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ABSTRACT 

 

The exceptionally large, diverse, and economically important plant family 

Leguminosae has traditionally comprised three subfamilies, the Caesalpinioideae, 

Mimosoideae and Papilionoideae. Following a large-scale molecular based phylogenetic 

analysis in which subfamily Caesalpinioideae was demonstrated to be highly 

paraphyletic, the number of subfamilies recognised was increased to six, with four new 

subfamilies being segregated from within the Caesalpinioideae, and the Mimosoideae 

being subsumed into the redefined Caesalpinioideae (as the mimosoid clade). The 

Caesalpinioideae, and delimitation of genera therein, has therefore been a key focus of 

the international legume taxonomic community in recent years. 

Two of the largest genera in the Caesalpinioideae sensu traditional are Bauhinia 

and Caesalpinia; the former comprises part of the newly created subfamily 

Cercidoideae, whilst the latter is retained within the Caesalpinioideae sensu novo. Both 

Bauhinia and Caesalpinia have historically been most commonly treated as large, 

pantropical and polymorphic genera, but have in the light of molecular phylogenetic 

evidence been revealed to paraphyletic. A number of generic segregates have been 

consequently delineated from within each of them, but polymorphism has persisted, 

suggesting the existence of further paraphyly. 

The aim of this study is to address this remaining paraphyly, using a combined 

morphological, molecular and biogeographical approach to investigate generic limits 

and define segregate genera. 

The work herein creates a new segregate genus from within Bauhinia s.l., based 

upon morphological, molecular, palynological, and biogeographical evidence. Details of 
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the composition of two further generic segregates of Bauhinia s.l. are presented, their 

geographical distributions described, and the relevance of this to the generic limits 

explored. The status of the putative segregate genus Lasiobema is examined, with novel 

data on a poorly known species of the genus presented. The monophyly of Mezoneuron, 

a segregate genus of Caesalpinia s.l., is demonstrated with morphological and 

molecular data, and infrageneric relationships are explained. Preliminary findings 

reconstructing the evolutionary and biogeographical history of the genus are discussed. 

This study represents substantial progress towards resolving generic limits 

within two of the major groups of the Caesalpinioideae (sensu traditional), and provides 

data upon which further such studies can be built, setting the framework for 

identification and resolution of the remaining paraphyly. 
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1.1 BACKGROUND AND LITERATURE REVIEW 
 

1.2 Introduction 
 

The science of taxonomy is concerned with the description of organisms as 

identifiable and distinct units, and their classification into groups according to various 

sets of criteria. The criteria for determining these units have changed over time, as have 

the methodologies used to classify organisms. Contemporary taxonomic classification 

adopts as a central tenet the principle of monophyly, seeking to recognise only groups 

that represent natural evolutionary units. 

Family Leguminosae (Fabaceae) is the third largest flowering plant family in the 

world, after the Orchidaceae and Compositae (Asteraceae), and one that has been 

subject to considerable taxonomic flux, particularly at the genus and supra-generic level 

in recent years. Traditionally considered to comprise three subfamilies, the 

Caesalpinioideae, Mimosoideae, and Papilionoideae, the family has recently undergone 

a major reconfiguration that has increased the number of subfamilies recognised to six 

(LPWG, 2017). The Papilionoideae has remained essentially unchanged in this 

reclassification, whereas four new subfamilies have been created from within the 

Caesalpinioideae, and the Mimosoideae has been subsumed as the mimosoid clade into 

the newly recircumscribed Caesalpinioideae. 

Two of the largest genera within the Caesalpinioideae, as formerly 

circumscribed, are Bauhinia (sensu lato) and Caesalpinia (sensu lato). These large, 

pantropical genera have been demonstrated with the use of molecular data to be 

paraphyletic, necessitating their segregation into smaller, monophyletic genera. The 

work here presented contributes to the resolution of paraphyly in these broadly defined 
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genera, presenting detailed morphological, biogeographical, and molecular evidence for 

segregation of particular monophyletic genera. 

 

Term Definition 
Apomorphy Derived character state 

Clade The taxa forming a monophyletic group, including the 

most recent common ancestor and all of its descendent 

taxa 

Cladistics Method for grouping taxa into hierarchically nested sets; 

often used as a synonym for phylogenetic systematics 

Crown node Most recent common ancestor of the sampled species of 

the clade of interest 

Homology Character state shared due to common ancestry 

Homoplasy Non-homologous character state i.e. character state shared 

due to reason other than common ancestry (such as 

convergence, parallelism, reversal) 

Monophyletic group A group of organisms that includes ALL of (and only) the 

descendants of a most recent common ancestor 

Paraphyletic group A group containing some but not all of the descendants of 

a most recent common ancestor; that which remains when 

a clade is excluded from a monophyletic group 

Polyphyletic group A group containing taxa that do not share a single most 

recent common ancestor (a group derived from more than 

one ancestor) 

Stem node Most recent common ancestor of the clade of interest and 

its sister clade 

Synapomorphy Shared derived character state; apomorphy shared by the 

members of a monophyletic group 
 
 
 

Table 1. Definition of key terminology in systematics and phylogenetics 
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1.3 A history of systems of biological classification 

Artificial Systems 

Biological classification systems date back as far as 300 BC (Steussy, 2009), 
 

when the naturalist and philosopher Theophrastus (c. 372–287 BC) in one of his great 

works, The Enquiry into Plants (translated into English 1916), made one of the first 

ever attempts to classify plants into different types. He categorised them as ‘trees’, 

‘shrubs’, ‘undershrubs’ and ‘plants’, as well as recognising Monocotyledons and 

Dicotyledons, and differences in ovary position and types of corollas (Sivarajan, 1991). 

Theophrastus’ system was probably the earliest example of an artificial classification, a 

system which is formed by grouping according to similarity in certain characters 

considered to be taxonomically significant. The selected characters are thus afforded 

particular weight by the taxonomist, but not because they are in any way more 

indicative of close relationships between the taxa; in fact, artificial systems do not aim 

to represent evolutionary relationships. 

The most comprehensive and widely accepted artificial system of plant 

classification was designed by Swedish botanist Carolus Linnaeus (1735) (Steussy, 

2009). Linnaeus’ classification was devised with 24 classes, based almost entirely on 

the number, arrangement and extent of fusion of the sexual parts, in particular the 

number of stamens, relative length of stamens, fusion of staminal filaments, fusion of 

anthers, and fusion of androecium and pistil (Sivarajan, 1991). This system was adopted 

almost universally, partly due to its ease of use. An artificial system such as that of 

Linnaeus considers the parts of the plant in isolation, lacking any holistic view of the 

organism or the relationship of the parts to one another. The major disadvantage of this 

approach, despite being easily accessible, is the lack of predictive value. In other words, 
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it does not represent a tool enabling organisms to be grouped alongside their close 

relatives, or enable prediction of the relationships of a taxon based upon its morphology. 

Natural Systems 
 

Natural systems, by contrast, are based upon multiple characters considered 

together, relative to one another, and they enable the grouping of organisms by 

hierarchical ranks. These have greater predictive value than artificial systems, in terms 

of the interrelatedness of organisms, although this has only been understood in the light 

of evolutionary theory that has arisen latterly. John Ray (1623–1705) developed one of 

the first credible natural plant classifications in his New Method of Plants (Ray, 1682) 

(Huxley, 2007), based upon his belief that as many characters as possible should be 

used in classifications. Although his system was flawed in an evolutionary sense, in that 

it placed trees, shrubs and herbs into separate groups he did nonetheless observe that 

certain characters, such as plant height, were not useful for classification and should be 

excluded, and, like Theophrastus, grouped plants as to whether they produce one or two 

seed leaves – the Monocotyledons and Dicotyledons. Another of Ray’s extremely 

important contributions to the natural sciences was in first proposing the concept of 

species, which he defined as a group of individuals sharing a number of characteristics 

that would be passed on to their progeny. 

Bernard Jussieu (1699–1777) was another of those who advocated a method 

based on multiple characters. However, he did not publish his theories, and it was his 

nephew, Antoine-Laurent Jussieu (1748–1836), who reworked his uncle’s system and 

published it in his Genera Plantarum (de Jussieu,1789). This publication, more than 

that of Ray, marked the beginning of a new era of classification, the shift from artificial 

to natural. Following de Jussieu, many classification systems were devised that were 
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essentially modifications of this system. These were particularly prolific in the period 

1825–1845, during which 24 such systems were introduced (Lawrence, 1951). 

Phyletic and Phylogenetic Systems 
 

With emergence of the theory of evolution by natural selection first formally 

proposed by Darwin in 1859, taxonomists began to develop new ways of thinking about 

classification. They started to develop systems that would reflect relationships by 

descent, known as phyletic systems. 

The first system of classification of plants that was built using the principle that 

organisms are related to each other through descent was produced by the German 

botanist, August Wilhelm Eichler (1883). This system encompassed the entire plant 

kingdom, which he divided into two subgroups, the Cryptogamae and Phanerogamae, 

and was the first to identify Angiospermae and Gymnospermae as separate groups 

(Lawrence 1951). 

A number of other important and widely-recognised systems arose following 

that of Eichler, including those of Bentham & Hooker (1862–1883), Engler & Prantl 

(1887–1915), Hutchinson (1926, 1934, 1959. 1973), Cronquist (1988), Takhtajan 

(1958–2009). The system of Bentham and Hooker presented in a series of volumes 

comprising their Genera Plantarum (1862-1883) was one of the most important ever 

produced, and many herbarium collections are, or have been, arranged according to this 

classification, which provided detailed descriptions of all genera (Turner, 2016). It had 

the advantage of being highly predictive, so that an unidentified taxon could be placed 

with relative ease within the system. Engler and Prantl’s classification improved in one 

respect upon that of Bentham and Hooker by being the first to incorporate the ideas of 

organic evolution, and therefore the first to move towards phylogenetic classification, 
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and dividing up large and non-natural families such as the Euphorbiaceae and 

Urticaceae of Bentham into smaller units (Singh, 2010). However, a significant 

shortcoming of their system was the assumption of simplicity of form indicating early 

branches of evolution. 

The system of Hutchinson (1926, 1934, 1959, 1973) was complex, and based 

upon 24 principles on the themes of General Principles, General Habit, General 

Structure of Flowering Plants, and Flowers and Fruits (Singh, 2010). Hutchinson’s 

system was an improvement over those of previous authors in many ways, being more 

phylogenetic than that of Engler and Prantl (1887–1915), and maintaining high 

standards of description, as well as keys for the identification of families (Singh, 2010). 

It did, however, have some major disadvantages, the primary one being that it only went 

as far as family level for most groups. In addition, there was a lack of explanation for 

his evolutionary concepts, and his division into smaller families of some larger groups 

that have subsequently been supported as monophyletic. 

Takhtajan was an international authority on the origin and phylogeny of 

flowering plants, who adopted complex analyses to create his widely used series of 

classifications published between 1958 and 2009. He was strongly influenced by 

Hutchinson, amongst others, and his approach adopted phylogenetic principles, 

particularly in his final version. The comprehensive system of Cronquist (1988) agreed 

largely with that of Takhtajan, and was also advanced in that it was largely based upon 

phylogenetic principles. 

The aim of cladistics is to reconstruct evolutionary branching patterns to 

interpret the relationships between taxa. The use of the term within evolutionary science 

originated from Rensch (1954, 1959), who referred to the branching events of evolution 
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as ‘cladogenesis’ (Steussy 2009). Hennig (1966), is considered to be the founder of 

cladistics in the sense of its application to taxonomic relationships, proposing the idea 

that organisms should be grouped and named only when they represent evolutionarily 

real entities. A distinction can be made between Darwinian classification, which 

requires the use of two criteria, similarity and common descent, and Hennigian 

classification, which accepts only common descent, and monophyly (Hörandl, 2006). 

The use of cladistics in the study of evolutionary relationships has come to be called 

phylogenetic systematics, or phylogenetics (Steussy 2009), and is contemporarily 

usually conducted through the analysis of molecular data (DNA sequences). Analyses 

of this type have a central role in modern taxonomy and systematics. 

1.4 Concepts and methods in taxonomy 

Taxonomic units in Linnaean classification 

The Linnaean binomial system of biological nomenclature universally governs 
 

the way in which organisms are named and classified today. The concept of binomial 

classification, although widely attributed to Linnaeus, was in fact first proposed by 

Gaspard Bauhin who, in his Pinax Theatri botanici (1623) advocated the use of generic 

and specific names and whittled down polynomial descriptions into a specific name of 

just one to four words (Huxley, 2007). The importance of the contribution of G. Bauhin 

to the development of the contemporary nomenclatural system is reflected in the naming 

of the large and important genus Bauhinia L., studied here, in recognition of the 

scientific contribution of G. Bauhin and his brother, Jean Bauhin (also a botanist), the 

often bilobed leaves of this genus being perceived as suggestive of a brotherly 

relationship. 
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This principle was developed by Linnaeus into the hierarchical system of 

classification proposed in his Species Plantarum (1753) (Humphries & Huxley, 2007), 

which had at its core the binomial system, replacing the previous cumbersome method 

of naming which listed a number of descriptive terms to form a polynomial. Linnaeus’ 

revolutionary binomial system was voted at the 1905 Vienna International Botanical 

Congress to be adopted as the basis for the nomenclature of flowering plants, and is still 

used as such today. The system, introducing the binomial method, consists of eight 

ranks: domain, kingdom, phylum, class, order, family, genus, and species. Despite its 

benefits, and still being the system utilised for all biological classification up to the 

present day, it is imperfect. The major limitation inherent in the structure of the 

Linnaean system is that the number of ranks is fixed and finite, and the system is 

therefore rigid in terms of the number of hierarchical ranks that can be formally 

recognised. Depending on the way in which ranks are assigned, not all clades can be 

named in a large and complex group (i.e., one runs out of (formal) ranks quickly) – then 

informal, intermediary ranks such as section and subsection must be resorted to. 

Phylogenies derived from molecular data, in which many nested clades require a greater 

number of ranks than are available in the Linnaean hierarchy, pose a problem in the 

Linnaean system, and the use of informal clade names becomes inevitable. 

A further potential disadvantage of the Linnaean system, which may particularly 

confuse non-specialists, is the implication that taxa of the same rank are presumed to be 

somehow equivalent in an evolutionary sense. The reality is that these ranks are not (as 

may erroneously be assumed) actual phylogenetic entities, but rather are subjective and 

hypothetical definitions. This can lead to misunderstanding of the status of taxa, and an 

incorrect assumption that taxa of the same rank are comparable in some biologically 

meaningful way (Cantino & de Queiroz, 2010). 
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An alternative system, that of phylogenetic nomenclature, was proposed in the 

2010 Phylocode (Cantino & de Queiroz, 2010). The Phylocode aimed to establish a 

means by which taxonomic units could be named without the need to simultaneously 

assign a hierachical rank (although it is designed to be used in conjunction with rank- 

based codes). The major advantage of phylogenetic nomenclature is that it allows clades 

to retain their names when recircumscribed, thus ensuring much greater nomenclatural 

stability. A system of phylogenetic nomenclature also facilitates the naming of clades as 

they are discovered, without the associated need to rename related clades according to 

their relative position (Cantino & de Queiroz, 2010). Despite the disadvantages of the 

Linnaean hierarchy, and the potential of a phylogenetic nomenclature system such as 

Phylocode for overcoming these, Linnaean ranking remains the universal system in 

place for the naming and classification of organisms, albeit with some systems adopting 

the use of a backbone of Linnaean ranks together with a series of informal names for 

recognisable clades within them. 

