  

13 476,260,169,700  

14 1,292,706,174,900  

15 3,188,675,231,420  

16 7,174,519,270,695  

17 14,771,069,086,725  
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18 27,900,908,274,925  

19 48,459,472,266,975  

20 77,535,155,627,160  

21 114,456,658,306,760  

22 156,077,261,327,400  

23 196,793,068,630,200  

24 229,591,913,401,900  

25 247,959,266,474,052  

26 247,959,266,474,052  

27 229,591,913,401,900  

28 196,793,068,630,200  

29 156,077,261,327,400  

30 114,456,658,306,760  

31 77,535,155,627,160  

32 48,459,472,266,975  

33 27,900,908,274,925  

34 14,771,069,086,725  

35 7,174,519,270,695  

36 3,188,675,231,420  

37 1,292,706,174,900 

38 476,260,169,700  

39 158,753,389,900  

40 47,626,016,970  

41 12,777,711,870  

42 3,042,312,350 

43 636,763,050  

44 115,775,100  
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Figure 3.1: FMD inputs vs. possible combinations 

 

Figure 3.1 is effectively the equation for the total number of combinations vs. FMD 
inputs: 

(3.1)    
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where… 

NC = number of combinations (this is column 2 of table 3.1) 

r  =  number of FMD inputs (this is column 1 of table 3.1) 

n = 51 
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The RPA then runs a standard mathematical operation called Linear Regression which 

establishes the ‘best fit’ parameters between the 6th input sequence (inputs from time 

(t)), and the 7th (S&P 500 price prediction  at time (t+1)) using a method called 

Ordinary Least Squares (OLS). OLS is a method for estimating the unknown 

parameters in a linear regression model. This method minimises the sum of squared 

vertical distances between the observed responses in the dataset and the responses 

predicted by the linear approximation. 

 

The result of the linear regression is a series of coefficients that minimises the error 

value itself. These are the coefficients to the Linear Combination, an expression 

constructed from a set of terms by multiplying each term by a constant and adding the 

results, of the 6th input sequences with the minimum error when compared with input 

7. 

 

The error term is across the entire 30 day sequence. It is calculated for each day and 

added together, so for coefficients (c0-c6), and inputs (i1-i7) (i7 is the predicted S&P 

500 price tomorrow): 

 Error = sum over all 30 days of ((c0 + c1*i1 + c2*i2 + … + c6*i6 ) - i7 )2 

In words, multiply each input by its coefficient and add them together to attain the 

‘predicted’ value, including the constant (c0). The next stage would be to subtract the 

actual value (i7) (S&P 500 tomorrow) and square it. This process is carried out for 

each day in the sequence. These figures are added together to ensure that there is a 

single error term for a particular set of 6 ‘best fit’ inputs over 30 days. It is important 

that there is no concept of an error associated with any individual input, the 

calculation is performed purely over the set as a whole. 
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The framework therefore ensures that the RPA operates by testing different sets of 6 

FMD inputs from the total set of 51. It performs the linear regression with every 

combination of 6 inputs (~18 million possible combinations using 6 FMD inputs) and 

selects the combination with the lowest error. It is a brute-force approach of trying 

every possible combination and due to the nature of this framework, computation 

takes a long time. 

 

The assumption of the RPA is that the set of inputs with the minimum error over the 

training period (in this example, the 30 days used to generate the coefficients) will 

best predict the next day’s price of the S&P 500. 

 

At this stage I am able to use the lowest-error coefficients chosen above to predict the 

next out-of-sequence S&P 500 value. The same equation is used to attain the 

predicted value, with input values for (t+30): 

(3.2)    prediction = (c0 + c1*i1 + c2*i2 + … + c6*i6) 

I then compared the prediction with the S&P 500 for (t+31), which is effectively 

tomorrow (t+1) and could then establish whether the result attained the correct 

directional trend.  

 

Fig 3.3 displays a graphical representation of how each individual set of 6 FMD 

inputs will look when plotted onto a graph (which in the case of the RPA would 

include many more results) that displays their individual error term. The group with 

the lowest error and hence most likely to produce a correct directional trend result is 

highlighted in red. 
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Line Z 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using circa 20 million combinations (calculating 51 FMD inputs & 60 days 
historical data).  

Checking all possible combinations (e.g. on graph below) compared with the 
percentage movement of the S&P 500 from (t-1 to t) - which is represented as a 
zero error value (line Z). 
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FoM: 24/11/2008 

Chosen six FMD Inputs 
(No. corresponds to assigned 

FMD input number) 

Average value of FMD 
input over 60 days Coefficient Total 

NASDAQ100 (1) 1,848.25 0.405799 750.02 

Euro 2 yr Swap (7) 4.15 -227.077882 -942.06 

Euro 20 yr Swap (10) 4.60 193.35667 888.95 

GBP 6m Libor (24) 5.76 149.769347 862.44 

Swiss 10yr Swap (33) 3.29 -181.951768 -599.49 

EUR/USD 3 m forward (37) 16.73 10.053887 168.23 

Fig 3.2 indicates the set of 6 FMD inputs with the least collective error relative 
the S&P 500 (t-1 to t). (This error value is formed of 6 non-linear lines 
representing the movement of each selected input over the 60 day period.  

Therefore each selected FMD input has its own coefficient (error) over the 60 day 
period based on its closeness to the movement of the S&P 500 from (t-1 to t). 

 

A pie chart  can be formed to best represent this visually, based on the weighting 
of each FMD input made from the set of 6 inputs as a whole. This is formed 
through multiplying the error coefficient by the mean absolute value of the 
selected inputs price over the 60 days. 

See the table below. For each selected input the error coefficient is multiplied by 
the average value of the input over 60 days. This forms that particular inputs 
segment within the pie chart. 
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Having formed a conceptual model for the RPA, this section will focus on proving its 

functionality.  The initial testing was conducted using the numerical computing 

program MatLab.  Whilst I recognise MatLab as being a vital program in proving the 

concept of this model, I am aware that it does not have the computational ability to 

handle large data sets, as would be required when processing the RPA to its fullest 

extent (see Fig 3.1).  For this reason, MatLab will be used purely for validation 

purposes. 

 

3.5.1 MatLab explanation 

MatLab is a numerical computing environment and fourth-generation programming 

language (MathWorks, 2014). The program facilitates a wide array of numerical 

functions including plotting of functions and data, matrix manipulations (ibid.), and in 

the case of the RPA, MatLab will be utilised for the implementation of the algorithm. 

 

With the MatLab language, algorithms can be developed faster than with traditional 

languages as it does not need to perform low-level administrative tasks including 

declaring variables, specifying data types, and allocating memory (ibid.). Using 

MatLab for algorithm development also has significant coding benefits; it is 

commonly understood that one line of MatLab code can often replace several lines of 

C or C++ code (ibid.).  

 

Drawing on the paper by Houck et al. (1995) who successfully implemented their 

genetic algorithm using MatLab, I decided to use the program to prove the concept of 

my model, the RPA.  MatLab provides an integrated capacity for deep and broad 

exploration of algorithm design options, but also caters for efficient deployment to 

desktop and embedded software environments (Klamt et al., 2007). 
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3.5.2 Implementation of RPA using MatLab 

This section describes the MatLab implementation of the RPA algorithm proving the 

concept as well as its capability.  In order to test the feasibility of the algorithm it was 

demonstrated on a 12-core windows PC using historical data for the factors chosen 

that influence the S&P 500.  The program written allows me to define the number of 

FMD input parameters (that is ‘parameters that affect S&P 500’), in addition to the 

number of parameters from these which will be used for the forecast of the next day 

(t+1).  

 

The core program functionality is first to rotate the data array, using loops, capturing 

all possible combinations as in hardware, and then to run the parameters in the 

regression analysis module, which will come up with the forecasting weights for the 

given FMD inputs. For each rotation, or shifting, it therefore calculates the weights 

which will give the smallest error (MSE). In MatLab the results from the regression 

analysis of each pixel are received and then compared with the sum of residual error 

with the previous lowest. If the new result is lower, it stores the new error value and 

the new associated weights. Note that conventional regression systems would 

compute one regression result each time and compare error values one after the other 

(similar to raster scanning), while the RPA processes a batch of regression parameters 

in parallel and selects the lowest error amongst all.  This effectively speeds up the 

process without losing any accuracy, which provides a significant advantage against 

other methods such as ANNs. Fig 3.4 depicts this process of finding the optimal FMD 

inputs of the RPA: 
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Figure 3.4: Flow diagram of model implemented on MatLab 

 

3.5.3 Initial implementation and ‘proof of concept’ of the RPA using MatLab 

I conducted a series of tests that demonstrated the concept of my algorithm using 19 

parameters which affect the S&P 500, from which the best three (ones with the lowest 

error) were chosen to give a forecast of the next day’s percentage movement (t+1). I 

chose to run my ‘proof of concept’ testing using the 19 best fit FMD inputs (instead 

of the 51 FMD inputs) reduced because of the computational time limitations of 

MatLab.   

As displayed in Fig 3.1 the number of FMD inputs is positively correlated with the 

number of possible combinations, which severely increases the computational time. 

Using 19 FMD inputs presents a manageable computational time whilst also ensuring 

a proof of concept can be attained.  This test is computed using 30 days historical 

data, as it represents one month and hence a manageable time period both to compute, 

and use as a basic comparison when analysing and comparing results. Fig 3.5 displays 

the output of the RPA running in MatLab. 

 What can be seen in the top window is the processing of the 19 parameters, whereby 

the Y-axis shows which of the 3 parameters are selected. Each vertical combination of 

these dots is a combination of FMD inputs, which would feed to the regression 

analysis model calculating in parallel. 
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Figure 3.5: The current state of shift registers (top); the regression errors of the 

current state (2nd); the historical record of error (3rd); the record of the optimal 

solution shown by the smallest error (lowest) 

 

The simulation progress of my RPA as it is running is then shown in the rest of the 

figures, with the lowest showing the minimum error which has been achieved. 

 

Fig 3.6 shows the final results using my RPA, whereby the top graph indicates the 

error calculated for each combination and the lowest the smallest error achievable. 

Based on the smallest error calculated, shown in the bottom graph, the output then 

shows the three parameters which achieved this. 
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Figure 3.6: Final calculation of minimum error using the RPA 

 

For instance in the example shown in Fig 3.5 and Fig 3.6, the output of the RPA 

provided the following: 

 The optimum weights are: −4.0238     0.06805      9.6072 
 

 The FMD input columns: (8 [Euro 5 yr swap], 13 [US$ 2m Swap], 6 [Euro 6m 
LIBOR]) are selected in linear regression model with minimised MSE: 
9.3302e−10 
 

 What we can see clearly is that the FMD input columns  8, 13 and 6 with 
weights −4.0238, 0.06805, 9.6072 gave the lowest error with 9.33e−10. 
 

 

To use this to forecast ‘tomorrow’ (t+1) I would now compute yt+1 using the following 
equation: 

(3.3)                                       yt+1 =  a1x1 + a2x2 + a3x3 

 

(3.4)   S&P 500(t+1)= −4.0238*x1(t)+0.06805*x2(t)+9.6072*x3(t) 
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where x1 = FMD input 8, x2 = FMD input 13 and x3 = FMD input 6. 

 

S&P 500 prediction (t+1) = if number is higher than yesterday, the RPA will 
predict an upward trend. Lower = downward trend. 

 

3.5.4 Further implementation and feasibility of RPA (using MatLab) 

Having proved concept of the RPA in Section 3.3.4, I will now further test the RPA 

using all 51 FMD inputs and also extend the testing results to include the top 

parameters over 3 separate 30-day periods.  These results provide a full test for the 

initial proof of concept. The feasibility of the algorithm is displayed in Table 3.2 and 

confirms the functionality of the algorithm in achieving a directional efficiency of 

greater than 50% for a minimum of 6 FMD inputs based on 30 days of data from 

October 2005. 

