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Abstract
In this thesis we exploit the generality and expressive power of the Associative Hierarchical
Random Field (AHRF) graphical model to take its use beyond that of semantic image segmen-
tation, into object-classes, towards a framework for holistic scene understanding. We provide a
working definition for the holistic approach to scene understanding, which allows for the inte-
gration of existing, disparate, applications into an unifying ensemble. We believe that modelling
such an ensemble as an AHRF is both a principled and pragmatic solution. We present a hierar-
chy that shows several methods for fusing applications together with the AHRF graphical model.
Each of the three; feature, potential and energy, layers subsumes its predecessor in generality
and together give rise to many options for integration. With applications on street scenes we
demonstrate an implementation of each layer. The first layer application joins appearance and
geometric features. For our second layer we implement a things and stuff co-junction using
higher order AHRF potentials for object detectors, with the goal of answering the classic ques-
tions: What? Where? and How many? A holistic approach to recognition-and-reconstruction
is realised within our third layer by linking two energy based formulations of both applications.
Each application is evaluated qualitatively and quantitatively. In all cases our holistic approach
shows improvement over baseline methods.
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Chapter 1

Introduction

The thesis of this dissertation is that a holistic approach to scene understanding is both pragmatic

and effective, and can be realised in a principled and efficient manner when represented as a

graphical model.

Within the field of computer vision— The ultimate goal of scene understanding is to build

machines that have the same level of visual understanding as humans do: Build machines that

see like we do. This high level definition is schematically depicted in the top part of Fig. 1-

1, where a digital input stream is transformed to a representation of human level semantics.

However, the exact reasons for why a human, even a young child, can easily understand a scene

remains largely elusive, and mimicking this ease of cognition in a machine has proved to be a

bewildering task. We could go as far as to say that there is an elephant in the room within this

goal: Nobody knows what we see; nobody knows how we see it; and nobody knows why we

are seeing it. Due to this bewilderment, and the driving need for practical solutions to more

specific problems, scene understanding is no longer a stand-alone thesis; it has diverged away

from its general roots, and been broken down into a diverse set of specialised applications.

These are abstracted in the bottom part of Fig. 1-1 as different coloured boxes. Each of these

applications may take an input and transform it to the level of semantics required to perform

the specific task being addressed, such as those that form the focus of the VOC challenge [12]
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(image classification, object detection, semantic image segmentation) or those found in open

source computer vision libraries (some modules of OpenCV [6] could be considered as some

organisation of specific scene understanding tasks).

Figure 1-1: Scene Understanding: The current state of research into scene understand tends to be

fragmented into different tasks, performed on static datasets of consumer photographs (bottom). This is

in stark contrast to the original goal of scene understanding that acts upon dynamic, real world, streaming

visual data and performs at a human level of semantics (top). This creates a, so called, semantic gap

between idealised and realised scene understanding.

This trend away from modelling the whole together, towards modelling the parts of the

whole, separately, is apparently moving in the wrong direction for our thesis, opening a so called

semantic gap [65] (Fig. 1-1). However, this does not necessarily have to be the case—better

performing parts can lead to a better performing whole—and the decoupling of tasks allows for

more focused research that accelerates their individual performances [2, 12, 18, 51, 53, 68]. This
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is the core idea behind our thesis. In order to achieve a whole scene understanding system, we

first need to provide the glue that holds the parts together, and the architecture that allows for an

informed choice of where, and how, to place them. Architecting these systems in such a way that

all the parts are intimately inter-connected is termed Holistic Scene Understanding, popularised

by the pioneering work of Zhu et al. [61], Hoiem et al. [27, 29] and Gould et al. [20, 21, 24]

and sustaining much interest within the machine learning and computer vision communities

[19, 43, 44, 46, 69, 71].

In providing a general goal for such a holistic approach, we desire one that will impact the

practicality of realising a seeing machine, eliminating the proverbial elephant in the room— The

ultimate goal of Holistic Scene Understanding is to ensemble machines that, as a whole, have

a high enough level of visual understanding to mimic seeing as humans do: Build an ensemble

of machines that, in unison, appear to see like we do. An interpretation of this is depicted at the

top of Fig. 1-2, where we envision a plug-n-play system that can ape human behaviour for some

general tasks by automatically configuring the inter-play between a set of task specific modules,

or aspects. We take a step towards this goal by designing a, penultimate, configurable system,

where we manually model the inter-dependencies between the aspects, as depicted in the lower

part of Fig. 1-2.

We assert that taking a holistic approach is: Pragmatic, because it decouples the concern of

modelling (possibly) complex interdependencies between modules, from their (independent) de-

velopment; effective, because the performance of each part can be boosted by the modelling of

their interconnections with other parts; efficient, when the interdependencies are represented by

graphical models, that themselves have been proven to have efficient inference. We demonstrate

these assertions by implementing and evaluating a suite of holistic scene understanding appli-

cations on street scenes, a popular playground for joint modelling [19, 69, 71]. We show how

to configure the existing Associative Hierarchical Random Field (AHRF) graphical model [37]

for fusing different sources of information, thus going beyond its original purpose as a multi-

resolution semantic image segmentation system.
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Closing The Semantic Gap

Binary Code SEMANTICS  

INPUT OUTPUT 

Dynamic Observations Aspects Interconnections
Plug 'n Play Holistic Scene Understanding

Apery Level 

Dynamic Dataset Aspects Interconnections
Con gurable Holistic Scene Understanding

Multi-task Level

Figure 1-2: Holistic Scene Understanding: (Top row) Ultimately we would like to realise an ensemble

system that can take dynamic, real-word, streaming data (top left) and interpret it with a level of semantics

that can mimic, or ape, humans for general vision based tasks (top right). We envision a plug-n-play

system (top middle), where disparate aspects, that can continue to be developed as white box systems,

are automatically fused together when plugged in to a black box holistic engine. We take a step towards

this goal with a configurable system. Our approach (bottom) takes inputs from datasets acquired from a

dynamic source (bottom right), the data is processed by a set of independently developed aspects, here

we treat these as black boxes that perform a certain known task, the outputs of these modules are then

fused with a hand crafted, or configurable, graphical model (bottom middle). The system then outputs

the multiple, enhanced, results from the interconnected tasks. (bottom right)
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1.1 Semantic Image Segmentation with AHRF

The problem of Semantic Image Segmentation (Fig.1-3), a fundamental scene understanding

task, is to give meaning to an image by way of relating semantic labels with it. Semantic la-

bellings can convey different information and can, roughly, be divided into: low level, such as

edges; mid-level, such as groupings; and high level, such as object-classes. We are particularly

interested in the case of object-classes, since the AHRF framework was originally conceived in

order to tackle this problem, and we extend this framework to address holistic scene understand-

ing. AHRF can be considered as higher order Conditional Random Field (CRF) framework in

Input Image Output Segmentation

Labels Road Building Sky Tree Sidewalk Car
Void Column Sign Fence Pedestrain Cyclist

Figure 1-3: Semantic Image Segmentation: The goal of semantic image segmentation is to label every

pixel, or region, of an input image with an object-class label, as shown in the labels palette.

which a semantic image segmentation is inferred via Maximum A-Priori (MAP) approximate

inference. In this context, a first order approximation would only consider elementary units of

an image, such as pixels, a second order approximation would extend this to pairs of pixels, and

a higher order approximation can exploit any subset of pixels, in order to infer the object-class

assignments required to semantically segment the image.

There has been much interest in higher order CRFs. They are successfully used to improve
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2 Pixel

Pairwise

2 Superpixel
Pairwise

n Pixel
Higher Order

n Superpixel
Higher Order

AHRF

Figure 1-4: Hierarchical Grouping with AHRF: Standard approaches to semantic image segmentation

model pairwise relations between pixels with the P 2 Potts cost (red). Robust Pn generalises this to

higher order costs for superpixles (green). AHRF generalises this further by also modelling a hierarchy of

pairwise, and higher order relations between superpixles (yellow).

the results of tasks such as image denoising, restoration [39, 49], texture segmentation [31], ob-

ject category segmentation [32]. The improvements can be attributed to the fact that higher order

relations capture the fine details, including texture and contours, better than pairwise relations.

The AHRF approach to multi-resolution semantic image segmentation builds a hierarchical

representation of the image from multiple unsupervised image segmentations, see Fig.1-4 for

a sketch of these types of groupings. Whilst there are many ways in which such segments,

or super-pixels, could be modelled as a CRF, AHRF follows an intuitive progression of gener-

alisations that, at each step, maintain important properties of approximate MAP inference [5].

The base model is the contrast sensitive second order Potts model [3]: A commonly used CRF

model that both encourages consistency in the labelling of neighbouring pixels, and attempts to

preserve object boundaries in the presence of a contrast change in the image.

The first generalisation moves from pairwise, T 2 Potts, to nth, or higher order, T n Potts [31].

The idea being that each of the regions generated by the pre-segmentation will belong to a single

object in the scene and should therefore be constrained to take the same label. However, this
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hard region consistency constraint is too strong in practice. As often, a single segment may cross

multiple object-class boundaries. The next generalisation adds a segment quality measure and

allows for partial inconsistency, in the segment labelling, making for a more robust model—

Robust T n Potts [32]—which paves the way for, the yet more general, model of AHRF. AHRF

builds upon the weighted version of Robust T n by allowing for a discriminatively trained seg-

ment classifier, which gives a per-class score, rather than a uniform quality score over all labels

for a segment. Further, the modelling of pairwise relations between neighbouring regions gives

smoothness constraints on the segments, as-well-as the pixels. Finally a hierarchy of segmenta-

tions is modelled in such a way that consistency in super-segments, groups of segments, can be

encouraged, as-well-as super-pixels. This generality subsumes many of the common CRF mod-

els defined over segments [37], and has enough expressive power to go beyond multi-resolution

semantic image segmentation, towards holistic scene understanding.

1.2 Holistic Scene Understanding With AHRF

The AHRF graphical model framework has proven to be useful for multi-resolution image pars-

ing. In this dissertation we extend the framework beyond semantic image segmentation towards

holistic scene understanding. We demonstrate the efficacy of our thesis with applications to

street scene understanding. We define three levels of architecture for fusing information from

different sources directly into the graphical model: The Feature Level, that combines features

from different modalities; The Potential Level, that fuses potential functions of the graphical

model that have different semantic interpretations, over that of object classes; The Energy level,

that co-joins graphical models for differing semantic tasks.

1.2.1 Feature level: Geometry and Appearance

In this application we present a framework for semantic image segmentation of road scenes

that combines motion and appearance features. It is designed to handle street-level imagery
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such as that on Google Street View and Microsoft Bing Maps. We formulate the problem in

the AHRF framework. An extended set of appearance-based features is used, which consists

of textons, colour, location and histogram of oriented gradient (HOG) descriptors. A boosting

approach is then applied to combine the motion and appearance-based features. We evaluate our

method both quantitatively and qualitatively on the challenging Cambridge-driving Labelled

Video dataset [7]. Our approach shows an overall recognition accuracy of 84% compared a

previous state-of-the-art accuracy of 69%.

1.2.2 Potential level: Things and Stuff

Computer vision algorithms for individual tasks such as object recognition, detection and seg-

mentation have shown impressive results. The next challenge is to integrate all these algorithms

and address the problem of scene understanding. This application takes a step towards this goal.

In our work, we follow the definition of things and stuff by Forsyth et al. [15], where stuff is a

homogeneous or reoccurring pattern of fine-scale properties, but has no specific spatial extent

or shape, and a thing has a distinct size and shape. By relating the notion of things with object

detectors, and stuff with segmentation [60], we can jointly reason about regions, objects, and

their attributes such as object class, location, and spatial extent. Our model is a AHRF defined on

pixels, segments and objects. We define a global energy function for the model, which combines

results from sliding window detectors, and low-level pixel-based unary and pairwise relations.

Experimental results show that our model achieves significant improvement over the baseline

methods.

1.2.3 Energy level: Recognition and Reconstruction

The problems of dense stereo reconstruction and object class segmentation can both be formu-

lated as CRF based labelling problems, in which every pixel in the image is assigned a label

corresponding to either its disparity, or an object class such as road or building. While these two

problems are mutually informative, no attempt has been made to jointly optimise their labellings.
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In this work we provide a principled energy minimisation framework that unifies the two prob-

lems and demonstrate that, by resolving ambiguities in real world data, joint optimisation of

the two problems substantially improves performance. To evaluate our method, we augment the

street view Leuven data set, producing 70 hand labelled object class and disparity maps. We

hope that the release of these annotations will stimulate further work in the challenging domain

of street-view analysis.

1.3 Contributions

The key contributions of this dissertation are as follows:-

≡We specify a hierarchy of modelling levels for holistic scene understanding with AHRF.

(Chapter 3)

≡We implement and demonstrate and application for each level of the modelling hierarchy.

(Chapters 4 & 5)

– Geometry and Appearance at the Feature level

– Things and Stuff (Object Detection and Segmentation) at the Potential level

– Recognition and Reconstruction at the Energy level

≡We augment existing datasets in order for them to be better suited for the evaluation of

Holistic Scene Understanding. (Chapter 5)

1.4 Document Map

In Chapter 2 the background of the AHRF model for semantic image segmentation is outlined,

laying down the foundations for our fusion hierarchy for holistic scene understanding, presented

in Chapter 3. Our original contributions, in Appendix A, are re-presented in Chapter 4, where

we outline them w.r.t our modelling levels: The first application (§4.1) shows a method for
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fusing together geometric and appearance features within the first level; the second application

(§4.2) specifies how to combine sliding window object detectors with a per-pixel CRF within

the second level—giving a holistic things and stuff system; In the third application (§4.3) we

design a method of co-joining two, previously independently treated, CRFs within our third

level. One of the CRFs is for object-class segmentation and the other for disparity estimation—

giving a holistic recognition and reconstruction system. In Chapter 5 we present qualitative and

quantitative results for each of the applications on several datasets. We then conclude in Chapter

6.

1.5 Publications

Original contributions (full text in Appendix A) that form our suite of holistic scene understand-

ing applications:

Geometry and Appearance: Paul Sturgess, Karteek Alahari, Lubor Ladicky, Philip H.S. Torr,

Combining Appearance and Structure from Motion Features for Road Scene Understand-

ing, Proceedings British Machine Vision Conference, 2009.

Things and Stuff: Lubor Ladicky, Paul Sturgess, Karteek Alahari, Chris Russell, Philip H.S.

Torr, What, Where & How Many? Combining Object Detectors and CRFs, Proceedings

of the Eleventh European Conference on Computer Vision (ECCV), 2010

Recognition and Reconstruction: Lubor Ladicky, Paul Sturgess, Chris Russell, Sunando Sen-

gupta, Yalin Bastanlar, William Clocksin, Philip H.S. Torr, Joint Optimisation for Object

Class Segmentation and Dense Stereo Reconstruction, Proceedings British Machine Vi-

sion Conference (BMVC), 2010 (BMVA Best Science Paper Prize).
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Chapter 2

Semantic Image Segmentation with

Associative Hierarchical Random Fields

Semantic image segmentation describes the task of partitioning an image into regions that

delineate meaningful objects and labelling those regions with an object category label [55].

AHRF [37] is a discriminative structured prediction framework that is designed to perform this

task. This chapter explains the framework in order to provide the foundations of our holistic

scene understanding hierarchy.

2.1 The Labelling Problem

Set Notation: We use upper-case letters, from the Greek and Roman alphabet, to denote a set:

D is a set. We use the same letter in lower case for an element of that set: d is an element of D,

d � D. We reserve I , J and K for index sets, I = }i � N 1 ≥ i ≥ n〈 . An ordered set is related

to its index set by the shorthand DI , D is indexed by I . If J is a subset of I we denote DJ the

subset of D indexed by J . The power set P(D), is the set of all subsets of D. We use boldface

to indicate that a variable v � V has taken on a value, v = 100, and that a set of variables have

all taken on their values V{1,2,3} = }100,200,10〈 .
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2.1.1 Input

An input image I is represented by an ordered set of indexes I = }i � N 1 ≥ i ≥ w • h〈 , and

corresponding set of variables D = }di〈 i∈I :

I = }I,D〈 . Input Image (2.1)

With or shorthand notation we may refer to the image variables directly as DI . The variables

take on colour values, e.g. I{1,2,3} =
}
255 200 175

︷
. The set of all images L forms the input

space, e.g. the set of all w • h grey-scale images is L = [0, 255]w×h (input images need not be

grey-scale, this is just an example).

2.1.2 Output

An output labelling L is represented by an ordered set of indexes I = }i � N 1 ≥ i ≥ w • h〈

and a corresponding set of label variables V = }vi〈 i∈I :

L = }I,V〈 . Output Segmentation (2.2)

With or shorthand notation we may refer to the label variables directly as VI . The variables take

on values from a set of m labels C = }a1, a2, a3, . . . , am〈 , e.g. in semantic image segmentation

each label represents an object-class, C =
}
a1 = car , a2 = bus, a3 = van

︷
. The output space

is the product of output spaces of single variables A = C 1 • C 2 • ×××• C w×h. A labelling is a

particular assignment of a value to each of the variables fI : VI ∈ C , or equivalently an element

of the output space fI : VI ∈ A, e.g. f{1,2,3} =
}
f1(v1) = a1 f1(v2) = a2 f3(v3) = a2

︷
≤}

a1 a2 a2
︷
� A.
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2.1.3 Model

Let our variables for the input image DI and output segmentation VI be random variables.

Let fD and f be their respective assignment functions. A model of the joint probability over

the input and output is a Gibbs distribution P (f, fD) = 1
Z(f,fD)

e−E(f,fD), where Z(f, fD) =∑
{f,fD} e

−E(f,fD) normalizes to a valid probability. To obtain a discriminative model, Bayes

rule is applied giving P (f D) = 1
Z(D)

e−E(f,D), where Z(D) =
∑

f e
−E(f,D) normalizes. A

Gibbs distribution factorises the global energy E into local potential functions ψ:

E(f ;D) =
{
c∈C

ψc(fc;D) Global Energy (2.3)

where ψcc∈C ⊂ 0, and Dis a set of maximal cliques (A clique is a collection of variables which

are all dependant on each other, and such a clique is maximal if it is not properly contained

in any other clique). Due to Hammersley—Clifford this is equivalent to a CRF [38] graphical

model with graph H(∪I ,GJ⊂{I×I}), where the vertices represent the variables and the edges the

dependencies between them.

Prediction

Given the probabilistic model the prediction of an output segmentation is given by Maximum A

Posteriori (MAP) estimation:

f ∗ = argmax
f

1

Z(D)
e−E(f ;D) MAP Estimate (2.4)

= argmax
f

e−E(f ;D)

= argmax
f

E(f ;D)

= argmin
f

E(f ;D),
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i.e. minimising the global energy (2.3) is equivalent to a MAP estimation of the Gibbs distribu-

tion.

Inference

For multiple label problems the α-expansion move making algorithm [5] is an efficient method

for approximate MAP inference. Given an arbitrary initial labelling, the algorithm minimizes the

labelling cost function by making a series of changes (expansion moves) that iteratively decrease

it. The algorithm terminates when no more moves can be made that will reduce the cost any

further. At each step the move decreases the cost as much as possible (an optimal move). The

optimal move can be computed quickly (in polynomial time) if the cost function satisfies metric

constraints. It is proved, for energies with a maximum clique sizes of 2 (pairwise energies) [5]

and higher order cliques [52], that if each expansion move satisfies metric constraints then it is

as an optimal move, and any sequence of optimal moves converges to a bounded local optimum.

The AHRF framework extensively exploits the efficiency and bounds of α-expansion algorithm

for effective semantic image segmentation. Unless otherwise stated, all inference is performed

with α-expansion through the entirety of this dissertation.

2.1.4 Representation

The global energy function (2.3) is represented by a factor graph. A factor graph is a bipartite

graph that expresses how a global function of several variables factors into a product of local

functions [16]. This makes it a perfect representation for a Gibbs factorisation. The energy

term of our Gibbs distribution is defined in logarithmic space, thus the products of the fac-

tor graph correspond to additions in our case. Fig.2-1 depicts an example of a global energy

E(v1, v2, v3, v4, v5) = ψu1(v1)+ψu2(v2)+ψρ1(v1, v2)+ψρ2(v4, v5)+ψη1(v2, v3, v4), as a factor

graph. It consists of two types of vertices: those associated with variables (the circles in Fig.2-1,

called variable nodes) and those associated with local functions (the filled squares in Fig.2-1,

called subset nodes). The edges of the factor graph are precisely those that join the variable
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node for vi to the subset node for ψ if and only if vi is an argument of ψ [16].

Factor Graph: Let VI be the output variables of a segmentation L(I, V ), indexed by I . Let

C be a subset of the power set of I , C →P(I) (not including the empty set). Suppose E can be

written as a sum (log product) of local functions with arguments indexed by the elements of C.

Then a factor graph representation of E (2.5) is a bipartite graph

H(∪I ,ΨC ,GI×C) Factor Graph (2.5)

with vertex set I { C edge set }}i, c〈 : i � I, c � C, i � c〈 . As stated earlier, we refer to those

vertices that are elements of I as variable nodes and those vertices that are elements of C as

subset nodes. An edge joins a variable node i to a subset node C if and only if i � I , hence the

factor graph is a graphical representation of the relation "element of" in I • C. In the example,

we have I = }1, 2, 3, 4, 5〈 , and C = }}2〈 , }4〈 , }1, 2〈 , }4, 5〈 , }2, 3, 4〈〈 [16].

