
Design and Analysis of Memristor Based

Reliable Crossbar Architectures

by

Adedotun Adeyemo

Thesis submitted in partial fulfilment of the requirements of the award of

Doctor of Philosophy

in

School of Engineering, Computing and Mathematics

Faculty of Technology, Design and Environment

Oxford Brookes University, Oxford, UK.

June 29, 2018

Abstract

The conventional transistor-based computing landscape is already undergoing dramatic

changes. While transistor-based devices’ scaling is approaching its physical limits in

nanometer technologies, memristive technologies hold the potential to scale to much

smaller geometries.

Memristive devices are used majorly in memory design but they also have unignorable

applications in logic design, neuromorphic computing, sensors among many others. The

most critical research and development problems that must be resolved before memristive

architectures become mainstream are related to their reliability. One of such reliability

issue is the sneak-paths current which limits the maximum crossbar array size. This thesis

presents various designs of the memristor based crossbar architecture and corresponding

experimental analysis towards addressing its reliability issues.

Novel contribution of this thesis starts with the formulation of robust analytic models

for read and write schemes used in memristive crossbar arrays. These novel models are

less restrictive and are suitable for accurate mathematical analysis of any m×n crossbar

array and the evaluation of their performance during these critical operations. In order

to minimise the sneak-paths problem, we propose techniques and conditions for reliable

read operations using simultaneous access of multiple bits in the crossbar array. Two

new write techniques are also presented, one to minimise failure during single cell write

and the other designed for multiple cells write operation. Experimental results prove that

the single write technique minimises write voltage drop degradation compared to existing

techniques. Test results from the multiple cells write technique show it consumes less

power than other techniques depending on the chosen configuration.

Lastly, a novel Verilog-A memristor model for simulation and analysis of memristor’s

application in gas sensing is presented. This proposed model captures the gas sensing

properties of titanium-dioxide using gas concentration to control the overall memristance

of the device. This model is used to design and simulate a first-of-its-kind sneak-paths

free memristor-based gas detection arrays. Experimental results from a 8× 8 memristor

sensor array show that there is a ten fold improvement in the accuracy of the sensor’s

response when compared with a single memristor sensor.

Publications

Research Papers from this Thesis

Adeyemo, Adedotun, A. Jabir, J. Mathew, E. Martinelli, C. Di Natale, and M. Ottavi,

“Efficient sensing approaches for high-density memristor sensor array,” Journal of Com-

putational Electronics, 2017, in-review

Adeyemo, Adedotun, A. Jabir, and J. Mathew, “Minimizing impact of wire resistance in

low-power crossbar array write scheme,” Journal of Low Power Electronics, vol. 13, no.

4, pp. 649–660, 2017 (Figure 5 selected as journal’s cover page)

Adeyemo, Adedotun, A. Jabir, J. Mathew, E. Martinelli, C. Di Natale, and M. Ottavi,

“Reliable gas sensing with memristive array,” in 2017 IEEE 23rd International Sympo-

sium on On-Line Testing and Robust System Design (IOLTS), 2017, pp. 244–246

Adeyemo, Adedotun, X. Yang, A. Bala, and A. Jabir, “Analytic models for crossbar write

operation,” in Embedded Computing and System Design (ISED), 2016 Sixth International

Symposium on, 2016, pp. 313–317

Adeyemo, Adedotun, X. Yang, A. Bala, J. Mathew, and A. Jabir, “Analytic models

for crossbar read operation,” in IEEE International Symposium on On-Line Testing and

Robust System Design (IOLTS), 2016, pp. 3–4

Adeyemo, Adedotun, J. Mathew, A. M. Jabir, and D. Pradhan, “Exploring error-tolerant

low-power multiple-output read scheme for memristor-based memory arrays,” in IEEE

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology

Systems (DFTS), 2015, pp. 17–20

Adeyemo, Adedotun, J. Mathew, A. Jabir, and D. Pradhan, “Write scheme for multiple

complementary resistive switch (crs) cells,” in IEEE International Workshop on Power

and Timing Modeling, Optimization and Simulation (PATMOS), 2014, pp. 1–5

Research Papers in Allied Areas

X. Yang, Adeyemo, Adedotun, A. Bala, and A. Jabir, “Parasitic effects on memristive

logic architecture,” in 2017 27th International Symposium on Power and Timing Model-

ing, Optimization and Simulation (PATMOS), Sep. 2017, pp. 1–5

i

X. Yang, Adeyemo, Adedotun, A. Bala, and A. Jabir, “Novel techniques for memristive

multifunction logic design,” The VLSI Journal on Integration, 2017

X. Yang, Adeyemo, Adedotun, A. Jabir, and J. Mathew, “High-performance single-cycle

memristive multifunction logic architecture,” Electronics Letters, vol. 52, no. 11, pp. 906–

907, 2016

A. Bala, Adeyemo, Adedotun, X. Yang, and A. Jabir, “High level abstraction of mem-

ristor model for neural network simulation,” in Embedded Computing and System Design

(ISED), 2016 Sixth International Symposium on, 2016, pp. 318–322

X. Yang, Adeyemo, Adedotun, A. Bala, and A. Jabir, “Novel memristive logic archi-

tectures,” in Power and Timing Modeling, Optimization and Simulation (PATMOS), 2016

26th International Workshop on, 2016, pp. 196–199 (paper won best poster award)

Patents

Adeyemo, Adedotun, A. Jabir, J. Mathew, E. Martinelli, C. Di Natale, and M. Ottavi,

Memristive sensor array, UK Patent App. 1616837.9, Oct. 2016

A. Jabir, Adeyemo, Adedotun, and X. Yang, Memristive multifunction logic architecture,

UK Patent App. 1603089.2, Feb. 2016

ii

Declaration

This thesis is submitted to the Oxford Brookes University in accordance with the require-

ments of the award of Doctor of Philosophy in the Faculty of Technology, Design and

Environment. It has not been submitted for any other degree or diploma of any examining

body. Some parts of the work presented in this thesis have previously appeared in the pub-

lished papers listed in the publications section. Except where specifically acknowledged,

it is all the work of the Author.

Adedotun Adeyemo, February, 2018.

iii

Acknowledgement

My utmost gratitude to God Almighty for his unfailingly love all through the years.

This project is a result of weeks of hard work, perseverance and dedication alongside

support from good people around me.

My sincere appreciation to my supervisors and research team members, Dr. Abusaleh

Jabir, Dr. Jimson Mathew, Prof. Dhiraj Pradhan, Xiaohan Yang and Anu Bala who are

always willing and able to give me the required support for the duration of this work.

I am thankful to my wife - Isabel Adeyemo, my friends - Dr. Mayokun Adetoro, Abraham

Fakolade and all GHIC members. They were always there for me even during the course

of writing this dissertation.

I sincerely offer my heartfelt gratitude to my wonderful families (Adeyemo, Omoto-

sho, Animashaun, Akintayo e.t.c) and my sweet siblings (Niran, Tunde, Sekinat, Busola,

Yetunde, Taiwo, Kenny.); they all believed in God for me. Thank you all for the encour-

agement and love towards me.

iv

Table of Contents

Declaration ii

Acknowledgement iv

List of Tables viii

List of Figures ix

List of Code Listings xiv

List of Acronyms xv

1 Introduction 1

1.1 Problem Background . 1

1.2 Motivation . 3

1.3 Methodology and Presentation . 5

1.4 Author’s Contributions to Subject Area 6

1.5 Outline of this thesis . 7

2 Background 9

2.1 Introduction . 9

2.2 Memristor Overview . 9

2.2.1 HP Labs’ Memristor . 12

2.2.2 Properties of Memristor . 15

2.2.3 Applications of Memristors . 15

2.2.4 Writing a Logic 0 to the Memristor 16

2.2.5 Writing a Logic 1 to the Memristor 17

2.2.6 Reading from a Memristor . 18

2.2.7 Demonstration of Memristor’s Non-volatility 19

2.2.8 Memristor Models and Window Functions 21

2.3 The Crossbar Architecture . 22

v

2.3.1 Write Operation in Crossbar Array 25

2.3.2 Read Operation in Crossbar Array 26

2.3.3 Sneak-path Leakage in Crossbar Array 26

2.4 Summary . 29

3 Review of Related Work and Baseline Research 30

3.1 Read and Write Operations in Memristor Based Crossbar Arrays 30

3.1.1 Sneak-path Elimination Techniques 31

3.1.2 Write Operation in Multiple cells 36

3.2 Gas Sensing with Memristor . 38

3.3 Baseline Research: Write Schemes for Multiple CRS cells 39

3.3.1 E-b-R scheme with CRS-Based Memory Array 40

3.3.2 CRS Compensated Write Voltage Technique 42

3.4 Summary . 46

4 Improved Techniques for Crossbar Array Read Operation 47

4.1 Introduction . 47

4.2 Improved Crossbar Array Model . 48

4.3 Modelling Crossbar Array Read Schemes 52

4.3.1 Floating Wordlines and Floating Bitlines 53

4.3.2 Floating Wordlines and Grounded Bitlines 54

4.3.3 Grounded Wordlines and Floating Bitlines 55

4.3.4 Grounded Wordlines and Grounded Bitlines 56

4.4 Effects of Sneak-path on Crossbar Array Read Schemes 57

4.5 Power Analysis of Crossbar Array Read Schemes 64

4.6 Multiple Cells Read in Crossbar Arrays 65

4.6.1 Multiple Cells Read with Similar Data 66

4.6.2 Multiple Cells Read with Non Similar Data 68

4.6.3 Application of Multiple Cells Read Technique 77

4.6.4 Experimental Results and Discussions 77

4.7 Conclusions . 82

5 Improved Techniques for Crossbar Array Write Operation 83

5.1 Introduction . 83

5.2 Analysis of Crossbar Array Write Schemes 84

5.2.1 Crossbar Array Write Operation without Line Resistance 85

5.2.2 Crossbar Array Write Operation with Line Resistance 95

vi

5.3 Compensated Write Voltage Technique 100

5.4 Multiple Cells Write Operation . 103

5.4.1 Low Power V/3 Write Scheme for Multiple Crossbar Cells 104

5.4.2 Experimental Results and Discussions 108

5.5 Conclusions . 110

6 Gas Sensing with Memristor-based Crossbar Array 111

6.1 Introduction . 111

6.2 Memristor as Gas Sensor . 112

6.3 Verilog-A Model for Memristive Gas Sensor 115

6.4 Gas Sensing with Crossbar Array . 120

6.5 Proposed Crossbar Gas Sensing Structures 121

6.5.1 Multi-Gas Sensing with m (1×n) Sensor Array 122

6.5.2 The m × n Array Structure . 128

6.5.3 The 1T1M Structure . 129

6.5.4 Experimental Results and Discussions 130

6.6 Conclusions . 132

7 Conclusions and Future work 135

7.1 Summary of this Thesis . 135

7.2 Future Research . 137

Bibliography 139

Appendices 150

A Experimental Data for Read-out Voltages and Read Margin 151

B Analytic Simulation tools in C Language 154

vii

List of Tables

2.1 Comparison of memristor models . 21

2.2 Comparison of window functions . 22

2.3 Comparison between conventional and emerging memories 25

3.1 Comparison of various sneak-path prevention techniques 36

3.2 Result of E-b-R write scheme with cells initialised to logic 0. New method
compared against conventional. 44

3.3 Result of E-b-R write scheme with cells initialised to logic 1. New method
compared against conventional. 44

4.1 Comparison summary of read schemes performance 63

5.1 Voltage drop across the various groups of cells using the floating lines
write scheme assuming all the cells have the same resistance R 89

5.2 Voltage drop across the various groups of cells using the V/2 write scheme 90

5.3 Voltage drop across the various groups of cells using the V/3 write scheme 91

5.4 Comparative summary of write schemes’ performances without the effect
of line resistance . 95

5.5 Voltage drop across the various groups of cells using the dual and com-
pensated voltage technique on the V/2 write scheme in the presence of
line resistance . 102

5.6 A comparison of multiple cells write techniques 107

6.1 Effect of increasing gas concentration on the resistance of semiconductor
metal oxide . 112

6.2 Relative comparison of sensing structures 132

A.1 Data for possible cases of read-out voltages across the four read schemes
with varying array aspect ratio . 152

A.2 Data for possible cases of read margin across the four read schemes with
varying array aspect ratio . 153

viii

List of Figures

1.1 Trend showing the transistor scaling timeline of Intel’s product in recent
years . 2

1.2 Evolvement of the transistors over the years 3

1.3 Memory usage increases as computing devices get smarter and more pow-
erful . 4

1.4 Universal memory with Resistive RAM 5

2.1 Symbol of the memristor . 10

2.2 Relationship between circuit variables 10

2.3 A memristor’s linear I-V characteristics showing transitioning between
high and low resistance state . 12

2.4 Physical structure of the memristor fabricated by HP Labs 13

2.5 Equivalent circuit model of HP Lab’s memristor 13

2.6 Trend of research involving memristive devices 14

2.7 Programmable range of the write voltage 16

2.8 Charge movement in a memristor cell 17

2.9 Safe range of the read voltage . 18

2.10 Testbench (schematic) of memristor read/write circuit. 18

2.11 I-V characteristics of memristor . 19

2.12 Non-volatile ability of the memristor (Schematic) 20

2.13 Non-volatile ability of the memristor (output waveform) 20

2.14 An m× n memristor-based crossbar memory structure set-up for write
operation and its equivalent circuit model that depicts the effect of all
resistances in the array . 23

2.15 Types of memories including emerging ones. 24

2.16 Setup of read/write operation in memristor crossbar architecture. 26

2.17 Demonstration of sneak-paths effect in crossbar architecture 27

2.18 Read margin degrades rapidly as array size increases in the presence of
sneak-path as computed using Eqn. 2.19. 28

3.1 One-memristor, one-transistor structure 32

3.2 One-memristor, one-diode structure . 33

ix

3.3 One-memristor, one-memistor structure 34

3.4 Symbol of the CRS . 34

3.5 Setup of the four line biasing methods for unselected lines 35

3.6 Conventional SET-before-RESET using the V/2 Write Scheme 37

3.7 Conventional ERASE-before-RESET technique using the V/2 Write Scheme 37

3.8 Schematic of a 128×128 and 4×4 CRS array 40

3.9 Demonstration of E-b-R on CRS memory array with cells initialised to 0 . 41

3.10 Simulation outcome of E-b-R scheme on CRS-based memory array with
cells initialised to 0 . 42

3.11 Proposed E-b-R scheme on CRS memory array showing complete transition 43

3.12 Simulation of improved E-b-R scheme with CRS 45

3.13 Comparison of power consumption in memory array. 46

4.1 An m× n memristor-based crossbar memory structure and its equivalent
circuit model that depict the effect of all resistances in the array 49

4.2 Structure of the FWFB read scheme and its corresponding equivalent cir-
cuit model . 53

4.3 Structure of the FWGB read scheme and its corresponding equivalent cir-
cuit model . 54

4.4 Structure of the GWFB read scheme and its corresponding equivalent cir-
cuit model . 55

4.5 Structure of the GWGB read scheme and its corresponding equivalent
circuit model . 56

4.6 Simulation results of worst and best case read-out voltages for (a) FWGB
(b) FWGB (c) GWFB (d) GWGB . 58

4.7 Simulation results of worst and best case read margins for (a) FWFB (b)
FWGB (c) GWFB (d) GRGC . 60

4.8 Read margin result of randomising the number of Ro f f and Ron cells in
different array sizes using the FWFB read scheme 62

4.9 Read margin result of randomising the number of Ro f f and Ron cells in
different array sizes using the FWGB read scheme 63

4.10 Read margin result of randomising the number of Ro f f and Ron cells in
different array sizes using the GWGB read scheme 63

4.11 Power comparison of the four read schemes over a range of crossbar size . 65

4.12 Description of read operation in cases where some of the cells in row are
selected . 66

4.13 Corresponding generalised equivalent circuits for multiple cells selection
where all the selected cells contain the same data 67

4.14 Read margin for each of the k selected cells in an 8×8 memristor array . 68

4.15 Corresponding generalised equivalent circuits for multiple cells selection
where all the selected cells do not contain the same data 69

x

4.16 Step 1: Solving for Vout in the crossbar array of Fig. 4.12(b) from the
equivalent circuit of Fig. 4.15(a) using Y −∆ transformation technique. . . 70

4.17 Step 2: Solving for Vout in the crossbar array of Fig. 4.12(b). 70

4.18 Step 3: Solving for Vout in the crossbar array of Fig. 4.12(b). 71

4.19 Step 4: Solving for Vout in the crossbar array of Fig. 4.12(b). 71

4.20 Step 1: Solving for Vout in the crossbar array of Fig. 4.12(a) from the
equivalent circuit of Fig. 4.15(b) using Y −∆ transformation technique. . 72

4.21 Step 2: Solving for Vout in the crossbar array of Fig. 4.12(a). 72

4.22 Step 3: Solving for Vout in the crossbar array of Fig. 4.12(a). 73

4.23 Step 4: Solving for Vout in the crossbar array of Fig. 4.12(a). 73

4.24 Step 5: Solving for Vout in the crossbar array of Fig. 4.12(a). 74

4.25 Step 6: Solving for Vout in the crossbar array of Fig. 4.12(a). 74

4.26 Sample data distribution in a 4× 4 crossbar array during multiple cells
read where all the cells in the first row are selected for read 75

4.27 Read margins of each cell in the multiple read scheme where all cells in
the row are selected for read operation in a 32×32 crossbar array. 76

4.28 Block schematic representation of Hamming code and similar derivations 77

4.29 Comparison of normalised read margin result from analytic tool against
simulation tool. 79

4.30 Normalised read margin result over larger array 79

4.31 Trend of power consumption as the number of selected cells (k) increase
over a range of array sizes . 81

4.32 Power consumption trend when k = n with non-uniform data as array size
increases . 81

5.1 Structure of floating lines write scheme and its equivalent circuit level model 85

5.2 Simulation result of the floating lines write scheme 87

5.3 Voltage drop on unselected cells as array size varies when unselected lines
are left floating . 88

5.4 Structure of V/2 write scheme and its equivalent circuit level model . . . 90

5.5 Structure of V/3 write scheme and its equivalent circuit level model . . . 91

5.6 Comparison of power consumptions in the three write schemes in the
worst case scenario . 93

5.7 Comparison of power consumptions in the three write schemes with ran-
dom array resistance pattern . 94

5.8 Comparison of power consumptions between the floating lines and V/2
write schemes over varying range of array sizes and structures 95

5.9 Resistance model of the crossbar array showing resistance of nanowires . 96

5.10 Voltage drop across selected and unselected cells with all memristors in
the crossbar set to Ron and RL/Ron varied 98

xi

5.11 Voltage drop across selected and unselected cells with random resistance
pattern in the crossbar with RL/Ron varied 99

5.12 Resistance model of the crossbar array using the dual voltage source tech-
nique . 101

5.13 Simulation results showing voltage drop on the worst case selected cell
over a range of crossbar sizes using the proposed compensated voltage
technique with RL/Ron varied . 103

5.14 Configuration I: Proposed SET-before-RESET technique using the V/3
Write Scheme . 105

5.15 Configuration II: Proposed SET-before-RESET technique using the V/3
Write Scheme . 105

5.16 Configuration I: Proposed ERASE-before-RESET technique using the
V/3 Write Scheme . 106

5.17 Configuration II: Proposed ERASE-before-RESET technique using the
V/3 Write Scheme . 106

5.18 Configuration I: Proposed ERASE-before-SET technique using the V/3
Write Scheme . 107

5.19 Configuration II: Proposed SET-before-RESET technique using the V/3
Write Scheme . 107

5.20 Power consumptions of the V/3 and V/2 schemes over a range of crossbar
array size during multiple cells write operation 109

5.21 Comparison of power consumptions between the conventional V/2 and
the proposed V/3 write scheme during multiple cells with an array of
64×64 and 512×512 . 110

6.1 Structure of memristor for sensing applications 113

6.2 Interaction of CO2 (reducing gas) with the surface of TiO2 based memristor114

6.3 (a) I-V characteristics of the proposed Verilog-A memristor model over
5 steps of an oxidising gas concentration (0 ppm (red line) - 1000 ppm
(blue line)) (b) The applied voltage (red) and resulting currents (other
colours) from varying the value of gas concentration (0 ppm (green line)
- 1000 ppm (yellow line)). Initial Ron and Ro f f are 100Ω and 200K Ω

respectively, β = 1[112] and A = 4.2×10−4 118

6.4 Sensor response to different concentrations of an oxidising gas 120

6.5 A typical crossbar architecture conditioned for sensing 121

6.6 Proposed multi-sensing structure . 122

6.7 Experimental set-up of the detection schematic of a 4×4 memristor sen-
sor array on Cadence Virtuoso simulation tool 123

6.8 Reading technique for the multi-sensing structure and corresponding equiv-
alent resistance model . 124

6.9 Experimental set-up of the sensing schematic of a 4×4 memristor sensor
array on Cadence Virtuoso simulation tool 125

6.10 Simulation result of sensing the first row (sensor) of the 4×4 crossbar array126

xii

6.11 Simulation result demonstrating the zero-current flow through the unse-
lected memristors in the 4×4 crossbar array of Fig. 6.9 126

6.12 Simulation results of exposing a row from a 4× 4 memristor crossbar
array to a range of gas concentration (reducing gas) 127

6.13 Response of five rows of memristors to gas presence 128

6.14 Sensing mechanism for a crossbar sensor made up of m× n sensors and
its corresponding resistance model . 129

6.15 Sensor’s response to change in array size 130

6.16 1T1M sensor structure . 131

6.17 Monte Carlo simulation results showing initial and final resistance distri-
bution in different array structures . 133

xiii

Listings

6.1 Verilog-A description of proposed memristor model for gas sensing . . . 115

B.1 Computing the read margin and power cases for the FWFB read scheme . 154

B.2 Computing the read margin and power cases for the FWGB read scheme . 155

B.3 Computing the read margin and power cases for the GWFB read scheme . 155

B.4 Computing the read margin and power cases for the GWGB read scheme 156

B.5 Computing the read margin for the FWFB read scheme using random
resistance states . 157

B.6 Computing the read margin for GWGB, FWGB and GWFB read scheme
using random resistance states . 157

B.7 Computing all the possible cases of sneak-path with all cells in a row are
selected . 158

B.8 Computing all the possible cases of read-out voltages and read margin
when some of the cells in the desired row are selected for read 158

B.9 Designing memristor-based structure with Hamming code 159

B.10 Computing the inversion flag bit from memristor-based structures with
Inversion code . 161

B.11 Generating netlist and Ocean Script file for simulation of write operation
with line resistance in Cadence Virtuoso 162

B.12 Computing the resistance distribution in memristor-based sensor array . . 164

B.13 Computing the performance metrics for crossbar write schemes 165

xiv

List of Acronyms

1D1M One Diode and One Memristor

1M1M One Memistor and One Memristor

1T1M One Transistor and One Memristor

Al2O3 Aluminium oxide

CMOS Complementary Metal-Oxide-Semiconductor

CNT Carbon Nanotubes

CTO Chromium titanate

Cu2O Copper oxide

DSGB Double-Sided Ground Biasing

E-b-R ERASE-before-RESET

E-b-S ERASE-before-SET

EDA Electronic Design Automation

FRAM Ferroelectric Random Access Memory

FWFB Floating Wordlines and Floating Bitlines

FWGB Floating Wordlines and Grounded Bitlines

GWFB Grounded Wordlines and Floating Bitlines

GWGB Grounded Wordlines and Grounded Bitlines

I-H Inverted-Hamming

I-V Current-Voltage

ITRS International Roadmap for Semiconductor

MLMM Multi-Level Memristor Memory

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

MRAM Magnetoresistive Random Access Memory

NEMS NanoElectroMechanical Switches

xv

PCRAM Phase Change Random Access Memory

ppm Parts per million

ReRAM Resistive Random Access Memory

S-b-R SET-before-RESET

SiO Silicon oxide

SnO2 Tin dioxide

STTRAM Spin-Transfer-Torque RAM

TiO2 Titanium dioxide

VPWL Piece-wise Linear Voltage source

ZnO Zinc oxide

xvi

Chapter 1

Introduction

1.1 Problem Background

Over the years, area reduction, power conservation, fast operation, increased reliability

and eventually cost reduction has been the main focus of the semiconductor industry

when designing any integrated circuit. The industry has been able to achieve all these by

striving to follow the trend put forward by Gordon Moore in 1956 in which he predicted

that the number of transistors on a chip will double every eighteen months [15]. Informa-

tion processing and storage technologies have benefited immensely from the continuous

scaling of Complementary Metal Oxide Semiconductor (CMOS) devices over the years.

However, scaling rate have since slowed down as transistor scaling becomes increasingly

difficult according to the International Roadmap for Semiconductor (ITRS) based on data

gathered from leading semiconductor manufacturers (Fig. 1.1). The scaling problem is

caused by various factors, such as the leakage currents that arise from the device getting

smaller, insulation and conduction challenges with dielectric and wiring materials among

others. CMOS devices are also synonymous with parasitic capacitances that limit their

performance. The effect of these parasitic capacitances will also increase as the device

features are brought closer to each other [16]. Economic challenges is another hinderance

to CMOS scaling due to the rising cost of fabs and testing of new techniques.

As it gradually becomes inevitable to prevent CMOS from reaching its fundamental di-

mensional and functional limits, the industry has been tasked with the huge responsibility

of finding alternative devices and architectures that could sustain the historical growth of

integrated circuit. The aforementioned necessities have led to the unraveling of various

1

“emerging technologies” in recent years—technologies that could usher in the “Beyond

CMOS” era and ensure continuous evolving of information processing and computing

devices (Fig. 1.2). These emerging technologies could be subdivided into three broad

categories according to the latest report by ITRS [17]:

• Logic Devices: Carbon Nanotubes (CNT) [18], nanoelectromechanical switches

(NEMS) [19].

• Memory Devices: Devices in this category include Resistive Random Access Mem-

ory (ReRAM) which this work focusses on, Phase Change RAM (PCRAM) [20,

21], Magnetoresistive RAM (MRAM) [22, 23] and ferroelectric RAM (FRAM)

[24, 25], Spin-Transfer-Torque RAM (STTRAM) [26].

• Architectures: Cellular automata, Processor-in-memory, memory-in-logic, compu-

tational memory, cognitive computing (machine learning and neuromorphic)

180$

130$

90$

65$

45$
32$

22$
14$

10$
7$

0&

20&

40&

60&

80&

100&

120&

140&

160&

180&

200&

Te
ch
no

lo
gy
*N
od

e*
(n
m
)*

10nm%slips%
%by%5-6%quarters%

Release*Dates*for*Intel**
Lead*Genera:on*Products*

14nm%slips%
%by%2%quarters%

7nm%by%%
end%2020?%

Technology&Trends&

Figure 1.1: Trend showing the transistor scaling timeline of Intel’s product in recent years [27].

2

Technological*
Fallow*Period*
*

CMOS&scaling&is&running&out&&&

4&

[Colwell&2012]&

Figure 1.2: Evolvement of the transistors over the years. New technologies have emerged in recent
years with the aim of surpassing the popularity of CMOS [27].

1.2 Motivation

As the semiconductor industry moves closer to the inevitable end of transistor scaling, so

does the traditional CMOS based systems such as DRAM, SRAM and flash scaling draw

closer to their limit [28]. As computing devices get more portable and faster, so does

the demand for robust memories increases (Fig. 1.3). A robust memory will incorporate

features such as non-volatility, high read/write speed, small surface area, low-power con-

sumption and high density. The industry needs to explore new technologies outside of

CMOS to ensure evolvement of computing performances in order to meet present and

future needs [17].

Among the emerging technologies previously mentioned, memristive devices which this

thesis focusses on have showed great potential in the design of ReRAM, logic circuits,

neural networks among many others. This is made possible because of their simple struc-

ture and the possibilities of building high density architectures with them [29, 30]. They

have better operating speed and high density structure could be achieved through the use

of memristor as cross point device in crossbar architecture [31, 32].

3

Sustainable Growth of Memory Market

1st Digital Revolution 2nd Digital Revolution

PC Mobile device

* Source : Gartner 4Q10, Hynix Estimate

Introduction of PC & Internet

Spread of Internet &
Increase of PC demand

Mobile & Smart

12

55

25

61
70

45

Memory Usage100

($B)

80

60

40

20

55

1990 1994 1998 2002 2006 2010 2014 2018

Memory Market

(a)

© 2016 Micron Technology, Inc.

Growing Memory Markets
MEMORY MARKET BIT DEMAND FORECAST

| February 12, 20166

0

40

80

120

160

200

240

0

500

1,000

1,500

2,000

2,500

3,000

2015 2016 2017 2018 2019

NAND
‘16-’19 CAGR:

~40%

DRAM
‘16-’19 CAGR:

~25%

NAND
B Gb EU

DRAM
B Gb EU

Diversified end markets driving sustained demand
Source: Micron and Industry Analysts

� NAND demand is highly elastic

– Growth is likely to accelerate with 3D-
driven cost and performance

– New wafer capacity will be required
long term – timing and amount is ROIC-
dependent

� DRAM demand is less elastic

– Demand likely to be satisfied through
technology investment as opposed to
wafer capacity additions

� Long term memory growth will be
augmented by emerging memories
including 3D XPoint™

(b)

Figure 1.3: (a) Memory usage increases as computing devices get smarter and more powerful [33],
(b) Demand for NAND Flash and DRAM has increased greatly over the years [34].

Regarding non-volatile memory design, memristive and other resistive memories bear

the hope of extending the validity of Moore’s law for several decades, in terms of both

memory devices density and performance. As expected with any technology in its in-

fancy, memristor-based architectures are not foolproof. Memristor-based architectures

can successfully replace existing technologies if their reliability problems are effectively

resolved. Recent research made widely evident that reliability aspects of resistive archi-

tectures radically differ from those of their traditional counterparts [35]. Although resis-

tive memories and other architectures are more resilient to transient error but their yield

and device fault rate are likely to be higher than conventional architectures [36]. Mem-

4

ristive architectures are highly susceptible to problems such as resistance drift or loss as

memristor represents data as resistance values [37], process variability such as threshold

voltage variation [35] and current leakages (sneak-path) during read and write operation

that leads to excessive power consumption in the system [38]. All these problems nega-

tively affects the integrity of the data stored and switching ability of the memristor and

structures designed with it.

This work aspires to be a key enabler for the effective deployment of emerging mem-

ristive technologies in different segments of computing systems by innovations towards

improving their weakest aspect: reliability. Once reliability and other related issues are

effectively addressed, memristive devices can eventually combine the unique advantages

of SRAM (speed), DRAM (density), and flash-memory (non-volatility) as portrayed in

Fig. 1.4. Memristive device could also become an integral device in future integrated cir-

cuit, thus leading to an almost universal device class that will lead to disruptive effects in

the electronics industry for several years to come. The reliability issues of these devices

was also echoed by ITRS in their review of emerging devices [39].

Figure 1.4: Domain of memristor-based Resistive RAM. A memory with the potential to combine the
advantages of existing memory technologies if all reliability issues are successfully addressed.

1.3 Methodology and Presentation

This work spans across the research, technology and application categories. The extensive

background study and literature review carried out in this work goes beyond theoretical

summary of existing work. The background section includes conclusions drawn from the

experimental demonstration using appropriate analytic and Electronic Design Automation

5

(EDA) tools.

This thesis is typeset using the LATEX document preparation system. TEXShop was used

as the user interface (editor) to LATEX. All the figures in this thesis are either drawn

using Microsoft Visio or automatically generated from Cadence Virtuoso EDA tools and

MATLAB by the author with the exception of Fig. 1.1, 1.2, 1.3, 1.4 and 2.8.

All design and simulation were done using a combination of spectre-based Cadence Vir-

tuoso 6 and the C++ analytical tools developed by the author.

1.4 Author’s Contributions to Subject Area

1. In an effort to prevent read failures in crossbar memories, an accurate modelling

of the crossbar architecture is required irrespective of the array size or content of

the storage device. The primary aim of this thesisthat floating was to accurately

model the crossbar array read schemes without restriction on the resistance value

of the crosspoint devices. The overall equivalent resistance model of the crossbar

presented works without any restricting assumption [5].

2. A multiple-cells read solution to reduce the overall energy consumption when read-

ing from a memory array is considered. A closed form expression for the noise mar-

gin effect is derived and analysis shows that there is zero sneak-path when sensing

certain patterns of stored data. The multiple-cells readout method was thus used to

analyse an energy efficient Inverted-Hamming (I-H) architecture capable of detect-

ing and correcting single-bit write error in memristor-based memory array [6].

3. The author presented a circuit level analysis of write operation in memristor cross-

bar memory array with and without line resistance. Three write schemes: floating

line, V/2 and V/3 are investigated. Analysis shows that the floating line scheme

could also be considered reliable in arrays with aspect ratio of 1:1 and negligible

line resistance just like the latter two schemes. Further analysis also shows that

high density crossbar structures cannot be designed using any of the three schemes

with worst case line resistance and data distribution within the array. These mod-

els are non-restrictive and are suitable for accurate analysis of crossbar arrays and

the evaluation of their performance during write operation. The presented analysis

6

provides the necessary design models that will assist designers in implementation

of write techniques in crossbar array in future systems [4].

4. Alongside analysis of three write schemes; floating line, V/2 and V/3, a novel

voltage compensating technique was proposed for write voltage degradation caused

by line resistance during write operation on crossbar array. This technique is able to

enhance write voltage in the presence of worst case line resistance and thus enable

the design of higher density and reliable crossbar array [2]. A new low power

multiple bits write technique based on the V/3 write was also presented in this

thesis.

5. A framework for efficient gas detection using memristor crossbar array is proposed

and analysed. A novel Verilog-A based memristor model that emulates the gas sens-

ing behaviour of doped metal oxides is developed for simulation and integration

with design automation tools. Using this model, the author proposed and analysed

three different gas detection structures based on array of memristor-based sensors.

Simulation results show that depending on the organization of the memristive ele-

ments and the sensing method, the response of the sensor varies providing a broader

design space for future designers. For instance, with a 8×8 memristor sensor array,

there is a ten times improvement in the accuracy of the sensor’s response when com-

pared with a single memristor sensor but at the expense of extra area overhead [1,

3].

1.5 Outline of this thesis

Subsequent chapters of this project are organised as follow:

Chapter 2 extensively describes the background concepts related to memristor and the

crossbar architecture. Existing memristor models are summarised. This chapter also ex-

perimentally demonstrated the non-volatility of the memristor as well as its read and write

operation. Memristor-based crossbar architecture and the sneak-path current leakages are

also explained.

Chapter 3 reviewed existing solutions to the sneak-path problem alongside review of other

literature relevant to the contribution of this thesis.

7

Chapter 4 begins with an accurate remodelling of the crossbar architecture irrespective of

the array size or content of the storage device, all in an effort to prevent failures in crossbar

memories during the read and write operation. A comprehensive analysis and modelling

of four existing crossbar read schemes was carried out. This chapter also presents a novel

implementation and analysis of the multiple cells read scheme in memristor-based cross-

bar array.

In Chapter 5, a novel voltage compensating technique for write voltage degradation caused

by line resistance during write operation on crossbar array is proposed. Various circuit

level analysis of write operation in memristor crossbar memory array was carried out with

and without line resistance. The floating line, V/2 and V/3 write schemes were further

investigated. A new low power multiple bits write technique based on the V/3 write was

also presented in this chapter.

Chapter 6 presents a framework for efficient gas detection using memristor crossbar array.

A novel Verilog-A based memristor model that emulates the gas sensing behaviour of

doped metal oxides is developed for simulation and integration with design automation

tools. These Chapter benefits from the result obtained from the analysis carried out on the

read and write operations in previous chapters.

Chapter 7 concludes and summarises the work presented in this thesis. Other possible

extension of the work carried out in this thesis was also identified.

Appendix A includes the data for read-out voltages and read margin in crossbar read

operations.

Appendix B includes code listing of the analytic tools developed for the accomplishment

of the various tasks in this thesis.

8

Chapter 2

Background

2.1 Introduction

Memristor was initially formulated and theoretically described in 1971 by Leon Chua [29]

in his paper titled “Memristor -The missing circuit element”. In his paper, he postulated

the existence of a solid state device which represents the missing relationship between

the four basic variables. After almost four decades of Leon Chua’s postulation, the ‘In-

formation and Quantum Systems Laboratory’ at HP labs publicised the development of a

functional memristor based on Leon Chua’s initial description [30].

This chapter introduces the main device that this work relies on - memristor, the fourth

circuit element. A brief history of the device, existing models, applications of the de-

vice as well as experiments to demonstrate its basic operation will be discussed. A full

explanation and simulation of the crossbar architecture for memristors will also be pre-

sented here as well as the various problems in this architecture. This chapter details the

prerequisite knowledge required for better understanding of the contribution of this thesis

presented later on.

2.2 Memristor Overview

The memristor is the latest discovered two terminal fundamental circuit element alongside

the existing trio of resistor, inductor and capacitor. The resistor was realised in 1827, the

inductor in 1831 and the capacitor in 1745 [40]. The memristor was first theoretically

9

described by Leon Chua as the missing relationship between flux and charge [29]. He

represented it with the symbol in Fig. 2.1.

+ -

Figure 2.1: Symbol of the memristor originally proposed by Leon Chua.

Leon Chua argued that if the four basic circuit variables (voltage (v), current (i), charge

(q) and flux (ϕ)) are arranged in symmetry as shown in Fig. 2.2, there are six possible

relationships. Most of these relationships are already established except for the relation-

ship between flux and charge. Capacitor (C) is defined by the relationship between charge

and voltage as dq = Cdv, resistor (R) is defined by the relationship between voltage and

current as dv = Rdi. Similarly, an inductor (L) is defined by the relationship between

magnetic flux and current: dϕ = Ldi. The two other relationships are i = dq/dt (current

is the time integral of charge) and v= dϕ/dt (Faraday’s law — voltage is the time integral

of ϕ).

Resistor
dv = Rdi

Capacitor
dq = Cdv

Memristor
dφ = Mdq

Inductor
dφ = Ldi

v

i

φ

qdq = idt

dφ
 =

 v
dt

Figure 2.2: Circuit variable (v, i,ϕ and q) relationships. Adapted from [30].

Based on this argument, Leon Chua concluded that a long missing passive element defined

by dϕ = Mdq must exist, where M stands for the memristance of the missing device. He

named the device memristor coined from the words MEMory and ResISTOR because it

behaves like a resistor with memory [29]. A memristor thus provides a function between

the flux and the amount of electric charge passing through the device as shown in Eqn. 2.1.

10

M =
dϕ

dq
(2.1)

Flux and charge can be defined by Eqn. 2.2 and 2.3 as they represent the time integral of

voltage and current respectively:

ϕ =
∫

v(t) dt⇒ dϕ

dt
= v(t) (2.2)

q =
∫

i(t) dt⇒ dq
dt

= i(t) (2.3)

A charge dependent memristance can thus be defined as

M(q) =
dϕ/dt
dq/dt

(2.4)

Substituting Eqn. 2.2 and 2.3 into Eqn. 2.4 results in Eqn. 2.5 for a charge dependent

memristance similar to resistance.

M(q) =
v(t)
i(t)

(2.5)

Similarly, a flux dependent memristance (Eqn. 2.7) just like conductance can be derived

from Eqn. 2.6

M(ϕ) =
dq/dt
dϕ/dt

(2.6)

M(ϕ) =
i(t)
v(t)

(2.7)

Memristance thus depends on the time integral of voltage or current. In 1976, memristor’s

scope was extended to a large class of memristive devices and systems [41]. It was also

proved in [42] that any resistive device that shows an I-V (current-voltage) characteristics

curve in the form of a pinch-hysteresis loop (Fig. 2.3) is regarded as a memristor.

11

V

I

ON or 1

Safe read region

OFF or 0

ON or 1

OFF or 0

Vreset

Vset

Figure 2.3: A memristor’s linear I-V characteristics showing transitioning between high and low
resistance state in the presence of sinusoidal voltage source.

Despite the theoretical demonstration of the existence of the fourth circuit element, it

remained difficult to physically fabricate a device that exhibits the correct behaviour of a

memristor.

2.2.1 HP Labs’ Memristor

Despite the clarity of Chua’s argument, a practical or experimental confirmation of this

missing element remained elusive until 2008 when scientists at HP Labs announced the

first physical realisation of Chua’s theoretically predicted memristor [30]. HP Lab’s mem-

ristor consists of a thin film of titanium dioxide (TiO2) semiconductor sandwiched be-

tween two platinum electrodes as shown in Fig. 2.4. The titanium dioxide layer consists

of two different regions: a region of stoichiometric TiO2 and the other region consisting of

oxygen deficient TiO2−x. The TiO2−x region is conductive due to the positively charged

oxygen vacancies while the former region is less conductive. The overall structure can

thus be regarded as a series combination of two resistors as shown in Fig. 2.5. The posi-

tion of the barrier between the two regions depend on the polarity of the applied voltage

at the terminals. As will be discussed later, a positive voltage applied to the surface of

TiO2−x region repels the positively charged vacancies further into the TiO2 region thereby

moving the barrier further down in order to make the device more conductive by forming

a channel between the two platinum electrodes. A negative voltage attracts the oxygen

vacancies out of the TiO2 region, thereby making the device insulated because of the now

dominant TiO2 layer. In summary, the total memristance of the device is equivalent to the

12

resistance of the dominant region. When the highly resistive TiO2 region occupies almost

full length D, the device’s equivalent resistance is Ro f f . Similarly, when the device is

dominated by the highly conductive region, the equivalent resistance of the device is Ron.

V A

D

W

Doped (TiO2-x) Undoped (TiO2) PtPt

_ +

Figure 2.4: Physical structure of the memristor fabricated by HP Labs. It consists of two platinum
electrodes and two regions of doped (highly conductive) and undoped (highly resistive) titanium diox-
ide. w is the state variable and D is the length of the device [30].

A memristor stores data as resistance and the resistance value of the device can be changed

by applying a voltage greater than its threshold voltage. This causes the device to switch

between High Resistance State (HRS), Ro f f and Low Resistance State (LRS), Ron de-

pending on the amplitude, polarity and duration of the voltage applied. The switching

from Ron to Ro f f is regarded as the RESETing process whereas the transition from Ro f f

to Ron is known as the SETing process (the write voltage must be greater or equal to the

SET (RESET) threshold voltage) as shown in Fig. 2.3. Reading from a memristor in-

volves applying a smaller voltage not sufficient to SET or RESET the cell to one end and

sensing the output at the opposite end of the cell. A voltage divider or any other suitable

sensing circuit as listed in [32] can be used at the sensing terminal (section 2.2.6). The

region shaded grey in Fig. 2.3 represents the safe range for the read voltage where the

state of the selected cell cannot be accidentally perturbed.

Ron
TiO2-x

Roff
TiO2

Figure 2.5: Equivalent circuit model of HP Lab’s memristor [30].