Table 3.2 Directional results, accuracy and speed of algorithm on a PC- platform 
in October 2005 

FMD input data 1 2 4 6 

Directional Result 11/30 14/30 15/30 17/30 

RMSE 28.57 33.02 24.784 19.446 

3Ave. Time Elapsed (minutes) 0.02760 .66196 16.3922 36,096.65 

 

Having found the optimum number of FMD inputs, 6 FMD inputs is the minimum to 

give me greater than 50% directional trend; therefore I will use 6 FMD inputs as my 

testbench. One of the massive limiting factors of these results is the time it took to 

compute; on a 12 core PC this took over 25 days. In order to verify the validity of 6 

parameters statistically, I have run this testbench in MatLab on 3 separate sets of data:  
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Table 3.3: January 2000 

Selected FMD Inputs 
1 12 18 21 23 51 
1 12 18 21 23 51 

                1  9 18 26 33 51 
1 9 23 29 31 33 
1 9 23 29 31 33 
1 13 15 18 31 33 
1 13 15 18 31 33 
1 9 19 21 23 51 
1 9 21 23 26 33 
1 9 21 23 26 33 
1 11 12 26 32 33 
1 9 21 23 27 33 
1 9 21 23 27 33 
1 9 21 23 25 33 
1 9 21 23 25 33 
1 11 19 21 23 25 
1 11 19 21 23 25 
1 11 19 21 23 25 
1 11 19 21 23 25 
1 11 19 21 23 25 
1 11 19 21 23 25 
1 11 19 21 23 25 
1 11 18 21 25 33 
1 11 18 21 25 33 
1 11 18 24 33 34 
1 11 18 24 33 34 
1 11 19 21 23 25 
1 11 19 21 23 25 
1 11 19 21 23 25 
1 11 18 24 33 34 

 

Directional trend 
accuracy MSE Time to compute (mins) 

16 32.50965642 36,100.12904 
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Table 3.4: October 2005 

Selected FMD Inputs 
1 7 25 33 36 37 
1 3 4 7 33 36 
1 3 4 7 33 36 
1 2 3 26 33 38 
1 2 3 26 33 38 
1 2 3 25 33 38 
1 2 3 25 33 38 
1 2 3 26 33 38 
1 2 3 26 33 38 
1 2 3 26 33 38 
1 2 3 26 33 38 
1 5 7 33 36 37 
1 2 3 26 33 38 
1 7 20 33 36 37 
1 4 20 30 36 51 
1 4 20 33 36 51 
1 4 18 25 33 36 
1 4 18 25 33 36 
1 4 18 25 33 36 
1 4 18 25 33 36 
1 4 18 25 33 36 
1 4 18 25 33 36 
1 4 18 25 33 36 
1 4 18 25 33 36 
1 4 18 25 33 36 
1 18 30 31 42 48 
1 18 30 31 42 48 
1 26 36 41 48 50 
1 27 36 39 41 48 
1 27 36 39 41 48 

 

Directional trend 
accuracy MSE Time to compute (mins) 

17/30 19.44636487 36,096.65125 
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Table 3.5: September 2008 

Selected FMD Inputs 
      

1 8 11 25 34 38 
1 9 11 25 30 38 
1 9 11 25 30 38 
1 8 11 25 33 38 
1 9 11 25 30 38 
1 9 11 25 30 38 
1 9 11 25 30 38 
1 9 11 25 30 38 
1 6 25 28 29 38 
1 6 25 28 29 38 
1 6 25 28 29 38 
1 6 25 28 29 38 
1 6 25 28 29 38 
1 6 16 25 26 38 
1 6 16 25 26 38 
1 6 16 25 26 38 
1 6 17 25 34 38 
1 21 25 30 36 51 
1 21 25 31 36 51 
1 21 25 31 36 51 
1 21 25 31 32 41 
1 21 25 31 32 41 
1 4 5 20 38 51 
1 12 22 31 32 36 
1 6 31 32 41 49 
1 6 31 32 41 49 
1 6 31 32 41 49 
1 6 31 32 41 49 
1 6 31 32 41 49 
1 14 24 31 32 49 

 

Directional trend 
accuracy MSE Time to compute (mins) 

16/30 37.29831536 36251.22677 
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the optimum number of FMD input parameters, it was decided that dedicated 

hardware such as an FPGA platform was needed. 

 

3.6 Implementation of model using FPGA 

In order to increase the number of FMD inputs above 6, it was necessary to input the 

algorithm onto a suitable hardware platform and a field-programmable gate array 

(FPGA) was chosen. However using the FPGA platform created a number of 

problems, the biggest was a limitation on the number of resources inside the FPGA. 

Rather than continue with the FPGA it was decided to move to a different hardware 

platform capable of handling the large data sets (more than 8 billion possible 

combinations) and successfully computing the next day’s S&P 500 results within 24 

hours.  Although not specifically designed for, nor to my knowledge used for such a 

task, the Graphics Processing Unit (GPU) offers a hardware architecture that appeared 

potentially ideal for the RPA.  
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Chapter 4 

RPA Hardware Implementation 

4.1 Developments in parallel computing 

Since the invention of the transistor by William Shockley (1949) in 1947 the 

developments in semiconductor technology, particularly the ever reducing dimensions 

of the transistor, have given rise to a rapidly expanding computer industry (Saxenian, 

1991).  The reducing dimensions of a single transistor together with developments of 

monolithic (single-chip) integrated circuits (ICs) has meant that the functional circuit 

blocks using several interconnected transistors, such as a memory element, has in turn 

decreased in size allowing greater and greater memory to be built per unit area of 

semiconductor; still almost exclusively silicon.  Thus we have seen, and continue to 

see, rapid growth in computer power. 

 

In 1965 Gordon Moore, a founder of the computer company Intel, stated that the 

number of micro-electronic devices, principally transistors, that could be placed on an 

integrated circuit was doubling roughly each year and he predicted that this trend 

would continue into the foreseeable future (Moore, 1965).  This prediction became 

known as Moore’s Law and time has shown that Moore’s Law has been correct for 

many years, although the rate of change has slowed in recent years to a doubling 

approximately every 18 months (ibid.).  Doubling the number of transistors on a 

silicon wafer means that the transistor size must halve, through extensive 

semiconductor research and development.  Indeed, the transistor size has 

progressively reduced and it is now at the point where the feature size of the device is 

down to nano meters (Fang et al, 2013).  This presents semiconductor engineers with 

several practical limitations.  Firstly, the transistors can only operate at very low 

current levels due to the very large number of transistors per chip; secondly, leakage 

currents between transistors becomes so significant that neighbouring devices 

interfere with each other causing unreliable operation; and thirdly, production 

reliability means that the yield of perfectly functioning integrated circuits falls 

rapidly.  It is therefore likely that Moore’s Law will not be true for much longer 

(Kaku, 1999). 
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The standard computer architecture has for many years been based on the original 

ideas of Alan Turing (Turing, 1936) sometimes referred to as ‘the father of the 

computer’.  The conventional computer architecture is based on a Central Processing 

Unit (CPU) with several associated memory blocks.  This type of computer 

architecture is generally referred to as a CPU machine.  The power of a given 

architecture computing machine is proportional to the speed that data can be handled.  

However, with the approaching limit of Moore’s Law, recent computer system 

developments, where vast data is required to be processed rapidly, have necessitated 

different approaches to be explored (Keckler et al., 2011).  A major driver of this has 

been the development of real-time graphics which is needed for high quality image 

presentations, required in the games industry and video graphics in general.  

Dedicated GPUs have been developed which offer significant advantages over and 

above the conventional CPU machine. 

 

The GPU has a significantly different architecture enabling it to handling extensive 

parallel data sets easily at the high speed needed in advanced computer graphics 

applications.  In my case the data handling capability of the GPU appeared to offer an 

ideal way forward for implementation of the RPA as the task in hand requires a fast 

machine able to compute a vast amount of financial data within 24 hours (or less) to 

obtain a prediction of tomorrow’s S&P 500 value, today.  The remainder of this 

chapter covers the GPU and its use for the implementation of the RPA, concluding 

with the presentation of early results. 

 

4.2 Advancing the implementation method for the RPA  

The concept of the RPA was successfully demonstrated using MatLab, as described in 

Chapter 3.  However, we found that MatLab was limited in speed and data size, so 

unable to handle the extensive data that the RPA uses in predicting the S&P 500.  

Initially a dedicated hardware solution based on an FPGA implementation was 

considered.  However, practical implementation of the FPGA proved to be overly 

complicated so further work using this hardware was halted and I decided to look for 



66 
 

an alternative platform.  The GPU appeared an attractive solution as it offered all the 

features that the RPA required. The key driver of GPU development has been the 

growing need for three dimensional, colour and moving images (QNX, 2014).  All 

three require rapid parallel data handling, as does the RPA.   

 

4.2.1 A solution to test a greater number of FMD inputs to establish an optimum 

The original MatLab results using the September 2008 dataset ran 30 trials only and 

gave a directional test result of 16/30 (53.33%).  The total runtime was 36,251 mins 

(~25 days).  As will be discussed in full later, the GPU-optimised version of the 

algorithm, run with the same dataset and the same parameters, gives exactly the same 

results in only 359 secs (~0.1hrs). This is a speedup of over 100-times compared with 

the original proof of concept MatLab implementation.  It should be noted that MatLab 

testing was kept to 30 trials because of the excessive computational time required.  

 

Given the massive speed advantage of using a GPU, all subsequent work will allow 

for the maximum possible number of trials given the available dataset.  Running the 

RPA with a GPU engine will overcome the computational limitations experienced 

using MatLab and allow the RPA to function fully, the goal being to obtain a solution 

within a 24-hour period.  This development in GPU hardware implementation will 

allow a greater number of FMD inputs to be tested that will provide an optimum 

prediction result. 

 

4.3 Graphics Processing Unit (GPU)  

GPU architecture is highly parallel, with multi-thread co-processors resulting in a 

powerful computer which in handling data inputs in parallel results in a greatly 

reduced computational time (Nickolls, 2007).  The significant difference between 

today’s GPUs and traditional CPUs is that the GPU is designed for high throughput 

processing of many parallel operations over the lower latency execution of a single 

task within a CPU (Lee et al., 2010).  Not only does the GPU perform better than the 
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CPU in terms of computational power, it also has a far greater memory bandwidth 

(ibid.). 

 

GPUs comprise a large collection of fixed function and software programmable 

resources (Fatahalian & Houston, 2008).  To enable programmers to develop 

applications with the GPU a software platform, such as NVIDA’s CUDA (Compute 

Unified Device Architecture) (NVIDA, 2014) has been included.  This platform is for 

massively parallel high performance computing on the NVIDA-based GPU and 

enables programmers to easily implement a highly parallel program (ibid.).  Despite 

the origins of the GPU being used in  graphics applications, particularly in video 

games, the GPU has been identified as an ideal computer engine for other applications  

which require greater parallel data handling with very high operational speed (Owens 

et al., 2008). 

 

Dedicated graphics cards have been in use for many years, particularly for large data 

sets required in video signal processing, which in recent years have been essential for 

games programming (Fung & Mann, 2004).  The graphics card processor has evolved 

into a dedicated GPU which is similar to a computer's CPU but with a dedicated role 

of handling graphical information (Owens et al., 2008). A GPU, however, is designed 

specifically for performing the complex mathematical and geometric calculations that 

are necessary for graphics rendering (Liu, 2014).  A GPU is a specific electronic 

circuit designed to rapidly manipulate and alter memory to accelerate the creation of 

images in a frame buffer intended for output to a display (NASA, 2014). 

 

Today’s generation of GPUs comprises a dedicated graphics card connected to its 

own CPU and is completely separate from the motherboard of the main computer 

(Che et al., 2008). The random access memory (RAM) is connected through the 

accelerated graphics port (AGP) or the peripheral component interconnect (PCI)  

express bus. Some GPUs are integrated into the northbridge on the motherboard and 

use the main memory as a digital storage area, but these GPUs are slower and have 

poorer performance (ibid.). 
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Table 4.1 – Key differences between a CPU and GPU (Thiesen, 2010) 

CPU GPU 

2 to 4 cores Up to 1000 cores 

Each core runs 1 to 2 independent 
threads in parallel 

Each core runs around 1000 threads in 
parallel. All threads on a core must 
execute the same instruction at any 
time 

Automatically managed hierarchy of 
caches 

Each core has up 16-64kB of cache, 
explicitly managed by the programmer 

0.1 billion floating-point operations / 
sec (0.1 TFLOP) 

1 billion floating-point operations / sec 
(1 TFLOP) 

Main memory throughput: 10GB/sec GPU memory throughput: 
100GB/sec 

 

 

4.3.2 Unique approach: benefits of using GPUs in financial prediction 

Having conducted extensive research on the demands required of financial prediction 

in Chapter 2, one specific correlation has stood out as a key problem when attempting 

to produce a successful algorithm that predicts the stock market. This correlation is 

amount of data input into the algorithm and time taken to compute the algorithm.  

Due to a growing data set to be included in the RPA, based upon increasing the 

number of FMD inputs and raising the number of days of historical data, the 

computational complexity of processing the RPA is also increasing. Fig 3.1 displays 

the number of possible combinations as each FMD input is added to the RPA; 

therefore it is imperative that a specifically tailored hardware is implemented that is 

able to handle such a large data set in a given time period.  In the case of the RPA, 

this time period is tomorrow (t+1); the algorithm will produce a binary position 

(either a buy or sell position) that can be placed before the market opens tomorrow.  

Therefore, a mandatory function of the RPA is that it must be processed in less than 

24 hours, i.e. before the markets re-open at (t+1). 

 



70 
 

Having explored a variety of implementation options with limited success, initially 

MatLab which successfully proved the concept and subsequently realised using an 

FPGA, operating the RPA using a specifically optimised GPU should eradicate the 

shortcomings of previous implementation attempts by providing the technological 

architecture that supports the processing of large data sets within the desired time 

frame. 

 

Through extensive research in the development of GPU application, it became clear 

that the high technological demands of financial prediction could be met by 

implementing the RPA onto a specifically optimised GPU platform. 

 

Modern GPUs use most of their transistors to compute calculations related to 3D 

computer graphics (Owens et al., 2008). Initially, GPUs were used to accelerate the 

memory-intensive work of texture mapping and rendering polygons, but later added 

units to accelerate geometric calculations including the rotation and translation of 

vertices into different coordinate systems. More recently, however, GPUs have 

developed to include support for programmable shaders (Blythe, 2006) that can 

manipulate vertices and textures with many of the same operations supported by 

CPUs, oversampling and interpolation techniques to reduce aliasing, and high 

precision colour spaces. Due to the fact most of these computations involve matrix 

and vector operations, engineers and scientists alike have increasingly studied the use 

of GPUs for non-graphical calculations (Crookes et al., 2009) and it is for this reason 

that I proposed to develop a novel architecture that would accommodate the RPA onto 

a GPU system. 