Two of the most fundamental units of Linnaean classification, and those which 

are of most relevance to the current study, are the genus and species, although the 

question of whether these concepts represent ‘real’ biological entities (as opposed to 

human constructs) has been the subject of much debate. Tournefort is regarded as the 

father of the generic concept (Steussy, 2009), as he categorised all of the plants in his 

Institutiones Rei Herbariae (Tournefort, 1700) by genus, according to the principle that 

five of the six parts of a plant (roots, stems, leaves, flowers, fruits, seeds) should be 

considered together for generic classification (Steussy 2009). The subsequent generic 

concepts of Linnaeus, which specified the use of three characters, stemmed from those 

of Tournefort (Steussy, 2009). The concept of the genus is, to a greater extent even than 

the species, a problematic one. 
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A genus can be thought of as a group of species that appear to be more closely 

related to each other than they are to other species (Steussy, 2009). A genus should be 

monophyletic, and recognisable by multiple characters (rather than a single one) (Singh, 

2010). However, the subjectivity entailed in the perception and definition of what 

makes organisms closely related means that this is not a rigorous or unambiguous 

scientific premise. Genera are argued by some to be entirely artificial constructs, and by 

others as more natural than species (Steussy, 2009). Flexibility of interpretation in the 

application of the genus concept, along with the provision of additional plant material 

over time, and advances in analytical techniques, has resulted in frequent, often 

profound, recircumscriptions of genera. 

A species can be defined in a number of ways, including according to its 

morphology, reproductive capacity, genetic distance from other populations or 

ecological affinities. The morphological species concept has traditionally been the one 

most employed by taxonomic researchers, by which species are defined according to the 

unity of their phenotypic characteristics. Modern systematists, however, may adopt a 

more phylogenetically orientated approach, wherein the terminals on a cladogram are 

considered to represent species (even in the absence of supporting morphological data). 

A commonly used concept of a species is the ‘biological species concept’, which 

considers a species to consist of a group of interbreeding populations which is 

reproductively isolated from other such groups (Steussy, 2009). In practice, this 

information is rarely available to a systematist, particularly in plants, and hybridisation 

between species with fertile offspring is widespread. A taxonomist when seeking to 

define species boundaries should, however, prioritise those characters that may confer 

reproductive isolation over those such as vegetative characters, and in doing so can seek 

to define taxa according to the biological species concept. 
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The biological species concept, as well as being difficult to apply in practice, has 

the shortcoming that it does not incorporate the principle of evolution. The 

‘evolutionary species’ concept addresses this, in which a species is defined as “… a 

lineage… evolving separately from others and with its own unitary evolutionary role 

and tendencies” (Simpson, 1961; Steussy, 2009). The evolutionary roles in this sense 

can be seen as ecological niches (Steussy, 2009). 

The particular concept adopted by a systematist can affect the overall number of 

species defined, for example the evolutionary species concept, being narrower than the 

biological concept, will result in more numerous species. 

Morphological vs. molecular analytical methods 
 

Morphology, anatomy, and chemistry have traditionally been the primary tools 

for classification, grouping organisms according to their similarity to define genera, and 

they continue to be instrumental in this process. Since around the turn of the 

millennium, molecular analysis, especially that of DNA, has played an increasingly 

important part in taxonomic classification. The efficacy of morphological taxonomy has 

been demonstrated by the results of molecular phylogenetic analyses: classifications 

produced using traditional morphological analysis have been largely substantiated by 

corresponding molecular phylogenies. 

However, this is not to suggest that morphological taxonomy is without 

problems and limitations. The prevalence of homoplasy (when similar character states 

exist in organisms due to reasons other than shared ancestry, such as parallelism and 

convergent evolution) has often resulted in the circumscription of genera that, although 

readily morphologically diagnosable, do not represent natural groupings of species. 

Further issues are that species boundaries can be extremely difficult to resolve due to 
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issues such as polymorphism, which can result in the description of many species or 

infraspecifics from within a single biological species, or cryptic speciation in which 

clear morphological characters to delineate species boundaries are lacking. The 

increasing use of DNA taxonomy in contemporary systematics has in some cases 

illuminated these situations, and has led to more frequent discovery of instances of 

cryptic species (Bickford et al., 2007; Sotuyo et al., 2007; Pillon et al., 2009; Gagnon et 

al., 2015). 

The advent of molecular analysis provides a major comparative tool that 

facilitates much greater insight into relationships between taxa, generating a wealth of 

additional data that can be used in conjunction with morphological analysis to define 

genera and to diagnose paraphyly. It is often cited as a more subjective method of 

analysis than morphological taxonomy, and to some extent this is true; however there is 

a degree of subjectivity involved in molecular phylogenetic analyses. A matrix 

comprising DNA bases derived from Sanger sequencing will usually be aligned using 

computer software, and the alignment subsequently adjusted manually. The second 

phase of this alignment process entails a certain amount of subjective decision-making 

in terms of the way in which one sequence is presumed to have affinity with another. 

For example, a sequence of bases ATAGGTC from one sample may be presumed to 

align with a similar sequence, ATCCGTC, from another, but this may be a 

misinterpretation of the data. This has the potential to introduce a certain amount of 

error into the analysis. Additionally, selection of outgroups for rooting the tree, and of 

parameters for setting an analysis (e.g. setting of priors), may result in some introduced 

bias, although this can be overcome by running multiple analyses using different 

outgroups and parameters. The information contained in a phylogenetic tree is itself to a 

certain extent open to interpretation, in that the circumscription of a genus is dependent 
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upon the depth in the tree of the node determined as the crown node. This interpretation 

may be influenced to some degree by the taxonomist’s understanding of the 

morphology of the species in question, and is therefore not wholly objective. 

One of the major advantages of molecular taxonomy is the greater number of 

characters available for analysis, resulting in what are likely to be more accurate 

phylogenies (Scotland et al., 2003). Another great advantage may be the presumed 

lower levels of homoplasy in molecular data compared to morphological data: in other 

words, the likelihood of identical (or similar) DNA sequences having evolved multiple 

times between taxa is lower than the likelihood of a physical structure within the plant 

arising multiple times in different lineages through evolutionary processes. The veracity 

of this assertion has been questioned by some authors who have presented studies 

demonstrating that homoplasy can be as high or higher, in molecular data sets than in 

morphological ones. However, the fact that modern phylogenies usually are built using 

large data sets involving at least several gene regions, or when Next Generation 

Sequencing is adopted, entire genomes, provides high capacity for overcoming these 

issues. 

Monophyly, Paraphyly, Polyphyly 
 

The concept of monophyly is a fundamental tenet of modern biological 

classification, a principle that is accepted by the vast majority of contemporary 

systematists, and one that has arisen partly in response to the new molecular based 

paradigm. The definition of monophyly as currently recognised was created by Hennig 

(1966), who modified the pre-existing definition from describing a group of organisms 

that have descended from a common ancestor, to “a group of organisms that includes 

ALL of the descendants of a most recent common ancestor” (Steussy, 2009). A 
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paraphyletic group, by contrast, can be defined as one containing some but not all of the 

descendants of a most recent common ancestor, whilst a polyphyletic group contains 

taxa that do not share a single most recent common ancestor, or in other words taxa 

from more than one clade, and excluding the common ancestor (Sivarajan 1991). It is 

important to note that one taxonomic group is only monophyletic relative to another, 

and depending upon the taxonomic level at which it is applied, as ultimately all groups 

of organisms derive from a single ancestor and are therefore monophyletic (Sivarajan, 

1991). 

The concept of monophyly has become embedded in the science of classification 

over the past two to three decades, but until recently its obligate adoption within the 

discipline was vigorously contested by certain practitioners (Cronquist, 1987; Sosef, 

1997; Brummitt, 2002; Nordal & Stedje, 2005). Objections revolved around two central 

arguments: firstly, the assertion that within a Linnaean system of nomenclature, it is 

impossible to divide the entire evolutionary tree into monophyletic units (Brummitt & 

Sosef, 1998; Nordal & Stedje 2005); therefore, we must accept and recognise 

paraphyletic groups. Secondly, a system that requires monophyly does not give weight 

to the pragmatic diagnosability of taxonomic entities based upon readily recognisable 

characters (Brummitt, 2002, 2008; Brickell et al., 2008). Authors with these views 

therefore believe that absolute monophyly within a Linnaean framework is an 

impossibility, as well as a significant practical disadvantage. Both of these arguments 

have validity, and have caused concern amongst researchers. For example, George 

(2014) argued against the transfer of the genus Dryandra into Banksia on the grounds 

that good morphological characters existed to distinguish them. His position was that 

molecular cladistics should not be allowed to override existing trait-based 

classifications. This position is defensible: if one of the primary applications of 
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taxonomy is to enable organisms to be easily identified, it is logical to suggest that 

conventions should be designed to facilitate this aim. 

Nonetheless, these arguments have been almost universally rejected by 

contemporary systematists, and the principle of monophyly as a central guiding 

principle of modern taxonomy has been overwhelmingly accepted. The justifications for 

this can be summarised as follows: 

- The foremost role of systematists is to understand and interpret as accurately as 

possible relationships between biological organisms. To circumscribe non- 

monophyletic groups is to ignore one of the fundamental aims of the discipline, 

resulting in an inaccurate portrayal of the natural world. This in turn potentially 

weakens the predictive quality of a classification, and correspondingly its utility in 

practical applications, such as medicine or agriculture, for which knowledge of the 

properties, or traits, of an organism is key. As summed up by one author (Scott- 

Ram, 1990) “Given that evolution has produced a natural system of relationships 

amongst organisms… then it is the job of systematists to discover these 

relationships”. 

- Another fundamental role of taxonomy is to provide a stable name for every 

organism (Baum & Smith, 2013). To accept a system in which recognising 

paraphyletic groups is permissible is to promote potential taxonomic instability, as 

interpretation of taxonomic units becomes more subject to the author’s personal 

opinion. 

- Opponents of obligate monophyly may argue that its strict imposition leads to the 

circumscription of groups that do not display any morphological synapomorphies 

(shared derived character states – character similarities that occur due to being 

derived from a common ancestor) to enable their identification. Whilst this situation 
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may occasionally occur, usually at least one morphological characteristic, or a suite 

of characters, can be found to distinguish a given taxon. In the small minority for 

which this is not possible, we should not be in the position of sanctioning 

compromise of scientific principles in favour of convenience. Moreover, improved 

technologies and methodologies (such as morphometrics) can provide novel tools 

with which to locate and identify characteristics that may evade traditional 

taxonomic techniques. Further, analysis of non-traditional taxonomic characters 

such as chemistry, chromosomes, wood anatomy and pollen can illuminate 

taxonomic boundaries where evidence is lacking from macromorphology alone. 

- If taken to extreme, non-admission of monophyly regresses us to a system such as 

that of Linnaeus, in which apparent similarity regardless of true relationships is the 

sole criterion for classification. 

- To be rigorous, the science of systematics should be governed by a set of 

unambiguous rules, which are followed by all practitioners and are not open to 

interpretation. Otherwise, we are left with a situation in which subjectivity has the 

potential to drastically influence the outcome of any taxonomic evaluation. Such 

subjectivity arguably already plays too large a part in the science of morphological 

taxonomy! 

The concept of a genus in the contemporary sense is governed by the principle 

of monophyly, as demonstrated by robust molecular phylogenetic evidence. In this 

context, genera can be considered as more ‘natural’ taxa than they have been regarded 

in the past, although there is still no strict or universal application of the term that could 

render all genera equivalent evolutionary units. 
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Botanical Nomenclature and Type Specimens 
 

“Biology requires a precise, coherent, international system for naming clades and 

species of organisms.” - Phylocode 

A system by which each known taxon is identifiable by a single, clearly defined 

name is an essential tool for communication, and a fundamental goal of any taxonomic 

classification. Furthermore, nomenclatural and taxonomic stability is a priority, with the 

objective that the unique name for any given taxon is fixed, and changes to the name are 

minimised. 

The rules governing botanical nomenclature are laid out in the International 

Code for Algae, Fungi, and Plants (Melbourne Code) (McNeill et al., 2012), which is 

subject to regular revision following discussions in the Nomenclature Session meetings 

at the International Botanical Congress, held every five years. These extremely detailed 

rules ensure that the application of plant names is instigated in a standardised way, such 

that names will be as stable as possible, and that there can only be a single correct name 

for a taxon at any given time. 

Multiple names may exist for a given taxon but there is only ever one correct 

current name applicable under these rules. Multiple names for a single species have 

arisen, for example, for taxa which are widespread and have been treated independently 

by a number of authors over time, or for taxa whose morphological variability can lead 

to taxonomic misinterpretation. Sometimes this has led to the creation of multiple 

infraspecific taxa, which are often prone to taxonomic instability. Establishing the 

correct current name for any given taxon requires an in-depth understanding of both the 

taxon in question, and the rules governing botanical nomenclature. In order to identify a 

correct name, a range of literature must usually be consulted, including the most recent 
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(reliable) monographic, floristic, and nomenclatural publications on the taxon, as well 

as the protologue of a taxon name. 

The type specimen (or specimens) of a taxon name are the primary specimens 

linked to the creation of the name, and these ultimately define its application. The 

correct identification and listing of type specimens is essential for establishing and 

correctly applying taxon names. Where a holotype does not exist (if one has not been 

designated, or it has been lost), a subsequent author must designate a lectotype or 

neotype. If the original holotype is deemed to be of insufficient quality to represent the 

taxon, an epitype (supplementary type) can be designated. 

1.5 Taxonomy of the Caesalpinioideae (sensu traditional) 
 

The subfamily Caesalpinioideae as formerly circumscribed before the recent 

major reclassification of the family into six subfamilies (LPWG 2017) comprised c. 