The mathematical model for the memristor’s resistance (memristance) M can be defined

as:

M(t) = Ron
w(t)

D
+Ro f f

(
1− w(t)

D

))
(2.8)

13

where w(t) is the time dependent state variable and D is the length of the memristor. The

state variable w is described by the equations below:

dw(t)
dt

= µv
Ron

D
i(t) (2.9)

w(t) = µv
Ron

D

∫ t

0
i(t)dt (2.10)

where µv is the dopant mobility rate of the switching material.

Since HP Labs discovery of the physical memristor, research on memristor have soared

exponentially (Fig. 2.6) especially its memory application in ReRAM.

1970 1978 1986 1994 2002 2010 2016
Year

0

200

400

600

800

1000

1200

1400

1600

1800

N
u
m
b
e
r

o
f

p
u
b
l
i
c
a
t
i
o
n
s

(a)

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
Year

101

102

103

104

105

N
u
m
b
e
r

o
f

c
i
t
a
t
i
o
n
s

(b)

Figure 2.6: (a) Number of publications with memristor keyword (b) Number of citations with mem-
ristor keyword. Data obtained from www.scopus.com.

14

www.scopus.com

2.2.2 Properties of Memristor

Some major properties which make the memristor-based ReRAM unique and promising

include the following:

• Non-volatility - The memristor has the ability to retain and remember its last state

after power has been switched off for a period of time [43]. It has a variable re-

sistance determined by the time integral of the current flowing through the device

such that with zero current, the device exhibits a constant charge that results in a

constant resistance of the device.

• Fast access - Fast read and write access is essential in non-volatile memory. Mem-

ristor has shown a write speed of up to 0.3ns [28]. Fast access time ultimately leads

to low power consumption in memory array.

• High density - Density measures the amount of binary information that can be

stored on a given surface area, high density allows large amount of data to be stored

in a small area. According to [43], a capacity of up to 466GB/cm2 can be achieved

with a memristor-based ReRAM for a 5nm cell based on a 116GB/cm2 from a

10nm cell [44]. Memristor memories have a footprint of 4F2 and can be further

reduced to 4F2/n by stacking n-layers of arrays or via 3-D integration, where F is

the minimum feature size.

• Compatibility - Memristor can also be integrated with existing CMOS transistors

to design hybrid CMOS/nano structures that could potentially be used as a universal

memory and logic gates [45, 46].

2.2.3 Applications of Memristors

Memristors are two terminal nanoscale devices with unique characteristics, this has re-

sulted in their applications in many areas. Memristors are well suitable for the design

of computing memories, memory design is the most widely researched application area

of the memristor. Denser memory structures can be designed using memristor as the

main memory cell instead of the transistors as it is in conventional memory. Hybrid

CMOS/memristor memory structures can also be designed by using CMOS building

15

blocks for the control and peripheral circuit and memristor as the memory unit [47]. Neu-

romorphic systems design is another application area of the memristor and it has received

a huge boost since the realisation of the memristor. The biological synapse is a two-

terminal structure just like the memristor. A synapse acts a conductor of electrical signal

between the neurons in the human brain. Authors in [48] and [49] demonstrated the

use of memristor to replicate the functionality of a synapse to create efficient neuromor-

phic hardware with high density and increased connectivity. Controlled voltage pulses

are used to change the conductance (acting as weight) of the memristor just like neu-

ron spikes are used to change synaptic weight during the learning process of the neural

network. Logic circuit applications of memristors have become increasingly common in

recent years [50, 51, 12]. Memristors are able to implement material implication logic

such that Boolean logic states are represented as resistance state rather than voltage levels

as in CMOS. Memristors have also shown great potential as an efficient sensing device,

authors in [52, 53] demonstrated the viability of memristor as a biosensor for dried bio-

logical films. In [54], a copper oxide memristor was fabricated and its use as a gas sensor

was demonstrated with limited performance. With this limitation in mind, we developed

a verilog-A model of a memristor that can be used as a gas sensor in Chapter 6.

Programming the memristor involves the application of a suitable write voltage across it.

The write voltage must be equal or greater than the SET (RESET) threshold voltage as

shown by the number inequality in Fig. 2.7. Switching of the memristor between the two

states can be either unipolar or bipolar. A memristor that exhibits a unipolar switching

mode will rely only on the amplitude of the voltage and a switch to ‘1’ or ‘0’ can happen at

the same voltage polarity. A bipolar memristor will depend on the amplitude and polarity

of the applied voltage [55, 56].

0 VSETVRESET

Vwrite Vwrite

Figure 2.7: Programmable range of the write voltage. The voltage must be equal or greater than the
threshold voltage of the memristor.

2.2.4 Writing a Logic 0 to the Memristor

A negative (positive) voltage Vwrite ≤ Vreset (Vwrite ≥ Vset) is applied to the memristor for

a given period of time, the effect of the amplitude and duration of the applied voltage

16

also depends on the dopant mobility rate (µv) of the thin film (Eqn. 2.9). The higher the

mobility rate, the faster the memristor reacts to the applied voltage. The state variable w

can take on any value between 0 and D (length of doped and undoped region) as shown

in Fig. 2.4. However, for the sake of clarity and better understanding, it is assumed that w

will be approximately 0 and D for logic ‘0’ and ‘1’ respectively.

Figure 2.8: Reaction of the memristor cell to positive and negative voltages [43].

For purpose of analysis and simulation in this thesis, a parametric analysis was carried

out each time a new model is designed/adapted to ascertain the threshold voltages (Vset

and Vreset) of the memristor and the minimum duration required for the write operation

to be completed. In terms of the physical operation of the device during this write ‘0’

operation, the negative voltage will attract the positively charged de-oxygenated titanium

dioxide (TiO2−x) towards itself, thereby pulling it away from the undoped region (TiO2)

as shown in Fig. 2.8. Since the cell consists majorly of the undoped TiO2, the overall

resistance of the cell is high and it is regarded as state ‘0’.

2.2.5 Writing a Logic 1 to the Memristor

The same concept as writing a logic ‘‘0’ applies to writing a logic ‘1’ to the memristor

except that a positive (negative) voltage Vwrite≥VSET (Vwrite≤VRESET) is applied instead.

Physically, the positive voltage repels the oxygen vacancies in the TiO2−x region further

into the TiO2 layer, thereby making the device almost completely filled with the more

conductive TiO2−x from the surface as shown in Fig. 2.8.

17

2.2.6 Reading from a Memristor

The read operation is a bit complicated compared to the write operation. The read voltage

Vread must be set such that it is less than the memristor’s threshold voltage so as not to

affect the memristance of the cell as shown in Fig. 2.9. A simple and effective way of

reading the state of a memristor is through the use of a voltage divider sensing technique.

A load resistor (Rload) is connected in series to the memristor in order to convert the

current from the memristor into a voltage signal. The output voltage (Vout) that translates

the content of the cell is tapped in between as shown in Fig. 2.10. The output voltage

and current is computed according to Eqn. 2.11 and 2.12. It represents the output of the

voltage divider consisting of the load resistor and the resistance (RM) of the memristor

itself. Reading from a memristor involves applying a small voltage not sufficient to SET

or RESET the cell to one end and sensing the output at the opposite end of the cell.

0 VSETVRESET

Vread Vread

Figure 2.9: Safe range of the read voltage. Reading from a memristor involves applying a small
voltage not sufficient to SET or RESET.

Figure 2.10: Testbench (schematic) of memristor read/write circuit. During the read operation, R2
(Rload) is set to an optimum value to act as a voltage divider with the resistance of the memristor,
Vin =Vread . For the write operation R2 is set to 0 and Vin =Vwrite. An input voltage of 1V is used Vread
and 3V for Vwrite unless otherwise stated.

18

Low Resistance State (LRS)

High Resistance State (HRS)

Figure 2.11: I-V characteristics of the Memristor generated from the schematic in Fig. 2.10. Simula-
tion done on Cadence Virtuoso with the following parameters; Ro f f = 200KΩ, Ron = 100Ω, Vin = 1V ,
Vreset =Vset ≈ |0.9V |.

Vout =Vread×
Rload

Rload +RM
(2.11)

Iout =
Vread

Rload +RM
(2.12)

where RM ∈ {Ro f f ,Ron} represents either the off or on state of the memristor.

2.2.7 Demonstration of Memristor’s Non-volatility

A stated earlier, the memristor does not need power to retain information earlier stored in

it; this section demonstrates this ability through a simulated experiment. Several models

of the memristor havde been proposed to simulate the physical behaviour of the mem-

ristor [30, 57, 58]. In this experiment, we used the linear ion drift model described by

HP labs’ as it demonstrates characteristics similar to what was postulated by Leon Chua

in [29].

19

Figure 2.12: A schematic to show the non-volatility of the memristor, a switch is attached to the
memristor to turn off power supply after 4ns.

Fig. 2.12 shows the schematic of the test bench used for the simulation. It consists of

a memristor with a connected power supply switch. The switch was designed to be ON

initially then go OFF after a 4ns to ascertain the reaction of the memristor cell to power

supply cut-off.

Figure 2.13: Waveform showing the non-volatility of the memristor.

The first 4ns shows a high input voltage (waveform 1), a ON switch (waveform 2), a

high switch output (waveform 3) and the memristor switching from HRS (OFF) to LRS

(ON) (waveform 4) as a result (Fig. 2.13). When the switch goes OFF after 4ns and

power supply to the memristor is cut off, the memristor still retained its previous high

state. With the experiment above, the non-volatile ability of the memristor model has

been successfully validated.

20

2.2.8 Memristor Models and Window Functions

Although the rate of research on memristor kept soaring in recent years, there is however

no general consensus on the best memristor model for industrial and research purpose.

There are various memristor models in the literature which attempt to mimic its physical

description as much as possible. Various memristor models have been developed in the

past. They are discussed in this section. Table 2.1 shows a comparison of the models. For

a memristor model to be termed effective, it has to meet the following criteria [59]:

1. Accurate and computationally efficient.

2. Generic so as to fit different types of memristive applications.

3. Must work with thresholds (voltage and/or current) to enable accurate read and

write.

Memristor Models Linear Ion Drift

Model [30]

Non-Linear Ion

Drift Model [60]

Simmon Tun-

nel Barrier

Model [61, 62]

TEAM [59] VTEAM [63]

State variable (w) 0≤w≤D 0≤w≤1 ao f f ≤w≤aon xo f f ≤w≤xon wo f f ≤w≤won

I-V characteristics Explicit Explicit Ambiguous Explicit Undefined (freely chosen)

Threshold mechanism Current Voltage Voltage Current Voltage

Matched theorized

definition

Yes No No Yes Yes

Table 2.1: Comparison of memristor models.

2.2.8.1 Window Functions

The main aim of using a window function f (w) is to ensure that the state variable w

does not go beyond its specified boundary and ensures its non-linearity. Table 2.2 lists

the major window functions; Biolek [57], Joglekar [64], Prodromakis [65], TEAM [59],

VTEAM [63] and their properties.

21

Table 2.2: Comparison of window functions.

Window Function Biolek Joglekar Prodromakis TEAM VTEAM

Function f (w) 1 − (w/D −

st p(−i))2p

1− (2w/D−1)2p j(1 − [(w −

0.5)2 +0.75]p)

exp[−exp(|x− xon,o f f |Wc)] Eqn. 2.13

Maintains Boundary

Conditions

Yes No Yes (Practically) Yes (Practically) Yes (Practically)

Compatible Memris-

tor Models

Linear, Non-

linear ion drift &

TEAM

Linear, Non-

linear ion drift &

TEAM

Linear, Non-

linear ion drift &

TEAM

TEAM VTEAM

Symmetric Yes Yes Yes No No

dw(t)
dt

=

ko f f ·

(
v(t)
vo f f
−1
)αo f f

· fo f f (w), 0 < vo f f < v

0, von < v < vo f f

kon ·
(

v(t)
von
−1
)αon
· fon(w), v < von < 0

(2.13)

2.3 The Crossbar Architecture

The crossbar architecture consists of a set of parallel nanowires perpendicularly placed on

another set of parallel nanowires with a memristor cell inserted at every intersecting point

of the wires [38, 66, 67]. Crossbar architecture offers the possibility of building a highly

dense device structure, it’s meant to enable independent access to each device without

interference from other devices in the array. Cells in the same row are connected together

by one of the nanowires and cells in the same column are connected together by another

nanowire. In a crossbar array, the content of each cell can be sensed or programmed by

applying a balanced voltage to the row (column) that has the desired cell and grounding

the corresponding column (row). All the other unselected lines can be left floating or

partially biased as discussed in later sections.

22

Selected cell

Unselected cells
Partially-selected cells on
selected wordline (WL)
Partially-selected cells on
selected bitline (BL)

V

BL(1) BL(2) BL(3) BL(n)

WL(1)

WL(2)

WL(3)

WL(m)

Rsel

Rn Rmn Rm

V

Figure 2.14: An m×n memristor-based crossbar memory structure set-up for write operation and its
equivalent circuit model that depict the effect of all resistances in the array during the real operation.
Rsel represents the selected cell R1,1. Rm and Rn represent the row and column partially-selected cells
respectively and Rmn simplify the cells in the unselected lines [68].

Fig. 2.14 shows a typical m rows (wordlines) and n columns (bitlines) crossbar array of

memristors. Each memristor is represented by Ri, j, where i and j are the row and column

index respectively. Assuming memristor R1,1 in red is selected for read/write operation,

cells on the same wordline WL(1) and bitline BL(1) are classified as partially-selected

cells while others are unselected. In this thesis, all unselected and partially-selected cells

are classified together as unselected cells except otherwise stated. In summary, during

read/write operation on a single cell, the crossbar array can be categorised into four groups

of memristors [68]. The groupings are made possible because all memristors in each

group are in parallel with each other. If line resistances are ignored, the overall resistance

of any m×n crossbar array can be simplified to the equivalent circuit shown in Fig. 2.14

with four resistance values.

• Group I (Rsel): Cell selected for writing (red).

• Group II (Rm): Partially-selected m−1 cells on the selected bitline (green).

• Group III (Rn): Partially-selected n−1 cells on the selected wordline (purple).

• Group IV (Rmn): Unselected (m− 1)(n− 1) cells that are neither on the selected

bitline nor wordline (blue).

23

Rm =
R

(m−1)
(2.14)

Rn =
R

(n−1)
(2.15)

Rmn =
R

(m−1)(n−1)
(2.16)

Eqn. 2.14 - 2.16 are the closed form formula for each group of resistance as detailed

in [68]. Each equation is derived from the assumption that all memristors in each group

have a similar resistance value of R. These equations can be further enhanced to capture

the more realistic case of each memristor having a value of Ron or Ro f f , this will be

presented in Chapter 4.

As mentioned earlier, the memory application of the memristor is its most explored area.

The crossbar architecture offers the possibility of designing a memristor-based universal

memory [30] - a memory that combines the density of DRAM, non-volatility of Flash

and speed of SRAM among others. The semiconductor industry has been charged with

the task of exploring new technologies in order to ensure evolvement of computer mem-

ories. Memristor-based resistive RAM has demonstrated potentials capable of replacing

the existing transistor-based memories. Other emerging and existing memory technolo-

gies are shown in Fig. 2.15 and compared in Table. 2.3.

Figure 2.15: Types of memories including emerging ones.

24

Traditional Memories Other Emerging Memories

DRAM SRAM NOR Flash NAND Flash FRAM MRAM PCRAM ReRAM

(Memristor)

Cell Elementa 1T1C 6T 1T 1T 1T1C 1(2)T1R 1T(D)1R 1R

Feature Size (nm) 36-65 45 90 22 180 65 45 <5

Density (Gbit/cm2) 0.8-13 0.4 1.2 52 0.14 1.2 12 154-309

Read Time (ns) 2-10 0.2 15 100 45 35 12 <10

Write Time (ns) 2-10 0.2 107 106 65 35 100 0.3

Retention Time 4−64ms N/A 10 Yrs 10 Yrs 10 Yrs >10 Yrs >10 Yrs >10 Yrs

Endurance (cycles) > 1015 > 1015 > 105 > 105 > 1012 > 1015 > 109 > 1012

Non-volatile No No Yes Yes Yes Yes Yes Yes

Multilevel Capacity No No Yes Yes Yes Yes No Yes

Table 2.3: Comparison between Conventional Memories and Emerging Memories [69].

a C-Capacitor, T-Transistor, R-Resistor, D-Diode. [b]

2.3.1 Write Operation in Crossbar Array

As described previously, in the case of a single memristor, the memristor is in the ON

state when it is fully doped (w ≈ D) and OFF when undoped (w ≈ 0). A voltage Vwrite =

VSET switches the memristor from the OFF state to the ON and Vwrite = VRESET switches it

from ON to OFF state. VRESET and VSET are of opposite polarity. A memristor that is al-

ready in an OFF (ON) state will not react when VRESET (VSET) is applied. In conventional

write operation on crossbar memory with memristor as the storage unit, the write voltage

is applied to the selected row (column) while the selected column (row) is grounded or bi-

ased. The voltage across the memristor must be greater than its threshold voltage in order

to programme the memristor as shown in Fig. 2.16. The conventional write operation is

not very effective as partially-selected memristors can experience resistance loss (partial

change of state) as a result of the half voltage reaching them [37]. The V/2 and V/3 write

scheme was first introduced in [70]. These schemes bias the floating lines to result in a

maximum voltage of Vwrite/2 and Vwrite/3 across the unselected memristors respectively.

These write schemes will be further explored in Chapter 5 in addition to the proposal of

novel techniques to improve the reliability of crossbar write operation.

25

RL (Sense resistor)

Vread/Vwrite

Figure 2.16: Setup of read/write operation in memristor crossbar architecture.

2.3.2 Read Operation in Crossbar Array

In order to read the data stored by a memristor in a crossbar array, a read voltage VRESET <

Vread < VSET is applied to the selected row (column) and the selected column (row) is

grounded such that the voltage drop across the memristor is insufficient to switch the

memristor (see Fig. 2.16). The output can be sensed using most of the existing sensing

circuits [32]. This work uses a basic voltage divider technique for converting the current

into voltage signal at the output. An output voltage of approximately zero indicates a

memristive state of OFF (logic ‘0’) while a voltage approximately half of the write volt-

age indicates an ON (logic ‘1’) memristor. The crossbar architecture suffers from current

leakage paths during read operation in the absence of a supportive gating device thereby

making it difficult to independently access each crosspoint memristor without extra cir-

cuitry. In practical applications, current sneaks through cells parallel to the desired cell(s)

and severely degrades the read output and makes it difficult to differentiate between the

resistance states of the desired cell(s). The effect also becomes severe as the array size

and the number of ON memristors in the array increases.

2.3.3 Sneak-path Leakage in Crossbar Array

As good as the crossbar architecture is, it has a major limitation with the use of memris-

tor; it is prone to current leakages (sneak-path). Sneak-paths are undesired current paths

26

through neighbouring cells when a particular cell in the crossbar is selected for read or

write operation as portrayed in Fig. 2.17 [38]. Effect of the sneak-path issue includes

high power consumption, limitation on the maximum array size, decline in the effective

read margin among others. As cells in each row are connected by their top electrode and

cells in each column are connected by the bottom electrode, sneak-path becomes a major

challenge when designing high density crossbar structures. Sneak-paths particularly lead

to erroneous reading of data stored in a memory cell because of interference of undesired

currents from the unselected neighbouring cells. Resistance of unselected cells combine

to form a parallel resistance path with the resistance of the desired cell as illustrated by

the equivalent circuit in Fig. 2.17. Isneak (the current through the unselected cells) is

data-dependent as well as array size dependent. A larger array with more low resistance

unselected cells will result in high Isneak value. During write operation, sneak-paths can

cause unselected cells to be accidentally overwritten. One can easily conclude that all

other problems associated with this architecture are a rippling effect of the sneak-path

issue.

Rload

ON Memristor
OFF Memristor

(target)

Current Sneak Path (Isneak)
Current desired path (Idesire)Ioutput = Idesire+ Isneak

Vread

(a)

Rload

Output

Vdd

RsneakRM

(b)

Figure 2.17: Demonstration of sneak-paths effect in crossbar architecture (a) Reading from a cross-
bar Array. Idesire is the current of the desired cell (Red cell) while Isneak is the sneak-path current from
undesired cells, both currents combine to form Iout put which is not the desired output (b) Equivalent
circuit model of sneak-paths effect.

The floating row and column biasing scheme is applied to the schematic in Fig. 2.16 and

2.17. The selected row and column are connected to the read voltage (Vread) and ground

respectively and other lines are left floating. The sensing mechanism in this structure is

the voltage divider formed by the selected cell and the connected load resistance (RL). The

output voltage should ideally depend largely on the content of the selected cell in red but

for sneak-path which causes other unselected cells to contribute to the output. The read

27

voltage Vread was designed to satisfy the condition in Fig. 2.9 depending on the direction

of flow of current in order to prevent accidental corruption of the cell.

Figure 2.18: Read margin degrades rapidly as array size increases in the presence of sneak-path as
computed using Eqn. 2.19.

The total sneak-path resistance Rsneak in the array is a series combination of Rm, Rn and

Rmn according to Eqn. 2.17. Rm, Rn and Rmn are explained in Section 2.3 and defined by

Eqn. 2.14, 2.15 and 2.16

Rsneak = Rm +Rn +Rmn (2.17)

The sneak-path resistance Rsneak combines in parallel with that of the selected cell Rmem

(Ro f f or Ron) to result in the effective resistance that forms a voltage divider with the load

resistance RL.

Rmem e f f = Rmem||Rsneak (2.18)

The read margin (∆V) parameter represents the figure of merit that makes it possible to

differentiate between the two possible logic states 0 (Ro f f) and 1 (Ron) of a memristor

cell. The sensing margin is calculated as the difference between the output voltage of the

Ron and Ro f f states of the memristor as shown below:

∆V =V 1
out−V 0

out (2.19)

where V 1
out and V 0

out are the output when Rmem = Ron and Ro f f respectively. Ideally, Vout

should be computed according to Eqn. 2.20 where the output is strictly dominated by the

selected memristor and the known load resistor and not Eqn. 2.21 but for sneak-paths.

Fig. 2.18 shows the effect of sneak-path on the read margin of crossbar arrays. The read

margin deteriorates rapidly as the size increases, the worst and best case scenarios for

28

sneak-path are discussed in section 4.4.

Vout =Vread×
RL

RL +Rmem
(2.20)

Vout =Vread×
RL

RL +Rmem e f f
(2.21)

The maximum array size for a crossbar in the presence of sneak-path will be derived in

section 4.2.

2.4 Summary

This chapter extensively describes the background concepts related to memristor and the

crossbar architecture. Existing memristor models are summarised. This chapter also

experimentally demonstrated the non-volatility of the memristor as well as its read and

write operations. Memristor-based crossbar architecture and the sneak-path current leak-

ages are also explained in this chapter. The next chapter will review existing related work

that are relevant to the contribution of this thesis.

29

Chapter 3

Review of Related Work and Baseline

Research

This section reviews some of the existing architectures and techniques for ensuring reli-

ability of the memristor-based devices in addition to those discussed in the background

section. Literature involving memristor was almost non-existent before the physical re-

alisation of the device by HP labs in 2008. Section 3.1 presents a review of some of the

existing solutions to the read and write problem with memristor-based crossbar arrays.

Section 3.2 reviews a recent emerging application area of the memristor - gas sensing.

Most of the literature items in Section 3.2 are related to the use of metal-oxide in gas

sensing which set a strong motivation for the use of TiO2−x-based memristor for gas

sensing.

3.1 Read and Write Operations in Memristor Based Cross-

bar Arrays

As earlier mentioned, reliability of the read and write operation in memristor based cross-

bar arrays is critical for the commercial realisation of memristors in mainstream devices.

Several techniques have been proposed towards achieving improved reliability for read

and write operation in crossbar arrays. One major factor affecting the reliability of read

and write operation in crossbar array is the sneak-path problem described in Section 2.3.3.

Write operation particularly suffers from the voltage loss problem. This problem arises

from the voltage degradation due to line resistances in the crossbar array [71]. The ob-

30

vious solution to the voltage drop problem caused by line resistance will be to increase

the write voltage but this also increases the maximum voltage reaching the unselected

cells [72]. One approach to solving this problem is the double-sided ground biasing

(DSGB) approach where both sides of the selected wordline array are grounded and the

selected bitline is connected to the write voltage [73]. Another solution uses the dual volt-

age source design where voltage is delivered via both sides of the selected wordlines [71].

However, both techniques incur additional chip area overhead thereby reducing the array

efficiency without offering much in terms of preventing voltage degradation. Chapter 4

and 5 are dedicated to read and write operations in crossbar arrays respectively. In these

chapters, various solutions are proposed to some of the problem that arises directly and

indirectly from the sneak-path and voltage loss problem.

3.1.1 Sneak-path Elimination Techniques

Various methods have been proposed for addressing the sneak-paths problem in crossbar

architectures. Each of these methods have their pros and cons and there is not a generally

accepted solution to this problem without tradeoff of one or more of the performance

metrics. This section presents a review of some of these methods. The existing sneak-path

elimination methods can be subdivided into three categories as explained in the following

sections. Table 3.1 presents a summary of all the discussed techniques.

3.1.1.1 Additional Crosspoint Device

As mentioned earlier, sneak-path can be prevented by including an isolating device along-

side the memristor at every crosspoint of the crossbar, in the absence of an access de-

vice, sneak-path becomes more prominent and current flows freely within the array [74].

In this category, there is the one transistor and one memristor (1T1M) memory struc-

ture [75], one diode and one memristor (1D1M) [76], and one memistor and one mem-

ristor (1M1M) [77]. These techniques are able to minimise sneak-path in the array but at

the expense of area per cell, array density, 3-D integration, fabrication issues as well as

power inefficiency among other shortcomings.

One Transistor and One Memristor (1T1M)

The aim of this technique is to isolate/block unselected memristor cells during write/read

operation so that current does not flow through them. This is achieved according to [78]

31

by connecting a CMOS transistor in series with every memristor in the array as shown

in Fig. 3.1. The 1T1M structure was modelled after the DRAM setup but for capacitor

that is being replaced with a memristor in this case. This architecture prevent sneak-paths

by restricting current access to other cells but the selected cell. If the first element in the

first row of Fig. 3.1 is selected for read, the transistors in the other rows are switched off.

Although the transistors in the first row are on, the current reaching the other unselected

cells in this row are shunted out and a complete circuit like Fig. 2.14 is impossible. Even

though this technique minimises sneak-path, the major drawback to this technique is the

extra area that will be used up by these added transistors; this has an adverse effect on the

array density and footprint of the architecture. The power consumption of this architecture

is minimal as it is only the selected cells that have current paths.

Vread

1

0

0

Rload

Figure 3.1: The 1T1M structure.

One Diode and One Memristor (1D1M)

The 1D1M is another technique similar to the 1T1M above that solves the sneak-path

problem. This technique was introduced in [76] as a preamble to the design of hybrid

CMOS/Nano multi-level memristor memory (MLMM) device and it works by connect-

ing a diode in series with each memristor at every cross point as shown in Fig. 3.2. It

minimises leakages by making the combination (diode and memristor) unidirectional as

memristor alone are bidirectional. If the first element in the first row of Fig. 3.2 is selected

for read, current does not flow though the other memeristors in unselected row because of

the opposing diodes. Although current flow through the other unselected memristors in

32

the selected row but they are eventually shunted out and a complete circuit like Fig. 2.14

is impossible. However, as good as the technique looks, these diodes introduce parasitic

capacitances into the structure and this causes extra delay as well as a reduced output

swing due to the threshold voltage of the diode [45].

Vread

Rload

Figure 3.2: The 1D1M structure.

One Memistor and One Memristor (1M1M)

The memistor was introduced before the memristor by Prof. Bernard Widrow in 1960

for use in adaptive circuit. A memistor is a three-terminal device that has the resistance

between two of its terminals controlled by instantaneous control current in the third ter-

minal, but by the time integral of the current [79]. Meaning that the memistor can retain

its state without an active bias on the third terminal. In this gating method as proposed

in [77], a memistor was connected in series with a memristor just like it was done with a

transistor and diode but with the addition of an extra column in order to connect the third

terminal (Fig. 3.3). In order to access a desired cell, the memistor connect to the memris-

tor cell is turned ‘ON’ with all others turned OFF, meaning that all other undesired cell

where sneak-path could occur are always in high resistance (includes the resistance of the

‘OFF’ memristor itself and the resistance of the other two terminals of the memistor) to

greatly limit the effect of sneak-paths. This technique consumes less power because of

the bias-less switching of the memistor but extra wires introduced because of the third

terminal of the memistor will introduce extra line resistance.

33

Figure 3.3: The 1M1M structure.

Complementary Resistive Switch

The Complementary Resistive Switch (CRS) introduced in [38] seems to have gained

more popularity over others in recent times as it is devoid of the weaknesses associated

with other crosspoint techniques. Rather than combine the usual active device with the

memristor as in the case of 1T1M and 1D1M, this method instead combines two mem-

ristor cells together anti-serially into a CRS (Fig. 3.4). The logic states of the CRS result

in high resistance values (Ro f f +Ron) to ensure sneak-path is reduced to a minimal level.

There will be less flow of leakage current through the neighbouring cells because of their

high resistances. The CRS method offers much reduced area per cell than the other access

device but could be susceptible to resistance loss [37]. The CRS is further discussed in

section 3.3.

Figure 3.4: Symbol of the CRS.

3.1.1.2 Multi-step Reading

Multi-step reading involves executing the read operation over a minimum of two or more

stages before the correct content of the desired cell can be correctly determined. In [80],

the authors introduced a two-step read operation where the first step senses the leak-

age current only and the second step senses the overall current. The difference between

34

the output of both stages represent the current from the desired cell. Other multi-step

techniques were reported in [81] with a three steps read and in [82] with seven steps.

Multi-step reading techniques however have a downside to it as it introduces extra sens-

ing circuitry and increases the average reading time.

3.1.1.3 Line Biasing

Sneak-path can also be minimised via the voltages applied to the word and bit lines.

Authors in [76, 83] discussed four different techniques in this category: Floating rows

and columns (FRFC) (Fig. 3.5(a)), grounded columns and rows (GRGC) (Fig. 3.5(d)),

grounded columns and floating rows (FRGC) (Fig. 3.5(b)) and floating columns and

grounded rows (GRFC) (Fig. 3.5(c)). These biasing techniques could however not en-

sure a sufficient read margin beyond an array size of 64× 64 [81]. GRGC, GCFR and

FCGR also consumes excess power because of their connection to the ground. These

techniques will be further investigated in Section 4.3. Authors in [37] proposed a two-

step write scheme to minimise the effect of sneak-path in the crossbar array by timing the

duration of write voltage application using additional control circuitry. Authors in [71,

73] also propose a technique to apply voltages from both sides of the crossbar during the

write operation in order to compensate for current lost to line resistance.

RL

Vread

Vout

(a)

RL

Vread

Vout

(b)

RL

Vread

Vout

(c)

RL

Vread

Vout

(d)

Figure 3.5: Setup of the four line biasing methods for unselected lines (a) Floating rows and float-
ing columns (b) Floating rows and grounded columns (c) Grounded rows and floating columns (d)
Grounded rows and grounded columns.

35

Table 3.1: Comparison of various sneak-path prevention techniques.

Technique Power

Consumption

Area

Efficiency
Speed Ease of

Fabrication

Number of

Devices

Extra

Circuitry

1T1M Average Poor Average Fairly complex 2 Yes

1D1M Average Poor Average Fairly complex 2 Yes

1M1M Average Poor Average Fairly complex 2 Yes

FRFC Good Good Fast Easy 1 No

FRGC High Good Fast Easy 1 No

GRFR High Good Fast Easy 1 No

GRGC High Good Fast Easy 1 No

CRS Moderate Good Average Fairly Complex 2 No

Multistep reading Moderate Average Slow Easy 1 Yes

3.1.2 Write Operation in Multiple cells

Another area worthy of review is the multiple bits write in crossbar arrays. It is possible

to write multiple cells in a crossbar row simultaneously by applying a write voltage to the

selected rows and biasing the columns that have the target cells. This simple technique

works well if only all the target cells are to be programmed to the same value. However,

write operation becomes more complex when the target cells are to be programmed with

different values. We assume the memristors are in the bipolar mode of operation (can

only be switched ON (OFF) by a positive voltage and switched OFF (ON) only by a

negative voltage). Writing non-similar data in multiple cells require the SET operation to

write a logic 1 (ON) and the CLEAR (RESET) operation to write a logic 0 (OFF). Two

write schemes for writing non-similar data in multiple cells in memristor-based array

were proposed in [32]: SET-before-RESET (S-b-R) and ERASE-before-RESET (E-b-R)

as shown in Fig. 3.6 and 3.7 respectively.

36

Vw/2

Vw

Vw/2

1 X 1 X

Vw/2

GND GND

Vw/2

Vw/2

(a) SET Phase - Write of 1X 1X

Vw VwVw/2 Vw/2

GND

Vw/2

Vw/2

Vw/2

1 0 1 0

(b) RESET Phase - Write of X 0X 0

Figure 3.6: Conventional SET-before-RESET technique using the V/2 Write Scheme.

1 1 1 1Vw

Vw/2

Vw/2

Vw/2

GND GNDGND GND
(a) ERASE Phase - Write of 1111

Vw VwVw/2 Vw/2

1 0 1 0
GND

Vw/2

Vw/2

Vw/2

(b) RESET Phase - Write of X 0X 0

Figure 3.7: Conventional ERASE-before-RESET technique using the V/2 Write Scheme.

SET (write of 1) and RESET (write of 0) operations cannot be simultaneously executed

in a single cycle on the same row in a crossbar array because of the opposing polarity of

write voltages required to SET and RESET the cell. For instance, a 4×4 memory array

that needs to have a data set of “0 1 0 1” in its first row will have to go through two phases

for this to be achieved, all in a bid to separate the SET and RESET operations. In the

first method, SET-before-RESET (Fig. 3.6); the first phase of this method writes “x 1 x

1” where ‘x’ is the original state of the cell (unchanged), followed by a write of “0 x 0

x” in the second phase to complete the “0 1 0 1” sequence. The second method; ERASE-

before-RESET (Fig. 3.7) starts by writing “1 1 1 1” (ERASE) in the row so as to erase the

original content of the cells, then a RESET of “0 x 0 x” is carried out in the second phase.

37

The S-b-R and E-b-R multiple cells write techniques proposed in [32] was designed us-

ing the V/2 write scheme described later in Section 5.2.1.2. The V/2 scheme has the

advantage of consuming less power and also reducing the number of cells that can be

perturbed. One major downside of the V/2 scheme during single cell write is the high

probability of the unselected cells been disturbed. In Chapter 5 of this thesis, improved

multiple cells write techniques is presented with the use of the more reliable V/3 write

scheme described later in Section 5.2.1.3. The few cells (m+ n− 2) exposed to voltage

disturbance in V/2 have a 0.5 probability of being affected while the exposed (mn− 1)

cells in the V/3 scheme have a 0.33 chance of being disturbed.

3.2 Gas Sensing with Memristor

The gas sensing properties of metal oxide semiconductors have been widely studied over

the years [84, 85, 86, 87]. Some common metal oxide semiconductors sensor include tin

dioxide (SnO2), zinc oxide (ZnO), chromium titanate (CTO) among many others. With

respect to other sensor technologies they are simple, inexpensive, miniaturizable and of

good sensitivity [88]. Despite their simple operation, they are scarcely selective and might

be required to work at high temperature [89]. However, advances have been made in some

of these areas. Recently, authors in [90] demonstrated that nanomaterials metal oxide gas

sensor can perform optimally at room temperature [91]. Gas sensors are particularly im-

portant in preventing the spread of gases that are harmful to organic life and also in the

detection of oxygen deficiencies in environments where they are required. TiO2 metal

oxide semiconductor, which forms the crux of this thesis was used by HP Labs to fab-

ricate the first physical memristor device [30]. HP’s memristor was made of a thin film

TiO2 sandwiched between platinum electrodes. TiO2 has specifically received extensive

attention in various applications such as photovoltaics [92], photocatalysis [93] and sen-

sors [94]. In [95], relative humidity sensors were tested by employing vertically aligned

TiO2 nanotubes array film produced using electro-chemical anodisation of titanium foil

followed by a nitrogen-doping process. It was shown that the overall sensitivity is higher

at lower frequency range of 109−1000Hz.

The use of metal oxide nanoscale devices as gas sensors and biosensors has grown in re-

cent years [95]. Memristor is among the nano-devices that have recently been investigated

for their use as a sensing element because it primarily consists of metal oxide [53] (sec-

38

tion 6.2). Apart from TiO2, memristive devices can be fabricated using different metal

oxide semiconductors such as aluminium oxide (Al2O3) [96], copper oxide (Cu2O) [97],

silicon oxide (SiO) [98] among many others [56]. Memristor’s resistance variation can be

captured to indicate presence of gases and it is the building block of recently shown mem-

ristor sensors. Authors in [99] experimentally demonstrated that a Pt/TiO2/Pt memrsitor

can effectively be used as an hydrogen sensor. When a certain concentration of gas is

directed towards the surface of a memristor, its resistance might be altered depending on

the semiconducting material (Fig. 6.3). This causes a change in output of the associated

read circuitry. Modelling this resistance changing behaviour in a sensor array is the basis

of a smart sensing system. By building different structural models of resistance changes

and then modelling the read behaviour and sensitivity of the structure, it is possible to

evaluate the performance of a smart sensing system.

Memristive-biosensors were reported in [53], where memristive effects were registered

on silicon nanowire. They also fabricated nanowires using lithographic technique that

allows precise and selective etching at the nanoscale. However, none of the existing liter-

ature directly addresses gas sensing using memristor crossbar array. This thesis therefore

provides an initial framework for the use of memristor crossbar array for gas sensing

using information and techniques developed from the crossbar read and write operation

(chapter 6).

3.3 Baseline Research: Write Schemes for Multiple CRS

cells

So far, this review has focussed on pure memristor based crossbar array. As part of the

initial research presented in this thesis, we extend the multiple cells schemes to CRS-

based crossbar array. As it is with single memristor based memory array described in

Section 3.1.2, CRS-based memory also require a two-phase write operation when mul-

tiple cells are to be written in a row. Two write schemes for writing multiple cells in

memristor-based array was proposed in [32]: SET-before-RESET (S-b-R) and ERASE-

before-RESET (E-b-R) as discussed in Section 3.1.2.

Writing to a single CRS cell in a cross point structure can be achieved via the V/2 or V/3

scheme [100], both schemes however have their challenges. In the V/2 scheme, half-

39

selected cells usually have a voltage drop as high as V/2 which often leads to resistance

loss if this voltage is applied over a long time [37]. V/3 prevents resistance loss but

consumes more power as a result of the large 2V/3 voltage applied to the unselected

cells.

Figure 3.8: Schematic of a 4×4 CRS-based memory used to obtain the result in Table 3.2 and 3.3

3.3.1 E-b-R scheme with CRS-Based Memory Array

This section presents a direct implementation of E-b-R scheme on CRS-based memory

array as shown in Fig. 3.9(a)- 3.9(c). This work differs from what was done in [32] where

E-b-R was applied to single cell array. Our aim here is to write a “0 1 0 1” data pattern

in the first row of a 4× 4 CRS memory array with separate analysis for a logic 0 and

logic 1 initialisation. The Verilog-A model proposed in [101] was used to simulate each

CRS cell; this model combines the linear and non-linear memristor characteristics and has

the advantage of ON/OFF symmetric voltages. Approximately twice the write voltage of

memristor is required for the CRS because the CRS is a combination of two memristors.

Our design is similar to the implementation of this scheme on memristor-based array

in [32] but with further consideration of the initial state of the cells. The effectiveness

of the E-b-R scheme on CRS array is also affected by the initial state of the cells. Sim-

ulation results from this implementation are presented in Fig. 3.10. The E-b-R scheme

executes successfully when cells are initialised to 1 but the scheme fails when the cells

are initialised to 0 (3.9). When the cells that are meant to switch to 0 in the RESET phase

are stuck in the ON state. The reason for this failure will be discussed and addressed in

Section 3.3.2.

40

0 0 0 0

(a)

-Vw

GND GND

-Vw/2

-Vw/2

-Vw/2

1 1 1 1

GND GND

(b)

Vw
ON 1 ON 1

GND GND Vw/2Vw/2

Vw/2

Vw/2

Vw/2

(c)

Figure 3.9: Direct implementation of E-b-R on CRS memory array. (a) Set-up Phase (b) ERASE
Phase (“1 1 1 1”) (c) RESET Phase (“0 x 0 x”), cells in blue dashed box represents the unselected cells
while green represents the half-selected lines.

When all the cells in the first row are initialised to 0, cells (1, 2) and (1, 4) had a complete

transition but cells (1, 1) and (1, 3) which have to go through two transitions (0→ 1 and

1→ 0) get stuck in the ON state (LRS/LRS) during the second transition (1→ 0). This is

evident by the persistent high current in the array right from the start of the second phase

(4ns) till the end of the simulation as shown in Fig. 3.10(a) and 3.10(b). This means that

the applied voltage is not sufficient for the cells to complete switching in the second phase.

The effect of these cells getting stuck at the ON state is increased power consumption in

the array as a result of high current that is being generated at this transient state. The

integrity of the array is also affected negatively as subsequent read operation will result

in a false output.

41

(a)

(b)

Figure 3.10: Simulation outcome of E-b-R scheme on CRS-based memory array with cells initialised
to 0. (a) Cells (1, 1) and (1, 3) that have to go through more than one transition are stuck in the ON
state. (b) Current waveform. Spike at 0ns indicate state change across all four cells (0→ 1) in 1st
phase but cells (1, 1) and (1, 3) generated a persistent high current all through the 2nd phase as a
result of the cells been stuck in transient (ON) state in the process of executing the (1→ 0) transition.

3.3.2 CRS Compensated Write Voltage Technique

As earlier mentioned, more write energy is needed for the E-b-R scheme. This problem

becomes more prominent with CRS arrays because of the doubled voltage required to

write the CRS cells as well as the voltage degradation suffered by the CRS array after

the first phase. The proposed method to correct the challenge faced by the E-b-R scheme

42

when the cells are initialised to 0 was achieved through the biasing voltages for both rows

and columns of the array. The following manipulations were done to achieve an effective

E-b-R scheme on CRS memory array irrespective of the initial state of the cells:

• As against the usual grounding of the column terminal of the cell(s) to be written

to, an additional voltage source of Vwrite/2 was connected to the column of cells (1,

1) and (1, 3) in the second phase (Fig. 3.9c). This is to compensate for any amount

of voltage that might have been lost. This will also ensure that there is sufficient

voltage for the upper memristor in the CRS to switch from LRS to HRS, thereby

the CRS switches to the required logic state 0.