Note that the global energy E is necessarily factorised into local factors (potentials) for

tractable prediction. Consider E(v1, v2, v3, . . . , v10×10) = ψI(v1, v2, v3, . . . , v10×10) as our global

energy for a tiny 10 • 10 input image, where ψI is the potential cost function defined over the

whole image. With 10 labels C = }a1, a2, . . . , a10〈 , the size of output space Mis a googol—

10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

000 000 000 000 000 000 000 000 000 000 000 000 000—an absurdly large number. Since the

potential is defined over all the variables we need to specify a cost for every one of these 10100

possible segmentations, which is impossible. Even of it where possible, we would then need

to find the minimum! In contrast consider the same problem, but with a different factorisation

E(v1, v2, v3, . . . , v10×10) = ψu1(v1) + ψu2(v2) + ψu3(v3) + . . . ,+ψu10×10(v10×10). The output

space is unchanged, yet now we only need to specify 100 local potential costs, one for each

variable. The minimum cost segmentation is now trivially found by f ∗ = (argmina∈A ψu1(v1 =

a), argmina∈A ψu2(v2 = a), argmina∈A ψu3(v3 = a), . . . , argmina∈A ψu10×10(v10×10 = a)).

These examples represent two extremes of complexity, from the impossible, to the trivial (from
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v1 v3 v5

v2 v4 v1 v2 v4 v5 v2 v3 v4v2 v4

(b) Order

Unary (arity=1) Pairwise (arity=2) Higher Order (arity>2)

(c) MRF Vs CRF

1 3 5

2 4

{2} {4}

{1,2} {2,3,4} {4,5}

v1 v3 v5v2 v4

d1 d2 d3 d4 d5

Function/Variable Index/Subset

Joint (MRF) 

v1 v3 v5v2 v4

d2 d3 d4 d5d1

Conditional (CRF) 

(a) Function / Subset

 (d) Plate Notation

Figure 2-1: Factor Graph: An example of a factor graph. Factor nodes are shown as filled squares.

Variables nodes are shown as white circles. Variables nodes with known label assignments are filled

grey. (a) Shows that the factors can be seen as both functions over variables and subset relations. (b) The

factors of the example grouped into common orders (of magnitude). (c) CRFs and MRFs as factor graphs

(d) Plate notation for the example CRF factor graph split into orders.

exponential to linear in the number of variables), exemplifying the critical role that factorisation

plays in semantic image segmentation.

2.2 Associative Higher Order Random Field (AHRF)

The orders of the factors in the AHRF factor graph are broken down into three special cases

defined by their cardinality, unary (U ), pairwise (P ), and higher order (H), i.e.

E(f ;D,Θ, B) = ΨU(f ;D,ΘU , βU) + ΨP (f ;D,ΘP , βP ) + ΨH(f ;D,ΘH , βH), (2.6)

where }βU , βP , βH〈 > 0 are hyper-parameters that serve as a practical method for tuning the

bias’s of each of the factor cardinalities. These bias may be introduced when employing a

piecewise learning strategy of the model parameters Θ = }ΘU ,ΘP ,ΘH〈 (Fig.2-4, see Texton-

Boost [56] for further details. We now specify the form of each order.
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Figure 2-2: AHRF Plate diagram: The unary (U), pairwise (P) and higher order (H) factors of AHRF.

Note that each order has its own set of parameters. Also note that factors are not independent sets.)

2.2.1 Unary Potentials

The unary sub-set of factors, U , for which each member, u � U , has cardinality Gi = 1, shares

the model parameters ΘU , is associated with a total cost:

ΨU(f ;D,ΘU , βU) = βU ×
{
u∈U

ψu(fu;D,ΘU). Unary Potentials (2.7)

For semantic image segmentation the AHRF unary potentials assign a per-variable-per-label cost

of:

ψu(fu = �;D,ΘU) = βu
� ×log(Pr(fu = � D)), Unary Cost (2.8)

where;

Pr(fu = � D) = exp(I U
� (Du,ΘU)), (2.9)

where βu
l is a parameter for compensating for per-label bias, for instance that may be caused by

unbalanced data. The notation Du is used (abused) to represent the data associated with factor

u � U that can be any subset, or subsets, of the data [35,38]—not just a single pixel value. I is
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a discriminatively trained classifier that outputs label confidences as positive real values (§ 2.3).

A graphical model for the labelling problem that is restricted to only have unary factors is

referred to as a first order approximation. This has a trivial solution by setting all variables

to their minimum cost label independently. Often this serves as a good initialisation for MAP

inference, as is always the case in all experiments throughout this dissertation.

2.2.2 Associative Pairwise Potentials

The sub-set of factors, P , for which each member, ρ � P , has cardinality Gi = 2, shares the

model parameters ΘP , and is associated with a total cost of:

ΨP (f ;D,ΘP , βP ) = βP ×
{
ρ∈P

ψρ(fρ;D,ΘP ). Pairwise Potentials (2.10)

In semantic image segmentation the AHRF pairwise terms encourage smoothness in the labelling

and take the form of a contrast sensitive Potts model [3, 56]:

ψρ(fρ;D,ΘP ) = wρ(Dρ,Θ
P )×T 2(fρ), (2.11)

with

wρ(Dρ,Θ
P ) = θP1 + θP2 ×exp( θP3 ×Gρ(Dρ)), Contrast (2.12)

and

T 2(fρ) =

⎩∑⎪
∑⎨

0 if fρ[1] = fρ[2],

1 otherwise.
T 2 Potts (2.13)

The shared pairwise model parameters, ΘP = }θP1 , θ
P
2 , θ

P
3 〈 ⊂ 0, are learned using train-

ing/validation data (§ 2.3), which compose the penalty for violating label smoothness. This

encourages boundaries in the labelling to be consistent with edges in the image. The square

brace notation is used to explicitly index the pair of variables in the pairwise factor. Dρ is the
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data associated with factor variables, that can be any subset, or subsets, of the data D [35]. In

our case, G(Dρ) = Dist(Dρ[1], Dρ[2]), conditions the smoothness on the distance between the

colour vectors of only the two pixels in direct correlation with the pairwise factor, see [3,50,56]

for more details.

A graphical model for the labelling problem that is restricted to only have unary and pairwise

factors is referred to as a second order approximation. This is the most common approximation

found in the literature. We encode a smooth world prior—the world does not change rapidly

from point-to-point, but rather gradually, or smoothly—on these second order factors. We do this

by imposing an Ising Lattice structure on the pairwise edge sets: Each variable has a pairwise

factor with each of its 4 or 8, spatial nearest neighbours.

2.2.3 Associative Higher Order Potentials

The sub-set of factors, H , for which each member, η � H , has cardinality Gi > 2, shares the

model parameters ΘH , is associated with a total cost of:

ΨH(f ;D,Θ,βH) = βH ×
{
η∈H

ψη(fη;D,ΘH). Higher Order Potentials (2.14)

Higher order factors have the capability to model complex interactions between more than two

variables, loosening the restrictions to the representational power of the second order approxi-

mations, making them better suited for capturing the rich statistics of natural scenes [31]. In se-

mantic image segmentation with AHRF object contiguity is captured through a pre-segmentation

of the image and a associativity prior on the segments.

Object contiguity prior For the higher order factors we consider a object contiguity prior—

objects in the world tend to form spatially contiguous regions, rather than being inter-dispersed

across space—by restricting the set of factors to the corresponding regions/segments/super-

pixels that are generated by pre-segmenting the input image, several times, using the mean-shift

algorithm [9], with varying values of the parameters.
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Associativity prior Given the set of contiguous higher order factors, an associativity prior—

for any pair of variables the cost of the prior is lower (or the same) if they take the same label—is

employed for each segment, η � H , in order to encourage a consistent labelling of the factors

variables. This prior takes the form a generalised ( η > 2 variables) Potts model [32] that

measures the inconsistency of a segments labelling. Not all segments obtained using unsuper-

vised segmentation (e.g. MeanShift [9]) are equally good, for instance, some segments may

contain multiple object classes [32]. Therefore, some measure of segment quality is required.

Also, the appearance of a image region can be used to discriminate between the object-class/s it

contains [36,37]. Taking these properties into account, the total cost is composed of three parts:

inconsistency: A more/less inconsistent labelling of a segment will lead to a higher/lower cost.

Quality: A lower/higher quality segment will lead to a lesser/higher cost for an inconsistent

labelling of those segment variables.

Confidence: A lower/higher confidence for a segment to take the label � � Mwill lead to a

lesser/higher cost for a labelling inconsistent with �.

The inconsistency, quality, and confidence measures are incorporated into the higher order po-

tential for each segment as:

ψη(fη;D,ΘH) =

Quality︷ ︸ ︸
wη(Dη,Θ

H)×

Inconsistency︷ ︸ ︸
T n(fη) +

Confidence︷ ︸ ︸
w�

η(Dη,Θ
H), (2.15)

with

wη(Dη,Θ
H) = θH1 + θH2 exp θH3 Gη(Dη)

{
, Seg. Variance (2.16)

and

T n(fη) =

⎩∑⎪
∑⎨

wη−w�
η

Q
N�(fη) η

θH4 if N�(fη) ≥ Q,

η θH4 otherwise.
Potts T n (2.17)

and

w�
η(Dη,Θ

H) = βH
� ×min( η θH5 log(exp( I �

η(Dη,Θ
H)), θHα ) Seg. Classfier (2.18)
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Figure 2-3: Higher Order Segment Costs: The segment cost (2.15) is broken down into a truncated,

linearly increasing, inconsistency cost (2.17), and decaying exponential quality (2.16), and confidence

costs (2.18).

The model parameters, {θH1 , θH2 , θH3 , θH4 , θH5 } ⊂ 0, are learned using training/validation data.

The robust label inconsistency penalty is a truncated linear function with truncation parameter,

Q (satisfying 2Q < η ), that controls the the rigidity of the higher order clique potential, and

N�(fη) = argmin�∈L( η n�) is the number of variables in the clique η not taking the dom-

inant label. βH
l is a tuning parameter used to compensate for any label bias introduced by the

discriminatively trained classifier I �
η (§ 2.3), and θHα is a truncation on the classifiers score. The

potential takes the cost w�
η if all pixels in the segment take the label � � M. The potential costs

are depicted in 2-3.

2.3 Learning

Piecewise learning is depicted in Fig. 2-4. Each order of factors, unary, pairwise, and higher-

order, are treated independently of each other. For each order the model parameters, Θ =

}ΘU ,ΘP ,ΘH〈 , are trained with discriminative classifiers and/or cross-validation. This requires

a dataset of factors with known member variables. Each factor in the dataset is treated as an

independent sample. One the discriminative classifiers are trained the model can be fine tuned

with the bias’, β, parameters.
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Figure 2-4: Piecewise Learning Plate diagram : During training all member variables are visible, and

for each factor they are gathered into a dataset E , the datasets E U , E P and E H are then used to train the

models for their respective order of factors.

Classifiers I : To learn the models responsible for assigning a label-wise confidence value, H ,

for the unary (2.8) and segment potentials (2.18), a boosting approach is employed. Boosting is

an additive model that sums the classification confidence of M weak learners, h. The confidence

value outputted by the strong classifier is then reinterpreted as our unary potential using the

softmax transformation. A simple form of a boosted classifier could be:

HU
� (Du,Θ

U) =
M{
m

h�
m(Du,Θ

U
m), Strong classifier (2.19)

where

h�
m(Du,Θ

U
m) = θma ×δ(D

i
u > θmt ) + θmb , Weak classifier (2.20)

placed in a one Vs rest leaning schema, finally exposing the shared unary parameters ΘU =

}θma , θ
m
b , θ

m
t 〈

M
m=1 as parameters of the weak learner decision stumps. In practice a more sophis-
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ticated multi-class boosting approach, with feature sharing, is employed, see TextonBoost [56]

and references therein for details of the form, and of the learning procedure.

Fine tuning: Any model parameters Θ that are not learnt using the boosting approach, and the

bias parameters β are learnt using a cross validation procedure, see Ladicky [36] for details.

2.4 Implementation

The complete AHRF framework is implemented by Ladicky [36] in object oriented c++ code.

The library is available from the authors website. The API is flexible and allows for the addition

of boosted unary potentials, and weighted robust T n pairwise and higher order potentials. The

source includes α-expansion inference along with the necessary transformation of the energy

function.
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Chapter 3

Holistic Scene Understanding with

Associative Hierarchical Random Fields

In this chapter we take AHRF beyond a multi-resolution semantic image segmentation frame-

work, towards a configurable holistic scene understanding one by generalising the labelling

problem factor graph to take multiple inputs, and give multiple outputs. We define a fusion

hierarchy that with each level becomes more general than its predecessor. We assign a regular

random field with a single input to our level-0, i.e.

E(f ;D) = ΨU (f ;D) + ΨP (f ;D) + ΨH (f ;D) Level-0 (3.1)

as described in Chapter 2, and depicted with plate notation in Fig.2-2 (with parameters not

shown). This is extended in level-1—The Feature Level—where we allow for multiple inputs to

be fused. Level-2—The Potential Level—generalises this allowing for any-or-all combinations

of the inputs to be fused via numerous factors. Ultimately, our level-3—The Energy Level—

further generalises the labelling problem, of levels 0-to-2, to a multiple-labelling problem by

allowing for many outputs. The specification of each of these levels, as depicted in Fig. 3-1,

follows.
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Level-3

Level-2 Level-1 Level-0

Level-1
Feature{N}
Potential{1}
Energy{1}

Level-2
Feature{N}
Potential{M}
Energy{1}

Level-3
Feature{N}
Potential{M}
Energy{L}

Level-0
Feature{1}
Potential{1}
Energy{1}

Figure 3-1: Fusion Hierarchy: Each level of our fusion hierarchy, depicted as ellipsis, subsumes the

levels that are shown to be contained within them. Level-0 is the most restrictive, contained within all the

other levels, and only allows for one input, indicated by notation }1〈 . The feature level fuses multiple

inputs, indicated by }N〈 . The potential level allows for a set of }M〈 potentials to handle different sets of

these fused inputs. The energy level is yet more expressive and subsumes both the potential and feature

levels by allowing for L sets of output labels. 38



3.1 Level-1: The Feature Level

Figure 3-2: Level-1 Plate Diagram

In the feature level, fusion is performed on differing image features or modalities, that high-

light some special properties, attributes, or features, of the input image, e.g. appearance and

geometry features as in our application §4.1. We use the terminology Feature Image, rather

than the more standard term feature vector/descriptor, to emphasise that we have a feature for

every pixel location of the input image. Let E A = }D0,D1,D2, ...〈 be some finite set of feature

images indexed by A, e.g. edge gradients, blobs, texture etc. Let P index P(A), i.e. P indexes

the space of all possible combinations of the feature images. We denote a joint feature image as

〉D|N , where N � P are the indexes for one particular subset of P(E ), and 〉.| is an arbitrary

fusion operator for that set. Now the generalised form of the AHRF cost (2.6) with feature fusion

is:

EN (f ;D) = ΨUN (f ; 〉D|NU ) + ΨPN (f ; 〉D|NP ) + ΨHN (f ; 〉D|NH ) , Level-1 (3.2)

where N � P are the index sets of the features to be fused for the unary, pairwise and higher

order potentials respectively, and they need not be the same subset for each order (U,P,H) of

potentials . Giving the raw image data the 0th index, then }NU , NP , NH〈 = }0〈 � P recovers

level-0. The plate diagram is shown in Fig.3-2.
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3.2 Level-2: The Potential Level

Figure 3-3: Level-2 Plate Diagram

A common approach to integrating different sources of information into a CRF is by defining

a potential function for each one. For instance in TextonBoost [56] a unary potential is defined

for texture, another for location, and a special type of higher order potential (different to the

AHRF ones) is defined for local colour models. Taking the idea of having many potentials to the

limit, we can model for all, or any combination of them. Recall that E A is a finite set of feature

images indexed by A , and that P = P(A). This allows us to have a potential defined on a subset

of DA. To generalise this to multiple potentials, each that are dependant on a subset of DA, we

index all those subsets by N = P(P ). Now N � M � N is an index set for one particular

subset of P(E ) as before, only now we can specify M subsets, rather than just 1 subset, i.e.

EM(f ;D) =
{ }

ΨUN
(
N∈MU +

{ }
ΨPN

(
N∈MP +

{ }
ΨHN

(
N∈MH Level-2 (3.3)

where ΨU/P/HN are the layer-1 potentials (3.2). e.g. given a pair of feature images we could have

a possible 2|M | joint unary potentials ΨU = ΨU
{1}(f ;D1) + ΨU

{2}(f ;D2) + ΨU
{1,2}(f ; 〉D1, D2| +

ΨU
{2,1}(f ; 〉D2, D1|). The subsets M →P need not be the same for each order of potentials. It

can be easily seen that this subsumes (3.2) with M = }N〈 for all orders (U,P H) of potentials.

The plate diagram is shown in Fig.3-3.

40



3.3 Level-3: The Energy Level

Figure 3-4: Level-3 Plate Diagram:

For fusion in the energy level, we provide a framework for fusing energies that share the

same factorisation, but have different output spaces, e.g. such as object class and disparity in

our recognition and reconstruction application §4.3. Let C L be a finite set of label sets indexed

by L. Defining an energy for the Cartesian product of their label sets C 1• C 2• C 3, . . . can result

in intractable MAP inference, because the size of the combined label set C • C ′
= C ×C

′ is

too large. An alternative option is the Factorial CRFs [58]. Let M= L • L, giving an index set

to all ordered pairs ([,]) of C L. A (pairwise) factorial energy is then defined as:

EL(fL;D) =
{ }

EM� f �;D
{(

�∈L +
{ }

εJ
)
[f �, f �

′
];D

(︷
[�,�

′
]∈L

Energy Level (3.4)

where � � L indexes the �th label set in L, and EM� is a level-2 energy (3.3) with label set C �.

Taking these alone would result in a set of independent labelling problems, one for each label

set. However, our holistic approach requires that these interact with each other. The term εJ ,

assigns a cost over a pair of label sets }C �, C �′ 〈 such that we can model these interactions, e.g.

Take one energy for predicting foreground Vs background, and another for inferring near Vs
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far. For the pairs, foreground and far, background and near, assign a higher cost. For the pairs,

foreground and near, background and far, give a lower cost. This configuration would encourage

a joint assignment in which foreground objects are nearer than background ones.

Recall that a factor ψ represents both a function/variable and index/subset relation (Fig. 2-1).

Given two identically factored energies E� and E�
′
, let the member variables of the joint factor

φ be exactly those member variables of ψ�
i { ψ�

′
i , i.e. φ joins the factors of E� with those of E�

′
.

The joint term of (3.4) is now defined as:

ε
)
[f �, f �

′
];D

(
= ΦU

)
[f �, f �

′
];D

(
+ ΦP

)
[f �, f �

′
];D

(
+ ΦH

)
[f �, f �

′
];D

(
(3.5)

where ΦU/P/H are the sets of joint unary/pairwise/higher-order factors that are defined as fol-

lows. The plate diagram is shown in Fig.3-4.

Joint Unary Potentials: The set of joint factors }φu = ψ�
u { ψ�

′
u 〈u∈U , where ψu = 1. The

total joint cost is given by

ΦU([f �, f �
′
];D) =

{
u∈U

φu([f
�
u, f

�
′

u ];D) Joint Unary Potentials (3.6)

Joint Pairwise Potentials: The set of joint factors }φρ = ψ�
ρ { ψ�

′
ρ 〈 ρ∈P , where ψρ = 2. The

total joint cost is given by

ΦP ([f �, f �
′
];D) =

{
ρ∈P

φρ([f
�
ρ, f

�
′

ρ ];D) Joint Pairwise Potentials (3.7)

Joint Higher Order Potentials: The set of joint factors }φη = ψ�
η { ψ�

′
η 〈 η∈H , where ψη > 2.

The total joint unary cost is given by

ΦH([f �, f �
′
];D) =

{
η∈H

φη([f
�
η , f

�
′

η ];D) Joint Higher Order Potentials (3.8)

42



Chapter 4

Holistic Applications: Street Scene

Understanding

With applications such as Google Street View, Microsoft Bing maps, the problem of street scene

understanding has gained more importance than ever. For instance, in mapping applications,

there is a need to identify objects in the scene in order to anonymise the data, remove transient

objects, and localise important street furniture. Identifying these types of objects, such as people,

cars, and signs, in street view imagery is challenging because the scenes consist of complex

scenarios involving them. Yet, they are highly structured making them an interesting case study

for structured prediction with AHRF. We experiment with our 3 level hierarchy for holistic

scene understating with a demonstration application for each level. For the feature level we fuse

Appearance and Geometry cues §4.1. For the potential level we fuse things and stuff §4.2. For

the energy level we fuse recognition and reconstruction§4.3.
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Level-1
Level-2 Level-3Level-0 Appearance and Geometry

4.1 Feature Layer: Appearance and Geometry

In this application we aim to exploit 3D geometric information to aid in the semantic image

segmentation of monocular image sequences filmed from within a driven car. Our work is

directly inspired by the contextual modelling of appearance in [56], and the demonstration of

the power of 3D geometry for Semantic Image Segmentation of street scenes in [8]. In essence,

we combine these two works by fusing appearance and geometry based features directly in the

1st layer of our hierarchy (§3.1).