 

4.3.3 Specifications of GPU system used to implement the RPA 

Table 4.2 shows the full specifications of the Custom X79 i7 3930K System used to 

implement the RPA. 
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Table 4.2 – Specifications of hardware used to implement the RPA 

Motherboard Asus Rampage IV Formula Intel X79 (Socket 2011) DDR3 
Motherboard 

Memory Corsair Dominator 32GB (4x8GB) PC3-12800C10 
1600MHz Dual/Quad Channel Kit 
(CMP32GX3M4X1600C10) 

Computer chassis Silverstone Fortress FT02 USB3.0 Case - Black (SST-FT02B 
USB 3.0) 

Hard drive Intel 330 Series 120GB 2.5" SATA 6Gb/s Solid State Hard 
Drive – Retail 

Cooling system Cooler Master Seidon 120XL Watercooling System (Socket 
775 / 1155 / 1156 / 1366 / 2011 / AM2 / AM2+ / AM3 / FM1 
/ FM2) OcUK 24x DVD±RW SATA ReWriter (Black) – 
OEM 

Processor Intel Core i7-3930K 3.20GHz (Sandybridge-E) Socket 
LGA2011 Processor – OEM 

Power supply Enermax Platimax 1500w '80 Plus Platinum' Modular Power 
Supply (EPM1500AWT) 

Graphics cards Three EVGA GeForce GTX TITAN Superclock Signature 
Edition 6144MB GDDR5 PCI-Express Graphics Card (06G-
P4-2793-KR) 

 

For the purposes of this RPA implementation, the key hardware components are the 

three top-of-the-range EVGA GeForce GTX TITAN graphics cards. Each card has 

2688 cores, meaning that in total 3 x 2688 = 8064 calculations can be computed in 

parallel, compared with 12 on the 12-thread CPU (evga.com, 2014). Each GPU 

calculation takes longer than the CPU, but the massive parallelism more than makes 

up for this (Owens et al., 2008), leading to significant advantages overall. 

 

4.4 Computational implementation and optimisation of the RPA onto GPU 

In this section the concept of the RPA, as established and proved in MatLab (see 

section 3.3), is outlined stage by stage to underpin how the algorithm is processed and 

optimised onto a GPU, clearly displaying the speed of calculation for each step of 

optimisation, starting with pre-optimisation. 

Pre-optimisation: 

Initial speed of calculation cycles considering 4 FMD inputs = 5,500,000 ms = 5,500s 
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4.4.1 Step 1: Optimise existing C++ code on CPU (No GPU acceleration)  

Objective: 

Quick pass of the codebase focussing on ‘low hanging fruit’ to ascertain cheap speed-

ups.  

 

Description: 

Main gains were achieved by reworking sections of the code-base to minimise 

duplication of data. Rather than having copies of the data being created and passed 

through the algorithm, the same data is used and referenced throughout the algorithm. 

 

No changes were made to the algorithm order of execution. It was apparent that the 

algorithm could be made to execute significantly faster from parallelisation. 

 

Results: 

Code speeds up in line with expectations (not a fraction of our ultimate target 

performance) Step 1 optimised speed of calculation considering 4 FMD inputs = 

250,380ms = ~250s 

 

4.4.2 Step 2: Initial C++ AMP implementation to run on a GPU 

Objective: 

Convert the existing code to take advantage of C++ AMP (Accelerated Massive 

Parallelism). In doing so, this should allow me to run many blocks of computation in 

parallel on the GPU. 
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Description: 

Converted the code-base to C++ AMP, running on a domestic GPU. 

 

Results: 

Firstly, I encountered a very unusual error. Once the code was moved to fully utilise 

the GPU, it would consistently crash after approximately 2 seconds. After several 

hours of attempting to find the cause of the crash it became apparent that the reason 

was deeper than just my GPU code. 

 

Simply, the GPU was being stressed to such a degree by the relative onslaught of 

computation that there was no available runtime capacity for the GPU to actually 

update the screen on the PC – a function that a GPU is typically entirely concerned 

with. 

 

I learnt that when this happens, there is a failsafe mechanism embedded deep in the 

operating system that resets the machine, once it senses that the screen cannot be 

refreshed. This was most unusual, but it did confirm that the use of a GPU for this 

type of significant algorithmic calculation was an unconventional use. 

 

To resolve this and ensure I had 100% of the available power of the GPU(s) a cheap 

additional GPU card was purchased and set as the unit tasked to update the screen. 

This then resolved the crash and freed the main GPU to run computational cycles 

only. 

 

This initial GPU implementation provided a reasonable speed up, but not to the level 

expected. The reason for this was the way the algorithm was being executed. 

Basically the GPU was being fed tasks too small for its architecture, and the majority 
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of the time (95% +) was being spent waiting for the memory to feed it more data and 

catch up. 

 

The traditional thinking around running efficient GPU compute processes is to give as 

much data up-front as possible and let the many compute cores on the GPU chew 

through the data. Given the CPU has fewer - but bigger - cores, along with a much 

bigger cache, this indicates that memory coherency is an issue. The CPU is much 

better at dealing with inefficient memory layouts due to the redundancy hardware 

built in to the chip. 

 

Step 2 optimised speed of calculation considering 4 FMD inputs = 122,750 ms = 

~123s 

 

4.4.3 Step 3: Unroll the algorithm to feed the data sympathetically to the GPU 

Objective: 

Rework the algorithmic execution to unroll the main internal loop from a vertical 

execution to a horizontal execution by pre-loading all of the work for the GPU into 

memory. This approach will allow the entire workload to be as parallel as possible. 

 

Results: 

The actual time spent executing the algorithm has been reduced dramatically, but the 

memory usage is extremely high. Several gigabytes were used in a test run 

considering 5 FMD inputs or ‘characteristics’. 

Step 3 optimised speed of calculation considering 4 FMD inputs = 57,900 ms = ~58s 
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4.4.4 Step 4: Re-engineer the algorithm to use the smallest dataset possible 

Objective: 

The best potential optimisation for the GPU implementation is to move towards using 

tiled memory (A C++ AMP term). What has become very apparent is the need to 

carefully organise the data for GPU efficiency. A traditional CPU is efficient at 

dealing with out-of-order data, and non-coherent data. A GPU is not good at dealing 

with this and cache misses are extremely expensive. However, when the data is 

organised, ordered and fed as efficiently as possible, the speed advance of the GPU is 

dramatic.  

Estimate for speed of calculation considering 4 FMD inputs on GPU = 3,100 ms. 

 

Additionally, the re-engineered algorithm is now considerably more predictable when 

observing increasing the number of FMD inputs. It is estimated that with a 

specifically purchased piece of hardware, budget £5000, that calculations considering 

6 FMD inputs would take less than 4 minutes to compute.  

 

This would be a very significant increase from the initial position where calculating 6 

FMD inputs was taking over 3 weeks of computational time.  

 

With the reasonable prediction that each additional FMD input will take around 10.5x 

longer, it would be possible to calculate 8 FMD inputs on a single computer in 

approximately 7 hours.  

 

4.5 Effectiveness in implementing the RPA onto the GPU system 

The use of a GPU, and the potential for spreading computation across multiple GPU 

boards simultaneously, allows for a significant speed increase over standard C++ 
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CPU implementations. This is providing that the GPU code is extremely carefully 

written and the data is extremely carefully organised. 

 

The reason for the entire multi-core GPU approach opposed to the bigger/faster CPU 

approach is depicted when drawing upon ‘Moore’s Law’ (Moore, 1965) which states 

that the number of transistors per square inch of integrated circuits had doubled every 

year since the integrated circuit was invented.  This demonstrates the effective GPU 

approach that parallelising repetitive computation with many small cores (GPU) will 

outperform a single large processor (CPU) as scale increases. 

 

4.6 Early results 

The following results display the successful application of the GPU using the same 

data set as used when testing the concept of the RPA in Chapter 3.  The same data set 

was utilised firstly, to test the hardware by ensuring the GPU produced the same 

results as the MatLab results;  secondly, this data set was used to provide a time 

comparison. The reason MatLab could not be used to implement the RPA was due to 

the huge processing times, something that implementing the RPA using a GPU has 

addressed. 

 

The original MatLab results with the September 2008 dataset ran 30 trials only, and 

gave a directional test result of 16.  The total runtime was 36251 mins (~25 days). 

 

The GPU optimised version of the algorithm, run with the same dataset and the same 

parameters, gives exactly the same results and takes 359 secs.  This is a speedup of 

101 times over the original implementation and produces the same directional 

accuracy. 
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For GPU testing purposes, I ran the RPA under the same paramaters as used on 

MatLab in order to directly compare results and test the functionality of the GPU. 

Results using the GPU were identical to MatLab but with a significantly faster 

processing time, as displayed in Fig 4.2. It is also interesting to compare the results on 

Fig 4.3 of the GPU with the dedicated GPU that has been optimised to produce 

significant time reductions whilst maintaining the same directional result.  

 

PC running MatLab 
51 FMD input data 1 2 4 6 8 
Directional Result 11/30 14/30 15/30 17/30 n/a 
RMSE 28.57 33.02 24.784 19.446  
Ave. Time Elapsed 
(mins) 

0.03 0.66 16.39 36,096.65 - 

 

GPU Card 
51 FMD input data 1 2 4 6 8 
Directional Result 11/30 14/30 15/30 17/30 n/a 
Ave. Time Elapsed 
(secs) 

- - 17.00 1,860.00 - 

 

Dedicated (optimised) GPU Card 
51 FMD input data 1 2 4 6 8 
Directional Result 11/30 14/30 15/30 17/30 n/a 
Ave. Time Elapsed 
(secs) 

- - 3.10 240.00 25,200.00 

Figure 4.2 – Directional results, accuracy and speed of RPA when processed 

using MatLab, GPU card and Dedicated GPU card 

 

These results hence proved the success of the GPU as the correct hardware to run the 

algorithm and allowed me to explore implementing the RPA with a larger number of 

FMD inputs. The results of running the RPA using up to 9 different FMD inputs to 

achieve a buy/sell position on the S&P 500 is outlined in Chapter 5.  
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Chapter 5 

Initial Results: Testing Optimum Number of FMD Inputs 

5.1 Importance in establishing the optimum number of FMD inputs to 

successfully predict the S&P 500 at (t+1) 

In this chapter, I intend to use the newly implemented and optimised GPU 

architecture to confirm that increasing the number of FMD inputs should have a 

positive correlation in forecasting the directional trend of the S&P 500 for (t+1).  The 

focus of this chapter is to establish at what point increasing one extra FMD input used 

to produce a buy/sell position for predicting the S&P 500 will lead to a detrimental 

effect in the directional trend forecasting. 

 

A further aim of this chapter is to establish which FMD inputs are most regularly 

selected when the RPA is computed through the optimised GPU and are hence most 

closely correlated to the price of the S&P 500. Attaining this figure of merit is vital in 

understanding the relationship between my chosen 51 FMD inputs and the S&P 500 

index and allow me to produce a ratio of each selected FMD input for every cycle 

computed through the GPU . 

 

I have chosen to use a 120-day data set because it represents a manageable time 

period that can be computed within the time constraints. This data range also displays 

a fair representation of the financial markets as it would produce 98 individual cycles 

which together consist of X possible combinations increasing rapidly as the number of 

chosen FMD inputs rises – as displayed in Fig 3.1. 

 

The final goal is to predict correctly the trend of the S&P 500 at (t+1), so the 

processing time for each set of cycles must be completed within 24 hours so that an 

open position (buy or sell) can be placed in time for the market open. 
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‘In-sample’ and ‘out-of-sample’ are terms frequently used in financial prediction 

systems to describe (i) historical/past (known) data (in-sample) and (ii) future 

(unknown) data values.  Development of financial forecasting algorithms that depend  

entirely on historical data is referred to as ‘data mining’, or ‘in-sample modelling’. 

Data mining is said to occur when a researcher reviews alternative forecast models, 

but only reports results for the specification with the highest predictive content (Inoue 

& Kilian, 2002). In the context of predictive inference, the underlying concern is that 

in-sample tests of predictability may spuriously indicate predictability when there is 

none.  In this context, a predictability test would be considered unreliable if it has a 

tendency to reject the no predictability null hypothesis more often than it should at the 

chosen significance level.  Algorithms that rely entirely on ‘in-sample modelling’ are 

effectively trend based; Granger (1990: 3) writes, “One of the main worries about the 

present methods of model formulation is that the specification search procedure 

produces models that fit the data spuriously well, and also makes standard techniques 

of inference unreliable.” Many authors (see Chapter 2) have attempted to use an in-

sample approach with moderate success.  However, the fundamental assumption that 

the future is entirely determined by the past misses the fact that an index such as the 

S&P 500 is an aggregation of the performance of 500 individual companies.  In 

recognising this limitation, I decided to develop an algorithm based on an alternative 

methodology that exploits a technique that I shall refer to as an out-of-sample 

technique, where the term ‘out-of-sample’ now refers to additional known financial 

data that strongly influence the S&P 500 companies. 