0 0 0 0

(a)

-Vw

GND GND

1 1 1 1

GND GND

(b)

Vw 0 1 0 1

-Vw/2-Vw/2 Vw/2 Vw/2

(c)

Figure 3.11: Proposed E-b-R scheme on CRS memory array showing complete transition. (a) Initial
Phase (b) ERASE Phase (“1 1 1 1”) (c) RESET Phase (“0 x 0 x”).

• The redundant Vwrite/2 biasing that was applied to the terminals of other unselected

rows in the first phase of the old scheme was also ignored in this new scheme,

the unselected rows are left floating for both phases. This leaves the voltages of

the unselected and half-selected cells at −Vwrite/2 and Vwrite/2 respectively in the

second phase, this voltage would not be sufficient to switch the unselected and half-

selected cells but will ensure we get the desired output for the selected cells.

• The power conservation ability of the improved scheme was achieved primarily in

the second phase. For the first phase the unselected and half-selected cells have

a net voltage of 0V across them while the selected cells have a voltage drop of

Vwrite across them as against the old scheme that biased these unselected rows with

a minimum voltage of |Vwrite/2| in both phases.

Both cases of initialising cells to 0 and 1 are verified to be successful in their execution

as shown by the simulation output in Fig. 3.12a and 3.12b. Tables 3.2 and 3.3 compare

43

the performance metrics. These results are generated using subset of the schematic in

Fig. 3.8.

Table 3.2: Result of E-b-R write scheme with cells initialised to logic 0. New method compared against
conventional.

Proposed E-b-R write scheme Conventional E-b-R write scheme

Cells 1st Phase 2nd Phase 1st Phase 2nd Phase

(1,1) 0→ 1 1→ 0 0→ 1 1→ ON

(1,2) 0→ 1 1→ 1 0→ 1 1→ 1

(1,3) 0→ 1 1→ 0 0→ 1 1→ ON

(1,4) 0→ 1 1→ 1 0→ 1 1→ 1

Total power 1.39mW 17.24mW

Write time 0.26ns Incomplete transition

Table 3.3: Result of E-b-R write scheme with cells initialised to logic 1. New method compared against
conventional.

Proposed E-b-R write scheme Conventional E-b-R write scheme

Cells 1st Phase 2nd Phase 1st Phase 2nd Phase

(1,1) 1→ 1 1→ 0 1→ 1 1→ 0

(1,2) 1→ 1 1→ 1 1→ 1 1→ 1

(1,3) 1→ 1 1→ 0 1→ 1 1→ 0

(1,4) 1→ 1 1→ 1 1→ 1 1→ 1

Total power 0.29mW 0.34mW

Write time 0.05ns 0.12ns

In terms of power consumptions, our approach ensures steady and minimal power con-

sumption (Fig. 3.13) during both phases of the operation as against the old approach. The

old approach resulted in a sharp increase in power consumption at the start of the second

phase especially when the cells are initialled to 0s (this is the worst case scenario when

cells have to undergo more than one transition). This sharp increase is as a result of some

of the cell’s inability to complete their second transition and getting stuck in the transient

state as earlier mentioned. The magnitude and duration of the write voltage as well as

the current dissipated during the write operation are factors that contributes to the total

power consumed. Also worthy of mention is the mobility rate of the switching material, a

high mobility rate increases the switching speed and reduces power consumption in most

cases.

44

(a)

(b)

Figure 3.12: Simulation of improved E-b-R scheme with CRS. (a) With array initialised to 0s (b)
With array initialised to 1s. All the four cells were successfully written with the desired “0 1 0 1” data
pattern. State A and state B are the states of the two memristors in each CRS.

45

(a) (b)

Figure 3.13: Comparison of power consumption in memory array (a) With array initialised to 0s (b)
With array initialised to 1s.

3.4 Summary

This chapter identified and briefly reviewed existing work related to read and write oper-

ations in crossbar arrays. Also reviewed is the application of memristors as a gas sensor.

The chapter concludes with a presentation of our initial research result in the use of mul-

tiple cells read technique to improve the reliability of read operation in CRS crossbar

array. All of the reviewed work have their pros and cons. The work done in this thesis is

aimed towards improving the reliability of these major operations of the crossbar in order

to widen the application area of the memristor. It is worth mentioning that a complete

memory system will also require reliable control circuitry which have been referred to in

the previous chapter.

46

Chapter 4

Improved Techniques for Crossbar

Array Read Operation

4.1 Introduction

Reliable and high performance memory read techniques is one of the key factors in emerg-

ing memory technologies and it is becoming increasingly important as integration com-

plexity continues to grow. Ideally, memristor-based memories are not susceptible to radi-

ation induced soft errors but research has shown error might occur from the failure of their

read and write operations [102]. An in-depth understanding of the memristor-based cross-

bar array and its read schemes are critical to the adoption of this technology in memory

design and other related applications as such as gas sensing. One major challenge in suc-

cessfully reading from memristor-based memories is the sneak-paths problem described

in Chapter 2. In traditional memories, selection or isolation devices such as transistors

and diodes are used to prevent the parasitic current paths in the system. As explained

previously, extra component increases the footprint of the device and makes it difficult to

design reliable high density memory structures. This chapter begins with the derivation

of an improved model for the crossbar array in Section 4.2. This new model captures

the practical behaviour of the crossbar array. Section 4.3 presents the resistance models

of the existing crossbar array read schemes before the effects of sneak-paths on the read

margin of the read schemes were comprehensively analysed in Section 4.4. The power

consumption rate of these schemes are presented in Section 4.5. Section 4.6 proposes

a novel multiple cells read scheme capable of eliminating sneak-paths depending on the

data distribution in the array. The multiple cells read technique was also applied to a novel

47

error detection and correction technique for memristor-based memories. Most of the de-

signs and simulations in this chapter are carried out on Cadence Spectre simulation tool

using smaller arrays. In order to design and simulate much larger arrays, simulation tools

were developed in C++ using existing and derived mathematical models of the designs.

The results of the C++ tool were verified against that of the Cadence tool. The C++ scripts

are listed in appendix B and are referred to in different sections and figure captions in this

chapter. A typical 256 × 256 crossbar array can be simulated in less than a minute by the

developed C++ script by simply updating the parameterised m and n values. This same ar-

ray size requires extra design work with Cadence Virtuoso user interface with simulation

time in hours.

4.2 Improved Crossbar Array Model

It is crucial to have an accurate and robust model that captures the behaviour of crossbar

read operation that will enable designers to verify simulation and other related perfor-

mances of the read operation. This section presents improved formulas that model the

m×n crossbar array depicted in Fig. 4.1. Assuming each of the memristors have a resis-

tance value Ri, j (i = 1...m and j = 1...n) that can either be Ron or Ro f f and R1,1 is selected

for read as depicted and explained in Fig. 4.1 and Section 2.3. The closed form formulas

for Rm, Rn and Rmn in Section 2.3 [68] were derived with the assumption that all mem-

ristors in a group have an identical resistance state of either Ron or Ro f f . This is usually

not the case, each group will contain both low and high resistance state cells in practical

applications. Robust closed form formulas can be derived for each group of memristors

which caters for randomness of resistance state within the group such that each group is

free to work with both high and low resistance state cells simultaneously. In order to make

the formula generic, the number of cells in the Ro f f and Ron state will be represented by

Ko f f and Kon respectively.

48

Selected cell

Unselected cells
Partially-selected cells on
selected wordline (WL)
Partially-selected cells on
selected bitline (BL)

V

BL(1) BL(2) BL(3) BL(n)

WL(1)

WL(2)

WL(3)

WL(m)

Rsel

Rn Rmn Rm

V

Figure 4.1: An m× n memristor-based crossbar memory structure and its equivalent circuit model
that depict the effect of all resistances in the array. Rsel represents the selected cell R1,1. Rm and Rn
represent the row and column partially-selected cells respectively and Rmn simplify the cells in the
unselected lines [68]. Duplicated from Fig. 2.14.

To derive the formula Rm for the resistance of the m−1 Group II (green) cells connected

in parallel:

1
Rm

=
1

R2, js
+

1
R3, js

+ ...+
1

Rm, js
(4.1)

since Ri, j ∈ {Ron, Ro f f } and js = 1 is the index for selected column

1
Rm

=
1

Ron or Ro f f
+

1
Ron or Ro f f

+ ...+
1

Ron or Ro f f
(4.2)

Rm =
RonRo f f

KonRo f f +Ko f f Ron
(4.3)

since Kon +Ko f f = m−1, Kon = m−1−Ko f f and Ko f f = m−1−Kon

Rm =
RonRo f f

(m−1−Ko f f)Ro f f +(m−1−Kon)Ron
(4.4)

=
RonRo f f

(m−1−Ko f f)Ro f f +(Ko f f +Kon−Kon)Ron
(4.5)

=
RonRo f f

(m−1−Ko f f)Ro f f +Ko f f Ron
(4.6)

=
RonRo f f

(m−1)Ro f f −Ko f f Ro f f +Ko f f Ron
(4.7)

Therefore,

49

Rm =
RonRo f f

(m−1)Ro f f −Ko f f (Ro f f −Ron)
(4.8)

For the resistance of the n−1 Group III (purple) cells connected in parallel, Rn;

1
Rn

=
1

Ris,2
+

1
Ris,3

+ ...+
1

Ris,n
(4.9)

Similar derivation process used for Rm can be used to derive Rn except that, Kon+Ko f f =

n−1. Therefore:

Rn =
RonRo f f

(n−1)Ro f f −Ko f f (Ro f f −Ron)
(4.10)

For the resistance Rmn of the (m−1)(n−1) Group IV (blue) cells connected in parallel:

1
Rmn

=
1

R2,2
+

1
R2,3

+ ...+
1

R2,n

+
1

R3,2
+

1
R3,3

+ ...+
1

R3,n
...

+
1

Rm,2
+

1
Rm,3

+ ...+
1

Rm,n

Similar derivation process as in Rm applies except that, Kon +Ko f f = (n− 1)(m− 1).

Therefore:

Rmn =
RonRo f f

(m−1)(n−1)Ro f f −Ko f f (Ro f f −Ron)
(4.11)

The existing set of Eqn. 2.14 - 2.16 and the newly derived Eqn. 4.8 - 4.11 for modelling

the resistances in a crossbar array can be combined to form a new complete set as in

Eqn. 4.12 - 4.14.

(4.12)

Rm =

m

∏
i=1,i6=is

Ri, js

m

∑
i=1,i6=is

Ri, js

=

R
m− 1

if all Ri, js

are equal

RonRo f f

(m− 1)Ro f f − Ko f f (Ro f f − Ron)
otherwise

50

(4.13)

Rn =

n

∏
j=1, j 6= js

Ris, j

n

∑
j=1, j 6= js

Ris, j

=

R
n− 1

if allRis, j

are equal

RonRo f f

(n− 1)Ro f f − Ko f f (Ro f f − Ron)
otherwise

(4.14)

Rmn =

n

∏
j=1, j 6= js

m

∏
i=1,i6=is

Ri, j

n

∑
j=1, j 6= js

m

∑
i=1,i6=is

Ri, j

=

R
(m− 1)(n− 1)

if all Ri, j

are equal

RonRo f f

(m− 1)(n− 1)Ro f f − Ko f f (Ro f f − Ron)
otherwise

Here, i and j are the word-line and bitline index respectively while is and js are the

selected wordline and bitline respectively.

The overall worst case sneak-path in the array occurs when the resistance of the unselected

cells are set to Ron. If we consider the floating line scheme discussed in section 4.3.1 -

Rsneak = Rn +Rmn +Rm. Rn,Rmn,Rm are defined in Eqn. 4.12 - 4.14. These parameters

are at the worst case when Kon = m−1 and Ko f f = 0

For worst case sneak-path to occur, Eqn 4.15 must hold:

Rsneak min = Ron

(
m+n−1

(m−1)(n−1)

)
(4.15)

If we assume the resistance of the selected cell to be Rmem on and Rmem o f f when on and off

respectively. In the presence of sneak-path, read failure occurs when Rmem o f f ||Rsneak min≤

51

Rmem on. Let’s find the maximum value of m and n for this condition to occur:

1
Rmem o f f

+
1

Rsneak min
≥ 1

Rmem on
(4.16)

Rmem on.Rmem on

Rmem o f f −Rmem on
≤ Rsneak min (4.17)

Rmem on.Rmem o f f

Rmem o f f −Rmem on
≤ Rmem on

(
m+n−1

(m−1)(n−1)

)
(4.18)

Rmem o f f −Rmem on

Rmem o f f
≥ (m−1)(n−1)

m+n−1
(4.19)

Let the LHS of Eqn. 4.19 be represented as ρ and considering a square array where n=m:

ρ =
(n−1)2

2n−1
(4.20)

n2−2(ρ +1)n+(ρ +1) = 0 (4.21)

If we consider only the positive case:

n = ρ +1+
√

(ρ +1)ρ (4.22)

In the case when Rmem o f f � Rmem on, ρ ≤ 1. If we take the ultimate case of ρ = 1:

nmax = 2+
√

2 (4.23)

Therefore the maximum array size with the floating read scheme is approximately 3×3

4.3 Modelling Crossbar Array Read Schemes

In a bid to achieve high density resistive memory structures, reliability of the read opera-

tion has depended on the treatment of the unselected lines rather than addition of selection

devices. This section explores the possible voltage configurations of the unselected lines

and the derivation of analytic models that can be used to evaluate each scheme. These

models are used in conjunction with the equations of the group of crossbar resistances

discussed in Section 4.2.

52

4.3.1 Floating Wordlines and Floating Bitlines

With the Floating Wordlines and Floating Bitlines (FWFB) read scheme, all the unse-

lected lines are kept floating as shown in Fig. 4.2(a). Each memristor in the array is mod-

elled as a resistor and the entire crossbar array will be grouped as discussed in Section 2.3

in order to simplify the array to the equivalent resistance model depicted by Fig. 4.2(b).

The effect of other unselected cells on the target memristor (Rsel) can be computed accord-

ing to Eqn. 4.24, where the effective read-out of the target selected cell can be dominated

by all three groups of neighbouring cells (mn−1). The load resistor is unaffected in this

scheme. For the floating wordlines and bitlines scheme, all the neighbouring groups of

cells Rm, Rn and Rmn affect Rsel and RL is unaffected.

Rsel e f f = Rsel || (Rm +Rmn +Rn) (4.24a)

RL e f f = RL (4.24b)

Rtotal = (Rsel || (Rm +Rmn +Rn))+RL (4.24c)

RL

Vread

Vout

(a)

Rsel

Rn Rmn Rm

Vread

RL

Vout

(b)

Figure 4.2: Structure of the FWFB read scheme and its corresponding equivalent circuit model that
depicts the effect of all resistances in the array during the read operation. The output voltage is the
output of the voltage divider between Rsel and RL.

53

4.3.2 Floating Wordlines and Grounded Bitlines

The Floating Wordlines and Grounded Bitlines (FWGB) scheme minimises the impact

of leakage current by grounding all the unselected bitlines as shown in Fig. 4.3(a), this

ensures that some of the sneak-path currents are directed to ground instead of the read-

out line. From the resistance model of this scheme shown in Fig. 4.3(b), the effect of

Rn is directed to the ground. This is also reflected in the effective resistance of the se-

lected memristor and the effective load resistance computed by Eqn. (4.25a) and (4.25b)

respectively. The selected memristor is not affected by any of the neighbouring cells but

undesired currents from Rm and Rmn are still able to reach the sensing circuit via the load

resistor. For the floating wordlines and grounded bitlines scheme, Rm and Rmn are the

only groups of cells that affect RL. Rsel is unaffected. Undesired currents through Rn flow

directly to the ground and does not interfere with Vout .

Rsel e f f = Rsel (4.25a)

RL e f f = RL || (Rm +Rmn) (4.25b)

Rtotal = (Rsel +(RL || (Rm +Rmn))) || Rn (4.25c)

RL

Vread

Vout

(a)

Rsel
Vread

Rm Rmn

Rn RL

Vout

(b)

Figure 4.3: Structure of the FWGB read scheme and its corresponding equivalent circuit model that
depicts the effect of all resistances in the array during the read operation. The output voltage is the
output of the voltage divider between Rsel and RL.

54

4.3.3 Grounded Wordlines and Floating Bitlines

The Grounded Wordlines and Floating Bitlines (GWFB) scheme minimises the impact of

leakage current by grounding all the unselected wordlines as shown in Fig. 4.4(a), this

ensures majority of the sneak-path currents are directed to ground instead of the read-out

line. From the resistance model of this scheme shown in Fig. 4.4(b), the effect of Rm

and Rmn are directed to the ground. This is also reflected in the effective resistance of the

selected memristor and the effective load resistance computed by Eqn. (4.26a) and (4.26b)

respectively. The selected memristor is not affected by any of the neighbouring cells but

undesired currents from n− 1 cells of the Rn group are still able to reach the sensing

circuit through the load resistor. For the grounded wordlines and floating bitlines scheme,

Rn is the only group of cells that affect RL. Rsel is unaffected. Undesired currents through

Rm and Rmn flow directly to the ground and does not interfere with Vout .

Rsel e f f = Rsel (4.26a)

RL e f f = RL || Rn (4.26b)

Rtotal = (Rsel +(RL || Rn)) || (Rm +Rmn) (4.26c)

RL

Vread

Vout

(a)

Rsel
Vread

RL
Rm

Rmn

RnVout

(b)

Figure 4.4: Structure of the GWFB read scheme and its corresponding equivalent circuit model that
depicts the effect of all resistances in the array during the read operation. The output voltage is the
output of the voltage divider between Rsel and RL.

55

4.3.4 Grounded Wordlines and Grounded Bitlines

Similar to the GWFB scheme, the Grounded Wordlines and Grounded Bitlines (GWGB)

minimises the impact of leakage currents by grounding all the unselected bitlines in ad-

dition to the grounded wordlines as shown in Fig. 4.5(a), this ensures majority of the

sneak-path currents are directed to ground instead of the read-out line. From the resis-

tance model of this scheme shown in Fig. 4.5(b), the current flowing through of Rm and

Rmn are directed to the ground. This is also reflected in the effective resistance of the se-

lected memristor and the effective load resistance computed by Eqn. (4.27a) and (4.27b)

respectively. The selected memristor is not affected by any of the neighbouring cells but

undesired currents from m−1 cells of the Rm group interfere with the output through the

load resistor. For the grounded wordlines and grounded bitlines scheme, Rm is the only

group of cells that affect RL, Rsel is unaffected. Undesired currents through Rn and Rmn

flow directly to the ground and does not interfere with Vout .

Rsel e f f = Rsel (4.27a)

RL e f f = RL || Rm (4.27b)

Rtotal = (Rsel +(RL || Rm)) || Rn (4.27c)

RL

Vread

Vout

(a)

Rsel
Vread

Rm

Rn RL

Vout

(b)

Figure 4.5: Structure of the GWGB read scheme and its corresponding equivalent circuit model that
depicts the effect of all resistances in the array during the read operation. The output voltage is the
output of the voltage divider between Rsel and RL.

56

4.4 Effects of Sneak-path on Crossbar Array Read Schemes

This section further analyse how sneak-paths affect the read margin of the previously de-

scribed read schemes of Section 4.3. Read margin (∆Vout) can be defined as the difference

between the read output of a cell when it stores a logic 1 (Vout 1) and a logic 0 (Vout 0) as

described by Eqn. 4.28.

∆Vout =Vout 1−Vout 0 (4.28)

Vout =Vread×
RL e f f

RL e f f +Rsel e f f
(4.29)

Vout 1 (when Rsel = Ron) and Vout 0 ((when Rsel = Ro f f)) can be computed using Eqn. 4.29.

Since the read margin is dependent on the read-out voltages (Vout 1 and Vout 0), it is note-

worthy to state that read margin of a crossbar is affected by the size of the array and the

state of the unselected cells. The read-out voltage of a target cell will be greatly affected

if the majority of its neighbours are in low resistance state because of the abundance of

leakage currents that easily flow through low resistant cells. The best case read-out volt-

ages are achieved in the presence of neighbours with high resistance value. Listed below

are the four extreme cases (best and worst) of a read-out of ‘1’ and ‘0’ from a memristor

cell in a crossbar with size greater than 1. The usual two cases of reading a logic 1 and

0 from a single memristor (crossbar size of 1) are also listed. For the rest of this chapter,

the following defined notations will be used:

• Vout wc1: Worst case read-out of logic 1 occurs when the selected cell is in LRS (1)

and all other cells in the crossbar are in LRS (1)

• Vout bc1: Best case read-out of logic 1 occurs when the selected cell is in LRS (1)

and all other cells in the crossbar are in HRS (0)

• Vout wc0: Worst case read-out of logic 0 occurs when the selected cell is in HRS (0)

and all other cells in the crossbar are in LRS (1)

• Vout bc0: Best case read-out of logic 0 occurs when the selected cell is in HRS (0)

and all other cells in the crossbar are in HRS (0)

• Vout nc1: normal and real case of reading a logic 1 from a single memristor (crossbar

size of 1)

57

• Vout nc0: normal and real case of reading a logic 0 from a single memristor (crossbar

size of 1)

100 101 102 103 104 105

Crossbar Array Length (m = n)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
R

ea
d-

ou
t V

ol
ta

ge
[V

]

Vout_wc1
Vout_bc1
Vout_wc0
Vout_bc0

(a)

100 101 102 103 104 105

Crossbar Array Length (m = n)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ea

d-
ou

t V
ol

ta
ge

[V
]

Vout_wc1
Vout_bc1
Vout_wc0
Vout_bc0

(b)

100 101 102 103 104 105

Crossbar Array Length (m = n)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ea

d-
ou

t V
ol

ta
ge

[V
]

Vout_wc1
Vout_bc1
Vout_wc0
Vout_bc0

(c)

100 101 102 103 104 105

Crossbar Array Length (m = n)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ea

d-
ou

t V
ol

ta
ge

[V
]

Vout_wc1
Vout_bc1
Vout_wc0
Vout_bc0

(d)

Figure 4.6: Simulation results of worst and best case read-out voltages for (a) FWGB (b) FWGB (c)
GWFB (d) GWGB. Read voltage Vread = 1V , Ro f f = 200KΩ, Ron = 100Ω and RL = 100Ω. A voltage
divider sensing circuit was used and read-out voltages were calculated using Eqn. 4.29. Data for plots
was generated using the read-out voltage values from the analytic tools listed in Appendix B.1, B.2,
B.3 and B.4.

It is thus easy to conclude that highly resistive neighbours helps to prevent sneak-path in

crossbar array irrespective of the content of the target cell. High resistance impedes the

flow of current in any network, this explains why the the best case read of 1 and 0 occurs

when the resistance of other cells are high. The worst case read-out occurs when the

resistance of the neighbouring cells are low. Fig. 4.6(a) - 4.6(d) shows the best and worst

read-out voltages for a target cell over a wide range of crossbar array (1×1 - 131K×131K

) for the four read schemes. Using any of the read schemes, an ideal case of reading a

single memristor results in the following read-out voltages when the read voltage is 1V:

Vout wc1 = Vout bc1 = Vout nc1 = 0.5V and Vout wc0 = Vout bc0 = Vout nc0 = 500µV . Read-

out voltages from a single memristor are used as the benchmark for the read-out voltages

58

from each memristor in arrays with more than one device. Examining the FWFB scheme,

the negative effect of the neighbouring cells begin to kick in as the array size increases.

At an array size of approximately 100× 100, the worst cases are already outside of the

range of the valid region (500µV - 0.5V) but the best cases are still decent as shown in

Fig. 4.6(a). However, at a quite large array size of 131K×131K, none of the read-outs are

valid which effectively means the FWFB is not useful even with smaller array size in its

worst case. The best cases for the FWFB degrades at large array sizes as the large values

of m and n force the high resistance to a small value as a result of the parallel combination

of the memristors. Similar examination of the three grounded schemes (FWGB, GBFB

and GWGB) shows that all the read-out voltage cases remain within an acceptable range

until an array size of approx. 1K × 1K except for Vout wc1 (see Fig. 4.6(b), 4.6(c) and

4.6(d)). Vout wc0 and Vout bc0 remain desirably small because Rsel = Rsel e f f retains its

high value and the small change in RL e f f does not cause much change to Vout . As array

size increases, the best case of a read-out of logic 1 fails and becomes approximately

similar to the worst case read-out.

From the four read-out cases (Vout wc1, Vout bc1, Vout wc0 and Vout bc0) of arrays greater

than 1, four different cases of read margin (Eqn. 4.28) can also be calculated based on

unique combination of these extreme scenarios according to Eqn. 4.31 - 4.34. Eqn. 4.30

represents the ideal case of a single memristor without interference from other cells.

∆Vout c0 =Vout nc1−Vout nc0 (4.30)

∆Vout c1 =Vout wc1−Vout wc0 (4.31)

∆Vout c2 =Vout wc1−Vout bc0 (4.32)

∆Vout c3 =Vout bc1−Vout wc0 (4.33)

∆Vout c4 =Vout bc1−Vout bc0 (4.34)

59

100 101 102 103 104 105

Crossbar Array Length (m = n)

-1

-0.5

0

0.5

1

1.5

2

N
or

m
al

is
ed

 R
ea

d
M

ar
gi

n

"Vout_c1 /"Vout_c0
"Vout_c2 /"Vout_c0
"Vout_c3 /"Vout_c0
"Vout_c4 /"Vout_c0

Valid range of read margin

(a)

100 101 102 103 104 105

Crossbar Array Length (m = n)

-1

-0.5

0

0.5

1

1.5

2

N
or

m
al

is
ed

 R
ea

d
M

ar
gi

n

"Vout_c3 /"Vout_c0
"Vout_c2 /"Vout_c0
"Vout_c1 /"Vout_c0
"Vout_c4 /"Vout_c0

(b)

100 101 102 103 104 105

Crossbar Array Length (m = n)

-1

-0.5

0

0.5

1

1.5

2

N
or

m
al

is
ed

 R
ea

d
M

ar
gi

n

"Vout_c2 /"Vout_c0
"Vout_c3 /"Vout_c0
"Vout_c1 /"Vout_c0
"Vout_c4 /"Vout_c0

(c)

100 101 102 103 104 105

Crossbar Array Length (m = n)

-1

-0.5

0

0.5

1

1.5

2

N
or

m
al

is
ed

 R
ea

d
M

ar
gi

n

"Vout_c2 /"Vout_c0
"Vout_c3 /"Vout_c0
"Vout_c4 /"Vout_c0
"Vout_c1 /"Vout_c0

(d)

Figure 4.7: Simulation results of worst and best case read margins for (a) FWFB (b) FWGB (c)
GWFB (d) GWGB. Read voltage Vread = 1V , Ro f f = 200KΩ, Ron = 100Ω and RL = 100Ω. Data for
plots was generated using the read margin values from the analytic tools listed in Appendix B.1, B.2,
B.3 and B.4.

In order to fairly measure the read margin cases of the crossbar array across the four read

schemes relative to a single memristor, we define a normalised figure of merit Vout norm

similar to previous work in [81] according to Eqn. 4.35

∆Vout norm =
∆Vout c<x>

∆Vout c0
(4.35)

Where x in ∆Vout c<x> can range from 1 to 4 as defined in Eqn. 4.31 - 4.34

Fig. 4.7(a) - 4.7(d) show the simulation outcome of the four read margin cases on each of

the read scheme. For the FWFB, only one read margin case (∆Vout c4) has optimal result

before the crossbar array size approaches approximately 300× 300. After this point, all

the four cases begin to converge to 0 as the array size grows. ∆Vout c2 and ∆Vout c3 also

deteriorate beyond the valid region because their read margin is a function of worst case

60

and best case read out voltages according to Eqn. 4.32 and 4.33. The probability of read

failure in the FWFB scheme is 0.75 at an array size of 300× 300. This probability rises

to 1 swiftly as array size increases. The ‘out of valid region’ bend in the FWFB also

further proves that the memory’s behaviour could become unpredictable with this scheme

in its worst case. The negative read margin of ∆Vout c3 is as a result of the expected

low voltage Vout wc0 rising higher than the expected high voltage Vout bc1. The grounded

schemes have a read failure probability of 0.5 at array size of 300×300 or below as two

cases (∆Vout c3 and ∆Vout c4) are well within the optimum normalised read margin of 1.

The probability however degrades steadily at array size above 300× 300. The GWFB

and GWGB schemes will have the same read-out voltages and read margin measurements

provided that m = n as they are affected by Rn and Rm according to Eqn. (4.26b) and

(4.27b) respectively. They will however show different behaviour once the aspect ratio of

the array deviates from 1. The FWGB scheme shows little but negligible improvement

over the similar GWFB and GWGB schemes.

Also examined is the case where the neighbouring groups have random numbers of high

and low resistance cells that are not predetermined. For this simulation, a random number

of memristors in each group of interfering neighbours are set to Ro f f state while the

others are left in Ron state. This randomisation is made possible using the robust closed

form formulas for Rm, Rn and Rmn derived in Eqn. 4.8- 4.11 where all the unselected

memristors have differing resistance state. To constrain the randomness, we have assumed

that for every random generation, the target cell is toggled between Ron and Ro f f and the

read-out voltage measured with the same set of random neighbours. Fig. 4.8(a) - 4.8(h)

shows the read margin result of simulating 1 million random samples of each array size

using the FWFB read scheme. A worst case read out of ‘1’ and ‘0’ were used to compute

the read margin (Vout wc1−Vout wc0). There is a large concentration of arrays with almost

perfect read margin at an array size of 3× 3 similar to the derivation in Eqn. 4.23. At

an array size of 512× 512, almost all the arrays have moved towards the midpoint of

0 where the read margin is at the minimum. Similar observations were made using the

FWGB and GWGB read schemes as shown in Fig. 4.9 and 4.10 respectively. Table 4.1

shows a comparison of the four read schemes.

61

-0.5 0 0.5
"Vout [V]

0

2

4

6

8

10

N
um

be
r

#105

(a)

-0.5 0 0.5
"Vout [V]

0

2

4

6

8

10

N
um

be
r

#105

(b)

-0.5 0 0.5
"Vout [V]

0

2

4

6

8

10

N
um

be
r

#105

(c)

-0.5 0 0.5
"Vout [V]

0

2

4

6

8

10

N
um

be
r

#105

(d)

-0.5 0 0.5
"Vout [V]

0

2

4

6

8

10

N
um

be
r

#105

(e)

-0.5 0 0.5
"Vout [V]

0

2

4

6

8

10

N
um

be
r

#105

(f)

-0.5 0 0.5
"Vout [V]

0

2

4

6

8

10

N
um

be
r

#105

(g)

-0.5 0 0.5
"Vout [V]

0

2

4

6

8

10

N
um

be
r

#105

(h)

Figure 4.8: Read margin result of randomising the number of Ro f f and Ron cells in different array
sizes using the FWFB read scheme. (a) 4×4 (b) 8×8 (c) 16×16 (d) 32×32 (e) 64×64 (f) 128×128 (g)
256×256 (h) 512×512. Data for plots was generated using the read margin values from the analytic
tools listed in Appendix B.5.

62

-0.5 0 0.5
"Vout [V]

0

2

4

6

8

10

N
um

be
r

#105

(a)

-0.5 0 0.5
"Vout [V]

0

2

4

6

8

10

N
um

be
r

#105

(b)

-0.5 0 0.5
"Vout [V]

0

2

4

6

8

10

N
um

be
r

#105

(c)

-0.5 0 0.5
"Vout [V]

0

2

4

6

8

10

N
um

be
r

#105

(d)

Figure 4.9: Read margin result of randomising the number of Ro f f and Ron cells in different array
sizes using the FWGB read scheme. Read margin degrades as crossbar array size increases. (a) 4×4
(b) 16×16 (c) 64×64 (d) 256×256. Data for plots was generated using the read margin values from
the analytic tools listed in Appendix B.6.

-0.5 0 0.5
"Vout [V]

0

2

4

6

8

10

N
um

be
r

#105

(a)

-0.5 0 0.5
"Vout [V]

0

2

4

6

8

10

N
um

be
r

#105

(b)

-0.5 0 0.5
"Vout [V]

0

2

4

6

8

10

N
um

be
r

#105

(c)

-0.5 0 0.5
"Vout [V]

0

2

4

6

8

10

N
um

be
r

#105

(d)

Figure 4.10: Read margin result of randomising the number of Ro f f and Ron cells in different array
sizes using the GWGB read scheme. Read margin degrades as crossbar array size increases. (a) 4×4
(b) 16×16 (c) 64×64 (d) 256×256. Data for plots was generated using the read margin values from
the analytic tools listed in Appendix B.6.

Table 4.1: Comparison summary of read schemes performance

Unselected

Wordline

Unselected

Bitline

Effective Resistance

of Selected Cell

Effective

Resistance of

Load Resistor

Ranking of Noise Margin Cases

(Worst→ Best)

Power

Usage

Number of

Sneak-path

cells

FWFB Floating Floating Rsel || (Rm +Rmn +Rn) NULL ∆Vout c2||∆Vout c3→ ∆Vout c1→ ∆Vout c4 Low mn−1

FWGB Floating Ground NULL RL || (Rm +Rmn) ∆Vout c1||∆Vout c2→ ∆Vout c3||∆Vout c4 High n(m−1)

GWFB Ground Floating NULL RL || Rn ∆Vout c1||∆Vout c2→ ∆Vout c3||∆Vout c4 High n−1

GWGB Ground Ground NULL RL || Rm ∆Vout c1||∆Vout c2→ ∆Vout c3||∆Vout c4 High m−1

Tables in appendix A.1 shows the data generated from simulating crossbar arrays with

non-square aspect ratio. This differs from previous simulation in its array sizing, m and n

are varied in order to observe the difference between GWGB and GWFB that always gen-

erate similar result when m = n. Result from the data shows that when m� n, GWFB is a

better read scheme than GWGB as GWFB is not affected by the increased m−1 number

63

of memristors affected by sneak-path current. Similarly, when m� n, GWGB becomes

the better option as this scheme is immuned from sneak-paths from the high number of

n− 1 cells. The FWFB and FWGB read schemes show the usual deteriorating trend as

they are both affected negatively by changes in both the dimensions of the crossbar array.

4.5 Power Analysis of Crossbar Array Read Schemes

The average power consumed by the read operation can be computed using the estima-

tion from [103]. We estimated the total resistance Rtotal in each circuit during the read

operation. The average power can be calculated as shown below:

P =
V 2

read
Rtotal

(4.36)

Rtotal for each scheme was calculated as shown in Eqn. (4.24c), (4.25c), (4.26c) and (4.27c).

Fig. 4.11 shows the power consumption metrics of the four schemes. The first observa-

tion from this simulation is that a read-out of ‘1’ consumes more power than a read-out of

‘0’ simply because more current flows through the circuit if the resistance of the selected

device is low. Preliminary simulation also shows that the worst case power consump-

tion during the read-out of ‘1’ and ‘0’ occurs when the neighbouring cells are in the low

resistance state. Higher concentration of low resistive cells in the crossbar array height-

ens current leakages which also leads to excessive power consumption. The result also

shows that FWFB saves more power than any of the other schemes. Although the three

schemes that involve grounding the lines minimise sneak-paths, they however consume

power incrementally as the crossbar size increases.

64

0 10 20 30 40 50 60
Crossbar Array Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Po
w

er
 C

on
su

m
pt

io
n

(W
)

FWFB (read-out 1)
FWFB (read-out 0)
FWGB (read-out 1)
FWGB (read-out 0)
GWFB (read-out 1)
GWFB (read-out 0)
GWGB (read-out 1)
GWGB (read-out 0)

2 3 4
0

0.01

0.02

0.03

0.04

0.05

Figure 4.11: Power comparison of the four read schemes over a range of crossbar size. Data for plot
was generated using the power values from the analytic tools listed in Appendix B.1, B.2, B.3 and B.4

4.6 Multiple Cells Read in Crossbar Arrays

Analysis of read operation in crossbar arrays has so far been focussed on reading a single

cell at a time from the crossbar array. However, in practical and large scale applications,

multiple cells are accessed in each read cycle. This section focusses on multiple cells

read-out in crossbar array which invariably leads to the minimisation of the sneak-path

effects in crossbar array. The concept of multiple cells read-out in resistive array was

first introduced in [68] with limited analysis. A detailed analysis of the read method,

challenges and simulation results are still missing. This section provides a comprehensive

analysis of reading multiple cells in a crossbar array simultaneously alongside its effects

on read margin and power consumption. Multiple cells can be selected for reading by

connecting the target row to the read voltage and the columns with the target cell are

connected to the sensing circuit, while other unselected lines are left floating. If k cells

are selected for reading such that 1 < k < n, the array can be regrouped into four blocks

as shown in Fig. 4.12(a) with an instance of k = 2. Fig. 4.12(b) shows the case where

k = n cells are selected for read. The effectiveness of the multiple cells read technique in

minimising sneak-paths is dependent on the data distribution in the selected cells and the

number of cells selected, these will be further explained in subsequent sections.

65

Vread
X1 X2 XnX3

Y1

Y2

Y3

Ym

RL RL

(a)

Vread
X1 X2 XnX3

Y1

Y2

Y3

Ym

RL RL RL RL

(b)

Figure 4.12: Description of read operation in cases where some of the cells in row are selected. (a)
Schematic of an m× n array with k = 2 cells selected for reading. The red cells are the selected
cells. Cells in purple and green are the partially-selected cells across the selected row and column
respectively. (b) Schematic of an m× n memristor array with k = n cells selected for simultaneous
read out.

4.6.1 Multiple Cells Read with Similar Data

Multiple cells read operation can either be a selection of some of the cells 1 < k < n or

the selection of all the cells k = n in a row for simultaneous read. In order to understand

the circuit behaviour during multiple cells read out in a m×n memory array, we start with

a partial selection of some of the cells in the row. Let us consider the crossbar array of

Fig. 4.12(a), where two cells are selected and all the k selected cells store the same data

such that R1,1 = R1,2. A crossbar with this selection can be represented by the equivalent

circuit model of Fig. 4.13(a) where Rsel k, Rm k, Rn k and Rmn k are computed according

to Eqn. 4.37, 4.38, 4.39 and 4.40 respectively. These equations are the more generalised

forms of Eqn. 2.14 - 2.16. Note that these equations are still applicable when k = 1. The

read-out voltage Vout from each selected cell can be computed by solving for Vout in the

equivalent circuit model. Similarly, when all the cells in the row are selected for read

k = n such that R1,1 = R1,2 = ... = R1,n, Eqn. 4.37, 4.38, 4.39 and 4.40 still stand but

Rn k and Rmn k approach infinity because of their zero denominator. Rm k will be shunted

out of the equivalent circuit to result in the reduced circuit of Fig. 4.13(b). Vout from

the circuits in Fig. 4.13(a) and Fig. 4.13(b) is the average read out voltage from all the

selected memristor in the row, hence each selected memristor have a read-out voltage of

exactly Vout because they have same resistance values.

66

(a) (b)

Figure 4.13: Corresponding generalised equivalent circuits for multiple cells selection where all
the selected cells contain the same data. (a) Resistance model of the crossbar array selection in
Fig. 4.12(a) for any 1 < k < n (b) Reduced equivalent resistance model of the crossbar array selection
in Fig. 4.12(b) where all the cells in the row are selected for read, k = n. Vout is the read-out voltage of
each of the k selected cells.

Rsel k =
R
k

(4.37)

Rm k =
R

(m−1)(k)
(4.38)

Rn k =
R

(n− k)
(4.39)

Rmn k =
R

(m−1)(n− k)
(4.40)

Note that Eqn. 4.37 - 4.40 only hold on the assumption that all k > 1 selected cells contain

the same logic value. Vout for the equivalent circuit of Fig. 4.13(a) can be calculated using

the equations below:

Rsel sneak = Rm k +Rn k +Rmn k (4.41)

Rsel e f f = Rsel k || Rsel sneak (4.42)

Vout =Vread×
RL/k

RL/k+Rsel e f f
(4.43)

67

Fig. 4.14 shows the gradual improvement in read margin as the number of cells k selected

for reading increases in a 8×8 memristor array. The read margin is at its best when k = n

because the sneak current resistance Rm k, Rn k and Rmn k are shunted out of the model at

this stage as shown in Fig. 4.13(b). Sneak-path effects are completely eliminated from

the array when k = n based on the assumption that the selected cells store the same logic

value of either 0 or 1, each of the selected cells thus behaves as if it is being accessed

without the presence of the neighbouring cells. The worst case read margin is at its worst

point when k = 1 as expected because of its impact on Rm k, Rn k and Rmn k. As previously

defined, the read margin is the difference between the output voltages when the selected

cell(s) stores a 1 (LRS) and when they store a 0 (HRS):

Load Resistance (+)

Ro,

Ron

100

0

20

10-5

40

"
V ou

t/V
re

ad
[%

]

103

60

80

100

100

105
105

k = 1

k = 4

k = 8

Figure 4.14: Read margin for each of the k selected cells in an 8× 8 memristor array when k = 1,
k = 4 (50% cells selected in selected row) and k = 8 (100% cells selected in selected row). sneak-path
is completely eliminated when k = 8 because the sneak current resistances are shunted out of the
circuit. Vread = 1, Ron = 100Ω, Ro f f is varied between 102 and 107Ω. Load resistance is optimum
when it is similar to Ron.

Fig. 4.14 also shows that the load resistance is optimum when it is approximately the

same value as Ron. The Ro f f /Ron ratio is also optimum when its greater than 102.

4.6.2 Multiple Cells Read with Non Similar Data

In the case where the k selected cells do not contain the same value, Vout for each of

the selected cells cannot be solved using the equivalent circuits of Section 4.6.1. This is

68

because the selected cells cannot be combined in parallel into a single factored resistance

as previously done. Since the data in the selected memristors differ, it is impossible to

correctly allocate output value to each memristor from the total average read-out as was

done in Section 4.6.1. The read-out voltage from each cell would have to be solved

independently using the equivalent circuit described by Fig. 4.15(a) when all of the cells

are selected for simultaneous read as depicted by the crossbar of Fig. 4.12(b). Here, Rm,

Rn and Rmn are previously defined by Eqn. 4.12, 4.13 and 4.14 respectively. The analysis

of the output of each cell works by considering each selected cell with its load resistance

independently. The other selected n−1 (k = n) cells and their load resistances still form

a part of the parasitic resistance that negatively impacts the circuit.

(a) (b)

Figure 4.15: Corresponding generalised equivalent circuits for multiple cells selection where all the
selected cells does not contain the same data. (a) Equivalent resistance model of the crossbar array
selection in Fig. 4.12(b) where all the cells in the rows are selected for read, k = n. R is the resistance of
any one of the selected n cells, Rn represents the resistance of other n−1 selected cells (b) Resistance
model of the crossbar array selection in Fig. 4.12(a), for any selected number of k between 2 and n,
R is the resistance of any one of the selected n cells, R/k− 1 represents the resistance of other k− 1
selected cells. Vout is the read-out voltage of each of the k selected cells.