4.1.1 Introduction

Image sequences from a moving car consist of complex scenarios involving multiple objects,

such as people, buildings, and cars, making them challenging for purely appearance based Se-

mantic Image Segmentation. For instance pedestrians may wear a large variety of clothing, and

cars can be varying in colour, and the road may be made of many differently textured surface

materials. Moreover, street scenes (even void of transient objects) that are constructed with the

similar materials, will still vary in appearance under differing weather conditions, or even times

of day. However the core geometry of the scene remains unscathed by sun, rain, wind or the daily

passage of time. In fact the static elements of these scenes, such as the road, buildings, and sky,

tend to each share a common 3D geometry, as well as geometric relations between them, across

a large variety of geographic locations and wide spans of time; see fig.4-1 for demonstrative
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examples. This is argued for and clearly demonstrated in [8], where they are able to produce an

accurate semantic segmentation of a street scene purely from 3D geometric information, alone.

Figure 4-1: Scene Geometry: On the left hand side we see two street scenes from different geographic

areas that strongly share geometric structure, but are not so similar in appearance. On the right side a pho-

tograph of the same location of Oxford, snapped in different decades, show strong structural similarity,

despite the long gap in time and differing weather conditions.

Modelling complex variations in appearance is difficult. In TextonBoost [56] they combine

features that encode the 2d location, texture and local colour of the object classes to tackle

the problem. Furthermore, and importantly, they employ the boosting trick to learn a layout

filter for the texture cues that encode spatial context. This proves to be vital for the Semantic

Image Segmentation task. However their approach is developed for generic use, e.g. a cow

photographed in a field, or a tourist attraction snapped by a holiday maker. Whereas here we

work towards a specific task, i.e. a street scene viewed from within a driven car. These types of

highly structured scenes have a more consistent 3D geometry, and geometric relations between

the objects contained within them. Pedestrians and cars will be afforded by the ground plane,

and the pavement upon which the pedestrians walk are parallel regions along the sides of the

road (hence their alternative name sidewalks), of which the cars drive along. So along with

appearance, we would also like to model the complex geometric properties and their contexts
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that are clearly present in street scenes.

Extracting the underlying geometry of a scene is difficult, as it requires us to first obtain 3D

information from 2d images. An interesting approach to this problem is presented in [28] with

applications to automatic photo pop-ups [26], and holistic scene understanding [29]. In [28]

they assume, inter alia, that a large percentage of a depicted scene can be represented by a small

number of geometric labels: the ground plane, surfaces roughly perpendicular to the ground,

and sky. Under this assumption they aim to statistically learn a mapping from a large set of

customised image features to one of the 3 geometric labels, i.e. a labelling problem. There

are a few technical issues in using their work for our application. Firstly, if we where to adopt

their features, they are largely appearance based, thus including them would not achieve our

goal w.r.t geometric information. Secondly, if we where to adopt their geometric labelling, the

results are very coarse and thus not practical to further derive features from them. In fact, these

labels would be more suitable for fusion within our 3rd layer (§ 3.3). But, even setting these

difficulties aside, we note that [28] are actually tackling a harder problem than we require, as

they only have a single 2d image, whereas we have a temporal sequence of them. Thus here,

we rather follow [8], where the authors exploited Structure-From-Motion (SfM) to help ease this

task, and provide more detailed geometric information.

We implement the five motion and structure features proposed by [8], namely: height above

the camera, distance to the camera path, projected surface orientation, feature track density, and

residual reconstruction error. They are computed from a sparse 3D point cloud obtained from

a SfM procedure. As noted by [8], the five cues are tailored for the driving application and are

invariant to camera pitch, yaw and perspective distortions.

In summary, our application is inspired by the works of [8,56], but differs in our contribution—

we treat the problem as one of holistic scene understanding, which fuses multiple geometric- and

multiple appearance-based features within the 1st layer of our proposed architecture (§ 3.1).
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4.1.2 Global Configuration

We combine multiple appearance and multiple geometry features within layer-1 of our holistic

scene understanding hierarchy (§ 3.1). Let us index the set of data, D, with special cases: D0, the

input image; sfm = }i � N 1 ≥ i ≥ n〈—the geometric features; and app = }j � N n + 1 ≥

j ≥ m〈—the appearance features. Then, we can write this applications configuration as:

E(f ;D) = ΨU f ; 〉D| {sfm∪app}
{

Level-1 (4.1)

+ΨP (f ;D0, ) Level-0

+ΨH f ; 〉D| {app}
{

Level-1

where our contribution is focused on the combination of appearance and geometric features

within our level-1 fusion, which we have chosen to fuse for the unary factors only. (The pairwise

factors depend on the raw image data. The higher-order factors depend on the set of appearance

features.).

4.1.3 Appearance

We now describe the appearance-based features employed in our framework. In contrast to [8],

which uses only texton histograms and localized bag of semantic texton (BOST) features, our ap-

proach uses colour, location, texton, and Histogram of Oriented Gradients (HOG) [11] features.

4.1.4 Geometry

We use the five motion and structure features proposed by [8], namely: height above the camera

(mH); distance to the camera path (mC); projected surface orientation (mO); feature track den-

sity (mD); and residual reconstruction error (mR). For a detailed description of the motion-based

features, structure-from-motion pipeline, and the projection of features from 3D to 2D see [8],

here we present a summary of their raw features along with their intuitions.
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Height Height above the camera is measured as the difference of the y coordinates of a world

point and the camera centre, after aligning the car’s up vector as the camera’s y axis.

Camera path Distance to the camera path is computed using the entire sequence of camera

centres. Let C(t) denote the camera centre in frame t, and W denote a world point. This feature

is defined as mint W C(t) .

Surface orientation The surface orientation at any given 3D scene point is estimated from the

2D Delaunay triangles [54] formed using the projected world points in a frame. The intuition

behind the orientation features is that although individual 3D coordinates may have inaccurate

depths, the relative depths of the points gives an approximate local surface orientation.

Track density The track density feature exploits the well-known fact that objects yield sparse

or dense feature tracks based on how fast they are moving, and their texture. For instance, trees,

buildings, and other forms of vegetation yield dense feature tracks, while sky and roads give rise

to sparse feature tracks. This cue is measured as the 2D map of the feature density.

Backprojection error The residual reconstruction error measures the backprojection error

(2D variance) of the estimated 3D world points. This residual error separates moving objects

such as people and cars, from stationary ones such as buildings, vegetation, and roads.

4.1.5 Joint Appearance and Geometry

Texton Coding

The original Textons are special filter banks designed to be combined in order to recognize tex-

tures (see. What are Textons? [73] ). The textonision process (Texton Coding) is also applied to

other types of raw features. K-means clustering is performed to quantise each of feature types

independently (All features types are whitened to zero mean and unit variance prior to cluster-
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ing). We say that1 the outcome of the clustering process, the cluster centres, is a dictionary, Tj ,

with }tk〈 k∈Kj
words for the jth feature type. A texton encoded pixel, ti � I , is then a nearest

neighbour assignment from the feature/cue value to the nearest word in the dictionary:

ti = NN(Qi, T ) = min
j∈T

(Dist(Qi, Tj)) , Texton Encoding (4.2)

where, Dist, is the multidimensional Euclidean distance, and Qi is of the same dimensionality

as Tj .

Contextual Texton Pooling

Contextual Texton Pooling for semantic image segmentation is proposed in TextonBoost [56]

under the name texture-layout filters. Here we motivate, and re-define them, such that they fit

within the pooling stage of a the more widely adapted image classification pipelines, and our

layer-1 fusion.

Pooling textons with histogram aggregation over a pooling region,r(w, h), that is the same

size as a texton image (4.2), is, in essence, a Bag-of-words representation, as is commonly used

in image classification/retrieval pipelines [72]. However, here we are interested in per-pixel, not

per-image, classification. A possible work-around is to define a pooling region for each pixel,

relative to its co-ordinates, r(x, y, offset(x, y))—giving a bag-of-words-per-pixel. An eloquent

adaptation, but it is inadequate to represent the (possibly complex) contextual information that

we require for accurate semantic image segmentation. This is because it is a bag—an or order-

less collection—and thus invariant (by design) to the spatial organisation of the textons within

the pooling window. Nevertheless, the size of the region r, defined by its offsets, can be con-

sidered as a contextual support: the larger the region, the more context is considered. This is a

reasonable counter argument for capturing wider-context with a per-pixel-bag-of-words repre-

1following conventions in bag of words (BoW) image classification, which in tern follow on from natural lan-
guage document classification using BoW.
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sentation, without the need for spatial layout, but it is also flawed. The flaw is a subtle one, and

is best described with a simple example.

Take an object of interest, such as a car, we would like to identify all the pixels that together

depict it. Now, it is not far fetched to consider that the parts of the car and other nearby objects,

such as the road, could help to classify the pixel correctly. This would necessitate a large region

of support, such that given any car pixel it would capture the car wheel and the road. However,

such a large support window placed at pixel near to the car, but not belonging to the car, would

have a very similar bag-of-words, making it difficult to distinguish the two objects, especially

around the objects boundary locations. To overcome this contextual confusion, the context sup-

port region would be necessarily small, and forced to disregard the wider-context of the vehicle

altogether, flawing the original argument for its use to capture wider-context.

One way to overcome these issues is to allow for multiple contextual support regions, R =

}r1, r2, . . . , rn〈 , each, on its own, being the same as before, but when combined can represent

the spatial layout via the relative positions (the offsets) of the regions. Given a fixed ordering

over R, simple concatenation of the BoW histograms, for each region, encodes the layout of the

multiple regions. Furthermore, the problem of contextual confusion can be disambiguated via

the power of committee, since we can allow for many sized regions, from small to large.

Incorporating spacial layout into the pooling process is termed contextual pooling, a well

know example in the image classification domain is the spatial pyramid representation [41],

that models the course layout of scene types; in the face detection domain, the Haar wavelet

like contextual pooling of the Viola-Jones face detector proved to be effective at modelling the

layout of facial features [64] such as eyes, mouth and nose. In Semantic Image Segmentation

TextonBoosts [56] texture-layout filters, have proven to be a powerful representation [12]. These

are extended to include multiple appearance features, in [37, 57]. Here we further extend the

approach to include multiple appearance and multiple geometric cues. Simply concatenating

a large number of histograms for each window would lead to very high dimensional context

features. To overcome this the boosting trick is employed for feature selection.
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Boosting Trick

We use an adapted version [37] of the boosting approach described in TextonBoost [56] for

feature selection and learning for the unary potentials of our model, unlike [8] which uses a

randomized decision forest. The shape filters are defined by a rectangular region r and texton

t pair. The feature response vi(r, t) of the shape filter for a given point i is the number of

textons of type t in the region r placed relative to the point i. These filters capture the contextual

relationships between objects. Each weak classifier compares the (shape filter) response to a

threshold. The most discriminative filters are found using the Joint Boosting algorithm [59].

The classifiers defined on geometric and appearance-based features are combined in an

adapted boosting approach. The shape filters are now defined by triplets of feature type f ,

feature cluster t, and rectangular region r. The feature response vi(r, f, t) for a given point i

is the number of features of type f belonging to cluster t in the region r. The weak classifiers

compare the responses of shape filters with a set of thresholds. The feature selection and learn-

ing procedure is identical to that in [56]. The negative log likelihood given by the classifier is

incorporated as the unary potential in the CRF framework as defined in §3.1.
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Level-2

Level-3Level-0 Things and Stuff

4.2 Potential Layer: Things and Stuff

In this application we aim to address the problems of what, where, and how many: we recognize

objects, find their location and spatial extent, segment them, and also provide the number of

instances of objects. This problem is particularly challenging in scenes composed of a variety of

classes. For instance, road scene datasets [8] contain classes with specific shapes such as people

and cars, and background classes such as the sky and grass lawns, which lack a distinctive

shape [60] (Figure 4-2). Our holistic solution to this classical recognition problem involves

firstly adopting the notion of things and stuff from Adelson [1], and then relating these notions

to the applications of detection and segmentation [60]. In essence we fuse together bounding

box detectors [14] and Semantic Image Segmentation [37] within the 2nd layer of our hierarchy

(§3.2).

4.2.1 Introduction

The distinction between the two special sets of object classes—things and stuff—is well known [1,

15,25]. Adelson [1] emphasized the importance of studying the properties of stuff in early vision

tasks. Recently, these ideas are being revisited in the context of the new vision challenges, and

have been implemented in many forms [25, 47, 60, 61]. In our work, we follow the definition by

Forsyth et al. [15], where stuff is a homogeneous or reoccurring pattern of fine-scale properties,

but has no specific spatial extent or shape, and a thing has a distinct size and shape. The dis-
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(a) (b) (c) (d)

Figure 4-2: A conceptual view of our method:. (a) An example input image. (b) Object class segmen-

tation result of a typical CRF approach. (c) Object detection result with foreground/background estimate

within each bounding box. (d) Result of our proposed method, which jointly infers about objects and

pixels. Standard CRF methods applied to complex scenes as in (a) underperform on the “things” classes,

e.g. produce inaccurate segmentation of the bicyclist and persons, and misses a pole and a sign, as seen

in (b). However, object detectors tend to perform well on such classes. By incorporating these detection

hypotheses, shown in (c), into our framework, we aim to achieve an accurate overall segmentation result

as in (d). (Best viewed in colour)

tinction between these classes can also be interpreted in terms of localization. Things, such as

cars, pedestrians, bicycles, can be easily localized by bounding boxes unlike stuff, such as road,

sky [60]2.

Complete scene understanding requires not only the pixel-wise segmentation of an image,

but also an identification of object instances of a particular class. Consider an image of a road

scene taken from one side of the street. It typically contains many cars parked in a row. Object

class segmentation methods such as [8, 37, 56] would label all the cars adjacent to each other as

belonging to a large car segment or blob, as illustrated in Figure 4-4. Thus, we would not have

information about the number of instances of a particular object—car in this case. On the other

hand, object detection methods can identify the number of objects [14, 62], but cannot be used

for background (stuff) classes.

A few object detection methods have attempted to combine object detection and segmenta-

tion sub-tasks, however they suffer from certain drawbacks. Larlus and Jurie [40] obtained an

initial object detection result in the form of a bounding box, and then refined this rectangular

2Naturally what is classified as things or stuff might depend on either the application or viewing scale, e.g.
flowers or trees might be things or stuff.
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region using a CRF. A similar approach has been followed by entries based on object detection

algorithms [14] in the PASCAL VOC 2009 [12] segmentation challenge. This approach is not

formulated as one energy cost function and cannot be applied to either cluttered scenes or stuff

classes. Furthermore, there is no principled way of handling multiple overlapping bounding

boxes. Tu et al. [61] also presented an effective approach for identifying text and faces, but

leave much of the image unlabelled. Gu et al. [22] used regions for object detection instead of

bounding boxes, but were restricted to using a single over-segmentation of the image. Thus, their

approach cannot recover from any errors in this initial segmentation step. In comparison, our

method does not make such a priori decisions, and jointly reasons about segments and objects.

The work of layout CRF [66] also provides a principled way to integrate things and stuff.

However, their approach requires that things must conform to a predefined structured layout

of parts, and does not allow for the integration of arbitrary detector responses. Other exist-

ing approaches that attempt to jointly estimate segmentation and detection in one optimiza-

tion framework are the works of [21, 67]. However, the minimization of their cost functions

is intractable and their inference methods can get easily stuck in local optima. Thus, their in-

corporation of detector potentials does not result in a significant improvement of performance.

Also, [21] focussed only on two classes (cars and pedestrians), while we handle many types of

objects. Joint learning of things and stuff, and the relations between them is presented in [60]

within a boosted CRF framework. They propose one representation, for both things and stuff,

which is a parametrised convolution model that can represent texture (for stuff) at a fine scale,

and templates (for things) at a courser scale. Whilst here, we adopt the current state-of-the-art

representations of [14, 37], and then combine them—getting the best from both worlds.

We define a global energy function, modelling within the 2nd layer of our hierarchy for

holistic scene understanding (§ 3.2), which combines results from detectors (Figure 4-2(c)), mid-

level cues such as superpixels, and low-level pixel-based unary and pairwise relations (Figure 4-

2(b)). We also show that, unlike [21, 67], our formulation can be solved efficiently using graph

cut based move making algorithms.
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4.2.2 Global Configuration

We build upon the layer-1 application, where we defined index sets sfm and app for the ge-

ometric and appearance features that we combined, see § 4.1 for details. Here, we combine

segmentation and detection within layer-2 of our holistic scene understanding hierarchy (§ 3.2).

Under the weak assumption that a box that bounds an object of interest has a larger area than

2-pixels, we model the bounding box detections as higher-order factors. Let us index the set of

higher-order factors, with special cases: S = }s � N 0 ≥ s ≥ n 1〈—the super-pixels from

the base model (Chapter 2); and B = }b � N n ≥ b ≥ m 1〈—the object detection bounding

boxes. Then, we can write this applications configuration as:

E(f ;D) = ΨU f ; 〉D| {sfm∪app}
{

Level-1 (4.3)

+ΨP (f ;D0) Level-0

+
{ }

ΨH (f ;D)
(
{things∪stuff} Level-2

where our contribution is focused on the inclusion of detectors as higher order factors within our

level-2 fusion.

4.2.3 Things

A thing has a distinct size and shape. Things are represented by a set bounding box object

detections. They are included in the form of a higher order potential over pixels based on

detector responses. In order to jointly estimate the class category, location, and segmentation of

objects, we augment the standard CRF using responses of one of the most successful detectors

on the PASCAL VOC 2009 dataset [14]. We retrain the models on the CamVid dataset for our

application. Other detector methods could similarly be incorporated into our framework. In [14]

each object is composed of a set of deformable parts and a global template. Both the global

template and the parts are represented by HOG descriptors [11], but computed at a coarse and

fine level respectively. The task of learning the parts and the global template is posed as a latent
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SVM problem, which is solved by an iterative method.

This method produces results as bounding boxes around the detected objects along with a

score, which represents the likelihood of a box containing an object. Let B denote the set of

object detections, which are represented by bounding boxes enclosing objects, and correspond-

ing scores that indicate the strength of the detections. We propose a novel potential ψb over the

set of pixels vb belonging to the bth detection (e.g. pixels within the bounding box), such that

Ψthings (4.3) is defined as:

εthings(f,D{hog}) =
{
b∈B

ψb(vb, Hb, lb) (4.4)

with a score Hb and detected label lb. The full space of possible detections can be very large,

however in a SVM-based classifier most of the responses are ve, hence the parameter Ht (which

defines the detector threshold w.r.t Hb, equation (4.9)) can be set to 0 eliminating a large set of

potentials from the problem. In practice a more accurate set of pixels belonging to the detected

object is obtained using local foreground and background colour models [50].

4.2.4 Stuff

stuff is a homogeneous or reoccurring pattern of fine-scale properties, but has no specific spatial

extent or shape. We model the recognition of stuff with a layer-1 energy over appearance and

geometric cues. It is identical to the previous application §4.1, and is summarised here as:

εstuff = ΨU +ΨP +Ψstuff (4.5)

where ΨU and ΨP are the pixel based potentials, and Ψstuff are the segment based potentials.

pixel-based potentials.

The pixel-based unary potential estimates the probability of a pixel taking a certain label by

boosting weak classifiers based on a set of shape filter responses. Shape filters are defined by
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triplets of feature type, feature cluster, and rectangular region. Their response for a given pixel

is the number of features belonging to the given cluster in the region placed relative to the given

pixel. The most discriminative filters are found using the Joint Boosting algorithm [59]. Details

of the learning procedure are given in [37,56]. To enforce local consistency between neighbour-

ing pixels we use the standard contrast sensitive Potts model [3] as the pairwise potential on the

pixel level.

Segment-based potentials.

We also learn unary potentials for the higher order factors which that represent segments. The

segment unary potential is also learnt using the Joint Boosting algorithm [59]. The pairwise

potentials in higher layers (e.g. pairwise potentials between segments) are defined using a con-

trast sensitive (based on distance between colour histogram features) Potts model. We refer the

reader to [37] for more details on these potentials and the learning procedure.

4.2.5 Things and Stuff

MAP estimation can be understood as a soft competition among different hypotheses (defined

over pixel or segment random variables), in which the final solution maximizes the weighted

agreement between them. These weighted hypotheses can be interpreted as potentials in the CRF

model. In object class recognition, these hypotheses encourage: (i) variables to take particular

labels (unary potentials), and (ii) agreement between variables (pairwise). Existing methods [23,

37, 70] are limited to such hypotheses provided by pixels and/or segments only. We introduce

an additional set of hypotheses representing object detections for the recognition framework3.

Some object detection approaches [14,40] have used their results to perform a segmentation

within the detected areas4. These approaches include both the true and false positive detections,

3Note that our model chooses from a set of given detection hypotheses, and does not propose any new detections.
4As evident in some of the PASCAL VOC 2009 segmentation challenge entries.