 

5.1.1 Results: Optimum number of FMD inputs for the RPA 

In order to test the number of FMD inputs that represent the optimum performance of 

the RPA in predicting the S&P 500, it was necessary to establish the best possible 

range of historical data to use. Therefore, I programmed the GPU to run the RPA to 

predict the price of the S&P 500 using 4 and 6 FMD inputs.  This provided a 

manageable data set that can be computed under a given timescale whilst also large 

enough to ensure that results are statistically significant.  This pre-testing is useful in 

strengthening the framework in establishing the RPA’s optimum number of FMD 

inputs. Table 5.1 displays these test results. Tests were carried out 9 times, using a 
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different number of days historical data (2, 5, 10, 20, 30, 40, 50, 60 and 70 days) for 

each test set and thus establishing the optimum number of days historical data to run 

the RPA on. 

 

Tests were carried out using a total data set of 120 days which allowed for 99 trials 

when using 2 to 60 days historical data. To keep the number of trials as an even 

number and hence more manageable for comparison, I decided to reduce the number 

of trials to 98.   

 

Due to the larger number of days when testing 70 days historical data, the maximum 

number of trials possible (within the 120-day data set) was 89 but again reduced to 88 

trials to create a figure more manageable for comparison. 

 

The results in Table 5.1 clearly display that using 60 days of historical data is the 

optimum. Using both using 4 FMD inputs (51% directional trend) and 6 FMD inputs 

(53.1% directional trend), the 60-day historical data represented the most accurate set 

and will therefore be used as the fixed data set to test the optimum number of FMD 

inputs.  Tests calculating the optimum number of historical days data will be re-

established in Chapter 6, after an optimum number of FMD inputs is attained for the 

RPA. 
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Table 5.1: Establishing optimum number of days historical data to test FMD 

inputs – 4 and 6 FMD inputs 

4 FMD inputs 

Days of 
data 2 5 10 20 30 40 50 60 70 

Directional 
test correct 50/98 50/98 47/98 49/98 50/98 48/98 43/98 50/98 44/88 

Correct % 51.0 51.0 48.0 50.0 51.0 49.0 43.9 51.0 50.0 

 

6 FMD inputs 

Days of 
data 

2 5 10 20 30 40 50 60 70 

Directional 
test correct 

52/98 45/98 44/98 46/98 51/98 49/98 45/98 52/98 44/88 

Correct % 53.1 45.9 44.9 46.9 52.0 50.0 45.9 53.1 50.0 

 

In establishing the optimum number of days historical data to use in testing, I was 

then able to use this data to ascertain the optimum number of FMD inputs used to 

compute the RPA.  The optimum figure being that which gives the highest directional 

trend accuracy in predicting the S&P 500. 

 

Testing the optimum number of FMD inputs was carried out using the same 

architecture as testing the optimum number of days. Again, I used a 120-day data set, 

using the optimal 60 days historical data for each individual cycle – hence allowing 

for a maximum of 99 cycles per FMD input test. The 99 cycles were reduced to 98 for 

ease of comparison when analysing the data results. 

 

My initial hypothesis, built through my acquired knowledge of the financial markets, 

was that as the number of FMD inputs used to produce a prediction for the S&P 500 

increases, so will the directional trend.  I also felt that there would be a point where 
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increasing the number of FMD inputs, and hence number of possible combinations, 

would break from its positive correlation and start to create ‘financial noise’ as the 

number of combinations being computed into the GPU soared (see Fig 3.1). 

 

Looking at Fig 5.1, it clearly shows that my initial hypothesis was correct to a certain 

extent.  In this series of testing there was a positive correlation between the number of 

FMD inputs and the directional trend except for when using 8 FMD inputs, which I 

have put down as an anomaly.  

 

 

Figure 5.1: Optimum number of FMD inputs vs. number of possible 

combinations 

 

Table 5.2 displays the key information when programming the RPA with 9 FMD 
inputs which has been established as the optimum number. 
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Table 5.2: Optimum number of FMD inputs 

 

 

 

 

 

 

 

 

A Figure of Merit (FoM) is a quantity used to characterise the performance of a 

device, system or method, relative to its alternatives. Applying this theory to the RPA, 

finding a FoM for each individual cycle will enable me not only to establish which 

FMD inputs were chosen in that particular cycle, hence representing the FMD inputs 

with the lowest MSE against (t), but also to understand the weightings of this error 

based on the group of selected FMD inputs as one whole cycle.  This proportion 

allows me to understand the contribution of each individual chosen FMD input 

against the chosen set as a whole. 

 

The FoM is achieved by attaining the average price of each chosen FMD input over 

the prior 60 days (optimum number of days historical data to use, as will be 

established in chapter 6).  This figure is then multiplied by each relevant ‘coefficient’ 

(the coefficient acts to normalise the data so a comparison can be attained). This 

‘total’ acts as an overall weight of each ‘chosen FMD input’ in relation to the ‘chosen 

FMD input set’ as a whole.  The sum of the ‘total’ figure represents 100% of the data 

set, hence the pie chart acts as a proportional representation of each chosen FMD 

input for a selected day. Table 5.3 displays a data set of the RPA ending on 24th 

November 2008 and shall be used to explain how a FoM works.  

 

Optimum FMD inputs 9 

Num trials 98 

Directional test correct 
54 

Correct % 55.1 

Binomial probability .182 

MSE 34.77 

MSE% 4.405 
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which formed the basis in the prediction of buy or sell position of the S&P 500’s 

market closing price on 25th November 2008 (t+1).  Euro/USD 4-month forward 

contracts (FMD input 37) was found to produce the least significant influence, only 

contributing 4% to the total weighting of the set of results used to predict tomorrow’s 

(t+1) closing price of the S&P 500.  

 

5.2 Significance of each set of chosen FMD inputs 

The chosen 51 FMD inputs fall into 4 core categories: key selected indices; selected 

currency pairs; selected swap rates with varying maturity rates; and selected 

commodity indices. A possible explanation for the correlation is as follows. 

 

Other indices 

NASDAQ 100 

The NASDAQ 100 is a modified capitalisation-weighted index based on the 100 

largest non-financial companies. Many of the component companies within the S&P 

500 are included in the NASDAQ100. The NASDAQ 100 is often viewed as a more 

polarised version of the S&P 500 as the majority of the NASDAQ100 component 

companies are included in the S&P 500. This close correlation is clearly shown in Fig 

5.3 and Fig 5.4 with the S&P 500 which has less volatile movement due to a larger 

number of component companies creating more financial noise and so less reactive to 

changing market conditions. 
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Figure 5.3: NASDAQ 100 (1 day) price chart 20.05.2014 (Yahoo Finance, 2014a) 

Figure 5.4: S&P 500 (1 day) price chart 20.05.2014 (Yahoo Finance, 2014b) 

Figure 5.5: VIX (1 day) price chart 20.05.2014 (Yahoo Finance, 2014c) 
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European Indices 

The indices selected (FTSE100, DAX, CAC40) are the key European indices.  Based 

on my market experience, there is a positive correlation between the major global 

indices. That is, when one index is trading down, due to the market sentiment, others 

tend to follow. 

 

VIX 

In observing the VIX and the S&P 500, a clear correlation emerged.  As a volatility 

index of S&P 500, the VIX has a negative correlation with the S&P 500 on a day-to-

day basis. This correlation is clearly represented in Fig 5.5. 

 

Currency Pairs 

The fact the S&P 500 represents the 500 largest companies operating in the U.S. 

(based on market capitalisation), it is valid to assume that these component companies 

are multi-national in nature and hence effect, and are affected by events outside the 

U.S. often with significant parts of the revenue stream based in multi-currency.  In the 

case of my algorithm and predicting the movement of the S&P 500, I felt it important 

to cater for global macro economic conditions.  The architecture of my algorithm will 

also include the most relevant FMD inputs where necessary. 

 

Swap Rates  

Whilst the indices produce a virtual real-time view, the various swap rates are often 

an indicator of sentiment over a given time period. I have decided to include swap 

rates from 2 months to 30 years to cover the outlook of both short and long-term 

market conditions relative the key currencies. Through my experience in finance, 

swap rates represent a meaningful market indicator. 
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Commodities  

The commodity markets represent a vital component to the prediction of the S&P 

500.  Today’s global reliance on petrochemical derivatives has influenced the 

financial markets.  The component companies of the S&P 500 are heavily influenced 

by the prices of petrochemical derivatives, which can account for a significant portion 

of their costs and in turn influence profits and growth potential. 

As precious metals are often viewed as a safe haven commodity, they are relevant and 

tend to have an inverse correlation to positive market sentiment. 
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Chapter 6 

Optimisation of the RPA Architecture and Future Work 

In order to ensure the RPA can produce the highest possible directional trend 

accuracy, this chapter tests a number of trade offs that are possessed in the 

architecture of the RPA. These trade offs will be explored through extensive testing 

and a subsequent optimum for the RPA is then achieved. 

6.1 Exploring factors that can increase the directional trend accuracy of the RPA  

The nature of the RPA architecture ensures that the highest possible directional trend 

accuracy is achieved through the optimisation of key parameters. The optimum 

number of FMD inputs was determined in Chapter 5 and this chapter will explore two 

other key trade-offs identified, that I believe will directly influence the directional 

trend accuracy. These trade-offs must be tested to ensure that the RPA is computing 

the optimum parameters when processed through the GPU. 

 

The results of the following two trade-offs will be tested and evaluated in this chapter: 

1. Re-testing the relationship between the number of days historical data and 

directional trend accuracy in forecasting the S&P 500. 

 

2. Testing to establish whether predicting tomorrow (t+1), and future dates (t+2 

to t+4) give a more accurate directional trend prediction result. This is 

established by maintaining the same RPA test architecture but ‘time’ being the 

variable, testing the RPA’s performance in predicting the S&P 500  beyond 

tomorrow (t+1). 
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6.2 Re-testing the relationship between number of days historical data and 

directional trend accuracy 

Section 6.2 will look to re-test the optimum number of days historical data to run each 

cycle of the RPA with the optimum number being the test result that produces the 

highest directional trend forecast of the S&P 500 at (t+1).  Having already established 

the optimum number of FMD inputs to enter into the RPA in Chapter 5, I felt it 

important to build on these results and test for the optimum number of days historical 

data using the optimal 9 FMD inputs (see Fig 5.1) for each test cycle. 

 

I chose to test 5 different sets of historical data (15, 30, 60, 75 and 90 days) in order to 

establish the optimum range. To test the trade-off between each set of historical data 

and the RPA’s directional trend result, I applied the same methodologies used in 

Chapter 5, which focussed on attaining the optimum number of FMD inputs.   

 

6.2.1 Results: testing a varying number of historical days data 

Re-testing for the optimum number of historical days data produced a set of results in 

line with my initial tests carried out in Chapter 5. Table 6.1 indicates the ’60-day’ data 

as again being the most accurate range to use in the RPA. The directional trend results 

for ’60-day’ data set is at 55.1%, which is an increase of 2% on the same test carried 

out in Chapter 5  using 6 FMD inputs. 
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Table 6.1: Testing for optimum number of historical days data 

 

 

Fig 6.1 produces a clear comparison of all four sets of data tested. The chart shows 

the 15-day range as producing an extremely low directional trend result of 44%, well 

below the >50% threshold that indicates a commercially viable result.  A 30-day 

historical day data range displays a huge 8.16%  increase in directional trend accuracy 

and moves to above the all important >50% threshold to 52.04% correct. Fig 6.1  

clearly displays the 60-day data range as being the optimal data set to run the RPA. 

Using this data, the line chart peaks at 55.1% (52 correct out of the 98 trials) 

directional trend accuracy, a result that is significantly above the >50% threshold and 

would in turn give positive returns of 5.1% on an unleveraged position trading on the 

S&P 500 index. Having reached the optimum data range, the RPA’s performance 

decreased to 50% when being computed using a 90 trading day historical data set. 

 

Changing variable Variable Correct Directional trend (%) 

Historical Data 

15 trading 

days 
43/98 43.88 

30 trading 

days 
51/98 52.04 

60 trading 

days 
52/98 55.10 

90 trading 

days 
34/68 50.00 
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Figure 6.1: Historical days data vs. RPA directional trend accuracy 

 

6.3 Establishing whether tomorrow (t+1) is the optimum time period in 

predicting the S&P 500 

This section will seek to establish whether predicting tomorrow (t+1), and future 

dates (day after tomorrow (t+2), and up to four days in advance (t+4) give a more 

accurate directional trend prediction result.  As the optimum number of FMD inputs 

and historical days data to use in computing the RPA, the final trade-off that can be 

explored through the architecture of my algorithm is understanding whether a lag 

exists between the movement in the data engine (combination of the 9 chosen FMD 

input prices over the prior 60 days) and the prediction time (t+1 to t+4). My initial 

thought was that tomorrow (t+1) would be the optimum time frame due to the highly 

liquid and hence reactive nature of the S&P 500 index to micro and macro economic 

conditions, but I felt it was important to test all possible parameters. In Chapter 7 I 

will introduce the future possibility of future work applying this architecture to a 

timescale of less than tomorrow (t+1) that could allow the RPA to carry out multiple 

trades in a single one-day cycle. 
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6.3.1 Results: testing the responsiveness of the selected FMD data to  the 

movement of the S&P 500  

In the final series of RPA optimisation, I ran my algorithm (using the already 

established optimum parameters - FMD inputs and historical days data set) to test 

whether using this data engine to predict tomorrow’s (t+1) price of the S&P 500 

produced different results to predicting the price of the index, using the same data 

engine over a different time period. Table 6.2 displays the tests carried out with the 

moving variable being ‘timescale of prediction’. As with previous testing, 98 trials 

were conducted. 