The readout voltage Vout in the equivalent circuit of Fig. 4.15(a) can be solved using the

Y −∆ transformation technique. Rmn combines in series with Rm to form a Y circuit with

RLn (RLn = RL/(n−1)) and Rn as shown in Fig. 4.16.

69

Figure 4.16: Step 1: Solving for Vout in the crossbar array of Fig. 4.12(b) from the equivalent circuit
of Fig. 4.15(a) using Y −∆ transformation technique.

The Y circuit is transformed into a ∆ circuit as shown in Fig. 4.17. Ra(Rsel sneak), Rb and

Rc(RL sneak) are computed according to Eqn 4.44, 4.45 and 4.46 respectively.

Figure 4.17: Step 2: Solving for Vout in the crossbar array of Fig. 4.12(b).

Rsel sneak =
Rn(Rmn +Rm)+

RL

n−1
(Rmn +Rm)+Rn

RL

n−1
RL

n−1

(4.44)

Rb =
Rn(Rmn +Rm)+RLn(Rmn +Rm)+RnRLn

Rmn +Rm
(4.45)

RL sneak =
Rn(Rmn +Rm)+

RL

n−1
(Rmn +Rm)+Rn

RL

n−1
Rn

(4.46)

RL sneak forms a parallel resistance with the load resistor RL as depicted by Fig 4.18 while

Rsel sneak combines in parallel with the selected cell Rsel to result in the simple circuit

shown in Fig 4.19. Rb is shunted out of the circuit and does not contribute to Vout . This

70

reduced circuit allows easy computation of the output voltage for each of the selected cell

in crossbar array of Fig. 4.12(b).

Figure 4.18: Step 3: Solving for Vout in the crossbar array of Fig. 4.12(b).

Figure 4.19: Step 4: Solving for Vout in the crossbar array of Fig. 4.12(b).

In the case where k < n, that is, only some of the cells in the row are selected for simulta-

neous read as in the crossbar array of Fig. 4.12(a), the read-out voltage of each memristor

can also be computed independently using the crossbar’s equivalent circuit model de-

picted by Fig. 4.15(b). For the sake of simplicity, it is assumed that the other groups of

cells in green, purple and blue contain the same resistance value R. Rn k and Rmn k in

Fig. 4.15(b) are as defined by Eqn. 4.39 and 4.40.

To solve Vout in the circuit of Fig. 4.15(b), we make the following representation for

brevity, Rk = R/(k− 1), Rmk = R/(m− 1)(k− 1) and RLk = RL/(k− 1). Using Y −∆

transformation, Rk, Rmk and RLk forms a Y circuit that can be transformed into a ∆ circuit

as shown in Fig. 4.20. Ra, Rb and Rc can be represented as Eqn. 4.47, 4.48 and 4.47

respectively:

71

Figure 4.20: Step 1: Solving for Vout in the crossbar array of Fig. 4.12(a) from the equivalent circuit
of Fig. 4.15(b) using Y −∆ transformation technique.

Ra =
Rk×Rmk +RLk×Rmk +RLk×Rk

RLk
(4.47)

Rb =
Rk×Rmk +RLk×Rmk +RLk×Rk

Rmk
(4.48)

Rc =
Rk×Rmk +RLk×Rmk +RLk×Rk

Rk
(4.49)

Ra forms a parallel resistance with the series combination of Rn k and Rmn k to result in

Ra new (Eqn. 4.50) shown in the circuit of Fig. 4.21.

Ra new =
Ra× (Rmnk +Rnk)

Ra +(Rmnk +Rnk)
(4.50)

Figure 4.21: Step 2: Solving for Vout in the crossbar array of Fig. 4.12(a).

The ∆ circuit in Fig. 4.21 can be transformed back into a Y circuit so as to combine Rm

in series with one of the branches as show in Fig. 4.22. R1, R2 and R3 are computed

72

according to Eqn. 4.51, 4.52 and 4.53 respectively:

Figure 4.22: Step 3: Solving for Vout in the crossbar array of Fig. 4.12(a).

R1 =
Ra new×Rb

Ra new×Rb +Rc
(4.51)

R2 =
Ra new×Rc

Ra new×Rb +Rc
(4.52)

R3 =
Rb×Rc

Ra new×Rb +Rc
(4.53)

Rm combine in series with R2 to result in R2 new:

R2 new = R2 +Rm (4.54)

The current circuit can be further simplified by transforming the Y circuit to a ∆ circuit as

shown in Fig. 4.23.

Figure 4.23: Step 4: Solving for Vout in the crossbar array of Fig. 4.12(a).

73

RL sneak, Rb2 and Rsel sneak are calculated as:

Rsel sneak =
R1×R2 new +R2 new×R3 +R1×R3

R3
(4.55)

Rb2 =
R1×R2 new +R2 new×R3 +R1×R3

R2 new
(4.56)

RL sneak =
R1×R2 new +R2 new×R3 +R1×R3

R1
(4.57)

RL sneak and Rsel sneak form a parallel circuit with the load resistance RL and selected

resistance R respectively as portrayed in Fig. 4.24 and 4.25 respectively.

Figure 4.24: Step 5: Solving for Vout in the crossbar array of Fig. 4.12(a).

Figure 4.25: Step 6: Solving for Vout in the crossbar array of Fig. 4.12(a).

Vout for the circuit in Fig. 4.19 and 4.25 can thus be calculated as the voltage divider

between R||Rsel sneak and RL||RL sneak while Rb2 and Rb are shunted to ground without

affecting Vout . Note that the equations for Rsel sneak and RL sneak differ for each of the two

circuits.

The effective load resistance (RL e f f) thus becomes:

RL e f f = RL || RL sneak (4.58)

74

and the effective resistance of each of the selected memristor from the memory array can

be computed as:

Rsel e f f = R || Rsel sneak (4.59)

Therefore:

Vout =Vread×
RL e f f

RL e f f +Rsel e f f
(4.60)

Having worked out the read-out voltages from each of the selected cells, further analysis

was carried out to establish the effect of multiple cells selection on the read margin of the

crossbar array when the selected cells have non-similar values. It is important to note that

the worst and best case read of ‘1’ in the multiple cells read operation differs from the

previous case of reading from a cell.

0 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

(a)

1 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

(b)

0 0 0 0

X X X X

X X X X

X X X X

(c)

1 1 1 1

X X X X

X X X X

X X X X

(d)

0 1 0 1

1 1 1 1

1 1 1 1

1 1 1 1

(e)

0 1 0 1

0 0 0 0

0 0 0 0

0 0 0 0

(f)

Figure 4.26: Sample data distribution in a 4× 4 crossbar array during multiple cells read where all
the cells in the first row are selected for read. (a) Worst case read-out of zero (Vout wc0) (b) Worst case
read-out of one (Vout wc1) (c) Best case read-out of zero (Vout bc0) (d) Best case read-out of one (Vout bc1)
(e) Worst case read-out of one and zero with equal distribution of 1s and 0s (f) Best cases of read-out
of one and zero with equal distribution of 1s and 0s.

When reading a single cell, the worst case read of ‘1’ occurs when all the other unselected

cells store a ‘1’ and the best case when all other cells store a ‘0’. With multiple cells

read, the worst case read of ‘1’ occurs when the other selected cells in the selected row

store a ‘0’ and other unselected cells have a logic ‘1’. The best case read of ‘1’ occurs

when the other selected cells contain a ‘1’ irrespective of the contents of the unselected

cells. Fig. 4.26 gives a pictorial illustration of the various cases of reading a ‘1’ and a ‘0’

when all the cells in the first row are being read. The figures in Fig. 4.27 show the read

margin results when varying the Ro f f /Ron ratio and load resistance value in a 32× 32

75

crossbar array using the four cases of read margin explained in Section 4.4. Two of the

read margin cases (∆Vout c2 and ∆Vout c4) show optimum results when the load resistance

is approximately equal to Ron and the Ro f f /Ron ratio is at the maximum. ∆Vout c2 and

∆Vout c4 are similar because Vout wc1 is close to Vout bc1 but expected to widen as array size

increases. Sneak-path is eliminated when all the cells in the row are selected and they

store the same LRS value. The read operation will fail if the crossbar stores data that

results in any of two other read margin cases (∆Vout c1 and ∆Vout c3). ∆Vout c3 in particular

gives a negative read margin because the expected low read-out voltage of the OFF state

is higher than the high read-out voltage of the ON state. The dynamics is expected to

change as the array size grows.

Load resistance Ro,

Ron

-40
105

-20
0

20

105

40

"
V ou

t/V
re

ad
 [%

]

60

100

80

103

100

10-5 100

(a) ∆Vout c1 =Vout bc1−Vout wc0

Ro,

Ron

Load resistance

-40
105

-20
0

20

105

40

"
V ou

t/V
re

ad
 [%

]
60

100

80

103

100

10-5 100

(b) ∆Vout c2 =Vout bc1−Vout bc0

Ro,

Ron

Load resistance

-40
105

-20
0

20

105

40

"
V ou

t/V
re

ad
 [%

]

60

100

80

103

100

10-5 100

(c) ∆Vout c3 =Vout wc1−Vout wc0

Load resistance Ro,

Ron

-40
105

-20
0

20

105

40

"
V ou

t/V
re

ad
 [%

]

60

100

80

103

100

10-5 100

(d) ∆Vout c4 =Vout wc1−Vout bc0

Figure 4.27: Read margins of each cell in the multiple read scheme where all cells in the row are
selected for read operation in a 32×32 crossbar array.

76

4.6.3 Application of Multiple Cells Read Technique

In order to test an application of the multiple bits read scheme especially for power con-

sumption, a new inverted-hamming coding architecture that is able to correct single bit

write and read error is proposed. Hamming codes are Single Error Correcting (SEC) bi-

nary linear block codes [104]. Normally represented as H(n, l), where n is the length of

the encoded word and l is the length of the data word. n− l parity bits are added to the l

bits of data. We started by adding extra parity bits to each row of codeword as computed

using hamming code. We then inverted the entire codeword depending on the number of

‘1s’ to be written into the memory, in order to mitigate the effect of the extra parity bits. In

a case where we have more ‘1s’ than ‘0s’ in the write buffer, we complement and write the

inverted data into the memory then the inversion flag is registered to show the codeword

is an inverted data. The basic concept of Inverted-Hamming code architecture is depicted

in Fig. 4.28c, the detailed peripheral and logic circuits are not shown. Appendix B.9 and

B.10 shows the analytical implementation of this architecture in C++. The simulation

result for the power consumption analysis is described in Section 4.6.4.

Read circuitry | Decoder

Data Block

P
ar
it
y

W
ri
te
ci
rc
ui
tr
y

Encoder

Read circuitry | Decoder

W
ri
te
ci
rc
ui
tr
y

Encoder

Data Block

P
ar
it
y

Read circuitry | Inverter | Decoder

Encoder

Data Block

P
ar
it
y

In
v
er
s
io
n
fl
ag
b
it

W
ri
te
ci
rc
ui
tr
y
|

C
ou
nt
er
|I
nv
er
te
r

(a) (b) (c)

Figure 4.28: Block schematic representation of (a) Hamming code with parity block separated from
the primary data block (b) Hamming code structure, parity bits implemented with data block (c)
proposed Inverted-Hamming code circuit.

4.6.4 Experimental Results and Discussions

In order to simulate larger arrays, we have modelled the behaviour of the crossbar array

in C++. This allows for easy simulation of larger array compared to the Cadence tool.

Majority of the EDA tools are mostly suitable for CMOS device. They often require

adaption in order for them to work effectively with emerging devices like the memristor

and often struggles with larger circuits. To verify the correctness of the analytic tool that

was used for previous experimental results, we modelled the read margin of the crossbar

77

arrays with multiple cells selected for read using both the analytic tool and the Cadence

EDA tool. The output of our tool matched closely with the output of the simulation

tool with improved accuracy as the array size grows. For all simulations in this chapter,

parameters used includes a Ro f f /Ron ratio of 103 similar to the one used in [82], a load

resistance of 100Ω and a read voltage of 1V unless otherwise stated.

The impact of sneak-path on the read margin of each of the selected cell k is individually

evaluated as shown in Fig. 4.15(a). This is because the remaining k− 1 (k = n) selected

cells and their corresponding load resistances contribute to the sneak-paths resistance.

In order to read the output of any one of the selected cells, the resistances of the other

selected cells Rsel sneak (sneak-path contribution from other k−1 selected cells) was com-

puted using Eqn. 4.44 as they form a part of the overall sneak resistance. The overall

sneak-path resistance effect on each selected cell can thus be calculated using an adapta-

tion of the equation described in [38] with Eqn. 4.44 as a vital component.

In order to understand the sneak-path effect when the selected cells contain non-similar

data, we have simulated the architecture described in Fig. 4.15(a). With all the cells in

the first row selected for reading, the read margin of three different data patterns were

considered, when: 1) only one cell differs (Fig. 4.26(a) and 4.26(b)), 2) equal numbers of

cells store ‘0’ and ‘1’ (Fig. 4.26(e) and 4.26(f)), and 3) all selected cells store same data

- all 1s or 0s (Fig. 4.26(c) and 4.26(d)). The normalised read margin computed in this

case is for one of the selected cells in the row, ∆Vout array =Vout wc1−Vout wc0 (crossbar of

size greater than 1) and ∆Vout single =Vout 1−Vout 0 (a crossbar of size of 1). It is worthy

of mention that the worst case read-out voltage of 1 in the multiple cells read occurs

when other neighbouring cells stores 0 unlike the usual single read where the worst case

occurs when the neighbouring cells stores 1. This is because when reading a 1 in multiple

cells selection and other neighbours contain a 1, sneak- path is eliminated as discussed in

Section 4.6.1 and thus make a best case read of 1.

Fig. 4.29 shows the result of our analytic tool discussed in Section 4.6 against the output

of the simulation tool for up to an array size of 128× 128. The output of both tools are

approximately similar and improves as the array size grows. Fig. 4.30 shows the outcome

of multiple cells read scheme (k = n) over larger array sizes. The read margin remains

optimal when the cells store uniform data even as the array size increases. This is not

the case for the two other data patterns. The read margin remains at an acceptable level

of over 30% with checkered pattern for an array size of 1024× 1024. The read margin

78

in Fig. 4.30 was computed using the worst case read scenario. For a cell storing a 0,

the worst case occurs when all other neighbouring cells contain a 1 (Fig. 4.26(a)) and

for a cell storing a 1, the worst case occurs when all other unselected cells contain a 1

(Fig. 4.26(b)).

0 20 40 60 80 100 120
Crossbar Array Length (m = n)

-0.2

0

0.2

0.4

0.6

0.8

1
N

or
m

al
is

ed
 R

ea
d

M
ar

gi
n

One different cell (Simulation)
Equal 0s & 1s (Simulation)
Similar data (Simulation)
One different cell (Analytic)
Equal 0s & 1s (Analytic)
Similar data (Analytic)

Figure 4.29: Comparison of normalised read margin result from analytic tool against simulation tool.

0 100 200 300 400 500 600 700 800 900 1000
Crossbar Array Length (m = n)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 R
ea

d
M

ar
gi

n

One different cell (Simulation)
Equal 0s & 1s (Simulation)
Similar (Simulation)

Figure 4.30: Normalised read margin result over larger array. Read margin remains maximum
when all the cells in the selected row stores uniform data and at minimum (goes below minimum as
the array size increase) when the row is composed principally of low resistance cells.

The average power consumed was computed based on Eqn. 4.61:

Pread = IarrayVarray (4.61)

where Iarray and Varray is the current and voltage across the crossbar array as well as the

79

load resistances. We simulated various sizes of the memristor based array, at various

values of k over a range of array sizes. We read all k cells simultaneously and also read

each k cell individually over k cycles. The average power consumed during multiple cells

(k > 1) read operation is higher compared to reading a single cell at a time. The average

power consumption after reading k cells is however much lower in multiple read when

compared with the total energy required to read one bit at a time over k cycles. Fig. 4.31

shows the power measurement of reading k cells over a cycle and single bits over k cycles.

The power savings when reading multiple cells reduces as k increases from 25% to 100%.

At 100% (when all cells in the row are selected), the power consumption of the multiple

read out method is approximately zero assuming all cells store the same value. This is

because sneak-path is non-existent at this stage.

Also simulated and compared is the power consumptions of the three memristor mem-

ory structures described in Section 4.6.3: with the Hamming code based error detection

architecture (data and parity bits in different memory blocks then data and parity bits in

the same memory block) and the Inverted-Hamming architecture in Fig. 4.28a, 4.28b and

4.28c respectively. We used the worst case scenario of the selected cell(s) storing a 0 and

all unselected cells storing a 1. We found the average of the power consumed when the

selected row stores a 0 up until when the entire row contains n− 1 zeros. For instance,

in a 4× 4 array, the average power consumed when reading all k = n selected cells is

the average of the power consumed when the selected row stores 0001, 0011 and 0111 .

Fig. 4.32 shows the power consumption trend across the three structures as the array size

increases.

80

4 8 16 32 64 128 256 512 1024
0

2

4

6

8

10

Array size (n = m)

Po
w

er
 C

on
su

m
pt

io
n

(W
)

4 8 16 32 64 128 256 512 1024
0

2

4

6

8

10

Array size (n = m)

Po
w

er
 C

on
su

m
pt

io
n

(W
)

4 8 16 32 64 128 256 512 1024
0

2

4

6

8

10

Array size (n = m)

Po
w

er
 C

on
su

m
pt

io
n

(W
)

4 8 16 32 64 128 256 512 1024
0

2

4

6

8

10

Array size (n = m)

Po
w

er
 C

on
su

m
pt

io
n

(W
)

Multiple Output
Single Output
(conventional)

Multiple Output
Single Output
(conventional)

Multiple Output
Single Output
(conventional)

Multiple Output
Single Output
(conventional)

75% cells
selected

100% cells
selected

50% cells
selected

25% cells
selected

Figure 4.31: Trend of power consumption as the number of selected cells (k) increase over a range of
array sizes. The red bars represent the power consumed by the array when reading a single bit over
k cycles while the brown bars represent reading multiple cells in a single cycle.

4 8 16 32 64 128
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Array Size (n = m)

A
ve

ra
ge

 P
ow

er
 (W

)

Inverted−Hamming
Hamming
Conventional
Splited Hamming

4 8 16 32 64 128
0

0.1

0.2

0.3

0.4

4 8 16 32 64 128
0

0.1

0.2

0.3

0.4

Figure 4.32: Power consumption trend when k = n with non-uniform data as array size increases.
Inset on the right is the power consumed in the array using inversion on hamming coding compared
against the default memristor array without coding, at smaller array size (n = 4 and 8) inversion on
hamming coding consumed more power but reduces drastically as the array size grows. On the left
inset is the comparison of the default memory array against an array with Hamming coding.

The inset figure on the left of Fig. 4.32 shows the comparison between the conventional

memory structure and a structure with Hamming code. The Hamming code structure

consumes more power as the array size increases because of the extra parity bits. Sneak-

path leakages are usually more severe when there are more cells with a logic 1 (low

resistance) in the selected row than cells with logic 0 (high resistance) in the selected row.

The inversion on hamming coding was implemented to neutralise the effect of the added

81

extra parity bits by inverting the contents of the entire rows if there are more low resistance

cells. The figure on the left inset of Fig. 4.32 shows the Inverted-Hamming structure

consuming less power than the usual memory structure because of the less number of

cells with low resistance value in the selected row.

4.7 Conclusions

A better understanding of the crossbar’s read operation is essential in order for the mem-

ristor to be effective in other application areas such as gas sensing (Chapter 6). This

chapter starts by re-examining the existing modelling of the crossbar architecture. The

current model is based on the assumption that all the memristors in a group are in the

same resistance state, resulting in a total resistance based on the ratio of the resistance

value and the number of devices involved. Since this is not always the case, in real-

ity, each group will usually contain both low and high resistance states. This led to the

derivation of model solutions that catered for this real case where each group is free to

include both high and low resistance state cells simultaneously. The analytic models for

the crossbar array and its read schemes presented in this chapter were verified by simulat-

ing the real crossbar array (not equivalent circuit) using the Cadence Spectre simulation

tool. A further analysis and modelling of four existing crossbar read schemes was also

carried out. Analysis proves that the floating wordline and floating bitline scheme has a

failure rate of 75% for small arrays up to 300×300 and a 100% failure rate on larger ar-

rays due to the effect of sneak-path currents. Other schemes that involve grounding of the

line(s) have a much lesser fail rate but become highly unreliable at array size greater than

3 orders of magnitude. The grounded schemes also have the disadvantage of consuming

enormous power.

This chapter also implemented and analysed the behaviour of the multiple bits read scheme

in memristor-based crossbar array. Results shows that the multiple bits read scheme elimi-

nates sneak-paths when all the cells in the row are selected and they store similar data. For

a m× n array, where n cells are selected for reading, the sneak-path effect is eliminated

when all n cells store similar logic value. Sneak-path cannot be eliminated when they

store different data but can be minimised by selecting more cells for read. This scheme

also saves energy when compared with the conventional schemes of read single bit over

multiple cycles.

82

Chapter 5

Improved Techniques for Crossbar

Array Write Operation

5.1 Introduction

Having considered the read operation in crossbar architectures, write operation deserves

similar considerations because of its reliability issues. Write operation in passive crossbar

memory structures could introduce some complexity into the crossbar structure beyond

the target cells. Write error in crossbar memories may occur when the voltage reaching

the target cell(s) is insufficient to switch it to the desired state and/or the state of unselected

cells are perturbed. Write voltage degradation and sneak-path are some of the challenges

with crossbar array during the write operation. Reliability of write techniques is critical to

the full commercialisation of emerging crossbar memories. This chapter begins with an

in-depth performance analysis and analytic modelling of three existing write schemes in

Section 5.2: floating lines, V/2 and V/3 in order to identify their best and worst cases with

and without line resistance. These mathematical models will facilitate quick simulation

of crossbar write operation with improved accuracy compared to existing EDA tools. The

models are then used to develop simulation environments in C++ where required crossbar

parameters can be easily modified and circuit simulated faster than with EDA tools. With

these models, any m×n crossbar array can be solved analytically with fewer restrictions.

Analysis shows that floating lines scheme could also be considered reliable in arrays with

aspect ratio of 1:1 and negligible line resistance just like the latter two schemes. Further

analysis also shows that high density crossbar structures cannot be designed using any of

the three schemes with worst case line resistance and data distribution within the array.

83

To ease this problem, a voltage compensating technique is proposed for the write voltage

degradation caused by line resistance during write operation in crossbar arrays in Sec-

tion 5.3. This technique is able to enhance write voltage in the presence of worst case line

resistance and thus enable the design of higher density and reliable crossbar arrays. A

novel multiple cells write technique is also presented in Section 5.4, multiple cells write

helps to conserve power consumption over time as well as a faster write time.

5.2 Analysis of Crossbar Array Write Schemes

Write operation in resistive-based memories suffers from leakage current through unde-

sired paths in the crossbar. In traditional memories, selectors such as diodes and transis-

tors are used to prevent flow of unwanted current in the circuit but this usually introduces

extra area overhead. Write operation is carried out on cells in the crossbar array by pass-

ing a write voltage across the selected cell while biasing other lines in the crossbar. A

write operation can be termed successful if the following conditions are satisfied: a) the

selected cell switches to the desired state and b) the state of unselected cells are preserved.

For the first condition to hold, the applied write voltage |Vw| must be ideally greater than

the SET (RESET) threshold voltages of the selected memristors. This will ensure the cell

switches to the desired new state. To preserve the state of unselected cells, the maximum

voltage reaching them must be sufficiently less than their threshold voltages. A write fail-

ure occurs if one or both conditions are not satisfied. The state of unselected cells can be

disturbed if the unselected lines are not biased properly. Aside process variation which

may cause fluctuation to the device’s threshold voltages, write failure could also be trig-

gered by line resistances in the crossbar arrays. Line resistance weakens the magnitude of

the write voltage reaching the selected cell(s) depending on its distance from the voltage

driver. Line resistance can be neglected in smaller arrays but becomes more prominent

as array size increases. High line resistance prevents the selected cell(s) from receiv-

ing sufficient voltage across it in large crossbar arrays. An important figure of merit for

write operation is the “write voltage window” which is the difference between the voltage

reaching the selected cell and the maximum voltage reaching any of the unselected cells.

Line resistance and the choice of biasing scheme are the two major factors that affect the

“write voltage window”. These factors will be further discussed in subsequent sections.

84

5.2.1 Crossbar Array Write Operation without Line Resistance

Write operation in crossbar arrays can be modelled without the effect of line resistance

for the purpose of architectures with low density or cases where the value of the line

resistances are negligible. As earlier mentioned, there are three write schemes commonly

used in crossbar arrays - the floating lines, V/2 and V/3 write schemes. This section

presents a novel analysis of the floating lines write schemes’ architecture alongside its

operation and performances without considering the effect of line resistance. The V/2 and

V/3 write schemes are included in this section for the sake of completion and comparison

with the floating lines scheme. Section 5.2.2 addresses the effect of line resistance while

using these schemes for crossbar write operations.

5.2.1.1 Floating Lines Write Scheme

In the floating lines write scheme shown in Fig. 5.1, a write voltage of |Vw| and zero are

applied to the wordline and the bitline of the target cell respectively while other lines

are unbiased. This scheme is the most complicated of the three write schemes and its

exact behaviour is often misunderstood. The selected cell in this scheme usually switches

successfully, however, the state of the partially-selected cells on the selected wordline

(purple) and bitline (green) might not be preserved depending on the structure of the

crossbar array.

Rsel

Vw

Rn

Rmn

Rm

Vw

Figure 5.1: Structure of floating lines write scheme and its equivalent circuit level model. Group II
cells are in green, Group III cells in purple and Group IV are in blue.

In this scheme, no voltage is applied directly to the unselected wordlines and bitlines. The

voltages on the unselected lines, Vword and Vbit are dependent on the values of m and n

85

hence Vword =Vbit = f (m,n). The voltage drop on the unselected groups of cells (Rn, Rm

and Rmn) can thus be computed by solving the equivalent circuit on the right of Fig. 5.1.

Assuming a fixed Vw is applied to the circuit in Fig. 5.1, a current Isneak represents the

sneak-path current flowing through the resistance of the unselected memristors Rm, Rn

and Rmn. Another current Isel flows through Rsel which is the resistance of the selected

memristor in the equivalent circuit of Fig. 5.1. Vm, Vn, Vmn and Vsel below represent the

voltages across each resistor respectively:

Vm = Isneak.Rm (5.1)

Vn = Isneak.Rn (5.2)

Vmn = Isneak.Rmn (5.3)

Vsel =Vw = Isel.Rsel (5.4)

In order to compute these voltages, we will need to find the constant current Isneak flowing

through Rn, Rmn and Rm. If Iw is the current supplied by the voltage driver Vw and Isel is

the current flowing through the selected memristor Rsel , the following equations can be

formed:

Iw = Isel + Isneak

Isneak = Iw− Isel

Since Iw =Vw

(
Rsel +Rn +Rmn +Rm

Rsel (Rn +Rmn +Rm)

)
and Isel =

Vw

Rsel
, Isneak =

Vw

Rn +Rmn +Rm

Substituting the equation of Isneak and those of Rm = R/(m− 1), Rn = R/(n− 1) and

Rmn = R/(n− 1)(m− 1) defined from the basic crossbar modelling in Chapter 2.3 into

Eqn. 5.1, 5.2 and 5.3, Vm, Vn and Vmn can be solved as below

Vm =
Vw

Rn +Rmn +Rm
.

R
m−1

Since Rn +Rmn +Rm =
R(m+n−1)
(m−1)(n−1)

86

Vm =
Vw(m−1)(n−1)

R(m+n−1)
.

R
m−1

(5.5)

Vm =
Vw(n−1)
m+n−1

(5.6)

Vn and Vmn can be derived in similar way:

Vn =
Vw(m−1)
m+n−1

(5.7)

Vmn =
Vw

m+n−1
(5.8)

Based on the solutions of Vm, Vn, Vmn and Vsel , we can properly explore the behaviour of

the floating lines scheme under different array structures. Fig. 5.2 shows the simulation

results of write operation using this scheme over a range of square array sizes. The se-

lected cell has a desired voltage drop of Vw while the voltage drop across other cells does

not exceed Vw/2. It is also worthy of mention that a voltage of Vw/2 can cause a partial

change of memristance value if applied for too long [37]. This analysis assumes that the

voltage is only applied for the duration required to switch the selected cell to the desired

state.

102 104 106

Crossbar Array Length (m = n)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

is
ed

 V
ol

ta
ge

 D
ro

p

Selected Cells
Group II Cells
Group III Cells
Group IV Cell

Half of write voltage

s

Figure 5.2: Simulation result of the floating lines write scheme. The voltage drop on the unselected
cells are guaranteed not to exceed Vw/2 irrespective of the array size if m = n.

Fig. 5.3 shows a simulation result of voltage drop on the three groups of unselected cells

for different array sizes including cases of m 6= n, the worst case write disturbance in

87

the floating scheme occurs in arrays with non-square aspect ratio (m 6= n). Partially-

selected cells in Group II (green) and Group III (purple) have an undesired voltage of

approximately Vw across them when n� m and m� n respectively. The disturbance

impact increases as the gap between m and n widens. However, Group IV (blue) cells

receive less voltage as the array size increases irrespective of the array shape. In summary,

the success of the floating scheme depends heavily on the size and aspect ratio of the

crossbar array. It is also worthy of mention that the floating scheme cannot be used for

multiple cells write as will be discussed in Section 5.4. Table 5.1 shows a summary of

voltage drop and current across each group of cells in the crossbar array during write

operation with floating lines scheme. Vsel word and Vsel bit are the voltages applied to

the selected wordline and bitline respectively. Vword and Vbit are the voltages applied to

unselected wordlines and bitlines respectively.

Figure 5.3: Voltage drop on unselected cells as array size varies when unselected lines are left float-
ing. Voltage on partially-selected cells are depicted in purple and green, while unselected cells are
represented in blue. Partially-selected cells might reach up to Vw in non-square array structures but
guaranteed not to exceed Vw/2 only if m = n.

In the floating lines scheme, maximum voltage to the unselected cells depends on the

aspect ratio of the array. Voltage disturbance in this scheme does not exceed Vw/2 when

the aspect ratio is 1:1 (m= n) irrespective of the array size. This invariably implies that the

write operation will always succeed with this scheme when the crossbar array is square

shaped. On the other hand, a partially-selected cell could have a voltage of almost Vw

88

across it in an array where m 6= n; a definite write failure.

Table 5.1: Voltage drop across the various groups of cells using the floating lines write scheme assum-
ing all the cells have the same resistance R.

Voltage Drop
Formula

Voltage drop Current

Selected cell(s) Vsel word−Vsel bit Vw−0 =Vw
Vw/R

Group II cell(s) Vword−Vsel bit f (m,n)−0 =
Vw(m−1)
m+n−1

Vw(m−1)(n−1)
R(m+n−1)

Group III cell(s) Vsel word−Vbit Vw− f (m,n) =
Vw(n−1)
m+n−1

Vw(m−1)(n−1)
R(m+n−1)

Group IV cell(s) Vword−Vbit f (m,n)− f (m,n) =
Vw

m+n−1

Vw(m−1)(n−1)
R(m+n−1)

5.2.1.2 V/2 Write Scheme

The V/2 write scheme is well understood and commonly used as the choice scheme for

write operation in crossbar arrays [70]. The structure of the V/2 scheme is shown in

Fig. 5.4. A voltage of Vw and zero are applied to the wordline and the bitline of the target

cell respectively and all other lines are biased with a voltage of Vw/2. The voltage bias

helps to minimise current leakages to some of the unselected cells. In this scheme, the

majority of the unselected cells are totally protected against disturbance. To be specific,

((m−1)(n−1)) cells are protected, these are the cells in Group III (blue). The remaining

m+n−2 cells in Group I (green) and II (purple) in the m×n array are exposed to a voltage

drop of Vw/2, which will ideally keep the cells safe. The number of cells (m+ n− 2)

susceptible to voltage disturbance in this scheme is less than 50% of the total cells in the

array (mn) (percentage reduces as the array size grows). However, the probability of write

error is slightly high in the V/2 scheme because the partially-selected cells (m+ n− 2)

have a voltage of Vw/2 across them constantly. Their state could be perturbed if the

voltage is applied long enough [37]. Table 5.2 shows a summary of voltage drop and

current across each group of cells in the crossbar array during write operation with the

V/2 scheme.

89

Rsel

Vw Vw/2

Rn

Rmn

Rm

Vw

Vw/2

Vw/2

Vw/2

Vw/2 Vw/2 Vw/2

Figure 5.4: Structure of V/2 write scheme and its equivalent circuit level model. The selected cell in
red has a voltage of Vw across it while the purple and green partially-selected cells have a voltage drop
of Vw/2 on them. The unselected blue cells have zero voltage across them.

Table 5.2: Voltage drop across the various groups of cells using the V/2 write scheme assuming all
the cells have the same resistance R.

Voltage Drop
Formula

Voltage drop Current

Selected cell(s) Vsel word−Vsel bit Vw−0 =Vw Vw/R

Group II cell(s) Vword−Vsel bit Vw/2−0 =Vw/2 Vw/2R

Group III cell(s) Vsel word−Vbit Vw−Vw/2 =Vw/2 Vw/2R

Group IV cell(s) Vword−Vbit Vw/2−Vw/2 = 0 ≈ 0

5.2.1.3 V/3 Write Scheme

In the V/3 scheme shown in Fig. 5.5, the lines of the target cell are biased with the usual

Vw and zero voltages but the other cells have a voltage of Vw/3 and 2Vw/3 applied to

their wordlines and bitlines respectively [70]. The V/3 scheme offers the best protection

against voltage disturbance to unselected cells. However, all the groups of unselected

cells shown in Fig. 5.5 are affected by a voltage of V/3 which is less than their threshold

voltages. The maximum amount of voltage applied to any of the unselected cell is reduced

to Vw/3 in this scheme as against Vw/2 in the floating lines and the V/2 scheme. Although

more cells (mn− 1) are affected by leakage in the V/3 scheme but the probability of

their state being disturbed is low. Each of the unselected cells in the V/3 scheme has a

current of Vw/3R sneaking through them. Table 5.3 shows a summary of voltage drop and

90

current across each group of cells in the crossbar array during write operation with the

V/3 scheme.

Vw

Rsel

Vw

Vw/3

Vw/3

Vw/3

2Vw/3 2Vw/3 2Vw/3

Vw/32Vw/3

Rmn

Rn

Rm

Figure 5.5: Structure of V/3 write scheme and its equivalent circuit level model. The selected cell in
red has a voltage of Vw across it while the other cells (purple, green and blue) has a voltage drop of
Vw/3.

Table 5.3: Voltage drop across the various groups of cells using the V/3 write scheme assuming all
the cells have the same resistance R.

Voltage Drop
Formula

Voltage drop Current

Selected cell(s) Vsel word−Vsel bit Vw−0 =Vw Vw/R

Group II cell(s) Vword−Vsel bit Vw/3−0 =Vw/3 Vw/3R

Group III cell(s) Vsel word−Vbit Vw−2Vw/3 =Vw/3 Vw/3R

Group IV cell(s) Vword−Vbit Vw/3−2Vw/3 =Vw/3 Vw/3R

5.2.1.4 Experimental Results and Discussions

In summary, all the three aforementioned write schemes have their pros and cons without

the effect of line resistance. The floating scheme is only considered reliable when the

array is square shaped; otherwise state of unselected cells are perturbed. The V/2 scheme

protects more cells than any other scheme but the state of the m+ n− 2 cells constantly

exposed to a voltage of Vw/2 can be overwritten if the write voltage is applied for a

longer time. The V/3 scheme on the other hand, exposes all the groups of unselected

cells to a safe low voltage of Vw/3. Analysis of these schemes will be incomplete without

considering their power consumptions.

91

The average power consumption of the floating lines scheme can be accurately computed

by summing up the individual power consumption of the four groups of cells in Fig. 5.1

as in:

Pf loat = (Vw× Isel)+(Vn× Isneak)+(Vmn× Isneak)+(Vm× Isneak) (5.9)

The power consumption of the V/2 and V/3 can be calculated using Eqn. 5.10 and 5.11

respectively:

PV/2 = (Vw× Isel)+(Vw/2× Isneak) (5.10)

PV/3 = (Vw× Isel)+(Vw/3× Isneak) (5.11)

We can also show that the power consumptions of the floating line and Vw/2 scheme is

approximately similar: If we consider n≈ m:

I f loat sneak =
Vw

R
(n−1)2

2n−1
(5.12)

Pf loat sneak =Vw× I f loat sneak (5.13)

Pf loat sneak =
Vw

2

R
(n−1)2

2n−1
(5.14)

If Vw/2 is considered in similar way:

IV/2 sneak =
Vw

2R
(n−1)+

Vw

2R
(n−1) (5.15)

IV/2 sneak =
Vw

R
(n−1) (5.16)

PV/2 sneak =
Vw

2
× IV/2 sneak (5.17)

PV/2 sneak =
Vw

2
× Vw

R
(n−1) (5.18)

PV/2 sneak =
Vw

2

R
n−1

2
(5.19)

for large n:

Pf loat sneak =
Vw

2

R
n−1

2
(5.20)

Therefore: (5.21)

Pf loat sneak ≈ PV/2 sneak (5.22)

92

0 200 400 600 800 1000
Crossbar Array Length (Square Array)

10-4

10-3

10-2

10-1

100

101

102

Po
w

er
 C

on
su

m
pt

io
n

(W
)

Floating line write scheme
1/2 write scheme
1/3 write scheme

Figure 5.6: Comparison of power consumptions in the three write schemes in the worst case scenario
(all unselected cells are initialised to Ron). Ron = 10kΩ, Ro f f = 100KΩ, Ro f f /Ron = 101. Power value is
scaled up equally for the three schemes in order to show the difference between the schemes.

Fig. 5.6 shows an ideal power consumption comparison between the three schemes. The

V/3 scheme which is the most reliable write scheme consumes enormous power. The

huge power consumption of the V/3 scheme is as a result of frequent switching between

the Vw/3 and 2Vw/3 power rail as well as the fact that all the cells in the array experience

some degree of sneak-path current. Fig. 5.7 shows the power consumption comparison

between the three scheme in a less severe situation, here the crossbar array is designed

such that the number of Ron and Ro f f cells are random. This is different from the simu-

lation of Fig. 5.6 where the crossbar is written in the worst case situation - all unselected

cells are set to Ron.

93

0 200 400 600 800 1000
Crossbar Array length (Square Array)

10-4

10-3

10-2

10-1

100

101

102

103

Po
w

er
 C

on
su

m
pt

io
n

(W
)

Floating line write scheme
1/2 write scheme
1/3 write scheme

(a)

0 200 400 600 800 1000
Crossbar Array length (Square Array)

10-4

10-3

10-2

10-1

100

101

102

103

Po
w

er
 C

on
su

m
pt

io
n

(W
)

Floating line write scheme
1/2 write scheme
1/3 write scheme

(b)

0 200 400 600 800 1000
Crossbar Array length (Square Array)

10-4

10-3

10-2

10-1

100

101

102

103

Po
w

er
 C

on
su

m
pt

io
n

(W
)

Floating line write scheme
1/2 write scheme
1/3 write scheme

(c)

Figure 5.7: Comparison of power consumptions in the three write schemes with random array resis-
tance pattern, this is a less severe case to the worst case scenario presented in Fig. 5.6. Ro f f /Ron ratio
set to: (a) 101 (b) 102 (c) 103. Power value is scaled up equally for the three schemes in order to show
the difference between the schemes.

Fig. 5.8 shows the power consumptions of the floating lines scheme compared against

the V/2 write scheme so as to show cases where the dimensions of the array are non-

square (m 6= n). As m deviates from n, there is more power savings with the floating

lines than the V/2 scheme but the inequality between m and n causes further disturbance

to the unselected cells which could lead to write failure as explained in Section 5.2.1.1.

Table 5.4 shows a performance summary of the three schemes with their corresponding

analytical models for their performance metrics.

94

Number of wordlines (m) Number of bitlines (n)

0

0.05

1000

0.1

800

0.15

1000

Po
w

er
 C

on
su

m
pt

io
n

(W
)

0.2

600 800

0.25

600400

0.3

400200 200
0 0

Floating Line
1/2

Approximately similar power
consumption when m = n

Figure 5.8: Comparison of power consumptions between the floating lines and V/2 write schemes
over varying range of array sizes and structures. Power value is scaled up equally for the two schemes
in order to show the difference between the schemes.

Table 5.4: Comparative summary of write schemes’ performances without the effect of line resistance

Voltage
on selected

cell(s)

Voltage on Unselected Cells
Total

Current
Leakage

No. of
disturbed

cells

Dependence
on

Array Size/
Aspect Ratio

Probability of
unselected cells

SwitchingMin. Voltage Max. Voltage

Floating
Lines

Vw
Vw

m+n−1
max

(
Vw(m−1)
m+n−1

,
Vw(n−1)
m+n−1

)
Vw(m−1)(n−1)

R(m+n−1)
mn−1 Yes ≤ 0.5 (if m = n)

V/2 Vw 0 Vw/2
Vw(m+n−2)

2R
m+n−2 No 0.5

V/3 Vw Vw/3 Vw/3
Vw(mn−1)

3R
mn−1 No 0.33

5.2.2 Crossbar Array Write Operation with Line Resistance

In smaller arrays, line resistance could be negligible but as the array size increases and

integration complexity grows, the effects of line resistance becomes more prominent.

Therefore, it is important to factor in line resistances for an accurate analysis of write

operation in crossbar architectures. Fig. 5.9 shows a resistance model of a m×n crossbar

array. Each memristor in the array has a wire resistance adjacent to either side of its

bitline and wordline. In the presence of line resistance, the voltage reaching the farthest

95

cell from the voltage source might not be sufficient to switch the cell to the desired state,

thereby leading to a write error. Similarly, unselected cells closer to the voltage source

could be written in error as a result of voltage deflected to/from them. Current analyses of

crossbar write schemes in the presence of line resistance are limited and difficult to adapt

into simulation tools.

II

III

IV

Vsel_word

Vsel_bit
Vbit

V w
or

d

Figure 5.9: Resistance model of the crossbar array showing resistance of nanowires.

There is no single closed form formula that can accurately describe the voltage drop on

each of the cells in the crossbar array of the resistance model depicted by Fig. 5.9. In

order to determine the voltage drop on any memristor of resistance Rm
i, j in any m× n

array, where 1 ≤ i ≤ m and 1 ≤ j ≤ n, the voltage on its wordline (row) and bitline

(column) denoted by V w
i, j and V b

i, j must be solved. For the entire array, there are 2×m×n

unknown voltages as each memristor has two unknown voltages. A set of 2mn linear

equations are thus required in order to determine the voltage drop on the memristors [72].

The current flowing through each memristor can be described by two Kirchhoff’s current

law equations - each representing the current flowing through the wordline and bitline.