57



and segment them assuming they all contain the objects of interest. There is no way of re-

covering from these erroneous segmentations. Our approach overcomes this issue by using the

detection results as hypotheses that can be rejected in the global CRF energy. In other words, all

detections act as soft constraints in our framework, and must agree with other cues from pixels

and segments before affecting the object class segmentation result. We illustrate this with one of

our results shown in Figure 5-7. Here, the false positive detection for “person” class (shown as

the large green box on the right) does not affect the segmentation result in (c). Although, the true

positive detection for “car” class (shown as the purple box) refines the segmentation because it

agrees with other hypotheses. This is achieved by using the object detector responses5 to define

a clique potential over the pixels, as described below. Figure 4-3 shows the inclusion of this

potential graphically on a pixel-based CRF. The new energy function is given by:

E(f) = Estuff (f) + Ethings(f) (4.6)

where Estuff (4.5) is a standard energy for semantic image segmentation (see §2) and Ethings

(4.4) is our novel detector based cost. The minimization procedure should be able to reject false

detection hypotheses on the basis of other potentials (pixels and/or segments). We introduce an

auxiliary variable yb � }0, 1〈 , which takes value 1 to indicate the acceptance of b-th detection

hypothesis. Let φb be a function of this variable and the detector response. Thus the detector po-

tential ψb(.) is the minimum of the energy values provided by including (yb = 1) and excluding

(yb = 0) the detector hypothesis, as given below:

ψb(xb, Hb, lb) = min
yb∈{0,1}

φb(yb,vb, Hb, lb). (4.7)

We now discuss the form of this function φb(×). If the detector hypothesis is included

(yb = 1), it should: (a) Encourage consistency by ensuring that labellings where all the pix-

els in vb take the label lb should be more probable, i.e. the associated energy of such labellings

5This includes sliding window detectors as a special case.
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Pixels (v_i)

Detections (v_b)

Figure 4-3: Inclusion of object detector potentials into an AHRF: We show a pixel-based CRF as an

example here. The set of pixels in a detection b1 (corresponding to the bicyclist in the scene) is denoted

by vb1 . A higher order clique is defined over this detection window by connecting the object pixels vb1

to an auxiliary variable yb1 � }0, 1〈 . This variable allows the inclusion of detector responses as soft

constraints. (Best viewed in colour)

should be lower; (b) Be robust to partial inconsistencies, i.e. pixels taking a label other than lb

in the detection window. Such inconsistencies should be assigned a cost rather than completely

disregarding the detection hypothesis. The absence of the partial inconsistency cost will lead

to a hard constraint where either all or none of the pixels in the window take the label lb. This

allows objects partially occluded to be correctly detected and labelled.

To enable a compact representation, we choose the potential ψb such that the associated

cost for partial inconsistency depends only on the number of pixels Nb =
∑

i∈vb
δ(vi ∀= lb)

disagreeing with the detection hypothesis. Let f(vb, Hb) define the strength of the hypothesis

and g(Nb, Hb) the cost taken for partial inconsistency. The detector potential then takes the

form:

ψb(vb, Hb, lb) = min
yb∈{0,1}

( f(vb, Hb)yb + g(Nb, Hb)yb). (4.8)

A stronger classifier response Hb indicates an increased likelihood of the presence of an
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object at a location. This is reflected in the function f(×), which should be monotonically in-

creasing with respect to the classifier response Hb. As we also wish to penalize inconsistency,

the function g(×) should be monotonically increasing with respect to Nb. The number of detec-

tions used in the CRF framework is determined by a threshold Ht. The hypothesis function f(×)

is chosen to be a linear truncated function using Ht as:

f(vb, Hb) = wb vb max(0, Hb Ht), (4.9)

where wb is the detector potential weight. This ensures that f(×) = 0 for all detections with a

response Hb ≥ Ht. We choose the inconsistency penalizing function g(×) to be a linear function

of the number of inconsistent pixels Nb of the form:

g(Nb, Hb) = kbNb, kb =
f(vb, Hb)

pb vd

, (4.10)

where the slope kb was chosen such that the inconsistency cost equals f(×) when the percentage

of inconsistent pixels is pb.

Detectors may be applied directly, especially if they estimate foreground pixels themselves.

However, we use sliding window detectors that provide a bounding box around objects. To

obtain a more accurate set of pixels vb that belong to the object, we use a local colour model [50]

to estimate foreground and background within the box. This is similar to the approach used by

submissions in the PASCAL VOC 2009 segmentation challenge. Any other foreground estimation

techniques may be used.

4.2.6 Inference

One of the main advantages of our framework is that the associated energy function can be

solved efficiently using graph cut [4] based move making algorithms (which outperform mes-

sage passing algorithms [13,33] for many vision problems). We now show that our detector po-

tential in equation (4.8) can be converted into a form solvable using αβ-swap and α-expansion
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(a) (b) (c)

Figure 4-4: Counting Things: (a) An Object class segmentation labels all the cars adjacent to each

other as belonging to one large blob. (b) Detection methods localize objects and provide information

about the number of objects, but do not give a segmentation. (c) Our method jointly infers the number of

object instances and the object class segmentation. See §4.2.6 for details. (Best viewed in colour)

algorithms [5]. In contrast, the related work in [21] suffers from a difficult to optimize energy.

Using equations (4.8), (4.9), (4.10), and Nb =
∑

i∈vd
δ(vi ∀= lb), the detector potential ψb(×) can

be rewritten as follows:

ψb(vb, Hb, lb) = min

)
0, f(vb, Hb) + kb

{
i∈vd

δ(vi ∀= lb)

[

= f(vb, Hb) + min

)
f(vb, Hb), kb

{
i∈vb

δ(vi ∀= lb)

[
. (4.11)

This potential takes the form of a Robust PN potential [32], which is defined as:

ψh(v) = min

]
γmax,min

l

)
γl + kl

{
i∈v

δ(vi ∀= l)

[⎧
, (4.12)

where γmax = f(×), γl = f(×),Al ∀= b, and γb = 0. Thus it can be solved efficiently using

αβ-swap and α-expansion algorithms as shown in [32]. The detection instance variables yb can

be recovered from the final labelling by computing yb as:

yb = arg min
y′b∈{0,1}

f(vb, Hb)y
′
b + g(Nb, Hb)y

′
b

{
. (4.13)
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4.3 Energy Layer: Recognition and Reconstruction

The aim of this application is to combine two definitive computer vision problems—recognition

and reconstruction—in order to improve the accuracy of both. Our solution to this problem

involves taking the CRF approach to recognition with the CRF approach to reconstruction, and

then co-joining them in a holistic fashion: allowing them to communicate, and update one-

another. In essence we fuse together semantic image segmentation [37] and disparity estimation

[5, 34] within the 3rd layer of our architecture (§3.3).

4.3.1 Introduction

The problems of object class segmentation [37, 56], which assigns an object label such as road

or building to every pixel in the image and dense stereo reconstruction, in which every pixel

within an image is labelled with a disparity [34], are well suited for being solved jointly. Both

approaches formulate the problem of providing a correct labelling of an image as one of Max-

imum a Posteriori (MAP) estimation over a Conditional Random Field (CRF) [38], which is

typically a generalised Potts truncated linear model. Thus both may use graph cut based move

making algorithms, such as α-expansion [5], to solve the labelling problem. These problems

should be solved jointly, as a correct labelling of object class can inform depth labelling and

stereo reconstruction can also improve object labelling. To provide some intuition behind this
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statement, note that the object class boundaries are more likely to occur at a sudden transition

in depth and vice-versa. Moreover, the height of a point above the ground plane is an extremely

informative cue regarding its class label, and can be computed from the depth. For example,

road or sidewalk lie in the ground plane, and pixels taking labels pedestrian or car must lie

above the ground plane, while pixels taking label sky must occur at an infinite depth from the

camera. Figure 4-5 shows our model which explicitly captures these properties. Object class

Figure 4-5: Graphical model. The system takes a left (A) and right (B) image from a stereo pair that

has been rectified. Our formulation captures the co-dependencies between the object class segmentation

problem (E, §4.3.3) and the dense stereo reconstruction problem (F, §4.3.4) by allowing interactions

between them. These interactions are defined to act between the unary/pixel (blue) and pairwise/edge

variables (green) of both problems. The unary potentials are linked via a height distribution (G,eq. (4.22))

learnt from our training set containing hand labelled disparities. The pairwise potentials encode that

object class boundaries, and sudden changes in disparity are likely to occur together. The combined

optimisation results in an approximate object class segmentation (C) and dense stereo reconstruction (D).

View in colour.

recognition yields strong information about 3D structure as shown by the work on photo pop-
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up [20,26,45,48]. Here a plausible pop-up or planar model of a scene was reconstructed from a

single monocular image using only prior information regarding the geometry of typically pho-

tographed scenes, and knowledge of where object boundaries are likely to occur.

Beyond this, many tasks require both object class and depth labelling. For an agent to interact

with the world, it must be capable of recognising both objects and their physical location. For

example, camera based driverless cars must be capable of differentiating between road and

other classes, and also of recognising where the road ends. Similarly, several companies wish

to provide an automatic annotation of assets (such as street light, drain or road sign) to local

authorities. In order to provide this service, assets must be identified, localised in 3D space and

an estimation of the quality of the assets made. The use of object labellings to inform scene

reconstruction is not new. The aforementioned pop-up method of [20] explicitly used object

labels to aid the construction of a scene model, while 3D Layout CRF [30] matched 3D models

to object instances. However, in [20] they build a plausible model from the results of object

class segmentation, neither jointly solving the two problems, nor attempting to build an accurate

3D reconstruction of the scene, whereas in this application we jointly estimate both. Hoiem et

al. [30] fit a 3D model not to the entire scene but only to specific objects, and similarly, these

3D models are intended to be plausible rather than accurate.

Leibe et al. [42] employed Structure-from-Motion (SfM) techniques to aid the tracking and

detection of moving objects. However, neither object detection nor the 3D reconstruction ob-

tained gave a dense labelling of every pixel in the image, and the final results in tracking and

detection were not used to refine the SfM results. The CamVid [8] data set provides sparse SfM

cues, which were used by several object class segmentation approaches [8, 57] to provide pixel

wise labelling. In these works, no dense depth labelling was performed and the object class

segmentation was not used to refine the 3D structure.

None of the discussed works perform joint inference to obtain dense stereo reconstruction

and object class segmentation. In this application, we demonstrate that the problems are mu-

tually informative, and benefit from being modelled jointly within the 3rd level of our holistic
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scene understanding hierarchy (§ 3.3).

4.3.2 Global Configuration

We combine recognition and reconstruction within layer-3 of our holistic scene understanding

hierarchy (§ 3.3). Reconstruction is modelled as a disparity (inverse depth) labelling problem. It

takes a rectified pair of input images, Lright(I,Dright) andLleft(I,Dleft), and outputs a labelling

with S(I,Y), where each variable y � Y takes on a label from the label set C D. Recognition

is modelled as an object-class labelling problem that takes the left image as input and outputs a

segmentation S(I,X), where each variable x � X takes on a label from the label set C O. The

joint labelling problem is a layer-3 fusion using factorial CRF (3.4), giving our joint energy for

recognition and reconstruction as:

E(f ;}Dleft,Dright〈) Level-3

= EO X;Dleft
{

Recognition (4.14)

+ ED Y ; }Dleft,Dright〈
{

Reconstruction (4.15)

+ ε [X, Y ];Dleft
{
, Joint factors (4.16)

Our contribution here is on configuring the joint factors (4.16). For completeness we shall also

summarise the configurations of the Recognition and Reconstruction parts.

4.3.3 Recognition

For the recognition part of our joint energy (4.14) we follow [32, 37, 56] in formulating the

problem of object class segmentation as finding a minimal cost labelling of a CRF defined over

a set of random variables X = }x1, . . . , xN〈 each taking a state from the label space C O =

}o1, o2, . . . , ok〈 . Each label oj indicates a different object class such as car, road, building or

sky. These energies take the form:
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EO(fO;Dleft) = ΨUO X; 〉Dleft| {app}
{

Level-1 (4.17)

+ΨPO
)
X;Dleft

0

(
Level-0

+ΨHO X; 〉Dleft| {app}
{

Level-1

where ΨUO, ΨPO and ΨHO are unary, pairwise and higher order potentials.

Unary Potentials The unary potentials, ΨUO =
∑
}wu

Oψ
O
u 〈u∈UO, of the CRF describes the

cost of a single pixel taking a particular label. The terms are typically computed from colour,

texture and location features of the individual pixels and corresponding prelearned models for

each object class [56].

Pairwise Potentials The pairwise terms, ΨPO =
∑
}wρ

Oψ
O
ρ 〈 ρ∈PO, encourage similar neigh-

bouring pixels in the image to take the same label and takes the form of a contrast sensitive Potts

model [3, 50, 56]. These potentials are shown in fig. 4-5 E as blue circles and green squares

respectively.

Higher Order Potentials The higher order terms, ΨHO =
∑
}wη

Oψ
O
η 〈 η∈HO, describe poten-

tials defined over cliques containing more than two pixels. In our work we follow [37] and use

their hierarchical potentials based upon region based features, which significantly improve the

results of object class segmentation.

4.3.4 Reconstruction

We use the energy formulation of [5, 34] for the dense stereo reconstruction part of our joint

formulation. They formulated the problem as one of finding a minimal cost labelling of a CRF

defined over a set of random variables Y = }Y1, . . . , YN〈 , where each variable Yi takes a state

from the label space E = }d1, d2, . . . , dm〈 corresponding to a set of disparities, and can be
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written as:

ED Y ; }Dleft,Dright〈
{
= ΨUD(Y ;Dleft,Dright) + ΨPD(Y ;Dleft) (4.18)

The unary (blue circles) and pairwise (green squares) potentials are shown in fig. 4-5 F. Note

that the disparity for a pixel is directly related to the depth of the corresponding 3D point.

Unary Factors The unary potentials, ΨUD =
∑
}wu

Dψ
D
u 〈u∈UD, of the disparity CRF are de-

fined as a measure of colour agreement of a pixel Dleft
i with its corresponding pixel Dright

i from

the stereo-pair given a choice of disparity.

Pairwise Factors The pairwise terms, ΨPD =
∑
}wρ

Dψ
D
ρ 〈 ρ∈PD, encourage neighbouring pix-

els in the image to have a similar disparity. The cost is a function of the distance between

disparity labels:

ψρ(yi, yj) = g( yi yj ), (4.19)

where g(.) usually takes the form of linear truncated function g(y) = min(k1y, k2), where k1,

k2 ⊂ 0 are the slope and truncation respectively.

4.3.5 Recognition and Reconstruction

The co-joining part of our factorised joint labelling problem for object-class and disparity (4.16)

is defined as:

εJ ([X, Y ]);D) = ΦUJ ([X, Y ]);D) + ΦPJ ([X, Y ]);D) (4.20)

which has the same form as (3.5) in our layer-3, consisting of joint unary ΦU and joint pairwise

ΦJ potentials. We now discuss the configuration of the these potentials for this application.
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Joint Unary Potentials

The joint unary potentials, ΦUJ =
∑
}wu

Jφ
J
u〈u∈UJ , models the interaction between the unary

potentials of both the object class segmentation and dense stereo reconstruction parts of our

formulation. In order for them to interact successfully, we need to define some function that

relates them in a meaningful way. We could use depth and objects directly, as it may be that

certain objects appear more frequently at certain depths in some scenarios. In road scenes we

could build statistics relative to an overhead view where the positioning of the objects in the

xz-coordinate may be informative, since we expect that buildings will be on both sides, pave-

ment will tend to be between building and road that would take up the central portion of the

image. Building statistics with regard to the real-world positioning of objects gives a stable and

meaningful cue that is invariant to the camera position. However modelling like this requires a

substantial amount of data.

In this application we need to model these interactions with limited data. We do this by re-

stricting our unary interaction potential to the observed fact that certain objects occupy a certain

range of real world heights. After calibration we are able to obtain the height above the ground

plane via the relation:

h(yi, i) = hc +
(yh yi)×b

d
(4.21)

where hc is the camera height, yh is the level of the horizon in the rectified image pair, yi is the

height of the ith pixel in the image, b is the baseline between the stereo pair of cameras and d is

the disparity. This relationship is modelled by estimating the a priori cost of pixel i taking label

zi = [xi, yi] by

φJ
u([xi, yi]) = log(H(h(yi, i) xi)) (4.22)

where

H(h l) =

∑
i∈T δ(xi = l)δ(h(yi, i) = h)∑

i∈T δ(xi = l)
(4.23)
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is a histogram based measure of the naive probability that a pixel taking label l has height h in

the training set V . Fig. 4-5 G gives a graphical representation of this type of interaction shown

as a blue line linking the unary potentials (blue circles) of x and y via a distribution of object

heights.

Joint Pairwise Potentials

The joint pairwise potentials, ΦPJ =
∑
}wρ

Jφ
J
ρ 〈 ρ∈PJ , model the local consistency of object class

and disparity labels between neighbouring pixels. The consistency of object class and disparity

are not fully independent – an object classes boundary is more likely to occur here if the disparity

of two neighbouring pixels significantly differ. To take this information into account, we chose

tractable pairwise potentials of the form:

φJ
ρ ([xi, yi], [xj, yj]) = ψO

ρ (xi, xj)ψ
D
ρ (yi, yj). (4.24)

Fig. 4-5 shows this linkage as green line between a pairwise potential (green box) of each part.

Since there are few (4) parameters we use cross-validation to train them.

4.3.6 Inference

Inference alternates between α-expansion [5] in the object class label space, and range moves

[63] in the in the disparity label space.

Expansion moves in the object class label space For our joint optimisation of disparity and

object classes, we propose a new move in the projected object-class label space. We allow each

pixel taking label zi = [xi, yi] to either keep its current label or take a new label [α, yi]. Formally,

given a current solution z = [x,y] the algorithm searches through the space Zα of size 2N . We

define Zα as:

Zα =
}
z′ � (M• E )N : z′i = [x′

i, yi] and (x′
i = xi or x′

i = α)
(
. (4.25)
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One iteration of the algorithm involves making moves for all α inMin some order successively.

Bringing together all the pairwise terms from the object, disparity and joint parts, and under the

assumption that y is fixed, we have:

φODJ
ρ ([xi, yi], [xj, yj]) = (wρ

O + wρ
Jψ

D
ρ (yi, yj))ψ

O
ρ (xi, xj) + wρ

Dψ
D
ρ (yi, yj)

= λρψ
O
ρ (xi, xj) + kij. (4.26)

The constant kρ does not affect the choice of optimal move and can safely be ignored. If

Ayi, yj λρ = wρ
O+wρ

Jψ
D
ρ (yi, yj) ⊂ 0, the projection of the pairwise potential is a Potts model and

standard α-expansion moves can be applied. For wρ
O ⊂ 0 this property holds if wρ

O +wρ
Jk2 ⊂ 0,

where k2 is defined as in §4.3.4. In practice we use a variant of α-expansion suitable for higher

order energies [52].

Range moves in the disparity label space For our joint optimisation of disparity and object

classes we propose a new move in the projected disparity label space. Each pixel taking label

zi = [xi, yi] can either keep its current label or take a new label from the range (xi, [l, l + r]),

where r is the defined offset. To formalise this, given a current solution z = [x,y] the algorithm

searches through the space Zl of size (2 + r)N , which we define as:

Zl =
}
z′ � (M• E )N : z′i = [xi, y

′
i] and (y′i = yi or y′i � [l, l + r])

(
. (4.27)

Bringing together all the pairwise terms from the object, disparity and joint parts, and under the

assumption that x is fixed, we have:

φODJ
ρ ([xi, yi], [xj, yj]) = (wρ

D + wρ
Jψ

O
ρ (xi, xj))ψ

D
ρ (yi, yj) + wO

d ψ
O
ρ (xi, xj)

= λρψ
D
ρ (yi, yj) + kρ. (4.28)

Again, the constant kρ can safely be ignored, and if Axi, xj λρ = wρ
D + wp

Jψ
O
ρ (xi, xj) ⊂ 0 the

projection of the pairwise potential is linear truncated and standard range expansion moves can
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be applied. This property holds if wρ
D +wρ

J(θp+ θv) ⊂ 0, where θp and θv are the weights of the

Potts pairwise potential.
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Chapter 5

Evaluation

In this chapter an evaluation of our applications is presented. First existing road scene datasets

that are used to evaluate our contributions are summarised, along with our augmentations of

their data. A description of our chosen evaluation protocols and metrics is then discussed. This

is followed by the quantitative and qualitative evaluation of our applications for each layer of

the proposed holistic hierarchy.

5.1 CamVid Dataset [7, 8]

The Cambridge-driving Labelled Video Database (CamVid) database1 consists of over 10 min-

utes of 960 • 720 resolution images captured at 30 Hz from within a driven car; the camera

setup and an example of a captured frame is shown in Fig. 5-1 (top). The database addresses the

need for experimental data to quantitatively evaluate emerging algorithms. Whilst most existing

benchmarks are static such as consumer photographs, or fixed-position CCTV-style videos, the

CamVid data is captured from the perspective of a driving car, giving a more dynamic database,

and the driving scenario also increases the number and heterogeneity of the observed object

classes. The database has a variety of residential, urban, and mixed road sequences. Three of

the four sequences (0006R0, 0016E5, Seq05VD) are shot in daylight, and the fourth sequence

1Available at http://mi.eng.cam.ac.uk/research/projects/VideoRec.
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(0001TP) is captured at dusk. The camera’s intrinsic and extrinsic parameters, 2D feature tracks

over all frames, as well as the 3D point clouds are provided for all the sequences. This is calcu-

lated automatically and thus is not ground truth data for evaluation. The dataset ground truth is

provided for the semantic image segmentation task into object classes. We augment the dataset

with object bounding boxes.