 

Table 6.2: Testing responsiveness of the RPA  

Changing variable Variable Correct Directional trend (%) 

Timescale of future 
prediction 

t+1 54/98 55.10 

t+2 49/98 50.00 

t+3 47/98 47.96 

t+4 43/98 43.88 

 

Fig 6.2 allows a clear comparison to be made between the four differing time scales. 

This chart shows a consistent negative correlation between the increasing time of 

predicting the S&P 500 and directional trend accuracy. The optimum time scale is 

tomorrow (t+1) which produces a directional trend accuracy of 55.1%. From day after 

tomorrow (t+2) to four days in advance (t+4), the directional trend accuracy decreases 

at an average of 3.74% as each day is added.  These results re-affirm my initial 

hypothesis that a time lag between changing FMD and the movement of the S&P 500 

does not exist. 
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Figure 6.2: Time scale vs. RPA directional trend accuracy 

 

6.4 Implications of test results in optimisation of RPA 

The results in this series of testing have a similar pattern to testing for the optimum 

number of FMD inputs.  This is due to the fact that increasing the number of historical 

days data significantly increases the amount of data to be computed through the RPA. 

As shown when testing the optimum number of FMD inputs in Chapter 5, a point was 

reached where any amount of additional data merely produced inaccurate ‘noise’. As 

more data was input into the RPA, this led to a further reduction in directional trend 

accuracy. Both results, the Chapter 5 pre-testing, and the second phase of testing to 

establish the optimal number of historical days data, confirmed that 60 days is the 

optimum and should therefore be used as a constant in my RPA architecture. Through 

my experience, 60 days presents a range that is close enough to best capture the 

sentiment of the combination of the chosen 51 FMD inputs that I have demonstrated 

influence or are influenced by the S&P 500. I used 15 and 30 day increments when 

back-testing historical data; in Chapter 7, further work looks at whether there is a 

benefit in refining to smaller increments.  

 

Furthermore, as I am using the difference between (t) and (t-1), logic dictates that the 

ideal period to forecast is (t+1) rather than larger data ranges.  Further work in 
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Chapter 7 will look at the possibility of combining different forecasting time frames 

using different comparable time frames. 

 

6.5 Future work 

The architecture and methodologies used to build the RPA has provided a platform 

that successfully predicts the S&P 500 at (t+1). However, there are many aspects of 

the RPA that could be taken, adapted and used to develop it further for different  

applications.  The mechanics of the RPA and its many different trade-offs can be 

altered to develop and optimise its capability in predicting the S&P 500.  However, it 

is also important to understand and realise the scope in applying the structure of the 

RPA to predict other financial indices.  The advances of the RPA provides a strong 

basis for the development of further work. This chapter is split into individual 

components of the RPA that I believe holds a significant scope to adapt and improve 

further. 

 

6.5.1 Linking the RPA with a ‘bio-inspired’ system 

On a functional level, in attaining a prediction result from the RPA,  I am replicating 

the retina and applying it to financial prediction. In the RPA, I have successfully  

modelled the way in which the human retina works on a functional level, but not yet 

looked into the possibility of modelling the actual process of the eye. Currently a 

prediction is formed on an empirical basis, using MSE.  I believe that a closer 

correlation with the human eye is possible, and with future research, I believe it 

would be possible to create an algorithm to replicate this process, which coupled with 

the architecture of the RPA, should produce an even more accurate prediction result. 

 

So, my purpose would be to implement mathematical and computational modelling 

used to attain a better insight into the functionality of the retinal neuro-circuits to 

improve prediction of the S&P 500 index day-to-day movements.  
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I believe that the type of model to explore is a ‘top down’ approach based on the 

theory of nonlinear systems to look for correlations between the input and output of 

the system without going into physiological details about how the equivalent neuron 

or neural circuit achieves this.  

 

In the simplest model of a retinal ganglion cell (Shwartz et al., 2006), the functional 

behaviour can be obtained by first identifying the receptive field vectors that the cell 

is sensitive to and then using these to characterise the functional form of the cells 

response.  Fig 6.1 depicts the architecture of the so-called Linear-Nonlinear-Poissson 

(LNP) model of the human retina where X is high-dimensional visual input, w1, w2 ,…, 

wn are the receptive field vectors (RFV) and s1, s2, …, sn are projections of the input 

vector X onto the RFV. These values are passed as an argument to nonlinear function 

f, to create a generator signal G. This signal is now the input for a spike generator P, 

which outputs random spikes generated with Poisson statistics. 

 

 

Figure 6.3: Block diagram of the LNP model (Shwartz et al., 2006) 

 

Advancing this logic and applying it to financial prediction creates a very interesting 

opportunity that could be explored with a feature extraction of the inputs. Referring to 

Fig 6.3, the ‘input data’ X would be formed of many different closing prices of certain 

financial markets over a set time period. These financial data input vectors will 

convolve with vectors w1, w2 ,…, (receptive field vectors) and after passing through a 

non-linear function f an output result G is obtained. Understanding this process would 
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require further research but the end output (G in Fig 6.3) would be the rate of ‘spikes’ 

correlating to some form of reaction in the financial data (e.g. predicting the S&P 

500/FTSE100/Currency pairs). The extent and pattern of these extracted ‘spikes’ 

could then provide the basis for a predictive decision for a chosen feature. 

 

6.5.2 FMD Inputs 

Minimising redundant FMD inputs 

One possibility to minimise redundant FMD inputs within the RPA architecture and 

hence speed up the computational time, would be to take the bottom 10% of FMD 

inputs that contribute least to the movement of the S&P 500: this 10% will continue to 

adapt and change over time.  It would then be interesting to adopt an ‘improvement 

strategy’ to the inputs that contribute least (highest MSE) to form an architecture that 

minimises error and maximises predictive efficiency. 

 

Development of a ‘brilliant index’ 

This section considers putting together a ‘brilliant index’ by grouping FMD inputs 

into relevant subsets (e.g. based on location - Japan) and establishing whether they 

become relevant at different times (E.g. if Japan had a crisis/credit default).  If a 

specific subset became ‘relevant’, it would be programmed alongside the other chosen 

FMD inputs adding another element to aid the predictive strength and dynamic 

performance of the RPA. 

 

Foveation  

Another angle of the RPA that can be exploited is  by looking at the FMD inputs 

alongside the notion of ‘foveation of the eye’ (hot spots) that are most relevant and 

most regularly included in the chosen FMD input set when computed by the RPA. 

The next step would be to establish whether  it would be possible to direct 

computational power toward the highlighted ‘hot focus areas’ and less on the ‘colder 

areas’. This could allow for a computational speed up as the GPU could direct and 



99 
 

focus its computations on specific areas, only focusing on the ‘colder’ areas when 

they become more relevant. The benefits of this would be the elimination of 

redundant memory usage; the algorithm would only consider ‘relevant’ inputs at that 

particular point in time, providing both a faster and more significant calculation 

result. 

 

6.5.3 GPU 

I will continue to take advantage of the continually evolving GPU technologies.  

When forecasting the S&P 500 at (t+1), a set criterion is that I am able to forecast in 

the 24-hour period. Therefore I am limited, even with a fully optimised GPU, to a 

certain amount of data that can be used to help forecast the S&P 500 at (t+1) – this 

clearly limits the framework of my algorithm.  However, in accordance with Moore’s 

Law, which states that the number of transistors in a dense integrated circuit doubles 

approximately every two years (Moore, 1965), this will give rise to further 

opportunity to test and utilise more data that should impact on forecast accuracy. A 

possible area of focus would be to increase the number of total FMD beyond 51 and 

to include specific economic data when focusing to forecast regional indices and 

possible use of subsets.  

 

6.5.4 Figure of Merit (FoM) 

It has been proved that the RPA can correctly forecast the directional trend of the 

S&P 500 55.1% of the time based on a once a day value of both the S&P 500 and 51 

FMD. From a commercial point of view, it would be essential at this stage to risk the 

same bet of the same monetary value each day (because the accuracy is based on a 

‘once a day’ value). 

 

If, for example, a varied monetary amount is placed on each day, it is possible to 

maintain the directional trend accuracy of 55.1%, but still lose money. Therefore, 

ideally a strength index measurement would be perfect in allowing a varied bet size 

being  feasible. I believe that adding a further process to the RPA which looks at the 
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result for today (t) and then references that result to a previous result closely matching 

that of today’s, can be used to form a strength index.  Therefore the RPA could end up 

with a 55.1% directional trend but with an added ‘strength index’ based on how 

strong that movement for (t+1) might be. A strength index could be a multiplier index 

range, with a proposed ‘strong’  S&P 500 movement attributing a larger multiplier to 

the base level bet.   

 

The addition of a further process to the RPA will create a significant amount of 

computational complexity, and hence increase in computational time, but would 

clearly refine the forecast and increase profit potential. Being able to vary bet sizes 

each day would lead to a greater profit potential – the architecture would be able to 

facilitate and exploit larger moves in a specific index. 

 

6.5.5 Time frame of prediction result 

Currently I am using the difference in movement between (t) and (t-1) when 

compared with a historical data set  to form my prediction for the S&P 500 at (t+1). 

Results in Chapter 6 show that forecasting (t+2/3/4) is less accurate (See Fig 6.2).  

Further work could be carried out to establish whether the actual difference between 

(t) and (t-2) gives a more accurate forecast to predicting the S&P 500 at (t+2).  

Similarly it would be interesting to look at (t+0.5) and looking at whether there is any 

shorter term reaction of the S&P 500 to a change in the chosen FMD inputs when 

computing the RPA.  Establishing a (t+0.5) prediction result would mean i) that the 

RPA would have to compute two prediction results each day, and ii) that two prices 

would be required for each of the 51 FMD inputs, perhaps a mid-session price and a 

close price. 

 

6.5.6 Historical days data 

In my research I only tested 15,30, 60 and 90 historical days data.  In order to 

improve the efficiency and accuracy of the RPA the number of historical days data 

used to form the prediction result could be tested either side of the 60-day optimum. 
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6.5.7 Establishing a reliable data source  

The daily values of the 51 FMD inputs are available from a number of different 

sources, including Bloomberg, Reuters, Citi Bank, Goldman Sachs. One of the 

problems I have experienced is that the data can vary slightly from source to source, 

which could obviously lead to a difference in the prediction outcome when computed 

through the RPA.  It is essential to check that the actual values used are accurate.  My 

approach will be to continue to look at varied data sources using a mid-price 

approach. As the RPA is currently being used to predict the directional trend of the 

S&P 500 at (t+1), there are only 51 actual values to be used each day.  These will be 

input manually into an electronic spreadsheet.  

 

An area that I wish to explore as part of my future work is to link-in the input data 

relating to the FMD, directly into the GPU to remove human intervention. This will 

also be an important approach if looking  to reduce the prediction timeframe to less 

than (t+1) and understand whether adopting multiple prediction per day strategy 

influences the directional trend forecast accuracy. 

 

6.5.8 Predict other indices 

As there is a variety of indices which combines groups of companies, currencies and 

commodities, an opportunity exists to see if using the RPA architecture enables a 

directional trend prediction to be made on these indices. Obviously the FMD inputs 

would be different for each individual index and further work would be required to 

understand which FMDs would be most relevant to predict the movement of these 

different indices.  For example, work could be conducted to analyse indices such as 

the CAC40 (see Fig 6.3), over a  benchmark French stock market index that 

represents a capitalisation-weighted measure of the 40 most significant values 

amongst the 100 highest market caps on the EuroNext Paris (see Fig 6.4), and the 

DAX30, a blue chip stock market index comprising the 30 major German companies 
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trading on the Frankfurt Stock Exchange. Both these indices  have a much smaller 

number of component companies compared with the larger S&P 500.   

 

Figure 6.4: CAC40 component companies (Yahoo Finance, 2014d)  

 



103 
 

 

Figure 6.5: DAX30 component companies (Yahoo Finance, 2014e)  

 

It would be interesting to see which inputs are affected, or influenced by these smaller 

indices, and whether by using these chosen FMD inputs, it is possible to predict their 

directional trend with the same success as achieved by the RPA when predicting the 

S&P 500.  It would be important to understand how these indices are constructed and 

the way in which component companies are admitted or removed. The liquidity of the 

indices may be relevant when commercialising the RPA. 
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6.5.9 Predicting currency pairs 

It would be interesting to apply the RPA to predict currency pairs. The foreign 

exchange (forex) market is the largest and most liquid of the financial markets 

(Oanda, 2014). Using the U.S. Dollar as an example, daily market activity often 

exceeds $4 trillion a day, with over $1.5 trillion of that conducted in the form of spot 

trading. The volatility of the forex market enables traders to take advantage of 

exchange rate fluctuations for speculative purposes (ibid.).  Fig 6.5 displays the sheer 

size of the forex market in comparison to both the NASDAQ and the NYSE. For this 

reason, there is a real opportunity to utilise the benefits of trading currencies, 

combined with the reactive nature of the RPA, to produce a predictive architecture 

that operates under more volatile and highly liquid market conditions.  