Eqn. 5.23 shows the three possible wordline equations of each memristor depending on

its location on the wordline (first column (j = 1) or last column (j = n) or mid-column

(1 < j < n)). Current flowing through the bitline of a memristor will be described by one

of Eqn. 5.24 depending on the cell’s location on the bitline (first row (i = 1) or last row

(i = m) or mid-row (1 < i < m))

Kirchhoff’s Equations formed based on the voltages on the wordline junction of each

96

memristor:

(5.23)
V b

i, j −V w
i, j

Rm
i, j

=

V w
i, j −V w

i

Rwi
+

V w
i, j −V w

i, j+1

Rwi, j
, if j = 1

V w
i, j −V w

i, j−1

Rwi, j−1
+

V w
i, j −V w

i

Rwi
, if j = n

V w
i, j −V b

i, j+1

Rwi, j
+

V w
i, j −V w

i, j−1

Rwi, j−1
, otherwise

Kirchhoff’s Equations formed based on the voltages on the bitline junction of each mem-

ristor:

(5.24)
V w

i, j −V b
i, j

Rm
i, j

=

V b
i, j −V b

j

Rb j
+

V b
i, j −V b

i+1, j

Rbi, j
, if i = 1

V b
i, j −V b

i−1, j

Rbi−1, j
+

V b
i, j −V b

j

Rb j
, if i = m

V b
i, j −V w

i+1, j

Rbi, j
+

V b
i, j −V b

i−1, j

Rbi−1, j
, otherwise

Here, V w
i =Vsel word and V b

j =Vsel bit are the write voltage values on the selected wordline

i and bitline j respectively. V w
i, j and V b

i, j are the voltage values on the wordline and bitline

of the selected memristor respectively. Rwi and Rb j are the line resistance values at source

of the voltage to wordline i and bitline j respectively. Rwi, j and Rbi, j are the line resistance

values at the wordline i and bitline j respectively.

With line resistance, the worst case write scenario occurs when all the cells are in LRS

(Ron) and the selected cell is farthest away from the voltage source. In addition to the

weakening of the voltage drop on the selected cell, maximum disturbance to unselected

memristors also increases as array size grows in all the three schemes described in Sec-

tion 5.2.1. Fig. 5.10 shows the simulation results of the three schemes in the presence of

different line resistance values across an increasing array size. The line resistance values

chosen are similar to those in [105]. For this simulation, all cells in the array are kept

at a worst case value of Ron. Maximum disturbance to the unselected cells using both

floating lines and V/2 schemes are kept at a maximum of Vw/2 as array size increases.

Unlike other schemes, the V/3 write scheme causes voltage of up to 2Vw/3 to reach the

unselected cells nearest to the bitline and farthest from the wordline as shown in the simu-

lation results. Crossbar array density could be highly limited depending on the resistivity

of nanowire used in the crossbar design. A worst case RL/Ron value of 10−2 leads to a

negative write voltage window (difference between voltage reaching selected device and

maximum voltage to unselected cell) in array with over 256 devices across all the three

97

101 102 103

Array length

0

10

20

30

40

50

60

70

80

90

100

Vo
lta

ge
 d

ro
p

[%
]

Floating line - Selected Cell
Floating line - Max on Unselected Cell
V/2 - Selected Cell
V/2 - Max on Unselected Cell
V/3 - Selected Cell
V/3 - Max on Unselected Cell

(a)

101 102 103

Array length

0

10

20

30

40

50

60

70

80

90

100

Vo
lta

ge
 d

ro
p

[%
]

(b)

101 102 103

Array length

0

10

20

30

40

50

60

70

80

90

100
Vo

lta
ge

 d
ro

p
[%

]

(c)

101 102 103

Array length

0

10

20

30

40

50

60

70

80

90

100

Vo
lta

ge
 d

ro
p

[%
]

(d)

101 102 103

Array length

0

10

20

30

40

50

60

70

80

90

100

Vo
lta

ge
 d

ro
p

[%
]

(e)

Figure 5.10: Voltage drop across selected and unselected cells with all memristor in the crossbar set
to Ron and RL/Ron set to: (a) 10−2 (b) 10−3 (c) 10−4 (d) 10−5 (e) 10−6.

98

101 102 103

Array length

0

10

20

30

40

50

60

70

80

90

100

Vo
lta

ge
 d

ro
p

[%
]

Floating line - Selected Cell
Floating line - Max on Unselected Cell
V/2 - Selected Cell
V/2 - Max on Unselected Cell
V/3 - Selected Cell
V/3 - Max on Unselected Cell

(a)

101 102 103

Array length

0

10

20

30

40

50

60

70

80

90

100

Vo
lta

ge
 d

ro
p

[%
]

(b)

101 102 103

Array length

0

10

20

30

40

50

60

70

80

90

100
Vo

lta
ge

 d
ro

p
[%

]

(c)

101 102 103

Array length

0

10

20

30

40

50

60

70

80

90

100

Vo
lta

ge
 d

ro
p

[%
]

(d)

101 102 103

Array length

0

10

20

30

40

50

60

70

80

90

100

Vo
lta

ge
 d

ro
p

[%
]

(e)

Figure 5.11: Voltage drop across selected and unselected cells with random resistance pattern in the
crossbar with RL/Ron set to: (a) 10−2 (b) 10−3 (c) 10−4 (d) 10−5 (e) 10−6.

99

schemes (see Fig. 5.11(a)). The memory is not useful with a write technique and worst

case nanowire resistivity that leads to a negative write window. High density and reli-

able crossbar memory can be realised by keeping line resistance to the barest minimum.

Result with a generous line resistance of RL/Ron = 10−6 is quite promising as shown

in Fig. 5.11(e) even with a worst case data pattern where all memristors are set to Ron.

Fig. 5.11 shows similar simulation results as in Fig. 5.10 but with a random resistance

pattern. The result shows an improved write voltage window as the voltage drop across

the selected cell degrades at a slower rate as the array size increases.

One approach to solving this problem is the double-sided ground biasing (DSGB) ap-

proach where both sides of the selected wordline array are grounded and the selected

bitline is connected to the write voltage [73]. Another solution uses dual voltage source

design where voltage are delivered via both sides of the selected wordlines [71]. Both

described techniques however incur additional chip area overhead thereby reducing the

array efficiency without offering much in terms of preventing voltage degradation.

5.3 Compensated Write Voltage Technique

In this section, a novel write technique that is able to compensate for the voltage loss

during the write operation on memristor-based crossbar using the V/2 write scheme is

proposed. The V/2 scheme was chosen primarily because of the balanced voltage levels

it offer on the wordlines and bitlines. Reliability can be enforced by ensuring voltage is

only applied for a short duration as discussed in Section 5.2. Existing solutions such as

the ‘double-sided ground biasing’ and ‘dual voltage source’ incurs additional chip area

overhead without offering much in terms of preventing voltage degradation. The tech-

nique proposed here can also be extended to crossbar arrays with crosspoint cells other

than memristors.

100

II

II

III III

IV IV

IVIV

Vsel_word

Vsel_bit*

Vsel_word*

Vsel_bit
VbitVbit

V w
or

d*
V w

or
d*

V w
or

d
V w

or
d

Vbit* Vbit*

Figure 5.12: Resistance model of the crossbar array using the dual voltage source technique. The
starred voltages will have the same value as their unstarred counterpart.

As mentioned earlier, the value of the line resistance, data distribution in the array and

choice of write scheme are the three major parameters that causes voltage loss during

write operation. The compensated voltage technique was used alongside the dual voltage

source technique. The schematic is depicted in Fig. 5.12. In the ‘dual voltage source’

technique, the worst case selected cell will move to the middle of the array [71]. The

starred voltage sources will have the same magnitude as their unstarred counterparts. The

starred voltage sources are optional and are used to strengthen the voltage reaching cells

further away from the main voltage driver. The compensated technique was implemented

by adjusting the value of the voltages applied to the unselected wordlines and the selected

bitline. Usually, voltage drop on the selected cell is determined by Vsel word and Vsel bit

as explained in previous sections. In this proposed technique, as opposed to the usual

grounding of Vsel bit , a negative (positive) voltage is applied instead to supplement the

positive (negative) write voltage applied at Vsel word , thereby increasing the overall voltage

drop on the selected cell or compensating for voltage degradation due to line resistance

effects. Applying a voltage source to Vsel bit also leads to an increase in the voltage drop on

cells in Group II. The effect of this modification can be balanced by reducing the voltage

applied to Vword such that the summation of voltages applied to both Vword and Vsel bit

still results in Vw/2 therefore ensuring cells in Group II are kept safe from disturbances.

Group IV cells experience an increase in voltage drop because of the change to Vword

101

but the voltage drop is guaranteed to be below Vw/2 depending on the sharing ratio of

Vword and Vsel bit . Cells in Group III are not affected by these modifications. In order to

keep the voltage drop on Group II cells at or below Vw/2, a percentage of Vword’s voltage

(Vw/2) is extracted and applied to Vsel bit . Table 5.5 shows a summary of the new voltage

drop on the various groups of cells in the new compensated and dual voltage techniques.

The selected cells can only benefit by this compensation as it is tolerable for the selected

cell(s) to have a voltage drop in excess of its threshold voltage.

We simulated three sharing ratios between Vword and Vsel bit (K:1-K) namely 0.8:0.2,

0.5:0.5 and 0.2:0.8 over a range of RL/Ron values. We have used a switching voltage

requirement of a minimum of 75%Vw for the selected cell(s). Simulation results depicted

in Fig. 5.13(a) - 5.13(d) show over 3× improvements in the voltage reaching the worst

case selected cells with the 0.2:0.8 compensation technique compared to the conventional

method. This technique simply helps to increase the voltage delivered to the worst case

selected cell(s) without endangering the unselected cells beyond their preset thresholds.

Table 5.5: Voltage drop across the various groups of cells using the dual and compensated voltage
technique on the V/2 write scheme in the presence of line resistance. K is the percentage of voltage to
be extracted from Vword for onward application to Vsel bit to supplement the write voltage Vw.

Voltage Drop
Formula

Voltage drop

Selected cell(s) Vsel word−Vsel bit Vw− (−K.Vw)/2 = (Vw(2+K))/2

Group II cell(s) Vword−Vsel bit ((1−K)Vw)/2− (−K.Vw)/2 =Vw/2

Group III cell(s) Vsel word−Vbit Vw−Vw/2 =Vw/2

Group IV cell(s) Vword−Vbit ((1−K)Vw)/2−Vw/2 =−K.Vw/2

102

101 102 103 104

Number of memristors in crossbar

0

50

100

150

N
or

m
al

is
ed

 v
ol

ta
ge

 d
ro

p
(%

)

Vword:Vsel_bit = 20:80
Vword:Vsel_bit = 50:50
Vword:Vsel_bit = 80:20
Vword:Vsel_bit = default

75%

589184

(a)

101 102 103 104

Number of memristors in crossbar

0

50

100

150

N
or

m
al

is
ed

 v
ol

ta
ge

 d
ro

p
(%

)

75%

66242053

(b)

101 102 103 104

Number of memristors in crossbar

0

50

100

150

N
or

m
al

is
ed

 v
ol

ta
ge

 d
ro

p
(%

)

75%

(c)

101 102 103 104

Number of memristors in crossbar

0

50

100

150

N
or

m
al

is
ed

 v
ol

ta
ge

 d
ro

p
(%

)

75%

(d)

Figure 5.13: Simulation results showing voltage drop on the worst case selected cell over a range of
crossbar sizes using the proposed compensated voltage technique with RL/Ron values set to: (a) 10−2

(b) 10−3 (c) 10−4 (d) 10−5.

It is expected that the power consumption of this technique will be more than the con-

ventional V/2 scheme. This can however be managed by applying this technique to the

conventional single side write method which will further reduce power consumption. A

much smaller Vword:Vsel bit ratio can also be used to drive down power consumptions.

5.4 Multiple Cells Write Operation

As in the case of read operation, it is also possible to write multiple cells in a crossbar row

simultaneously by applying a write voltage to the selected rows and biasing the columns

that has the target cells. This simple technique works well if only all the targets cells are

to be programmed to the same value. However, write operation becomes more complex

103

when the target cells are to be programmed with different values. We assume the mem-

ristors are in the bipolar mode of operation (can only be switched ON (OFF) by a positive

voltage and switched OFF (ON) only by a negative voltage). Writing non-similar data in

multiple cells require the SET operation to write a logic 1 (ON) and the CLEAR (RESET)

operation to write a logic 0 (OFF). Two write schemes for writing non-similar data in mul-

tiple cells in memristor-based array were proposed in [32] using the V/2 write scheme:

SET-before-RESET (S-b-R) and ERASE-before-RESET (E-b-R). These schemes are well

described in Section 3. Designing the multiple bits write scheme using the V/2 scheme

means that the unselected cells have a 0.5 probability of accidentally switching unlike the

V/3 scheme that guarantees a 0.7 probability rate for the preservation for the state of the

unselected cells. The following section presents a first implementation of the multiple bits

write technique using the V/3 write scheme.

5.4.1 Low Power V/3 Write Scheme for Multiple Crossbar Cells

The S-b-R and E-b-R multiple cells write techniques proposed in [32] and described in

Section 3 were designed using the V/2 write scheme earlier described. During write

operation on a single cell, when compared with the V/3 write scheme, the V/2 scheme

has the advantage of consuming less power and also reducing the number of cells that

can be perturbed. One major downside of the V/2 scheme during single cell write is

the high probability of the unselected cells being disturbed. Although reliability in V/2

scheme can be improved by ensuring the voltage is only applied for a short duration, this

can be difficult for multiple cells write due to threshold voltage variation. The few cells

(m+n−2) exposed to voltage disturbance in V/2 have a 0.5 probability of being affected

while the exposed (mn−1) cells in the V/3 scheme have a 0.33 chance of being disturbed.

In this section, we propose for the first time to apply the S-b-R and E-b-R multiple cells

write techniques to crossbar arrays using the V/3 write scheme (Fig. 5.14, 5.15, 5.16 and

5.17). An additional technique, ERASE-before-SET (E-b-S) will also be implemented

(Fig. 5.18 and 5.19). E-b-S was mentioned as an alternative to E-b-R in [32] but was

not implemented. Two configurations of each of these techniques are explored in this

section, these configurations are based on the position of the voltage levels. Configuration

I (Fig. 5.14, 5.16 and 5.18) follows similar pattern as the V/2 scheme proposed in [32] but

for the V/3 write scheme used in this case. Configuration II (Fig. 5.14, 5.17 and 5.18) for

multiple cells write operation using the V/3 is based on asymmetric voltage application as

104

done with V/2 scheme in [106]. In the second configuration, a voltage of 2Vw/3 (−2Vw/3)

is applied to the selected wordline and the selected bitlines will have a voltage of −Vw/3

(Vw/3) applied to result in a voltage of Vw drop across the target cells. The unselected

wordlines are grounded and the unselected bitlines are exposed to Vw/3 (−Vw/3) voltage

so that the unselected cells have a maximum safe voltage of Vw/3 or −Vw/3 across them.

Both configurations consume similar power but Configuration II requires less switching

of voltage levels when the opposite data needs to be written after the first writing phase.

Table 5.6 shows a detailed comparison between the two configurations of the new scheme

and the conventional V/2 scheme.

2Vw/3

Vw

2Vw/3

1 X 1 X

Vw/3

GND GND

Vw/3

Vw/3

(a) SET Phase - Write of 1X 1X

Vw VwVw/3 Vw/3

GND

2Vw/3

2Vw/3

2Vw/3

1 0 1 0

(b) RESET Phase - Write of X 0X 0

Figure 5.14: Configuration I: Proposed SET-before-RESET technique using the V/3 Write Scheme.

Vw/3

2Vw/3

Vw/3

1 X 1 X

GND

-Vw/3 -Vw/3

GND

GND

(a) SET Phase - Write of 1X 1X

Vw/3 Vw/3-Vw/3 -Vw/3

-2Vw/3

GND

GND

GND

1 0 1 0

(b) RESET Phase - Write of X 0X 0

Figure 5.15: Configuration II: Proposed SET-before-RESET technique using the V/3 Write Scheme.

105

1 1 1 1Vw

Vw/3

Vw/3

Vw/3

GND GNDGND GND
(a) ERASE Phase - Write of 1111

Vw VwVw/3 Vw/3

1 0 1 0
GND

2Vw/3

2Vw/3

2Vw/3

Vw/3
(b) RESET Phase - Write of X 0X 0

Figure 5.16: Configuration I: Proposed ERASE-before-RESET technique using the V/3 Write
Scheme.

1 1 1 12Vw/3

GND

GND

GND

-Vw/3 -Vw/3-Vw/3 -Vw/3

(a) ERASE Phase - Write of 1111

-2Vw/3

GND

GND

GND

Vw/3 Vw/3-Vw/3 -Vw/3

1 0 1 0

(b) RESET Phase - Write of X 0X 0

Figure 5.17: Configuration II: Proposed ERASE-before-RESET technique using the V/3 Write
Scheme.

106

0 0 0 0

Vw VwVw Vw

GND

2Vw/3

2Vw/3

2Vw/3

(a) ERASE Phase - Write of 0000

Vw

Vw/3

Vw/3

Vw/3

2Vw/3 2Vw/3GND GND

1 0 1 0

(b) SET Phase - Write of 1X 1X

Figure 5.18: Configuration I: Proposed ERASE-before-SET technique using the V/3 Write Scheme.

0 0 0 0-2Vw/3

GND

GND

GND

Vw/3 Vw/3Vw/3 Vw/3

(a) ERASE Phase - Write of 0000

2Vw/3

GND

GND

GND

Vw/3 Vw/3-Vw/3 -Vw/3

1 0 1 0

(b) SET Phase - Write of 1X 1X

Figure 5.19: Configuration II: Proposed SET-before-RESET technique using the V/3 Write Scheme.

Table 5.6: A comparison multiple cells write techniques. Values in braces applies to the second phase
of the write operation if required.

Write Scheme V/2 [32] V/3 (Proposed)

Write
Technique

S-b-R E-b-R S-b-R E-b-R E-b-S

Configuration I I I II I II I II

Selected
Wordline

Vw (GND) Vw (GND) Vw (GND) 2Vw/3 (−2Vw/3) Vw (GND) 2Vw/3 (−2Vw/3) GND (Vw) −2Vw/3 (2Vw/3)

Selected
Bitlines

GND (Vw) GND (Vw) GND (Vw) −Vw/3 (Vw/3) GND (Vw) −Vw/3 (Vw/3) Vw (GND) Vw/3 (−Vw/3)

Unselected
Wordlines

Vw/2 (Vw/2) Vw/2 (Vw/2) Vw/3 (2Vw/3) GND (GND) Vw/3 (2Vw/3) GND (GND) 2Vw/3 (Vw/3) GND (GND)

Unselected
Bitlines

Vw/2 (Vw/2) Vw/2 (Vw/2) 2Vw/3 (Vw/3) Vw/3 (−Vw/3) NA (Vw/3) NA (−Vw/3) NA (2Vw/3) NA (Vw/3)

Number of
Voltage Levels

3 (3) 3 (3) 4 (4) 4 (4) 3 (4) 3 (4) 3 (4) 3 (4)

Number of
Voltage
Level Switch

2 2 4 3 3 2 3 2

107

5.4.2 Experimental Results and Discussions

In order to fairly simulate the power consumption of the multiple cells write schemes.

We simulate a single phase of writing a logic one into all the selected cells while all

other cells are kept at a low resistance value Ron where their power consumption is at its

maximum. In Fig. 5.20, the conventional multiple cells write with the V/2 write scheme

and the newly proposed multiple cells write techniques with the V/3 write scheme are

compared in terms of power consumptions. Passive crossbar arrays ranging from 4×4 to

2048×2048 were simulated with different number of cells selected to be written into. Vw

is 2V , Ron = 100Ω and Ro f f = 200KΩ. It is worth mentioning again that only the unse-

lected cells on the selected wordline and bitlines are exposed to Vw/2 in the V/2 scheme,

while all other unselected cells have zero voltage across them. In the V/3 scheme, all

unselected cells have a fixed voltage of Vw/3 or −Vw/3. Fig. 5.20(a) shows the power

consumption result of writing a logic 1 into n/4 number of cells in the selected wordline

of the crossbar arrays. The V/3 scheme consumes more power in this case. In the simula-

tion result of Fig. 5.20(b), n/2 number of cells are written into. Here, the V/2 scheme now

consumes more power than the V/3 scheme across all the crossbar arrays. The increased

power consumption of the V/2 scheme in Fig. 5.20(b) is due to more cells experiencing

the high Vw/2 voltage. As the number of selected cells increases, the number of half-

selected cells that experiences the Vw/2 voltage increases thereby increasing the overall

average power consumption. Fig. 5.20(c) and 5.20(d) show the power consumption for

3n/4 and n selected cells respectively. It is thus easy to conclude that V/3 write scheme

conserves more power than the V/2 during multiple cells write operation. The worst case

power consumption for both schemes occur when all the cells in the selected wordline are

selected for simultaneous write of logic 1 and the crossbar array size is at the maximum.

Only one wordline can be selected for write at a time. In Fig. 5.21, 64×64 and 512×512

passive crossbar arrays was simulated with the number of selected cells gradually varied

from 1 to 64 (512). The power consumed by the V/3 was enormous at first but it remained

steady as the number of cells being written into increases. This constant trend is due to

the fact that all unselected cells have a voltage drop of Vw/3 across them irrespective of

the number of cells selected. Only the power from the selected cells accumulates as their

number increases which is not massive in an array dominated by unselected cells. The

V/2 scheme started well but rises steadily as the number of selected cells increase (more

cells experience Vw/2 voltage across them and less cells have a voltage drop of zero) and

108

thus consumes much more power than the V/3 scheme as the number of cells being writ-

ten into approaches maximum. The V/3 multiple cells write scheme saves up to 55% in

power consumption compared to the conventional V/2 scheme when all the cells in the

wordline of a typical 512×512 crossbar array are written simultaneously.

0 500 1000 1500 2000
Crossbar Array Length (m = n)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
ve

ra
ge

 P
ow

er
 (W

)

#104

Multiple Cells Write with V/3
Multiple Cells Write with V/2

(a)

0 500 1000 1500 2000
Crossbar Array Length (m = n)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
ve

ra
ge

 P
ow

er
 (W

)

#104

Multiple Cells Write with V/3
Multiple Cells Write with V/2

V/2 now consumes more power

(b)

0 500 1000 1500 2000
Crossbar Array Length (m = n)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
ve

ra
ge

 P
ow

er
 (W

)

#104

Multiple Cells Write with V/3
Multiple Cells Write with V/2

(c)

0 500 1000 1500 2000
Crossbar Array Length (m = n)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
ve

ra
ge

 P
ow

er
 (W

)

#104

Multiple Cells Write with V/3
Multiple Cells Write with V/2

(d)

Figure 5.20: Power consumptions of the V/3 and V/2 schemes over a range of crossbar array size
during multiple cells write operation. Number of cells selected for write: (a) n/4 cells selected (b) n/2
cells selected (c) 3n/4 cells selected (d) n cells selected. Power values were scaled up to enhance the
visibility of the difference between the schemes.

109

0 10 20 30 40 50 60
Number of Selected Cells

0

0.01

0.02

0.03

0.04

A
ve

ra
ge

 P
ow

er
 (W

)

#######
Multiple Cells Write with V/3
Multiple Cells Write with V/2

(a)

0 100 200 300 400 500
Number of Selected Cells

0

0.5

1

1.5

2

2.5

A
ve

ra
ge

 P
ow

er
 (W

)

Multiple Cells Write with V/3
Multiple Cells Write with V/2

(b)

Figure 5.21: Comparison of power consumptions between the conventional V/2 and the proposed
V/3 write scheme during multiple cells with an array of (a) 64×64 and (b) 512×512. Power is scaled
and computed based on the simulation of writing a one in the selected cells.

5.5 Conclusions

In an effort to improve the reliability of write operations in crossbar memories, an ac-

curate analytical modelling of the crossbar write operation was developed especially for

denser arrays. The crossbar analytic models derived in this chapter caters for the real case

where each group of cells in the crossbar is free to include both high and low resistance

state cells simultaneously. With this model, analysis was carried out on the performances

of three existing crossbar write schemes (floating lines, V/2 and V/3) with and without

line resistance consideration. The floating scheme is only considered reliable only when

the array is square shaped. The V/2 scheme protects more cells than any other scheme but

the state of the m+n−2 cells constantly exposed to a voltage of Vw/2 can be overwritten

if exposed to voltage for a long time. The V/3 scheme on the other hand, exposes all the

groups of unselected cells to a more reasonable low voltage of Vw/3 but at the expense

of power conservation. Based on these initial analyses, a compensated voltage technique

was designed for the low-power V/2 scheme using the dual voltage method to increase

the maximum array size that can be designed and in turn reduce the possibility of write

failure. With this compensation technique, the maximum array size can be increased up

to three times depending on selected parameters. This chapter also proposed a new mul-

tiple cells write technique using the V/3 write scheme with two different configurations.

A comparison of the conventional scheme and the new technique shows up to a 55% re-

duction in power consumption when all the cells in the wordline of a typical 512× 512

crossbar array are written simultaneously.

110

Chapter 6

Gas Sensing with Memristor-based

Crossbar Array

6.1 Introduction

Memristive devices are traditionally used in memory, logic and neuromorphic systems.

Gas sensing is one of the recently discovered application fields of the memristor. This

work is the first piece that considers memristor arrays for use as a gas sensor. Gas sens-

ing with memristor could lead to unprecedented sensor density and ubiquity in electronic

systems. Gas sensing with memristor offers several advantages as previously mentioned

in Chapter 1 and 2. Metal oxide gas sensors operate based on internal resistance change

in the presence of the target gases. Memristors consists primarily of metal oxide which

changes its resistance based on the polarity and magnitude of an applied voltage. In this

chapter, a framework for efficient gas detection using memristor based crossbar array is

proposed and analysed using information and techniques developed from the crossbar

read and write operation detailed in Chapter 4 and 5 respectively. A novel Verilog-A

based memristor model that emulates the gas sensing behaviour of doped metal oxides

is developed for simulation and integration with design automation tools. Using this

model, we propose and analyse three different gas detection architectures based on array

of memristor-based sensors. Gas presence, together with some of its properties, can be

detected using resistance changes and spatial information from one or a group of mem-

ristive sensors. Our simulation results show that depending on the organisation of the

memristive elements and the sensing method, the response of the sensor varies providing

a broader design space for future designers. For instance, with a 8× 8 memristor sensor

111

Table 6.1: Effect of increasing gas concentration on the resistance of semiconductor metal oxide [107].

Classification
Gas Type

Reducing Oxidising

Semiconductor
p-type ↑ ↓
n-type ↓ ↑

array, there is a ten times improvement in the accuracy of the sensor’s response when

compared with a single memristor sensor.

This chapter explores memristor-based sensor structures in a crossbar architecture with

emphasis on the sensor’s response to gas presence. A fundamental question that this work

poses and attempts to answer is, given a fixed array of memristors what is the best arrange-

ment to achieve better sensitivity. In particular, we investigate if it is better to have: 1)

fewer sensor elements with a low accuracy; 2) large array of sensors with a high response

rate and reliability; or 3) a trade off between the previous two extremes. The critical argu-

ment is that when the size and number of sensors in the crossbar increases (decreases), the

performance of the overall sensor structure improves (degrades) in a similar fashion. In

achieving this aim, a suitable Verilog-A memristor model is developed and three different

crossbar sensing structures are analysed with this model.

The rest of the chapter is organized as follows: Section 6.2 describes the adaptation of

memristor for use as a gas sensor. Section 6.3 presents a description of the proposed

Verilog-A memristor model. In Section 6.4, we show a more detailed analysis of the

crossbar architecture and some key sensing problems are discussed. Section 6.5 describes

the proposed structures for gas sensing using memristor arrays. Further analysis of simu-

lation results were presented in Section 6.5.4 and Section 6.6 concludes the chapter.

6.2 Memristor as Gas Sensor

The basic mode of operation of a metal oxide gas sensor is the control of the surface

potential barrier by the adsorbed surface-charge. The interaction of a target gas with the

surface of a metal oxide sensor results in a change in the concentration of charge carriers

in the material. The change in the concentration causes resistivity alteration in the metal

oxide. In order for a memristor to be effective as a gas sensor, a slight modification will

be incorporated into devices fabricated for sensing purpose. The physical memristor will

112

Top Electrode

Bottom Electrode

TiO2

TiO2-x

Doping wall

Adsorption surface

Figure 6.1: Structure of memristor for sensing applications. Both sides of the top contact is left
uncovered to enhance interaction of target gas with the titanium oxide layer.

feature a partially covered top terminal as shown in Fig. 6.1 to allow gas interaction with

the semiconductor layer. The exposed part of the TiO2−x thin film allows for easy inter-

action between the gas and the surface of the memristor via both sides of the top contact.

The degree and direction of resistance change depends on the metal oxide semiconductor

material in the sensor and the type and concentration of the subject gas. Table 6.1 shows

a summary of how the resistance of metal oxides react to the presence of different gases.

The sensor design in this thesis focuses on TiO2 based memristor. TiO2 is regarded as a

reliable chemical sensor because of its high sensitivity, low cost, fast response time and

stability [90, 108]. Gas adsorbed by the surface of a TiO2 film increases or decreases the

resistance of the film as a result of interactions among electrons in the film. A typical

structure of TiO2 based memristor is the HP Labs memristor shown in Fig. 6.1 and de-

scribed in Section 2.2.1 of Chapter 2. HP Labs’ memristor consists of two layers; a less

conductive TiO2 layer and a conductive oxygen-deficient titanium dioxide TiO2−x layer.

We propose to use this memristor as a sensor by initialising the memristor to the Ron state

by applying a high positive voltage to the positively charged TiO2−x layer. This repels

the oxygen vacancies in the TiO2−x region further into the TiO2 layer, thereby making the

device almost completely filled with the more conductive TiO2−x from the surface. The

total resistance (memristance) of the memristor is determined by two variable resistors

Ro f f and Ron representing the resistance of the undoped (TiO2) and the doped (TiO2−x)

regions of the memristor respectively (see Section 2.2.1). TiO2−x is p-type semiconductor

and its resistivity (Ron) decreases (increases) in the presence of an oxidising (reducing)

113

+

O-
O-

O-

O-

O- O-
O-

O-

O-

+
+

+ ++
++

+ +

+
+ +

+
+

+

+ Hole Oxygen anion O-

(a)

+ + +++
+ + +

Electron
_

(b)

Figure 6.2: Interaction of reducing gas with the surface of TiO2 based memristor. (a) Oxygen anion
are adsorbed to the surface of the memristor on exposure to air (b) In the presence of a reducing gas
such as CO, the oxygen anion react with the gas to release electron that are injected into the thin film.

gas.

The concentration of charge carrier in the TiO2 thin film will increase (decrease) in the

presence of an oxidising (reducing) gas since holes (electrons) are generated from the in-

teraction of such gas with the oxygen anion (O−) adsorbed at the surface of the device [86,

108, 109]. Fig. 6.2(a) shows oxygen ion adsorbed to the surface of the memristor on ex-

posure to air. Whenever a reducing gas such as carbon monoxide (CO) is exposed to the

surface of the memristor sensor, oxidation reaction takes place between the CO and the

oxygen anions to emit electrons as shown in Fig. 6.2(b) according to Eqn. 6.1. The emitted

electrons in turn nullifies the positively charged carriers in the TiO2−x region (Eqn. 6.2)

thereby increasing its resistance and the resistance of the entire device [109].

CO+O− Oxidation−−−−−→ CO2+ e− (6.1)

h++ e− −−→ null (6.2)

114

6.3 Verilog-A Model for Memristive Gas Sensor

Prior to analysis of memristor-based structures suitable for gas sensing, there is the need to

develop an effective memristor sensor model as there is not a known one in existence. This

model accounts for gas concentration as an input to the memristor model as this forms the

basis for memristor’s application in gas detection. Generally, when semiconducting metal

oxide are used as gas sensor, the change of the sensor’s resistance is as a result of the loss

(gain) of free charge carriers (electrons or holes) from (to) the semiconductor to (from)

its surface [110].

1 `include "disciplines.vams"

2 `include "constants.h"

3 nature distance

4 access = Metr;

5 units = "m";

6 abstol = 0.01n;

7 endnature

8

9 discipline Distance

10 potential distance;

11 enddiscipline

12

13 module Memristor(p, n, c, x_position);

14 //in: p, c, out: n, x_position; define in & out port;

15 input p; //positive pin

16 input c; //concentration

17 output n; //negative pin

18 output w_position; // w-width pin

19 electrical p, n, gnd;

20 Distance w_position, c;

21 ...

22 analog function integer stp; //Stp function

23 real arg; input arg;

24 stp = (arg >= 0 ? 1 : 0);

25 endfunction

26 analog begin

27 I_ion= k *sinh(alpha*V(p,n));

28 f_drift = 1-pow(x/D-stp(-I_ion), 2*p_coeff);

29 Ron_eff = Ron*(1+A*pow(Metr(c), beta));//Reducing gas

30 //Ron_eff = Ron/(1+A*pow(Metr(c), beta));//Oxidising gas

31 Roff_eff = Roff //Roff_eff could also be set to change similar to Ron_eff

32 dxdt =(uv*Ron_eff/D)*I(p,n)*f_drift;

33 x = idt(dxdt, x_0);

34 ..// quantize x to [0, D]

35 R=Ron_eff*x/D+Roff_eff*(1-x/D);

115

36 I(p,n) <+ 1/R*V(p,n);

37 Metr(x_position) <+ x;

38 end

39 endmodule

Listing 6.1: Verilog-A description of proposed memristor model for gas sensing

Any of the memristor models based on a gas sensitive metal oxide semiconductor can be

adapted for the purpose of simulating a gas sensor. We present an adaption of the physical

memristor fabricated by HP labs for use as a memristive gas sensor. As earlier mentioned,

HP’s memristor consists of two regions; the perfect and less conductive TiO2 and the

conductive TiO2−x with oxygen vacancies (holes) as described in Section 2.2.1. While the

practical viability of the HP model has been contested in memory design, it is sufficient

for sensor simulations as the resistance changes depends majorly on the gas concentration.

The positively charged oxygen vacancies makes the TiO2−x material conductive [30]. Gas

interaction will occur at the surface of the TiO2−x layer where the number of positively

charged holes will increase or decrease depending on the properties of the subject gas (see

Table 6.1). We assume the ion mobility rate will remain at its average value.

Algorithm 6.1: Memristor gas sensor

1 Function Memristor Sensor
Input: Conc (C), Ron, Ro f f

Output: memristance

2 w(0) = initial state

3 D = Memristor’s size;

4 if reducing gas then

5 Ron e f f = Ron(1+A[C]β);

6 end

7 if oxizidising gas then

8 Ron e f f = Ron/(1+A[C]β);

9 end

10 R f inal
mem = Ron e f f

w(t)
D +Ro f f e f f

(
1− w(t)

D

)
;

11 return R f inal
mem ;

12 end

The Verilog-A model listed in listing. 6.1 and summarised in Alg. 6.1 will facilitate easy

integration and simulation of memristor-based sensors with design automation tools. For

brevity, only the main functions are shown. The model was built on the basic memris-

116

tor model presented in [111] and further expanded in [101]. The Biolek window func-

tion [57] to ensure state variable x remains within the 0 and D boundary is shown in

line 28. The Butler-Volmer equation in line 27 is used to introduce some degree of non-

linearity to the current-voltage (I-V) characteristics with programmable thresholds. k and

α are fitting constants for characterising the memristor’s state. The response (S) of sensors

to gas presence is often defined in various forms such as S = Rinit/R f inal , S = R f inal/Rinit ,

S = |Rinit−R f inal|/Rinit , S = |Rinit−R f inal|/R f inal , where R f inal and Rinit are the final and

initial resistance of the sensor after and before exposure to gas respectively. The value

of Ron changes to Ron e f f using equation in line 29 from the adaptable response model

equation in Eqn. 6.3 [107, 112, 113]. The adaptation of this equation depends on the type

of gas interacting with the memristor. Therefore, for any oxidising gas of concentration C,

the sensitivity of a gas sensor made of p-type semiconductor can be represented directly

by Eqn. 6.3. Clearly, the sensitivity of a p-type material to a reducing gas can also be

represented by the inverse of Eqn. 6.3.

S =
Rinit

R f inal
= 1+A[C]β (6.3)

The response equation above is based on the concentration C (one of the three input ports

in the model) of the target gas. Where A is the constant parameter or sensitivity coefficient

for the material of the semiconductor and β is the response order for the subject gas. Ron

(Ro f f) and Ron e f f (Ro f f e f f) in the Verilog-A model replaces Rinit and R f inal respectively

in Eqn. 6.3. Depending on the type of gas, Eqn. 6.3 can be adapted for either an oxidising

or reducing gas as summarised in Table 6.1. TiO2 is a n-type semiconductor metal oxide

but can be transformed into a p-type by doping [108]. HP Lab’s memristor can be regarded

as a p-type metal oxide semiconductor material when used as a gas sensor with the doped

TiO2−x region exposed to the subject gas.

The Verilog-A model is developed based on the generally accepted assumption that only

the region of the memristor directly exposed to the target gas experiences a change in

resistance [112, 109]. The model thus uses the new Ron e f f and Ro f f e f f to compute the

final memristance (R f inal
mem) of the device after exposure to the target gas using Eqn. 6.5.

The initial memristance of the device is calculated with Ron as in Eqn. 6.4. Eqn. 6.4 and

6.5 are an adaptation of the original TiO2 based memristor equations proposed by HP

117

Labs [30].

Rinit
mem = Ron

w(t)
D

+Ro f f

(
1− w(t)

D

)
(6.4)

R f inal
mem = Ron e f f

w(t)
D

+Ro f f e f f

(
1− w(t)

D

)
(6.5)

where 0≤w(t)≤D is the time dependent state variable acting as a boundary between the

doped and undoped regions. Ro f f e f f and Ron e f f are the effective new resistance values

of the two regions after exposure to gas. The memristor is initialized to Ron (w = D) such

that it constitutes mostly oxygen deficient TiO2−x. Interaction of gases with the doped

region changes Ron to Ron e f f without shifting the state variable. The extent of change

to the resistance of the doped region depends on the carrier concentration and type of

gas. As portrayed in the Verilog-A model, Ro f f e f f ≈ Ro f f because the gas has negligible

interaction with the undoped region of the memristor, the Verilog-A model could also be

adjusted to accommodate changes in Ro f f .

I

(
u
A

)

-20.0

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

V (mV)

-1000 -500.0 0.0 500.0 1000

(a)

V

(
V

)

-1.5

-1.0

-.5

0.0

.5

1.0

1.5

I

(
u
A

)

-20.0

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

time (ns)

0.0 2.5 5.0 7.5 10

(b)

Figure 6.3: (a) I-V characteristics of the proposed Verilog-A memristor model over 5 steps of an
oxidising gas concentration (0 ppm (red line) - 1000 ppm (blue line)) (b) The applied voltage (red) and
resulting currents (other colours) from varying the value of gas concentration (0 ppm (green line)
- 1000 ppm (yellow line)). Initial Ron and Ro f f are 100Ω and 200K Ω respectively, β = 1[112] and
A = 4.2×10−4 .

118

The I-V characteristics of the developed model was plotted over a range of gas concen-

tration to ensure the device still retains its memristive behaviour. A sinusoidal voltage

was applied to the device and the corresponding current responses shown in Fig. 6.3(b)

are very similar to those reported in various experimental results in literature [57, 114].

Fig. 6.3(a) shows the I-V curve over a parametric range (0 ppm - 1000 ppm) of a re-

ducing gas concentration. From the I-V characteristics, the Ro f f value remains almost

constant because the gas interacts less with the undoped layer of the memristor as previ-

ously explained. On the other hand, Ron reduces to Ron e f f causing increased current as

gas concentration increases as seen by the multiple coloured lines on the vertical plane of

curve in Fig. 6.3(a). The I-V characteristics were obtained through simulation in Cadence

Virtuoso with a sinusoidal input voltage to the sensor element.

The authors in [115] presented the effects of temperature on the I-V characteristics of

Tantalum-oxide-based resistive memories. Their results show a 60◦C temperature change

triggering a negligible change in the hysteresis curve of the device. The technique of [99]

also showed that the TiO2 gas sensor can effectively respond to gas presence in the range

24-100◦C. In addition, it has been demonstrated in [8] that a current change caused by

parasitic effects only move the I-V curve’s pinch-point marginally. As the overall current

in the sensor is expected to be low, our model did not consider the effects of temperature

changes. With the Verilog-A model firmly established, the sensing capability of a single

isolated memristor was verified with an oxidising gas. Fig. 6.4 shows a single memristor’s

response as a function of gas concentrations ranging from 0 ppm to 104 ppm. Expectedly,

the response rate increases with increasing gas concentrations. For the development of

the Verilog-A sensor model, we have made the following assumptions:

1. The memristor operates at a temperature sufficient for the resistance of the thin film

to change in the presence of gases. Metal oxide sensors are able to operate at room

temperature [90, 91].

2. The gas concentration causes an absolute change in the value of Ron alone which

causes no significant change to the position of the state variable x.

3. The resistance value of the memristor could be read-out with or without the pres-

ence of the target gas using appropriate read circuitry.

4. Recovery time of memristor depends on the properties of the material in use.

119

101 102 103 104

Concentration of gas (ppm)

1

1.5

2

2.5

3

3.5

4

4.5

5

R
es

po
ns

e
(R

m
em

in
it

 /
R

m
em

fin
al

)

Figure 6.4: Sensor response to different concentrations of an oxidising gas. Rinit
mem is calculated using

Eqn. 6.4 with the initial values of Ron Ro f f . R f inal
mem (Eqn. 6.5) is the memristance of the sensor after gas

interaction, where Ron changes to Rone f f .

6.4 Gas Sensing with Crossbar Array

The use of a single memristor cell as a sensor has been demonstrated experimentally in

previous publications [52, 53]. Measurement errors in sensors could be reduced statisti-

cally by taking multiple measurements from the same sensor or from different indepen-

dent sensors [116]. Array of sensors also open up the possibility of detecting multiple

gases in real time. The use of MOSFET based sensors in an array to improve perfor-

mance was demonstrated in [117], where pairs of Pd- and Pt-gate MOSFET were used to

detect and analyse gas mixtures. Similarly, the use of commercially available SnO2 sen-

sors in an array to detect and differentiate organic compounds was also explored in [118].

These array of sensors make it possible to detect, quantify and differentiate multiple gases

in real time. Fig. 6.5(a) shows a crossbar array with the cell circled in blue for sensing.