2300 species in 171 genera arranged in four tribes. Subfamily Caesalpinioideae now 

comprises 148 genera with c. 4400 species. The reclassification of the family involved 

the extraction of three former tribes and one additional species from the 

Caesalpinioideae, which were instated as four new subfamilies, the Cercidoideae (12 

genera, 335 species), the Detarioideae (84 genera, 760 species), the Dialioideae (17 

genera, 85 species), and the Duparquetioideae (1 genus, 1 species). The size of the 

Caesalpinioideae has nonetheless increased significantly with the new circumscription, 

due to the incorporation of the former subfamily Mimosoideae, now the mimosoid 

clade, comprising ca. 3,300 species (Table 2). 
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Subfamily (LPWG, 
2017) 

Circumscription 
pre-2017 

Circumscription 
post-2017 

Caesalpinioideae 171 genera, 2,300 
species 

148 genera, 4,400 
species 

Mimosoideae c. 82 genera, 3,300 
species 

mimosoid clade 
within 
Caesalpinioideae 

Papilionoideae 480 genera, 13,800 
species 

503 genera, 14,000 
species 

Cercidoideae tribe Cercideae 12 genera, 335 
species 

Detarioideae tribe Detarieae 84 genera, 760 
species 

Dialioideae tribe Cassieae pro 
parte 

17 genera, 85 
species 

Duparquetioideae tribe Cassieae 
(placement 
uncertain) 

1 genus, 1 species 

 
 
 

Table 2: Summary of the reclassification of the subfamilies of Leguminosae 

(LPWG, 2017) 

1.6 Taxonomy of the Cercidoideae 
 

Cercideae Bronn (1822) was formerly a tribe of subfamily Caesalpinioideae, one 

of the three traditionally recognised subfamilies of the Leguminosae. The tribe was 

created for a single genus, Cercis L., and subsequently expanded to encompass two 

subtribes, the Cercidinae and Bauhiniinae, with up to 29 genera. As part of the major 

reclassification of the Leguminosae from three subfamilies to six, the Cercideae has 

been elevated in rank to become one of the new subfamilies, the Cercidoideae (LPWG, 

2017). 

Since Bentham (1840; 1865) the Cercidoideae has been thought to represent a 

natural group (Wunderlin, 1979), characterised by the distinctive leaf, which is 

unifoliolate and entire or bilobed, or bifoliolate, compared with the leaves of most 

Leguminosae which are trifoliolate, once- pinnate or bipinnate (with few to many 
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leaflets and pairs of pinnae). The hypothesis, based principally on leaf form, that the 

Cercidoideae represent an early diverging lineage within the family (Wunderlin et al., 

1981), has been recently confirmed by molecular phylogenetic analyses (Bruneau et al., 

2001; Herendeen et al., 2003; LPWG, 2017) although the precise relationship to other 

subfamilies remains as yet unresolved; in the latest and best-sampled molecular 

phylogenetic analysis the Cercidoideae forms a polytomy with the Duparquetioideae, 

Detarioideae and the clade containing the other three subfamilies (LPWG, 2017). 

Despite the readily identifiable nature of the group, the subtribal classification of 

the Cercidoideae, in its former circumscription as the Cercideae, has been subject to 

considerable flux. Wunderlin (1979) and Wunderlin et al. (1981), divided the Cercideae 

into subtribes Cercidinae and Bauhiniinae, based on seed, floral, and fruit characters. Of 

these, subtribe Cercidinae has been largely stable in its circumscription, usually 

considered to include the genera Cercis, Adenolobus, and Griffonia, although there have 

been other configurations such as that of Yakovlev (1972), who placed Bauhinia and 

Griffonia, along with Barklya, in the Bauhiniinae, leaving only Cercis in the Cercidinae. 

The internal circumscription of the Bauhiniineae, by contrast, has varied enormously 

from 26 genera (Wunderlin, 1976) to one, Bauhinia sens. lat. (Wunderlin et al., 1981), 

due to the extreme fluidity of the generic limits. 
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1.6.1 Taxonomy of Bauhinia sensu lato 
 

 
 

Figure 1. Composite plate showing vegetative and floral forms of Bauhinia s.l. (a) 

Bilobed leaf typical of Bauhinia s.l. (b) Flowers of Lasiobema championii (c) 

Tendrils of Phanera (d) Flower of Phanera bracteata (e) Flower of Cheniella 

tenuiflora (f) Flower and leaf of Bauhinia galpinii (g) Flower of Bauhinia s.s. (h) 

‘Monkey-ladder’ lianescent stems of Phanera (i) Entire leaf form of Bauhinia s.l. 
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The genus Bauhinia L. (classified in the subfamily Cercidoideae) was first 

described in Linnaeus’ Species Plantarum (1753), based on the type species B. 

divaricata L., in a treatment that included eight species. The circumscription of the 

genus has hugely expanded since that time to include in its broadest sense 300–350 

species, and has always been controversial, diverging radically between different 

authors and even within the opinion of a single author. Bentham himself (1840) was at 

first inclined to divide Bauhinia s.l. into four genera, stating that “the form of the flower 

and fruit in the various groups collected under the name of Bauhinia is so very different 

that it seems impossible to retain the genus entire”. However, he subsequently (1865) 

altered his view to adopt the wide generic delimitation of Bauhinia, which was 

generally followed thereafter (de Wit, 1956). 

The morphological heterogeneity of the genus in its broad sense has been 

reflected in the infrageneric classifications devised by various authors, consisting of 

subgenera, sections, subsections and series, in their efforts to negotiate the diverse 

group. For example, in his 1825 synopsis, de Candolle recognised five sections within 

Bauhinia: sect. Casparia, sect. Pauletia Cav., Sect. Symphopoda DC., Sect. Phanera 

Lour., and Sect. Caulotretus Rich., whilst Baker (1879) defined six sections within 

Bauhinia s.l.., encompassing 37 species. Taubert (1891) subdivided Bauhinia s.l. firstly 

on the number of fertile stamens, stating that his reason for recognising subdivisions of 

Bauhinia as sections rather than distinct genera was due to the lack of single unique 

synapomorphies to distinguish some of the individual groups. De Wit (1956) took a 

different view, pointing out that the presence or absence of a single character does not 

signify relationships between taxa more than does the correlation or combined 

occurrence of a group of characters. In fact, according to the central tenet of natural 
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classification systems, ‘…taxa characterised by sets of characters are as a rule more 

natural than those founded on an isolated ‘key-character’’. 

Two decades later, Wunderlin (1979), whilst defining the genus as pantropical 

and comprising. c. 225 spp., acknowledged that “It is evident that the large and diverse 

genus Bauhinia should be further subdivided into a number of infrageneric units”, and 

indicated that such a revision was under way in collaboration with Professor Kai and 

Supee Larsen. However, in the subsequent years he continued to recognise Bauhinia 

s.l., delineating in 1981 four ‘groups’ within the genus, the Bauhinia group, Piliostigma 

group, Barklya group and Phanera group. Shortly thereafter (1983) his synopsis of the 

arborescent Bauhinia species of Central (‘Middle’) America divided 27 species into 

three ‘species alliances’, the Divaricata, Petiolata, and Aculeata alliances. Four years 

later, he presented another treatment of Bauhinia as a single large genus of 300–350 

spp., in which were recognised four subgenera, 22 sections, and 30 series (Wunderlin et 

al., 1987). 

De Wit’s (1956) comprehensive revision of the Malaysian species of Bauhinia 
 

s.l. was one of the first major treatments to ascribe the rank of genus to subdivisions that 

had previously been treated by most authors at lower ranks. Acknowledging the 

complexity of Bauhinia s.l., de Wit observed that ‘When emended to some degree, the 

sections in Bauhinia s. ampl. [in the broad sense] recognised by Bentham and his 

followers could often be equally well delimited as genera as could Bauhinia s. ampl…’. 

He then elaborated ‘…Bauhinia s. ampl. ought to be reduced to what we may believe to 

be in close agreement with the Linnaean conception. This made necessary the 

resurrection of genera usually referred to synonymy of Bauhinia and the description of a 

new genus [Lysiphyllum]. The genera I recognise here are, I believe, very natural 

groups, repeatedly linked, but well distinguished by certain combinations of characters’. 
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His conspectus elucidated seven (Malaysian or partly so) genera: Bracteolanthus, 

Lysiphyllum, Gigasiphon, Piliostigma, Lasiobema, Phanera, and Bauhinia. Other 

treatments that delineated several genera from within Bauhinia s.l. include those of 

Britton & Rose (1930), who recognised Alvesia, Caspareopsis, Casparia and Schnella 

as distinct (Wunderlin 1983), and Verdcourt’s (1979) Manual of New Guinea Legumes 

which treated Lasiobema, Lysiphyllum, Phanera, and Tylosema as separate from 

Bauhinia. 

Some authors continue to adhere to the concept of Bauhinia as a single, large, 

polymorphic genus. For example, Meng et al. (2014) and Wang et al. (2014) have 

continued to treat Bauhinia s.l. as a single unit, although Wang et al. did acknowledge 

that “recent studies on pollen morphology and molecular systematics of Bauhinia have 

suggested that Bauhinia sensu lato (s.l.) is not monophyletic and should be subdivided 

into Bauhinia sensu stricto (s.s.) and other independent genera”. In the main, however, 

the view of Bauhinia as a single genus has now been superseded. 

Whilst many regional treatments exist, comprehensive revisions of Bauhinia s.l. 

have rarely been carried out, due to the large size of the genus, its morphological 

complexity, and its wide geographical distribution. Notable revisions of the genus in its 

entirety, as recognised at the time, include those of Dietrich (1840), who recognised 81 

species, Taubert (1891), and Wunderlin et al. (1987). However, during the past two 

decades, the onset of the use of molecular phylogenetic techniques has enabled studies 

across a broad spectrum of taxa, and revolutionised understanding of the relationships 

within the Cercidoideae. The most comprehensive phylogenetic study of the 

Cercidoideae to date has been that of Sinou et al. (2009), which included representatives 

of all eight genera within Bauhinia s.l. as proposed by Lewis & Forest (2005). The 

primary aim of Sinou et al. (2009) was to investigate relationships between these 
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proposed segregate genera, rather than interspecific relationships, and in this they 

advanced our understanding substantially. Their study revealed Bauhinia s.l. to be 

paraphyletic with respect to the monospecific Madagascan genus Brenierea, which was 

resolved as nested within Bauhinia s.l. It also supported the recognition of a number of 

segregate genera, in agreement with the proposal of Lewis & Forest (2005). 

Despite these major advances, understanding of the infraspecific relationships, 

and to some extent the generic delimitations within Bauhinia s.l., is still lacking. Much 

more densely sampled phylogenetic studies, using a range of molecular markers, are 

necessary to further illuminate the relationships within this taxonomically complex and 

ecologically important group. 

 
1.6.2 Segregates of Bauhinia: Phanera and Schnella 

 
Phanera Loureiro (1790) is the largest genus segregated from within Bauhinia 

 
s.l. The genus was originally created for a single species, Phanera coccinea Lour., the 

presence of 3 stamens per flower noted in the protologue as being a defining character 

of the genus. Since it was created, Phanera has been considered by subsequent authors 

either as a distinct genus containing up to 130 species (Baker, 1879; de Wit, 1956; 

Verdcourt, 1979; Zhang & Chen, 1992; Larsen & Larsen, 1997; Lewis & Forest, 2005; 

Quieroz, 2006; Vaz 2010; Bandyopadhyay, 2012), or as a subgenus or section of 

Bauhinia (de Candolle, 1825; Korthals, 1839–42; Bentham & Hooker, 1865; Larsen et 

al. 1980, 1984; Hou et al., 1996; Dezhao et al., 2010; Chatan, 2013). During the last 30 

years or so, the majority of authors in Asia have subscribed to the latter view. 

The species within Phanera, even in its broadest circumscription, are consistently 

homologous in two major traits: all are tendrilled lianas, and possess (2–) 3 fertile 

stamens. In this, the genus is easily distinguished from Bauhinia s.s., which consists of 
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trees or shrubs, with 1–10 stamens, and from Schnella, also a tendrilled liana, that 

uniformly possesses 10 stamens. 

Despite these consistent generic characters, considerable morphological 

heterogeneity exists within Phanera s.l. This is best illustrated by the treatment of de 

Wit (1956), who recognised Phanera as a distinct genus comprising 44 species, which 

he divided into three subgenera, subgenus Phanera, subgenus Austrocercis, and 

subgenus Biporina. Of these, subgenus Biporina comprised three sections, and 

subgenus Phanera three sections, which were together then further subdivided into six 

subsections. The morphological basis for his classification was as follows: Phanera 

subgen. Biporina de Wit was separated for having porate anthers; Phanera subgen. 

Austrocercis, consisting of a single New Guinea endemic species, was distinguished by 

bud shape, flowers ‘semi-papilionaceous’, the calyx 2-lobed (vs. at least 3-lobed), and at 

the base of the vexillum ‘a digitate, fleshy body’; Phanera subgen. Phanera, consisting 

of 28 species, was distinguished from Phanera subgen. Biporina by having anther slits, 

and from Phanera subgen. Austrocercis by characters contrasting with those listed for 

that subgenus. Characters used by de Wit to distinguish the sections and subsections of 

Phanera subgen. Phanera included: receptacle length; receptacle turbinate or tubular; 

bud shape; sepal lobing; petal length; length of petal claw; petal shape; petal caducous 

or not; anther length; ovary indumentum; ovary sessile or stalked. 

A similarly complex system designed to navigate the morphological 

heterogeneity within Phanera was that of Wunderlin (1976), who considered the group 

as a subgenus of Bauhinia and proposed that it be divided into 11 sections. Included in 

these were sections Lasiobema, Lysiphyllum and Tylosema, which were subsequently 

reinstated as distinct genera by Lewis and Forest (2005). 
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Following the revelation published by Sinou et al. (2009) of the paraphyletic 

nature of Bauhinia s.l. with respect to Brenierea as well as the evidence provided by 

other molecular based analyses such as that of Hao et al. (2003), the international 

taxonomic community has broadly accepted the status of Phanera as a reinstated 

“good” genus. Despite this, questions have persisted surrounding the monophyly of 

Phanera, and its correct delimitation, particularly regarding the status of the proposed 

segregates Schnella Raddi (1820) and Lasiobema (Korth.) Miq. (1855). 

Lewis and Forest (2005), stopped short of reinstating the New World genus 

Schnella but did point out that it might merit generic status according to a preliminary 

analysis of the Cercideae by Forest (unpublished data). Subsequently, Wunderlin 

(2010b), acting on the basis of the molecular evidence provided by Sinou et al. (2009), 

reinstated Schnella as a genus, thus formally separating the lianescent species of the 

New World from those of the Old World. The two genera are also separated 

morphologically by stamen number, the species of Phanera bearing (2–) 3 fertile 

stamens, whereas those of Schnella have 10. 

Nevertheless, the morphological heterogeneity that persists within Phanera 

suggests that further generic segregations may be necessary as additional data are 

generated and monophyletic units illuminated. 

 
1.6.3 Segregates of Bauhinia: Lasiobema 

 
The genus Lasiobema (Korth.) Miq. (1855), based upon Bauhinia sect. 