 

 

Figure 6.6: NASDAQ and NYSE dollar value in billions (USD) 

 

Having outlined the key areas where I believe the architecture of the RPA can be 

exploited and developed for application in other areas in finance, the final chapter will 

draw my findings into concluding remarks.  
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Chapter 7 

Conclusions 

The primary aim of this thesis is the development of a new approach to forecasting 

financial markets using a novel computer algorithm, which I have referred to 

throughout as the RPA. The S&P 500 was used as the test index throughout the thesis. 

In this chapter I will reflect on the end points of the proceeding chapters, from which 

several indicators arise for consideration as future work. 

 

The focus in Chapter 2 was to review previously published work on financial 

forecasting techniques. Current methods of forecasting the financial markets require 

highly intensive algorithms as the parameter inputs and computational complexity 

needed to create meaningful prediction are very large.  Two of the most popular 

methods used are Artificial Neural Networks (ANNs) and Support Vector Machines 

(SVMs), which are able to predict the stock market with some success. Different 

approaches have inherent advantages and disadvantages.  An ANN involves a 

network of processing artificial neurons so that they exhibit complex global 

behaviors, determined by the connections between the processing elements and 

element parameters. The disadvantage of the ANN approach lies in scalability; whilst 

it is possible to implement in hardware, it is computationally inefficient and relatively 

computationally power hungry. Scalability lies in the ability of a system, network or 

process to handle a growing amount of work in a capable manner or its ability to be 

enlarged to accommodate that growth (Bondi, 2000). Traditional ANNs using the 

back-propagation algorithm do not scale well as each neuron in one level is fully 

connected to each neuron in the previous level (Long & Gupta, 2008), hence slowing 

the process down considerably. 

 

The standard SVM takes a set of input data and predicts, for each given input, which 

of two possible classes forms the input, making the SVM a non-probabilistic linear 

classifier. SVMs are not readily scalable and are hence unsuitable as a solution to the 

task of predicting the S&P 500. The conclusions of my review of ANNs and SVMs 
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are that these methods are not appropriate for further development to predict the 

directional trend of the S&P 500 and that a new approach is required.  

 

In Chapter 3 my new bio-inspired algorithmic approach, the Regan Predictive 

Algorithm (RPA), is described, based on predicting tomorrow’s value of the S&P 500 

by looking closely at a wide range of financial factors, 51 in total. These factors were 

chosen as they influence the performance of the member companies within the index 

and link the predicted values back to the past values of the index. In the latter part of 

the chapter, the algorithm was successfully tested to prove the concept using MatLab, 

and up to 6 FMD inputs due to the severe computational limitations of its 

implementation. Having explored different hardware options, including FPGA, it 

became clear that a novel approach was required to facilitate the computational 

complexity of the RPA so that a result is obtained in less than the 24-hour time frame 

in order to predict (t+1) tomorrow’s S&P 500 closing price.  

 

Having assessed and considered various hardware options to meet the RPA’s 

requirements, the latest graphics processing units (GPU) appeared to offer a practical 

solution and this development formed the basis of Chapter 4.  The GPU was chosen 

because of its inherent capability of handling very large data sets and processing 

information in parallel extremely rapidly. This meant that the RPA was able to 

compute a far greater number of FMD inputs and hence significantly improve 

prediction performance and the scope for further  development of the system. Initial 

results using a GPU computational engine confirmed that the GPU was ideally suited 

to facilitate the computationally intense RPA. The results from my initial proof of 

concept in MatLab were mirrored when applied to the GPU. Moreover, as anticipated, 

the GPU greatly reduced the computational time with a speed-up of 150x when 

running the RPA with 6 FMD inputs. 

 

The focus of Chapter 5 was to establish at what point increasing one extra FMD input 

used to produce a buy/sell position for predicting the S&P 500 will lead to a 

detrimental effect in the directional trend forecasting. Also in this chapter, a further 
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aim was to establish the optimum number of FMD inputs (out of the total 51) to be 

computed into the RPA, the optimum being the number of FMD inputs that produces 

the highest directional trend accuracy in predicting the S&P 500. I established that, 

even using the optimised GPU hardware, it would not be possible for the RPA to 

produce a prediction result using all 51 FMD inputs. This is because the number of 

combinations would extend the computational time to significantly over the 24-hour 

maximum. Interestingly, through extensive testing, this limitation did not prove to be 

important because I found that increasing the number of chosen FMD inputs above 9, 

would lead to severe financial ‘noise’ and actually start to reduce the directional trend 

accuracy of the prediction result. Financial noise refers to a theory of pricing 

developed by Fischer Black (1986). To Black, noise is the opposite of information in 

that sometimes it is hype and other times it is inaccurate ideas or data. Noise is 

everywhere in the economy and we can rarely tell the difference between it and 

information (ibid.) 

 

Having identified 9 FMD inputs as the optimum, it is important to highlight the fact 

that these 9 chosen FMD inputs are dynamically selected by the RPA on a daily basis. 

This somewhat counterintuitive finding, I believe, is because the RPA automatically 

reacts to the changing market environment. 

 

The final step in developing the RPA is reported in Chapter 6, which is focused on 

further improvements and optimisation with the objective of maximising the 

directional trend accuracy. In this chapter I tested the two remaining trade-offs which 

I believed would challenge the RPA’s efficiency. These tests focused on establishing 

the optimum number of historical days data to be used when forming a prediction 

result and understanding whether predicting tomorrow (t+1) or future days (t+2 etc.) 

influences the RPA’s directional trend accuracy. Having tested from 15 to 90 days 

historical data, I found that 60 days represented the optimum. One might have 

expected that using 90 days would give a better result than 60; this could well be due 

to the longer period extending across a greater variation in financial market stability, 

thus resulting in poorer directional trend accuracy than the 60-day time period. 
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In testing for the optimal prediction time frame, I found, as expected, that predicting 

for tomorrow (t+1) is the optimum. This confirms that it is necessary to run the RPA 

on a daily basis as the accuracy of predicting (t+2, t+3 etc.) is significantly worse, 

indicating that the movement of the chosen FMD inputs is correlated with a change in 

the price of the S&P 500. The fact that the algorithm relies on historical data does 

mean that it will not be able to predict any violent downward trends such as those 

encountered at the onset of a financial crash. 

 

In August 2014 I had a paper published at the World Academy of Science 

Engineering and Technology (WASET) conference in Vancouver, Canada.  The paper 

is titled “Novel GPU Approach In Predicting The Directional Trend Of The S&P 

500” and focuses on the core findings of this research thesis [See Appendix 3]. Upon 

presenting my findings of this thesis in Vancouver, I was happy to be met with a 

series of interested and  insightful questions on my work and subsequently, I have 

been invited to talk at a conference run by the same organisation in London later this 

year. 

 

Going forward, the intention is to create an investment fund using the RPA system. I 

am passionate that when trading real time data to predict the S&P 500, there is to be 

virtually no human intervention and the fund will operate on purely a mathematical 

basis. Whilst I have proven to successfully predict the S&P 500 at more than 55%, it 

must be said that my RPA can in no way forecast sudden unexpected changes in  

market conditions, for example the 2007 economic crash. See Appendix 4 – a 

template for the RPA output page. This page includes the following information that 

is processed by the RPA market close: RPA chosen inputs, % of chosen inputs as 

proportion of total set, S&P close price value (t-1), S&P close price value (t), RPA 

S&P prediction value, Actual S&P % movement (t-1 to t). 

 



109 
 

Looking even further forward, I will continue to research and develop areas outlined 

in the section of this thesis on ‘future work’ and apply the RPA architecture to predict 

other areas within finance, namely the hugely liquid foreign exchange market.  I will 

also look at analysing the actual process of the retina and applying these 

methodologies  to financial prediction. I am extremely excited at the prospect of 

commercialising the RPA and further developing other areas that the RPA can be 

applied. 

 

Finally, I have reached the end of the thesis and can confidently state that my original 

goal has been achieved. Returning to Lao Tzu’s quotation that was the opening 

gambit at the start of the thesis (Chapter 1 Introduction, p1) “Those who have 

knowledge don’t predict. Those who predict don’t have knowledge”.  I can add a third 

sentence, “Those who have the right information and the resources to interpret it can 

predict with reasonable confidence.” 
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Appendices  

 

Appendix 1: 51 chosen FMD inputs with their individual daily values 
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Chosen 1  Chosen 2  Chosen 3  Chosen 4  Chosen 5  Chosen 6  Coeff 0  Coeff 1  Coeff 2  Coeff 3  Coeff 4  Coeff 5  Coeff 6  Yesterday Actual  Predicted Correct  Error

0 7 10 24 33 37 174.9566 0.405799 -227.078 193.3567 149.7693 -181.952 10.05389 857.39 887.68 858.29  true 55344.76

0 8 10 24 29 37 375.0888 0.403997 -376.104 241.7645 114.3335 -84.9509 14.57439 887.68 896.24 893.22  true 54546.74

0 8 10 24 29 37 376.1832 0.404277 -375.511 240.9287 114.4685 -85.4788 14.59072 896.24 816.21 883.6  true 54552.92

0 7 10 24 32 37 116.3449 0.395306 -251.978 196.3215 155.0521 -160.602 12.12445 816.21 848.81 804.47  false 56526.06

0 8 10 24 29 37 325.3526 0.377678 -386.674 265.2222 118.4881 -83.3611 15.57265 848.81 870.74 845.75  false 55114.66

0 8 10 24 29 37 371.8874 0.38944 -407.758 268.0019 120.4865 -82.7219 15.82509 870.74 845.22 852.17  true 54958.42

0 8 10 24 29 37 349.0467 0.386922 -397.522 265.6543 118.8716 -83.3932 15.86488 845.22 876.07 844.43  false 54842.9

0 8 10 24 29 37 357.1331 0.378868 -388.007 257.5784 120.8512 -86.1574 15.70117 876.07 909.7 818.73  false 54399.01

0 5 24 27 28 37 709.3607 0.316569 -186.232 189.6986 -396.922 323.4165 12.71211 909.7 888.67 903.48  true 57246.63

0 5 24 27 28 37 711.0541 0.309506 -187.418 192.8305 -406.999 333.2163 13.09832 888.67 899.24 895.45  true 57227.57

0 5 24 27 28 37 742.4427 0.288245 -197.859 203.9208 -405.192 331.0682 13.53389 899.24 873.59 885.59  true 54198.93

0 5 24 27 28 37 732.5406 0.291251 -195.454 202.1301 -409.429 335.3894 13.64367 873.59 879.73 887.31  true 54273.25

0 5 24 27 28 37 707.4339 0.295948 -188.534 194.354 -396.819 325.2039 13.76692 879.73 868.57 921.55  false 51887.93

0 5 15 24 25 37 991.3112 0.219818 -254.352 87.46437 410.1666 -332.146 10.82977 868.57 913.18 923.49  true 51374.62

0 5 15 24 25 37 1017.333 0.209618 -254.451 90.41646 419.7301 -345.116 10.65938 913.18 904.42 961.84  false 51180.88

0 5 15 24 25 37 1042.098 0.196692 -246.106 95.37113 424.15 -357.8 9.256463 904.42 885.28 947.44  false 53649.72

0 5 16 24 33 37 679.8039 0.216945 -176.496 81.04516 196.0208 -164.012 7.963385 885.28 887.88 928.34  true 54900.69

0 20 24 29 35 50 -448.732 0.513371 128.8365 78.36035 -103.056 5.016551 2.806785 887.88 871.63 902.21  false 54745.87

0 20 24 30 35 50 -584.465 0.624357 145.608 70.21762 -147.307 4.99906 3.288126 871.63 863.16 857.17  true 53155.05

0 20 24 30 35 50 -701.024 0.691514 157.606 67.03557 -156.105 4.777779 3.724107 863.16 869.42 833.11  false 48023.65

0 20 24 30 31 40 -468.869 0.394086 248.8092 112.8649 -263.524 116.282 9.935666 869.42 890.64 843.6  false 44665.82

0 20 24 30 31 40 -398.273 0.373018 218.3701 107.3114 -271.815 141.8118 9.04584 890.64 931.8 862.38  false 45714.05

0 3 4 19 37 50 -771.699 0.546129 -0.40944 0.376708 223.3187 6.253488 3.207764 931.8 927.45 952.57  false 47408.48

0 11 21 30 31 35 -186.796 0.300839 77.58392 126.1518 -224.047 177.0818 7.169314 927.45 934.7 939.77  true 44833.44

0 5 30 31 40 48 -410.98 0.361884 185.3347 -513.143 433.4571 4.92163 -0.52212 934.7 906.65 917.25  true 41522.79

0 5 30 31 40 48 -409.695 0.362255 188.3902 -513.945 433.3563 4.840546 -0.5507 906.65 909.73 925.11  true 41595.38