Building Wall Tree Vegitation Fence

Sidewalk Parking
Block

Column/
Pole

Tra c
Cone Bridge

Sign/
Symbol Misc Text Tra c

light Sky Tunnel

Archway Road Road
sholder

Lane Mark
Drive

Lane Mark
Non Drive

Animal Pedestrian Child CartPram
Luggage Bicyclist

Motorcycle
/Scooter

Car SUV/
Pickup

Truck/
Bus

Train

Other
Moving VOID

Figure 5-1: CamVid Database: The CamVid database consists of a set a video sequences recorded

from a driven car. In the top row of the figure we see how the camera is positioned within the car, along

with an example frame that is captured whilst the car is driven around the Cambridge area. The database

is constructed for the semantic image segmentation task with ground truth labellings; the labels and an

example of a hand labelled image is shown in the bottom row. Figures reproduced from [7].

Semantic Segmentation Ground Truth A selection of 700 frames from the video sequences

are manually labelled. Each pixel in these frames was labelled as one of 32 candidate classes. A

small number of pixels are labelled as void, which do not belong to one of these classes and are

ignored. The labelled images are stridden at 1 Hz, and also 15 Hz for a small subsection of one

of the video sequences. The class labels with their corresponding colour codes, and an example
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ground truth labelling are shown in Figure 5-1(bottom). Interested readers may refer to [7,8] for

details on the database.

In practice we use the 1 Hz labelled sequences and a subset of 11 categories: Building, Tree,

Sky, Car, Sign-Symbol, Road, Pedestrian, Fence, Column-Pole, Sidewalk, and Bicyclist, from the

full set, for comparison with the work of [8], see Fig. 5-2 for summary statistics from [8].

Figure 5-2: CamVid Splits: The CamVid database is split into several sequences of varying
length, the number of ground truth labelled image per-sequence is shown on the right. In practice
11 object classes are used, these along with their percentage of their labelled pixels is shown on
the left. Figure reproduced from [8].

Object Detection Ground Truth For a subset of the 11 object classes, and 1 Hz labelled

framed, from the CamVid database, which are used in practice, we add bounding box annota-

tions to enrich the dataset. The objects that are chosen are ones that whose spatial extent and

localisation can be reasonably approximated by a bounding box, specifically the classes are:

Car, Sign-Symbol, Pedestrian, Column-Pole, and Bicyclist. The bounding box labelling is per-

formed with a bespoke tool. To label an object 4 user clicks are required, one for the top-most,

bottom-most, left-most, and right-most boundaries of the object. The dominant label within

the bounding box is automatically assigned, obtained from the original segmentation ground

truth. Only objects in the CamVid train sets (Fig. 5-2) are assigned bounding boxes, and not all

instances are included.
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5.2 Leuven Dataset [10, 42]

The Leuven Stereo Scene dataset2 is a sequence of 1175 image pairs recorded, from a driven

platform shown in Fig.5(top left), at 25fps and a resolution of 360 • 288 pixels over a distance

of about 500m. The main difficulties for object recognition lie in the relatively low resolution,

strong partial occlusion between parked cars, frequently encountered motion blur, and extreme

contrast changes between brightly lit areas and dark shadows [42]. This data differs from com-

monly used stereo matching sets like the Middlebury [53] data set, as it contains challenging

large regions which are homogeneous in colour and texture, such as sky and building, and suf-

fers from poor photo-consistency due to lens flares in the cameras, specular reflections from

windows and inconsistent luminance between the left and right camera. It should also be noted

that it differs from the CamVid database [8] in two important ways, CamVid is a monocular se-

quence, and the 3D information comes in the form of an unstable3 set of sparse 3D points. These

differences give rise to a challenging new data set that is suitable for training and evaluating

models for dense stereo reconstruction, 2D and 3D scene understanding. However, the dataset

does not contain the object class or disparity annotations that are required for learning object

models and for quantitative evaluation.

Disparity Ground Truth Since the Leuven stereo dataset has no disparity ground truth, we

manually label a subset of data. To augment the dataset with disparity ground truth, all image

pairs are first rectified automatically [17]. Then, a subset of 70 non-consecutive frames, which

upon visual inspection appear to be successfully rectified, are selected for human annotation.

These are then cropped to 316• 256 such that most pixels have correspondences and the warping

around the image borders is removed. The procedure for labelling these 70 rectified image pairs

is carried out with a bespoke tool, targeting the left-side image. The user of the tool identifies a

minimum of 3 pairs of corresponding points, between the left and right images, that belong to

2http://www.vision.rwth-aachen.de/data/leuven-left.tgz http://www.vision.rwth-aachen.de/data/leuven-right.tgz
3The outlier rejection step was not performed on the 3D point cloud in order to exploit large re-projection errors

as cues for moving objects. See [8] for more details.
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Figure 5-3: Leuven Dataset: The Leuven stereo dataset is captured from a driven vehicle around
the Leuven area. The vehicle and stereo camera rig is shown in the top row, along with an
example of a stereo pair of captured images. These images have been rectified and then labelled
by hand with object-classes and disparities, creating the ground truth shown on the bottom row.

a plane (or can be approximated by a plane, such as the road, or a building facade). From each

pair of points the disparity can be calculated, and since all the pairs form a plane, the disparities

can be interpolated for the other pixels. The process is repeated until no more planes can be

easily identified. This results in a coarse planer approximation of the disparity ground truth as

depicted in Fig. 5-3 (bottom right).

Semantic Segmentation Ground Truth Since the Leuven stereo dataset has no object class

segmentation ground truth, we manually label, the left-side image of, the 70 image pairs that

where selected for disparity labelling. The annotation procedure consists of manually labelling

every pixel of each image with 7 object classes: Building, Sky, Car, Road, Person, Bike and

Sidewalk4. In order to label the images we used the layer, pencil and fill tools of the GIMP image

editor.5 An 8th label, void, is given to pixels that do not obviously belong to one of the classes

(this includes areas near the object boundaries that are both ambiguous, and time consuming to

4In practice the Person class is set to void due to an insufficient number of instances.
5This is a simple technique to label images, especially for those already familiar with the oddity of the GIMP

interface. GIMP is freely available from http://www.gimp.org/
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label accurately). This procedure results in a object-class segmentation ground truth as depicted

in Fig. 5-3 (bottom left).

5.3 Evaluation Protocol and Metrics

By the nature of the semantic image segmentation problem, in that each pixel of an image

is assigned a label, care must be taken to have reasonably independent training and test sets.

For instance having a pixel location (x, y) with class z in the training set, and then a pixel

(x + 1, y) with the class in the test set would hardly be a challenge for modern techniques.

Similarly, when dealing with videos that have frame rates up to 30fps, having a training pixel

at (x, y, t) and a test pixel at (x, y, t + 1) is not a reasonable test. For this reason it is not

recommended to follow the classic k-fold cross validation technique, with random splits, when

dealing with highly structured data. This leads to the fixed training and test splits being the

preferred technique in semantic image segmentation. Also, when comparing to other works, a

direct comparison can only be accomplished by following their protocols. If there is conflict in

protocols, then both should be reported.

The quality of the predicted labelling is measured w.r.t:

True Positive/Negative Pixel variable correctly/incorrectly assigned to label � � M,

False Positive/Negative Pixel variable correctly/incorrectly not assigned to label � � M.

For a particular label � � M, let TP� and TN�, denote the number of true positives/negatives;

FP� and FN� denote the number of false positives/negatives. Then, several metrics (graphically

depicted in Fig. 5-4): recall (per-class, global, and average), and intersection over union (per-

class and average) are defined as:

Recall: Measures the proportion of correctly Vs incorrectly assigned pixel variables for a par-

ticular class:

78



Recall� =
TP�

TP� + FN�

, Recall (5.1)

GlobalRecall =

∑
�∈L TP�∑

�∈L TP� +
∑

�∈L FN�

=

∑
�∈L TP�

#Pixels
Global (5.2)

Avg.Recall =

∑
�∈L Recall�

M
, Avg. Recall (5.3)

and penalises under-estimates of the segmentation of a particular class. This is a widely reported

metric for semantic image segmentation. Note that 100% recall maybe be achieved for a single

class, so long as there are no false negative predictions.

Intersection over Union: Measures the proportion of correctly Vs incorrectly assigned and

incorrectly un-assigned pixel variables for a particular class:

IoU� =
TP�

TP� + FP� + FN�

, Intersection over Union (5.4)

Avg.IoU =

∑
�∈L IoU�

M
, Avg. Intersection over Union (5.5)

and penalises both over-estimates and under-estimates of the segmentation of a particular class.

This is the metric used in the VOC segmentation challenge [12]. Under this measure 100% can

only be achieved with no false negatives and no false positives. Note that this score will always

be lower than recall, unless there are no false positives.
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Global =

Recall =

Intersection 
over 

Union (IoU) True Positive (TP)

True Negative (TN)

False Positive (FP)

False Negative (FN)

Class A Class B

Evaluate Class A Evaluate Class B

=

Ground Truth

Predicted

Labelling

Correctly/Incorrectly
 Predicted Labels

w.r.t class A

w.r.t class B

Figure 5-4: Evaluation Metrics: Given a ground truth, and predicted labelling, as seen in the la-

belling box, evaluation of its quality is measured using several metrics. These rely on identifying
true positives/negatives, and false positives/negatives, seen in the correctly/incorrectly predicted

labels box. Essentially these metrics are various ratios of correct Vs incorrect predictions. The
main table visualises the global, recall, and intersection over union measures, w.r.t the example
labelling, and each of the classes.
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5.4 Feature Layer: Appearance and Geometry

In this section the qualitative and quantitative results are reported for our feature layer (§3.1)

application that combines appearance and geometry cues (§4.1). We evaluated our method on

the CamVid Database [7](§5.1). A comparison of our results with the state-of-the-art method

of [8] is presented, where a 14.7% improvement in overall recognition accuracy is achieved.

Figure 5-5 (d, e, f) shows the qualitative results of our method on sample day and dusk

images (h). The higher order results (f) have well-defined object boundaries, and are more

similar to the ground truth (g) compared to the results of [8] (a, b, c). The quantitative results are

summarized in Table 5.1. We achieve a global accuracy (i.e. , the percentage of pixels correctly

classified) of 84% in comparison to 69% in [8]. A high performance (> 50% IoU) is achieved

on most of the object categories. The two categories (Pedestrian, Fence) where our performance

is low (< 20% IoU) is perhaps due to the lack of training data. The training dataset has less than

2% of pixels labelled as one of these categories, which appears to be insufficient to learn the

potentials. In some cases the higher order CRF under-performs compared to the pairwise CRF

due to objects which are only a few pixels wide in the image e.g. , Column-Pole. This is due to

the failure of the mean-shift [9] segmenter to pick out fine structures. Figure 5-6 highlights the

qualitative improvements achieved by higher order CRFs.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 5-5: Qualititve Results: Sample object category segmentations of two day and two dusk im-

ages. Results from [8] are shown in: (a) Motion and structure-based segmentation, (b) Appearance-based

segmentation, (c) Combined segmentation result. Our results: (d) using only unary potentials, (e) adding

pairwise potentials improves the segmentation, but fails at object boundaries. The row (f) shows our com-

bined higher order potential based segmentation, which is qualitatively better than (a) - (e). (g) Ground

truth labelled image, (h) Original test image. Note that using higher order provides better segmentation,

as well as clearer object boundaries.
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Mot. [8] 43.9 46.2 79.5 44.6 19.5 82.5 24.4 58.8 0.1 61.8 18.0 43.6 61.8
App. [8] 38.7 60.7 90.1 71.1 51.4 88.6 54.6 40.1 1.1 55.5 23.6 52.3 66.5

Combined [8] 46.2 61.9 89.7 68.6 42.9 89.5 53.6 46.6 0.7 60.5 22.5 53.0 69.1
Recall

ψi 61.9 67.3 91.1 71.1 58.5 92.9 49.5 37.6 25.8 77.8 24.7 59.8 76.4
ψi + ψij 70.7 70.8 94.7 74.4 55.9 94.1 45.7 37.2 13.0 79.3 23.1 59.9 79.8

ψi + ψij + ψc 84.5 72.6 97.5 72.7 34.1 95.3 34.2 45.7 8.1 77.6 28.5 59.2 83.8
IoU
ψi 55.3 54.3 84.8 51.8 11.9 85.5 15.6 27.4 7.5 60.0 15.7 42.71 NA

ψi + ψij 63.6 58.0 87.8 55.9 13.6 86.4 16.9 27.6 6.1 61.9 18.1 45.07 NA
ψi + ψij + ψc 71.6 60.4 89.5 58.3 19.4 86.6 26.1 35.0 7.2 63.8 22.6 49.15 NA

Table 5.1: Quantitative Results: Pixel-wise percentage accuracy on all the test sequences. Results

of [8] using only motion-based (Mot.), only appearance-based (App.) and both features (Combined) are

shown for comparison. We present results of our CRF-based method using the Recall and the PASCAL

VOC measures. Only unary terms (ψi), unary and pairwise terms (ψi + ψij), and unary, pairwise and

higher order terms (ψi + ψij + ψc). Note that our method, which uses all the terms, gives the best

performance for almost all the classes. ‘Global’ is the percentage of pixels correctly classified, and

‘Average’ is the average of the per-class accuracies.
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(a)

(b)

Figure 5-6: Qualitative Results: Qualitative improvements achieved by our higher order CRF frame-

work. We show (left to right) the original image, the ground truth image, pairwise CRF result, and higher

order CRF result for two frames from the test sequences. The higher order potentials correct the object

boundary errors in the pairwise CRF results e.g. , traffic light, and the building in (a). They also provide

accurate segmentation, which is more similar to ground truth compared to the pairwise result e.g. , lamp

post, sidewalk in (b).

5.5 Potential Layer: Things and Stuff

In this section the qualitative and quantitative results are reported for our potential layer (§3.2)

application that combines things and stuff (§4.2). We evaluated our method on the CamVid

Database [7](§5.1). A comparison of our results with the state-of-the-art method of [8] is pre-

sented, where a 15.4% improvement in overall recognition accuracy is achieved.

Figures 4-4, 5-7 and 5-8 show qualitative results on the CamVid dataset, where we can

observe that object detection artefacts, rectangular segments, do not present themselves and the

precise object boundaries of the baseline (§5.4) are persevered.

Object segmentation approaches do not identify the number of instances of objects, but this

information is recovered using our combined segmentation and detection model (from yd vari-

ables, as discussed in §4.2.6), and is shown in Figure 4-4. Figure 5-7 shows the advantage of our

soft constraint approach to include detection results. The false positive detection here (shown

as the large green box) does not affect the final segmentation, as the other hypotheses based on

pixels and segments are stronger. However, a strong detector hypothesis (shown as the purple
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Void Column Sign Fence Pedestrian Cyclist Road Building Sky Tree Sidewalk Car

(a) (b) (c)

Figure 5-7: Qualitative Results: (a) Segmentation without object detectors, (b) Object detections for car

and pedestrian shown as bounding boxes, (c) Segmentation using our method. These detector potentials

act as a soft constraint. Some false positive detections (such as the large green box representing a person)

do not affect the final segmentation result in (c), as it does not agree with other strong hypotheses based

on pixels and segments. On the other hand, a strong detector response (such as the purple bounding box

around the car) correctly relabels the road and pedestrian region as car in (c) resulting in a more accurate

object class segmentation. (Best viewed in colour)

box) refines the segmentation accurately. Figure 5-8 highlights the complementary information

provided by the object detectors and segment-based potentials. An object falsely missed by the

detector (traffic light on the right) is recognized based on the segment potentials, while another

object (traffic light on the left) overlooked by the segment potentials is captured by the detector.

More details are provided in the figure captions. Quantitative results on the CamVid dataset are

shown in Table 5.2. For the recall measure, our method performs the best on 5 of the classes, and

shows near-best (< 1% difference in accuracy) results on 3 other classes. Accuracy of “things”

classes improved by 7% on average. This measure does not consider false positives, and creates

a bias towards smaller classes. Therefore, we also provide results with the intersection vs union

measure in Table 5.2. We observe that our method shows improved results on almost all the

classes in this case.
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Void Column Sign Fence Pedestrian Cyclist Road Building Sky Tree Sidewalk Car

(a) (b) (c)

Figure 5-8: Qualitative Results: (a) Segmentation without object detectors, (b) Object detection results

on this image showing pedestrian and sign/symbol detections, (c) Segmentation using all the detection

results. Note that one of the persons (on the left side of the image) is originally labelled as bicyclist

(shown in cyan) in (a). This false labelling is corrected in (c) using the detection result. We also show

that unary potentials on segments (traffic light on the right), and object detector potentials (traffic light on

the left) provide complementary information, thus leading to both the objects being correctly labelled in

(c). Some of the regions are labelled incorrectly (the person furthest on the left) perhaps due to a weak

detection response. (Best viewed in colour)
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Recall
[8] 46.2 61.9 89.7 68.6 42.9 89.5 53.6 46.6 0.7 60.5 22.5 69.1 53.0

[57] 84.5 72.6 97.5 72.7 34.1 95.3 34.2 45.7 8.1 77.6 28.5 83.8 59.2
Without detectors 79.3 76.0 96.2 74.6 43.2 94.0 40.4 47.0 14.6 81.2 31.1 83.1 61.6

Our method 81.5 76.6 96.2 78.7 40.2 93.9 43.0 47.6 14.3 81.5 33.9 83.8 62.5
IoU
[57] 71.6 60.4 89.5 58.3 19.4 86.6 26.1 35.0 7.2 63.8 22.6 - 49.2

Without detectors 70.0 63.7 89.5 58.9 17.1 86.3 20.0 35.8 9.2 64.6 23.1 - 48.9
Our method 71.5 63.7 89.4 64.8 19.8 86.8 23.7 35.6 9.3 64.6 26.5 - 50.5

Table 5.2: Quantitative Results: We show quantitative results on the CamVid test set on both recall and

intersection vs union measures. ‘Global’ refers to the overall percentage of pixels correctly classified,

and ‘Average’ is the average of the per class measures. Numbers in bold show the best performance for

the respective class under each measure. Our method includes detectors trained on the 5 “thing” classes,

namely Car, Sign-Symbol, Pedestrian, Column-Pole, Bicyclist. We clearly see how the inclusion of our

detector potentials (‘Our method’) improves over a baseline CRF method (‘Without detectors’), which is

based on [37]. For the recall measure, we perform better on 8 out of 11 classes, and for the intersection

vs measure, we achieve better results on 9 classes. Note that our method was optimized for intersection

vs union measure. Results, where available, of previous methods [8, 57] are also shown for reference.
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5.6 Energy Layer: Recognition and Reconstruction

In this section the qualitative and quantitative results are reported for our energy level (§3.3)

application that combines recognition and reconstruction (§4.3). We evaluated our method on

the Leuven Stereo Database [10, 42](§5.2). We quantitatively evaluate the object class segmen-

tation by measuring the percentage of correctly predicted labels over the test sequence. The

dense stereo reconstruction performance is quantified by measuring the number of pixels which

satisfy di dgi ≥ δ, where di is the label of i-th pixel, dgi is corresponding ground truth label

and δ is the allowed error. We increment δ from 0 (exact) to 20 (within 20 disparities) giving a

clear picture of the performance. The total number of disparities used for evaluation is 100.

Object Class Segmentation The object class segmentation CRF as defined in §4.3.3 per-

formed extremely well on the data set, better than we had expected, with 95.7% of predicted

pixel labels agreeing with the ground truth. Qualitatively we found that the performance is

stable over the entire test sequence, including those images without ground truth.

Dense Stereo Reconstruction The Potts [34] and linear truncated §4.3.4 (LT) baseline dense

stereo reconstruction CRFs performed relatively well, with large δ, considering the difficulty of

the data, plotted in fig. 5-9 as ‘Potts baseline’ and ‘LT baseline’. We found that on our data set a

significant improvement was gained by smoothing the unary potentials with a Gaussian blur as

can be seen in fig. 5-9 ‘LT Filtered’. For qualitative results see fig. 5-10 F.

Recall Building Sky Car Road Pavement Bike Global
Stand alone 96.7 99.8 93.5 99.0 60.2 59.3 95.7

Joint approach 96.7 99.8 94.0 98.9 60.6 59.5 95.8

Table 5.3: Quantitative Results: Quantitative results for object class segmentation (recall) of stand

alone and joint approach. Minor improvement were achieved for smaller classes that had fewer pixels

present in the data set. We assume the difference would be larger for harder datasets.
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Figure 5-9: Quantitative comparison of performance of disparity CRFs: We can clearly see that our

joint approach (Proposed Method) outperforms the stand alone approaches with baseline Potts [34] (Potts

Baseline), Linear truncated potentials §4.3.4 (LT Baseline) and Linear truncated with Gaussian filtered

unary potentials (LT Filtered). The true +ve ratio is the number of pixels which satisfy di dgi ≥ δ,

where di is the disparity label of i-th pixel, dgi is corresponding ground truth label and δ is the tolerated

error.