 
Lasiobema (Korth, 1839–1842) was created to accommodate two species, Lasiobema 

anguinum Korth. and Lasiobema horsfieldii Miq. Up to 20 species have subsequently 

been treated within Lasiobema. Although recognised by some authors as a distinct 

genus (Bentham & Hooker, 1865; de Wit, 1956; Wunderlin, 1976; Verdcourt, 1979), 

and assigned generic status by Lewis and Forest (2005), a majority of authors have 
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considered Lasiobema to be part of Phanera or Bauhinia (Baker, 1879; Hou et al., 

1996; Hao et al., 2003; Lau et al., 2009; Wunderlin, 2010a), and the taxonomic status of 

Lasiobema remains unresolved. The phylogenetic evidence (Hao et al., 2003, Sinou et 

al., 2009) and morphological evidence to support the status of Lasiobema has thus far 

proved inconclusive. 

The species of Lasiobema (at whatever taxonomic rank it is recognised), like 

those of Phanera, are distributed throughout South East Asia, and the genus is closely 

morphologically allied with Phanera. The characters of habit and fertile stamen  

number, by which Bauhinia, Phanera, and Schnella are distinguished from one another, 

are homologous between Lasiobema and Phanera, both being tendrilled lianas with 

three fertile stamens. Putative morphological synapomorphies that have been proposed 

for Lasiobema include the presence of a swollen nectariferous disc in the flower (de 

Wit, 1956), a truncate calyx with reduced sepals (compared with a calyx of 5 strap- 

shaped lobes split to the mouth of the receptacle in Phanera), receptacle turbinate, and 

flowers small and numerous (de Wit, 1956). De Wit observed potential paraphyly 

within Lasiobema, describing two distinct morphological types: one having a swollen 

disc and glabrous ovary, the other without a swollen disc, and the ovary densely 

tomentose. He went on to say that in future the group without a disc and with tomentose 

ovary will prove to be better treated a genus. No synapomorphies are known to occur in 

all species that have been attributed to the genus, which further suggests the existence of 

paraphyly. 

Schmitz (1977) attempted to circumscribe generic segregates of Bauhinia based 

solely upon pollen type. Six species were given a new combination (comb. nov.) within 

Lasiobema and added to the four taxa included by de Wit (1956) in the genus. He united 

these species as possessing the ‘curtisii’ pollen type, with three apertures, longitudinally 
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angled towards the poles, a smooth surface and non-spherical shape (Schmitz, 1973). 

Schmitz (1977) described L. harmsianum (Hosseus) de Wit var. media (Craib) Schmitz 

as having a ‘bracteata’ type pollen. 

 
Few molecular phylogenetic studies have included species of Lasiobema. The 

analysis by Hao et al. (2003), which utilised the nuclear gene region ITS to examine 

interspecific relationships of Phanera s.l., was the most densely sampled molecular 

study of the genus to date, incorporating 32 species of Phanera s.l. of which seven also 

have a combination within Lasiobema. These seven species were indicated to be 

paraphyletic, and nested within various parts of the Phanera s.l. phylogeny, although 

with low support. The study of Sinou et al. (2009) sampled only a single species 

belonging to Lasiobema (L. penicillilobum), which appeared as sister to the clade of 

Phanera s.s., although this relationship was poorly supported. Evidence from molecular 

phylogenetic analyses has thus so far been inadequate to demonstrate the monophyly or 

otherwise of Lasiobema. 
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1.6 Taxonomy of Caesalpinia sensu lato and Mezoneuron 
 
 

 
 
 

Figure 2. Composite plate showing leaf, floral, and fruit forms of Caesalpinia s.l. 

(a) Leaf and inflorescence of Caesalpinia szechuenensis (b) Flowers of Mezoneuron 

deverdianum (c) Flowers of Caesalpinia mimosoides (d) Fruit of Mezoneuron 

montrouzieri (e) Fruit of Mezoneuron andamanicum 
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The Caesalpinia group is one of eight informal generic groups into which Polhill 

and Vidal (1981) divided the tribe Caesalpinieae, and was defined by having a modified 

(sometimes cucullate) lowermost sepal, flowers generally zygomorphic with stamens 

crowded around the pistil at least toward the base, and the presence of spines, prickles 

and glands (Polhill & Vidal, 1981; Lewis & Schrire, 1995; Simpson et al., 2003; Nores 

et al. 2012). The number of genera in the group as defined at that time was 16, and has 

subsequently increased to 21 (Lewis, 2005). Of these, Caesalpinia L. (1753) sensu lato 

has been the most taxonomically complex and difficult to delimit, due in part to high 

levels of homoplasy (where similar character states arise for reasons other than shared 

ancestry, such as convergence or parallelism). It has most commonly been treated either 

as a single, polymorphic, pantropical genus, particularly by authors of regional accounts 

(Hattink, 1974; Vidal & Thol, 1976; Lewis, 1987; Lock, 1989; Hou, 1996; Lewis, 1998; 

Lock & Ford, 2004), comprising up to 150 species (Bentham, 1865), and with up to 30 

names in synonymy (Lewis, 1998). The existence of considerable morphological 

heterogeneity within the broadly circumscribed genus is reflected in the loosely defined 

infrageneric sections devised by various authors (de Candolle, 1825; Bentham, 1865). 

Other authors have delineated up to 16 smaller segregate genera from within 

Caesalpinia s.l. (Britton & Rose, 1930). More recently, studies utilising molecular 

and/or morphological evidence have suggested or confirmed the paraphyletic nature of 

Caesalpinia s.l. (Lewis and Schrire, 1995; Simpson and Miao, 1997; Bruneau et al., 

2001; Simpson et al., 2003; Bruneau et al., 2008; Manzanilla & Bruneau, 2012; Nores et 

al., 2012). Based on this molecular evidence, Lewis (2005) proposed that Caesalpinia 

s.l. may be comprised of eight segregate genera. 
 

The most comprehensive molecular investigation into the Caesalpinia group to 

date is by Gagnon et al. (2016). This densely sampled analysis utilised one nuclear and 



40  

five plastid gene regions to generate a phylogeny that largely resolved the questions 

surrounding generic limits within the Caesalpinia group, finding 26 well-supported 

genera. Of the eight genera proposed by Lewis (2005) to be reinstated as segregates of 

Caesalpinia s.l., five (Tara, Coulteria, Guilandina, Mezoneuron, Libidibia) were 

robustly supported as monophyletic in this study, all of which are recognisable by a set 

of morphological synapomorphies. The remaining three (Caesalpinia s.s., Poincianella, 

Erythrostemon) were not supported as monophyletic, resulting in a reconfiguration of 

these genera, and the transferral of five species to a newly created genus, Arquita E. 

Gagnon, G. P. Lewis & C. E. Hughes (Gagnon et al., 2015). 

One of these eight proposed segregate genera is Mezoneuron Desf. (1818) which 

has been treated by different authors since its inception either as part of Caesalpinia s.l., 

or as a distinct genus. The primary morphological character that distinguishes 

Mezoneuron from Caesalpinia s.s. or other segregates of Caesalpinia s.l. is the fruit, 

which is laterally compressed, indehiscent, and bearing a wing along the upper suture. 

Mezoneuron has a disparate distribution, being most diverse in South East Asia, but 

with species also in Africa, Madagascar, New Caledonia, Australia, and Hawaii. This 

unusual distribution, coupled with the single supporting synapomorphy, raise questions 

regarding the status of Mezoneuron as a distinct genus. 
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2.1 SUMMARY AND CRITICAL APPRAISAL OF THE PUBLISHED WORK 

 

2.2 Aims of the Research 
 

1. Conduct a morphological and molecular analysis of Mezoneuron, to test the 

monophyly of the genus and evaluate interspecific relationships. 

2. Examine generic limits within Bauhinia s.l.: how many genera should be segregated? 
 

3. Evaluate the importance of monophyly in the context of the taxonomy of the 

Leguminosae, and more generally. 

4. Explore the taxonomic relationships within Bauhinia s.l. and Caesalpinia s.l. in 

relation to their biogeography and evolutionary history. 

2.3 List of papers 
 
 

1. Clark, R.P., Mackinder, B.A., Banks, H. 2017. Cheniella gen. nov. (Leguminosae: 

Cercidoideae) from S. China, IndoChina and Malesia. European Journal of Taxonomy 

360: 1–37. 

 
 

2. Clark, R.P. 2016. A Taxonomic Revision of Mezoneuron (Leguminosae: 

Caesalpinioideae: Caesalpinieae). Phytotaxa 274(1): 1–72. 

 
 

3. Clark, R. & Gagnon, E. 2015. A revision of Mezoneuron (Leguminosae – 

Caesalpinioideae) in New Caledonia, with perspectives on vegetation, geology and 

conservation. Phytotaxa 207(1): 68–92. 
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4. Clark, R.P. 2015. Lasiobema flavum (Leguminosae: Caesalpinioideae), a new record 

for the Flora of Thailand. Thai Forest Bulletin (Botany) 43: 70–73. 

 
 

5. Trethowan, L., Clark, R.P., Mackinder, B.A. 2015. A synopsis of the neotropical 

genus Schnella (Cercideae: Caesalpinioideae: Leguminosae) including 12 new 

combinations. Phytotaxa 204(4): 237–252. 

 
 

6. Mackinder, B.A., Clark, R. 2014. A synopsis of the Asian and Australasian genus 

Phanera Lour. (Cercideae: Caesalpinioideae: Leguminosae) including 19 new 

combinations. Phytotaxa 166 (1): 49–68. 
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Figure 3. Distribution maps of the four genera that are the subjects of the 

published works 
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Year Activity 
2005 Publication of Legumes of the World by Lewis et al., in which 8 potential 

segregates of Caesalpinia s.l.  were indicated 
2007 One of these potential segregate genera, Mezoneuron, was identified as 

requiring taxonomic and phylogenetic investigation to resolve its status as 
a monophyletic genus or otherwise. With its centre of diversity in South 
East Asia, a project on this genus was in line with my regional expertise 
on legumes 

Loans of herbarium material requested from eight international 
herbaria internationally 

Morphological review of all species of Mezoneuron commenced; 
continued throughout duration of project 

2009 Field expedition to New Caledonia to collect herbarium specimens for 
study, silica-dried material for DNA analysis, and to study the plants in 
situ. Field expedition to Sierra Leone resulted in collection of Mezoneuron 
benthamianum 

2010 Extractions of DNA from New Caledonia species conducted. Sequencing 
of trnL-F and ITS for some samples carried out 

2011 Field expedition to Thailand facilitated collection of Mezoneuron 
andamanicum and M. enneaphyllum 

2012 X-ray imaging used to investigate wing morphology of Mezoneuron fruits 
2013 Extractions of DNA from herbarium material undertaken 
2015 Publication of Revision of Mezoneuron in New Caledonia (Clark & 

Gagnon, 2015) 
2016 Following correspondence with the Red List Authority of New Caledonia, 

revised conservation assessments for the Mezoneuron species of New 
Caledonia published by them 

2016 Publication of Taxonomic Revision of Mezoneuron (Clark, 2016) 
2016- 
2017 

Further extractions of DNA from Mezoneuron samples. Sequencing of 4 
plastid and one nuclear region. Phylogenetic analysis of sequences 

 
 

Table 3. Methodology timeline for studies of Caesalpinia s.l. 
 
 
 

Year Activity 
2005 Publication of Legumes of the World (Lewis et al., 2005), in which 8 

potential segregate genera of Bauhinia s.l. were outlined 
2009 Publication by Sinou et al. of phylogeny of the Cercideae, supporting in 

most cases the segregation of genera as indicated by Lewis et al. (2005) 
2011 Field expedition to Thailand results in discovery of new locality (first 

country record) for very rare and poorly known species, Lasiobema 
flavum 
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2012 Review of carpological material in herbarium collections at RBG Kew by 
B. Mackinder & R. Clark reveals a distinct fruit type, corresponding to 
Phanera subgenus Corymbosae. Further investigation reveals additional 
morphological characters, biogeographical data, and molecular based 
phylogenetic evidence distinguishing the group 
Palynological study of Phanera subg. Corymbosae initiated (with H. 
Banks). Study reveals novel pollen type to characterise the group 

2013- 
2014 

CSYS (‘Sandwich’) student employed at RBG Kew to develop web page 
content for tribe Cercideae for Legumes of the World Online project. 
Student managed by R. Clark 

2014 Publication of the Synopsis of Phanera (Mackinder & Clark, 2014). 
Identified the need for publication of new nomenclatural 

combinations in Schnella, following reinstatement of the genus by 
Wunderlin (2010) 

2015 Publication of the Synopsis of Schnella (Trethowan, Clark & Mackinder 
2015). 

2016 Field expedition to Guangxi, China, results in new collections of Phanera 
subg. Corymbosae, including flowers in alcohol for anatomical study 

Anatomical study of floral structure of Phanera subg. Corymbosae 
reveals novel synapomorphy for the group 

2017 Publication of Cheniella gen. nov. (based upon Phanera subg. 
Corymbosae) (Clark, Mackinder & Banks, 2017) 

 
 

Table 4. Methodology timeline for studies of Bauhinia s.l. 
 
 

2.4 Bauhinia sensu lato 
 

Bruneau et al. (2001) and Sinou et al. (2009), showed that the genus Bauhinia 
 

s.l. is paraphyletic with respect to the monospecific Madagascan endemic Brenierea, 

and therefore should be divided into smaller, monophyletic genera. The morphological 

evidence needed to (re)instate several of these smaller genera already existed, having 

been laid out in the taxonomic literature; however, a level of variation remains within 

some currently delineated genera, suggesting that further paraphyly persists within these 

groups. 

 
The focus of my research has been to address the uncertainty concerning 

classification of Bauhinia s.l., specifically generic limits within the segregate Phanera 

s.l. The ultimate aim of this is to create a stable taxonomy that reflects evolutionary 
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relationships between the component taxa, which can be used to aid identification of 

and communication about these taxa. 

 
2.3.1 Segregates of Bauhinia: Cheniella 

 
Phanera Lour. (1790) is the most speciose genus that has recently been 

reinstated at generic rank from within Bauhinia s.l. based upon a synthesis of 

morphological and molecular data (Lewis & Forest, 2005; Sinou, 2009), but 

polymorphism persists within the genus. A review carried out for this study of 

palynological and molecular data for Phanera, in conjunction with a careful evaluation 

of the morphological heterogeneity within the genus, revealed strong evidence that the 

species of Phanera subsection Corymbosae are a natural group that warrant generic 

status. Paper 1 describes the genus Cheniella to accommodate them, based upon robust 

morphological, palynological, molecular, and geographical data, and comprising 10 

species. This work therefore separates a distinct evolutionary unit from within Phanera, 

reducing the polymorphism therein, and removing a degree of paraphyly from the 

genus. The paper provides a synoptical and comparable description of each species of 

Cheniella, including a comparative table of characters, as well as a key to the species, 

and a composite illustration (line drawing) including elements of several of the species. 

These enable identification of the genus, and of the species that comprise it. In the 

broader context, this represents a set of additional tools by which to identify elements of 

the large and morphologically complex group Bauhinia s.l. 