0 5 30 31 40 48 -377.032 0.363898 186.2498 -498.111 424.5762 4.824035 -0.63871 909.73 890.35 918.92  false 40137.92

0 5 30 31 40 48 -440.622 0.377769 194.1801 -509.495 417.6544 5.23047 -0.54243 890.35 870.26 864.63  true 38817.05

0 5 30 31 40 48 -450.418 0.365052 194.0335 -518.53 423.1157 5.237797 -0.45601 870.26 871.79 855.63  false 38392.61

0 13 23 30 31 48 200.8965 0.309389 84.01376 53.39249 -301.327 218.1099 -0.63361 871.79 842.62 871.31  true 37016.69

0 13 23 30 31 48 226.5789 0.301479 84.03696 54.26023 -298.733 220.6403 -0.70596 842.62 843.74 842.6  false 37308.56

0 13 17 30 31 35 -239.813 0.258553 90.89164 338.8694 -248.747 192.4151 4.700333 843.74 850.12 833.79  false 33759.02

0 13 23 30 31 48 179.7917 0.334196 85.67708 53.75867 -291.596 201.3394 -0.64105 850.12 805.22 860.36  false 33842.24

0 13 17 30 31 35 -298.224 0.25144 99.34077 378.0062 -273.224 213.9411 4.645552 805.22 840.24 819.65  true 34033.13

0 3 4 26 27 35 236.5058 0.247463 -0.25897 0.224297 258.0522 -251.733 5.694381 840.24 827.5 826.53  true 33229.74

0 25 27 29 35 38 450.2321 0.2954 119.204 -125.658 -52.2105 16.40434 -13.3563 827.5 831.95 793.51  false 31333.86

2 7 25 35 44 48 704.2542 0.091119 -94.2095 109.3889 8.248094 17.2785 -3.83862 831.95 836.57 837.44  true 31075.35

2 27 28 35 44 48 372.1387 0.100068 255.6544 -182.154 9.369928 15.80966 -3.66316 836.57 845.71 852.21  true 30557.16

2 15 23 29 40 48 -50.9379 0.145559 65.59716 65.89044 -118.632 11.54269 -0.7028 845.71 874.09 867.18  true 30387.11

0 4 25 35 44 48 555.1336 0.159127 0.041981 60.24784 8.373215 16.34528 -3.70579 874.09 845.14 881.44  false 26869.21

0 25 28 35 44 48 651.3258 0.226965 57.22445 -32.7413 7.378963 13.69561 -2.96679 845.14 825.88 862.82  false 27664.58

0 25 28 35 44 48 612.3293 0.238166 63.0995 -36.2035 7.497245 12.20854 -2.72383 825.88 825.44 846.05  false 28149.25

0 25 27 35 44 48 638.5672 0.239739 69.61196 -44.5449 7.277479 12.17877 -2.72975 825.44 838.51 844.91  true 28220.77

0 17 35 36 44 48 478.1192 0.247583 281.9648 21.50247 -17.68 13.46643 -2.92671 838.51 832.23 827.66  true 27985.62

0 17 35 36 44 48 486.1652 0.242772 284.5168 22.21756 -17.9215 14.66957 -3.13579 832.23 845.85 830.54  false 27581.3

2 3 13 14 35 38 422.8235 0.549903 -0.65862 156.3215 -157.505 21.00227 -21.0297 845.85 868.6 852.39  true 25154.42

2 3 13 14 35 38 431.4258 0.55091 -0.66276 153.3187 -153.278 20.25167 -20.3992 868.6 869.89 889.17  true 25323.4

2 3 13 14 35 38 406.1748 0.555714 -0.65957 157.2033 -161.255 22.59023 -22.8179 869.89 827.16 888.2  false 24514.35

Appendix 2: GPU testing results (6 FMD inputs/30 days historical data/predicting tomorrows directional trend of the S&P 500) 
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2 3 5 29 35 38 362.9554 0.442316 -0.53821 65.61565 -93.0051 20.24575 -20.5083 827.16 833.74 868.98  true 24473.57

1 2 5 18 23 35 175.3529 -0.77899 0.454995 111.7616 442.3306 -137.707 8.069269 833.74 835.19 863.95  true 23141.93

14 18 23 25 27 35 655.6693 55.73843 416.2215 -123.602 183.9008 -195.671 11.65491 835.19 826.84 813.55  true 21616.73

14 18 23 25 27 35 665.917 58.04478 402.2381 -122.61 183.8146 -197.132 11.54807 826.84 789.17 807.03  true 21525.18

11 23 25 28 41 45 689.9644 64.4122 -191.254 274.3183 -209.993 12.92866 36.14612 789.17 788.42 829.37  false 17811.69

18 23 25 28 41 45 568.9402 252.5385 -170.83 249.7933 -185.114 11.04513 39.25282 788.42 778.94 823.4  false 18037.37

6 11 23 30 42 46 127.1642 229.4491 78.86184 -189.252 -175.698 15.20765 74.23225 778.94 770.05 796.76  false 19261.42

18 22 27 30 32 45 644.0446 796.5523 -411.846 -153.947 -220.007 363.5674 40.78563 770.05 743.33 758.05  true 17346.38

18 22 27 30 32 45 637.0228 850.6473 -427.106 -156.408 -250.366 366.2227 45.59926 743.33 773.14 744.01  true 16683.85

18 22 27 29 32 45 668.166 545.567 -352.26 -115.341 -85.9981 269.928 40.48884 773.14 764.9 770.49  true 15339.75

16 19 21 30 31 45 505.5631 -46.281 656.7473 -529.304 -318.645 430.5927 53.8563 764.9 752.83 742.3  true 14293.08

16 19 21 30 31 45 494.8094 -45.1657 642.0548 -512.312 -313.96 428.7106 52.33351 752.83 735.09 763.41  false 14365.36

6 19 22 23 35 45 493.7854 160.9913 273.6419 -198.126 -144.642 4.495789 65.07069 735.09 700.82 747.99  false 14205.52

16 19 21 30 31 45 570.3142 -55.6956 723.1203 -597.242 -348.337 438.1816 59.27158 700.82 696.33 736.53  false 15272.73

2 3 15 39 44 48 695.6092 0.33505 -0.32695 -66.0341 6.046424 12.34743 -2.53255 696.33 712.87 732.22  true 15149.24

4 8 22 28 45 46 594.6733 0.067368 149.4556 -151.104 -102.636 233.1923 -219.896 712.87 682.55 700.66  true 13350.15

4 8 22 28 45 46 562.2465 0.064271 150.3691 -156.936 -93.5193 252.3122 -234.979 682.55 683.38 682.33  false 13251.09

4 8 22 28 45 46 556.2634 0.061781 148.7836 -159.574 -89.4449 255.1503 -235.399 683.38 676.53 679.71  true 13184.01

4 8 22 28 45 46 556.7219 0.061796 142.8604 -162.083 -85.8488 257.9181 -235.667 676.53 719.6 684.62  true 13122.87

8 20 21 27 45 46 836.8608 153.7425 389.4429 -466.492 -109.132 253.1492 -219.56 719.6 721.36 709.42  false 13421.57

4 8 22 27 45 46 510.5361 0.070103 160.0771 -138.61 -95.0507 218.7615 -203.894 721.36 750.74 717.79  false 13049.34

2 10 11 17 28 42 321.2962 0.099113 153.2712 73.03608 -301.026 -193.409 17.31438 750.74 756.55 747.54  false 13465.95

2 10 11 17 28 42 348.2354 0.097148 158.2758 69.45471 -306.785 -198.638 17.01722 756.55 753.89 765.65  false 13249.15

2 10 11 17 28 42 317.5011 0.099568 152.6063 69.03323 -291.078 -190.072 16.8423 753.89 778.12 764.93  true 13274.98

2 10 11 17 28 42 318.7996 0.099201 156.7454 71.09487 -296.726 -192.222 16.57713 778.12 794.35 768.62  false 13427.22

4 9 18 21 27 45 255.6244 0.093293 160.4121 388.7048 -216.3 -128.874 25.59092 794.35 784.04 719.46  true 13370.96

4 18 21 29 45 49 -525.18 0.135892 690.4014 -153.577 -323.723 40.31845 4.299092 784.04 768.54 788.35  false 13613.02

4 8 27 29 42 49 -235.512 0.108418 173.3864 -120.965 -364.778 11.27044 3.688933 768.54 822.92 793.28  true 12876.89

4 8 28 29 42 49 -164.882 0.098659 176.1748 -153.98 -514.317 12.80452 4.640113 822.92 806.12 807.39  true 12630.57

4 8 28 29 42 49 -160.244 0.099003 175.8306 -154.184 -515.136 12.81056 4.611725 806.12 813.88 808.48  true 12621.66

4 8 28 29 42 49 -235.903 0.095444 183.8283 -147.109 -506.625 12.31649 4.919128 813.88 832.86 787.05  false 12417.23

2 8 27 29 42 49 -396.786 0.088962 172.2257 -96.097 -449.034 12.95114 4.852757 832.86 815.94 810.19  true 13383.7

1 5 8 27 42 49 -660.896 0.214736 -131.167 192.024 -128.232 13.01583 6.554827 815.94 787.53 808.08  true 12977.95

1 5 8 27 42 49 -638.409 0.209975 -127.244 191.4211 -129.433 13.24199 6.41217 787.53 797.87 766.51  false 13343.78

0 10 17 26 27 42 463.2113 0.317629 129.7006 -419.767 321.9762 -456.75 18.62761 797.87 811.08 777.65  false 12578.28

0 10 17 26 27 41 514.3178 0.337413 108.9251 -375.659 281.2651 -399.862 12.24703 811.08 834.38 805.68  false 13097.42

4 8 15 28 29 42 629.5564 0.11714 185.4499 -76.9514 -130.225 -685.659 11.09869 834.38 842.5 843.5  true 12553.26

4 10 17 18 28 36 322.5479 0.111618 150.7461 -662.632 447.1471 -156.03 15.00047 842.5 835.48 831.61  true 12461.49

4 10 17 18 28 36 317.7705 0.112182 151.7993 -661.211 443.8282 -154.458 14.68004 835.48 815.55 830.94  true 12445.66

4 8 23 28 42 49 -398.692 0.109048 207.4708 -208.818 -123.114 12.14508 5.556453 815.55 825.16 814.45  false 12302

4 8 23 28 42 49 -430.374 0.107231 211.0351 -209.635 -118.043 11.91623 5.661752 825.16 856.56 817.82  false 12338.86

3 9 17 18 41 49 -1206.68 0.180526 115.3602 -707.9 527.7604 7.922055 8.248262 856.56 841.5 833.44  true 13354.76

1 10 23 28 42 48 709.1501 0.254677 140.8699 -178.231 -156.028 11.60655 -0.62731 841.5 852.06 857.2  true 13168.18

1 10 23 28 42 48 713.5934 0.253725 141.2197 -176.021 -159.327 11.59133 -0.61482 852.06 865.3 836.64  false 13161.6

1 10 17 18 41 49 -579.798 0.229863 59.9233 -744.991 521.9866 8.289558 5.623355 865.3 869.6 840.03  false 13401.41

1 10 17 18 21 49 -712.176 0.238142 76.09072 -423.287 522.0082 -104.531 6.686992 869.6 832.39 856.84  true 12606.65

1 10 17 18 21 49 -691.704 0.229501 76.36001 -460.828 593.4312 -124.495 6.742032 832.39 850.08 822.13  false 13047.94

1 10 28 29 48 49 -155.888 0.258647 141.473 -103.67 -269.876 -0.72236 5.438645 850.08 843.55 841.69  true 13058.77

1 10 28 29 48 49 -152.605 0.25867 141.927 -103.505 -271.879 -0.72873 5.421622 843.55 851.92 844.55  true 13061.69

1 10 28 29 48 49 -34.1257 0.266196 135.8959 -109.764 -307.161 -0.76958 5.003122 851.92 866.23 834.1  false 12890.57
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Appendix 3: ICFPF Conference Paper (Regan et al., 2014) 

 

Abstract— Our goal is development of an 
algorithm capable of predicting the directional trend 
of the Standard and Poor’s 500 index (S&P 500).  
Extensive research has been published attempting to 
predict different financial markets using historical 
data testing on an in-sample and trend basis, with 
many authors employing excessively complex 
mathematical techniques.  In reviewing and 
evaluating these in-sample methodologies, it 
became evident that this approach was unable to 
achieve sufficiently reliable prediction performance 
for commercial exploitation. For these reasons, we 
moved to an out-of-sample strategy based on linear 
regression analysis of an extensive set of financial 
data correlated with historical closing prices of the 
S&P 500. We are pleased to report a directional 
trend accuracy of greater than 55% for tomorrow 
(t+1) in predicting the S&P 500. 
 