Joint Approach Our joint approach consistently outperformed the best stand-alone dense

stereo reconstruction, by a margin of up to 25%, as can be seen in fig. 5-9 ‘Proposed Method’.

Improvement of the object class segmentation was incremental, with 95.8% of predicted pixel

labels agreeing with the ground truth, per-class results are presented in Table 5.3. The lack

of improvement can be attributed to the two mistakes being the misclassification of person as

building, and the top of a uniformly white building as sky. Of these failure cases, 3D location is

unable to distinguish between person and building, while stereo reconstruction fails on homo-

geneous surfaces. We expect to see a more significant improvement on more challenging data

sets, and the creation of an improved data set is part of our future work. Qualitative results can

be seen in fig 5-10 C and E.
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Figure 5-10: Qualitative object class and disparity results for Leuven data set: (A) Original Image.

(B) Object class segmentation ground truth. (C) Proposed method Object class segmentation result. (D)

Dense stereo reconstruction ground truth. (E) Proposed method dense stereo reconstruction result. (F)

Stand alone dense stereo reconstruction result (LT Filtered). Best viewed in colour.
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Chapter 6

Conclusion

In this dissertation we have specified three ways to fuse information from different sources

into the AHRF graphical model with the aim of moving towards a more holistic approach to

scene understanding. We concentrated on street scenes because they pose interesting challenges

whilst at the same time are highly structured and well suited for experimentations in for holistic

models. We empirically tested our approaches showing qualitative and quantitative results to

back up our thesis. The three applications where split-up depending on how information was

integrated: Fusion of feature, potential and energy functions.

6.1 Feature Layer: Geometry and Appearance

In this application, we have presented a novel principled framework to combine motion and

appearance features for object class segmentation problems. Our experiments have shown both

quantitative and qualitative evaluations on the challenging CamVid database. We achieve a sig-

nificant increase in overall accuracy – 84% compared to 69% of the state-of-the-art method [8].

The object class boundaries in the segmentations are well-defined and also detect the fine struc-

tures in some categories. Our framework performs worst on classes with the least training data,

representing less than 2% of the pixels. We also observed that objects which are a few pixels

wide (e.g. , columns) in the image are typically merged with other neighbouring superpixel seg-
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ments. We are investigating edge-based recognition methods to identify thin structures. Another

interesting direction for future research would be to use temporal CRFs.

6.2 Potential Layer: Things ans Stuff

In this application, we have presented a novel framework for a principled integration of de-

tectors with CRFs. Unlike many existing methods, our approach supports the robust handling

of occluded objects and false detections in an efficient and tractable manner. We believe the

techniques described in this application are of interest to many working in the problem of object

class segmentation, as they allow the efficient integration of any detector response with any CRF.

The benefits of this approach can be seen in the results; our approach consistently demonstrated

improvement over the baseline methods, under the intersection vs union measure.

This work increases the expressibility of CRFs and shows how they can be used to identify

object instances, and answer the questions: “What object instance is this?”, “Where is it?”, and

“How many of them?”.

6.3 Energy Layer: Recognition and Reconstruction

In this application, we have presented a novel approach to the problems of object class recogni-

tion and dense stereo reconstruction. To do this, we provided a new formulation of the problems,

a new inference method for solving this formulation and a new data set for the evaluation of our

work. Evaluation of our work shows a dramatic improvement in stereo reconstruction com-

pared to existing approaches. This work puts us one step closer to achieving complete scene

understanding, and provides strong experimental evidence that the joint labelling of different

problems can bring substantial gains.

Overall we have shown that a holistic approach to street scene understanding is both prag-

matic and effective, by implementing several applications and demonstrating superior results;
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We showed that fusion of different aspects of scene understanding achieved in a principled man-

ner through the use of graphical models, and that these graphical models have efficient MAP

inference, especially if we constrict our modelling to meet the constraints of the α-expansion

move making algorithm.
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Abstract

In this paper we present a framework for pixel-wise object segmentation of road
scenes that combines motion and appearance features. It is designed to handle street-level
imagery such as that on Google Street View and Microsoft Bing Maps. We formulate the
problem in a CRF framework in order to probabilistically model the label likelihoods and
the a priori knowledge. An extended set of appearance-based features is used, which
consists of textons, colour, location and HOG descriptors. A novel boosting approach is
then applied to combine the motion and appearance-based features. We also incorporate
higher order potentials in our CRF model, which produce segmentations with precise
object boundaries. We evaluate our method both quantitatively and qualitatively on the
challenging Cambridge-driving Labeled Video dataset. Our approach shows an overall
recognition accuracy of 84% compared to the state-of-the-art accuracy of 69%.

1 Introduction

One of the grand goals of computer vision is to interpret a scene semantically given an
input image. This problem has manifested itself in various forms, such as object recogni-
tion [8, 16, 25], 3D scene recovery [14], and image segmentation [6, 10, 24]. With the
introduction of applications such as Google Street View [2], Microsoft Bing maps [1], the
problem of scene understanding has gained more importance than ever. Image sequences
from such applications consist of complex scenarios involving multiple objects, such as peo-
ple, buildings, cars, bikes. One may need to simultaneously segment and identify these
objects for instance to mask out cars, or maintain highway inventories automatically [3].
This paper deals with the problem of simultaneous pixel-wise segmentation and recognition
of such complex image sequences. In particular, we focus on monocular image sequences
filmed from within a driven car [9].

c© 2009. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 STURGESS et al.: COMBINING APPEARANCE AND SFM FEATURES

Many methods have been proposed to address the object recognition and segmentation
problems. Some of them recognize an object and provide a bounding box enclosing it, rather
than a pixel-wise segmentation [12, 28]. These approaches are suited better for recognizing
rigid objects, such as people and cars, rather than amorphous objects, such as sky and road.
Other methods address the challenging task of combined object recognition and pixel-wise
segmentation [5, 13, 17, 21]. Although they have achieved impressive results on single object
classes, they tend not to scale well for multiple classes. Thus, neither approach is appropriate
for complete scene understanding of road scenes consisting of multiple object classes, both
rigid and amorphous.

TextonBoost proposed by Shotton et al. [25] combines recognition and image segmen-
tation. They use a boosted combination of texton features to encode the shape, texture and
appearance of the object classes. A conditional random field (CRF) was then used to com-
bine the result of textons with colour and location based likelihood terms. Although their
method produced promising results, the rough shape and texture model caused it to fail at
object boundaries. The recent work on image categorization and segmentation using se-
mantic texton forests [26] also suffers from this problem. Kohli et al. [16] proposed robust
higher order potentials that improve the segmentation result considerably producing a bet-
ter definition of object boundaries. Brostow et al. [8] recently showed that complementing
appearance-based features with their motion and structure cues can improve object recog-
nition in challenging datasets captured under varying conditions. However, their approach
shares the shortcomings of TextonBoost, in that the resulting segmentation lacks clear object
boundaries. Our algorithm builds on these works and addresses the object recognition and
segmentation problems simultaneously to produce good object boundaries.

In this paper we present an approach to integrate motion and appearance-based features
for object recognition and segmentation of challenging road scenes. The motion-based fea-
tures are extracted from 3D point clouds, and appearance-based features consist of textons,
colour, location, and HOG descriptors [11]. All these features are combined within a boosting
framework that automatically selects the most discriminative features for each object class
to generate likelihood terms. In addition to the unary likelihood and pairwise potentials, we
incorporate higher order terms defined on the image segments generated using unsupervised
segmentation algorithms. We perform inference in this framework using the graph cut based
α-expansion algorithm [7]. Our method achieves an overall accuracy of 84% compared to
the state-of-the-art accuracy of 69% [8] on the challenging new CamVid database [9]. Our
paper is inspired by the work of [8] with the following major distinctions: (i) We formulate
the problem in a CRF framework in order to probabilistically model the label likelihoods and
our prior knowledge in a principled manner. (ii) We use a novel boosting approach to com-
bine the motion and appearance-based features. (iii) We incorporate higher order potentials
in our CRF model, which produce accurate segmentations with precise object boundaries.
(iv) We use an extended set of appearance-based features. We will highlight these contribu-
tions again in the relevant sections.

Outline of the paper. In section 2 we discuss the basic theory of higher order conditional
random fields and show how they can be used to model labelling problems such as object
segmentation and recognition. The details of the motion and appearance-based unary poten-
tials, computation of higher order potentials, and the inference method are given in section 3.
Section 4 describes the dataset and the experimental results. These include qualitative and
quantitative evaluations on the CamVid database of video sequences [9]. Concluding re-
marks and directions for future work are provided in section 5.
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2 CRFs for Object Segmentation
Conditional Random Fields have become increasingly popular for modelling object segmen-
tation problems [16, 25]. In this section we briefly describe the pairwise CRF model and the
relevant notation.

Consider a set of random variables X = {X1,X2, . . . ,Xn}, where each variable Xi ∈ X
takes a value from the label set L = {l1, l2, . . . , lk}. In our case labels correspond to object
classes such as pedestrians, buildings, cars, trees, given in Figure 2 and pixels are the random
variables. A labelling x refers to any possible assignment of labels to the random variables
and takes values from the set L = L N . The random field is defined over a lattice V =
{1,2, . . . ,N}, where each lattice point i ∈ V is associated with its corresponding random
variable Xi. Let N be the neighbourhood system of the random field defined by sets Ni,∀i∈
V , where Ni denotes the set of all neighbours of the variable Xi. A clique c is defined as a
set of random variables Xc which are conditionally dependent on each other.

We denote the probability of a labelling X = x by Pr(x) and that of a labelling Xi = xi
by Pr(xi). A random field is said to be a Markov random field (MRF) with respect to a
neighbourhood N if and only if it satisfies the following two conditions: Pr(x) > 0,∀x ∈ L
(positivity); and Pr(xi|{x j : j ∈ V −{i}}) = Pr(xi|{x j : j ∈Ni}),∀i ∈ V (Markovianity).

A CRF can be viewed as an MRF globally conditioned on the data D. The posterior
distribution Pr(x|D) over the labellings of the CRF is a Gibbs distribution and is given by:
Pr(x|D) = 1

Z exp(−∑c∈C ψc(xc)), where Z is a normalizing constant, and C is the set of
all cliques [19]. The term ψc(xc) is known as the potential function of the clique c, where
xc = {xi, i ∈ c}. The corresponding Gibbs energy E(x) is given by: E(x) =− logPr(x|D)−
logZ = ∑c∈C ψc(xc). The most probable or maximum a posteriori (MAP) labelling x∗ of the
CRF is defined as: x∗ = argmaxx∈L Pr(x|D) = argminx∈L E(x).

Energy functions typically used for object segmentation consist of unary (ψi) and pair-
wise (ψi j) cliques:

E(x) = ∑
i∈V

ψi(xi)+ ∑
(i, j)∈E

ψi j(xi,x j), (1)

where V is the set of image pixels and E is the set of all pairs of interacting variables
denoting the neighbourhood set N . The labels represent the different objects, and every
possible assignment of labels to the random variables (also known as a configuration of the
CRF) defines a segmentation. The unary potential ψi(xi) gives the cost of the assignment:
Xi = xi. Cost functions based on colour, location, and texton features have been commonly
used for object segmentation [4, 17, 25]. The pairwise potential ψi j(xi,x j) represents the
cost of the assignment: Xi = xi and X j = x j. It is also referred to as the smoothness term, and
takes the form of a contrast-sensitive Potts model:

ψi j(xi,x j) =
{

0 if xi = x j,
θp +θv exp(−θβ ||Ii− I j||2) otherwise, (2)

where Ii and I j are the colours of pixels i and j respectively. The constants θp, θv and θβ are
model parameters learned using training data [6, 25].

Higher Order CRFs. There has been much interest in higher order CRFs’ in the recent
past. They have been successfully used to improve the results of problems such as image
denoising, restoration [20, 22], texture segmentation [15], object category segmentation [16].
The improvements can be attributed to the fact that higher order potentials capture the fine
details including texture and contours better than pairwise potentials (defined in equation (2)
for example).
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Figure 1: Assigning a single label to all the pixels of a superpixel, as a hard constraint,
might produce an incorrect labelling. We show the original image (left), its ground truth
labelling (centre) and the meanshift segmentation of the image (right). The segment number
‘1’ consists of all pixels with label Road (a ‘good’ segment), but the segment number ‘2’
consists of pixels with more than one label, viz. Road, Sidewalk, Fence. We use robust
higher order potentials to define soft constraints on segments.

Our approach uses the robust Pn model potential defined on the segments obtained by
multiple unsupervised segmentations [16]. Methods based on grouping regions for segmen-
tation assume that all pixels constituting a segment belong to one object. Such a hard con-
straint on the segments is not necessarily valid as shown in Figure 1, where it can been seen
that a single segment may cross multiple object-class boundaries. Unlike these methods, we
use the soft constraint approach of [16], where higher order potentials are defined on the
image segments generated by unsupervised segmentation algorithms. The Gibbs energy of
our higher order CRF is given by:

E(x) = ∑
i∈V

ψi(xi)+ ∑
(i, j)∈E

ψi j(xi,x j)+ ∑
c∈S

ψc(xc), (3)

where S denotes the set of all segments, ψc refers to the higher order potential defined on
them, and xc is the set of all pixels in clique c. We provide more details about the computation
of the higher order potential in the next section. The segmentation is obtained by finding the
lowest energy configuration of the CRF. We can minimize the energy function in (1) using
approximate methods such as α-expansion [7, 16].

3 Computing the Potentials
We now describe the structure from motion and appearance-based features used for comput-
ing the energy potentials. Details of the boosting framework used to combine all these weak
features and the computation of higher order potentials are also presented.

3.1 Motion and Structure Features
We use the five motion and structure features proposed by [8], namely: height above the
camera, distance to the camera path, projected surface orientation, feature track density,
and residual reconstruction error. They are computed using the inferred 3D point clouds1,
which are quite noisy due to the small baseline variations. These weak features are designed
specifically for such point clouds. As noted by [8], the five cues are tailored for the driv-
ing application and are invariant to camera pitch, yaw and perspective distortions. A brief
description of the features is given below.

Height above the camera is measured as the difference of the y coordinates of a world
point and the camera centre, after aligning the car’s up vector as the camera’s −y axis.

1The point clouds are available as part of the dataset [9].
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Distance to the camera path is computed using the entire sequence of camera centres. Let
C(t) denote the camera centre in frame t, and W denote a world point. This feature is
defined as mint ||W −C(t)||. The surface orientation is estimated from the 2D Delaunay
triangles [23] formed using the projected world points in a frame. The intuition behind the
orientation features is that although individual 3D coordinates may have inaccurate depths,
the relative depths of the points gives an approximate local surface orientation. The track
density feature exploits the well-known fact that objects yield sparse or dense feature tracks
based on how fast they are moving, and their texture. For instance, trees, buildings, and
other forms of vegetation yield dense feature tracks, while sky and roads give rise to sparse
feature tracks. This cue is measured as the 2D map of the feature density. The residual
reconstruction error measures the backprojection error (2D variance) of the estimated 3D
world points. This residual error separates moving objects such as people and cars, from
stationary ones such as buildings, vegetation, and roads.

All the features are projected from the 3D world onto the 2D image plane and clustered
using the K-means algorithm. To include these features into the boosting framework, the
feature value at a pixel is given by its cluster assignment. We refer the reader to [8] for more
details about the motion-based features and the projection from 3D to 2D.

3.2 Appearance-based Features
We now describe the appearance-based features employed in our framework. In contrast
to [8], which uses only texton histograms and localized bag of semantic texton (BOST)
features, our approach uses colour, location, texton, and Histogram of Oriented Gradients
(HOG) [11] features. We follow the method of [25] to learn a dictionary of textons by con-
volving a 17-dimensional filter bank (consisting of scaled Gaussians, derivatives of Gaus-
sians, and Laplacians of Gaussians) with all the images and clustering the filter responses.
Each pixel is then assigned to the nearest cluster centre, resulting in a texton feature map.
The colour feature of a pixel is its assignment to the nearest cluster centre in the CIELuv
colour space. The (x,y) pixel locations and HOG features are also clustered, and the feature
value at each pixel is its cluster assignment.

3.3 Boosting for Unary Potentials
We use an adapted version [18] of the boosting approach described in TextonBoost [25]
to compute the unary potentials, unlike [8] which uses a randomized decision forest. In
section 4 we show that our boosting scheme performs better than their randomized decision
forest approach. TextonBoost estimates the probability of a pixel taking a certain label by
boosting weak classifiers based on a set of shape filter responses. The shape filters are defined
by a rectangular region r and texton t pair. The feature response vi(r, t) of the shape filter for
a given point i is the number of textons of type t in the region r placed relative to the point
i. These filters capture the contextual relationships between objects. Each weak classifier
compares the shape filter response to a threshold. The most discriminative filters are found
using the Joint Boosting algorithm [27].

The classifiers defined on motion and appearance-based features (given in §3.1 and §3.2)
are combined in the adapted boosting approach. The shape filters are now defined by triplets
of feature type f , feature cluster t, and rectangular region r. The feature response vi(r, f , t) for
a given point i is the number of features of type f belonging to cluster t in the region r. The
weak classifiers compare the responses of shape filters with a set of thresholds. The feature
selection and learning procedure is identical to that in [25]. The negative log likelihood given
by the classifier is incorporated as the unary potential in the CRF framework.



6 STURGESS et al.: COMBINING APPEARANCE AND SFM FEATURES

Seq. Name # Frames Dataset
0006R0 101 Day Train
0016E5 204 Day Train

0001TP_1 62 Dusk Train
Seq05VD 171 Day Test
0001TP_2 62 Dusk Test

(a) (b)

Figure 2: (a) The 11 object class names and their corresponding colours used for labelling.
(b) The training and testing data split for both day and dusk sequences. The first half of the
dusk sequence (0001TP_1) is used for training, and the second half (0001TP_2) for test-
ing. The frames were extracted for ground truth labelling at a rate of 1 frame per second i.e.,
by considering every 30th frame. To make our data split identical to that in [8], we ignored
the data extracted at 15 fps on one of the sequences (consisting of 101 frames).

3.4 Pairwise and Higher Order Potentials
In [8], the label consistency between neighbouring pixels is partially modelled by the BOST
region priors, but the segmentations lack clear object boundaries. In contrast, we incorporate
this consistency using pairwise and higher order potential functions. The pairwise potential
is given in equation (2). A quality-sensitive higher order potential defines the label incon-
sistency cost i.e., the cost of assigning different labels to pixels constituting the segment,
while taking the quality of a segment into account. We denote the quality of a segment c by
G(c) : c→R. In our experiments we use the variance of colour intensity values evaluated on
all constituent pixels of a segment as a quality measure. The quality-sensitive higher order
potential is defined as:

ψc(xc) =
{

Ni(xc) 1
Q γmax if Ni(xc)≤ Q

γmax otherwise,
(4)

where Ni(xc) denotes the number of pixels in the superpixel c not taking the dominant label,
γmax = |c|θα (θ h

p +θ h
v G(c)), and Q is the truncation parameter. This potential ensures the cost

of breaking a good segment is higher than that of a bad segment.
The set S of segments used for defining the higher order potentials is generated by

computing multiple unsupervised segmentations of an image. We choose the mean shift
algorithm [10] for this purpose, as it has been shown to give good quality segments. Multiple
segmentations are generated by varying the spatial and range parameters.

3.5 Inferring the Segmentation
Kohli et al. [16] showed that the robust higher order energy functions defined in the previous
section can be efficiently solved by α-expansion and αβ -swap move making algorithms.
In order to compute the optimal moves for these algorithms, higher order move functions
need to be minimized. They achieve this by transforming the higher order move functions
to quadratic submodular functions by adding auxiliary binary variables. The transformed
submodular functions are then minimized by graph cuts.

We follow this approach and use the α-expansion move making algorithm. The solution
corresponding to one of the energy minima provides the object class segmentation labelling
at each pixel. The class labels are represented with colours shown in Figure 2.
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4 Experiments
We evaluated our method on the challenging Cambridge-driving Labelled Video Database
(CamVid) [9]. We compare our results to the state-of-the-art method of [8] and achieve
14.7% improvement in overall recognition accuracy. The effectiveness of the proposed ap-
proach is shown in terms of both quantitative and qualitative evaluations.

Dataset. The CamVid database2 consists of over 10 minutes of high quality 30 Hz footage.
The corresponding labelled images are at 1 Hz, and also 15 Hz for one of the video se-
quences. The videos were captured at 960×720 resolution with a camera mounted inside a
car. Several residential, urban, and mixed road sequences are included in the database. Three
of the four sequences (0006R0, 0016E5, Seq05VD) were shot in daylight, and the fourth
sequence (0001TP) was captured at dusk. Sample frames from the day and dusk sequences
are shown in Figure 3. The camera’s intrinsic and extrinsic parameters, 2D feature tracks
over all frames, as well as the 3D point clouds are provided in the database.

A selection of frames from the video sequences were manually labelled in an arduous
process. Each pixel in these frames was labelled as one of the 32 candidate classes. The
assigned labels were verified by a second person. We use a subset of 11 categories: Build-
ing, Tree, Sky, Car, Sign-Symbol, Road, Pedestrian, Fence, Column-Pole, Sidewalk, and
Bicyclist, from this set for comparison with the work of [8]. A small number of pixels are
labelled as void, which do not belong to one of these classes and are ignored. The class labels
with their corresponding colour codes are shown in Figure 2(a). Interested readers may refer
to [9] for details on the database.