The crossbar consists of a set of parallel nanowires perpendicularly placed on another

set of parallel nanowires with a memristor cell inserted at every intersecting point of the

wires. Each set of parallel wires represents the bitlines and wordlines. In order to sense

the resistance of a memristor in a crossbar memory array, a read voltage Vread (less than

the threshold voltage to switch the memristor) is applied to either the wordline or bitline

and the other line is grounded through a load resistor. The other lines can be left floating.

However, this simple sensing technique introduces the sneak-path problem that hinders

independent sensing of each device in the array. Memristor crossbar architecture suffers

120

Vread

RL

X1 X2 XnX3
Y1

Y2

Y3

Ym

Vout

(a)

Rmn

Rn

Rm

Vread

Vout

RL

Rmem

(b)

Figure 6.5: (a) A typical crossbar architecture conditioned for reading. The cell circled in blue (Rmem)
is the target cell (b) Equivalent circuit of the ideal crossbar read operation showing the undesired
parallel combination of neighbouring memristors with the target memristor to influence the read
output.

from sneak-path because of the bidirectional flow of current in oxide based memristors.

Sneak-paths are undesired current paths within the crossbar architecture that may lead to

erroneous sensing of the resistance of a memristor cell in a crossbar array. Resistance

of unselected cells combine to form a parallel resistance path with the resistance of the

desired cell(s) as shown in the equivalent circuit in Fig. 6.5(a) [38]. Sneak-path effect

makes it difficult to use each of the memristor in the crossbar array as an individual sen-

sor. Apart from degrading the sensing margin, existence of sneak-paths also leads to

increased power consumption. Sneak-paths also limit the maximum array size because

sensing margin degrades severely as the array size increases. The sneak-path problem

was previously explained in Chapter 2 and further analysed in Chapter 4.

6.5 Proposed Crossbar Gas Sensing Structures

Sensing each memristor from the basic crossbar structure without an isolating device or

extra line biasing is usually plagued by sneak-path as described in Section 2.3.3. In the

presence of sneak-path, each memristor in a basic crossbar array cannot be used as a

sensor on its own. We propose two sneak-paths free structures without the use of an

isolating device and one sneak-paths free structure that makes use of the transistor as an

isolating device.

121

Rm

R3

R2

Gc1

X1 X2 XnX3
Y1

Y2

Y3

Ym

R1

Gc2

Gc3

Gcm

R1

Gc1

R2

Gc2

R3

Gc3

Rm

Gcm

Figure 6.6: The proposed multi-sensing structure. A m×n array of multiple sensors able to detect m
different gases and its equivalent resistance model.

6.5.1 Multi-Gas Sensing with m (1×n) Sensor Array

This section proposes a crossbar structure suitable for sensing multiple gases. A matrix

of memristor sensors are designed such that the memristors in the same row have iden-

tical initial properties that enables them to react in approximately similar pattern in the

presence of any target gas. In this architecture, each row in the matrix acts as a sensor.

The number of gases that can be sensed using this architecture depends on the number of

rows in the crossbar as shown in Fig. 6.6. The number of sensing devices in each row is

based on the level of redundancy or samples needed in order to accurately detect the prop-

erties of the target gas. From a physical point of view, every memristors in a target row

should adsorb similar concentration of gas as they are connected by the same electrode.

Fig. 6.7 shows the experimental set-up of this structure for a 4×4 sensor array using the

Cadence Virtuoso simulation tool. The passage of gas concentration to the memristors

were simulated using a Piece-wise Linear Voltage source (VPWL) .

122

Figure 6.7: Experimental set-up of the detection schematic of a 4× 4 memristor sensor array on
Cadence Virtuoso simulation tool. Gas concentration is passed on to the memristors in the target row
through the extra node created while their corresponding bitlines are grounded.

After exposing this architecture to a certain level of gas concentration, the response rate

of the sensor can be determined using the voltage divider technique. This architecture

benefits from a sneak-path free sense operation as memristors from other rows do not

interfere with the sensing circuitry. The sneak-path effect in this structure is minimised

by sensing all memristors in the target row simultaneously while the columns are shorted

as shown in Fig. 6.8. Also, the presence of line resistances in untargeted rows does not

introduce sneak-paths current into the sensing circuit but the negligible line resistances

in the target row might be factored in to further improve the sensor’s accuracy. The

experimental set-up of this read technique is shown in Fig. 6.9 where a read voltage Vread

is applied to the first row in the array and all the columns are shorted to the load resistance

(RL) that forms a voltage divider with the target row. All the memristors in the array are

set to a resistance value of 100Ω. Vout is the output of the voltage divider which can

be computed analytically according to Eqn. 6.6. If RL = 100Ω and Vread = 1V , Vout

123

Rothers

Ri
Vread

RL

X1 X2 XnX3
Y1

Y2

Y3

Ym

Vout

(a)

Vread

Ri

RLRothers

Vout

(b)

Vread

Ri

RL

Vout

(c)

Figure 6.8: Read mechanism for the multi-sensing structure (a) Sensing one of the m sensors in
the array (b) Corresponding equivalent circuit model showing the negligible impact of the other
memristors in the array (c) Final equivalent circuit model without the effect of the other memristors
in the array.

for this particular experiment is expected to be 0.8V and Ri = 25Ω. If Vout is known,

Ri, which is the resistance of the memristors acting as gas sensor, can be analytically

calculated by solving the equivalent circuit in Fig. 6.8(c) using Eqn. 6.7. Fig. 6.10 shows

the simulation result of reading the target (first row) sensor’s resistance value without the

effect of sneak-path currents from other memristors in the remaining rows of the array.

The second waveform is the aggregate resistance of the sensor (four memristors) in the

target row. This simulation method also applies to any of the m-row sensor in the crossbar

array.

Vout =Vread×
RL

RL +Ri
(6.6)

Ri =
Vread−Vout

Ii
(6.7)

Here, Ri is a parallel combination of all the resistances of the memristors in the target row

(1≤ i≤ m) and Ii is the current flowing through the memristors in the target row and the

load resistor. No current flows through the other memristors in the array as demonstrated

by the simulation result of Fig. 6.11. The three zero-current are from one randomly chosen

memristor in each of the untargeted rows. This effectively demonstrates that the read

technique is free of current leakages.

124

Figure 6.9: Experimental set-up of the sensing schematic of a 4× 4 memristor sensor array on Ca-
dence Virtuoso simulation tool. A voltage of Vread is applied to the first row while the columns are
shorted and connected to the sensing circuit.

125

Memristor s_multiple schematic 10:38:00 Mon Aug 7 2017

Transient Response

 /Vout

V

(
V

)

0.0

.2

.4

.6

.8

1.0

 /Res

R
(
O

h
m

s
)

0.0

10.0

20.0

30.0

40.0

50.0

time (ns)

0.0 2.5 5.0 7.5 10

Vout

Resistance

Printed on

by csxjm

Page 1 of 1Figure 6.10: Simulation result of sensing the first row (sensor) of the 4× 4 crossbar array. A Vread
of 1V was used. Vout is the output of the voltage divider which can in turn be used to compute the
resistance value Ri of the four parallel memristors in the first row. In this case, each of the memristors
have a resistance value of 100Ω, therefore the four selected memristors have a total resistance value
of 25Ω as shown in the waveform.

Memristor s_multiple schematic 15:40:08 Mon Aug 7 2017

Transient Response

 /I_41/n

I

(
A

)

-1.0

-.5

0.0

.5

1.0

 /I_32/n

I

(
A

)

-1.0

-.5

0.0

.5

1.0

 /I_23/n

I

(
A

)

-1.0

-.5

0.0

.5

1.0

time (ns)

0.0 2.5 5.0 7.5 10

Current through device (2,3)

Current through device (3,2)

Current through device (4,1)

Printed on

by csxjm

Page 1 of 1Figure 6.11: Simulation result demonstrating the zero-current flow through the unselected memris-
tors in the 4× crossbar array of Fig. 6.9.

All the memristors in a row will have approximately similar resistance values because

of their identical initial conditions. Also note that when the resistance value of each

row is being sensed, all other memristors in the array are shunted out of the circuit and

they do not contribute to the sensed output. m-number of reads are required to detect

the response of all the sensors in the m× n crossbar. Fig. 6.12 shows the simulation

126

result from directing a range of reducing gas concentration to a row of a 4× 4 sensor

array. The initial resistance value of the four memristors in the target row was set to

100Ω,123Ω,127Ω and 140Ω, representing an extreme case of almost 33% variation be-

tween the smallest and largest memristance. Despite the large variation, an average re-

sponse (red waveform) which represents the parallel combination of the four memristor

was measured by the sensing architecture over the range of gas concentration (pink wave-

form). If all the rows in the crossbar are used for gas sensing, measurements will be done

by a succession of m read steps for i = 1, ...,m and all responses recorded accordingly.

The sensing structure depicted by Fig. 6.6 also makes it possible to design a fault tolerant

system by introducing a repair mechanism that addresses faulty sensors in the array. This

can be achieved by checking if the response of a memristor (sensor) considerably differs

from the rest, in such case, the resistance of the cell can be set to a high resistance state

or such cell substituted with a spare one. A faulty memristor in a row can also be isolated

by leaving it bitline floating. Memristor s_multiple schematic 15:20:45 Mon Aug 7 2017

Res1:Res2:Res3:Res4:Total Resistance

 Res3 Res2 Res1 Res4 Total Resistance

R

(
O

h
m

s
)

0.0

100.0

200.0

300.0

400.0

500.0

600.0

 /conc

G
a

s

C

o
n

c
.

(
1
e

3
p

p
m

)

-.5

1.0

2.5

4.0

6.0

8.0

9.5

11.0

12.5

time (ns)

0.0 2.5 5.0 7.5 10

Printed on

by csxjm

Page 1 of 1

Variation in responses (resistance)
of 4 ‘row’ devices

Accumulated response of
 all devices

Figure 6.12: Simulation result of exposing a row from a 4× 4 memristor crossbar array to a range
of gas concentration (reducing gas). Resistance change waveforms at the top, Gas concentration
waveform at the bottom.

As clearly shown in Fig. 6.13, the response of the row-based sensor gets better as the

number of memristors in the row increases. In this simulation, a crossbar with five rows

was created and each row initialised to different Ron values. The number of memristors

in each row was progressively increased and results show an improved response as the

127

number of sensing memristor grows across the five rows in the crossbar. Measurements

was done by a succession of m reads for i= 1, ...,m and each of the responses are recorded.

100 101 102

Number of memristors (n) in row

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
es

po
ns

e
(V

in
it

ou
t /

Vfin
al

ou
t

)

1.0 x 103

2.0 x 103

3.0 x 103

4.0 x 103

0.5 x 103

Rinit (+) =

Figure 6.13: Response of five rows of memristors to gas presence. All memristors in the same row are
set to the same initial resistance.

6.5.2 The m × n Array Structure

We propose a structure that consists of an m× n crossbar array of memristors such that

the entire array acts as a single sensor. This is similar to the m (1×n) array except for the

number of sensors in the array. A parallel readout of the crossbar matrix could be achieved

by connecting all the wordlines to the read voltage and all bitlines are grounded via the

load resistor for sensing. The structure of the sensing mechanism and its equivalent circuit

model are shown in Fig. 6.14(a) and 6.14(b) respectively. The sensitivity of this structure

to any gas can be computed by measuring the overall resistance of memristor before and

after interaction with the subject gas.

128

Rarray

Vread

RL

X1 X2 XnX3
Y1

Y2

Y3

Ym

Vout

(a)

Vread

Vout

RL

Rarray

(b)

Figure 6.14: (a) Sensing mechanism for a crossbar sensor made up of m× n sensors. (b) Equivalent
resistance model for the sensing mechanism.

The sensitivity measurement for a sensor that consists of an array of memristors will differ

slightly from that of a single memristor shown in Fig. 6.4. This is because the ratio of the

initial and final resistance of the crossbar remains constant as the size varies with fixed gas

concentration. For simulation purposes, the overall output voltage of the array computed

by Eqn. 6.8 will instead be used to measure sensitivity.

Vout =Vread×
RL

RL +Rarray
(6.8)

where Rarray is a parallel combination of all the memristance (Rmem) in the array. The

simulation result of this sensing technique shows that the sensor’s response improves

with increasing number of memristors in parallel as shown in Fig 6.15. The rate of im-

provement to the sensor’s responsiveness is however not linear with an increasing array

size. The increment in the response rate drops to approximately 1% once the number of

devices approach 5K and almost negligible by the time the 10,000th device is added to

the array. Hence, an array size beyond 5K may not be justifiable.

6.5.3 The 1T1M Structure

The 1T1M structure is another memristor-based architecture that solves the sneak-path

problem [78]. The 1T1M architecture shown in Fig. 6.16 consists of an access transistor

129

100 102 104 106

Number of memristors (m#n) in array

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
es

po
ns

e
(V

in
it

ou
t /

Vfin
al

ou
t

)

Figure 6.15: Sensor’s responsiveness increases as the number of memristors in the m×n sensor struc-
ture increases. Ron = 1K Ω, RL� Ron, C = 104 ppm.

and a memristor at every cross-point. The transistor enables independent access to each

memristor cell without interference from other cells but at the expense of area per cell.

The 1T1M structure has a bigger footprint because of the access transistor. To perform

the sensing operation in this architecture, only the row that contains the target cell is

enabled via the access transistor and only the corresponding column grounded. In this

way, the desired sensor can be read without sneak-path and each cell can be used to

independently sense different gases. Response of each memristor in the array will be

similar to the simulation result of an isolated single memristor in Fig. 6.4. Clearly the

1T1M approach, which resembles the DRAM architecture, does not leverage the potential

density improvement achievable in a purely memristive crossbar structure. This approach

can be adopted whenever high density is less of a priority.

6.5.4 Experimental Results and Discussions

As earlier mentioned, the accuracy and reliability of gas sensors can be improved statis-

tically by taking multiple measurements from the same sensor or from different indepen-

dent sensors. This section examines the accuracy of the three proposed sensing structures.

An important figure of merit is the resistance swing of a gas sensor. We define resistance

swing as the window between the maximum and minimum values in the resistance dis-

130

Vdd

Vdd

Vdd

Vread

Vread

Vread

RL

Figure 6.16: One transistor, one memristor structure for minimizing sneak-path effect in an array of
sensors. The sensor in the top right corner is selected for sensing.

tribution of the sensing device after measurement. A reliable sensor will have a small

resistance swing which will make it possible to detect slight changes in gas concentration.

In order to estimate the resistance swing of the proposed sensing structures, we simulate

multiple measurements with multiple samples. The initial and final resistance values of

5×104 samples of each of the sensing structures described in Section 6.5 were measured.

We assume a 5% standard deviation in the initial resistance value of each memristor used

in the sensor, the same standard deviation was also applied to the final resistance after

103 ppm volume of gas was applied. The aim of applying the deviation to the resistance

values is to evaluate how well each structure can tolerate resistance variation that often

affects memristive devices. Figures in Fig. 6.17 shows the Monte Carlo simulation of re-

sistance distribution using 5×104 samples from each of the sensing structures described

in Section 6.5. The m× n structure has the least resistance swing before and after gas

exposure. The presence of more memristors in the m× n led to a desirable reduction in

the standard deviation of the overall resistance of the array. The m× n structure bene-

fits from the idea of averaging the response of multiple memristors in order to increase

the sensor’s reliability and precision as shown in Fig. 6.17(a). Similarly, the m(1× n)

structure has a fairly less standard deviation (Fig. 6.17(b)) compared with that of the sin-

gle memristor in Fig. 6.17(c). Simulation results presented in Fig. 6.17(c), 6.17(b) and

6.17(a) were performed using a single memristor sensor cell, 1×8 and 8×8 sensor array

respectively. A possible 5% standard deviation in memristance could invariably lead up

to a 60% progressive variation on the final response of the sensors over a sample size

of 5× 104 single memristors. However, the same sample size with a 8× 8 sensor array

131

Table 6.2: Relative comparison of sensing structures

m×n 1×n 1T1M

Reliability High Moderate Low

Sneak-path No No No

Resistance Swing Low Moderate High

Multi-Gas sensing No Yes
(number of rows)

Yes
(number of cells)

reduces the variation in the sensor responses to as low as 5.3%, thereby making the m×n

structure a more reliable option due to the averaging effect of having more memristors in

the sensing block. The m× n is however limited to sensing a single gas at a time unlike

the m(1×n) and 1T1M structures that can sense multiple gases depending on the number

of rows (m) and number of memristors in the array respectively. The m×n structure gives

the lowest resistance swing compared to the other two structures because of less variation

in its measured response. Table 6.2 shows the comparison of the different proposed struc-

tures. These sensing approaches are essential for integrating very dense sensor arrays on

well known and established memory-like architectures already proposed for memristive

arrays. As earlier implied, memristive sensors can be lumped together to function as a

single sensor, unlike memristor-based memory array, where the content of the individual

device has to be explicitly measured to make sense of the data. For the purpose of gas de-

tection, averaging responses from multiple sensing devices enhances the sensor’s overall

accuracy. This averaging technique is achieved via parallel combinations of all concerned

devices which helps to knock out the effect of any fault within the crossbar array. Another

interesting aspect of memristor’s use as a sensor in crossbar architecture is the opportunity

to sense multiple memristors without the sneak-path problem.

6.6 Conclusions

To the best of our knowledge, this is the first attempt to develop a novel sensing mecha-

nism and architectures using memristive crossbar arrays. The contribution of this chapter

starts with the development of a gas sensitive Verilog-A memristor model. This model

takes into account the gas sensing properties of TiO2 and could be expanded to other

metal oxide materials. Using this model, three gas sensing techniques were proposed

and investigated, namely, m×n, m(1×n) and 1T1M. Our analysis shows that the m×n

132

8 10 12 14 16 18
Resistance [+]

0

500

1000

1500

2000

N
um

be
r

Initial resistance
Final resistance

(a)

60 80 100 120 140
Resistance [+]

0

500

1000

1500

2000

N
um

be
r

Initial resistance
Final resistance

(b)

400 600 800 1000 1200
Resistance [+]

0

500

1000

1500

2000

2500

N
um

be
r

Initial resistance
Final resistance

(c)

Figure 6.17: Initial (before gas exposure) and final (before gas exposure) resistance distribution in (a)
m×n sensing structure as explained in Section 6.5.2, (b) 1×n sensor representing one of the m sensors
used for multi-gas sensor explained in Section 6.5.1 and (c) a single memristor sensor from use of the
1T1M structure. m = 8, n = 8, C = 103 ppm.

and m(1×n) structures are more efficient in terms of responsiveness and reliability but at

the expense of the number of gases that could be sensed. On the other hand, the 1T1M

133

enables the deployment of high numbers of independent sensors in a single array. Simu-

lation results show that an array of memristors can minimise measurement errors as well

as provide a good redundancy measure during gas sensing. Measurements taken from the

proposed sensor structures are also not affected by alternate current paths problem often

experienced in crossbar architecture. We believe that the proposed analysis represents a

fundamental cornerstone to the success of this novel approach to sensing: future devel-

opments include the manufacturing, analysis, and modelling of prototypes based on the

proposed architectures.

The structural analysis presented in this chapter can be used in the early stages of new

smart sensing system development, to simulate the overall behaviour and in identify-

ing any vulnerabilities before any actual system is developed. If problems are identified

sooner during development, then less time and cost will be required to fix those problems.

134

Chapter 7

Conclusions and Future work

Full commercial realisation of memristor-based architectures have been hindered largely

due to some reliability issues. Memristor on its own is considered reliable and advan-

tageous over current technologies. Full potential of memristors can fully be exploited if

high density crossbar structures can be designed reliably. High density memristive struc-

tures will require reliable and well understood read and write techniques in order for them

to be used as memory devices, gas detectors (presented in this thesis) and other identified

application areas of the memristor. Resistive memories as an application of memristor is a

promising emerging memory technology with the potential to design low power and high

density memories. Memristive devices have several other potentials beyond its memory

application which is why many more application fields are still being discovered till date.

The chapters within this thesis extensively describe read and write operations in mem-

ristive architectures model as well as several novel circuit designs that addresses these

reliability issues.

7.1 Summary of this Thesis

The work presented in this thesis has sought to extend the understanding and quality of

memristor-based designs in three principal areas:

1. Detailed analysis of read operations in memristor-based crossbar arrays and pro-

posal of reliable ways to read from memristor-based designs

• The sneak-path current is one major problem that often lead to read failure

in crossbar arrays by limiting crossbar size to a maximum of 3× 3 in some

135

architectures. A robust solutions to this problem is difficult to come by with-

out a proper understanding of the crossbar’s design. This thesis presented an

extended model of the crossbar’s design and further analysis of current read

schemes.

• This contribution area also proposed a multiple cells read technique as a way

of minimising the effects of sneak-path current in crossbar arrays.

2. Detailed analysis of write operations in memristor-based crossbar arrays and pro-

posal of reliable ways to execute write operations in memristor-based designs

• Write operation in crossbar arrays is quite involved due to the fact that both the

targeted and untargeted memory cells can be affected in case of a write failure.

The write operation becomes even more complicated when line resistances

are factored in. Line resistance often cause write voltage degradation, for

instance, a resistance ratio of up to 0.01 can limit the maximum array size

of a crossbar to 100× 100 in some architectures. A new compensated write

voltage technique is proposed in Chapter 5. This technique helps to ensure

sufficient voltage reaches memory cells further away from the voltage driver.

• A novel multiple cells write scheme is also presented in Chapter 5. This tech-

nique benefits from the reliability of the existing V/3 write scheme and results

in a much reduced energy consumption as the crossbar array size increases.

Hence, making it possible to design highly dense memory structures. This

technique has the disadvantage of extra area overhead because of the control

circuitry.

3. A novel application of memristor-based crossbar array in gas sensing

• Detection and sensing is one of the recently discovered application areas of the

memristor. Chapter 6 presents a novel Verilog-A memristor model suitable for

designing and simulating gas sensing memristive architectures in EDA tools.

• Proposal of gas sensing structures using insight and information obtained from

working on read and write operations in crossbar arrays. Memristive gas sen-

sors were designed with crossbar arrays and sensed without the effects of

sneak-path currents.

4. Development of various parameterised simulation tools in C++ to aid the various

136

research contributions of work presented in this thesis (appendix B). Existing EDA

tools are currently limited when it comes to working with emerging technologies

especially designs that involves new devices such as memristor. These EDA tools

do not have inbuilt memristor models as it does for resistors, capacitors and many

others. In cases where Verilog-A models were developed to aid simulation with

the EDA tools, simulation time for a 128×128 array can take up to 24hours. Also,

crossbar array sizes and structures are not scaleable without the need to redesign the

circuit with inbuilt parameters. All these limitations make designing and simulation

of larger circuit tedious and extremely slow.

In summary, this work contributes a deeper and clearer understanding of the operations

of memristor-based crossbar arrays. A detailed analyses of the crossbar’s performances

and limitations due to sneak-path current and line resistances and the development of

improved memristive architectures and applications were all covered in this thesis.

7.2 Future Research

Although the proposed techniques in this thesis represents significant improvements to

memristor-based architectures, there still remain several opportunities to improve and

extend the work in this thesis. This section list some of those opportunities.

1. The multiple cells read scheme presented in Chapter 4 was designed with the Float-

ing line read scheme. Other read schemes for single cells such as the GBFW, FBGW

and GBGW can also be applied to the multiple cells read technique.

2. The compensated write voltage technique in its current state ensures sufficient write

voltage reaches the target cell(s). However, some research work is still required on

the control circuitry to ensure that the state of unselected cells are preserved at all

times. The low power multiple cells write technique presented in Chapter 5 was

designed with negligible line resistances. The presented results can be taken as

input into further analysis of multiple cells write scheme with full consideration for

line resistances.

3. The Verilog-A memristor model developed for gas sensing is suitable for memristor

with titanium dioxide as it’s switching material. This Verilog-A model requires

137

significant research in order to extend it to capture the behaviour of memristors

with switching material other than titanium dioxide. An in-depth understanding of

the chemical properties of the switching material is often required.

138

Bibliography

[1] Adeyemo, Adedotun, A. Jabir, J. Mathew, E. Martinelli, C. Di Natale, and M.

Ottavi, “Efficient sensing approaches for high-density memristor sensor array,”

Journal of Computational Electronics, 2017, in-review.

[2] Adeyemo, Adedotun, A. Jabir, and J. Mathew, “Minimizing impact of wire re-

sistance in low-power crossbar array write scheme,” Journal of Low Power Elec-

tronics, vol. 13, no. 4, pp. 649–660, 2017.

[3] Adeyemo, Adedotun, A. Jabir, J. Mathew, E. Martinelli, C. Di Natale, and M.

Ottavi, “Reliable gas sensing with memristive array,” in 2017 IEEE 23rd Interna-

tional Symposium on On-Line Testing and Robust System Design (IOLTS), 2017,

pp. 244–246.

[4] Adeyemo, Adedotun, X. Yang, A. Bala, and A. Jabir, “Analytic models for cross-

bar write operation,” in Embedded Computing and System Design (ISED), 2016

Sixth International Symposium on, 2016, pp. 313–317.

[5] Adeyemo, Adedotun, X. Yang, A. Bala, J. Mathew, and A. Jabir, “Analytic mod-

els for crossbar read operation,” in IEEE International Symposium on On-Line

Testing and Robust System Design (IOLTS), 2016, pp. 3–4.

[6] Adeyemo, Adedotun, J. Mathew, A. M. Jabir, and D. Pradhan, “Exploring error-

tolerant low-power multiple-output read scheme for memristor-based memory ar-

rays,” in IEEE International Symposium on Defect and Fault Tolerance in VLSI

and Nanotechnology Systems (DFTS), 2015, pp. 17–20.

[7] Adeyemo, Adedotun, J. Mathew, A. Jabir, and D. Pradhan, “Write scheme for

multiple complementary resistive switch (crs) cells,” in IEEE International Work-

shop on Power and Timing Modeling, Optimization and Simulation (PATMOS),

2014, pp. 1–5.

139

[8] X. Yang, Adeyemo, Adedotun, A. Bala, and A. Jabir, “Parasitic effects on mem-

ristive logic architecture,” in 2017 27th International Symposium on Power and

Timing Modeling, Optimization and Simulation (PATMOS), Sep. 2017, pp. 1–5.

[9] X. Yang, Adeyemo, Adedotun, A. Bala, and A. Jabir, “Novel techniques for

memristive multifunction logic design,” The VLSI Journal on Integration, 2017.

[10] X. Yang, Adeyemo, Adedotun, A. Jabir, and J. Mathew, “High-performance

single-cycle memristive multifunction logic architecture,” Electronics Letters, vol.

52, no. 11, pp. 906–907, 2016.

[11] A. Bala, Adeyemo, Adedotun, X. Yang, and A. Jabir, “High level abstraction of

memristor model for neural network simulation,” in Embedded Computing and

System Design (ISED), 2016 Sixth International Symposium on, 2016, pp. 318–

322.

[12] X. Yang, Adeyemo, Adedotun, A. Bala, and A. Jabir, “Novel memristive logic

architectures,” in Power and Timing Modeling, Optimization and Simulation (PAT-

MOS), 2016 26th International Workshop on, 2016, pp. 196–199.

[13] Adeyemo, Adedotun, A. Jabir, J. Mathew, E. Martinelli, C. Di Natale, and M.

Ottavi, Memristive sensor array, UK Patent App. 1616837.9, Oct. 2016.

[14] A. Jabir, Adeyemo, Adedotun, and X. Yang, Memristive multifunction logic ar-

chitecture, UK Patent App. 1603089.2, Feb. 2016.

[15] G. Moore, “Cramming more components onto integrated circuits,” Electronics

Magazine, vol. 38, no. 8, 1965.

[16] H.-S. P. Wong, L. Wei, and J. Deng, “The future of cmos scaling-parasitics engi-

neering and device footprint scaling,” in Solid-State and Integrated-Circuit Tech-

nology, 2008. ICSICT 2008. 9th International Conference on, 2008, pp. 21–24.

[17] ITRS Report, 2016. [Online]. Available: http://www.itrs2.net/itrs-reports.html.

[18] A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, “Logic circuits with carbon

nanotube transistors,” Science, vol. 294, no. 5545, pp. 1317–1320, 2001.

[19] O. Y. Loh and H. D. Espinosa, “Nanoelectromechanical contact switches,” Nature

nanotechnology, vol. 7, no. 5, pp. 283–295, 2012.

140

http://www.itrs2.net/itrs-reports.html

[20] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M.

Asheghi, K. E. Goodson, et al., “Phase change memory,” Proceedings of the IEEE,

vol. 98, no. 12, pp. 2201–2227, 2010.

[21] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance main

memory system using phase-change memory technology,” ACM SIGARCH Com-

puter Architecture News, vol. 37, no. 3, pp. 24–33, 2009.

[22] W. J. Gallagher and S. S. Parkin, “Development of the magnetic tunnel junction

mram at ibm: From first junctions to a 16-mb mram demonstrator chip,” IBM

Journal of Research and Development, vol. 50, no. 1, pp. 5–23, 2006.

[23] S. Parkin, K. Roche, M. Samant, P. Rice, R. Beyers, R. Scheuerlein, E. Osulli-

van, S. Brown, J. Bucchigano, D. Abraham, et al., “Exchange-biased magnetic

tunnel junctions and application to nonvolatile magnetic random access memory,”

Journal of Applied Physics, vol. 85, no. 8, pp. 5828–5833, 1999.

[24] H. Kohlstedt, Y. Mustafa, A. Gerber, A. Petraru, M. Fitsilis, R. Meyer, U. Böttger,

and R. Waser, “Current status and challenges of ferroelectric memory devices,”

Microelectronic Engineering, vol. 80, pp. 296–304, 2005.

[25] S.-Y. Wu, “A new ferroelectric memory device, metal-ferroelectric-semiconductor

transistor,” Electron Devices, IEEE Transactions on, vol. 21, no. 8, pp. 499–504,

1974.

[26] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H.

Yamada, M. Shoji, H. Hachino, C. Fukumoto, et al., “A novel nonvolatile memory

with spin torque transfer magnetization switching: Spin-ram,” in Electron Devices

Meeting, 2005. IEDM Technical Digest. IEEE International, 2005, pp. 459–462.

[27] D. Brooks, “Reliable system design in the era of specialization,” in Keynote Talk,

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nan-

otechnology Systems (DFTS), 2015.

[28] J. Hutchby and M. Garner, “Assessment of the potential and maturity of selected

emerging research memory technologies,” International Technology Roadmap for

Semiconductors, 2010.

[29] L. O. Chua, “Memristor-the missing circuit element,” Circuit Theory, IEEE Trans-

actions on, vol. 18, no. 5, pp. 507–519, 1971.

141

[30] D. B. Strukov et al., “The missing memristor found,” Nature, vol. 453, no. 7191,

pp. 80–83, 2008.

[31] F. Miao, J. P. Strachan, J. J. Yang, M.-X. Zhang, I. Goldfarb, A. C. Torrezan,

P. Eschbach, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, “Anatomy

of a nanoscale conduction channel reveals the mechanism of a high-performance

memristor,” Advanced Materials, vol. 23, no. 47, pp. 5633–5640, 2011.

[32] C. Xu, X. Dong, N. P. Jouppi, and Y. Xie, “Design implications of memristor-

based RRAM cross-point structures,” in Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2011, 2011, pp. 1–6.

[33] S.-k. Park. (2011). The future memory technologies. Available at http : / /www.

sematech .org /meetings / archives / symposia /10202 /Keynote - Intro /Park The%

20future%20memory%20technologies.pdf [Online; accessed 2017-05-14].

[34] M. Durcan. (2016). Industry environment and micron’s strategic priorities. Avail-

able at http://files.shareholder.com/downloads/ABEA-45YXOQ/2376125726x0x875021/

4BEAA02E-BBC2-402C-A51D-B3B2C6B8C3D4/Winter Analyst Day 2016.

pdf [Online; accessed 2017-05-14].

[35] D. Niu, Y. Chen, C. Xu, and Y. Xie, “Impact of process variations on emerg-

ing memristor,” in Design Automation Conference (DAC), 2010 47th ACM/IEEE,

2010, pp. 877–882.

[36] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ECP, not ECC, for hard

failures in resistive memories,” in ACM SIGARCH Computer Architecture News,

ACM, vol. 38, 2010, pp. 141–152.

[37] C.-M. Jung, J.-M. Choi, and K.-S. Min, “Two-step write scheme for reducing

sneak-path leakage in complementary memristor array,” Nanotechnology, IEEE

Transactions on, vol. 11, no. 3, pp. 611–618, 2012.

[38] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary resistive switches

for passive nanocrossbar memories,” Nature materials, vol. 9, no. 5, pp. 403–406,

2010.

[39] ITRS. (2013). Executive summary. Available at http://www.itrs2.net/itrs-reports.

html [Online; accessed 2017-05-14].

142

http://www.sematech.org/meetings/archives/symposia/10202/Keynote-Intro/Park_The%20future%20memory%20technologies.pdf
http://www.sematech.org/meetings/archives/symposia/10202/Keynote-Intro/Park_The%20future%20memory%20technologies.pdf
http://www.sematech.org/meetings/archives/symposia/10202/Keynote-Intro/Park_The%20future%20memory%20technologies.pdf
http://files.shareholder.com/downloads/ABEA-45YXOQ/2376125726x0x875021/4BEAA02E-BBC2-402C-A51D-B3B2C6B8C3D4/Winter_Analyst_Day_2016.pdf
http://files.shareholder.com/downloads/ABEA-45YXOQ/2376125726x0x875021/4BEAA02E-BBC2-402C-A51D-B3B2C6B8C3D4/Winter_Analyst_Day_2016.pdf
http://files.shareholder.com/downloads/ABEA-45YXOQ/2376125726x0x875021/4BEAA02E-BBC2-402C-A51D-B3B2C6B8C3D4/Winter_Analyst_Day_2016.pdf
http://www.itrs2.net/itrs-reports.html
http://www.itrs2.net/itrs-reports.html

[40] G. K. Johnsen, “An introduction to the memristor-a valuable circuit element in

bioelectricity and bioimpedance,” Journal of Electrical Bioimpedance, vol. 3, no.

1, pp. 20–28, 2012.

[41] L. O. Chua and S. M. Kang, “Memristive devices and systems,” Proceedings of

the IEEE, vol. 64, no. 2, pp. 209–223, 1976.

[42] L. Chua, “Resistance switching memories are memristors,” Applied Physics A,

vol. 102, no. 4, pp. 765–783, 2011.

[43] R. Williams, “How we found the missing memristor,” Spectrum, IEEE, vol. 45,

no. 12, pp. 28–35, 2008.

[44] D. L. Lewis and H.-H. Lee, “Architectural evaluation of 3D stacked RRAM caches,”

in 3D System Integration, 2009. 3DIC 2009. IEEE International Conference on,

2009, pp. 1–4.

[45] W. Fei, H. Yu, W. Zhang, and K. S. Yeo, “Design exploration of hybrid cmos and

memristor circuit by new modified nodal analysis,” Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 20, no. 6, pp. 1012–1025, 2012.

[46] K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srinivasa,

and W. Lu, “A functional hybrid memristor crossbar-array/cmos system for data

storage and neuromorphic applications,” Nano letters, vol. 12, no. 1, pp. 389–395,

2011.

[47] D. B. Strukov, D. R. Stewart, J. Borghetti, X. Li, M. Pickett, G. M. Ribeiro, W.

Robinett, G. Snider, J. P. Strachan, W. Wu, et al., “Hybrid CMOS/memristor cir-

cuits,” in Proceedings of 2010 IEEE International Symposium on Circuits and

Systems (ISCAS), 2010, pp. 1967–1970.

[48] G. S. Snider, “Spike-timing-dependent learning in memristive nanodevices,” in

IEEE International Symposium on Nanoscale Architectures, 2008, pp. 85–92.

[49] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale

memristor device as synapse in neuromorphic systems,” Nano letters, vol. 10, no.

4, pp. 1297–1301, 2010.

[50] S. Shin, K. Kim, and S.-M. Kang, “Reconfigurable stateful nor gate for large-scale

logic-array integrations,” IEEE Transactions on Circuits and Systems II: Express

Briefs, vol. 58, no. 7, pp. 442–446, 2011.

143

[51] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S.

Williams, “‘memristive’ switches enable ‘stateful’ logic operations via material

implication,” Nature, vol. 464, no. 7290, pp. 873–876, 2010.

[52] F. Puppo, A. Dave, M.-A. Doucey, D. Sacchetto, C. Baj-Rossi, Y. Leblebici, G.

De Micheli, and S. Carrara, “Memristive biosensors under varying humidity con-

ditions,” NanoBioscience, IEEE Transactions on, vol. 13, no. 1, pp. 19–30, 2014.

[53] S. Carrara et al., “Memristive-biosensors: A new detection method by using nanofab-

ricated memristors,” Sensors and Actuators B: Chemical, vol. 171, pp. 449–457,

2012.

[54] C. Nyenke and L. Dong, “Fabrication of a W/CuxO/Cu memristor with sub-

micron holes for passive sensing of oxygen,” Microelectronic Engineering, vol.

164, pp. 48–52, 2016.

[55] J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stewart, and R. S. Williams,

“Memristive switching mechanism for metal/oxide/metal nanodevices,” Nature

nanotechnology, vol. 3, no. 7, pp. 429–433, 2008.

[56] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T.

Chen, and M.-J. Tsai, “Metal–oxide RRAM,” Proceedings of the IEEE, vol. 100,

no. 6, pp. 1951–1970, 2012.

[57] Z. Biolek, D. Biolek, and V. Biolkova, “Spice model of memristor with nonlinear

dopant drift,” Radioengineering, vol. 18, no. 2, pp. 210–214, 2009.

[58] S. Kvatinsky, K. Talisveyberg, D. Fliter, A. Kolodny, U. C. Weiser, and E. G.

Friedman, “Models of memristors for spice simulations,” in IEEE 27th Conven-

tion of Electrical & Electronics Engineers in Israel (IEEEI), 2012, pp. 1–5.

[59] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “Team: Threshold

adaptive memristor model,” Circuits and Systems I: Regular Papers, IEEE Trans-

actions on, vol. 60, no. 1, pp. 211–221, 2013.

[60] J. J. Yang, M.-X. Zhang, M. D. Pickett, F. Miao, J. P. Strachan, W.-D. Li, W. Yi,

D. A. Ohlberg, B. J. Choi, W. Wu, et al., “Engineering nonlinearity into memris-

tors for passive crossbar applications,” Applied Physics Letters, vol. 100, no. 11,

p. 113 501, 2012.

144

[61] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D. R.

Stewart, and R. S. Williams, “Switching dynamics in titanium dioxide memristive

devices,” Journal of Applied Physics, vol. 106, no. 7, p. 074 508, 2009.

[62] J. G. Simmons, “Generalized formula for the electric tunnel effect between similar

electrodes separated by a thin insulating film,” Journal of applied physics, vol. 34,

no. 6, pp. 1793–1803, 1963.

[63] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “VTEAM: A gen-

eral model for voltage-controlled memristors,” IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 62, no. 8, pp. 786–790, 2015.

[64] Y. N. Joglekar and S. J. Wolf, “The elusive memristor: Properties of basic electri-

cal circuits,” European Journal of Physics, vol. 30, no. 4, p. 661, 2009.

[65] T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, “A versatile mem-

ristor model with nonlinear dopant kinetics,” Electron Devices, IEEE Transac-

tions on, vol. 58, no. 9, pp. 3099–3105, 2011.

[66] R. Rosezin, E. Linn, L. Nielen, C. Kugeler, R. Bruchhaus, and R. Waser, “In-

tegrated complementary resistive switches for passive high-density nanocrossbar

arrays,” Electron Device Letters, IEEE, vol. 32, no. 2, pp. 191–193, 2011.

[67] S. Kannan, J. Rajendran, R. Karri, and O. Sinanoglu, “Sneak-path testing of

memristor-based memories,” in 12th International Conference on Embedded Sys-

tems, 2013 26th International Conference on VLSID, 2013, pp. 386–391.

[68] A. Flocke and T. G. Noll, “Fundamental analysis of resistive nano-crossbars for

the use in hybrid nano/CMOS-memory,” in Solid State Circuits Conference, 2007.

ESSCIRC 2007., 2007, pp. 328–331.

[69] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,”

Nature nanotechnology, vol. 8, no. 1, pp. 13–24, 2013.

[70] J. Mustafa, “Design and analysis of future memories based on switchable resistive

elements,” PhD thesis, Universitätsbibliothek, 2006.

[71] A. Chen, “A comprehensive crossbar array model with solutions for line resis-

tance and nonlinear device characteristics,” Electron Devices, IEEE Transactions

on, vol. 60, no. 4, pp. 1318–1326, Apr. 2013, ISSN: 0018-9383.

145

[72] D. Niu, C. Xu, N. Muralimanohar, N. P. Jouppi, and Y. Xie, “Design trade-offs for

high density cross-point resistive memory,” in Proceedings of the 2012 ACM/IEEE

international symposium on Low power electronics and design, ACM, 2012, pp. 209–

214.

[73] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu, and Y.

Xie, “Overcoming the challenges of crossbar resistive memory architectures,” in

High Performance Computer Architecture (HPCA), 2015 IEEE 21st International

Symposium on, 2015, pp. 476–488.

[74] S. Shin, K. Kim, and S. Kang, “Analysis of passive memristive devices array:

Data-dependent statistical model and self-adaptable sense resistance for RRAMs,”

Proceedings of the IEEE, vol. 100, no. 6, pp. 2021–2032, 2012.

[75] H. Manem and G. S. Rose, “A read-monitored write circuit for 1t1m multi-level

memristor memories,” in Circuits and systems (ISCAS), 2011 IEEE international

symposium on, 2011, pp. 2938–2941.

[76] H. Manem, G. S. Rose, X. He, and W. Wang, “Design considerations for variation

tolerant multilevel CMOS/Nano memristor memory,” in Proceedings of the 20th

symposium on Great lakes symposium on VLSI, ACM, 2010, pp. 287–292.

[77] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama, “Memristor-

based memory: The sneak paths problem and solutions,” Microelectronics Jour-

nal, vol. 44, no. 2, pp. 176–183, 2013.

[78] M. Zangeneh and A. Joshi, “Performance and energy models for memristor-based

1T1R RRAM cell,” in Proceedings of the great lakes symposium on VLSI, ACM,

2012, pp. 9–14.

[79] B. Widrow et al., Adaptive” adaline” neuron using chemical” memistors.”. 1960.

[80] M. Zidan, H. Omran, A. Sultan, H. Fahmy, and K. Salama, “Compensated read-

out for high-density mos-gated memristor crossbar array,” Nanotechnology, IEEE

Transactions on, vol. 14, no. 1, pp. 3–6, Jan. 2015, ISSN: 1536-125X.

[81] M. A. Zidan, A. M. Eltawil, F. Kurdahi, H. A. Fahmy, and K. N. Salama, “Mem-

ristor multiport readout: A closed-form solution for sneak paths,” Nanotechnol-

ogy, IEEE Transactions on, vol. 13, no. 2, pp. 274–282, 2014.