A preliminary conservation assessment based on herbarium specimen data and 

the available literature is presented for each species of Cheniella, and these are the first 

ever created for these species. These assessments highlight the status of certain species 

as potentially at risk of extinction, as well as forming the basis for future more 
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comprehensive conservation assessments. Details of the distribution of each species are 

presented, the synthesis of which reveals the centre of diversity of the genus to differ 

from that of Phanera. This information, combined with the conservation assessments, 

will enable researchers to target future collecting efforts, which will further elucidate 

the range and threat status of the species. 

Analyses carried out for this study reveal novel micromorphological data, 

showing Cheniella to be characterised by a pollen type that is unique within the 

Leguminosae. This extends our palynological knowledge of Bauhinia s.l. as well as of 

the family overall. Our work also describes the fused staminodal ring that is an 

apparently unique synapomorphy for the genus, previously poorly documented for these 

species, and unknown within the rest of the Leguminosae. The implications of the 

staminodal disc for pollination, and of a further synapomorphy of the elongated 

hypanthium also described in the published work, are discussed in the paper. The 

description and analysis of these floral and pollen structures provides new insights into 

the poorly understood pollination systems of Bauhinia s.l. 

The treatment creates a new name (new combination) for each taxon within the 

genus, and lists the basionym for each. This clarifies the former taxonomic position of 

each taxon, and unambiguously provides the correct current name for each. This is 

essential for any communication relating to the taxa. For each taxon name in the 

treatment, the type specimen (or specimens) are listed in full. For Cheniella touranensis, 

which had no holotype designated in the original description, a lectotype was designated 

as part of this study. 

Discussion of the taxonomic status of Cheniella glauca and C. tenuiflora 
 

contributes to the body of philosophical debate regarding the nature of taxonomic 
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boundaries, and our collective approach to their delineation and status. Upranking of the 

taxon Bauhinia (Cheniella) glauca subsp. tenuiflora to the level of species gives a more 

accurate understanding of species numbers within Bauhinia s.l. 

The study provides valuable new data for a poorly known and apparently very 

rare species, C. ovatifolia, including a new country record (Vietnam), and the first 

illustration of the species. 

A systematic arrangement of the species of Cheniella is presented in this 

published work, based upon morphological similarities and geographical range of the 

species. A preferable approach to constructing a systematic arrangement is through 

interpretation of a molecular-based phylogenetic tree; however, such data were not 

available for this study. The Corymbosae species sampled by Hao et al. (2003), 

although strongly supported as a monophyletic clade, were poorly resolved at the inter- 

species level, with high support on only one of the branches, and two polytomies. We 

therefore deemed this phylogeny to be inadequate evidence on which to judge the 

systematic relationships within the genus, and hence relied upon morphological and 

biogeographical characters. 

 
2.3.2 Segregates of Bauhinia: Phanera and Schnella 

 
Phanera has been historically recognised as a distinct genus by some authors, 

most notably de Wit (1956) who delineated 44 species of Malesian Phanera, and also 

by Wunderlin (1976; 2010a; 2011), Verdcourt (1979), Queiroz (2006) and Vaz (2010); 

however, the vast majority of authors have treated it as a subgenus of Bauhinia 

(Bortoluzzi et al., 2006; Chen, 1988; Larsen et al., 1980, 1984; Wunderlin et al., 1981; 

Wunderlin & Eilers, 2009). Since the broadly sampled phylogenetic treatment of Sinou 

et al. (2009), the morphological evaluation by Lewis et al. (2005), and unpublished 
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molecular analysis of Lewis & Forest (2005) in which eight generic segregates were 

suggested, the reinstatement of Phanera at generic rank has been widely accepted. 

 

The genus Schnella (1820) was accepted by various authors in the subsequent 

years, before being reduced to a section of Bauhinia by Bentham (1865). Since then, 

Schnella has been upheld at generic rank by certain authors, whilst being subsumed 

within Bauhinia, or considered synonymous with Phanera by others. More recently, the 

molecular phylogenetic analyses of Hao et al. (2003), Lewis & Forest (2005) and Sinou 

et al. (2009) have provided some evidence that Schnella represented a clade separate to 

Phanera s.s. Based on this evidence, Wunderlin (2010b) formally reinstated Schnella as 

a genus, publishing 28 new combinations. Palynological evidence (Banks et al., 2013, 

2014) and morphological characters (primarily stamen number) also support the status 

of Schnella as a distinct genus. 

The reinstatement of Phanera and Schnella resulted in the need for new 

combinations in each genus for many taxa described in Bauhinia. In Papers 5 and 6 we 

present all accepted names, synonyms, and excluded names for Phanera and Schnella, 

including, respectively, 19 and 12 new combinations not made by previous authors. 

Complete and up-to-date rendering of accurate accepted names of all taxa 

included within any genus is the foundation for understanding the composition of the 

genus, as a fundamental tool for taxonomists, and for anyone who needs to know the 

identity of an organism. This is particularly true of genera with long and complex 

taxonomic and nomenclatural histories, such as Bauhinia s.l., in which there are often a 

large number of names available for any given taxon. If the names are not explained and 

listed, enormous confusion can arise as to the appropriate identity for a given taxon, 

which can result in taxonomic instability. Clarification of, and presentation of, currently 
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accepted names and synonymy for all taxa included within Phanera, Schnella, and 

Cheniella (within a single publication for each) avoids doubt or ambiguity regarding the 

taxonomic limits of these genera, and removes nomenclatural confusion. Additionally, 

in providing full and accurate lists of current names, the published work makes 

information regarding the size and composition of each genus accessible to a wide user 

community. 

The lists of names for these treatments were compiled using a combination of 

internet resources, and a wide range of literature, with the aim of detailing as 

comprehensively and accurately as possible the names for each taxon. 

Phytogeography is a key element of the segregation of genera from within 

Bauhinia s.l., and is particularly relevant to the delineation of both Phanera and 

Schnella. Phanera has been formerly recognised as a widespread taxon occurring in 

both the New World and Old World, but the segregation of the c. 40 species from South 

America as the genus Schnella results in Phanera becoming circumscribed as a genus 

restricted to Asia and Australasia. The occurrence of each species by country is detailed 

in Papers 5 and 6, with the addition of a map showing relative species density by 

country for Schnella. The species distributions were assessed using a combination of the 

published literature, and herbarium specimens at RBG Kew. 

The published papers describe the taxonomic history of the respective genera. 
 

The synopsis of Phanera includes a table comparing the defining characters of Bauhinia 

s.s., Phanera, Schnella, and a further proposed segregate genus, Lasiobema. 

 
2.3.3 Segregates of Bauhinia: Lasiobema 

 
Lasiobema is a putative segregate genus of Bauhinia s.l., whose monophyly has 

not yet been successfully demonstrated. Paper 4 presents the first record of the species 
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Lasiobema flavum in Thailand based upon a collection made by the author. This very 

poorly known species has previously been collected from only two localities in 

Peninsular Malaysia. By recording a new locality for the species, the paper improves 

understanding of its distribution and conservation status, and contributes to ongoing 

efforts to fully document the flora of the Thailand. A preliminary conservation 

assessment is provided. The taxonomic description given in this published work 

expands upon the previously available description of the species with additional 

morphological details. These data can contribute to elucidating the monophyletic nature 

or otherwise of the proposed genus. 

The new specimen was collected on a limestone hill, as were the two previous 

collections of the species from Malaysia, indicating that Lasiobema flavum may be an 

obligate limestone species; were it able to grow on other substrates, further collections 

would probably exist. 

The preliminary conservation assessment for this study determined the species 

to be Endangered, according to IUCN (2014) criteria, based upon its apparently very 

limited range, and restriction to limestone peaks, which are at risk of destruction from 

quarrying for lime. However, the flora of the limestone peaks of Thailand and 

Peninsular Malaysia is poorly studied, and a full survey of the peaks in the vicinity of 

the collection localities of the species would possibly reveal further populations. 

Detailed local surveys in Malaysia and Thailand would be necessary for a full 

conservation assessment to be carried out. 
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2.4 Caesalpinia sensu lato: Mezoneuron 
 

Mezoneuron is one of the proposed segregate genera of Caesalpinia s.l. It has 

been separated primarily on the basis of the characteristics of the fruit, which is distinct 

from those of other members of Caesalpinia s.l. in being winged and indehiscent. 

In accordance with the accepted principles of systematics, to be suitable for 

recognition at the generic level, Mezoneuron should be demonstrated to be 

monophyletic. Prior to the study in Paper 2, the monophyly of Mezoneuron had not 

been tested using phenotypic evidence, and only partially tested with molecular 

phylogenetics. Analysis to test the apparent synapomorphy of the fruit type and to 

evaluate for additional synapomorphies is carried out in Papers 2 and 3 of this work, 

thus assessing the morphological evidence for the monophyly of the group. 

The study in Paper 2 presents the first ever complete taxonomic revision of the 

24 species of Mezoneuron, across its geographical range. The revision, and that of the 

New Caledonian species in Paper 3, each include a key to the species, and for each 

species: a full morphological description, details of distribution and a distribution map, 

habitat details, and a preliminary conservation assessment. Paper 2 also presents a 

systematic arrangement of all species in the genus, and a discussion of the range of 

variation in fruit morphology across the genus in the context of its distribution and 

evolution. Paper 3 additionally provides colour photographs, a composite illustration of 

the taxa, and discussion of vegetation and geological substrates types of New 

Caledonia, and the habitat preferences of each species. 

The previously existing descriptions of the species assigned to Mezoneuron 

appear in numerous pieces of literature since the genus was first described in 1818. 

These descriptions have been extremely variable in quality, length, and detail. 
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Standardised descriptions of the species were not available in the literature, and no 

single key existed to all species in the genus. The species of Mezoneuron in New 

Caledonia previously have been little studied; the only taxonomic descriptions available 

were the original protologues, which were published many decades previously, and 

were brief and lacking in detail. The studies in Papers 2 and 3 provide detailed and 

standardised species descriptions, and keys to all the species, essential tools for 

identification of the taxa. 

The morphological data on which Papers 2 and 3 were based were gathered from 

herbarium specimens housed in 16 herbaria, especially those with rich Asian and New 

Caledonian collections. This was to ensure that multiple specimens of each species were 

studied, thus encompassing the full range of morphological variation within, and full 

distribution range of each taxon. The set of specimens used was augmented by using 

online digital images. Type specimens were consulted wherever possible to ensure 

accurate understanding of the taxon concepts. For some species, only few specimens 

were available, and limited information could be assembled, such as M. nhatrangense 

which is endemic to Vietnam and known from only three herbarium collections in a 

single locality, the most recent from 1932. 

The summaries of the distribution and known localities of the species of 

Mezoneuron that are provided in these works distinguish widespread and common 

species from those that are rare or have a restricted range. This information, along with 

phenological information, further enables identification of the species, and makes it 

possible to devise future targeted collecting strategies, particularly of rare species. 

Providing habitat details can allow species that are most at risk from habitat destruction 

to be recognised and appropriately protected. 
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As part of this research, a preliminary conservation assessment was generated 

for each species of Mezoneuron, based upon herbarium specimen records, and 

additional data where available. In the modern global context of ever-increasing 

anthropogenic threats to habitats and to the continued survival of plant species, 

conservation assessments are an essential tool for detecting and monitoring at-risk taxa, 

so that protection measures can be implemented where necessary to avoid population 

declines, and taxon extinctions. For almost every species in the treatments herein, the 

conservation assessments provided are the first ever published. These assessments of 

rarity and conservation status enable prioritisation of conservation measures, and inform 

further research. The assessments carried out for this study reveal five species to have a 

threatened status (from Vulnerable to Critically Endangered), in addition to the single 

species already formally assessed by IUCN as Critically Endangered (M. kauaiense), 

and two species which are Data Deficient. 

The conservation assessments of the New Caledonian species were updated 

between publication of Papers 2 and 3. Following the preliminary conservation 

assessments of the species in Paper 3, full IUCN Red List Assessments for Plants of 

New Caledonia were carried out by the relevant Red List Authority for the country. 

These full assessments were carried out based upon those published in the current work, 

and in discussion with the present author. The resulting assessments downgraded the 

category of threat for two species (less threatened), whilst two species were considered 

Data Deficient. This reflects the incomplete nature of the data available when creating 

the original assessments, and highlights the fact that conservation assessments based 

upon herbarium specimens with limited additional data should be considered as 

preliminary. 



55  

Preliminary conservation assessments for this study were carried out in the 

absence of certain data that would be desirable to incorporate, such as known threats, or 

measured changes to population numbers over time. Inclusion of old herbarium 

specimens in the generation of Extent of Occurrence (EOO) and Area of Occupancy 

(AOO) figures may result in an overestimate of the contemporary population size, if 

populations have declined since the date of collection. Nevertheless, preliminary 

conservation assessments based upon herbarium specimen data give an extremely 

valuable and often accurate picture of the rarity and threat level of a taxon, and provide 

a baseline from which to recognise vulnerable taxa and to seek further data with which 

to carry out a full assessment. 

Accurate lists of current names with full synonymy, as presented in these works, 

provides an essential communication tool. Additionally, a full list of exsiccatae is given 

in both Papers 2 and 3. These numbered exsiccatae allow identification of duplicate 

specimens housed in herbaria not consulted by the author. In many cases, the specimens 

utilised in this study represent historical records of distribution, which can be examined 

in the context of current distribution to determine range reductions over time. The 

listing of type specimens for each taxon in these studies is essential to inform the correct 

application of the taxon names. The designation of four lectotypes, two epitypes, and 

one neotype in the treatment of Paper 2, and two lectotypifications in Paper 3, removes 

ambiguity regarding the application of the taxon names, enabling users to accurately 

define the taxon concept, and to confidently identify specimens. 

The first ever systematic arrangement of all species of Mezoneuron is presented 

Paper 2. This arrangement was devised by inferring infrageneric relationships based 

upon morphological characters and geographical distribution of the species. It informs 

our knowledge of the inter-species relationships, and is a tool for researchers and 
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curators working with collections of the genus. The alternative option, to present the 

species in alphabetical order, would have produced a less functional tool for the end 

user. The nature of systematics is such that the expectation is to publish a treatment in 

the knowledge that it may be subject to potential future change in light of new data. A 

taxonomic revision nonetheless should represent scientific advance, without the 

assumption of ‘complete’ knowledge. 

The investigation in Papers 2 and 3 into the variation in fruit morphology within 

Mezoneuron highlighted the existence of two fruit types, which are correlated with 

geographical distribution patterns. This contributes to our understanding of the possible 

evolutionary patterns and inter-species relationships within the genus, and constitutes 

evidence that can be interpreted through future biogeographical analyses. 