Training. The ground truth labelled frames are split into distinct training and testing sets,
and are identical to those used in [8]. Figure 2(b) shows the split for the 600 images. All
the images are scaled by a factor 3 to speed-up the training process. The five motion and
structure features (§3.1) are computed for every frame and normalized to have zero mean
and unit variance. All the motion features except surface orientation are clustered3 together,
with a maximum number of 150 clusters. Surface orientation features are clustered sepa-
rately using the same maximum number of clusters. We observed that this clustering scheme
provides stronger motion feature candidates for our joint boosting approach. Clustering the
five features independently results in very weak features, and most of them are suppressed by
the boosting procedure. The appearance-based features (§3.2) are also extracted, and then
clustered using maximum numbers of 144, 150, 150, and 128 clusters for location, HOG,
texton, and colour respectively. Every pixel is assigned to its nearest cluster centre for all
the features, resulting in feature maps. The maps are used in the joint boosting framework to
compute the unary likelihood (§3.3).

In our experiments we use three [spatial, range] pair values, viz.: {[3.0,0.1], [3.0,0.3],
[3.0, 0.9]}, to generate multiple segments using the mean shift algorithm. The minimum
segment size (i.e., the number of pixels in a segment) is set to 200 to avoid very small
segments. More segmentations using other algorithms can be easily added in our framework.
However, we chose three that vary from over-segmented to under-segmented, as suggested
in [16]. The higher order potentials are computed using these segments as soft constraints
(§3.4). We use the parameters given in [16], because the CamVid database comprises of a
subset of the class labels used in [16]. Empirically, we observed that our results were not
sensitive to small changes in parameter values.

2Available at http://mi.eng.cam.ac.uk/research/projects/VideoRec.
3We use the K-means clustering algorithm in this paper.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3: Sample object category segmentations of two day and two dusk images. Results
from [8] are shown in: (a) Motion and structure-based segmentation, (b) Appearance-based
segmentation, (c) Combined segmentation result. Our results: (d) using only unary poten-
tials gives poor segmentation, (e) adding pairwise potentials improves the segmentation, but
fails at object boundaries. The row (f) shows our combined higher order potential based
segmentation, which is qualitatively better than (a) - (e). (g) Ground truth labelled image,
(h) Original test image. Note that using higher order provides better segmentation, as well
as clearer object boundaries.
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Mot. [8] 43.9 46.2 79.5 44.6 19.5 82.5 24.4 58.8 0.1 61.8 18.0 43.6 61.8
App. [8] 38.7 60.7 90.1 71.1 51.4 88.6 54.6 40.1 1.1 55.5 23.6 52.3 66.5
Combined [8] 46.2 61.9 89.7 68.6 42.9 89.5 53.6 46.6 0.7 60.5 22.5 53.0 69.1
ψi 61.9 67.3 91.1 71.1 58.5 92.9 49.5 37.6 25.8 77.8 24.7 59.8 76.4
ψi +ψi j 70.7 70.8 94.7 74.4 55.9 94.1 45.7 37.2 13.0 79.3 23.1 59.9 79.8
ψi +ψi j +ψc 84.5 72.6 97.5 72.7 34.1 95.3 34.2 45.7 8.1 77.6 28.5 59.2 83.8

Table 1: Pixel-wise percentage accuracy on all the test sequences. Results of [8] using
only motion-based (Mot.), only appearance-based (App.) and both features (Combined) are
shown for comparison. We present results of our CRF-based method using only unary terms
(ψi), unary and pairwise terms (ψi +ψi j), and unary, pairwise and higher order terms (ψi +
ψi j + ψc). Note that our method, which uses all the terms, gives the best performance for
almost all the classes. ‘Global’ is the percentage of pixels correctly classified, and ‘Average’
is the average of the per-class accuracies.

Results. Our current implementation takes around 9 hours to train, and 30− 40 seconds
to segment and recognize a test image on a Intel Core 2, 2.4 Ghz, 3GB RAM machine. In
Figure 3 we show the qualitative results of our method on sample day and dusk images.
We observe that our higher order results have well-defined object boundaries, and are more
similar to the ground truth compared to the results of [8]. The quantitative results are sum-
marized in Table 4. We achieve a global accuracy (i.e., the percentage of pixels correctly
classified) of 84% in comparison to 69% in [8]. We perform well on most of the object cate-
gories. The two categories (Pedestrian, Fence) where our performance is bad is perhaps due
to the lack of training data. The training dataset has less than 2% of pixels labelled as one
of these categories, which appears to be insufficient to learn the potentials. In some cases
the higher order CRF under-performs compared to the pairwise CRF due to objects which are
only a few pixels wide in the image e.g., Column-Pole. This is due to the failure of the mean
shift segmenter to pick out fine structures. Figure 4 highlights the qualitative improvements
achieved by our higher order CRF framework. Note that our method produces precise object
class boundaries, and improves the pairwise CRF results significantly. Further results (in the
form of a video) are available as supplementary material.

5 Discussion
In this paper we have presented a novel principled framework to combine motion and ap-
pearance features for object class segmentation problems. Our experiments have shown both
quantitative and qualitative evaluations on the challenging CamVid database. We achieve
a significant increase in overall accuracy – 84% compared to 69% of the state-of-the-art
method [8]. The object class boundaries in the segmentations are well-defined and also de-
tect the fine structures in some categories. Our framework performs worst on classes with
the least training data, representing less than 2% of the pixels. We also observed that objects
which are a few pixels wide (e.g., columns) in the image are typically merged with other
neighbouring superpixel segments. We are investigating edge-based recognition methods to
identify thin structures. Another interesting direction for future research would be to use
temporal CRFs.
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(a)

(b)
Figure 4: Qualitative improvements achieved by our higher order CRF framework. We show
(left to right) the original image, the ground truth image, pairwise CRF result, and higher
order CRF result for two frames from the test sequences. The higher order potentials correct
the object boundary errors in the pairwise CRF results e.g., traffic light, and the building
in (a). They also provide accurate segmentation, which is more similar to ground truth
compared to the pairwise result e.g., lamp post, sidewalk in (b).

Acknowledgements. This work is supported by EPSRC research grants, HMGCC, the
IST Programme of the European Community, under the PASCAL2 Network of Excellence,
IST-2007-216886. P. H. S. Torr is in receipt of Royal Society Wolfson Research Merit
Award. We thank Gabriel Brostow for help with the CamVid dataset.

References
[1] http://www.bing.com/maps, 2009.

[2] http://maps.google.com/help/maps/streetview, 2009.

[3] http://www.yotta.tv, 2009.

[4] A. Blake, C. Rother, M. Brown, P. Perez, and P. H. S. Torr. Interactive image seg-
mentation using an adaptive GMMRF model. In ECCV, volume 1, pages 428–441,
2004.

[5] E. Borenstein and J. Malik. Shape guided object segmentation. In CVPR, volume 1,
pages 969–976, 2006.

[6] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary and region
segmentation of objects in N-D images. In ICCV, volume 1, pages 105–112, 2001.

[7] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. PAMI, 23(11):1222–1239, 2001.

[8] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Segmentation and recognition
using structure from motion point clouds. In ECCV, volume 1, pages 44–57, 2008.

[9] G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object classes in video: A high-
definition ground truth database. Pattern Recognition Letters, 30(2):88–97, 2009.

[10] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space. PAMI,
24(5):603–619, 2002.



STURGESS et al.: COMBINING APPEARANCE AND SFM FEATURES 11

[11] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
CVPR, volume 1, pages 886–893, 2005.

[12] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised
scale-invariant learning. In CVPR, volume 2, pages 264–271, 2003.

[13] X. He, R. S. Zemel, and M. Á. Carreira-Perpiñán. Learning and incorporating top-down
cues in image segmentation. In CVPR, volume 2, pages 695–702, 2004.

[14] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface layout from an image.
IJCV, 75(1):151–172, 2007.

[15] P. Kohli, M. P. Kumar, and P. H. S. Torr. P3 and beyond: Solving energies with higher
order cliques. In CVPR, 2007.

[16] P. Kohli, L. Ladicky, and P. H. S. Torr. Robust higher order potentials for enforcing
label consistency. IJCV, 82:302–324, 2009.

[17] M. Pawan Kumar, Philip H. S. Torr, and A. Zisserman. Obj cut. In CVPR, volume 1,
pages 18–25, 2005.

[18] L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr. Associative hierarchical crfs for
object class image segmentation. In ICCV, 2009.

[19] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labelling sequence data. In ICML, pages 282–289, 2001.

[20] X. Lan, S. Roth, D. P. Huttenlocher, and M. J. Black. Efficient belief propagation with
learned higher-order Markov random fields. In ECCV, volume 2, pages 269–282, 2006.

[21] A. Levin and Y. Weiss. Learning to combine bottom-up and top-down segmentation.
IJCV, 81(1):105–118, 2009.

[22] S. Roth and M. J. Black. Fields of experts: A framework for learning image priors. In
CVPR, volume 2, pages 860–867, 2005.

[23] J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and delaunay
triangulator. In First ACM Workshop on Applied Computational Geometry, volume
1448, LNCS, pages 203–222, 1996.

[24] J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI, 22(8):888–905,
2000.

[25] J. Shotton, J. M. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint appearance,
shape and context modeling for multi-class object recognition and segmentation. In
ECCV, volume 1, pages 1–15, 2006.

[26] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categoriza-
tion and segmentation. In CVPR, 2008.

[27] A. Torralba, K. Murphy, and W. T. Freeman. Sharing features: Efficient boosting
procedures for multiclass object detection. In CVPR, volume 2, pages 762–769, 2004.

[28] J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual
dictionary. In ICCV, volume 2, pages 1800–1807, 2005.



�

�







L = {l1, l2, . . . , lk}
X = {X1, X2, . . . , XN}

i ∈ V = {1, 2, . . . , N} c Xc

x

L = LN

Pr(x|D)
Pr(x|D) = 1

Z
exp(−

∑
c∈C ψc(xc)) Z

C D ψc(xc)
c ⊆ V xc = {xi : i ∈ c}
E(x) = − logPr(x|D) − log Z =∑

c∈C ψc(xc). x
∗

x
∗ = arg maxx∈L Pr(x|D) = argminx∈L E(x)

E(x)





D

ψd xd d

Hd ld

E(x) = Epix(x) +
∑
d∈D

ψd(xd, Hd, ld),

Epix(x)

yd ∈ {0, 1} 1
d φd

ψd(.)
yd = 1 yd = 0

ψd(xd, Hd, ld) = min
yd∈{0,1}

φd(yd,xd, Hd, ld).

φd(·)
yd = 1

xd ld

ld

ld

ψd

Nd =∑
i∈xd

δ(xi �= ld) f(xd, Hd)
g(Nd, Hd)



d1

xd1

xd1
yd1

∈ {0, 1}

ψd(xd, Hd, ld) = min
yd∈{0,1}

(−f(xd, Hd)yd + g(Nd, Hd)yd).

Hd

f(·)
Hd

g(·)
Nd

Ht f(·)
Ht

f(xd, Hd) = wd|xd|max(0, Hd − Ht),

wd f(·) = 0
Hd ≤ Ht g(·)

Nd

g(Nd, Hd) = kdNd, kd =
f(xd, Hd)

pd|xd|
,

kd f(·)
pd

xd



αβ α

Nd =∑
i∈xd

δ(xi �= ld) ψd(·)

ψd(xd, Hd, ld) = min(0,−f(xd, Hd) + kd

∑
i∈xd

δ(xi �= ld))

= −f(xd, Hd) + min(f(xd, Hd), kd

∑
i∈xd

δ(xi �= ld)).

PN

ψh(x) = min(γmax, min
l

(γl + kl

∑
i∈x

δ(xi �= l))),

γmax = f(·), γl = f(·), ∀l �= d γd = 0
αβ α

yd yd

yd = arg min
y′

d
∈{0,1}

(−f(xd, Hd)y′
d + g(Nd, Hd)y′

d).

×







pd

10% − 40% Ht

0

wb

wd

α

yd



3.1% 7.3%



< 1%
7%

29.0%
24.8%

32.1%





LADICKÝ et al.: JOINT RECOGNITION AND RECONSTRUCTION 1

Joint Optimisation for Object Class
Segmentation and Dense Stereo
Reconstruction
L’ubor Ladický
lladicky@brookes.ac.uk

Paul Sturgess
paul.sturgess@brookes.ac.uk

Chris Russell
chris.russell@brookes.ac.uk

Sunando Sengupta
ssengupta@brookes.ac.uk

Yalin Bastanlar
yalinbastanlar@brookes.ac.uk

William Clocksin
wfc@brookes.ac.uk

Philip H. S. Torr
philiptorr@brookes.ac.uk

School of Technology
Oxford Brookes University
Oxford, UK
cms.brookes.ac.uk/research/visiongroup

This work is supported by EPSRC research
grants, HMGCC, TUBITAK researcher
exchange grant, the IST Programme of the
European Community, under the PASCAL2
Network of Excellence, IST-2007-216886.

P. H. S. Torr is in receipt of Royal Society
Wolfson Research Merit Award.

Abstract

The problems of dense stereo reconstruction and object class segmentation can both
be formulated as Conditional Random Field based labelling problems, in which every
pixel in the image is assigned a label corresponding to either its disparity, or an object
class such as road or building. While these two problems are mutually informative,
no attempt has been made to jointly optimise their labellings. In this work we provide a
principled energy minimisation framework that unifies the two problems and demonstrate
that, by resolving ambiguities in real world data, joint optimisation of the two problems
substantially improves performance. To evaluate our method, we augment the street view
Leuven data set, producing 70 hand labelled object class and disparity maps. We hope
that the release of these annotations will stimulate further work in the challenging domain
of street-view analysis.

1 Introduction
The problems of object class segmentation [16, 24], which assigns an object label such as
road or building to every pixel in the image and dense stereo reconstruction, in which every
pixel within an image is labelled with a disparity [12], are well suited for being solved jointly.
Both approaches formulate the problem of providing a correct labelling of an image as one
of Maximum a Posteriori (MAP) estimation over a Conditional Random Field (CRF) [17],
which is typically a generalised Potts truncated linear model. Thus both may use graph cut

c© 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 LADICKÝ et al.: JOINT RECOGNITION AND RECONSTRUCTION

based move making algorithms, such as α-expansion [3], to solve the labelling problem.
These problems should be solved jointly, as a correct labelling of object class can inform
depth labelling and stereo reconstruction can also improve object labelling. To provide some
intuition behind this statement, note that the object class boundaries are more likely to occur
at a sudden transition in depth and vice versa. Moreover, the height of a point above the
ground plane is an extremely informative cue regarding its class label, and can be computed
from the depth. For example, road or sidewalk lie in the ground plane, and pixels taking
labels pedestrian or car must lie above the ground plane, while pixels taking label sky must
occur at an infinite depth from the camera. Figure 1 shows our model which explicitly
captures these properties.

Object class recognition yields strong information about 3D structure as shown by the
work on photo pop-up [7, 8, 19, 20]. Here a plausible pop-up or planar model of a scene
was reconstructed from a single monocular image using only prior information regarding the
geometry of typically photographed scenes, and knowledge of where object boundaries are
likely to occur.

Beyond this, many tasks require both object class and depth labelling. For an agent to
interact with the world, it must be capable of recognising both objects and their physical
location. For example, camera based driverless cars must be capable of differentiating be-
tween road and other classes, and also of recognising where the road ends. Similarly, several
companies [6] wish to provide an automatic annotation of assets (such as street light, drain
or road sign) to local authorities. In order to provide this service, assets must be identified,
localised in 3D space and an estimation of the quality of the assets made.

The use of object labellings to inform scene reconstruction is not new. The aforemen-
tioned pop-up method of [7] explicitly used object labels to aid the construction of a scene
model, while 3D Layout CRF [9] matched 3D models to object instances. However, in [7]
they built a plausible model from the results of object class segmentation, and neither jointly
solve the two problems nor attempt to build an accurate 3D reconstruction of the scene
whereas in this paper we jointly estimate both. Hoiem et al. [9] fit a 3D model not to the
entire scene but only to specific objects, and similarly, these 3D models are intended to be
plausible rather than accurate.

Leibe et al. [18] employed Structure-from-Motion (SfM) techniques to aid the tracking
and detection of moving objects. However, neither object detection nor the 3D reconstruction
obtained gave a dense labelling of every pixel in the image, and the final results in tracking
and detection were not used to refine the SfM results. The CamVid [5] data set provides
sparse SfM cues, which were used by several object class segmentation approaches [5, 25]
to provide pixel wise labelling. In these works, no dense depth labelling was performed and
the object class segmentation was not used to refine the 3D structure.

None of the discussed works perform joint inference to obtain dense stereo reconstruction
and object class segmentation. In this work, we demonstrate that the problems are mutually
informative, and benefit from being solved jointly. We consider the problem of scene recon-
struction in an urban area [18]. These scenes contain object classes such as road, car and
sky that vary in their 3D locations. Compared to typical stereo data sets that are usually pro-
duced in controlled environments, stereo reconstruction on this real world data is noticeably
more challenging due to large homogeneous regions and problems with photo-consistency.
We efficiently solve the problem of joint estimation of object class and depth using modified
variants of the α-expansion [3], and range move algorithms [14, 26].

No real world data sets are publicly available that contain both pixel-wise object class
and dense stereo data. In order to evaluate our method, we augmented the data set of [18] by
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Figure 1: Graphical model of our joint CRF. The system takes a left (A) and right (B) image from a
stereo pair that has been rectified. Our formulation captures the co-dependencies between the object
class segmentation problem (E, §2.1) and the dense stereo reconstruction problem (F, §2.2) by allow-
ing interactions between them. These interactions are defined to act between the unary/pixel (blue)
and pairwise/edge variables (green) of both problems. The unary potentials are linked via a height
distribution (G,eq. (3)) learnt from our training set containing hand labelled disparities (§5). The
pairwise potentials encode that object class boundaries, and sudden changes in disparity are likely to
occur together. The combined optimisation results in an approximate object class segmentation (C)
and dense stereo reconstruction (D). See §3 and §4 for a full treatment of our model and §6 for further
results. View in colour.

creating hand labelled object class and disparity maps for 70 images. This data set will be
released to the public. Our experimental evaluation demonstrates that joint optimisation of
dense stereo reconstruction and object class segmentation leads to a substantial improvement
in the accuracy of final results.

The structure of the paper is as follows: In section 2 we give the generic formulation
of CRFs for dense image labelling, and describe how they can be applied to the problems
of object class segmentation and dense stereo reconstruction. Section 3 describes the for-
mulation allowing for the joint optimisation of these two problems, while section 4 shows
how the optimisation can be performed efficiently. The data set is described in section 5 and
experimental validation follows in 6.

2 Overview of Dense CRF Formulations
Our joint optimisation consists of two parts, object class segmentation and dense stereo re-
construction. Before we formulate our approach we give an overview of existing approaches
and introduce the notations used in §3. Both problems have previously been defined as a
dense CRF where the set of random variables Z = {Z1,Z2, . . . ,ZN} corresponds to the set of
all image pixels i ∈ V = {1,2, . . . ,N}. Let N be the neighbourhood system of the random
field defined by the sets Ni,∀i ∈ V , where Ni denotes the neighbours of the variable Zi. A
clique c ∈ C is a set of random variables Zc ⊆ Z. Any possible assignment of labels to the
random variables will be called a labelling and denoted by z, similarly we use zc to denote
the labelling of a clique. Fig. 1 E & F depict this lattice structure as a blue dotted grid, the
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variables Zi are shown as blue circles.

2.1 Object Class Segmentation using a CRF
We follow [11, 16, 24] in formulating the problem of object class segmentation as finding
a minimal cost labelling of a CRF defined over a set of random variables X = {X1, . . . ,XN}
each taking a state from the label space L = {l1, l2, . . . , lk}. Each label l j indicates a different
object class such as car, road, building or sky. These energies take the form:

EO(x) = ∑
i∈V

ψ
O
i (xi)+ ∑

i∈V , j∈Ni

ψ
O
i j (xi,x j)+ ∑

c∈C
ψ

O
c (xc). (1)

The unary potential ψO
i of the CRF describes the cost of a single pixel taking a particular

label. The pairwise terms ψO
i j encourage similar neighbouring pixels in the image to take the

same label. These potentials are shown in fig. 1 E as blue circles and green squares respec-
tively. The higher order terms ψO

c (xc) describe potentials defined over cliques containing
more than two pixels. The terms ψO

i (xi) are typically computed from colour, texture and lo-
cation features of the individual pixels and corresponding prelearned models for each object
class [1, 4, 15, 21, 24]. ψO

i j (xi,x j) takes the form of a contrast sensitive Potts model:

ψ
O
i j (xi,x j) =

{
0 if xi = x j,

g(i, j) otherwise, (2)

where the function g(i, j) is an edge feature based on the difference in colours of neighbour-
ing pixels [2], typically defined as:

g(i, j) = θp +θv exp(−θβ ||Ii− I j||22), (3)

where Ii and I j are the colour vectors of pixel i and j respectively. θp, θv, θβ ≥ 0 are
model parameters learnt using training data. We refer the interested reader to [2, 21, 24] for
more details. In our work we follow [16] and use their hierarchical potentials based upon
region based features, which significantly improve the results of object class segmentation.
Nearly all other CRF based object class segmentation methods can be represented within this
formulation via different choices for the higher order cliques, see [16, 22] for details.