146

[82] P. O. Vontobel, W. Robinett, P. J. Kuekes, D. R. Stewart, J. Straznicky, and R. S.

Williams, “Writing to and reading from a nano-scale crossbar memory based on

memristors,” Nanotechnology, vol. 20, no. 42, p. 425 204, 2009.

[83] A. Chen, “Accessibility of nano-crossbar arrays of resistive switching devices,” in

2011 11th IEEE Conference on Nanotechnology (IEEE-NANO), 2011, pp. 1767–

1771.

[84] V. Bochenkov and G. Sergeev, “Sensitivity, selectivity, and stability of gas-sensitive

metal-oxide nanostructures,” Metal Oxide Nanostructures and Their Applications,

vol. 3, pp. 31–52, 2010.

[85] N. Yamazoe, “New approaches for improving semiconductor gas sensors,” Sen-

sors and Actuators B: Chemical, vol. 5, no. 1, pp. 7–19, 1991.

[86] D. E. Williams, “Semiconducting oxides as gas-sensitive resistors,” Sensors and

Actuators B: Chemical, vol. 57, no. 1, pp. 1–16, 1999.

[87] P. Clifford and D. Tuma, “Characteristics of semiconductor gas sensors I. steady

state gas response,” Sensors and Actuators, vol. 3, pp. 233–254, 1982.

[88] G. F. Fine et al., “Metal oxide semi-conductor gas sensors in environmental mon-

itoring,” Sensors, vol. 10, no. 6, pp. 5469–5502, 2010.

[89] A. DÁmico and C. Di Natale, “A contribution on some basic definitions of sensors

properties,” IEEE Sensors Journal, vol. 1, no. 3, pp. 183–190, 2001.

[90] T. Plecenik, M. Moško, A. Haidry, P. Ďurina, M. Truchlỳ, B. Grančič, M. Gre-

gor, T. Roch, L. Satrapinskyy, A. Mošková, et al., “Fast highly-sensitive room-

temperature semiconductor gas sensor based on the nanoscale Pt − TiO2 − Pt

sandwich,” Sensors and Actuators B: Chemical, vol. 207, pp. 351–361, 2015.

[91] S. Vallejos, I. Grácia, O. Chmela, E. Figueras, J. Hubálek, and C. Cané, “Chemore-

sistive micromachined gas sensors based on functionalized metal oxide nanowires:

Performance and reliability,” Sensors and Actuators B: Chemical, vol. 235, pp. 525–

534, 2016.

[92] A. Kay and M. Grätzel, “Low cost photovoltaic modules based on dye sensitized

nanocrystalline titanium dioxide and carbon powder,” Solar Energy Materials and

Solar Cells, vol. 44, no. 1, pp. 99–117, 1996.

147

[93] A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” Jour-

nal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 1, no.

1, pp. 1–21, 2000.

[94] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, “TiO2 thin

films by a novel sol–gel processing for gas sensor applications,” Sensors and Ac-

tuators B: Chemical, vol. 68, no. 1, pp. 189–196, 2000.

[95] Q. Wang, Y. Pan, S. Huang, S. Ren, P. Li, and J. Li, “Resistive and capacitive

response of nitrogen-doped TiO2 nanotubes film humidity sensor,” Nanotechnol-

ogy, vol. 22, no. 2, p. 025 501, 2011.

[96] C.-Y. Lin, D.-Y. Lee, S.-Y. Wang, C.-C. Lin, and T.-Y. Tseng, “Effect of ther-

mal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices,”

Surface and Coatings Technology, vol. 203, no. 5, pp. 628–631, 2008.

[97] H. Lv, M. Wang, H. Wan, Y. Song, W. Luo, P. Zhou, T. Tang, Y. Lin, R. Huang, S.

Song, et al., “Endurance enhancement of cu-oxide based resistive switching mem-

ory with al top electrode,” Applied Physics Letters, vol. 94, no. 21, p. 213 502,

2009.

[98] A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, O. Jambois, C. Labbé, B. Gar-

rido, R. Rizk, and A. J. Kenyon, “Resistive switching in silicon suboxide films,”

Journal of Applied Physics, vol. 111, no. 7, p. 074 507, 2012.

[99] A. A. Haidry, A. Ebach-Stahl, and B. Saruhan, “Effect of Pt/TiO2 interface on

room temperature hydrogen sensing performance of memristor type Pt/TiO2/Pt

structure,” Sensors and Actuators B: Chemical, 2017.

[100] Y.-C. Chen, C. Chen, C. Chen, J. Yu, S. Wu, S. Lung, R. Liu, and C.-Y. Lu,

“An access-transistor-free (0T/1R) non-volatile resistance random access memory

(RRAM) using a novel threshold switching, self-rectifying chalcogenide device,”

in Electron Devices Meeting, 2003. IEDM’03 Technical Digest. IEEE Interna-

tional, 2003, pp. 37–4.

[101] Y. Yang, J. Mathew, R. A. Shafik, and D. K. Pradhan, “Verilog-A based effective

complementary resistive switch model for simulations and analysis,” Embedded

Systems Letters, IEEE, vol. 6, no. 1, pp. 12–15, 2014.

148

[102] H. Mostafa and Y. Ismail, “Statistical yield improvement under process variations

of multi-valued memristor-based memories,” Microelectronics Journal, vol. 51,

pp. 46–57, 2016.

[103] M. A. Lastras-Montano, A. Ghofrani, and K.-T. Cheng, “Hreram: A hybrid recon-

figurable resistive random-access memory,” in Proceedings of the 2015 Design,

Automation & Test in Europe Conference & Exhibition, EDA Consortium, 2015,

pp. 1299–1304.

[104] R. W. Hamming, “Error detecting and error correcting codes,” Bell System tech-

nical journal, vol. 29, no. 2, pp. 147–160, 1950.

[105] C.-W. S. Yeh and S. S. Wong, “Compact One-Transistor-N-RRAM array archi-

tecture for advanced cmos technology,” IEEE Journal of Solid-State Circuits, vol.

50, no. 5, pp. 1299–1309, 2015.

[106] C. Yakopcic, T. M. Taha, and R. Hasan, “Hybrid crossbar architecture for a mem-

ristor based memory,” in Aerospace and Electronics Conference, NAECON 2014-

IEEE National, 2014, pp. 237–242.

[107] D. Williams, G. Henshaw, K. Pratt, and R. Peat, “Reaction–diffusion effects and

systematic design of gas-sensitive resistors based on semiconducting oxides,”

Journal of the Chemical Society, Faraday Transactions, vol. 91, no. 23, pp. 4299–

4307, 1995.

[108] J. Bai and B. Zhou, “Titanium dioxide nanomaterials for sensor applications,”

Chemical reviews, vol. 114, no. 19, pp. 10 131–10 176, 2014.

[109] H.-J. Kim and J.-H. Lee, “Highly sensitive and selective gas sensors using p-type

oxide semiconductors: Overview,” Sensors and Actuators B: Chemical, vol. 192,

pp. 607–627, 2014.

[110] N. Barsan, C. Simion, T. Heine, S. Pokhrel, and U. Weimar, “Modeling of sens-

ing and transduction for p-type semiconducting metal oxide based gas sensors,”

Journal of Electroceramics, vol. 25, no. 1, pp. 11–19, 2010.

[111] E. Linn, S. Menzel, R. Rosezin, U. Böttger, R. Bruchhaus, and R. Waser, “Model-

ing complementary resistive switches by nonlinear memristive systems,” in 11th

IEEE Conference on Nanotechnology (IEEE-NANO), 2011, pp. 1474–1478.

149

[112] S. Naisbitt et al., “A microstructural model of semiconducting gas sensor re-

sponse: The effects of sintering temperature on the response of chromium titanate

(CTO) to carbon monoxide,” Sensors and Actuators B: Chemical, vol. 114, no. 2,

pp. 969–977, 2006.

[113] R. Binions et al., “Zeolite-modified discriminating gas sensors,” Journal of The

Electrochemical Society, vol. 156, no. 3, J46–J51, 2009.

[114] D. Batas and H. Fiedler, “A memristor spice implementation and a new approach

for magnetic flux-controlled memristor modeling,” IEEE Transactions on Nan-

otechnology, vol. 10, no. 2, pp. 250–255, 2011.

[115] S. Kim, S.-J. Kim, K. M. Kim, S. R. Lee, M. Chang, E. Cho, Y.-B. Kim, C. J. Kim,

U.-I. Chung, and I.-K. Yoo, “Physical electro-thermal model of resistive switching

in bi-layered resistance-change memory,” Scientific reports, vol. 3, 2013.

[116] J. Fraden, Handbook of modern sensors: Physics, designs, and applications. Springer

Science & Business Media, 2004.

[117] H. Sundgren, I. Lundström, F. Winquist, I. Lukkari, R. Carlsson, and S. Wold,

“Evaluation of a multiple gas mixture with a simple mosfet gas sensor array and

pattern recognition,” Sensors and Actuators B: Chemical, vol. 2, no. 2, pp. 115–

123, 1990.

[118] E. J. Wolfrum, R. M. Meglen, D. Peterson, and J. Sluiter, “Metal oxide sensor ar-

rays for the detection, differentiation, and quantification of volatile organic com-

pounds at sub-parts-per-million concentration levels,” Sensors and Actuators B:

Chemical, vol. 115, no. 1, pp. 322–329, 2006.

150

Appendix A

Experimental Data for Read-out
Voltages and Read Margin

151

Ta
bl

e
A

.1
: D

at
a

fo
r

po
ss

ib
le

ca
se

so
fr

ea
d-

ou
tv

ol
ta

ge
sa

cr
os

st
he

fo
ur

re
ad

sc
he

m
es

w
ith

va
ry

in
g

ar
ra

y
as

pe
ct

ra
tio

.R
ef

er
en

ce
d

in
se

ct
io

n
4.

4.

m
n

FW
FB

G
B

G
B

G
R

FC
FW

G
B

V o
ut

w
c1

V o
ut

bc
1

V o
ut

w
c0

V o
ut

bc
0

V o
ut

w
c1

V o
ut

bc
1

V o
ut

w
c0

V o
ut

bc
0

V o
ut

w
c1

V o
ut

bc
1

V o
ut

w
c0

V o
ut

bc
0

V o
ut

w
c1

V o
ut

bc
1

V o
ut

w
c0

V o
ut

bc
0

Si
ng

le
0.

50
00

0.
50

00
0.

00
05

0.
00

05
0.

50
00

0.
50

00
0.

00
05

0.
00

05
0.

50
00

0.
50

00
0.

00
05

0.
00

05
0.

50
00

0.
50

00
0.

00
05

0.
00

05
2

2
0.

57
14

0.
50

00
0.

25
03

0.
00

07
0.

33
33

0.
49

99
0.

00
02

0.
00

05
0.

33
33

0.
49

99
0.

00
02

0.
00

05
0.

40
00

0.
49

99
0.

00
03

0.
00

05
2

4
0.

61
54

0.
50

01
0.

37
52

0.
00

08
0.

33
33

0.
49

99
0.

00
02

0.
00

05
0.

20
00

0.
49

96
0.

00
01

0.
00

05
0.

36
36

0.
49

99
0.

00
03

0.
00

05
2

8
0.

64
00

0.
50

01
0.

43
77

0.
00

09
0.

33
33

0.
49

99
0.

00
02

0.
00

05
0.

11
11

0.
49

91
0.

00
01

0.
00

05
0.

34
78

0.
49

99
0.

00
03

0.
00

05
2

16
0.

65
31

0.
50

01
0.

46
89

0.
00

09
0.

33
33

0.
49

99
0.

00
02

0.
00

05
0.

05
88

0.
49

81
0.

00
00

0.
00

05
0.

34
04

0.
49

99
0.

00
03

0.
00

05
2

32
0.

65
98

0.
50

01
0.

48
45

0.
00

10
0.

33
33

0.
49

99
0.

00
02

0.
00

05
0.

03
03

0.
49

62
0.

00
00

0.
00

05
0.

33
68

0.
49

99
0.

00
03

0.
00

05
2

64
0.

66
32

0.
50

01
0.

49
23

0.
00

10
0.

33
33

0.
49

99
0.

00
02

0.
00

05
0.

01
54

0.
49

22
0.

00
00

0.
00

05
0.

33
51

0.
49

99
0.

00
03

0.
00

05
4

2
0.

61
54

0.
50

01
0.

37
52

0.
00

08
0.

20
00

0.
49

96
0.

00
01

0.
00

05
0.

33
33

0.
49

99
0.

00
02

0.
00

05
0.

28
57

0.
49

98
0.

00
02

0.
00

05
4

4
0.

69
57

0.
50

02
0.

56
26

0.
00

11
0.

20
00

0.
49

96
0.

00
01

0.
00

05
0.

20
00

0.
49

96
0.

00
01

0.
00

05
0.

23
53

0.
49

97
0.

00
02

0.
00

05
4

8
0.

74
42

0.
50

02
0.

65
63

0.
00

15
0.

20
00

0.
49

96
0.

00
01

0.
00

05
0.

11
11

0.
49

91
0.

00
01

0.
00

05
0.

21
62

0.
49

97
0.

00
01

0.
00

05
4

16
0.

77
11

0.
50

03
0.

70
32

0.
00

17
0.

20
00

0.
49

96
0.

00
01

0.
00

05
0.

05
88

0.
49

81
0.

00
00

0.
00

05
0.

20
78

0.
49

96
0.

00
01

0.
00

05
4

32
0.

78
53

0.
50

03
0.

72
66

0.
00

18
0.

20
00

0.
49

96
0.

00
01

0.
00

05
0.

03
03

0.
49

62
0.

00
00

0.
00

05
0.

20
38

0.
49

96
0.

00
01

0.
00

05
4

64
0.

79
26

0.
50

04
0.

73
83

0.
00

19
0.

20
00

0.
49

96
0.

00
01

0.
00

05
0.

01
54

0.
49

22
0.

00
00

0.
00

05
0.

20
19

0.
49

96
0.

00
01

0.
00

05
8

2
0.

64
00

0.
50

01
0.

43
77

0.
00

09
0.

11
11

0.
49

91
0.

00
01

0.
00

05
0.

33
33

0.
49

99
0.

00
02

0.
00

05
0.

18
18

0.
49

96
0.

00
01

0.
00

05
8

4
0.

74
42

0.
50

02
0.

65
63

0.
00

15
0.

11
11

0.
49

91
0.

00
01

0.
00

05
0.

20
00

0.
49

96
0.

00
01

0.
00

05
0.

13
79

0.
49

93
0.

00
01

0.
00

05
8

8
0.

81
01

0.
50

04
0.

76
57

0.
00

21
0.

11
11

0.
49

91
0.

00
01

0.
00

05
0.

11
11

0.
49

91
0.

00
01

0.
00

05
0.

12
31

0.
49

92
0.

00
01

0.
00

05
8

16
0.

84
77

0.
50

06
0.

82
03

0.
00

28
0.

11
11

0.
49

91
0.

00
01

0.
00

05
0.

05
88

0.
49

81
0.

00
00

0.
00

05
0.

11
68

0.
49

92
0.

00
01

0.
00

05
8

32
0.

86
78

0.
50

07
0.

84
77

0.
00

33
0.

11
11

0.
49

91
0.

00
01

0.
00

05
0.

03
03

0.
49

62
0.

00
00

0.
00

05
0.

11
39

0.
49

92
0.

00
01

0.
00

05
8

64
0.

87
82

0.
50

08
0.

86
13

0.
00

36
0.

11
11

0.
49

91
0.

00
01

0.
00

05
0.

01
54

0.
49

22
0.

00
00

0.
00

05
0.

11
25

0.
49

91
0.

00
01

0.
00

05
16

2
0.

65
31

0.
50

01
0.

46
89

0.
00

09
0.

05
88

0.
49

81
0.

00
00

0.
00

05
0.

33
33

0.
49

99
0.

00
02

0.
00

05
0.

10
53

0.
49

91
0.

00
01

0.
00

05
16

4
0.

77
11

0.
50

03
0.

70
32

0.
00

17
0.

05
88

0.
49

81
0.

00
00

0.
00

05
0.

20
00

0.
49

96
0.

00
01

0.
00

05
0.

07
55

0.
49

86
0.

00
00

0.
00

05
16

8
0.

84
77

0.
50

06
0.

82
03

0.
00

28
0.

05
88

0.
49

81
0.

00
00

0.
00

05
0.

11
11

0.
49

91
0.

00
01

0.
00

05
0.

06
61

0.
49

84
0.

00
00

0.
00

05
16

16
0.

89
20

0.
50

09
0.

87
89

0.
00

41
0.

05
88

0.
49

81
0.

00
00

0.
00

05
0.

05
88

0.
49

81
0.

00
00

0.
00

05
0.

06
23

0.
49

82
0.

00
00

0.
00

05
16

32
0.

91
59

0.
50

12
0.

90
82

0.
00

54
0.

05
88

0.
49

81
0.

00
00

0.
00

05
0.

03
03

0.
49

62
0.

00
00

0.
00

05
0.

06
05

0.
49

82
0.

00
00

0.
00

05
16

64
0.

92
84

0.
50

15
0.

92
29

0.
00

64
0.

05
88

0.
49

81
0.

00
00

0.
00

05
0.

01
54

0.
49

22
0.

00
00

0.
00

05
0.

05
96

0.
49

82
0.

00
00

0.
00

05
32

2
0.

65
98

0.
50

01
0.

48
45

0.
00

10
0.

03
03

0.
49

62
0.

00
00

0.
00

05
0.

33
33

0.
49

99
0.

00
02

0.
00

05
0.

05
71

0.
49

81
0.

00
00

0.
00

05
32

4
0.

78
53

0.
50

03
0.

72
66

0.
00

18
0.

03
03

0.
49

62
0.

00
00

0.
00

05
0.

20
00

0.
49

96
0.

00
01

0.
00

05
0.

03
96

0.
49

71
0.

00
00

0.
00

05
32

8
0.

86
78

0.
50

07
0.

84
77

0.
00

33
0.

03
03

0.
49

62
0.

00
00

0.
00

05
0.

11
11

0.
49

91
0.

00
01

0.
00

05
0.

03
43

0.
49

66
0.

00
00

0.
00

05
32

16
0.

91
59

0.
50

12
0.

90
82

0.
00

54
0.

03
03

0.
49

62
0.

00
00

0.
00

05
0.

05
88

0.
49

81
0.

00
00

0.
00

05
0.

03
22

0.
49

64
0.

00
00

0.
00

05
32

32
0.

94
20

0.
50

19
0.

93
85

0.
00

81
0.

03
03

0.
49

62
0.

00
00

0.
00

05
0.

03
03

0.
49

62
0.

00
00

0.
00

05
0.

03
12

0.
49

63
0.

00
00

0.
00

05
32

64
0.

95
57

0.
50

26
0.

95
36

0.
01

07
0.

03
03

0.
49

62
0.

00
00

0.
00

05
0.

01
54

0.
49

22
0.

00
00

0.
00

05
0.

03
08

0.
49

62
0.

00
00

0.
00

05
64

2
0.

66
32

0.
50

01
0.

49
23

0.
00

10
0.

01
54

0.
49

22
0.

00
00

0.
00

05
0.

33
33

0.
49

99
0.

00
02

0.
00

05
0.

02
99

0.
49

61
0.

00
00

0.
00

05
64

4
0.

79
26

0.
50

04
0.

73
83

0.
00

19
0.

01
54

0.
49

22
0.

00
00

0.
00

05
0.

20
00

0.
49

96
0.

00
01

0.
00

05
0.

02
03

0.
49

42
0.

00
00

0.
00

05
64

8
0.

87
82

0.
50

08
0.

86
13

0.
00

36
0.

01
54

0.
49

22
0.

00
00

0.
00

05
0.

11
11

0.
49

91
0.

00
01

0.
00

05
0.

01
75

0.
49

32
0.

00
00

0.
00

05
64

16
0.

92
84

0.
50

15
0.

92
29

0.
00

64
0.

01
54

0.
49

22
0.

00
00

0.
00

05
0.

05
88

0.
49

81
0.

00
00

0.
00

05
0.

01
64

0.
49

27
0.

00
00

0.
00

05
64

32
0.

95
57

0.
50

26
0.

95
36

0.
01

07
0.

01
54

0.
49

22
0.

00
00

0.
00

05
0.

03
03

0.
49

62
0.

00
00

0.
00

05
0.

01
59

0.
49

25
0.

00
00

0.
00

05
64

64
0.

96
99

0.
50

39
0.

96
90

0.
01

59
0.

01
54

0.
49

22
0.

00
00

0.
00

05
0.

01
54

0.
49

22
0.

00
00

0.
00

05
0.

01
56

0.
49

24
0.

00
00

0.
00

05

152

Ta
bl

e
A

.2
: D

at
a

fo
r

po
ss

ib
le

ca
se

so
fr

ea
d

m
ar

gi
n

ac
ro

ss
th

e
fo

ur
re

ad
sc

he
m

es
w

ith
va

ry
in

g
ar

ra
y

as
pe

ct
ra

tio
.R

ef
er

en
ce

d
in

se
ct

io
n

4.
4.

m
n

FW
FB

G
B

G
B

G
R

FC
FW

G
B

∆
V o

ut
c1

∆
V o

ut
c2

∆
V o

ut
c3

∆
V o

ut
c4

∆
V o

ut
c1

∆
V o

ut
c2

∆
V o

ut
c3

∆
V o

ut
c4

∆
V o

ut
c1

∆
V o

ut
c2

∆
V o

ut
c3

∆
V o

ut
c4

∆
V o

ut
c1

∆
V o

ut
c2

∆
V o

ut
c3

∆
V o

ut
c4

Si
ng

le
0.

50
00

0.
50

00
0.

00
05

0.
00

05
0.

50
00

0.
50

00
0.

00
05

0.
00

05
0.

50
00

0.
50

00
0.

00
05

0.
00

05
0.

50
00

0.
50

00
0.

00
05

0.
00

05
2

2
0.

32
11

0.
57

08
0.

24
98

0.
49

94
0.

33
31

0.
33

28
0.

49
96

0.
49

94
0.

33
31

0.
33

28
0.

49
96

0.
49

94
0.

39
97

0.
39

95
0.

49
96

0.
49

94
2

4
0.

24
02

0.
61

46
0.

12
49

0.
49

93
0.

33
31

0.
33

28
0.

49
96

0.
49

94
0.

19
99

0.
19

95
0.

49
95

0.
49

91
0.

36
34

0.
36

31
0.

49
96

0.
49

94
2

8
0.

20
23

0.
63

91
0.

06
24

0.
49

92
0.

33
31

0.
33

28
0.

49
96

0.
49

94
0.

11
10

0.
11

06
0.

49
91

0.
49

86
0.

34
76

0.
34

73
0.

49
96

0.
49

94
2

16
0.

18
42

0.
65

21
0.

03
12

0.
49

92
0.

33
31

0.
33

28
0.

49
96

0.
49

94
0.

05
88

0.
05

83
0.

49
81

0.
49

76
0.

34
02

0.
33

99
0.

49
96

0.
49

94
2

32
0.

17
53

0.
65

88
0.

01
56

0.
49

91
0.

33
31

0.
33

28
0.

49
96

0.
49

94
0.

03
03

0.
02

98
0.

49
61

0.
49

57
0.

33
66

0.
33

63
0.

49
96

0.
49

94
2

64
0.

17
09

0.
66

22
0.

00
78

0.
49

91
0.

33
31

0.
33

28
0.

49
96

0.
49

94
0.

01
54

0.
01

49
0.

49
22

0.
49

18
0.

33
48

0.
33

46
0.

49
96

0.
49

94
4

2
0.

24
02

0.
61

46
0.

12
49

0.
49

93
0.

19
99

0.
19

95
0.

49
95

0.
49

91
0.

33
31

0.
33

28
0.

49
96

0.
49

94
0.

28
55

0.
28

52
0.

49
96

0.
49

93
4

4
0.

13
31

0.
69

45
-0

.0
62

4
0.

49
90

0.
19

99
0.

19
95

0.
49

95
0.

49
91

0.
19

99
0.

19
95

0.
49

95
0.

49
91

0.
23

51
0.

23
48

0.
49

96
0.

49
92

4
8

0.
08

79
0.

74
27

-0
.1

56
1

0.
49

88
0.

19
99

0.
19

95
0.

49
95

0.
49

91
0.

11
10

0.
11

06
0.

49
91

0.
49

86
0.

21
61

0.
21

57
0.

49
95

0.
49

92
4

16
0.

06
79

0.
76

94
-0

.2
02

9
0.

49
86

0.
19

99
0.

19
95

0.
49

95
0.

49
91

0.
05

88
0.

05
83

0.
49

81
0.

49
76

0.
20

77
0.

20
73

0.
49

95
0.

49
92

4
32

0.
05

87
0.

78
35

-0
.2

26
3

0.
49

85
0.

19
99

0.
19

95
0.

49
95

0.
49

91
0.

03
03

0.
02

98
0.

49
61

0.
49

57
0.

20
37

0.
20

33
0.

49
95

0.
49

91
4

64
0.

05
43

0.
79

07
-0

.2
38

0
0.

49
84

0.
19

99
0.

19
95

0.
49

95
0.

49
91

0.
01

54
0.

01
49

0.
49

22
0.

49
18

0.
20

18
0.

20
14

0.
49

95
0.

49
91

8
2

0.
20

23
0.

63
91

0.
06

24
0.

49
92

0.
11

10
0.

11
06

0.
49

91
0.

49
86

0.
33

31
0.

33
28

0.
49

96
0.

49
94

0.
18

17
0.

18
13

0.
49

95
0.

49
91

8
4

0.
08

79
0.

74
27

-0
.1

56
1

0.
49

88
0.

11
10

0.
11

06
0.

49
91

0.
49

86
0.

19
99

0.
19

95
0.

49
95

0.
49

91
0.

13
79

0.
13

74
0.

49
93

0.
49

88
8

8
0.

04
45

0.
80

80
-0

.2
65

2
0.

49
83

0.
11

10
0.

11
06

0.
49

91
0.

49
86

0.
11

10
0.

11
06

0.
49

91
0.

49
86

0.
12

30
0.

12
26

0.
49

92
0.

49
87

8
16

0.
02

74
0.

84
49

-0
.3

19
8

0.
49

78
0.

11
10

0.
11

06
0.

49
91

0.
49

86
0.

05
88

0.
05

83
0.

49
81

0.
49

76
0.

11
67

0.
11

63
0.

49
91

0.
49

87
8

32
0.

02
01

0.
86

45
-0

.3
47

0
0.

49
74

0.
11

10
0.

11
06

0.
49

91
0.

49
86

0.
03

03
0.

02
98

0.
49

61
0.

49
57

0.
11

38
0.

11
34

0.
49

91
0.

49
87

8
64

0.
01

69
0.

87
46

-0
.3

60
6

0.
49

72
0.

11
10

0.
11

06
0.

49
91

0.
49

86
0.

01
54

0.
01

49
0.

49
22

0.
49

18
0.

11
24

0.
11

20
0.

49
91

0.
49

86
16

2
0.

18
42

0.
65

21
0.

03
12

0.
49

92
0.

05
88

0.
05

83
0.

49
81

0.
49

76
0.

33
31

0.
33

28
0.

49
96

0.
49

94
0.

10
52

0.
10

48
0.

49
90

0.
49

86
16

4
0.

06
79

0.
76

94
-0

.2
02

9
0.

49
86

0.
05

88
0.

05
83

0.
49

81
0.

49
76

0.
19

99
0.

19
95

0.
49

95
0.

49
91

0.
07

54
0.

07
50

0.
49

86
0.

49
81

16
8

0.
02

74
0.

84
49

-0
.3

19
8

0.
49

78
0.

05
88

0.
05

83
0.

49
81

0.
49

76
0.

11
10

0.
11

06
0.

49
91

0.
49

86
0.

06
61

0.
06

56
0.

49
83

0.
49

79
16

16
0.

01
31

0.
88

79
-0

.3
78

0
0.

49
68

0.
05

88
0.

05
83

0.
49

81
0.

49
76

0.
05

88
0.

05
83

0.
49

81
0.

49
76

0.
06

22
0.

06
18

0.
49

82
0.

49
78

16
32

0.
00

77
0.

91
05

-0
.4

07
0

0.
49

58
0.

05
88

0.
05

83
0.

49
81

0.
49

76
0.

03
03

0.
02

98
0.

49
61

0.
49

57
0.

06
05

0.
06

00
0.

49
82

0.
49

77
16

64
0.

00
55

0.
92

19
-0

.4
21

4
0.

49
51

0.
05

88
0.

05
83

0.
49

81
0.

49
76

0.
01

54
0.

01
49

0.
49

22
0.

49
18

0.
05

96
0.

05
91

0.
49

81
0.

49
77

32
2

0.
17

53
0.

65
88

0.
01

56
0.

49
91

0.
03

03
0.

02
98

0.
49

61
0.

49
57

0.
33

31
0.

33
28

0.
49

96
0.

49
94

0.
05

71
0.

05
66

0.
49

80
0.

49
76

32
4

0.
05

87
0.

78
35

-0
.2

26
3

0.
49

85
0.

03
03

0.
02

98
0.

49
61

0.
49

57
0.

19
99

0.
19

95
0.

49
95

0.
49

91
0.

03
96

0.
03

91
0.

49
71

0.
49

66
32

8
0.

02
01

0.
86

45
-0

.3
47

0
0.

49
74

0.
03

03
0.

02
98

0.
49

61
0.

49
57

0.
11

10
0.

11
06

0.
49

91
0.

49
86

0.
03

43
0.

03
38

0.
49

66
0.

49
61

32
16

0.
00

77
0.

91
05

-0
.4

07
0

0.
49

58
0.

03
03

0.
02

98
0.

49
61

0.
49

57
0.

05
88

0.
05

83
0.

49
81

0.
49

76
0.

03
22

0.
03

17
0.

49
64

0.
49

59
32

32
0.

00
36

0.
93

40
-0

.4
36

6
0.

49
38

0.
03

03
0.

02
98

0.
49

61
0.

49
57

0.
03

03
0.

02
98

0.
49

61
0.

49
57

0.
03

12
0.

03
07

0.
49

63
0.

49
58

32
64

0.
00

21
0.

94
50

-0
.4

51
1

0.
49

19
0.

03
03

0.
02

98
0.

49
61

0.
49

57
0.

01
54

0.
01

49
0.

49
22

0.
49

18
0.

03
07

0.
03

03
0.

49
62

0.
49

57
64

2
0.

17
09

0.
66

22
0.

00
78

0.
49

91
0.

01
54

0.
01

49
0.

49
22

0.
49

18
0.

33
31

0.
33

28
0.

49
96

0.
49

94
0.

02
98

0.
02

94
0.

49
61

0.
49

56
64

4
0.

05
43

0.
79

07
-0

.2
38

0
0.

49
84

0.
01

54
0.

01
49

0.
49

22
0.

49
18

0.
19

99
0.

19
95

0.
49

95
0.

49
91

0.
02

03
0.

01
98

0.
49

42
0.

49
37

64
8

0.
01

69
0.

87
46

-0
.3

60
6

0.
49

72
0.

01
54

0.
01

49
0.

49
22

0.
49

18
0.

11
10

0.
11

06
0.

49
91

0.
49

86
0.

01
75

0.
01

70
0.

49
32

0.
49

27
64

16
0.

00
55

0.
92

19
-0

.4
21

4
0.

49
51

0.
01

54
0.

01
49

0.
49

22
0.

49
18

0.
05

88
0.

05
83

0.
49

81
0.

49
76

0.
01

64
0.

01
59

0.
49

27
0.

49
22

64
32

0.
00

21
0.

94
50

-0
.4

51
1

0.
49

19
0.

01
54

0.
01

49
0.

49
22

0.
49

18
0.

03
03

0.
02

98
0.

49
61

0.
49

57
0.

01
59

0.
01

54
0.

49
25

0.
49

20
64

64
0.

00
09

0.
95

41
-0

.4
65

1
0.

48
80

0.
01

54
0.

01
49

0.
49

22
0.

49
18

0.
01

54
0.

01
49

0.
49

22
0.

49
18

0.
01

56
0.

01
51

0.
49

24
0.

49
19

153

Appendix B

Analytic Simulation Tools in C
Language

1 float SneakPathR(float R, float m, float n)
2 {
3 return((R/(n-1)) + (R/((m-1)*(n-1))) + (R/(m-1)));
4 }
5 float parallelRes(float R1, float R2)
6 {
7 return ((R1*R2)/(R1+R2));
8 }
9

10 int main()
11 {
12 float Vin = 1;
13 float Ron = 100;
14 float Roff = 200000;
15 float RsneakLRS, RsneakHRS;
16 float RotherLRS = 100;
17 float RotherHRS = 200000;
18
19 int n, m;
20 float Rl = 100;
21
22 int size = 131072;
23 float Von = Vin * (Rl / (Ron + Rl));
24 float Voff = Vin * (Rl / (Roff + Rl));
25
26 ofstream myfile;
27 myfile.open ("margin.dat");
28
29 for (n = 2; n <= size; n = n*2)
30 {
31 m=n;
32 RsneakLRS = SneakPathR(RotherLRS,m,n);
33 RsneakHRS = SneakPathR(RotherHRS,m,n);
34
35 float RmLRS = RotherLRS/(m-1);
36 float RmnLRS = RotherLRS/((m-1)*(n-1));
37 float RnLRS = RotherLRS/(n-1);
38
39 float RmHRS = RotherHRS/(m-1);
40 float RmnHRS = RotherHRS/((m-1)*(n-1));
41 float RnHRS = RotherHRS/(n-1);
42
43 float MemWC_on = (Ron * RsneakLRS)/(Ron + RsneakLRS);
44 float MemBC_on = (Ron * RsneakHRS)/(Ron + RsneakHRS);
45
46 float MemWC_off = (Roff * RsneakLRS)/(Roff + RsneakLRS);
47 float MemBC_off = (Roff * RsneakHRS)/(Roff + RsneakHRS);
48
49 float VWC_on = Vin * (Rl / (MemWC_on + Rl));
50 float VBC_on = Vin * (Rl / (MemBC_on + Rl));
51
52 float VWC_off = Vin * (Rl / (MemWC_off + Rl));
53 float VBC_off = Vin * (Rl / (MemBC_off + Rl));
54
55 float PWC_on = (Vin*Vin)/(parallelRes(Ron, RnLRS+RmLRS+RmnLRS) + Rl);
56 float PBC_on = (Vin*Vin)/(parallelRes(Ron, RnHRS+RmHRS+RmnHRS) + Rl);
57 float PWC_off = (Vin*Vin)/(parallelRes(Roff, RnLRS+RmLRS+RmnLRS) + Rl);
58 float PBC_off = (Vin*Vin)/(parallelRes(Roff, RnHRS+RmHRS+RmnHRS) + Rl);
59
60 //myfile <<setprecision(8) << setw(5) << n << " " << setw(13) << VWC_on << " "<< setw(15) << ←↩

VBC_on << " "<< setw(15) << VWC_off << " "<< setw(15) << VBC_off << " " << endl ;
61 myfile <<setprecision(6) << setw(4) << m << " "<< setw(4) << n << " "<< setw(10) << VWC_on - VWC_off ←↩

<< " "<< setw(20) << VWC_on - VBC_off << " "<< setw(20) << VBC_on - VWC_off << " "<< setw(20) ←↩
<< VBC_on - VBC_off << " " << endl ;

62 //myfile <<setprecision(8) << setw(5) << n << " " << setw(13) << PWC_on << " " << setw(13) << ←↩
PBC_on << " "<< setw(13) << PWC_off << " "<< setw(13) << PBC_off << " " << endl ;

63 }

154

64 }

Listing B.1: Computing the read margin and power cases for the FWFB read scheme

1 float SneakPathR(float R, float m, float n)
2 {
3 return((R/(n-1)) + (R/((m-1)*(n-1))) + (R/(m-1)));
4 }
5 float parallelRes(float R1, float R2)
6 {
7 return ((R1*R2)/(R1+R2));
8 }
9 int main()

10 {
11 float Vin = 1;
12 float Ron = 100;
13 float Roff = 200000;
14 float RsneakLRS, RsneakHRS;
15 float RotherLRS = 100;
16 float RotherHRS = 200000;
17
18 int n, m;
19 float RL = 100;
20
21 int size = 131072;
22 float Von = Vin * (RL / (Ron + RL));
23 float Voff = Vin * (RL / (Roff + RL));
24
25 ofstream myfile;
26 myfile.open ("margin_GRFC.dat");
27
28 for (n = 2; n <= size; n = n*2)
29 {
30 m=n;
31 RsneakLRS = SneakPathR(RotherLRS,m,n);
32
33 float RmLRS = RotherLRS/(m-1);
34 float RmnLRS = RotherLRS/((m-1)*(n-1));
35 float RnLRS = RotherLRS/(n-1);
36
37 float RmHRS = RotherHRS/(m-1);
38 float RmnHRS = RotherHRS/((m-1)*(n-1));
39 float RnHRS = RotherHRS/(n-1);
40
41 float RL_effLRS = (RL * (RmnLRS + RmLRS))/(RL + (RmnLRS + RmLRS));
42 float RL_effHRS = (RL * (RmnHRS + RmHRS))/(RL + (RmnHRS + RmHRS));
43
44 float VWC_on = Vin * (RL_effLRS / (Ron + RL_effLRS));
45 float VBC_on = Vin * (RL_effHRS / (Ron + RL_effHRS));
46
47 float VWC_off = Vin * (RL_effLRS / (Roff + RL_effLRS));
48 float VBC_off = Vin * (RL_effHRS / (Roff + RL_effHRS));
49
50 float PWC_on = (Vin*Vin)/parallelRes(Ron+RL_effLRS, RnLRS);
51 float PBC_on = (Vin*Vin)/parallelRes(Ron+RL_effHRS, RnHRS);
52 float PWC_off = (Vin*Vin)/parallelRes(Roff+RL_effLRS, RnLRS);
53 float PBC_off = (Vin*Vin)/parallelRes(Roff+RL_effHRS, RnHRS);
54
55 myfile <<setprecision(8) << setw(5) << n << " " << setw(13) << VWC_on << " "<< setw(15) << VBC_on←↩

<< " "<< setw(15) << VWC_off << " "<< setw(15) << VBC_off << " " << endl ;
56 //myfile <<setprecision(6) << setw(4) << m << " "<< setw(4) << n << " "<< setw(10) << VWC_on - ←↩

VWC_off << " "<< setw(20) << VWC_on - VBC_off << " "<< setw(20) << VBC_on - VWC_off << " "<< ←↩
setw(20) << VBC_on - VBC_off << " " << endl ;

57 //myfile <<setprecision(8) << setw(5) << n << " " << setw(13) << PWC_on << " " << setw(13) << ←↩
PBC_on << " "<< setw(13) << PWC_off << " "<< setw(13) << PBC_off << " " << endl ;

58 }
59 }

Listing B.2: Computing the read margin and power cases for the FWGB read scheme

1 float SneakPathR(float R, float m, float n)
2 {
3 return((R/(n-1)) + (R/((m-1)*(n-1))) + (R/(m-1)));
4 }
5 float parallelRes(float R1, float R2)
6 {
7 return ((R1*R2)/(R1+R2));
8 }
9 int main()

10 {
11 float Vin = 1;
12 float Ron = 100;
13 float Roff = 200000;
14 float RsneakLRS, RsneakHRS;
15 float RotherLRS = 100;
16 float RotherHRS = 200000;
17
18 int n, m;
19 float RL = 100;
20
21 int size = 131072;

155

22 float Von = Vin * (RL / (Ron + RL));
23 float Voff = Vin * (RL / (Roff + RL));
24
25 ofstream myfile;
26 myfile.open ("margin_GRFC.dat");
27
28 for (n = 2; n <= size; n = n*2)
29 {
30 m=n;
31 float RmLRS = RotherLRS/(m-1);
32 float RmnLRS = RotherLRS/((m-1)*(n-1));
33 float RnLRS = RotherLRS/(n-1);
34
35 float RmHRS = RotherHRS/(m-1);
36 float RmnHRS = RotherHRS/((m-1)*(n-1));
37 float RnHRS = RotherHRS/(n-1);
38
39
40 float RL_effLRS = (RL * RnLRS)/(RL + RnLRS);
41 float RL_effHRS = (RL * RnHRS)/(RL + RnHRS);
42
43 float VWC_on = Vin * (RL_effLRS / (Ron + RL_effLRS));
44 float VBC_on = Vin * (RL_effHRS / (Ron + RL_effHRS));
45
46 float VWC_off = Vin * (RL_effLRS / (Roff + RL_effLRS));
47 float VBC_off = Vin * (RL_effHRS / (Roff + RL_effHRS));
48
49 float PWC_on = (Vin*Vin)/parallelRes(Ron+RL_effLRS, RmLRS+RmnLRS);
50 float PBC_on = (Vin*Vin)/parallelRes(Ron+RL_effHRS, RmHRS+RmnHRS);
51 float PWC_off = (Vin*Vin)/parallelRes(Roff+RL_effLRS, RmLRS+RmnLRS);
52 float PBC_off = (Vin*Vin)/parallelRes(Roff+RL_effHRS, RmHRS+RmnHRS);
53
54 myfile <<setprecision(8) << setw(5) << n << " " << setw(13) << VWC_on << " "<< setw(15) << VBC_on←↩

<< " "<< setw(15) << VWC_off << " "<< setw(15) << VBC_off << " " << endl ;
55 //myfile <<setprecision(6) << setw(4) << m << " "<< setw(4) << n << " "<< setw(10) << VWC_on - ←↩

VWC_off << " "<< setw(20) << VWC_on - VBC_off << " "<< setw(20) << VBC_on - VWC_off << " "<< ←↩
setw(20) << VBC_on - VBC_off << " " << endl ;

56 //myfile <<setprecision(8) << setw(5) << n << " " << setw(13) << PWC_on << " " << setw(13) << ←↩
PBC_on << " "<< setw(13) << PWC_off << " "<< setw(13) << PBC_off << " " << endl ;

57 }
58 }

Listing B.3: Computing the read margin and power cases for the GWFB read scheme

1 float SneakPathR(float R, float m, float n)
2 {
3 return((R/(n-1)) + (R/((m-1)*(n-1))) + (R/(m-1)));
4 }
5 float parallelRes(float R1, float R2)
6 {
7 return ((R1*R2)/(R1+R2));
8 }
9 int main()