Of the 24 species currently recognised in Mezoneuron, five (as circumscribed in 

Paper 3) are endemic to New Caledonia. This is a taxonomically and evolutionarily 

significant subgroup of Mezoneuron in terms of distribution and morphology. The 

species are ecologically interesting, occurring within a range of habitat types, and on 

different substrates including ultramafics. Ultramafics present challenging conditions 

for plant growth, and often harbour many species that are restricted to this substrate and 

therefore narrowly distributed. Understanding the ecology of the endemic species of 

Mezoneuron is an important element of understanding the genus as a whole. The 

morphology of the fruit of the New Caledonian species poses questions regarding the 

evolutionary position of these species within the genus, as well as in relation to the 

putative sister genus, Pterolobium. These questions were highlighted in the Paper 3, 

indicating the possibility that Mezoneuron may be paraphyletic, and that further 

investigation, including molecular analysis, was necessary to test this possibility. 
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The morphological analysis integral to this study indicated one Asian species 

(M. sinense) as being probably misplaced within Mezoneuron, thus erecting a 

hypothesis that has since been successfully tested and proven correct by the current 

author using molecular phylogenetic analysis, thus further elucidating species numbers 

within the genus. 

The species of Mezoneuron in New Caledonia are morphologically highly 

homogeneous, rendering the delimitation of species units problematic, with obscure 

species boundaries and poorly defined character sets. Where the species in question 

belong to a geographically distinct area, morphological homogeneity can be an 

indication of the recent evolutionary origin of a group. Two previously described 

species of Mezoneuron from New Caledonia, M. deverdiana and M. montrouzieri, 

proved to be particularly problematic in terms of delimitation during this study. 

Following extensive examination of the available herbarium material, and field 

observations, I concluded that no clear morphological characters could be found to 

distinguish them and that M. deverdiana should therefore be sunk into synonymy with 

M. montrouzieri. Although this decision was justified, based on the data available, 

subsequent molecular phylogenetic analysis by the present author has revealed the 

existence of two distinct evolutionary units within this complex, necessitating the 

reinstatement of the species M. deverdiana. Subsequently, I have identified certain 

small (generally non-discrete) morphological differences that can be used to distinguish 

the two species, principally ovary indumentum, leaflet number, bract size, and fruit size. 

As a morphological analysis, these published works complemented the work of 

Gagnon et al. (2013), in which a phylogeny of Caesalpinia s.l. based upon the plastid 

gene region rps16, which included 11 species of Mezoneuron, was published. Since the 

publication of the papers presented for this study, I have commenced a molecular 
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phylogenetic study to further test the monophyly of Mezoneuron and its intrageneric 

relationships. I have also started a biogeographical analysis. The preliminary results of 

these analyses are discussed in Section 4 of this Critical Appraisal, and a paper 

presenting these results is in an advanced state of preparation. 
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3.1 FURTHER DISCUSSIONS AND RESULTS ARISING FROM THE 
PUBLISHED WORKS 

 

3.2 Phylogenetic analysis of Mezoneuron 
 

Paper 2 of the works herein aimed to evaluate the monophyly of Mezoneuron 

through examination for synapomorphic traits. The study revealed a lack of uniquely 

homologous characteristics, although the occurrence of a winged fruit was shown to be 

universal within the genus, but not exclusive to it. The genus was demonstrated to be 

characterised by a suite of characters, in addition to the fruit type, which mirrors the 

situation in many other genera of Caesalpinia s.l. 

The large scale phylogenetic analysis by Gagnon et al. (2016) of the Caesalpinia 

group incorporated 10 of the 24 species of Mezoneuron from most of its geographical 

range. This study utilised six gene regions, one nuclear and five plastid, to provide 

robust support for Mezoneuron as a monophyletic group sister to a clade containing 

Pterolobium. However, the study did not sample from any of the species of the genus 

from New Caledonia, and was limited in terms of the number of species sampled. 

Since the publication of the work on which this thesis is based, I have carried  

out a molecular phylogenetic analysis of Mezoneuron which included eight species not 

sampled for previous published studies. The aim of this analysis was to further test the 

monophyly of the genus, and to evaluate the disjunct distribution of the genus within the 

evolutionary context. For a total of 30 samples of Mezoneuron, one nuclear and four 

plastid gene regions were sequenced, representing 19 of the 24 species of the genus. 

This includes all six species of Mezoneuron endemic to New Caledonia, and two 

species from South East Asia not sampled by Gagnon et al. (2016). Additional 
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sequences were downloaded from Genbank for inclusion in the analysis. The resulting 

sequences were concatenated into a single matrix, and analysed using Maximum 

Likelihood (RaxML-HPC2 v. 8.2.10 (Stamatakis 2014) on XSEDE, via the CIPRES 

Science Gateway (Miller et al. 2010)) and Bayesian methods (using MrBayes 3.2 

(Ronquist et al. 2012) via the CIPRES Science Gateway (Miller et al. 2010)). A time- 

calibrated phylogenetic analysis was carried out using BEAST 1.8.4 (Drummond et al., 

2012), and a preliminary biogeographical analysis using Lagrange. 

The preliminary results of my phylogenetic analysis strongly support 

Mezoneuron to be monophyletic in both the Maximum Likelihood and Bayesian 

analyses, sister to a clade containing Pterolobium and the species of an informal Ticanto 

clade (Figure 4). 
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Figure 4. Maximum Likelihood tree of Mezoneuron and its sister taxa, Pterolobium 
and the informal Ticanto group, based on consensus of nuclear (ITS) and plastid 
(matK, rps16, trnL-F, trnD-T) data. Bootstrap support values are displayed below 
the branches, italicised, and Bayesian Posterior Probability (PP) values are shown 
above the branches, in bold. Where no value is shown, this indicates Bootstrap of 
<50% or PP of <0.5. 
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Within Mezoneuron, two clades are recovered, each with 100% bootstrap, and 
 

0.99 or 1.0 posterior probability (PP). One (the AAMH clade) contains the species 

distributed in South East Asia, together with those from Africa, Madagascar, and 

Hawaii; the other (the NCA clade) is comprised of species found in Australia (in one 

case also extending into New Guinea), together with the endemics of New Caledonia. 

Within the AAMH clade, species relationships are generally well-resolved with robust 

support. A significant finding within this clade is the position of the Asian species M. 

andamanicum as sister to the Africa and Madagascar species. Within the Australasian 

clade, the three Australian (and New Guinean) species sampled are resolved with strong 

support (100% bootstrap, 1.0 PP) as sister to the New Caledonian endemic species. 

Within the New Caledonian clade, further subclades are resolved (with support levels 

between 56% bootstrap, 0.89 PP to 100% bootstrap, 1.0 PP), which elucidate the inter- 

species relationships. 

As discussed by Clark & Gagnon (2015) and Clark (2016), two morphological 

patterns can be distinguished within Mezoneuron: one type bearing a large, usually 

multi-seeded fruit with a broad wing, and relatively large flowers, the second type 

bearing a small, single-seeded fruit with a narrow wing, and flowers of (usually) <1 cm 

diameter. These morphological types correspond with the discrete geographical clades 

revealed in the phylogeny here presented, the large-fruited type exclusive to the Asia- 

Africa-Madagascar-Hawaii clade, and the small-fruited type restricted to the 

Australasia-New Caledonia lineage. 

The preliminary results of my phylogenetic analysis uphold the findings of the 

morphological studies presented in the published works herein, in terms of the 

monophyly of the genus, of the infrageneric relationships, and of the relationship of the 
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genus to other elements of Caesalpinia s.l. These results also agree with those of the 

molecular phylogenetic studies of Gagnon et al. (2013, 2016). 

The morphological analysis here presented, and the molecular phylogenetic 

studies by Gagnon et al. (2013, 2016) and by the present author, demonstrate the utility 

of both of these approaches as complementary tools for understanding and unravelling 

the taxonomy and evolution of living organisms. In order to maximise certainty 

regarding the status of taxonomic entities, and relationships between organisms,  

analysis should include a large number and diversity of characters. Molecular analysis is 

particularly advantageous in this respect, in that it can include hundreds or thousands of 

informative characters, which with the adoption of new technologies (Next Generation 

Sequencing) can become tens or hundreds of thousands. Such data-rich analyses can 

provide highly robust phylogenies that should resolve inter-organismal relationships. 

In light of the modern technologies and techniques available for decoding the 

tree of life, the relevance of traditional morphological taxonomic methods may be 

questioned. The number of morphological characters available is considerably smaller 

than those present in DNA, and a further disadvantage of morphological taxonomy is 

that it is inevitably to some extent subjective, as reflected in the historical taxonomic 

complexity of groups like Bauhinia s.l. and Caesalpinia s.l. However, the strengths of 

morphological taxonomy complement those of molecular phylogenetics to give a 

holistic understanding of organismal interrelatedness and of the organisms themselves. 

The phenotype of an organism presents additional characters to those that are intrinsic 

within its DNA, and utilisation of both types of characters should be employed to 

maximise the effectiveness of a systematic study. Complete understanding of 

organisms, and of the relationships between them, requires knowledge of all component 

parts, including the measurable physical characteristics. 
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Morphological taxonomies erect hypotheses that can be tested using molecular 

techniques: without them and the herbaria which house the specimens essential to 

morphological studies, the questions that enable directed approaches to molecular 

phylogenetic testing would not exist. We need to be able to visually recognise taxa in 

order to construct appropriate questions as to their possible relationships. This is 

exemplified in Bauhinia s.l. and Caesalpinia s.l., in which the phylogenetic testing of 

relationships depends upon these groups having been conceptualised through (nearly 

250 years of) baseline morphological taxonomy. 

Moreover, for phylogenetic identification methods such as DNA barcoding to be 

feasible, the taxonomic identities of organisms must first be reliably established, and 

reliably identified samples of these organisms used to establish a library of sequences 

against which new samples can be matched. This must be achieved with traditional 

morphological taxonomic methods. Morphological data are also necessary for the 

interpretation of molecular phylogenies - a DNA sequence alone is meaningless without 

knowledge of the organism that it represents. Moreover, morphological features provide 

a wealth of information about aspects of the organism that cannot be inferred from a 

phylogenetic tree, such as ecological adaptation, which can be essential in 

understanding and predicting distributions and providing accurate conservation 

assessments. 
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3.2 Biogeography of the Leguminosae, the Caesalpinioideae and the Cercidoideae 
 
 

Taxon First fossil 
evidence 

Origin Age 

Leguminosae 
(caesalpinioid) 

Sindora-like 
pollen 

Canada, 
Colombia, 
Siberia 

Maastrichtian, 
75-65 MA 

Leguminosae 
(caesalpinioid) 

Fruit, 
Leguminocarpon 
gardneri 
(Chandler) 
Herendeen & 
Crane 

Reading 
Formation, 
England 

Late 
Paleocene, c. 
56 MA 

Cercidoideae Bauhinia-like 
leaves 

Ningming 
Formation, 
South China; 
Coatzingo 
Formation, 
Mexico 

Oligocene, c. 
38-29 MA 

Mezoneuron Fruit Reading 
Formation, 
England; 
Claiborne 
Formation, 
North America 

Middle 
Eocene, c. 45 
MA 

 

Table 5. Key fossils of Leguminosae 
 

3.2.1 Biogeography of the Leguminosae 
 

Until recently, the prevailing hypothesis of the origin of the Leguminosae was 

that the family arose ca. 84–74 MA in the Campanian or Maastrichtian of the Upper 

Cretaceous (Morley, 2000), in West Gondwana (Schrire et al., 2005) before the breakup 

of that continent. Africa and South America were last in contact around 100–90 MA, 

thus the crown age of legumes must be at least as old as this for the hypothesis to be 

valid (although the potential for dispersal over islands and ridges may have persisted 

until as late as 65 MA) (Raven & Axelrod, 1974; Morley, 2000; 2003; Schrire et al., 

2005. The earliest reliable fossil evidence of the Leguminosae is of caesalpinioid pollen 

(pertaining to the Caesalpinioideae in its pre-2017 circumscription) resembling that of 
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the extant genus Sindora, from the Maastrichtian (74–65 MA) of Canada, Colombia, 

and Siberia (Herendeen & Crane, 1992); this, therefore, is currently understood to be the 

maximum age of the family, and the West Gondwana hypothesis must be rejected. 

However, it should be noted that evaluations of the age of the Leguminosae are 

ongoing, and a possible earlier stem age for the family has been proposed in the fossil- 

calibrated analysis of Magallon et al. (2015) in which the stem age for the Leguminosae 

was projected to be 92.1 MA (+/- ca. 20 million years). 

Unequivocally identified fossil fruits of the Leguminosae, again caesalpinioid, 

are first known from the late Palaeocene (Herendeen & Crane, 1992). A fossil fruit 

Leguminosites gardneri Chandler (1961), later transferred to Leguminocarpon gardneri 

(Chandler) Herendeen & Crane (1992), is documented from the Reading Formation of 

southern England which dates to the late Palaeocene, c. 56 MA (Lavin et al., 2005). 

Further possibly caesalpinioid fruits are known from the Claiborne Formation of the 

early Eocene (c. 50–56 MA) (Herendeen & Crane, 1992). Fossil evidence of the 

mimosoid and papilionoid groups appears shortly after this, around 55–50 MA 

(Herendeen & Crane, 1992; Lavin et al., 2005), showing that legumes diversified during 

the Early Tertiary, soon after their presumed origin. By the middle Eocene (c. 50 MA), 

the fossil record evidences the presence of most of the major lineages of legumes in 

North America, Europe, Africa, and Asia (Schrire et al., 2005). 

With the rejection of the West Gondwana hypothesis, the previously widely 

adopted explanation for the global distribution of legumes being the result of vicariance 

must also be rejected. The presence of legumes throughout every continent on earth 

must therefore have arisen through multiple dispersal events, including across long 

distances. The currently most widely-accepted alternative to the West Gondwana 

hypothesis for the origin of the Leguminosae was presented by Schrire et al. (2005), 
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centred around the Tethys Seaway, a seasonally dry to arid tropical belt that existed 

during the Tertiary, positioned between two zones of wetter tropical climate to the north 

and south. The Tethys Seaway spanned the circumference of the globe, spanning the 

land masses that now represent southern North America, North Africa, and South East 

Asia (Figure 5). Early-diverging legume clades (c. 60–55 MA) apparently became 

distributed across the Tethys Seaway during the Tertiary, before dispersing north and 

south to South America, Africa, and Madagascar (Schrire et al., 2005). Estrella et al. 

(2017), however, have proposed that the arid Tethys Seaway explanation may not be 

appropriate for all groups of legumes, presenting an analysis that suggests a southern 

hemisphere African-South American origin of the Detarioideae, in the early Palaeocene 

(68–64 MA).  Another geographical feature that may have facilitated the dispersal of the 

Leguminosae is the Early Eocene North Atlantic Land Bridge (NALB), consisting of 

two bridges between Greenland and Europe, and two between Greenland and North 

America, thus linking the land masses of Europe and North America. The area during 

this period was populated by the boreotropical flora (Tiffney, 1985; Milne, 2006), frost- 

intolerant tropical vegetation, which may have been suitable habitat for members of the 

Leguminosae adapted to wetter tropical (rather than arid or seasonally dry) conditions. 