2.2 Dense Stereo Reconstruction using a CRF
We use the energy formulation of [3, 12] for the dense stereo reconstruction part of our joint
formulation. They formulated the problem as one of finding a minimal cost labelling of a
CRF defined over a set of random variables Y = {Y1, . . . ,YN}, where each variable Yi takes a
state from the label space D = {d1,d2, . . . ,dm} corresponding to a set of disparities, and can
be written as:

ED(y) = ∑
i∈V

ψ
D
i (yi)+ ∑

i∈V , j∈Ni

ψ
D
i j (yi,y j). (4)

The unary potential ψD
i (yi) of the CRF is defined as a measure of colour agreement of a

pixel with its corresponding pixel i from the stereo-pair given a choice of disparity yi. The
pairwise terms ψD

i j encourage neighbouring pixels in the image to have a similar disparity.
The cost is a function of the distance between disparity labels:

ψ
D(yi,y j) = f (|yi− y j|), (5)

where f (.) usually takes the form of linear truncated function f (y) = min(k1y,k2), where k1,
k2 ≥ 0 are the slope and truncation respectively. The unary (blue circles) and pairwise (green
squares) potentials are shown in fig. 1 F. Note that the disparity for a pixel is directly related
to the depth of the corresponding 3D point.
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3 Joint Formulation of Object Class Labelling and Stereo
Reconstruction

We formulate simultaneous object class segmentation and dense stereo reconstruction as
an energy minimisation of a dense labelling z over the image. Each random variable Zi =
[Xi,Yi]

1 takes a label zi = [xi,yi], from the product space of object class and disparity labels
L ×D and correspond to the variable Zi taking object label xi and disparity yi. In general
the energy of the CRF for joint estimation can be written as:

E(z) = ∑
i∈V

ψ
J
i (zi)+ ∑

i∈V , j∈Ni

ψ
J
i j(zi,z j)+ ∑

c∈C
ψ

J
c (zc), (6)

where the terms ψJ
i , ψJ

i j and ψJ
c are a sum of the previously mentioned terms ψO

i and ψD
i ,

ψO
i j and ψD

i j , and ψO
c and ψD

c respectively, plus some terms ψC
i , ψC

i j , ψC
c , which govern

interactions between X and Y. However in our case, since we use the formulation of ED(y)
§2.2 which does not contain higher order terms ψD

c our energy is defined as:

E(z) = ∑
i∈V

ψ
J
i (zi)+ ∑

i∈V , j∈Ni

ψ
J
i j(zi,z j)+ ∑

c∈C
ψ

O
c (xc). (7)

If the interaction terms ψC
i , ψC

i j are both zero, then the problems x and y are independent
of one another and the energy would be decomposable into E(z) = EO(x)+ED(y) and
the two sub-problems could each be solved separately. However, in real world data sets like
ours described in §5, this is not the case, and we would like to model the unary and pairwise
interaction terms so that a joint estimation may be performed.

Joint Unary Potentials In order for the unary potentials of both the object class segmen-
tation and dense stereo reconstruction parts of our formulation to interact, we need to define
some function that relates X and Y in a meaningful way. We could use depth and objects
directly, as it may be that certain objects appear more frequently at certain depths in some
scenarios. In road scenes we could build statistics relative to an overhead view where the
positioning of the objects in the xz-coordinate may be informative, since we expect that
buildings will be on both sides, pavement will tend to be between building and road that
would take up the central portion of the image. Building statistics with regard to the real-
world positioning of objects gives a stable and meaningful cue that is invariant to the camera
position. However modelling like this requires a substantial amount of data.

In this paper we need to model these interactions with limited data. We do this by re-
stricting our unary interaction potential to the observed fact that certain objects occupy a
certain range of real world heights. We are able to obtain the height above the ground plane
via the relation: h(yi, i) = hc +(yh− yi) · b/d, where hc is the camera height, yh is the level
of the horizon in the rectified image pair, yi is the height of the ith pixel in the image, b is
the baseline between the stereo pair of cameras and d is the disparity. This relationship is
modelled by estimating the a priori cost of pixel i taking label zi = [xi,yi] by

ψ
C
i ([xi,yi]) =− log(H(h(yi, i)|xi)), (8)

where
H(h|l) = ∑i∈T δ (xi = l)δ (h(yi, i) = h)

∑i∈T δ (xi = l)
(9)

1[Xi,Yi] is the ordered pair of elements Xi and Yi.
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is a histogram based measure of the naive probability that a pixel taking label l has height h
in the training set T . The combined unary potential for the joint CRF is:

ψ
J
i ([xi,yi]) = wu

Oψ
O
i (xi)+wu

Dψ
D
i (yi)+wu

Cψ
C
i (xi,yi), (10)

where ψO
i , and ψD

i ,are the previously discussed costs of pixel i being a member of object
class xi or disparity yi given the image. wu

O, wu
D, and wu

C are weights. Fig. 1 G gives a
graphical representation of this type of interaction shown as a blue line linking the unary
potentials (blue circles) of x and y via a distribution of object heights.

Joint Pairwise Interactions Pairwise potentials enforce the local consistency of object
class and disparity labels between neighbouring pixels. The consistency of object class and
disparity are not fully independent – an object classes boundary is more likely to occur here
if the disparity of two neighbouring pixels significantly differ. To take this information into
account, we chose tractable pairwise potentials of the form:

ψ
J
i j([xi,yi], [x j,y j]) = wp

Oψ
O
i j (xi,x j)+wp

Dψ
D
i j (yi,y j)+wp

Cψ
O
i j (xi,x j)ψ

D
i j (yi,y j), (11)

where wp
O,w

p
D > 0 and wp

C are weights of the pairwise potential. Fig. 1 shows this linkage as
green line between a pairwise potential (green box) of each part.

4 Inference of the Joint CRF
Optimisation of the energy E(z) is challenging. Each random variable takes a label from the
set L ×D consequentially, in the experiments we consider (see § 5) they have 700 possible
states. As each image contains 316× 256 random variables, there are 700316×256 possible
solutions to consider. Rather than attempting to solve this problem exactly, we use graph cut
based move making algorithms to find an approximate solution.

Graph cut based move making algorithms start from an initial solution and proceed by
making a series of moves or changes, each of which leads to a solution of lower energy. The
algorithm is said to converge when no lower energy solution can be found. In the problem of
object class labelling, the move making algorithm α-expansion can be applied to pairwise [3]
and to higher order potentials [10, 11, 16] and often achieves the best results; while in dense
stereo reconstruction, the truncated convex priors(see § 2.2) mean that better solutions are
found using range moves [14, 26] than with α-expansion.

In object class segmentation, α-expansion moves allow any random variable Xi to ei-
ther retain its current label xi or transition to a fixed label α . More formally, given a
current solution x the algorithm α-expansion searches through the space Xα of size 2N ,
where N is the number of random variables, to find the optimal solution. Where Xα ={

x′ ∈L N : x′i = xi or x′i = α
}
.

In dense stereo reconstruction, a range expansion move defined over an ordered space
of labels, allows any random variable Yi to either retain its current label yi or take any label
l ∈ [la, la + r]. That is to say, given a current solution y a range move searches through the
space Yl of size (r+1)N , which we define as: Yl =

{
y′ ∈DN : y′i = yi or y′i ∈ [l, l + r]

}
.

A single iteration of α-expansion, is completed when one expansion move for each l ∈L
has been performed. Similarly, a single iteration of range moves is completed when |D |− r,
moves has been performed.

4.1 Projected Moves
Under the assumption that energy E(z) is a metric (as in object class segmentation see §2.1)
or a semi-metric [3] (as in the costs of §2.2 and §3) over the label space L ×D , either
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α-expansion or αβ swap respectively can be used to minimise the energy. One single iter-
ation of α-expansion would require O(|L ||D |) graph cuts to be computed, while αβ swap
requires O(|L |2|D |2) resulting in slow convergence. In this sub-section we show graph cut
based moves can be applied to a simplified, or projected, form of the problem that requires
only O(|L |+ |D |) graph cuts per iteration, resulting in faster convergence and better solu-
tions. The new moves we propose are based upon a piecewise optimisation that improves by
turn first object class labelling and then depth.

We call a move space projected if one of the components of z, i.e. x or y, remains constant
for all considered moves. Alternating between moves in the projected space of x or of y can
be seen as a form of hill climbing optimisation in which each component is individually
optimised. Consequentially, moves applied in the projected space are guaranteed not to
increase the joint energy after the move and must converge to a local optima.

We will now show that for energy (7), projected α-expansion moves in the object class
label space and range moves in the disparity label space are of the standard form, and can
be optimised by existing graph cut constructs. We note that finding the optimal range move
or α-expansion with graph cuts requires that the pairwise and higher order terms are con-
strained to a particular form. This constraint allows the moves to be represented as a pair-
wise submodular energy that can be efficiently solved using graph cuts [13]; however neither
the choice of unary potentials nor scaling the pairwise or higher order potentials by a non-
negative amount λ ≥ 0 affects if the move is representable as a pairwise sub-modular cost.

Expansion moves in the object class label space For our joint optimisation of disparity
and object classes, we propose a new move in the projected object-class label space. We
allow each pixel taking label zi = [xi,yi] to either keep its current label or take a new label
[α,yi]. Formally, given a current solution z = [x,y] the algorithm searches through the space
Zα of size 2N . We define Zα as:

Zα =
{

z′ ∈ (L ×D)N : z′i = [x′i,yi] and (x′i = xi or x′i = α)
}
. (12)

One iteration of the algorithm involves making moves for all α in L in some order succes-
sively. As discussed earlier, the values of the unary potential do not affect the sub-modularity
of the move. For joint pairwise potentials (11) under the assumption that y is fixed, we have:

ψ
J
i j([xi,yi], [x j,y j]) = (wp

O +wp
Cψ

D
i j (yi,y j))ψ

O
i j (xi,x j)+wp

Dψ
D
i j (yi,y j)

= λi jψ
O
i j (xi,x j)+ ki j. (13)

The constant ki j does not affect the choice of optimal move and can safely be ignored. If
∀yi,y j λi j = wp

O +wp
CψD

i j (yi,y j)≥ 0, the projection of the pairwise potential is a Potts model
and standard α-expansion moves can be applied. For wp

O ≥ 0 this property holds if wp
O +

wp
Ck2 ≥ 0, where k2 is defined as in §2.2. In practice we use a variant of α-expansion suitable

for higher order energies [22].

Range moves in the disparity label space For our joint optimisation of disparity and ob-
ject classes we propose a new move in the project disparity label space. Each pixel taking la-
bel zi = (xi,yi) can either keep its current label or take a new label from the range (xi, [la, lb]).
To formalise this, given a current solution z = [x,y] the algorithm searches through the space
Zl of size (2+ r)N , which we define as:

Zl =
{

z′ ∈ (L ×D)N : z′i = [xi,y′i] and (y′i = yi or y′i ∈ [l, l + r])
}
. (14)
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Figure 2: Quantitative comparison of
performance of disparity CRFs. We can
clearly see that our joint approach §3
(Proposed Method) outperforms the stand
alone approaches with baseline Potts [12]
(Potts Baseline), Linear truncated poten-
tials §2.2 (LT Baseline) and Linear trun-
cated with Gaussian filtered unary poten-
tials (LT Filtered). The correct pixel ra-
tio is the number of pixels which satisfy
|di − dg

i | ≤ δ , where di is the disparity
label of i-th pixel, dg

i is corresponding
ground truth label and δ is the allowed er-
ror. See §6 for discussion.

As with the moves in the object class label space, the values of the unary potential do not
affect the sub-modularity of this move. Under the assumption that x is fixed, we can write
our joint pairwise potentials (11) as:

ψ
J
i j([xi,yi], [x j,y j]) = (wp

D +wp
Cψ

O
i j (xi,x j))ψ

D
i j (yi,y j)+wO

d ψ
O
i j (xi,x j)

= λi jψ
D
i j (yi,y j)+ ki j. (15)

Again, the constant ki j can safely be ignored, and if ∀xi,x j λi j = wp
D +wp

CψO
i j (xi,x j)≥ 0 the

projection of the pairwise potential is linear truncated and standard range expansion moves
can be applied. This property holds if wp

D+wp
C(θp+θv)≥ 0, where θp and θv are the weights

of the Potts pairwise potential (see section §2.1).

5 Data set
We augment a subset of the Leuven stereo data set2 of [18] with object class segmentation
and disparity annotations. The Leuven data set was chosen as it provides image pairs from
two cameras, 150cm apart from each other, mounted on top of a moving vehicle, in a pub-
lic urban setting. In comparison with other data sets, the larger distance between the two
cameras allows better depth resolution, while the real world nature of the data set allows us
to confirm our statistical model’s validity. However, the data set does not contain the object
class or disparity annotations, we require to learn and quantitatively evaluate the effective-
ness of our approach.

To augment the data set all image pairs were rectified, and cropped to 316×256. A subset
of 70 non-consecutive frames was selected for human annotation. The annotation procedure
consisted of two parts. Firstly we manually labelled each pixel in every image with one of
7 object classes: Building, Sky, Car, Road, Person, Bike and Sidewalk. An 8th label, void, is
given to pixels that do not obviously belong to one of these classes. Secondly a dense stereo
reconstruction was generated by manually creating a disparity map i.e. matching by hand
the corresponding pixels between two images. See fig. 3 A, B, and D.

We believe our augmented subset of the Leuven stereo data set to be the first publicly
available data set that contains both object class segmentation and dense stereo reconstruc-
tion ground truth for real world data. This data differs from commonly used stereo match-
ing sets like the Middlebury [23] data set, as it contains challenging large regions which

2http://www.vision.ee.ethz.ch/ bleibe/cvpr07/datasets.html
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are homogeneous in colour and texture, such as sky and building, and suffers from poor
photo-consistency due to lens flares in the cameras, specular reflections from windows and
inconsistent luminance between the left and right camera. It should also be noted that it
differs from the CamVid database [5] in two important ways, CamVid is a monocular se-
quence, and the 3D information comes in the form of an unstable3 set of sparse 3D points.
These differences give rise to a challenging new data set that is suitable for training and eval-
uating models for dense stereo reconstruction, 2D and 3D scene understanding, and joint
approaches such as ours.

6 Results and Conclusion
For training and evaluation of our method we split the data set (§5) into three sequences: Se-
quence 1, frames 0-447; Sequence 2, frames 512-800; Sequence 3, frames 875-1174. Aug-
mented frames from sequence 1 and 3 are selected for training and validation, and sequence
2 for testing. All void pixels are ignored. We quantitatively evaluate the object class seg-
mentation by measuring the percentage of correctly predicted labels over the test sequence.
The dense stereo reconstruction performance is quantified by measuring the number of pix-
els which satisfy |di−dg

i | ≤ δ , where di is the label of i-th pixel, dg
i is corresponding ground

truth label and δ is the allowed error. We increment δ from 0 (exact) to 20 (within 20 dis-
parities) giving a clear picture of the performance. The total number of disparities used for
evaluation is 100.

Figure 3: Qualitative object class and disparity results for Leuven data set.(A) Original Image. (B)
Object class segmentation ground truth. (C) Proposed method Object class segmentation result. (D)
Dense stereo reconstruction ground truth. (E) Stand alone dense stereo reconstruction result (LT
Filtered). (F) Proposed method dense stereo reconstruction result. Best viewed in colour.

Object Class Segmentation The object class segmentation CRF as defined in §2.1 per-
formed extremely well on the data set, better than we had expected, with 95.7% of predicted
pixel labels agreeing with the ground truth. Qualitatively we found that the performance is
stable over the entire test sequence, including those images without ground truth. Most of
the incorrectly predicted labels are due to the high variability of the object class person, and
insufficient training data to learn their appearance.

Dense Stereo Reconstruction The Potts [12] and linear truncated §2.2 (LT) baseline dense
stereo reconstruction CRFs performed relatively well, with large δ , considering the difficulty
of the data, plotted in fig. 2 as ‘Potts baseline’ and ‘LT baseline’. We found that on our data

3The outlier rejection step was not performed on the 3D point cloud in order to exploit large re-projection errors
as cues for moving objects. See [5] for more details.
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set a significant improvement was gained by smoothing the unary potentials with a Gaussian
blur4 as can be seen in fig. 2 ‘LT Filtered’. For qualitative results see fig. 3 E

Joint Approach Our joint approach defined in sections §3 and §4 consistently outper-
formed the best stand-alone dense stereo reconstruction, by a margin of up to 25%,as can
be seen in fig. 2 ‘Proposed Method’. Improvement of the object class segmentation was
incremental, with 95.8% of predicted pixel labels agreeing with the ground truth. The lack
of improvement can be attributed to the two mistakes being the misclassification of person
as building, and the top of a uniformly white building as sky. Of these failure cases, 3D
location is unable to distinguish between person and building, while stereo reconstruction
fails on homogeneous surfaces. We expect to see a more significant improvement on more
challenging data sets, and the creation of an improved data set is part of our future work.
Qualitative results can be seen in fig 3 C and F.

Conclusion In this work, we have presented a novel approach to the problems of object
class recognition and dense stereo reconstruction. To do this, we provided a new formulation
of the problems, a new inference method for solving this formulation and a new data set
for the evaluation of our work. Evaluation of our work shows a dramatic improvement in
stereo reconstruction compared to existing approaches. This work puts us one step closer to
achieving complete scene understanding, and provides strong experimental evidence that the
joint labelling of different problems can bring substantial gains.

References
[1] A. Blake, C. Rother, M. Brown, P. Perez, and P.H.S. Torr. Interactive image segmentation using

an adaptive GMMRF model. In ECCV, 2004.

[2] Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal boundary and region segmentation
of objects in N-D images. In ICCV, pages I: 105–112, 2001.

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23:2001, 2001.

[4] M. Bray, P. Kohli, and P. H. S. Torr. Posecut: Simultaneous segmentation and 3d pose estimation
of humans using dynamic graph-cuts. In ECCV, 2006.

[5] G.J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Segmentation and recognition using struc-
ture from motion point clouds. In ECCV (1), pages 44–57, 2008.

[6] Yotta DCL. Yotta dcl case studies. http://www.yottadcl.com/surveys/
case-studies/, April 2010.

[7] S. Gould, R. Fulton, and D. Koller. Decomposing a scene into geometric and semantically con-
sistent regions. In ICCV, 2009.

[8] D. Hoiem, A. A. Efros, and M. Hebert. Automatic photo pop-up. ACM Trans. Graph., 24(3):
577–584, 2005.

[9] D. Hoiem, C. Rother, and J.M. Winn. 3d layout CRF for multi-view object class recognition and
segmentation. In CVPR, 2007.

4This is a form of robust measure, see §3.1 of [23] for further examples.



LADICKÝ et al.: JOINT RECOGNITION AND RECONSTRUCTION 11

[10] P. Kohli, M. P. Kumar, and P. H. S. Torr. P3 & beyond: Solving energies with higher order cliques.
In CVPR, 2007.

[11] P. Kohli, L. Ladicky, and P. H. S. Torr. Robust higher order potentials for enforcing label consis-
tency. In CVPR, 2008.

[12] V. Kolmogorov and R. Zabih. Computing visual correspondence with occlusions via graph cuts.
In ICCV, pages 508–515, 2001.

[13] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts?. PAMI,
2004.

[14] M. P. Kumar and P. Torr. Efficiently solving convex relaxations for map estimation. In ICML,
2008.

[15] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Obj cut. In CVPR (1), pages 18–25, 2005.

[16] L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr. Associative hierarchical CRFs for object class
image segmentation. In ICCV, 2009.

[17] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for
segmenting and labelling sequence data. In ICML, 2001.

[18] B. Leibe, N. Cornelis, K. Cornelis, and L. Van Gool. Dynamic 3d scene analysis from a moving
vehicle. In CVPR, 2007.

[19] B. Liu, S. Gould, and D. Koller. Single image depth estimation from predicted semantic labels.
In CVPR, 2010.

[20] S. Ramalingam, P. Kohli, K. Alahari, and P. H. S. Torr. Exact inference in multi-label CRFs with
higher order cliques. In CVPR, 2008.

[21] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: interactive foreground extraction using iter-
ated graph cuts. In SIGGRAPH, pages 309–314, 2004.

[22] C. Russell, L. Ladicky, P. Kohli, and P. H. S. Torr. Exact and approximate inference in associative
hierarchical networks using graph cuts. UAI, 2010.

[23] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspon-
dence algorithms. IJCV, 47(1-3):7–42, 2002.

[24] J. Shotton, J. M. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint appearance, shape and
context modeling for multi-class object recognition and segmentation. In ECCV (1), pages 1–15,
2006.

[25] P. Sturgess, K. Alahari, L. Ladicky, and P.H.S. Torr. Combining appearance and structure from
motion features for road scene understanding. In BMVC, 2009.

[26] O. Veksler. Graph cut based optimization for mrfs with truncated convex priors. In CVPR, 2007.