10 {
11 float Vin = 1;
12 float Ron = 100;
13 float Roff = 200000;
14 float RsneakLRS, RsneakHRS;
15 float RotherLRS = 100;
16 float RotherHRS = 200000;
17
18 int n, m;
19 float RL = 100;
20
21 int size = 131072;
22 float Von = Vin * (RL / (Ron + RL));
23 float Voff = Vin * (RL / (Roff + RL));
24
25 ofstream myfile;
26 myfile.open ("margin_GRFC.dat");
27
28 for (n = 2; n <= size; n = n*2)
29 {
30 m=n;
31 float RmLRS = RotherLRS/(m-1);
32 float RmnLRS = RotherLRS/((m-1)*(n-1));
33 float RnLRS = RotherLRS/(n-1);
34
35 float RmHRS = RotherHRS/(m-1);
36 float RmnHRS = RotherHRS/((m-1)*(n-1));
37 float RnHRS = RotherHRS/(n-1);
38
39 float RL_effLRS = (RL * RmLRS)/(RL + RmLRS);
40 float RL_effHRS = (RL * RmHRS)/(RL + RmHRS);
41
42 float VWC_on = Vin * (RL_effLRS / (Ron + RL_effLRS));
43 float VBC_on = Vin * (RL_effHRS / (Ron + RL_effHRS));
44
45 float VWC_off = Vin * (RL_effLRS / (Roff + RL_effLRS));
46 float VBC_off = Vin * (RL_effHRS / (Roff + RL_effHRS));
47
48 float PWC_on = (Vin*Vin)/parallelRes(Ron+RL_effLRS, RnLRS);
49 float PBC_on = (Vin*Vin)/parallelRes(Ron+RL_effHRS, RnHRS);
50 float PWC_off = (Vin*Vin)/parallelRes(Roff+RL_effLRS, RnLRS);
51 float PBC_off = (Vin*Vin)/parallelRes(Roff+RL_effHRS, RnHRS);
52
53 myfile <<setprecision(8) << setw(5) << n << " " << setw(13) << VWC_on << " "<< setw(15) << VBC_on←↩

<< " "<< setw(15) << VWC_off << " "<< setw(15) << VBC_off << " " << endl ;

156

54 //myfile <<setprecision(6) << setw(4) << m << " "<< setw(4) << n << " "<< setw(10) << VWC_on - ←↩
VWC_off << " "<< setw(20) << VWC_on - VBC_off << " "<< setw(20) << VBC_on - VWC_off << " "<< ←↩
setw(20) << VBC_on - VBC_off << " " << endl ;

55 //myfile <<setprecision(8) << setw(5) << n << " " << setw(13) << PWC_on << " " << setw(13) << ←↩
PBC_on << " "<< setw(13) << PWC_off << " "<< setw(13) << PBC_off << " " << endl ;

56 }
57 }

Listing B.4: Computing the read margin and power cases for the GWGB read scheme

1
2
3 float Ron = 100; float Roff = 200000;
4
5 float SneakPathR(int Koffn, int Koffm, int Koffmn, int m, int n)
6 {
7 float Rn = (Ron*Roff)/(((n-1)*Roff) - (Koffn*(Roff-Ron)));
8 float Rm = (Ron*Roff)/(((m-1)*Roff) - (Koffm*(Roff-Ron)));
9 float Rmn = (Ron*Roff)/(((m-1)*(n-1)*Roff) - (Koffmn*(Roff-Ron)));

10 return (Rm + Rn + Rmn);
11 }
12
13 int main()
14 {
15 float Vin = 1; float Rsneak1, Rsneak2; float Koff1 = 0; float Koff2 = 0; float Rl = 100; int n, m, size =←↩

512;
16
17 ofstream myfile;
18 myfile.open ("margin_rand_512x512.dat");
19
20 int Koffn1, Koffm1, Koffmn1;
21
22 m=n=size;
23 for (int samples = 1; samples <= 1000000; samples=samples+1)
24 {
25 //Koff is the no of memristor in Off state
26
27 Koffn1 = rand()%n; Koffm1 = rand()%m; Koffmn1 = rand()%((n-1)*(m-1)+1);
28
29 Koff1 = Koffn1 + Koffm1 + Koffmn1;
30 Rsneak1 = SneakPathR(Koffn1, Koffm1, Koffmn1, m, n);
31
32 float MemWC_on = (Ron * Rsneak1)/(Ron + Rsneak1);
33 float MemWC_off = (Roff * Rsneak1)/(Roff + Rsneak1);
34
35 float VWC_on = Vin * (Rl / (MemWC_on + Rl));
36 float VWC_off = Vin * (Rl / (MemWC_off + Rl));
37
38 myfile <<setprecision(9) << setw(6) << samples << " " << setw(5) << Koff1 << " "<< setw(15) << ←↩

VWC_on << " "<< setw(15) << VWC_off << setw(15) << VWC_on-VWC_off << " " << endl ;
39 }
40 }

Listing B.5: Computing the read margin for the FWFB read scheme using random resistance
states

1 //Generate multiple samples with random data distribution with GWGB, FWGB, GWFB
2 int main()
3 {
4 float Vin = 1; float Koff1 = 0; float Rl = 100; int n, m, size = 4; float Ron = 100; float Roff = 200000;
5
6 ofstream myfile;
7 myfile.open ("margin_rand_gnd2_4x4.dat");
8
9 int Koffn1, Koffm1, Koffmn1;

10
11 m=n=size;
12 for (int samples = 1; samples <= 1000000; samples=samples+1)
13 {
14 //Koff is the no of memristor in Off state
15 Koffn1 = rand()%n;
16 Koffm1 = rand()%m;
17 Koffmn1 = rand()%((n-1)*(m-1)+1);
18
19 float Rn = (Ron*Roff)/(((n-1)*Roff) - (Koffn1*(Roff-Ron)));
20 float Rm = (Ron*Roff)/(((m-1)*Roff) - (Koffm1*(Roff-Ron)));
21 float Rmn = (Ron*Roff)/(((m-1)*(n-1)*Roff) - (Koffmn1*(Roff-Ron)));
22
23 //float Rl_eff = (Rl * (Rm + Rmn))/(Rl + (Rm + Rmn)); // FWGB
24 float Rl_eff = (Rl * Rn)/(Rl + Rn); // GWFB
25 //float Rl_eff = (Rl * Rm)/(Rl + Rm); // GWGB
26
27 float MemWC_on = Ron ; //Rsel is not affected
28 float MemWC_off = Roff ;
29 float VWC_on = Vin * (Rl_eff / (MemWC_on + Rl_eff));
30 float VWC_off = Vin * (Rl_eff / (MemWC_off + Rl_eff));
31
32 myfile <<setprecision(9) << setw(6) << samples << " " << setw(5) << Koffmn1+Koffm1 << " "<< setw(15)←↩

<< VWC_on << " "<< setw(15) << VWC_off << setw(15) << VWC_on-VWC_off << " " << endl ;
33 }
34 }

157

Listing B.6: Computing the read margin for GWGB, FWGB and GWFB read scheme using
random resistance states

1 float SneakPathR(float Ron, float Rl, float m, float n, int type)
2 {
3 float row, column, middle, divisor;
4 row = ((Ron/(m-1)) + (Ron/((n-1)*(m-1)))) * (Ron/(n-1));
5 column = ((Ron/(m-1)) + (Ron/((n-1)*(m-1)))) * (Rl/(n-1));
6 middle = (Ron/(n-1)) * (Rl/(n-1)) ;
7
8 if (type == 0) {
9 divisor = Rl/(n-1);

10 }
11 else {divisor = Ron/(n-1); }
12 return((row + middle + column)/divisor);
13 }
14
15 int main()
16 {
17 float Vin = 1; float Ron = 100; float Roff = 200000;
18 float RsneakLRS, RsneakHRS; float RsneakLRS_b, RsneakHRS_b; int n, m;
19 float Rl = 100; int size = 32; float Von = Vin * (Rl / (Ron + Rl)); float Voff = Vin * (Rl / (Roff + Rl))←↩

;
20
21 ofstream myfile;
22 myfile.open ("new3d.dat");
23
24 for (n = size; n <= size; n = n+1)
25 {
26 for (Rl = 0.00001; Rl <= 100000; Rl*=1.1)
27 {
28 for (Roff = Ron; Roff <= Ron*100000; Roff*=1.2)
29 {
30 m=32; //row
31 n=size; //column
32 RsneakLRS = SneakPathR(Ron,Rl,m,n,0);
33 RsneakHRS = SneakPathR(Roff,Rl,m,n,0);
34
35 RsneakLRS_b = SneakPathR(Ron,Rl,m,n,1);
36 RsneakHRS_b = SneakPathR(Roff,Rl,m,n,1);
37
38 float MemWC_on = (Ron * RsneakLRS)/(Ron + RsneakLRS);
39 float MemBC_on = (Ron * RsneakHRS)/(Ron + RsneakHRS);
40
41 float MemWC_off = (Roff * RsneakLRS)/(Roff + RsneakLRS);
42 float MemBC_off = (Roff * RsneakHRS)/(Roff + RsneakHRS);
43
44 float Rl_eff_on = (Rl * RsneakLRS_b)/(Rl + RsneakLRS_b);
45 float Rl_eff_off = (Rl * RsneakHRS_b)/(Rl + RsneakHRS_b);
46
47 float VWC_on = Vin * (Rl_eff_on/(MemWC_on + Rl_eff_on));
48 float VBC_on = Vin * (Rl_eff_off/(MemBC_on + Rl_eff_off));
49
50 float VWC_off = Vin * (Rl_eff_on/(MemWC_off + Rl_eff_on));
51 float VBC_off = Vin * (Rl_eff_off/(MemBC_off + Rl_eff_off));
52
53 myfile <<setprecision(8) << setw(13) << Roff/Ron << " "<< setw(20) << Rl << " " << setw(20) ←↩

<< (VBC_on - VWC_off)*100 << setw(20) << (VBC_on - VBC_off)*100 << setw(20) << (VWC_on - ←↩
VWC_off)*100 << setw(20) << (VWC_on - VBC_off)*100 << " " <<endl ;

54 }
55 }
56 }
57 }

Listing B.7: Computing all the possible cases of sneak-path with all cells in a row are selected

1 float SneakPathR(float R, float Rl, float m, float n, int type, int k)
2 {
3 float R1, R2, R3, Ra, Rb, Rc, Rnk, Rmnk, Rk, Rmk, Rlk, Rm, divisor;
4
5 Rnk = R/(n-k);
6 Rmnk = R/((m-1)*(n-k));
7 Rk = R/(k-1);
8 Rmk = R/((m-1)*(k-1));
9 Rlk = Rl/(k-1);

10 Rm = R/(m-1);
11
12 Ra = ((R/(k-1)) * (R/((m-1)*(k-1)))) + ((Rl/(k-1)) * (R/((m-1)*(k-1)))) + ((Rl/(k-1)) * (R/(k-1))) ←↩

;
13 Rb = ((R/(k-1)) * (R/((m-1)*(k-1)))) + ((Rl/(k-1)) * (R/((m-1)*(k-1)))) + ((Rl/(k-1)) * (R/(k-1))) ←↩

;
14 Rc = ((R/(k-1)) * (R/((m-1)*(k-1)))) + ((Rl/(k-1)) * (R/((m-1)*(k-1)))) + ((Rl/(k-1)) * (R/(k-1))) ←↩

;
15
16 Ra = Ra/Rlk; Rb = Rb/Rmk; Rc = Rc/Rk ;
17
18 Ra = (Ra * (Rnk+Rmnk))/ (Ra + (Rnk+Rmnk));
19
20 R1 = (Ra*Rb)/(Ra+Rb+Rc);

158

21 R2 = (Ra*Rc)/(Ra+Rb+Rc);
22 R3 = (Rb*Rc)/(Ra+Rb+Rc);
23
24 R2 = R2 + Rm;
25
26 Ra = ((R1*R2) + (R2*R3) + (R1*R3))/R3 ;
27 Rb = ((R1*R2) + (R2*R3) + (R1*R3))/R2 ;
28 Rc = ((R1*R2) + (R2*R3) + (R1*R3))/R1 ;
29
30 if (type == 0) {
31 return Ra;
32 }
33 else {return Rc; }
34 }
35
36 int main()
37 {
38 float Vin = 1; float Ron = 100; float Roff = 200000;
39 float RsneakLRS, RsneakHRS; float RsneakLRS_b, RsneakHRS_b;
40
41 int n, m; float Rl = 100; int size = 4;
42
43 m=4; n=size; //row //column
44 RsneakLRS = SneakPathR(Ron,Rl,m,n,0, 2);
45 RsneakHRS = SneakPathR(Roff,Rl,m,n,0, 2);
46
47 RsneakLRS_b = SneakPathR(Ron,Rl,m,n,1, 2);
48 RsneakHRS_b = SneakPathR(Roff,Rl,m,n,1, 2);
49
50 float MemWC_on = (Ron * RsneakLRS)/(Ron + RsneakLRS);
51 float MemBC_on = (Ron * RsneakHRS)/(Ron + RsneakHRS);
52
53 float MemWC_off = (Roff * RsneakLRS)/(Roff + RsneakLRS);
54 float MemBC_off = (Roff * RsneakHRS)/(Roff + RsneakHRS);
55
56 float Rl_eff_on = (Rl * RsneakLRS_b)/(Rl + RsneakLRS_b);
57 float Rl_eff_off = (Rl * RsneakHRS_b)/(Rl + RsneakHRS_b);
58
59 float VWC_on = Vin * (Rl_eff_on / (MemWC_on + Rl_eff_on));
60 float VBC_on = Vin * (Rl_eff_off / (MemBC_on + Rl_eff_off));
61
62 float VWC_off = Vin * (Rl_eff_on / (MemWC_off + Rl_eff_on));
63 float VBC_off = Vin * (Rl_eff_off / (MemBC_off + Rl_eff_off));
64
65 cout <<setprecision(8) << setw(13) << VWC_on << " "<< setw(20) << VBC_on << " "<< setw(20) << VWC_off ←↩

<< " "<< setw(20) << VBC_off << " " << endl ;
66 cout <<setprecision(8) << setw(13) << Roff/Ron << " "<< setw(20) << Rl << " " << setw(20) << (VBC_on -←↩

VWC_off)*100 << setw(20) << (VBC_on - VBC_off)*100 << setw(20) << (VWC_on - VWC_off)*100 << setw←↩
(20) << (VWC_on - VBC_off)*100 << " " <<endl ;

67
68 }

Listing B.8: Computing all the possible cases of read-out voltages and read margin when some
of the cells in the desired row are selected for read

1 long long *data; long long *inputdata; long long *outputdata;
2 string inputdataStr; int parity[1000][1000] = {0}; int parity1[100] = {0}; int databit = 0; int rbit = 1;
3 int counter = 0; char *str[10000]; char *filestr;
4 int parityfunc[10000][10000] = {0};
5
6 long long *AllocateMemoryInt(int n);
7 char *AllocateMemory(int n);
8 char *DecTo2Com(long long int DecimalNumber, int NumOfBits);
9 int random(int rbit);

10 long long int i; long long j=0;
11
12 int main()
13 {
14 ofstream Generateinput ;
15 Generateinput.open("inputdata.txt");
16 ofstream Generateoutput ;
17 Generateoutput.open("outputdata.txt");
18 ofstream Generateparity ;
19 Generateparity.open("paritydata.txt");
20
21 filestr = AllocateMemory(1000);
22 for (i=0; i<=7; i++) //Generate input. Data to be worked on
23 {
24 if(i>=1){
25 j = pow(2,i)-1;
26 }
27
28 filestr = DecTo2Com (j, 8);// cout << j << endl; //convert integer to binary
29 Generateinput << filestr << endl;
30 }
31
32 inputdataStr = AllocateMemory(1000);
33
34 ifstream Readinput ("inputdata.txt"); // Read input generated
35 if (Readinput.is_open())
36 {
37 while (getline (Readinput,inputdataStr))
38 {
39 databit = inputdataStr.length();
40 srand((unsigned)time(NULL));
41 while(pow(2,rbit)<(databit + rbit+1)) //Compute number of parity bits needed
42 {rbit++; }

159

43 for (i = 0; i < databit; i++)
44 {
45 str[i] = AllocateMemory(rbit+1); //str is the syndrome. The no of column(i) is same ←↩

as databit
46 //p[i] = AllocateMemoryInt(rbit+1); //the no of row depends on the no of parity bit
47 }
48 data = AllocateMemoryInt(rbit+1); //For storing paritydata generated
49 inputdata = AllocateMemoryInt(rbit+1);
50 outputdata = AllocateMemoryInt(databit+rbit+1);
51 j = 0;
52 parity1[rbit-1] = 1;
53 for (i = 0; i < rbit; i++)
54 {
55 parity[i][j] = 1; //identity matrix. put 1 when i=j
56 j++;
57 parity1[rbit-1-j] = parity1[rbit-j]*2; //store decimal equivalent of identity parity in each ←↩

row
58 } //
59
60 for (i = 0; i < databit; i++) //Need to generate syndrome equall to the no of databit.
61 {
62 counter = 0;
63 int datatemp = random (rbit); //Generate and store paritydata temp
64 for (j = 0; j < databit; j++)
65 {
66 if (datatemp == data[j] || datatemp == parity1[j]) //exclude parity identities(2,4,8...), ←↩

zero and repetitions
67 {
68 counter++;
69 i = i - 1; //avoid repetion and parity data
70 }
71 }
72 if (counter == 0) //Save paritydata if conditions are satified
73 {data[i] = datatemp; }
74 }
75
76 for (i = 0; i < databit; i++) //convert integer paritydata to binary
77 {
78 str[i] = DecTo2Com (data[i], rbit);
79 }
80
81 for (j=0; j < rbit; j++)
82 {
83 for (i=0; i < databit ; i++)
84 {
85 if(str[i][j] == '1')
86 {parityfunc[j][i] = 1; } //Overall Syndrome. rbit rows and databit column.
87 }cout << endl;
88 }
89
90 for(i=0; i<databit; i++) { //Convert input read as string to integer
91 if (inputdataStr[i] == '1') {
92 inputdata[i] = 1;
93 }
94 else {inputdata[i] = 0; }
95 }
96
97 long long *newparity ;
98 newparity = AllocateMemoryInt(rbit+1);
99

100 memcpy(&outputdata, &inputdata, sizeof(outputdata));
101
102 for (j=0; j < rbit; j++)
103 {
104 for (i=0; i < databit ; i++)
105 {
106 if (parityfunc[j][i] == 1) //content of syndrome is 1 use for xor
107 {newparity[j] = newparity[j] ˆ inputdata[i]; } //XOR the data in that position in the input←↩

data
108 }
109 outputdata[databit+j] = newparity[j]; //append to end of originaldata
110 cout << "j = " << j << ", " << newparity[j] << endl;
111 }
112
113 for (j=0; j < rbit+databit ; j++)
114 {
115 Generateoutput << outputdata[j] ;
116 }
117 Generateoutput << endl;
118 for (j=0; j < rbit ; j++)
119 {Generateparity << outputdata[databit+j]; }
120 Generateparity << endl;
121
122 }
123 Readinput.close();
124 }
125 else cout << "Unable to open file";
126 }
127
128 int random(int rbit) // Generate random parity data between 0 and 2ˆparitybit
129 {
130 int randomno = rand() % (int)(pow(2, rbit) -1) + 1; // +1 helps to exclude 0, -1 helps to avoid 2ˆ←↩

paritybit
131 return randomno ;
132 }
133
134 char *DecTo2Com(long long int DecimalNumber, int NumOfBits)
135 {
136 int temp, i,j; int flag = 0; char *binary;
137 long long *binary1;
138 binary = AllocateMemory(NumOfBits+1);
139 binary1 = AllocateMemoryInt(NumOfBits+1);
140 temp = --NumOfBits;

160

141
142 while (DecimalNumber > 0) {
143 binary1[NumOfBits--] = DecimalNumber%2;
144 DecimalNumber=DecimalNumber/2;
145 }
146 for(i=0; i<=temp; i++) {
147 if (binary1[i] == 1) {
148 binary[i] = '1';
149 }
150 else {binary[i] = '0'; }
151 }
152 return binary;
153 }
154
155 char *AllocateMemory(int n)
156 {
157 char *str;
158 str = (char *)calloc (n, sizeof(char));
159 if (str == NULL){
160 printf("Cannot Allocate Memoery");
161 exit(2);
162 }
163 return str;
164 }
165
166 long long *AllocateMemoryInt(int n)
167 {
168 long long *str;
169 str = (long long *)calloc (n, sizeof(long long));
170 if (str == NULL){
171 printf("Cannot Allocate Memoery");
172 exit(2);
173 }
174 return str;
175 }

Listing B.9: Designing memristor-based structure with Hamming code

1 int *data; int *inputdata; int *outputdata; string inputdataStr; int databit = 0;
2 int zeros = 0; int ones = 0; char *str[10000]; char *filestr;
3 int *AllocateMemoryInt(int n); char *AllocateMemory(int n);
4
5 char *DecTo2Com(long int DecimalNumber, int NumOfBits);
6 int i, j;
7 int main()
8 {
9 srand((unsigned)time(NULL));

10
11 ofstream Generateoutput ;
12 Generateoutput.open("outputdata.txt");
13 filestr = AllocateMemory(1000);
14 inputdataStr = AllocateMemory(1000);
15
16 ifstream Readinput ("../outputdata.txt");
17 if (Readinput.is_open())
18 {
19 while (getline (Readinput,inputdataStr))
20 {
21 databit = inputdataStr.length();
22 data = AllocateMemoryInt(databit+1);
23 inputdata = AllocateMemoryInt(databit+1);
24 outputdata = AllocateMemoryInt(databit+1);
25
26 ones = 0; zeros=0;
27 for(i=0; i<databit; i++)
28 {
29 if (inputdataStr[i] == '1')
30 {
31 inputdata[i] = 1;
32 ones = ones+1;
33 }
34 else
35 {
36 inputdata[i] = 0;
37 zeros+=1;
38 }
39 }
40 cout << "1s- " << ones << " 0s- " << zeros << endl;
41
42 if (ones > zeros)
43 {
44 for(i=0; i<databit+1; i++)
45 {
46 inputdata[i] = inputdata[i] ˆ1;
47 Generateoutput << inputdata[i] ;
48 }
49 Generateoutput << endl ;
50 }
51 else
52 {
53 for(i=0; i<databit+1; i++)
54 {Generateoutput << inputdata[i] ; }
55 Generateoutput << endl ;
56 }
57 }
58 Readinput.close();
59 }
60 }

161

61
62 char *DecTo2Com(long int DecimalNumber, int NumOfBits)
63 {
64 int temp, i,j;
65 int flag = 0;
66 char *binary;
67 binary = AllocateMemory(NumOfBits+1);
68
69 temp = --NumOfBits;
70
71 while (DecimalNumber > 0) {
72 binary[NumOfBits--] = DecimalNumber%2;
73 DecimalNumber=DecimalNumber/2;
74 }
75 for(i=0; i<=temp; i++) {
76 if (binary[i] == 1) {
77 binary[i] = '1';
78 }
79 else {binary[i] = '0'; }
80 }
81 return binary;
82 }
83
84 char *AllocateMemory(int n)
85 {
86 char *str;
87 str = (char *)calloc (n, sizeof(char));
88 if (str == NULL){
89 printf("Cannot Allocate Memory");
90 exit(2);
91 }
92 return str;
93 }
94
95 int *AllocateMemoryInt(int n)
96 {
97 int *str;
98 str = (int *)calloc (n, sizeof(int));
99 if (str == NULL){

100 printf("Cannot Allocate Memory");
101 exit(2);
102 }
103 return str;
104 }

Listing B.10: Computing the inversion flag bit from memristor-based structures with Inversion
code

1 int main()
2 {
3 for (int size=4; size<=4; size=size*2)
4 {
5 char Resistance[50]; char wordline[50]; char bitline[50]; char Memristor[500]; char directory[500];
6 char choice[3] = "xy"; char filename[50]; double initial[200000] = {0};
7
8 double D = 3e-09; int p_coff = 2; double C = 9e-10;
9 double xo = 3e-09; //value of unselected cells

10 double alpha = 20; double uv = 1e-15;
11 int Rl = 100; int index = 50; int selectedRow; int selectedCol;
12 int m = size, n = size, Ron = 100, Roff = 200000;
13
14 selectedRow = m/2;
15 selectedCol = n/2;
16
17 ofstream netlistFile;
18 ofstream oceanfile;
19 snprintf (filename, sizeof filename, "%dX%d", m, n);
20 netlistFile.open (filename);
21 snprintf (filename, sizeof filename, "oceanScript_%dX%d", m, n);
22 oceanfile.open (filename);
23
24 netlistFile << endl << "// Library name: Memristor" << endl << "// Cell name: Array_memristor_" << ←↩

filename << "_Write_Voltages" << endl << "// View name: schematic" << endl << endl;
25
26 oceanfile << "simulator('spectre) " << endl;
27 sprintf (directory, "design(\"/home/cosc/csdkp/linux/pradhan/VLSI/Sim/←↩

Array_memristor_4X4_Write_voltages/spectre/schematic/netlist/netlist\")");
28 //sprintf (result, "resultsDir(\"/home/cosc/csxjm/linux/IC_Design/VLSI3_2014/Sim/←↩

Array_memristor_4X4_Write_voltages/spectre/schematic\")");
29
30 oceanfile << directory << endl << "modelFile(\n \t '(\"/usr/local/cds-een/cadence/ams_4.10/spectre/c35←↩

/soac/cmos53.scs\" \"cmostm\")\n \t " << endl <<
31 "'(\"/usr/local/cds-een/cadence/ams_4.10/spectre/c35/soac/res.scs\" \"restm\")\n \t '(\"/usr/local/cds←↩

-een/cadence/ams_4.10/spectre/c35/soac/cap.scs\" \"captm\")\n \t " << endl <<
32 "'(\"/usr/local/cds-een/cadence/ams_4.10/spectre/c35/soac/bip.scs\" \"biptm\")\n \t '(\"/usr/local/cds←↩

-een/cadence/ams_4.10/spectre/c35/soac/ind.scs\" \"indtm\")\n \t " << endl <<
33 "'(\"/usr/local/cds-een/cadence/ams_4.10/spectre/c35/soac/esddiode.scs\" \"esddiodetm\")\n \t '(\"/usr←↩

/local/cds-een/home/dkmgr/gpdk180_v3.2/models/spectre/gpdk.scs\" \"stat\")\n)" << endl <<
34 "definitionFile(\n \t \"/usr/local/cds-een/cadence/ams_4.10/spectre/c35/soac/processOption.scs\"\n)" ←↩

<< endl <<
35 "analysis('tran ?stop \"1n\" ?errpreset \"moderate\" ?start \"0\" ?step \"200p\" ?maxstep \"500p\" ←↩

?finalTimeOp nil)" << endl <<
36 "desVar(\"Rw\" 0.1)" << endl <<
37 "desVar(\"x\" 3n)" << endl <<
38 "desVar(\"y\" 3n)" << endl <<
39 "desVar(\"V\" 0.5)" << endl << endl;
40

162

41 oceanfile << "envOption(\n 'analysisOrder list(\"tran\")\n)\n" << endl ;
42 oceanfile << "envSetVal(\"spectre.envOpts\" \"userCmdLineOption\" 'string \"+turbo +parasitics ++←↩

parasitics ++aps +cktpreset=sampled\")" << endl ;
43 oceanfile << "temp(27)\nout = outfile(\"./Results"<< m << "x" << n << "_" << index <<".out\" \"w\")←↩

\n" << endl;
44 oceanfile << "option('reltol 1e-3)" << endl;
45 oceanfile << "option(?categ 'turboOpts 'errorLevel \"Moderate\")" << endl;
46 oceanfile << "option('maxnotestologfile \"1\" 'maxwarnstologfile \"1\" 'maxwarns \"1\" 'maxnotes ←↩

\"1\") " << endl;
47 oceanfile << "saveOption('save \"none\" 'currents \"selected\")" << endl;
48 oceanfile << "save('i \"m" <<setw(5) << setfill('0') << selectedRow <<setw(5) << setfill('0') << ←↩

selectedCol << ":p\" \"m" <<setw(5) << setfill('0') << m <<setw(5) << setfill('0') << ←↩
selectedCol << ":p\")" << endl;

49 oceanfile << "time = 1n" << endl;
50
51 oceanfile << "paramAnalysis(\"Rw\" ?values '(0.0001 0.001 0.01 0.1 1))" << endl;
52 oceanfile << "paramRun()\nselectResult('tran)\noutputs()" << endl;
53
54 oceanfile << "\tocnPrint(?output out IT(\"m" <<setw(5) << setfill('0') << selectedRow <<setw(5) << ←↩

setfill('0') << selectedCol << ":p\")*200 IT(\"m" <<setw(5) << setfill('0') << m <<setw(5) << ←↩
setfill('0') << selectedCol << ":p\")*200 ?precision 6 ?numberNotation 'none ?from 1n ?to 1n ?←↩
step 0.1n)" << endl;

55
56 oceanfile << "close(out)" << endl;
57
58
59 for (i=1; i <= m; i++) //row
60 {
61 for (j=1; j <= n; j++) //column
62 {
63 sprintf (Resistance, "R%05d%05d (M%05d%05d 0) resistor r=1G", i, j, i, j);
64 netlistFile << Resistance << endl;
65 }
66 netlistFile << endl;
67 }
68
69 for (i=1; i <= m; i++) //row
70 {
71 for (j=1; j <= n+1; j++) //column
72 {
73 if (j == 1 && i == selectedRow) //(j == 1 && i == 1)
74 {sprintf (wordline, "W%05d%05d (Vin netW%05d%05d) resistor r=Rw", i, j, i, j); }
75 else if (j == n+1 && i==selectedRow) //extra Rw for selected wordline (j == n+1 && i==1)
76 {sprintf (wordline, "W%05d%05d (netW%05d%05d Vin2) resistor r=Rw", i, j, i, j-1); }
77 else if(j==1 && i != selectedRow) //(j==1 && i > 1)
78 {sprintf (wordline, "W%05d%05d (VWL%05d%05d netW%05d%05d) resistor r=Rw", i,j, i,j, i,j); }
79 else if(j==n+1 && i != selectedRow) //extra Rw for unselected wordline (j==n+1 && i > 1)
80 {sprintf (wordline, "W%05d%05d (netW%05d%05d VWL%05d%05d) resistor r=Rw", i,j, i,j-1, i,j); }
81 else
82 {sprintf (wordline, "W%05d%05d (netW%05d%05d netW%05d%05d) resistor r=Rw", i,j, i,j-1, i,j); }
83 netlistFile << wordline << endl;
84 }
85 netlistFile << endl;
86 }
87
88 for (i=1-1; i <= m; i++) //row
89 {
90 for (j=1; j <= n; j++) //column
91 {
92 if (i==m && j == selectedCol) //(i==m && j == n)
93 {sprintf (bitline, "B%05d%05d (netB%05d%05d Vgnd) resistor r=Rw", i, j, i, j); }
94 else if (i==0 && j == selectedCol) //extra Rw for selected bitline (i==0 && j == n)
95 {sprintf (bitline, "B%05d%05d (Vgnd2 netB%05d%05d) resistor r=Rw", i, j, i+1, j); }
96 else if(i==m && j != selectedCol)
97 {sprintf (bitline, "B%05d%05d (netB%05d%05d VBL%05d%05d) resistor r=Rw", i,j, i,j, i, j); }
98 else if(i==0 && j != selectedCol) //extra Rw for selected bitline
99 {sprintf (bitline, "B%05d%05d (VBL%05d%05d netB%05d%05d) resistor r=Rw", i,j, i,j, i+1, j);}

100 else
101 {sprintf (bitline, "B%05d%05d (netB%05d%05d netB%05d%05d) resistor r=Rw", i,j, i,j, i+1,j);}
102 netlistFile << bitline << endl;
103 }
104 netlistFile << endl;
105 }
106
107 for (i=1; i <= m; i++) //row
108 {
109 for (j=1; j <= n; j++) //column
110 {
111 if(i==1 && j == n)
112 {sprintf (Memristor, "m%05d%05d (netW%05d%05d netB%05d%05d M%05d%05d) Memristor Ron=%d Roff=%d D←↩

=%g p_coeff=%d \\ \n \t \t C=%g xo=x alpha=%g uv=%g",i,j, i,j, i,j, i,j, Ron, Roff,D, ←↩
p_coff, C, alpha, uv); }

113 else if(i==m && j == n) //To cater for randomness, we need to fix 1,n & n,n so as to multiple by←↩
Ron & Roff respectively in trans

114 {sprintf (Memristor, "m%05d%05d (netW%05d%05d netB%05d%05d M%05d%05d) Memristor Ron=%d Roff=%d D←↩
=%g p_coeff=%d \\ \n \t \t C=%g xo=y alpha=%g uv=%g",i,j, i,j, i,j, i,j, Ron, Roff,D, ←↩
p_coff, C, alpha, uv); }

115 else
116 {sprintf (Memristor, "m%05d%05d (netW%05d%05d netB%05d%05d M%05d%05d) Memristor Ron=%d Roff=%d D←↩

=%g p_coeff=%d \\ \n \t \t C=%g xo=y alpha=%g uv=%g",i,j, i,j, i,j, i,j, Ron, Roff,D, ←↩
p_coff, C,alpha, uv); }

117 netlistFile << Memristor << endl;
118 }
119 netlistFile << endl;
120 }
121 //Input voltage to the selected row on both side
122 netlistFile << "V16 (Vin 0) vsource type=pulse val1=V" << endl;
123 netlistFile << "V17 (Vin2 0) vsource type=pulse val1=V" << endl;
124
125 //Ground voltage to the selected column on both sides
126 //change to -K * V/2 instead of grounding
127 netlistFile << "V18 (Vgnd 0) vsource type=pulse val1=-0.5*V/2" << endl;
128 netlistFile << "V19 (Vgnd2 0) vsource type=pulse val1=-0.5*V/2" << endl;

163

129
130 for (i=0; i <= m; i=i+m) //column (i=0; i <= m; i=i+m)
131 {
132 for (j=1; j <= n; j++) //row (j=1; j < n; j++)
133 {
134 if (j != selectedCol)
135 {
136 sprintf (Memristor, "VB%05d%05d (VBL%05d%05d 0) vsource type=pulse val1=V/2",i,j,i,j);
137 netlistFile << Memristor << endl;
138 }
139 }
140 }
141 for (j=1; j <= m+1; j=j+m) //column (j=1; j <= m+1; j=j+m)
142 {
143 for (i=1; i <= m; i++) //row (i=2; i <= m; i++)
144 {
145 if (i != selectedRow)
146 {
147 sprintf (Memristor, "VW%05d%05d (VWL%05d%05d 0) vsource type=pulse val1=0.5*V/2",i,j,i,j);
148 netlistFile << Memristor << endl;
149 }
150 }
151 }
152 netlistFile.close();
153 oceanfile.close();
154 cout<< endl << m << "X" << n << " netlist successfull generated, check output file" << endl << endl;
155 }
156 }

Listing B.11: Generating netlist and Ocean Script file for simulation of write operation with
line resistance in Cadence Virtuoso

1 float parallelRes(float R1, float R2)
2 {return ((R1*R2)/(R1+R2)); }
3
4 float parallelResArray(float *listDemo, int size)
5 {
6 if (size == 1)
7 {return listDemo[0];}
8 else
9 {

10 for (int i = size-1; i>0; i--){
11 listDemo[i-1] = parallelRes(listDemo[i], listDemo[i-1]);
12 }
13 return listDemo[0];
14 }
15 }
16
17 float SneakPathR(float R, float m, float n)
18 {
19 if (m == 1)
20 {return (R/(n-1));}
21 if (n == 1)
22 {return (R);}
23 else
24 {return (R/(n-1)) + (R/((m-1)*(n-1))) + (R/(m-1));}
25 }
26
27 int main()
28 {
29 unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
30 default_random_engine generator ;
31
32 float Vin = 1; float R_off = 200000, R_on = 1000; float conc = 2000;
33 long sample, m, n, size = 8; float Rl = 5;
34 float Vout = 0; float D = 3e-9; float w = 3e-9;
35 float M_final, M_init;
36 float *list;
37
38 float A = 4.2e-4; //Sensitivity parameter of sensor or constant of thin film 4.37e-3
39 float beta = 1; //slope of Rs curve
40 if ((list = (float *)malloc(sizeof(float)*size*size+1)) == NULL) {
41 printf("unable to allocate memory \n");
42 return -1;
43 }
44 ofstream myfile;
45 myfile.open ("SensorModelDistribution.dat");
46
47 n = size;
48 float total = 0;
49 for (sample = 1; sample <= 50000; sample = sample + 1)
50 {
51 long senNum = n*n; //n*n for MxN array, n for 1xn, 1 for single
52 float R_on_eff = R_on / (1+A * pow(conc, beta)) ;
53 float R_off_eff = R_off;
54
55 M_init = (R_on * (w/D)) + (R_off * (1-(w/D)));
56 for (int i = 0; i < senNum; i++) //n*n for MxN array
57 {
58 normal_distribution<float> M_init_distribution (M_init,(5*M_init/100)); //M_init is average , (5*←↩

M_init/100) is the deviation
59 list[i] = M_init_distribution(generator) ;
60 }
61 float Rtotal_init = parallelResArray(list, senNum); //find the total resistance of the random res
62
63 total = total + pow((Rtotal_init - M_init),2);
64

164

65 M_final = (R_on_eff * (w/D)) + (R_off_eff * (1-(w/D)));
66 for (int i = 0; i < senNum; i++)
67 {
68 normal_distribution<float> M_final_distribution (M_final,(5*M_final/100));
69 list[i] = M_final_distribution(generator) ;
70 }
71 float Rtotal_final = parallelResArray(list, senNum);
72 float V_out_innt = Rl/(Rtotal_init + Rl);
73 float V_out_final = Rl/(Rtotal_final + Rl);
74
75 myfile <<setprecision(8) << setw(3) << senNum << " " << setw(5) << conc << " " << setw(10) << M_init←↩

<< " " << setw(10) << Rtotal_init << " "<< setw(10) << M_final << " " << setw(10) << ←↩
Rtotal_final << " " << setw(10) << Rtotal_init/Rtotal_final << endl ;

76 }
77 }

Listing B.12: Computing the resistance distribution in memristor-based sensor array

1 //No line resistance of the 3 schemes used for the 3D plot. Was previously used for the power of all three
2 int main()
3 {
4 float Vin = 2; float Ron = 100; float Roff = 200000; int n, m;
5
6 int size = 524288;
7 //Floating, V/2 and v/3
8 float Vn, Vm, Vmn, Vn2, Vm2, Vmn2, Vn3, Vm3, Vmn3 ;
9 float Itotal, Rtotal, R;

10
11 ofstream myfile;
12 myfile.open ("write_voltages_FL_noL.dat");
13
14 for (n = 2; n <= size; n = n*2)
15 {
16 R = Ron;
17 m=n;
18 Vn = Vin * (m-1)/(m+n-1);
19 Vm = Vin * (n-1)/(m+n-1);
20 Vmn = Vin / (m+n-1);
21 float Isneak = (Vin * (m-1)*(n-1)) / (R * (m+n-1)); //Total sneak current. through each group
22 float Isel = Vin/R;
23 //Same current but different voltages
24 float P = (Vin * Isel) + (Vn * Isneak) + (Vmn * Isneak) + (Vm * Isneak);
25
26 Vn2 = Vin/2;
27 Vm2 = Vin/2;
28 Vmn2 = Vin/2 - Vin/2;
29 Isneak = (Vin * (m+n-2)) / (2*R);
30
31 //total current is Isneak = (eachI=V/R) * (m+n-2) current has been multiple by the number of cells ←↩

already
32 float Pv2 = (Vin * Isel) + (Vn2 * Isneak);
33
34 Vn3 = Vin/3;
35 Vm3 = Vin/3;
36 Vmn3 = Vin/3;
37 Isneak = (Vin * (m*n-1)) / (3*R);
38
39 //total current is Isneak = (eachI=V/R) * (m*n-1)
40 float Pv3 = (Vin * Isel) + (Vn3 * Isneak);
41
42 myfile <<setprecision(6) << setw(3) << m << " " << setw(3) << n << " "<< setw(8) << Vin/2 << " "<<←↩

setw(8) << Vn/2 << " " << setw(8) << Vm/2 << " "<< setw(8) << Vmn/2 << " "<< setw(4) << ←↩
endl ;

43
44 }
45 }

Listing B.13: Computing the performance metrics for crossbar write schemes

165

	Declaration
	Acknowledgement
	List of Tables
	List of Figures
	List of Code Listings
	List of Acronyms
	Introduction
	Problem Background
	Motivation
	Methodology and Presentation
	Author's Contributions to Subject Area
	Outline of this thesis

	Background
	Introduction
	Memristor Overview
	HP Labs' Memristor
	Properties of Memristor
	Applications of Memristors
	Writing a Logic 0 to the Memristor
	Writing a Logic 1 to the Memristor
	Reading from a Memristor
	Demonstration of Memristor's Non-volatility
	Memristor Models and Window Functions

	The Crossbar Architecture
	Write Operation in Crossbar Array
	Read Operation in Crossbar Array
	Sneak-path Leakage in Crossbar Array

	Summary

	Review of Related Work and Baseline Research
	Read and Write Operations in Memristor Based Crossbar Arrays
	Sneak-path Elimination Techniques
	Write Operation in Multiple cells

	Gas Sensing with Memristor
	Baseline Research: Write Schemes for Multiple CRS cells
	E-b-R scheme with CRS-Based Memory Array
	CRS Compensated Write Voltage Technique

	Summary

	Improved Techniques for Crossbar Array Read Operation
	Introduction
	Improved Crossbar Array Model
	Modelling Crossbar Array Read Schemes
	Floating Wordlines and Floating Bitlines
	Floating Wordlines and Grounded Bitlines
	Grounded Wordlines and Floating Bitlines
	Grounded Wordlines and Grounded Bitlines

	Effects of Sneak-path on Crossbar Array Read Schemes
	Power Analysis of Crossbar Array Read Schemes
	Multiple Cells Read in Crossbar Arrays
	Multiple Cells Read with Similar Data
	Multiple Cells Read with Non Similar Data
	Application of Multiple Cells Read Technique
	Experimental Results and Discussions

	Conclusions

	Improved Techniques for Crossbar Array Write Operation
	Introduction
	Analysis of Crossbar Array Write Schemes
	Crossbar Array Write Operation without Line Resistance
	Crossbar Array Write Operation with Line Resistance

	Compensated Write Voltage Technique
	Multiple Cells Write Operation
	Low Power V/3 Write Scheme for Multiple Crossbar Cells
	Experimental Results and Discussions

	Conclusions

	Gas Sensing with Memristor-based Crossbar Array
	Introduction
	Memristor as Gas Sensor
	Verilog-A Model for Memristive Gas Sensor
	Gas Sensing with Crossbar Array
	Proposed Crossbar Gas Sensing Structures
	Multi-Gas Sensing with m (1 n) Sensor Array
	The m n Array Structure
	The 1T1M Structure
	Experimental Results and Discussions

	Conclusions

	Conclusions and Future work
	Summary of this Thesis
	Future Research

	Bibliography
	Appendices
	Experimental Data for Read-out Voltages and Read Margin
	Analytic Simulation tools in C Language