The existence of many closely related genera of legumes between different areas of the 

tropics is most likely explained by a combination of these hypotheses. 
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Figure 5. Palaeocene map reconstructing the Tethys Seaway (reproduced with 
permission from Schrire et al., 2005) 
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3.2.2 Biogeography and ecology of the Cercidoideae 
 

To understand the origin and dispersal of the subfamily Cercidoideae, and the 

taxonomic elements that comprise it, it is necessary to examine the fossil evidence of 

the group in the context of our knowledge of past climatic and geological processes, its 

present-day distribution, and phylogenetic relationships. The Cercidoideae is currently 

diverse throughout the tropics, including the Asia-Australia-Pacific region, South 

America, Central/ North America, and Africa-Madagascar, whilst the genus Cercis is 

present in the warm-temperate Northern Hemisphere, including Europe (Schrire et al., 

2005; LPWG, 2017). As the putatively earliest diverging extant lineage of legumes, the 

origin and initial dispersal of the Cercidoideae is likely to have followed a similar 

pattern to that of the family as a whole. 

Fossil evidence of the Cercidoideae is largely absent from the early legume 

record, and despite the distinctive leaf shape of the subfamily their representation in the 

fossil record is not apparent until well after that of other fossil legumes, relatively late in 

the evolutionary history of the family. Although there have been reports of leaves of 

Cercis from Late Cretaceous and early Cenozoic sediments, the identities of the vast 

majority of these have not been reliably verified (Wang et al., 2014). The oldest reliable 

fossil evidence of Bauhinia and Bauhinia-like leaves derives from the late Eocene – 

Oligocene (ca. 38–29 MA) Ningming Formation in South China (Wang et al., 2014)  

and the Oligocene Coatzingo Formation of Mexico (Calvillo-Canadell & Cevallos- 

Ferriz, 2002; Wang et al., 2014). 

The existing published phylogenies of the Cercidoideae, although few, provide 

important insights into the evolutionary history of the Bauhinia s.l. and of the 
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Cercidoideae as whole. The results of Sinou et al. (2009) show Cercis to be the earliest 

diverging lineage of the Cercidoideae, with this and Adenolobus strongly supported as 

sister to the remainder of the subfamily, and Griffonia appearing as sister to the 

remainder of Bauhinia s.l. The position of these three genera in the phylogeny is in line 

with their taxonomic history, which has usually grouped them together in subtribe 

Cercidinae. The present-day distribution of these early diverging cercidoid lineages 

supports an ‘out of Eurasia’ hypothesis for the origin of the subfamily; the earliest 

diverging genus, Cercis, is found in Eurasia and North America, whilst Adenolobus and 

Griffonia are both African genera. A hypothesis of the Cercidoideae having migrated 

out of Eurasia into Africa, and arriving later in South America, is in line with the 

phylogeny of Sinou et al. (2009). Adenolobus occurs only in the Nama-Karoo biome of 

southern Africa, and is presumed to have arrived there via the ‘arid corridor’ of 

Succulent Biome that extended down through the Horn of Africa (Schrire et al., 2005). 

As discussed by Schrire et al. (2005), many clades of legumes appear to have originated 

in the Succulent Biome that formed part of the semi-arid Tethyan Seaway, before 

migrating northwards into the boreotropics and southwards into seasonally dry tropical 

climates, during the Tertiary. Migration of the Cercidoideae into North America from 

Eurasia could have occurred via the Eocene North Atlantic Land Bridge (NALB) 

(Tiffney, 1985; Thiv et al., 2011), when the boreotropical flora extended northwards in 

a frost-free and humid climate belt in the northern mid-latitudes, which peaked during 

the Paleocene-Eocene Thermal Maximum (PETM), c. 52 Ma (Thomas et al., 2015; 

Meng et al., 2014). 

The Bering Land Bridge that connected Eastern Asia with Western North 

America during the Paleogene is thought to have been another major route for transfer 

of plant species between Eurasia and North America (Wolfe, 1975). However, the 
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conditions on this route were probably not warm enough to support the essentially 

tropical Cercidoideae, and even the genus Cercis, which has a northern temperate 

distribution would probably not have been suited to the cool-temperate conditions of the 

Bering Land Bridge. The conclusion of Davis et al. (2002) in their phylogenetic and 

biogeographical analysis of Cercis was that its distribution came about either via the 

route of the NALB, or by long-distance dispersal, depending upon the age attributed to 

the clades within it. Wen et al. (2009) added to this that the dispersal of Cercis most 

likely occurred from the Old World to the New World. 

The historical biogeography of Bauhinia s.l., as for the Cercidoideae, is 

illuminated by phylogenetic evidence, and appears to agree with the above 

interpretation of the dispersal of the subfamily as a whole. The study of Meng et al. 

(2014) presented a time-calibrated phylogeny of 35 species of Bauhinia s.l. based upon 

sequences of the chloroplast gene tRNA-Leu (trnL) and the trnL-trnF intergenic spacer, 

and the fossil record of Bauhinia s.l. According to their phylogeny, all but one of the 

seven Asian species sampled (except B. tomentosa) form a clade that diverged from the 

African and South American species at ca. 34 MA. The African species form a distinct 

clade from that comprising the South American species. These results concur with those 

of Sinou et al. (2009), in suggesting that Bauhinia s.l. originated in Laurasia, probably 

Asia, in the Middle Paleocene, and from there migrated into Africa and to America. 

This origin and dispersal pattern follows that hypothesised for the legume family, as 

outlined above. 

Biogeographical factors have been integral to the segregation of Bauhinia s.l. 

into smaller genera, particularly Phanera, Schnella, and Cheniella. Recognition of the 

paraphyletic nature of Bauhinia s.l., which revealed the necessity of deconstructing the 

genus into smaller segregates, was achieved with the phylogenetic analysis of Sinou et 
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al. (2009), in which the monospecific Madagascan endemic genus Brenierea was 

demonstrated to be nested within Bauhinia s.l., sister to the Bauhinia s.s clade. A key 

finding of that study was the division of the subgroups previously included in the 

Bauhiniineae (i.e. Bauhinia s.l.) into two distinct and well-supported monophyletic 

clades. The first clade contains Lysiphyllum, Phanera s.s., Lasiobema, Schnella, 

Barklya, and Tylosema, supported with 82% bootstrap, and the second comprises 

species now attributed to Bauhinia s.s., supported with 98% bootstrap, with Brenierea 

and Piliostigma as sister. Both lineages are pantropical. It seems that these pantropical 

lineages evolved independently, each migrating first out of Eurasia, through Africa, and 

later into America (via the NALB or long-distance dispersal). The fact that the 

American species of Bauhinia s.s. appear, according to this phylogeny, to be more 

recently evolved than the rest of the genus, supports this hypothesis. 

If following the dispersal pattern hypothesised here, the two possible 

mechanisms by which the lineages could have attained their pantropical distribution are 

either by transoceanic dispersal from Africa to America (probably via ocean currents), 

or by migration (via the NALB) from Eurasia into North America and then to South 

America. Fossil evidence of Bauhinia s.l. from the Oligocene Coatzingo Formation in 

Mexico supports the latter hypothesis to some degree, although the absence of Bauhinia 

fossils in the North American record represents a lack of support. Given the challenging 

nature of long-distance dispersal (due to many factors, such as the difficulty for 

propagules of surviving for long periods in often hostile environments, and the 

requirement for occurrence of particular conditions to transport them), the overland 

migration via the NALB is possibly the more likely scenario. Dispersal by faunal 

elements has been proposed as a mechanism for Bauhinia by Meng et al. (2014), who 

suggested that ‘birds are major agents of Bauhinia dispersal’; however, this is unlikely 
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to be the case, as their assertion was based solely on the fact that birds are known 

dispersal agents for other legumes, with no primary data presented to document bird 

dispersal of Bauhinia, and the fruit and seeds of Bauhinia do not possess any attractant 

for birds (e.g. fleshy fruits, seeds that are brightly coloured or which have aril- 

mimicking colouration). If birds are discounted as a dispersal mechanism for Bauhinia, 

it must be assumed that the causal agents were wind and water. The ability of seeds of 

the Cercidoideae to survive long immersion in salt water are undocumented; however, 

as observed by Thomas et al. (2015), long-distance dispersals may not be highly 

dependent upon the survival capacity of the propagules in adverse conditions, but may 

instead come about through very infrequent stochastic occurrences, such as rafting on 

vegetation floats, or extreme meteorological events. Even if extremely rare, such events 

may be sufficient to allow establishment of taxa on remote land masses, and may 

explain a majority of continental disjunctions of plants, given that dispersal occurs over 

many millions of years. 

Another significant finding of Sinou et al. (2009) albeit generated with relatively 

low sampling, was the resolution of the Asian and American species of Phanera (as 

then circumscribed; now Phanera s.s. and Schnella respectively) as discrete clades; 

Phanera s.s is restricted in distribution to Asia, whereas Schnella occurs only in South 

America. This phylogenetic and biogeographical evidence was key in the separation of 

these two groups as different genera, Phanera s.s. and Schnella, and gives further 

insights into the evolutionary history of the group. An hypothesis of the Asian species 

of Phanera s.s. having evolved from within the American species (now Schnella), or 

vice versa, can be discounted; the alternative hypothesis in which both lineages evolved 

separately from a common ancestor is therefore accepted. 
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In terms of resolving the remaining questions surrounding the evolution of 

Phanera and delimitation of putative segregate genera within it, the biogeographical 

element is less well defined; Phanera s.s., including further putative segregates, is 

restricted to South East Asia. Nonetheless, the segregation of Cheniella from within 

Phanera s.s. was based partly on biogeographical criteria. Although the ranges of the 

two genera are largely overlapping, the centre of diversity of Cheniella is more 

northerly than that of Phanera s.s. Cheniella is distributed in regions with a seasonally 

dry climate, whereas Phanera s.s. exhibits a preference for moist tropical conditions. 

The species of Cheniella are morphologically similar to one another, suggesting a 

possible recent origin for the genus, and recent diversification of the species recognised 

within it. 

The status of Lasiobema, a further proposed segregate of Phanera s.l., remains 

unresolved. In the analysis of Sinou et al. (2009), only a single species of Lasiobema 

was sampled, L. penicillilobum (Gagnep.) A. Schmitz, which appeared, albeit with low 

support (77% bootstrap, 0.53 PP) as sister to Phanera s.s. Biogeographically, the 

species of Lasiobema are found in South East Asia, their distribution being more or less 

sympatric with that of Phanera s.s., and thus not constituting evidence to support the 

generic segregation of this putative group. A more detailed study of the biogeography of 

these species is warranted. 

The habit of the various segregate genera of Bauhinia s.l. has been cited as a key 

character in the circumscription of some of these, and is informative in reconstructing 

the evolutionary relationships of the Cercidoideae. The genera Cercis and Adenolobus, 

sister to the rest of the subfamily, are shrubs and trees, indicating a pleisiomorphic 

arborescent habit. Griffonia, by contrast, which appears as sister to the first clade 

outlined by Sinou et al. (2009), containing Gigasiphon, Lysiphyllum, Phanera s.s., 



75  

Schnella, Tylosema, Barklya, and Lasiobema, has a climbing habit. A climbing habit 

(lianas, scandent shrubs, or trailing herbs) is the dominant habit in this clade, although 

Gigasiphon, sister to the rest of the clade, and the monotypic Australian genus Barklya, 

nested within the clade, are both arborescent, whilst Lysiphyllum contains both 

arborescent and lianescent species. The second major clade indicated in the phylogeny, 

comprising Bauhinia s.s., and with Brenierea and Piliostigma as sister, displays an 

exclusively arborescent habit. 

Habit, therefore, is demonstrated to be a significant trait in defining clades and 

determining evolutionary relationships within the Cercidoideae. Both lianescent and 

arborescent life forms occur repeatedly across the phylogeny, which suggests a degree 

of genetic plasticity, enabling switching between the two habits to occur with relative 

ease within the Cercidoideae. The persistence of the arborescent habit within Bauhinia 

s.s., and of the lianescent habit within Phanera and Schnella and the success of both of 

these lineages in terms of diversity, suggests that each life form must confer significant, 

but distinct, evolutionary advantages. The separation of habits may have furthered 

evolutionary separation between the lineages, and enabled their adaptation to distinct 

evolutionary niches. 

Lianas are known from the fossil record since the Devonian period, 359–419 

MA. Climbers occur in most extant lineages of Mesangiosperms (a large clade that 

includes the majority of the angiosperms), and the habit must have evolved repeatedly 

through the Cretaceous and Tertiary. About 30% of angiosperm families have at least 

one climbing species, reflecting the evolutionary success of the climbing habit as a life 

strategy. The climbing habit has also arisen independently in the ferns and 

gymnosperms (Isnard & Feild, 2015). Although trees have obvious advantages in terms 

of attainment of height and biomass, and do not rely on the presence of other organisms 
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for growth, lianas have certain advantages over trees in terms of competition for 

resources. They are able to extend above the height of the tree on which they are 

growing, allowing them to intercept light, and also to reduce light availability for those 

on which they are supported. Lianas have greater biomass of foliage per unit of plant 

biomass compared to trees, and allocate more resources to the production of 

photosynthetic tissue rather than support tissue. Lianas are effective gap colonisers, and 

can more easily produce new axes from resprouts than can trees. Lianas are also 

typically faster growing than trees, especially in high light environments, and are better 

able to survive falling into a gap than trees (Toledo-Aceves, 2015). It has also been 

suggested that lianas have low susceptibility to water stress, due to various aspects of 

their physiology that allow stability of water transport, such as high specific 

conductivity and strong stomatal control (Isnard & Feild, 2015). 

 
3.2.3 Biogeography of Caesalpinia sensu lato 

 
The Caesalpinia group now comprises 26 (–27, Ticanto remains unresolved) 

genera (Gagnon et al., 2016), the increase in number of genera largely due to the 

segregation of eight genera from within the formerly pantropical Caesalpinia s.l. This 

generic reclassification has been driven by strong evidence provided by phylogenetic 

and morphological data. There is also a strong biogeographical component to the 

generic divisions; several of the genera are monospecific or with few species, most of 

which have a narrowly restricted geographical range or are to some extent defined by 

their distribution. The highest diversity of the group in terms of number of genera 

occurs in the Neotropics, with 17 genera, whilst 11 genera occur in Africa, and seven in 

Asia. Whilst a small number of genera occur on more than one continent, only a single 

genus, Guilandina, is pantropical, and Caesalpinia s.s. has been reduced to about nine 

species restricted to the Neotropics. 
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According to the phylogeny of Gagnon et al. (2016), the Caesalpinia group 

consists of two major clades. The first of these contains 15 genera, of which the early 

diverging genera are distributed between Africa, and Central and South America, whilst 

the later diverging genera all occur in Asia, or for Mezoneuron, also Australasia and 

Hawaii and/ or Africa. The second clade includes 12 genera, all of which are found 

exclusively in Africa and/ or the Neotropics, with no representation in Asia. Of all 

genera in the phylogeny (i.e. in the Caesalpinia group), two (Haematoxylum and 

Pomaria), have a disjunct distribution between Africa and the Neotropics, whilst three 

(Mezoneuron, Pterolobium, Moullava) are disjunct between Asia and Africa, and one is 

pantropical (Guilandina). The earliest branching lineages of the Caesalpinia group are 

in the Neotropics and Africa, which are also the areas of highest current diversity. 