Keywords— financial algorithm, GPU, S&P 
500, stock market prediction 

INTRODUCTION 

Current methods of forecasting financial 

markets require computationally intense 
algorithms because the parameter inputs 
needed to create a meaningful prediction are 
extremely large. Two of the most popular 
methods used are Artificial Neural Networks 
(ANNs) [1] and Support Vector Machines 
(SVMs) [2], which are able to predict financial 
markets with some success. Both approaches 
have inherent advantages and disadvantages. 
An ANN involves a network of processing 
artificial neurons that can exhibit complex 
global behavior, determined by the 
connections between the processing elements 
and element parameters [3]. The disadvantage 
of the ANN approach lies in scalability; whilst 
an ANN is possible to implement in hardware, 
it is computationally inefficient and power 

hungry.  
The standard SVM takes a set of input data 

and predicts, for each given input, which of 
two possible classes forms the input, making 
the SVM a non-probabilistic binary linear 
classifier [4]. SVMs are not readily scalable 
and cannot be easily implemented onto a 
dedicated hardware [5], and hence we believe 
are unsuitable for predicting the directional 
trend of the S&P 500. 
 
 

The aim of this work is to develop a 
forecasting algorithm for financial markets, 
which overcomes the scalability limitations 
inherent in both ANNs and SVMs. The 
expectation is that this should be able to 
process extremely efficiently in parallel, and at 
great speed, to obtain meaningful out-of-
sample results. The S&P 500, which comprises 
the 500 largest US companies based on market 
capitalisation, was chosen as the test index. 
The scale and complexity of the hugely liquid 
S&P 500 creates an incredibly difficult entity 
to predict.  

The implementation is capable of significant 
gains when choosing optimal parameters for 
forecasting future financial data. We have 
adopted a radically different approach in our 
work, namely to predict tomorrow’s value of 
the index by looking closely at a wide range of 
financial factors that influence the financial 
performance of the member companies within 
the index, and link the predicted values back to 
the past values of the index.  The values of 
these financial market data (FMD inputs) are 
readily available and include items such as 
currency pairs, key commodity indices and 
other financial indices.  These FMD inputs are 
then used in a linear regression algorithm to 
compute tomorrow’s (t+1) value of the S&P 
500 index.  Changing the number of FMD 
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inputs affects the directional accuracy of the 
prediction result; increasing the number of 
FMD inputs significantly increases the 
computational complexity and hence the time 
taken to compute a daily result. Another key 
aspect of our algorithm is that its architecture 
is intended for commercial application. 
Therefore, it is imperative that each prediction 
result must be computed in less than 24 hours.  
This is so a result can be obtained today (t) for 
tomorrows (t+1) US market open. 
 

Architecture of the Algorithm 
Development of financial forecasting 

algorithms that depend entirely on historical 
data are referred to as in-sample modeling [6].  
Algorithms that rely entirely on in-sample 
modeling are effectively trend based.  
However, as Granger [7] stated, “one of the 
main worries about the present methods of 
model formulation is that the specification 
search procedure produces models that fit the 
data spuriously well, and also makes standard 
techniques of inference unreliable”. Out of 
sample testing is essential to guard against 
curve fitting [8]. Many authors have attempted 
to use an in-sample approach with moderate 
success.  However, the fundamental 
assumption that the future is entirely 
determined by the past misses the facts that an 
index such as the S&P 500 is an aggregation of 
the performance of 500 individual companies.  
In recognizing this limitation, we have decided 
to develop an algorithm based on an 
alternative methodology. 

 
The key elements that underpin our system 

are: 
 

1. Identification of 51 financial market 
data (FMD) inputs, including other 
indexes, currency pairs, swap rates, etc., 
that we have proved influence the 
movement of the S&P 500. 

 
2. The use of an extensive historical data 

set (actual daily closing prices of the 
chosen 51 FMD inputs and S&P 500). 

 
3. The ability to compute this large data 

set (comprising more than 12.7 billion 
combinations) in a time frame of less 
than 24 hours. 

 
The data set is fed into a linear regression 

algorithm to determine the predicted value of 
tomorrow’s (t+1) S&P 500 closing price.  

 

Distributed Algorithm 
What we require is to rapidly compute the 

best results of a given subset of parameters. In 
order to reduce the complexity of the 
algorithms architecture, the available data was 
inspected by A.J. Regan, an experienced 
market trader, and reduced down to 51 key 
FMD inputs. Having identified these 51 
significant market parameters for forecasting 
the directional trend of the S&P 500, the result 
is a mathematical function that is 
computationally intense. Fig. 1 displays the 
number of possible combinations increasing as 
each FMD input is added. Increasing the 
number of FMD inputs above 10 produces an 
unmanageably large data set for even the 
fastest computational technology to process 
within our stringent 24-hour time limit. 

 

 
 

Fig. 1   Possible number of RPA combinations 
vs. FMD inputs 

 
The requirements for a distributed 

implementation of the S&P 500 consist of two 
key components, a regression core, which 
forecasts using a given set of parameters, and a 
data bus, which is used to shift information in 
a daisy chain fashion to compare all the 
results. This architecture can be seen in Fig. 2. 
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(1) 
 

 
 
 
 
 

Fig. 2   Distributed architecture for forecasting the 
S&P 500 for 3 FMD inputs. (left) Regression core, 

(right) data bus for comparison 
 
The regression core computes a simple 

linear regression based on the parameters 
described by (1): 

  
 
 
where yt is our forecast, xn is the input data 

and an are the weights which are optimized by 
computing the minimum mean squared error 
(MSE) of yt with yt-1. 

The aim is then to select the ‘best’ FMD 
input parameters x1, x2, x3 (in this case) from a 
given subset of FMD input parameters, 51, 
which affect S&P 500. The algorithm works 
on the basis that it can compute the best MSE 
for that given set. To select the best 
parameters, a data bus is used which shifts the 
input parameters such that a regression is 
computed for all possible combinations.  

As is shown in Fig. 1, the initial architecture 
will compute in parallel 10 possible 
combinations at a time, and then sequentially 
cycle through the FMD input parameters until 
all possible combinations are evaluated. 
Throughout this process the optimum set of 
parameters yielding the minimum MSE is 
constantly saved. These are then used to 
conduct the forecast.  

Proof of Concept 
In order to test the feasibility of the 

algorithm, initially it was programmed in 
MATLAB and demonstrated on a 12-core 
Central Processing Unit (CPU). Results shown 
in Table 1 confirm the functionality of the 
algorithm achieving a directional efficiency of 
greater than 50% for a minimum of six inputs. 
However, the time to find the best six inputs 
was extremely long given the limitations of 
processing in MATLAB. In order to fully 
exploit the potential of the algorithm and to 
conduct a more exhaustive study of the 
optimum number of input parameters in less 
than our 24-hour time constraint, a more 
computationally powerful hardware platform 
was needed. 

 
 

TABLE I    

DIRECTIONAL RESULTS, ACCURACY AND SPEED OF 
ALGORITHM ON A PC BASED SYSTEM 

 

51 FMD 
Inputs 
data 

1 2 4 6 

Direction
al Result 

11/30 14/30 15/30 17/30 

RMSE 28.57 33.02 24.784 19.446 

Ave. 
Time 
Elapsed 

0.0276
0 

.6619
6 

16.392
2 

36096.6
5 

 

GPU Based Computational 
Engine 

In order to successfully meet the 
requirement of handling such a large data set 
to complete the prediction target on time, we 
decided to adopt a novel Graphics Processing 
Unit (GPU) based computational engine which 
we anticipated would overcome the limitations 
of using MatLab on a conventional CPU 
system. 

 
To support this, we decided to build a 

bespoke hardware unit, which consisted of a 6-
core CPU (i73930K) and 3 GPU cards (EVGA 
GeForce GTX TITAN [9]), supported with 
32GB of RAM. Each of the 3 GPU cards 
houses 2688 cores. The software is designed so 
that the CPU first initialises and organises the 
data, before feeding to the 8064 GPU cores, 
which undertake the extremely intensive 
processing in parallel. The algorithm is 
particularly suited to a GPU approach as we 
were able to re-engineer the algorithm from a 
linear execution path (as it was in MatLab), to 
a parallel execution path. This enabled us to 
utilise the full 8064 cores, all of which 
calculate in parallel, before passing the results 
back to the CPU for analysis.  

 
In order to fully utilise the performance of 

the 8064 cores, a number of items were critical 
and needed to be thoroughly explored: for 
instance it is extremely important to organise 
the pipeline and the memory for optimum 
performance because severe cache misses will 
stall the pipeline and be extremely detrimental 
to performance.  The modern GPU has been 
designed around handling very specific data, 
namely vertices, textures and shading models, 

yt = a1x1 +a2x2 +a3x3



 

124 
 

and is unlike a purely CPU architecture, which 
has been designed to efficiently handle a huge 
variety of memory accesses.  A deep 
understanding of this process allowed us to 
optimise and reconfigure the data set to be 
'GPU friendly' in a format that perfectly suits 
its architecture for use in financial prediction. 
To highlight the importance of organising the 
data, it should be noted that in early tests 
almost 90% of theoretical performance was 
lost due to the GPU pipeline stalling caused by 
poor memory configuration. 

 
Through this extensive optimisation of our 

GPU architecture, we were able to achieve a 
sufficient speed up to meet key element (3), 
reducing the initial MatLab processing time 
which was considerably over 24 hours, by 
approximately 95% with a non-optimised GPU 
and further reducing the procession time by a 
further 87% on the fully optimised GPU, as 
shown in Fig. 3. 

 

Fig. 3   Processing time of algorithm – 6 FMD inputs 

 

Results and Evaluation 
The In achieving our final and most accurate 

directional trend result in predicting the S&P 
500, it was necessary to conduct an extensive 
range of tests. We explored a number of trade-
offs which were tested using an 8-year data set 
of both the S&P 500 closing price and the 
chosen 51 FMD inputs. We focused on three 
significant trade-offs that we believed would 
influence the result of our algorithm to 
establish an optimum result in predicting the 
S&P 500: 

 
1) Testing to determine the optimum 

number of historical days data that is used to 
create each prediction cycle. The optimum was 
established at 60 days. 

 
2) Testing to determine the optimum 

number of FMD inputs to be selected when 
computing the algorithm. This varied from 1 to 
10 and we established 9 to be optimal. 

 
3) Testing whether a lag exists between 

the movement in value of each FMD input and 
the price of the S&P 500. We therefore tested 
establishing a prediction for tomorrow (t+1) to 
four trading days later (t+4). We concluded 
that no lag exists, hence (t+1) remains the 
optimum. 

 
Having established the optimum parameters 

for our algorithm and in doing so generating a 
successful directional trend of greater than 
55%, it is important to explain the architecture 
of each individual test cycle.  Depending on 
market conditions at the time, the FMD inputs 
to form the basis of the prediction change.  
Each daily prediction cycle produces a ‘Figure 
of Merit’ (FoM), a weighted total of the 
chosen FMD inputs for that individual (daily) 
cycle. Fig. 4 displays the FoM in the form of a 
pie chart. 

Fig. 4 represents one 60-day cycle computed 
by our algorithm. This cycle used the prior 60 
days ending at time = t = 24th November 2008 
to predict (t+1) = 25th November 2008.  This 
particular test was carried out selecting 6 FMD 
points (of the total set of 51), these are the 6 
inputs with the lowest MSE against the daily 
movement of the S&P 500 closing price. 
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Fig. 4  Figure of Merit weighted total – 6 FMD 
inputs 

 
Fig. 4 represents one 60-day cycle computed 

by our algorithm. This cycle used the prior 60 
days ending at time = t = 24th November 2008 
to predict (t+1) = 25th November 2008.  This 
particular test was carried out selecting 6 FMD 
points (of the total set of 51), these are the 6 
inputs with the lowest MSE against the daily 
movement of the S&P 500 closing price.  It is 
important to note that depending on daily 
changing economic conditions, this weighted 
total will change; different inputs representing 
different weightings will emerge as the 
economic climate alters.  This dynamic and 
automatic feature of our algorithm is 
imperative and ensures that the algorithm is 
constantly adapting to the ever-changing 
economic environment by producing an 
entirely different weighting of FMD inputs 
each day (cycle).  This approach is particularly 
important when predicting the complex 
aggregated S&P 500 index.  

 
As a result of establishing the optimum 

parameters for the algorithm, we can confirm 
that we have obtained a directional trend of 
greater than 55% in predicting the S&P 500 at 
(t+1). 

 

 Conclusion and Future Work 
A novel architecture algorithm for 

predicting S&P 500 has been designed and 
implemented.  The data that needs to be 
processed within a 24-hour period demands a 
very high speed and highly parallel 
computation engine which was realized using 
an advanced GPU design, optimised to meet 
our particular requirements.  The work we 
have presented here is on going.  The authors 
plan to refine the design further to improve 
accuracy and also and adapt it for other 
financial market prediction tasks, such as 
movement of currencies and other key stock 
indices. 
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Appendix 4: Table – daily output results of RPA 

 

Below is a template of the RPAs daily output results of the RPA 

 

RPA S&P 500 daily outputs 
[Insert 
Date] 

Chosen 
input 

% of chosen 
inputs 

S&P close price value 
(t-1)  

S&P close price value 
(t) 

RPA S&P prediction 
value 

Actual S&P % movement (t-1 
to t) 

Input 1           #DIV/0! 

Input 2           #DIV/0! 

Input 3           #DIV/0! 

Input 4           #DIV/0! 

Input 5           #DIV/0! 

Input 6           #DIV/0! 

Input 7           #DIV/0! 

Input 8           #DIV/0! 

Input 9           #DIV/0! 

 