A putative explanation for this distribution is that the Caesalpinia group 

originated in North America in the early Tertiary, and subsequently migrated eastwards 

into the Old World. Dispersal of this nature from North America and Europe into Asia 

and Africa is hypothesised as one of the major patterns of disjunct tropical lineages 

during the early Tertiary (Donoghue, 2008). In a similar pattern postulated for the 

Cercidoideae, and for the legume family as a whole, this migration is likely to have 

occurred either along the seasonally dry Tethyan Seaway, as discussed by Schrire et al. 

(2005), or by means of the Eocene North Atlantic Land Bridge (NALB) (Tiffney, 1985; 

Thiv et al., 2011), or by a combination of both of these routes. Migration would 

probably also have been possible into South America via small islands which existed 

between North and South America during the Tertiary, from the Eocene onwards (Davis 

et al., 2002a). Subsequent global cooling during the Oligocene and Miocene resulted in 

extinction of many elements of the boreotropical flora that had existed in North 

America during the Palaeogene (Nie et al., 2012), hence the absence of extant taxa of 
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Caesalpinia s.l. in this area in the present day. Alternative scenarios are that 

Caesalpinia s.l. evolved first within the Neotropics, or in Africa, and from either of 

those migrated via a combination of land connections (including the NALB and island 

links between North and South America) and long-distance dispersal to the other 

continents that encompass its present-day range. However, given the position of 

Caesalpinia s.l. as an early diverging lineage of the Leguminosae, its pattern of origin 

and dispersal is more likely to have followed that inferred for the whole legume family. 

The importance of long-distance dispersal in explaining the distribution of 

plants, particularly the disjunct distributions of single or closely related plant taxa, is 

now widely accepted (Givnish & Renner, 2004; Pennington et al., 2004; Renner, 2004; 

Wen & Ickert-Bond, 2009; Thiv et al., 2011; Nie et al., 2012; Thomas et al., 2015). 

Long-distance dispersal can occur via wind or water (or by birds for some plant taxa), 

and the relative importance of each mechanism in trans-Atlantic dispersal has been 

documented (Thorne, 1973; Givnish & Renner, 2004). These studies concluded that 

water was the more common factor in dispersals across the Atlantic, facilitated by the 

existence of large, reliable currents in both the easterly and westerly directions (Givnish 

& Renner, 2004). Seeds of certain taxa of the Leguminosae are known to have the 

ability to disperse via ocean currents (Murray, R., 2012; Gunn & Dennis, 1999). Within 

Caesalpinia s.l. the phenomenon of long-distance dispersal via water is best developed 

in members of the genus Guilandina, particularly in Guilandina bonduc L. (the ‘grey 

nicker nut’) which floats by means of an intercotyledonary cavity, and under test 

conditions has been shown to survive for 30 years floating in salt water (Perry & 

Dennis, 2003). This explains the species’ pan-tropical distribution. 

Long distance dispersal is presumed to account at least in part for the 

distribution of Mezoneuron. The distribution of Mezoneuron, spanning South East Asia, 
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Africa, Madagascar, Australasia, and Hawaii is unique amongst the segregates of 

Caesalpinia s.l.: Moullava and Pterolobium are similarly spread between Asia and 

Africa, and Guilandina occurs pantropically, but only Mezoneuron also has endemic 

species on the islands of New Caledonia, and Hawaii (although at least two species of 

Caesalpinia s.l. are found in each of these areas). Reliable fossil evidence demonstrates 

the presence of the Mezoneuron fruit type in North America and Europe by the Middle 

Eocene ca. 45 Ma, although no extant species of the genus exist in these regions today. 

It is presumed that the lineage subsequently dispersed from these centres of origin into 

its present-day localities. Due to the fact that the position of the major continental land 

masses has not changed substantially since the Middle Eocene, the present-day 

distribution must be explained by long-distance dispersal, probably via the seasonally 

dry Tethys Seaway during the Tertiary period (the mechanism discussed to explain the 

dispersal of the family Leguminosae). Although some members of the Caesalpinia 

group, and by extension possibly including Mezoneuron, have seeds which possess the 

ability to survive long immersion in salt water, the potential for wind dispersal of whole 

fruits of Mezoneuron may have played a more significant dispersal role. The 

characteristic fruit of the genus, being flattened and bearing a sutural wing, is ideally 

adapted for airborne dispersal. Additionally, the indehiscent nature of the fruits suggests 

transportation of the entire fruit, rather than of the seeds individually, to be the intended 

dispersal mechanism. These winged fruits are well developed for dispersal by extreme 

meteorological events such as a hurricane, conferring a higher probability of successful 

arrival on a distant land mass. 

In order to understand in more detail the routes and mechanisms by which 

Mezoneuron may have achieved its present-day distribution, time-calibrated molecular 

based phylogenetic analysis (Figure 6), and preliminary biogeographical analysis (not 
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shown) have been carried out by the current author. For the time-calibrated analysis, the 

crown node age of Mezoneuron was set using the Eocene fossils dated to c. 45 Ma 

(Herendeen & Crane, 1992), and the age of the legume family to 70 Ma, according to 

the fossil evidence discussed earlier. The phylogeny shows the divergence of the 

Mezoneuron clade into two distinct lineages, one comprising the Asian, African, 

Madagascan and Hawaiian species, and the other with the New Caledonian and 

Australian species. The crown node of the former clade is dated to ca. 35 Ma, and 

within this, the Asian species appear to have arisen prior to those found in Africa and 

Madagascar. This suggests that Asia was the recipient of the initial dispersal of the 

group from the ancestral localities of North America and Europe, and that Africa was 

subsequently colonised by dispersal from Asia. The strong support of an Asian species, 

M. andamanicum, as sister to the African species within the same clade, is congruent 

with this hypothesis. Asia is the centre of diversity of Mezoneuron, containing more 

species (10) than any other single region, which supports the hypothesis of this region 

as the likely centre of origin of the genus: as noted by Nie et al. (2012), “The ancestral 

area for a taxon is usually expected to be correlated with high extant species richness”. 
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Figure 6. Time-calibrated phylogeny of Mezoneuron, based upon a concatenated 

analysis of trnL-F, trnD-T, rps16, matK, and ITS. Numbers at the nodes and on the 

lower axis denote millions of years. 
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The New Caledonian/ Australian clade arose c. 20 Ma, within which the origin 

of the New Caledonian subclade is dated to c. 17 Ma, whilst that of the Australian 

species is more recent at ca. 12 Ma. This demonstrates that the colonisation of New 

Caledonia appears to have occurred prior to that of Australia, with dispersal to Australia 

from the New Caledonian populations. The similarity between the species of the genus 

endemic to New Caledonia supports a recent diversification of this group, as does that 

between the species found in Australia. Morphological congruencies between these two 

geographically separated clades support their position as sister taxa. According to a 

preliminary biogeographical analysis by the present author using Lagrange software 

(Ree & Smith, 2008), the ancestor of the New Caledonian and Australian clade is likely 

to have been present in Australia and New Caledonia, or Asia and New Caledonia. New 

Caledonia has been separated from other land masses since the Late Cretaceous period 

(100.5–66 Ma) (Heads 2008), and is noted for its exceptional biodiversity, including 

extremely high levels of endemism: approximately 74% of the c. 3260 native plant 

species are endemic (Myers et al., 2000; Jaffré et al., 2001; IUCN, 2014). The endemic 

species of Mezoneuron in New Caledonia appear to have arisen within the last 20 

million years, representing a recent colonisation in the context of the age of the islands, 

and in the context of the evolutionary history of the genus. The ability of Mezoneuron to 

adapt to the unusual environmental conditions of the islands, specifically the ultramafic 

substrates, reflects the probable genetic plasticity of the genus (a characteristic that also 

seems to be typical of Caesalpinia s.l. and the Caesalpinia group more broadly, which 

may give rise to the high levels of homoplasy found within these). 
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The biogeographical analysis of Mezoneuron that has been generated as part of 

the studies incorporating the papers here presented shows the likely route by which 

Mezoneuron achieved its current unusual, highly disjunct distribution. This provides 

new insights into the biogeographical and evolutionary history of Caesalpinia s.l., 

including support for the probability of long-distance dispersal as a major mechanism 

within the group. 
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CONCLUSIONS AND FURTHER IMPLICATIONS OF THE WORK 
 

The resolution of paraphyly is one of the primary aims of contemporary 

taxonomy, and is currently of particular importance in caesalpinioid legumes in light of 

the recent revelation of the extensive paraphyly of subfamily Caesalpinioideae (sensu 

traditional) and consequent reconfiguration of the family. Following demonstration of 

their paraphyly, the two large caesalpinioid genera Bauhinia and Caesalpinia have each 

been segregated into smaller genera; however, questions have persisted regarding the 

monophyly of the resultant genera, and their composition. The work presented herein 

makes significant progress towards resolving these questions. It describes one new 

genus from within Phanera, the largest generic segregate of Bauhinia, thus removing a 

degree of remaining paraphyly from this. It clarifies the species composition and 

nomenclature of the Bauhinia segregates Phanera and Schnella, and elucidates the 

geographical distributions of each of these. It provides novel distribution and 

morphology data for one species of the putative Bauhinia segregate, Lasiobema. It 

confirms the monophyly of Mezoneuron, a segregate of Caesalpinia, and illuminates the 

infraspecific relationships of the genus, demonstrating the existence of two 

morphologically and biogeographically distinct infrageneric clades. It explores the 

historical biogeography of Mezoneuron through time-calibrated phylogenetic analysis in 

the context of the fossil record. The study indicates the probable existence of further 

paraphyly within Bauhinia s.l. and Caesalpinia s.l., and sets the groundwork for future 

analyses to resolve this. 

The science of taxonomy is fundamental to human understanding of the life 

processes that occur on planet earth, and underpins a broad range of other disciplines, 
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including conservation, ecology, medicine, and horticulture. Without the ability to 

accurately identify and classify living organisms, we cannot protect them from decline 

or extinction, understand their function as part of the ecosystem, or utilise them for 

human needs. 

The work that is presented for this thesis represents significant progress in the 

taxonomy and classification of the family Leguminosae, one of the largest, most 

ecologically key, and economically important plant families in the world. In resolving 

genus-level circumscriptions and relationships in the family by circumscribing 

monophyletic groups, this work creates stable classifications in which taxon names are 

fixed, facilitating communication about the taxa. In authoritatively placing taxa within 

appropriate generic groupings it provides essential identification tools, as well as 

illuminating patterns of phylogenetic diversity, and enabling understanding of their 

relational roles; when we group species according to their relatedness, we are much 

better placed to interpret how they might function interchangeably, either in an 

ecological context or in the fulfilment of human needs (e.g. medicine, agriculture). At 

the level of species, this study has revised and defined species limits, including 

removing certain taxa to synonymy, and reconfiguring the rank of others. These 

taxonomic changes enable future users to accurately identify these taxa, and to correctly 

apply ecological investigations or conservation decisions to them. 

Beyond these general benefits that arise from revisionary taxonomy, some more 

specific applications of this work are as follows:- 

Regarding the resolution of paraphyly in the genera of interest, this study has 

erected hypotheses that can be tested through future research, to complete the generic 

level classification of these groups. Particularly important is the creation of the new 
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genus Cheniella from Bauhinia s.l./ Phanera, which hypothesises the existence of 

further groups that will merit recognition as segregate genera following investigation 

using detailed molecular phylogenetic analyses. 

The work has highlighted issues of species delimitation in situations of low 

morphological resolution, where factors such as homoplasy, cryptic speciation, or 

hybridisation may obscure taxonomic boundaries that are revealed by molecular 

phylogenetic analysis. The cases presented in this work define scenarios for further 

study with additional data, and also contribute to the philosophical discussion of these 

topics. 

The interpretation of historical dispersal patterns and mechanisms, particularly 

in examples such as that presented here for Mezoneuron involving long-distance 

dispersal, can help us to understand how species in the present day may have the ability 

to adapt to climate change and other anthropogenic disturbances. 

In general, pollination syndromes of plants are poorly understood and little 

studied, including in the genera here investigated. This study provides novel data and 

analysis of the possible pollination mechanisms of Bauhinia s.l., which may have future 

applications in terms of interpreting plant-animal interactions. This may be particularly 

relevant in the context of potential responses of organisms to climate change or other 

environmental disturbances, and may be important for future conservation of these taxa. 

There are several ways in which the work here presented is necessary for, and 

can contribute to, conservation. Conservation of taxa requires accurate knowledge of 

their identities; without the capacity to recognise species, we are unable to determine 

their conservation status or to recognise the need for conservation action to protect 

them. Defining taxonomic limits is therefore essential to conservation. 
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Conservation assessments are presented as part of this work for each species 

under study. For most species, these are provisional assessments based primarily upon 

herbarium specimen point data, although they are the most complete assessment 

possible given the existing data. It is anticipated that these will be used in several ways: 

to focus future targeted field collecting efforts; to inform conservation policy; to form 

the basis for full conservation assessments as further data becomes available. The 

conservation assessments provided in Paper 3 of the published works have already been 

used in this latter way, having been adapted by the Red List Authority of New 

Caledonia to produce formal assessments (as published in Paper 2). In doing so, they 

indicated that lack of information was a barrier to generating reliable assessments for 

two of the species, which were categorised as Data Deficient. This work has therefore 

served to indicate the need for further research to generate additional data for these 

species. 

Knowledge of phylogenetic relationships, including at the genus level, can be 

used in conservation decision making with the aim of preservation of phylogenetic 

diversity rather than simply preservation of overall species diversity. This approach may 

be important in the light of evidence that phylogenetic diversity is lost at higher rates 

than species diversity (Buerki et al. 2015), and is addressed with initiatives such as 

EDGE, in which taxa that are deemed to be Evolutionarily Distinct and Globally 

Endangered can be prioritised for protection through conservation (Isaac et al. 2007). 

A further potential application for the work presented in the current study is to 

provide the basis for ecosystem niche modelling. This is a method of predicting the 

occurrence of a species through interpretation of the environmental conditions in which 

they are found and of those in areas outside of the known distribution. Application of 

this method requires accurate delimitation of taxonomic boundaries, and detailed 
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knowledge of the ecological preferences of the species, both of which are provided as 

part of the published works. 
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